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ABSTRACT 

ELECTROKINETIC TRANSPORT PHENOMENA IN NANOFLUIDIC DEVICES 

Mingkan Zhang 
Old Dominion University, May 2012 

Co-Directors: Dr. Shizhi Qian 
Dr. Yan Peng 

Nanofluidic devices have wide potential applications in biology, chemistry and 

medicine, and have been proven to be very valuable in sensing biological particles (e.g., 

DNA and proteins) due to their efficiency, sensitivity and portability. Electrokinetic 

control of ion, fluid, and particle transport by using only electric field is the most popular 

method employed in nanofluidic devices. A comprehensive understanding of the 

electrokinetic ion, fluid, and particle transport in nanofluidics is essential for developing 

nanofluidic devices for the detection of single molecules, such as the next generation 

nanopore-based DNA sequencing technology. This research explored numerical 

simulation of electrokinetic ion and fluid transport in both solid-state and soft nanopores, 

and also explored the electric field induced translocation of nanoparticles through solid-

state and soft nanopores using a continuum based model. 

In the first part of this dissertation, electrokinetic ion and fluid transport in two types of 

nanopores, charge-regulated solid-state and polyelectrolyte (PE)-modified soft nanopores, 

have been investigated for the first time using a continuum-based model, composed of the 

coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport, and Stokes 

and Brinkman equations for the flow fields. Concentration polarization phenomenon, 

ionic conductance, potential drop inside the nanopore, and flow field as functions of the 

solution properties including pH and ionic strength, charge properties of the nanopore, 



properties of the soft layer, and the electric field strength imposed were investigated. The 

results show that the electrokinetic ion and fluid transport in nanopore-based devices can 

be regulated by tuning pH and/or ionic strength and the properties of the polyelectrolyte 

layer grafted on the membrane wall. One could use the induced concentration 

polarization phenomenon to reduce the electric field inside the nanopore for slowing 

down nanoparticle translocation through the nanopore. 

One major challenge in the nanopore-based DNA sequencing technology is to slow 

down DNA translocation for improving the read-out accuracy. Therefore, the second part 

of this thesis focused on numerical investigations of nanoparticle translocation through a 

nanopore. Three types of nanoparticles, which include soft nanoparticle consisting of a 

rigid core covered by a soft layer, DNA, and charge-regulated soft nanoparticle such as 

protein, in both solid-state and soft nanopores were considered. Based on the results, 

regulating DNA translocation by using the soft nanopore was proposed to simultaneously 

enhance the nanopore capture rate and slow down DNA translocation inside the nanopore. 

Versatile manipulations of charge-regulated nanoparticles, including separation, focusing, 

trapping and pro-concentration by using soft nanopores can be achieved by adjusting pH, 

background salt concentration, and the properties of the soft layer grafted on the 

nanopore wall. Regulation of DNA translocation by using a solid-state nanopore with a 

floating electrode coated on the inner surface of the nanopore was also proposed and 

investigated using numerical simulation. 
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CHAPTER 1 

INTRODUCTION 

1.1. Nanofluidics 

Over the recent decades, there has been a growing interest in developing nanofluidic 

devices, the characteristic dimension of which is below 100 nm. Fluids confined in these 

nanofluidic devices exhibit physical behaviors not observed in larger channels, such as 

those of micrometer dimensions and above, because the characteristic lengths of the fluid 

such as the Debye length very closely coincide with the dimensions of the nanofluidic 

channel itself. Significant advances in nanofabrication technology, such as the electron 

beam nanolithography and nanoimprint lithography, ' also enable the study and 

application of nanofluidics. 

Different from microfluidics, ion transport in nanofluidics is surface-charge-governed, 

owing to the increasing surface-to-volume ratio.4 This unique phenomenon offers a 

probability to selectively control the ion transport through nanopores for various 

applications. The charge selectivity becomes more significant when the characteristic 

length of the nanofluidic system becomes comparable to the Debye screening length.5 

Since the ions transport in nanofluidics is dominated by the surface charge, it is easy to 

control ionic transport by tuning the surface chemistry of the nanopore wall.6"7 The 

adsorption of molecules onto the nanopore walls leads to the change of the surface charge 

on the nanopore wall and the ionic conductivity. Therefore, novel nanopore-based 

biosensors have been proposed and tested by monitoring the ion conductivity.8"10 

Nanofluidic diodes 1113 and nanofluidic transistors14"15 can also be fabricated by 

controlling the surface charge distribution on the nanopore wall. Nanofluidic resistors, 

diodes and transistors are new potential applications in nanofluidics and provide new 

opportunities to reach the goal of ionic integrated circuits. Owing to the unique ion-

selectivity property, nanofluidics also provide potential applications in clean energy 

generation and water purification and desalination16"17 and alternative energy sources, to 

meet the need of clean water and clean energy. In addition, the electrophoretic 

translocation of DNA molecules through a nanopore can be utilized to interrogate the 
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order of nucleotide bases in one single DNA molecule.5 The nanopore-based DNA 

sequencing has emerged as one of the most promising approaches to achieve a high 

throughput and affordable DNA sequencing, which is the main focus of this thesis and 

thus is described in more details in the following subsection. 

1.2. Nanopore-Based DNA Sequencing 

The cost of DNA sequencing with the second-generation DNA sequencing technology 

is still too high for routine applications. For example, the estimated cost, including 

instrumentation, sample preparation and labor, for sequencing a haploid human genome 

ranges from $100,000 to $1,000,000.18 The demand for sequence information also keeps 

increasing. A low-cost fast-sequencing method will thus not only change the future of 

medical fields dramatically but also offer a new tool for studying diverse biological 

functions and evolutions. 

A voltage bias imposed across a nanopore merged in a salt solution, as schematically 

shown in Fig.l, generates an ionic current flowing through the nanopore, which can be 

measured using electrophysiological techniques. The resulting current is very sensitive to 

the properties, including surface charge, size and shape, of the nanopore and the 

nanoparticle translocating through the nanopore. Single bases or strands of DNA 

electrophoretically passing through the nanopore will induce a change in the ionic 

current.19"20 Since the A, C, G, and T nucleotides on the DNA molecule carry different 

surface charges, each of them may obstruct the nanopore to a different characteristic 

degree, resulting in different magnitudes of current. The magnitude of the current at any 

given moment, therefore, varies depending on which of the four nucleotides blocks the 

nanopore as a DNA molecule passes through the nanopore. Therefore, the sequence of 

bases in DNA can be probed by monitoring the current modulations by using solid state 
A| A J 

nanopore " and modified nanopore " , which has been reviewed by some 

investigators " . This method examines the electronic signals in contrast to the existing 

paradigms based on chemical techniques. The nanopore-based DNA sequencing thus 

does not require sample amplification; the sequencing time of nucleic acids is within a 

microsecond. In addition, the estimated cost of the nanopore-based sequencing of a 
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human genome would be on the order of $1,000, which meets the goals set by the NIH in 
IO I 

2004. This cost is believed to be sufficiently low to revolutionize genomic medicine. ' 
"5*7 'lO 

' " All of these encouraging benefits of the nanopore-based DNA sequencing 
1 O *)A OC ^7 

stimulated a fast-growing research area associated with nanopore analysis. 
35 

Reservoir 
(trans) 

Reservoir 
(cis) 

V=0 f 
Figure 1.1. Schematic view of a dsDNA nanoparticle translocation through a nanopore. 

The existing experimental studies demonstrated that the ionic current during DNA 
it 

translocation depends on the voltage bias across the nanopore, the length of the DNA 

molecule, " the length, size, and surface charge of the nanopore, ' and the 
o 10 

electrolyte bulk concentration. ' When the solvent contains a high salt concentration 

(thin electric double layer), typically a "current blockade" is observed, which means that 

the ionic current of a nanopore with DNA particles inside is lower than the one without 
-J 1 A | 

DNA particles. " ' ' The current enhancement means that the ionic current of a 

nanopore with DNA particles inside is greater than the one without DNA particles. When 
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the bulk ionic concentration is reduced, both current blockade and current enhancement 

are observed during a single molecule translocation.43^4 When the bulk ionic 

concentration is low, current enhancement is often observed.38'45 One objective of this 

dissertation is to improve the understanding of these diverse phenomena through 

continuum simulations and to provide a predictive tool to estimate the effect of 

translocating molecules on ionic currents. 

Since the size of fluid reservoirs is usually much larger than that of the nanopore, the 

local electric field within the nanopore is significantly higher than that in the fluid 

reservoir, resulting in slow particle motion within the fluid reservoir and high 

translocation velocity inside the nanopore. One of the major challenges in the nanopore-

based technique is that DNA nanoparticles translocate through the nanopore too fast to be 

accurately detected. 22,28,41,46~62 Although one can reduce the voltage bias applied across 

the nanopore to reduce the electric field inside the nanopore and consequently slow down 

the DNA translocation, lower voltage bias will simultaneously reduce the nanopore 

ability of capturing DNA into the it and the magnitude of the current change, leading to 

lower throughput and read-out accuracy. Therefore, a relatively high voltage bias is 

typically applied across the nanopore in the nanopore-based DNA sequencing 

applications. Additionally, several methods have been proposed to slow down the DNA 

translocation through the nanopore to achieve higher read-out accuracy.41' 46-62 They 

include increasing the solvent viscosity to increase the viscous drag force on the 

particle,50 lowering the fluid temperature to increase the fluid viscosity,46 adjusting salt 

concentration and/or salt type to modify the charge property of the nanopore by chemical 

functionalization of the nanopore or by an ionic field effect transistor,53,63-66 imposing a 

salt concentration gradient41'49'67"68, utilizing optical tweezers, conducting nanopores56'69, 

and bio-modified nanopore55. Such work has been reviewed by Keyser.58 For example, 

Trepagnier et al.70 used an expansive highly focused laser as optical tweezers to slow 

down the DNA translocation through a nanopore. Rincon-Restrepo et al.55 slowed down 

the DNA translocation velocity by introducing positive charges into the lumen of the pore. 

Ai et al.65 proposed to use nanofluidic field effect transistor to regulate DNA 

translocation through a nanopore. de Zoysa et al.49 reported that the DNA translocation 
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velocity can be significantly reduced by using electrolyte solutions containing organic 

salts instead of the commonly used KC1 solution. 

Most of the aforementioned techniques simultaneously slow down the particle motion 

inside the nanopore and in the fluid reservoir. The latter reduces the capture rate and 

accordingly the throughput. Therefore, slowing down translocation inside the nanopore 

while enhancing particle motion inside the fluid reservoir are the main challenges in the 

nanopore-based DNA sequencing technique. To better understand the translocation 

process, the thesis theoretically investigated the phoretic motion of nanoparticles in 

nanopores, and successfully proposed regulation of nanoparticle translocation by using 

polyelectrolyte-modified nanopores (Chapter 4) and floating electrode (Chapter 5). 

1.3. Fundamentals of Electrokinetics 

Electrokinetics refers to the use of electric fields to exert electrostatic forces on charged 

or polarizable fluids and suspended particles, which in turn induce the motions of fluids 

and particles. In the nanopore-based DNA sequencing technology, the particle 

translocation and the ionic current flowing through the nanopore are generated by 

externally imposing an electric field across the nanopore. Therefore, electrokinetics 

becomes one of the most dominant effects in the translocation process. In the following, 

the basics of electrokinetics under DC electric field, including electrical double layer, 

electroosmosis, electrophoresis, and induced-charge electrokinetics are summarized. 

1.3.1 Electrical Double Layer 

Most solid surfaces obtain surface charges through adsorption or dissociation of 
71 T7 

functional groups when they are brought in contact with ionic solutions. ' The charged 

surface attracts counter-ions and repels co-ionsresulting in a thin layer dominated by the 

counter-ions in the vicinity of the charged surface, which is called electrical double layer 

(EDL) and is schematically shown in Figure 1.2. 
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diffuse Layer-^1 £ 
I. 

EDL/U —H 

Figure 1.2. Schematic view of an EDL near a negatively charged surface. 

The EDL consists of two layers, the Stern layer and the diffuse layer. The counter-ions 

in the Stern layer next to the charged surface are immobilized due to a very strong 

electrostatic force. However, the ions inside the diffuse layer are free to move under 

external field. Since the Stern layer is very thin, the detailed field within the Stern layer is 

usually neglected. Within the diffuse layer, the electric potential inside the electrolyte 

solution is described by the Poisson equation, 

where £/ is permittivity of the ionic solution, V is the electric potential, F is the Faraday 

constant, z, and c, are, respectively, the valence and molar concentration of the zth ionic 

species, and N denotes total number of the ionic species. 

The ionic fluxes including the diffusive, electromigrative and convective flux densities 

are written as 

Where A is the diffusivity of the rth ionic species, R is the universal gas constant, T is the 

absolute temperature of the solution, and u is the fluid velocity vector. 

Each ionic concentration, Ci, is governed by the following Nernst-Planck equation, 

N 

-e,V2V = 2>,c,, (1.1) 

N, = -Z)Vc, - z j  —- Fc t V V  +  uc n  (1.2) 

(1.3) 
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In the absence of the fluid motion and at steady-state, one-dimensional Eq. (1.3) leads to 

an analytical solution of the ionic concentration, which is known as the Boltzmann 

distribution 

ci = Ci0 exp(—z, ~~), 0 -4) 

where C,o is the bulk concentration the ith species. Note that the far field boundary 

condition, V=d V!dy=Q and c,—C,o at y-»a>, is required to derive the above Boltzmann 

distribution. One can easily obtain the Poisson-Boltzmann (PB) equation by substituting 

Eq. (1.4) into Eq. (1.1) under the assumption of binary, symmetric ionic solution in a one 

dimensional space. 

V 
FV\  1  .  ,  ,  FV %  

(L5) 

where z = |z,| and X D  = K 1 = ̂ JSF RTJ  ̂ F 2Z2C 0  is Debye length or EDL thickness. 

Clearly, the Debye length depends on the bulk salt concentration, Co, and decreases as the 

salt concentration increases. Due to the use of the Boltzmann distribution, the above PB 

equation is valid when the EDL is at its equilibrium state in the absence of any 

disturbance from the external flow field and electric field and the EDL cannot interact 

with the other nearby EDLs (i.e., the EDLs are not overlapped). In nanofluidics, since the 

Debye length is on the same order of magnitude of the nanopore size, the PB equation is 

not valid. 

When V « RT/zF, Eq. (1.5) can be linearized under the Debye-Huckel approximation 

73 oo as 

(I.® 
y  RT)  A 2

D  RT 

Eq. (1.6) gives the electric potential as 

V = Cexp( -y /A D ) ,  (1.7) 

where C is the zeta potential, defined as the potential on the shear plane, which is the 

interface between the Stern layer and the diffuse layer, and y is the distance from the 

shear plane. 
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For an arbitrary surface potential, the Gouy-Chpman distribution 73 has been derived 

from Eq. (1.5) 

„ 4 RT 
-atanh tanh 

zF \ 
) (1.8) 

1.3.2 Electroosmosis 

Under an external electric field applied parallel to a stationary charged surface, the 

accumulated counter-ions within the EDL of the charged surface migrate to the 

oppositely charged electrode, dragging the viscous fluid with them. The induced flow is 

called eletroosmosis flow (EOF), as shown in Figure 1.3. 

Figure 1.3. Schematic view of EOF in a slit channel with negatively charged surfaces. 
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Figure 1.4. Schematic view of electrophoretic motion of a negatively charged particle. 

The EOF of the incompressible electrolyte solution is governed by the modified 

Navier-Stokes (NS) equations by taking into account the electrostatic body force,73 

p^ + u-Vuj  =  -V/7+ fN 2 u-£ f V 2 VE,  (1.9) 

and the continuity equation 

V-u = 0, (1.10) 

where p is the fluid density, p is the pressure, and p. is the fluid viscosity. The last term on 

the right-hand-side (RHS) of Equation (1.9) represents the electrostatic force arising from 

the electrostatic interaction between the net charge within the EDL and the applied 

electric field. 

When the electric field induced by the surface charges on the solid surface is much 

stronger than the external applied one, the ionic concentration within the EDL is not 

distorted by the external field including both the applied electric field and the induced 

EOF. Therefore, the potential can be linearly decomposed into the potential stemming 
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from the charged surfaces and the external potential. For the fully developed EOF 

without external pressure gradient, Equations (1.9) and (1.10) can be simplified as 

d2u d2Vr n 
/ i—j  =  s f — rE '  (L 1 1 )  

dy2 1 dy 

where u is the EOF velocity in the x direction, V denotes the potential arising from the 

charged surface, and E is the electric field externally imposed. Using the boundary 

conditions, u(y = 0) = 0, du/dy(y -> oo) = 0, V(y = 0) = C and dVldyiy -> oo) = 0, one can 

easily obtain the velocity u by integrating Eq. (1.11), 

u =  ̂ (V(y)-£),  (1.12) 

where V(y) is given by the Gouy-Chapman distribution given by Eq. (1.8). Equation 

e ,E  C  
1.12 depicts that the velocity in the bulk region is a constant, — , where the 

/" 

electric potential induced by the charged surface decays to 0. The velocity in the bulk 

region is also known as the Smoluchowski velocity.74 Note that the above EOF velocity 

is not appropriate in the DNA nanoparticle translocation process, where a strong electric 

field is imposed to achieve high throughput and the EDLs are also overlapped. 

1.3.3 Electrophoresis 

Electrophoresis refers to the motion of charged particles suspended in an aqueous 

solution under the influence of an external electric field, as schematically shown in 

Figure 1.4. Different from EOF in which the charged surfaces are stationary, the 

charged objects are free to move in electrophoresis. 

At the quasi-steady state, the flow field, electric potential, and ionic concentrations 

can be described by 

-Vp + //V2u -wf^Fza = 0, (1.13) 
i=i 

Vu = 0, (1.14) 

-e,V'V = f>,c,, (1.15) 
i=l 

and 
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V-N, =V- uc. - £)Vc, - z, Fc,V V 
I  I I I  r \  r r t  I  

K1 
= o. (1.16) 

Since the Reynolds numbers of electrokinetic flows in nanofluidics are extremely low, 

the inertial terms in the Navier-Stokes (NS) equations are negligible and the NS 

equations can be simplified to the Stokes equations. At the quasi-steady state, the 

particle's electrophoretic velocity will be determined when net force acting on the 

particle vanishes. However, the equations (1.13)-(1.16) with the force balance equation 

are strongly coupled. 

Under the conditions of the Debye-Hiickel approximation and assuming the electric 

double layer is not distorted, the electrophoretic mobility of a spherical particle of 

radius a in an unbounded medium can be approximated by the Henry function 

2 s fZ  f (  \  

75 

(1.17) 

where 

/(*•#) = 1 +—(ica)2 ——(ica f  ——(Aca f  
v ; 16 48 ' 96 ; 

+—(Ara)5 +-(*-a)4 e" 
96 ; 8 ' 

1-
( ko )  

12 

2 \ 
d t .  (1.18) 

Note that the above approximation solution for the particle electrophoretic velocity is 

valid under the assumptions of low surface potential, weak electric field imposed, and 

no boundary effect (i.e., infinite fluid medium). During the nanoparticle translocation 

process, the conditions do not hold, therefore, one has to numerically solve Eq. (1.13)-

(1.16). 

1.3.4 Induced-Charge Electrokinetics 

Recently, electrokinetic flows arising from the interaction between applied electric 

fields and ideally polarizable channels and particles (i.e. conducting channels and 

particles), referring to the induced-charged electrokinetics (ICEK), have attracted lots of 

attention in the micro/nano-fluidics community.76"78 The main difference between the 
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conventional electrokinetics and ICEK is the origin of the surface charges. In 

conventional electrokinetics such as the EOF and electrophoresis described in the above 

two subsections, the surface charge is gained due to the adsorption or dissociation of 

specific chemical groups. However, the surface charge in ICEK arises from the 

polarization of materials. The induced surface charge of an ideally polarizable material is 

generally dipolar, as shown in Figure 1.5, in which the negative surface charge is induced 

near the anode while the positive surface charge is generated near the side of the cathode. 

However, the net induced surface charge is zero and the electric potential of the 

conducting material is a constant. The characteristic time scale of the induced surface 

charging is on the order of aXD / D, where a is the characteristic length of the ideally 

polarizable material and D is the ionic diffusivity. Figure 1.5 shows that the flow field 

around a circular conducting particle is a quadrupolar EOF, which moves toward the 

particle along the field axis and then leaves the particle radically. The induced zeta 

potential is not a constant, however, varies along the surface with an order of aEm. 

Therefore, the electroosmotic slip velocity of ICEK is proportional to the square of the 

electric field strength, u oc-£Q£faE^jn. Obviously, ICEK is a non-linear electrokinetic 

phenomenon. As the induced zeta potential is tunable through the externally applied 

electric field and the geometry, ICEK-based microfluidics holds more versatile and 

sophisticated manipulations of fluids and suspended particles. So far, ICEK has been 

successfully utilized to generate circulating flows for fluid stirring and mixing in 

microfluidics. 79 82 Very recently, particle enrichment and trapping have also been 

experimentally demonstrated using the ICEK technique.83"85 Chapter 5 reviews the 

propose use of ICEK on a floating electrode coated on the inner surface of the nanopore 

to control nanoparticle translocation. 
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Figure 1.5. Schematics of induced-charge electroosmosis around a conducting particle. 

1.4. Organization of the Dissertation 

A comprehensive understanding of the electrokinetic fluid and particle transport in 

nanofluidics is crucial to the development of the next generation nanopore-based DNA 

sequencing technology. Therefore, this dissertation research consisted of comprehensive 

numerical studies of electrokinetic flow and particle transport in nanofluidics. Chapter 1 

briefly discusses nanofluidics and its applications with the focus on the DNA 

translocation through a nanopore. This chapter also briefly reviews the basic theories of 

electrokinetics. The rest of this dissertation can be divided into two parts, electrokinetic 

ions and fluid transport in nanofluidics (Chapter 2 and Chapter 3), and electrokinetic 

particles transport in nanofluidics (Chapter 4-8). Chapter 2 investigates electrokinetic 

flow and ion transport in a nanopore functionalized by polyelectrolyte. Chapter 3 

investigates electrokinetic flow and ion transport in a charge-regulated nanopore. 

Chapter 4 investigates electrophoretic motion of a soft nanoparticle in a nanopore using 

numerical simulation. Based on the knowledge obtained from Chapter 2, a novel soft 

nanopore comprising a solid-state nanopore and a functionalized soft layer is proposed to 

regulate the DNA electrokinetic translocation, which is described in Chapter 5. 
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Regulation of DNA translocation by a floating electrode coated on the inner nanopore 

wall is described in Chapter 6. Chapter 7 investigates the local permittivity environment 

effect on the DNA electrokinetic translocation through a nanopore. Chapter 8 studies 

translocation of a charged-regulated protein through a soft nanopore. The last chapter is 

Chapter 9, which concludes the thesis and provides future work related to this thesis. 
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CHAPTER 2 

ELECTROKINETIC ION AND FLUID TRANSPORT IN POLYELECTROLYTE 

BRUSHES-FUNCTIONALIZED NANOPORES 

Abstract 

Chemically functionalized nanopores in solid-state membranes have recently emerged 

as versatile tools for regulating ion transport and sensing single biomolecules. In this 

chapter, we theoretically studied the importance of the bulk salt concentration, the 

geometries of the nanopore, and the thickness and fixed charges of the polyelectrolyte 

(PE) brushes layer on the electrokinetic ion and fluid transport in two types of PE 

modified nanopores: the PE layer is end-grafted to the overall wall surface of the 

membrane (system I) and it is only end-grafted to the inner wall surface of the nanopore 

(system II). Due to more significant ion concentration polarization (CP) occurring in the 

system II, the variations of the enhanced local electric field, the conductance and the 

electroosmotic flow (EOF) velocity in the system II are remarkably larger than those in 

the system I. In the system I, in addition to a significantly enhanced EOF occurring inside 

the nanopore, the flow field near both openings of the nanopore is opposite to the EOF 

inside the nanopore. The flow field in the system I can be further used to regulate the 

electrokinetic translocation of biomolecules through them. 

2.1. Introduction 

Electrokinetic transport of ions and fluid in nanoscale pores or channels plays an 

important role in modern biophysics and biochemistry due to the growing desires and 

interests to understand the real physiological process in living organisms and to develop 
j/r m 

them for engineering applications. In nanofluidic devices whose characteristic length 

is comparable to the thickness of the electric double layer (EDL), several fascinating 
OA OQ QA 

features, such as ion selectivity, ion concentration polarization (CP), " and ionic 

current rectification (ICR),91'93 were observed experimentally. Potential applications 

based on these electric-field-induced ion and fluid transport phenomena include energy 
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conservation,94 desalination of seawater,95 concentration and separation of 

biomolecules,96 and nanofluidic diodes,12 to name a few. Fundamental understanding the 

electrokinetic flow and ion transport inside the nanopores promotes to develop novel 

nanofluidic devices, such as the next generation nanopore-based DNA sequencing 

platform. 

Inspired by nature, in recent years polyelectrolyte (PE) brushes-functionalized 

nanopores, synthetic nanopores chemically modified by synthetic97'102 or biological 

polyelectrolytes,34'42"43,,03"105 have attracted considerable attentions in using them as a 

versatile tool to rectify ionic transport97"104 as well as to detect and analyze individual 

biomacromolecules34,42"43,105. All of these applications are based on the variation of the 

resistive ionic current pluses when a potential bias is applied across the nanopore. 

Comparing to the large number of experimental studies,34'42_43' 97-105 a comprehensive 

theoretical analysis on electrokinetic ion transport in PE brushes-functionalized 

nanopores is still very limited. 

Typically the electrokinetic flow in a microchannel can be analyzed based on the 

Poisson-Boltzmann (PB) equation,106"107 where the distribution of the ionic 

concentrations follows the Boltzmann distribution. However, the PB model, based on the 

assumptions of equilibrium EDL, electroneutrality existing far away from the charged 

surface, and non-overlapping EDLs,108 fails to describe the fascinating features 

aforementioned due to the significant overlapping of EDLs and the non-equilibrium 
o£ 07 

EDLs resulting in uneven distributions of coions and counterions inside the nanopore. 

Recently, a continuum model based on the Poisson-Nernst-Planck (PNP) equations has 

been developed and widely used to describe the ionic mass transport phenomena in 

nanopores or nanochannels.14, I09"116 A remarkable agreement between the theoretical 

predictions obtained from the PNP model and the existing experimental results suggests 

that the PNP model is capable of capturing and elucidating the essential physics of the 

electrokinetic ion transport phenomena in nanopores with radii larger than 3 nm.114"117 It 
1 I o 

was also demonstrated by Corry et al. that in channels with radii larger than 1 nm, the 

results based on the PNP model agree well with those of Brownian dynamic simulations. 

In this chapter, a continuum-based model, composed of the coupled PNP equations for 

the ionic mass transport and the Stokes and Brinkman equations for the flow fields in the 
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exterior and interior of the PE layer, is developed to comprehensively investigate for the 

first time the electric field induced electrokinetic ion and fluid transport in PE brushes-

functionalized nanopores. The effects of several important factors, including the coverage 

of the PE layer on the membrane wall surface, the bulk salt concentration, the geometry 

of the nanopore, and the thickness and fixed charge of the PE layer, on the resulting 

electrokinetic ion and fluid transport are investigated. The results show that the 

conductance and EOF are distinctly different for the PE layers coated on the overall 

membrane wall surface and only coated on the inner wall surface of the nanopore. 

I 
Anode Bulk I 

A node 

f Cathode 
Bulk 

Cathode 
T 

Bulk 
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Figure 2.1. Schematic illustrations of ion CP phenomenon in PE modified nanopores. The 

overall wall surface of the membrane (a) and only the inner wall surface of the membrane 

(b) are modified with negatively charged PE brushes. 

2.2. Theoretical Modeling 

As schematically shown in Figure 2.1, two types of PE brushes-functionalized nanopore 

are considered in this chapter. System I (Fig.la) consists of a rigid, cylindrical nanopore 
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of length Ln and radius RN connected to two large, identical reservoirs on either side, and 

the PE layer, is end-grafted to the whole wall surface of the membrane. In contrast, the 

PE layer is only end-grafted on the inner wall surface of the nanopore so there are no PE 

layer on the side wall of the membrane in system II (Figure 2.1b). For simplicity, we 

assume the PE layer is ion-penetrable, homogeneously structured, highly charged (non-

regulated), and of uniform thickness Rs, which yields a fixed charge pflx =(eZcrs / Rs) 

density with e, Z, and crs being the elementary charge, the valance of the dissociable 

groups per PE chain, and the PE chain surface density grafted to the membrane, 

respectively. In addition, the possible molecular morphology deformation of the PE 

brushes119"120 is neglected. The value of crPE typically ranges from 0.1 to 0.6 nm"2.119"121 

The nanopore and two reservoirs are filled with an aqueous binary electrolyte solution 

(i.e., KC1 electrolyte solution). Due to the symmetric nature of the present problems, the 

cylindrical coordinate (r, z) with the origin fixed at the center of the nanopore is adopted. 
1 HQ 1 1 *7 1 

A verified continuum-based model ' ' is employed to describe the electrokinetic 

ion transport and flow field in the present problems: 

(i) Poisson-Nernst-Planck (PNP) equations for the potential distribution and ionic mass 

transport:109'117-122 

-V2V = hpfix + Pe ,h=0 or 1, (2.1) 
ef 

A N, = uc, - Z>Vc, - z, Fc, V V, (2.2) J J J J J 

V -N, = 0 .  ( 2 . 3 )  

Here, V is the electric potential; u = uer + ve2 is the fluid velocity with er and ez being, 

respectively, the unit vectors in the r- and z-directions; pe = ^FZJCJ is the space charge 
j  

density of the mobile ions; N), Cj , Dj, and zy are the flux density, concentration, 

diffusivity, and valence of the j*1 ionic species, respectively, (j=\ for cations, and 2 for 

anions), ef, F, R, and T are the fluid permittivity, the Faraday constant, the universal gas 

constant, and the absolute temperature, respectively, h is a unit region function (h=Q, the 

region outside the PE layer; h= 1, inside the PE layer). Note that the first, second, and 
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third terms on the right-hand side of Eq. (2.2) denote contributions from the convective, 
1 

diffusional, and migrational flux densities, respectively. 

(ii) Modified Stokes and Brinkman equations for the flow field of the incompressible 

fluid:117124-125 

—Vp + //V2u - peW - hyu = 0 , (2.4) 

Vu = 0, (2.5) 

where p, fx, and y are the hydrodynamic pressure, the fluid viscosity, and the 

hydrodynamic frictional coefficient of the PE layer, respectively. 

To specify the boundary equations associated with Eqs (2.1), (2.3), (2.4), and (2.5), we 

assume the following, (i) The rigid surface of the membrane is non-slip (u = 0), ion-

impenetrable (n • Ny = 0) and uncharged (- efn • VV = aw = 0), where crw is the surface 

charge density on the membrane wall and n is the unit outer normal vector, (ii) The ionic 

concentrations at both ends of the two large reservoirs are maintained at their bulk values, 

Cj =Cjo = Q> and the electric potential there are V (cathode) = 0 and V(anode) = V0. A 

normal flow without external pressure gradient is specified at the ends of the two big 

reservoirs.52 (iii) The electric potential and field, ionic concentrations, and flow field are 

all continuous on the PE layer/liquid interface.124-125 Moreover, slip boundary condition 

for the flow field, insulation boundary condition for the potential, and zero normal ionic 

fluxes are imposed at the side boundaries of the two reservoirs, which are far away from 

the nanopore. Symmetric boundary condition is specified along the axis of the nanopore. 

The cross-sectional averaged EOF velocity, v , and conductance, G, through the 

nanopore are, respectively, evaluated by 

G = I/V,= (F&zp^ndS/vQ. (2.7) 
S j=i  /  

Here, / is the ionic current flowing through the nanopore, and S denotes either end of the 

reservoirs due to the conservation of the ionic current. 
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Figure 2.2. (a): the meshes used in the simulation with enlarged finer mesh in the PE 

layer, (b): the dependence of conductance in a silica nanopore on the bulk salt 

concentration. Solid line represents the present numerical result for RN = 5.5 nm and 

surface charge density of the nanopore <Jw = -60 mC/m2. Dashed line denotes analytical 

result of Eq. (2.8), and discrete symbols correspond to the experiment data of Smeets et 

al. 38 

2.3. Results and Discussion 

2.3.1 Numerical Method and Code Validation 

The strongly coupled non-linear equations, (2.1), (2.3), (2.4), and (2.5), and the 

associated boundary conditions are numerically solved by the commercial finite element 

package, COMSOL Multiphysics (version 3.5a, www.comsol.com) operating in a high-

performance cluster. The computational domain is discretized into quadratic triangular 

elements. Nonuniform elements are employed with larger numbers of elements assigned 

locally as necessary. Typically the total number of elements for system I and II are 

approximately 210,000 and 100,000, respectively, with finer mesh in the PE layer to 

capture the EDL as shown in Figure 2.2(a). Lagrange - Quadratic elements are used for 

solving PNP equations, while Lagrange - P2P1 elements are for the Stokes and Brinkman 

http://www.comsol.com
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equations. The ionic current through the nanopore is obtained by using the weak 

constrain in COMSOL specially developed for an accurate calculation of flux. Rigorous 

mesh-refinement tests have been performed to ensure that the solutions obtained are 

convergent and grid independent. A maximum tolerance of 0.1% is imposed on the 

relative difference (|/a| - \Ic\)/\Ia\, where Ia and lc are respectively the current entering 

(anode) and leaving (cathode) the nanopore. The numerical scheme has been validated to 

be sufficiently efficient and accurate for solving similar electrokinetic problems, such as 

the electrokinetic ion transport in a solid-state nanopore14' 109"113 and the electrokinetic 

rigid and soft nanoparticle translocation through a nanopore.52'115"117'm-126 

To further verify the applicability of the present numerical model, it is first used to 

predict the conductance of a silica solid-state nanopore with Lx=34 ran and 

RN= 5 ±lnm at the potential bias V0 = 200 mV, and its results are compared to the 

experimental data of Smeets et al.38 To simulate the solid-state nanopore, we specify 

y = 0 and consider the surface charge on the nanopore stemming only from the surface 

charge density, aw. Figure 2.2(b) depicts the nanopore conductance as a function of the 

bulk salt concentration, C0 . For comparison, we also present the corresponding 

approximate result of Smeets et al38 (dashed line in Figure 2.2(b)), 

c = 
nRl 
Ln 

(/i ,  +//2)C0F + /U, 
rn 

(2.8) 

where //, (K+) = 7.571 x 10~8 m2/sV and /^(Cl ) = 7.861x10 8 m2/sV are, respectively, 

the electrophoretic mobilities of cations and anions based on the fluid temperature r=300 

K. The first and second terms in the square bracket on the right-hand side (RHS) of Eq. 

(2.8) denote the contributions from the bulk electrolyte solution and the surface charge 

density of the nanopore, respectively. In general, if the salt concentration is high the 

nanopore conductance is dominated by the first term in the square bracket on the RHS of 

Eq. (2.8), while the nanopore conductance is influenced by the second term if the salt 

concentration is sufficiently low. Figure 2.2(b) clearly shows that the result of the present 

numerical model (solid line) with the parameters, RN = 5.5 nm and crw = -60 mC/m2, are 

in good agreement with the experimental data (discrete symbols). However, the analytical 

result based on Eq. (2.8) (dashed line) fails to describe the general trend of the nanopore 
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conductance, especially when the salt concentration is relatively low. The behavior at low 

salt concentration can be attributed to the CP effect since the EDL overlapping becomes 

significant, as will be explained in detail later. It should be pointed out that the estimated 

value of aw = -60 mC/m2 matches very well with the typical value of the silica nanopore 

197 
reported in the literature. The present analysis is capable of providing a sound 

interpretation of the general electrokinetic ion transport behavior of the nanopore that is 

essential to the design of relevant nanofluidic devices. 

In subsequent discussions, the influences of some key parameters, including the 

coverage of the PE layer on the membrane wall surface (the systems I and II), the bulk 

salt concentration (C0), the geometry of the nanopore (LN and RN), and the thickness 

and fixed charge of the PE layer (pA), on the electrokinetic ion and fluid transport 

phenomena are investigated in detail. The physical parameters used in the simulations are 

ef =7.08xl0-10 F/m, ^ = lxl0"3 Pas, F=96490 C/mol, i?=8.314 JK^mol"1, F=300K, 

Z = -2, £>,(K+) = 1.957xl0~9 m2/s , and D2(CP) = 2.032 xlO-9 m2/s . Although the 

softness degree of the PE layer, /T' = (jj I y)xn ,128 affects the hydrodynamic field inside 

the nanopore, the ionic current is not affected significantly by the flow field.56' 117 

Therefore, we fix Xx =1 nm, corresponding to the typical values of PEs (ca. 0.1-10 

nm)124, l29, in this chapter. The potential bias, V0 = 200 mV38, is applied across the 

nanopore. 
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Figure 2.3. Spatial distribution of the concentration of cations, c\, in the systems I (a) and 

II (b) for Pfa = -0.91 x 107 C/m3 and C0 = 20 mM. The dashed lines in (a) and (b) denote 

the outer boundary of the PE layer. Distribution of c\ along the axis of the nanopore for 

Pfix =-0.91x107 C/m3 and C0 = 20 mM (c), p^ = -2.73 x 107 C/m3 and C0 = 20 mM 

(d), p fa = -0.91 x 107 C/m3 and C0 = 500 mM (e). Lines and lines with symbols represent 

the results of the system I and II, respectively. 
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Figure 2.4. Distributions of the concentration of anions, C2, in the systems I (a) and II (b). 

Lines and lines with circles in (c)-(e) represent the results for the systems I and II, 

respectively. The conditions are the same as those in Figure 2.3. 
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Figure 2.5. Axial electric field along the axis of the nanopore, Ez = -dV(0 ,z)/dz, for the 

corresponding cases of Figires 2.3(c)-(e). Lines and lines with circles represent the results 

of the systems I and II, respectively. 

2.3.1 Ion Concentration Polarization (CP) and Local Axial Electric Field 

When an external electric field is applied through the nanopore, cations (anions) 

migrate from the anode (cathode) side toward the cathode (anode) side, resulting in ion 

CP phenomenon occurring near both openings of the nanopore. Both cations and anions 

are enriched (depleted) near the opening of the cathode (anode) side, as schematically 

shown in Fig.l. It is generally accepted that the ion CP arises mainly from the selective 

transport of ions inside the nanopore due to the overlapping of EDLs.123 To 

comprehensively understand the ion CP phenomena in various PE brushes-functionalized 
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nanopores, Figures 2.3 and 2.4 depict, respectively, the spatial distributions of the 

concentrations of cations and anions in the systems I (a) and II (b). Solid lines without 

and with circles in (c)-(e) of Figures 2.3 and 2.4 represent, respectively, the variations of 

the ionic concentrations of the cations (Figure 2.3) and anions (Figure 2.4) along the axis 

of the nanopore in the systems I and II. Since the fixed charge density of the PE layer is 

negative, more counterions (i.e. cations) are electrostatically attracted into the nanopore, 

whereas coions (i.e. anions) are repelled out. Therefore, the magnitude of the transport 

flux of the cations (anions) inside the nanopore is significantly larger (smaller) than those 

in both reservoirs at the cathode and anode sides, resulting in enrichment (depletion) of 

concentrations of cations and anions at the cathode (anode) side of the nanopore. These 

two figures also show that the degree of the ion CP, quantified by the difference of the 

concentrations of cations (or anions) at both openings of the nanopore, in the system II is 

more significant than that in the system I, yielding more enriched (depleted) ions at the 

cathode (anode) opening of the nanopore. The concentration differences of the cations, 

Ac, =Cx(0,-LnI2)-Cx(0,LnI2), and the anions, AC2 = c2(0,-LN/2)-c2(0,LN/2), at the 

openings of the nanopore for the cases of Figures 2.3(c)-2.3(e) and 2.4(c)-2.4(e) are 

summarized in Table 1. In general, the Ac} in the system II is remarkably higher than 

that in the system I, implying more significant ion CP phenomenon in the system II. This 

interesting phenomenon can be attributed to stronger equilibrium electric field stemming 

from the charged PE layer in the system I, which captures more counterions inside the PE 

layer. 

To explain the influences of the bulk salt concentration C0 and the fixed charge density 

of the PE layer, p^, on the ion CP in the PE-modified nanopores, we define a factor, 

ACj / C0, and summarize their results for the cases of Figures 2.3(c)-2.3(e) and 2.4(c)-

2.4(e) in Table 1. Degree of the ion CP becomes more significant with higher value of 

A Cj / C0 . We find that the larger the p^ and/or the smaller the C0, the more significant 

the ion CP is. The former is expected because the concentration of counterions gathered 

inside the nanopore increases with increasing p^ . The latter arises from the fact that the 

thickness of EDL increases with decreasing C0 , yielding more significant EDL 
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overlapping. It should be pointed out that the induced ion CP behavior plays an essential 

role in the study of the electrokinetic ion transport in nanopores. Not only the local ionic 

concentrations but also the local electric and flow fields near the openings of the 

nanopore can be affected by the ion CP, which will be discussed later. 

• p^ = -0.91xl07C/m^X®' 

Pfix ~ -3.64X107 C/m3 pA = -3.64xl07 C/m3 

p/Sl = -2.73xl07C/m3 

p^ = -0.91 xlO7 C/m3 

C0 (MM) C0 (MM) 

Figure 2.6. Conductance as a function of the bulk salt concentration, C0, at various fixed 

charge density, p^ , when the pore length LN = 20 nm (a) and 50 nm (b), i?,y=7 nm, and 

Rs=5 nm. Lines represent the results of the system I. squares, triangles, and circles 

represent the results in the system II with Pfix =-3.64 , -2.73, and -0.91 xlO7 C/m3, 

respectively. 

Figure 2.5 shows the influences of both C0 and on the axial electric field along the 

axis of the nanopore, Ez =dV(0,z)t dz, in the systems I (solid lines) and II (solid lines 

with circles). These figures depict that the variation of the local electric field in the 

system II is more significant than that in the system I due to stronger ion CP occurring in 

the system II. When the bulk salt concentration, Co, is relatively low (a) and (b), the axial 

electric field inside the nanopore for the system II is lower than that for the system I. In 

both systems, a positive local electric field occurs near the cathode side of the nanopore, 

while the local electric field near the anode side of the nanopore is significantly enhanced. 

The amplified local electric field near the anode side has been experimentally observed 
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by Kim et al.,130 and they attributed this to the significant depletion of ions at that region. 

Due to mismatch of the cross-sectional areas of the nanopore and the fluid reservoirs, 

typically the local electric field inside the nanopore is much higher than that inside the 

reservoirs, which has been experimentally observed86'131. The momentarily positive local 

electric field occurring at the cathode side of the nanopore has not been reported in the 

literature, and we believe it is attributed to the enriched ions at the cathode side of the 

nanopore. The enriched (depleted) ions at the cathode (anode) side of the nanopore 

generate an electric field opposite to the externally imposed one. The induced electric 

field increases as the degree of ion CP increases. Since the ion CP in the system II is 

more significant than that in the system I, resulting in higher induced electric field and 

accordingly lower net electric field inside the nanopore of the system II. Due to the 

significantly enriched ions at the cathode side, the magnitude of the induced electric field 

is even larger than the applied one, leading to the momentarily positive local electric field 

in that region. The local electric field inside the nanopore is highly asymmetric, as shown 

in Figures 2.5a and 2.5b, due to the significant CP effect occurring near the nanopore 

openings, suggesting that using the Poisson-Boltzmann equation usually adopted in the 
« AM I | A 4 

literatures ' " to simulate the electrokinetic ion transport phenomena in 

nanofluidics is inapplicable. The induced ion CP becomes insignificant when the bulk 

concentration Co is sufficiently high due to thin EDL and accordingly no EDL 

overlapping, under this condition the momentarily positive electric field at the cathode 

side and the significantly enhanced electric field at the anode side vanish, as shown in 

Figure 2.5c. The electric fields in the systems I and II are almost identical, and the local 

electric field inside the nanopore is larger than that in the fluid reservoir mainly due to the 

mismatch of the cross-sectional areas. Comparing 2.5a and 2.5c, the local electric field at 

the center of the nanopore for Co=500 mM is much higher than that for Co=20 mM, 

which is attributed to the insignificant ion CP and the induced opposite electric field by 

the ion CP for Co=500 mM is much lower than that for Co=20 mM. Comparison between 

2.5a and 2.5b shows that the magnitudes of the momentarily positive electric field at the 

cathode side and the enhanced electric field at the anode side for /^t=-2.73xl07 C/m3 are 

higher than those for ^=-0.91 xlO7 C/m3 due to more significant ion CP at higher fixed 

charge density of the PE layer. 
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2.3.2 Nanopore Conductance 

Figure 2.6 depicts the conductance in PE brushes-functionalized nanopores as a 

function of bulk salt concentration C0 at various fixed charge density of the PE layer 

p^ when the nanopore length LN =20 nm (a) and 50 nm (b). Lines and symbols denote 

the results for the systems I and II, respectively. As expected, the nanopore conductance 

increases with increasing C0 in both systems. The dependence of the conductance on the 

fixed charge density p^ is insignificant in the system II especially in a short nanopore as 

shown in Fig.6a, while significantly affects the conductance of the system I. In 

addition, if C0 is relatively low the conductance for the system I decreases nonlinearly 

with the decrease in C0 due to the increase in the contribution of the accumulated 

counterions inside the nanopore; however, this nonlinear behavior vanishes in the system 

II. Comparing to the system I, the ability of concentrating counterions inside the 

nanopore of the system II is weaker due to lower equilibrium electric field stemming 

from the charged PE layer. Therefore, the contribution of the nanopore's charge to the 

conductance of the PE-modified nanopore in the system II is weaker, especially when the 

nanopore is very short, as shown in Fig.6a. Comparisons between the results for LN~20 

nM and 50 nM in the system II show that the dependence of the conductance on p^ for 

LN= 50 nM is more significant than that for LN=20 nM, which is attributed to the increase 

in the concentrated counterions inside a longer nanopore. Figure 2.6 also reveals that the 

conductance for the system I (lines) is remarkably higher than that for the system II 

(symbols). This is because the induced ion CP in the system I is less significant than that 

in the system II, as shown in Figures 2.3 and 2.4, resulting in more counterions 

accumulated inside the nanopore of the system I. 
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Figure 2.7. Conductance as a function of the nanopore radius RN (a), the nanopore length 

LN (b), the thickness of the PE layer Rs (c), and the fixed charge density of the PE layer 

P/ix (d) when C<r=10 mM (solid lines) and 1000 mM (dashed lines), (a): />/„= -

1.82><107C/m3, LN = 20 nm, and Rs = 4 nm; (b): pfa= -1.82><107C/m3, Rn= 6 nm, and Rs -

4 nm; (c): p/lx= -1.82><107C/m3, LN = 20 nm and RN= 12 nm; (d) LN = 20 nm, RN= 6 nm, 

and Rs = 4 nm. Lines and lines with circles represent the results of the systems I and II, 

respectively. A scale of 1/40, 1/20, 1/40, and 1/10 are applied to the lines with circles in 

(a), (b), (c), and (d), repectivly. 
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Figure 2.8. Cross sectionally averaged EOF velocity at the cross section z=0 as a function 

of the bulk salt concentration C0 at various fixed charge density p^ when LN = 20 nm 

(a) and 50 nm (b). Other conditions are the same as those in Figure 2.6. Lines and lines 

with symbols represent the results of the system I and II, respectively. 

The influences of the nanopore radius RN, nanopore length LN, PE layer thickness Rs, 

and fixed charge density p^ on the conductance in PE brushes-functionalized nanopores 

for two levels of C0 are shown in Figure 2.7. Lines without and with circles denote the 

results for the systems I and II, respectively. The general behaviors of the nanopore 

conductance observed in Figure 2.7 can be explained by Eq. (2.8). The conductance 

increases with increasing RN (a), Rs (c), and p^ (d), and decreases with increasing LN (b). 

Note that larger thickness of the PE layer (Rs) also represents higher surface charge on 

the nanopore. Figure 2.7 also reveals that if C0 is relatively low (i.e. 10 mM), the 

conductance in the system II is remarkably lower than that in the system I due to more 

significant ion CP occurring in the system II; however, the conductance between the 

systems I and II are nearly identical if C0 is sufficiently high (i.e. 1000 mM) due to thin 

EDL and weak ion CP. If C0 is relatively low, the influences of R N ,  L N ,  R s ,  and p^ on 

the nanopore conductance are insignificant in the system II; otherwise, these influences 
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become significant in the system I due to less significant ion CP and accordingly more 

counterions accumulated inside the nanopore in the system I. 

2.3.3 Electrokinetic Fluid Flow 

Figure 2.8 depicts the cross sectionally averaged EOF velocity, v, at the cross section 

z=0 as a function of the bulk salt concentration C0 at various fixed charge densities of the 

PE layer when LN-20 nm (a) and 50 nm (b). Lines and symbols denote the results of 

the systems I and II, respectively. Due to the negative charge density in the PE layer, the 

fluid is pumped from the anode reservoir toward the cathode reservoir. The averaged 

EOF velocity, v , increases with increasing \p f l\ and C0. The former is because the 

larger the \p f i\ the more counterions accumulated inside the nanopore. The latter is 

unexpected and can be attributed to the significant ion CP effect. In general, the ion CP 

becomes more significant as the bulk salt concentration C0 decreases, leading to two 

major effects occurring inside the nanopore: (i) less amount of counterions as shown in 

Figure 2.3 and (ii) lower axial electric field as shown in Figure 2.5. As a result, the 

electroosmotic flow inside the PE-modified nanopore decreases as C0 decreases. Under 

the same conditions, since the induced ion CP in the system I is weaker than that in the 

system II, the magnitude of the EOF velocity in the system I is higher than that in the 

system II, especially for high \p f,\ and low Co under which strong ion CP occurs. If C0 

is sufficiently high, the EOF velocities in both systems are very close due to insignificant 

ion CP at high bulk concentration. Similarly, the EOF velocities in both systems are 

almost the same for low \pf,\ except when the bulk concentration is relatively low. In 

general, the difference between the EOF velocities in both systems increases as C0 

decreases and \pf,\ increases due to increase in the degree of ion CP. 

The influences of R N ,  L N ,  R s ,  and p^ on the averaged EOF velocity, v, for two 

levels of C0 are shown in Figure 2.9. Similar to the results in Figure 2.8, the magnitude 

of v in the system I (lines) is consistently higher than that in the system II (lines with 
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circles), especially for the case of Co=10 mM due to more significant ion CP. The driving 

force for the EOF is the product of the charge density of the mobile ions, pe, and the local 

electric field (i.e., the 3rd term in the left hand side of Eq. (2.4)). As discussed in section 

3.1, the induced ion CP reduces both pe and the local electric field inside the nanopore, 

thus reduces the EOF inside the nanopore. Fig.9a depicts that the magnitude of v for Co= 

10 mM initially increases as the nanopore radius RN increases, attains a local maximum, 

and then decreases as RN further increases. However, for Co=1000 mM the EOF velocity 

remains almost a constant when RN is relatively small, and decreases with increasing RN 

when the latter exceeds a critical value. In general, the electric field inside the nanopore 

and accordingly the EOF velocity increase as the nanopore radius RN decreases. 

Meanwhile, the induced ion CP becomes more significant as the degree of the EDL 

overlapping, quantified by the ratio of RN to the EDL thickness, increases. As RN 

decreases, the enhanced ion CP induces stronger electric field opposite to the applied one, 

leading to the decrease in the net electric field and accordingly EOF velocity inside the 

nanopore. The behavior of the EOF velocity versus RN shown in Fig.9a arises from the 

competition of the above two opposite effects. Figure 2.9b shows that the magnitude of 

v increases with decreasing LN. Since the imposed potential bias Vo is fixed and most 

potential drop falls within the nanopore,57 the decrease in the nanopore length results in 

an increase in the electric field inside the nanopore, and accordingly an increase in the 

EOF. Figure 2.9c shows that |v| increases with decreasing Rs if C0 is relatively low (i.e., 

10 mM), while decreases as /^decreases if Co is relatively high (i.e., 1000 mM). Since 

the fluid velocity inside the PE layer is much lower than that outside of the PE layer due 

to the hydrodynamic friction force within the PE brushes (i.e., the last term in the left-

hand-side of Eq. (2.4)), the averaged velocity decreases as the thickness of the PE layer 

increases. However, the total volumetric charge within the PE layer, which is the product 

of the fixed charge density and the volume of the PE layer, increases with increasing Rs, 

resulting in more counterions accumulated inside the nanopore, which leads to an 

increase in the charge density of the mobile ions inside the nanopore, pe, and accordingly 

an increase in the EOF velocity. As Rs increases, the degree of EDL overlapping also 

increases, resulting in an increase in the ion CP and accordingly a decrease in the fluid 
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velocity. The behavior of the EOF velocity versus R s  shown in Fig.9c is the net result of 

the above competing factors. Except for the case of Co=10 nM in the system II Fig.9d 

shows that the EOF velocity increases with increasing \p f,\ due to an increase in the 

accumulated counterions and accordingly the charge density, pe, inside the nanopore. Due 

to significant ion CP occurring for Co=10 nM in the system II, the EOF velocity initially 

increases with increasing \pfi\ , and reaches a plateau once pfl^ exceeds a certain 

threshold value. As \p f,\ increases, more couterions are attracted inside the nanopore, 

resulting in an increase in the EOF velocity. Meanwhile, the degree of ion CP and the 

induced electric field opposite to the externally imposed one also increase as \p f l I\ 

increases, resulting in the decrease in the net electric field and accordingly EOF inside 

the nanopore. The saturation of the EOF velocity for sufficiently high \pf,\ is the 

competition of the above opposite effects. When the ion CP is insignificant, EOF velocity 

increases with \Pf,\ mainly due to the increase in the accumulated counterions inside the 

nanopore. 

To further understand the influences of p^ and C0 , two important controlled 

parameters in the experiments, on the electrokinetic fluid flow inside the PE-

functionalized nanopores, the flow fields near the nanopore (Figures 2.10a and 2.10b) 

and the axial fluid velocity along the axis of the nanopore (Figures 2.10c-e) are shown in 

Figure 2.10. Lines and lines with circles in Figures 2.10(c)-(e) denote the results for the 

systems I and II, respectively. As expected, the fluid velocity inside the nanopore of the 

system I is higher than that in the system II due to more significant ion CP. In the system 

II, the flow field in the anode reservoir converges into the nanopore and then diverges 

into the cathode reservoir. Due to the presence of PE layer on the side walls of the 

membrane, in the anode reservoir fluid flows along the side wall of the membrane, and 

part of it enters the nanopore while the rest flows toward the end of the anode reservoir. 

Fluid flows through the nanopore into the cathode reservoir. Inside the cathode reservoir, 

fluid flows from the end of the reservoir toward the nanopore entrance and merges with 

the fluid coming from the nanopore to flow along the side wall of the membrane. In 
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addition to the enhanced EOF inside the nanopore, the flow inside the two reservoirs is 

opposite to the EOF inside the nanopore. During the next generation nanopore-based 

DNA sequencing technology, negatively charged DNA suspended inside the cathode 

reservoir is electrophoretically translocated through the nanopore, and resulting in a 

current change during the translocation process. Two main challenges in the technology 

include decreasing DNA translocation inside the nanopore to improve the read-out 

accuracy and increasing the capture rate of the nanopore to increase throughput. The 

generated flow pattern in the system I can be used to simultaneously resolve the 

aforementioned challenges.117 The flow field toward the nanopore entrance inside the 

cathode reservoir facilitates to drag DNA from the cathode reservoir to the nanopore 

entrance, leading to an increase in the capture rate. The enhanced EOF inside the 

nanopore is opposite to the particle translocation, thus retards the DNA translocation 

process inside the nanopore. Figures 2.10 (c)-(e) show that the axial EOF velocity along 

the axis of the nanopore increases with increasing | pfl^ but decreases with increasing C0. 

The former is expected because the concentration of counterions inside the nanopore 

increases with increasing \pfi\ • The latter is a unique behavior in the PE-functionalized 

nanopore, that is, the salt concentration dependence of the electrokinetic fluid velocity 
117 

inside the PE layer of the nanopore is distinctly different to that outside the PE layer. 

We attribute this interesting behavior to the development of EDL inside a PE-

functionalized nanopore, which affects the distribution of its fluid velocity profile 

appreciably. 
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Figure 2.9. Cross sectionally averaged EOF velocity as a function of the nanopore radius 

Rn (a), the nanopore length LN (b), the thickness of the PE layer Rs (c), and the fixed 

charge density of the PE layer (d) when Co=10 mM (solid lines) and 1000 mM 

(dashed lines). Other conditions are the same as those in Figure 2.7. Lines and lines with 

circles represent the results of the systems I and II, respectively. 
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Figure 2.10. Flow field near the nanopore (a and b), and the axial velocity along the axis 

of the nanopore (c-e) under the same conditions of Figure 2.3. Color bars in (a) and 

(b)denote the axial fluid velocity and streamlines with arrows denote the fluid velocity 

vector. Lines and lines with circles in (c)-(e) represent the results in the systems I and II, 

respectively. 

2.4. Conclusions 

Effects of the presence of a floating electrode in the form of a conducting metal coating 

along the inner surface of a nanopore on the DNA translocation through a nanopore has 

been studied using a continuum model. The model includes coupled PNP equations for 

the ionic mass transport and the modified Stokes equations for the flow field. The ideally 

polarizable floating electrode interacting with the applied electric field induces a non-
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uniform charge density on its surface. Two main factors, induced-charged eletroosmosis 

(ICEO) and particle-floating electrode electrostatic interaction, could significantly affect 

the DNA translocation through a nanopore. The ICEO effect exists under both thin and 

thick EDLs and is proportional to the square of the applied electric field. As a result, the 

ICEO is negligible under a relatively low electric field and becomes significant under a 

relatively high electric field. The ICEO retards the DNA translocation when it approaches 

the floating electrode, however, facilitates the DNA translocation when it moves away 

from the floating electrode. It has been predicted that the particle could be trapped near 

the floating electrode when the applied electric field is relatively high and the EDLs are 

relatively thin. On the other hand, the particle-floating electrode electrostatic interaction 

is only pronounced when the EDLs of the particle and floating electrode are overlapped. 

An attractive (or repulsive) particle-floating electrode electrostatic interaction is 

generated when the polarity of the particle's surface charge is opposite (identical) to that 

of the local floating electrode. In general, the particle-floating electrode electrostatic 

interaction facilitates the DNA translocation at the two ending regions of the floating 

electrode and retards the DNA translocation in the middle region of the floating electrode. 

Thus, the floating electrode technique might be helpful for attracting DNA from the 

reservoir into the nanopore and slowing down its motion inside the nanopore during 

sequence sensing. A longer floating electrode implies a higher surface charge is induced 

on the floating electrode, which in turn induces a more significant effect on the DNA 

translocation. The present of the floating electrode attracts more ions inside the nanopore 

resulting in an increase in the ionic current flowing through the nanopore, and exhibits a 

minor effect on the ionic current deviation. 
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Table 2.1. Difference of the concentration of cations, Ac,, and anions, Ac2, between two 

openings of the nanopore, and their percentage ratios, Ac, / C0 and Ac2 / C0, for the cases 

of the systems I and II in the Figures 2.3(c)-2.3(e) and 2.4(c)-2.4(e). 

System I Ac, (mM) Ac, /C0(%) System II Ac, (mM) Ac, / C0 (%) 

Figure 2.3(c) 10.1 50.5 Figure 2.3(c) 31.3 156.5 

Figure 2.3(d) 10.2 51 Figure 2.3(d) 41.6 208 
Figure 2.3(e) 26.9 5.38 Figure 2.3(e) 64.6 12.92 

System I AC2 (mM) Ac2/C0(%) System II Ac2 (mM) Ac2/C0(%) 

Figure 2.4(c) 10.8 54 Figure 2.4(c) 24.5 122.5 

Figure 2.4(d) 13.8 69 Figure 2.4(d) 24.7 123.5 
Figure 2.4(e) 27.1 5.42 Figure 2.4(e) 65 13 
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CHAPTER 3 

ELECTROKINETIC ION NAD FLUID TRANSPORT IN A CHARGE-

REGULATED NANOPORE 

Abstract 

Solid-State nanopores have emerged as powerful tools for the study of ion transport and 

single molecules such as DNA and RNA, in which the surface charge density of the 

nanopore plays a crucial role. However, some of these solid-state nanopores are charge 

regulated, and their surface charge densities stemming from the reactive groups at the 

solid-liquid interface of the nanopores depend on pH and ionic strength. In contrast to 

most existing studies on electrokinetic ion and fluid transport in a nanopore, which is 

assumed to bear a pre-specified constant surface charge density regardless of the values 

of pH and ionic strength, this chapter, for the first time, investigated electrokinetic ion 

and fluid transport in a solid-state nanopore using the Poisson-Nernst-Planck equations 

for the ionic mass transport, the Navier-Stokes equations for the flow field, and the 

protonation/deprotonation surface reactions for the charge regulation. The model without 

considering the charge regulation failed to explain the ionic transport in a nanopore such 

as the nanopore conductance when the salt concentration is relatively low, while the 

predictions of the present model considering the charge regulation agree with the 

experimental results obtained from the literature. The obtained results demonstrate that 

the solution properties including pH and background salt concentration significantly 

affect the surface charge density of the nanopore, which in turn affects the conductance, 

electroosmotic flow, and ion selectivity of the nanopore. 

3.1. Introduction 

With recent advances in nanofabrication techniques, nanopores have emerged as 

promising tools for the study of individual (bio)nanoparticles, such as RNA,21,135 DNA,21' 
33, 37-38, 6., .31, .36-137 ^^3., 42, U8-.39 ^^^^^'5-1.6, .26 ̂  single_waU carbon 

nanotubes,140 over the past decades. In these applications, a voltage bias is applied across 
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the nanopore connecting two fluid reservoirs on either side, as schematically shown in 

Figure 3.1 Charged nanoparticles suspended in the cathode reservoir are 

electrophoretically driven through the nanopore, resulting in an ionic current change. One 

aim is to characterize the translocating nanoparticle, such as DNA sequences in the next 

generation nanopore-based DNA sequencing technology, based on the recorded 

detectable changes in the ionic current signals.141"142 

Since the electrical double layer thickness is on the same order of magnitude of the 

nanopore size, only counter-ions are able to pass through the nanopore while co-ions are 

rejected. The resulting ionic current flowing through the nanopore is mainly carried by 

the enriched counterions inside the nanopore due to the ion selectivity.86, 123 Many 

theoretical and experimental studies have demonstrated that the electric-field-induced ion 

transport in solid-state nanopores is governed by the nanopore's surface charge,98'102'110' 

143 therefore one can control the ionic mass transport and ionic current by tuning the 

surface charge density of the nanopore wall.144 Many experimental results demonstrated 

that the surface charge densities of most solid-state nanopores made of oxides such as 

silica and alumina depend on the properties of the electrolyte solution, such as pH and 
/\^ AW AA | ft J # 

salt concentration, ' ' ' implying that the nanopore is charge regulated and its 

surface charge density is governed by the surface reactions of the reactive groups at the 

solid-liquid interface of the nanopores. However, most existing theoretical studies on 

ionic mass transport, electrokinetic fluid and particle transport in solid-state nanopores 

used a pre-specified, constant surface charge density,98'110 that is valid only when the 

nanopore wall is highly charged and is not appropriate for charge-regulated nanopores, 

such as the widely used nanopores made of silica and alumina. Very recently, Hsu's 

group numerically investigated electrophoretic motion of charge-regulated spherical 

particles (i.e., SiC>2 particles) suspended in an unbounded liquid mediua146"148Yeh et al.107 

derived an approximation solution of the fully developed electroosmotic flow in a charge-

regulated nano-slit when the electric double layers are not overlapped and double layer 

polarization is also neglected. The results show that the electroosmotic flow in a charge-

regulated nanochannel and the electrophoretic behaviors of charge-regulated particles 

depend on both pH and the background salt concentration. The actual nanopore-based 

nanofluidic devices consist of a nanopore connecting two fluid reservoirs on either side. 
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Under an electric field imposed, both counter-ions and co-ions are enriched at the 

opening of the nanopore in the cathode fluid reservoir, while both counter-ions and co-

ions are depleted at the opening of the nanopore in the anode fluid reservoir, as 

schematically shown in Figure 3.1. This important phenomenon is referred to as ionic 

concentration polarization, which also plays a critical role on ions, fluid and particle 

transport in nanopore-based devices. Note that the effects of the fluid reservoirs and the 

induced ionic concentration polarization occurring at the interface of the reservoir and 

nanopore are not considered in the aforementioned studies. 

Membrane 

Bulk 

o 

: H :K+ O: CI O: OH 

Figure 3.1. Schematic illustration of multi-ions concentration polarization (CP) 

phenomenon in a charge-regulated nanopore. Concentrations of cations and anions are 

enriched at the cathode side and depleted at the anode side of the nanopore, leading to a 

gradient of salt concentration, the so-called diffusion boundary layer (DBL) on both 

openings of the nanopore.123 
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In the this chapter, we consider a more realistic nanofluidic device consisting of a silica 

nanopore connecting two fluid reservoirs on either side, and numerically investigate the 

electrokinetic fluid flow and ion transport using a continuum model, comprising of the 

Poisson-Nemst-Planck (PNP) equations for the ionic mass transport, the modified Stokes 

equations for the flow field, and the protonation/deprotonation surface reactions for the 

charge regulation. Due to the confinement of the geometry and the presence of the 

reservoirs, both boundary effect and the effect arising from the induced ionic 

concentration polarization occurring at both ends of the nanopore are considered. 

Different from the existing studies using a pre-specified constant surface charge density 

on the nanopore wall,98'110 surface charge density of the nanopore wall is part of the 

solution in the present model. We first validate the present model by comparing its 

predictions of the nanopore conductance as a function of the salt concentration to the 

experimental data obtained from the literature. Subsequently, the verified model is used 

to elucidate the effects of the solution properties (i.e., pH and background salt 

concentration) on the nanopore surface charge density, ionic concentration polarization, 

potential drop within the nanopore, nanopore conductance, and electrokinetic flow. 

3.2. Mathematic Model 

We consider a cylindrical nanopore of length LM and radius RM connected to two large, 

identical fluid reservoirs filled with an electrolyte solution containing N types of ionic 

species, as schematically shown in Figure 3.1. The axial length, LR, and radius, RR, of the 

reservoirs are large enough so that the concentration of each ionic species at places far 

away from the nanopore maintains its bulk ionic concentration, Cj0 (/= 1,..., N). A 

potential bias V0 is applied between two electrodes positioned far away from the 

nanopore inside the two fluid reservoirs, resulting in a negative axial electric field, E, 

which induces electroosmotic flow and simultaneously generates an ionic current through 

the nanopore. Due to the axial symmetric, the cylindrical coordinates (r, z) with the origin 

at the center of the nanopore is adopted. 

A continuum-based mathematical model, composed of the Poisson-Nernst-Planck (PNP) 

and the modified Stokes equations, is employed to describe the ionic mass transport and 
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induced electroosmotic flow in the charge-regulated nanopore. The ionic mass transport 

in the electrolyte solution is governed by the PNP equations: 

N 

_ 
-V2v = &• = £! , (3.1) 

ef ef 

A N,. = uc,-DVc.-z, ——FcW, (3.2) J J J I J J 

and 

V • Ny = 0. (3.3) 

In the above, V is the electric potential; u = uer + vez is the fluid velocity with e, and ez 

N 
being, respectively, the unit vectors in the r- and z-directions; pe = ̂  Fz jcJ is the space 

y=i 

charge density of mobile ions; N,, c J ,  D j ,  and zj are the flux density, concentration, 

diffusivity, and valence of the 7th ionic species, respectively; e f, F, R, and T are the fluid 

permittivity, the Faraday constant, the universal gas constant, and the absolute 

temperature, respectively. Note that the first, second, and third terms on the right-hand 

side of Eq. (3.2) denote contributions from the convective, diffusive, and migrative fluxes, 

respectively. 

Since the Reynolds number of the electrokinetic flow in nanopores is extremely small 

(i.e. Re«l), the steady-state flow field can be described by the continuity and the 

modified Stokes equations:52,149 

Vu = 0, (3.4) 

-V/? + //V2u-peW = 0, (3.5) 

where p and ^ are the hydrodynamic pressure and the fluid viscosity, respectively. 

To solve the above coupled governing equations (3.1)-(3.5), appropriate boundary 

conditions are required. We assume that the ionic concentrations at the ends of the two 

reservoirs are maintained at their bulk values, cj = Cj0, and the electric potentials are 

V{cathodi) = 0 and V(anod£) = V0. A normal flow with no external pressure gradient (i.e. 

p=0) is applied at the ends of the two big reservoirs. The fixed wall surface of the 

membrane is non-slip, ion-impenetrable and bears a surface charge density, yielding 
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u = 0,  n • N y  = 0 and -n • VV = crw Ief, where n is the unit outer normal vector and aw 

is the surface charge density of the membrane wall. A symmetric boundary condition is 

specified along the axis of the nanopore. The slip boundary condition for the flow field, 

insulation boundary condition for the potential (-n-VV = 0), and zero normal ionic 

fluxes (n • N7 = 0) are applied at the side boundaries of the two reservoirs, which are far 

away from the nanopore. 

Due to the protonation/deprotonation surface reactions often occurring on the 

dissociably functional groups of the solid/liquid interface, the dielectric material of the 

membrane surface typically reveals a charge-regulated nature when it is in contact with 

an aqueous solution. Therefore, the surface charge property of the nanopore, which 

significantly affects the electrokinetic transport phenomena inside it, highly depends on 

the solution properties such as solution pH and its ionic strength. The surface charge 

density of the charge-regulated membrane wall, crw, is determined by the following 

protonation/deprotonation surface reactions with equilibrium constants KA and KB:101 

AOH <-» AO" + H+, (3.6) 

and 

AOH + H+ <-> AOH,+. (3.7) 

Under equilibrium, KA =«A0-[H+]J /«A0H and KB = «AQH, /«aoh[H+L, where nAOH, «A0_, 

and «ao^+ are the surface site densities of AOH, AO", and AOHj+, respectively, and 

[H+]f is the molar concentration of H+ions at that membrane wall/liquid interface. The 

total surface site density on the nanopore/liquid interface is 7Vtotal = «A0H + «AQ_ + «AOt^ , 

and the resulting surface charge density is 

Eq. (3.8) shows that the surface charge density depends on the concentration of the H+ 

ions on the membrane wall, and is a part of the solution instead of externally specified. 

The resulting volumetric flow rate, Qfiow, and conductance, G, through the nanopore are, 

respectively, evaluated by 



46 

a « < 3 - 9 >  

G = //N = FF(£>,N,)-N<ISA. (3.10) 
S 7=1 / 

Here, / is the ionic current flowing through the nanopore, and S denotes either end of the 

reservoirs due to the conservations of mass and ionic current. 

3.3. Results and Discussion 

3.3.1 Numerical Method and Code Validation 

The above fully coupled model is numerically solved using the commercial finite-

element package, COMSOL (version 3.5a, www.comsol.com), operating in a high-

performance cluster. The computational domain is discretized into quadratic triangular 

elements. Nonuniform elements are employed with larger numbers of elements assigned 

locally as necessary. Typically, the total number of the mesh is around 130,000, with 

finer mesh on the nanopore wall to capture the EDL and surface charge variation as 

shown in Figure 3.2a. Lagrange - Quadratic elements are used for solving PNP 

equations, while Lagrange - P2P1 elements are for the Stokes equation. The ionic current 

through the nanopore is obtained by using the weak constrain in COMSOL specially 

developed for an accurate calculation of flux. Rigorous mesh-refinement tests have been 

performed to ensure that the solutions obtained are convergent and grid independent. The 

relative tolerance is set as 10"6 in all the cases of this chapter. A maximum tolerance of 

0.1% is imposed on the relative difference (|/a| - |/c|)/|/a|, where Ia and Ic are respectively 

the current entering (anode) and leaving (cathode) the nanopore. The numerical scheme 

has been validated to be sufficiently efficient and accurate for solving similar 

electrokinetic problems, such as the electrokinetic ion transport in a solid-state 

nanopore14'109"113 and the electrokinetic rigid and soft nanoparticle translocation through 
o 52, 115-117,122, 126 a nanopore. 

We assume that the background electrolyte is made of KC1 with concentration CKC,, 

and the solution's pH is adjusted by KOH and HC1. Therefore, four major ionic species 

(i.e., N= 4), H+, K+, Cl~, and OH~, are considered, and their bulk concentrations are, 

http://www.comsol.com
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respectively, C10, C20, C30, and C40(in the unit of mM). Due to electroneutrality, the 

bulk concentrations are C10 = 10(_pH+3), C20 = CKC1, Cx =CKa +10(_pH+3) -io~(pK-_pH)+3, 

and C40=10"(pK--[4i)+3 if pH <pKw/2 ; and C10=10",*,+3 

Qo = CKa -10-*+3 + lO-^"^3, C30 = CKCI, and Cm = if pH > pKw /2 .,47' 

148 Here, pH = -bg([H+]0) = -tog(C10/1000) and pKw =-log(Kw) = 14 with [H+]0 and 

Kw being the bulk molar concentration of H+ ions (in the unit of M) and the dissociation 

constant of water, respectively. 

In subsequent discussions, the influences of the solution properties (pH and background 

salt concentration, CKC1) on the conductance, the electroosmotic flow, and the relevant 

electrokinetic ion transport phenomena through a silica nanopore are investigated. Unless 

otherwise specified, the potential bias V0 = 500 mV is applied between the two electrodes, 

and the length and radius of the nanopore are assumed to be LH=70 nm and RN=5 nra, 

respectively. It should be pointed out that for the radius of the nanopore considered it has 

been validated that the continuum model is sufficient to capture and elucidate their 

essential physics.47'56'117-150 The size of the reservoirs are LR =200 nm and Rr = 200 nm. 

The diffusivities of ions H+, K+, CI", and OH~are 9.31*10"9, 1.96><10"9, 2.03><10"9, 

and 5.30x10"9 m2/s, respectively. The other physical parameters used in the simulations 

are s f  = 7.08 x 10"10 F/m, R = 8.31 J/(K mol), F=96490 C/mol, // = 1 x 10"3 Pa - s, and T = 

300K. 
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Figure 3.2. (a): the meshes used in the simulation with enlarged finer on the nanopore 

wall, (b): the dependence of the background salt concentration CKC) on the nanopore 

conductance at pH =7.5 and the potential bias Vo = 200 mV. Solid line: numerical result 

based on the present charge-regulated model with pKA = 7 , pKB =1.9 , and 

N,0,01 =8x 10'6 mol/m2; dash-dotted line: numerical result based on a constant surface 

. no 
charge density crw = -60 mC/m ; dashed line: analytical result of Smeets et al. based on 

. TO 
aw = -60 mC/m ; circles: experimental data of Smeets et al. 

To validate the applicability of the present numerical model, it is first used to predict 

the conductance of a silica nanopore with L?r=34 nm and RN = 5 ± 1 nm at pH=7.5 and 

in 
V0 = 200 mV, and the conditions are the same as the experimental setup of Smeets et al. 

Figure 3.2b depicts the nanopore conductance as a function of the background salt 

concentration CKa. For comparison, the corresponding numerical result (dash-dotted line) 

and analytical result of Smeets et al. (dashed line) based on a constant surface charge 
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density, aw = -60 mC/m2, typical value of a silica nanopore used in the literatures,38,127 

are also included. Figure 3.2b shows that the result of the present charge-regulated model 

( s o l i d  l i n e )  w i t h  t h e  f o l l o w i n g  p a r a m e t e r s ,  R N =  5 n m  ,  p K A  =  -  l o g  K A = 1  ,  

pKB = -logA^l.9, and Nlolal =8xl0" 6  mol/m 2 ,  a re  in  very  good agreement  wi th  the  
•JO 

experiment data (circles in Figure 3.2b of Smeets et al. ), while both the analytical and 

numerical results based on a constant surface charge density significantly deviate from 

the experiment results. This is expected because the surface charge density of the silica 

nanopore is not a constant and highly depends on the solution properties (pH and 

background salt concentration), which will be shown later. The estimated values of pKA ,  

pKB, and Nlola/ also reasonably correspond to the dielectric layer of the membrane made 

of silicon dioxide in the literatures.127'151 Therefore, we use the aforementioned values of 

pKa , pKB, and Nlotal in the following simulations. 

3.3.2 Effect of Solution Properties on Nanopore Surface Charge Density 

Figure 3.3 depicts the average surface charge density on the nanopore wall, 

aw = | crwdr / Ln with F denoting the nanopore wall, as a function of the background 

salt concentration, CKCI, for various pH values (Figure 3.3a) and as a function of the pH 

value for various background ionic strengths (Figure 3.3b). The solid, dashed and dash-

dotted lines in Figure 3.3a represent, respectively, the results under pH = 9, 6 and 4, 

while the solid, dashed and dash-dotted lines in Figure 3.3b denote, respectively, the 

results for CKCI = lOOmM, 4 mM and 1 mM. Obviously, the surface charge density is not 

a constant and highly depends on background ionic strength and pH. 

Figure 3.3 shows that the aw increases with increasing CKCIand solution pH. The 

former is expected because the higher the CKC1 results in the thinner thickness of electric 

double layer (EDL), so is the surface charge density on the nanopore. This behavior was 

also observed by Yeh et al in the field effect control of surface charge properties in a 

silica nanochannel.107 The latter arises because the higher the pH (the lower concentration 

of tT ions in the solution) the more negatively charged surface site groups AO 

dissociated on the nanopore surface (refer to eq. 3.6) and, therefore, the higher is the <rw. 
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Note that the isoelectric point (PI) of the silica nanopore wall considered is 2.55. This is 

why the crw is very small when pH is sufficiently low (i.e. pH<5). 

Under the same background salt concentration, the magnitude of the surface charge 

density increases with increasing pH, which qualitatively agrees with the experimental 

results. 152 For pH increasing from 4 to 9, the increase in the surface charge density for 

CKC!=100 mM is higher than that for CKCI=4 mM, which is higher than that for CKCI=1 

mM. Therefore, it is more sensitive to tune the surface charge density of silica nanopore 

through pH when the background salt concentration is relatively high. As pH increases, 

the concentration of H+ ions inside the nanopore decreases, which in turn promotes the 

surface reaction (3.6) leading to more negative surface sites AO" and higher negative 

surface charge density. 

-100 
U-200 

-200 
-pH = 4 
-pH = 6 
-pH = 9 

* KCI 1 
- - - CKCI = 4 mM 

C„r. = 100 mM 
-400 

-300 10° 10' 103 6 8 
CKC1 (mM) pH 

Figure 3.3. Average surface charge density of the nanopore as a function of the 

background salt concentration CKC1 at various solution pH (a) and as a function of pH at 

various CKC, (b). 

3.3.3 Effect of Solution Properties on Ions Distribution 

Since the ion transport in a nanopore is governed by its surface charge, which highly 

depends on the pH and salt concentration, the ionic concentrations inside the nanopore 

are thus dependent on the solution properties. Figure 3.4 depicts axial variation of the 

normalized concentrations of cations, (CI + C2)/CKCI (a) and (c), and anions, (C3 + C4)/CKCI 
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(b) and (d), for various background salt concentration CKCI at pH=4 (a and b) and 9 (c and 

d). For CKci=l mM (dash-dotted lines) and 4 mM (dashed lines), the concentrations of 

the cations and anions near the opening of the nanopore in the cathode side (i.e., the left 

side in Figure 3.4) are obviously higher than those at the other opening in the anode side 

(i.e., the right side in Figure 3.4), which is called the ion concentration polarization, as 

schematically shown in Figure 3.1. The concentration polarization, arising mainly from 

the uneven magnitudes of the electromigrative fluxes of the cations and anions inside the 

nanopore due to the ion selectivity, becomes significant when electrical double layers are 

overlapped and the surface charge density is relatively high.123 Concentration polarization 

is not significant for CKCI = 100 mM at pH=4 due to relatively thin EDL and especially 

low surface charge density as shown in Figure 3.3. Therefore, the normalized 

concentrations of both cations and anions are almost equal to 1 along the axis of the 

nanopore. However, the solid line in Figure 3.4d shows that an obvious concentration 

polarization occurs for CKCI =100 mM at pH=9. Since the scale in the y-axis of Figure 

3.4c is very large, the induced concentration polarization is not clearly shown in Figure 

3.4c. But we indeed check that the cations are enriched at the cathode opening and 

depleted at the anode opening of the nanopore by reducing the scale of the y-axis. The 

appearance of the concentration polarization at pH=9 is due to the resulting high surface 

charge density at pH=9, as shown in Figure 3.3. Although the double layers are not 

overlapped for CKCI =100 mM, the resulting high negative surface for pH=9 strongly 

excludes anions out of the negatively charged nanopore, and anions migrating from the 

cathode reservoir toward the anode reservoir could not enter the nanopore and are 

accumulated near the left opening of the nanopore in the cathode side. As a result, anions 

are enriched (depleted) near the opening in the cathode (anode) side of the nanopore, as 

shown in the solid line in Figure 3.4d. At the same pH, Figure 3.4 also shows that the 

concentration polarization becomes weaker as the salt concentration increases due to the 

decrease in the degree of double layer overlapping. 

To further show the important concentration polarization phenomenon which affects 

electrokinetic ion and fluid in nanofluidics,123 Figure 3.5 depicts the spatial concentration 

distributions of the ions H+ (c0, K+ (ci), CI" (C3), and OH" (C4) in the nanopore region for 

CKCI = 1 mM at pH = 4 (a-d) and 9 (e-h). Since the bulk concentration of OH" is much 
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lower than that of CI", the concentration of OH" inside the nanopore is also much lower 

than that of CI". Due to the extremely low surface charge density as shown by the dash-

dotted line in Figure 3.3a, the nanopore is occupied by both cations including H+ and K+ 

and anions predominantly by CI". The concentration of the cations is a little bit higher 

than that of anions since the nanopore wall bears a low negative surface charge. Figure 

3.5a also shows that the ionic concentrations of both H+ and K+ inside the nanopore are 

not spatially uniform, and their maxima occur at about z=-20 nm on the nanopore wall 

instead of at z=0 due to the electromigration under the negative axial electric field. The 

nonuniform distribution of ions H+ generates a pH gradient inside the nanopore, and the 

signs of the induced pH gradient at both openings of the nanopore are opposite. Figures 

3.5a-d also show that the ionic concentration polarization since the concentrations of both 

cations and anions at the left opening (cathode side) are higher than those at the right 

opening (anode side), and the ions are enriched (depleted) at the opening of the cathode 

(anode) side. Since the surface charge density at pH=4 is very low, the regions of the ion 

enrichment and depletion are small and occur near both openings of the nanopore. On 

the other hand, the surface charge density on the nanopore wall is very high if the pH is 

sufficiently high (i.e. pH=9 in Figure 3.5e-h). In this case, more counterions (cations) are 

electrostatic concentrated inside the nanopore while the coions (anions) are repelled out 

the nanopore, leading to a significant equilibrium electric field (normal to the direction of 

the applied electric field). As a result, the CP effect at higher pH is less significant than 

that at lower pH. Note that at pH=9 the concentration of H+ ions is significantly lower 

than the background electrolyte ions (K+ and CP) and the significantly electrostatic effect, 

resulting in the concentration of K+ inside the nanopore is obviously higher than the other 

concentrations of ions. 
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Figure 3.4. Axial variation of the concentrations of cations (c,+c2), (a) and (c), and 

cations ( c3 + c4 ), (b) and (d), in a silica nanopore for various background salt 

concentration CKa at the solution pH=4, (a) and (b), and 9, (c) and (d). Inset of (c): 

enlarge view of (c) for (CI-C2)/CKCI from 0.6 tol.8. 



54 

z (nm) 40, 

8.5E-08 
7.5E-08 
6.5E-08 
5.5E-08 
4.5E-08 

0.0009 
0.0007 
0.0005 
0.0003 
0.0001 

0.0045 
0.0035 
0.0025 
0.0015 
0.0005 

Figure 3.5. Illustrating contours of the concentration of in a silica nanopore for the case 

of Figure 4 at CKC) = 1 mM. (a)-(d): pH=4; (e)-(h): pH=9. (a) and (e): c\; (b) and (f): c?, 

(c) and (g): c3; (d) and (h): c4. 
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Figure 3.6. Potential drop within the nanopore AV^ /V0 as a function of the background 

salt concentration CKCI at various solution pH (a) and as a function of pH at various CKC1 

(b). 

3.3.4 Effect of Solution Properties on the Nanopore Potential Drop 

One of the main challenges in the nanopore-based DNA sequencing technology is that 

DNA translocates through the nanopore too fast. One hopes to slow down DNA 

translocation through the nanopore to improve the read-out performance. Since the DNA 

electrophoretic velocity is proportional to the electric field inside the nanopore, which 

can be roughly estimated as the potential drop within the nanopore over the nanopore 

length. For a fixed nanopore length, one expects to achieve lower translocation speed 

with lower potential drop inside the nanopore. Figure 3.6 depicts the potential drop 

within the nanopore normalized by the voltage bias imposed, AVpore/Vo, as a function of 

the background salt concentration at various pH (a) and as a function of pH at various ion 

strength, CKCI (b). The potential drop inside the nanopore is defined as the potential 

difference between both openings of the nanopore on the nanopore axis, AFpo r e  = V(0, 

LN/2)- F(0, -LN/2). Due to the potential drops in the two fluid reservoirs, AVpoJVo<\. 

At fixed pH, the potential drop initially increases with the ionic strength when the salt 

concentration is relatively low. When the salt concentration is above a critical value, the 

potential drop inside the nanopore reaches a plateau. At pH=4, the effect of CKCI on the 

potential drop is insignificant due to the low surface charge density of the nanopore wall, 
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as shown in Figure 3.3a. The effect of CKCI on the potential drop within the nanopore 

increases with increasing pH due to the increased surface charge density. The maximum 

potential drops for pH=4 and 6 are the same, which are larger than that for pH=9. For a 

salt concentration below than the critical value, the potential drop for pH=9 is lower than 

that for pH=6, which is lower than that at pH=4. The dependence of the potential drop on 

both salt concentration and pH is attributed to the dependence of the induced 

concentration polarization on the solution properties. The induced concentration 

polarization with enriched (depleted) ions at the opening of the cathode (anode) side 

induces an electric field opposite to that externally imposed. The induced opposite 

electric field increases with the increase in the degree of the concentration polarization, 

which becomes more significant with the increase in the surface charge density and the 

degree of double layer overlap, as described in section 3.3.2. The concentration 

polarization is insignificant due to the low surface charge density at pH=4, therefore, the 

potential drop does not significantly vary with the ionic strength. Due to the resulting 

high surface charge density at pH=6 and 9, the induced concentration polarization 

increases as CKCI decreases owing to the increase in the degree of double layer overlap, 

resulting in an increase in the induced electric field opposite to the applied one, which in 

turn decreases the potential drop inside the nanopore. Concentration polarization also 

becomes insignificant when the salt concentration exceeds the critical one since the thin 

double layers are not overlapped, resulting in the saturation of the potential drop as the 

salt concentration further increases. Figure 3.6b shows that the potential drop inside the 

nanopore decreases as the pH increases, which is mainly due to the increase in the surface 

charge density and accordingly the concentration polarization. Therefore, one can utilize 

the induced concentration polarization through adjusting the solution properties to control 

the potential drop inside the nanopore, which in turn controls the electrokinetic motions 

of both fluid and particle inside the nanopore. 
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Figure 3.7. Conductance as a function of the background salt concentration CKC, at 

various solution pH (a) and as a function of pH at various CKC, (b). The solid line with 

circle in Figure 3.7a indicates the bulk conductance of the nanopore. 

3.3.5 Effect of Solution Properties on the Nanopore Conductance 

The nanopore conductance depends on the concentrations of both cations and anions 

confined inside the nanopore, which are governed by the surface charge of the nanopore. 

Due to the significant dependence of the surface charge density on pH and ionic strength, 

the solution properties including pH and background salt concentration significantly 

affect the conductance, as shown in Figure 3.7. 

Figure 3.7a shows that the nanopore conductance increases with increasing the 

background salt concentration. The bulk conductance of the nanopore, 

Gbulk 2 7iRN
2F(vxCw + v2C20 + v3C30 + v4C40) / {Ln + 2RS), is also shown by the solid line 

with circles. Here, v,(H+) = 3.62xl(r7m2/sV, v2(K>7.616xl(rV/sV, v3(CP) = 7.909xKTV/sV, 

and v3(OH") = 2.06xl0"7m2/sV are the electrophoretic mobilities of H+, K+, CI" and OH", 

respectively. Obviously, the bulk conductance is linearly proportional to the background 

salt concentration, CKCI, due to the increase in the concentrations of both K+ and CI" 

inside the nanopore. Since the surface charge density of the nanopore at pH=4 is 

relatively low and remains almost a constant during 1 mM<Cicci <1 M, as shown in 

Figure 3.3a, the nanopore conductance at pH=4 agrees with the bulk conductance when 
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CKCI is above 10 mM. The nanopore conductance is slightly larger than the bulk 

conductance when CKCI is below 10 mM due to the double layer overlap, resulting in 

more cations accumulated inside the nanopore. Since the surface charge density at pH=6 

is higher than that at pH=4, more cations are attracted into the nanopore resulting in 

higher conductance than the bulk conductance. Due to very high surface charge at pH=9, 

the nanopore is predominately occupied by ions K+, as shown in Figure 3.5f. The 

nanopore conductance is mainly contributed by the significantly enriched K+ ions, and its 

conductance is much higher than the bulk conductance. As CKCI decreases, double layer 

thickness and the degree of double layer overlap increase, resulting in more cations 

enriched inside the nanopore, which in turn increases the deviation between the nanopore 

conductance and the bulk conductance. 
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-pH = 6 
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C„r,= 100mM ~ 10° 

4 

Figure 3.8. Cross-sectional surface-averaged electroosmotic flow velocity v as a 

function of the background salt concentration CKC, at various solution pH (a) and as a 

function of pH at various CKCI (b). 
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Figure 3.9. Flow field near the silica nanopore for various combinations of the solution 

pH and the background salt concentration CKCl. (a): pH=4, CKCJ=1 mM; (b): pH=9, CKCl 

=1 mM; (c): pH=9, CKC1=100 mM. Color bars denote the fluid velocity in the z-direction 

and streamlines with arrows denote fluid velocity vector. 

Figure 3.7b depicts the nanopore conductance as a function of pH for different salt 

concentrations. When the salt concentration is relatively low and the resulting double 

layers are overlapped (i.e., CKCI=1 mM and 4 mM), the conductance increases with the 

increasing pH due to the increase in the surface charge density, as shown in Figure 3.3b. 

For CKCI=100 mM and pH<5, the conductance reaches the bulk conductance and is 

nearly independent of pH, which is attributed to low surface charge density as shown in 

Figure 3.3b and double layers are not overlapped. In the range of pH>5, the conductance 

increases with pH due to significant increase of the surface charge density as shown in 

Figure 3.3b. 

3.3.6 Effect of Solution Properties on the Electroosmotic Flow 

The solution properties affect both the ion concentration distributions and the potential 

drop inside the nanopore, which in turn affects the electrostatic driving force (i.e., the 

third term in the left hand side of equation (3.5)) and accordingly the electroosmotic flow. 

Figure 3.8 depicts the cross-sectionally averaged electroosmotic flow velocity, v, as a 

function of the bulk salt concentration for various pH (Figure 3.8a) and as a function of 
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pH for various ionic strengths (Figure 3.8b). Figure 3.9 shows the flow field near the 

silica nanopore for various combinations of pH and CKC1. Since the nanopore is 

negatively charged, the induced electroosmotic flow is directed from the anode reservoir 

toward the cathode reservoir. By comparing Figure 3.9a, b and c, one can easily find that 

the electroosmotic flow enhances by the increasing pH and background concentration. 

As the ionic concentration increases, the potential drop inside the nanopore (Figure 3.6a) 

increases, leading to an increase in the fluid velocity. The surface charge density also 

increases with the salt concentration (Figure 3.3a), which attracts more cations inside the 

nanopore resulting in an increase in the net charge density pe and accordingly the driving 

force for the electroosmotic flow. However, as the salt concentration increases the double 

layer thickness decreases, leading to the decrease in the net charge density inside the 

nanopore and accordingly a decrease in the driving force. The electroosmotic flow 

velocity versus the salt concentration is the competition of the above three factors. For 

pH=9, the first two factors dominate when the salt concentration is relatively low and the 

resulting double layers are overlapped, leading to the fluid velocity increases with an 

increase in the salt concentration. The third factor also becomes important when the salt 

concentration is relatively high. Due to the competition among the three factors, the fluid 

velocity for pH=9 reaches a plateau when the salt concentration is relatively high and the 

double layers are not overlapped. For pH=4, the effect of the second factor is negligible 

since the surface charge density is nearly a constant for CKCI varying from 1 mM to 1 M, 

as shown in Figure 3a. When the salt concentration is relatively low, the potential drop 

inside the nanopore slightly increases as the salt concentration increases, leading to a 

slight increase in the fluid velocity. However, the potential drop inside the nanopore 

reaches a plateau as CKCI further increases. Therefore, as the salt concentration further 

increases, the third factor becomes dominant. As a result, the fluid velocity reaches the 

maximum and then decreases as the salt concentration further increases. For pH=6, the 

particle velocity increases with the salt strength when the latter is low, which is attributed 

to the first and second factors, and attains a maximum and then decreases as salt 

concentration further increases due to the saturation of the potential drop inside the 

nanopore (Figure 3.6a) and the third factor. Since the critical salt concentration at which 

the potential drop inside the nanopore reaching the plateau for pH=6 is higher than that 
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for pH=4, the salt concentration at which the maximum fluid velocity occurs for pH=6 is 

higher than that for pH=4. At the same salt concentration, the electroosmotic flow 

velocity increases with pH when the latter is low, and the increase in the flow field 

becomes insignificant when pH is relatively high. As pH increases, the potential drop 

inside the nanopore decreases (Figure 3.6b), while the surface charge density increases 

(Figure 3.3b). The variation of the fluid velocity as a function of pH arises from the 

competition between the aforementioned two opposite effects. 

3.4. Conclusions 

Charge regulation has been considered for the first time to explore the electric-field-

induced ion and fluid transport in a silica nanopore connecting two reservoirs at each end. 

Different from the existing studies using a pre-specified constant surface charge density, 

the surface charge density is part of the solution in the present model and highly depends 

on both pH and the background salt concentration. The prediction of the nanopore 

conductance by the existing model using a constant surface charge density significantly 

deviates from the experimental data obtained from the literature, while the present model 

taking into account the charge regulation successfully captures the physics of the 

dependence of the nanopore conductance on the salt concentration and favorably agrees 

with the experimental data. The results show that both pH and ionic strength significantly 

affect the nanopore surface charge density, which governs the electrokinetic ion and fluid 

transport, especially when the double layers overlap. Therefore, one can control the ion 

and fluid transport by tuning pH and/or the ionic strength. pH and salt concentration also 

significantly affect the concentration polarization with enriched (depleted) counter- and 

co-ions occurring at the opening of the cathode (anode) side. The induced concentration 

polarization creates a concentration gradient across the nanopore, which induces an 

electric field opposite to the externally imposed one, and accordingly reduces the 

potential drop or electric field inside the nanopore. One can use the dependence of the 

electric field inside the nanopore on the solution properties to control ekectrokinetic fluid 

and particle transport inside the nanopore, which highly depend on the electric field 

inside the nanpopre. For example, one can control the induced concentration polarization 
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by timing pH and/or ionic strength to reduce the electric field inside the nanopore for 

slowing down DNA translocation in the next generation nanopore-based DNA 

sequencing technology. One can also control pH and/or salt concentration to tune the 

surface charge density of the nanopore wall, which in turn controls the nanopore 

conductance and electroosmotic flow. 
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CHAPTER 4 

ELECTROPHORETIC MOTION OF A SOFT SPHERICAL PARTICAL IN A 

NANOPORE 

Abstract 

Many biocolloids, biological cells and micro-organisms are soft particles, consisting of 

a rigid inner core covered by an ion-penetrable porous membrane layer. The 

electrophoretic motion of a soft spherical nanoparticle in a nanopore filled with an 

electrolyte solution, has been investigated using a continuum mathematical model, which 

consists of the Poisson-Nernst-Planck (PNP) equations for the ionic mass transport, and 

the modified Stokes and Brinkman equations for the hydrodynamic field outside and 

inside the porous membrane layer, respectively. The effects of the "softness" of the 

nanoparticle on its electrophoretic velocity along the axis of a nanopore are examined 

with changes in the ratio of the radius of the rigid core to the double layer thickness, the 

ratio of the thickness of the porous membrane layer to the radius of the rigid core, the 

friction coefficient of the porous membrane layer, the fixed charge inside the porous 

membrane layer of the particle and the ratio of the radius of the nanopore to that of the 

rigid core. The presence of the soft membrane layer significantly affects the particle 

electrophoretic mobility. 

4.1. Introduction 

When a particle bearing a charge immersed in an electrolyte solution is subjected to an 

external electric field, a relative motion between the particle and the electrolyte solution 

is induced. This phenomenon is referred to as electrophoresis, which has been widely 

utilized to characterize, separate, and purify colloidal particles and macromolecules,71"73 

"70 117 ifo 
and propel particles in micro/naofluidic systems. ' ' " For example, the 

electrophoretic translocation of DNA nanoparticles through a nanopore could result in a 

change of the ionic current through the nanopore. Through the particle's effect on the 
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ionic current, one hopes to detect the presence of the particle inside the nanopore as well 

as obtain information on the nanoparticle's characteristics, such as the sequence of 

nucleotide bases in DNA nanoparticles. This nanopore-based DNA sequencing method 

has the potential to revolutionize genomic medicine. ' 

Electrophoretic motions of rigid particles in both unbounded and confined media have 

been studied extensively,153"173 In nature, a large amount of particles including biological 

cells such as human erythrocytes,174 bacteria,175"176 environmental colloids such as humic 
I 77 1 78 1 0*3 

substances, and colloidal particles covered with charged polyelectrolyte layer 

are soft particles, consisting of a rigid core covered by a porous membrane layer. The 

presence of the charged porous membrane layer will affect both the electrostatic and the 

hydrodynamic forces acting on the particle as well as the ionic concentration distributions 

inside and outside the membrane layer, and accordingly will have a significant influence 

on the electrophoretic motion of a soft particle, which makes its theoretical analysis more 

complicated than that of rigid particles. Comparing to the study of electrophoresis of rigid 

particles, comprehensive understandings of the electrophoretic motion of a soft particle, 

especially a soft nanoparticle in a nanopore, are currently very limited, which is the 

objective of this chapter. 

Previous investigations on the electrophoresis of a soft particle are subject to several 

restrictions. For example, Ohshima 125, 184"187 derived approximation solutions for the 

electrophoretic mobility for a variety of soft particles without considering the double 

layer polarization (DLP) and relaxation effects; while Duval's group investigated the 

electrokinetics of diffuse soft interface and electrophoresis of diffuse soft particle with 

non-uniformly distributed polymer segments without considering the DLP.180"181'188"191 

Saville,192 Hill et al.,193 Hill,194 Hill and Saville,195 and Lopez-Garcia et al.196 investigated 

the electrophoretic motion of soft particles in an unbounded medium taking into account 

the polarization and relaxation effects, and found that DLP effect is very important when 

the fixed charge inside the membrane layer is relatively high. However, the boundary 

effect is not considered in the aforementioned studies. In the practical applications of 

electrophoresis in micro/nanofluidic systems, ' ' the particle is not isolated and 

its electrophoretic motion is affected by the rigid boundaries such as the channel walls. 

Comparing to the numerous studies on the influence of the boundary on the 
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electrophoretic motion of rigid particles, the study on the boundary effect on soft 

particle's electrophoretic behavior is still very limited so far. Only recently, Hsu's 

group197"198 adopted the linearized Poisson-Boltzmann model to theoretically investigate 

electrophoresis of a soft particle along the axis of a cylindrical pore under the conditions 
• 100 

of lower surface potential (or charge) and weak applied electric field. Lee et al., Huang 

et al.,200 and Cheng et al.201 theoretically investigated the electrophoresis of a soft particle 

in a spherical cavity, in a cylindrical pore, and normal to a planar surface, respectively, 

under the condition of a weak electric field imposed. In the present study, electrophoresis 

of a soft nanoparticle along the axis of a nanopore is investigated using the Poisson-

Nernst-Planck (PNP) model, which takes into account the full interactions of particle, 

fluid, electric field, and ionic mass transport, with no assumption made concerning the 

level of charge inside the membrane, the electrical double layer (EDL) thickness, and the 

magnitude of the electric field applied, which will overcome the limits of the Poisson-

Boltzmann model. Double layer polarization, relaxation, and compression due to the 

nanopore wall are also considered in the current study. 

NanoDore 

I 1* z» 
© 

Reservoir Reservoir 

Figure 4.1. Schematics of a nanopore of length 2LN and radius RN connecting two 

identical reservoirs on either side. A charged soft spherical particle, consisting of a rigid 

spherical core of radius a covered by an ion-penetrable porous membrane layer of 

thickness d, is positioned in the center of the nanopore. An electric field, E, is externally 
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imposed parallel to the axis of the nanopore, resulting in the particle electrophoretic 

motion. 

4.2. Mathematical Model 

We consider a soft spherical nanoparticle of radius (a + d), consisting of a rigid 

spherical core of radius a covered by an ion-penetrable porous membrane layer of 

thickness d, positioned in the center of a nanopore with length 2LN and radius RN, which 

is filled with a binary electrolyte solution supplied by two identical reservoirs at each end. 

Considering the axial symmetry of the geometry and physical fields, we use a cylindrical 

coordinate system (r, z) with the origin fixed at the center of the nanopore, as shown in 

Figure 4.1. The nanoparticle is observed when its center coincides with the origin for 

convenience, so that the axisymmetric flow is studied by considering the region I, 

surrounded by the boundary ABCDEFGH, the symmetric line HI, the particle's outer 

surface IJK, and the symmetric line KA, and the region II in the porous membrane layer 

of the particle bounded by the particle's inner rigid surface LMN and outer surface IJK. 

The dashed line segments AB, BC, FG, and GH represent the regions in the reservoirs. 

The length and radius of the reservoirs are, respectively, LR and RR, which are sufficiently 

large to maintain the electrochemical properties at the locations of AB, BC, FG, and GH 

unaffected by the charged nanoparticle and nanopore wall. We assume that the walls of 

the two reservoirs (line segments CD and EF) are electrically neutral surfaces, the 

nanopore wall (the segment DE) carries a uniform surface charge density of crw, and the 

ion-penetrable membrane layer has a fixed charge density /?/„. The porous membrane 

layer of the particle resembles a packed bed with friction coefficient y. Although the 

surface charge on the nanopore wall plays an important role in electrophoretic motion of 

particles, to emphasis the influence of the soft layer on the particle electrophoretic motion, 

the surface charge density on the nanopore aw in the present study is set to zero. A 

potential difference, </>o, is applied across AB and GH to introduce an axial electric field 

across the nanopore, and there is no pressure and concentration gradient imposed across 

AB and GH. Due to the applied electric field, the particle electrophoretically translates 
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along the axis of the nanopore with a velocity Up. Hereafter, bold letters represent 

vectors. 

A continuum model, consisting of the PNP equations for the ionic mass transport and 

the modified Stokes equations for the flow field, has recently been used to investigate the 

electroosmotic, electrophoretic, diffusioosmotic, and diffusiophoretic flows in a nanopore, 

and the numerical results are in qualitative agreement with experimental data available 

from the literature and the predictions from the molecular dynamics simulations 53,68'164* 

167,202-205 jn t^s stU(jy} we extend the verified continuum model, by taking into account 

the ionic mass transport and fluid flow within the porous membrane layer, to investigate 

the electrophoretic motion of a soft nanoparticle in a nanopore. The extended model 

reduces to the existing one for a rigid particle of radius a if the porous membrane layer 

vanishes (i.e., d = 0). The model takes into account the DLP by the imposed electric field, 

and the induced fluid and particle motions without any assumption made concerning the 

EDL thickness and the magnitude of the imposed electric field. 

4.2.1 Mathematical Model for the Fluid Motion 

Since a typical Reynolds number for the electrokinetic flow in a nanopore is extremely 

small, the inertial terms in the Navier-Stokes equations are neglected and the 

hydrodynamics is described by the modified Stokes equations in the free-flow region I 

and the Brinkman equations in the porous region II. For a binary, incompressible 

electrolyte solution with viscosity p. and valences zy and zi, respectively, for the positive 

and negative ions, the conservation laws for mass and momentum are written as 

V*u = 0, in regions I and II (4.1) 

—Vp + pV2u - -F(z|C, + z2c2) VF = 0, in region I (4.2) 

and 

-V/7+ //V2u-F(r1c1 + z2c2)W-y(u-Up} = 0, in region II (4.3) 

where u = urer + u:e; is the fluid velocity vector, in terms of the radial and axial unit base 

vector er and ez, p is the hydrostatic pressure, F is the Faraday constant, cj and C2 are, 

respectively, the molar concentrations of the positive and negative ions, and V is the 
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electric potential in the electrolyte solution. The third term on the left hand side (LHS) of 

the momentum Eq. (4.2) and Eq. (4.3) represents the electrostatic force through the 

interaction between the electric field, E = —VV , and the net charge density, 

pe = F(z]cl + z2c2), in the electrolyte solution. Eq. (4.3) is the modified Brinkman 

equations (by taking into account the electrostatic body force) that describe the fluid flow 

in a porous medium, and the last term on the LHS of Eq. 4.(3) represents the viscous drag 

exerted on the interstitial fluid inside the membrane layer. From some previous work 206" 

, the Brinkman model without considering the deformation of the soft layer, which we 

used in this chapter, can provide results with great agreement to the experimental data. 

A non-slip boundary condition (i.e.,«r = uz = 0) is specified at the fixed, solid walls of 

the nanopore and the reservoirs (line segments CD, DE, and EF in Figure 4.1). On the 

planes AB and GH of the reservoirs which are far away from the nanopore, normal flow 

with pressure p = 0 is used. Symmetric boundary condition is used along the lines of 

symmetry, HIL and AKN. Slip or symmetric boundary conditions are used on the 

segments BC and FG, which are in the bulk electrolyte reservoirs and far away from the 

entrances of the nanopore. Along the outer surface of the particle (arc segment IJK in 

Figure 4.1), continuous flow boundary condition is applied (e.g., the fluid velocity and 

both the normal and tangential viscous stresses are continuous). Finally, along the inner 

surface of the particle (arc segment LMN in Figure 4.1) translating with an electrokinetic 

velocity Up, we neglect the thickness of the adjacent Stern layer, and impose the non-slip 

boundary condition as 

The particle's electrokinetic velocity wpis determined by requiring the total force in the z 

direction (FT) acting on the particle 

u(r, z) = Vp  = upe z , on LMN. (4.4) 

FT  — FE+FD  — 0, (4.5) 

where 

(4.6) 
5 

and 
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FD = J(T° • n)*e_<£S (4.7) 
s 

are, respectively, the electrostatic and hydrodynamic forces acting on the particle. S is the 

particle's outer surface IJK; TA =eyEE-^£y(E»E)land T° = -/?I + //(Vu + Vur )are ,  

the Maxwell stress tensor and the hydrodynamic stress tensor, respectively; e is the 

permittivity of the electrolyte solution; and I is the unit tensor. 

4.2.2 Mathematical Model for the Ionic Mass Transport 

The flux density vector for each aqueous species due to convection, diffusion, and 

migration is given by the Nernst-Planck equation 159: 

N , = u  C t-D tVc,-z,^Fc,W (*=1,2), (4.8) 

where DK is the diffusion coefficient of the &th ionic species, R is the universal gas 

constant, and T is the absolute temperature of the electrolyte solution. Under steady-state 

conditions, the concentration of each species in both regions I and II is governed by the 

steady ionic mass conservation equations: 

V • = 0 (*=1,2). (4.9) 

The electric potential in the electrolyte solution is governed by the Poisson equation: 

-s fV2V = F(z,c, + z2c2), in region I (4.10) 

and 

-S fV2V = F (z,c, + z2c2) + p f a , in region II. (4.11) 

Note that the fixed charge density inside the soft layer, pfa, is spatially dependent to take 
1 o/\ ID] 1 OO 1Q1 

into account the non-uniformly distributed polymer segments ' . To simplify 

the complicated but important problem, the current study assumes the soft particle has 

uniformly distributed charge density inside the soft layer, and is a constant within the 

region II. 

On the planes AB and GH, which are sufficiently far away from the nanopore, the ionic 

concentrations are the same as the bulk concentration of the electrolyte solution present 

in the fluid reservoirs: 
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c, = c2 = C0, on AB and GH (4.12) 

At the walls of the reservoirs (line segments CD and EF) and the wall of the nanopore 

(line segment DE), which are impervious to ions, the net ionic fluxes normal to the rigid 

walls are zero: 

n*N,=n*N 2 =0,  on CD,  DE,  and EF.  (4 .13)  

In the above, n is the unit vector normal to the corresponding surface. Along the inner 

surface of the nanoparticle (arc segment LMN), which is impervious to ions and 

translating with a velocity Vp in Eq. (4.4), the normal ionic fluxes satisfy 159 

n*N t  = n»(uc i ) ,  &=land2.  (4 .14)  

Note that the coordinate is fixed to the stationary nanopore wall and the particle moves 

according to Eq. (4.4), the net ionic flux normal to the particle's inner surface, which is 

impervious to ions, thus exclusively includes the convective term. 

Zero normal flux is used along the segments BC and FG, which are in the bulk 

electrolyte reservoirs: 

n»N,  =n*N 2  =0,  on BC and FG.  (4 .15)  

Along the segments HIL and AKN, symmetric boundary condition is used for the ionic 

concentrations: 

n*N,  =n»N 2  =0,  on HIL and AKN. (4 .16)  

Along the outer surface of the particle (arc segment IJK), the concentrations and normal 

fluxes of the positive and negative ions are continuous. 

Symmetric boundary condition for the electric potential is used on the planes HIL and 

AKN: 

n • VF = 0, on HIL and AKN. (4.17) 

An external potential, <f>o, is applied along the plane AB (anode): 

V = fa, onAB.  (4 .18)  

Along the plane GH (cathode), the boundary condition for the electric potential is 

V  =  0 ,  on GH. (4.19) 

Since the surfaces of BC and FG are far away from the nanopore and are in the bulk 

electrolyte reservoirs, no charge boundary condition for the potential is used: 
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,  onBCandFG.  (4 .20)  

Since the walls of the reservoirs (planes CD and EF) do not carry fixed charge, we use 

n*(-f / V^) = 0 ,  on CD and EF.  (4 .21)  

Along the nanopore wall (line segment DE), zero surface charge boundary condition is 

used: 

n*(-e fVV) = 0,  onDE,  (4 .22)  

Along the particle's inner surface (arc segment LMN), we assume it is not charged, thus 

zero surface charge boundary condition is used: 

n*(-f/VF) = 0, on LMN. (4.23) 

Along the particle's outer surface (arc segment IJK), continuous boundary condition for 

the potential and normal electric field is used. 

4.2.3 Dimensionless Form of the Models 

We use the bulk electrolyte concentration in the fluid reservoir, Co, as the ion 

concentration scale; RTIF as the potential scale; the radius of the nanoparticle's rigid core, 

a, as the length scale; U0 = sfR2T2 j^fuaF2^ as the velocity scale; and Uo/a as the 

pressure scale. The dimensionless governing equations of the above models for the fluid 

motion and ionic mass transport are: 

vW = 0, in regions I and II, (4.24) 

-V*p' + V*2iT --^(rca)2 (z,c,* + z2c'2)V'V' = 0, in region I (4.25) 

-V*p' + V*2u* - ̂ (*ra)2 (zxc* + z2c2*)VV* - (Aaf (u* -LR ) = 0, in region II (4.26) 

V* • N* = 0, in regions I and II (4.27) 

-V'2V' = ~iK af  (ZA + Z2C2)' *n regi°n I (4.28) 

-V'2V* = (/ca)2 (zf \  + z2c2)  + Q,  in region II (4.29) 
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In the above, variables with superscript • are dimensionless. K 1 = kD  = <Js fRT jlF2C0  is 

the dimensional EDL thickness. Aa = yj/a2  /fj .  is the dimensionless friction coefficient of 

the porous membrane layer x9?.Q = p^cfFj{efRTy\s the dimensionless fixed charge in 

the soft membrane layer. The reciprocal of X is called "screening length", which is on the 

order of several nanometers 200. For example, the value of X for poly hydrogel layers 

around latex particles ranges from 8.3 xlO8 m"1 to 1.1 *109 m"1, while that for the 

microbial cell surface of a collection of four pseudomonas syringae strains ranges from 

0.67* 109 m"1 to 0.26x109 m"1 175. Therefore, Xa = 1 means the screening length is 

identical to the nanoparticle radius. 

The dimensionless flux density normalized by U0C0 is 

N: = uY- ( D j D ^Vc ' -z,  (DJD0)cyV , (4.30) 

with D„ = e/R'T2/{fiF').  

The dimensionless particle velocity up* is determined by the zero net force acting on 

the particle, 

FE +FD =0,  

with 

dV' dV* 

dr' dz 
-n f a r ]  

(N 

f  8 V ' 1  
^ dz j  [ d r  J  

n ds', 

(4.31) 

(4.32) 

and 

= I ,du\ du,. . _ du*. 

dz or dz 
ds (4.33) 

u and v are, respectively, the r- and z- components of the dimensionless velocity iT. nr 

and nz are, respectively, the r- and z- components of the unit vector n which is normally 

directed outward the particle's center of mass, and s* is the outer surface of the 

nanoparticle (the arc segment IJK in Figure 4.1). 
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4.3. Results and Discussion 

4.3.1 Numerical Method and Code Validation 

The commercial package COMSOL version 3.5a (www.comsol.com), installed in a high-

performance cluster, is used to directly solve the coupled system with finite-element 

method. In contrast to the previous study 200 where perturbation approach is used and is 

limited to relatively low electric field imposed so that the EDL is only slightly distorted 

from its equilibrium state by the external field, there is no assumption concerning the 

magnitude of the imposed electric field is made in the current study. 

Quadratic triangular elements with variable sizes are used to accommodate finer 

resolutions inside the charged porous membrane layer. A total of 150 thousand elements 

are employed in the simulation, while inside the porous membrane layer the maximum 

element size is only O.Ola. We use p2-pl Lagrange elements for modified Stokes and 

Brinkman equations and Lagrange quadratic elements for the rest equations, respectively. 

No specific stabilization method is introduced to solve the modified Stokes and Brinkman 

equations. The relative tolerance is set as 10"6 in all the cases of this chapter. Solution 

convergence is guaranteed through mesh-refinement tests on the conservation laws. The 

mathematical model and its implementation with COMSOL have been validated by 

comparing its results of electroosmotic, electrophoretic, and diffusioosmotic flows in 

nanopores with the corresponding approximate analytical solution and experimental 

results obtained from the literatures 53, 164"167,202"205. We also compared our numerical 

results of the electrophoretic mobility of a soft particle with the corresponding 

approximate solution l87: 

E. (Aa)2  

f , "\ 
2 ( A  \  ( \  +  A,I2K\\  ,  a3  

1 + -I -
3VK:J  V 1  +  ̂ - /v  J  

1+-
2 (a + d) 

3 
(4.34) 

where £* represents the dimensionless electric field imposed far away from the particle, 

and rf is the dimensionless electrophoretic mobility. Note that the above approximation 

solution is valid under the conditions of Ka » 1, Xa » 1, Kd » 1, Xd » 1, and Q « 

(jcafll. The last one is required to satisfy the assumption of pfJFCo « 1 in the 

Ohshima's work 187. Figure 4.2a depicts the dimensionless electrophoretic mobility as a 

function of Xa when Ka = 20, d/a = 1, Q = 1, and R^/(a+d) = 20. Our numerical results 

http://www.comsol.com
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(circles) are in good agreement with the approximation solution (solid line). Figure 4.2b 

depicts the dimensionless electrophoretic mobility as a function of the dimensionless 

charge within the porous medium layer when Ka = 20, d/a = 1, Xa =10, and RsKfl+d) = 20. 

Our numerical results (circles) are in good agreement with the approximation solution 

(solid line) for small Q (Q «(tca)2/2). The approximation solution is valid only for small 

Q, thus overpredicts the mobility for Q > (tea)2/2 = 200 under the considered conditions. 

0.12 

0.08 

0.04 

200 300 40 100 

Figure 4.2. Dimensionless electrophoretic mobility as a function of Xa (a) and Q (b). (a): 

Ka = 20, Q = 1, and d/a = 1; (b): Ka = 20, d/a = 1, and Xa = 10. Circles and lines represent, 

respectively, our numerical results and Ohshima's approximation solutions. 

In this section, we present a few numerical results of the electrophoretic motion of a 

spherical soft nanoparticle along the axis of a nanopore under various conditions. We 

focus on the electrophoretic motion of a soft particle as functions of the ratio of the radius 

of the rigid core to the EDL thickness, Ka, the ratio of the membrane layer thickness to 

the radius of the rigid core, d/a, the friction coefficient in the porous medium layer, Xa, 

the homogeneous fixed charge within the soft layer, Q, and the ratio of the radius of the 

nanopore to that of the rigid core, R^/a. A representative case of the numerical simulation 

corresponds to a nanopore with length 2LN = 0.6 |im connecting two fluid reservoirs of 

LR = 0.2 (j.m and RR = 0.2 jam, the radius of the rigid core is a = 10 nm, and the imposed 

potential difference is Vo = 0.6 V. The choice of the reservoir lengths is to ensure the 

electrochemical properties at AB and GH are not affected by the charged nanoparticle 
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and nanopore. The temperature of the electrolyte solution in the reservoirs and the 

nanopore is T - 300 K. The electrolyte solution is KCl, and the diffusion coefficients of 

the ions tC and CV are, respectively, 1.95*10"9 m2/s and 2.03 xlO"9 m2/s73. 

4.3.2 The Effect of Ka, Ratio of the Radius of the Rigid Core to the EDL Thickness 

Figure 4.3 depicts the dimensionless particle velocity as a function of Ka for Q = 20 (a) 

and 50 (b) when Xa = 0 (solid lines), 1 (dash lines), and 10 (dash-dotted lines) in a 

nanopore. When Xa is relatively small (i.e., Xa = 0 and 1), the particle velocity increases 

with increasing Ka when the latter is relatively small. Once Ka reaches a certain value, 

which is about 1, the particle velocity peaks and then decreases as Ka further increases. 

When Xa is relatively large (i.e., Xa = 10), the particle velocity monotonically decreases 

as Ka increases. The particle velocity for Xa = 0 is higher than that for Xa = 1, which is 

higher than that for Xa = 10 when the other conditions remain identical. The larger Xa 

represents larger viscous drag on the particle arising from the porous membrane layer, 

which in turn retards the particle motion. Comparing Figure 4.3a to Figure 4.3b, it is 

found that the particle velocity for Q = 50 is higher than that for Q = 20 under the same 

other conditions. The increasing fixed charge in the membrane layer leads to an increase 

in the electrostatic force arising from the interaction between the particle's fixed charge 

inside the soft layer and the imposed electric field, FE, leading to an increase in the 

particle electrophoretic velocity. The effects of Q on the particle electrophoretic velocity 

will be elaborated in details later. Ennis and Anderson 161 investigated the electrophoretic 

motion of rigid particles with relatively thick EDLs and found that the velocity of a 

particle with a fixed zeta potential increases as Ka increases. Similarly, Huang et al. 200 

found that the velocity of a soft particle with a fixed zeta potential on the surface of the 

rigid core generally increases as Ka increases. However, the zeta potential of a rigid 

particle with a fixed surface charge density decreases as Ka increases l71. Accordingly, the 

particle velocity decreases as Ka increases, confirmed by a previous study 165. Similar to a 

rigid particle, the zeta potential of a soft particle with a fixed charge in the membrane 

layer also decreases as Ka increases (results are not shown here). As a result, the particle 

velocity, in general, decreases as Ka increases, as shown in Figure 4.3. However, the 

particle velocity exhibits a local maximum value around Ka - 1 when Xa is relatively 
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small (i.e., Xa = 0 and 1), which is attributed to the DLP effect. In the absence of any 

external disturbance, the EDL is symmetric with respect to the center of the spherical 

particle. However, the external fields including the imposed electric field, the induced 

fluid and particle motion may significantly disturb the EDL, resulting in a non-uniform 

ionic concentration distribution around the particle and accordingly the DLP effect. The 

equilibrium ionic concentration without external disturbance is defined as c, (z'=l and 2), 

which are obtained by solving the equations (27)-(29) without external electric field, fluid 

and particle motions. 8ci = c, -c, (/=1 and 2) represents the distorted ionic concentration 

by the external fields. Since the ionic concentration scale Co varies with Ka, it is more 

reasonable to discuss the DLP effect by comparing the dimensional disturbed 

concentration difference d(cj - ci) for different Ka. Figure 4.4 depicts S(cj - ci) for Q = 

50, Xa = 1, d/a = 0.5, and R^a = 5 when xa = 0.5 (a), 1 (b) and 2.5 (c), which corresponds 

to the dashed line in Figure 4.3b. When Xa = 1 and Ka is small (i.e., Ka = 0.5 and 1), more 

negative (positive) ions induced by the external fields accumulate near the upper (lower) 

hemisphere (Figs. 4a and 4b), indicating a significant DLP. Consequently, an extra 

electric field in the same direction of the applied one is induced to enhance the particle 

velocity. Comparing Figs. 4a to 4b, the region of S(c; - cj)>0 near the lower hemisphere 

for Ka = 1 is larger than that for Ka = 0.5, implying that the DLP for Ka = 1 is more 

significant than that for Ka = 0.5, resulting in an increase in the particle velocity with 

increasing KA in the range of KO<\ . When KA >1, as KA further increases, the magnitude of 

<5(c/ - ci) and accordingly the degree of DLP decreases. For example, Figure 4.4c depicts 

6(ci - ci) for Ka = 2.5 and its magnitude is much lower than that for *<3=1. Therefore, as 

Ka further increases, the DLP effect becomes insignificant resulting in the particle 

velocity deceases as Ka increases. 
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Figure 4.3. Dimensionless particle velocity as a function of xa for Q = 20 (a) and Q = 50 

(b) when Xa = 0 (solid lines), 1 (dash lines), and 10 (dash-dotted lines), d/a = 0.5, and 

Rf/a = 5. 

Note that the DLP effect in general retards the particle electrophoretic motion, as 

observed by Huang et al. 200. In contrast, our results show that the DLP enhances the 

electrophoretic mobility under the considered conditions. Recently, Hsu and Tai 146 found 

that there are two types of DLP in electrophoresis of rigid particles. One is type I DLP 

which occurs inside the double layer and reduces the particle motion, and the other is 

type II DLP occurring immediately outside the double layer and raising the mobility. Our 

results imply that the type II DLP, which induces an extra electric field in the same 

direction of the applied one, dominants over the type I DLP under the considered 

conditions in the current study. 

4.3.3 The Effect of d/a, Ratio of the Soft Layer Thickness to the Radius of the Rigid 

Core 

Figure 4.5 depicts the dimensionless particle velocity in a nanopore as a function of the 

ratio, d/a, when Q = 25 and R^/a = 5. Since the particle velocity for Xa = 50 (dash-dotted 

and dash-double-dotted lines) is very small compared to that for Xa = 1 (solid and dashed 

lines), it is multiplied by a factor of 10 to enhance visibility. For Xa = 1 (solid and dashed 

lines), the particle velocity monotonically increases as the ratio, d/a, increases for both Ka 

= 0.5 (solid line) and 10 (dashed line). When Xa is relatively small, Huang et al. 200 also 
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obtained similar results. For Xa = 50 (dash-dotted and dash-double-dotted lines), the 

particle velocity increases as the ratio, dla, increases when the latter is relatively small. 

Once the ratio, dla, reaches a critical value, the particle velocity peaks and then decreases 

as the ratio, dla, further increases. 
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Figure 4.4. Dimensional disturbed concentration difference for Q = 50, Xa = 1, d/a = 0.5, 

and RN/a = 5 when KO = 0.5 (a), 1 (b) and 2.5 (c), which corresponds to the dashed line in 

Figure 4.3. The solid and dashed lines represent the inner and outer surfaces of the soft 

particle. 

Obviously, the thickness of the porous membrane layer increases as the ratio, dla, 

increases, which leads to an increase in the total amount of fixed charge inside the porous 

membrane layer and consequently the electrostatic force, FE, acting on the particle. The 

increase in the electrostatic force, FE, in turn leads to an increase in the particle velocity. 

However, the increase of the ratio, dla, also increases the fluid-membrane interaction 

inside the porous membrane layer, leading to an increase in the viscous force, FD, arising 

from the membrane layer. The increasing FD, however, reduces the particle velocity. For 

a relatively small Xa (i.e., Xa = 1), the fluid-membrane interaction is relatively weak, the 

increase in FD is unable to compete the increase in FE as d/a increases, resulting in a 

monotonic increase in the particle velocity with the increasing dla. For a relatively large 

Xa (i.e., Xa = 50 in Figure 4.5), the increase in FE with the increasing ratio, d/a, dominates 
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over that of FD, resulting in an increase in the particle velocity with increasing d/a when 

the ratio d/a is relatively small. However, the viscous drag arising from the porous 

membrane layer is proportional to (Xa)2, as shown in Eq. (4.26). Therefore, once the ratio, 

d/a, reaches a critical value, the increase in FD dominates over that of FE, resulting in a 

local maximum of the particle velocity and a monotonic decreases as the ratio d/a further 

increases. 

x l O  

0.25 0.5 fla 0.75 

Figure 4.5. Dimensionless particle velocity as a function of d/a when Xa= 1 and m = 0.5 

(solid line), Xa = 1 and Ka = 10 (dashed line), Xa = 50 and tea = 0.5 (dash-dotted line), and 

la = 50 and xa = 10 (dash-double-dotted line) for Q = 25 and Rf/a = 5. 

Figure 4.6 depicts the dimensionless particle velocity as a function of xa when d/a = 1 

(dashed line), 0.5 (solid line), and 0.2 (dash-dotted line), for Q = 20, Xa = 1, and Rf/a = 5. 

When d/a is relatively small (i.e., d/a = 0.2), the particle velocity deceases monotonically 

as xa increases. As explained in section 3.1, this is attributed to the decreasing zeta 

potential with increasing Ka, which results in a decrease in FE and thus a monotonic 

decrease in the particle velocity. Based on the spatial distribution of S(c/ - cj) for various 

values of dla (results are not shown here), the degree of DLP generally increases with 

increasing d/a. When d/a is relatively large (i.e., d/a = 0.5 and 1), owing to the DLP 

effect discussed in section 3.1, the particle velocity increases with increasing Ka when the 
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latter is relatively small; once ica reaches a critical value, it peaks and then declines as ica 

further increases. 
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Figure 4.6. Dimensionless particle velocity as a function of Ka when dJa = 1 (dashed 

line), 0.5 (solid line), and 0.2 (dash-dotted line) for Q = 20, ka = 1, and Rf/a = 5. 
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Figure 4.7. Dimensionless particle velocity as a function of Xa when Ka = 0.5 (solid line) 

and 10 (dashed line) for Q = 25, d/a = 0.5, and R^/a - 5. 
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4.3.4 The Effect of Xa, Friction Coefficient of the Porous Medium 

Figure 4.7 depicts the dimensionless particle velocity as a function of Xa, the friction 

coefficient of the porous medium layer, for Ka = 0.5 (solid line) and 10 (dashed line) 

when Q = 25, d/a - 0.5, and Rf/a = 5. Different from a rigid particle, the porous 

membrane layer generates an extra viscous drag force characterized by the dimensionless 

friction coefficient, Xa. When Xa is very low (i.e., Xa-*0), the fluid-membrane interaction 

becomes negligible, and the soft particle is equivalent to a rigid particle of radius a. 

When Xa is very high (i.e., Xa->oo), the fluid velocity inside the membrane layer is 

identical to the particle velocity. Hence, the soft particle is equivalent to a rigid particle of 

radius of (a + d) when Xa is very high. In general, a larger particle has a lower 

electrophoretic velocity due to the boundary effect 161. Therefore, the particle velocity 

decreases and eventually approaches a constant as Xa increases. The reason that the 

particle velocity for xa = 0.5 is larger than that for Ka = 10 has been explained in section 

4.3.1. 

4.3.5 The Effect of Q, Fixed Charge in the Soft Membrane Layer 

Figure 4.8 depicts the particle velocity in a nanopore as a function of Q for Xa = 1 (solid 

and dashed lines) and Xa = 50 (dash-dotted and dash-double-dotted lines) when Ka = 0.5 

and 10. The velocities for Xa = 50 are multiplied by a factor of 5 to enhance visibility. 

The magnitude of the particle velocity, in general, increases as the magnitude of the fixed 

charge, \Q\, increases, which is attributed to the electrostatic driving force, FE, increasing 

with the amount of fixed charge in the membrane layer of the particle and has been 

confirmed by the Huang et al. 200. As expected, the positively (negatively) charged 

particle electrophoretically migrates toward cathode (anode) with positive (negative) 

particle velocity. It is revealed that the particle velocity is almost linearly proportional to 

Q when the EDL is relatively thin (i.e., Ka - 10) and becomes nonlinear for a relatively 

thick EDL (i.e., Ka = 0.5), which arises from the effect of the DLP. 

Figure 4.9 depicts the dimensional disturbed concentration difference S(ci - ci) for Ka = 

0.5, Xa = 1, d/a = 0.5, and Rf/a = 5 when Q = 5 (a), 25 (b) and 50 (c). When Ka = 0.5 and 

Q is relatively small (i.e., Q = 5), more negative (positive) ions are accumulated near the 

lower (upper) surface of the inner core as shown in Figure 4.9a, which induces an extra 
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electric field opposite to the applied one and accordingly decreases Fg. However, for 

relatively large Q (i.e., Q - 25 and 50), more negative (positive) ions accumulate near the 

upper (lower) surface, which induces an electric field in the same direction of the applied 

one and accordingly enhances the particle velocity. The type I (II) DLP dominants over 

the other when the magnitude of the fixed charge inside the soft layer is relatively small 

(large), resulting in the decrease (increase) in the particle mobility. When xa is relatively 

large (i.e., Ka = 10), the ionic concentration distribution around the particle is almost 

symmetric with respect to the center of the particle indicating an insignificant DLP. As a 

result, the particle velocity for xa =10 is linearly proportional to the fixed charge Q inside 

the porous membrane layer. 

2.5 

-2.5 

-25 

Figure 4.8. Dimensionless particle velocity as a function of the fixed charge, Q, when Xa 

= 1 and Ka = 0.5 (solid line), Xa = 1 and Ka = 10 (dashed line), Xa - 50 and Ka = 0.5 

(dash-dotted line), and Xa = 50 and Ka = 10 (dash-double-dotted line) for d/a = 0.5 and 

R^/a = 5. 

4.3.6 The Effect of Rh/a, Ratio of the Radius of the Nanopore to That of the Rigid Core 

Figure 4.10 depicts the particle velocity in a nanpore as a function of Rf/a when Q = 25 

and d/a = 0.5. The particle velocities for Xa = 50, Ka = 0.5 (dash-dotted line) and 10 

(dash-double-dotted line) are multiplied by a factor of 2.5. The particle velocity for Xa = 
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1 is higher than that for Xa = 50 due to the friction effect arising from the membrane layer 

when the other conditions are identical. The gap distance between the particle's surface 

and the nanopore wall increases as the ratio, R^a, increases. For Ka = 0.5 (solid and dash-

dotted lines), the particle velocity rapidly increases with increasing R^a if the latter is 

small, and saturates when R^a exceeds a certain value. Similarly, the particle velocity for 

Ka = 10 (dashed and dash-double-dotted lines) also increases with increasing R^/a if the 

latter is very small, and gradually becomes almost insensitive to R^a once the latter 

exceeds a certain value. However, the variation of the particle velocity with the gap 

distance becomes much smaller, compared to the particle velocity for Ka- 0.5. 
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Figure 4.9. Dimensional disturbed concentration difference for Ka = 0.5, la = 1, d/a = 0.5, 

and Rfj/a = 5 when Q = 5 (a), 25 (b) and 50 (c), which corresponds to the solid line in 

Figure 4.8. The solid and dashed lines represent the inner and outer surfaces of the soft 

particle. 

As the gap distance increases, the hydrodynamic retardation stemming from the 

stationary nanopore wall decreases, which leads to an enhancement to the particle motion. 

Meanwhile, the electric field in the gap also decreases due to the increase in the cross-

sectional area as the gap distance increases, resulting in a decrease in the electrostatic 

force, FE• If the EDL thickness exceeds the gap distance, the EDL will be compressed by 

the nanopore wall and eventually increases the hydrodynamic retardation. The effect of 

the ratio, R^a, on the particle motion arises from the competition among the above three 
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factors. When Ka = 0.5 (solid and dash-dotted lines), the EDL surrounding the particle is 

relatively thick and compressed by the nanopore wall if R^/a < 3.5, under which the 

degree of EDL compression by the nanopore wall decreases as the gap distance increases. 

As a result, the decrease in hydrodynamic retardation force leads to a rapid increase in the 

particle velocity. When R^a > 3.5, the EDL detaches from the nanopore wall. As the 

ratio further increases, the increase of the particle velocity with the gap distance mainly 

arises from the decrease in the hydrodynamic retardation and the degree of DLP due to 

the nearby nanopore wall. When the ratio, R^/a, exceeds a certain value, the boundary 

effect becomes insignificant, therefore the particle velocity is almost independent of the 

ratio, Rfj/a. 
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Figure 4.10. Dimensionless particle velocity as a function of Rfja when Xa = 1 and Ka = 

0.5 (solid line), Xa - 1 and Ka = 10 (dashed line), Xa = 50 and Ka = 0.5 (dash-dotted line), 

and Xa = 50 and Ka = 10 (dash-double-dotted line) for Q = 25 and d/a = 0.5. 

When the EDL is relatively thin (i.e., Ka = 10), under which the gap distance is much 

larger than the EDL thickness. When Rp/a is small, the slight increase in the particle 

velocity with increasing R?/a mainly arises from the decrease in the hydrodynamic 

retardation due to the nanopore wall. Once the wall is far away from the particle, the 
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boundary effect becomes insignificant so that the particle velocity becomes insensitive to 

the increase in the gap distance. The particle velocity slightly decreases as Rf/a increases 

further, mainly arising from the decrease in the electric field in the gap that accordingly 

decreases the electrostatic driving force. When RN/O->°o, the particle velocity approaches 

to a constant, which can be estimated by the approximation solution Eq. (4.34) if xa» 1, 

Xa » 1, xd » 1, and Xd » 1. 

4.4. Conclusions 

The electrophoretic motion of a soft spherical particle, consisting of a rigid core 

covered by a charged porous membrane layer, along the axis of a nanopore has been 

numerically investigated using a continuum-based mathematical model. The model 

includes PNP equations for the ionic mass transport, Stokes equations and modified 

Brinkman equations for the hydrodynamic field outside and inside the porous membrane 

layer, respectively. The model considers the DLP by the imposed electric field and the 

induced fluid and particle motions with no assumptions made concerning the EDL 

thickness and the magnitudes of the imposed electric field and fixed charge inside the 

membrane layer. The particle motion is determined by balancing the electrical force on 

the fixed charge inside the membrane layer and the hydrodynamic force arising from the 

fluid flow. 

In general, the resulting particle velocity decreases as ka increases, mainly arising from 

the decrease in the zeta potential of the particle with a fixed charge inside the porous 

membrane layer. If the friction coefficient, Xa, is small, the particle electrophoretic 

velocity monotonically increases with the increasing ratio of the membrane layer 

thickness to the particle size, d/a, primarily due to the increase in the amount of fixed 

charge and accordingly the electrostatic driving force. If Xa is relatively large, the viscous 

drag force by the membrane layer also comes into play, which increases as d/a increases 

due to the increase in the fluid-membrane interaction. The effect of d/a on the resulting 

particle velocity is the result of the competition between the increasing electrostatic force 

and viscous friction force. The electrophoretic particle velocity increases with increasing 

d/a if the latter is small. Once d/a exceeds a certain critical value, the particle velocity 
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peaks and then decreases as dla further increases. If Xa is small, the particle velocity 

decrease as Xa increases. Once Xa exceeds a certain critical value, the particle velocity 

becomes independent of the friction coefficient, Xa. At a relatively large Ka, the 

electrophoretic velocity linearly increases with the magnitude of the fixed charge inside 

the porous membrane layer due to an insignificant DLP effect and the increasing 

electrostatic force. At a relatively low Ka (i.e., Ka « 1), the particle velocity nonlinearly 

increases with the fixed charge arising from the significant DLP effect. Two types of 

DLP are observed, which has not been reported previously in the study of electrophoresis 

of soft particle. When the magnitude of the fixed charge inside the soft layer is relatively 

low (large), the effect of type I DLP is more (less) significant than that of the type II DLP, 

leading to the decrease (increase) in the particle mobility. As the ratio of the nanopore 

size to the particle size increases, the electrophoretic velocity increases due to the 

decrease in the degree of DLP arising from the EDL compression and hydrodynamic 

retardation by the nanopore wall, and the particle velocity reaches a plateau if the gap 

distance is sufficiently large. 
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CHAPTER 5 

REGULATING DNA TRANSLOCATION THROUGH FUNCTIONALIZED 

SOFT NANOPORES 

Abstract 

Nanopores have emerged as promising next-generation devices for DNA sequencing 

technology. The two major challenges in such devices are: (i) find an efficient way to 

raise the DNA capture rate prior to funneling a nanopore, and (ii) reduce its translocation 

velocity inside it so that single base resolution can be attained efficiently. To achieve 

these, a novel soft nanopore comprising a solid-state nanopore and a functionalized soft 

layer is proposed to regulate the DNA electrokinetic translocation. We show that, in 

addition to the presence of an electroosmotic flow (EOF), which reduces the DNA 

translocation velocity, counterions concentration polarization (CP) occurs near the 

entrance of the nanopore. The latter establishes an enrichment of the counterions 

concentration field, thereby electrostatically enhancing the capture rate. The dependence 

of the ionic current on the bulk salt concentration, the soft layer properties, and the length 

of the nanopore are investigated. We show that if the salt concentration is low, the ionic 

current depends largely upon the length of the nanopore, and the density of the fixed 

charge of the soft layer, but not upon its softness degree. On the other hand, if it is high, 

ionic current blockade always occurs, regardless of the levels of the other parameters. 

The proposed soft nanopore is capable of enhancing the performance of DNA 

translocation while maintaining its basic signature of the ionic current at high salt 

concentration. The results gathered provide necessary information for designing the 

devices used in DNA sequencing. 

5.1. Introduction 

Since the sensing single-stranded DNA (ssDNA) and ssRNA were first demonstrated 
01 OAQ , 

by using a-hemolysin protein pore within a lipid bilayer, ' nano-sized pores have 

emerged as promising platforms for both detection and sequencing of individual 
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biopolymers.20'29'141142 In the nanopore-based sensing techniques, charged nanoparticles 

are electrophoretically driven through a nanopore, yielding detectable changes in ionic 

current so that the label-free single-molecule translocation can be probed by the ionic 

current signals.20'29'141142 Among various applications, nanopore-based DNA sequencing 

technique29 is one of the most attractive ones because it has high prospective potentials to 

identify the sequence of nucleotide bases by discriminating the ionic current signatures at 

high throughout and low cost.18'29'33,35'210 However, two crucial challenges still remain 

to be resolved at the present stage, namely, to facilitate DNA capture at the nanopore 

mouth (capture stage),41'57 and to reduce its translocation velocity inside the nanopore56, 

65 so that single base resolution at high speed can be achieved. Several attempts have 

been made recently to solve relevant problems. These include, for example, exerting 

extra mechanical drag by optical tweezers,211"212 adopting chemically functionalized 

nanopores,35'213 adjusting the physiochemical properties of the liquid phase,41'46'64 and 

utilizing the nanopores embedded with gated field effect transistors (FET)56'57, 65 and 

polarizable floating electrode.59 However, an effective way, which is capable of 

completing simultaneously both challenges, has yet to be devised. 

As illustrated in Figure 5.1a, we propose using a solid-state nanopore coated with a 

functionalized soft layer (i.e., polyelectrolyte-modified nanopore120), referred to as soft 

nanopore, to regulate the translocation of a double-stranded DNA (dsDNA) through it. 

Although similar concepts were realized experimentally by coating hairpin-loop (HPL) 

DNA,43' 10S tail-modified DNA,34 and fluid lipid bilayer42 on synthetic nanopores to 

enhance both detecting resolution and selectivity for single biomolecule, there lacks a 

thorough theoretical analysis on the DNA electrokinetic translocation through such soft 

layer-functionalized nanopores. Adopting a continuum-based model comprising Poisson-

Nernst-Planck (PNP) equations for the ionic transport, and Stokes and Brinkman 

equations125 for the fluid flow, we theoretically investigate the DNA electrokinetic 

translocation through a soft nanopore for the first time. The PNP equations have been 

verified to successfully capture the essential physics of the DNA translocation process.65' 

149 Note that using the simplified model based on the Poisson-Boltzmann equation is 

inappropriate in this chapter due to extremely strong electric field imposed and 

overlapping of electric double layers (EDLs). As will be shown, due to an enhanced 
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counterfoils concentration polarization (CP) and an extra friction force stemming from 

the soft nanopore (Figure 5.1b), we can simultaneously raise DNA capture velocity and 

reduce its translocation velocity in the nanopore while maintaining the ionic current 

signatures. Similar to those in solid-state nanopores,38,214 our results show that the change 

in the ionic current due to the translocating DNA depends largely on the level of salt 

concentration. 

5.2. Results and Discussion 

5.2.1 Fundamental Theory. 

Figure 5.1 shows the problem considered: an uncoiled dsDNA is electrophoretically 

driven by an applied electric field in the opposite axial direction, E, of strength E, 

translocating from the cis compartment along the axis of a cylindrical soft nanopore of 

length Ln and radius RN, toward the trans compartment. The dsDNA is simulated by a 

long, rigid nanorod of radius a= 1 nm and length Lp=<\9 nm (ca. 14 helical pitches). Here, 

Lp is shorter than the persistence length of dsDNA (ca. 50 nm)150 to ensure that its shape 

is approximately invariable during the entire translocation process. The soft nanopore is 

simulated by coating a functionalized soft layer on the wall of a membrane. For 

simplicity, we assume that the soft layer is ion-penetrable, homogeneously structured, 

and bears dissociable function groups, which yield a uniform fixed charge density 

Pjb .I25 In addition, the possible morphology deformation of the soft layer119 is neglected. 

The cylindrical coordinates r, 6, z with the origin at the center of the nanopore are 

adopted. Because the present problem is 9 symmetric, only the (r, z) domain needs be 

considered. Figure 5.1b summarizes the forces and the mechanisms involved: the 

electrophoretic force FE, the hydrodynamic drag FH, the electroosmotic flow (EOF), the 

extra friction force stemming from the soft layer Ffric,124-'25 the enhancement of the local 

electric field Eenhaiiced in the nanopore, and the counterions concentration polarization (CP) 

in the vicinity of the nanopore mouth. A continuum-based model comprising the Poisson-

Nernst-Planck (PNP) equations for the ionic transport and modified Stokes equations for 
/  #  «  |  A #  

the liquid flow is adopted to describe the present problem. ' 
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Figure 5.1. (a) The translocation of a double-stranded DNA (dsDNA), simulated by a 

long, rigid nanorod, along the axis (in the z direction) of a soft nanopore, which is 

simulated by coating a functionalized soft layer on the wall of a membrane. Due to the 

imposed electric field E, an electroosmotic flow (EOF) is induced in the charged soft 

nanopore. XD  = K~X  and =-J/ I  /Y are the Debye length and the softness degree of the 

soft layer, respectively, where p and y are the fluid viscosity and the hydrodynamic 

frictional coefficient of the soft layer, respectively, (b) Mechanisms involved in the 

present problem (not to scale). The soft layer, which is ion-penetrable, homogeneously 

structured, and bears dissociable functional groups, yields an extra friction force Ffric 

acting on the liquid flowing through it. The negatively charged DNA experiences an 

electrophoretic force FE in the z direction and a hydrodynamic drag FH in the opposite 

direction arising from the movement of the counterions inside EDL. Concentration 

polarization (CP)123 occurs, where counterions and coions simultaneously gather near the 

nanopore mouth; the amount of the former is much greater than that of the latter, 

inducing a significant counterions-enriched electrostatic field facilitating DNA capture. 

Eenhanced is the enhanced local electric field inside the nanopore. 
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(1) Poisson-Nernst-Planck equations 

hPfu+Y,FzJcJ 
-V2</>=hpflx + Pe = J- , (5.1) 

ef ef 

V • N, = V • (uc, - DJWCJ - Zj ̂ FCjV0) = 0. (5.2) 

<f> is the electric potential; u is the fluid velocity; pe=^FzjCj is the space charge 
j 

density of the mobile ions; Ny, c}, Dj, and Zj are the flux, the concentration, the diffusivity, 

and the valence of the j,th ionic species, respectively (/= 1 for cations, and 2 for anions). 

sf, F, R, and T are the fluid permittivity, Faraday constant, gas constant, and the absolute 

temperature, respectively, h is a unit region function (h=0, the region outside the soft 

layer; h= 1, the region inside it). pfix = (eZas / Rs)%sis the fixed charge density of the soft 

layer with e, Z, crs, Rs, and Xs being the elementary charge, the valance of the 

dissociable groups per molecular chain, the molecular chain surface density grafted to 

solid-state nanopore, the thickness of the soft layer, and the dissociated degree of 

functional groups in the soft layer, respectively. We assume that Z—1 and as = 0.6/nm2, 

• • 1^1 
which are typical to a lipid bilayer surface. 

(2) Modified Stokes equations:124"125 

- Vp + //V2u - (]£] FZJCJ )V<f>-hyix = 0, (5.3) 
j 

V-u = 0, (5.4) 

where p is the hydrodynamic pressure. 

To specify the boundary equations associated with Eqs (5.1), (5.2), (5.3), and (5.4), we 

assume the following, (i) The rigid surface of the membrane is non-slip (u = 0), ion-

impenetrable (n-N7 =0) and uncharged (-efn• VV = aw = 0), where crw is the surface 

charge density on the membrane wall and n is the unit outer normal vector, (ii) The ionic 

concentrations at both ends of the two large reservoirs are maintained at their bulk values, 

Cj =Cj0 = C0, and the electric potential there are V(cathod$ = Q and V(anode) = VQ. A 

normal flow without external pressure gradient is specified at the ends of the two big 
E"Y 

reservoirs, (iii) The electric potential and field, ionic concentrations, and flow field are 
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all continuous on the PE layer/liquid interface.124"125 (iv), slip boundary condition for the 

flow field, insulation boundary condition for the potential, and zero normal ionic fluxes 

are imposed at the side boundaries of the two reservoirs, which are far away from the 

nanopore. Symmetric boundary condition is specified along the axis of the nanopore. 

Moreover, the surface of the DNA nanoparticle is non-slip (u = Upez), ion-impenetrable 

(n*Ny =n*(uc;)) and uncharged (n• (—VVj = crp), where ap is the surface charge 

density on the DNA surface and n is the unit outer normal vector. 

Based on a quasi-steady state assumption, the translocation velocity of DNA, Up, can 

be determined by a balance of the forces acting on it in the z direction, FE+FH= 0.65 

The performance of the translocation process can be measured by the ionic current 

deviation, (/-/„)//„, with / and Ix being the ionic current (see Method section) and its 

value when the DNA is far away from the nanopore. A negative (positive) value of 

(7-/^)//^ represents a current blockade (enhancement) during the translocation of 

DNA.149 A more detailed description of the theoretical part is provided in the Supporting 

Information. 

5.2.2 Numerical Method 

The strongly coupled non-linear equations and the associated boundary conditions are 

numerically solved by the commercial finite element package, COMSOL Multiphysics 

(version 3.5a, www.comsol.com) operating in a high-performance cluster. The 

computational domain is discretized into quadratic triangular elements. Nonuniform 

elements are employed with larger numbers of elements assigned locally as necessary. 

Typically the total number of elements for system I and II are approximately 210,000 

with finer mesh in the PE layer and on the DNA surface to capture the EDL. Lagrange -

Quadratic elements are used for solving PNP equations, while Lagrange - P2P1 elements 

are for the Stokes and Brinkman equations. The ionic current through the nanopore is 

obtained by using the weak constrain in COMSOL specially developed for an accurate 

calculation of flux. Rigorous mesh-refinement tests have been performed to ensure that 

the solutions obtained are convergent and grid independent. A maximum tolerance of 0.1% 

is imposed on the relative difference \(\Ia\ - |/c|)/|/0|, where Ia and Ic are respectively the 

http://www.comsol.com
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current entering (anode) and leaving (cathode) the nanopore. The numerical scheme has 

been validated to be sufficiently efficient and accurate for solving similar electrokinetic 

problems, such as the electrokinetic ion transport in a solid-state nanopore14'109-113 and 

the electrokinetic rigid and soft nanoparticle translocation through a nanopore.52'115-117,122' 
126 

Figure 5.2. The meshes used in the simulation with enlarged finer mesh in the PE layer 

and on DNA surface 

5.2.3 Influence of Soft Layer Properties and Bulk Salt Concentration on DNA 

Translocation. 

Let us first fix the length of a nanopore at 60 nm, which is slightly longer than the DNA 

considered (49 nm). This is based on the experimental design of the solid-state nanopore 

used by Chang et al.,214 where the length of a pore (ca. 50-60 nm) is comparable to that of 

DNA (ca. 50 nm) so that the possible influence due to the DNA geometry change during 

its translocation can be avoided. Figure 5.3a-c depicts the normalized translational 
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velocity of the DNA nanoparticle as a function of its location, zp ,  for various fixed charge 

density p^ , (a), softness degree /T1, (b), and the bulk salt concentration C0, (c). AT1 is a 

measure for the shielding length characterizing the extent of the fluid flow penetrating 

into the soft layer.125 The smaller the A-1 the more compact (or ordered) the soft layer 

structure is (e.g., well-ordered lipid bilayer). Figure 5.3a reveals that the velocity of DNA 

inside a solid-state nanopore is much faster than that in the fluid compartments (discrete 

symbols), which is consistent with experimental observation.131 This is because the local 

electric field in the former is much stronger than that in the latter. To reduce the velocity 

of DNA inside a nanopore, we propose using a novel soft nanopore. Figure 5.3a-c shows 

that this is feasible, where DNA translocation velocity is seen to be slower at larger p^ , 

A"1, and C0. Note that if these parameters are sufficiently large, then the velocity of 

DNA is negative in front of the nanopore, implying that it is blocked there. It is expected 

that the higher the fixed charge density of the soft layer the more significant the EOF 

inside the nanopore, and therefore, the slower the DNA translocation velocity. Similarly, 

the friction force stemming from the soft layer decreases with increasing softness degree, 

thereby strengthening the EOF (inset of Figure 5.3d) and slowing down the DNA 

translocation velocity. However, the strength of the EOF at the center of the nanopore 

outside its soft layer (0 < r < 3 nm) decreases with increasing bulk salt concentration 

(Figure 5.3d). This contradicts to the salt concentration dependence of the DNA 

translocation velocity shown in Figure 5.3c, implying that other mechanisms might be 

present. In addition, it is known that the electrophoretic force acting on a DNA usually 

decreases with increasing bulk salt concentration.215 Therefore, if this factor dominates, 

then the DNA translocation velocity should decrease with increasing salt concentration. 

The dependence of the EOF inside the nanopore on the bulk salt concentration and the 

softness of the soft layer are illustrated in Figure 5.3d, where the axial fluid velocity is 

plotted against the nanopore radius r over the cross section z=0. It should be pointed out 

that our analysis is based on a continuum model, which was validated to be sufficient to 

capture and elucidate the essential physics in 5-10 nm solid-state nanopores.56"57'l49"150' 

216 In addition, the dependence of the velocity of the DNA on its location is examined 

under various conditions, which can be used to judge whether it is blocked prior to 
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funneling the nanopore. This was often overlooked in previous theoretical studies, which 

assumed a DNA nanoparticle was located at the center of a nanopore. Our results show 

that DNA is unable to enter a nanopore under certain conditions. 

Therefore, if the fixed charge density and/or the softness of the soft layer are 

sufficiently large, the DNA translocation velocity can be effectively reduced and 

regulated by the proposed novel soft nanopore. In addition, it is interesting to note that 

the DNA velocity before funneling the nanopore entrance, defined as the DNA capture 

velocity, significantly increases first as it approaches the nanopore entrance 

(- 70 nm < zp < -60 nm ), and then starts to decrease at zp = -55 nm , as shown in Figure 

5.3c. This phenomenon has not been reported previously in relevant theoretical studies 

for the case of solid-state nanopores.57'59'65'149 The enhancement in the capture velocity 

in our case is attributed to the significant counterions CP effect occurring at the nanopore 

mouth. To explain this, we plot the axial variation of the normalized difference between 

the concentration of cations and that of anions, (c, -c2)/C0, in Figure 5.4a,b; both the 

result for soft nanopore and that for the corresponding solid-state nanopore are shown. 

This Figure reveals that in the latter case the concentration of counterions (cations) is 

high in the vicinity of the rigid surface of the solid-state nanopore, but remains high 

outside the soft layer of the soft nanopore in the former case. 

As can be seen in Figure 5.4c, the concentration of counterions near the entrance of the 

soft nanopore is significantly higher than that of the corresponding solid-state nanopore. 

This implies that the effect of counterions CP is significantly enhanced by the soft 

nanopore. The electrostatic interaction between the enriched counterions (cations) at the 

nanopore mouth and the negatively charged DNA nanoparticle induces an attractive force, 

yielding an increase in the DNA capture velocity. Similar electrostatic focusing concept 

was also adopted by Wanunu et al.41 through applying a salt concentration gradient to 

create an electrostatically enhanced electric field capable of capturing more DNA 

molecules into the nanopore. Under the conditions assumed, the ratio Vas / V0 =(voltage 

drop in the cis compartment/overall voltage bias) is 0.0973 for the case of Figure 5.4a 

(soft nanopore), and 0.0914 for the case of Figure 5.4b (solid-state nanopore). That is, the 

larger the (Vcis/V0) the higher is the capture rate,57 which is consistent with our results. 
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Figure 5.3. Variation of the DNA translational velocity (normalized with the reference 

Smoluchowski velocity Uo = ej^T^/fxaF2) as a function of the particle position zp at 

various fixed charge density pflx, (a), the softness degree Xx of the soft layer, (b), and the 

bulk salt concentration Co, (c), for the case where the nanopore radius RN= 8 nm, the 

nanopore length Lff=6Q nm, the thickness of the soft layer Rs=5 nm, and the electric bias 

Fo=1.12 V. (a): A'1=l nm, Co =100 mM, open circles denote the corresponding results for 

a solid-state nanopore (i.e., pflx=XA=L0)-, (b): pfa~ -9.1><106C/m3 and Go =100 mM; (c): 

PfvT -9.1 xlO6 C/m3 and A"I=1 nm; (d): variation of the normalized z component fluid 

velocity (UJUQ) along the nanopore radius r over the cross section z=0 for various bulk 

salt concentrations, Co, and soft degrees of the soft layer (inset) in the absence of DNA 

particle for the cases of (b) and (c). 
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Figure 5.4. Spatial distribution of the normalized net ionic concentration difference, 

(c,-c2)/C0 at bulk salt concentration C0=24mM. (a): a soft nanopore with fixed 

charge density p f a  =-9.1xl06 C/m3 and softness degree /t1 = 1 nm; (b): a solid-state 

nanopore with surface charge density crw. Other parameters are the same as those in 

Figure 5.3. 

Figure 5.4d shows the axial variation in the normalized z component of the local 

electric field for both soft and the corresponding solid-state nanopores. This Figure 

reveals that, in addition to the typical enhancement of the local electric field inside both 

nanopores, it is highly asymmetric in the case of the soft nanopore due to the strong CP 

effect occurring at the nanopore openings. This suggests that the Poisson-Boltzmann 
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equation usually adopted in the literatures is inapplicable in the present case, and explains 

that why the DNA velocity in Figure 5.3a-c is highly asymmetric across the soft 

nanopore. In general, the higher the fixed charge density of the soft layer and/or the lower 

the bulk salt concentration (thicker double layer) the more significant the enhancement in 

the capture velocity (Figure 5.3a,c). However, it should be pointed out that if the fixed 

charge density is too high, then due to a strong opposite EOF inside the nanopore, DNA 

can be trapped before funneling the nanopore. If the bulk salt concentration is too low, 

two important outcomes might occur: (i) The DNA translocation velocity is not 

effectively reduced, (ii) The ionic current signal changes from current blockade to current 

enhancement, as will be discussed latter. 

5.2.4 Influence of Nanopore Length 

In nanopore-based biomolecules sensing techniques, the length of a solid-state 

nanopore plays an important role.20'33' 57,136 To see the influence of the length of a soft 

n a n o p o r e  o n  t h e  D N A  t r a n s l o c a t i o n ,  w e  p l o t  t h e  n o r m a l i z e d  t r a n s l a t i o n a l  v e l o c i t y  U p / U 0  

and the corresponding relative ionic current deviation (/-/„)//«, against the DNA 

location zp for various nanopore length LN in Figure 5.5. For illustration, we assume that 

the functional groups in the soft layer are completely dissociated (xs= 1), corresponding 

to pfDC - -5.33 x 107 C/m3. Figure 5.5a reveals that if a nanopore is sufficiently long 

(dashed and dash-double dotted curves), then the DNA is blocked before entering it, and 

if it is sufficiently short (solid and dash-dotted curves), then the DNA is capable of 

funneling through it. The latter is because the shorter the nanopore the less the amount of 

fixed charge in the soft layer of the nanopore, thereby depressing the effect of EOF. 

Figure 5.5a also shows two important phenomena: (i) Similar to the results seen in Figure 

5.3a-c, the velocity of the DNA increases due to the enhanced local electric field during 

its translocation, (ii) The influence of the aforementioned counterions CP effect on the 

DNA velocity near the nanopore entrance is insignificant. This is because the bulk salt 

concentration considered is high (1000 mM, Debye length XD =0.3nm) and the double 

layers inside the soft nanopore are not overlapped. 
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As mentioned previously, a nanopore-based sensing technique is based on the variation 

in the ionic current through a nanopore due to the presence of a DNA molecule. The 

influence of the length of a nanopore on the ionic current signature is depicted in Figure 

5.5b. This Figure reveals that if the nanopore is sufficiently short, then current blockade 

occurs (solid curve). If it is sufficiently long, then a momentarily current enhancement 

occurs as the DNA is about to exit the nanopore. The former can be explained by the 

current blockage by the DNA nanoparticle, as was verified in many experiments based on 

solid-state nanopores33,38'41 and functionalized nanopores.34'42 The latter was also found 

in the experiment based on DNA-functionalized nanopore (Figure 5.1c in ref. 23).43 As 

pointed out by Chang et al.,214 although the introduction of a DNA strand into a nanopore 

results in a decrease in ionic current, the screened counterions (coions) carried by the 

negatively charged DNA backbone also provides an additional source to increase the 

ionic current as it enters the nanopore. If the latter dominates, current enhancement 

occurs. Under the conditions considered, if the nanopore is long, then the amount of fixed 

charge in the soft layer is large, and therefore, the amount of counterions inside that layer 

is greater than that outside it. As a result, the excluded volume effect due to the presence 

of the DNA inside the soft nanopore is less significant than that for the case of a short 

nanopore, yielding a current enhancement. Our analysis is capable of explaining for the 

first time that why current blockade occurs only in a short nanopore. Figure 5.5b also 

shows that the ionic current signal is significantly asymmetric as the DNA translocating 

through the nanopore. This can be explained by the position dependent and highly 

asymmetric local electric field and the ionic concentration distributions inside the soft 

nanopore, as can be seen in Figure 5.4. 
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Figure 5.5. Variation of the normalized DNA translational velocity U p / U 0 ,  (a), and the 

ionic current deviation (/-/„)//„, (b), as a function of the particle location zp at 

various length of the nanopore LM for the case where the nanopore radius i?,v=14 nm, 

thickness of soft layer Rs=5 nm, bulk salt concentration C0 =1000mM, electric bias 

V0 =1.12 V, fixed charge density = -5.33xl07 C/m3, and softness degree vT1 =lnm 

. The arrows in (a) indicate that DNA is blocked before entering the soft nanopore; the 

curves in (b) show the results for the cases when DNA is able to pass through the 

nanopore. Under the conditions assumed, current blockade occurs if the nanopore is 

relatively short. 

5.2.5 Other Factors Influencing the Ionic Current Signatures 

Figure 5.6 illustrates the influences of the soft layer properties (p^ and A'1) and the 

bulk salt concentration C0 on the ionic current deviation during the DNA translocation 

through the nanopore. The values of the parameters assumed here are the same as those 

used in the experiment.42 Figure 5.6a reveals that current blockade might occur at 

C0 = 1000 mM, which is consistent with the result of Figure 5.5b. This Figure also shows 

that although the higher the fixed charge density of the soft layer the more significant is 

the current blockade, the ionic current signatures (current blockade) are almost 

independent of the soft layer properties. This implies that at a high salt concentration the 

present soft nanopore is capable of regulating the DNA capture (translocation) velocity 



101 

and simultaneously enhancing the magnitude of the resulting current blockade without 

affecting its basic signatures. Note that although the chemical interaction between the 

sensing molecule and the soft nanopore is neglected, our results qualitatively agree with 

the results observed in the experiments42"43 where fluidic lipid bilayer-42 and DNA-

functionalized43 nanopores were utilized to strengthen the resolution and selectivity of 

sensing biomolecules. As seen in Figure 5.6b, the bulk salt concentration C0 has a 

significant influence on the ionic current signatures. If C0 is sufficiently high (1000 mM), 

only current blockade is observed during the DNA translocation through the nanopore. 

xlO"3 

C 0= 20 mM 
C o= 100 mM 
C »= 1000 mM 

0.01 
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Figure 5.6. Variation of the ionic current deviation, (/-/„)//„, as a function of the 

particle location zp for various combinations of ()the fixed charge density p^ and (a): 

the softness degree AT1 at bulk salt concentration C0 = 1000 mM ; (b): various C0 at 

Pfc =-1.16xl07 C/m3 and Xx = 0.3nm. The values of the parameters are chosen from 

those in the experiment:42 nanopore radius Rx= 14 nm, pore length LN=\2 nm, thickness 

of soft layer /?/=3.4 nm, and electric bias V0 = 0.5 V. Curves in (a): Xx =0.3nm; open 

circles: =0.5nm and p^ =-2.38xl06 C/m3. 
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Figure 5.7. Variation of the relative ionic current change due to the presence 

of a DNA at the center of a soft nanopore as a function of (a): the bulk salt concentration 

C0; (b): the fixed charge density p^ ; (c): the softness degree A'1; (d): the nanopore 

length Ln, (d). (a):Pp =-1.81xl07 C/m3, /t1 =0.3 nm, and Lrf=\2 nm; (b):^1 =0.3ran 

and Lf/=12 nm; (c): =-1.81 xlO7 C/m3 and Ln=\2 nm; (d): p# = -1.81 xlO7 C/m3 

and Xx = 0.3 nm. The other parameters are chosen as those in the experiment:42 nanopore 

radius Rff=\4 nm, thickness of the soft layer RS=3A nm, and electric bias V0 = 0.5 V. 

1A A^ 

This is consistent with many experimental results, • ' and can be explained by the 

physical blocking of the DNA strand introduced into the nanopore. However, it is 
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interesting to note that if C0 is sufficiently low, current blockade occurs as the DNA 

enters the nanopore, but current enhancement is observed as it exits the nanopore. As 

mentioned previously, the current enhancement is mainly due to the increase in the 

screened counterions brought by the DNA molecule. The increase in the ionic 

conductance, and therefore, electric current, due to the passage of the DNA through the 

nanopore is possible to yield a current enhancement when the bulk salt concentration is 

low. Note that although a long soft nanopore is capable of yielding a momentarily current 

enhancement signal during DNA translocation (Figure 5.5b), the salt concentration might 

also influence significantly the ionic current signal, as will be discussed next. 

5.2.6 Dependence of Ionic Current on Salt Concentration 

To further elaborate the dependence of the ionic current on the bulk salt concentration 

due to the presence of the DNA, we define a relative ionic current change when the DNA 

is located at the center of the nanopore, (70 ,56 where /„ is the ionic current at 

z p  = 0. The length of the unlabelled dsDNA in the nanopore-based DNA sequencing 

experiments typically ranges from hundreds to thousands of base pairs (bps), and 

therefore, the observed saturated ionic current can reasonably be assumed as that when 

the DNA strand is located at the center of a nanopore. To verify this, we plot 

(70 -/„)//„ against the bulk salt concentration C0 for the case of a solid-state nanopore 

in the inset of Figure 5.7a Assuming crw = -60 mC/m2 and V0 = 0.35 V, we find that our 

numerical results agree very well with the experimental findings. We predict that 

current blockade occurs when C0 exceeds a critical salt concentration (ca. 390 mM), and 

current enhancement occurs when C0 is lower than that concentration. As pointed out by 

Smeets et al,38 these phenomena result from two competing effects: (i) The ionic current 

decreases because the available volume of the ionic transport inside the nanopore is 

occupied by the dielectric DNA strand, (ii) The screened counterions accompanied with 

the DNA strand provide a positive contribution to the ionic current. However, the 

mechanisms involved in the present soft nanopore are far more complicated than those in 

the corresponding solid-state nanopore because both the ionic concentration and the local 
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electric field inside the soft nanopore are position dependent, and highly depend on its 

charged properties, as shown in Figures 5.4 and 5.5b (inset). Using the same values of the 

parameters as those in the experiment,42 we illustrate the influences of the bulk salt 

concentration C0, the soft layer properties (p^ and A~'), and the length of the nanopore 

LN, on the relative ionic current change in Figure 5.7 As seen in Figure 5.7a that, similar 

to the case of a solid-state nanopore, current enhancement occurs when C0 is lower than 

a critical level, ca. 130 mM under the conditions assumed, and current blockade occurs 

when C0 exceeds that level. As illustrated in Figure 5.7b-c, if C0 is sufficiently high 

(1000 mM), current blockade is always present, regardless of the levels of p^ , /T1, and 

LN. On the other hand, if C0 is sufficiently low (100 mM), current blockade occurs when 

both Pfr and Ln are small, and current enhancement occurs when both p^ and Ln are 

large. Assuming that the local electric field inside the soft nanopore is uniform, these 

behaviors can be explained by the difference in the ionic current due to the presence of 

the DNA nanoparticle in the soft nanopore, A/ = /„ - /x, which can be evaluated by 

Here, fxK = 7.616x10 8 m2/Vs and jua =7.909x10 8 m2/Vs are the electrophoretic 

mobilities of K+ (cations) and CI" (anions),38 respectively. nKCl is the number density of 

the K+ (or CI") inside the soft nanopore excluding the volume occupied by the DNA 

nanoparticle. XDNA is the effective line charge density on the DNA. /xK is the effective 

electrophoretic mobility of K+ along the DNA nanoparticle. The first term in the square 

bracket on the right-hand of Eq. (5.5) denotes the reduction of the ionic current due to the 

decrease in the nanopore space occupied by the DNA, and the second term is the excess 

current due to the transport of counterions along the DNA nanoparticle surface. Because 

the nKCl in Eq. (5.5) highly depends upon both the bulk salt concentration and the net 

charges inside the soft layer, so is AI. For example, if the bulk salt concentration is low, 

nKCl is small, and the second term in the square bracket on the right-hand of Eq. (5.5) 

(5.5) 
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dominates, yielding a positive AI, and therefore, a current enhancement. Similarly, if the 

fixed charged density of the soft layer is high and/or the nanopore is long, nKa is small, 

yielding also a current enhancement. Note that because the softness degree mainly affects 

the hydrodynamic field inside the nanopore, the ionic current deviation in Figure 5.7c 

does not change appreciably with X'1. 

5.3. Conclusions 

For the first time, the electrokinetic translocation of a DNA nanoparticle through a 

novel soft nanopore comprising a solid-state nanopore and an ion-penetrable 

polyelectrolyte soft layer is theoretically analyzed. We show that the DNA translocation 

process can be effectively regulated by the induced counterions concentration 

polarization (CP) occurring at the mouth of the soft nanopore and an opposite 

electroosmotic flow (EOF) inside it. These effects simultaneously yield an increase in the 

DNA capture velocity at the nanopore mouth and a decrease in its translocation velocity 

within the nanopore. The ionic current signatures of the proposed soft nanopore strongly 

depend upon its length and the bulk salt concentration. In general, if the salt 

concentration is high and the nanopore is short, regardless of the levels of the fixed 

charge density and the softness degree, current blockade always occurs. This implies that 

the soft nanopore can be applied to regulate the DNA translocation behavior without 

changing the ionic current signature. Considering recent advances in nanofabrication 

techniques and continuous growing of the widespread interests in chemically modified 

nanopores, the present work provides both necessary theoretical background and 

reasonable interpretations for the experimental observations on DNA translocation 

through a nanopore. 
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CHAPTER 6 

ELECTROKINETIC PARTICLE TRANSLOCATION THROUGH A 

NANOPORE CONTAINING A FLOATING ELECTRODE 

Abstract 

Electrokinetic particle translocation through a nanopore containing a floating electrode 

is investigated by solving a continuum model composed of the coupled Poisson-Nernst-

Planck (PNP) equations for the ionic mass transport and the modified Stokes equations 

for the flow field. Two effects due to the presence of the floating electrode, the induced-

charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, 

could significantly affect the electrokinetic mobility of DNA nanoparticles. When the 

electrical double layers (EDLs) of the DNA nanoparticle surface and the floating 

electrode are not overlapped, the particle-floating electrode electrostatic interaction 

becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating 

electrode arising from the ICEO when the applied electric field is relatively high. The 

presence of the floating electrode attracts more ions inside the nanopore resulting in an 

increase in the ionic current flowing through the nanopore; however, it has a limited 

effect on the deviation of the current from its base current when the particle is far from 

the pore. 

6.1. Introduction 

With great advances in the nanofabrication technology, nanopore-based sensing has 

emerged as one of the most promising techniques to accomplish a high-throughput and 
1*7 1/11 | ^ 1 ̂  1 

affordable DNA sequencing. " • " In this technique, the DNA nanoparticle 

translocation through a nanopore gives rise to a change in the ionic current through the 

nanopore. Accordingly, the order of the nucleotide bases in one single DNA nanoparticle 

can be determined based on the discrimination of the ionic current signals.40'214 In order 

to achieve the goal of high throughput, a relatively high electric field is applied to 

generate the electrokinetic DNA translocation through the nanopore. However, a very 
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fast DNA translocation may result in an inaccurate detection of the ionic current. As a 

result, several methods, including optical tweezers,70'211 chemical functionalization of the 

nanopore,222 adjustment of the aqueous solution's property,46"47'49"50 have been proposed 

to slow down or actively control the DNA translocation through a nanopore, as reviewed 

in our previous study.65 In particular, Ai et al. utilized a gate electrode to modify the 

surface potential of the nanopore, which in turn actively controls the DNA translocation 

through a nanopore.65 

Induced-charge electroosmosis (ICEO) at an ideally polarizable surface, introduced 

first by Squires and Bazant,76"77 has attracted much attention in the microfluidics 

community. Compared to the conventional electroosmosis that is linearly related to the 

electric field imposed, the ICEO is proportional to the square of the electric field strength 

making it a nonlinear electrokinetic phenomenon. In addition, the induced charge highly 

depends on the surface geometry, which has been successfully exploited for fluid stirring 

and mixing.79"82 Recently, ICEO has been demonstrated to achieve various particle 

manipulations, such as separation, enrichment and trapping.83"84' 223 Most existing 

theoretical analyses and numerical simulations of ICEO are focused on the fluid motion 
<in aa j 

arising from the nonlinear electrokinetic phenomenon ' ' however, the use of ICEO 

to control the electrokinetic particle translocation through a nanopore has never been 

explored. 

In this chapter, we propose to coat a layer of a conductor like metal on the inner surface 

of a nanopore for the first time, which functions as a floating electrode to control DNA 

translocation through a nanopore. The floating electrode is not electrically excited which 

is in contrast to the gate electrode employed in our previous field effect control of DNA 

translocation through a nanopore. A multi-ion model (MIM) composed of the coupled 

Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified 

Stokes equations for the flow field have been employed to study the ionic current 

rectification in a nanopore.202' 204' 225 The results show good agreements with the 

experiment data. In addition, the continuum MIM model has also been successfully used 

to predict the electrokinetic particle translocation through a dielectric nanopore in the 

absence of a floating electrode, which also shows excellent agreement with the 

experimental data.165'173 As a result, the MIM model is implemented to investigate the 
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electrokinetic DNA translocation in a nanopore with a floating electrode. We show that 

the DNA translocation through a nanopore is governed by three main control factors 

including the applied electric field across the nanopore, the ratio of the particle radius to 

the Debye length and the length of the floating electrode. The effects of these parameters 

are discussed in detail in this chapter. 

Floating electrode\A r  

Floating electrode 

(a) 

'Floating electrode 
4- + 4- + + 

E 

- • m  

+ + + + 

Floating electrode 

(b) 

Figure 6.1. (a): schematic view of particle translocation through a cylindrical nanopore 

with a floating electrode, (b): charge density distribution on the floating electrode and the 

ICEO flow pattern in the floating electrode area. 
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6.2. Mathematical Model 

We consider an uncharged nanopore of length LN and radius RN connecting two 

identical reservoirs, whose length and radius are LR and RR, respectively, as shown in 

Figure 6.1a. The nanopore and the reservoirs are filled with KC1 aqueous solution of 

viscosity ft, density p, and permittivity £/. Since both the geometry and the physical fields 

are axisymmetric, an axisymmetric model is employed in this chapter. Therefore, a 

cylindrical coordinate system (r, z) with the origin fixed at the center of the nanopore is 

used. We assume the reservoirs are large enough to maintain a bulk concentration Co far 

away from the nanopore. In general, a coiled DNA molecule is unzipped and stretched 

during its translocation through a nanopore 65. It is thus reasonable to approximate the 

DNA molecule as a negatively charged cylindrical nanoparticle. As a result, a cylindrical 

nanoparticle of length Lp capped with two hemispheres of radius a at both ends is used to 

represent the stretched DNA molecule. A slice of conductor with length L/ is coated on 

the inner surface of the nanopore as the floating electrode. A negative electric field, E, is 

applied across both the nanopore and the two reservoirs to drive the DNA nanoparticle 

translocation along the axis of the nanopore and concurrently generate an ionic current 

through the nanopore. We assume the floating electrode is inherently uncharged and 

ideally polarizable. A non-uniform surface charge distribution with zero net charge is 

thus induced along the floating electrode. Basically, the z < 0 region of the floating 

electrode carries an opposite charge to the polarity of the electrode positioned in the left­

side reservoir and vice versa. Accordingly, the net charge within the EDL formed 

adjacent to the floating electrode interacts with the applied electric field, which in turn 

generates a pair of vortices arising from the induced ICEO, as shown in Figure 6.1b. 

Obviously, the induced ICEO vortices would significantly affect the DNA translocation 

through the nanopore. 

The numerical simulation of DNA translocation is implemented by solving the electric 

field, the ionic concentrations and the fluid flow. The electric field and the ionic 

concentrations within the electrolyte solution are governed by the verified PNP equations 

202,204-205,225. the fluid flow is governed by the modified Stokes equations as the 

inertial terms are negligible due to a very small Reynolds number in this chapter. The 

governing equations are normalized based on the bulk concentration Co as the ionic 



110 

concentration scale, VQ =RT/Fas the potential scale, the particle radius a as the length 

scale, u0= ER2T2/(/uaF2) as the velocity scale, D0=eR2T2/(fiF2) as the diffusivity 

scale of the ionic species, N0 = c0eR2T2 f(/jaF2) as the ionic flux scale, 

I0 =cQasR2T2 /(juF) as the ionic current scale and p0 ={zu0/aas the pressure scale. In 

the above, R is the universal gas constant, T is the absolute temperature of the electrolyte 

solution, and F is the Faraday constant. The dimensionless PNP equations and the 

modified Stokes equations are: 

-V'2V = 0,c* + z2c*), (6.1) 

V • N* = V • (u 'c' - Dye] - zp'cyy ) = 0, / = 1 and 2, (6.2) 

V* • ii* = 0 (6.3) 

—V*p' + V'V - i (A:af (ZjCj* + z2c* )VV = 0, (6.4) 

where K~ ]  = ^ £ f R T F 2 z f c 0  is the Debye length, c )  is the dimensionless 

concentration of the Ith ionic species, z, are, respectively, the valences of the cations and 

anions (in present work, z\ = 1 for K+ and Z2 = -1 for CI"). 

The axial symmetric boundary conditions for the physical fields are applied on the axis 

of the nanopore. The ionic concentrations at the ends of the two reservoirs are, 

c*{r*,±{£r +Z*a,/2)) = 1, / = 1 and 2. Only the convective flux remains in the normal 

flux on the particle surface, n**N* = n**(w*c'), / = 1 and 2, where n* is the unit normal 

vector directed from the particle surface into the fluid. The normal ionic fluxes on all the 

other boundaries are zero. 

The applied electric potential at the ends of the two reservoirs are, respectively, 

V*{r*,-{£R +£Njl^j = 0 and V'{r',-[£R +Z,*w/2)j = V0'. The electric potential on the 

conducting floating electrode is a constant, V* = V'f, which is solved based on the fact 

that the net induced charge on the floating electrode is zero ' * , 

f^/2 dv' . W*=0- (6-5) 
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A zero normal electric field is applied on the other boundaries. 

The non-slip boundary condition is imposed on the boundaries except the two ends of 

reservoirs and the particle surface. A zero pressure difference is applied between the two 

ends of reservoirs. The flow boundary condition on the particle surface is u* = upez, 

where «* is the axial particle velocity and e* is the axial unit vector. The axial particle 

velocity is determined on the basis of the balance of the force in the z* direction acting on 

the particle using a quasi-static method 164'166"167,197-228, 

FE + F„= 0 

where 

 ̂ d<£ . l FF = ( . . nr +-
£ y dz dr r ? 

'd£* 
dz* 

n„ — 
i ( d£  
2[ dr* 

\2 
n])d\r, 

(6.6) 

(6.7) 

is the axial electrical force derived from the integration of the Maxwell stress tensor over 

the particle surface and 

K = J(~Pn'z + 2 ~r w* + 
du\ du 

• \ 

-f + nr)dY', (6.8) 
%dz* dr f 

is the axial hydrodynamic force. In the above, n'r and nz are, respectively, the r and z 

components of the unit vector component n*. «* and u] are, respectively, the r* and z 

components of the fluid velocity. T* denotes the surface of the DNA nanoparticle. 

The dimensionless ionic current flowing through the nanopore is 

/* = J(Z,N; + Z2N*2 ) • ndS', (6.9) 
s* 

where S* denotes either end of the reservoirs because of the current conservation. The 

particle mobility and ionic current deviation are defined, respectively, as: 

7, 
- _uP (6.10) 

and 

r - i :  
(6.11) 
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where E* is the imposed electrical field obtained by dividing the electric potential 

difference between the two reservoirs over the total length of the computational domain 

and /* is the base ionic current when the DNA nanoparticle is far away from the 

nanopore. 

6.3. Results and Discussion 

6.3.1 Numerical Method and Code Validation 

A commercial finite element package COMSOL (http://www.comsol.com, version 3.5a) 

operating in a high-performance cluster is chosen to solve the strongly coupled equations. 

The computational domain is discretized into quadratic triangular elements. Nonuniform 

elements are employed with larger numbers of elements assigned locally as necessary. 

Typically the total number of elements is approximately 100,000, with finer mesh on the 

floating electrode and DNA particle surface to capture the EDL. Lagrange - Quadratic 

elements are used for solving PNP equations, while Lagrange - P2P1 elements are for the 

Stokes equation. The ionic current through the nanopore is obtained by using the weak 

constrain in COMSOL specially developed for an accurate calculation of flux. Rigorous 

mesh-refinement tests have been performed to ensure that the solutions obtained are 

convergent and grid independent. A maximum tolerance of 0.1% is imposed on the 

relative difference (|/a| - \Ic\)l\Ia\, where la and Ic are respectively the current entering 

(anode) and leaving (cathode) the nanopore. The numerical scheme has been validated to 

be sufficiently efficient and accurate for solving similar electrokinetic problems, such as 

the electrokinetic ion transport in a solid-state nanopore14'109'113 and the electrokinetic 
M 11c 117 t oy  1JA 

rigid and soft nanoparticle translocation through a nanopore. ' ' ' 

We also simulate the electrophoresis of a sphere translocating along the axis of an 

uncharged dielectric cylindrical nanopore, whose analytical solution is available when the 

zeta potential of the particle is relatively small and the EDL of the particle is not 

disturbed by the external electric field, flow field and the solid boundary 161. Figure 6.2 

indicates a good agreement between our numerical results (circles) and the analytical 

solution (solid line). We further use the present model to predict the induced surface 

charge along a conducting sphere, which is in quantitative agreement with an existing 

http://www.comsol.com
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analytical solution derived by Bazant and Squires 226 when its EDL thickness is relatively 

small. 

0.8 

0.7 

0.6 

0.5, 
0.2 0.3 0.1 

Figure 6.2. Electrophoretic velocity normalized by eCE/fi of a sphere translating along the 

axis of an uncharged cylindrical nanopore as a function of the ratio of the particle radius 

to the pore radius, a/R^. Solid line and circles denote, respectively, the analytical 

approximation solution and our numerical results. The conditions are a = 1 nm, xa= 2.05, 

the zeta potential of the particle, (= 1 mV, and the axial electric field, Ez= 100 KV/m. 

The following parameters, the fluid permittivity, e = 7.08x10~10 F/m, the fluid density, 

p = 1 x 103 kg/m3, the fluid viscosity, y. = 1 x 10-3 Pa s, the diffusivity of K+, D\ = 1.95x10~ 

9 m2/s, the diffusivity of Cl~, Di = 2.03 xlO-9 m2/s, the temperature of the system, T = 
• j  

300K, and the surface charge density of the particle, ap = —0.01 C/m , are used in the 

numerical simulation. The dimensions of the computational domain are LR = LN~ 40 nm, 

RN = 4 nm and RR = 40 nm. The floating electrode is always located with respect to z = 0. 

The radius and the length of the DNA nanoparticle are, respectively, a = 1 nm and Lp = 

10 nm. We investigate the effects due to the applied electric field, the ratio of the particle 

radius to the Debye length, and the length of the floating electrode, on the DNA 

translocation through a nanopore in this section. Although the surface charge density of 
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the nanopore plays an important role on the DNA nanoparticle translocation, the 

nanopore is assumed to be uncharged in present work to emphasize the floating electrode 

effect. 

6.3.2 The Effect of Applied Electric Field 

The induced surface charge on the floating electrode highly depends on the externally 

applied electric field, which accordingly plays a significant role on the control of ICEO 

inside the nanopore and DNA translocation through the nanopore. Figure 6.3 shows the 

surface charge density induced on the floating electrode when Ka =1 (dashed line: 

E"z =3.87xlO"4 ; circles: E] = 1.93xl0~2) and Ka = 4 (solid line: E*z = 3.87xl0~4 ; 

squares: E\ = 1.93xl0~2). It is revealed that the induced surface charge density on the 

floating electrode exhibits a linear relationship to its local position except the two ends of 

the floating electrode. The z > 0 region near the anode is negatively charged, while the z 

< 0 region carries an anti-symmetrically positive charge to maintain a zero net charge on 

the floating electrode. The results denoted by symbols are divided by 50 to obtain a clear 

comparison for E] = 3.87 x 10"* and E] = 1.93 xlO-2. The coincidence of the symbols and 

lines demonstrates that the induced surface charge density is proportional to the external 

electric field. For a specific external electric field, the induced surface charge density also 

increases as Ka increases. 

Figure 6.4 shows the variation of the particle mobility along the axis of the nanopore 

with a floating electrode when Ka = 4, Lf = LN/2 (a) and Lf = LN (b) under three different 

electric fields, E*z = 3.87x10^ (solid lines), E\ =3.87X10"3 (dashed lines) and 

E\ = 1.93 xlO-2 (dash-dotted lines). The particle mobility in the absence of the floating 

electrode (circles) is also included in Figure 6.4 as a reference mobility, which is 

independent of the applied electric field and remains a constant inside the nanopore. The 

particle mobility inside the nanopore is much larger than in the reservoir because of an 

enhanced electric field inside the nanopore. The variation of the particle mobility inside a 

nanopore with a floating electrode becomes quite complicated compared to the absence 

of floating electrode (circles). When the length of the floating electrode is half of the total 

length of the nanopore, Lf = LN/2, as shown in Figure 6.4a, the particle mobility is nearly 
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the same as the reference mobility when E] = 3.87X10^. As the external electric field 

increases to E*z = 3.87xl0-3, the particle mobility follows the reference mobility very 

well when the particle is away from the floating electrode. As it approaches the floating 

electrode, the particle mobility begins to decrease and minimizes at z* = -5 . 

Subsequently, the particle mobility further increases as the particle moves towards the 

center of the nanopore. When the particle reaches z* = 0, the particle mobility recovers 

the reference mobility. As the particle moves even further, the particle mobility gradually 

increases and maximizes at z* = 5 , which later decreases and recovers the reference 

mobility as the particle moves out of the floating electrode region. When the external 

electric field further increases to El =1.93xl0~2, the variation of the particle mobility 

follows a similar tendency as described for the case of E*z =3.87xl0~3. However, the 

deviation from the reference mobility becomes even larger under E*z = 1.93x10~2 , 

indicating a more significant effect due to the floating electrode. The particle mobility 

becomes negative when the particle approaches the z < 0 region of the floating electrode, 

which implies that the particle is trapped near the floating electrode. The predicted 

particle trapping phenomenon near a floating electrode has recently been experimentally 

observed in a microchannel fabricated with a floating electrode 84,223. When the nanopore 

is fully coated with a floating electrode, LF = LN, as shown in Figure 6.4b, the effect of 

the external electric field on the particle mobility exhibits a similarity as discussed in 

Figure 6.4a however, the particle mobility is affected by the floating electrode along the 

entire nanopore. In addition, it is found that the magnitude of the maximum particle 

mobility for Lf = LN is larger than that for Lf = LN/2. Obviously, the effect of the floating 

electrode on the particle translocation increases as its total length increases. When the 

external electric field is £* =1.93xl0"2, the particle cannot even enter the nanopore and 

is trapped at the entrance of the nanopore itself. 
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Figure 6.3. Surface charge density induced on the float electrode when Ka =1 (dashed 

line: E] = 3.87x10^; circles: E*z = 1.93xl0~2) and Ka = 4 (solid line: E\ = 3.87X10~4; 

squares: E\ = 1.93 x 10"2). Symbols are divided by 50 for a clear comparison. 
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Figure 6.4. Variation of particle mobility along the axis of the nanopore when (a): KA = 4, 

LF = LN/2; (b): Ka = 4, LF = L„. Solid line, dashed line and dash-dotted line represent, 

respectively, E\ = 3.87 x 10"4, 3.87 xl0~3 and 1.93xlCT2 with floating electrode, while 

circles represent the mobility for a dielectric nanopore (i.e., Lj=0). 
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Figure 6.5. Flow field near the floating electrode when K a -  4, E\- 1.93x10 2, (a, e): 

z\ = -35 ; (b, f): z* = -12 ; (c, g): z'p = 0; (d, h): z'p= 12 . The length of the floating 

electrode for (a-d) and (e-h) are, respectively, £/ = L^l2 and L/ = LN. Color levels denote 

the fluid velocity in the z direction and streamlines with arrows denote the fluid velocity 

vector. The red lines and arrow indicate the location of floating electrode and the 

direction of particle motion, respectively. 
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To further explain the aforementioned particle behavior due to the presence of the 

floating electrode, the flow fields inside the nanopore at four different particle locations 

are illustrated in Figure 6.5 when Ka = 4, £* = 1.93 x 10~2, Lf = LN/2 (a-d) and Lf = Ln Ce­

ll). The induced charge on the floating electrode leads to the formation of EDL, which 

interacts with the applied electric field and in turn generates the ICEO inside the 

nanopore. When the particle is still in the reservoir, its presence does not affect the ICEO 

inside the nanopore. Due to the anti-symmetric distribution of the induced surface charge 

along the floating electrode, the ICEOs next to the z < 0 and z > 0 regions are oppositely 

facing each other. This in turn generates a pair of vortices symmetric with respect to z = 

0, as shown in Figure 6.5a. It is shown that the ICEO along the axis in the z < 0 region is 

opposite to the particle translocation, which obviously retards the particle translocation. 

On the contrary, the ICEO along the axis in the z > 0 region is in the same direction of 

the particle motion and tends to facilitate the particle translocation. When the particle is 

located at z'p = -12, as shown in Figure 6.5b, the particle translocation is mainly affected 

by the ICEO in the z < 0 region of the floating electrode. As a result, the opposite ICEO 

resists the particle translocation, as shown in Figure 6.5b, which accordingly decreases 

the particle mobility as shown in Figure 6.4a. When the particle is located at z* = 0, the 

particle translocation is retarded by the ICEO in the z < 0 region of the floating electrode, 

and facilitated by the ICEO in the z > 0 region of the floating electrode, as shown in 

Figure 6.5c. Due to the symmetric location of the particle, the retardation and facilitation 

of the particle translocation cancel each other, which thus recover the particle mobility to 

the reference mobility indicated in Figure 6.4a. When the particle is located at z* = 12, as 

shown in Figure 6.5d, the particle translocation is mainly affected by the ICEO in the z > 

0 region of the floating electrode, which accordingly facilitates the particle translocation. 

When the floating electrode covers the entire nanopore (Lf = LN), the effective region of 

the generated ICEO is accordingly extended to the entire nanopore. The ICEO patterns 

shown in Figures 6.5e-6.5h exhibit a similarity to those in Figures 6.5a-6.5d, respectively. 

As discussed in Figure 6.3, the induced surface charge on the floating electrode is linearly 

proportional to its local position. Thus, a longer floating electrode implies a higher 

magnitude of the induced surface charge. Comparing the maximum fluid velocity in 
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Figure 6.5e to that in Figure 6.5a, it is found that the ICEO effect increases as the length 

of the floating electrode increases. As a result, the ICEO effect on the particle mobility 

when LF = LN is more pronounced than the case when LF = LN/2, as shown in Figure 6.4b. 
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Figure 6.6. Ionic current (a, b) and ionic current deviation (c, d) through the nanopore as 

a function of the particle position when xa = 4 and (a, c): L/ = LN/2; (b, d): Lf- LN Solid 

line (circles) and dash-dotted line (squares) represent, respectively, 2?* = 3.87 x 10^ and 

E] = 1.93 xlO-2 with (without) floating electrode. The ionic current for £* =3.87xl0~4 is 

multiplied by 50 for comparison. 

Figures 6.6a and 6.6b depict the ionic current through the nanopore as a function of the 

particle position when Ka = 4, Lf = LN/2 (a) and Lf = LN (b). When the applied electric 
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field is relatively low (solid line and circles), the effect of the floating electrode on the 

ionic current through the nanopore is negligible. As the applied electric field increases, 

the induced charge on the floating electrode accordingly increases. As a result, more ions 

are attracted into the nanopore, which increases the ionic conductivity of the nanopore. 

Hence, the ionic current increases owing to the presence of the floating electrode when 

the applied electric field is relatively high. In the nanopore-based sensing of nanoparticles, 

the relative change in the ionic current is used to characterize the particle. Figures 6.6c 

and 6.6d show the corresponding ionic current deviation, defined in Eq. (6.11), as a 

function of the particle's position. When the particle is inside the nanopore, a current 

blockade is predicted when Ka is relatively high, which is in qualitative agreement with 

the experimental observations 37'136'218,229. In addition, it is revealed that the presence of 

the floating electrode has very limited effect on the ionic current deviation. 

OOOOOOPO 
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Figure 6.7. Variation of particle mobility along the axis of the nanopore when Ka = 1 and 

(a): LF = LN/2; (b): Lf = LN. Solid line, dashed line and dash-dotted line represent, 

respectively,E] = 3.87x10^, 3.87xl0~3 and 1.93xl0~2 with a floating electrode, while 

circles represent the particle mobility without floating electrode. 
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Figure 6.8. Flow field near the floating electrode when tea = 1, L/ = L^/2 and (a, e): 

zp = -35 ; (b, f): z* = -12 ; (c, g): z* = 0; (d, h): z* = 12 . The electric fields for (a-d) and 

(e-h) are, respectively, E\ = 3.87 x 10"4 and E] = 1.93x10 2. Color levels denote the fluid 

velocity in the z direction and streamlines with arrows denote the fluid velocity vector. 

The red lines and arrow indicate the location of floating electrode and the direction of 

particle motion, respectively. 
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Figure 6.9. Net concentration distribution c* -cj near the floating electrode when Ka = 1, 

Lf = Ln/2, E'z = 1.93 x 10"2 and (a): z\ = -35 ; (b): z'p=-12 ; (c): z'p= 0; (d): ^ = 12. The 

lines and arrow indicate the location of floating electrode. 

6.3.3 The Effect of the Ratio of the Particle Radius to the Debye Length, Ka 

In Section 4.1, the EDLs of the particle and the floating electrode are not overlapped. 

As a result, the particle translocation through the nanopore is mainly affected by the 

ICEO. Here, we increase the EDL thickness to investigate the effect of EDL overlapping 

on the particle translocation. Figure 6.7 shows the variation of particle mobility along the 

axis of the nanopore with a floating electrode when KA = 1, Lf = LN/2 (a) and Lf = LN (b) 

under three different electric fields, E\ = 3.87 xlO"4 (solid lines), 3.87 xl0~3 (dashed lines) 

and 1.93xl0~2 (dash-dotted lines). The particle mobility in the absence of the floating 

electrode is also included in Figure 6.7 as the reference mobility. As discussed in Figure 

6.4, the particle mobility decreases in the z < 0 region of the floating electrode, and 

increases in the z > 0 region of the floating electrode when Ka = 4. Apparently, the effect 

of the floating electrode on the particle mobility under EDL overlapping shown in Figure 
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6.7 is totally distinct from the cases shown in Figure 6.4. When Lf = LN/2, the particle 

mobility is nearly identical to the reference mobility when the particle is away from the 

floating electrode in the reservoir. When the applied electric field is relatively low, 

E* = 3.87 x 10"^, the particle mobility is enhanced when the particle approaches the z < 0 

region of the floating electrode. The particle mobility is maximized near z* = -12 and 

subsequently decreases below the reference mobility with a minimum value at z* = 0. 

Later, the particle mobility increases again when it moves toward the z > 0 region of the 

floating electrode and is maximized near z* =12. Once the particle completely moves 

out of the floating electrode region, the particle mobility recovers the reference mobility. 

When the applied electric field increases 10 times to E*z =3.87xl0~3, the effect of the 

floating electrode on the particle mobility follows a similar trend as the case when 

E*z = 3.87 x 10"4. However, it is predicted that the enhancement of the particle mobility is 

reduced in the z < 0 region of the floating electrode, but the enhancement of the particle 

mobility in the z > 0 region of the floating electrode is further increased. When the 

applied electric field further increases, the decrease (increase) in the enhancement of the 

particle mobility in the z < 0 (z* >0) region of the floating electrode is more significant. 

When the nanopore is fully coated with a floating electrode, Lf = LN, as shown in Figure 

6.7b, the effect of the applied electric field on the particle mobility is very similar as 

discussed in Figure 6.7a. 

Figure 6.8 shows the flow fields inside the nanopore at four different particle locations 

when Ka = 1, Lf = LN/2, E] = 3.87xl0"4 (a-d) and E\ = 1.93 xlO-2 (e-h). When the 

particle is far away from the floating electrode, a pair of ICEO vortices is generated 

inside the nanopore, as shown in Figures 6.8a and 6.8e. It is found that the magnitude of 

the maximum fluid velocity in Figure 6.8e is about 2500 times of that in Figure 6.8a, 

which confirms that the ICEO is proportional to the square of the electric field strength. 

The ICEO flow is too weak to affect the particle translocation under E\ = 3.87 x 10^, and 

as a result, the flow inside the nanopore is dominated by the particle electrophoretic 

velocity when the particle is inside the nanopore, as shown in Figures 6.8b, 6.8c and 6.8d. 

When the applied electric field is relatively high, E\ =1.93xl0-2, the ICEO is strong 
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enough to retard the particle translocation in the z < 0 region of the floating electrode 

and enhance the particle translocation in the z > 0 region of the floating electrode, as 

shown in Figures 6.8f and 6.8h. 

Our previous study found that the electrostatic interaction between the particle and the 

nanopore wall plays an important role in the particle translocation under the EDL 

overlapping condition 65. The electrostatic interaction exerts either attractive or repulsive 

electrostatic force on the particle, depending on the polarities of the particle and the 

floating electrode. Figure 6.9 shows the net charge represented by c* - c2 near the 

floating electrode at four different particle locations when Ka = 1, L/ = LN/2 and 

E\ -1.93 x 10~2. The distributions of the net charge near the floating electrode at the four 

particle locations when E\ = 3.87 x 10^* are very similar to those shown in Figure 6.9. The 

z < 0 and z > 0 regions of the floating electrode carry, respectively, positive and 

negative charge, as illustrated in Figure 6.9a. When the particle is located at z* =-12, 

the particle is mainly under the influence of the z < 0 region of the floating electrode. An 

attractive force arising from the particle-floating electrode electrostatic interaction 

facilitates the particle translocation, which thus enhances the particle mobility above the 

reference mobility, as shown in Figure 6.7a (solid line). When the particle is located at 

z'p- 0, the particle translocation is affected by both the z < 0 and z > 0 regions of the 

floating electrode. The electrostatic interaction between the particle and the z < 0 (z* > 0) 

region of the floating electrode is an attractive (a repulsive) force. However, both 

electrostatic interactions retard the particle translocation, which accordingly decrease the 

particle mobility, as shown in Figure 6.7a (solid line). When the particle is located at 

z* = 12, the particle translocation is mainly affected by the z > 0 region of the floating 

electrode. As a result, the particle-floating electrode electrostatic interaction exerts a 

repulsive force on the particle, which in turn enhances the particle mobility above the 

reference mobility as shown in Figure 6.7a (solid line). In summary, the particle 

translocation is mainly affected by the particle-floating electrode electrostatic interaction 

under EDL overlapping when the applied electric field is relatively low. 

When the applied electric field is relatively high, E\ = 1.93xl0~2, both the ICEO and 

the particle-floating electrode electrostatic interaction affect the particle translocation. 
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When the particle is located at z* = - 1 2 , the ICEO retards the particle translocation; 

while particle-electrode electrostatic interaction facilitates the particle translocation. 

However, the ICEO is proportional to the square of the electric field strength. By contrast, 

the particle-floating electrode electrostatic interaction is proportional to the electric field 

strength. Hence, the ICEO effect dominates over the effect from the particle-floating 

electrode electrostatic interaction, which in turn decreases the enhancement of the particle 

mobility, as shown in Figure 6.7a (dash-dotted line). When the particle is located at 

z* = 0, the ICEOs arising from the z < 0 and z > 0 regions of the floating electrode 

almost cancel each other. Accordingly, the particle mobility nearly recovers the mobility 

under a relatively low electric field, as shown in Figure 6.7a (dash-dotted line). When the 

particle is located at z* =12 , both the ICEO and the particle-electrode electrostatic 

interaction facilitate the particle translocation. As a result, the enhancement of the particle 

mobility by ICEO is further enhanced by the particle-floating electrode electrostatic 

interaction, as shown in Figure 6.7a (dash-dotted line). The effects of the floating 

electrode on the ionic current and ionic current deviation for ica = 1 are very similar to 

those shown in Figure 6.6. Basically, the magnitude of the ionic current increases as the 

induced charge on the floating electrode attracts more ions inside the nanopore when the 

applied electric field is relatively high. However, the floating electrode has very limited 

effect on the ionic current deviation. 

6.4. Conclusions 

Effects of the presence of a floating electrode in the form of a conducting metal coating 

along the inner surface of a nanopore on the DNA translocation through a nanopore have 

been studied using a continuum model. The model includes coupled PNP equations for 

the ionic mass transport and the modified Stokes equations for the flow field. The ideally 

polarizable floating electrode interacting with the applied electric field induces a non­

uniform charge density on its surface. Two main factors, ICEO and particle-floating 

electrode electrostatic interaction, could significantly affect the DNA translocation 

through a nanopore. The ICEO effect exists under both thin and thick EDLs and is 

proportional to the square of the applied electric field. As a result, the ICEO is negligible 
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under a relatively low electric field and becomes significant under a relatively high 

electric field. The ICEO retards the DNA translocation when it approaches the floating 

electrode, however, facilitates the DNA translocation when it moves away from the 

floating electrode. It has been predicted that the particle could be trapped near the 

floating electrode when the applied electric field is relatively high and the EDLs are 

relatively thin. On the other hand, the particle-floating electrode electrostatic interaction 

is only pronounced when the EDLs of the particle and floating electrode are overlapped. 

An attractive (or repulsive) particle-floating electrode electrostatic interaction is 

generated when the polarity of the particle's surface charge is opposite (identical) to that 

of the local floating electrode. In general, the particle-floating electrode electrostatic 

interaction facilitates the DNA translocation at the two ending regions of the floating 

electrode and retards the DNA translocation in the middle region of the floating electrode. 

Thus, the floating electrode technique might be helpful for attracting DNA from the 

reservoir into the nanopore and slowing down its motion inside the nanopore during 

sequence sensing. A longer floating electrode implies a higher surface charge is induced 

on the floating electrode, which in turn induces a more significant effect on the DNA 

translocation. The present of the floating electrode attracts more ions inside the nanopore 

resulting in an increase in the ionic current flowing through the nanopore, and exhibits a 

minor effect on the ionic current deviation. 
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CHAPTER 7 

DNA ELECTROKINETIC TRANSLOCATION THROUGH A NANOPORE: 

LOCAL PERMITTIVITY ENVIRONMENT EFFECT 

Abstract 

Many existing studies revealed that counterion condensation and/or the strong 

hydrogen bonding interactions in the vicinity of a charged DNA nanoparticle 

significantly reduce the local liquid permittivity surrounding it. However, the existing 

studies on DNA electrokinetic translocation through a nanopore used a constant instead 

of varying liquid permittivity. The effect of the local liquid permittivity surrounding the 

DNA nanoparticle, referred to as the local permittivity environment (LPE) effect, on its 

electrokinetic translocation through a nanopore is investigated for the first time using a 

continuum-based model, composed of the coupled Poisson-Nernst-Planck (PNP) 

equations for the ionic mass transport, and the Stokes and Brinkman equations for the 

hydrodynamic fields in the region outside of the DNA and within the ion-penetrable layer 

of the DNA nanoparticle, respectively. The nanoparticle translocation velocity and the 

resulting current deviation are systematically investigated for both constant and spatially 

varying permittivities surrounding the DNA nanoparticle under various conditions. The 

LPE effect in general reduces the particle translocation velocity. The LPE effect on the 

current deviation is insignificant when the imposed electric field is relatively high. 

However, when the eclectic field and the bulk electrolyte concentration are relatively low, 

both current blockade and enhancement are predicted considering the LPE effect, while 

only current blockade is predicted using a constant liquid permittivity. 

7.1. Introduction 

Solid-state nanopores141 have emerged as single-molecule biosensors for detection and 

characterization of biopolymers such as polypeptide,138"139 RNA,20 as well as DNA20'136, 

142 over the past decade. Electrically driven translocation of charged nanoparticles 

through a nanopore giving rise to detectable changes in ionic transpore current enables 
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the sensing of unlabeled single-molecule for various bio-analytical applications. Among 

these, nanopore-based DNA sequencing technique29,35'230 is one of the most promising 

applications, which makes it possible to identify nucleotide bases sequence by 

discriminating the ionic current signals as well as at high speed and low lost.29 

Despite nanopore-based sensing techniques recent inception, a growing number of 

experimental studies33'35'37-38'41'43'136'138-139,2.4,2.8,231-234 M wdl M theoretical ones39^o, 

56-57,59,64-65,149-150,218,235-236 Qn sjngie_mo]ecuie sensors have appeared. Experimental 

results demonstrated that the ionic current during the DNA translocation depends on the 

thickness of the membrane,136' 232 the pore materials and radius,33' 136, 231-233 the DNA 

length,43'136'214'218,231 the voltage across the nanopore,37'233 and the pH234 and the bulk 
AA i | A| 4 

concentration ' ' of the aqueous solution. Among these, when bulk salt concentration 

is relatively high (i.e. 1 M) the typically current blockade33'35' 37' 41, 43'136' 218' 231"234 is 

observed during the single-molecule translocation. Chang et al.214 first found that when 

the bulk salt concentration is relatively low (i.e. 0.1 M) and the DNA length is 

comparable to the thickness of the nanopore, the surprising current enhancement is 

appeared. Later Fan et al.45 also observed the current blockade to current enhancement 

phenomenon during DNA translocation through inorganic nanotube on changing the 
•JO 

buffer concentration. Dekker's group further demonstrated that the salt concentration 

dependence of the ionic current by using solid-state nanopores, and very recently it was 

analyzed numerically by He et al.56 adopting the Poisson-Boltzmann coupled with 

Navier-Stokes models. Both the current blockade and current enhancement phenomena 

during the DNA translocation through nanopores are observed by Timp's40 and 

Schulten's groups as well using the molecular dynamics (MD) simulation, and later Liu 

et al.149 adopted the coupled Poisson-Nernst-Planck (PNP) with Navier-Stokes (NS) 

equations to theoretically investigate this similar problem. Liu et al.149 concluded that 

their results based on the PNP coupled with NS model are successful in predicting ionic 

current through a nanopore and in good qualitative agreement with the experimental data 

and MD's prediction. 

To my best understanding, all of these theoretical predictions in ionic current of the 

electrokinetic DNA translocation through nanopores are based on a general assumption 

of constant liquid permittivity inside and outside DNA molecules. Many existing studies, 
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however, indicate that this basic assumption of constant liquid permittivity is unrealistic 

and incorrect.237"241 In the vicinity of a charged DNA molecule in water, the local liquid 

permittivity in fact obviously deviates from its bulk value as a consequence of the 

and consequently, the activity of the water and ions as well as the local liquid permittivity 

surrounding the DNA are reduced. On the basis of fitting to the local permittivity 

obtained from the MD simulation, the spatial varying permittivity from the DNA 

nanoparticle surface sr, referred to as the local permittivity environment (LPE) effect, 

can be described by the empirical Hingerty-Lavery type sigmoidal permittivity 

Here, sw =80 and £, =1.76 are the relative permittivity of the liquid phase far away 

(bulk aqueous solution) and on the DNA nanoparticle surface, respectively, and a = l.2s 

with s being the normal distance from the DNA surface. As shown in the inset of Figure 

7.1, the dependence of the spatial distribution of the local liquid permittivity on the 

normal distance from the DNA nanoparticle surface within 1 nm is depicted. 

Taking the LPE effect into account, the DNA electrokinetic translocation through a 

nanopore is investigated using a continuum-based model, composed of the coupled 

Poisson-Nernst-Planck (PNP) equations for the ionic mass transport, and the Stokes and 

Brinkman equations " ' ' for the hydrodynamic fields in the region outside of the 

DNA and within the ion-penetrable layer of the DNA nanoparticle, respectively. The 

nanoparticle translocation velocity and the resulting current deviation for both constant 

and spatially varying permittivities surrounding the DNA nanoparticle are examined in 

detail through varying the bulk ionic concentration, the strength of applied electric field, 

and the nanopore surface charge density. We propose, for the first time, that no matter 

what is the electric field imposed the predictions in ionic current with considering the 

LPE effect are in good qualitative agreement with the experimental observations in the 

literature. This chapter is also aimed to provide theoretical background for elaboration the 

physical mechanisms of affecting the DNA translocation through a nanopore. 

significant counterion condensation and the strong hydrogen bonding interactions237'240 

function,238"239 

(7.1) 
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Figure 7.1. Schematic view of a soft DNA translocation through a nanopore. Inset: 

variation of the local permittivity environment as a function of the normal distance from 

the DNA surface based on Eq. (7.1).239 

7.2. Mathematical Model 

We consider a nanopore of length LN and radius RN connecting two large, identical 

reservoirs (referred to as cis and trans reservoirs, respectively) of length LR and radius RR 
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on either side, as schematically shown in Figure 7.1. The nanopore and reservoirs are 

filled with an aqueous binary electrolyte solution with zi and Z2 being the valences of the 

cations and the anions, respectively. A double-stranded DNA (dsDNA) molecule is 

initially positioned inside the cis reservoir as shown in Figure 7.1. The dsDNA contains a 

rigid inner core, which is approximated as an uncharged nanorod of length Lp with two 

hemispheres of radius a on either end, covered by an ion-penetrable soft layer of uniform 

thickness d.149,241 The ion-penetrable soft layer is homogeneously structured and bears 

dissociable function groups to form the phosphate backbones in DNA, yielding a uniform 

fixed charge density, p^ , and an extra friction force acting on the liquid flowing 

inside.125 We further assume that the DNA nanoparticle is initially placed with its axis 

coinciding with the cylindrical nanopore's axis so that a two dimensional axial symmetric 

geometry can be used to describe all variables in this chapter. The origin of the 

cylindrical coordinate (r, z) is fixed at the center of the nanopore. The two reservoirs are 

assumed large enough for the ionic concentration far away from the nanopore to maintain 

as its bulk value, Q. A potential bias V0 is applied between the two electrodes positioned 

far away from the nanopore inside the two reservoirs, inducing a negative axial electric 

field, E, to electrophoretically drive the negatively charged DNA from the cis reservoir 

along the axis of the nanopore toward the trans reservoir and simultaneously generate a 

detectable ionic current through the nanopore. 

In this chapter, we adopt the verified continuum-based model, composed of the PNP 

equations for the ionic mass transport and the Stokes equations for the hydrodynamic 
| ̂ A | I C ^ 

field, " ' to model the DNA electrokinetic translocation through a nanopore with 

the emphasis on the LPE effect. The ionic mass transport in the electrolyte solution is 

governed by the PNP equations:65'124 

- V • (e0sf iV V) = Pe+ pfr, inside the ion-penetrable layer (7.2) 

- V • (e0s/ 0VV) = pe, outside the ion-penetrable layer (7.3) 

and 

V • N, = V • (uCj - DJVCJ - Zj ^-FcS/V) = 0 ,j= 1 and 2. (7.4) 
RT 
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In the above, V is the electric potential; u is the fluid velocity; pe = F(zicl + z2c2) is the 

space charge density of mobile ions; N), Cj, Dj, and Zj are the ionic flux density, the ionic 

concentration, the diffusivity, and the valence of the /h ionic species, respectively (/= 1 

and 2 represent the cations and anions, respectively); sQ, F, R, and T are the vacuum 

permittivity, the Faraday constant, the universal gas constant, and the absolute 

temperature, respectively; sf i and sfo are the relative permitivities of the liquid phase 

inside and outside the ion-penetrable layer, respectively. 

Since the Reynolds number of the electrokinetic flow in nanofluidics is extremely low 

(i.e. Re«l), the flow field at quasi-steady state can be described by the modified Stokes 
124-125,215,242 equations: 

- Vp + pV2u - F(z,c, + z2c2)V V - y(u - up) = 0, inside the ion-penetrable layer (7.5) 

-Wp + JLN2u - F(z,c, + z2c2)W = 0, outside the ion-penetrable layer (7.6) 

and 

Vu = 0. (7.7) 

In the above, p and p. are the hydrodynamic pressure and the dynamic viscosity of the 

fluid, respectively; y is the hydrodynamic frictional coefficient of the ion-penetrable 

layer; up = Upet is the particle translocation velocity along the axis of the nanopore and 

ez is the unit vector in the z-direction. 

To solve the above coupled governing equations, Eq. (7.2)-(7.7), appropriated boundary 

conditions are required. The ionic concentrations at the ends of the two reservoirs are the 

bulk ionic concentrations, cy=Cy0 , j— 1 and 2. The particle's rigid core is ion-

impermeable. Since the particle is translating with a velocity, Up, along the axis of the 

nanopore, the normal ionic flux at the surface of the rigid core includes the convective 

flux, n Ny = n (uCj),j=l and 2, where n is the unit normal vector directed from the 

corresponding surface into the fluid.159 At the ion-penetrable layer/liquid interface of the 

DNA nanoparticle, the concentration and normal flux of each ionic species are 

continuous. The normal ionic fluxes on all other boundaries are zero. 
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For the electric field, the electric potential imposed at the ends of the cis and trans 

reservoirs are V = 0 and V = V0, respectively. The surface of the particle's rigid core is 

assumed uncharged, -n-(f/,VF) = 0.125 The surface charge density on the nanopore 

wall is specified as -n {ef oW) = aw , and all other boundaries use the insulating 

boundary condition, - n • (s/oVV) = 0. At the ion-penetrable layer/liquid interface of the 

DNA nanoparticle, continuous boundary condition for the electric potential and the 

normal electric field is used. 

For the flow field, non-slip boundary condition is imposed on the inner surfaces of the 

nanopore and the membrane. A normal flow with no external pressure gradient (i.e. p=0) 

is applied at the ends of the two big reservoirs. Since the side boundaries of the two 

reservoirs are far away from the nanopore, a symmetric slip boundary condition is 

specified. Along the ion-penetrable layer/liquid interface of the DNA, continuous flow 

boundary condition, including the flow velocity and both the normal and the tangential 

viscous stress tensors, is used.125 As the DNA translocates along the axis of the nanopore, 

the fluid velocity on the surface of the particle's rigid core is u =Upez. Under quasi-

steady state, the particle translocation velocity, U , will be determined by the condition 

of zero net force acting on the particle,65'124 

where FE and FH are, respectively, the z-component electrical and hydrodynamic forces 

acting on the particle, and they are obtained by the integration of the Maxwell stress 

tensor,65, 124 and the hydrodynamic stress tensor,65' ,24"125 over the DNA nanoparticle 

surface , respectively, 

FE +FH — 0, (7.8) 

(7.9) 

and 

dQp. (7.10) 
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In the above, nr and nz are the r- and z-components of the unit normal vector, n, 

respectively; and ur and uz are, respectively, the r- and z-components of the fluid 

velocity. 

In experiments, one typically measures the ionic current flowing through the nanopore 

as a function of time during the DNA nanoparticle translocation process. The ionic 

current is evaluated by 

where S denotes either end of the reservoirs due to the ionic ciirrent conservation. To 

measure the effect of the translocating DNA nanoparticle on the ionic current through the 

nanopore, ionic current deviation is defined as 

where Ix is the base ionic current when the DNA nanoparticle is far away from the 

nanopore. % < 0 represents a current blockade, while % > 0 implies a current 

enhancement during the translocation process. In the following we will present many of 

our results in the form of the particle translocation velocity and j as a function of the 

particle's location (i.e. center of mass), zp. 

The dimensionless form of the above mathematical model can be easily derived using 

the bulk concentration Co as the ionic concentration scale, the radius of the dsDNA 

nanoparticle a as the length scale, RT/F as the potential scale, U0 = e0swR2T2 /\^aF2) as 

the velocity scale, and juU0/aas the pressure scale, e*. is the relative permittivity of water. 

7.3. Results and Discussion 

7.3.1 Numerical Method and Code Validation 

The strongly coupled non-linear equations and the associated boundary conditions are 

numerically solved by the commercial finite element package, COMSOL Multiphysics 

(version 3.5a, www.comsol.com) operating in a high-performance cluster. The 

computational domain is discretized into quadratic triangular elements. Nonuniform 

(7.11) 
s  i=i  

(7.12) 

http://www.comsol.com
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elements are employed with larger numbers of elements assigned locally as necessary. 

Typically the total number of elements is approximately 170,000 with finer mesh on the 

DNA surface to capture the LPE effect as shown in Figure 7.2. Lagrange - Quadratic 

elements are used for solving PNP equations, while Lagrange - P2P1 elements are for the 

Stokes and Brinkman equations. The ionic current through the nanopore is obtained by 

using the weak constrain in COMSOL specially developed for an accurate calculation of 

flux. Rigorous mesh-refinement tests have been performed to ensure that the solutions 

obtained are convergent and grid independent. A maximum tolerance of 0.1% is imposed 

on the relative difference (\Ia\ - \Ic\)/\Ia\, where Ia and Ic are respectively the current 

entering (anode) and leaving (cathode) the nanopore. The numerical scheme has been 

validated to be sufficiently efficient and accurate for solving similar electrokinetic 

problems, such as the electrokinetic ion transport in a solid-state nanopore14'109"113 and 
M  l i e  1 1 7  

the electrokinetic rigid and soft nanoparticle translocation through a nanopore. ' ' 
126 

Figure 7.2. The meshes used in the simulation with enlarged finer mesh on the DNA 

surface. 
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To further validate our code in the present study, we first simulate electrophoresis of a 

long, rigid cylindrical particle along the axis of a very long cylindrical pore, whose 

approximate solution is available under the conditions of assuming the particle's length is 

much larger than its radius (i.e. a/Lp« 1), the nanopore's length is much larger than the 

particle's length {L^ILP» 1), relatively low surface potentials on the particle and the pore 

wall, and weak electric field imposed.243 To simulate this rigid particle, the ion-penetrable 

layer is assumed to be uncharged and has a very small frictional coefficient, and the zeta 

potential on the surface of the particle's rigid core is the thermal potential. Figure 7.3. 

shows Normalized axial electrophoretic velocity, u p  =  U p / U r e f  with U n f  =  £ 0 s w ^ p E ! n  

being the reference Smoluchowski velocity, of a long cylindrical particle of radius a 

translating along the axis of an infinitely long, uncharged cylindrical pore of radius b as a 

function of scaled double layer thickness, K A  with K ~ x = { E a e w R T F 2 Z l
2 c 0 ) V 2  being 

the Debye length, (a), and as a function of relative permittivity of the aqueous solution 

sf i = ef o = ef at m = 2, (b), for the case where a/b=0.5, <%p=RT / F , and E=20 kV/m. 

Here the LPE effect is not considered. Our numerical results (circles) are in good 

agreement with the approximation results (solid line) of Liu et al.243 expect when Ka is 

small. Double layer polarization (DLP) becomes significant when the double layer is 

thick, and the DLP effect reduces the particle velocity. The approximate model did not 

consider the DLP effect. Thus, our result is a little bit lower than the approximate result 

for Ka <1. Figure 7.3 (b) indicates that the particle electrophoretic velocity increases with 

increasing / X and approaches to the result of Liu et al.243 when e/ =80 (relative 

permittivity of water), which also validates our numerical code. 
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Figure 7.3. Normalized axial electrophoretic velocity, u p = U p /  U  r e f  with 

Uref = e0£wgpE / n being the reference Smoluchowski velocity, of a long cylindrical 

particle of radius a translating along the axis of an infinitely long, uncharged cylindrical 

pore of radius b (a): as a function of scaled double layer thickness, tea with 

K~x = (e0£wRT/ ̂ (
2
=1 /r2z,2c0)1/2 being the Debye length; (b): as a function of relative 

permittivity of the aqueous solution s f  i  = s f  o  =  e f  at m - 2  , for the case where 

a/b^0.5, £p = RT / F , and £=20 kV/m. Solid line: present numerical result; discrete 

symbols and dashed curve: analytical results of Liu et al.243 

In this chapter, we assume the radius of the dsDNA nanoparticle is a=l.l nm214 and the 

thickness of its ion-penetrable layer is 0.3 nm, which corresponds to the hydrodynamic 

diameter of the water molecule.244 Because one helical pitch of the dsDNA has about 

10.5 base pairs (bp)245 and one bp carries two elementary charges and has a length of 

0.334 nm,246 the fixed charge density of the DNA nanoparticle is estimated as 

-6xl07 C/m3 by dividing the bare charge density of Pfix,b =-2.53x10s C/m3 by the 

Manning factor of 4.2.216' 247 The bare fixed charge density corresponds to the typical 

value of the linear charge density on the DNA (c.a. 6 elementary charges/nm). The total 

length of the DNA nanoparticle Lp is assumed to be 49 nm (c.a. 14 helical pitch), which 

91 
is less than the persistence length of the dsDNA (c.a. 50 nm) to ensure it is a 
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reasonable approximation by a cylindrical nanorod with two hemispheres on both ends. 

Since the DNA can be viewed as a highly charged polyelectrolyte, the counterion 

condensation occurs, resulting in lots of counterions accumulated in the vicinity of the 

DNA.216'240'247 The counterion condensation effect strongly reduces the activity of the 

ions near the DNA and accordingly decreases the local liquid permittivity surrounding 

the DNA,240'248 which is referred to as the local permittivity environment (LPE) effect in 

this chapter. Similarly, counterion condensation also occurs in the vicinity of the charged 

nanopore wall, inducing LPE effect near the charged nanopore wall. We focus on the 

LPE effect only arising from the counterion condensation of the DNA, and assume that 

the LPE effect stemming from the charged nanopore wall is neglected in this chapter. 

Without considering the LPE effect, the relative permittivity of the liquid within the soft 

layer and outside of the DNA is a constant, £fJ = ef 0 = ew = 80. When the LPE effect 

arising from the charged DNA is considered, spatially varying relative permittivity is 

used, sf i = £, and ef o = er. We assume the system is filled with KC1 aqueous solution. 

The physical parameters used in this chapter are summarized in Table 7.1. 

7.3.2 Effect of the Bulk Ionic Concentration 

Figure 7.4 depicts the normalized translational velocity of the DNA nanoparticle 

(Figure 7.4a) and the resulting ionic current deviation (Figure 7.4b) as a function of the 

particle's location, zp, for various bulk ionic concentrations. Solid lines with symbols 

represent the results without considering the LPE effect (ef j = sfu = ew = 80), while 

lines without symbols represent the results with the LPE effect (e f  J = £, and e f  o  = e r ) .  

Since the electric field inside the nanopore is higher than that in the fluid reservoirs, as 

expected the particle velocity within the nanopore is higher than that inside the fluid 

reservoirs. This phenomenon is consistent with many theoretical and experimental 

observations in the literature.59'65'131'149,236 Under the other same conditions, the particle 

velocities with the LPE effect are lower than those without considering the LPE effect. 

Comparing to the case of without LPE effect, more counterions are confined near the 

DNA surface in the presence of the LPE effect, resulting in lower effective charge 
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density, pe + , accumulated within the soft layer of the DNA particle and accordingly 

lower particle electrophoretic velocity. It is interesting to note that the maximum particle 

translational velocity does not occur when the particle is at the center of the nanopore, 

and the particle velocity peaks at about zp=±15.6nm, at which the front (rear) end of the 

DNA nanoparticle reaches the edge of the nanopore at the trans (cis) reservoir. When the 

particle is completely inside the nanopore, the particle velocity decreases in the range of 

-15.6 nm < zp < 0 and increases in the range of 0 < zp < 15.6 nm . Without considering 

the LPE effect, the first peak particle velocity occurring at about z p  =-15.6nm is lower 

than the second peak particle velocity occurring at zp =15.6nm when the bulk ionic 

concentration is relatively low (i.e. C0= 10 raM), and the particle velocity is almost 

symmetric with respect to zp=0 when the bulk ionic concentration is relatively high (i.e. 

C0=100 mM and 1000 mM). However, for the case of considering the LPE effect, the 

first peak particle velocity is always higher than the second peak particle velocity, and the 

particle velocity is not symmetric with respect to zp=0. The asymmetric particle velocity 

profile can be attributed to the competitive effects of the enhanced local electric field 
e*j o/: 

inside the nanopore ' and the induced concentration polarization (CP), as 

schematically illustrated in Figure 7.5. The enhancement of the local electric field inside 

the nanopore arises from the large mismatch of the cross-sectional areas of the fluid 

reservoirs and the nanopore, resulting in higher particle velocity inside the nanopore. 

The CP effect is induced by the flow in the gap between the particle and the nanopore 

wall and DNA-nanopore wall interactions, which include overlapping of the EDLs of the 

DNA nanoparticle and the charged nanopore wall, and compression of the EDL of the 

DNA nanoparticle by the nearby (un)charged nanopore wall. The CP effect results in 

more counterions accumulated near the entrance of the nanopore inside the cis reservoir. 

Figure 7.6 depicts the normalized ionic concentration difference between the cations and 

the anions, c* — C2 =(ci- CI)!CQ, when zp~ 15.6 nm (a, d), 0 (b, e), and 15.6 nm (c, f) in 

the absence (a-c) and presence (d-f) of the LPE effect. As expected, the spatial 

distribution of the net charge within the liquid, which is proportional to c* - c\, varies 

with the position of the nanoparticle. During the DNA translocation through the nanopore, 
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the electroosmotic flow (EOF) in the gap between the particle and the nanopore wall, the 

direction of which is opposite to the particle electrophoretic motion, drives counterions 

from the nanopore toward the cis reservoir, leading to more counterions accumulated 

near the cis reservoir of the nanopore and resulting in a concentration gradient across the 

nanopore. Figure 7.6 also shows that CP with the LPE effect (Figure 7.6d-f) is more 

significant than that without considering the LPE effect as shown in Figure 7.6a-c. This is 

because the LPE effect leads to more counterions confined in the vicinity of the DNA 

surface, which reduces the electrostatic interaction between the DNA surface and the 

counterions flowing in the gap between the particle and the nanopore wall toward the cis 

reservoir. Therefore, counterions with the LPE effect are easier to pass through the 

nanopore toward the rear of the DNA nanoparticle, leading to more significant CP effect 

than the case without the LPE effect. The induced CP effect generates an electric field, 

the direction of which is opposite to the externally imposed one, resulting in a decrease in 

the particle velocity. The local minimum of the particle translocation velocity occurring 

in the range of — 15.6nm < zp <15.6nmis mainly attributed to the CP effect. Since the 

CP effect becomes more significant when the LPE effect is considered, the particle 

velocity with the LPE effect has a more pronounced local minimum than that without 

considering the LPE effect, as shown in Figure 7.4a. Without considering the LPE effect, 

the presence of the two peak particle velocities at zp=±15.6nm is mainly due to the CP 

effect, which is more significant when the particle is completely inside the nanopore, 

since the axial electric field inside the nanopore is almost independent of the particle's 

location, as shown in Figure 7.7a and b. When the LPE effect is considered, the axial 

electric field inside the nanopore depends on the particle's location, as shown in Figure 

7.7c and d. The average axial electric field inside the nanopore decreases as the particle 

translocates through the nanopore, which explains why the first peak particle velocity 

occurring when the particle completely enters the nanopore is higher than the second 

peak particle velocity when the rear end of the particle exits from the nanopore. In 

addition, the magnitude of the axial electric field in the presence of the LPE effect is 

much higher than that without the LPE effect. The significantly enhanced local electric 

field increases the flow inside the nanopore and accordingly brings more counterions 

toward the cis reservoir near the nanopore, resulting in more significant CP as shown in 
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Figure 7.6. With the LPE effect, the asymmetric particle velocity profile in the range of 

-15.6 nm < zp <15.6nmis due to the combined competitive effects of the enhanced 

local electric field and the CP effect, as schematically shown in Figure 7.5b. Note that the 

mechanisms schematically shown in Figure 7.5 highly depend on the Debye length (EDL 

thickness). CP decreases as the bulk ionic concentration C0 increases. Therefore, without 

the LPE effect the particle velocity inside the nanopore is nearly a constant when the bulk 

concentration is relatively high (i.e. C0=1000 mM in Figure 7.4a). With the LPE effect, 

the particle velocity inside the nanopore is not a constant even when the bulk ionic 

concentration is relatively high, and this is due to the dependence of the axial electric 

field on the particle position, as shown in Figure 7.7. 
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Figure 7.4. Normalized particle translation velocity (a) and ionic current deviation (b) as 

a function of the particle's location at various bulk ionic concentrations when 

Pfr - -6x 107 C/m3, / = 1.32xl018kg/sm3, crw = 0 C/m2, and £=2000 kV/m. Solid lines 

with circles, diamonds, and squares represent the results of ef i = sf o = sw = 80 at 

cQ =10mM, 100 mM, and 1000 mM, respectively. Dashed, dash-double dotted, and 

dash-dotted lines represent the results with the LPE effect for c0 = 10 mM, 100 mM, and 

1000 mM, respectively. 
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Figure 7.5. Qualitative description of the physical mechanisms of affecting the DNA 

translocation through a nanopore (not to actual scale), (a) efi = sf o =sw= 80 ; (b) 

e f  j = e ,  and e f o  =  e r .  \ E Z \ :  local enhanced electric field; CP: concentration polarization. 
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Figure 7.6. Spatial distribution of the normalized net ionic concentration difference, 

(c, -c2)/c0 at various particle's locations in the absence (a-c) and presence (d-f) of the 

LPE effect for c0 = 10 mM and (a and d): zp =-15.6nm ; (b and e): Onm; (c and f): 

15.6nm. 
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Figure 7.7. Spatial distribution of the normalized local axial electric field, E\ - EJ Eref 

with E, =-dV/dz and Enf =RT/Fa, at various particle's locations in the absence (a 

and b) and presence (c and d) of the LPE effect for c0 = 10 mM and (a and c): 

zp =-15.6 ran ; (b and d): zp = 15.6 nm . 

In general, the nanopore-based sensing technique is based on the variation of the ionic 

current through the nanopore due to the presence of the particle. The influence of the 

DNA nanoparticle's location on the ionic current deviation through the nanopore is 

shown in Figure 7.4b. The current deviations in the absences (solid lines with symbols) 

and presence (lines without symbols) of the LPE effect are almost identical for C0=100 

mM and 1000 mM, and their trends are very similar when C0 =10 mM, implying that the 

LPE effect on the ionic current deviation is insignificant under the conditions considered. 

Figure 7.4b also reveals that current blockade is observed as the DNA enters the 

nanopore, and current enhancement occurs as the DNA starts to exit the nanopore. It is 
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generally accepted that the former arises from the physical blocking by the DNA 

nanoparticle, which is consistent with many experimental results in the literature.20'33,41' 

142,231-233 iater was ajso observed by many groups.19'38"40'45,56'149>214 For example, 

Chang et al.214 experimentally studied electrokinetic translocation of a 200-bp dsDNA 

through a silica nanopore of 2.2 nm in radius and 50 nm in length, and its geometry is 

very similar to our simulation. They found that if the DNA molecule is about the same 

length of the nanopore, current enhancement occurs and is attributed to additional 

counterions (cations) carried by the negatively charged DNA into the nanopore. Liu et 

al.149 attributes the current enhancement to the positive diffusive current and this occurs 

only under the conditions of a thick EDL and a high electric field externally imposed. We 

find the behavior that current blockade and enhancement during the whole translocation 

process the competition of the moving gated electric field transistor (FET) concept from 

the charged DNA, proposed by Chang et al.,214 and the CP effect aforementioned. The 

current blockade as the DNA initial enters the nanopore is mainly dominated by the 

mechanical blocking because much amount of counterions could be retarded accumulated 

in the cis reservoir near the nanopore. Then, the current enhancement appears as the DNA 

completely enters the nanopore and attains the maximum as the DNA initially leaves the 

nanopore. This is because with the DNA entering the nanopore the moving FET effect214 

becomes significant while the CP declines with it initial leaving the nanopore. 

7.3.3 Effect of the Strength of the Applied Electric Field 

Figure 7.8 depicts the translational velocity and the ionic current deviation as a function 

of the particle's location at various bulk ionic concentrations when the applied electric 

field is £=20 kV/m, which is 1/100 times of that in Figure 7.4. In order to compare the 

results for both £=20 kV/m and 20000 kV/m, the y-axis in Figure 7.8a is multiplied by 

100. Comparison between Figure 7.4a and 6a reveal that under the same other conditions 

the particle translocation velocity for £=2000 kV/m is nearly 100 times of that for E=20 

kV/m. Without considering the LPE effect, the particle velocity profile for £=20 kV/m is 

very similar to that for £=2000 kV/m shown in Figure 7.4a. However, with the LPE 

effect, the particle velocity when the rear end of the particle just exits the nanopore (i.e. 

zp = 15.6 nm ) is higher than that when the front end of the DNA just enters the nanopore 
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(zp =-15.6nm), which is different from the results shown in Figure 7.4a. Figure 7.8a 

also reveals that the higher the bulk ionic concentration the lower is the particle 

translocation velocity, which is consistent with the results in Figure 7.4a. However, when 

the bulk ionic concentration is sufficiently low (i.e. C0=10 mM) and E—20 kV/m, the 

particle velocity becomes negative prior to entering the nanopore, implying that the DNA 

is trapped near the entrance of the nanopore, which has also been found in some 
<t jn OCA 

experimental results. Since the particle could not translocate through the nanopore, 

we did not plot the results for C0=10 mM in Figure 7.8. The particle trapping is because 

the electrophoretic driving force is not high enough to overcome the net effects of the 

entropic costs of squeezing a coil polyelectrolyte into a narrow pore,142 and the opposite 

electroosmotic flow coming from the charged particle.59,236 
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Figure 7.8. Normalized particle translation velocity (a) and ionic current deviation (b) as 

a function of the particle's location when p^ =-6xl07C/m3, y = 1.32x10'8 kg/sm3, 

crw = 0 C/m2, and E=20 kV/m. Solid lines with diamonds and squares represent the 

results without considering the LPE effect at c0= 100 mM and 1000 mM, respectively. 

Dash-double dotted and dash-dotted lines represent the results with the LPE effect at c0 = 

100 mM and 1000 mM, respectively. 
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Figure 7.9. The influence of the nanopore surface charge density <rw on the normalized 

particle translation velocity (a) and ionic current deviation (b) when c0 =100 mM , 

Pfix =-6xl07 C/m3, ^ = 1.32x 1018kg/sm3, and £=2000 kV/m. Solid lines with circles 

and diamonds represent the reference results without the LPE effect at crw = -0.009 C/m2 

and aw = 0 C/m2, respectively. Dashed and dash-double dotted lines represent the results 

with the LPE effect at crw = -0.009 C/m2 and <?w =0 C/m2, respectively. 

Figure 7.8b depicts the ionic current deviation during the particle translocation process 

when E=20 kV/m. When the bulk ionic concentration is sufficiently high (i.e. 1000 mM), 

current blockade happens during the entire translocation process for both absence and 

presence of the LPE effect, and the LPE effect on the current deviation is insignificant. 

However, for the bulk concentration Co= 10 mM, current blockade is observed when the 

LPE effect is not considered, while both current blockade and enhancement are found 

when the LPE effect is taking into account. The current blockade and enhancement 

behavior at relatively low electric field can be attributed to more counterions, which are 

accumulated surrounding the DNA surface due to the counterion condensation, are 

carried into the nanopore. 
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Figure 7.10. The dependence of the relative ionic current due to the DNA translocation in 

the nanopore on the bulk ionic concentration when =-6xl07 C/m3 , 

y = 1.32x10'8kg/sm3, and aw =-0.009C/m2. Solid lines with circles and diamonds 

represent the reference results without the LPE effect at £=2000 kV/m and £=200 kV/m, 

respectively. Dashed and dash-double dotted lines represent the results with the LPE 

effect at £=2000 kV/m and £=200 kV/m, respectively. 

7.3.4 Effect of the Surface Charge of the Nanopore 

In practical applications, the nanopore wall usually carries a negative surface charge 

arising from the dissociation of functional groups on it, such as the negatively charged 

groups, Si-O" , dissociated from the silanol groups on silica nanopore wall. 

Consequently, an extra electroosmotic flow (EOF) will be induced near the charged 

nanopore wall, which in turn affects both the ionic current and the particle translocation 

through the nanopore.8 Figure 7.9a shows the influence of the nanopore surface charge 

density, <rw, on the translational velocity of the DNA. In this case, aw is assumed to be 

-0.009 C/m2.149 As expected, the negatively charged nanopore induces an EOF, the 

direction of which is opposite to that of the DNA electrophoretic motion. Therefore, the 
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DNA translational velocity for aw —0.009 C/m2 is lower than that in an uncharged 

nanopore. The LPE effects in both charged and uncharged nanopores are similar, as 

shown in Figure 7.9a. We further examine the influence of the nanopore surface charge 

density on the ionic current deviation, as shown in Figure 7.9b. The same as that in an 

uncharged nanopore, the LPE effect is not significant in a charged nanopore. Both current 

blockade and enhancement are observed in both uncharged and charged nanopores. 

However, the current enhancement phenomenon in a charged nanopore becomes more 

significant than that in an uncharged nanopore, and this is because there are more 

counterions in the negatively charged nanopore, yielding an increase in the ionic current. 

Note that the predicted behaviors of the ionic current are quite consistent with the 

experiments of sensing single molecule by nanopores,38 where both current blockade and 

enhancement behaviors have been observed: the typical phenomenon of the former often 

appears in high salt concentration, while the later is usually observed under the conditions 

of relatively low salt concentration.19,38'56'214 

To further understand the dependence of the salt concentration on the ionic current 

during the DNA translocation process, we define the relative ionic current due to the 

DNA translocation in the nanopore, %0 =(/0 -/«,)//«, ,56 where I0 and Iw are the ionic 

current in the presence and absence of the DNA in the nanopore, respectively (i.e. zp = 0 

and zp =-60nm). Figure 7.10 shows the influence of the applied electric field on the 

relative ionic current. Here, we only present the results of £=200 (blue lines) and 2000 

kV/m (red lines). This is because the nanopore considered here is charged, if the electric 

field imposed is too weak and/or the bulk salt concentration is too low, the particle does 

not pass through the nanopore. Not that at E=200 kV/m, the particle will be trapped 

before entering the nanopore when C0 clOOmM. Figure 7.10 indicates that when the 

applied electric field is large, the relative ionic current is very similar in the absence and 

presence of the LPE effect: the current enhancement occurs when the salt concentration is 

relatively low and the current blockade when it is relatively high, which is qualitatively 

agrees well with the experimental observation.38 However, when the applied electric field 

is low, both the current blockade and enhancement are observed when the LPE effect is 

considered, while only the current blockade is observed when the LPE effect is not 
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considered. The former is qualitatively consistent with the theoretical result of the higher 

electric field and the experimental observation, but the later is not. It can be pointed out 

that the LPE effect considered here is very important in the DNA translocation through 

the nanopore, especially when the electric field imposed is relatively weak. 

7.4. Conclusions 

In summary, we have theoretically investigated for the first time the influence of the 

liquid permittivity distribution, namely, both constant and spatially varying permittivities 

surrounding the DNA nanoparticle, on the DNA translocation through a nanopore. 

Instead of the typical assumption in the former, the later is a more realistic one, referred 

to as the local permittivity environment (LPE) effect, because if counterion condensation 

and/or the strong hydrogen bonding interactions in the vicinity of a DNA molecule. We 

propose two important mechanisms, local enhanced electric field and concentration 

polarization acting on the DNA translocation process, to explain why the DNA 

translocation velocity profile is distinctly different for these two models. In addition, we 

have found that the LPE effect in general has a significant effect reducing the particle 

translocation velocity; however, it on the ionic current deviation becomes insignificant 

when the applied electric field is relatively strong. When the applied electric field is 

relatively weak, both the current blockade and enhancement are predicted at lower bulk 

salt concentration and with considering the LPE effect, while only the current blockade is 

found on the other conditions. Taking the LPE effect into account, we stress that the salt 

concentration dependence of the ionic current phenomena is more qualitatively consistent 

with the experiment observations in the literature. 
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Table 7.1. The values or range of the parameters used in this chapter. 

Parameters value or range 
a (DNA radius) 1.1 (nm) 
L0 (DNA length) 49 (nm) 

RN (nanopore radius) 3 (nm) 
LN (nanopore length) 20 (nm) 
RR (reservoir radius) 260 (nm) 
LR (reservoir length) 250 (nm) 

d (thickness of ion-penetrable layer of DNA) 0.3 (nm) 
ew (irelative permittivity of water) 80 

Et (relative permittivity of liquid on DNA surface) 1.76 
so (vacuum permittivity) 8.854* 10"" (C/Vm) 

H (dynamic viscosity) 0.001(kg/sm) 
p (fluid density) 1000 (kg/mJ) 

F (Faraday constant) 96490 (C/mol) 
Co (bulk ionic concentration) 10-1000 (mM) 

y {friction coefficient of ion-penetrable layer) 1.32x10'8 (kg/sm3) 
Pfix {fixed charge density of ion-penetrable layer) -6xl07 (C/m3) 

Di (diffusion coefficient of cations) 1.957 x 10"y (m^/s) 
D2 (diffusion coefficient of anions) 2.032 x 10"v(mz/s) 

T (absolute temperature) 300 (K) 
R (universal gas constant) 8.31(l/mol K) 

E (strength of applied electric field) 20 or 2000(kV/m) 
ow (charge density on nanopore wait) 0 or -0.009 (C/m2) 
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CHAPTER 8 

REGULATING TRANSLOCATION OF A SOFT CHARGE-REGULATED 

NANOPARTICLE THROUGH FUNCTIONALIZED SOFT NANOPORES 

Abstract 

Many existing investigations revealed that the surface charge density of a soft 

biocolloidal nanoparticle varies with the pH and background salt concentration. However, 

the existing studies on electrokinetic translocation of a soft biocolloidal nanoparticle 

through a nanopore used a pre-specified, constant fixed surface charge density, regardless 

of the pH and salt concentration. This study investigated translocation of a charge-

regulated soft biocolloidal nanoparticle such as protein through a poly electrolyte -

modified nanopore and considered charge regulation for the first time. We focused on the 

effects of two main factors, pH and background salt concentration, on the nanoparticle 

surface charge density, translocation speed, and the resulting ionic current during the 

translocation process. The nanoparticle translocation velocity increases with increasing 

pH and background ionic strength. The resulting current signal also highly depends on 

pH and ionic strength. Current blockade (enhancement) occurs at relatively low (high) 

salt concentration. As pH increases, the magnitude of the resulting current deviation 

increases. 

8.1. Introduction 

Recently, nanopore is emerging as a promising single-molecule sensor for the 
I 

detection and characterization of biocolloidal nanoparticles such as proteins and DNAs. ' 
^AA AA AA 1 J 1 | 

' ' ' A DC voltage bias is imposed across a nanopore merged in an aqueous 

electrolyte solution, as schematically shown in Figure 8.1. The imposed electric field 

generates an ionic current flowing through the nanopore, which can be measured using 

the electrophysiological techniques. In addition, biocolloidal nanoparticles become 

charged when they are in contact with an aqueous solution, and their charges depend on 

the electrolyte solution properties such as pH and ionic strength. In response to the 
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imposed electric field, negatively charged biocolloidal nanoparticles electrophoretically 

translocate from the cathode reservoir through the nanopore towards the anode reservoir. 

Since the current flowing through the nanopore is very sensitive to the size and shape of 

the nanopore, the ionic current is reduced, referred to as current blockade, when the 

nanoparticle is inside the nanopore due to the displacement of the electrolyte by the 

nanoparticle, and returns to the baseline current after the particle exits the nanopore. The 

nanopore-based biosensors characterize the electrophoretic translocating nanoparticle 

based on the ionic current change during the nanoparticle translocation process.40,214 

Although nanopore-based biosensors have a promising future, most study and 

research conducted are still at the proof-of-principle stage and many technology related 

challenges must be resolved before it can be successfully implemented. Two primary 

challenges include reducing the capture time of the nanopore to increase the through-put 

and increasing the translocation time within the nanopore to enhance signal read-out 

accuracy. The capture time or rate of the nanopore depends on the particle motion from 

the reservoir towards the nanopore entrance, while the translocation time depends on the 

particle electrokinetic motion inside the nanopore. Chapter 4 proposed to slow down 

nanoparticle translocation and simultaneously enhance capture rate by using 

polyelectrolyte-modified nanopores. That study as well as other previous studies124'251"256 

assumed that the surface charge density of the translocating biocolloidal nanoparticle is 

uniformly distributed and remains a constant, which is independent of the solution 

properties including pH and ionic strength. However, the charge of biopolymers is 

governed by the dissociation/association of the ionizable functional groups, 152 and the 

surface reactions highly depend on pH and salt concentration. In other words, the 

biopolymers of the biocolloidal nanopoarticles are charge-regulated, and their charges 

depend on pH and salt concentration. Very recently, Hsu and Tai,257 and Hsu et al.147 

studied electrophoresis of a spherical charge-regulated polyelectrolyte in an infinite 

cylindrical pore, and found that the charge of the polyelectrolyte is spatially dependent 

and can be regulated by pH and background salt concentration. 
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Figure 8.1. Schematic view a soft charge-regulated nanoparticle translocation through a 

soft nanopore. 

In this chapter, electric-field induced translocation of a biocolloidal particle through a 

polyelectrolyte-modified nanopore is numerically studied using a continuum-based model, 

which is comprised of the Poisson-Nernst-Planck (PNP) equations for the ionic transport, 

the modified Stokes equations for the fluid flow outside the polyelectrolyte layers, the 

modified Brinkman equations for the flow field inside the polyelectrode layers, and the 

charge regulation model for the charge of the biopolymers on the nanoparticle. In the 

current study, we only considered charge regulation on the biopolymers of the 

nanoparticle, and assumed that the polyelectrolytes on the nanopore are highly charged 

and are not charge regulated. We comprehensively investigated the nanoparticle 

translocation speed and the resulting ionic current signal as functions of pH, background 

concentration, and the friction coefficient of the polyelectrode grafted on the nanopore. 
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8.2. Mathematic Model 

We consider a cylindrical soft nanopore of length LN and radius RN connected two large, 

identical fluid reservoirs (referred to as cis and trans reservoirs, respectively) filled with 

an electrolyte solution containing N types of ionic species, as schematically shown in 

Figure 8.1. The soft nanopore contains a functionalized soft layer of thickness Ls on the 

wall of the membrane. For simplicity, we assume that the soft layer is ion-penetrable, 

homogeneously structured, and bears dissociable functional groups, yielding a uniform 

fixed charge density The axial length, LR, and radius, RR, of the reservoirs are large 

enough so that the concentration of each ionic species at places far away from the 

nanopore maintains its bulk ionic concentration, CJ0(j= 1,..., N). A charge-regulated 

spherical soft nanoparticle is initially positioned inside the cis reservoir as shown in 

Figure 8.1. The soft nanoparticle contains an uncharged spherical rigid inner core of 

radius a-d, covered by an ion-penetrable soft layer of uniform thickness d. The ion-

penetrable soft layer on the soft particle is homogeneously structured, and bears a charge 

density, pflXiP, and an extra friction force acting on the liquid flowing inside.125 We further 

assume that the nanoparticle is initially placed with its axis coinciding with the 

cylindrical nanopore's axis so that a two dimensional axial symmetric geometry can be 

used to describe all variables in the present study. The origin of the cylindrical coordinate 

(r, z) is fixed at the center of the nanopore. A potential bias V0 is applied between two 

electrodes positioned far away from the nanopore inside the two fluid reservoirs, 

resulting in a negative axial electric field, E, to electrophoretically drive the negatively 

charged nanoparticle from the cis reservoir along the axis of the nanopore toward the 

trans reservoir and simultaneously generate a detectable ionic current through the 

nanopore. 

In this chapter, we adopt the verified continuum-based model, composed of the PNP 

equations for the ionic mass transport, the modified Stokes equations for the 

hydrodynamic field outside of the soft layers, and the modified Brinkman equations for 
\*\A ]<%£> <\ I f <t iA 

the flow field inside the soft layers, ' ' to describe electrokinetic translocation of 
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a charge-regulated soft particle through a soft nanopore. The ionic mass transport in the 

electrolyte solution is governed by the PNP equations:65'124 

-V2V = — + pr , inside the ion-penetrable layer of the soft nanopore (8.1) 
sf "• 

-V2V = — + pflx , inside the ion-penetrable layer of the soft nanoparticle (8.2) 

-V2V = —, outside the ion-penetrable layers (8.3) 

V - N ,  = V -
f n ^ 

= 0. (8.4) 
D, 

uc ,  -  D y e ,  — z, ——  F e V V  
y 

J J J J RT J 

In the above, V is the electric potential; u = uer + ve2 is the fluid velocity with er and ez 

N 
being, respectively, the unit vectors in the r- and z-directions; pt = ^FZJCJ is the space 

M 

charge density of mobile ions; Ny, c J ,  D j ,  and zy are the flux density, concentration, 

diffusivity, and valence of the 7th ionic species, respectively; ef, F, R, and T are the fluid 

permittivity, the Faraday constant, the universal gas constant, and the absolute 

temperature, respectively. Note that the first, second, and third terms on the right-hand 

side of Eq. (8.4) denote contributions from the convective, diffusive, and migrative fluxes, 

respectively. 

In this chapter, we only consider charge regulation on the soft layer of the nanoparticle, 

and neglect charge regulation on the soft layer of the nanopore. The soft layer of the 

nanoparticle contains both dissociable acidic and basic functional groups, AH and BH+, 

respectively. Suppose that the following dissociation/association reactions occur: 

AH^>A"+H+
> (8.5) 

BH+ <-» B+ H+ (8.6) 

If we let KA  and KB  be the corresponding equilibrium constants, KA =[A~][H+]/[AH] 

and KB = [B][H+]/[BH+] , where a symbol with square brackets denotes the molar 

concentration of that symbol. Let NA and NB be the total concentration of the acidic and 

basic functional groups, respectively, that is, NA =[A"]+[AH] and NB = [B] + [BH+]. 
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Due to the reactions expressed in Eq. (8.5) and (8.6), the ion-penetrable layer of the soft 

particle bears charge of density . Therefore, it can be shown that 

Since the Reynolds number of the electrokinetic flow in nanopores is extremely small 

(i.e. Re«l), the steady-state flow field can be described by the continuity and the 

modified Stokes and Brinkman equations:52'149 

-Vp + pV2u - pVV u = 0, inside the ion-penetrable layer of the soft nanopore (8.9) 

-Vp + pV2u —- pe V V — yp (u — up) = 0, inside the soft layer of the soft nanoparticle (8.10) 

In the above, p and p are the hydrodynamic pressure and the fluid viscosity, respectively; 

yw and y are the hydrodynamic frictional coefficient of the ion-penetrable layers of the 

nanopore and the nanoparticle, respectively; up = uptz is the particle translation velocity 

along the axis of the nanopore and ez is the unit vector in the z-direction. We define the 

softness degree of the ion-penetrable layer of the soft nanopore and nanoparticle as 

K* = V^/Zw 311(1 V = ^ju'rp>respectively. 

To solve the above coupled governing Eq. (8.1)-(8.11), appropriated boundary 

conditions are required. We assume that the ionic concentrations at the ends of the two 

reservoirs are maintained at their bulk values, c] =C/0. The particle's rigid core is ion-

impermeable. Since the particle is translating with a velocity, up, along the axis of the 

nanopore, the normal ionic flux at the surface of the rigid core includes the convective 

flux, n • Nj = n • (ucy), where n is the unit normal vector directed from the corresponding 

surface into the fluid.159 At the ion-penetrable layer/liquid interfaces of the nanoparticle 

and the membrane, the concentration and normal flux of each ionic species are 

continuous. The normal ionic fluxes on all other boundaries are zero. 

1000F 1000F (8.7) 

Vu = 0, (8.8) 

-Vp + pV2u - peV V = 0, outside the ion-penetrable soft layers. (8.11) 
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For the electric field, the electric potential imposed at the ends of the cis and trans 

reservoirs are V = 0 and V = V0, respectively. The surface of the particle's rigid core is 

assumed uncharged, -n- V F  =  0 .  T h e  s u r f a c e  c h a r g e  d e n s i t y  o n  t h e  m e m b r a n e  r i g i d  

wall is zero, -n-VV = 0 , and all other boundaries have the insulating boundary 

condition, -n-VF = 0. At the ion-penetrable layer/liquid interfaces of the nanoparticle 

and membrane, continuous boundary condition for the electric potential and the normal 

electric field are used. 

For the flow field, non-slip boundary condition is imposed on the inner surfaces of the 

membrane and the nanoparticle. A normal flow with no external pressure gradient (i.e. 

p= 0) is applied at the ends of the two big reservoirs. Since the side boundaries of the two 

reservoirs are far away from the nanopore, a symmetric slip boundary condition is 

specified. Along the ion-penetrable layer/liquid interfaces of the nanoparticle and 

membrane, continuous flow boundary condition, including the flow velocity and both the 

normal and the tangential viscous stress tensors, is used.125 As the nanoparticle translates 

along the axis of the nanopore, the fluid velocity on the surface of the particle's rigid core 

is up = upex . Under quasi-steady state, the particle translation velocity, up, will be 

determined by the condition of zero net force acting on the particle,65'124 

where FE and FH are, respectively, the z-component electrical and hydrodynamic forces 

acting on the particle. Fh: and FH can be obtained by the integration of the Maxwell 

stress tensor,65, 124 and the hydrodynamic stress tensor,65' ,24"125 respectively, over the 

outer surface of the soft nanoparticle Q.p, 

F E  +  FH -  0, (8.12) 

(8.13) 

and 

(8.14) 
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In the above, nr and nz are the r- and z-components of the unit normal vector, n, 

respectively; and ur and uz are, respectively, the r- and z-components of the fluid 

velocity. 

In experiments, one typically measures the ionic current flowing through the nanopore 

as a function of time during the nanoparticle translocation process. The ionic current is 

evaluated by 

where S denotes either end of the reservoirs due to the ionic current conservation. To 

measure the effect of the translocating nanoparticle on the ionic current through the 

nanopore, ionic current deviation is defined as 

where Ix is the base ionic current when the nanoparticle is far away from the nanopore. 

X < 0 represents a current blockade, while x > 0 implies a current enhancement during 

the translocation process. In the following we will present our results in the form of the 

particle translocation velocity and j as a function of the particle's location (i.e. center of 

mass),  zp .  

8.3. Results and Discussion 

8.3.1 Numerical Method and Code Validation 

The strongly coupled non-linear equations and the associated boundary conditions are 

numerically solved by the commercial finite element package, COMSOL Multiphysics 

(version 3.5a, www.comsol.com) operating in a high-performance cluster. The 

computational domain is discretized into quadratic triangular elements. Nonuniform 

elements are employed with larger numbers of elements assigned locally as necessary. 

Typically the total number of elements is approximately 120,000 with finer mesh in the 

PE layer to capture the EDL. Lagrange - Quadratic elements are used for solving PNP 

equations, while Lagrange - P2P1 elements are for the Stokes and Brinkman equations. 

The ionic current through the nanopore is obtained by using the weak constrain in 

s •/=' 
(8.15) 

(8.16) 

http://www.comsol.com
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COMSOL specially developed for an accurate calculation of flux. Rigorous mesh-

refinement tests have been performed to ensure that the solutions obtained are convergent 

and grid independent. A maximum tolerance of 0.1% is imposed on the relative 

difference (|/a| - |/c|)/|/a|, where Ia and Ic are respectively the current entering (anode) and 

leaving (cathode) the nanopore. The numerical scheme has been validated to be 

sufficiently efficient and accurate for solving similar electrokinetic problems, such as the 

electrokinetic ion transport in a solid-state nanopore14'109"113 and the electrokinetic rigid 

and soft nanoparticle translocation through a nanopore.52,115"117,122,126 

We assume that the background electrolyte is made of KC1 with concentration CKC,, 

and the solution's pH is adjusted by KOH and HC1. Therefore, four major ionic species 

(i.e., N=4), H +, K+, CI", and OH", are considered, and their bulk concentrations are, 

respectively, C)0, C20, C30, and C40(in the unit of mM). Due to electroneutrality, the 

bulk concentrations are C10 =10("pH+3), C20 = CKCI, =CKa+10(_pH+3)-10-(pK-_pH)+3, 

and C40=10-(pK-"pH)+3 if pH < pKw / 2 ; and Cto=10"pH+3 

C2o = Qo " 10_pH+3 + 10"(pK'-pH)+3, C30 = CKCI, and Qo = IO-^-"^3 if pH > pKw 12 .,47" 

148 Here, pH = -bg([H+]0) = -log(C10/1000) and pK„ = -log(KJ = 14 with [H+]0 and 

Kw being the bulk molar concentration of H+ions (in the unit of M) and the dissociation 

constant of water, respectively. The physical parameters used in the present study are 

summarized in Table 8.1. Unless otherwise specified, physical parameters are fixed at the 

values listed in Table 8.1. 

To validate the applicability of the present numerical model, we compared our 

numerical results of the electrophoretic mobility of a soft nanoparticle in a uncharged 
187 

solid-state nanopore with the corresponding approximate solution: 

where E ' = E F a / R T  ,  u p = u p f x a F 2 / s f R 2 T 2  and Q - p ^ ^ F / ^ e R T )  represent the 

dimensionless electric field, particle velocity of the nanoparticle, and the average fixed 

2 ( A Y f l  +  A / 2 K  

3 v  K )  1  \ + X I K  
(8.17) 
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( / N V 
charge inside the soft layer of the nanoparticle, respectively .  K ~ x  =  s f R T  /  

\ / i=1 / 

denotes the Debye length. The average fixed charge is defined as p f l x  p  =  j p f a p d r  j r  ,  

where /"is the volume of the ion-penetrable layer of the nanoparticle. Figure 8.2b depicts 

the dimensionless electrophoretic mobility as a function of Ka when Xpa = 8.7, d/a = 1, 

and Rtf/a = 20 . The solid line and circles represent the approximation solution from 

Ohshima using corresponding Q in Figure 8.2a and the numerical results in present 

work. Our numerical results (circles) are in good agreement with the approximation 

solution (solid line). 

l 

l 

20 30 40 50 

-3.58 

-3.6 

-3.62 
30 40 50 20 

K a K a 

Figure 8.2. Normalized volume-averaged charged density of the ion-penetrable layer of 

the soft nanoparticle (a) and its normalized particle mobility (b) as a function of Ka when 

Apa = 8.7, d/a = 1, and R^/a = 20. Circles and line in Fig.8.2b represent, respectively, the 
• 187 

present numerical results and approximation solution from Ohshima. 
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Figure 8.3. Spatial distribution of charge density inside the soft layer of the nanoparticle 

located at (a): zp = -15 nm; (b): 0 nm; (c): 15 nm when X,w_1 = 0.3 nm. (I): CKCI = 100 

mM and pH=7.5; (II): CKCI = 50 mM and pH=7.5; (III): CKCI = 50 mM and pH=8.5. 
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Figure 8.4. Volume-averaged charge in the soft layer of the nanoparticle as a function of 

its position zp for (a): various pH values at CKCI = 50 mM; (b): for various CKCI at pH 

=7.5 when Xw'x = 0.3 nm. 

8.3.2 Effect of Solution Properties on Charge Density of the Nanoparticle 

In contrast to the soft particle bearing a uniformly distributed charge density, the charge 

density inside the charge-regulated soft particle is heterogeneously distributed and 

depends on the local fluid environment. Figure 8.3 depicts the spatial distribution of the 

charge density inside the soft nanoparticle when the particle is located at zp= -15nm (a), 

0 (b), and 15 nm (c) for CKci=l M and pH=7.5 (I), CKCI=50 mM and pH=7.5 (II), and 

CKCI=50 mM and pH=8.5 (III). The magnitude of the charge density in the front end of 

the soft particle is higher than that in the rear end of the particle. Comparisons between 

the corresponding figures in the first and second rows show that, at fixed pH, the spatial 

variation of the charge density increases as the background salt concentration decreases. 

At fixed background ionic concentration, the spatial variation of the charge density inside 

the soft layer of the nanoparticle also increases with the increase in pH. The magnitude of 

the charge density increases with increasing the ionic strength and pH. 

Figure 8.4 depicts the volume-averaged charge density of the soft particle as a function 

of the particle's location under various background concentrations (Figure 8.4a) and pH 

(Figure 8.4b). The volume-averaged charge density varies with the change in the particle 

position and the solution properties including pH and ionic strength. In general, as pH 
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increases, the concentration of H+ decreases, resulting in an increase in the surface 

reaction (8.5) and thus an increase in the negative charge density. As the background salt 

concentration increases, the volume-averaged charge density of the soft nanoparticle also 

increases. The averaged charge density of the particle located in the cis reservoir is 

significantly lower than that in the trans reservoir when the salt concentration is relatively 

low and pH is relatively high. As the particle moves toward the nanopore entrance, the 

charge density decreases and attains the minimum at the nanopore entrance. The charge 

density increases after the particle enters the nanopore, and attains the maximum at the 

nanopore exit. The charge density decreases as the particle further moves inside the trans 

reservoir. The dependence of the averaged charge density of the particle on the particle's 

location is attributed to the induced concentration polarization phenomenon occurring at 

both ends of the nanopore. Figure 8.5 depicts the spatial distributions of the ionic 

concentrations of c\ (a), cj (b), C3 (c), and C4 (d) near the soft nanopore without 

nanoparticle when CKCI = 50mM, pH = 8 and AW"' = 0.3 nm. These Figures reveal that the 

concentrations of counterions (H+ and K+) and coions (CI" and OH") near the nanopore 

entrance located in the cis reservoir are significantly enhanced, while both counterions 

and coions are depleted at the other end of the nanopore. Due to the enrichment of H+ 

ions at the nanopore entrance, the association reaction of Eq. (8.5) increases resulting in a 

decrease in the available negative sites A" and accordingly a decrease in the charge 

density. Due to the depletion of H+ ions at the other end of the nanopore, the dissociation 

reaction of Eq. (8.5) increases, leading to an increase in the charge density. The 

concentration polarization becomes more significant when the degree of the double layer 

overlap and the charge density of the nanoparticle increase, leading to more significant 

spatial variation of the charge density for higher pH due to higher charge density and 

lower salt concentration due to thicker double layers. 



165 

(a)0 -20 
z (run) 

10 0 10 

Vis fUl * 

(b) 

(c) 

Membrane' 

9E-06 1.1E-05 1.3E-05 1.5E-05 1.7E-05 

r*v " 

Membrane 

I 
45 5565 75 85 

" I  ' l  

Membran 

24 32 40 52 60 
1 " I— 

' V ....L/'C- • " v 

Membra 

0.0005 0.0008 0.0011 0.00125 
Figure 8.5. Spatial distributions of the ionic concentrations, (a): c\\ (b): C2; (c): cyt (d): C4, 

in the soft nanopore in the absence of the nanoparticle when CKCI = 50 mM, pH = 8 and 

1 = 0.3 nm. 
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8.3.3 Effect of Solution Properties on Translocation Velocity 

Figure 8.6 depicts the particle translocation velocity as a function of particle position zp 

at various pH values with CKCI = 50mM (a) and various background concentration CKCI 

with pH =7.5 (b) when Aw"1 = 0.3nm, which corresponds to the hydrodynamic diameter of 

the water molecule.244 Since the electric field inside the nanopore is much higher than 

that in the fluid reservoirs, as expected the particle velocity within the nanopore is higher 

than that inside the fluid reservoirs when the particle can translocate through the 

nanopore. This phenomenon is consistent with many theoretical and experimental 

observations in the literature.59'65'131,149,236 Under the other same conditions, the particle 

velocity increases with increasing pH due to the increase in the charge density as shown 

in Figure 8.4a. The increase in charge density with the increasing pH leads to an increase 

in the electrostatic driving force acting on the particle and an increase in the particle 

phoretic velocity. In addition, it is interesting to note that the nanoparticle velocity before 

funneling the nanopore entrance, defined as the nanoparticle capture velocity, 

significantly increases as it approaches the nanopore entrance (-30 nm < zp < -20 nm), 

and then starts to decrease at about zp = -15 nm, as shown in Figure 8.6a. This 

phenomenon is different from the results in the solid-state nanopores.57'59' 65' 149 The 

electrostatic interaction between the enriched counterions (cations) at the nanopore mouth 

and the negatively charged soft nanoparticle induces an attractive force, yielding an 

increase in the nanoparticle capture velocity. Since the CP is stronger at lower 

background concentration and higher charge density, the nanoparticle capture velocity 

increases as CKCI decreases due to the increase in the double layers overlap and as pH 

increases due to the increase in the charge density of the nanoparticle. Figure 8.6a also 

shows that the maximum particle translocation velocity occurs at about zp= 15 nm instead 

of the center of the nanopore, which is attributed to the maximum charge density of the 

soft particle occurring at about zp= 15 nm, as shown in Figure 8.4. 

If pH is relatively low, the particle velocity at the nanopore mouth becomes negative, 

implying that the particle is trapped there and could not translocate through the nanopore. 

This is attributed to low charge density on the particle at low pH, as shown in Figure 8.4a, 

and the electrophoretic driving force is lower than the opposite hydrodynamic force 

arising from the opposite electroosmotic flow of the nanopore. Therefore, one can control 
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nanoparticle separation or trapping by regulating pH of the solution, which significantly 

affects the particle charge density. When pH is relatively low, particles are focus or 

trapped at the nanopore entrance in the cis reservoir. However, particles 

electrophoretically translocate from the cis reservoir into the trans reservoir when pH of 

the solution is relatively high. 

Figure 8.6b shows that the particle velocity is also very sensitive to the background salt 

concentration. The electrophoretic velocity of the charge regulated soft particle inside the 

reservoirs decreases as the salt concentration increases, which is attributed to the decrease 

in the degree of concentration polarization and accordingly the induced electrostatic force 

arising from the interaction between the enriched counterions at the nanopore entrance 

and the negatively charge nanoparticle. When the salt concentration is relatively low (i.e., 

CKCI=50 mM), as the particle further moves toward the nanopore entrance, the particle 

velocity becomes negative implying that the nanoparticle is trapped at the entrance of the 

nanopore. This is attributed to the decrease in the charge density of the particle arising 

from the enriched ionic concentrations, as shown by the dash-dotted line in Figure 8.4b. 

When the salt concentration is relatively high, particle can enter and translocate through 

the nanopore due to relatively high charge density of the nanoparticle, as shown in Figure 

8.4b. The particle velocity in the trans reservoir is a little bit higher than that in the cis 

reservoir since the charge density of the particle in the trans reservoir is a little bit higher 

than that in the cis reservoir, as shown in Figure 8.4b. 
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Figure 8.6. Particle translational velocity as a function of its position zp  (a): for various 

pH values when CKCI = 50 mM; (b): for various CKCI at pH =7.5 when Aw"' = 0.3 nm. 

0.08 

^ = 1 nm 

= 0.4 nm > 
A."* = 0.3 nm / 

0.04 

O. 

0 

•0.04 
-60 

2p(nm) 

Figure 8.7. Particle translational velocity as a function of its position zp at various values 

of Aw"' when CKCI = 200 mM and pH=7.5. 
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Figure 8.8. Flow field near the nanopore when Aw"' = 0.3 nm (a) and 1 nm (b) at pH =7.5, 

CKCI = 200 mM and zp = -15 nm. Color bars and streamlines with arrows denote the z-

component fluid velocity and the fluid velocity vector, respectively. 
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Figure 8.9. Current deviation as a function of the particle position zp (a): for various pH 

values at CKCI = 50 mM; (b): for various CKCI at pH =7.5. Other conditions are the same 

as those in Figure 8.6. 

8.3.4 Effect of Softness Degree of the Soft Nanopore on Translocation Velocity 

Figure 8.7 depicts the Particle translocation velocity as a function of particle position zp  

at various values of Aw~' when pH =7.5 and CKCI = 200 mM. It is expected that the friction 

force stemming from the soft layer of the nanopore decreases with increasing its softness 

degree, thereby strengthening the opposite electroosmotic flow and slowing down the 

nanoparticle translocation velocity. It is interesting to find that when /U"1 = 1 nm, 

corresponding to a very soft nanopore, the nanoparticle is also trapped near the nanopore 

entrance due to very strong EOF. To further confirm that the particle is trapped by the 

opposite EOF, Figure 8.8 shows the flow field near the nanopore for Aw"' = 0.3 nm (a) and 

1 nm (b) when pH =7.5, CKCI = 200 mM and zp = -15 nm, and the color bars denote the 

z-component fluid velocity and streamlines with arrows denote the fluid velocity vector. 

Since the nanopore is also negatively charged, the direction of induced EOF is opposite 

to that of the particle electrophoretic motion. Therefore, the EOF retards particle motion. 

The EOF for Xw~l = 0.3 nm is much weaker than that for Aw"' = 1 nm. Therefore, as Aw"1 

increases, the EOF increases, yielding lower particle translocation velocity. If the 

polyelectrolyte layer of the nanopore is very soft and bears very high fixed charge, the 

particle will be trapped near the nanopore entrance by the strong opposite EOF. 
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8.3.5 Effect of Solution Properties on the Ionic Current Signals 

As mentioned previously, a nanopore-based sensing technique is based on the variation 

in the ionic current through the nanopore due to the nanoparticle translocation. Figure 8.9 

shows the current deviation as a function of particle position zp at various pH values with 

CKCI = 50 mM (a) and as a function of various background concentration CKCI with pH 

=7.5 (b) when Aw~' = 0.3nm. Since the particle is trapped prior to entering the nanopore at 

CKCI = 50 mM and pH = 7.5, only the ionic current deviation for pH = 8.5 and 8 in Figure 

8.9a, and CKCI = 200 mM and 1000 mM in Figure 8.9b are presented. Figure 8.9a indicates 

that when CKCI = 50 mM, current blockade occurs as the nanoparticle enters the nanopore, 

but current enhancement is observed as it exits the nanopore, which is consistent with the 

results in the literature.258 The former arises from the physical blockade of the 

nanoparticle, and the ionic current decreases due to the displacement of electrolyte by the 

dielectric particle. This has been verified in many experiments in solid-state nanopores ' 

38'41 and functionalized soft nanopores.34'42 The current enhancement was also found in 
A4 tl A | 4 

many experiments. ' As pointed out by Chang et al., although the introduction of a 

nanoparticle into a nanopore results in a decrease in the ionic concentration current, the 

screened counterions carried by the negatively charged nanoparticle also provide an 

additional source to increase the ionic current as it enters the nanopore. The contribution 

of the extra counterions carried by the particle becomes important only when the double 

layers of the particle and the nanopore are overlapped and the charge density of the 

particle is relatively high. Figure 8.9a also shows that the signals of both blockade and 

enhancement increase as pH increases. As pH increases, the charge density in the soft 

layer of the nanoparticle increases, which carries more counterions into the nanopore and 

accordingly an increase in the current enhancement signal. 

Figure 8.9b shows the influence of the background concentration on the ionic current 

signatures. When CKCI = 200 mM, current blockade occurs as the nanoparticle enters the 

nanopore, but current enhancement is observed as it exits the nanopore. The current 

enhancement arises from the higher charge density of the soft particle, as shown in the 

dashed line in Figure 8.4b. However, when CKCI = 1000 mM, only blockade happens due 

to thin Debye length. 
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Figure 8.10. Current deviation as a function of the particle position zp for Aw"'=0.3 and 

0.4. The conditions are the same as those in Figure 8.7. 

8.3.6 Effect of Softness Degree on the Ionic Current Signals 

Figure 8.10 depicts the current deviation as a function of particle position zp at various 

values of Aw"1 when pH =7.5, Cjcci = 200 mM and Aw
_1 = 0.3 nm. Since the particle could 

not enter the nanopore due to very strong EOF when /lw"' = 1 nm, only the ionic current 

deviation for lw"1 = 0.3 nm and 0.4 nm are presented in Figure 8.10, and they are identical, 

which implies that the softness degree of the soft nanopore mainly affects the 

hydrodynamic field inside the nanopore and has negligible effect on the ionic current 

signal. Therefore, one might adjust the soft degree of the polyelectrolyte layer grafted on 

the membrane to regulate the electroosmotic flow and accordingly regulate the particle 

translocation process without affecting the ionic current signal. 

8.4. Conclusions 

The electrokinetic translocation of a charge-regulated soft biocolloidal nanoparticle 

through a ftinctionalized soft nanopore is theoretically analyzed for the first time. In 

contrast to the existing studies using a pre-specified constant charge density on the 

- - - X = 0.4 nm 

0.3 nm 
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nanoparticle, charge regulation model is used for the first time to determine the charge 

density of the soft layer in the biocolloidal nanoparticle, which highly depends on the 

local liquid environment such as the salt concentration and pH surrounding the 

nanoparticle. The obtained results show that the charge density of the soft particle is 

spatially nonuniform, and its magnitude in the front end is higher than that in the rear end, 

and the volume-averaged charge density increases as the salt concentration and pH 

increases. The charge density of the soft particle also depends on the position of the 

particle during the translocation process. Due to the induced concentration polarization 

occurring at both ends of the nanopore, the charge density of the particle located at the 

nanopore entrance, where both counterions and coions are enriched, is lower than that 

when the particle is located at the exit of the nanopore where ions are depleted. Due to 

the dependence of the charge density of the soft particle on pH, salt concentration, and 

particle's position, nanoparticles could be trapped or focus at the nanopore entrance when 

pH and salt concentration are relatively low due to low charge density of the soft particle 

and high soft degree of the polyelectrolyte layer of the nanopore due to strong opposite 

electroosmotic flow. Otherwise, the particles translocate through the nanopore resulting 

in current block if the salt concentration is relative high and both current blockade and 

enhancement if the salt concentration is relatively low. The softness degree of the 

polyelectrolyte layer grafted on the membrane mainly affects the electroosmotic flow 

inside the nanopore, which retards the particle electrophoretic motion, and has negligible 

effects on the current signal during the nanoparticle translocation process. One can 

regulate the nanoparticle translocation process by tuning pH, salt concentration, charge 

density and softness degree of the polyelectrolyte layer on the membrane. 
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Table 8.1. The values or range of physical parameters used in the simulation. 

Parameters value or range 

a (soft nanoparticle radius) 5 (nm) 

d (thickness of ion-penetrable layer of soft nanoparticle) 1.5 (nm) 

RN (nanopore radius) 9.6 (nm) 

Ls (thickness of ion-penetrable layer of soft nanopore) 3.5 (nm) 

LN (nanopore length) 18 (nm) 

RR (reservoir radius) 200 (nm) 

LR (reservoir length) 200 (nm) 

£/ (permittivity of water) 7.08x 10-,u (C/Vm) 

/u {dynamic viscosity) 0.001 (kg/sm) 

F {Faraday constant) 96490 (C/ mol) 

CKCI {background salt concentration) 50-1000 (mM) 

/LW"' {soft degree of ion-penetrable layer of soft nanopore) 0.3-1 (nm) 

Ap"1 {soft degree of ion-penetrable layer of soft nanoparticle) 1 (nm) 

Pfa,v/ (fixed charge density of ion-penetrable layer of nanopore) -4.57 x 10"6 (C/mj) 

Di {diffusion coefficient of Ft) 9.31 x 10"y(m2/s) 

D2 {diffusion coefficient of tC) 1.96 x 10~y(m2/s) 

D3 {diffusion coefficient of CI') 2.03 x 10"y(mz/s) 

D4 {diffusion coefficient of OH) 5.30 x 10"y (m"7s) 

T {absolute temperature) 300 (K) 

R {universal gas constant) 8.31(l/molK) 

Vo {electric potential on trans) 0.5 (V) 

Kw {dissociation constant of water) 10"'4 

KA ( equilibrium constant of reaction Eq. (8.5)) i<R" 

KQ {equilibrium constant of reaction Eq. (8.6)) 10-8 5 

N\ {total number density of acidic functional groups in soft 

nanoparticle ) 

600 (mol/m3) 

JVB {total number density of basic functional groups in soft 

nanoparticle) 

600 (mol/m3) 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1. Conclusions and Contributions 

The success of the next generation nanopore-based DNA sequencing and single 

molecules detection technology requires comprehensive understand the fundamentals of 

the electric field induced electrokinetic ion, fluid and particle transport in nanofluidics, 

which is the objective of this thesis. This dissertation can be divided into three parts. 

9.1.1 Electrokinetic Ions and Fluid Transport in Nanopores 

Electrokinetic ion and fluid transport in two types of nanopores, solid-state and 

polyelectrolyte (PE)-modified soft nanopores, have been investigated in this dissertation. 

(1) Chapter 2 investigated the electric field induced ion transport and the resulting 

conductance in a polyelectrolyte (PE)-modified soft nanopore for the first time 

using a continuum-based model, composed of the coupled Poisson-Nernst-Planck 

(PNP) equations for the ionic mass transport, and Stokes and Brinkman equations 

for the flow field. In contrast to the solid-state nanopores in which ions are 

enriched (depleted) at the opening of nanopore in the cathode (anode) reservoir, 

two distinct counterions-rich concentration polarization occurring at either end of 

the nanopore, which significantly depends on the bulk ionic concentration and 

electric field strength, have been reported. If the bulk ionic concentration is 

extremely low, the counterions-rich CP occurs at the cathode side of the nanopore. 

If the bulk ionic concentration is relatively high, the counterions-rich CP occurs at 

the anode (cathode) side of the nanopore as the electric field is relatively weak 

(high). The induced CP significantly affects the nanopore conductance. 

(2) In contrast to the extensive studies of electrokinetic ion and fluid transport in a 

solid-state nanopore, whose surface charge density is pre-specified and is assumed 

to be independent of the solution properties, Chapter 3 investigated electrokinetic 

ion and fluid transport in a charge-regulated solid-state nanopore and considered 
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the charge regulation occurring in a typical silica nanopore for the first time. 

Different from the existing studies using a pre-specified constant surface charge 

density, the surface charge density is a part of the solution in the proposed model 

and highly depends on both pH and the background salt concentration. The model 

taking into account the charge regulation successfully captures the physics of the 

dependence of the nanopore conductance on the salt concentration and favorably 

agrees with the experimental data obtained from the literature. The results show 

that both pH and ionic strength dramatically affect the nanopore surface charge 

density, which governs the electrokinetic ion, fluid transport and the concentration 

polarization at the opening of the cathode (anode) side of the nanopore, especially 

when the double layers overlap. The induced concentration polarization creates a 

concentration gradient across the nanopore, which induces an electric field 

opposite to the externally imposed one, and accordingly reduces the electric field 

inside the nanopore. Therefore, one can control pH and/or salt concentration to 

tune the surface charge density of the nanopore wall, which in turn controls the 

nanopore conductance and electroosmotic flow. The induced concentration 

polarization also can be controlled by tuning pH and/or ionic strength to reduce 

the electric field inside the nanopore, which can be used to slow down DNA 

translocation in the next generation nanopore-based DNA sequencing technology. 

9.1.2 Nanoparticle Translocation through Nanopores 

Based on the obtained knowledge on electrokinetic ion and fluid transport in both solid-

state and soft nanopores, electrokinetic motion of various nanoparticles, including highly 

charged nanoparticles such as DNA and soft nanoparticles without considering charge 

regulation, and charge-regulated biocolloidal nanoparticles such as proteins, in both 

solid-state and soft nanopores are comprehensively investigated to elucidate the 

mechanisms of nanoparticle translocation. 

(1) Electrophoretic motion of a soft spherical particle consisting of a rigid core covered 

by a charged soft layer along the axis of a solid-state nanopore was numerically 

investigated in Chapter 4. The nanoparticle phoretic velocity decreases as the bulk 

ionic concentration and the softness degree of the soft nanoparticle increase. At 
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relatively low bulk concentration, the particle phoretic velocity nonlinearly 

increases with the fixed charge of the particle arising from the significant double 

layer polarization effect. 

(2) Regulating DNA translocation by using a soft nanopore containing highly charged 

polyelectrolyte layer grafted on the membrane wall has been proposed and invested 

for the first time. The results described in Chapter 5 show that the nanopore capture 

rate is enhanced due to the significant concentration polarization occurring at the 

entrance of the soft nanopore and the DNA translocation velocity inside the 

nanopore is reduced due to the enhanced opposite electroosmotic flow inside the 

soft nanopore. The polyelectrolyte layer mainly affects the fluid and particle 

motion, and has negligible effect on the ionic current signal. Therefore, soft 

nanopore is proposed to regulate the DNA translocation behavior without changing 

the ionic current signature. 

(3) Instead of using a dielectric solid-state nanopore, a solid-state nanopore with a 

floating electrode coated along the inner surface of the nanopore was proposed and 

theoretically investigated to slow down DNA translocation process. The ideally 

polarizable floating electrode interacting with the applied electric field induces a 

non-uniform surface charge density on the floating electrode and generates induced-

charge electro-osmotic (ICEO) flow inside the nanopore. The ICEO and particle-

floating electrode electrostatic interaction are the two primary factors affecting the 

DNA translocation through the nanopore. The ICEO effect exists under both thin 

and thick EDLs and is proportional to the square of the applied electric field, which 

retards the DNA translocation when it approaches the floating electrode, however, 

facilitates the DNA translocation when it passes the floating electrode. The particle 

could be trapped near the floating electrode when the applied electric field is 

relatively high and the EDLs are relatively thin. The floating electrode technique 

might be helpful for attracting DNA from the reservoir into the nanopore and 

slowing down its motion inside the nanopore. 

(4) Due to significant counterions condensation on the DNA surface, the liquid 

permittivity surrounding the DNA nanoparticle becomes spatially dependent. The 

effects of the local permittivity environment (LPE) on the DNA translocation speed 
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and the resulting ionic current signal in a solid-state nanopore are numerically 

investigated. The LPE effect reduces the particle translocation velocity. The LPE 

effect has significant effect on the ionic current signal only when the applied 

electric field is relatively strong. 

(5) Electrokinetic translocation of a charge-regulated soft biocolloidal nanoparticle 

(i.e., protein) through a functionalized soft nanopore was numerically analyzed for 

the first time. The results described in Chapter 8 show that the charge density of the 

soft nanoparticle is spatially nonuniform and its magnitude depends on pH, salt 

concentration, and the particle's position inside the nanopore device. One can tune 

pH and/or ionic strength to control the charge density of the soft particle, and 

accordingly regulate its motion. One can achieve particle trapping, focusing, and 

pre-concentration at the nanopore entrance by lowing pH and salt concentration. 

The softness degree of the soft layer of the nanopore mainly affects the 

hydrodynamic field and has negligible effect on the resulting ionic current signal. 

9.2. Future work 

Based on the research work described in this dissertation, some recommendations for 

further research are briefly described in the following. 

9.2.1 Ionic Current Rectification (ICR) in Conical Nanopores 

Synthetic solid-state nanopores are attractive materials to mimetic biological ion 

channels. Study on the ion transport in synthetic nanopores provides an essential way to 

understand the real process in living organisms. When the EDL thickness is comparable 

to the characteristic size of the nanopores, some interesting features, such as ion 

concentration polarization123'259 and ion selectivity,87"88 can be observed. Among various 

applications, ionic current rectification (ICR), referring to an asymmetric diode-like 

current-voltage behavior, has attracted considerable attention over the past decades. 86, m' 

260 To produce the ICR phenomenon, two important key factors are required:261 (i) the 

overlapping of EDL inside the nanopore, and (ii) an asymmetry in the distributions of 

ions along the axis of the nanopore. To study the ICR phenomenon in nanopores, several 
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Q-) 
mechanisms, such as electric potential barrier inside the pore, electrochemical 

prosperities of the nanopore tip,262"263 and enrichment and depletion of ions, have been 

proposed, as summarized by Siwy.264 Despite the differences among these mechanisms, it 

is generally accepted that the ICR in nanofluidics depends highly on the surface charge 

property of the nanopore or the nanochannel wall, which is in contact with the aqueous 

solution. Several studies have been proposed to study the ICR in nanopores based on the 

assumption of constant surface charge density of the nanopore. • However, the 

materials of the nanopore in contact with aqueous solution are charge-regulated, and their 

charge densities depend on both pH and background ionic concentration, as shown in 

Chapter 3. The work described in Chapter 3 can be extended to explore the ICR 

phenomenon in a charged-regulated conical solid-state nanopore. In addition, the work 

described in Chapter 2 can be extended to investigate ICR phenomenon in a conical soft 

nanopore. The proposed two works have not been reported in the literature. 

9.2.2 Field Effect Control of Electrokinetic Transport in Charge-Regulated Nanopores 

Since the electrokinectic ion, fluid, and particle transport in nanofluidics is governed by 

the charge of the nanopore wall, one can regulate the electrokinetic transport phenomena 

in nanofluidics by active control of the charge of the nanochannel. Recently, analogous to 

the metal-oxide-semiconductor field effect transistors (MOSFETs), nanofluidic field 

effect transistor (FET) with an electrically addressable gate electrode has been fabricated 

using the state-of-the-art nanofabrication technologies.15'266-269 The gate electrode can 

effectively control the surface potential of the nanopore wall,270 which is consequently 

employed to regulate the electroosmotic flow (EOF) in ionic transport, and ionic 

conductance in nanofluidic devices.9' 87' 266"267' 269 The gate electrode offers a more 

flexible and electrically compatible approach for the control of the surface potential than 

the chemical functionalization method. Oh et al.145'271 experimentally demonstrated the 

feasibility to regulate the electrokinetic transport of charged dye nanoparticles using the 

field effect control. The gate electrode and the liquid inside the micro/nanochannel are 

separated by an electrically insulating layer, which is made of dielectric material such as 

silicon dioxide (Si02).145' 271 The Si02 is a charge regulated material and its charge 

property depends on the local fluid environment, as described in Chapter 3. However, the 
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existing studies on nanofluidic FET did not consider the charge regulation. ' ' ' ' 

111,145,273 -phe work described in Chapter 3 can be extended to analyze electrokinetic 

transport phenomena in a nanofluidic FET. 
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APPENDIX 

The variables and parameters in this dissertation are shown in the Table A.l, while the 

acronyms in the dissertation are listed in the Table A.l. 

Table A.l. The variables and parameters used in this dissertation. 

Variables/Parameters (Description) 

a (radius of the particle rigid spherical core or DNA particle) 

Co, (bulk concentration ofjth ion) 

CKCI (background concentration of KC1) 

Cj (concentrations ofy'th ion) 

d (thickness of ion-penetrable porous membrane layer of particle) 

Dj (diffusion coefficients ofy'th ion) 

e (elementary charge) 

E, E: (electric field and z direction electric field) 

£00 (electric field imposed far away from the particle) 

er, e_- (the unit vectors in the r- and z-directions) 

F (Faraday constant) 

FE, FD, (electric and hydrodynamic force in the z direction on the particle surface) 

G (conductance) 

[H+]s (molar concentration of H+ions at that membrane wall/liquid interface) 

I (ionic current, ionic current scale and ionic current without DNA) 

/»(base ionic current when the DNA nanoparticle is far away from the nanopore) 

KA, KB (equilibrium constants of dissociation and association reactions) 

KW (dissociation constant of water) 

LF (floating electrode length) 

LN (nanopore length) 

LP (DNA length) 

LR (reservoir length) 

n (unit outer normal vector) 

Nj (flux densities y'th ions) 
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Table A.l. (continued) 

A/A (total number density of acidic functional groups in soft nanoparticle ) 

NB (total number density of basic functional groups in soft nanoparticle) 

jVtotai (total surface site density on the nanopore/liquid interface) 

p (hydrodynamic pressure) 

pH (pH value) 

Q (dimensionless fixed charge in the soft membrane layer) 

£?fiow (volumetric flow rate) 

R (universal gas constant) 

RM (nanopore radius) 

RR (reservoir radius) 

^(thickness of ion-penetrable layer of soft nanopore) 

T (absolute temperature) 

u (fluid velocity) 

u, v (fluid velocity in r and z direction) 

Up, Up (particle velocity and particle velocity in z direction) 

V (potential) 

Vo (electric potential on trans) 

Z (valance of the dissociable groups per molecular chain) 

Zj (valences ofy'th ion) 

y (frictional coefficient of ion-penetrable layer) 

yw, yp (frictional coefficient of ion-penetrable layer of nanopore and particle in chapter 

8) 

eo (vacuum permittivity) 

e, (relative permittivity of liquid on DNA surface) 

£/(permittivity of water) 

£f„ £fo (permittivity of water inside and outside of ion-penetrable layer near DNA) 

ew (relative permittivity of water) 

r\, riP (mobilities of soft particle and DNA particle) 

p (fluid density) 
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Table A.l. (continued) 

pe  (space charge density of the mobile ions) 

Pfa (fixed charge density of ion-penetrable layer) 

P/ix,w, Pfix,p (fixed charge density of ion-penetrable layer of nanopore and particle in 

chapter 8) 

C (zeta potential on the particle surface) 

p. (dynamic viscosity of fluid) 

(jw, Op (surface charge density on the nanopore and particle) 

os (molecular chain surface density grafted to solid-state nanopore) 

K~l (dimensional EDL thickness) 

X (ionic deviation) 

Xs (dissociated degree of functional groups in the soft layer) 

A (softness degree) 

AD (Debye length) 

Aw, Ap (softness degree of nanopore and particle in chapter 8) 
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Table A.2. The acronyms used in this dissertation. 

Acronyms Full Forms 

PE polyelectrolyte 

PNP Poisson-Nernst-Planck 

DC direct-current 

EDL electrical double layer 

PB Poisson-Boltzmann 

EOF eletroosmosis flow 

NS Navier-Stokes 

ICEK induced-charged electrokinetics 

CP ion concentration polarization 

ICR ionic current rectification 

RHS right-hand side 

ICEO induced-charged eletroosmosis 

DLP double layer polarization 

ssDNA single-stranded DNA 

ssRNA single-stranded RNA 

FET field effect transistors 

dsDNA double-stranded DNA 

HPL hairpin-loop 

MIM multi-ion model 

LPE local permittivity environment 

MD molecular dynamics 
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