Old Dominion University

ODU Digital Commons

Civil & Environmental Engineering Theses &

Dissertations Civil & Environmental Engineering

Spring 2004

Parallel Decomposition Procedures for Large-scale Linear
Programming Problems

Yusong Hu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

b Part of the Civil Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Hu, Yusong. "Parallel Decomposition Procedures for Large-scale Linear Programming Problems" (2004).
Doctor of Philosophy (PhD), Dissertation, Civil & Environmental Engineering, Old Dominion University, DOI:
10.25777/gw7b-9914

https://digitalcommons.odu.edu/cee_etds/34

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.


https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/34?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PARALLEL DECOMPOSITION PROCEDURES FOR

LARGE-SCALE LINEAR PROGRAMMING PROBLEMS

by

Yusong Hu
M.S. April 1992, Northern Jiaotong University, Beijing, China

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of
DOCTOR OF PHILOSOPHY
CIVIL ENGINEERING

OLD DOMINION UNIVERSITY
May 2004

Approved by:

Duc T. Nguyen (Director)

Zia Razzaq (Member)

Laura J. Hafrdll (Member)

Hideaki Kaneko (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT
PARALLEL DECOMPOSITION PROCEDURES FOR

LARGE-SCALE LINEAR PROGRAMMING PROBLEMS

Yusong Hu
Old Dominion University, 2004
Director: Dr. Duc T. Nguyen

In practice, many large-scale linear programming problems are too large to be solved
effectively due to the computer's speed and/or memory limitation, even though today's
computers have many more capabilities than before. Algorithms are exploited to solve
such large linear programming problems, either in the sequential or parallel computation
environment. This study focuses on two parallel algorithms for solving large-scale linear
programming problems efficiently.

The first parallel decomnosition algorithm discussed in this studv is from the theorv

problems in a special block-angular structure. 'L'he theory of the decomposition principle
is first examined. Since the subproblems of a linear programming problem can be in any
of the three possible cases — optimal solution case, unbounded solution case and no
solution case, examples are provided for solving the problem when its subproblems are in
any of these cases. The concept of extreme directions is discussed due to its direct
connection with the unbounded solution case. A parallel computation code, which can
handle all these cases, is implemented in this study with the decomposition principle
theory and its performance is tested for large-scale linear programming problems.

Only the problems in the special block-angular structure can be solved with the

decomposition principle. For general linear programming problems, this study proposed a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



new decomposition algorithm named “division by the interior point”. The idea of this
new algorithm is as follows: with a found interior point inside the feasible region, divide
the feasible region into multiple subregions and use multiple processors to solve the
problem in each subregion. This new algorithm is first demonstrated with a few small
numerical examples. A parallel computation code in this new idea is implemented and

tested with large-scale linear programming problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This thesis is dedicated to
my parents,
my wife, Wei,

and my son, Sam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv



ACKNOWLEDGMENTS

There are many people who have contributed to the successful completion of this
dissertation. I extend many, many thanks to my committee members for their patience
and hours of guidance on my research. The untiring efforts of my major advisor, Dr. Duc
T. Nguyen, and helpful comments for Dr. Gene Hou, deserve special recognition. I would
like to thank Mr. Siroj Tungkahotara for providing subroutines and test results related to
Chapter V. I would also like to thank the library of the University of Maryland at College

Park for allowing me to borrow several useful textbooks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES. ...ttt e e IX

LISTOFFIGURES. ...ttt e X
Chapter

L INTRODUCTION. ...ttt ettt e a s 1

L 0 1 o 1R 1

1.2 ObJectivVe and SCOPE. .. ..vvuiitieieietrit ittt eitee e eane e e eaeeeneeneaes 2

II. LINEAR PROGRAMMING METHODS..........c..coiiiiiiiii 4

2.1 The Simplex Method............cooiiiiiiiiiiiiii 4

2.2 The Interior Point Method..............ooooiiiiiiii 5

2.2.1 Affine Scaling Algorithm................oooiiiiiii 6

2.2.2 Finding the Starting Interior Point.....................oo, 9

T MECAMDNACTITTANT DD INIOTDT B 11

3.2 The Algorithm of the Decomposition Principle................ooveiviiiiiin 17

3.3 Finding the Optimal Direction.............cocoviiiiiiiiiiiiiiiia 21

3.3.1 Finding the Optimal Direction in the Simplex Method..................... 21

3.3.2 Finding the Optimal Direction in the Interior Point Method................ 23

IV. NUMERICAL STUDIES OF THE DECOMPOSTION PRINCIPLE.............. 27

4.1 Sequential Algorithm of the Decomposition Principle........................... 27

4.1.1 Bounded Feasible Region Case..............cooovvviiviiiiiiiiiiiii., 28

4.1.1.1 Example Problem With Optimal Solution.............................. 28

4.1.1.2 Example Problem With No Solution...............c...cooo 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vii

4.1.2 Unbounded Feasible Region Case.............c.coooviiiiiiiiiinn, 46

4.2 Parallel Algorithm of the Decomposition Principle........................o... 53

V. A NEW DECOMPOSITION ALGORITHM: DIVISION BY THE INTERIOR

0 ) 1\ 57

fo 0 95 0 Yo L0 T Co ) TP 57

5.2 Parallelizing the Division by the Interior Point Algorithm....................... 60

5.3 NUMECAl StUAIES. .ot vtvettt ettt ettt e retasasassnsnnnnainnennn 62

VI. CONCLUSIONS AND FUTURE RESEARCH. ..ottt 64

6.1 COMNCIUSIONS. .ottt ettt et ettt et e ettt e e 64

6.2 Future ReSearCh.......cooioiiii i, 64

BIB L O G R A PH Y ..ottt e e 66
V4 1 - N PP 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viii

LIST OF TABLES

Table Page

1. Numerical results of the parallel decomposition principle, Case 1........................ 55
2. Numerical results of the parallel decomposition principle, Case 2........................ 56
3. Numerical results of the parallel decomposition principle, Case 3........................ 56

4. Numerical results of the parallel division by the interior point procedure , Case 1.....63

5. Numerical results of the parallel division by the interior point procedure , Case 2.....63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ix

LIST OF FIGURES
Figure Page
1. Mapping of one space to another Space.............ccovviiiiiiiiiiiiiiiiii e, 7
2. Extreme points of a bounded feasible region.................coooviiiiiii, 12

3. Extreme points and extreme directions

of an unbounded feasible region............c.ccoviiiiiiiiiiii 13
4. Point X in a bounded region...........cccovviiiiiiiiiiiiii 14
S. Point X in convex combination.........c..covviiiiiiiiiiiiiiiir e 14
6: Point x in another convex combination..............ccoooiiiiiiiiiiii i 14
7: Point X in an unbounded regioN..........oovvviiiiiiiiiiiii 15
8: Points X in linear combination.............oouvviiiiiiiiiiiiiiiiiiiii 15
9: Point x in another linear combination..............coviiiiiiiiiiiiiii 16
10: Feasible region of Example 3.1.......c..coiiiiiiiiiii 22
11. Feasible region of subproblem 1 of 4.1.1.1.........cooiiiiii 29
12. Feasible region of subproblem 2 of 4.1.1.1........ccooiiiiiiiiiiiiie 30
LT £ VSN SUBAULL UL SBUPLUUIVR £ UL T Lo Lefeerenetannenonnnnsnentonteeneneeneneeenssnenio 1
15. Feasible region of subproblem 1 of 4.1.2...........ociiiiiiiiiiiiiiii 47
16. Feasible region of subproblem 2 0f 4.1.2..........cociiiiiiiiiiiiiiii e, 47

17. Flow chart of the parallel algorithm
of the decomposition prinCiple............coooiiiiiiiiiiiii 54
18. Flow chart of the parallel algorithm

of Division by the Interior POINt............ooviiiiiiiiiiiiii e, 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Linear programming is a branch of applied mathematics that deals with methods of
optimizing a linear objective function of a set of decision variables subject to linear
constraints. Since George B. Dantzig proposed the simplex method in 1947 M Yinear
programming has been extensively used in the industry, military, government, urban
planning, etc. In a recent survey of Fortune 500 companies, 85% of those who responded

said that they had used linear programming algorithms and/or software 2.

1.1 Overview
The standard form of linear programming problems is in the following format :
Minimize z = ¢1X] + C2X2 + ... + CnXn (1.1)

subjectto  a;;X;+apXa+... +aX, =b; (1.2)

amiX1 + ameX2 + ... + aypXy = b

(X1, X2, ..., Xn 2 0) (1.3)

Or, in a simpler matrix notation, it can be written as
Minimize ¢'x (1.4)
subjectto Ax=b (1.5)
(x=0) (1.6)

where x and ¢ are vectors of size n, b is a vector of size m, and A is an mxn matrix.
This matrix notation of the standard form is used throughout this study, although in

some of the problems, maximization of the objective function is used instead of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



minimization. It is trivial to convert maximization to minimization:
Maximize ¢'x = - (Minimize ¢"x) |

Since 1947, the simplex method has dominated the linear programming field with its
proven capability of solving real world problems, although in theory this method may
have some difficulty. In 1984, N. Karmarkar made a real breakthrough in linear
programming with his interior point method ™). Since in theory this new method is
superior to the simplex method, it has become the research focus in the past years. Both
the simplex method and the interior point method are used in this study, while more
discussion is devoted to the newer interior point method because it has been less

experimented.

1.2 Objective and Scope
Both the simplex method and the interior point method perform well for solving
small to medium size problems. However, they may not be able to solve large-scale
problems fast enough due to the computer’s computational speed. When the problems are

too large, they may not be solved at all due to the limitation of computer memory. The

SUUPIUUIVILD .« LU UUJCLLIVE UL ULD dLUUy 13 W0 SULVE 1Al ge-50alc UICAl Pprogramnimmg
problems efficiently with decomposition procedures using parallel computation. First, in
this study, the decomposition principle procedure proposed by Dantzig and Wolfe ™ is
examined (see Chapter 3). This technique has been of particular interest to researchers.
However, the research that has been done is mostly in the sequential computation
environment. In this study, a parallel decomposition computation code is implemented
and tested with large-scale linear programming problems for efficiency (see Chapter 4).
Since the procedure of the decomposition principle is customized to the “block angular”
problems, it can only achieve satisfactory result for those special problems. For general

large-scale linear programming problems, a new parallel decomposition algorithm is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



proposed in Chapter V and tested with numerical examples.

Since the idea of these two decomposition approaches comes right from the simplex
method and/or the interior point method, these two methods are reviewed briefly in
Chapter II to facilitate the future discussions. Chapter II also discusses one simple
technique to find a starting interior point, which can be used in the “division by the
interior point” decomposition procedure proposed in Chapter V.

It is interesting to note that both the names of the simplex method and the interior
point method come from the geometry. Indeed, the intuition that is generated from the
geometry of linear programming is one of the keys to understand the linear programming
theory. The idea of the new decomposition procedure of Chapter 5 is also inspired by the
geometric properties of linear programming. In Chapter 3, one geometric concept of
linear programming, extreme directions, is discussed before the discussion of the
decomposition principle procedure, because it is essential for solving the linear

programming problems of the unbounded solution case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 11

LINEAR PROGRAMMING METHODS

The parallel algorithms for linear programming problems presented in this study are
based upon two linear programming methods: the simplex method and the interior point
method. This chapter will review these two methods in order to make future discussion
about the parallel algorithm easier. While the simplex method is the basic method of
linear programming and is introduced in every linear programming book, the interior
point method is relatively newer and is discussed in much less detail. Hence, this chapter
focuses on the interior point method. The simplex method is reviewed first only for its
key ideas, in order to compare the difference between the interior point method and the

simplex method.

2.1 The Simplex Method

a linear programming prooiem 1S not empty, 1l has eltner unopounded SoluuOn Or an

optimal solution on one of its extreme points. Thus, the simplex method only iterates on

the extreme points. The procedure of the simplex method is as follows!*!

(1) Find a starting extreme point. Two commonly used methods, the two-phase method
and the big-M method, can be used to find such a starting extreme point.

(2) Check if the current extreme point is optimal. If yes, stop the iteration. Otherwise go
to step (3). The current solution is optimal if the objective cost function can no longer
be improved.

(3) Move to another extreme point with improved objective value. Then return to step (2).

The pivoting process is used to find such an extreme point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For hand calculation, the simplex method can be done in the “simplex tableau”
format. A numerical example solved in this procedure is given in Section 3.3.1. The
simplex method can be implemented in more efficient approaches, such as the revised
simplex method. The revised simplex method is more efficient because with matrix

* formulation, efficient linear algebra (such as linear equation solver) can be easily
exploited . All the numeric examples in Section 4.1 are solved with the revised simplex

method.

2.2 The Interior Point Method
In the Fall of 1984, N. K. Karmarkar of AT&T Bell Laboratories proposed a new
algorithm B for linear programming. This new algorithm was the first one in thirty years
that not only outperforms the simplex method in theory, but also shows the potential to
rival the simplex method for solving large-scale practical applications.
Karmarkar’s method is radically different from the simplex method. The simplex
method starts with a vertex (extreme point) of the feasible region and moves along the

boundary to a better neighboring vertex, until the optimal solution or infeasibility is

LT ICASIUIC ICEIVIL LU VISIL CVOLY VCICA 111 UIC WOISL-CASC SCeldIlU. ol 1drge-scdic
problems, the feasible region contains numerous extreme points, which can incur a huge
number of iterations.

Karmarkar’s approach starts with an interior point in the feasible region and moves
through the interior region to reach the optimal point. This approach is based on two
fundamental insights:

1. If the current interior solution is near the center of the polytope, it makes sense to
move in the direction of steepest descent of the objective function to achieve a
better value.

2. Without changing the problem in any essential way, an appropriate transformation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be applied to the solution space so as to place the current interior solution near
the center of the transformed solution space.

The basic strategy of Karmarkar’s algorithm is: take an interior solution, transform
the solution space so as to place the current solution near the center of the transformed
space, and then move in the direction of the steepest descent in the transformed space, but
not all the way to the boundary in order to remain as an interior solution. Then take the
inverse transformation to map the improved solution back to the original solution space
as a new interior solution. Repeat this procedure until the stopping criterias are met.

The transformation proposed in the original Karmarkar’s algorithm is a projective
transformation, thus Karmarkar’s algorithm is also referred as projective scaling
algorithm. A LP problem must satisfy the following requirements before it can be solved
using the projective scaling algorithm:

1. The problem has to be in the following standard form:

Minimize ¢ x 2.1)
Subject to Ax =0 (2.2)
ex=1,x>0 (2.3)

FAIDU, dll 1Hiidl 1CadivIC HHICHIUL SULULIULL (dlal l.lllg PUUIL) 11IUSL UC KIIOWII.
2. The optimal objective function value must be zero.
Since it is relatively cumbersome to transform a standard LP problem to
Karmarkar’s format, many variants of Karmarkar’s algorithm have been developed.

(2] {6}

Among these methods, the affine scaling algorithm received the widest analysis and

experimentation. The interior point method used in this study is the affine scaling

algorithm.

2.2.1 Affine Scaling Algorithm

Affine scaling algorithm was named because the transformation used in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



algorithm is affine scaling transformation.

For an interior point x, we define an n x n diagonal matrix X, which has all zero
elements except that the diagonal elements Xy = x;. With Xy, we have the following
transformation:

y=X"x (2.4)

Notice that this transformation does nothing but to rescale x; by the factor 1/x;. It

was named the affine scaling transformation because geometrically it maps a straight line

in one space to another straight line in another space, as shown in Figure 1:

p—

X1 Y1

As we can see from Fig. 1, the point x is transformed to a new pointy = e = (1
1 ... 1)T, which keeps the same distance from the orthant.

From Eq. (2.4), we have x = Xy y. Hence the original LP problem

Minimize ¢'x (2.5)
Subjectto Ax=b (2.6)
x=0) 2.7

is transformed to
Minimize (c¢*)"y (2.8)
Subjectto Axy=b (2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y=0) (2.10)
where ¢* = Xicand Ax = A Xy

Since yk keeps the same distance from the orthant, it is considered “near the center”

of the polytope. So we should move along the steepest descent direction d’; to find the
new point yk+1 = yk + ockd'; , where 0y is the step length.

The steepest descent direction of the objective function is its negative gradient, - .
In order to keep feasibility, this direction needs to be projected into the null space of the

constraint matrix A. From the linear algebra, we have the null space projection matrix Py
=T- A (A A "Ac=T- XcAT(A Xi® AT) " A X,. The moving direction d® =Py (-

)=I-XATAXZAND TAX ] (-Xke)=-Xi[c-ATA X 2AD TA X 2 el
If we denote w* = (A X, 2 AT TA X, %¢,

d) =-Xi[c-ATw"] (2.11)
Furtherrhore, if we denote r* =¢ - AT wk,

dt=-Xr* (2.12)

X = Xy = X 5 + oy d) = x* + g Xed? (2.13)
As for the step length oy, from y**' = y* + oy d’ >0, we know that when (d%); <0,
o should be smaller than
yi/ - (@il = 1/ [- (d5)] (2.14)
Therefore we can choose 0 < o < 1 and apply the minimum ratio test
oy = min { oo/ [- (d¥ )], for (d} ) < 0} (2.15)

to choose an appropriate step length in order to guarantee y**' > 0.

The iterative procedure of the affine scaling algorithm can be easily derived based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on the above discussion. Section 3.3.2 provides the step-by-step calculation for a

numerical example problem solved with the affine scaling algorithm.

2.2.2 Finding the Starting Interior Point

An initial interior point has to be known beforehand in order to start the interior
point method. There are a few methods to find such an initial interior point. The one
introduced here is easier to implement . It is also easier to understand due to its
similarity to the Big-M method used in the simplex method.

The Big-M method used in the simplex method imposes a large positive number M
as a penalty for each artificial variable and transforms the standard LP problem into the
following LP problem:

Minimize z = ¢'x + Mx,

(2.16)

Subjectto Ax+x,=b 2.17)
(X, Xa= 0) (2.18)

The starting point (solution) is X = 0 and x, = b. When M is chosen large enough,

Had 1eas1UIC SUIULIUILL O unpounaca soiuuon.
Now we turn back to the interior point method. One artificial variable x, associated

with a “big M” is added to the original problem and transforms it into the following

problem:
Minimize z = ¢x + MXx, (2.19)
Subject to [ A | (b-Ae) ] [ * } =b (2.20)
xa
(X, Xa = 0) (2.21)
wheree=(1 1 ... 1)TeR" (2.22)

Comparing this problem with the big-M problem in the simplex method, we note

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

these differences:
1. Only one artificial variable, x, (instead of x,), is added. In total, there are n + 1
variables, instead of n + m.
2. Although the objective function looks the same, the constraint matrix is different.
The constraint matrix is manipulated so that x = (1 1 ... )T e R
satisfies the transformed constraint matrix, which meansx=(1 1 ... 1Tis
a solution to the transformed problem.

In fact, it is not only a solution, but also an interior solution. The reason is as
follows:

From the basic theory of the simplex method, we know that graphically, the
boundary of the feasible region is a hyperplane defined either by each constraint of Ax =
b, in which all the slack variable and artificial variable equal to zero; or by the constraint
x; = 0. Either way, if a point x is on the boundary of a feasible region, there must be at
least one zero in x. Since the point x=(1 1 ... 1) is a solution to the transformed
problem, it is either on the boundary of the feasible region or an interior point. And since

thereisnozeroinx=(1 1 ... l)T, it is not on the boundary. Hence, it is an interior

—assmas v v Lip ra pAUULIVAL A WV DLUPIVA LUVUIVG, UV SULLMULL W UIL ULIgLaL
problem can be derived from the solution to the above big-M problem:

1. If the artificial variable x, remains positive in the final solution of the big-M
problem, the original problem is infeasible.

2. If the artificial variable x,is equal to zero in the final solution of the big-M
problem, the original problem has the same optimal solution as the big-M
problem.

3. If the big-M has unbounded solution, the original problem has unbounded

solution, too.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

CHAPTER 111

DECOMPOSITION PRINCIPLE

Decomposition principle s an algorithm for efficiently solving large-scale linear
programming problems by breaking up the problem into smaller problems. This chapter

introduces the theory of the decomposition principle.

3.1 Convex Set: Extreme Points, Extreme Directions and Theorems

A few theorems need to be discussed before the introduction to the decomposition
principle. These theorems are essential to the derivation of the decomposition principle.
And in order to make the explanation of these theorems easier, first we will review a few
concepts of the convex theory that are used in these theorems. The first two concepts,
convex sets and extreme points, are basic to the linear programming. They are briefly
mentioned here in order to introduce a related, but much less well-known concept of

extreme direction.

1. CUOILYCA SCLS

For k points X1, X2, ..., Xk € R" and k scalars A1, Ay, ..., Ax € R, we know that the
expression A1X; + AzXs + ... + AgXy is called a linear combination. It further becomes a
convex combination when

AM+Ar+ ... +A=1and0< A, Ay, .., A< (3.1

A set X is called a convex set if the convex combination of any two points in X is
still in X.

Geometrically, for two points inside a polyhedron defined by a set, if the line
segment joining them (which is the convex combination of these two points) is still inside

the polyhedron, that set is a convex set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

2. Extreme points

A point in a convex set is called an extreme point if it cannot be represented by a
convex combination of two distinct points in that set. In Figure 2,y; i=1, 2, ..., 5) are

extreme points.

* Ya

Y3

Ys

Y2

Y1

Figure 2: Extreme points of a bounded feasible region

3. Rays and directions

A ray is a set of points with the form

TYLIVAV WA G UVLILAVLY YAVVLUL UG LD VALLVUL LG UL UuULL UL L ay.

4. Extreme directions
Direction is nothing but a vector. First, we define the concept of the direction of
the set. For a convex set X, a nonzero vector d is called a direction of the set if for
each pointx € X, theray { x+ A d: A 20 } € X. It is obvious that for a bounded set
as in the Figure 2, there are no directions of the set. From Figure 3, we can see that all

the directions between d; and d; are directions of the set Y defined by the unbounded

region, because they all satisfyy+A de Y.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

Y3

Y2 d;
—
d;

d 1

>

Figure 3: Extreme points and extreme directions of an unbounded feasible region

An extreme direction of a convex set is a direction of the set that cannot be
represented as a positive linear combination of two distinct directions of the set. We can
see that extreme directions to directions of the set is extreme points to points. In the Fig.
3, from linear algebra, we know that all the directions d between d; and d, are the
positive linear combination of d; and d,. However, although d; (d;) can also be

represented as linear combination of d and d; (d;), the combination is not positive. Hence,

ALV MUV UOLIUVLL Vi L UVVVLLPVOIWVIL GLEULLILILLIL VAL UV Siviil Y TUVIHILUIGAL U Y vty

to the following 3 theorems [7;

Theorem 1 (for the bounded region case)
Let X = {x: Ax = b, x>0} be a nonempty bounded set. Vector x € X if and only if x

can be represented as a convex combination of the extreme points (y;) of this set, that is,

X = Zk: Ajy; 3:3)

j=1

k
where D Aj=1 (3.4)

J=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Ai20(G=1,2,..,k).kis the number of extreme points.
As an example, the interior point x in Figure 4 can be expressed as a linear

combination of points y4 and z (see Figure 5).

A Ya 4 V4
y3
X
Ys
Y2
z Y1 2
> >
Fig. 4: Point x in a bounded region Fig. 5: Point x in convex combination
X=Y4-0(ys—2z)=(1-0)ys + 0z (12a20) (3.5)
Similarly, point z can be expressed as (see Figure 4):
z=(1-B)y2 +By: (12B20) (3.6)
Hencex = (1 -00)ys + (1 -B)y2 +By1] = ofy:+ a(l -B)yz + (1 -0)ys (3.7)
PRSI ST N VA R W Sl v el ¥ \J.7)

Notice that the representation is not unique (see Fig. 6).

T Ya

Y3

¥s

y2
Y1

>

Fig. 6: Point X in another convex combination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

Theorem 2 (for the unbounded case)
Let X = {x: Ax = b, x> 0} be a nonempty set. Vector x € X if and only if x can be
represented as a convex combination of the extreme points (y;) plus a nonnegative linear

combination of the extreme directions of this set (d;), that is,

k I
X= Z ijj + Z dej (3.10)

k
where ) Aj=1 (3.11)

j=1
7»12 0G=1,2,..,k),nj=20(G=1,2,..,1), k is the number of extremes points and 1 is the
number of extreme directions.

As an example, the interior point x in Fig. 7 can be expressed as (see Figure 8):

x=z+ud;y (u=20) (3.12)
y3 LI Y3 // X
= —> ! —>
Fig. 7: Point x in an unbounded region Fig. 8: Points x in linear combination

It should be noticed that the extreme direction d; (see Fig. 7) is parallel to the

direction zx (see Fig. 8). Also, point z (in Fig. 8) can be expressed as:

z=y, H3(ys - y2)= (1 -B)y2 +Bys (1>42=0) (3.13)
Hence we have
x = (1-B)yz +Bys + ud (3.14)

Again, this representation is not unique. The point x can be also be represented in terms

of y; and d; (see Fig. 9).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

Y3

Y2
Y1

>

Fig. 9: Point x in another linear combination

Theorem 3

For the problem of
T

Maximize ¢ x 3.15)
subjectto: Ax=b (3.16)
(x=0) (3.17)

(1). It has finite optimal solution if and only if all cd; < 0, where d; is an extreme direction

A4 e 84 40 LIGO LMLV URPLLILIGL OVIWLIVLG LIV DULBLIULL 1D VLIV UL LW VALLUILIV PULIILD.

Proof:

According to theorem 2, the foregoing problem can be transformed to

k 1
Maximize Y (eyphj+ Y, (edy; (3.18)
j=l =
k
s.t. > =1 (3.19)
j=1
where 4,20 (=1,2,..,k), ;520G =1,2,..,1) (3.20)
Now,

(1) If one of cd; > 0, since the corresponding p; can be arbitrarily large, the objective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

function — eo, Hence there is no finite optimal solution.
(2) If all ¢d;< 0, in order to maximize the objective function, all y; can be made to be zero.
Now the problem becomes

k
Maximize . (cypA; (3.:21)

J=
k
st. Y. A=1 220G=1,2,..,k) (3.22)

Let ¢y, = max ¢y; (j = 1, 2, ..., k). Obviously, when Ag=1 and Aj= 0 (j # g), the
maximum value is found. Hence, the original problem has finite optimal solution, and the

solution (y) is one of its extreme points.

3.2 The Algorithm of the Decomposition principle
The general form of “block angular” linear programming (LP) problems considered

in this work can be expressed as [*

Maximize zZ = €1X; + C2Xz2 + ... + CpXp (3.23)
Snhiect tn

B1X1 =b, (325)

BzXz = bz (326)

B)x, =b, 3.27)

(x1, X2, ..., X2 0) (3.28)

where Eq. (3.24) is the common constraint, Eq. (3.25- 3.27) are the block
(subproblem) constraints, p is the number of blocks, x; and ¢; is an n; dimensional vector,
b is an m dimensional vector, A; is an m X n; matrix, b; is a r; dimensional vector, B; is a

r; X n; matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

The following is an example problem in this format:

Maximize Zz =-Xj-3X;-5X3-2x4 (3.29)
Subject to

5x1 4 3x2+ 4x3 <10 (3.30)

X1+ 2X2 + 2x35+ x4 <100 (3.31)

5x1+ X2 <9 (3.32)

X1 + 4X, <8 (3.33)

X3-5X4 24 (3.34)

X3+Xx4 210 (3.35)

(X1, X2, X3, X422 0)

Comparing this problem with the “block angular form”, we can see that it has two
common constraints (Eq. 3.30 - 3.31) and two blocks (i.e., subproblems)

For less than (<) and/or greater than (=) type constraints, slack and/or surplus
variables can be introduced to convert them into equality (=) type constraints, as
indicated in Eq. 3.24 - 3.27. The feasible region (if exist), defined by Eq. 3.24-3.27, can

be either bounded or unbounded.

Maximize Y (ey)hj+ Y. (edyy (3.36)
j=1 j=t
subject to
k
> M=1 (3.37)
j=1
where A;20(=1,2,..,kandn;20(G=1,2,..,0) (3.38)

With the above conclusion, and based upon the 3 theorems discussed before, the
“original” LP problem (defined in Eq. 3.23 - 3.28) can be transformed into the following

“new” LP problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Maximize
k1 k2 kp 1 12 ip
z= Z (c;yxj)}»lj+ Z (c2y2j))»2j+ e+ Z (prpj))\,pj-i' Z (cldlj)ulj"' Z (Czdzj)]JQj +...+ Z (cpdpj)u'pj (3.39)
j=1 Jj=l j4 J= Jj=l J=1
subject to:

a 2 kp 1 1 Ip
Z(AHUVHJ +Z(A2Y23)?»2j +ot Z Ay )Ag + 2 (Agdipy + Z(Azdzj)uzj +o.t z Adpy =b  (3.40)
A A A j=

j= A
il
DA =1 (3.41)
A
k2
Dy =1 (3.42)
I=l
Ip
Dy =1 (3.43)
A
where A;20(G=1,2,..., ki), uj20(G=1,2,..,15) (3.44)

It is important to recognize that each block constraints in the “original” LP problem

Yal1auios A 1ad USCL UaldIULLLICU LU UIC LHEW VALIADIES A jj 411U [ jj.

The revised Simplex (product form) algorithm can be applied in the LP problem of
Eq. 3.39 - 3.44, with “minor detailed” changes in the steps to select the Entering (and
Leaving) variables into (and from) the basic variable group.

(i) How to choose the entering variable?

The entering variable in the revised Simplex method corresponds to the global
maximum of ¢; - z; (or minimum of z; - c;, which is the notation format used in chapter
4). Instead of finding the global maximum value, we can find the local maximum value
first (corresponding to each block), then choose the maximum amongst these values.

(ii) How to find the local max. c;; - z;?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

According to the revised Simplex method, ¢;; - z;= ¢j; - CBB-lpij (3.45)
Let cgB™' = (@1, wy,..., O, O, Uz, Op) = (@, O) (3.46)
) Aiyi
(a) Corresponding to Ajj, one has pjj= 3.47)
ei

where e; is a p dimensional vector with the i-th entry equal to 1 and all the other

entries equal to 0.

Aiyi

Hence c; - zj= ¢jj - csB™' py; = ¢y - (@, @) *{ yj] = (- W Ay)yij - Ui (3.48)

e

) Aid
(b) Corresponding to p;;, one has pjj= (3.49)
0

1 Aid;

Hence Cij - Z;j = Cyj - CBB Pij = Cidij - ((D, (X) = (C,‘ -0 Ai)dij (3.50)
- 0

For each block, instead of solving Max [¢;- ® Aj]y; - ;] and Max [(c;- @ A;)d;] to
decide which Ajj or ;; becomes a candidate of the entering variable, we can just solve the

problem Max (c; - ® A;)x;, subject to Bix; = by. The reasons are given below:

— e A AWAIWY ARVULRW WL mj WLl UV G wALINMLG LY UL LW Ullt\tlllls YQLIUUVIW, {32OV u\.«v\.u\.uué [Av)

Theorem 3, the optimal solution is one of its extreme points, say, y;. Obviously, this
¥;; also maximize (c;- W A))y;; - ;. Hence )»ij, the corresponding variable, becomes a
candidate of the entering variable.

(2) If this problem has unbounded solution, according to Theorem 3, there is at least one
d;; which makes (¢; - @ Aj)d;; > 0. Notice that this d;; can be very large, so (¢;- ® Ajd;
— oo, Hence jj, the corresponding variable, becomes the entering variable.

(3) If this problem has no solution, then this block has no feasible region. Hence, the
original problem has no feasible region, meaning that there is no solution to the

original problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Once the entering variable is found, one has no problems in locating the leaving
variable. Hence, the standard revised Simplex procedure can be normally applied

afterward.

3.3 Finding the Optimal Direction

It should be noted that among multiple extreme directions of an unbounded region,
only one makes the value of the objective function increase (or decrease) the fastest. It is
similar to the case that in a bounded region, only one of the extreme points makes the
objective optimum. Such an extreme point is called the optimal point. Similarly, we call
such an extreme direction the optimal direction.

From the discussion in the last section, we know that if a subproblem has unbounded
solution, a variable corresponding to the optimal direction will become the entering
variable. Also, the value of the optimal direction has to be known for the succeeding
calculations. Two examples are given below to show how to find the optimal direction in

both the simplex method and the interior point method.

In the following example, the calculation in each simplex iteration is shown in the
simplex tableaus.

Example 3.1

Maximize z=X;+2Xs

Subjectto  -x;+Xx; <2
-X1+2%x2 £8

(x1,X220)

Solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/|

AT

(4, 6)

/2

22

8
Figure 10: Feasible region of Example 3.1
Iteration 1
X1 X2 X3 X4 b
X3 -1 b 1 0 2 —>
X4 -2 2 0 1 8
1 2 0 0 zZ
Iteration 2
Xa oo 0 | -2 1 4 —>
| o | -2 0 | z-4
Iteration 3
X1 X2 X3 Xa b
X 0 1 -1 1 6
X1 1 0 -2 1 4
0 0 4 -3 Z-16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

Since the most positive value in the last row is 4, x3 becomes the entering variable.
And since all of x3’s coefficients are negative, this problem has unbounded solution. The
iteration stops here, but let us keep going a little further to see what will happen after x;
becomes the entering variable. Now that x3 becomes the entering variable, its value will
increase from 0. From the last tableau, we can see that x; and x; will be increased to

X2=4-(-2)x3=4+2x3

X2=6-(-1)Xx3=6+x3
And x4 stays where it is:

X4=0

The preceding solution can be arranged as

(x3>0)

e
]
S O OB
+
>4
w
=

Now we can see that actually the solution is a ray.

When x3 — oo, the solution moves along this ray and the objective function

- — ot Ve e A Ny 0 WYL o N 1L 0 A, [

problem.

3.3.2 Finding the Optimal Direction in the Interior Point Method

In the interior point method, finding the optimal direction is much easier than in the
simplex method. From Section 2.2.1, we know that in each iteration of the interior point
method, the moving direction dy is calculated. Since it is the steepest decent direction, it
will become the optimal direction at the last iteration. However, the direction dy is in the
“Y” space. It needs to be projected back to the original “X” space. Let the optimal

direction in the “X” space be denoted as dy, since Y = X, 'X (see Section 2.2.1), we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

X =X Y. Hence d, = Xk d,.
The example problem 3.2 is the same as example 3.1. Now we solve it with the
interior point method. The solved optimal direction can be verified with the result of the

simplex method.

Example 3.2

Minimize z= -X;-2X;

Subject to -X1+Xy, <2
-X1+2x2 <8
(x1,x220)

Solution

-1 110
x=[x; X2 x3 x4, b=[2 81T e=[1 2 0 O]T,A=[ ]

-1 2 01

Iteration 1

The starting point can be any point inside the feasible region. By observing Figure 10,

0 4 00
Hence X¢ =

0 0 20

0 0 0 4

36 48 -16
From A Xo*A” wo= A on ¢, we have [ ]wo = [ ]

48 96 —48
0.6667
Hence wy =
0.8333
-1.167
-1
0.8333

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Since some components of ry are < 0, continue the iteration.

4.667
4

dyp=-Xoro= |} 333
~3.333

Since some components of dyg are < 0, continue the iteration.

Take a = 0.99, then the step length @ ¢ = min[ a /- (dyo);] = 0.99/3.333 = 0.2970

9.544
8.752

Hence x; = Xg + @ ¢ Xgdyo = 2.792

0.04

Iteration 2

175.5 2443 62.11
From A X12AT wi=A X12 ¢, we have [ :l W= [ }

2443 3975 215.3

[ 277.0 ]
Hence w; =

—2244

r PO |

2244 |

Since some components of r; are < 0, continue the iteration.

4.525
2.467

dp=-Xir= |7733
~0.08975

Since some components of dy; are < 0, continue the iteration.

The step length a ; = 0.99/0.08975 = 11.03

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



485.9
247.0

Hencex; =x; + 4 1X1dy1 = 241.0

0

Iteration 3

From A X22AT wy=A X22 ¢, we have

3552 3581) [ 1141
10 W = 10
3.581 4.801 ~0.07838

1.363
Hence w; =
-1.033
-0.6701
T -1.297
Nowry=¢c-A wy = —1.363
1.033

Since some components of r; are < 0, continue the iteration.

325.6
3204

Since dy; is > 0, this problem is unbounded.

485.9 0 0 01M325.6
0 2470 0 0f|3204
0 0 2410 0f|3283
0 0 o o]Lo

de=Xzdy; = =7.911X10°

o =

26

Hence, the extreme direction of this problemis[2 1 1 0]". It is the same as the result

of the simplex method, shown in Example 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

CHAPTER 1V

NUMERICAL STUDIES OF THE DECOMPOSITION PRINCIPLE

As we can see from the last chapter, the theory of the decomposition principle is not
that straightforward to understand. This chapter provides numerical examples to illustrate
the decomposition principle algorithm step by step. These examples include both cases of
LP problems: problems with bounded feasible region and with unbounded feasible region.
The step-by-step calculation not only serves the purpose of illustrating the decomposition
principle, but also is used to check the result of the parallel algorithm. Debugging the
code of a parallel algorithm could be a nightmare for a programmer because the compiler
gives very little error message if something is wrong in the code 1 To make it worse,
very often the error message is irrelevant to the actual error. It is essential to compare the
computation result of the code with the result of hand calculation step by step to make
sure the computers (or more precisely, the processors) are doing what they are supposed

to do. In this study, a code of the parallel algorithm of the decomposition principle is
LP problems to test its performance, which is reported at the end of this chapter.
4.1 Sequential Algorithm of the Decomposition principle

This section presents the small size numerical examples under the sequential
computation environment. In order to make the hand calculation easier, the feasible

region of each subproblem is drawn in figure so that the optimal solution to each

subproblem can be obtained just by observing the figure instead of by calculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

4.1.1 Bounded Feasible Region Case

Here the “bounded feasible region case” means each subproblem of the original
problem has bounded feasible region. Two examples in bounded feasible region case are
presented in this section. The second one deserves more attention. We know that if a LP
problem has no solution, it has no feasible region. It should be noted here that even
though each subproblem of a LP problem has feasible region, the original problem may

not have solution at all, as shown by the second example.
4.1.1.1 Example Problem With Optimal Solution

Problem

Maximize z = X;+ 3X3+ 5X3+ 2x4

Subject to 5X; + 33X+ 4x3 210
Sxi+ X <9
X1+ 4%, <8
X3- 5X4 <4
Solution

The original problem can be transformed to:
k1 k2
Maximize z = Z (c1y i)+ Z (C2y2)A2
j= J=t
kl k2
st D A+ ). (Agyyhg= 10
A =

K
lej =1
A

k2 °
D Ay=1
=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where A;20(G=1,2, .., k).
It has the Simplex tableau as follows (using the big-M method):

M Az Az Az Axm Ao Xs | x¢ | Xu | x2 | b
Z ey €Y1z €iY13--ee C€Ya €¥22 €Yz ... 0 M|-M|-M
X6 | A1y Aiyiz Aryiz..... Aoyar Azyar Agyas ... -1 1 0 0 |10
X | 1 1 1. 0 0 0 ... 0 0 1 011
Xz | O 0 0 ... | | 1. 0 0 0 | 1

Subproblem 1
X1 = (X1, X2) ', e1= (1, 3), A; = (5, 3)

Its constraints are:
5X1+ X, <9

X1+4x, £ 8

These two constraints define the following feasible region:

\

X2

(1.4737,1.6316)

Fig. 11. Feasible region of subproblem 1 of 4.1.1.1

Subproblem 2

X = (X3, Xa)', €2=(5,2)", Az = (4,0)

The constraints of this subproblem are:
X3-5x4 < 4

X3+ x4 <10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29



30

These two constraints define the following feasible region:

9.1

% 1()\> 3
Tos

Fig. 12. Feasible region of subproblem 2 of 4.1.1.1

As we mentioned before, the optimal solution to each subproblem will be observed

directly from the figure of its feasible region.

Iteration 0
Xp = (X6, X11, X12)" = (10, 1, 1)T

ce=(-M - M -\ R=R!l-T

I nerauon 1 I

cBB-1 = cB = (" Ms - Ma - M)
Subproblem 1

Ay S5x143x2
Min (zi—c)=¢sB?!| 1 |-c1y1 =(-M,-M, - M) 1 - (X1 + 3%2)
0 0

=(-5M- Dx;-3M + Dx; - M
Subjectto X1+ X <9

X1+4x, <8
By observing the figure of its feasible region, we can see that the solution is y;; = (x1, xz)T

= (1.4737, 1.6316) T, Min (z; - ¢;) = - 13.263M — 6.3685

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

Subproblem 2

A2y2 4x3
Min (zz—-c)=cgB'| 0 |-¢ey2 =(-M,-M,-M) | 0 | - (5x3+ 2x4)
1 1

=(-5-4M)x3-2x4-M
Subjectto  x3-5x4 <4

X3+ x4 <10
By observing the figure of its feasible region, we can see that the solution is y;; = (X3, Xa)T
=9,1)7, Min (2 - ;)= -37TM - 47

-1
Also, 25—05=c13B'1 0|-0=M
0

The global min. is min. (z; — ¢) =-37TM - 47,

Hence A, becomes the entering variable.

4,0) [9]
Azyxu T 36
Pz] = 0 = 0 =0

36
Thus B-1P21 = I*P21 =10
1

Given xp = (X6, X11, x12)T= (10, 1, l)T, sog=1.

Hence x4 becomes the leaving variable.

L 00 L 00
SoB'={ 0 1 0|*I=| 0 1 0
-+ 01 - 01

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The new basic solution

p— ;Iu-

xp = (Aa1, Xi1, X12) =B (10, 1, )T =

bt e
[ (")

cg = (€2y21, -M, -M) = 47, -M, -M)

Iteration 2

36

0 0
B '=(@7,-M,-M) | 0 1 0= (&, M, -M)
01

Subproblem 1

Aiyn 5x1+3x2
Min (zi—c)=¢esB"| 1 |-eyi =(4£,-M,-M)| 1 - (X1 +3%2)
0 0

= ———47;6M (5X1+ 3X2) - (X] + 3)(2) -M

Subjectto X3+ x2 <9

X +4x, £8

Tha calutinn tewr.. = (v. v N[ — 0 AT A i te AN A

dubprovblem 2

Azy: 4x3
Min (Zz - Cz) = (!]3B-1 0 -Cy2 = ( 4732M R -M, -M) 0 - (5X3 + 2)(4)
1 1

= M x5 - (5X3+ 2X4) - M

Subjectto  x3-5x4 <4

X3+ x4 <10
The solution is y22 = (X3, X4)" = (0, 10)T, Min (z; - ¢;) = - M - 20
-1 -1
Also,zs—cs=cgB"| 0 |- 0= (4, M, -M) | 0 |-0=- 44
0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The global min. is min. (z; — ¢3) =- M - 20.

Hence Ay; becomes the entering variable.

_ ol
4,0)
A2yz 10 0
'P22= 0 = 0 =0
1 1 1
4 0 o][o] [o
ThusB'P,=| 0 1 0f|l0]|=]0
—;‘6— 01 _1_ 1
e
18
Since xg = (A21, X11, X12) = | 1 ,q=3.
13
18

Hence x;; becomes the leaving variable.

L 00 L+ 00
SoB'=I*| 0 1 0|=| 0 1 0|=B"oflastiteration
-+ 0 1 -L 01

36

The new basic solution

—
()

o
o0

5

cg=(47,-M, e2y22) = 47, -M, (5, 2) (10] ) =417, -M, 20)

o

Iteration 3

0
csB'=47,-M,200| 0 1
0

Subproblem 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ay
Min (z; — ¢;) = ¢gB™!

34
5x1+3x2
1 |-eay =(%,-M, 20) 1 -(X1+3X2)=-1;1X1—%X2—M
0 0
Subjectto X1+ x2<9

X1+4x; <8

The solution is y13 = (X1, X2)" = (0, 2)", Min (z; —¢;)=-M-15

Subproblem 2

Azy2 4x3
Min(z;-c2)=cB'| 0 [-cay2 =(2,-M,20) | O | - (5X3+ 2x4)
1 1
=3x3+20- (5X3+ 2X4) =-2Xx3-2Xx4 +20
Subjectto  x3-5x4 <4

X3+ X4 £10

The solution is y23 = (X3, x4)* = (0, 10) T, Min (z; — ¢2) =0

-1 -1

Also, zs—cs=¢cgB"| 0 |-0=(3,-M,20) | 0 |=-
0 0

3
4

AAVLIVY /Y] UNVULUIGO LIV VHIVLLILE, vdlldUuiv,

- o]
(5,3)

Ay 2 6

P13= 1 = 1 =11

0 0 0
= 0 0/f6 +
ThusB'P3=| 0 1 Of|1|=|1
= 0 1|0 -4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

— Gl

Since X = (}»21, X11, }»22)T= Q= 2,

—
(=

—
o0

Hence x;; becomes the leaving variable.

1 -+ 0 % 00 %= -10
SoB'=/0 1 0{{0 1 O|=/0 1 0
0 + 1 -3 0 1 -5 = 1
The new basic solution
1
9
xg = (A21, A3, 7~22)T= B' (10, 1, 1)T= 1
8
9

0
cg = (47, c1y13, 20) = (47, (1, 3)(2] , 20)=(47, 6,20)

Iteration 4

i
36 6

0
B'=(47,6,200 0 1 0= (0.75,15,20)
1

1 1

Ay S5x1+3x2
Min (z; —c)=csB!| 1 [-eiy1 =(0.75, 1.5, 20) 1 - (X1 + 3X2)
0 0

=2.75x;-0.75x, + 1.5
Subjectto x4+ X2 <9
X1+4x; <8

The solution is y14 = (X1, X2)" = (0, 2) T, Min (z; —¢1)=0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Subproblem 2

Azy: 4x3
Min (zz-c;)=caB"'| 0 |-coy2 =(0.75,1.5,20) | O | - (5X3+ 2Xq)
1 1

=3x3+20- (5X3+ 2X4) =- 2X3~ 2x4 + 20

Subjectto  x3-5x4 <4

X3+ X4 <10
The solution is y4 = (X3, x4)T =(0, 10) T, Min (z;-¢c3)=0
-1 -1
Also, zs—cs=c¢cgB'| 0 |-0=(0.75,1.5,20) | 0 |=-0.75
0 0

The global min. is zs — ¢cs= - 0.75

Hence x5 becomes the entering variable.

-1
Psy=| 0
0

[+ -1 oll-11 [-%1

Since xg = (A1, A3, Ax) " =

oloo = ol
-
0
i
w

Hence A, becomes the leaving variable.

10 ][+ -1 o0 0 0 1
SoB'=|01 0|0 1 o/=|{0 1 0
0 0 36]|-+ 1 1 -1 6 36

The new basic solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

1
xp = (Aat, M3, x5)'=B7 (10,1, )= | 1
32
cg=(47,6,0)
Iteration 5
0 0 1
csB'=(47,6,00| 0 1 0= (0,6,47)
-1 6 36
Subproblem 1
Awy: 5x1+ 3x2
Min (z; —c))=¢cgB!| 1 |-eiy1 =(0, 6,47) 1 -(X1+3X)=-X,-3x2,+6
0 0

Subjectto  x1+ X2 <9
X1+4x, <8

The solution is y;5 = (X, X2)" = (0,2)T, Min (z, - c1)=-6.3685 + 6 =-0.3685

Subnroblem 2

AAAAAA \=~z ~L ) T wpas A% LI L TV Yy Ty \%4 TANMAY | NG ) T AT LN T T
1 n

Subjectto  x3-5x4 <4

X3+X4 <10
The solution is yas = (x3, X4)" = (9, 1) T, Min (z2 - ¢;) =0
The global min. is min (z; — ¢;) = - 0.3685

Hence A5 becomes the entering variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"(5, 3 [1.4737]'
Aryis 1.6316 12.263
Ps=| 1 |= 1 = 1
0 0 0
0 0 1 12.263 0
ThusB'P;s={ 0 1 0 1 =] 1
-1 6 36 0 -6.263
1
Since xg= (A1, Mis, x5) ' = | 1 |, q=2.
32

Hence A3 becomes the leaving variable.

1 0 olfo o0 1 0 0 1
SoB!'=|0 1 ol|0 1 0(|=|0 1 0
0 -6263 1|[(-1 6 36 -1 12.263 36

The new basic solution

1
xg = (A21, Ais, X5) = B! (10,1, D'= { 1 -l

, 0)=(47,6.368, 0)

Cg= (4/’ €C1Y15; U) = (47, (l’ 3)L1 6316}

Iteration 6

0 0 1
cBB'1 =(47,6.368,0) | 0 1 0 | = (0,6.368, 47)
-1 12.263 36
Subproblem 1
Ay 5x1+3x2
Min (Z] - C]) = CBB_I 1 -C1y: = (0, 6368, 47) 1 - (X] + 3X2)
0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38



39

=-X1—- 3X2 +6.368
Subjectto  x;+ x2 <9
Xi+4x, <8

The solution is y16= (X}, X2)" = (1.4737, 1.6316) T, Min (z; — ¢;)=0

Subproblem 2

Azy2 4x3
Min (z;-c2)=cgB?'| 0 |-coy2 =(0,6.368,47) | 0 | - (5xX3+ 2X4) = - 5X3- 2x4 + 47
1 1

Subjectto  x3-5x4 <4

X3+ X4 <10
The solution is y26 = (X3, X4)' = (9, 1), Min (z; ~ ¢;) =0
-1 -1
Also, zs —cs=cgB"'| 0 |-0=(0, 6.368,47) | 0 |=0
0 0

Since all the z; — ¢; = 0, iteration S reaches the optimal solution, which is
X1 = (X1, X2) = Aisyis = 1 * (1.4737, 1.6316) T = (1.4737, 1.6316) T

Xo = (Xa. XAV = dvar =1 %0 NT=ra NT

LYLAA £ = AT JAQ T JAZT LA4= L. 4/D/ + D 1.0310+D "Y+ 2T ] =23.508

4.1.1.2 Example Problem With No Solution

Problem

Maximize z =- X - 3X3- 5X3- 2x4

Subject to 5X1+ 3%+ 4%3 <10
5%1+ X3 <9
X1+ 4%, <8
X3-5x424

X3+ x42 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(X1, X2, X3, X42 0)

Solution

The original problem can be transformed to:

kl k2
Maximize z = Z C1yyhy + Z (C2y2)Aj

JA Jj=1

s.t.

| k2
Z(Alylj))\-lj+ Z (A2y2j)}"2j= 10
A =l

[}

2M; =1

H

k2
D Ay=1

=

where 420 (j=1, 2, ..., k).

It has the Simplex tableau as follows (using the big-M method):

}\«11 }\.12 }\,13 ...... }\,21 A.zz }\.23 ...... Xs Xe X11 X1i2
Z [ €Y €Y1z CiYi3 e C2¥21 C2¥22 C¥23..... o1 -MI-MI-M
Xt 0 0 0 ... 1 1 1 ... 0 0 0 1

Subproblem 1
X1 = (X1, X2)%, 1= (1, 3), Ay = (5, 3). The constraints are:

5X1+ X359

X1+4x; £8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40



41

(1.4737,1.6316)

X1
*
1.8\ g

Fig. 13. Feasible region of subproblem 1 of 4.1.1.2

Subproblem 2
X3 = (X3, x4)T, c=(5, 2)T, A; = (4, 0). The constraints are:
X3 - 5X4 >4

X3+ X422 10

{)(4
10

.1

— >
] o.; 10\

Fig. 14. Feasible region of subproblem 2 of 4.1.1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Iteration 0
Xp= (Xﬁ, X7, X8)T= (107 1, I)T

cs=(0,-M,-M),B=B'=1

Iteration 1
csBl=¢5=(0,-M, - M)
Subproblem 1

Ay 5x1+3x2
Min (z)—c))=eB | 1 |-eiy1 =(0,-M, - M) 1 - (- x1-3%)
0 0
=X1 + 3X2 -M

Subjectto X1+ x, <9
X1+4x, <8

The solution is y;; = (x1, X2)" = (0, 0) ", Min (z; —¢;)=-M

Subproblem 2

] ]
Min (zr—c)=caBY 0 l-ewn =0 - M MY 0 | _(8xa_ 2

— JA3T LA4— VL
Subjectto  x3-5x4 24

X3+ X4 210
The solution is y;; = (X3, xe) =09, 17T, Min (zz2-cy)=-M+47
The global min. is min. (z; —¢;) =- M.

Hence A1 becomes the entering variable.

of
((5,3){ }
Anyn 0 0
Pu=| 1 |= 1 =1
0 0 0
L .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0
Thus B'P) = I*P;; = | 1
0
Given xg = (X, X7, Xg)' = (10, 1, 1)T, so g = 2.

Hence x; becomes the leaving variable.

The new basic solution

10
Xp = (X6, A11, Xs)T= B! (10, 1, 1)T= 1
1
¢s = (0, ¢1y11, -M) = (0, 0, -M)
Iteration 2
csB7=(0,0,-M) * B'= (0, 0, -M)
Subproblem 1
I—AIVI—] r<Y1 + QY'\—]

Subjectto X3+ x2 <9
X1 +4x; <8

The solution is y;; = (X, xz)T = (0,0) T, Min (z; —¢1)=0.

Subproblem 2

Azy2 4x3
Min(z;—c;)=cgB!| 0 |- ey2 =(0,0,-M) | O | -(-5X3-2X4) =5x3+2x4—-M
1 1

Subjectto  x3-5x4 24

X3+ X4 2 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The solution is Y2, = (X3, X¢)' = (9, 1)T, Min (z3~c;) =47 -M
The global min. is min. (z2 - ¢c2) =47 -M

Hence A, becomes the entering variable.

r 9-
4,0
Azyz 1 36
P22= 0 = 0 =0
1 1 1
L. .
L+ 0 o|[o] [o
Thus B'P»=| 0 1 of|lo]l=]0
-+ 0 1[I 1
. 10
Since xp= (X6, M1, Xg) = | 1 |, q=1.
1

Hence x4 becomes the leaving variable,

L 00 L 00
SoB'={ 0 1 0|*I={ 0 1 0O
-1 0 1 -+ 01

36 36

13

18

xg = (A2z, AII,XS)T= B (10, 1, 1)T= [1J

cg=(€2y22,0,-M)=(-47,0,-M)

Iteration 3

36?

0 0
eB'=(-47,0,-M)| 0 1 0|=(-Z+% 0,-M)
01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

Subproblem 1

Ay S5x1+ 3x2
Min (zi —c)=csB'| 1 |-eyr =(-2+2%,0,-M)| 1 - (- X1-3%2)
0 0

= [2M=47) +1]1 x; + [5(M -47) +3] x2

Subjectto  x1+ x2 <9
X1+ 4%, < 8

The solution is yi3= (X1, X2)" = (0,0) T, Min (z; — ¢1) = 0.

Subproblem 2

Azy2 4x3
Min (zz-c2)=¢cgB"| 0 |-coy2 =(- L+ 2,0,-M) | 0 | - (- 5%3- 2x4)
1 1

= M2x3 +2%4-M

Subjectto  x3-5x4 24
X3+ x4 210

The solution is y23= (x3, X4)" = (9, 1) T, Min (zz = ¢;) =0

LYl LY]
Hence the iteration stops.
s
18
From xg= (A22, AM1.Xs)” = 1|, xg= 12 Since xg> 0 and is an artificial variable, there is
13
18

NO feasible solution to this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

4.1.2 Unbounded Feasible Region Case: Example Problem With Optimal Solution

Here the “unbounded feasible region case” means that at least one of the
subproblems of the original problem has unbounded feasible region. In the following
example, subproblem 1 has unbounded feasible region. In the first iteration, subproblem 1
has unbounded solution. Hence its extreme direction is calculated and in the original
problem the variable corresponding to subproblem 1 becomes the entering variable. In the
rest of the iterations, subproblem 1 has multiple solutions, which is treated as the optimal
solution case by picking anyone of these multiple solutions as the optimal solution.

Same as the discussion in Section 4.1.1, even if every subproblem of an original LP
problem has unbounded feasible region, the original problem may not have solution. The
computation procedure for this case is the same as the Section 4.1.1.2, hence the
numerical example is not provided.

Problem

Maximize z = X+ 2X3+ X3

Subject to X1+ X2+x3<12
- X1+ Xz <2

- X1+ 2Xo <8

\l\l, l\‘, I\J — U/
Solution

The original problem can be transformed to:

k1 k2 i1 12
Maximize z = Z (clylj)klj + Z (Czyzj))\.zj +z (cldlj)ulj + Z (Czdzj)uzj

Jj4 J=1 j= =

Kl k2 1 12
s.t. Z(Al)’xj))»lj + Z (A2y2)Ay +Z (Ardpy; + Z (Azdo))poj= 12
H A =

Jj=1

K
D Ay =1
A

k2
D Ay =1

=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where }»ijZ 0 (] = 1, 2, ceey ki), P >0 (] = 1, 2, ooy li)

It has the Simplex tableau as follows (using the big-M method):

47

A Az A Azt Az Az | Ml Wiz Bz | Mt Mz Mo . X4 | X5 | X¢ b
Z | ayn ayn €2y21 €2¥22 ady cdpz cdyy cdyy Cdpz.. | O | -M | -M
C1y13 ... €2¥23 ... cadi ..
X | Ay Ayn Aoyu Agyn Ady Adyz Ay Azdp Agdys... | 1 0 0 12
Ayis .. Ay .. Adis...
Xs 1 1 1. 0 0 0. 0 0 0 .. 0 0 0 .. 0 1 0 1
X6 0 0 0 .. 1 1 1 .. 0 0 0 .. 0 0 0. 0 0 1 1

Subproblem 1
xi=(x1, x2), e1=(1,2)", A = (1, 1)

X2A

(4.6)

X1

Fig. 15. Feasible region of subproblem 1 of 4.1.2

Subproblem 2
X2=(X3), 2= (1), Ay = (1)

@ @ >
0 3 X3

Fig. 16. Feasible region of subproblem 2 of 4.1.1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Having these two figures, we will be able to find the local optimal value corresponding
to each subproblem very easily, just by observing the figures instead of by using the

simplex iterations.

Iteration 0

12

- T_
Xp = (X4, Xs, X6) - 1
1

cs=(0,-M,-M),B=B'=1

Iteration 1
csB'=c5=(0,-M, - M)
Subproblem 1

Ay X1+ X2
Min (z; —c)=¢gB?'| 1 |-e1y; =(0,-M,-M)| 1 | -(x1+2x)
0 0
=-X1- 2X2 -M

Subiectto -xi+ x2 <2

L1VULLL ulal uld PLUUICLHL IS UIE SALIC 48 UIC PropIem 11 seclion 3.3.4. Hence, this problem

has unbounded solution and the optimal direction

2
di = (x5, %) = (lj

Hence 1, directly becomes the entering variable.

r(1 1) 2]
Adn 0!

P11= 0 0
0 0

I
©c o w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thus B'P;; =1 P, =

S O W

12

Given xg = (X4, X5, x6)T= 1|,soq=1.

Hence x4 becomes the leaving variable.

100 100
SoB'=|0 1 0l*I=|0 1 O
0 01 0 0 1

The new basic solution

12 4
Xp = (W11, X5, Xg) =B | 1 [=]1
1 1

2

cg = (cidy1, -M, -M) = ((1, 2)(1

J 3 _M1 'M) = (4$ _M: _M)
| Iteration 2 l

’[O 0 IJ o

Subproblem 1

Ay X1+ X2
Min (zi—c)=cgB?| 1 |-eiyr =(4,-M,-M)| 1 | -(x1+2x))
0 0

= -};Xl- %Xz—-M
Subjectto  -x;+ X, £2

-X1+2x, L8
T

This problem has multiple solutions, one of them is yi» = (x;, xz)T = (4,6) .

Min (Z] —Cl)= -M - %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49



Subproblem 2

Azy: X3
Min (z;-c)=csB!| 0 |-coy2 =(4,-M,-M) |0 |-(x3)=3x3-M
1 1

Subjectto  x3<3
The solution is y22 = (x3) = (0) T, Min (z, —¢3) =-M

1
Also, 2, —cy=cgB 0 -0=4
0

The global min. is min. (z; —¢;)=-M - £
Hence A, becomes the entering variable.

ol
Ay 6 10

P12= 1 1 =|1
0 0 0

N n nllMnl w0l

4
Since xg = (W11, Xs, x6)T= 1{,q=2.
1

Hence x5 becomes the leaving variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50



10

1 -4 o][Lf 00 1 -1 g
SoB'=|0 1 o0]/]|0 1 0|=]|0 1 O
0 0 1/]/0 0 1 0 0 1

The new basic solution

Xg= (W1, Mz, X6) =B | 1 | =
1

{
—_ = W

4
=4, iy, -M)=4, (1, 2)[6] ,-M)=(4,16,-M)

Iteration 3
L% 0
sB'=(4,16,-M)|0 1 O|=(%,%,-M)
0 0 1
Subproblem 1
Ay X1+ X2
Min(zi—ci)=cgB"'| 1 [-eiy1 =(£,&,-M)| 1 |-(xi+2xp)
0 0

Subjectto  -x;+ x;<2
-X1+2x2 <8

This problem has multiple solutions, one of them is y;3= (x1, xz)T = (4,6) T
Min (z; —-¢c1)=0

Subproblem 2

Azy: X3
Min(zz—c2)=¢gB"| 0 |-coy2 =(£,8,-M)| 0| -(x3)=4x35-M
1 1

Subjectto  x3 <3

The solution is y23= (x3) = (0), Min (z; - ¢;)=-M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51



1
AlSO, Z4-—C4=C]3B-l 0|-0=4

0

3

The global min. is min. (z; - ¢;)=-M

Hence A,; becomes the entering variable.

Azyas 0
Py = 0 =0
1 1
1 -2 o]fo] [o
ThusB'P,={0 1 ol|0o{=]|0
0o 0 1f[1] |1
(2
3
Since Xg = (W11, A2, Xe) = [ 1], q=73
1

Hence xg becomes the leaving variable.

00

! -2 0] [ -20
SoB'=|0 1 of||l0 1 o|l=|0 1 O
0 0 1[0 0 1 0 0 1

= 3

xg = (W11, A2, A23) = B! [ IJ =1

1 1

cg=(4, 16, c2y23) = (4, 16, 0)

Iteration 4

csB'=(4, 16, 0)

o O v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



53

Subproblem 1

Ay X1+ X2
Min(z;—c)=esB!| 1 [-eyi =(£,3,0)| 1 |-(i+2xy)
0 0

=-1(x1+2x))+ &
Subjectto -x;+ X, <2
~X;+ 2%, <8
This problem has multiple solutions, one of them is y;3= (X1, xz)T = (4,6) T
Min (z;-¢cy)=0
Subproblem 2

Azy2 X3
Min (22_02)=CBB-1 0 - €2¥2 =(%’%v 0) 0f- (X3)= %‘X3
1 1

Subjectto  x3 <3

The solution is y23= (X3) = (0), Min (z; - ¢;) =0

1
Also, 74— cq=cgB| 0 -0=i3‘-
0
2) (4) (%
X1 = (X1, X2)" = yudyy + Araynz = 1 (J + 1(6j = (;0_]
3

X2= (X3)= A3y =1*0=0

The optimal objective solution

Max z = ¢;x; + %2 = (1, 2)( J +1*%0=3%=18.667

vl vl

4.2 Parallel Algorithm of the Decomposition Principle
From the preceding numeric examples done in the sequential computation procedure,

we can write the flow chart of its parallel algorithm as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Each proc.:
Read input data.

Master proc.:
Send the value of cgB™ to each processor

l

Each proc.:
1. receive the cgB™ value from the
master proc.

. compute the z; - c; value.
3. use the simplex method or IPM to
find the value of Min (z; - ¢;).
4. Send this value to the master proc.

Optimal

anln. is

Master Proc:
Are the received

v

Master proc.:

1. choose the min. value among the
values received. Choose the
corresponding entering var.

2. compute B'lPi to choose the leaving
var.

3. compute the new cgB™.

. ;

Fig. 17. Flow chart of the parallel algorithm of the decomposition principle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

A code of parallel algorithm of the decomposition principle is implemented in
MPI/Fortran based on the above flow chart. Different size of large-scale LP problems and
different number of processors are used to test for its performance ). Description of
problems’ sizes, number of processors (= np) used, computational time (in seconds,
including I/O), parallel speed-up and efficiency factors (on Sun/Sparc Rhino workstation
in the CEE department) is described and tabulated in Tables 1 — 3. The definitions for
speed-up and efficiency factor are:

computation time by 1 processor
computation time by n processors

Speed-up =

speed - up

Efficiency =
number of processors (used to test the speed - up)

In all these tables, 1 common constraint is used, and the following notations are
defined:
nblksize = the size of each block
nblocks = number of blocks
nconviter = number of converged iterations
The total number of constraints (= ntotcon) and the total number of design variables (=

ndv) can be given as:

np | time | speedup | Efficiency
1| 122

2| 62 1.97 99%

3 43 2.84 95%

4 | 35 3.49 87%

Table 1: Numerical results of the parallel decomposition principle, Case 1

(nblksize = 20, nblocks = 80, nconviter = 132)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

np | time | speedup | Efficiency
1 | 147

2| 76 1.93 97%

3 53 2.77 92%

4 | 43 3.42 85%

Table 2: Numerical results of the parallel decomposition principle, Case 2

(nblksize = 40, nblocks = 40, nconviter = 42)

np | time | speedup | efficiency
1 | 266

2 | 135 1.97 99%

3 95 2.80 93%

4 [ 75 3.55 89%

Table 3: Numerical results of the parallel decomposition principle, Case 3

The above result shows that the parallel MP/FORTRAN implementation has
resulted in good parallel speedup, and efficiency factors. The MPI/FORTRAN used in the
developed code will facilitate the porting of this parallel code to different computer
platforms. The developed parallel MPI/FORTRAN LP decomposition code also offers
computer memory advantages, since large number of independent constraints can be
stored by different number of processors. Thus, large-scale (block diagonal constraints)
LP problems that cannot be solved by a single processor (due to computer memory

restrictions) can be “quickly” solved by the developed parallel MPI code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

CHAPTER V
A NEW DECOMPOSITION ALGORITHM:

DIVISION BY THE INTERIOR POINT

The numerical study of the last chapter shows that the decomposition principle can
be used for effective parallel computation. However, one major problem is that it only
achieves the satisfactory result for the LP problems with the block angular structure. This
chapter discusses a new parallel decomposition algorithm that saves time and can be used
for general LP problems "% Basically, this algorithm divides the feasible region of a LP
problem into multiple subregions (subproblems) based on the found interior point. Then

multiple processors are used to solve these subproblems.

5.1 Introduction

Far a linear nraacrammina nrahlam tha ~nllantinn Af aviearmea mainta ~AF tha fanailla

the problem is nothing but an extreme point with the optimal objective value. The
simplex method is a procedure that moves from one extreme point to another extreme
point with a better objective. Hence, roughly speaking, the number of iterations of the
simplex method is proportional to the number of extreme points of the problem.

The idea of the “division by the interior point” algorithm is to decrease the number
of extreme points by dividing the feasible region into multiple subregions. If we can
divide the feasible region into multiple subregions, the number of the extreme points of
each subregion will be greatly decreased, compared to the original feasible region. For
example, if the feasible region is a regular octagon, it has 8 extreme points. If we draw a

horizontal line and a vertical line passing through the centroid of area, the feasible region

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

is divided into 4 same polygons, each with 5 extreme points. Let subproblem be a LP
problem with such a subregion as its feasible region and the original objective function as
its objective function. It is obvious that the optimal solution of the original LP problem is
the maximum/minimum value of the optimal solutions of all the subproblems. When each
subproblem is solved by an individual processor for parallel computation, the original
problem can be solved much faster.

To divide the feasible region into subregions, we need at least one interior point
inside the feasible region as a base point for the dividing hyperplanes. There are existing
algorithms to find the initial interior point, such as the algorithm discussed in Section
2.2.2 of Chapter 2. We will see later that the algorithm discussed in Chapter 2 is perfect
for our purpose. For real world optimization problems, an interior point near the center of
the feasible region can be reasonably derived directly from the context of the problem, as
demonstrated in the numerical example of Section 5.3.

Last, but not least, it should be noted that in order to decrease the iteration number,
extra constraints are added into the original problem, making the problem become even

“larger”. This is the contrary of the common concept that the more constraints, the more

R . S e m m ot = mms sese e v Al ersera v aieva saseaw easse wiaw T SeAew ok

n (number of variables) and m (number of constraints). Indeed, n and m decide the size of
the problem. However, is size everything? Imagine two problems with the same value of
n and the same value m. If one problem has much less extreme points than the other, it is
conceivable that its number of converged iterations, and hence the computational time,
will be much less. Now let’s take a look at a numerical example:
Problem:

Max. x1 + 2X,
subject to:

3.7321 x; +x2<1635.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

X1 + X2 £650.27

0.26795 x1 + x2<438.13
-0.26795 x; + x2 £334.60
- X1 +X2<263.90
-3.7321 x; +x2<193.19
0.26795 x; - x2 £51.764
X1 - X2 £263.90

3.7321 x; - X2 <£1248.8
3.7321 x; + x2 2 193.19
X1 + X2 > 122.47

0.26795 x; + x2 2 51.764

(xla X2 2 O)

If we draw a figure of the above problem, it will show that the feasible region of this
example is a regular polygon with 12 sides, with each constraint as one of the sides.

Using the Simplex method, it takes 7 iterations to find the optimal solution (x; = 289.78

Cr s er s ersese ssarwasns praasss sy g swee i a P TTW WAL WAL TY M LAMAW A| T s usees 1A NS

divide the feasible region into 2 subregions. Correspondingly, the original problem is
decomposed into 2 subproblems. These two subproblems are exactly the same as the
original problem, except that each with a new constraint added. Let the subproblem with
the added constraint x; < 95.341 be subproblem 1 and the subproblem with the added
constraint x; = 95.341 be subproblem 2. It takes 5 iterations for the subproblem 1 to find
the optimal solution (x; = 95.341 and x; = 359.24) with the optimal objective value
813.82. It also takes 5 iterations for the subproblem 2 to find the optimal solution (x;=
289.78, x, = 360.49) with the optimal objective value 1010.76. Since 1010.76 > 813.82,

1010.76 is the solution of the original problem. And the optimal solution to the original

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

problem is x;= 289.78, x5 = 360.49.

Although the iteration number is only decreased from 7 to 5 for this small LP
example, it can be greatly decreased for large scale LP problem. For example, if we
extend the above problem to a regular polygon with 8000 sides, it takes 3002 iterations
for the Simplex method to solve it. If we solve the two subproblems divided by the
interior point x; = x; = 7002.82, it takes 1597 iterations to solve subproblem 1 and 1408
iterations to solve subproblem 2.

The above division method of the feasible region in 2 dimensional space can be
extended into multi-dimensional space, using the following strategy: let the known
(solved) starting point be X; = X{', X2 = X3, ..., Xa = Xp". The original feasible region can be
divided into 2™ regions (subproblems) by adding the following constraints into the

original problem, respectively:

X1 = X' (2 regions)

+ X255 X22X5' X2<X,' X22X5' (4 regions)

- - e— e gy am g sry—ir)y P S (2 3—iny \W oavgavey

5.2 Parallelizing the Division by the Interior Point Algorithm

The parallelization of the division by the interior point algorithm is straightforward,
as shown by the flow chart (Figure 18).

As we know, communication between the master processor and the other processors
is nothing but an overhead for the effectiveness of a parallel algorithm. In the flow chart,
the words “send” and “receive” are underlined to show the communication between the

master processor and the other processors. We can see that very little information needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

to be exchanged: only two vectors of size n and one scalar.

Master proc.:
Compute the initial interior point Xo. Then
broadcast (send) this value to each processor

Each proc.:

1. Receive the value of xg from the master proc.

2. Add additional constraints based on Xp to the
original problem to generate the subproblem.

3. Solve the subproblem using the simplex
method.

4. Send the optimum value of the objective
function, z (a scalar) and corresponding
variables’ values, x (a vector) to the master.

ﬂ/laster proc.: \

the original problem. The c_orresponding X is
the optimal solution to the original problem.

Fig.18: Flow chart of the parallel algorithm of Division by the Interior Point

To make a parallel algorithm effective, another important point is to make the
computation work divided as equally as possible for each processor. However, before we
actually solve a LP problem, we have no idea what its feasible region looks like, not to

mention to divide the feasible region in the way that each subregion has the same amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

of extreme points. If we can find an interior point as close to the center of the feasible
region as possible, that would be our best bet to divide the feasible region as equally as
possible. As we discussed in Section 2.2.2, the algorithm introduced there is such an
algorithm. Another advantage of that algorithm is that very little computation needs to be
done to “find” the interior point. From the preceding flow chart we can see that since the
work to find the interior point cannot be parallelized, it is important to keep its
computation as little as possible to make the whole parallel algorithm more effective.
Actually, the initial interior point in the Section 2.2.2 is not calculated, but “given”
asxp=( 1 ... DT This brings another benefit: there is no need for the master
processor to “send” its value of the interior point to each processor because they have this

information from the very beginning. Hence the communication time is saved.

5.3 Numerical studies
A code of parallel algorithm of the “division by the interior point” is implemented in
MPI/Fortran and the optimization problem of school desegregation is used as the

large-scale test problem. The objective of the school desegregation problem is to

range must be satisfied, and school’s capacities in different school districts need to be
satisfied also. For this optimization problem, the number of variables (NVAR) = NI x NJ
X NK, and the number of constraints (NCON) = NI X NJ + NK + 2 x NK X NI, where NI
= number of ethnic groups, NJ = number of school districts, and NK = number of
schools.

Based on the context of this problem, we can see that there are some obvious interior
points. For example, the number of students of ethnic group i living in district j divided
by the number of schools is such a point. It is used as the dividing base point for the test
problem.

The Different size of large-scale school desegregation problems and different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



number of processors (denoted as np in the following tables) are used to test for the

code’s performance (' The results are tabulated as follows:

np | NVARXNCON | No. of iterations | Time (sec) | Speedup
1 2500 x 375 1764 198

2 2501 x 376 996 144 1.38

4 2501 x 377 959 134 1.48

8 2501 x 378 996 126 1.58

Table 4: Numerical results of the parallel division by the interior point procedure , Case 1

(NI=5, NJ =20, NK = 25)

np | NVARXNCON | No. of iterations | Time (sec) | Speedup
1 3750 x 475 2672 575
2 3751 x 476 1040 271 212
I 8 I 2501 x 478 1040 248 | 232 J

Table 5: Numerical results of the parallel division by the interior point procedure , Case 2

(NI=6, NJ = 25, NK = 25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




64

CHAPTER VI
CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions
In this study, two linear programming decomposition procedures are examined, then
implemented and tested under the parallel computation environment. The first
decomposition procedure, the decomposition principle, is custom-made for the linear
pfogramming problems in the special block-angular structure, while the second
decomposition procedure can be applied to any linear programming problems. Both of
the simplex method and the Interior Point Method are used in this study as subroutines to

solve LP problems.
In the decomposition principle procedure, the unbounded solution case has been
paid special attention since its solution procedure is different. The related concept of

extreme direction is explained. Methods to find the extreme direction in both the simplex

L - P vesw e smacss o) vaaw ssavwasae Panay prav v vy

the method to find an initial interior point is discussed.

Small numerical examples with step-by-step calculations are included in this study
to illustrate both of the two parallel decomposition procedures. The tabulated test results
of these two parallel decomposition algorithms show satisfactory efficiency in solving

large-scale linear programming problems.
6.2 Future Research

The algorithm of the decomposition principle procedure requires the problems in the

block-angular format. If a general linear programming problems can be manipulated and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

transformed into this special format, it can be solved with this algorithm. Future work
should be done on how to transform a general linear programming problem into this
format efficiently so that the computation time saved by the decomposition principle
procedure will not be wasted by the extra effort of the transformation. |
The decomposition procedure of the “division by the interior point” idea can be
applied to general linear programming problems. However, nothing is free. The
generality of this algorithm is paid by the price of its efficiency: the performance of this
procedure is subject to many factors such as the “shape” of the problem’s feasible region;
the location of the interior base point; the method of dividing the feasible region, etc. In
short, it is difficult, if not impossible, to divide the feasible region “equally” into
subregions. Future work should be done on the methods of dividing the feasible region.
So far, the research on computational complexity of the simplex method is focused
on the size of the LP problem, i.e, the value of n (number of variables) and m (number of
constraints). As discussed in Chapter V, it is not only the size, but also the number of
extreme points that directly links to the computational complexity. This knowledge is the

foundation of the “division by the interior point” decomposition idea. In order to make

e e m cei= aamrisae wa wa waisvawaraw S ARLVU MAm e Nl VL LW AMAANS TTY AL
s 1 ” r

and exploited, which would be a very interesting future research topic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Bibliography

[1] Dantzig, G. B., <<Linear Programming and Extensions>>, Princeton University Press,
Princeton, N. J., 1963

[2] Fang, Shu-Cherng and Puthenpura, Sarat, <<Linear Optimization and Extensions:
Theory and Algorithms>>, Prentice Hall, 1993

[3] Karmarka, N., “A new polynominal-time algorithm for linear programming”,
Proceedings of the 16™ Annual ACM Symposium on the Theory of Computing, pp.
302-311, 1984

[4] Dantzig, G. B. and Wolfe, Philip, “A Decomposition Principle For Linear Programs”,
the RAND Corporation, P-1544, Dec. 10, 1959

[5] Nguyen, D. T.; Bai, Y.; Qin, J.; Han, B. and Hu, Y., “Computational Aspects of
Linear Programming Simplex Method”, Advances in Engineering Software, Vol. 31
pp. 539-545, Elsevier, 2000

[6] Nguyen, D. T.; Runesha, H.; Belegunda, A.D. and Chandrupatla, T. R., “Interior point

method & indefinite snarse solver far linear nragrammina nrahlame?” Pracsadinac Af

Performance Computers and Workstations, Williamsburg, VA, Oct. 15-17, 1997

[7] Bazaraa, M.; Jarvis, J. and Sherali, H., “Linear Programming and Network Flows”,
2nd ed., Wiley, New York, 1990

[8] Pacheco, P. S., “Parallel Programming with MPI”, Morgan Kaufmann, 1997

[9]1 Hu, Y.; Nguyen, D. T. and Gould, Kevin, “Large Scale Linear Programming
Problems by Decomposition and Parallel Procedures”, the 8-th AIAA / USAF/
NASA /ISSMO Symposium on Multidisciplinary Optimization, Westin Long Beach,
Long Beach, California, September 6-8, 2000

[10] Hu, Y.; Gould, K. and Nguyen, D. T., “Linear Programming Domain Decomposition

Solutions Using Simplex and Interior Point Methods Under Parallel Computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

Environments”, 9th International Conference on Numerical Methods and
Computational Mechanics, Miskolc, Hungary, July 15-19, 2002

[11] Private communication with Prof. Duc T. Nguyen and his Ph.D student Siroj
Tungkahotara who has developed the computer program to test large-scale school

desegregation problem

Supplemental Source

[1] Taha, H. A., “Operations Research: An Introduction”, Prentice Hall, 1997

[2] Baumol, W. J. and T. Fabian, “Decomposition Pricing for Decentralization and
External Economies”, Management Science, Vol. 11, No. 1, 1964

[3] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. and Flannery, B. P., “ Numerical
Recipes in Fortran 77: The Art of Scientific Computing”, 2nd edition, Cambridge
University Press, 1992

[4] Wolfe, P., “The Composite Simplex Algorithm”, SIAM Review, Vol. 7, No. 1, 1965

[5] Wolfe, P., “A Technique for Resolving Degeneracy in Linear Programming”, RAND

Renort RM-2995-PR. The RANT Camaoration Santa Manica CA Mav 10R?

memory computers”, Proceedings of the ICES ’95 (International Conference on
Computational Engineering Science), the Ritz-Carlton Hotel, Mauna Lani, Big Island
of Hawaii, July 30-August 3, 1995

[7] “Parallel Decomposition of Linear Programs”, Dept. of Operation Research, Stanford
University, CA, Nov. 1989. (Thesis, Technical Report)

[8] Hooker, J., “Karmarkar’s Linear Programming Algorithm”, Interfaces, Vol. 16, No. 4,
pp- 75-90, 1986

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

VITA

Yusong Hu
Email: yusonghu@hotmail.com

Education

¢ Ph.D., Civil Engineering, Old Dominion University, Norfolk, VA (5/2004).

e M.S,, Structural Engineering, Beijing Jiaotong University, Beijing, China (4/1992).
e B.S., Structural Engineering, Hefei United University, Hefei, China (7/1989)

Experience

o (8/98 — 08/02: Research Assistant, Dept. of Civil and Environmental Engineering,
Old Dominion University, Norfolk, VA. Research topic: high performance scientific
computation with application in structural engineering.

e 04/92 - 05/98: Assistant Professor, Dept. of Civil Engineering, Beijing Polytechnic
University, Beijing, China.

e 09/89 - 04/92: Research Assistant, Dept. of Civil Engineering, Northern Jiaotong
University, Beijing, China. Research topic: LISP program implementation of
developing mechanism of expert system for structural engineering design.

Publications and conference papers

¢ Linear Programming Domain Decomposition Solutions Using Simplex and
Interior Point Methods Under Parallel Computer Environments, Y. Hu, K.E.
Gould and D.T. Nguyen, 9th International Conference on Numerical Methods and

Bai, J. YIn, and Yusong Hu, Advances 1n Engineering Sottware, pages 53Y-540, V3l,
2000, Elsevier

e Large Scale Linear Programming Problems by Decomposition and Parallel
Procedures, Hu, Yusong, Nguyen, D.T. and Gould, Kevin, the 8-th
ATAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Optimization,
September 6-8, 2000, Westin Long Beach, Long Beach, California

e Decomposition Procedures For Linear Programming Problems: Sequential
computer Environments, Yusong Hu, D.T. Nguyen, and K.E. Gould, Virginia
Academy of Science Conference, May 24-26, 2000, Radford, Virginia

e Computational Aspects of Linear Programming Simplex Method, Nguyen, D.T.;
Bai, Y.; Qin, J. and Hu, Y., 5 th National Symposium on Large-Scale Analysis, Design
and Intelligent Synthesis Environment, October 12-15, 1999, Williamsburg, VA.

e Computational Issues In the Revised Simplex Method For LP Problems, D.T.
Nguyen, Yu Bai, J. Qin and Yusong Hu, Virginia Academy of Science Conference,
May 25- 28, 1999, Norfolk, VA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


mailto:yusonghu@hotmail.com

	Parallel Decomposition Procedures for Large-scale Linear Programming Problems
	Recommended Citation

	ProQuest Dissertations

