
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Spring 2004

Parallel Decomposition Procedures for Large-scale Linear Parallel Decomposition Procedures for Large-scale Linear

Programming Problems Programming Problems

Yusong Hu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Civil Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Hu, Yusong. "Parallel Decomposition Procedures for Large-scale Linear Programming Problems" (2004).
Doctor of Philosophy (PhD), Dissertation, Civil & Environmental Engineering, Old Dominion University, DOI:
10.25777/gw7b-9914
https://digitalcommons.odu.edu/cee_etds/34

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/34?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PARALLEL DECOMPOSITION PROCEDURES FOR

LARGE-SCALE LINEAR PROGRAMMING PROBLEMS

by

Yusong Hu
M.S. April 1992, Northern Jiaotong University, Beijing, China

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment o f the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL ENGINEERING

OLD DOMINION UNIYERSTIY
May 2004

Approved by:

Due T. Nguyen (Director)

Zia Razzaq (Member)

J.H airdlLaura J. Hairell (Member)

Hideaki Kaneko (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

PARALLEL DECOMPOSITION PROCEDURES FOR

LARGE-SCALE LINEAR PROGRAMMING PROBLEMS

Yusong Hu
Old Dominion University, 2004

Director: Dr. Due T. Nguyen

In practice, many large-scale linear programming problems are too large to be solved

effectively due to the computer's speed and/or memory limitation, even though today's

computers have many more capabilities than before. Algorithms are exploited to solve

such large linear programming problems, either in the sequential or parallel computation

environment. This study focuses on two parallel algorithms for solving large-scale linear

programming problems efficiently.

The first narallel decomoosition aleorithm discussed in this studv is from the theorv

problems in a special block-angular structure. I he theory of the decomposition pnnciple

is first examined. Since the subproblems of a linear programming problem can be in any

of the three possible cases - optimal solution case, unbounded solution case and no

solution case, examples are provided for solving the problem when its subproblems are in

any of these cases. The concept of extreme directions is discussed due to its direct

connection with the unbounded solution case. A parallel computation code, which can

handle all these cases, is implemented in this study with the decomposition principle

theory and its performance is tested for large-scale linear programming problems.

Only the problems in the special block-angular structure can be solved with the

decomposition principle. For general linear programming problems, this study proposed a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new decomposition algorithm named “division by the interior point”. The idea of this

new algorithm is as follows: with a found interior point inside the feasible region, divide

the feasible region into multiple subregions and use multiple processors to solve the

problem in each subregion. This new algorithm is first demonstrated with a few small

numerical examples. A parallel computation code in this new idea is implemented and

tested with large-scale linear programming problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV

This thesis is dedicated to

my parents,

my wife, Wei,

and my son, Sam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

There are many people who have contributed to the successful completion of this

dissertation. I extend many, many thanks to my committee members for their patience

and hours of guidance on my research. The untiring efforts of my major advisor, Dr. Due

T. Nguyen, and helpful comments for Dr. Gene Hou, deserve special recognition. I would

like to thank Mr. Siroj Tungkahotara for providing subroutines and test results related to

Chapter V. I would also like to thank the library of the University of Maryland at College

Park for allowing me to borrow several useful textbooks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VI

TABLE OF CONTENTS

Page

LIST OF TABLES.. IX

LIST GFHGURES... X

Chapter

I. INTRODUCTION.. I

LI Overview..I

1.2 Objective and Scope.. 2

n. LINEAR PROGRAMMING METHODS..4

2.1 The Simplex Method.. 4

2.2 The Interior Point Method...5

2.2.1 Affine Scaling Algorithm.. 6

2.2.2 Finding the Starting Interior Point...9

TTT TVrrr’nX/rDrVCTTTrkXT DDTNTr'TDT T3 11

3.2 The Algorithm of the Decomposition Principle... 17

3.3 Finding the Optimal Direction.. 21

3.3.1 Finding the Optimal Direction in the Simplex Method.............................21

3.3.2 Finding the Optimal Direction in the Interior Point Method.................... 23

IV. NUMERICAL STUDIES OF THE DECOMPOSTION PRINCIPLE................ 27

4.1 Sequential Algorithm of the Decomposition Principle................................... 27

4.1.1 Bounded Feasible Region Case...28

4.1.1.1 Example Problem With Optimal Solution...28

4.1.1.2 Example Problem With No Solution...39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vll

4.1.2 Unbounded Feasible Region Case..46

4.2 Parallel Algorithm of the Decomposition Principle.. 53

V. A NEW DECOMPOSITION ALGORITHM: DIVISION BY THE INTERIOR

POINT..57

5.1 Introduction..57

5.2 Parallelizing the Division by the Interior Point Algorithm...............................60

5.3 Numerical Studies.. 62

VI. CONCLUSIONS AND FUTURE RESEARCH..64

6.1 Conclusions...64

6.2 Future Research... 64

BIBLIOGRAPHY... 66

VITA...68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vlll

LIST OF TABLES

Table Page

1. Numerical results of the parallel decomposition principle. Case 1................................ 55

2. Numerical results of the parallel decomposition principle, Case 2 56

3. Numerical results of the parallel decomposition principle. Case 3................................ 56

4. Numerical results of the parallel division by the interior point procedure , Case 1......63

5. Numerical results of the parallel division by the interior point procedure , Case 2 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IX

LIST OF FIGURES

Figure Page

1. Mapping of one space to another space... 7

2. Extreme points of a bounded feasible region..12

3. Extreme points and extreme directions

of an unbounded feasible region.. 13

4. Point X in a bounded region..14

5. Point X in convex combination.. 14

6: Point x in another convex combination...14

7: Point x in an unbounded region... 15

8: Points x in linear combination... 15

9: Point x in another linear combination... 16

10: Feasible region of Example 3.1... 22

11. Feasible region of subproblem 1 of 4.1.1.1.. 29

12. Feasible region of subproblem 2 of 4.1.1.1.. 30

. - T . X ^ K J ,. ...

15. Feasible region of subproblem 1 of 4.1.2..47

16. Feasible region of subproblem 2 of 4.1.2..47

17. Flow chart of the parallel algorithm

of the decomposition principle.. 54

18. Flow chart of the parallel algorithm

of Division by the Interior Point.. 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Linear programming is a branch of applied mathematics that deals with methods of

optimizing a linear objective function of a set of decision variables subject to linear

constraints. Since George B. Dantzig proposed the simplex method in 1947 linear

programming has been extensively used in the industry, military, government, urban

planning, etc. In a recent survey of Fortune 500 companies, 85% of those who responded

said that they had used linear programming algorithms and/or software

1.1 Overview

The standard form of linear programming problems is in the following format

Minimize z = CiXi +C2X2 + ... +c„Xn (1.1)

subject to aiixi + ai2X2 + ... + ainXn =bi (1.2)

SmlXi + ani2X2 + ... + amnXn — bm

(Xi, X2, ..., X n > 0) (1.3)

Or, in a simpler matrix notation, it can be written as

Minimize c^x (1.4)

subject to Ax = b (1.5)

(x>0) (1.6)

where x and c are vectors of size n, b is a vector of size m, and A is an mxn matrix.

This matrix notation of the standard form is used throughout this study, although in

some of the problems, maximization of the objective function is used instead of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minimization. It is trivial to convert maximization to minimization:

Maximize c^x = - (Minimize c^x)

Since 1947, the simplex method has dominated the linear programming field with its

proven capability of solving real world problems, although in theory this method may

have some difficulty. In 1984, N. Karmarkar made a real breakthrough in linear

programming with his interior point method Since in theory this new method is

superior to the simplex method, it has become the research focus in the past years. Both

the simplex method and the interior point method are used in this study, while more

discussion is devoted to the newer interior point method because it has been less

experimented.

1.2 Objective and Scope

Both the simplex method and the interior point method perform well for solving

small to medium size problems. However, they may not be able to solve large-scale

problems fast enough due to the computer’s computational speed. When the problems are

too large, they may not be solved at all due to the limitation of computer memory. The

ouujjiuuiuiiia . iiii^ uujcwuvo vji uiia slu u j is uu su ivc liiigc-scm c iiiicai p iugram im ng

problems efficiently with decomposition procedures using parallel computation. First, in

this study, the decomposition principle procedure proposed by Dantzig and Wolfe is

examined (see Chapter 3). This technique has been of particular interest to researchers.

However, the research that has been done is mostly in the sequential computation

environment. In this study, a parallel decomposition computation code is implemented

and tested with large-scale linear programming problems for efficiency (see Chapter 4).

Since the procedure of the decomposition principle is customized to the “block angular”

problems, it can only achieve satisfactory result for those special problems. For general

large-scale linear programming problems, a new parallel decomposition algorithm is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed in Chapter V and tested with numerical examples.

Since the idea of these two decomposition approaches comes right from the simplex

method and/or the interior point method, these two methods are reviewed briefly in

Chapter II to facilitate the future discussions. Chapter II also discusses one simple

technique to find a starting interior point, which can be used in the “division by the

interior point” decomposition procedure proposed in Chapter V.

It is interesting to note that both the names of the simplex method and the interior

point method come from the geometry. Indeed, the intuition that is generated from the

geometry of linear programming is one of the keys to understand the linear programming

theory. The idea of the new decomposition procedure of Chapter 5 is also inspired by the

geometric properties of linear programming. In Chapter 3, one geometric concept of

linear programming, extreme directions, is discussed before the discussion of the

decomposition principle procedure, because it is essential for solving the linear

programming problems of the unbounded solution case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

LINEAR PROGRAMMING METHODS

The parallel algorithms for linear programming problems presented in this study are

based upon two linear programming methods: the simplex method and the interior point

method. This chapter will review these two methods in order to make future discussion

about the parallel algorithm easier. While the simplex method is the basic method of

linear programming and is introduced in every linear programming book, the interior

point method is relatively newer and is discussed in much less detail. Hence, this chapter

focuses on the interior point method. The simplex method is reviewed first only for its

key ideas, in order to compare the difference between the interior point method and the

simplex method.

2.1 The Simplex Method

a linear programming prooiem is not empty, it nas eitner unoounaea solution or an

optimal solution on one of its extreme points. Thus, the simplex method only iterates on

the extreme points. The procedure of the simplex method is as follows^^^

(1) Find a starting extreme point. Two commonly used methods, the two-phase method

and the big-M method, can be used to find such a starting extreme point.

(2) Check if the current extreme point is optimal. If yes, stop the iteration. Otherwise go

to step (3). The current solution is optimal if the objective cost function can no longer

be improved.

(3) Move to another extreme point with improved objective value. Then return to step (2).

The pivoting process is used to find such an extreme point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For hand calculation, the simplex method can be done in the “simplex tableau”

format. A numerical example solved in this procedure is given in Section 3.3.1. The

simplex method can be implemented in more efficient approaches, such as the revised

simplex method. The revised simplex method is more efficient because with matrix

formulation, efficient linear algebra (such as linear equation solver) can be easily

exploited All the numeric examples in Section 4.1 are solved with the revised simplex

method.

2.2 The Interior Point Method

In the Fall of 1984, N. K. Karmarkar of AT&T Bell Laboratories proposed a new

algorithm for linear programming. This new algorithm was the first one in thirty years

that not only outperforms the simplex method in theory, but also shows the potential to

rival the simplex method for solving large-scale practical applications.

Karmarkar’s method is radically different from the simplex method. The simplex

method starts with a vertex (extreme point) of the feasible region and moves along the

boundary to a better neighboring vertex, until the optimal solution or infeasibility is

Liic icasiuic icgiuii lu visji every veriex iii me wuisi-case sceiianu. ru i large-scaie

problems, the feasible region contains numerous extreme points, which can incur a huge

number of iterations.

Karmarkar’s approach starts with an interior point in the feasible region and moves

through the interior region to reach the optimal point. This approach is based on two

fundamental insights:

1. If the current interior solution is near the center of the polytope, it makes sense to

move in the direction of steepest descent of the objective function to achieve a

better value.

2. Without changing the problem in any essential way, an appropriate transformation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be applied to the solution space so as to place the current interior solution near

the center of the transformed solution space.

The basic strategy of Karmarkar’s algorithm is: take an interior solution, transform

the solution space so as to place the current solution near the center of the transformed

space, and then move in the direction of the steepest descent in the transformed space, but

not all the way to the boundary in order to remain as an interior solution. Then take the

inverse transformation to map the improved solution back to the original solution space

as a new interior solution. Repeat this procedure until the stopping criterias are met.

The transformation proposed in the original Karmarkar’s algorithm is a projective

transformation, thus Karmarkar’s algorithm is also referred as projective scaling

algorithm. A LP problem must satisfy the following requirements before it can be solved

using the projective scaling algorithm:

1. The problem has to be in the following standard form:

Minimize c^x (2.1)

Subject to Ax = 0 (2.2)

e ^ x = l , x > 0 (2.3)

a.11 iiiium icas>iuic imciiui iiuiuuuii \,situuiig puim; musi uc Kiiuwii.

2. The optimal objective function value must be zero.

Since it is relatively cumbersome to transform a standard LP problem to

Karmarkar’s format, many variants of Karmarkar’s algorithm have been developed.

Among these methods, the affine scaling algorithm received the widest analysis and

experimentation. The interior point method used in this study is the affine scaling

algorithm.

2.2.1 AfHne Scaling Algorithm

Affine scaling algorithm was named because the transformation used in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is affine scaling transformation.

For an interior point x, we define an n x n diagonal matrix Xk, which has all zero

elements except that the diagonal elements Xkii = Xi. With Xk, we have the following

transformation:

(2.4)

Notice that this transformation does nothing but to rescale Xj by the factor 1/xi. It

was named the affine scaling transformation because geometrically it maps a straight line

in one space to another straight line in another space, as shown in Figure 1:

y = Xk"' X

Xl

1 y(=e)

As we can see from Fig. 1, the point x is transformed to a new point y = e = (1

1)^, which keeps the same distance from the orthant.

From Eq. (2.4), we have x = Xk y. Hence the original LP problem

Minimize c^x (2.5)

Subject to Ax = b (2.6)

(x>0) (2.7)

is transformed to

Minimize (c*')̂ y

Subject to Ak y = b

(2 .8)

(2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(y>0) (2.10)

where c*' = XkC and Ak = A Xk

Since keeps the same distance from the orthant, it is considered “near the center”

of the polytope. So we should move along the steepest descent direction d * to find the

new point = y*̂ + akd* , where «k is the step length.

The steepest descent direction of the objective function is its negative gradient, -

In order to keep feasibility, this direction needs to be projected into the null space of the

constraint matrix A. From the linear algebra, we have the null space projection matrix Pk

= I ■ Ak" (̂Ak Ak'̂) Ak = I * XkA'^fA Xk̂ A"̂) A Xk. The moving direction d* = ?k (-

c“) = [I - Xk A'^(A Xk' A"") A Xk] (- XkC) = - Xk [c - A'^(A Xk' A " ") A Xk' c].

If we denote w*‘ = (A Xk' A^) A Xk' c,

d ; =-Xk[c-A'"w'^] (2.11)

Furthermore, if we denote r*‘ = c - A^ w‘‘,

d ; = - X k r “ (2.12)

= Xky*̂ ’̂ = Xk(y’' + «k d^) = x*̂ + akXkdJ (2.13)

As for the step length ak, from = y*̂ + Ukd* > 0, we know that when (d*)i < 0,

ak should be smaller than

yf / [- (d;) i] = l /[-(d5)i] (2.14)

Therefore we can choose 0 < a < 1 and apply the minimum ratio test

ak = min { a / [- (d;) i] , for (d^)i < 0} (2.15)

to choose an appropriate step length in order to guarantee y*‘‘̂* > 0.

The iterative procedure of the affine scaling algorithm can be easily derived based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the above discussion. Section 3.3.2 provides the step-by-step calculation for a

numerical example problem solved with the affine scaling algorithm.

2.2.2 Finding the Starting Interior Point

An initial interior point has to be known beforehand in order to start the interior

point method. There are a few methods to find such an initial interior point. The one

introduced here is easier to implement It is also easier to understand due to its

similarity to the Big-M method used in the simplex method.

The Big-M method used in the simplex method imposes a large positive number M

as a penalty for each artificial variable and transforms the standard LP problem into the

following LP problem:

Minimize z = + Mxa

(2.16)

Subject to Ax + Xa = b (2.17)

(x , X a > 0) (2.18)

The starting point (solution) is x = 0 and Xa = b. When M is chosen large enough,

Hits tcitsiuic 5U1UUUI1 ui uiiouuiiueu soiuuon.

Now we turn back to the interior point method. One artificial variable Xa associated

with a “big M” is added to the original problem and transforms it into the following

problem:

Minimize z = cx + Mxa (2.19)

Subject to [A I (b-Ae)]
X

x„ = b (2.20)

(x,xa>0) (2.21)

where e = (l 1 ... l) ^ e R “. (2.22)

Comparing this problem with the big-M problem in the simplex method, we note

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

these differences:

1. Only one artificial variable, Xa (instead of Xa), is added. In total, there are n + 1

variables, instead of n + m.

2. Although the objective function looks the same, the constraint matrix is different.

The constraint matrix is manipulated so that x = (1 1 ... 1)^ e

satisfies the transformed constraint matrix, which means x = (1 1 ... 1)^ is

a solution to the transformed problem.

In fact, it is not only a solution, but also an interior solution. The reason is as

follows:

From the basic theory of the simplex method, we know that graphically, the

boundary of the feasible region is a hyperplane defined either by each constraint of Ax =

b, in which all the slack variable and artificial variable equal to zero; or by the constraint

Xi = 0. Either way, if a point x is on the boundary of a feasible region, there must be at

least one zero in x. Since the point x = (l 1 ... l) ^ i s a solution to the transformed

problem, it is either on the boundary of the feasible region or an interior point. And since

there is no zero in x = (1 1 ... 1) ,̂ it is not on the boundary. Hence, it is an interior

vw VAAV/ .111 l l iw Llllll^xw yv t l iV OWlULiWFli IW UiW

problem can be derived from the solution to the above big-M problem:

1. If the artificial variable Xa remains positive in the final solution of the big-M

problem, the original problem is infeasible.

2. If the artificial variable Xais equal to zero in the final solution of the big-M

problem, the original problem has the same optimal solution as the big-M

problem.

3. If the big-M has unbounded solution, the original problem has unbounded

solution, too.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

CHAPTER III

DECOMPOSITION PRINCIPLE

Decomposition principle is an algorithm for efficiently solving large-scale linear

programming problems by breaking up the problem into smaller problems. This chapter

introduces the theory of the decomposition principle.

3.1 Convex Set: Extreme Points, Extreme Directions and Theorems

A few theorems need to be discussed before the introduction to the decomposition

principle. These theorems are essential to the derivation of the decomposition principle.

And in order to make the explanation of these theorems easier, first we will review a few

concepts of the convex theory that are used in these theorems. The first two concepts,

convex sets and extreme points, are basic to the linear programming. They are briefly

mentioned here in order to introduce a related, but much less well-known concept of

extreme direction.

1. ^UllVCA SiClfii

For k points xi, X2 , ..., Xk g R” and k scalars Xi, X2 , ..., Ak € R, we know that the

expression AiXi + A2X2 + ... + AkXk is called a linear combination. It further becomes a

convex combination when

Ai + A2 + ... + Ak = 1 and 0 ^ Ai, A2 , ..., Ak ^ 1 (3.1)

A set X is called a convex set if the convex combination of any two points in X is

still in X.

Geometrically, for two points inside a polyhedron defined by a set, if the line

segment joining them (which is the convex combination of these two points) is still inside

the polyhedron, that set is a convex set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

2. Extreme points

A point in a convex set is called an extreme point if it cannot be represented by a

convex combination of two distinct points in that set. In Figure 2, yi (i = 1,2, ..., 5) are

extreme points.

Figure 2: Extreme points of a bounded feasible region

3. Rays and directions

A ray is a set of points with the form

u u xxiiu l o v^uxix^u UIIX..VUVJII XJI U lC 1 a y .

4. Extreme directions

Direction is nothing but a vector. First, we define the concept of the direction of

the set. For a convex set X, a nonzero vector d is called a direction of the set if for

each point x e X, the ray { x + A, d: A > 0 } e X. It is obvious that for a bounded set

as in the Figure 2, there are no directions of the set. From Figure 3, we can see that all

the directions between di and dz are directions of the set Y defined by the unbounded

region, because they all satisfy y + A, d e Y.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Figure 3: Extreme points and extreme directions of an unbounded feasible region

An extreme direction of a convex set is a direction of the set that cannot be

represented as a positive linear combination of two distinct directions of the set. We can

see that extreme directions to directions of the set is extreme points to points. In the Fig.

3, from linear algebra, we know that all the directions d between di and d2 are the

positive linear combination of di and d 2 . However, although di (d2) can also be

represented as linear combination of d and d2 (di), the combination is not positive. Hence,

.1. AAw wx sxwv'wxxx^x^ijxvxvyii u x ^ \y x iir ii ix i v u .il w g x v u i - i j luv iiitU L V V X L /j i v i v i i i i i ^

to the following 3 theorems 1̂1:

Theorem 1 (for the bounded region case)

Let X = {x: Ax = b, x> 0} be a nonempty bounded set. Vector x e X if and only if x

can be represented as a convex combination of the extreme points (yi) of this set, that is.

x = ^ V i (3.3)

(3.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

A,j > 0 (j = 1, 2 , k). k is the number of extreme points.

As an example, the interior point x in Figure 4 can be expressed as a linear

combination of points y4 and z (see Figure 5).

Fig. 4: Point x in a bounded region Fig. 5: Point x in convex combination

x = y4 -a (y 4 - z) = (l -a)y 4 + oz (l > a > 0)

Similarly, point z can be expressed as (see Figure 4):

z = (l -P)y 2 +Pyi (1 > P > 0)

Hence x = (1 -a)y4 + a[(l -p)y2 +Pyi] = aPyi+ a (l -p)y2 + (1 -a)y4

(3.5)

(3.6)

(3.7)

A v x u v y J I V A /y x J ' V

Notice that the representation is not unique (see Fig. 6).

Fig. 6: Point x in another convex combination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Theorem 2 (for the unbounded case)

Let X = {x: Ax = b, x> 0} be a nonempty set. Vector x 6 X if and only if x can be

represented as a convex combination of the extreme points (y,) plus a nonnegative linear

combination of the extreme directions of this set (di), that is,

k I

j= l
x = 1] >̂ jyj + X M i

M
k

where ^ A,j = 1

(3.10)

(3.11)
7=1

Xj > 0 (j = 1 , 2 ,..., k), pj > 0 (j = 1 , 2 ,..., 1), k is the number of extremes points and 1 is the

number of extreme directions.

As an example, the interior point x in Fig. 7 can be expressed as (see Figure 8):

x = z + pdi (p> 0) (3.12)

a

Fig. 7: Point x in an unbounded region Fig. 8 : Points x in linear combination

It should be noticed that the extreme direction di (see Fig. 7) is parallel to the

direction zx (see Fig. 8). Also, point z (in Fig. 8) can be expressed as:

z = y2 +P(ys - yi)= (l -P)y2 +Pys (l > p > 0) (3.13)

Hence we have

X = (1 -P)y2 +Pya + pdi (3.14)

Again, this representation is not unique. The point x can be also be represented in terms

of yi and d2 (see Fig. 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Fig. 9: Point x in another linear combination

Theorem 3

For the problem of

Maximize c^x

subject to: Ax = b

(x> 0)

(3.15)

(3.16)

(3.17)

(i). It has finite optimal solution if and only if all cdi < 0, where di is an extreme direction

y A A y . AA X*, x x f c x u X X X X X I.W « ^ |^ t . x x x x c 4 . x O V /X U X I .X V /1 X , I D W l l V / \ J 1 I I D j J A / l l i l D .

Proof:

According to theorem 2, the foregoing problem can be transformed to

k I
Maximize ^ (cyj)A,j + ^ (cdj)pj

;=i 7=1

k

S.t.
7=1

(3.18)

(3.19)

(3.20)whereA,j>0 0 = 1,2,..., k), pj> 0 (j = 1 , 2 ,..., 1)

Now,

(1) If one of cdj > 0, since the corresponding pj can be arbitrarily large, the objective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

function - 4 o°. Hence there is no finite optimal solution.

(2) If all cdj < 0, in order to maximize the objective function, all |iij can be made to be zero.

Now the problem becomes

k

Maximize ^ (cyj)Aj (3.21)

s.t. ? ij= l Xj>0G = l ,2 , .. . ,k) (3.22)
j= \

Let cyg = max cyj G = L 2, ..., k). Obviously, when A,g = 1 and A,j = 0 G g), the

maximum value is found. Hence, the original problem has finite optimal solution, and the

solution (yg) is one of its extreme points.

3.2 The Algorithm of the Decomposition principle

The general form of “block angular” linear programming (LP) problems considered

in this work can be expressed as

Maximize z = CjX: + C2X2 + ... + CpXp (3.23)

Slnhippt tn

B,x, = hi (3.25)

B2X2 = b2 (3.26)

BpXp = bp (3.27)

(xi,X2, ...,Xp>0) (3.28)

where Eq. (3.24) is the common constraint, Eq. (3.25- 3.27) are the block

(subproblem) constraints, p is the number of blocks, Xi and c, is an ni dimensional vector,

b is an m dimensional vector, Ai is an m x n, matrix, hi is a q dimensional vector, Bj is a

q X ni matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

The following is an example problem in this format:

Maximize z = - xi - 3 x2 - 5 x3 - 2 x4 (3.29)

Subject to

5 xi + 3 x 2 + 4 x3 < 1 0 (3 .3 0)

Xi + 2x2 + 2 x 3 + X4 ^ 1 0 0 (3 .3 1)

5 x i + X2 < 9 (3 .3 2)

X] + 4x2 ^ 8 (3 .3 3)

X3 - 5 X4 > 4 (3 .3 4)

X3 + X4 > 1 0 (3 .3 5)

(Xi, X2 , X3 , X4 > 0)

Comparing this problem with the “block angular form”, we can see that it has two

common constraints (Eq. 3.30 - 3.31) and two blocks (i.e., subproblems)

For less than (<) and/or greater than (>) type constraints, slack and/or surplus

variables can be introduced to convert them into equality (=) type constraints, as

indicated in Eq. 3.24 - 3.27. The feasible region (if exist), defined by Eq. 3.24-3.27, can

be either bounded or unbounded.

Maximize ^ (cyj)A.j -I- ^ (cdj)pj (3.36)
> 1 M

subject to

2 X j= l (3.37)
7=1

where A.j> 0 (j = 1, 2,..., k) and Pj> 0 (j = 1, 2,..., 1) (3.38)

With the above conclusion, and based upon the 3 theorems discussed before, the

“original” LP problem (defined in Eq. 3.23 - 3.28) can be transformed into the following

“new” LP problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

M axim ize

k\ k2 kp l\ 12 Ip

z= X S («2y2j)>-2j+ -+ (‘̂ 2‘*2M j+-+X MpjHj (3.39)
7=1 7=1 M 7=1 7=1 7=1

subject to:

Id m kp n 12 ip

ŷ ,(A.iyij)̂ ii+'ŷ ,(A.2y2i)̂ 2i+ ■■• (l̂ pypjl̂ pi + (Aidi|)Hii + y^,(1̂ 2̂ 21)1121+ - +T^. (î pdpj)̂ pj =b (3.40)
>4 >4 7=1 7=1 >4 7=1

= 1 (3.41)
H

k2

E ^2j =1 (3.42)
j=\

EXpj = 1 (3.43)
H

where Ay > 0 (j = 1, 2,..., ki), > 0 (j = 1, 2,..., 10 (3.44)

It is important to recognize that each block constraints in the “original” LP problem

voiiauito A uaa uocii u ansiu im cu im u ulc iicw vaiiauics Ay aau py.

The revised Simplex (product form) algorithm can be applied in the LP problem of

Eq. 3.39 - 3.44, with “minor detailed” changes in the steps to select the Entering (and

Leaving) variables into (and from) the basic variable group.

(i) How to choose the entering variable?

The entering variable in the revised Simplex method corresponds to the global

maximum of cy - zy (or minimum of zy - cy, which is the notation format used in chapter

4). Instead of finding the global maximum value, we can find the local maximum value

first (corresponding to each block), then choose the maximum amongst these values.

(ii) How to find the local max. cy - zy?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

According to the revised Simplex method, Cy - Zy = Cy - CsB'^Py

Let cbB ' = ((0 i,t0 2 ,..., tOm, «i, Op) = (0), a)

(3.45)

(3.46)

(a) Corresponding to A,y, one has Py =
Aiyy

Ci
(3.47)

where Cj is a p dimensional vector with the i-th entry equal to 1 and all the other

entries equal to 0 .

Hence Cy - Zy = Cy - CBB‘‘py = Ciyij - (o), a) *
Aiyy

ei
= (Ci-o)Ai)yij - «i.

(b) Corresponding to |Xy, one has Py =
Aidy

0

Hence Cy - Zy = cy - CBB'^py = Cidy - (CO, a)
Aidy

0
— (Cj - CO A i)dy

(3.48)

(3.49)

(3.50)

For each block, instead of solving Max [Ci - co A i]yy - a ,] and Max [(Cj - co A i)dy] to

decide which Xy or pij becomes a candidate of the entering variable, we can just solve the

problem Max (q - co Ai)xj, subject to BiXi = bi. The reasons are given below:

X,. X X X X X X X ^ X X X X X X X X X X X X X XX. X X X X X X X X X X X X X X X X X X X X X X X X X x X X X X x X X X X ^ X X X X I X X U X X X . X X X X X X X X X X x X x X J X X X X X l £ , L X J

Theorem 3, the optimal solution is one of its extreme points, say, yy. Obviously, this

yy also maximize (ci - co Ai)yy - oCj. Hence Xy, the corresponding variable, becomes a

candidate of the entering variable.

(2) If this problem has unbounded solution, according to Theorem 3, there is at least one

dy which makes (Ci - co A i)dy > 0 . Notice that this dy can be very large, so (c, - co A i)dy

oo. Hence py, the corresponding variable, becomes the entering variable.

(3) If this problem has no solution, then this block has no feasible region. Hence, the

original problem has no feasible region, meaning that there is no solution to the

original problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Once the entering variable is found, one has no problems in locating the leaving

variable. Hence, the standard revised Simplex procedure can be normally applied

afterward.

3.3 Finding the Optimal Direction

It should be noted that among multiple extreme directions of an unbounded region,

only one makes the value of the objective function increase (or decrease) the fastest. It is

similar to the case that in a bounded region, only one of the extreme points makes the

objective optimum. Such an extreme point is called the optimal point. Similarly, we call

such an extreme direction the optimal direction.

From the discussion in the last section, we know that if a subproblem has unbounded

solution, a variable corresponding to the optimal direction will become the entering

variable. Also, the value of the optimal direction has to be known for the succeeding

calculations. Two examples are given below to show how to find the optimal direction in

both the simplex method and the interior point method.

In the following example, the calculation in each simplex iteration is shown in the
simplex tableaus.

Example 3.1

Maximize z = xi + 2 x2

Subject to - xi + X2 < 2

- xi + 2x2 ^ 8

(Xi, X 2 > 0)

Solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

(4, 6)

Figure 10: Feasible region of Example 3.1

Iteration 1

Xl X2 X3 X4 b

X3 -1 1 1 0 2

X4 -2 2 0 1 8

1 2 0 0 z

t

Iteration 2

X4 1 u - 2 1 4
3 0 - 2 0 Z - 4

t

Iteration 3

Xl X2 X3 X4 b
X2 0 1 - 1 1 6

Xl 1 0 - 2 1 4
0 0 4 -3 Z - 16

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Since the most positive value in the last row is 4, X3 becomes the entering variable.

And since all of xs’s coefficients are negative, this problem has unbounded solution. The

iteration stops here, but let us keep going a little further to see what will happen after X3

becomes the entering variable. Now that X3 becomes the entering variable, its value will

increase from 0. From the last tableau, we can see that xi and X2 will be increased to

X2 = 4 - (- 2) X3 = 4 + 2x3

X2 = 6 - (- 1)X3 = 6 + X3

And X4 stays where it is:

X4= 0

The preceding solution can be arranged as

(X3 > 0)

Now we can see that actually the solution is a ray.

When X3 —> 0 0 , the solution moves along this ray and the objective function

problem.

3.3.2 Finding the Optimal Direction in the Interior Point Method

In the interior point method, finding the optimal direction is much easier than in the

simplex method. From Section 2.2.1, we know that in each iteration of the interior point

method, the moving direction dy is calculated. Since it is the steepest decent direction, it

will become the optimal direction at the last iteration. However, the direction dy is in the

“Y” space. It needs to be projected back to the original “X” space. Let the optimal

direction in the “X” space be denoted as dx, since Y = Xk"' X (see Section 2.2.1), we have

'4 ' ' i
6 I

X =
0

+ X3 I
0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

X = Xk Y. Hence dx = Xk dy.

The example problem 3.2 is the same as example 3.1. Now we solve it with the

interior point method. The solved optimal direction can be verified with the result of the

simplex method.

Example 3.2

Minimize z = - xi - 2 x2

Subject to - Xl + X2 ^ 2

- Xl + 2x2 ^ 8

(Xi, X2 > 0)

Solution

x = [x i X2 X3 X4]’̂ , b= [2 8] \ c = [- l -2 0 0] \ A
- 1 1 1 0
- 1 2 0 1

Iteration 1

The starting point can be any point inside the feasible region. By observing Figure 10,

Hence Xo =
0 4 0 0
0 0 2 0
0 0 0 4

From A Xo^A ̂Wo = A Xo"* c, we have
'36 48^ ■-16‘

96
W o =

48 -48_

Hence Wo =
0.6667
0.8333

Now ro = c - A Wo =

-1.167
- 1
-0.6667
0.8333

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Since some components of ro are < 0, continue the iteration.

4.667

dyo = - Xo To =
4
1.333
-3.333

Since some components of dyo are < 0, continue the iteration.

Take a = 0.99, then the step length a q = min[a /- (dyo)i] = 0.99/3.333 = 0.2970

Hence xi = xo + a o Xo dyo =

9.544
8.752
2.792
0.04

Iteration 2

From A Xi^A^ wi = A Xi^ c, we have
175.5 244.3
244.3 397.5

'62. i f
W i =

215.3

Hence Wi =
277.0

-224.4

2.244

Since some components of ri are < 0, continue the iteration.

dyi = - Xl ri =

4.525
2.467
7.733
-0.08975

Since some components of dyi are < 0, continue the iteration.

The step length a , = 0.99/0.08975 = 11.03

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Hence Xi = Xi + a j Xi dyi =

485.9
247.0
241.0
0

Iteration 3

From A X2^A’*' W2= A X2 ' c, we have

■3 . 5 5 2 3.581' 1.141
1 0 ' Wi

3.581 4.801 -0.07838
10'

Hence W2 =
1.363

-1.033

Now F2 = C - A W2 =

-0.6701
-1.297
-1.363
1.033

Since some components of ra are < 0, continue the iteration.

325.6
320.4

Since dy2 is > 0, this problem is unbounded.

dx2 = X 2 dy2 =

Hence, the extreme direction of this problem is [2 1 1 O]’ .̂ It is the same as the result
of the simplex method, shown in Example 3.1.

’485.9 0 0 O' '325.6' '2 '
0 247.0 0 0 320.4 1

328.3 = 7.911X10' 10 0 241.0 0
0 0 0 0 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

CHAPTER IV

NUMERICAL STUDIES OF THE DECOMPOSITION PRINCIPLE

As we can see from the last chapter, the theory of the decomposition principle is not

that straightforward to understand. This chapter provides numerical examples to illustrate

the decomposition principle algorithm step by step. These examples include both cases of

LP problems: problems with bounded feasible region and with unbounded feasible region.

The step-by-step calculation not only serves the purpose of illustrating the decomposition

principle, but also is used to check the result of the parallel algorithm. Debugging the

code of a parallel algorithm could be a nightmare for a programmer because the compiler

gives very little error message if something is wrong in the code To make it worse,

very often the error message is irrelevant to the actual error. It is essential to compare the

computation result of the code with the result of hand calculation step by step to make

sure the computers (or more precisely, the processors) are doing what they are supposed

to do. In this study, a code of the parallel algorithm of the decomposition principle is

LP problems to test its performance, which is reported at the end of this chapter.

4.1 Sequential Algorithm of the Decomposition principle

This section presents the small size numerical examples under the sequential

computation environment. In order to make the hand calculation easier, the feasible

region of each subproblem is drawn in figure so that the optimal solution to each

subproblem can be obtained just by observing the figure instead of by calculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

4.1.1 Bounded Feasible Region Case

Here the “bounded feasible region case” means each subproblem of the original

problem has bounded feasible region. Two examples in bounded feasible region case are

presented in this section. The second one deserves more attention. We know that if a LP

problem has no solution, it has no feasible region. It should be noted here that even

though each subproblem of a LP problem has feasible region, the original problem may

not have solution at all, as shown by the second example.

4.1.1.1 Example Problem With Optimal Solution

Problem

Maximize z = xj + 3x2 + 5x3 + 2x4

Subject to 5xi + 3x2 + 4xs > 10

5 x i + X2 < 9

X] + 4x2 ^ 8

X3 - 5X4 < 4

Solution

The original problem can be transformed to:
kl k2

Maximize z = ^ (ciyij)>.ij+ ^ (c2y2j)A2j
M j=l

kl k l

S.t. ^(Aiyij)Xij + Yj (A2y2j)^2j = 10
>4 ;=1

kl

k l •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

where A,ij > 0 (j = 1 , 2 , kO-

It has the Simplex tableau as follows (using the big-M method):

^ 1 1 X\2 ^13..... ^ 2 1 A22 2-23 X5 X6 Xu X12 b

z Ciyn ciyi2 ciyi3..... C2y2i C2y22 C2y23..... 0 -M -M -M

Aiyii Aiyi2 Aiyn A2y21 A2y23 -1 1 0 0 1 0

xn 1 1 1 0 0 0 0 0 1 0 1

X12 0 0 0 1 1 1 0 0 0 1 1

Subproblem 1

X l = (x i , X 2)^ , C l = (1, 3)'̂ , Ai = (5, 3)

Its constraints are:

5xi+ X2 < 9

Xi + 4x2 < 8

These two constraints define the following feasible region:

X2

(1 .4737,1.6316)

1.8 ' 8

Fig. 11. Feasible region of subproblem 1 of 4.1.1.1

Subproblem 2

X2 = (X3 , X4)'^, C2 = (5, 2)̂ ,̂ A2 = (4, 0)

The constraints of this subproblem are:

X3 - 5x4 ^ 4

X3 + X4 < 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

These two constraints define the following feasible region:

10

(9,1)

0.8

► 3̂

Fig. 12. Feasible region of subproblem 2 of 4.1.1.1

As we mentioned before, the optimal solution to each subproblem will be observed

directly from the figure of its feasible region.

Iteration 0

Xb = (x6, X n ,X i2) =(10, 1, 1)

C n = r-M -M -M'l B = R-3.^T

i i e r a i i u n x

CbB-’ = Cb =(- M ,-M ,-M)

Subproblem 1

Aiyi 5x1 + 3x2

Min (zi - C i) = CbB'^ 1 - C i y i = (-M ,-M ,-M) 1

0 0

= (-5M l)Xi 3(M + 1)X2 - M

- (Xi + 3X2)

Subject to Xl + X2 < 9

Xl + 4x2 ^ 8

By observing the figure of its feasible region, we can see that the solution is yn = (xi, X2)^

= (1.4737, 1.6316)'^, Min (z i-C l) = - 13.263M -6.3685

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Subproblem 2

Aay2 4x3

Min (Z2 - C2) = CbB'’ 0 -C2y2 = (-M ,-M ,-M) 0

1 1

- (5X3 + 2 x4)

= (- 5 - 4 M) x 3 - 2 x 4 - M

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 1 0

By observing the figure of its feasible region, we can see that the solution is yzi = (X3 , X4)^

= (9, 1) Min (Z2 - C2) = -37M - 47

' - I

0 = MAlso, Z5 - C5 = CbB'

The global min. is min. (Z2 - C2) = -37M - 47,

Hence A.21 becomes the entering variable.

P 21 =

Azy2i
0

(4,0)

0
36
0

Thus B-‘P 2 i = F P 21 =
36
0
1

Given Xb=(x6 ,X ii,x i2)^= (10, 1, i f , so q = 1.

Hence x ̂becomes the leaving variable.
1

36 0 o' 1
36 0 o'

So B ’ = 0 1 0 *1 = 0 1 0
1

. 36 0 1 1
- 36

0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

The new basic solution

X b = (^ 2 1 , X l l , X i 2) ^ = B ' (1 0 , 1 , 1) ^ :

C b = (C 2 y 2 i , -M, -M) = (47, -M, -M)

Iteration 2

136 0 o'
0 1 0 = (i^,-M ,-M)

1. 36 0 1

Aiyi 5x1 + 3x2
1 -Ciyi = (^ , - M , -M) 1
0 0

CbB’’ = (47, -M, -M)

Subproblem 1

Min (zi - Cl) = CbB'̂

= i ^ (5 x , + 3x2)-(xi + 3x2)-M

Subject to Xl + X2 < 9
Xl + 4x2 < 8

 /'xr m a\T /r̂ ^ \— \/{

- (X i + 3 X 2)

aupproDiem i

Min (Z2 - C2) = CbB'
X i y i 4X3

0 -C2y2 = (^ ,-M ,-M) 0 - (5X3 + 2x4)
1 1

^ X 3 - (5 x3+2X 4)-M

Subject to X3 - 5x4 ^ 4
X 3 + X 4 < 10

The solution is y 2i = (X3, X4)̂ = (0, 10)"̂ , Min (Z2 - C2) = -M-
■-1 ' ■-1 '

Also, Z5 - C5 = CbB’’ 0

0

_0 = (i^ ,-M , -M) 0

0

A _ 47+Â ̂- 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

The global min. is min. (Z2 - 0 2) = - M - 20.

Hence Xrj becomes the entering variable.

P22 =

Kiyti
(4,0)

0 ^
1 0 "o'

0 = 0 = 0

1 1 1

136 0 o' 'o' "o'
Thus B"'P22 = 0 1 0 0 = 0

1. 36 0 1 I 1

Since Xb= (X2 1 , xn, Xi2)'̂ = , q = 3.

Hence Xi? becomes the leaving variable.
1

36 0 o' 1
36 0 o'

So B ‘ = I * 0 1 0 = 0 1 0

1
. 36 0 1

1
. 36 0 1

= B‘* of last iteration

The new basic solution

Cb = (47, - M, C2y2 2) = (47, - M, (5, 2)
^0^

vlOy
) = (47, -M, 20)

Iteration 3

CbB-' = (47, -M, 20)
36

J _
36

0 o'
1 0 = (|,-M ,2 0)
0 1

Subproblem 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Aiyi 5x1 + 3x2
Min (zi - Cl) = CbB'* 1 -ciyi = (i - M ,2 0) 1

0 0

- (X i + 3 X 2)= ^'Xi - ^ X 2 - M

Subject to Xl + X2 < 9

Xl + 4x2 ^ 8

The solution is yn = (xi, X2)^ = (0, i f , Min (zi - Ci) = - M - 1.5

Subproblem 2

Aiy2 4x3

- (5X3 + 2 x 4)

= 3x3 + 2 0 - (5x3 + 2 x4) = - 2 x3 - 2 x4 + 2 0

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 1 0

The solution is y2s = (X3 , X4)^ = (0, 10) Min (Z2 - C2) = 0

Aiyi 4x3
Min (Z2 - C2) = CbB'* 0 -C2y2 = (i - M ,2 0) 0

1 1

'-I ■-1 '
Also, Z5 - C5 = C b B '* 0 -0 = (j,-M , 20) 0

0 0

l iv v / LllW V aiiU U IC '.

P l 3 =

Aiyi3
(5,3)

o '
2 '6'

1 = 1 = 1

0 0 0

136 0 o' '6' 16
Thus B'*Pi3 = 0 1 0 1 = 1

1- 36 0 1 0 16_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Since Xb= (A2 1 , xn, ^ 2 2)^ = ,q = 2.

Hence xn becomes the leaving variable.

'l - i O' I
36 0 o' 1

36 - { O'
So B* = 0 1 0 0 1 0 = 0 1 0

0 i 1. 1
36 0 1 1

36 i 1.
The new basic solution

Xb=(A21,:A,13, A22f=B-'(10,l,lf =

CB = (47,Ciyi3, 20) = (47, (1,3)
v2.

, 20) = (47, 6, 20)

Iteration 4

CbB'* = (47, 6, 20)
36

0
- i 0
1 0
4 1

= (0.75,1.5,20)

Aiyi 5X1 + 3X2

Min (zi - Cl) = CfiB'̂ 1 -Ciyi =(0.75,1.5,20) 1
0 0

- (xi + 3 x2)

= 2.75x1-0.75x2 + 1.5

Subject to Xl + X2 < 9

Xl + 4x2 ^ 8

The solution is yi4 = (xi, xa)^ = (0, 2)^, Min (zi - ci)= 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Subproblem 2

kiyi 4X3
Min (Z2 - C2) = CbB"' 0 -C2y2 =(0.75,1.5,20) 0

1 1

- (5x3 + 2 x4)

= 3x3 + 2 0 - (5x3 + 2 x4) = - 2 x3 - 2 x4 + 2 0

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 1 0

The solution is y24 = (X3 , X4)^ = (0, 10) \ Min (Z2 --C2) = 0

-I '-1
Also, Z5 - C5 = CbB'* 0 -0 = (0.75, 1.5,20) 0 = - 0.75

0 0

The global min. is Z5 - 0 5 = - 0.75

Hence xs becomes the entering variable.

' - I

P54 =

r x _ i o i r - i i r - 4 . 1

Since Xb — (,̂2 1 , ^ 13, ,̂2 2)^ = ,q = 3.

Hence A?? becomes the leaving variable.

1 0 r
0 1 0
0 0 36

SoB* =
’ ^ o136 6 ^ '0 0 1

0 1 0 = 0 1 0

_ x ± 136 6 - 1 6 36

The new basic solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Xb - (^21, A.13, X5)^= B ' (10, 1, 1)^-

c b = (47, 6,0)

1
1

32

Iteration 5

CbB* = (47,6 ,0)

Subproblem 1

0 0 1
0 1 0

-1 6 36
= (0,6,47)

Aiyi 5x1 + 3x2
Min (zi - Cl) = CbB * 1 -Ciyi = (0 ,6 ,47) 1

0 0

- (xi + 3x2) = - Xl - 3x2 + 6

Subject to Xl + X2 < 9

Xl + 4x2 ^ 8

The solution is yi5 = (xi, X2)^ = (0, 2)^, Min (zi - ci) = -6.3685 + 6 = - 0.3685

Subnroblem 2

1 1
I ” .^/V4 ~r *T i

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 10

The solution is y2s = (X3 , X4)^ = (9, 1) Min (Z2 - C2) = 0

The global min. is min (zi - Ci) = - 0.3685

Hence Xi s becomes the entering variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

P l 5 =

Aiyi5
(5,3)

1.4737 '
1.6316 '12.263'

1 = 1 = 1
0 0 0

0 0 1 ■ '12.263' 0
Thus B*Pi5 = 0 1 0 1 = 1

-1 6 36 0 -6.263

Since xb=(X 2 i, Ao, \ s f =
1

1
32

, q = 2.

Hence Xn becomes the leaving variable.

'1 0 O' '0 0 1 ' ' 0 0 1 '

So B* = 0 1 0 0 1 0 = 0 1 0
0 -6.263 1 -1 6 36 -1 12.263 36

The new basic solution

Xb - (A.21, 1̂57 xs)^= B"' (10,1,1)^ =

CB = (4/ ,Ciyi5,U)= (47, (1, 3)1 I, 0) = (47, 6.368, 0)
11.6316)

Iteration 6

CbB * = (47, 6.368, 0)

Subproblem 1

0 0 1
0 1 0

-1 12.263 36
= (0, 6.368, 47)

Aiyi 5x1+ 3x2
Min (zi - Cl) = CbB'* 1 -Ciyi =(0,6.368,47) 1

0 0
(Xi + 3X2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

= - x i - 3x2+ 6.368

Subject to xi + X2 < 9

Xi + 4x2 ^ 8

The solution is yi6 = (xi, X2>^= (1.4737,1.6316)^, Min (zi - c i) = 0

Subproblem 2

A2y2 4x3

- (5x3 + 2 x4) = - 5x3 - 2x4 + 47

A 2y2 4x3
Min (z2 - C2) = CbB'* 0 - C2y2 = (0, 6.368,47) 0

1 1

■-1' '-1
Also, Z5 - C5 = CbB ' 0 - 0 = (0, 6.368,47) 0

0 0

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 1 0

The solution is y26 = (X3 , X4)^ = (9, 1) Min (Z2 - C2) = 0

= 0

Since all the Zi - Ci = 0. iteration 5 reaches the optimal solution, which is

x i = (x i , X 2) '^ = X , 5 y i 5 = l * (1 .4 7 3 7 ,1 .6 3 1 6) ^ ^ = (1 .4 7 3 7 ,1 .6 3 1 6) '^

xo = txi. = 1 * ro

xyj.a/i. z. — A] T J A 2 T J A 3 -T Z.A4 = 1 . H - / J / + J - I . O J I O + 0 ' ^ y + Z ' ^ l = 0 3 . 3 0 8

4.1.1.2 Example Problem With No Solution

Problem

Maximize z = - xi - 3 x2 - 5 x3 - 2 x4

Subject to 5xi + 3 x2 + 4 x3 ^ 10

5 x i + X2 < 9

Xi + 4x2 8

X3 - 5x4 ^ 4

X3 + X4 > 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

(Xi,X2, X3, X 4 > 0)

Solution

The original problem can be transformed to;
k\ k2

Maximize z = ^ (ciyij)^ij + ^ (C2y2j)>̂ 2j
7=1 7=1

s.t.
k2

^(Aiyij)>.ij+ ^ (A2y2j)>^2j= 10
H M

a

H
= 1

k.2

£ = 1

where A,ij > 0 (j = 1, 2 , ki).

It has the Simplex tableau as follows (using the big-M method):

Xii 1̂2 ^13..... 2̂1 2̂2 2̂3 Xs X6 Xii Xl2 b

z ciyii ciyi2 ciyi3..... C2Y21 C2y22 C2Y23..... 0 -M -M -M

Xl2 0 0 0 1 1 1 0 0 0 1 1

Subproblem 1

xi = (xi, X2)^, Cl = (1, 3)^, Ai = (5, 3). The constraints are:

5 x i + X2 < 9

xi + 4x2 ^ 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

(1.4737,1.6316)

Fig. 13. Feasible region of subproblem 1 of 4.1.1.2

Subproblem 2

X2 = (x3 , X4)^, C2 = (5, 2)^, A2 = (4,0). The constraints are:

X3 - 5x4 ̂ 4

X3 + X4 > 10

in

X4

k

(9,1)

- 0.8

Fig. 14. Feasible region of subproblem 2 of 4.1.1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Iteration 0

X b= (X6, X7, X8)'^= (10, 1, i f

C b = (0 ,-M ,-M),B = B ' = I

Iteration 1

cbB ' = c b = (0 , - M , - M)

Subproblem 1

Aiyi 5x1 + 3x2
Min (zi -C]) = CbB‘* 1 -ciyi = (0 ,-M ,-M) 1

0 0

(- Xi - 3X2)

= Xi + 3x2 - M

Subject to xi + X2 < 9

Xi + 4x2 ^ 8

The solution is yn = (xi, X2)^ = (0, 0)^, Min (zi - ci) = - M

Subproblem 2

Aiyi 4X3

Min fzi - C')') = cuB'^ 0 - OiVt = to - M - Mt n

— JA3 -r Z.A4 — m

Subject to X3 - 5 x4 ^ 4

X3 + X4 > 10

The solution is y2 i = (X3 , X4)^ = (9,1) Min (Z2 - C2) = - M + 47

The global min. is min. (zi - Ci) = - M.

Hence A,i 1 becomes the entering variable.

Pii =

Aiiyii
1
0

(5,3)

1
0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Thus B T i i = I*Pn =

Given Xb = (xg, X7 , Xsf = (10, 1, 1) ,̂ so q = 2.

Hence Xi becomes the leaving variable.

1 0 0 "

So B* = 0 1 0
0 0 1

The new basic solution

Xb=(X6, A i i ,X 8) '^ = B '* (1 0 , 1, 1)’̂ :

Cb = (0, Ciyii, -M) = (0,0, -M)

10
1
1

Iteration 2

CbB ’ = (0, 0, -M) * B'^= (0, 0, -M)

Subproblem 1

r Aivti r ̂ Yi - i - 'tv-,!

Subject to xi + X2 < 9

X] + 4x2 ^ 8

The solution is = (xi, X2)^ = (0,0) \ Min (zi - ci) = 0.

Subproblem 2

Azyi 4x3
Min (Z2 - C2) = CbB'̂ 0 -C2y2 = (0 ,0 ,-M) 0

1 1

- (- 5x3 - 2 x4) = 5x3 + 2x4 - M

Subject to X3 - 5 x4 ^ 4

X 3 + X 4 > 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

The solution is y2 2 = (xs, X4)^ = (9,1) \ Min (z2 - C2) = 47 - M

The global min. is min. (z2 - c2) = 47 - M

Hence ’koo becomes the entering variable.

P22 =

A2y22
0
1

(4,0)

0
1

36

0
1

1
36 0 o' 'o ' 'o '

Thus B"'P22 = 0 1 0 0 = 0
1

. 36 0 1 1 1

Since xb = (xg, Xn, Xg)'̂ =
10
1
1

,q = 1.

Hence becomes the leaving variable.
1

36 0 o ' 1
36 0 o '

So B' ̂ = 0 1 0 * 1 = 0 1 0

1
. 36 0 1 1

. 36 0 1

Xb - (X2 2 , Xii,xs)^= B ' (10,1,1)^=

CB=(C2y22.0,-M) = (- 47, 0 ,-M)

Iteration 3

CbB ' = (- 47, 0, -M)
^ 0 0
0 1 0

L - i 0 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Subproblem 1

Aiyi 5x1 + 3x2

Min (z i - C]) = CbB'* 1 -ciyi = (- | , 0 , - M) 1
0 0

- (- xi - 3 x2)

= - 47) +1] XI + [f,(M -47) +3] X2

Subject to xi + X2 < 9

x i + 4x2 ^ 8

The solution is yn = (xi, X2)^ = (0, 0) \ Min (zi - ci) = 0.

Suboroblem 2

Min (Z2 - C2) = CbB'^

= ^ X 3 + 2X4 - M

Subject to X3 - 5 x4 ^ 4

X3 + X4 > 1 0

The solution is y 2 3 = (X3 , X4)^ = (9, 1) Min (Z2 - C2) = 0

Aay2 4X3

0 -C2y2 = (- f ^ + f 6 , 0 , -M) 0 - (- 5X3 - 2 x4)
1 1

L^J

Hence the iteration stops.

From Xb = (A.2 2 , An, xg)"̂ =

L^J

, xg = H . Since xg > 0 and is an artificial variable, there is

NO feasible solution to this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

4.1.2 Unbounded Feasible Region Case: Example Problem With Optimal Solution

Here the “unbounded feasible region case” means that at least one of the

subproblems of the original problem has unbounded feasible region. In the following

example, subproblem 1 has unbounded feasible region. In the first iteration, subproblem 1

has unbounded solution. Hence its extreme direction is calculated and in the original

problem the variable corresponding to subproblem 1 becomes the entering variable. In the

rest of the iterations, subproblem 1 has multiple solutions, which is treated as the optimal

solution case by picking anyone of these multiple solutions as the optimal solution.

Same as the discussion in Section 4.1.1, even if every subproblem of an original LP

problem has unbounded feasible region, the original problem may not have solution. The

computation procedure for this case is the same as the Section 4.1.1.2, hence the

numerical example is not provided.

Problem

Maximize z = Xi + 2 x2 + X3

Subject to xi + X2 + X3 < 12

- Xi + X2 < 2

- xi + 2x2 ^ 8

Solution

The original problem can be transformed to:
kl k2 l\ 12

Maximize (ciyij)Aij + ^ (c2y2j)A2j (cidij)pij + ^ (C2d2j)fi2j
7=1 7=1 7=1 7=1

Id k2 a 12

S.t. ^(Aiyij)A,ij + ^ (A2y2j)A.2j (Aidij)pij+ ^ (A2d2j)p2j= 12
M M 7=1 M

a
= 1

k2

X ^2j =1
7=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

where Xij > 0 (j = 1 , 2 , kO, > 0 (j = 1 , 2 , h)

It has the Simplex tableau as follows (using the big-M method):
Xii X12 X n ■■■ A.21 X 22 A.23 ... It] 2 Hi3 - . M-21 li22 H23 ■■■ X4 X5 X6 b

z ciyii
ciyi3-

ciyi2 C2y21
C2y23 •

Ciy22 cidii
Cldl3

Cld|2 C2d21 C2d22 C2d23 . . . 0 -M -M

X4 Aiyn Aiyi2 A2y2i A2y22 Aidii Aidi2 A2d21 A2d22 A2d23 . . . 1 0 0 12
Aiyi3 A2y23 Aidi3

X5 1 1 1 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 1 0 1

X6 0 0 0 ... 1 1 1 ... 0 0 0 ... 0 0 0 ... 0 0 1 1

Subproblem 1

Xi = (xi, X2)’̂ , Cl = (1, 2f, Ai = (1,1)

(4,6)

Xi

Fig. 15. Feasible region of subproblem 1 of 4.1.2

Subproblem 2

X2=(Xa), 02= (1), A2 = (1)

0 3 X3

Fig. 16. Feasible region of subproblem 2 of 4.1.1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Having these two figures, we will be able to find the local optimal value corresponding

to each subproblem very easily, just by observing the figures instead of by using the

simplex iterations.

Iteration 0

12

Xb = (X 4 , X5, Xe)^= 1
1^

C b = (0 ,-M ,-M),B = B' ̂= I

Iteration 1

C b B - ‘ = Cb = (0 ,-M ,-M)

Subproblem 1

Aiyi X1 + X2

Min (zi - ci) = CbB'’ 1 -Ciyi = (0 ,-M ,-M) 1
0 0

(xi + 2 X2)

= - xi - 2x2 - M

Subject to - xi + xo < 2

uiai uua piuuiciii 15 ulc saiiic US me prooiem in secuon tience, tnis proDlem

has unbounded solution and the optimal direction

(2̂
dn = (xi,X2)'^ =

vV

Hence Ui i directlv becomes the entering variable.

'2̂
(1,1)

Aidii 1 3

Pu = 0 = 0 = 0
0 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Thus B 'T ,, = I P „ =

Given Xb = (X4, Xs, xe) =
12
1
1

, so q = 1.

Hence xa becomes the leaving variable.
■ 1

3 0 o ' ' l
3 0 o '

So = 0 1 0 *1 = 0 1 0
0 0 1 0 0 1

The new basic solution

12 4
Xb = (|4 i i ,X 5 , X 6) '^ = B '* 1 = 1

1 1

C B = (c i d „ , - M , -M) = ((l,2)
^2^

vly
, -M, -M) = (4, -M, -M)

Iteration 2

0 0 1

Subproblem 1

Aiyi XI + X2

Min (zi - ci) = CbB'' 1 -Ciyi = (f , - M , - M) 1
0 0

- (X i + 2 X 2)

= j x i - -|X2 - M

Subject to - xi + X2 < 2

- Xi + 2x2 — 8

This problem has multiple solutions, one of them is yi2 = (xi, X2)^ = (4, 6)

Min (z i - C i) = -M - j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Subproblem 2

Aayi X3

Min (Z2 - C 2) = CbB'* 0 - C2y2 = (f , -M, -M) 0

1 1

(X3>= j X 3 - M

Subject to X3 < 3

The solution is y22 = (X3) = (0) ̂ Min (z2 - C2) = - M

r
Also, Z4 - C4 = CbB' - 0 = f

The global min. is min. (zi - ci) = -M - j

Hence Xp becomes the entering variable.

Pl2 =

Aiyi2
1
0

(1, 1)

1
0

10
1

0

Since Xb= (ill i,X5 ,X6) =

r I n o l f i n l r 10 "I

J L J L ■ J

4

1
1

, q = 2 .

Hence xs becomes the leaving variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

So B ’ =
1 - f 0
0 1 0
0 0 1

1
3 0 o ' " l

3
10
3 0

0 1 0 = 0 1 0

0 0 1 0 0 1

The new basic solution

' 1 2 '
“ 2 "

3

Xb - (ill!, A,i2, Xfi)̂ = B ' 1 = 1

1 1

Cb = (4, Ciyi2,-M) = (4,(l,2)
4^

, - M) = (4,16, -M)

Iteration 3

CbB ' = (4,16, -M)

Subproblem 1

i _io 03 3 ^

0 1 0
0 0 1

Aiyi X I + X2

Min (zi - C i) = C b B ' ’ 1 -ciyi = (f , f , - M) 1

0 0

- (Xi + 2X2)

Subject to - xi + X2 < 2

- Xi + 2x2 ^ 8

This problem has multiple solutions, one of them is yn = (xj, X2)^ = (4, 6)

Min (zi - c i) = 0

Subproblem 2

- (X3)= j x 3 - M
Aiyi X3

Min (Z2 - C2) = CbB'’ 0 -C2y2 = (| , f , - M) 0

1 1

Subject to X3 < 3

The solution is y23 = (X3) = (0), Min (z2 - C2) = - M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Also, Z4 - C 4 = C b B ‘‘ - 0 = f

The global min. is min. (z2 - C2) = - M

Hence A,?-? becomes the entering variable.

Aiy23 'O'

P23 = 0 = 0
1 1

3
10
3 o' 'o ' 'o '

Thus B'*Pi2 = 0 1 0 0 = 0
0 0 1 1

2"

1

Since Xb= ([All, ^ 12, X6f = ,q = 3.

' l 0 O' " i 10
3 3 0 ' " l

3
10
3 0 '

So B-' = 0 1 0 0 1 0 = 0 1 0
0 0 1 0 0 1 0 0 1

Xb - (lAii. ^ 12, ^23) ̂= B '

Cb = (4,16, C2y2s) = (4,16, 0)

3

1 = 1
1 1

Iteration 4

CbB ‘ = (4, 16, 0) 0 1 0
0 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Subproblem 1

'A iyi' X1 + X2

Min (zi - Cl) = CbB"' 1 -ciyi = (f , f , 0) 1

0 0

- (xi + 2 x2)

= - - j (- Xi + 2 X2) + f

Subject to - xi + X2 < 2

- xi + 2x2 < 8

This problem has multiple solutions, one of them is = (xj, X2)^ = (4, 6)

Min (zi - c i) = 0

Subproblem 2

Aiyi X3

Min (z2 - C 2) = CbB'‘ 0 - C 2 y 2 = (f , f , 0) 0

1 1

(X3)= | X 3

Subject to X3 < 3

The solution is y 2 3 = (X3) = (0), Min (Z2 - C2) = 0

r
Also, Z4 - C4 = CbB"' - 0 = f

"2" (4)
= (Xl, X2)’̂ = P i i d i i + Xi2yi2 = I + 1 f. = 3

20
1 3 y

X2 = (X3) = X23y23 = 1 * 0= 0

The optimal objective solution

Max z = CiXi + 0 2 X2 = (1, 2)
(16 A

3

20
V 3 y

+ 1 * 0 = f = 18.667

4.2 Parallel Algorithm of the Decomposition Principle

From the preceding numeric examples done in the sequential computation procedure,

we can write the flow chart of its parallel algorithm as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Optimal
snln is

Master Proc:
Are the reeeived

Each proc.;
Read input data.

Master proc.:
Send the value of CbB ’ to each processor

Master proc.:
1. choose the min. value among the

values received. Choose the
corresponding entering var.

2. compute B'*Pi to choose the leaving
var.

3. compute the new CbB'*.

Each proc.:
1. receive the CbB'* value from the

master proc.
2. compute the z\ - Ci value.
3. use the simplex method or IPM to

find the value of Min (zi - Ci).
4. Send this value to the master proc.

Fig. 17. Flow chart of the parallel algorithm of the decomposition principle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

A code of parallel algorithm of the decomposition principle is implemented in

MPI/Fortran based on the above flow chart. Different size of large-scale LP problems and

different number of processors are used to test for its performance Description of

problems’ sizes, number of processors (= np) used, computational time (in seconds,

including I/O), parallel speed-up and efficiency factors (on Sun/Sparc Rhino workstation

in the CEE department) is described and tabulated in Tables 1 - 3 . The definitions for

speed-up and efficiency factor are:

Speed up - ̂processor
computation time by n processors

Efficiency = speed - up
number of processors (used to test the speed - up)

In all these tables, 1 common constraint is used, and the following notations are

defined:

nblksize = the size of each block

nblocks = number of blocks

nconviter = number of converged iterations

The total number of constraints (= ntotcon) and the total number of design variables (=

ndv) can be given as:

np time speedup Efficiency

1 122

2 62 1.97 99%

3 43 2.84 95%

4 35 3.49 87%

Table 1: Numerical results of the parallel decomposition principle. Case 1

(nblksize = 20, nblocks = 80, nconviter = 132)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

np time speedup Efficiency

1 147

2 76 1.93 97%

3 53 2.77 92%

4 43 3.42 85%

Table 2; Numerical results of the parallel decomposition principle, Case 2

(nblksize = 40, nblocks = 40, nconviter = 42)

np time speedup efficiency

1 266

2 135 1.97 99%

3 95 2.80 93%

4 75 3.55 89%

Table 3: Numerical results of the parallel decomposition principle. Case 3

The above result shows that the parallel MPI/FORTRAN implementation has

resulted in good parallel speedup, and efficiency factors. The MPI/FORTRAN used in the

developed code will facilitate the porting of this parallel code to different computer

platforms. The developed parallel MPI/FORTRAN LP decomposition code also offers

computer memory advantages, since large number of independent constraints can be

stored by different number of processors. Thus, large-scale (block diagonal constraints)

LP problems that cannot be solved by a single processor (due to computer memory

restrictions) can be “quickly” solved by the developed parallel MPI code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

CHAPTER V

A NEW DECOMPOSITION ALGORITHM:

DIVISION BY THE INTERIOR POINT

The numerical study of the last chapter shows that the decomposition principle can

be used for effective parallel computation. However, one major problem is that it only

achieves the satisfactory result for the LP problems with the block angular structure. This

chapter discusses a new parallel decomposition algorithm that saves time and can be used

for general LP problems Basically, this algorithm divides the feasible region of a LP

problem into multiple subregions (subproblems) based on the found interior point. Then

multiple processors are used to solve these subproblems.

5.1 Introduction

the problem is nothing but an extreme point with the optimal objective value. The

simplex method is a procedure that moves from one extreme point to another extreme

point with a better objective. Hence, roughly speaking, the number of iterations of the

simplex method is proportional to the number of extreme points of the problem.

The idea of the “division by the interior point” algorithm is to decrease the number

of extreme points by dividing the feasible region into multiple subregions. If we can

divide the feasible region into multiple subregions, the number of the extreme points of

each subregion will be greatly decreased, compared to the original feasible region. For

example, if the feasible region is a regular octagon, it has 8 extreme points. If we draw a

horizontal line and a vertical line passing through the centroid of area, the feasible region

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

is divided into 4 same polygons, each with 5 extreme points. Let subproblem be a LP

problem with such a subregion as its feasible region and the original objective function as

its objective function. It is obvious that the optimal solution of the original LP problem is

the maximum/minimum value of the optimal solutions of all the subproblems. When each

subproblem is solved by an individual processor for parallel computation, the original

problem can be solved much faster.

To divide the feasible region into subregions, we need at least one interior point

inside the feasible region as a base point for the dividing hyperplanes. There are existing

algorithms to find the initial interior point, such as the algorithm discussed in Section

2.2.2 of Chapter 2. We will see later that the algorithm discussed in Chapter 2 is perfect

for our purpose. For real world optimization problems, an interior point near the center of

the feasible region can be reasonably derived directly from the context of the problem, as

demonstrated in the numerical example of Section 5.3.

Last, but not least, it should be noted that in order to decrease the iteration number,

extra constraints are added into the original problem, making the problem become even

“larger”. This is the contrary of the common concept that the more constraints, the more

n (number of variables) and m (number of constraints). Indeed, n and m decide the size of

the problem. However, is size everything? Imagine two problems with the same value of

n and the same value m. If one problem has much less extreme points than the other, it is

conceivable that its number of converged iterations, and hence the computational time,

will be much less. Now let’s take a look at a numerical example:

Problem:

Max. Xl + 2x2

subject to:

3.7321 Xl +X2< 1635.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

X] + X2 ^ 6 5 0 .2 7

0 .2 6 7 9 5 x i + X 2 < 4 3 8 .1 3

- 0 .2 6 7 9 5 Xl + X2 < 3 3 4 .6 0

- Xl + X2 < 2 6 3 .9 0

- 3 .7 3 2 1 Xl -i-X 2< 1 9 3 .1 9

0 .2 6 7 9 5 x 1 - X 2 < 5 1 .7 6 4

Xl - X2 < 2 6 3 .9 0

3 .7 3 2 1 Xl - X2 < 124 8 .8

3 .7 3 2 1 X i + X 2 > 1 9 3 .1 9

Xl + X2 > 1 2 2 .4 7

0 .2 6 7 9 5 x 1 -I-X2> 5 1 .7 6 4

(Xi, X2 > 0)

If we draw a figure of the above problem, it will show that the feasible region of this

example is a regular polygon with 12 sides, with each constraint as one of the sides.

Using the Simplex method, it takes 7 iterations to find the optimal solution (xi = 2 8 9 .7 8

divide the feasible region into 2 subregions. Correspondingly, the original problem is

decomposed into 2 subproblems. These two subproblems are exactly the same as the

original problem, except that each with a new constraint added. Let the subproblem with

the added constraint xi < 9 5 .3 4 1 be subproblem 1 and the subproblem with the added

constraint xi > 9 5 .3 4 1 be subproblem 2. It takes 5 iterations for the subproblem 1 to find

the optimal solution (xi = 9 5 .3 4 1 and X2 = 3 5 9 .2 4) with the optimal objective value

8 1 3 .8 2 . It also takes 5 iterations for the subproblem 2 to find the optimal solution (xi=

2 8 9 .7 8 , X2 = 3 6 0 .4 9) with the optimal objective value 1 0 1 0 .7 6 . Since 1 0 1 0 .7 6 > 8 1 3 .8 2 ,

1 0 1 0 .7 6 is the solution of the original problem. And the optimal solution to the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

problem is xi= 289.78, X2 = 360.49.

Although the iteration number is only decreased from 7 to 5 for this small LP

example, it can be greatly decreased for large scale LP problem. For example, if we

extend the above problem to a regular polygon with 8000 sides, it takes 3002 iterations

for the Simplex method to solve it. If we solve the two subproblems divided by the

interior point X] = X2 = 7002.82, it takes 1597 iterations to solve subproblem 1 and 1408

iterations to solve subproblem 2.

The above division method of the feasible region in 2 dimensional space can be

extended into multi-dimensional space, using the following strategy: let the known

(solved) starting point be xi = xi', X2 = xz' , ..., Xn = Xn'. The original feasible region can be

divided into 2“ regions (subproblems) by adding the following constraints into the

original problem, respectively:

Xl < Xl' Xl > Xl' (2 regions)

/ \ / \

+ X2<X2 ' X2>X2 ' X2<X2 ' X2>X2 ' (4 regions)

 ̂ ̂ ̂ --—J ■‘ • ■ J

/ \ / \ / \ / \ / \ / \ / \ / \

5.2 Parallelizing the Division by the Interior Point Algorithm

The parallelization of the division by the interior point algorithm is straightforward,

as shown by the flow chart (Figure 18).

As we know, communication between the master processor and the other processors

is nothing but an overhead for the effectiveness of a parallel algorithm. In the flow chart,

the words “send” and “receive” are underlined to show the communication between the

master processor and the other processors. We can see that very little information needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be exchanged: only two vectors of size n and one scalar.

Master proc.:
Compute the initial interior point Xq. Then
broadcast (send) this value to each processor

J

Each proc.:
1. Receive the value of x© from the master proc.
2. Add additional constraints based on xoto the

original problem to generate the subproblem.
3. Solve the subproblem using the simplex

method.
4. Send the optimum value of the objective

function, z (a scalar) and corresponding
variables’ values, x (a vector) to the master.

Master proc.:

61

the original problem. The corresponding x is
the optimal solution to the original problem.

Fig. 18: Flow chart of the parallel algorithm of Division by the Interior Point

To make a parallel algorithm effective, another important point is to make the

computation work divided as equally as possible for each processor. However, before we

actually solve a LP problem, we have no idea what its feasible region looks like, not to

mention to divide the feasible region in the way that each subregion has the same amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

of extreme points. If we can find an interior point as close to the center of the feasible

region as possible, that would be our best bet to divide the feasible region as equally as

possible. As we discussed in Section 2.2.2, the algorithm introduced there is such an

algorithm. Another advantage of that algorithm is that very little computation needs to be

done to “find” the interior point. From the preceding flow chart we can see that since the

work to find the interior point cannot be parallelized, it is important to keep its

computation as little as possible to make the whole parallel algorithm more effective.

Actually, the initial interior point in the Section 2.2.2 is not calculated, but “given”

as xo = (1 1 ... 1) .̂ This brings another benefit: there is no need for the master

processor to “send” its value of the interior point to each processor because they have this

information from the very beginning. Hence the communication time is saved.

5.3 Numerical studies

A code of parallel algorithm of the “division by the interior point” is implemented in

MPI/Fortran and the optimization problem of school desegregation is used as the

large-scale test problem. The objective of the school desegregation problem is to

range must be satisfied, and school’s capacities in different school districts need to be

satisfied also. For this optimization problem, the number of variables (NVAR) = NI x NJ

X NK, and the number of constraints (NCON) = NI x NJ -I- NK + 2 x NK X NI, where NI

= number of ethnic groups, NJ = number of school districts, and NK = number of

schools.

Based on the context of this problem, we can see that there are some obvious interior

points. For example, the number of students of ethnic group i living in district j divided

by the number of schools is such a point. It is used as the dividing base point for the test

problem.

The Different size of large-scale school desegregation problems and different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

number of processors (denoted as np in the following tables) are used to test for the

code’s performance The results are tabulated as follows:

np NVARXNCON No. of iterations Time (sec) Speedup

1 2500 X 375 1764 198

2 2501 X 376 996 144 1.38

4 2501 X 377 959 134 1.48

8 2501 X 378 996 126 1.58

Table 4: Numerical results of the parallel division by the interior point procedure , Case 1

(NI=5, NJ = 20, NK = 25)

np NVARXNCON No. of iterations Time (sec) Speedup

1 3750 X 475 2672 575

2 3751 X476 1040 271 2.12

8 2501 X478 1040 248 2.32 1

Table 5: Numerical results of the parallel division by the interior point procedure , Case 2

(NI=6, NJ = 25, NK = 25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this study, two linear programming decomposition procedures are examined, then

implemented and tested under the parallel computation environment. The first

decomposition procedure, the decomposition principle, is custom-made for the linear

programming problems in the special block-angular structure, while the second

decomposition procedure can be applied to any linear programming problems. Both of

the simplex method and the Interior Point Method are used in this study as subroutines to

solve LP problems.

In the decomposition principle procedure, the unbounded solution case has been

paid special attention since its solution procedure is different. The related concept of

extreme direction is explained. Methods to find the extreme direction in both the simplex

 ̂ *

the method to find an initial interior point is discussed.

Small numerical examples with step-by-step calculations are included in this study

to illustrate both of the two parallel decomposition procedures. The tabulated test results

of these two parallel decomposition algorithms show satisfactory efficiency in solving

large-scale linear programming problems.

6.2 Future Research

The algorithm of the decomposition principle procedure requires the problems in the

block-angular format. If a general linear programming problems can be manipulated and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

transformed into this special format, it can be solved with this algorithm. Future work

should be done on how to transform a general linear programming problem into this

format efficiently so that the computation time saved by the decomposition principle

procedure will not be wasted by the extra effort of the transformation.

The decomposition procedure of the “division by the interior point” idea can be

applied to general linear programming problems. However, nothing is free. The

generality of this algorithm is paid by the price of its efficiency: the performance of this

procedure is subject to many factors such as the “shape” of the problem’s feasible region;

the location of the interior base point; the method of dividing the feasible region, etc. In

short, it is difficult, if not impossible, to divide the feasible region “equally” into

subregions. Future work should be done on the methods of dividing the feasible region.

So far, the research on computational complexity of the simplex method is focused

on the size of the LP problem, i.e, the value of n (number of variables) and m (number of

constraints). As discussed in Chapter V, it is not only the size, but also the number of

extreme points that directly links to the computational complexity. This knowledge is the

foundation of the “division by the interior point” decomposition idea. In order to make

and exploited, which would be a very interesting future research topic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Bibliography

[1] Dantzig, G. B., « L inear Programming and Extensions», Princeton University Press,

Princeton, N. J., 1963

[2] Fang, Shu-Chemg and Puthenpura, Sarat, «L inear Optimization and Extensions;

Theory and Algorithms», Prentice Hall, 1993

[3] Karmarka, N., “A new polynominal-time algorithm for linear programming”.

Proceedings of the 16‘*’ Annual ACM Symposium on the Theory of Computing, pp.

302-311, 1984

[4] Dantzig, G. B. and Wolfe, Philip, “A Decomposition Principle For Linear Programs”,

the RAND Corporation, P-1544, Dec. 10, 1959

[5] Nguyen, D. T.; Bai, Y.; Qin, J.; Han, B. and Hu, Y., “Computational Aspects of

Linear Programming Simplex Method”, Advances in Engineering Software, Vol. 31

pp. 539-545, Elsevier, 2000

[6] Nguyen, D. T.; Runesha, H.; Belegunda, A.D. and Chandrupatla, T. R., “Interior point

m e th o d & i n d e f in i te s n a r s e s o lv e r f o r l in e a r n m o r a m m in o n m k le m o ” Pr/-vr-e<»rlinrTc

Performance Computers and Workstations, Williamsburg, VA, Oct. 15-17,1997

[7] Bazaraa, M.; Jarvis, J. and Sherali, H., “Linear Programming and Network Flows”,

2nd ed., Wiley, New York, 1990

[8] Pacheco, P. S., “Parallel Programming with MPI”, Morgan Kaufmann, 1997

[9] Hu, Y.; Nguyen, D. T. and Gould, Kevin, “Large Scale Linear Programming

Problems by Decomposition and Parallel Procedures”, the 8-th AIAA / USAF /

NASA / ISSMO Symposium on Multidisciplinary Optimization, Westin Long Beach,

Long Beach, California, September 6-8, 2000

[10] Hu, Y.; Gould, K. and Nguyen, D. T., “Linear Programming Domain Decomposition

Solutions Using Simplex and Interior Point Methods Under Parallel Computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Environments”, 9th International Conference on Numerical Methods and

Computational Mechanics, Miskolc, Hungary, July 15-19, 2002

[11] Private communication with Prof. Due T. Nguyen and his Ph.D student Siroj

Tungkahotara who has developed the computer program to test large-scale school

desegregation problem

Supplemental Source

[1] Taha, H. A., “Operations Researeh: An Introduction”, Prentice Hall, 1997

[2] Baumol, W. J. and T. Fabian, “Decomposition Pricing for Decentralization and

Extemal Economies”, Management Science, Vol. 11, No. 1, 1964

[3] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. and Flannery, B. P., “ Numerical

Recipes in Fortran 77: The Art of Scientific Computing”, 2nd edition, Cambridge

University Press, 1992

[4] Wolfe, P., “The Composite Simplex Algorithm”, SIAM Review, Vol. 7, No. 1,1965

[5] Wolfe, P., “A Technique for Resolving Degeneracy in Linear Programming”, RAND

R e n o r t R M - 2 9 9 5 -P R . T h e R A N D r io m o r f l t in n .^ a n ta M o n ie n C '\ M a v 1 Q 6 9

memory computers”. Proceedings of the ICES ’95 (Intemational Conference on

Computational Engineering Science), the Ritz-Carlton Hotel, Mauna Lani, Big Island

of Hawaii, July 30-August 3, 1995

[7] “Parallel Decomposition of Linear Programs”, Dept, of Operation Research, Stanford

University, CA, Nov. 1989. (Thesis, Technical Report)

[8] Hooker, J., “Karmarkar’s Linear Programming Algorithm”, Interfaces, Vol. 16, No. 4,

pp. 75-90, 1986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 8

VITA
Yusong Hu

Email: yusonghu@hotmail.com

Education
• Ph.D., Civil Engineering, Old Dominion University, Norfolk, VA (5/2004).
• M.S., Structural Engineering, Beijing Jiaotong University, Beijing, China (4/1992).
• B.S., Structural Engineering, Hefei United University, Hefei, China (7/1989)

Experience
• 08/98 - 08/02: Research Assistant, Dept, of Civil and Environmental Engineering,

Old Dominion University, Norfolk, VA. Research topic: high performance scientific
computation with application in structural engineering.

• 04/92 - 05/98: Assistant Professor, Dept, of Civil Engineering, Beijing Polytechnic
University, Beijing, China.

• 09/89 - 04/92: Research Assistant, Dept, of Civil Engineering, Northern Jiaotong
University, Beijing, China. Research topic: LISP program implementation of
developing mechanism of expert system for structural engineering design.

Publications and conference papers
• Linear Progranuning Domain Decomposition Solutions Using Simplex and

Interior Point Methods Under Parallel Computer Environments, Y. Hu, K.E.
Gould andD.T. Nguyen, 9th Intemational Conference on Numerical Methods and

eai, J. c,̂ in, ana rusong nu , Aovances m tingmeenng sottware, pages 5jy-54b, VJl,
2000, Elsevier
Large Scale Linear Programming Problems by Decomposition and Parallel
Procedures, Hu, Yusong, Nguyen, D.T. and Gould, Kevin, the 8-th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Optimization,
September 6-8, 2000, Westin Long Beach, Long Beach, California
Decomposition Procedures For Linear Programming Problems: Sequential
computer Environments, Yusong Hu, D.T. Nguyen, and K.E. Gould, Virginia
Academy of Science Conference, May 24-26, 2000, Radford, Virginia
Computational Aspects of Linear Programming Simplex Method, Nguyen, D.T.;
Bai, Y.; Qin, J. and Hu, Y., 5 th National Symposium on Large-Scale Analysis, Design
and Intelligent Synthesis Environment, October 12-15, 1999, Williamsburg, VA.
Computational Issues In the Revised Simplex Method For LP Problems, D.T.
Nguyen, Yu Bai, J. Qin and Yusong Hu, Virginia Academy of Science Conference,
May 25- 28, 1999, Norfolk, VA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:yusonghu@hotmail.com

	Parallel Decomposition Procedures for Large-scale Linear Programming Problems
	Recommended Citation

	ProQuest Dissertations

