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ABSTRACT

PARALLEL DECOMPOSITION PROCEDURES FOR 

LARGE-SCALE LINEAR PROGRAMMING PROBLEMS

Yusong Hu 
Old Dominion University, 2004 

Director: Dr. Due T. Nguyen

In practice, many large-scale linear programming problems are too large to be solved 

effectively due to the computer's speed and/or memory limitation, even though today's 

computers have many more capabilities than before. Algorithms are exploited to solve 

such large linear programming problems, either in the sequential or parallel computation 

environment. This study focuses on two parallel algorithms for solving large-scale linear 

programming problems efficiently.

The first narallel decomoosition aleorithm discussed in this studv is from the theorv

problems in a special block-angular structure. I he theory of the decomposition pnnciple 

is first examined. Since the subproblems of a linear programming problem can be in any 

of the three possible cases -  optimal solution case, unbounded solution case and no 

solution case, examples are provided for solving the problem when its subproblems are in 

any of these cases. The concept of extreme directions is discussed due to its direct 

connection with the unbounded solution case. A parallel computation code, which can 

handle all these cases, is implemented in this study with the decomposition principle 

theory and its performance is tested for large-scale linear programming problems.

Only the problems in the special block-angular structure can be solved with the 

decomposition principle. For general linear programming problems, this study proposed a
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new decomposition algorithm named “division by the interior point”. The idea of this 

new algorithm is as follows: with a found interior point inside the feasible region, divide 

the feasible region into multiple subregions and use multiple processors to solve the 

problem in each subregion. This new algorithm is first demonstrated with a few small 

numerical examples. A parallel computation code in this new idea is implemented and 

tested with large-scale linear programming problems.
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CHAPTER I 

INTRODUCTION

Linear programming is a branch of applied mathematics that deals with methods of 

optimizing a linear objective function of a set of decision variables subject to linear

constraints. Since George B. Dantzig proposed the simplex method in 1947 linear

programming has been extensively used in the industry, military, government, urban 

planning, etc. In a recent survey of Fortune 500 companies, 85% of those who responded 

said that they had used linear programming algorithms and/or software

1.1 Overview

The standard form of linear programming problems is in the following format 

Minimize z = CiXi +C2X2 + ... +c„Xn (1.1)

subject to aiixi + ai2X2 + ... + ainXn =bi (1.2)

SmlXi + ani2X2 + ... + amnXn — bm

(Xi, X2, ..., X n > 0 )  (1.3)

Or, in a simpler matrix notation, it can be written as

Minimize c^x (1.4)

subject to Ax = b (1.5)

(x>0)  (1.6)

where x and c are vectors of size n, b is a vector of size m, and A is an mxn matrix. 

This matrix notation of the standard form is used throughout this study, although in 

some of the problems, maximization of the objective function is used instead of
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minimization. It is trivial to convert maximization to minimization:

Maximize c^x = - (Minimize c^x)

Since 1947, the simplex method has dominated the linear programming field with its 

proven capability of solving real world problems, although in theory this method may 

have some difficulty. In 1984, N. Karmarkar made a real breakthrough in linear 

programming with his interior point method Since in theory this new method is 

superior to the simplex method, it has become the research focus in the past years. Both 

the simplex method and the interior point method are used in this study, while more 

discussion is devoted to the newer interior point method because it has been less 

experimented.

1.2 Objective and Scope

Both the simplex method and the interior point method perform well for solving 

small to medium size problems. However, they may not be able to solve large-scale 

problems fast enough due to the computer’s computational speed. When the problems are 

too large, they may not be solved at all due to the limitation of computer memory. The

ouujjiuuiuiiia . iiii^ uujcwuvo vji uiia slu u j is uu su ivc liiigc-scm c iiiicai p iugram im ng  

problems efficiently with decomposition procedures using parallel computation. First, in 

this study, the decomposition principle procedure proposed by Dantzig and Wolfe is 

examined (see Chapter 3). This technique has been of particular interest to researchers. 

However, the research that has been done is mostly in the sequential computation 

environment. In this study, a parallel decomposition computation code is implemented 

and tested with large-scale linear programming problems for efficiency (see Chapter 4). 

Since the procedure of the decomposition principle is customized to the “block angular” 

problems, it can only achieve satisfactory result for those special problems. For general 

large-scale linear programming problems, a new parallel decomposition algorithm is
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proposed in Chapter V and tested with numerical examples.

Since the idea of these two decomposition approaches comes right from the simplex 

method and/or the interior point method, these two methods are reviewed briefly in 

Chapter II to facilitate the future discussions. Chapter II also discusses one simple 

technique to find a starting interior point, which can be used in the “division by the 

interior point” decomposition procedure proposed in Chapter V.

It is interesting to note that both the names of the simplex method and the interior 

point method come from the geometry. Indeed, the intuition that is generated from the 

geometry of linear programming is one of the keys to understand the linear programming 

theory. The idea of the new decomposition procedure of Chapter 5 is also inspired by the 

geometric properties of linear programming. In Chapter 3, one geometric concept of 

linear programming, extreme directions, is discussed before the discussion of the 

decomposition principle procedure, because it is essential for solving the linear 

programming problems of the unbounded solution case.
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CHAPTER II 

LINEAR PROGRAMMING METHODS

The parallel algorithms for linear programming problems presented in this study are 

based upon two linear programming methods: the simplex method and the interior point 

method. This chapter will review these two methods in order to make future discussion 

about the parallel algorithm easier. While the simplex method is the basic method of 

linear programming and is introduced in every linear programming book, the interior 

point method is relatively newer and is discussed in much less detail. Hence, this chapter 

focuses on the interior point method. The simplex method is reviewed first only for its 

key ideas, in order to compare the difference between the interior point method and the 

simplex method.

2.1 The Simplex Method

a linear programming prooiem is not empty, it nas eitner unoounaea solution or an 

optimal solution on one of its extreme points. Thus, the simplex method only iterates on 

the extreme points. The procedure of the simplex method is as follows^^^

(1) Find a starting extreme point. Two commonly used methods, the two-phase method 

and the big-M method, can be used to find such a starting extreme point.

(2) Check if the current extreme point is optimal. If yes, stop the iteration. Otherwise go 

to step (3). The current solution is optimal if the objective cost function can no longer 

be improved.

(3) Move to another extreme point with improved objective value. Then return to step (2). 

The pivoting process is used to find such an extreme point.
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For hand calculation, the simplex method can be done in the “simplex tableau” 

format. A numerical example solved in this procedure is given in Section 3.3.1. The 

simplex method can be implemented in more efficient approaches, such as the revised 

simplex method. The revised simplex method is more efficient because with matrix 

formulation, efficient linear algebra (such as linear equation solver) can be easily 

exploited All the numeric examples in Section 4.1 are solved with the revised simplex 

method.

2.2 The Interior Point Method

In the Fall of 1984, N. K. Karmarkar of AT&T Bell Laboratories proposed a new 

algorithm for linear programming. This new algorithm was the first one in thirty years 

that not only outperforms the simplex method in theory, but also shows the potential to 

rival the simplex method for solving large-scale practical applications.

Karmarkar’s method is radically different from the simplex method. The simplex 

method starts with a vertex (extreme point) of the feasible region and moves along the 

boundary to a better neighboring vertex, until the optimal solution or infeasibility is

Liic icasiuic icgiuii lu visji every veriex iii me wuisi-case sceiianu. ru i large-scaie 

problems, the feasible region contains numerous extreme points, which can incur a huge 

number of iterations.

Karmarkar’s approach starts with an interior point in the feasible region and moves 

through the interior region to reach the optimal point. This approach is based on two 

fundamental insights:

1. If the current interior solution is near the center of the polytope, it makes sense to 

move in the direction of steepest descent of the objective function to achieve a 

better value.

2. Without changing the problem in any essential way, an appropriate transformation
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can be applied to the solution space so as to place the current interior solution near 

the center of the transformed solution space.

The basic strategy of Karmarkar’s algorithm is: take an interior solution, transform 

the solution space so as to place the current solution near the center of the transformed 

space, and then move in the direction of the steepest descent in the transformed space, but

not all the way to the boundary in order to remain as an interior solution. Then take the

inverse transformation to map the improved solution back to the original solution space 

as a new interior solution. Repeat this procedure until the stopping criterias are met.

The transformation proposed in the original Karmarkar’s algorithm is a projective 

transformation, thus Karmarkar’s algorithm is also referred as projective scaling 

algorithm. A LP problem must satisfy the following requirements before it can be solved 

using the projective scaling algorithm:

1. The problem has to be in the following standard form:

Minimize c^x (2.1)

Subject to Ax = 0 (2.2)

e ^ x = l , x > 0  (2.3)

a.11 iiiium icas>iuic imciiui iiuiuuuii \,situuiig puim; musi uc Kiiuwii.

2. The optimal objective function value must be zero.

Since it is relatively cumbersome to transform a standard LP problem to 

Karmarkar’s format, many variants of Karmarkar’s algorithm have been developed. 

Among these methods, the affine scaling algorithm received the widest analysis and 

experimentation. The interior point method used in this study is the affine scaling 

algorithm.

2.2.1 AfHne Scaling Algorithm

Affine scaling algorithm was named because the transformation used in this
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algorithm is affine scaling transformation.

For an interior point x, we define an n x n diagonal matrix Xk, which has all zero 

elements except that the diagonal elements Xkii = Xi. With Xk, we have the following 

transformation:

(2.4)

Notice that this transformation does nothing but to rescale Xj by the factor 1/xi. It 

was named the affine scaling transformation because geometrically it maps a straight line 

in one space to another straight line in another space, as shown in Figure 1:

y = Xk"' X

Xl

1 y(=e)

As we can see from Fig. 1, the point x is transformed to a new point y = e = (1 

1)^, which keeps the same distance from the orthant.

From Eq. (2.4), we have x = Xk y. Hence the original LP problem

Minimize c^x (2.5)

Subject to Ax = b (2.6)

(x>0)  (2.7)

is transformed to

Minimize (c*')̂  y 

Subject to Ak y = b

(2 .8)

(2.9)
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(y>0)  (2.10)

where c*' = XkC and Ak = A Xk

Since keeps the same distance from the orthant, it is considered “near the center”

of the polytope. So we should move along the steepest descent direction d * to find the 

new point = y*̂ + akd* , where «k is the step length.

The steepest descent direction of the objective function is its negative gradient, -

In order to keep feasibility, this direction needs to be projected into the null space of the

constraint matrix A. From the linear algebra, we have the null space projection matrix Pk 

= I ■ Ak" (̂Ak Ak'̂ ) Ak = I * XkA'^fA Xk̂  A"̂ ) A Xk. The moving direction d* = ?k (-

c“) = [I - Xk A'^(A Xk' A"") A Xk] ( -  XkC) = - Xk [c - A'^(A Xk' A " " ) A  Xk' c].

If we denote w*‘ = (A Xk' A^) A Xk' c,

d ;  =-Xk[c-A'"w'^]  (2.11)

Furthermore, if we denote r*‘ = c - A^ w‘‘,

d ; = - X k r “ (2.12)

= Xky*̂ ’̂ = Xk(y’' + «k d^) = x*̂ + akXkdJ (2.13)

As for the step length ak, from = y*̂ + Ukd* > 0, we know that when (d* )i < 0, 

ak should be smaller than

yf / [ - (d; ) i ]  = l /[-(d5)i] (2.14)

Therefore we can choose 0 < a  < 1 and apply the minimum ratio test

ak = min { a /  [- (d; ) i ] , for (d^)i < 0} (2.15)

to choose an appropriate step length in order to guarantee y*‘‘̂* > 0.

The iterative procedure of the affine scaling algorithm can be easily derived based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on the above discussion. Section 3.3.2 provides the step-by-step calculation for a 

numerical example problem solved with the affine scaling algorithm.

2.2.2 Finding the Starting Interior Point

An initial interior point has to be known beforehand in order to start the interior 

point method. There are a few methods to find such an initial interior point. The one 

introduced here is easier to implement It is also easier to understand due to its 

similarity to the Big-M method used in the simplex method.

The Big-M method used in the simplex method imposes a large positive number M 

as a penalty for each artificial variable and transforms the standard LP problem into the 

following LP problem:

Minimize z = + Mxa

(2.16)

Subject to Ax + Xa = b (2.17)

( x , X a > 0 )  (2.18)

The starting point (solution) is x = 0 and Xa = b. When M is chosen large enough,

Hits tcitsiuic 5U1UUUI1 ui uiiouuiiueu soiuuon.

Now we turn back to the interior point method. One artificial variable Xa associated 

with a “big M” is added to the original problem and transforms it into the following 

problem:

Minimize z = cx + Mxa (2.19)

Subject to [ A I (b-Ae) ]
X

x„ = b (2.20)

(x,xa>0) (2.21)

where e = (l 1 ... l ) ^ e R “. (2.22)

Comparing this problem with the big-M problem in the simplex method, we note

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

these differences:

1. Only one artificial variable, Xa (instead of Xa), is added. In total, there are n + 1 

variables, instead of n + m.

2. Although the objective function looks the same, the constraint matrix is different. 

The constraint matrix is manipulated so that x = (1 1 ... 1)^ e

satisfies the transformed constraint matrix, which means x = (1 1 ... 1)^ is

a solution to the transformed problem.

In fact, it is not only a solution, but also an interior solution. The reason is as 

follows:

From the basic theory of the simplex method, we know that graphically, the 

boundary of the feasible region is a hyperplane defined either by each constraint of Ax = 

b, in which all the slack variable and artificial variable equal to zero; or by the constraint 

Xi = 0. Either way, if a point x is on the boundary of a feasible region, there must be at 

least one zero in x. Since the point x = (l 1 ... l ) ^ i s a  solution to the transformed

problem, it is either on the boundary of the feasible region or an interior point. And since 

there is no zero in x = (1 1 ... 1) ,̂ it is not on the boundary. Hence, it is an interior

vw VAAV/ .111 l l iw  Llllll^xw yv t l iV  OWlULiWFli IW UiW

problem can be derived from the solution to the above big-M problem:

1. If the artificial variable Xa remains positive in the final solution of the big-M

problem, the original problem is infeasible.

2. If the artificial variable Xais equal to zero in the final solution of the big-M

problem, the original problem has the same optimal solution as the big-M 

problem.

3. If the big-M has unbounded solution, the original problem has unbounded 

solution, too.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

CHAPTER III 

DECOMPOSITION PRINCIPLE

Decomposition principle is an algorithm for efficiently solving large-scale linear 

programming problems by breaking up the problem into smaller problems. This chapter 

introduces the theory of the decomposition principle.

3.1 Convex Set: Extreme Points, Extreme Directions and Theorems

A few theorems need to be discussed before the introduction to the decomposition 

principle. These theorems are essential to the derivation of the decomposition principle. 

And in order to make the explanation of these theorems easier, first we will review a few 

concepts of the convex theory that are used in these theorems. The first two concepts, 

convex sets and extreme points, are basic to the linear programming. They are briefly 

mentioned here in order to introduce a related, but much less well-known concept of 

extreme direction.

1. ^UllVCA SiClfii

For k points xi, X2 , ..., Xk g R” and k scalars Xi, X2 , ..., Ak € R, we know that the 

expression AiXi + A2X2 + ... + AkXk is called a linear combination. It further becomes a 

convex combination when

Ai + A2 + ... + Ak = 1 and 0 ^  Ai, A2 , ..., Ak ^  1 (3.1)

A set X is called a convex set if the convex combination of any two points in X is 

still in X.

Geometrically, for two points inside a polyhedron defined by a set, if the line 

segment joining them (which is the convex combination of these two points) is still inside 

the polyhedron, that set is a convex set.
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2. Extreme points

A point in a convex set is called an extreme point if it cannot be represented by a 

convex combination of two distinct points in that set. In Figure 2, yi (i = 1,2, ..., 5) are 

extreme points.

Figure 2: Extreme points of a bounded feasible region

3. Rays and directions

A ray is a set of points with the form

u  u  xxiiu  l o  v^uxix^u UIIX..VUVJII XJI U lC  1 a y .

4. Extreme directions

Direction is nothing but a vector. First, we define the concept of the direction of 

the set. For a convex set X, a nonzero vector d is called a direction of the set if for 

each point x e X, the ray { x + A, d: A > 0 } e  X. It is obvious that for a bounded set 

as in the Figure 2, there are no directions of the set. From Figure 3, we can see that all 

the directions between di and dz are directions of the set Y defined by the unbounded 

region, because they all satisfy y + A, d e Y.
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Figure 3: Extreme points and extreme directions of an unbounded feasible region

An extreme direction of a convex set is a direction of the set that cannot be 

represented as a positive linear combination of two distinct directions of the set. We can 

see that extreme directions to directions of the set is extreme points to points. In the Fig. 

3, from linear algebra, we know that all the directions d between di and d2 are the 

positive linear combination of di and d 2 . However, although di (d2) can also be 

represented as linear combination of d and d2 (di), the combination is not positive. Hence,

.1. AAw wx sxwv'wxxx^x^ijxvxvyii u x ^ \y x iir ii ix i  v u .il  w  g x v u i - i j  luv iiitU L V V X  L /j  i v i v i i i i i ^

to the following 3 theorems 1̂1:

Theorem 1 (for the bounded region case)

Let X = {x: Ax = b, x> 0} be a nonempty bounded set. Vector x e  X if and only if x 

can be represented as a convex combination of the extreme points (yi) of this set, that is.

x =  ^  V i (3.3)

(3.4)
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A,j > 0 (j = 1, 2 , k). k is the number of extreme points.

As an example, the interior point x in Figure 4 can be expressed as a linear 

combination of points y4 and z (see Figure 5).

Fig. 4: Point x in a bounded region Fig. 5: Point x in convex combination

x = y4 -a (y 4 - z )  = ( l -a )y 4 + oz ( l > a > 0 )

Similarly, point z can be expressed as (see Figure 4): 

z = ( l -P)y 2 +Pyi ( 1 > P > 0 )

Hence x = (1 -a)y4 + a[(l -p)y2 +Pyi] = aPyi+ a ( l  -p)y2 + (1 -a)y4

(3.5)

(3.6) 

(3.7)

A v x u v y  J I V A /y  x  J  '  V

Notice that the representation is not unique (see Fig. 6).

Fig. 6: Point x in another convex combination
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Theorem 2 (for the unbounded case)

Let X = {x: Ax = b, x> 0} be a nonempty set. Vector x 6  X if and only if x can be 

represented as a convex combination of the extreme points (y,) plus a nonnegative linear 

combination of the extreme directions of this set (di), that is,

k I

j= l
x =  1 ]  >̂ jyj + X  M i

M
k

where ^  A,j = 1

(3.10)

(3.11)
7=1

Xj > 0  (j = 1 , 2 ,..., k), pj > 0  (j = 1 , 2 ,..., 1), k is the number of extremes points and 1 is the 

number of extreme directions.

As an example, the interior point x in Fig. 7 can be expressed as (see Figure 8 ):

x = z + pdi (p> 0) (3.12)

a

Fig. 7: Point x in an unbounded region Fig. 8 : Points x in linear combination

It should be noticed that the extreme direction di (see Fig. 7) is parallel to the

direction zx (see Fig. 8 ). Also, point z (in Fig. 8 ) can be expressed as:

z = y2 +P(ys - yi)= (l -P)y2 +Pys (l > p > 0) (3.13)

Hence we have

X = ( 1  -P)y2 +Pya + pdi (3.14)

Again, this representation is not unique. The point x can be also be represented in terms 

of yi and d2 (see Fig. 9).
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Fig. 9: Point x in another linear combination

Theorem 3

For the problem of 

Maximize c^x 

subject to: Ax = b 

(x> 0 )

(3.15)

(3.16)

(3.17)

(i). It has finite optimal solution if and only if all cdi < 0, where di is an extreme direction

y A A y .  AA X*, x x f c x u  X X X X X I.W  « ^ |^ t . x x x x c 4 . x  O V /X U X I .X V /1 X , I D  W l l V /  \ J 1  I I D  j J A / l l i l D .

Proof:

According to theorem 2, the foregoing problem can be transformed to

k I
Maximize ^  (cyj)A,j + ^  (cdj)pj

;=i 7=1

k

S.t.
7=1

(3.18)

(3.19)

(3.20)whereA,j>0 0 = 1,2,..., k), pj> 0  (j = 1 , 2 ,..., 1)

Now,

(1) If one of cdj > 0, since the corresponding pj can be arbitrarily large, the objective
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function - 4  o°. Hence there is no finite optimal solution.

(2) If all cdj < 0, in order to maximize the objective function, all |iij can be made to be zero. 

Now the problem becomes

k

Maximize ^  (cyj)Aj (3.21)

s.t. ? ij= l Xj>0G = l ,2 , .. . ,k )  (3.22)
j= \

Let cyg = max cyj G = L 2, ..., k). Obviously, when A,g = 1 and A,j = 0 G g), the 

maximum value is found. Hence, the original problem has finite optimal solution, and the 

solution (yg) is one of its extreme points.

3.2 The Algorithm of the Decomposition principle

The general form of “block angular” linear programming (LP) problems considered 

in this work can be expressed as

Maximize z = CjX: + C2X2 + ... + CpXp (3.23)

Slnhippt tn

B,x, = hi (3.25)

B2X2 = b2 (3.26)

BpXp = bp (3.27)

(xi,X2, ...,Xp>0) (3.28)

where Eq. (3.24) is the common constraint, Eq. (3.25- 3.27) are the block 

(subproblem) constraints, p is the number of blocks, Xi and c, is an ni dimensional vector, 

b is an m dimensional vector, Ai is an m x n, matrix, hi is a q dimensional vector, Bj is a 

q X ni matrix.
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The following is an example problem in this format:

Maximize z = - xi - 3 x2 - 5 x3 - 2 x4 (3.29)

Subject to

5 xi  +  3 x 2 +  4 x3 < 1 0  (3 .3 0 )

Xi +  2x2 +  2 x 3  +  X4  ^ 1 0 0  (3 .3 1 )

5 x i  +  X2  < 9  (3 .3 2 )

X] +  4x2 ^  8  (3 .3 3 )

X3 - 5 X4  > 4  (3 .3 4 )

X3 +  X4  > 1 0  (3 .3 5 )

(Xi, X2 , X3 , X4 > 0 )

Comparing this problem with the “block angular form”, we can see that it has two 

common constraints (Eq. 3.30 - 3.31) and two blocks (i.e., subproblems)

For less than (<) and/or greater than (>) type constraints, slack and/or surplus 

variables can be introduced to convert them into equality (=) type constraints, as 

indicated in Eq. 3.24 - 3.27. The feasible region (if exist), defined by Eq. 3.24-3.27, can 

be either bounded or unbounded.

Maximize ^  (cyj)A.j -I- ^  (cdj)pj (3.36)
> 1  M

subject to

2  X j= l (3.37)
7=1

where A.j> 0  (j = 1, 2,..., k) and Pj> 0 (j = 1, 2,..., 1) (3.38)

With the above conclusion, and based upon the 3 theorems discussed before, the 

“original” LP problem (defined in Eq. 3.23 - 3.28) can be transformed into the following 

“new” LP problem:
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M axim ize

k\ k2 kp l\ 12 Ip

z= X  S  («2y2j)>-2j+ -+  (‘̂ 2‘*2M j+-+X MpjHj (3.39)
7=1 7=1 M  7=1 7=1 7=1

subject to:

Id m kp n 12 ip

ŷ ,(A.iyij)̂ ii+'ŷ ,(A.2y2i)̂ 2i+ ■■• (l̂ pypjl̂ pi + (Aidi|)Hii + y^,(1̂ 2̂ 21)1121+ -  +T^. (î pdpj)̂ pj =b (3.40)
>4 >4 7=1 7=1 >4 7=1

= 1 (3.41)
H

k2

E  ^2j =1 (3.42)
j=\

EXpj = 1  (3.43)
H

where Ay > 0 (j = 1, 2,..., ki), > 0 (j = 1, 2,..., 10 (3.44)

It is important to recognize that each block constraints in the “original” LP problem

voiiauito A uaa uocii u ansiu im cu  im u ulc iicw vaiiauics Ay aau py.

The revised Simplex (product form) algorithm can be applied in the LP problem of 

Eq. 3.39 -  3.44, with “minor detailed” changes in the steps to select the Entering (and 

Leaving) variables into (and from) the basic variable group.

(i) How to choose the entering variable?

The entering variable in the revised Simplex method corresponds to the global 

maximum of cy - zy (or minimum of zy - cy, which is the notation format used in chapter 

4). Instead of finding the global maximum value, we can find the local maximum value 

first (corresponding to each block), then choose the maximum amongst these values.

(ii) How to find the local max. cy - zy?
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According to the revised Simplex method, Cy - Zy = Cy - CsB'^Py 

Let cbB ' = ((0 i,t0 2 ,..., tOm, «i, Op) = (0 ), a)

(3.45)

(3.46)

(a) Corresponding to A,y, one has Py =
Aiyy

Ci
(3.47)

where Cj is a p dimensional vector with the i-th entry equal to 1 and all the other 

entries equal to 0 .

Hence Cy - Zy = Cy - CBB‘‘py = Ciyij - (o), a) *
Aiyy

ei
= (Ci-o)Ai)yij - «i.

(b) Corresponding to |Xy, one has Py =
Aidy

0

Hence Cy - Zy = cy - CBB'^py = Cidy - (CO, a)
Aidy

0
— (Cj - CO A i)dy

(3.48)

(3.49)

(3.50)

For each block, instead of solving Max [Ci - co A i]yy - a ,] and Max [(Cj - co A i)dy] to 

decide which Xy or pij becomes a candidate of the entering variable, we can just solve the 

problem Max (q - co Ai)xj, subject to BiXi = bi. The reasons are given below:

X,. X X X X X X X ^  X X X  X X X X X X  X X X X  XX.  X X  X X X  X X X X X X X X X X X  X X X  X X X X X  X x X X X X x X X X X ^  X X X X I X X U X X X .  X  X X X X X X  X X X x X x X J X X X X X  l £ ,  L X J

Theorem 3, the optimal solution is one of its extreme points, say, yy. Obviously, this 

yy also maximize (ci - co Ai)yy - oCj. Hence Xy, the corresponding variable, becomes a 

candidate of the entering variable.

(2) If this problem has unbounded solution, according to Theorem 3, there is at least one 

dy which makes (Ci - co A i)dy  >  0 . Notice that this dy can be very large, so (c, - co A i)dy

oo. Hence py, the corresponding variable, becomes the entering variable.

(3) If this problem has no solution, then this block has no feasible region. Hence, the 

original problem has no feasible region, meaning that there is no solution to the 

original problem.
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Once the entering variable is found, one has no problems in locating the leaving 

variable. Hence, the standard revised Simplex procedure can be normally applied 

afterward.

3.3 Finding the Optimal Direction

It should be noted that among multiple extreme directions of an unbounded region, 

only one makes the value of the objective function increase (or decrease) the fastest. It is 

similar to the case that in a bounded region, only one of the extreme points makes the 

objective optimum. Such an extreme point is called the optimal point. Similarly, we call 

such an extreme direction the optimal direction.

From the discussion in the last section, we know that if a subproblem has unbounded 

solution, a variable corresponding to the optimal direction will become the entering 

variable. Also, the value of the optimal direction has to be known for the succeeding 

calculations. Two examples are given below to show how to find the optimal direction in 

both the simplex method and the interior point method.

In the following example, the calculation in each simplex iteration is shown in the 
simplex tableaus.

Example 3.1 

Maximize z = xi + 2 x2 

Subject to - xi + X2 < 2  

- xi + 2x2 ^  8

(Xi, X 2 > 0 )

Solution
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(4, 6 )

Figure 10: Feasible region of Example 3.1

Iteration 1

Xl X2 X3 X4 b

X3 -1 1 1 0 2

X4 -2 2 0 1 8

1 2 0 0 z

t

Iteration 2

X4 1 u - 2 1 4
3 0 - 2 0 Z - 4

t

Iteration 3

Xl X2 X3 X4 b
X2 0 1 - 1 1 6

Xl 1 0 - 2 1 4
0 0 4 -3 Z - 16

t
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Since the most positive value in the last row is 4, X3 becomes the entering variable. 

And since all of xs’s coefficients are negative, this problem has unbounded solution. The 

iteration stops here, but let us keep going a little further to see what will happen after X3 

becomes the entering variable. Now that X3 becomes the entering variable, its value will 

increase from 0. From the last tableau, we can see that xi and X2 will be increased to 

X2 = 4 - ( -  2) X3 = 4 + 2x3

X2 = 6 - (  - 1)X3 =  6  +  X3 

And X4  stays where it is:

X4= 0

The preceding solution can be arranged as

(X3 > 0)

Now we can see that actually the solution is a ray.

When X3 —> 0 0 , the solution moves along this ray and the objective function 

problem.

3.3.2 Finding the Optimal Direction in the Interior Point Method

In the interior point method, finding the optimal direction is much easier than in the 

simplex method. From Section 2.2.1, we know that in each iteration of the interior point 

method, the moving direction dy is calculated. Since it is the steepest decent direction, it 

will become the optimal direction at the last iteration. However, the direction dy is in the 

“Y” space. It needs to be projected back to the original “X” space. Let the optimal 

direction in the “X” space be denoted as dx, since Y = Xk"' X (see Section 2.2.1), we have

'4 ' ' i
6 I

X =
0

+  X3 I
0 0
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X = Xk Y. Hence dx = Xk dy.

The example problem 3.2 is the same as example 3.1. Now we solve it with the 

interior point method. The solved optimal direction can be verified with the result of the 

simplex method.

Example 3.2

Minimize z = - xi - 2 x2 

Subject to - Xl + X2 ^ 2  

- Xl + 2x2 ^ 8  

(Xi, X2 > 0 )

Solution

x = [ x i  X2 X3 X4 ]’̂ , b= [2  8 ] \ c = [ - l  -2 0 0 ] \  A
- 1 1 1 0  
- 1 2  0 1

Iteration 1

The starting point can be any point inside the feasible region. By observing Figure 10,

Hence Xo =
0 4 0 0 
0 0 2 0 
0 0 0 4

From A Xo^A  ̂Wo = A Xo"* c, we have
'36 48^ ■-16‘

96
W o =

48 -48_

Hence Wo =
0.6667
0.8333

Now ro = c - A Wo =

-1.167
- 1
-0.6667
0.8333
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Since some components of ro are < 0, continue the iteration. 

4.667

dyo = - Xo To =
4
1.333
-3.333

Since some components of dyo are < 0, continue the iteration.

Take a = 0.99, then the step length a q = min[ a /- (dyo)i] = 0.99/3.333 = 0.2970

Hence xi = xo + a o Xo dyo =

9.544
8.752
2.792
0.04

Iteration 2

From A Xi^A^ wi = A Xi^ c, we have
175.5 244.3 
244.3 397.5

'62. i f
W i =

_215.3_

Hence Wi =
277.0

-224.4

2.244

Since some components of ri are < 0, continue the iteration.

dyi = - Xl ri =

4.525
2.467
7.733 
-0.08975

Since some components of dyi are < 0, continue the iteration. 

The step length a , = 0.99/0.08975 = 11.03
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Hence Xi = Xi + a j Xi dyi =

485.9
247.0
241.0 
0

Iteration 3

From A X2^A’*' W2= A X2 ' c,  we have

■3 . 5 5 2 3.581' 1.141
1 0 ' Wi

3.581 4.801 -0.07838
10'

Hence W2 =
1.363

-1.033

Now F2 = C - A W2 =

-0.6701
-1.297
-1.363
1.033

Since some components of ra are < 0, continue the iteration.

325.6
320.4

Since dy2 is > 0, this problem is unbounded.

dx2 =  X 2 dy2 =

Hence, the extreme direction of this problem is [2 1 1 O]’ .̂ It is the same as the result
of the simplex method, shown in Example 3.1.

’485.9 0 0 O' '325.6' '2 '
0 247.0 0 0 320.4 1

328.3 = 7.911X10' 10 0 241.0 0
0 0 0 0 0 0
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CHAPTER IV

NUMERICAL STUDIES OF THE DECOMPOSITION PRINCIPLE

As we can see from the last chapter, the theory of the decomposition principle is not 

that straightforward to understand. This chapter provides numerical examples to illustrate 

the decomposition principle algorithm step by step. These examples include both cases of 

LP problems: problems with bounded feasible region and with unbounded feasible region. 

The step-by-step calculation not only serves the purpose of illustrating the decomposition 

principle, but also is used to check the result of the parallel algorithm. Debugging the 

code of a parallel algorithm could be a nightmare for a programmer because the compiler 

gives very little error message if something is wrong in the code To make it worse, 

very often the error message is irrelevant to the actual error. It is essential to compare the 

computation result of the code with the result of hand calculation step by step to make 

sure the computers (or more precisely, the processors) are doing what they are supposed 

to do. In this study, a code of the parallel algorithm of the decomposition principle is

LP problems to test its performance, which is reported at the end of this chapter.

4.1 Sequential Algorithm of the Decomposition principle

This section presents the small size numerical examples under the sequential 

computation environment. In order to make the hand calculation easier, the feasible 

region of each subproblem is drawn in figure so that the optimal solution to each 

subproblem can be obtained just by observing the figure instead of by calculation.
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4.1.1 Bounded Feasible Region Case

Here the “bounded feasible region case” means each subproblem of the original 

problem has bounded feasible region. Two examples in bounded feasible region case are 

presented in this section. The second one deserves more attention. We know that if a LP 

problem has no solution, it has no feasible region. It should be noted here that even 

though each subproblem of a LP problem has feasible region, the original problem may 

not have solution at all, as shown by the second example.

4.1.1.1 Example Problem With Optimal Solution

Problem

Maximize z = xj + 3x2 + 5x3 + 2x4 

Subject to 5xi + 3x2 + 4xs > 10

5 x i +  X2 < 9

X] + 4x2 ^ 8

X3 - 5X4 < 4

Solution

The original problem can be transformed to:
kl k2

Maximize z = ^  (ciyij)>.ij+ ^  (c2y2j)A2j
M j=l

kl k l

S.t. ^(Aiyij)Xij + Yj (A2y2j)^2j = 10
>4 ;=1

kl

k l  •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

where A,ij > 0  (j = 1 , 2 , kO-

It has the Simplex tableau as follows (using the big-M method):

^ 1 1 X\2 ^13..... ^ 2 1 A22 2-23 ..... X5 X6 Xu X12 b

z Ciyn ciyi2 ciyi3..... C2y2i C2y22 C2y23..... 0 -M -M -M

Aiyii Aiyi2 Aiyn ...... A2y21 A2y23 ...... -1 1 0 0 1 0

xn 1 1 1 0 0 0 0 0 1 0 1

X12 0 0 0 1 1 1 0 0 0 1 1

Subproblem 1

X l = ( x i ,  X 2 )^ , C l = (1, 3)'̂ , Ai = (5, 3)

Its constraints are:

5xi+ X2 < 9 

Xi + 4x2 < 8

These two constraints define the following feasible region:

X2

(1 .4737,1.6316)

1.8 '  8 

Fig. 11. Feasible region of subproblem 1 of 4.1.1.1

Subproblem 2

X2 = (X3 , X4 )'^, C2 = (5, 2)̂ ,̂ A2 = (4, 0) 

The constraints of this subproblem are: 

X3 - 5x4 ^  4

X3 + X4 < 1 0
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These two constraints define the following feasible region:

10

(9,1)

0.8

► 3̂

Fig. 12. Feasible region of subproblem 2 of 4.1.1.1

As we mentioned before, the optimal solution to each subproblem will be observed 

directly from the figure of its feasible region.

Iteration 0

Xb = (x6, X n ,X i2 )  =(10, 1, 1)

C n  = r-M  -M  -M'l B = R-3.^T

i i e r a i i u n  x

CbB-’ = Cb =(- M ,-M ,-M ) 

Subproblem 1

Aiyi 5x1 + 3x2

Min (zi  - C i )  =  CbB'^ 1 - C i y i  = (-M ,-M ,-M ) 1

0 0

= (-5M l )Xi 3(M + 1)X2 -  M

- (Xi +  3X2)

Subject to Xl + X2 < 9 

Xl + 4x2 ^ 8

By observing the figure of its feasible region, we can see that the solution is yn = (xi, X2)^ 

= (1.4737, 1.6316)'^, Min (z i-C l) = - 13.263M -6.3685
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Subproblem 2

Aay2 4x3

Min (Z2 -  C2) = CbB'’ 0 -C2y2 = (-M ,-M ,-M ) 0

1 1

-  (5X3 + 2 x4 )

=  ( - 5 - 4 M ) x 3 - 2 x 4 - M  

Subject to X3 - 5 x4 ^ 4

X3 + X4 < 1 0

By observing the figure of its feasible region, we can see that the solution is yzi = (X3 , X4)^ 

= (9, 1) Min (Z2 -  C2) = -37M - 47 

' - I

0 = MAlso, Z5 -  C5 = CbB'

The global min. is min. (Z2 -  C2) = -37M - 47, 

Hence A.21 becomes the entering variable.

P 21 =

Azy2i
0

(4,0)

0
36
0

Thus B-‘P 2 i = F P 21 =
36
0
1

Given Xb=(x6 ,X ii,x i2 )^= (10, 1, i f ,  so q =  1. 

Hence x  ̂becomes the leaving variable.
1

36 0 o' 1
36 0 o'

So B ’ = 0 1 0 *1 = 0 1 0
1

.  36 0 1 1
-  36

0 1
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The new basic solution

X b =  ( ^ 2 1 , X l l ,  X i 2 ) ^ =  B '  ( 1 0 , 1 , 1 ) ^ :

C b  = ( C 2 y 2 i ,  -M, -M) = (47, -M, -M)

Iteration 2

136 0 o'
0 1 0 = (i^,-M ,-M )

1. 36 0 1

Aiyi 5x1 + 3x2
1 -Ciyi = ( ^ , - M ,  -M) 1
0 0

CbB’’ = (47, -M, -M) 

Subproblem 1 

Min (zi -  Cl) = CbB'̂

= i ^ ( 5 x , +  3x2)-(xi + 3x2)-M  

Subject to Xl + X2 < 9 
Xl + 4x2 < 8

 /'xr m a\T /r̂ ^ \— \/{

-  ( X i  +  3 X 2 )

aupproDiem i

Min (Z2 -  C2 ) = CbB'
X i y i 4X3

0 -C2y2 = (^ ,-M ,-M ) 0 - (5X3 + 2x4)
1 1

^ X 3 - ( 5 x3+2X 4)-M

Subject to X3 - 5x4 ^ 4 
X 3 +  X 4  < 10

The solution is y 2i = (X3, X4)̂  = (0, 10)"̂ , Min (Z2 - C2) = -M-
■-1 ' ■-1 '

Also, Z5 -  C5 = CbB’’ 0

0

_0 = ( i^ ,-M , -M) 0

0

A _ 47+Â  ̂-  36
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The global min. is min. (Z2 -  0 2 ) = - M -  20. 

Hence Xrj becomes the entering variable.

P22 =

Kiyti
(4,0)

0 ^
1 0 "o'

0 = 0 = 0

1 1 1

136 0 o' 'o' "o'
Thus B"'P22 = 0 1 0 0 = 0

1. 36 0 1 I 1

Since Xb= (X2 1 , xn, Xi2)'̂  = , q = 3.

Hence Xi? becomes the leaving variable.
1

36 0 o' 1
36 0 o'

So B ‘ = I * 0 1 0 = 0 1 0

1
.  36 0 1

1
.  36 0 1

= B‘* of last iteration

The new basic solution

Cb = (47, - M, C2y2 2) = (47, - M, (5, 2)
^0^

vlOy
) = (47, -M, 20)

Iteration 3

CbB-' = (47, -M, 20)
36

J _
36

0 o'
1 0 = ( |,-M ,2 0 )
0 1

Subproblem 1
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Aiyi 5x1 + 3x2
Min (zi -  Cl) = CbB'* 1 -ciyi = ( i - M ,2 0 ) 1

0 0

- ( X i +  3 X 2 )=  ^'Xi - ^ X 2 - M

Subject to Xl + X2 < 9 

Xl + 4x2 ^  8

The solution is yn = (xi, X2)^ = (0, i f ,  Min (zi -  Ci) = - M -  1.5 

Subproblem 2

Aiy2 4x3

- (5X3 +  2 x 4 )

= 3x3 + 2 0  - (5x3 + 2 x4) = - 2 x3 - 2 x4 + 2 0  

Subject to X3 - 5 x4 ^  4

X3 + X4  < 1 0

The solution is y2s = (X3 , X4)^ = (0, 10) Min (Z2 -  C2 ) = 0

Aiyi 4x3
Min (Z2 -  C2 ) = CbB'* 0 -C2y2 = ( i - M ,2 0 ) 0

1 1

'-I ■-1 '
Also, Z5 -  C5 = C b B '* 0 -0  = ( j,-M , 20) 0

0 0

l iv v / LllW V aiiU U IC '.

P l 3  =

Aiyi3
(5,3)

o '
2 '6'

1 = 1 = 1

0 0 0

136 0 o' '6' 16
Thus B'*Pi3 = 0 1 0 1 = 1

1- 36 0 1 0 16_
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Since Xb= (A2 1 , xn, ^ 2 2)^ = ,q  = 2.

Hence xn becomes the leaving variable.

'l - i  O' I
36 0 o' 1

36 - {  O'
So B* = 0 1 0 0 1 0 = 0 1 0

0 i  1. 1
36 0 1 1

36 i  1.
The new basic solution

Xb=(A21,:A,13, A22f=B-'(10,l,lf =

CB = (47,Ciyi3, 20) = (47, (1,3)
v2.

, 20) = (47, 6, 20)

Iteration 4

CbB'* = (47, 6, 20)
36

0
- i  0 
1 0 
4 1

= (0.75,1.5,20)

Aiyi 5X1 + 3X2

Min (zi -  Cl) = CfiB'̂ 1 -Ciyi =(0.75,1.5,20) 1
0 0

- (xi + 3 x2 )

= 2.75x1-0.75x2 + 1.5 

Subject to Xl + X2 < 9 

Xl + 4x2 ^ 8

The solution is yi4 = (xi, xa)^ = (0, 2)^, Min (zi -  ci)=  0
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Subproblem 2

kiyi 4X3
Min (Z2 -  C2 ) = CbB"' 0 -C2y2 =(0.75,1.5,20) 0

1 1

- (5x3 + 2 x4)

= 3x3 + 2 0  - (5x3 + 2 x4) = - 2 x3 - 2 x4 + 2 0  

Subject to X3 - 5 x4 ^  4

X3 + X4 < 1 0

The solution is y24 = (X3 , X4 )^ = (0, 10) \  Min (Z2 --C2 ) = 0

-I '-1
Also, Z5 -  C5 = CbB'* 0 -0  = (0.75, 1.5,20) 0 = - 0.75

0 0

The global min. is Z5 -  0 5  = - 0.75 

Hence xs becomes the entering variable. 

' - I

P54 =

r x  _ i  o i r - i i  r - 4 . 1

Since Xb — ( ,̂2 1 , ^ 13, ,̂2 2)^ = ,q  = 3.

Hence A?? becomes the leaving variable.

1 0  r  
0 1 0
0 0 36

SoB* =
’  ^  o136 6 ^ '0 0 1

0  1 0 = 0 1 0

_ x  ± 136 6 - 1 6 36

The new basic solution
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Xb -  (^21, A.13, X5)^= B ' (10, 1, 1)^- 

c b  = (47, 6,0)

1
1

32

Iteration 5

CbB* = (47,6 ,0) 

Subproblem 1

0 0 1 
0 1 0 

-1  6  36
= (0,6,47)

Aiyi 5x1 + 3x2
Min (zi -  Cl) = CbB * 1 -Ciyi = (0 ,6 ,47) 1

0 0

- (xi + 3x2) = - Xl -  3x2 + 6

Subject to Xl + X2 < 9 

Xl + 4x2 ^  8

The solution is yi5 = (xi, X2)^ = (0, 2)^, Min (zi -  ci) = -6.3685 + 6  = - 0.3685 

Subnroblem 2

1 1
I ” .^/V4  ~r *T i

Subject to X3 - 5 x4 ^  4 

X3 +  X4 < 10

The solution is y2s = (X3 , X4)^ = (9, 1) Min (Z2 -  C2 ) = 0 

The global min. is min (zi -  Ci) = - 0.3685 

Hence Xi s becomes the entering variable.
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P l 5  =

Aiyi5
(5,3)

1.4737 ' 
1.6316 '12.263'

1 = 1 = 1
0 0 0

0 0 1 ■ '12.263' 0
Thus B*Pi5 = 0 1 0 1 = 1

-1 6 36 0 -6.263

Since xb=(X 2 i, Ao, \ s f  =
1

1
32

, q  = 2.

Hence Xn becomes the leaving variable.

'1 0 O' '0 0 1 ' '  0 0 1 '

So B* = 0 1 0 0 1 0 = 0 1 0
0 -6.263 1 -1 6 36 -1 12.263 36

The new basic solution

Xb -  (A.21, 1̂57 xs)^= B"' (10,1,1)^ =

CB = (4/ ,Ciyi5,U)= (47, (1, 3)1 I, 0) = (47, 6.368, 0)
11.6316)

Iteration 6

CbB * = (47, 6.368, 0) 

Subproblem 1

0 0 1 
0 1 0 

-1  12.263 36
= (0, 6.368, 47)

Aiyi 5x1+ 3x2
Min (zi -  Cl) = CbB'* 1 -Ciyi =(0,6.368,47) 1

0 0
(Xi + 3X2)
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= - x i - 3x2+ 6.368 

Subject to xi + X2 < 9 

Xi + 4x2 ^  8

The solution is yi6 = (xi, X2>^= (1.4737,1.6316)^, Min (zi - c i )  = 0 

Subproblem 2

A2y2 4x3

- (5x3 + 2 x4 ) = - 5x3 - 2x4 + 47

A 2y2 4x3
Min (z2 -  C2 ) = CbB'* 0 - C2y2 = (0, 6.368,47) 0

1 1

■-1' '-1
Also, Z5 -  C5 = CbB ' 0 - 0 = (0, 6.368,47) 0

0 0

Subject to X3 - 5 x4 ^  4

X3 + X4 < 1 0

The solution is y26 = (X3 , X4)^ = (9, 1) Min (Z2 -  C2 ) = 0

=  0

Since all the Zi -  Ci =  0. iteration 5 reaches the optimal solution, which is 

x i  =  ( x i , X 2 ) '^ = X , 5 y i 5  =  l  * ( 1 .4 7 3 7 ,1 .6 3 1 6 ) ^ ^  =  ( 1 .4 7 3 7 ,1 .6 3 1 6 ) '^  

xo = txi. = 1 * ro

xyj.a/i.  z. — A ]  T  J A 2 T  J A 3 -T Z.A4  =  1 . H - / J /  +  J  -  I . O J I O  +  0 ' ^ y  +  Z ' ^ l  =  0 3 . 3 0 8

4.1.1.2 Example Problem With No Solution

Problem

Maximize z = - xi - 3 x2 - 5 x3 - 2 x4 

Subject to 5xi + 3 x2 + 4 x3 ^  10

5 x i  +  X2  < 9

Xi + 4x2 8

X3 - 5x4 ^  4  

X3 +  X4 >  10
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(Xi,X2, X3, X 4 > 0 )

Solution

The original problem can be transformed to;
k\ k2

Maximize z = ^  (ciyij)^ij + ^  (C2y2j)>̂ 2j
7=1 7=1

s.t.
k2

^(Aiyij)>.ij+ ^  (A2y2j)>^2j= 10
H M

a

H
=  1

k.2

£  = 1

where A,ij > 0 (j = 1, 2 , ki).

It has the Simplex tableau as follows (using the big-M method):

Xii 1̂2 ^13..... 2̂1 2̂2 2̂3 ..... Xs X6 Xii Xl2 b

z ciyii ciyi2 ciyi3..... C2Y21 C2y22 C2Y23..... 0 -M -M -M

Xl2 0 0 0 1 1 1 0 0 0 1 1

Subproblem 1

xi = (xi, X2)^, Cl = (1, 3)^, Ai = (5, 3). The constraints are: 

5 x i  +  X2  <  9  

xi + 4x2 ^ 8
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(1.4737,1.6316)

Fig. 13. Feasible region of subproblem 1 of 4.1.1.2 

Subproblem 2

X2 = (x3 , X4)^, C2 = (5, 2)^, A2 = (4,0). The constraints are: 

X3 - 5x4 ̂  4 

X3 +  X4 >  10

in

X4

k

(9,1)

- 0.8

Fig. 14. Feasible region of subproblem 2 of 4.1.1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Iteration 0

X b= (X6, X7, X8)'^= (10, 1, i f  

C b  = (0 ,-M ,-M ),B  = B ' = I

Iteration 1

cbB '  =  c b = ( 0 , - M , - M )  

Subproblem 1

Aiyi 5x1 + 3x2
Min (zi -C]) = CbB‘* 1 -ciyi = (0 ,-M ,-M ) 1

0 0

(- Xi - 3X2)

= Xi + 3x2 - M  

Subject to xi + X2 < 9 

Xi + 4x2 ^ 8

The solution is yn = (xi, X2)^ = (0, 0)^, Min (zi -  ci) = - M

Subproblem 2

Aiyi 4X3

Min fzi -  C')') = cuB'^ 0 - OiVt = to - M - Mt n

— JA3 -r Z.A4  — m

Subject to X3 - 5 x4 ^  4

X3 + X4 > 10

The solution is y2 i = (X3 , X4 )^ = (9,1) Min (Z2 -  C2) = - M + 47 

The global min. is min. (zi -  Ci) = - M.

Hence A,i 1 becomes the entering variable.

Pii =

Aiiyii
1
0

(5,3)

1
0
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Thus B T i i  = I*Pn =

Given Xb = (xg, X7 , Xsf = (10, 1, 1) ,̂ so q = 2. 

Hence Xi becomes the leaving variable.

1 0 0 "

So B* = 0 1 0 
0 0 1

The new basic solution 

Xb=(X6,  A i i ,X 8 ) '^ = B '* ( 1 0 ,  1, 1)’̂ :

Cb = (0, Ciyii, -M) = (0,0, -M)

10
1
1

Iteration 2

CbB ’ = (0, 0, -M) * B'^= (0, 0, -M) 

Subproblem 1

r Aivti r  ̂ Yi - i -  'tv-,!

Subject to xi + X2 < 9 

X] + 4x2 ^  8

The solution is = (xi, X2)^ = (0,0) \  Min (zi -  ci) = 0.

Subproblem 2

Azyi 4x3
Min (Z2 -  C2 ) = CbB'̂ 0 -C2y2 = (0 ,0 ,-M) 0

1 1

- (- 5x3 - 2 x4) = 5x3 + 2x4 -  M

Subject to X3 - 5 x4 ^  4

X 3  +  X 4  >  1 0
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The solution is y2 2 = (xs, X4 )^ = (9,1) \  Min (z2 -  C2 ) = 47 - M 

The global min. is min. (z2 -  c2) = 47 - M 

Hence ’koo becomes the entering variable.

P22 =

A2y22
0
1

(4,0)

0
1

36

0
1

1
36 0 o' 'o ' 'o '

Thus B"'P22 = 0 1 0 0 = 0
1

. 36 0 1 1 1

Since xb = (xg, Xn, Xg)'̂  =
10
1
1

,q =  1.

Hence becomes the leaving variable.
1

36 0 o ' 1
36 0 o '

So B'  ̂ = 0 1 0 * 1  = 0 1 0

1
.  36 0 1 1

.  36 0 1

Xb -  (X2 2 , Xii,xs)^= B ' (10,1,1)^= 

CB=(C2y22.0,-M) = (- 47, 0 ,-M )

Iteration 3

CbB ' = (- 47, 0, -M)
^  0 0 
0 1 0

L - i  0 1.
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Subproblem 1

Aiyi 5x1 + 3x2

Min (z i - C ] ) =  CbB'* 1 -ciyi = ( - | , 0 , - M ) 1
0 0

- (- xi - 3 x2)

= -  47) +1] XI + [f,(M -47) +3] X2

Subject to xi + X2 < 9 

x i +  4x2 ^  8

The solution is yn = (xi, X2)^ = (0, 0) \  Min (zi -  ci) = 0.

Suboroblem 2 

Min (Z2 -  C2 ) = CbB'^

=  ^ X 3  +  2X4 - M

Subject to X3 - 5 x4  ^  4

X3 + X4 > 1 0

The solution is y 2 3  = (X3 , X4 )^  = (9, 1) Min (Z2  -  C2 ) = 0

Aay2 4X3

0 -C2y2 = ( - f ^ + f 6 , 0 , -M ) 0 - (- 5X3 - 2 x4)
1 1

L^J

Hence the iteration stops. 

From Xb = (A.2 2 , An, xg)"̂  =

L^J

, xg = H . Since xg > 0 and is an artificial variable, there is

NO feasible solution to this problem.
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4.1.2 Unbounded Feasible Region Case: Example Problem With Optimal Solution

Here the “unbounded feasible region case” means that at least one of the 

subproblems of the original problem has unbounded feasible region. In the following 

example, subproblem 1 has unbounded feasible region. In the first iteration, subproblem 1 

has unbounded solution. Hence its extreme direction is calculated and in the original 

problem the variable corresponding to subproblem 1 becomes the entering variable. In the 

rest of the iterations, subproblem 1 has multiple solutions, which is treated as the optimal 

solution case by picking anyone of these multiple solutions as the optimal solution.

Same as the discussion in Section 4.1.1, even if every subproblem of an original LP 

problem has unbounded feasible region, the original problem may not have solution. The 

computation procedure for this case is the same as the Section 4.1.1.2, hence the 

numerical example is not provided.

Problem

Maximize z = Xi + 2 x2 + X3 

Subject to xi + X2 + X3 < 12

- Xi +  X2  < 2

- xi + 2x2 ^ 8

Solution

The original problem can be transformed to:
kl k2 l\ 12

Maximize (ciyij)Aij + ^  (c2y2j)A2j (cidij)pij + ^  (C2d2j)fi2j
7=1 7=1 7=1 7=1

Id k2 a  12

S.t. ^(Aiyij)A,ij + ^  (A2y2j)A.2j (Aidij)pij+ ^  (A2d2j)p2j= 12
M  M  7=1 M

a
= 1

k2

X  ^2j =1
7=1
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where Xij > 0  (j = 1 , 2 , kO, > 0  (j = 1 , 2 , h)

It has the Simplex tableau as follows (using the big-M method):
Xii X12 X n  ■■■ A.21 X 22 A.23 ... It] 2 Hi3 - . M-21 li22 H23 ■■■ X4 X5 X6 b

z ciyii
ciyi3-

ciyi2 C2y21
C2y23 •

Ciy22 cidii
Cldl3

Cld|2 C2d21 C2d22 C2d23 . . . 0 -M -M

X4 Aiyn Aiyi2 A2y2i A2y22 Aidii Aidi2 A2d21 A2d22 A2d23 . . . 1 0 0 12
Aiyi3 A2y23 Aidi3

X5 1 1 1 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 1 0 1

X6 0 0 0 ... 1 1 1 ... 0 0 0 ... 0 0 0 ... 0 0 1 1

Subproblem 1

Xi = (xi, X2)’̂ , Cl = (1, 2f, Ai = (1,1)

(4,6)

Xi

Fig. 15. Feasible region of subproblem 1 of 4.1.2

Subproblem 2 

X2=(Xa),  02= (1), A2 = (1)

0 3 X3

Fig. 16. Feasible region of subproblem 2 of 4.1.1.2
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Having these two figures, we will be able to find the local optimal value corresponding 

to each subproblem very easily, just by observing the figures instead of by using the 

simplex iterations.

Iteration 0

12

Xb = ( X 4 ,  X5, Xe)^= 1
1^

C b  = (0 ,-M ,-M ),B  = B'  ̂= I

Iteration 1

C b B - ‘ = Cb  = (0 ,-M ,-M ) 

Subproblem 1

Aiyi X1 +  X2

Min (zi - ci) = CbB'’ 1 -Ciyi = (0 ,-M ,-M ) 1
0 0

(xi + 2 X2)

= - xi - 2x2 -  M 

Subject to - xi + xo < 2

uiai uua piuuiciii 15 ulc saiiic US me prooiem in secuon tience, tnis proDlem 

has unbounded solution and the optimal direction

( 2̂
dn  = (xi,X2)'^ =

vV

Hence Ui i directlv becomes the entering variable.

'2̂
(1,1)

Aidii 1 3

Pu = 0 = 0 = 0
0 0 0
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Thus B 'T ,, = I P „  =

Given Xb = (X4, Xs, xe) =
12
1
1

, so q = 1.

Hence xa becomes the leaving variable.
■ 1

3 0 o ' ' l
3 0 o '

So = 0 1 0 *1 = 0 1 0
0 0 1 0 0 1

The new basic solution

12 4
Xb = ( |4 i i ,X 5 , X 6 ) '^ = B '* 1 = 1

1 1

C B = ( c i d „ , - M ,  -M) = ((l,2 )
^2^

vly
, -M, -M) = (4, -M, -M)

Iteration 2

0 0 1

Subproblem 1

Aiyi XI +  X2

Min (zi - ci) = CbB'' 1 -Ciyi = ( f , - M , - M ) 1
0 0

-  ( X i  +  2 X 2 )

= j x i -  -|X2 - M  

Subject to - xi + X2 < 2

- Xi + 2x2 — 8

This problem has multiple solutions, one of them is yi2 = (xi, X2)^ = (4, 6) 

Min (z i - C i )  = -M - j
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Subproblem 2

Aayi X3

Min (Z2 - C 2 ) = CbB'* 0 - C2y2 = ( f , -M, -M) 0

1 1

(X3>= j X 3 - M

Subject to X3 < 3

The solution is y22 = (X3 ) = (0) ̂  Min (z2 -  C2 ) = - M

r
Also, Z4 -  C4 = CbB' - 0 = f

The global min. is min. (zi -  ci) = -M - j  

Hence Xp becomes the entering variable.

Pl2 =

Aiyi2
1
0

( 1, 1)

1
0

10
1

0

Since Xb= (ill i,X5 ,X6) =

r I n  o l  f i  n l  r 10 "I

J L J L ■ J

4 

1 
1

, q = 2 .

Hence xs becomes the leaving variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

So B ’ =
1 - f  0 
0 1 0 
0 0 1

1
3 0 o ' " l

3
10
3 0

0 1 0 = 0 1 0

0 0 1 0 0 1

The new basic solution

' 1 2 '
“ 2 "

3

Xb -  (ill!, A,i2, Xfi)̂  = B ' 1 = 1

1 1

Cb = (4, Ciyi2,-M) = (4,(l,2)
4^

, - M ) = (4,16, -M)

Iteration 3

CbB ' = (4,16, -M) 

Subproblem 1

i _io 03 3 ^

0 1 0
0 0 1

Aiyi X I +  X2

Min (zi - C i )  =  C b B ' ’ 1 -ciyi = ( f , f , - M ) 1

0 0

-  (Xi + 2X2)

Subject to - xi + X2 < 2 

- Xi + 2x2 ^ 8

This problem has multiple solutions, one of them is yn = (xj, X2 )^ = (4, 6 ) 

Min (zi - c i )  = 0

Subproblem 2

- (X3)= j x 3 - M
Aiyi X3

Min (Z2 -  C2 ) = CbB'’ 0 -C2y2 = ( | , f , - M ) 0

1 1

Subject to X3 < 3

The solution is y23 = (X3) = (0), Min (z2 -  C2 ) = - M
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Also, Z4 - C 4 = C b B ‘‘ - 0 = f

The global min. is min. (z2 -  C2) = - M 

Hence A,?-? becomes the entering variable.

Aiy23 'O'

P23 = 0 = 0
1 1

3
10
3 o' 'o ' 'o '

Thus B'*Pi2 = 0 1 0 0 = 0
0 0 1 1

2"

1

Since Xb= ([All, ^ 12, X6f = ,q  = 3.

' l 0 O' " i  10 
3 3 0 ' " l

3
10
3 0 '

So B-' = 0 1 0 0 1 0 = 0 1 0
0 0 1 0 0 1 0 0 1

Xb -  (lAii. ^ 12, ^23)  ̂= B '

Cb = (4,16, C2y2s) = (4,16, 0)

3

1 = 1
1 1

Iteration 4

CbB ‘ = (4, 16, 0) 0 1 0 
0 0 1
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Subproblem 1

'A iyi' X1 +  X2

Min (zi -  Cl) = CbB"' 1 -ciyi = ( f , f , 0 ) 1

0 0

- (xi + 2 x2)

=  - - j ( -  Xi +  2 X2 ) +  f

Subject to - xi + X2 < 2

- xi + 2x2 < 8

This problem has multiple solutions, one of them is = (xj, X2)^ = (4, 6 ) 

Min (zi - c i )  = 0 

Subproblem 2

Aiyi X3

Min (z2 - C 2 ) = CbB'‘ 0 - C 2 y 2  = ( f  , f , 0 ) 0

1 1

(X3)= | X 3

Subject to X3 < 3

The solution is y 2 3  = (X3 ) = (0), Min (Z2 -  C2 ) = 0

r
Also, Z4 -  C4 = CbB"' - 0 = f

"2" (4 )
=  (Xl, X2)’̂ =  P i i d i i  +  Xi2yi2 =  I + 1 f. = 3

20
1 3 y

X2  =  (X3 ) = X23y23 = 1 * 0= 0 

The optimal objective solution

Max z = CiXi + 0 2 X2 = (1, 2)
(16 A 

3

20  
V 3 y

+ 1 * 0  = f  = 18.667

4.2 Parallel Algorithm of the Decomposition Principle

From the preceding numeric examples done in the sequential computation procedure, 

we can write the flow chart of its parallel algorithm as follows:
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Optimal 
snln is

Master Proc:
Are the reeeived

Each proc.; 
Read input data.

Master proc.:
Send the value of CbB ’ to each processor

Master proc.:
1. choose the min. value among the 

values received. Choose the 
corresponding entering var.

2. compute B'*Pi to choose the leaving 
var.

3. compute the new CbB'*.

Each proc.:
1. receive the CbB'* value from the 

master proc.
2. compute the z\ - Ci value.
3. use the simplex method or IPM to 

find the value of Min (zi - Ci).
4. Send this value to the master proc.

Fig. 17. Flow chart of the parallel algorithm of the decomposition principle
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A code of parallel algorithm of the decomposition principle is implemented in 

MPI/Fortran based on the above flow chart. Different size of large-scale LP problems and 

different number of processors are used to test for its performance Description of 

problems’ sizes, number of processors (= np) used, computational time (in seconds, 

including I/O), parallel speed-up and efficiency factors (on Sun/Sparc Rhino workstation 

in the CEE department) is described and tabulated in Tables 1 - 3 .  The definitions for 

speed-up and efficiency factor are:

Speed up -   ̂processor
computation time by n processors

Efficiency = speed - up
number of processors (used to test the speed - up)

In all these tables, 1 common constraint is used, and the following notations are 

defined:

nblksize = the size of each block 

nblocks = number of blocks 

nconviter = number of converged iterations 

The total number of constraints (= ntotcon) and the total number of design variables (= 

ndv) can be given as:

np time speedup Efficiency

1 122

2 62 1.97 99%

3 43 2.84 95%

4 35 3.49 87%

Table 1: Numerical results of the parallel decomposition principle. Case 1 

(nblksize = 20, nblocks = 80, nconviter = 132)
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np time speedup Efficiency

1 147

2 76 1.93 97%

3 53 2.77 92%

4 43 3.42 85%

Table 2; Numerical results of the parallel decomposition principle, Case 2 

(nblksize = 40, nblocks = 40, nconviter = 42)

np time speedup efficiency

1 266

2 135 1.97 99%

3 95 2.80 93%

4 75 3.55 89%

Table 3: Numerical results of the parallel decomposition principle. Case 3

The above result shows that the parallel MPI/FORTRAN implementation has 

resulted in good parallel speedup, and efficiency factors. The MPI/FORTRAN used in the 

developed code will facilitate the porting of this parallel code to different computer 

platforms. The developed parallel MPI/FORTRAN LP decomposition code also offers 

computer memory advantages, since large number of independent constraints can be 

stored by different number of processors. Thus, large-scale (block diagonal constraints) 

LP problems that cannot be solved by a single processor (due to computer memory 

restrictions) can be “quickly” solved by the developed parallel MPI code.
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CHAPTER V 

A NEW DECOMPOSITION ALGORITHM: 

DIVISION BY THE INTERIOR POINT

The numerical study of the last chapter shows that the decomposition principle can 

be used for effective parallel computation. However, one major problem is that it only 

achieves the satisfactory result for the LP problems with the block angular structure. This 

chapter discusses a new parallel decomposition algorithm that saves time and can be used 

for general LP problems Basically, this algorithm divides the feasible region of a LP 

problem into multiple subregions (subproblems) based on the found interior point. Then 

multiple processors are used to solve these subproblems.

5.1 Introduction

the problem is nothing but an extreme point with the optimal objective value. The 

simplex method is a procedure that moves from one extreme point to another extreme 

point with a better objective. Hence, roughly speaking, the number of iterations of the 

simplex method is proportional to the number of extreme points of the problem.

The idea of the “division by the interior point” algorithm is to decrease the number 

of extreme points by dividing the feasible region into multiple subregions. If we can 

divide the feasible region into multiple subregions, the number of the extreme points of 

each subregion will be greatly decreased, compared to the original feasible region. For 

example, if the feasible region is a regular octagon, it has 8 extreme points. If we draw a 

horizontal line and a vertical line passing through the centroid of area, the feasible region
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is divided into 4 same polygons, each with 5 extreme points. Let subproblem be a LP 

problem with such a subregion as its feasible region and the original objective function as 

its objective function. It is obvious that the optimal solution of the original LP problem is 

the maximum/minimum value of the optimal solutions of all the subproblems. When each 

subproblem is solved by an individual processor for parallel computation, the original 

problem can be solved much faster.

To divide the feasible region into subregions, we need at least one interior point 

inside the feasible region as a base point for the dividing hyperplanes. There are existing 

algorithms to find the initial interior point, such as the algorithm discussed in Section

2.2.2 of Chapter 2. We will see later that the algorithm discussed in Chapter 2 is perfect 

for our purpose. For real world optimization problems, an interior point near the center of 

the feasible region can be reasonably derived directly from the context of the problem, as 

demonstrated in the numerical example of Section 5.3.

Last, but not least, it should be noted that in order to decrease the iteration number, 

extra constraints are added into the original problem, making the problem become even 

“larger”. This is the contrary of the common concept that the more constraints, the more

n (number of variables) and m (number of constraints). Indeed, n and m decide the size of 

the problem. However, is size everything? Imagine two problems with the same value of 

n and the same value m. If one problem has much less extreme points than the other, it is 

conceivable that its number of converged iterations, and hence the computational time, 

will be much less. Now let’s take a look at a numerical example:

Problem:

Max. Xl + 2x2 

subject to:

3.7321 Xl +X2< 1635.1
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X] +  X2 ^  6 5 0 .2 7  

0 .2 6 7 9 5  x i + X 2 <  4 3 8 .1 3

- 0 .2 6 7 9 5  Xl +  X2 <  3 3 4 .6 0

- Xl +  X2 <  2 6 3 .9 0  

- 3 .7 3 2 1  Xl -i-X 2< 1 9 3 .1 9  

0 .2 6 7 9 5 x 1  - X 2 <  5 1 .7 6 4  

Xl - X2 <  2 6 3 .9 0

3 .7 3 2 1  Xl - X2 <  124 8 .8

3 .7 3 2 1  X i + X 2 >  1 9 3 .1 9  

Xl +  X2 >  1 2 2 .4 7

0 .2 6 7 9 5 x 1  -I-X2> 5 1 .7 6 4

(Xi, X2 >  0 )

If we draw a figure of the above problem, it will show that the feasible region of this 

example is a regular polygon with 12 sides, with each constraint as one of the sides. 

Using the Simplex method, it takes 7 iterations to find the optimal solution (xi = 2 8 9 .7 8

divide the feasible region into 2  subregions. Correspondingly, the original problem is 

decomposed into 2  subproblems. These two subproblems are exactly the same as the 

original problem, except that each with a new constraint added. Let the subproblem with 

the added constraint xi < 9 5 .3 4 1  be subproblem 1 and the subproblem with the added 

constraint xi > 9 5 .3 4 1  be subproblem 2. It takes 5 iterations for the subproblem 1 to find 

the optimal solution (xi = 9 5 .3 4 1  and X2  = 3 5 9 .2 4 )  with the optimal objective value 

8 1 3 .8 2 . It also takes 5 iterations for the subproblem 2  to find the optimal solution (xi= 

2 8 9 .7 8 , X2  =  3 6 0 .4 9 )  with the optimal objective value 1 0 1 0 .7 6 . Since 1 0 1 0 .7 6  >  8 1 3 .8 2 , 

1 0 1 0 .7 6  is the solution of the original problem. And the optimal solution to the original
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problem is xi= 289.78, X2 = 360.49.

Although the iteration number is only decreased from 7 to 5 for this small LP 

example, it can be greatly decreased for large scale LP problem. For example, if we 

extend the above problem to a regular polygon with 8000 sides, it takes 3002 iterations 

for the Simplex method to solve it. If we solve the two subproblems divided by the 

interior point X] = X2 = 7002.82, it takes 1597 iterations to solve subproblem 1 and 1408 

iterations to solve subproblem 2.

The above division method of the feasible region in 2 dimensional space can be 

extended into multi-dimensional space, using the following strategy: let the known 

(solved) starting point be xi = xi', X2 = xz' , ..., Xn = Xn'. The original feasible region can be 

divided into 2“ regions (subproblems) by adding the following constraints into the 

original problem, respectively:

Xl < Xl' Xl > Xl' (2 regions)

/ \ / \

+ X2<X2 ' X2>X2 ' X2<X2 ' X2>X2 ' (4 regions)

 ̂   ̂   ̂ --—J ■‘ • ■ J  

/ \ / \ / \ / \ / \ / \ / \ / \

5.2 Parallelizing the Division by the Interior Point Algorithm

The parallelization of the division by the interior point algorithm is straightforward, 

as shown by the flow chart (Figure 18).

As we know, communication between the master processor and the other processors 

is nothing but an overhead for the effectiveness of a parallel algorithm. In the flow chart, 

the words “send” and “receive” are underlined to show the communication between the 

master processor and the other processors. We can see that very little information needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to be exchanged: only two vectors of size n and one scalar.

Master proc.:
Compute the initial interior point Xq. Then 
broadcast (send) this value to each processor

J

Each proc.:
1. Receive the value of x© from the master proc.
2. Add additional constraints based on xoto the 

original problem to generate the subproblem.
3. Solve the subproblem using the simplex 

method.
4. Send the optimum value of the objective 

function, z (a scalar) and corresponding 
variables’ values, x (a vector) to the master.

Master proc.:

61

the original problem. The corresponding x is 
the optimal solution to the original problem.

Fig. 18: Flow chart of the parallel algorithm of Division by the Interior Point

To make a parallel algorithm effective, another important point is to make the 

computation work divided as equally as possible for each processor. However, before we 

actually solve a LP problem, we have no idea what its feasible region looks like, not to 

mention to divide the feasible region in the way that each subregion has the same amount
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of extreme points. If we can find an interior point as close to the center of the feasible 

region as possible, that would be our best bet to divide the feasible region as equally as 

possible. As we discussed in Section 2.2.2, the algorithm introduced there is such an 

algorithm. Another advantage of that algorithm is that very little computation needs to be 

done to “find” the interior point. From the preceding flow chart we can see that since the 

work to find the interior point cannot be parallelized, it is important to keep its 

computation as little as possible to make the whole parallel algorithm more effective.

Actually, the initial interior point in the Section 2.2.2 is not calculated, but “given” 

as xo = (1 1 ... 1) .̂ This brings another benefit: there is no need for the master

processor to “send” its value of the interior point to each processor because they have this 

information from the very beginning. Hence the communication time is saved.

5.3 Numerical studies

A code of parallel algorithm of the “division by the interior point” is implemented in 

MPI/Fortran and the optimization problem of school desegregation is used as the 

large-scale test problem. The objective of the school desegregation problem is to

range must be satisfied, and school’s capacities in different school districts need to be 

satisfied also. For this optimization problem, the number of variables (NVAR) = NI x NJ 

X NK, and the number of constraints (NCON) = NI x NJ -I- NK + 2 x NK X NI, where NI 

= number of ethnic groups, NJ = number of school districts, and NK = number of 

schools.

Based on the context of this problem, we can see that there are some obvious interior 

points. For example, the number of students of ethnic group i living in district j divided 

by the number of schools is such a point. It is used as the dividing base point for the test 

problem.

The Different size of large-scale school desegregation problems and different
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number of processors (denoted as np in the following tables) are used to test for the 

code’s performance The results are tabulated as follows:

np NVARXNCON No. of iterations Time (sec) Speedup

1 2500 X 375 1764 198

2 2501 X 376 996 144 1.38

4 2501 X 377 959 134 1.48

8 2501 X 378 996 126 1.58

Table 4: Numerical results of the parallel division by the interior point procedure , Case 1

(NI=5, NJ = 20, NK = 25)

np NVARXNCON No. of iterations Time (sec) Speedup

1 3750 X 475 2672 575

2 3751 X476 1040 271 2.12

8 2501 X478 1040 248 2.32 1

Table 5: Numerical results of the parallel division by the interior point procedure , Case 2

(NI=6, NJ = 25, NK = 25)
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this study, two linear programming decomposition procedures are examined, then 

implemented and tested under the parallel computation environment. The first 

decomposition procedure, the decomposition principle, is custom-made for the linear 

programming problems in the special block-angular structure, while the second 

decomposition procedure can be applied to any linear programming problems. Both of 

the simplex method and the Interior Point Method are used in this study as subroutines to 

solve LP problems.

In the decomposition principle procedure, the unbounded solution case has been 

paid special attention since its solution procedure is different. The related concept of 

extreme direction is explained. Methods to find the extreme direction in both the simplex

 ̂        *

the method to find an initial interior point is discussed.

Small numerical examples with step-by-step calculations are included in this study 

to illustrate both of the two parallel decomposition procedures. The tabulated test results 

of these two parallel decomposition algorithms show satisfactory efficiency in solving 

large-scale linear programming problems.

6.2 Future Research

The algorithm of the decomposition principle procedure requires the problems in the 

block-angular format. If a general linear programming problems can be manipulated and
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transformed into this special format, it can be solved with this algorithm. Future work 

should be done on how to transform a general linear programming problem into this 

format efficiently so that the computation time saved by the decomposition principle 

procedure will not be wasted by the extra effort of the transformation.

The decomposition procedure of the “division by the interior point” idea can be 

applied to general linear programming problems. However, nothing is free. The 

generality of this algorithm is paid by the price of its efficiency: the performance of this 

procedure is subject to many factors such as the “shape” of the problem’s feasible region; 

the location of the interior base point; the method of dividing the feasible region, etc. In 

short, it is difficult, if not impossible, to divide the feasible region “equally” into 

subregions. Future work should be done on the methods of dividing the feasible region.

So far, the research on computational complexity of the simplex method is focused 

on the size of the LP problem, i.e, the value of n (number of variables) and m (number of 

constraints). As discussed in Chapter V, it is not only the size, but also the number of 

extreme points that directly links to the computational complexity. This knowledge is the 

foundation of the “division by the interior point” decomposition idea. In order to make

and exploited, which would be a very interesting future research topic.
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