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ABSTRACT 

THE INFLUENCE OF NON-EQUILIBRIUM PRESSURE ON 
ROTATING FLOWS 

Irfan Rashid Zardadkhan 
Old Dominion University, 2012 

Director: Robert L. Ash 

This study was undertaken to investigate the influence of pressure relaxation on 

steady, incompressible flows with strong streamline curvature. In the early part of this 

dissertation research, the significance of non-equilibrium pressure forces in controlling 

the structure of a steady, two dimensional axial vortex was demonstrated. In order to 

extend the study of pressure relaxation influences on more complex rotating flows, this 

dissertation has examined other rotating flow features that can be associated with 

hurricanes, tornadoes and dust devils. To model these flows, modified boundary layer 

equations were developed for a fluid column rotating near a solid plane including the 

influence of non-equilibrium pressure forces. The far-field boundary conditions were 

inferred using the asymptotic behavior of the governing equations, and the boundary 

conditions for the axial and radial components of velocity were shown to be dependent on 

the pressure relaxation coefficient, r]p and the characteristic angular velocity of the 

rotating fluid column, to. This research has shown for the first time that the inclusion of 

non-equilibrium pressure results in a free-standing stagnation plane at the top of a funnel 

shaped rotating fluid column, which is consistent with observational data for hurricanes, 

tornadoes and dust devils. It has also been shown that in the absence of non-equilibrium 

pressure, the stagnation plane for rotating flows cannot be observed. The velocity and 

pressure distributions resulting from incorporating non-equilibrium pressure effects were 



then compared with available observational data for tornadoes and dust devils. The 

general profiles of the velocity and pressure distributions were found to be in good 

agreement with physical measurements, which was not possible without introducing 

empirical turbulence effects, in the absence of non-equilibrium pressure effects. 
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NOMENCLATURE 

English Symbols 

a0 speed of sound 

A Affinity 

B wingspan of an aircraft 

e internal energy 

F non-dimensional radial velocity function 

G non-dimensional swirl velocity function 

H non-dimensional axial velocity function 

//max non-dimensional stagnation plane height 

L Lagrangian 

P pressure 

r,9,z cylindrical coordinates 

rom vortex core radius 

r t  inner core radius for multiscale vortex model 

r() outer core radius for multiscale vortex model 

R() Rossby number 

Rr circulation based Reynolds number 

s,S entropy 

t time 

T temperature 



u non-dimensional swirl velocity 

v velocity vector 

"v- specific volume 

vr radial component of velocity 

vg azimuthal component of velocity 

v. axial component of velocity 

Greek Symbols 

a,ft,(p Lagrange multipliers 

/?,,/?„ constants for the smooth blending vortex model 

T circulation 

r\ non-dimensional height 

77 pressure relaxation coefficient 

tjv volume viscosity 

k* high-frequency adiabatic compressibility 

jj. dynamic viscosity 

v kinematic viscosity 

£ non-equilibrium progress variable 

p density 

tv , rp volumetric and pressure relaxation times 

co angular velocity 

Q potential energy 
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CHAPTER 1 

INTRODUCTION 

The focus of this research is to further explore the role of non-equilibrium 

pressure in steady, incompressible flows. Recently, it has been shown that a mechanism 

for balancing the centrifugal forces that are produced near the centerline of a potential 

axial vortex with a viscously-coupled rigid-body central core is non-equilibrium pressure 

(Ash, Zardadkhan & Zuckerwar, 2011); the current work will examine more complex, 

multi-dimensional flows. 

Zuckerwar and Ash (2006, 2009) showed how it was possible to utilize 

Hamilton's Principal of Least Action, along with appropriate Lagrangian constraints, to 

introduce non-equilibrium pressure forces in the Navier-Stokes equations. The earlier 

work was concerned with the development of a more rigorous framework for the 

determination and use of bulk viscosity in fluids. However, a result of that analysis was 

the demonstration that there can be two types of bulk viscous effects—the classical 

dissipative bulk viscosity effect and a second, quasi-reversible, constant-pressure non-

equilibrium effect. The two effects cannot be partitioned. Additionally, their derivations 

showed that there was a constant-volume, quasi-reversible, non-equilibrium pressure 

effect that could be related linearly to the gradient of the material rate of change of 

pressure. Detailed derivations of these equations will be presented in Chapter 2. 

A non-equilibrium pressure contribution to a steady-state, incompressible fluid 

flow was considered originally to be nothing more than a curiosity. However, in 
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Zuckerwar and Ash (2009), it had been shown that a slow-viscous, Stokes flow past a 

sphere could exhibit non-equilibrium pressure behavior. Consequently, the author of this 

dissertation was asked to examine the possible non-equilibrium pressure implications on 

steady, incompressible flows with strong streamline curvature. 

The original focus was on axial vortices because of their simplicity and their 

relevance to a variety of aeronautical and geophysical flows. Those flows are modeled 

most effectively using cylindrical coordinates. In the process of setting up the axial 

vortex model, the pressure relaxation contribution was inadvertently switched from the 

gradient of the material rate of change of pressure to the material rate of change of the 

pressure gradient. That switch was not consistent with the earlier theoretical derivation 

but the exclusion of the extra terms associated with the gradient of the material rate of 

change of pressure can be justified on the basis of acoustic processes as will be shown in 

Chapter 3. When the material rate of change of the pressure gradient is considered, it will 

be shown that conservation of the azimuthal component of the momentum equation will 

result in a balancing term dependent on the pressure relaxation coefficient. 

For the case of an axial vortex filament, the governing conservation of momentum 

equations, including pressure relaxation, simplify to a second order non-linear ordinary 

differential equation. A logical approach was to solve these equations numerically. 

Initial numerical experiments were performed by considering a finite flow domain, which 

is classically known as a Taylor-Couette flow. 

The numerical experiments showed that when pressure relaxation was included in 

the conservation equations, there were slight deviations of the computed swirl velocity 
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from the theoretical Taylor-Couette velocity distribution. As the inner cylinder radius 

was decreased significantly and its angular velocity was increased, the numerical 

solutions showed that unlike the classical solution of the Taylor-Couette vortex, the swirl 

velocity increased initially from the prescribed inner swirl velocity before decreasing and 

reaching the swirl velocity of the outer cylinder. Although this type of behavior is not 

common for Taylor-Couette flows, it is commonly observed in vortex filaments. Once 

the inner and outer cylinder radii were set to zero and infinity (a very large value for 

numerical calculations), it was observed that the numerical solution had the 

characteristics of a typical vortex filament. 

For a vortex filament, the swirl velocity goes to zero both at the centerline and at 

infinity (far-field). Using this information, an analytical solution to the modified 

equations of motion with pressure relaxation was obtained (Ash, Zardadkhan & 

Zuckerwar, 2011). Details related to the development of this solution will be presented in 

Chapter 3. These results motivated the author to study the effects of pressure relaxation 

on more complex rotating flows. 

The axial vortex is an idealized one-dimensional flow. For further exploration of 

the impacts of pressure relaxation on rotating flows, the backward facing step and the lid 

driven cavity flow were selected for numerical computations. For steady-state flow 

simulations, only small deviations were observed in the flow structures when comparing 

flows with and without non-equilibrium effects. A subtle change in the numerical 

simulations of flows with non-equilibrium pressure effects was the demonstration that the 

vortices tended to be more coherent when vortices were stretched in the flow-direction, 

by increasing the stream-wise component of the flow; rather than forming an elongated 
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structure, the vortices split forming smaller circular vortices. When unsteady simulations 

of these flows were attempted, the author was unsuccessful in producing any useful 

results due to the instability of the numerical methods and further studies of these types 

of flows were abandoned due to resource constraints. 

Since the study of an axial vortex filament had produced useful and interesting 

results, it was decided to study similar flows, but incorporating axial and radial velocity 

components. The reason behind selecting these flows was the fact that a number of 

theoretical and analytical models for these flows were available in the literature. 

Although axial vortex filaments have been used extensively in the literature to model 

aerodynamic and geophysical flows, more realistic models are needed that incorporate all 

three velocity components. The earlier models will be discussed in detail in the 

following sections. 

The turbulent trailing-line vortices created by heavy aircraft are a primary factor 

controlling the capacity of the busiest international airports. These types of vortices can 

have long life-times and can pose severe hazards to following aircraft (Gerz, Holzapfel, 

& Darracq, 2002). Although aircraft separation standards are imposed, increases in air 

traffic require a careful re-examination of the basis for forecasting the potential hazard. 

Improvements in modeling these vortices can have a direct impact on aviation-related 

economic growth (Urbarzka & Wilken, 1997). 

1.1 Aeronautical and Geophysical Vortices 

The study of vortical flows like aircraft wake vortices, tornadoes, hurricanes, dust 

devils and waterspouts is of major interest in aeronautics, geophysics, meteorology and 
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fluid mechanics. The ability to model such vortices is important for a variety of 

applications, including aircraft wake hazard assessment, prediction of tornado and 

hurricane formation and subsequent trajectories, and assessment of their disaster-causing 

potential. The importance of non-equilibrium pressure in modeling these types of vortex 

flows has been discovered only recently and will be the focus of this dissertation. To 

date, the only axial vortex model that has incorporated non-equilibrium pressure in 

predicting its structure is the steady, incompressible axial vortex (Ash, Zardadkhan & 

Zuckerwar, 2011). The research described herein has been concerned with more complex 

non-equilibrium pressure effects. In order to develop this topic, it has been necessary to 

examine a wide spectrum of earlier theoretical and empirical vortex research. 

1.1.1 Aircraft Wake Vortices 

Wake vortices are shed by an aircraft as a consequence of lift generation. Just 

behind the trailing edge of an aircraft, a strong downward motion exists, whereas in the 

following region, there is a weak upwards motion. This creates a boundary layer 

separation and a roll-up of the vortex sheet and all the associated instabilities merge to 

create the wake vortices. The wake consists of two coherent, counter-rotating vortices of 

equal strength. The circulation of each axial vortex is proportional to the weight of the 

aircraft and its wing span (Devenport, Rife, Liapis, & Follin, 1996). The resulting axial 

vortices are the primary structures responsible for hazardous flight conditions. 

1.1.2 Dust Devils 

Dust devils are vortices that are generated on hot days over very dry terrain. The 

dust devil vortex cores can range from 1 meter in diameter to around 10 meters and can 
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be over 1000 meters tall. They are usually short lived and are rarely a threat to people 

(Morton, 1966). 

A number of dust devil observations were made by Sinclair (1964) in Arizona. 

He reported that he observed dust devil diameters between 1 meter and 45 meters and 

heights ranging from 1.5 meters to 1250 meters. The estimated maximum azimuthal 

velocity within the rigidly-rotating core of these dust devils can be estimated to be in the 

range of 5 m/s to 10 m/s. 

Dust devils are formed when hot air near the surface rises quickly through cooler 

and lower pressure air. Under the right conditions, the air begins to rotate and as the air 

rises quickly, the column of hot air is stretched vertically. The rising air causes the air 

near the ground to be pulled inwards near the base of the vortex. As the air rises in the 

vortex, it cools, loses buoyancy and stops rising. As the air is sucked into the vortex, it 

also pulls along dust and debris which make the dust devil visible and also accounts for 

its name. Dust devils usually last for a few seconds before they are dissipated. Sinclair 

noted that there has to be an upward axial flow in some sections of the flow but there can 

also be downward axial flow in the dust devil as well. Dust devils have been observed to 

rotate both in the clockwise and anticlockwise directions (Brooks, 1959). 

Dust devils have also been observed on the surface of Mars (Metzger et al., 1999; 

Balme & Greely, 2006). Martian dust devils are more intense than terrestrial dust devils, 

and can be a hundred times larger (Metzger, Carr, Johnson, Parker, & Lemmon, 1999). 

Martian dust devils have been of interest to scientists because of the threat that they pose 

to exploration equipment sent to Mars (Balme & Greely, 2006). 
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1.1.3 Tornadoes 

Tornadoes are far more violent than dust devils and far more destructive. Due to 

the destructive nature of the strong winds in tornadoes, there is virtually no data related to 

direct measurements within the tornado vortex. Most of the information regarding the 

structure of tornadoes comes in the form of visual and photographic records. Some 

measurements of tornadoes have also been made recently using radar systems (Nolan & 

Farrell, 1999). 

Tornadoes are always associated with clouds and storm fronts. Some portion of 

the vortex below the cloud base is visible as a funnel cloud. These funnels may extend to 

the ground. The lower part of the vortex is usually seen as a swirling vortex carrying 

dust, large debris and vegetation. The vortex is relatively narrow near the ground but it 

spreads out with increasing height, forming a funnel like shape (Morton, 1966). 

The most thorough early study of the structure of a tornado was by Hoecker 

(1960). He studied the Dallas tornado of April 2, 1957 using the imagery captured on 

film. Using the time rate of advancement of the film and the relative position of the 

debris suspended in the tornado, he was able to determine the three-dimensional 

distribution of the velocities in the tornado. The distributions of the tangential velocity 

profiles, 40 meters above the ground, were generally similar to the vortex models 

described in section 1.2. The maximum observed tangential velocity for that tornado was 

75 m/sec. The core diameter of the vortex increased slowly with height. The maximum 

observed vertical velocity was 70 m/sec, near the vortex centerline. Above a certain 

height, the vertical velocity decreased slowly but steadily with height until zero vertical 
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velocity was achieved at the nominal top of the funnel. This behavior indicates that a 

stagnation point exists in the tornado at the top of the funnel. 

The existence of that type of stagnation condition has usually been associated 

with vortex breakdown (Ward, 1972). The pressure distribution within a tornado is 

inferred from the velocity profiles and little is known about relevant temperature profiles 

within tornadoes. 

More recently, Kosiba & Wurman (2010) have used a ground-based velocity 

tracking method, collecting data from a mobile Doppler radar. Using data from the 1998 

Spencer, South Dakota tornado, they estimated the maximum inflow to be 23 m/sec near 

the ground, with an estimated outflow velocity of 10 m/sec at a height of about 40 meters. 

The maximum recorded tangential wind velocity was 79 m/sec which reduced gradually 

to 70 m/sec over a period of few minutes. A maximum downdraft of 60 m/sec was also 

reported at an altitude of 800 m. 

Ward (1972) was able to simulate the dynamic features of a tornado using a 

laboratory vortex chamber. He was able to simulate the tangential velocity profiles 

observed in actual tornadoes. He was also able to replicate the downdraft in the vortex 

core, which he associated with vortex breakdown and the onset of core turbulence. 

1.2 Mathematical models for aircraft wake vortices 

A number of mathematical models have been developed to describe the radial 

profiles of the swirl velocity in a rolled-up wake vortex. The most important models will 

be summarized. 
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1.2.1 The Rankine vortex 

The Rankine vortex (Rankine, 1869) is the simplest axial vortex model. A 

Rankine vortex incorporates a rigidly-rotating fluid column in the core region, 

surrounded by a potential vortex. The swirl velocity in the Rankine vortex is given by 

The Rankine vortex can be used effectively to model typical atmospheric phenomena 

both in the core and in the potential flow regimes, but it cannot predict the transition 

between the two zones and produces a non-continuous shear stress. 

1.2.2 The Larab-Oseen vortex 

The Lamb-Oseen vortex model was developed assuming that the swirl velocity 

distribution was produced by a potential line vortex that was decaying with time due to 

viscosity (Lamb, 1932). The potential vortex was used as the initial condition where the 

centerline velocity was impulsively set to zero. The transient velocity model is given by 

27tr r "core core 

core 

core 
( 1 . 1 )  

\ core 

(1.2) 

where, 

JO = V4ui core (1.3) 
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The Lamb-Oseen model is continuous over the entire flow regime, but it is a time-

dependent model and is singular along the centerline at zero time. 

1.2.3 Hallock-Burnham vortex 

An empirical model to define the swirl velocity in a line vortex was developed by 

Burnham and Hallock (1982) and is given by 

2 rtr r + r 2 ' (1.4) 

That formula represented the best curve fit for aircraft wake vortex velocity profiles 

compiled over several decades of flight operations. 

1.2.4 Adapted Lamb-Oseen vortex 

A model was developed by Proctor (1998) for wake vortices which employed the 

basic Lamb-Oseen vortex model but utilized a correction using Lidar velocity 

measurements of actual aircraft wake vortices. The swirl velocity for this model is given 

by 

ve(r) 
2nr 

1-exp -11.8826 
f r \0JS 

K B ;  
(1.5) 

where B is the wingspan of the generating aircraft. This model is valid only for r > rum. 

For smaller radial distances, the Lamb-Oseen model was used. 
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1.2.5 Smooth blending vortex 

The Proctor (1998) adapted model was further improved by Winckelmans, 

Thirifay & Ploumhans (2000) to produce a continuous, smooth velocity profile given by 

where j30, /3j and p are 10, 500 and 3 respectively. The purpose of this model was to 

blend the inner viscous and outer potential flow regions and produce a smooth profile 

with continuous shear stress. 

1.2.6 Multiscale vortex model 

A model developed by Jacquin et el. (2001), made use of multiple scales. It 

defined inner and outer core radii and used data from wind tunnel tests to model the 

tangential velocity distribution for a vortical flow. The model is given by 

with r t  < 0.015 and r « 0.15. The inner core was defined as the location of the 

maximum tangential velocity, whereas the outer core was the location where the 

(1.6) 

(1.7) 
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maximum circulation was first-approximated. The exact definition of the outer core 

radius was somewhat arbitrary (Jacquin, Fabre, Geffroy, & Coustols, 2001). 

1.2.7 Wood-White Parametric Model 

A model based on five parameters: (1) maximum tangential wind speed, (2) 

radius of maximum tangential wind, and (3-5) three power-law exponents that controlled 

the shape of the profile peak was developed by Wood & White (2011). The model is an 

empirical fit and uses root mean square errors to fit the model to the experimental data by 

adjusting the three power-law exponents in the model. 

1.2.8 Comparison of Vortex Filament Models 

Some common features of all these models are that the flow in the inner core is 

dominated by viscosity. The flow in the outer region is free from vorticity and behaves 

like inviscid or potential flow. The maximum magnitude of the swirl velocity occurs at 

the core radius. 

Although both the Rankine vortex and the Lamb-Oseen vortex are types of exact 

solutions to the Navier-Stokes equations, they do not adequately model physical vortices 

(Jacquin, Fabre, Geffroy, & Coustols, 2001). The Rankine vortex is not a continuous 

function over the entire flow regime and requires different functions for the core region 

and the potential flow region. The Lamb-Oseen model is continuous, but it cannot be 

used to model steady-state flows and it decays very rapidly. The vortices represented by 

the Lamb-Oseen vortex are weak vortices (Morton, 1966). The Hallock-Burnham vortex 

is an empirical model and is continuous over the full flow regime. The modified Lamb-

Oseen model is an empirical fit to the data in the potential flow regime, and is therefore, 
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more representative of physical flows (Proctor, 1998). The multiscale vortex allows for 

different core structures with different length scales. The smooth-blending vortex and the 

Hallock-Burnham model produce results which are very similar (Gerz, Holzapfel, & 

Darracq, 2002). Figure 1.1 shows a comparison of these different models. 
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Figure 1.1 Normalized tangential velocity profiles for various vortex models (Gerz, 

Holzapfel, & Darracq, 2002). 

1.3 Mathematical Models for Geophysical Vortices 

A considerable amount of work has been carried out attempting to model the flow 

patterns associated with the formation of various geophysical vortices. A lack of detailed 

flow measurements has led to debates over the actual structural features of these vortex 

phenomena. Several numerical models have been proposed to simulate dust devils, 

waterspouts and tornadoes. These studies have led to the division of the flow regime into 



five distinct flow regimes (Hatton, 1975). Figure 1.2 is a crude representation of those 

five distinct vortical flow regions. Region A is the viscous core and various models exist 

in the literature to describe this region. The Rankine vortex and Lamb-Oseen models, 

discussed earlier in Section 1.2, have been used in the literature to describe this region. 

The Burgers-vortex model assumes the radial velocity varies linearly with radius while 

the axial velocity varied with the altitude. This work has been replicated by Bellamy-

Knights (1974). Sullivan (1959) used a two-cell vortex model to describe the flow in this 

regime. 

Region B is the potential flow region which is sufficiently distant from the 

viscous core and the ground-coupled regions. The tangential velocity in this region obeys 

the well-known potential vortex solution, with velocity proportional to 1/r. 

The third region, C, is the boundary layer region away from the viscous core. 

This region was also studied by Bellamy-Knights (1974) using similarity transformations. 

Region D describes the interaction between the rotating viscous fluid core and the 

stationary ground plane beneath it. Most of the models used to describe viscous core 

region A fail to implement a no-slip boundary condition at the ground plane and therefore 

are not able to model this flow region. The similarity solution proposed by Boedewadt 

(1940) can be used to describe this flow. This model will be discussed in more detail in 

the next section. 
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Figure 1.2 Flow field showing (A) the viscous core, (B) the outer potential flow (C) the 

boundary layer away from the core (D) the interaction region (E) stagnation point. 

Region E, is the stagnation region which has been observed in many of these 

geophysical flow types (Hoecker, 1960; Sinclair 1963; Ward, 1972). This region has not 

received significant attention. Hatton (1975) modified the boundary conditions on the 

ground and the stagnation point away from the ground to obtain a solution that 

demonstrated the existence of a stagnation point. He concluded that the location of the 

stagnation point depended on a parameter that was proportional to the angular velocity of 

the viscous core above the interaction region. Similar studies by Raymond & Rao (1978) 

also showed that if the flow was assumed to be turbulent, then with specific combinations 

of Reynolds numbers and Rossby numbers, a stagnation point could be observed. Both 



16 

these models relied on the assumption that the flow was turbulent and the use of slip 

boundary conditions on the ground were required to achieve the stagnation point. Since 

both these models were based on the Bellamy-Knight model, they are transient and 

connot be used to describe steady-state vortices. 

1.4 The Boedewadt Similarity Velocity Distribution 

Regions A and D in Figure 1.2, can be best described as a near-rigid column of 

fluid, rotating above a solid boundary. This type of hypothetical flow was first analyzed 

by Boedewadt using similarity transformations (Boedewadt, 1940). A common feature 

of this modeling approach is that the velocity components are represented in cylindrical 

coordinates. The steady-state, axisymmetric governing equations in cylindrical 

coordinates are given by 

dv, vi dv, 1 dP (d2vr 1 dv v„ <32v ^ 
V, 11 + V. —- = bv 

dr r dz p dr 
•f + £- + • 

v dr2 r dr r1 dz2 j 
(1.8) 

dv„ vv„ dv„ 
v —— ^——— + v. —— = V 

r dr r dz 

{d2ve , ! dv9 ve | d\^ 

v dr2 r dr r2 dz2 j 
(1.9) 

dv, dv. 1 dP \d v, 1 dv, d v 1 
vr—^- + v—- = + v^—f- + - + —(1.10) 

dr dz p dz [ dr r dr dz J 

Boedewadt utilized the following similarity variable and non-dimensional velocity 

functions: 

^ z j f ,  v r  =  r c o F { r j ) ,  v d = r ( o G ( j ] ) ,  v, = sfvaH (?]), (1.11) 
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For a frictionless flow at a large distance from the wall, the radial pressure gradient can 

be computed using 

~ = ra,\ (1.12) 
p or 

and using boundary layer theory, it is assumed that the same pressure gradient acts in the 

viscous layer close to the solid plane. We can rewrite the governing equations as a set of 

ordinary differential equations given by 

F2-G2+HF'-F"+1 = 0, (1.13) 

2FG + G'H-G" - 0, (1.14) 

2F + H' = Q. (1.15) 

The boundary conditions imposed on the components of flow are no-slip conditions, 

hence all components of flow are zero. Away from the ground, Boedewadt (1940), 

suggested that the azimuthal component of flow reaches the constant free stream value, 

whereas there is no radial inflow and outflow. Since there is no radial component of 

flow, the continuity suggests that the axial component reaches a constant value. The 

boundary conditions are then given by: 

F(0) = 0, G(0) = 0, ff(0) = 0, 

F(co) = 0, G(co) = l. U'°' 

The non-linear ordinary differential equations (1.13)-(l. 15) with the boundary conditions 

(1.16) were solved numerically by Boedewadt (1940) and an improved numerical 
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solution was developed by Rogers and Lance (1963)*. These boundary layer equations 

will be revised to include non-equilibrium pressure forces in Chapter 4. 

* Their tabulated solutions for Boedewadt's functions will henceforth be referred to as Boedewadt's 
solutions. 
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CHAPTER 2 

GOVERNING EQUATIONS 

In this chapter, the equations governing fluid motion including non-equilibrium 

pressure contributions will be developed. The procedure for obtaining the governing 

equations with the non-equilibrium pressure was developed originally by Zuckerwar and 

Ash (2006). 

2.1 Derivation of the Governing Equations 

The governing equations of motion can be developed from the thermodynamic 

relationship between internal energy, entropy and specific volume for a single substance: 

de = Tds - Pdv- = Tds + ~dp. (2.1) 
p 

This relationship defines the variation of the specific internal energy when the 

variation is along a path that can be described in terms of changes in entropy and specific 

volume which is based on the irreversible thermodynamic studies carried out by Miexner, 

(1952) who examined acoustic absorption and sound generation in fluids when 

irreversible thermodyamic effects were included. Those early studies introduced and 

defined affinity (A), along with a non-equlibrium progress variable (£), in order to 

represent differential changes in specific internal energy along thermodynamic paths that 

departed from the conventional quasi-steady equilibrium paths, i.e. 

d e  =  T d s - P d v - -  A d E ,  .  (2.2) 
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Meixner's work showed that since thermodynamic paths involving any pair of 

independent variables were possible, non-equilibrium paths were also possible; therefore, 

the following thermodynamic paths could be considered: 

d e  =  T d s - A d£, (2.3) 

d e  = - P d v - - A d %  = - ^ - y d p - A d % .  (2.4) 
P  

By fixing different pairs of thermodynamic variables as constants, the following exact 

relationships or identities can be obtained: 

T  

A  =  -
f dê  

f de ^ 

(2.5) 

(2.6) 

P  =  - (2.7) 

These relationships suggest that non-equilibrium pressure and temperature can be 

sustained in a thermodynamic system. These non-equilibrium states have been studied 

by Casas-Vazquez & Jou, (2003). 

2.1.1 The Lagrangian 

Non-equilibrium temperature and pressure effects can be incorporated in the 

equations of motion by invoking Hamilton's Principle of Least Action. The Lagrangian 

can be represented using fluid mechanical notation while assuming that internal energy, 
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along with the kinetic and potential energy, can contribute to the optimal least action 

path. Letting Q represent the potential energy function, the Lagrangian can be 

represented as: 

L = p ± - n -e( T ,P,t) (2.8) 

This approach was used by Serrin, (1959) to develop the governing equations for 

inviscid, compressible fluid flow. Serrin used Lagrange multipliers to impose 

conservation of mass, minimum entropy and particle identity constraints. In order to 

incorporate non-equilibrium effects, the particle identity constraint has been replaced 

with a non-equilibrium conservation of reacting species constraint. The conservation of 

mass constraint is given by: 

= (2.9) 
Dt dxk 

The minimum entropy of a quasi-reversible non-equilibrium process constraint is given 

by: 

— = 0. (2.10) 
Dt 

The conservation of reacting species constraint employed to introduce non-equilibrium 

thermodynamic states is given in terms of the progress variable and its affinity as: 

-?-= LA , (2.11) 
Dt 

where L is a constant. 
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2.1.2 The Variational Formulation 

Using Lagrange multipliers % a and p in order to impose the desired constraints 

in the Lagrangian statement for Hamilton's Principle of Least Action, the following 

variation results: 

4jjj 1 
pvkvk-p(e + n)-(p 

r Dp dvk 
N 

—^- + p — -
Dt dxk j 

-ap --LA 
Dt 

r  DS 
-jdp 

Dt 
d¥dt = 0. (2.12) 

For the sake of convenience, the integral is represented as I and the integrand is called F, 

and Equation 2.12 can be rewritten: 

•l 
%)d¥dt = 0 .  

<„ v 

(2.13) 

The Einstein summation convention has been used to write Fas: 

f  =  ̂ p v k v k - p { e  +  t i ) - ( p  
f Dp dvk 

A 

-J- + p— 
Dt dxk j 

-ap '£l  
Dt 

-LA -PP 
pi 
Dt 

(2.14) 

Following the developments of Herivel (1959), the variation in F can be written: 

dF 
oF = —op + -

dp 

dF 

v dt j 

'dp} 

\  dt j  
+ -

dF 

'dpi 

( dp} dF x + —sv, + 
dv, J 

dF * 
+ f \S 

dvk 

\dxkJ 

\d*«j 

dF 
s 

dF * H US H t r*O 
rds^ 

dF 
+—<$£ + -

* a 

dF 
f d^ 

\dt j 

ds 

V dt, 

\ul j  

+ • 

dt 

dF 

f d s )  dF 
•3 

' ds ' 

d 
' ds " 

dx, 

•3 
1&J 

'd£" 
dx, V i  j  

(2.15) 
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It is convenient to examine the independent variations in the velocity components, 

density, entropy and the progress variable departures separately. The variation with 

respect to density yields: 

dF vkvk , v 
— = - j L j L - ( e  +  Q ) -  p  
dp 2 V ' 

r du^ 

\dp)s , t  dx<  

<p —--a 
k v 

£1. 
Dt 

LA P~.  
Dt 

(2.16) 

Using Eqs. (2.10) and (2.11), this variational relationship can be simplified as: 

dF v, v. k r k  

dp 2 
(e + Q.)- p 

r de  ̂  
<P-

dv. 

\8p) s , t  8X,  
(2.17) 

dF 
In addition, —r- = -<p. 

d\ 
dp 

\dt j 

(2.18) 

Interchanging the order of the volume and time integrals results in the integral relation: 

J f l f -
V 

dF 

a 
dp 

dt 

'dpN 

k st , v L , 

dF 

•'d\ 
dp 

dt 

'dp^ 

\dt j 
dtdV-. (2.19) 

By interchanging the order of differentiation and variation within the last integral, the 

following relationship results: 

* i d (  dp)dt 
{ d t )  

(2.20) 

Then, integrating the inner time integral in (2.19) by parts 
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dF x 

w\ 
< & > 

'l 

J \ d  bf 

j dt af>] w | 
. UJ 

5pdt = (2.21) 

j^rspd. (2.22) 

By making use of Eq. (2.21), Eq. (2.18) can be rewritten: 

'» * a 
d_p 

dt 

(2.23) 

Next, 

dF 
y — =  ~ < p V t .  

va* iy  

(2.24) 

Using similar procedures to the previous integral, the following integral can be evaluated 

m -

v '  dp^ 
d¥dt (2.25) 

r„ r / 

(2.26) 

Now by adding (2.16), (2.22) and (2.25), the variation of density translates to the 

requirement that 
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vk vk - { e  +  Q ) ~  p  f?l\  
\dpj, ,£ 

dvk dcp d , v 
+ <pj l-^—r~= 0 >  

oxk ot oxk 

(2.27) 

or, 

D(p 1 , x 
= -v ,v ,  - (e  + Q)-p  

2 v ' 
(2.28) 

And since 

de = Tds +—dp => p 
P 

r 8e  ̂  

\dPJs,t P 
(2.29) 

Eq. (2.28) can be rewritten: 

Dtp 1 

Dt 2 
= ~vkvk -(e + Q)-

P_ 

P 
(2.30) 

The variations of the individual velocity components were considered next. The 

derivatives with respect to the kth velocity component can be written: 

dF d% _ ds dp 
= pvk -pcc — -pP—-<p 

dv, dx. 5xk dxk 

(2.31) 

while the derivative with respect to the divergence of the velocity becomes: 

dF 

\  d xk j  

-pv,  (2.32) 
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and 
8F 

8t 

(2.33) 

Now, 

m 
8F 

" al ^ 
dx 

\dx.j  * 
d x i  

i / 

dF 

'dv^ 

ydXU 

¥-

(2.34) 

Hence, the variation of velocity component, v*, requires that: 

8s dp dpcp 
pv* ~ pâ t~ pp^~ +  (p~z a — '  oxk oxk oxk oxk 

(2.35) 

or, 

8% a 8s 8q> 
v, =a-s-+B + —-

8xk 8xk 8xk 

(2.36) 

Next, 

8F 

Ts'~p 

r 8e 

\ds J p A  

(2.37) 

Using Eq. (2.5), 

8F 

8s 
=  - p T ,  (2.38) 
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dF 

.(  ds^ 
7 — 
{ d t )  

= ~pP,  (2.39) 

and 

dF a rt~\=-p vkp-
O S  

\d x
k  j  

(2.40) 

Employing integration by parts similar to Eq. (2.22) and Eq. (2.24), the variation of 

entropy requires that 

pT--- (pP)-  ~^-{pv k P) = 0, 
ot ox. 

(2.41) 

or, 

pt = j-(pfi)  + v* -&(p0) + 
ot ox, ox. 

(2.42) 

pT = ~~{pP)  + PP^ =$pT = p^-  + P^~ + pP^,  
Dt dx. Dt Dt dx. 

(2.43) 

pT = p-@- + P 
Dt 

r Dp dvk 
A 

+ p —-
Dt dxk j 

(2.44) 

Using Eq. (2.9), 

p t . p d l ~ t . p f  
Dt Dt 

(2.45) 
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Finally, 

d F _ _ _  (  d e ^  

% ~ PU4„ 
(2.46) 

Using Eq. (2.6), 

8F =  - p A ,  (2.47) 

dF 

) ( % }  
I  d t ,  

--pa, (2.48) 

 ̂ dF and ^ = -pvta 
r q£\ 

(2.49) 

Employing integration by parts similar to Eq. (2.22) and Eq. (2.24), the variation of the 

progress variable requires that 

5 
p A - — ( p a ) - — - ( p v k a )  =  0 .  

dt oxk 

(2.50) 

Rearranging, 

. d , v dvk d , , 
PA--(pa) + Pa- + ,l-(Pa), (2.51) 

and using the definition of the material derivative, 

. D , , dv. Da Dp 
p A  =  — ( p a )  +  p a — -  = >  p A  =  p  +  a - 1 -  +  p a  

Dr ' dx, Dt Dt dx. 
(2.52) 
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Gathering all the terms and making use of the continuity constraint, 

Da 
pA = p + a 

Dt 

f Dp dvk 
A 

—L~ + p—-
Dt dxk j 

A = Da 

~Dt 
(2.53) 

2.1.3 Equations of Motion 

The equations of motion can now be developed incorporating the requirements 

resulting from the variations of density, velocity components, entropy and the progress 

variable. From the variation of density Eq. (2.30), 

d(p d<p 1 
• + v, 

dt dx, 2 
= ~v*v* ( e  +  Q ) - (2.54) 

Subtracting vkvk from both sides, 

d(p 

~dt 
+ vt 

dcp 

\dx< 

\  (  _ v  P 
•~vkvk -(e + n )  .  
2 p  

(2.55) 

Substituting from the variation of velocity components Eq. (2.36) 

dcp 

~~dt 
— K 

dE, ds 
a—2- + /?— 

V dxk dxk J 

1  t  r ^ \  P  

=  - ~ v k v k  ~ { e  +  n )  —  
2 p 

(2.56) 

Now, taking the gradient of this expression with respect to x,, yields: 

d d(p d 

dx, dt dx, 

f dE, ds X 

a——+ /? 
dx, dx, V VAk k y 

( v k v k ^  
dx, / V / 

A ( e + n ) _^ 
dx,v ' dx 

{ p \  

i \  PJ 
(2.57) 

By employing the vector identity: 



_a_ 

dx, \  *• j  

dv, 
V* dxk 

+£jkVj 
' - ^ 

' k m n  
\  0Xm  ,  \  m  J  

dv 
and substituting for —- from Eq. (2.36), 

dx„ 

dv„ _ d2<p +. 5 
f  ,  „  \  

qx 
m  m  n  m  \  n  J  dx„ fix fix dx 

a + • 
dx, 

f a 
fi— 

.y  dx.  v 

then using the Levi-Civita to Kronecker delta relationship, 

£,jk£kmn = £,jk£mr,k = ~ SJjm, Eq (2.58) can be rewritten: 

vk vk 
dx, 

= v,. 
, v 

fiv> 

fix,. 
*- + 

+(d,j j n  ~sj j m)  
d2q> d 

v — + v ,— 
fix„fix„ dx, 

a 
m V 

k 
dx, 

+ v. 
ds 

n  J  dx, m \  dx, » / _  

Upon applying the properties of the Kronecker delta function, 

d_( 

dx, 

vk vk dv. 
• + v. 

dx, 1 dx. 

' d t  d s ^  
a — ^ - + B  

dx. dx, J J 

- v .  
dx j v 

n ds 
a—+ b — 

dx, dx. 

Substituting Eq. (2.61) into Eq. (2.57) 

d d(p 

dt dx. 
-v .  

dx, 

fi£ ds 
a- + fi-

dx. dx, k y dx, 

d£ a ds 
a-2- + /3-

i \  dx, dx, 

+v. 
dx. 

d% ds 
a — + B —  

dx, dx 
-v .  

' 
dx. 

d $  a d s  
a — + B —  

fix, fix, 

k  W J l k  

\ 

dv, = -vk —L + 
dx, 

de dQ P dp 1 dP 
• + 

fix, fix, p fix, p fix, 

Now, differentiating Eq. (2.36) with respect to time yields 
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d d(p dv, d f d% „ds^ 

dt dx, dt dt 
a— + ft 

v dx, dx. i V 
(2.63) 

Substituting this relationship into Eq. (2.62) 

dt dt 

f di; ds 
a  —  + B —  

dx, dx. i  /  

dv, 

dx, 

( dt ds 
a — + fl— 

i \  dx dx, 

dx 

dv. 

\ di; . ds 
a—^+fi— 

dxk dxk 

+ 

k y dxt 

+ 

+v. 
dx. 

d% ds 
a  —  + B —  

dx, dx, j 
- v. 

dx, 

d% ds 
a — + B— 

dx, dx. v 
+ 

i  

de 5Q P dp 1 dP 

dxt dxt p1 dx/ p dx, 

(2.64) 

Dv, D 

Dt Dt 

d4 p ds 
a  —  + B —  

dx, dx, i / dx. 
i  V 

d% p ds ^ 
a—s~ + ft— 

dxk dxk j 
- + 

de dQ P dp 1 dP 

dx, dx, p1 dx, p dx, 

(2.65) 

Hence, 

D_ 

Dt 
a k  

dx. 
+ -

dv. * -a-^~ 
dx, dx. 

d£ Da D 
—— + a— 

dx, Dt Dt 
k  

ydx, y  

+ • 
dv, * a-
dx, dx. 

(2.65) 

Using Eq. (2.53), 
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A— + a— 
dx. Dt 

r d $ \  d v k  

kd x j  dx. dx. 

= A— + a 
dx, 

= A— + a 
dx, 

d_ 

dt 

r df" 

kdx,j  
+ v. 

fix. 

rd£ 

\ d x , J  

dvk dt; 
+ —-a—-

dx, dxl  

dx, 

d% d% 

< v dt 
• + v, 

dx, k y 

dvk d% dvk dE, 
k  +—-a-

dxl dxk dx, dxk 

(2.66) 

M  d ( D ^  
^a-^ + a 

dx. dx, v Dt j 
(2.67) 

Similarly, 

D_ 

Dt 
e-

V d x i J  

dv, 0 ds ds 
p- = T-- + f3 

dx, dx, dx, dx. \Dt j 
(2.68) 

Substituting Eq. (2.67) and (2.68) into Eq. (2.65), 

& - a * - a ±  
Dt dx, dx, K D t y  

,ds_ 

dx. dx. 

r dŝ  

, \ D t j  
= + 

_5Q + jP_a^__l_aP 

dx, dx, p1 dx, p dx, 

(2.69) 

Using Eq (2.2) and Eq. (2.10) yields the relationship 

9 f 
Dt dx, p dx, dx, V Dt, 

(2.70) 

Then, rewriting Eq. (2.70) in vector form: 

Dv _ 
p— - -pVQ - VP + paV (£i) 

I Dt , 
(2.71) 
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This equation can be recognized as the inviscid conservation of momentum 

equation with an extra non-equilibrium term. By utilizing Hamilton's Principal of Least 

Action and the three Lagrange-multiplier constraints, Zuckerwar and Ash (2006) found 

that a fluid flow with negligible frictional dissipation could still be affected by quasi-

reversible non-equilibrium processes. The research described in this dissertation has 

explored subtle aspects of those implications. In order to do this, it is necessary to recast 

the non-equilibrium part of Eq. (2.71) in terms of more-conventional dependent variables. 

If p [ ^ , P , s )  is the molar density of a fluid, we can expand it about its equilibrium 

point: 

d p  =  d p )  'dp" 

ydP j^s 

d P  +  
\ ds 

d s ,  (2.72) 

so that 
Dp 

Dt 

( a-A dp £>£ f dp ̂  DP f dp 
• + • + 

Ds 

dE, )p v Dt v dP )iyS Dt V ds ,, Dt 
(2.73) 

Using Eq. (2.9) and Eq. (2.10), 

-pV*v = 
/ a N dp d £ _ ( d £  

dP et)r,s Dt \U1 

DP 

, Dt 
(2.74) 

Therefore, we can write: 

f  

k  
Dt 

V*v + -
Up J4, 

DP 

Dt 

'*p 
(2.75) 
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From acoustics, the high-frequency adiabatic compressibility is defined 

P 

dp 
(2.76) 

Utilizing this definition, Eq. (2.75) becomes: 

pi 
Dt 

P V.v- p< DP 
fx \ dp 'dp^ 

d $ ) p . s  \ d $ ) p , s  

Dt 
(2.77) 

Consequently, Eq. (2.70) can be written: 

Dv 
p— = -pVQ - VP + paV 

Dt 

P vi ~Pk7 DP ^ V«v + 1 

dp /a N dp 

d£jr, ,  Wj, , ,  

Dt 
(2.78) 

Zuckerwar & Ash, (2006), defined characteristic volumetric and pressure relaxation 

times: 

T „  =  
-p 

T — 
-P*s 

dp' ' d p ]  

P, s  

(2.79) 

Then, Eq. (2.78) could be written in the more compact form: 

Dv _ „ DP 
p— = -pVQ-VP + paV rN'V + tn 

Dt \ Dt 
(2.80) 

If these relaxation times (rv and vP) can be modeled as constants, then, 
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(2.81) 

Since the divergence of the velocity vector can be related directly to the material 

rate of change of density using the conservation of mass, Eq. (2.81) can be interpreted as 

containing a pair of non-equilibrium terms involving gradients of the material rates of 

change of density and pressure. The two non-equilibrium terms are scaled with a 

volumetric relaxation time and a pressure relaxation time, along with the Lagrangian 

constraint parameter. When dissipative viscous effects are introduced into the equations 

of motion, we observe that the non-equilibrium "density term" as written in Eq. (2.81), 

has the same form as the bulk viscous term describing a Newtonian fluid. Hence, the 

Hamilton's Principal route for deriving the equations of motion for a flow that is capable 

of non-equilibrium behavior has resulted in a volumetric relaxation affect that has the 

same form as bulk viscous dissipation along with a pressure relaxation affect that was not 

anticipated. 

Since patv represents the same type of parameter as traditional volume viscosity, 

an overall volume viscous parameter given by r\v = parv can be introduced, and, 

similarly, a pressure relaxation coefficient, rj,, = paxr, can be defined so that the vector 

form of the conservation of linear momentum can be written: 

Introducing the dissipative viscous terms for a Newtonian fluid results in a 

governing conservation of momentum equation similar to the Navier Stokes' Equation: 

p£ l  = _pVQ - VP +  t j V(V ' v )  +  7„V—.  
H Dt H ,v K " Dt 

(2.82) 
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Dv DP \ 

P = -VP+TlnW—-~pVQ + 
Dt ' Dt 

( 

v j  , 
V(V»v)- / iVx(Vxv) .  (2.83) 

2.1.3 Incompressible flow simplifications 

In the absence of body forces and using the Einstein summation convention, 

Eq.(2.83) can be simplified for incompressible flows, with an allowance for sound 

production by retaining the terms in braces below: 

Dvt dP D dP d\ 
P  L = + 77„ + L i  f + 77 

Dt dx, Dt dx, dx, 

dvk dP 

dxt dxk 

[ n .  + XA^) d / 1 Dp 

dx\p Dt, 
(2.84) 

Using the definitions for r j v  and T j p ,  it has been possible to demonstrate that to very 

good accuracy, (Ash, Zardadkhan, & Zuckerwar, 2011), 

_ rjv +1/3// 
(2.85) 

It is therefore logical to suppose that the last (braced) term in Eq. (2.84) is a type of 

acoustic shunt, where 

dvk dP 2 d f 1 Dp 
—- — = a , 

3x( dxk dxt \p Dt 
(2.86) 

Consequently, Eq. (2.84) can be simplified to: 

Dv, dP 

Dt dx. 

D_dP d2v. 

Dt dx. 
(2.87) 

The vector form of this equation can be written: 
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p^ = -VP + t]P-^VP + //V2v. (2.88) 
D t  ' D t  

2.2 Summary 

In this chapter, the governing equations for fluid flows utilizing Hamilton's 

Principle of Least Action, along with Lagrange multiplier-based constraints, have been 

derived. The resulting equations resemble the traditional Navier Stokes' equations for 

incompressible fluid flow with the exception of a term that allows for the departure of 

pressure from its thermodynamic equilibrium state. 
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CHAPTER 3 

THE STRUCTURE OF AN AXIAL VORTEX 

This chapter will examine the influence of pressure relaxation on a two-

dimensional axisymmetric axial vortex. 

3.1 Introduction 

For short periods of time, natural vortical flows like aircraft wake vortices, 

tornadoes and dust-devils resemble steady line vortices. When the standard Navier 

Stokes equations are employed, it is not possible to obtain a steady-state, axial vortex 

solution that is valid over the entire domain for a steady line vortex. The Lamb-Oseen 

vortex (Lamb, 1932) is a model used to describe a line vortex, but it is an unsteady 

solution and dissipates rapidly with time. A direct solution of the Navier Stokes equation 

results either in a rigid rotating column or a potential vortex that decays as j/. This 

type of model can predict the far-field flow behavior of a vortex but the model cannot 

predict the flow structure in close proximity of the vortex rotational axis. 

In the late nineteenth century, Rankine had already recognized that it was 

impossible to model the core of a vortex filament using only a potential flow model 

(Rankine, 1869). He assumed that the inner core behaved like a rigid core and at some 

distance, the rigidly-rotating core velocity was matched with an outer potential vortex 

velocity distribution to obtain a continuous velocity solution. However, Rankine's 

velocity distribution was incompatible with viscous fluid behavior due to the 

discontinuity in the slope of the velocity distribution. 
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The exact solution to the Navier Stokes equations proposed by Oseen and Lamb 

treated the flow as an initial-value, vorticity diffusion problem. A potential flow vortex 

was assumed to be subjected suddenly to a viscous, zero-velocity centerline. Subsequent 

experimental comparisons by Gavindaraju & Saffman, (1971) illuminated inconsistencies 

between the Lamb-Oseen vortex model and experimental axial vortex measurements. 

When the non-equilibrium pressure terms were introduced in the Navier-Stokes 

equations, it was possible to find a steady-state axial vortex velocity distribution that is 

valid and continuous throughout the flow domain; that recent development (Ash, 

Zardadkhan and Zuckerwar, 2011) follows. 

3.2 The Governing Equations 

The governing equations for incompressible flow with pressure relaxation, 

partitioned with respect to the approximation for sound generation were derived in the 

previous chapter. In vector form, Eq. (2.88) can be written: 

In order to examine an axial vortex, it is convenient to write the vector 

components of that equation in cylindrical coordinates. The resulting equations are 

nearly the same as the standard Navier Stokes equations with the exception of the 

pressure relaxation term j]p—VP. The standard form of the continuity equation for 

p— = -VP + rjp —VP + fff2v. 
Dt Dt 

(3.1) 

Dt 

steady incompressible flow in cylindrical coordinates is given by: 

(3.2) 
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For steady, axisymmetric incompressible flow, the radial component of the 

conservation of momentum equation is then given by: 

dv v., dv 
v„ —r- —  ̂+ v. —r- = V 

dr r ' dz 

^ d2v, 1 dv ->2 A 

dr r dr r dz 

f t p  

/ 

d2P d P 
v, —- + v. 

r dr2 * dzdr 

\_dP_ 

p dr 
(3-3) 

the azimuthal component is: 

dva vv„  dv„ 
v —- + + V —-

r dr r 2 dz 

rd\ , * dv, 

dr2 r dr 

2 . .  A  
e "9 -T + -

dz2 
+ v P 

r k d r, 
(3.4) 

and the corresponding axial component is: 

dv. dv. d v. 1 dv. d v2 rjp 
V,—— +  v .—- =  v \ — f -  +  -  +  f  +  —  

dr dz dr r dr dz p 

d P d P 
v + v. —-

drdz * dz 

\ dP 

p dz 
(3.5) 

For flows with no axial or radial velocity components, the continuity equation is satisfied 

trivially. Neglecting any axial flow, the axial component of the conservation of 

momentum equation is not required. The radial component reduces to: 

P r ~ 8r 
(3.6) 

exhibiting no direct influences due to pressure relaxation. However, the azimuthal 

component of the conservation of momentum equation: 

0 = 
( a2 

d v, 1 dvg 
•> + 

dr r dr 
e + *1,' 

'dp 

k d r, 
(3.7) 
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includes a cross-coupling between the swirl velocity and the radial pressure gradient. In 

the absence of pressure relaxation, the radial component of the conservation of 

momentum equations is trivial; however, with the included pressure relaxation term, the 

radial pressure gradient expression, Eq. (3.6), can be substituted into Eq (3.7) to get: 

3 f ^2 i \ ve , .,( d vg | 1 dve ve 

v  d r 2  r  d r  r 2 ,  
P J J p - f  +  M  

r 
= 0. (3.8) 

The resulting equation (3.8) is a non-linear ordinary differential equation. That ordinary 

differential equation can be solved for the case of an axial line vortex. Since the 

centerline swirl velocity must be zero, and the far-field swirl velocity should converge to 

a prescribed circulation potential vortex, the following boundary conditions can be 

utilized: 

l i m  v f l ( r )  — »  0 ,  l i m  v0(r) ->• . (3.9) 
r->0 r ->oo 2nr 

Making use of the kinematic viscosity, pressure relaxation coefficient and a specified 

circulation, the following dimensionless variables can be formed: 

= V^V"' vo =, r'r— " ( r ) '  ( 3 - 1 0 )  
2n^vt]p 

Thus, the dimensionless governing equation can be written: 

•"2—^• + r^:-u + R2ui =0, (3.11) 
5P dr 

where Rr is the circulation-based Reynolds number defined as: 



Rv =-±-
2 nv 
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rn 

and the transformed boundary conditions are: 

limw(F)->0, lim u ( r )  -> l\. (3.12) 
F->0 

3.3 Steady-State Solution 

In order to solve the non-linear ordinary differential equation, it is often 

convenient to introduce the following dimensionless independent variable, £, and an 

associated scaling parameter, k, given by: 

(.jSzltnr. (3.13) 

Upon substituting these expressions into Eq. ( 3.11), the resulting transformed equation 

becomes: 

0 = -(1 + *2)k + 2*V. (3.14) 

This is a well-known standard elliptic differential equation whose solution is the Jacobi 

elliptic sn function. This solution, however, is not appropriate for satisfying the 

boundary conditions for an axial vortex. 

Alternatively, a simpler solution to Eq. (3.11) exists in the following form: 

"(F)=iF7*p (3I5) 
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Using that expression, the resulting dimensionless velocity depends only on the 

circulation-based Reynolds number. If the vortex core radius is defined as the radial 

distance where the swirl velocity is maximum, the core radius can be obtained by taking 

the first derivative of the swirl velocity and equating it to zero. That is, 

=  ( 3 1 6 )  
ar 

this requires that 

128r2 
= 0, (3.17) 

%ra,re + {%f 2 + ) 

and consequently the dimensionless core radius is given by 

F~~&- <3J8> 

By substituting Eq. (3.18) into Eq. (3.15), the corresponding dimensionless 

maximum swirl velocity can be written: 

(3-19) 
r 

Definitions (3.10) can be utilized in the dimensionless solution, Eq. (3.13), to 

obtain the dimensional forms of the core radius and the maximum swirl velocity: 

^ 4 ^ ,  ( 3 . 2 0 )  
4/r v 2v 

and 
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2v 
V « = J —  •  ( 3 . 2 1 )  

3.3.1 Properties of the Steady-State Axial Vortex Solution 

Converting dimensionless Eq. (3.15) to its dimensional form permits the swirl 

velocity to be represented in terms of the core radius and the maximum swirl velocity, i.e. 

".(-•) = 2 (3-22) 
(''/r,,,,) +1 

In the absence of pressure relaxation, Eq. (3.20) shows that the core radius will be zero 

and the maximum centerline velocity will be infinite, indicating that a potential flow 

vortex solution results from satisfying the radial component of the Navier Stokes 

equation when the azimuthal velocity varies only with radius. For very large values of 

the pressure relaxation coefficient, the inner core of the vortex tends to behave like a 

rigid-body rotation. 

The size of the vortex core is related linearly to the magnitude of the circulation. 

On the other hand, the maximum swirl velocity does not depend on circulation; rather, it 

is a function of the pressure relaxation coefficient and the viscosity. 

The steady state solution Eq (3.22) is functionally the same equation that was 

proposed originally by Burnham & Hallock (1982) using empirical fitting of 

experimental data for aircraft trailing line vortices. 
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3.3.2 The Pressure Distribution 

Using the velocity distribution for an axial vortex, given by Eq. (3.22), it is now 

possible to employ the radial component of the conservation of momentum equation, Eq. 

(3.6), to determine the pressure distribution for an axial vortex in a constant-density fluid. 

Assuming that the far-field pressure is specified as PK, Eq. (3.6) can be integrated to 

write 

P.-P(r) = }/Ar = 4-g- ' . (3.23) 
r r Vp (r;r

am) +1 

The radial pressure distribution is then given by 

P ( r ) = P . - ' (3.24) 
1P {r/ram ) +1 

3.3.3 The Circulation 

The Burnham & Hallock (1982) model suggested that the circulation at the core 

of an axial trailing line vortex was one half the far-field circulation. Govindaraju & 

Saffman (1971) have determined that neither the diffusing Lamb vortex, nor the Rayleigh 

vortex model predict the circulation in the region around the vortex core correctly. Their 

compilation of experimental observations indicated that the ratio between the circulation 

at the vortex core radius and the far-field circulation value ranged between 0.4 and 0.6. 

The circulation for a line vortex at any radius is given by: 

T [ r ) - 2 n r v e { r ^ .  (3.25) 
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Using the velocity distribution given by Eq. (3.22), the circulation distribution for this 

line vortex can be written: 

{Hrc„rc) 
0,max 

('Aj + i 
(3.26) 

Consequently, the circulation in terms of the far-field circulation, ro, is given by: 

The value of circulation predicted by relationships (3.27) and (3.28) are within the 

range of observed experimental values compiled by Govindaraju & Saffman (1971) and 

their data covered a wide range of circulation-based Reynolds numbers. 

3.4 Validation of the Predicted Profiles 

The velocity distribution and associated circulation relationships agree with the 

empirically-based relationships that have been developed earlier by others, e.g. (Burnham 

& Hallock, 1982). It is appropriate now to compare the theoretically-based relationships 

with experimentally observed data. 

3.4.1 Velocity Profile 

The agreement between the velocity profile given by Eq. (3.22) with the existing 

empirical correlation data characterizing aircraft trailing vortices has already been noted. 

r( r ) _  ( r A U  
(3.27) 

r o (r /r C 0 K f  + 1  

The circulation at the core radius can then be written: 

r0 2 v r t ' 2 
(3.28) 
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Figure 3.1 represents a comparison of the predicted velocity profile with reported 

velocity measurements for actual aircraft flight experiments by McCormick, Tangier & 

Sherrie (1968), wind tunnel measurements by McAlister & Takahashi (1991) and towing 

tank experiments in water by Valdhius, Scarano & Van (2003) and Baker et. al (1974). 

Figure 3.2 represents experimentally-measured turbulent tangential velocities within a 

dust devil recorded by Sinclair, (1969). Those data were collected utilizing an 

instrumented tower on a vehicle that was driven deliberately to a position located in the 

anticipated center of a dust devil path and parked. 

0.8 

0.6 

0.2 

-10 
-0.2 core 

—Theoretical 

x Baker(1974) 

• McAlister (1991) 

• McCormick (1968) 

• Veldhius (2003) 

-0.4 

-0.6 

Figure 3.1 Velocity distribution for a vortex filament 

Unlike aircraft wake vortex data where neither pressure deficits nor local ambient 

temperatures and humidity levels were measured, Sinclair (1969) measured ambient 

temperature, velocity and pressure deficit distributions in three dust devils. 
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Unfortunately, the relative humidity was not measured, but since the elevation of the 

desert location where Sinclair made his measurements is known to reasonable accuracy 

and the diurnal variations in humidity levels observed in nearby desert locations (near 

Tucson, AZ) are repetitive, the probable humidity levels that existed during Sinclair's 

observations can be estimated. Although quite warm, ambient temperatures were 

relatively constant for the three dust devils studied, enabling the use of a theoretically-

predicted pressure relaxation coefficient that was nearly constant for the warm, dry air. 

Figure 3.2 Comparison of theoretical velocity profile with Sinclair Dust Devil # 2 

15 

-10 25 

V- DD#2 

—Theory 

-15 

3.4.2 Pressure Profiles 

Utilization of the incompressible Bernoulli equation to predict the pressure deficit 

at the centerline of an axial vortex suggests that the centerline pressure should return to 
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the far field pressure since the centerline velocity must be zero. However, the current 

theory predicts that non-equilibrium pressures within this type of axial vortex continue to 

decrease within the core until reaching a maximum pressure deficit on the centerline of 

the vortex. The present theory is supported by the experimental observations made in 

dust devils and tornadoes. 

-10 0 r/rc, 10 

V \ 
,9.2 

:v. I 

!/ ft 
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- 6/24/03 - Manchester, SD 1 

- - - 6/24/03 - Manchester, SD 2 
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- - 5/29/08 - Tipton, KS 

M 

Figure 3.3 Comparison of the normalized tornado pressure profile with the theoretical 

pressure profile. 
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Figure 3.4 Comparison of dust devil profile with the theoretical pressure profile. 

3.4.3 Prediction of the Pressure Relaxation Coefficient using Pressure Deficit 

Equation (3.25) can be employed to determine the centerline pressure deficit. The 

centerline pressure, P0, is thus given by, 

P  =  P  - 4 —  10 1 oo n 

Vp 
(3.30) 

Since the centerline pressure deficit depends only on the dynamic viscosity and the 

pressure relaxation coefficient, it is possible to relate the pressure relaxation coefficient 

directly to the measured maximum pressure deficit for a steady-state, laminar axial 
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vortex. That is, the pressure relaxation coefficient, rjp, can be expressed in terms of the 

measured pressure deficit and the tabulated dynamic viscosity according to the formula, 

<33 l )  
oo rQ 

Equation (3.31) is a useful relationship for determination of the pressure 

relaxation coefficient in tornadoes or dust devils, based only on the pressure deficit and 

the dynamic viscosity of air. However, since those axial vortices are known to be 

turbulent, it is necessary to replace the dynamic viscosity represented in eq. (3.31) with 

an effective turbulent viscosity which can be substantially larger than the fluid 

mechanical viscosity. The turbulent version of Eq. (3.31) can be written: 

1P = JZF • (3.32) 
1 00 U 

Table 3.1 provides a comparison between the estimated pressure relaxation 

coefficient and the calculated pressure relaxation coefficient using the available weather 

data for the tower fly-by experiments reported by Garodz & Clawson (1969). 
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Table 3.1 Estimation of Pressure Relaxation Coefficient using Aircraft Experiments 

Experiment Rr •"core? H v, m2/s 

Estimated 

Ambient 

Conditions 
Tip, 

Calculated 

NOAA B-
757 

380,500 0.061 16.96xl0"6 
0.0121 9°C 

74% R.H 
0.5 

NOAA B-
757 

330,200 0.274 17.07x10"6 
0.323 10.5°C 

52% R.H 
0.72 

NOAA B-
767 

356,800 0.091 16.71xl0"6 
0.0311 7.0°C 

51% R.H. 
0.84 

NOAA B-
767 

381,500 0.244 18.16x10'6 
0.180 21°C 

18% R.H. 
7.0 

It can be seen that the estimated values of pressure relaxation coefficient are an 

order of magnitude smaller than the calculated values. This discrepancy is believed to be 

due mainly to the fact that the tabulated values of kinematic viscosity were used to 

estimate the values of the pressure relaxation coefficient but in practice, the vortices were 

turbulent and thus the effective turbulent viscosity should be used to estimate these 

values. 

3.5 Summary 

Analytical expressions for the velocity, circulation and pressure distributions 

describing an incompressible axisymmetric axial vortex with non-equilibrium pressure 

have been developed. The predicted distributions were then compared with various 

experiments reported in the literature and representing a variety of physical conditions 

that spanned a large range of circulation-based Reynolds numbers. The comparisons 
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between the current theory and the range of experiments have shown good agreement 

between the results. 
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CHAPTER 4 

RIGIDLY ROTATING FLUID COLUMN NEAR THE GROUND 

In Chapter 2, the equations governing fluid flow, including pressure relaxation 

effects, were derived and then in Chapter 3 the influence of pressure relaxation on an 

axisymmetric axial vortex filament was examined. In this chapter, three-dimensional 

steady flows with radial and axial velocity components interacting with a solid ground 

plane will be studied. 

4.1 Introduction 

In the absence of a solid boundary, a rotating fluid column has characteristics that 

are similar to the line vortex core region studied in the previous chapter. This type of 

flow can represent important features of certain meteorological systems like the central 

regions of tornadoes, dust devils and hurricanes. 

4.2 Mathematical Model 

The inner core of geophysical vortices like dust devils and tornadoes can be 

modeled as an idealized, nearly rigid column of fluid rotating above a solid plane. The 

simple similarity model developed by Boedewadt (1940) was discussed in Chapter 1, and 

represents the starting point for the present study. Boedewadt assumed a nearly rigid 

column of fluid was rotating over a stationary ground plane boundary layer. Schlichting 

(1968) has discussed this solution in some detail, and Figure 4.1 provides a physical 

interpretation of this type of flow. Employing an axisymmetric Navier-Stokes equation 



55 

model, Boedewadt made use of the following similarity variable and associated 

transformations. 

J )  =  z v r  =  r a > F { r j ) ,  v 0 = r c o G { ^ ) ,  v, = 4 v a H ( r i ) ,  

]_dp 

p dr 
= rco , 

(4.1) 

Vt-O) 

Figure 4.1 A physical representation of flow rotating near the ground (Schlichting, 1968) 

In the present case, the steady state, axisymmetric form of the Navier Stokes 

equations incorporating pressure relaxation, as represented by Eq. (2.88), can be written 

dv. v0 dv, 
-— + v. = v 

( d 2 v r  1  d v ,  

dr r dz 

n,, d2P d2P 
v,^T + v. 

-j2 "\ V O V 
r  +  - — r  +  

dr1 dzdr 

^ dr r dr r dz j 

\_dP_ 

p dr ' 

+ 

(4.2) 
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dv„ v v ,  dv„ 
v —t + -lJ- + v —e- = v 

r dr r 2 dz 

( d2\a 1 dv, 

IF 

r 

'a?2 

y d r, 

- • H 
dr r dr 

ve 

r2 dz2 j 
+ 

(4.3) 

+ 

dv, dv, 

dr ' dz 

d 2 P  

= v< d
2v, 1 dv7 d2v. 

• + — 

dr r dr dz 

Vt + v. 
d 2 p  

r drdz " dz2 

j_dP_ 

p dz 

• + 

(4.4) 

The axisymmetric continuity equation is given by 

dr r dz 
(4.5) 

Employing Boedewadt's similarity transformations given in Eq. (4.1), the governing 

similarity equations, modified to include pressure relaxation, reduce to: 

( F - t ] p ( O ) F - G 2  + H F ' - F " + 1 = 0 (4.6) 

{ I F  -  r j p d } )  G  +  G '  H  - G "  =  0  (4.7) 

2F + H' = 0 (4.8) 

This set of equations is nearly identical with Boedewadt's equations except for a 

type of rotational offset parameter resulting from the addition of the pressure relaxation 

terms. It is interesting to note that the parameter that controls the non-equilibrium 

behavior of these equations is tjhco, which is proportional to the angular velocity. As 

was mentioned in Chapter 1, a number of authors (Bellamy-Knights, 1974; Hatton, 1975; 

Raymond & Rao, 1978) have suggested that the stagnation zone at the top of a tornado 
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vortex column was controlled by a similar parameter, also proportional to the angular rate 

of rotation 

4.2.1 Boundary Conditions 

In order to solve this ordinary differential equation set, appropriate boundary 

conditions are required. The no-slip and no penetration conditions on the ground plane 

yield the following requirements: 

F ( 0 )  =  0 ,  (4.9) 

G(0) = 0, (4.10) 

and H ( 0 )  =  0 .  (4.11) 

Away from the ground plane boundary, the rotating column inner core is expected 

to behave like a rigid body and the angular velocity of the core must therefore asymptote 

to a constant value. The azimuthal component of the velocity in the far-field can then be 

used to obtain the following boundary condition 

g( oo) = l (4.12) 

Due to the lack of experimental measurements, it is necessary to infer the 

remaining far field boundary conditions for the radial and axial components of the 

similarity functions. When the far-field swirl velocity is assumed to approach a constant, 

obviously its first and second derivatives must vanish at large distances from the ground 

plane. Therefore, from the azimuthal component of the conservation of momentum 

equation, Eq. (4.7) can be employed to obtain the requirement that: 
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2F{co)-rjl>co = § (4.13) 

or, 

F( 0 0 )  =  ̂ .  ( 4 . 1 4 )  

This boundary condition suggests that there will be radial outflow at large distances from 

the ground plane boundary. If this boundary condition for the radial similarity function is 

imposed, the continuity equation (4.8), results in the boundary condition requirement 

that, in the limit, the slope of the axial similarity function must satisfy 

lim^j- = -Tip®. (4.15) 

This implies that in order to sustain a radial outflow, as prescribed by boundary condition 

(4.14), the overall flow must incorporate a decelerating axial flow component whose 

axial derivative approaches a constant value. If the slope of the axial similarity function 

asymptotes to a constant value, it is logical to conclude that at some spatial distance 

above the ground plane, the axial velocity component must go to zero and then reverse 

direction. Inclusion of non-equilibrium pressure effects in a column of rigidly-rotating 

fluid, bounded from below by a fixed ground plane, produces a spatially-varying axial 

velocity distribution with a free-standing stagnation plane at the top of the column. In 

order for these boundary conditions to be consistent with all of the governing equations, 

it is also necessary for the similarity functions to satisfy the conservation of radial 

momentum in the asymptotic limit. That is, when the limiting values of F and H' are 

imposed, the remaining far field boundary condition is 



.. „ dF lim H— = -
n-*« 

r T ] p 0 ) ^  
2 
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(4.16) 
\ " / 

Since this limiting boundary condition involves a function that increases monotonically, 

multiplied by the derivative of a function that becomes a constant in the limit (its first 

derivative goes to zero), it represents a requirement on the numerically-integrated 

solutions that can only be met a posteriori. That requirement will be discussed later in 

this analysis. The governing equations, Eq. (4.6)-(4.8), with the boundary conditions, 

(4.9)-(4.15), can be integrated numerically. 

The appearance of the stagnation point, implied from Eq. (4.15), results from the 

inclusion of the pressure relaxation parameter. Pressure relaxation causes the radial 

component of the flow to turn outward, away from the ground, which in turn causes the 

axial velocity component to reverse direction at the stagnation point. 

Boundary conditions similar to the ones developed here have been suggested by 

various authors attempting to model a stagnation point in vortices with axial flow 

(Bellamy-Knights, 1974). While the authors were able to obtain a stagnation point, they 

did not have a rigorous mathematical foundation for using these boundary conditions. 

Their solutions could only be applied to unsteady flows because their similarity 

transformations were functions of time, decaying very rapidly. 

If there are no pressure relaxation effects (r|p=0), then the similarity expressions 

for the two transformed conservation of momentum equations (4.6) and (4.7) return to the 

equations that were originally developed by Boedewadt. The appropriate boundary 

condition for the far field component of the radial component of velocity is zero in that 



case, as proposed by Boedewadt. Consequently, in the absence of pressure relaxation, it 

is not possible to reproduce a stagnation location in the rotating column of fluid. 

4.3 Numerical Procedure 

Equations (4.6) - (4.8) constitute a set of non-linear ordinary differential 

equations that can be solved numerically using off-the-shelf software. MATLAB 

function bvp4c, from MathWorks, Inc., was utilized to solve these equations. Their 

bvp4c general solver is designed to solve a large class of boundary value problems 

governed by ordinary differential equations. The solver utilizes Simpson's method with 

residual control. It is implemented as an implicit fourth order Runge-Kutta formula and 

the solutions were obtained at all of the collocation points. The mesh was selected 

automatically within the required domain, based on a reverse interpolation strategy 

(Kierzenka & Shampine, 2001). If the resulting solution was not sufficiently smooth and 

there were jumps in the solution, the mesh in that region was refined until a smooth 

solution meeting the desired tolerance was achieved. Details of the MATLAB 

implementation employed in this study are contained in Appendix B. Based on numerous 

simulation studies, it was determined that the bvp4c integration package met the 

requirements for this study. 

4.3.1 Implementation of Far Field Boundary Conditions 

As is the case for a variety of two-point boundary value problems spanning an 

infinite domain, it was necessary to pay special attention to the far field boundary 

conditions. Numerical experiments were started using a small, one-dimensional domain 

and the domain was stretched subsequently until the radial and azimuthal components of 
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the similarity velocity functions were observed to converge toward their expected 

asymptotic values. Since different types of convergence behavior were expected for the 

three similarity functions, it was important to demonstrate that a concurrent asymptotic 

convergence behavior was exhibited in the first derivative of the axial component of the 

similarity velocity function. 

In the absence of pressure relaxation, the three similarity functions and associated 

boundary conditions were the same as Boedewadt's original solution. Furthermore, the 

original infinite domain, two-point boundary value problem involved the same boundary 

conditions. While pressure relaxation coefficients for air can only be predicted 

theoretically, the theory (Ash, Zardadkhan and Zuckerwar, 2011) suggests that the 

pressure relaxation coefficient for air is on the order of a microsecond, which means that 

the scaling parameter (Tjpco) can be quite small for most geophysical flows. In order to 

examine how the introduction of pressure relaxation altered the resulting similarity 

solutions, an extremely large value (t]pco= 0.1) was selected. That parametric value was 

considered to be a useful way to examine how the behavior of the similarity functions 

changed when a strong pressure relaxation influence was present. 

The numerical solution procedures were examined by first setting the pressure 

relaxation parameter (?jp(o) equal to zero to make sure that Boedewadt's (1940) solution 

was duplicated. To the accuracy of the tabulated results, the current numerical 

techniques produced results that agreed with the earlier work, as shown in Figure 4.2 

(Boedewadt's functions are displayed using his original similarity function names). 
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Figure 4.2 Comparison of the similarity solutions with (bolder lines) and without (finer 

lines) pressure relaxation 

Next, the equations were integrated numerically using r)pco = 0.1. Those 

numerical results are also displayed in Figure 4.2. With the accentuated pressure 

relaxation parameter, it can be seen that there are only subtle changes in the radial 

similarity function (f). However, it can be seen that the radial function is indeed 

approaching a non-zero value of 0.05 asymptotically, as prescribed by the boundary 

condition. The circumferential similarity function (G) nearly coincides with the original 

solution and it would therefore be very difficult to discern any differences between the 

circumferential velocities if pressure relaxation effects were present. However, the axial 

similarity function, though starting out with a similar shape to the original solution, 



quickly diverges and, in compliance with the modified far field boundary condition, 

asymptotes toward a straight line with a negative slope. 

The slope of the axial component depends upon the parameter r|pw. Similar 

observations with respect to an angular rotation parameter were made by others 

(Raymond & Rao, 1978). Studies by Hatton (1975) had also shown that the axial 

velocity profile depended on a parameter that was proportional to the angular velocity. It 

has been common to assume that Rossby number (Rq) should be used as a parameter for 

characterizing the flow. The Rossby number is the ratio of the inertial to the Coriolis 

force. Specifically, that Rossby number was been defined: 

R0 = V8-xtt? (4.15) 

where V is the idealized tangential velocity, observed at the top of the boundary layer, 8 

is a characteristic depth and Qs is the angular velocity of the rotating boundary below. 

Hence, the smaller the Rossby number, the stronger are the effects of the Coriolis forces. 

In the absence of turbulence, and for no-slip boundary conditions, Raymond & Rao 

(1978) have concluded that the Rossby number has to be set to zero and the stagnation 

point cannot be found. Experimental work (Ward, 1972) has also shown no relationship 

between Rossby number and the stagnation point. 

Although, theoretical studies made by a number of researchers suggest the 

dependence of the axial and radial velocities on Rossby number, it cannot be used for 

important geophysical flows like tornadoes, which are over a solid stationary boundary. 

The angular velocity, Qs for such a case will be zero and therefore the Rossby number 

will be infinite. Turbulent slip velocities have been used to overcome that obstacle for 
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such cases (Bellamy-Knights, 1974; Hatton, 1975; Raymond & Rao, 1978). With 

pressure relaxation, the equations do not depend upon modified bottom plane boundary 

conditions; rather the column height depends on the angular velocity of the fluid column 

and the pressure relaxation coefficient. The modified equations accommodate the no-slip 

boundary conditions on the ground while exhibiting the stagnation plane that is observed 

in physical flows. 

Based on the numerical tests performed in this study, it was apparent that the 

minimum dimensionless distance where the similarity functions closely approximated 

their limiting asymptotic boundary conditions varied with the magnitude of the pressure 

relaxation parameter. Higher values of the pressure relaxation parameter resulted in 

lower nominal stagnation distances. A lower value of pressure relaxation coefficient 

corresponds with a higher stagnation elevation. As mentioned, previously, Zuckerwar 

and Ash (2009) have predicted the dependence of the pressure relaxation coefficients in 

air on the relative humidity, indicating that higher relative humidities result in smaller 

pressure relaxation coefficients. This theoretical observation is justified by physical 

flows like dust devils and tornadoes. Tornadoes are known to have much higher moisture 

content (lower pressure relaxation coefficients) than dust devils. Thus, the height of the 

funnel-like stagnation top of a dust devil is usually much lower than the stagnation top of 

a tornado which can rise all the way up into the clouds. 

4.4 The pressure distribution 

If the flow is assumed to be axisymmetric, the pressure distribution can be 

assumed to be: 
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P  =  P x ( x )  +  P : ( z ) -  (4.16) 

Using the radial pressure gradient described in Eq. (4.1), 

pircof . . 
p = ̂ —L + p!(z) + c (4.17) 

The variation of the pressure with height is given by: 

p:=-pgz + p0 (4.18) 

Then, the pressure distribution within the column is given by: 

pircof 
p = ̂ -j--pgz + p<„ (4.19) 

where, p() is the pressure in the center of the vortex on the ground level. This pressure 

distribution is valid only within the core of the rotating column. 
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CHAPTER 5 

ROTATING FLUID COLUMN - RESULTS AND DISCUSSION 

In this chapter, the results for an axisymmetric, rotating flow above a solid plane, 

including pressure relaxation, are presented. The values of Tjpa> chosen for the numerical 

results shown in the figures ranges from 0.001 to 0.1. Although some of the values of the 

parameter are relatively high for actual physical flows, they were selected to demonstrate 

the effect of this parameter in establishing the stagnation plane. Smaller values of rjpco 

will also produce stagnation planes, but the stagnation zone extends the computational 

domain to excessively large distances. 

5.1 The Velocity Distribution 

In order to obtain the velocity profiles, the numerical experiments were run 

employing values of the parameter T]pco as 0.0 (corresponding to the Boedewadt (1940) 

solution), 0.001, 0.01 and 0.1. Figure 5.1 illuminates the degree to which non-

equilibrium pressure, via the pressure relaxation coefficient, affects this rotating 

columnar flow. The standard Navier Stokes solution does not exhibit a stagnation plane; 

however when pressure relaxation is included in the conservation equations, the 

emergence of a stagnation plane is readily apparent, even in this steady state-

incompressible flow. 

As shown in Appendix A, the theoretically-based pressure relaxation coefficient 

for air is a strong function of relative humidity. For dry air, the value of the pressure 
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relaxation coefficient is at least an order of magnitude larger than that of humid air. 

Consequently, for flows in humid air (tornadoes and cyclones.), the pressure relaxation 

coefficient is lower than pressure relaxation coefficients in dry air (e.g. dust devils). The 

role of the parameter T]pQ) can be seen in Figures 5.1 - 5.7. Lower values of Tjpa> 

produce a vortex that has a stagnation plane at much greater elevations than the 

stagnation plane for flows with larger values of ijpa). These observations are consistent 

with laboratory and field measurements (Hoecker, 1960; Ward, 1972; Golden, 1971) for 

such vortices. Typically, dust devils have stagnation plane altitudes measured in 

hundreds of meters (Sinclair, 1969), whereas tornadoes may have stagnation planes 

which extend thousands of meters (Hoecker, 1960). We can also infer that the 

magnitudes of the axial and radial components of these flows for small values of r\p(o are 

much smaller than the azimuthal components near the stagnation plane. The flow near 

the stagnation plane is dominated by the rotational component of the flow relative to the 

radial and axial components. Hoecker (1960) has observed that debris suspended in a 

tornado is lifted up and suspended in a funnel, appearing to hesitate aloft before being 

ejected outwards. When we observe the streamlines for cases where Tjpco is very small, 

this sort of phenomena can be explained. 

Figure 5.7 shows that the rotating fluid column just below the stagnation plane 

loses its axial velocity. The flow just below the stagnation region appears to have the 

same structure and move upwards within a tight rigid core but when it approaches the 

stagnation plane, the flow turns outward and the axial velocity component decelerates to 

zero. At the stagnation plane, there is no more axial flow. 
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Figure 5.1 Streamlines through a vertical slice comparing Boedewadt solution (dashed 

line) and pressure relaxation solution with r|pco=0.1 (solid line) 
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Figure 5.2: Streamlines patterns: (a) for Boedewadt Solution (r|pco=0), and (b) r|pco=0.1 
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Figure 5.3 Streamlines through a vertical slice when TIPCO=0.001 (a) near the ground (b) 

near the stagnation plane 
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Figure 5.4 Streamlines with r|pco=0.001 (a) near the ground (b) near the stagnation plane 
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Figure 5.5 Streamlines through a vertical slice with r)pco—0.01 (a) near the ground (b) 

near the stagnation plane 
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Figure 5.6 Streamlines with r|pa>=0.01 (a) near the ground (b) near the stagnation plane 
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Figure 5.7 Streamlines with r)pco=0.01 showing the rigid column below the stagnation 

plane 
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5.2 The Pressure Distribution 

Figure 5.8 presents the pressure distribution within the rotating fluid column. The 

profile of the calculated pressure distribution within the column is in agreement with the 

measurements of Hoecker, (1961). 
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Figure 5.8 Pressure contours within the core 

5.3 Determination of the Stagnation Plane Elevation 

The stagnation plane above a rotating fluid column has been a focus of a number 

of studies (Bellamy-Knights, 1974), (Hatton, 1975), (Raymond & Rao, 1978). The 

existence of such a stagnation plane has also been observed in laboratory experiments 

(Ward, 1972) and in actual meteorological flows (Hoecker, 1960). It has been a general 

consensus that the stagnation plane is created by turbulence (Ward, 1972). In the 
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turbulent region, the axial flow component transitions from an updraft to a downdraft. So 

the stagnation plane is essentially a transition zone where the laminar and turbulent 

regions of the flow intersect. 

Incorporating non-equilibrium pressure in the governing equations, the 

differential equations for the similarity functions can be integrated, employing various 

values for the scaling parameter, rjpa). It should be noted that the radial component of 

velocity approaches the asymptotic value, as discussed earlier in developing the far field 

boundary condition. The axial similarity function (H) tends toward a constant slope. 

It was not possible to integrate the equations up to the stagnation point because of 

finite computer resources. The equations were integrated until the radial and azimuthal 

components of the flow reached their asymptotic values, to within a numerical tolerance. 

The axial velocity component attains a constant negative slope at this point. Using that 

constant slope, the location where the axial velocity component goes to zero can be 

determined, thus locating the stagnation plane (the stagnation plane is the location where 

the axial component of the flow is zero). This process was employed to locate the 

stagnation plane for a range of values of the parameter r|pco. 
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Figure 5.9 The location of the stagnation point vs. the parameter rjpco. 

Figure 5.9 shows the relationship between the parameter r|pco and the non-

dimensional stagnation height, Hmax. A curve fit for the above figure produced the 

following relationship between the stagnation point and the non-dimensional height Hmm. 

LT _ 
max 

1.394 

VP<0 
(5.1) 

where //max is the stagnation plane height. To find the physical separation height, the 

similarity variable r| can be replaced using 
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1.394 [u 
^max ~ J ~ -  (5-2) 

TJ CO V CO 

Using this relationship, the location of the stagnation point for a given rotating fluid 

column can be determined. Sinclair (1969) measured the core radii and the tangential 

velocities of dust devils in his earlier study. Table 3.2 contained the core radius, the 

maximum velocity and estimated pressure relaxation coefficient for the dust devils that 

were characterized in his study. The tangential component of flow away from the ground 

is similar to the tangential component of flow in an axial filament. Eq. (3.23) represents 

the tangential velocity profile for such flows and can be employed to develop a 

relationship between the angular velocity and the radial distance. 

A -

co{r) = —  ( 5 . 3 )  

^ (r/rclJ+1 

The angular velocity on the centerline of the vortex can then be written in terms of the 

maximum swirl velocity and the core radius as 

(5-4) 
r core 

Using the data from Table 3.2, the estimated heights of the stagnation planes for the 

Sinclair dust devils have been summarized in Table 4.1. 
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Table 4.1 Stagnation heights for Sinclair (1969) Dust Devils 

Case nP *"core Vmax CDcore Veff Stagnation 

(»"') (m2/s) 
Height (m) 

(MS) (m) (m/s) (»"') (m2/s) 

DD #1 1.049 2.3 11 10.26 7.1 x 10"5 340 

DD #2 1.125 2.6 12 9.24 7.1 x 10's 357 

DD #3 1.092 3.35 8.8 5.25 6.2 x 10"5 833 

Sinclair (1969) has reported that the heights of the dust devil columns varied 

between a hundred meters and a thousand meters. Thus, the stagnation plane heights 

predicted by the present theory are within his estimates. 

5.4 Limitations of the Solution 

The central axial vortex volume has been assumed to be a near-rigidly rotating 

fluid column. Since away from the centerline of the vortex, these flows tend to behave 

like a free potential vortex, and the energy required to rotate a fluid column of very large 

radius becomes prohibitively large, the current solution cannot be applied to radially 

unbounded domains. The Rankine model (Rankine, 1869) and the Sullivan model 

(Sullivan, 1959), both assumed the inner core to have constant angular velocities; 

however, the Ash, Zardadkhan and Zuckerwar (2011) study showed that the inner angular 

velocity in the inner core was not a fixed constant. Equations 5.3 and 5.4 describe the 

distribution of the angular velocity and the core angular velocity. A non-dimensional 

angular velocity distribution, as a function of the non-dimensional radius, can then be 

written as 
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co(r) = (5.5) 

From this relation, it can be seen that the angular velocity is reduced to half the centerline 

angular velocity at the core radius. The solution cannot be used out to that radius. If it is 

assumed that the solution is valid to a radius where the angular velocity is approximately 

90% of the angular velocity at the centerline, Equation 5.5 can be employed to estimate a 

limiting radius in terms of the core radius. That is, if 

the non-dimensional radius of the rigidly rotating column is 

Equation 5.7 shows that the solution is confined to a region which is one third the core 

radius, where the core radius is the radial distance where the swirl velocity is maximum. 

This corresponds to column diameters ranging from less than a meter for dust devils 

(Sinclair, 1969) to almost 100 meters for tornadoes and tens of kilometers for hurricanes. 

5.5 Summary 

The governing equations for fluid flow incorporating pressure relaxation predict 

the existence of a stagnation plane at the top of a rotating fluid column when the base of 

the column is required to satisfy no-slip boundary conditions. Axial up-flows and down-

flows are present in tornado-like vortices. However, the height of the stagnation plane 

depends on the angular velocity and the magnitude of the pressure relaxation coefficient. 

Past theoretical findings of Hatton, (1975) and Raymond & Rao, (1978) suggest that such 

(5.7) 
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vortices with a stagnation plane are transient and decay rapidly with time. Non-

equilibrium pressure forces allow these vortices to exist as steady state vortices that can 

sustain themselves for much longer periods of time. While it wasn't possible to find 

reference data on the heights of tornado funnel clouds (locating the stagnation plane), the 

computed stagnation heights of dust devils incorporating pressure relaxation, were within 

observed limits (Sinclair P. C., 1964). 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

The present study was undertaken to study the effects of non-equilibrium pressure 

on rotating flows with the objective of better understanding such flows. The governing 

equations of fluid flow were derived incorporating pressure relaxation effects by 

employing Hamilton's Principle of Least Action and including a conservation of reacting 

species constraint. It was shown that a pressure relaxation coefficient, TJ , can exist in 

fluid flow along with the conventional bulk/volume viscosity coefficient, rjv. The non-

equilibrium pressure can control important fundamental flow processes because it 

provides a balancing mechanism for traditional equilibrium forces. 

It was shown that non-equilibrium pressure effects can be present in fluids even 

when constant density constraints are applied to the fluid flow. An exact solution of the 

axisymmetric Navier Stokes equations with pressure relaxation was obtained for axial 

vortex filaments (Ash, Zardadkhan, & Zuckerwar, 2011). The resulting velocity and 

pressure distributions agreed with physical measurements for aircraft wake vortices, 

laboratory experiments, tornadoes and dust devils. Most of the observed flows were 

turbulent justifying kinematic viscosity values that were higher than the tabulated 

viscosities for air under similar conditions. For the case of axial vortex filaments, it was 

shown that pressure relaxation coefficient, TJP, along with the circulation and viscosity, 

can influence both the core radius and the maximum tangential velocity. 
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A similarity solution was developed for an axisymmetric rotating flow above a 

fixed ground plane. It was shown that this type of flow is controlled by a parameter that 

is the product of the far-field angular velocity and the pressure relaxation coefficient ( 

Tjpco). It was also shown that the height of a free-standing stagnation plane above a 

rotating fluid column depends on the same parameter. This dissertation has shown that 

even when a simple rotating fluid column velocity profile is subjected to a no-slip bottom 

boundary condition, the non-equilibrium pressure forces act to balance the viscous forces 

along the fixed boundary. However, when this flow is allowed to be three-dimensional, 

non-equilibrium pressure forces decrease away from the fixed boundary, leading 

ultimately to a stagnation plane whose height depends on the product of pressure 

relaxation coefficient and rate of angular rotation. In the absence of the pressure 

relaxation coefficient, the flow produced by a rotating fluid column above a ground plane 

has no stagnation plane. 

This dissertation has established the importance of non-equilibrium pressure in 

controlling the heights of geophysical flows; specifically in predicting the appearance of 

a stagnation plane whose height is controlled by Tjpco. This is consistent with a number 

of previous studies which suggest that the height of the stagnation plane depends on a 

parameter which is proportional to the angular velocity of the rotating column of fluid 

(Hatton, 1975; Raymond & Rao, 1978). The height of the stagnation plane was found to 

be inversely proportional to rjpo). Using the values of the pressure relaxation, viscosity 

and angular velocity, calculated for three documented dust devils, the height of the dust 

devil stagnation planes were estimated and found to be with experimentally-observed 

stagnation plane heights (Sinclair, 1969). The non-equilibrium pressure also plays an 
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important role in the formation of funnel shaped rotating columns in geophysical flows. 

The funnel is produced by decelerating axial flow in the presence of radial outflow. 

6.2 Future Work 

The current work can be extended in a number of ways in future studies of these 

types of flows. Firstly, the current work is limited to the nearly rigid core region of a 

columnar vortex. If the velocity profile of an axial vortex filament can be employed to 

describe the flow both in the viscous core and potential flow regimes, the similarity 

solution or a numerical solution can be used to model flows in all five regimes of rotating 

flows near the ground and the stagnation plane. Secondly, although the results of the 

current study are consistent with stagnation heights for dust devils, it is not possible to 

predict the stagnation planes for more complex flows like tornadoes and hurricanes due 

to important phase change and mass transport processes as well as the wide range of 

temperature and pressure zones that exist in such flows. Future work can include the 

impact of temperature and pressure changes along with the pressure relaxation to model 

tornadoes and hurricanes. Finally, since the current dissertation has already established 

the role of non-equilibrium pressure in fundamental flows, the role of non-equilibrium 

pressure can be studied for turbulent flows which may lead to better understanding of 

basic turbulent flow structures and improved modeling of turbulent flows. 
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APPENDICES 

Appendix A. Pressure relaxation coefficient of air 

The following method to determine the pressure relaxation coefficient is based on 

the method that was developed by Dr. A. Zuckerwar (Allan J. Zuckerwar, personal 

communication, January 6,2011). 

Input variables 

Temperature T, K 

Pressure P, atm 

Relative humidity hr, % 

Constants 

Gas constant = 8314.51 J/kmol.K = 82.0578337 atm.cm3/mol.K 

Reference temperature Tc = 273.16 K 

Reference pressure PR = 1 atm 

Vibrational Temp. N2 = 3352.0 K 

Vibrational Temp. 02= 2239.1 K 

Mole fraction N2 = 0.78084 

Mole fraction O2 = 0.20948 

Rotational collision number ZROT = 5 
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Mean free path (293 K) = 6.5 x 10"8 m 

Molecular velocity (293 K) = 442.72 m/s 

Mean free time (293 K) = 1.47 x 10"10 s 

Rotational relaxation time (293 K) = rro,(293) = 5 x mfit = 7.34 x 10"i0 s 

Derived variables 

Saturation vapor pressure of water 

log10(^) = 10.79586[l-(273.16/r)] 

-5.02808 log10(77273.16) 

+1.50474xl(T4 {l -10"8 29692Iff'2"'6H]} 

+ 4.2873 x 10"4 {-1 +10 4 76955 [H273' l6/r»} 

-2.2195983. 

Mole fraction of water vapor 

P (T) 
xh =0.016, soA } 

P 

Normalized specific heat of N2 

3352.0V 

T , 

( 3352.0^1 
exp 

v 1 J 



Normalized specific heat of O2 

Cx n Jf 2239.1 
-JL = n- x , )  

R V h) 

\2 exp 

1 -exp 

2239.1 

T j 

2239.1' 

Normalized rotational specific heat 

rot j 

R 

Relaxation frequency of N2 

fN = * r 
P 

\Ti< y 

\l/2 

[flA,(l) + flA,(2)*J 

where 

fl^(l) = 6.614 xlO4 exp(-58.90r~1/3) 

a N ( 2 )  = 2.8 x 10 exp -4.170 
\To J 

-1 

Vibrational relaxation time of N2 

Tn = 10 /(2TT/A/) J^S 

Relaxation frequency of O2 

f x = { P ' K )  ax 0) + M2K 
a x O )  +  xh 

ax( 4) + x„ 
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where 

a x  (1) = 2.131 x 105 exp(-60.40 T ~ V l )  Hz 

ax{2) = 4.04x106 Hz 

ax( 3) = 16.46exp(-75.19r~1/3) 

%(4) = 3.91 xlCT3 

Vibrational relaxation time of O2 

r,v= 106/(2tc/v) lis 

Rotational relaxation time 

Trot = W293) x 106 x (77293)1/2 )as 

Rotational relaxation frequency 

froi
= 109/(2rcrra,) Hz 

Pressure relaxation coefficient 

„ _ (^AT ! R)Tn + (Qr ^ A" / R)Trol § 

x N { C N  I  R )  +  x x { C x  I  R )  



Table A. 1 Pressure relaxation coefficient (in (is) for air at selected temperatures and 
relative humidities. 

RH % 0 20 40 60 80 100 

T, K 

273.15 43.38 2.58 1.31 0.88 0.66 0.53 

283.15 50.52 1.78 0.91 0.61 0.46 0.37 

293.15 58.23 1.28 0.64 0.43 0.32 0.26 

303.15 66.50 0.93 0.47 0.31 0.23 0.18 

313.15 75.31 0.69 0.34 0.23 0.17 0.13 

323.15 84.64 0.52 0.26 0.17 0.12 0.10 
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Appendix B. The MATLAB Code 

%% flowsol - Solver for the similarity equations 
clc 
clear 
global ew; 
ew=0.01; 
solinit = bvpinit(linspace(0,20,50),@mat4init); 
sol=bvp4c(0mat4ode,@mat4bc,solinit); 
Xl=sol.x; 
F=sol.y(1,:); 
G=sol.y(3,:); 
H=sol. y(5, : ) ; 

plot(XI,F,'-k',X2,F2,':k',X3,F3,'—k') 
xlabel('\eta ' ); 
ylabel(' F') ; 

figure 
plot(XI,G,'-k',X2,G2,':k',X3,G3,'—k') 
xlabel('\eta') 
ylabel( ' G' ) ; 

figure 
plot(XI,H,'-k',X2,H2,':k',X3,H3,'--k') 
xlabel(1\eta') 
ylabel('H'); 

%% the boundary conditions 
function res = mat4bc(ya,yb) 
global ew; 
res = [ ya(l) 

ya (3) 
ya (5) 
yb(1)-ew/2; 
yb (3)-1 ] ; 

%% initial guess 
function yinit = mat4init(x) 
yinit = [ -sin(x)/(x+1) 

-cos(x)/(x+1) 
sin(x)/(x+1) 
cos(x)/ (x+1) 
cos(x)/(x+1)] ; 

%% system of equations 
function dydx = mat4odew(x,y) 
ew=0.1; 
dydx = [ y(2) 

(y(1)-ew)*y(l)-y(3)A2+y(5)*y(2)+ 1 
y (4) 
(2 * y(1)-ew)*y(3)+y(5)*y(4) 
— 2 * y (1) ] ; 
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