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ABSTRACT

UNCERTAINTY ESTIMATES AND PREDICTION INTERVAL 
DEVELOPMENT FOR INTERNAL STRAIN GAGE BALANCE 

CALIBRATION SYSTEMS

Kenneth G. Toro 
Old Dominion University, 201-5 
Director: Dr. Drew Landman

Currently, there is a lack of the use of mathematically rigorous methods to evalu­
ate the performance of multivariate force measurement systems. The specific problem 
addressed in the research stems from the practical issues faced by test engineers when 
wind tunnel models with internal strain gage balances are readied for test. Check 
loads are applied and the question that needs to be answered is whether or not the 
balance is reading within acceptable limits. These systems tend to be difficult to 
characterize uncertainty, primarily due to their multivariate nature, but also due to 
the desire for an estimate on the explanatory variable of the system, instead of the 
response. This estimation of the explanatory variable is inherent to the calibration 
problem. For systems that are modeled using non-linear terms, no closed form so­
lution will exist for the explanatory variable. This research details the development 
of a prediction interval which includes the measurement error in the calibration and 
check systems. The 20,000 lb. manual stand for calibrating balances used in the 
National Transonic Facility (NTF) is employed by NASA Langley Research Center 
and the case study for the work. The uncertainty estimates were developed using 
the propagation of error method 011 derived physics equations for the system. The 
uncertainty estimates were integrated into the developed prediction interval, which 
demonstrated a capture rate of 96% for a trial set of check loads using a 95% level of 
condence. Comparisons are made to prediction interval capture rates for the Single 
Vector System using a common set of check loads on an NTF balance.
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NOMENCLATURE
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CHAPTER 1

INTRODUCTION

The desired research objectives of aircraft wind-tunnel testing dictates the data 
accuracy that is required. In many research cases the uncertainties of the instru­
ments are not rigorously taken into account in wind-tunnel test results. It is good 
practice to implement statistically-based intervals and uncertainties on experimental 
measurements to increase the understanding of the data. Currently there is a lack 
of a standard prediction interval used for strain-gage force balances, which are the 
primary force measurement instrument for wind-tunnel testing. A thorough under­
standing of the uncertainty and prediction intervals can benefit a researcher in several 
ways including verifying the instrument’s accuracy requirements, performing system 
level checkouts, and increasing the validity of their data.

Aircraft wind-tunnel testing can be broken down into several key areas: per­
formance, small configuration changes, and computational fluid dynamics (CFD) 
validation. An aircraft’s drag coefficient (Co) is considered to be one of the cru­
cial performance parameters, especially with current interests in reduction of fuel 
consumption. According to the Advisory Group for Aerospace Research and Devel­
opment (AGARD), for force measurement systems it is stated that for both a small 
configuration change and CFD validation a minimum detectable increment of 0.0001 
(1 count) Co should be required [1]. Performance testing requires a less stringent 
Co accuracy of 0.0005. To understand these drag requirements in force units the 
following expression is used [2]:

A D  = qSAC o  (1)

where A D  is the drag force accuracy requirement, q is the tunnel dynamic pressure, 
S  is the model planform area, and A Co is the desired drag coefficient accuracy. 
From this equation, it can be seen that the force measurement and drag coefficient 
accuracies are proportional to each other, scaled by the tunnel conditions and model 
planform area. Due to this relationship the uncertainty in both the tunnel conditions 
and model area will affect the force measurement requirement. For the purpose of
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TABLE 1: Transonic Wind-Tunnel Model Parameters
NASA CRM FAST-MAC

Balance NTF-118 NTF-117
5  (ft2) 3.01 6.06

q (lbs/ft2) 1314 to 1990 1595 to 1996
A D  (lbs) 0.396 0.967

this example it is assumed that the force measurement system is the only uncertainty 
in CD.

From Equation 1, the drag force accuracy requirements can be solved, if the other 
parameters are known. From recent wind-tunnel testing, the model dimensions and 
tunnel conditions can be used to estimate the test requirements and compare against 
actual measurement accuracies. Table 1 lists the wind-tunnel model parameters 
from the Fundamental Aerodynamics Subsonic/Transonic-Modular Active Control 
(FAST-MAC) and Common Research Model (CRM) tests, which were both con­
ducted at the NASA Langley Research Center (LaRC) National Transonic Facility 
(NTF) [3-5].

The A D  values in Table 1 use the model planform area and the lowest dynamic 
pressure of the tunnel condition to give the minimal measurement accuracy require­
ments. These values can be compared to the quoted two-standard deviation balance 
accuracies for axial force which are 0.91 and 5.99 lbs for the NTF-118 and NTF-117 
force balances, respectively. From this it is seen that neither balance can make a 
reliable 1 drag count measurement for the given model and tunnel parameters. Due 
to this realization that 1 drag count is not feasible, the FAST-MAC testing increased 
the requirement to 5 counts, which is only achievable for high dynamic pressures [6].

Wind-tunnel model systems (WTMS) are becoming ever more complex with in­
creased instrumentation and high pressure lines, which bridge the metric (sensing) 
and non-metric (fixed) ends of a balance, such as the FAST-MAC model. Fouling, 
especially hard fouling that results from inadvertent contact, will impact the predic­
tive capability of the balance. Understanding the instrument’s uncertainty can be 
used to help validate the performance of the calibration model used for the instru­
ment with the increased balance bridging via check loads and prediction intervals to 
ensure that research goals can be met.



FIG. 1: FAVOR WTMS in the NASA GRC 8x6 ft Supersonic Wind Tunnel (Credit:
NASA)

A recent study of several transonic wind tunnels in the United States, Facility 
Analysis Verification and Operational Reliability (FAVOR) project, attempted to 
gain insight into differences that may exist between selected facilities [7]. The ob­
jectives of the study included understanding and comparing facility processes, test 
methods, techniques, procedures, data-reduction methods, flow quality, and acquired 
aerodynamic data. In order to accomplish these objectives a wind-tunnel model was 
assembled with a force balance and support sting, which form the WTMS. This 
WTMS remained as a single piece until all testing was completed to help reduce 
variability due to assembling the WTMS, as shown in Figure 1. The results from 
this study were inconclusive in determining the root cause of differences that were ob­
served between facilities. Consistent check loads and use of a prediction interval may 
have been helpful to either validate the WTMS and/or help determine cross-facility 
differences.

Strain-gage force balances are considered to be the most reliable method of force 
measurement for wind-tunnel models. Force balances have been incrementally inno­
vated over several decades to the current state, which provides exceptional accuracy 
and precision [8-10]. However, there are no current accepted standard methods for 
quantifying and stating inherent uncertainties in force balance measurements. Force 
balances do not fall under the jurisdiction of the National Institute of Standard and 
Technology (NIST), who create standards and uncertainty qualifications for most
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measurement systems. The responsibility of quantifying the uncertainty is left to the 
users and manufacturers, which tend to create myriad solutions.

The Internal Balance Technology Working Group (IBTWG) was formed under 
the Ground Testing Technical Committee of the American Institute of Aeronautics 
and Astronautics (AIAA) and was tasked with facilitating dialogue between the 
technology users. A recommended practices document for the calibration and use 
of strain-gage balances was released by the IBTWG in an effort to help standardize 
how balances are calibrated and how data are handled and processed [11]. Within 
this document little to no information is provided on how balance accuracy should be 
quoted. Additionally, the document lacks discussion of a rigorous check-load process 
for ensuring the performance of force balances for research goals.

Currently, NASA LaRC uses two standard deviations, 2a, of the back-computed 
residuals for the calibration loads for quoting the balance accuracies [12]. This 
method of quoting uncertainty assumes that the variance is constant throughout 
the calibration range and only includes the modeling error. Prom response surface 
methods (RSM), the variance of a model is found to be not constant through out 
the calibration range, due to modeling error [13]. Several papers and the IBTWG- 
II have shown interest in the need for a standardized rigorous quoted accuracy for 
strain-gage balances [14-16].

1.1 BAC K G RO UN D

1.1.1 ST R A IN  GAGE BALANCES

Direct measurement of aerodynamic forces acting on a wind-tunnel model re­
mains a critical ground test technology [17]. Multi-dimensional strain-gage balances 
still remain the paradigm for ground test force measurement, due to their high accu­
racy and good repeatability. Strain-gage balances are a series of complex structural 
springs or flexures that are optimized to isolate individual load components to cer­
tain flexures, where an example is shown in Figure 2. Foil strain gages are attached 
to the flexures in order to provide a voltage response to the local deformations when 
arranged in Wheatstone bridges, i.e. a function of the applied loads.

Prior to use, the electrical response of a balance to applied loads is characterized 
by estimating a mathematical model that relates the balance outputs to known loads. 
Due to the structural complexity of internal force balances, the typical mathematical



5

FIG. 2: Internal Strain-Gage Balance, NASA NTF Family (Credit: NASA)

model required for the response is of higher order, typically second or third order. 
Strain-gage balances are primarily linear in response, but second order or higher 
terms are generally used to increase the accuracy of the balance. These higher order 
terms can originate from manufacturing and instrumentation inaccuracies. From over 
30 years of balance calibration experience, a quadratic Taylor series mathematical 
model was determined to best represent the output of single-piece internal strain- 
gage balances. The current standard model implemented at NASA LaRC for force 
balances is shown in Equation 2 [18]:

where r£ \  is the A:th bridge response voltage, are the applied forces and moments, 
(3i are the estimated calibration coefficients, and e is the random error which has 
a zero mean and a variance of a2. From this equation, it can be seen that during 
wind-tunnel testing the estimation of Fi: the applied forces and moments, is desired. 
With this formulation F) cannot be solved directly through a closed form solution 
but maybe solved numerically by using an optimization/iterating routine such as 
Newton Raphson [18].

The forces and moments that are applied to the balance are assumed to act about 
a chosen virtual center. Typically, the virtual center, or balance moment center 
(BMC), is positioned in between the forward- and aft-cage sections. The balance 
coordinate system adheres to the right-hand rule convention as is shown in Figure 3. 
However, most wind tunnels prefer to implement an aerodynamic coordinate system 
where Fz and Fz have opposite signs from what is illustrated in the figure. This

6 6 6

(2 )
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BMC

Vbal' Fy

FIG. 3: Balance Coordinate System

was done historically, since normal force, Fz, and axial force, Fx, aerodynamically 
act in the negative directions of their associated axis, namely lift and drag. For the 
purpose of this paper the balance coordinate system shown in Figure 3 will be used 
exclusively, since physics equations are based upon this system.

1.1.2 LOAD APPLICA TIO N SYSTEM S

For the balance characterization experiment, known loads are applied by either 
calibrated dead weights or by actuators through high accuracy load cells. Any system 
used to apply known loads will have uncertainties, thus an accepted practice is to 
use a system that is at least 4 times more accurate than the desired accuracy of 
the instrument being calibrated. Currently there are three methods for applying 
loads to a balance: a manual stand, single vector systems, or an automatic balance 
calibration system. Each of these system types will be explained in detail in the 
following sections.

1.1.3 M A N U A L STAND

Traditionally, balances were calibrated on what is recognized as a manual stand, 
where loads were applied “manually” with dead weights. Manual stands employ a 
grooved calibration body that is attached to the balance where hangers can apply 
loads. Dead weight loads are applied through a series of knife-edges which allow a 
load to be placed at a specific point with no transfer of moments. To ensure that 
applied forces act in their primary direction, the balance has to remain nominally



FIG. 4: Typical Manual Stand Calibration (Credit: NASA)

level. Cables and pulleys or bell cranks are required to apply loads to the balance for 
the axis components that are not aligned with the gravity vector, i.e. forces in the x- 
and y-component when the 2 -axis is aligned with gravity. An example of a balance 
calibration performed on a manual stand is shown in Figure 4.

Moments are applied to the balance by placing loads away from BMC. This can 
be accomplished by either placement of the knife-edge offset from BMC along the 
calibration body or the addition of moment arms to the calibration body. From this 
description of the manual stand, it can be realized that in order to apply multi- 
component loads, the hardware arrangement can be complex. Ensuring that all the 
applied forces are orthogonal can become laborious, since adjusting one load path 
may affect another. Due to this complexity of a 5- or 6-component load point, up to 
a full working day (8 hours) can be spent building up, adjusting the hardware and 
ultimately acquiring data. Due to this drawback, very few 5- or 6-component load 
points are used in a manual calibration load schedule.

Due to the restriction on multi-component loads, a one-factor-at-a-time (OFAT) 
load schedule was adopted and implemented for calibrations performed on a manual 
stand. An OFAT experiment varies one factor (load) while the others are held con­
stant instead of simultaneously changing every factor. OFAT experimental designs



can lead to high numbers of points in order to extract the information required to 
estimate a calibration model. The OFAT balance calibration design that is employed 
by NASA LaRC contains up to 729-points in the load schedule [19,20]. Typically, 
calibration times can be up to four weeks using this type of experiment, due to the 
long setup durations. Long experiment duration not only consumes resources, but 
can also lead to variability in the data obtained, since day-to-day differences can 
exist in the experimental environment, such as calibrator or laboratory temperature 
and humidity.

A manual stand is not relegated to only load schedules based on an OFAT design, 
however specifying large numbers of multi-component loads is inefficient on these sys­
tems. A recent study demonstrated the practicality of a Box-Behnken Design (BBD) 
using a manual stand [20]. A BBD is a fundamental response surface methodology 
(RSM) design, which implements statistical principles to gather more information 
about a system with fewer points than an OFAT method. A BBD can be modified 
so that it only requires a series of 2 or 3-component loads for a 6-component system, 
which can be done with moderate efficiency on a manual stand.

Despite the limitations of manual calibration, it is seen as one of the most pre­
cise methods to apply known loads to a balance. The precision and results of the 
calibration are affected by the operator that performed the experimentation due to 
the precision of manually setting up the equipment required to apply a load. This 
precision is due to the fact that there is high transparency of the system, since it is 
easy to see how the load is being applied to the balance.

The main disadvantage of a manual stand is the infrastructure that is required. 
Calibration hardware is unique for a given balance or range of balances, which re­
quires a large inventory of hangers, moment arms and weights. The systems also 
have a large footprint, requiring up to a volume of a 20-foot sided cube or more for 
large (3,000 to 20,000 pounds) capacity balances. For large loads, weight baskets are 
required to locate the dead weights and to apply the load to the balance.

1.1.4 SINGLE V EC TO R BASED

NASA LaRC has developed the single-vector concept, which can apply a multi- 
component load, up to six-components, while using a single load pan [21,22]. This 
greatly reduces the hardware complexity required to generate a multi-component 
load, and ultimately can reduce the size of a load schedule.
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Unlike the manual stand, which was discussed in the previous section, the single- 
vector concept is based on orienting the balance through a range of angles. The 
balance coordinate system is rotated from a gravity reference, where the gravity 
vector may have no zero components. In contrast, the manual stand requires that one 
component of the normalized-gravity vector be unity while the other two components 
are zero, which signifies that the balance is level in one dimension. Using the single­
vector concept, this directly results in up to a three-component force vector since the 
applied force is in the gravity direction:

F  =  mg = Fapplied Gx Gy Gz (3)

where F  is the applied force vector in pounds, m  is the attached mass in slugs, g 
is the gravity vector in ft/s2, Fappued is the applied force in pounds, and is the 
ith component of the normalized gravity vector. For the remainder of this paper the 
term gravity vector will signify the normalized gravity vector, a unitless, unit vector 
of gravity. Moments are then generated by positioning the load point of the system 
at a location other than BMC. The moment vector, ikf, can be found by the cross 
product of the load point position, r ,  with respect to BMC against the force vector 
as depicted in Figure 5:

M  = r  x F  (4)

From Equations 3 and 4, it can be seen that infinite load combinations can be 
made by varying the gravity vector and load point position. In practice, the load 
combinations are limited by the achievable balance orientations and the discrete 
load positions available. The angle measurement system (AMS) package provides 
knowledge of the orientation of the balance with respect to the earth frame.

Currently, NASA LaRC has two operational single-vector based systems, the 
Single-Vector System (SVS) and the In-Situ Load System (ILS). Illustrations of both 
the SVS and ILS are shown in Figures 6 and 7, respectively. The major difference 
between the SVS and ILS, is that the SVS can locate the load point at BMC, thus 
it can apply pure forces. This zero-moment case is possible, since the roll bearing of 
the system encompasses the entire balance and allows for the center of the bearings’ 
axes to be collocated with BMC. It is assumed that the center of the bearings axes is 
the point at which the load is acting, since moments should not be transferred about 
the bearing axes.
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(BMC)
*  x

(Load Pointj

FIG. 5: Single-Vector Concept Diagram

Inner Bearin' Roll Bearing

Load Template

3-axis
Accelerometer

Yoke

Knife-edge System

2-axis
Accelerometer 
—  Precision WeightWeight Rod & Pan

FIG. 6: Single-Vector System Mechanical Assembly (Credit: NASA)



FIG. 7: In-Situ Load System Assembly (Credit: NASA)
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Both the mechanical complexities of the SVS and ILS are greatly reduced from the 
manual stand, which helps simplify the uncertainty characterization of the systems. 
Since both systems are independent of the balance type and load rating, the physical 
properties of the systems can be quantified once, unlike the manual stand which has 
hardware configurations for each balance.

The SVS was originally designed for the calibration of a force balance as opposed 
to the ILS which was designed to apply check loads to a WTMS. For this reason the 
load point of the ILS is positioned away from BMC, which will always produce a 
moment when more than one force component is generated. There are some restric­
tions due to having a permanent offset load point, since the applied moments may 
overload the balance before the forces. It should be noted that this does not make 
the ILS incapable of calibrating a balance. With a carefully designed load schedule 
the ILS could be used for in-situ balance calibrations or full characterization of a 
WTMS.

A typical SVS calibration can be completed within 3 to 4 days, which is a vast 
improvement over a manual calibration which can take at least 4 weeks [21]. These 
improvements are not only due to mechanical simplicity of the system, but also due 
to the procedures used. RSM principles are used to help gather more information 
with the load points that were taken. A typical SVS calibration only comprises 64 
points compared to the 729 of the OFAT manual calibration. The SVS load schedule 
is based on a central composite design (CCD), where every point has changes to 
all the components. Changing of all the components simultaneously is inefficient 
on a manual stand due to all the hardware changes, but since the SVS relies on 
balance orientation and position to change load conditions, it is efficient. One of the 
drawbacks of this type of load schedule is that it becomes hard to directly analyze 
the data, since in an OFAT design the primary sensitivities can be seen directly in 
load increments.

Since the balance orientation is directly measured using an AMS, it is not required 
to set the balance precisely as specified in a load schedule. With the measured balance 
orientation, the actual applied force and moment can be computed by using the mass 
properties and dimensions of the SVS or ILS. These computed loads and measured 
responses are then used to build a regression model.

The advantage of the single-vector based systems is that they reduce the hardware 
that is required to calibrate balances, since only one hardware set is required with
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only one load basket. The system also can easily use more efficient load schedules 
that reduce the calibration duration, cost, and increases robustness. A complete SVS 
system, including a repositioning system, requires a small footprint when compared 
to the manual stand.

A disadvantage of the single-vector based systems is the hardware cost for both 
the load hardware and the repositioning system. Manufacturing costs of single-vector 
based systems are high due to the level of fidelity required to ensure exact placement 
of the load point. The repositioning system is also not common for calibration 
laboratories or wind-tunnel facilities, due to the range requirements of pitch and roll. 
The repositioning system used for the SVS at NASA LaRC has the ability to pitch 
and roll a balance 360 degrees. Both the current SVS and ILS have limitations on 
the maximum applied load, due to bearing load limits. A maximum pan weight of 
3,000 and 5,000 lbs can be applied to the SVS and ILS, respectively. For balances 
that have high load capacities, other calibration systems must be employed.

1.1.5 AUTOM ATIC SYSTEM S

Automatic balance calibration systems (ABCSs) have been developed in an effort 
to reduce the time and cost it takes to fully calibrate a balance by automating the 
process. Generally, ABCSs have been developed for high capacity balances, greater 
than 6,000 pounds, which are used at transonic or large-scale wind-tunnel facili­
ties. Several ABCSs have been developed and implemented at facilities around the 
world, such as at Triumph Force Measurement Systems in San Diego, the European 
Transonic Wind-Tunnel (ETW), and at the Japanese Aerospace Exploration Agency 
(JAXA) [23-25]. The ABCS systems used by Triumph and JAXA are shown in 
Figures 8 and 9, respectively, with annotations showing the actuator layouts.

Typically, these systems rely on electrically controlled actuators to simultaneously 
apply loads through high-precision load cells. These load cells are placed in line with 
the actuator and attached to a fixed base and a calibration body via double knife- 
edge pivots, which are shown in Figure 10. The calibration systems can be designed 
to either reposition the balance back to a level position (JAXA) or measure the 
attitude of the balance calibration body (Triumph). These systems can also be used 
to calibrate lower capacity balances by using lower capacity load cells. Since the 
accuracies of the applied loads are a function of the load cells used, the load cells are 
chosen to best suit the balance design loads or the load schedule.
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FIG. 8: Triumph ABCS (Credit: Triumph)
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FIG. 9: Japan Aerospace Exploration Agency (JAXA) ABCS (Credit: JAXA)
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Double Knife-Edges

FIG. 10: Load Chain Detail (Credit: Triumph)

The advantages of an ABCS include rapid calibrations, the ability to apply pure 
moments, and accommodation of a range of balances. The short duration of a cal­
ibration results from automation and the lack of hardware configuration changes 
between load points. Pure moments are applied to the balance with the use of 
two-way actuators. To produce a pure moment, force coupling of two actuators is 
implemented.

The disadvantages of these systems include the purchase cost, maintenance, and 
its mechanical complexity. The ABCS uses multiple actuators and balance align­
ment measuring systems which all need to be precisely aligned and positioned. Any 
uncertainty in the positioning of the actuators or measurement devices will lead 
to calibration biases. Additionally, the mechanical complexity increases the initial 
purchase and maintenance costs.

1.1.6 OVERVIEW

From the descriptions of each of the available calibration systems, it can be seen 
that each system has uncertainties in the applied loads, which will affect the overall 
performance of a force balance. With the ever increasing need for tighter tolerances 
on measurement requirements to meet researchers’ goals, it becomes more important
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to quantify the uncertainties of balances. Quantification of calibration system uncer­
tainty is a step to understanding the overall balance uncertainty. As discussed earlier, 
statistical analysis techniques can be used to provide validation of an instrument’s 
output requirements.
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CHAPTER 2 

LITERATURE STUDY

From a search of relevant work, three papers were selected that best represent 
the research goals of this dissertation. These papers are related to the uncertainty 
quantification of force balances using different methods. Kammeyer and Rueger 
implemented propagation of error to the equations for regression coefficients [16]. 
Reis et al. attempt to incorporate error in the calibration process and the regression 
process to an overall balance output uncertainty [26]. Tripp and Tcheng develop an 
approach which applies the regression model variance to the balance output [15]. In 
the following sections each of the chosen papers are reviewed in detail.

2.1 ESTIM ATION OF TH E U N C ER TA IN TY  IN IN TER N A L  
BALA NCE CALIBRATIO N TH RO UG H  C O M PREH EN SIV E  
ERROR PROPAGATION

2.1.1 REPORT OVERVIEW

Kammeyer and Rueger implemented error propagation in order to calculate the 
uncertainty of the regression coefficients. Error propagation is a common technique, 
standardized by several metrology organizations, to quantify the uncertainty of in­
strument systems [27,28]. This method is applied to wind-tunnel balances which 
are multivariate precision instruments. Error propagation was used to estimate the 
uncertainty due to the errors in the applied load to the regression coefficients for a 
balance. This method was derived for the calibration and balance systems that are 
currently used at the Boeing facilities in St. Louis, Missouri, as shown in Figure 11. 
The calibration setup uses cup and cone load points to align the applied loads, and 
moment arms for applying forces away from BMC.

2.1.2 ANALYSIS OF CO NTEN T  

M athem atical M odel

The balances that are typically used at Boeing facilities in St. Louis are multi­
piece or TASK® type balances. These types of balances tend to exhibit a change in
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Hydraulic Ram

FIG. 11: Boeing St. Louis Calibration Setup

the primary sensitivities depending on the direction of an applied force, i.e. different 
sensitivity for positive and negative normal force. From the AIAA recommended 
practices for wind-tunnel balances it is suggested to use third order or absolute value 
terms to allow for modeling of this behavior [11]. The model that is used in this 
paper contains first and second order absolute value terms:

k  k  k  k  k

rF, =  A, +  , + £  A , |F(| + 5 ^ , . ^  |F,| (5)
i = l  i =  1 j = i  i —i  i — 1

where /30, /%, f32i and /32iJ are the intercept, linear, quadratic, linear absolute and 
quadratic absolute calibration coefficients, respectively. Several model coefficients 
were selected to be included in the model, which included both the non-absolute 
linear, absolute linear and non-linear terms, and six two-factor interactions (N\N2, 
NiSi, N2S2, S iS2, N \ R M , and N 2RM).  No justification for the selection of these 
terms was provided; previous knowledge of this balance is assumed to have been used 
for this model selection.
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TABLE 2: Calibration Variance Inflation Factors
Num ber Term VIF N um ber Term VIF

1 N1 7.0 19 |N1| 8.4
2 N2 6.9 20 |N2| 8.2
3 S1 10.4 21 |S1| 14.4
4 S2 9.5 22 |S2| 14.2
5 RM 13.6 23 |RM| 13.8
6 AF 13.9 24 |AF| 14.6
7 N1A2 7.7 25 N1*|N11 6.8
8 N2A2 7.5 26 N2*|N2| 6.7
9 S 1A2 15.2 27 S1*|S1| 11.2
10 S 2A2 15.1 28 S 2 ‘|S 2 | 10.3
11 RMA2 13.3 29 RM*|RM| 13.6
12 AFA2 14.3 30 AF*|AF| 13.9
13 N1*N2 1.2
14 N1*S1 1.1
15 N1*RM 1.0
16 N2*S2 1.3
17 N2*RM 1.0
18 S1*S2 2.2

The resulting selected model coefficients with the Variance Inflation Factors (VIF) 
are tabulated in Table 2. The VIF is a measure of multicollinearity in the experimen­
tal design used for estimating the calibration coefficients [29]. A VIF value of unity is 
ideal, values below 5 indicate low correlation, and values above 10 signify moderate 
correlation. While a value above 10 indicates multicollinearity, a built model which 
includes a term with such VIF values will still provide meaningful information. From 
Table 2, it can seen that multiple terms have a VIF greater than 10 which signify 
moderate correlation between the model terms. This signifies that the experimental 
design used is inadequate for estimating the selected model terms. The high VIF 
values can also be due to the inclusion of absolute model terms, which can be seen 
to automatically correlate with other terms, for example |xj| is similar to x? near the 
origin.

Error Propagation M ethod

Error propagation is a method in which the uncertainties from multiple error 
sources can be propagated through a data reduction equation using a Taylor series 
expansion. This method can be used to estimate the uncertainty of an output r from 
a data reduction equation with the knowledge of the elemental uncertainties uXi and 
correlation p^y.
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As noted in the paper, one of the issues with using error propagation methods is 
that the correlation between terms must be known or assumed. For example, when a 
force is applied to the balance offset from balance moment center, a moment will be 
generated. Any uncertainty in the location of the load will result in an uncertainty 
in the moments, since:

M  = r  x F  (7)

where M  is a moment vector, r  is a distance vector, and F  is a force vector. It 
can also be seen that the uncertainty of the moments will scale with the magnitude 
of the applied loads. Thus, there exists a correlation between moments if they are 
quantified as separate elements:

=  +  { m / u )  + p a m m UM' U m  <8)

To avoid any correlations, it is proposed that the moment uncertainties are based 
on the applied force and position by Equation 7. W ith this formulation, the uncer­
tainty for a moment can be represented by applied weights, W\ and W2 , and the 
axial-distance to the load point x, for a pitching moment case:

( £ r , m
By using this approach, the balance loads are represented by the applied load pans 
at given distances. This removes almost all of the correlation that exists in the other 
derivation, such that load pan 1 does not affect load pan 2, and so forth.

In the paper, uncertainty sources are broken up into three groups: the gravity 
referenced balance orientation ©, the applied loads £, and the electrical outputs S. 
The balance orientation is represented by the pitch 6, roll 0, and yaw ip Euler angles 
of the calibration body, such that © =  (0, 6, ip). The load £  is used to contain the 
applied load W,  and x, y and 2  coordinates of the point at which the load is placed, 
such that £  =  (W,x,y , z). It should be noted that only the applied load magnitude 
is accounted for since the applied loads are assumed to act only in the z-direction. 
In the case that is presented, up to three load pans can be applied for a given load
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TABLE 3: Boeing St. Louis Calibration System Uncertainty Estimates
Range or Standard uncertainty

Variable Description nom. value Systematic Random Units Correlation
Orientation

0, <j> Pitch/roll of cal body 0/±90, 180 0.0048 0 0048 deg None
0 Pitch alignment of bell crank 0 0.0048 deg SLS
9  Roll of extended bar 0, ±45 0.06 deg SLS
9  Yaw alignment of bell crank 0 0.06 deg SLS

Applied loads
W 1.W 2.W 3 Deadweight 0 to 600 0.005 %Rdg Ibf None
W1.W2, W3 Load cell 0 to 2000 1 Ibf None
Point of application

x.y Loc. of cup on cal body 0, ±3 0.002 in SLS
z Loc. of cup on cal body -1 25. -5.9 0.03 in SLS

x, z Loc. of cup on roll arms 0, -1 0.03 in SLS
y Loc. of cup on roll arms 10 0.01 in SLS

x, y, z Loc. of cup on extended bar -6,6 0.004 in SLS
x, y Loc. of extended bar on cal body 0 0.005 in SLS

Electrical response and excitation
N1...AF Output -20 to +20 0.015 %Rdg mV None
e1...e6 Excitation 10 0.015 %Rdg V None

* SLS: Similar load series

point. The electrical outputs £  contain up to six bridge voltages each representing a 
single-component of the balance (rFi , . . .  ,rF§) and the respective excitation voltages 
(E l , . . . ,  F6).

U ncertainty Estim ates

The uncertainties of each variable in the data reduction equation must be quan­
tified prior to implementing the error propagation methods. These were either di­
rectly measured, by taking multiple measurements, or estimated using engineering 
judgment. A summary of the uncertainties and their estimated values that are taken 
into account in this paper are tabulated in Table 3.

From Table 3, it can be seen that all the sources have a systematic value, but 
only pitch/roll of the calibration body have values for random error. The uncertainty 
of the body pitch and roll angles are considered to be on the order of magnitude 
of the resolution of the bubble level used. The systematic component is due to 
manufacturing and assembly errors in the calibration body, which remain the same 
for the entirety of the calibration. The random component originates from the re- 
leveling of the calibration body for each load point in the load schedule.

Most of the other quantities are assumed to only have systematic uncertainty, 
since it is assumed that the experimental setup does not change during the course 
of the calibration. For example the location of the load point should not change and
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therefore is a constant offset from the nominal value due to machining and assembly 
errors.

Error Propagation Im plem entation

The error propagation method, as described earlier, was implemented by the 
authors on the calibration coefficients for each of the six balance components. In this 
paper, the partial derivatives in the error propagation were not evaluated directly, 
instead the jitter method was implemented which estimates the partial derivative 
numerically [28]. This method requires that each uncertainty source is perturbed by 
a small amount, A x a n d  the partial derivative is estimated by:

where r  is the output of the data reduction equation that is a function of Xj, rXi is 
the computed r  value at (xj +  Ax*), and r 0 is the r value at x*. This method of

may have non-linear or trigonometric terms. After all the partial derivatives have 
been estimated they can be entered into an overall uncertainty estimation of a variable 
r  using a formulation similar to Equation 6. Since applying error propagation to the

»  ( f i i+ A l,  -  »*,) / A X i ( 10)

estimating the partial derivatives allows for complex data reduction equations that

calibration coefficients is of interest, these coefficients, /3, can be estimated by least 
squares [29]:

0 = {X 'X )~ lX ’Y ( 1 1 )

where 0 is the estimated coefficients, X  and Y  are applied loads and recorded volt­
ages, respectively:

( 12)

f un f 2,n ••• f 6,n f 2n f x,n f 2<n ••• f 2n

rF u  • • • rF 6>1
Y  = (13)

rFhN • • • rF 6)Af

where Fij  is the ith load component at the j th load point, and similarly for rFij 
voltages. By substituting Equations 12 and 13 into Equation 11, the coefficients
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become a function of the applied forces, moments and balance voltages. As previously 
discussed, if the error propagation is applied to the force and moments directly, 
correlation will exist. The F*j terms can be rewritten such that they are only a 
function of the most basic variables, which were defined earlier:

Fij = F  (A , £ 2, ■ ■ ■) = F  (H'l5 W2, . . . ,  x l5x2, . . . ,  2 3 ) (14)

Equations 12, 13 and 14 are substituted into 11 in order to reduce 0 to the 
simplest variables. With this formulation, the partial derivatives can be taken with 
respect to the individual uncertainty sources, so that no correlation exists. Note that 
it is not recommended to expand Equation 11 to the variables of Equation 14, since 
a properly written computer script can be used to propagate through the equations 
and ultimately estimate the partial derivatives.

After the uncertainties of the calibration coefficients have been estimated, they 
can be recast as intervals about 0. The half-width of the interval about 0 can be 
expressed as ku, where A; is a coverage factor and u$ is the combined uncertainty of 0. 
Typically the coverage factor k can be expressed simply as 2, which is approximately 
a 95% confidence interval, although a t-statistic. which is a function of the desired 
confidence level and the appropriate degrees of freedom is more appropriate.

Results

The uncertainties for each of the calibration coefficients were calculated for each of 
the six-components of the balance. Kammeyer and Rueger stated that a calibration 
coefficient can be deemed insignificant if \0\ < kug, essentially that the interval 
about 0  contains zero. This method is compared against the standard 95% statistical 
confidence interval, which is used for significance testing. Tables 4 and 5 contain a 
summary of the results from the jitter and the standard statistical methods for both 
the forces and moments, respectively. In these tables, the first column contains the 
estimate for each respective coefficient, the second and third columns are highlighted 
in black if the respective method found the coefficient to be significant, and the fourth 
column contains the ratio of the two uncertainty methods.

From Table 4, it can be seen that the jitter intervals are larger than the statistical 
intervals only for three coefficients, signified by a u j / u r ratio greater than unity. This 
shows that the jitter method allows for more coefficients to be labeled as significant
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TABLE 4: Comparison of Jitter and Regression Uncertainties for Forces

Term
Normal

Coeff
N1 1.8E-01
N2 1.5E-01
SI •1.IE-03
S2 -3.5E-04
RM 3.1E-04
AF 1.2E-04

N1A2 -4.4E-08
N2A2 3.7E-09
S1A2 5.7E-09
S2A2 -2.0E-08
RMA2 -4.8E-09
AFA2 6.1E-Q9

N1*N2 5.7E-09
NVS1 6.7E-08
N1*RM 2.1E-08
N2*S2 9.1E-08
N2*RM 1.96-08
SVS2 -7.0E-10

|N1| -1.3E-03
|N2| -1.9E-03
|S1| -2.1E-05
|S2| 2.96-04
|RM| 4.7E-04
|AFj -1. IE-04

N1‘|N1| -1.2E-07
N2*|N2| -1.7E-07
S1*|S1| 8.0E-09
S2*|S2| 1.8E-08
RM*|RM| 7.5E-09
AFWI -5.7E-09

uyur
Side

Coeff
0.82 -2.3E-03
0.99 -9.06-04
0.22 5.0E-02
022 4 8E-02
0.11 •1. IE-03
0.05 -8.2E-05
0.88 -29E-08
0.90 -3.3E-09
0.30 -3.3E-08
028 -5.1E-08
0.38 3.6E-08
0.17 8.2E-10
1.57 -51E-08
040 3.6E-07
0 12 -9.8E-08
0 39 4.0E-07
0.12 -1.3E-07
0.16 3 3E-09
070 9.6E-05
0.64 2.6E-04
0.42 -9.6E-04
0.40 -8.5E-04
0.55 -8.3E-04
0.25 1.5E-05
0.89 1.9E-07
1.05 1. IE-07
0.17 -10E-08
0.17 -2.8E-09
0.10 1.96-08
0.05 1.3E-09

Uj/Ur
016 7.3E-04
0.17 3.8E-04
0.89 5.3E-05
086 9.0E-05
003 2.4E-06
0.03 2.1E-02
048 -1.7E-08
0.33 -16E-08
0.75 2.0E-09
0.79 -2.0E-09
0.06 -5 8E-09
0.15 -2 8E-09
0.28 -9 06-08
0.35 9.5E-09
0.03 1.6E-10
0.34 6.1E-09
0.03 -5.1E-09
1.41 -4 4E-09
0.60 8.2E-05
0.43 9.2E-05
0.83 -1.56-05
0.84 3 66-05
0.09 -8.1E-05
022 -2.96-05
0.14 3.5E-09
0.15 -2.1E-08
0.71 1.IE-09
074 -9.1E-10
0.02 1.5E-09
0.02 2.06-09

than the statistical method. This result can be attributed to several possible rea­
sons. One of these is that several uncertainty sources are omitted or underestimated. 
Another reason can be due to the previously stated large VIF values for the calibra­
tion model, since the presence of multicollinearity will produce wide intervals for the 
statistical method.

Unlike the forces, the moments show a higher regression coefficient rejection rate 
by the jitter method. Observation of the roll component shows only four terms left 
in the final model, which is sparse for calibration models. This high rejection rate 
for the roll and the pitch components may suggest that the jitter method produces 
intervals that are too wide for these two components. These wide intervals can be 
due to large uncertainties in the positioning of the applied load, which do not affect 
the force components. It is interesting to note that yaw has a smaller interval as 
seen in the other two moments. W ithout an understanding of how yawing moment is 
applied to the balance or the equations used to model the applied loads, it is difficult 
to pass judgment on this observation. One possible reason is that yawing moment 
may only be a function of a single load instead of multiple loads that may affect the 
pitch and roll components.
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TABLE 5: Comparison of Jitter and Regression Uncertainties for Moments

Term Coeff
N1 4.5E-01
N2 -4.4E-01
S1 2.5E-03
S2 3.3E-05
RM -3.7E-03
AF -1.8E-06

N1A2 -5.2E-08
N2A2 -4.8E-08
S1*2 -2.7E-08
S2A2 1.8E-08
RMA2 -1.9E-08
AFA2 7.3E-09
N1*N2 4.4E-08
N1*S1 1.1E-07
NVRM -9.7E-09
N2*S2 •1.6E-07
N2‘RM -6.7E-08
s r s 2 3.2E-09
|N1| -1.9E-C3
|N2| 2.5E-03
|S1| 6.3E-05
|S2| -1.96-04
|RM| 1.96-04
|AF| -9.6E-05

N1 * |N 11 -8.2E-08
N2‘|N2| 6.76-08
S1*|S1| 1.1E-08
S2*|S2| 1.3E-09

RM'jRMJ 1.46-09
af-iafi -7.2E-09

Pitch Yew

9.70 -9.16-03
974 8 66-05
1.23 1.2E-01
1 20 •1.2E-01
1 96 -2.8E-04
0.14 2.1E-04
5.22 4 5E-08
545 6 2E-08
1.30 -8 9E-08
1.06 1.2E-07
2.47 9.5E-09
0.63 -1.5E-08
780 8 2E-08
1 91 6.4E-07
2 22 -2.6E-07
1 83 -1.1E-06
2.23 3.8E-07
0.99 -2.1E-08
4 01 1.3E-05
4.09 -3.2E-04
1.82 -2.0E-03
1 59 2 4E-03
3.23 -7 6E-05
1.41 1.7E-04
8.14 2.6E-07
8.47 -2.2E-07
0.91 •1.7E-08
0.88 2.8E-08
1.93 2.0E-08
0.13 -1.8E-08

Rol

073 -1.1E-04
074 1.1E-04
1.16 -1 7E-04
1.11 -2.1E-05
0.05 9.4E-02
1.47 -52E-04
0.69 -9 5E-08
0.59 *5.06-08
1.17 *1.96-09
1.22 •2.4E-08
0.20 6.96-09
0.16 -8.7E-09
0.87 -2.06-09
0.83 1.3E-08
0.06 4.7E-08
0.79 41E-08
0.06 4.8E-06
1.88 7.06-09
0.65 476-04
0.81 1.4E-04
1.11 1 1E-04
1.11 3.96-04
0.31 •4.06-05
0.25 1.36-04
0.55 2.9E-08
0.55 -9.56-09
1.31 -196-09
1.35 2.06-09
0.05 -8 36-09
0.03 •3.96-09

Coeff Jitter Reqr. UjrtJr
6.37
7.18
3.75
3.74
3.13
017
7.68
6.15 
3.85 
3.94 
5.04 
0.70 
1226
3.66 
356
3.67 
3.57 
639 
5.83
6.15 
3.50 
3.52 
6.97 
0.88 
6.06 
8.56 
4.35 
4.47 
3.09 
0.16

The authors investigated the effect of having correlated uncertainties using the 
jitter method. The ratios of the uncertainties including and excluding correlations 
for each of the coefficients are plotted in Figure 12. From this it can be seen that the 
inclusion of correlation affect the moments more than forces. Additionally, it can be 
seen that correlated uncertainties have negligible effect on axial force. Axial force is 
unaffected by the correlation in the uncertainties, since it is insensitive to load point 
position and balance angle, which are the uncertainties where correlation is assumed.

2.1.3 SUM M ARY A N D  CONCLUSIONS

It was demonstrated that error propagation can be applied to the calibration 
coefficients of a balance. The results from the uncertainty analysis provided sim­
ilar coefficient selection when compared against a standard statistical method for 
the force components. The error propagation method appeared to be too aggres­
sive for pitch and roll moments, by rejecting most of the model terms. This can be 
attributed to the uncertainties on the load position being too large. Typically, the 
uncertainty of the load point should be much smaller than the values documented 
in this paper. NASA LaRC performs quality assurance measurements using a coor­
dinate measurement machine with an uncertainty of 0.0003 in., which is an order of
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FIG. 12: Ratio of Including and Excluding Correlation

magnitude better than the value quoted in this paper for positional accuracy. The 
correlation which was assumed was shown to affect the moment components more 
than the forces, which can also be attributed to having large uncertainties on the load 
point. Without inspecting the equations which represent the forces and moments, it 
is difficult to pass judgment of the true contributor to the observed large moment 
uncertainties.
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FIG. 13: TA-2 Balance Calibration Setup

2.2 CALIBRATIO N UN C ER TA IN TY  ESTIM ATION OF A  
ST R A IN -G A G E EXTERNAL BA LA N C E

2.2.1 REPO RT OVERVIEW

Reis builds upon research that was previously developed to estimate the uncer­
tainty of the estimated load of a balance [30]. The method proposed in this paper 
uses generalized least squares to integrate uncertainty from the applied calibration 
loads into the regression model and balance output. The method was developed to 
be used for an external force balance used at the TA-2 wind-tunnel in Brazil. The 
calibration experiment performed used a series of pulleys and weight pans to apply 
loads to the balance as shown in Figure 13. The calibration setup to apply the 
loads will introduce errors into the regression process and overall balance output. 
The uncertainties of this system are investigated and integrated into the regression 
process.
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2.2.2 ANALYSIS OF C O N TEN T

Calibration Estim ation

Prior to using an external balance, a calibration model must be assumed and 
estimated. A mathematical model is used to represent the relationship of the applied 
forces, Fi, to the balance voltages, rF*. Force balances have been found to exhibit 
slight nonlinearities and are generally modeled with a second-order Taylor series:

k k k
*■ =  ] [ > ( rF f) + £  £  /SyfrFiXrFj) +  e (15)

i=l i—1 j —i
From Equation 15, it can be seen that the relationship formed sets the applied 

force to be a function of the balance voltages. This is generally considered to be an 
inverse regression method, where the roles of the factors and responses are reversed. 
It is widely accepted that the mathematical model used for balances relate the balance 
output voltage, the measured value, as a function of the applied load [11]. Research 
in the properties of inverse regression showed that for a simple one-component linear 
case, negligible differences were found between the inverse and classical method for 
precise instruments [31]. For a multivariate case of inverse regression it can be argued 
that this method sums and multiplies noise sources, assuming that the noise in the 
voltages rFi are larger than the loads F,, since the loads were the controlled variable 
in the calibration experiment. Furthermore, it is difficult to conceptualize and control 
the design space for inverse regression, since the experimental design is built using 
the load and not the voltages. This may lead to non-orthogonal design matrices X,  
which may lead to high multicollinearity. Using the inverse regression method, the 
X  and Y  matrices can be defined as:

X  =
r*i,i rF 2, i • • • *6,1 r K i rF u rF 2,i •

rFhN rF2,s • • • rF^ N rFiIn rFhNrF2,N • r F l N

Y  =

* 1 J V

Ft6,1

Ft6 ,/V

(16)

(17)

where rFitj is the ith voltage component at the j th load point in the calibration table, 
and Fij follows the same logic but with the forces. Note that the X  matrix has
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TABLE 6: Sample Load Table
Loading num ber h h f 4 f 5 Fe

1 0 0 - 8 0 0 -4 0 0
27 80 0 0 -4 0 0 0
4b 0 - 8 0 0 0 0 -4 8
58 0 -8 0 0 0 40 0
69 0 0 80 0 0 48

TABLE 7: Sample Load Schedule
Loading number Weights (kg)

h T2 h u n 16 h r. t9 1̂0 r,, ri2 h4
1 0 0 0 0 0 0 0 0 0 20 20 20 60 0

27 80 0 0 0 0 0 40 0 0 0 0 40 0 0
46 0 0 0 80 0 0 0 0 0 0 0 0 0 0
58 0 0 0 40 0 40 0 0 0 40 0 0 40 0
69 0 0 40 0 0 40 20 20 20 20 0 0 0 0

the voltages expanded as a second-order Taylor series to satisfy Equation 15. A 
portion of the load table and schedule which were used to calibrate the external 
balance are tabulated in Tables 6 and 7, respectively, where the load table is the 
ideal resultant applied load and the schedule is the actual loads applied to the load 
pans. With generalized least squares (GLS) the regression coefficients were estimated 
using experimental data by:

/? = (x'v^xy1 (.I ' r ' r ) (is)
where V  is the variance-covariance matrix, such that Var(e) =  o2V  [29], e is the 
zero-mean random error, and o2 is the variance of e. For the case of ordinary least 
squares V  is assumed to be the identity matrix I, since it is assumed that there is no 
heteroskedasticity or serial correlation in the data points. GLS is generally used when 
heteroskedasticity and/or correlation exist in the error structure of the data. When 
V  is an unequal diagonal matrix, the data is assumed to have unequal variance, but 
if the off-diagonal terms are non-zero then correlation is also assumed. In Equation 
18 the variance-covariance structure of the random error essentially applies a weight 
of \ / V  to the data, in turn applying more emphasis on the points with the lowest 
variance. The variance-covariance matrix of the estimated calibration coefficients $ 
is found by:
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V$ = Var(/3) =  a 2 (X V " 1* ) ' (19)

After the /? are estimated from the calibration data using Equation 18, a new 
voltage measurement x can be used to estimate a corresponding load y:

y = xfi (20)

Applying the variance operator on Equation 20 and the results of Equation 19 
results in:

Vy =  XVpX' =  <r2X  (X V " 1 X )  1X ' (2 1 )

Equation 21 can be used to represent the variance in y , but this must not be confused 
with a confidence or prediction interval. Vy only represents one a or 67% of the sample 
population.

Variance M atrix Derivation

Ideally, the covariance matrix V  is known prior to estimating /3 and based on 
known trends in the random error. It is proposed in this paper that V  can be 
estimated using both prior knowledge and regression results after an initial estimation 
of (3. The covariance matrix was represented as a combination of the uncertainty in 
the applied load Vw and the uncertainties in the balance readings Vx-

V =  VW +  CVXC (22)

where C  is a matrix of the coefficient sensitivities, which allow for the units of 
Vx  to be converted to the units of Vw- The C  matrix was formed by taking the 
partial derivatives of Equation 18 for a given response as shown in Equation 23. 
This equation is simplified from the full Jacobian where all the elements are partial 
derivatives, since the off-diagonal derivatives are zeros as shown.

C

m ,  i 
3*1,1

o

o

0
9Y 1i2
3 * 1 ,2

0
0

OYi. i
9 X ,

3 K i,i
3* 2 ,1

0

0

0 
0

9Y u n  
3 * 6 ,  N  J

(23)
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The V\v matrix is of dimension N  by N,  where N  is the number of load points, and 
is only comprised of diagonal terms. Each element along the diagonal represents the 
uncertainty that each load point acquires due to the calibration system uncertainty. 
This was set to include the frictional forces in the pulleys, cable misalignment, and 
the uncertainty of the applied weights.

The Vx matrix represents the uncertainties in the balance readings for a given 
load point. This was said to be estimated by performing three identical calibrations 
to the balance in quick succession. It should be noted that three samples is generally 
not considered to be sufficient to provide an estimate of variation. The Vx matrix 
was built by computing the variance and covariance for each voltage combination at 
every data point, as shown:

' u ( X i , i X  M ) u ( X l t l X i ,  2 )  • u ( A i i i X 1 j j v ) u ( X U i X 2 A )  ■ u ( X  i , i X 6 ) i v )

^ , 2 ^ , 0 u ( X 2 , i X l i 2 )  • u ( X 2 t  i X i ^ n ) u ( X 2 A X 2 > l )  ■ u ( X 2 , i X 9 , N )

u ( X i ^ n X \ ^ ) ■ u ( X  i . n A T / v ) u ( X  1 , ^ X 2 , i )  ■ ■ u ( X h N X 6 , N )

u ( X 2 , i X l t l ) u ( X 2 t l X l i 2 )  • u ( X 2 < l X i ' U ) u ( X 2 , 1 X 2 , 1 )  • w ( X 2 , i X 6 , A r )

u ( X 6 ' N X i , i ) u ( X & y ! ^ X  1 ; 2 )  • • u ( X e , N X \ t [ ^ ) n ( X 6 j i v X 2 , i )  • '  w ( X 6 , / v X 6 i / v ) _

( 2 4 )

Since the second terms of Equation 22 requires an initial regression with V  =  
Vw must be performed. After the initial regression is built a second regression is 
made with the full Equation 22.

2.2.3 RESULTS A N D  DISC U SSIO N

Variance M atrix Estim ation

The Vw matrix was calculated using type B analysis, which uses methods other 
than the statistical analysis of repeated observations [27]. The uncertainty of the 
dead weights was estimated from the maximum possible error of the weight and a 
rectangular distribution. The quoted maximum error for a 10 kg weight is around 
1 gram, which is 0.01% and is equivalent to precision weights. Using 1 gram as the 
limits of the rectangular distribution the uncertainty can be calculated from [28]:

u =  A j  \/2> (25)
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TABLE 8: Friction Estimates
Load Cell Applied Weight (g)

Xi 2
X 2 2
X 3 32
X 4 5
X 5 8
X 6 5

where u is the uncertainty, and A is the limits of the rectangular distribution. The 
resulting uncertainty for the applied weights is 0.58 grams for a 10 kg applied load. 
If two or more 10 kg weights are used in a stack to apply a load, the uncertainties 
from each individual weight are combined into a total uncertainty.

A second uncertainty source added to the Vw matrix was the resolution of the 
calibration system. The resolution was the ability to overcome friction in the pulleys 
used to apply several load components. Reis accomplished this by applying load 
increments of 1 gram to corresponding load pans and detecting significant differences 
in the load cell output. This method was conducted for each of the six load cells in 
the calibration system and determined the worst case and the results are tabulated in 
Table 8. From the results, X 3 displays the highest required load before a perceptible 
change in the output occurred. The method used to determine the friction in the 
system is shown in Figure 14. In this figure, every five readings was a load series of 
8 grams. Using Equation 25 the uncertainty for X 3 due to friction was calculated 
to be 18.5 grams. Once the two sources of uncertainties were estimated, they were 
summed together to form the Vw matrix.

The Vx matrix was calculated using the methods described earlier, where the 
variance and covariance were calculated for all the terms in Equation 24. After Vw 
and Vx were defined, the total variance matrix was found by using Equation 22. With 
an estimated V, a second regression was performed to calculate the final estimate of 
/3, which includes the variance structure of the calibration system.

Regression R esults

The calibration coefficients and uncertainties for the final calibration are tabu­
lated in Table 9. Note that p and tip are the estimated calibration coefficients (3 and
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the coefficient uncertainty, respectively. The coefficient uncertainty Up was defined 
as the square root of the diagonals of V ,̂ from Equation 19. The ratio Up/p was used 
to determine the significance of terms for the model. If Up/p was less than unity, 
then the term was insignificant, since an interval of up about p contained zero. From 
this, it can be seen that several terms were insignificant, namely a4, a 44, Oi6, a i8, a i9, 
and a 2 5 .

The applied forces were estimated using Equation 20 from the recorded balance 
voltages. Additionally, the uncertainties for these measurements were estimated us­
ing Equation 21. The results from these calculations on five points from the calibra­
tion are tabulated in Table 10, which are loads listed in Table 6. Note that this is 
Table 8 from the paper, which was labeled to have units of Newtons and Newton- 
meters, but it seems that those unit conversions were never made. From a quick 
comparison between the estimated and the desired loads, it can be seen that the 
estimates were very close to the desired loads in Table 6. Furthermore, the uncer­
tainties that were quoted are relativity constant despite different load conditions for 
each load point. Assuming that 80 kg is the full scale load for Fj, F2 and F3, the 
uncertainties are around 0.02% of full scale, which is typical for modern wind-tunnel 
force balances.

Chi-squared, y2, and reduced chi-squared, y2ed, statistics were calculated from 
the results of the regression. The y 2 is a measure of goodness of model fit to the 
calibration data. The y2 is equal to the number of degrees of freedom in the model;
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TABLE 9: Regression Estimates for Yy
Param eter P Up/P

tJi 3.525849 0.001298 2717.01
02 0.011648 0.001295 8.99
o3 -0 .008513 0.001440 -5.91
O 4 -0.000051 0.000649 -0.08
<>5 0.001620 0.000534 3.04
a6 0.004485 0.000501 8.95
a 7 0.000557 0.000058 9.53
Og -0 .000234 0.000163 -1 .43
09 -0 .001408 0.000185 -7 .60
° 1 0 -0 .000242 0.000082 -2.92
a,t -0.000164 0.000067 -2.43
012 -0.000087 0.000064 -1 .35
a 13 0.000862 0.000364 2.36
014 -0 .000599 0.000864 -0 .69
<Jl3 0.000705 0.000383 1.84
016 0.000283 0.000309 0.91
017 0.000658 0.000290 2.27
018 0.000080 0.000447 0.17
a iQ -0.000127 0.000430 -0 .29
020 -0 .000369 0.000350 -1.05
021 -0 .000635 0.000328 -1.93
022 -0 .000197 0.000088 -2.23
023 0.000177 0.000155 1.13
024 0.000583 0.000144 4.04
025 - 0 .0 0 0 0 0 1 0.000057 - 0 .0 2

026 0.000250 0.000117 2.13
027 0.000443 0.000058 7.63

TABLE 10: Estimated Applied Forces and Uncertainties, kg (Force) or kg m (Mo­
ments)

Load Fi Un f i Un Fa Ufa Fs F* Ups

1 0.011 0.012 -0.016 0.013 -79.816 0.013 -0.044 0.030 -39.928 0.015 0.044 0.012
27 79.914 0.016 0.019 0.015 -0.014 0.014 -39.903 0.014 -0.039 0.020 0.008 0.014
46 0.042 0.013 -79.855 0.014 0.021 0.012 0.002 0.014 0.017 0.013 -47.835 0.015
58 0.031 0 013 -  79.776 0.013 -0.041 0.013 -0.069 0035 -  39.977 0.013 -0.065 0013
69 0.012 0.013 0.095 0.016 79.786 0.014 0.036 0.014 -0.036 0.013 47.841 0.013
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TABLE 11: Regression Goodness of Fit Results
Load cell V2

F, 232.33 5.05
b 271.65 5.91
b 453.91 9.87
b 67.69 1.47
Fs 165.99 3.61
b 529.83 11.52

in this case the degrees of freedom is u =  N  — Np, where Np is the number of 
estimated parameters. The reduced chi-square is simply defined as \ 2ed =  X2i v , thus 
a number near unity is desired. The \ 2 and xled values for the resulting calibration 
are tabulated in Table 11. Both goodness of fit values were larger than what is 
desired, which indicate that a poor model fit was made. A poor model fit could have 
resulted from underestimates of the uncertainties of the load points were made or 
the inappropriate assumptions of the mathematical model.

2.2.4 SUM M ARY A N D  CONCLUSIONS

A method for estimating and applying the uncertainty of the applied loads dur­
ing a calibration to estimated loads and the regression process was developed. This 
method included the use of inverse regression, which simplifies the calibration prob­
lem but also may introduce unknown regression properties. The properties of multi­
variate inverse regression have not been well documented in the literature and violates 
several basic assumptions of methods of least squares and generalized least squares.

Calculated loads were computed from the estimated regression and the balance 
voltages showed results close to the applied loads. This signifies that the regression 
model provided reasonable residuals, but only points used to estimate the model were 
included in the estimate. It would be beneficial to have results from confirmation 
points that are different than the points used for the calibration, since they will 
exercise the prediction ability of the regression model. Additionally, other regression 
statistics could be useful to diagnosis the high \ 2 values that were calculated.
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TABLE 12: Load Component Notations
Fi Component Description
Fx Fx Axial Force
f2 Fy Side Force
f3 Fz Normal Force
f4 Mx Rolling Moment
f 5 My Pitching Moment
F6 Mz Yawing Moment

2.3 DETERM INATIO N OF M EA SU R EM EN T UNCERTAINTIES  
OF M ULTI-CO M PO NENT W IN D  TU N N EL BALA NCES

2.3.1 REPORT OVERVIEW

Tripp and Tcheng investigate and develop a method to calculate the uncertainty 
of the estimated loads that are applied to a force balance. Their method calculates an 
estimate of the uncertainty based on the results from a multivariate regression [15]. 
Tripp derives an interval about the measured balances voltages using the regression 
data and then converts the interval on the balance voltages into units of force and 
moments. This method required the derivation of a Jacobian matrix, which takes 
into account the non-linear terms present in the model.

2.3.2 ANALYSIS OF C O N TEN T  

Calibration M odel

Typically, wind-tunnel balances are capable of estimating forces and moments 
about all the major axes, i.e. six total components. A load vector can be formed to 
represent the six load components that are applied to the force balance:

F  =  [Fu F2, F3, F4, F5, Fg] = [Fu ■ ■ ■ , Fk] (26)

where Fz is an individual force component and k is the total number of individual 
components. For this analysis we can define the first three terms as the forces and 
the latter three terms as the moments, as shown in Table 12.
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Generally, force balances are primarily linear, but they are modeled with higher 
order functions to increase the overall accuracies. From previous balance history, 
it was determined that a second-order Taylor series fit the characteristics of a force 
balance to acceptable accuracy levels. Due to the second-order modeling, the load 
vector F  must be expanded to represent this:

G(F) = [F2, FjFa, • • • , FtF6, F22, F2F3, • • • , F 2] (27)

The entire expansion of the load vector is not shown due to length, but the
expansion pattern can be seen. Expansion of the load vector results in kexp terms 
which is equal to , which is 21 for a A; equal to 6. The load vector F  and expanded 
load vector G(F) can be combined into a single vector:

x =  [1, Ft, G(Fi)] (28)

where the 1 is included for estimation of an intercept of the model, or the balance 
voltage at zero-load. The x  vector represents the factors, applied loads, to a bal­
ance and is used in the regression process and data processing. The balance output 
voltages can be represented as:

y = [rFi, r F2, rF 3, rF 4, rF 5, rF 6] =  [rFx, • • • , rFk] (29)

A mathematical relationship between the applied loads, x, and the output volt­
ages, y, is assumed to represent the instrument behavior. As previously mentioned 
the assumed mathematical model for a balance is a second-order Taylor series:

y = x{3 +  e =  Co + F C l +  G(F)C2 + e (30)

(3 = [Co, Cu C2]

where /3i sa( l - fA; - | -  kexp) by k matrix of coefficients that can be broken down into 
intercepts, linear terms and non-linear terms. The intercept terms are placed into 
the C0 vector which is a A: column vector. The linear C\ is a A by k matrix comprised 
of pure linear and linear interactions coefficients, such that the C\ matrix is only 
multiplied by linear load terms (i.e. Fj). The non-linear matrix C2 is comprised of 
all the pure quadratics (F 2) and two-factor interactions (FjF,).

From Equation 30, it can be seen that when the balance is used to determine 
the applied loads, when voltages are known, no closed-form solution exist. For this
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reason, the applied loads must be estimated by an iterative method, such as Newton- 
Raphson which is implemented in this paper.

Calibration Estim ation

Prior to the use of a force-balance, the characteristics of the balance, the model 
coefficients 0, are estimated experimentally. A well designed experiment can be used 
to estimate the coefficients. The matrices X  and Y  represent the design matrix and 
the balance response from the calibration experiment, respectively:

X  = [aq, • • • , x N]'
1 Fj G(Fi)

1 Fn G(Fn) 

rFiti • • • rFkA

(31)

(32)
rFhn ■ ■ ■ rFk<n

where n is the number of points in the experimental design. Substituting Equations 
31 and 32 into Equations 30 results in:

Y  = X 0  + E  (33)

where E  is the zero-mean error associated with each load point in the calibration 
experiment. Due to the assumption that E  has a mean of zero, it is assumed to be 
zero and the coefficients can be solved for by methods of least squares:

0 = (X ' X ) - ' X ' Y  (34)

where $  is an estimate of 0. In order to calculate (3, the inverse of {X 'X)  must exist,
where the inverse will exist if the X  matrix is of full column rank, i.e. rank 28 when
k equals 6. An estimate of the residual error E  for the data points is solved from 
Equation 33 and replacing 0  with the estimate 0\

E  = Y  -  X 0  (35)

The covariance matrix S  of the calibration is estimated from the residual errors
E:
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S  = -------------    — -  (36)
n — (I + k + kexp) — 1

where the denominator is the residual degrees of freedom. The diagonal of S  are 
the mean square error for each regression component of the balance. The covariance 
between any two calibration coefficient columns, such as 0m and 0n can be estimated 
by:

Xgmn = Cov(0m, 0n) = a ^ i X ' X ) - 1 (37)

where amn is the (m,n) th element of the covariance matrix that is estimated by S. 
The covariance T,pmn for the coefficients are only a function of the design matrix 
X  and scaled by the amn. The uncertainty of the calibration coefficients 60ij is 
estimated by:

6$ij = ^ o ^ X ' X ) - ^  (38)

O utput Vector Prediction and Interval

A new load xe, not from the calibration schedule, can be applied to the force 
balance after the calibration experiments are completed. These new loads can be 
confirmation points, check loads, or aerodynamic forces applied to the balance. The 
actual voltage output of the balance from the load xe is:

ye = xe0  (39)

This formulation assumes that 0  represents the true behavior of the balance, and that
there are no error sources in the voltage. Typically voltage measurement systems have 
uncertainties and errors, which alter the true voltage ye:

yv = ye + £v = XeP +  (40)

where ev is the zero-mean measurement error in the voltage. The balance voltages can 
be forecast using the estimated model coefficients 0 from the calibration experiments 
by:

2/e =  Xe0  (41)

It should be noted that there are no errors assumed, since the calibration co­
efficients were estimated assuming a zero-mean error. The difference between the
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forecast output ye and the actual output yv is the residual error e or error in the 
forecast:

e =  8y = ye -  yv = x e/3 -  x e(3 -  ev = xe (j3 -  ft) -  ev (42)

From this it is seen that the error in the forecast output is a combination of the 
difference between the estimated and true model of the balances and the measurement 
error. The covariance matrix of the estimated response can be found by:

cov(y) = cov(x0(3) = x ocov(0)x'o =  o2Xq(X'  X ) ~ lx'0 (43)

where cov(/3) =  <r2(X ' X )_1 and assumes homoscedasticity, which is the assumption 
that variance of the regression data is constant across all independent values. Al­
ternatively, the covariance matrix Sy for the residual of the response can be found 

by:

cov(Sy) =  cov(y — y) = cov(xQ0) — a2 + xQcov0)x'o = a2 + a2x 0(X 'X )  1x'0 (44)

where o2 is the covariance matrix for the measured balance voltages. The value of a2 
represents error associated with measuring a voltage, e„, and is independent of a2. 
As mentioned before, the term o  contains errors both from the measurement of Y  
and the modeling error in the estimation of 0. A  confidence interval formed using the 
covariance of y from Equation 43 and a proper coverage factor. Since there are six 
balance components, six new predictions are made simultaneously and the coverage 
factor should be adjusted accordingly. Tripp and Tcheng used a coverage factor that 
was estimated from a F-distribution with degrees of freedom of (A;, n — k — p ), where 
p is the number of simultaneous estimates, at a 1 — a  confidence level. It is proposed 
that a confidence interval about the estimated voltage 6yn can be written as:

Syn = IVn -  xe0n\ < y  Snn(x0( X ' X ) - 1x’0) j ^ ~ ^ —-^FPyK-r-p (45)

where Snn is the nth diagonal term of S, and x0 is the applied load. Equation 45 
shows that the residual error should be less than the radical term and can be recast 
as:

$Vn = \ l Snn(x0(X 'X )  lx'0) ^  ^ r ~ - FP,K-r -P (46)
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where the interval Syn should have a capture rate equivalent to the level of significance 
used.

Placing the Interval on Loads

The computed interval on the balance voltages 6yn does not provide useful in­
formation to the balance users. An interval on the estimated load of the balance is 
desired. Tripp and Tcheng begin the development of such intervals by first letting 
the estimated load be denoted by Fe, which is the inverse solution of Equation 30 for 
a given measured balance voltage yv. With this, the interval based on the estimated 
load 5Fe can be defined as:

6Fe = Fe - F e

where Fe is the true applied load. Thus, 8Fe contains uncertainties from the measure­
ment error of the balance voltage and the error associated with estimating calibration 
coefficients. An interval on the expanded loads Sxe can be defined as:

&re =  [0, 8Fe, 8G(Fe)] (47)

The interval 6xe can be substituted into Equation 30, yielding:

8ye = 8xef3 =  8FeC, +  8G(Fe)C2 (48)

Equation 48 does not have a closed-form solution for 6Fe, which is the desired 
quantity. It is proposed that the SG(Fe) term can be differentiated with respect to 
SFe to provide local linearization by:

SG(F) = d~̂ P ~dF = W d F  =  W 6 F  (49)
uF

where the IT is a Jacobian matrix, that can be expanded as:

' d f l dF] Fa dF? "
dG(F) dFi 3F, dF\

dF dF?dF? 3FiF2
. dFk dFk dFk .

where k equals 6, the Jacobian matrix becomes:
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2 Fx 0 0 0 0 0
f 2 Fx 0 0 0 0

Fz 0 Fx 0 0 0

Fa 0 0 Fx 0 0
f 5 0 0 0 Fx 0
Fe 0 0 0 0 Fx
0 2 F2 0 0 0 0
0 F3 F2 0 0 0
0 Fa 0 f 2 0 0
0 F5 0 0 f2 0
0 Fe 0 0 0 f2
0 0 2F3 0 0 0
0 0 F a Fz 0 0
0 0 Fe 0 Fz 0
0 0 Fe 0 0 Fz
0 0 0 2 F a 0 0
0 0 0 Fe F a 0
0 0 0 Fe 0 F a

0 0 0 0 2 Fe 0
0 0 0 0 Fe Fe
0 0 0 0 0 2 Fe

Since the Jacobian matrix provides local linearization, caution should be taken 
for systems that have strong second-order terms. Prom observation of Equation 49, 
it can be seen that if the dFe is large, the estimate of 8G can be erroneous depending 
on the local curvature of the system. Generally, balances are primarily linear, where 
the primary coefficients are a multiple order of magnitude larger than the non-linear 
terms. Since linear coefficients typically dominate, linearization of the model provides 
acceptable results. Substituting Equation 49 into 48 provides the voltage interval as 
a function of only 8Fe:

5ye = SFeCi +  8FeW C 2 = 8Fe (Cx +  W C 2) = 8FeJ  (51)

where J  is defined by (C\ +  W C 2). Equation 51 can be solved for SFe to provide the 
desired interval on the estimated loads:
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6Fe = 6yeJ ~ l (52)

where the J  term in this equation has to be computed at the estimated load Fe. 
It is also assumed that the inverse of J  exists; for most metrology instruments, the 
inverse of J  will exist since the C\ matrix will be invertible.

Experim ental R esults

Calibration data from two NASA LaRC balances, UT61B and 748, were used to 
validate the methods that were developed. The two balances were calibrated using a 
manual stand system at NASA LaRC. A one-factor-at-a-time (OFAT) experimental 
design was used to calibrate both balances with 729 individual load points. Note 
that all the following graphs present the balance forces as a percentage of full-scale 
loads.

The residuals errors for the normal force component are plotted as a histogram 
in Figures 15 and 16 for both the 748 and UT61B, respectively. Illustrated in the 
histograms are a fitted normal distribution with a mean and standard deviation from 
the residual data. Tripp and Tcheng used a chi-squared goodness of fit to test how 
well the normal distribution fits the data. The calculated chi-squares were much 
larger than the critical value of 55.8, for a 95% confidence level, which signifies that 
the residuals do not follow a normal distribution and may be caused by systematic 
errors in the calibration process.

From the paper, the residuals from the calibrations of the two balances were 
computed and plotted in Figures 17 and 18 for the 748 and UT61B respectively. 
These plots included overlays of the intervals due to the modeling error and the total 
error computed by Equation 52, separately. A 3a, or 99.7%, confidence level was 
used for both overlaid intervals.

From Figures 17 and 18, it can be seen that the interval width changes with the 
load point. This is to be expected, since Equation 45 is a function of the current load 
point, x 0. From observation, it can be seen that the majority of the data points were 
captured by the overlaid intervals. Due to the lack of a stated capture rate by the 
authors, its is difficult to make comparisons against the assumed confidence level, 3a 
or 99.7%.

Proof loads were applied to the balance as confirmation points following cali­
bration. These proof loads include several different load combinations which were
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FIG. 19: 748 Proof Load Residuals in Fz

broken up into three sets: 1. normal, pitch and roll, 2. side, yaw and roll, and 3. 
all six components. The residual error from these loads are plotted as solid lines in 
Figures 19 and 20. The dashed lines in these figures represent the (3<r) uncertainty 
intervals.

From Figures 19 and 20, it can be seen that only the second set of loads were 
well behaved and the majority were within the intervals. It can be said that either 
the uncertainty intervals were too narrow for the proof load data or that there were 
errors in the applied loads. Both of these statements can be combined such that the 
interval calculation for a check load should include the errors due to the applied load, 
which would results in a larger interval.

2.3.3 SU M M ARY A N D  CONCLUSIONS

It was shown that an uncertainty interval can be calculated for the estimated 
loads of a balance. This derived interval only included uncertainties from the mod­
eling error of the regression process. It was shown that the interval performs well at 
capturing the calibration data used to model the system, but performed poorly for 
proof load points. This can be attributed to the lack of accounting for uncertainties 
from the calibration system and the applied check loads in the calculated interval.
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Further work can be done to integrate the uncertainty characteristics of the calibra­
tion system to build a complete understanding of variability in the estimated load of 
a force balance.
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CHAPTER 3 

PREDICTION INTERVAL DEVELOPMENT

Typically, before a measurement system is employed for experimental data collec­
tion, checks are performed to ensure the performance of the instrument. Generally, 
this is accomplished by using the system to measure known quantities and cross 
validating them with the results estimated by the instrument’s regression model. 
Researchers have defaulted to using the standard deviations from the characteriza­
tion experiment to check the instruments functionality. This is done by verifying if 
the response of the check measurement is within two standard deviations (2a) of the 
mean response, as mentioned in Chapter 1. The use of standard deviations for this 
process only considers modeling error and ignores the variability of equipment used 
to calibrate the instrument.

Statistics-based intervals can be used to provide an interval about a predicted 
value which can represent the uncertainty or lack of information in the estimate. 
These intervals are derived from the variance that exists in the mathematical model 
used to characterize a system. Typically, the method of least squares is used to 
estimate the coefficients of an assumed mathematical model, such as the assumed 
model for force balances in Equation 2. By the Gauss-Markov theorem, least squares 
provides the Best Linear Unbiased Estimator (BLUE) for the coefficients of a mathe­
matical model, since it is assumed that the errors are uncorrelated, have a zero mean 
and variance of a2 [29]. For this reason it has been widely used to characterize or 
calibrate a range of measurement systems.

There are three different major types of statistical intervals in current literature 
that are derived using least squares: confidence, prediction and tolerance [32]. Each 
of the interval types have different purposes and applications. A confidence interval 
(Cl) is used to find where the true calibration characteristic or parameter would lie 
about an estimated parameter. For modeling applications, a Cl could be used to 
provide an interval about the calibration coefficients, which could be compared to 
known values or the coefficients from a previous calibration model. A prediction 
interval (PI) is used to find where a single future prediction of a value should lie 
about the mean prediction. For example, a PI will be used to find where a single
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new response should be observed based on the calibration model. A tolerance interval 
(TI) is used to determine an interval in which a large portion of a future response 
would reside. The TI differs from the PI, since the TI will form an interval which will 
contain a percentage of all future response observations instead of one observation 
for the PI.

An example of the different types of intervals is illustrated in Figure 21. It can 
be seen that the width of the intervals increases from the confidence interval to the 
tolerance interval. Additionally, it is shown that a Cl does not capture the points 
used to build the regression. By definition, the Cl should behave in this manner, 
since it is not derived to capture the points, but to provide an indication of where 
the mean value.

As shown by the Figure 21, the intervals have a bow-tie shape where the ends have 
larger widths than the center. This behavior differs greatly from using a constant 
standard deviation to form an interval. The inflation of the interval width near the 
ends is due to increasing uncertainty of the regression model at the edges of the 
design space. For this reason, it is cautioned to only predict within the design space, 
used for modeling, and not to extrapolate outside of the space.

From the several approaches presented in Chapter 2, the most defendable and 
complete is the work presented in Section 2.3. The method presented by Tripp and 
Tcheng incorporates a Cl with a novel routine to provide an inverse solution to the 
calibration problem. This method can be modified to include sources of variability
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which are presented by the calibration system, which were discussed in Sections 2.1 
and 2.2.

3.1 FORWARD PR ED IC TIO N  INTERVAL

From the prior discussion, for the application of ensuring the performance of 
an instrument through check measurements, a prediction interval should be imple­
mented. A prediction interval should be used since it forms an interval within which 
a new predicted value should lie. A two-sided prediction interval about the observed 
residual can be expressed by the following probability function:

Pr [\y ~  y\ < Ip] = 1 — a  (53)

where y is the measured response, y is the predicted response, Ip is the prediction 
interval width, and 1 — a  is the confidence level. It can be seen that y — y is the 
residual error of a measurement, where the error should be less than IP for the set 
confidence level and a two-sided interval. If a one-sided interval was desired, the 
absolute value function should be removed from the equation. For the purpose of 
providing verification checks of an instrument, a two-sided interval should be used, 
since the residual can fall on either side of the mean response. Note, that y and 
y should be measured and evaluated at a new point xq, which is not part of the 
calibration experiment but a new observed point. An interval Ip, which would satisfy 
Equation 53, is found by first computing the variance of the residual error [33]:

Var(y -  y) =  Var(y) -I- Var(y) = + a2x0 {X 'X )~ l x'0 (54)

This equation shows that the variance of the measured response, y, is a constant, 
since the measurement error of the response should have a zero mean random error 
with a variance of a2, assuming normal distribution and independence. The variance 
of the estimated response is a function of the noise in the response and the variance 
of the regression model used. The a2 term is an estimate of unexplainable noise seen 
in the calibration model, but ideally should represent the possible variance in the 
response, i.e. a2 equal to a2. The xo(X'X)~~l x'0 term is the variation which exists 
due to modeling and is a function of the location in the design space, xo, and the 
design model used, X . Note that the variance of y that is formulated above, derived 
in Equation 43, only holds for the method of least squares and would differ for other
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methods. The classical prediction interval can be developed from Equation 54 and a 
t-distribution by:

where t^a is the t-statistic at 1 — a  percentile of the t-distribution with v degrees

hypothesis test used to verify if a population mean is equal to a given value with a

significantly different than zero, assuming a normal distribution. The denominator in 
Equation 55 is the estimated standard error for the residuals, Equation 54. Assuming 
that cry and a2 are equivalent, the mean square error (MSE) from the calibration 
experiment can be substituted and the prediction interval width Ip can be written 
as:

The interval width derived assumes all the assumptions of the method of least 
squares, namely that variability only exists in the response and the explanatory vari­
ables are known with no errors. It is known that the application of the explanatory 
variable during the calibration experiment is done so with a measurable error. For 
most applications the explanatory variable error is much smaller than the measure­
ment error in the response, which allows for the zero-error assumption to be justified. 
For complex calibration processes which have several possible uncertainty sources, 
the errorless explanatory variable assumption may break down.

During the calibration of an instrument, known explanatory variables are trans­
formed to responses by the instrument, i.e. producing a voltage response for a given 
measurement. These known explanatory variables are the control in the calibration 
experiment, where the variability of these variables are minimized. Generally, the 
known explanatory variable, such as a weight or length, is calibrated or compared to 
a known standard. These standards are controlled by international and/or national 
organizations to maintain uniformity and value of the measure. These known ex­
planatory variables used for the calibration process have uncertainty, since they are 
not the standard but the calibrated against one. This type of error in the explanatory 
variable can be regarded as a set point error, since it is an error in the set conditions.

y-y (55)

of freedom. Equation 55 is similar to the form of the t-test, which is a statistical

certain confidence level. In this case, the t-test is used to check if the residual error is

(56)
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Additional errors will exist from the instrument itself and from the measurement of 
the response. The errors due to the instrument are due to changes in its behavior 
usually from environmental changes. These errors and the response measurement are 
both captured in the estimate of MSE from the calibration experiment.

The measurement errors that may exist in the explanatory variables can either 
be a random or bias errors. Bias measurement errors are not easily detectable in 
collected data, since it is hidden from the statistical properties of least squares due 
to being a constant offset of the response. In the assumptions of least squares, 
only random error is assumed, and a bias error will then fall into the estimate of 
the intercept or other coefficients. Thus, biases in a system must be estimated by 
other means, such as modeling the system or by directly measuring the bias with 
other instruments. The latter can be done by using an instrument that has been 
calibrated on another system to check for any disparities in the data [34]. However, 
it would be difficult to know the true bias of the calibration system, since there is no 
unbiased instrument available to provide a true measurement.

A bias in a calibration system is an additional uncertainty which should be in­
cluded in the total variance of the system. The bias and random error due to the 
calibration hardware can be represented as a variance crcab which must be in units 
of the response variable. This added variance represents the total possible variance 
which exists due to a calibration system. For force measurement calibration systems, 
this additional variance can arise from weights, manufacturing errors, balance mo­
ment center dimensions, etc. Given two different and independent variances, they 
can be combined to represent the total system:

where ^measurement and s{;ias are the assumed variance due to the measurement and 
bias errors. Since the additional calibration system variance is independent of the 
MSE, by Equation 57 the calibration variance can be added to the prediction interval 
in Equation 56 by assuming that the term under the radical represents the residual 
variance:

m easu rem en t (57)

(58)
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During an instrument's checks, the equipment that is employed may differ from 
the calibration, thus having different uncertainties or biases. When applying a pre­
diction interval to check measurements, the calibration and check apparatus uncer­
tainties should both be taken into account. The prediction interval as shown in 
Equation 58 is only valid if the same system is used for both calibration and check 
measurements, since it assumes only one additional variance source. Without the 
inclusion of the two individual system uncertainties, the prediction interval can be 
too narrow and may not capture the correct percentage of points. The potential of 
under- or over-capture of points may lead to misinformed decisions to be made in 
regards to the performance of the instrument.

Similar to the calibration system, the bias due to the check system can be repre­
sented by a variance cr̂ ,heck. This additional variance is added to the total variance 
of the system, including the variance of the calibration system, since it’s effect will 
still be present in the calibration model. The total variance will then include the 
prediction variance, and calibration and check biases. Using the same method for 
the calibration system, the final prediction interval can be written as:

Ip =  t„,a/2^M S E (l +  x'0{ X 'X ) - lxo) +  <Jq&1 +  a2,heck (59)

Equation 59 will provide the interval width of a single new prediction given MSE, 
design matrix, xq, and calibration and check system variances. For multi-component 
systems, multiple predictions are made simultaneously for the number of responses. 
Due to simultaneous predictions, the t-statistic should be adjusted to reflect simul­
taneous predictions. The Bonferroni correction can be used to adjust the confidence 
level a  to maintain the overall Type I error rate [35]. A Type I error is where a false 
positive is made, such as stating that a value is not within the interval when in fact 
it is. This correction is applicable when a known number of p predictions are made, 
and the confidence level is adjusted by:

a* = a /p  (60)

where the adjusted confidence level a* replaces a  in the derived prediction interval 
equations. With this correction, the prediction intervals will be the correct distance 
from the predicted values, given a set of calibration and check system variances. 
These additional variances need to be estimated either by statistical analysis of ob­
servations or by mathematical estimation. Typically, it is preferred to perform this
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analysis by mathematical means due to the cost of performing multiple measurements 
in order to build a population of data samples large enough to make statistical in­
ferences. The uncertainties for both the SVS and ILS systems were estimated using 
numerical methods with estimates of the input variable uncertainties [22,36].

Propagation of error or a Monte Carlo Simulation (MCS) are two examples of 
numerical methods which can be used to mathematically determine the variance of a 
system, which can include systems biases. Both of these approaches require building 
a mathematical model of the system and should include all the known error sources. 
The propagation of error method is a mathematical approach, which assembles the 
individual input uncertainties to an overall output uncertainty. A first-order Taylor 
series expansion is used to expand the desired output uncertainty as a function of 
the input variable uncertainties. Since only a first-order series is used, it is assumed 
that the higher-order partial derivatives are much smaller than the first-order terms 
and are negligible. Due to these assumptions, the system model should be linearized 
to satisfy the first-order assumptions.

MCS is a computational method used to estimate distributional properties of 
an output variable of a system. This method builds a simulated population of an 
output variable by randomly sampling the input variables from statistical distribu­
tions. Depending on the input error sources, the assumed statistical distribution 
may differ, such as a normal or uniform distribution. Many iterations are performed, 
upwards of several thousand, to build a large enough distribution of the output vari­
able. This standard deviation then is used to represent an estimate of the output 
variance. Since a Monte Carlo simulation calculates the output directly from each 
random input combination, with no linearization or simplification applied, the output 
of complex systems can be modeled.

3.2 REVERSAL OF TH E PR ED IC TIO N  INTERVAL

As shown in the previous section, a prediction interval can be developed around 
the estimated response of a system. In the case of most measurement systems, 
the response is generally a voltage. Formulating an interval about the response in 
this case provides little practical information for the user of the instrument. Users 
generally want to know the confidence of the measured variable or in these cases the 
explanatory variable.
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For a simple linear calibration case, the conversion between units of the explana­
tory and response variables is straight forward. The inverse of the regression model 
is used to convert between the two units, if the inverse exists. Since closed form solu­
tion existing for the explanatory variable as a function of the response. Calibration 
models that include non-linear terms, such as that of a force balance, do not have 
a closed form solution for the explanatory variable, thus a direct function does not 
exist for the explanatory variable with respect to the response.

A basic solution to the inversion problem, for a non-linear model, is to ignore the 
non-linear terms in the model to reduce the problem so that a closed-form solution 
will exist. This approach is only applicable for models where second-order terms 
are small, in order to reduce the possible error. But for any models that have large 
second-order terms, it would be inappropriate to use such an approach since the 
effects are unknown.

A non-linear calibration matrix $ can be broken up into the linear and non-linear 
components:

where Co, C\ and C2 are the intercepts, linear and non-linear terms of the calibration 
matrix. Note that Ci should be a A: by A: square matrix, where k is number of 
responses. The response of the system due only to the linear matrix can be estimated 
by y  =  Co +  xC\. Note that y  and x  are row arrays, which are size 1 by k. If the 
inverse of C\ exists, an estimate for the explanatory variable array for a measured 
response can be found by:

Note that the hat accent was removed from the response and applied to the explana­
tory variable, since what is being estimated has be reversed. Since this equation is

to the explanatory variable units. Assuming a response interval width of IPy, the 
width of the explanatory interval Ipx can be estimated by:

13 = Co Ci C2 (61)

£ =  (y -  Ca) C, 1 (62)

linear, the response term can be exchanged with an interval width to convert it over

I p X =  I p y C f 1 (63)

A more complete approach which does not simplify the problem, is to solve for 
the explanatory variables at the corresponding response interval limits. The high and
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low limits of the response interval are found by adding and subtracting the interval 
width, from prediction interval equations, to the measured response:

Vh i g h / l o w  = V ±  I P v  (64)

With the interval limits, an iterative method such as Newton-Raphson can be used 
to solve Equation 65 for the interval limit values in units of the explanatory variable, 
or x, with the full regression matrix j3\

y  = xf3 (65)

This process is identical to the routine that is used to compute the explanatory 
variables from the measured response when the instrument is used experimentally. 
A risk of this method is that it may not converge to a solution for wide intervals or 
for highly non-linear models. Non-convergence may occur when the interval on the 
responses generates a point that does not have a unique solution for the explanatory 
variable. Another drawback is that this method can be computationally intensive 
due to the iterative process. Typically, force measurement systems can converge to a 
solution rapidly, within five iterations, since they are primarily linear. Other systems 
may require more iteration to achieve a certain convergence criterion.

A method that does not require numerical iterations or have issues with conver­
gence was developed by Tripp and Tcheng. The method developed by Tripp inverts 
the response interval width to the explanatory variable through local linearization. 
The development of this method is throughly discussed in Section 2.3.2. The advan­
tages of this method is that it retains second-order effects and does not require an 
iterative routine. Equation 66 provides a direct solution for the explanatory vari­
able interval for a given response interval, calibration matrix, and mean explanatory 
variable:

Ip& = Ipv (Cl + W (x)C2y l = IpvJ (x r 1 (66)

In this equation, W  is a Jacobian that is defined in Section 2.3.2, for a force 
balance application, and is function of the current explanatory variable or load point 
for a force measurement case. Note that the Jacobian, W , must be computed at the 
explanatory variable under investigation, which is an estimate based on the measured 
response. The explanatory variables are estimated by the use of Equation 65 and a 
numerical method.
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With the inversion processes established above, an interval on the response vari­
able can be converted to the explanatory variable. The inversion process in com­
bination with the prediction interval that is derived in Section 3.1 can be used to 
apply statistically rigorous intervals to an instrument’s estimated explanatory vari­
able. These intervals can be used to validate the performance of an instrument prior 
to experimentation in the form of check loads. Additionally, a prediction interval can 
be used to provide information on an instrument’s accuracy instead of the commonly 
used standard deviation values.

As shown, the derived prediction intervals requires estimation of the calibration 
and check system variances. For multi-component force balances, the single-vector 
system variances for both the SVS and ILS have been estimated using numerical 
methods. The variance of manual stands, such as the ones used at NASA LaRC, 
needs to be estimated in order to employ these methods.
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CHAPTER 4 

MANUAL STAND UNCERTAINTY

Manual stand calibrations have been implemented for the calibration of strain- 
gaged wind-tunnel balances since their inception. These systems are still in use for 
the calibration of large-scale balances, when other calibration systems are inadequate 
for the load ratings of the balance. Manual stands currently lack a rigorous uncer­
tainty analysis due to the scale and complex hardware attributes of these systems. 
Several studies were conducted to evaluate the uncertainty of manual stand calibra­
tion systems, but with simplifications to the system [16,26]. Some of the uncertainties 
related to the manual stand are:

• applied Weight*

• knife Edges (x,y)*

• moment Arm Position (x,y ,z)*

• balance Angle (4>,6,ip)*

• cable Misalignment*

• angle Measurement*

• cable/Rod Catenary

• moment Arm Deflections

• balance Anelastic Effects

•  balance Temperature

• calibration Body Deflections

• data Acquisition Uncertainty
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FIG. 22: NASA LaRC 20K Manual Stand (Credit: NASA)

Uncertainty sources marked with the asterisk (*) are already considered in other 
systems. Due to the large number of possible uncertainties, the significance of each 
uncertainty source should be determined prior to constructing an overall system un­
certainty. This approach will reduce the complexity of the system uncertainty to only 
those that have a significant influence on the balance’s performance. A combination 
of actual measurements and engineering judgment are used to quantify the effects of 
each the considered uncertainty sources. Engineering judgment is required to bound 
these uncertainties that cannot be directly measured. One example is the practice 
of cable alignment for axial or side force, which relies on the voltage readings of the 
balance for the alignment and not an actual measurement of the cable’s orientation.

4.1 IN D IV ID U A L UN C ER TA IN TY  SOURCES

The following subsections detail the individual uncertainty sources for the NASA 
LaRC 20K manual stands, which are similar to other manual systems used at other 
facilities. An photograph of the 20K manual stand is shown in Figure 22. The 
goal of each subsection is to understand the impact of each source of uncertainty. 
With an end goal of incorporating all the individual uncertainty sources into a final 
uncertainty estimate.
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V

FIG. 23: Balance Coordinate System, with Rotations

4.1.1 CALIBRATION BO D Y  ANG LE A N D  M ISALIG NM ENT

Repositioning of the balance calibration body to a level position after loads are 
applied is required for manual stand calibrations. At every recorded data point, the 
body should be nominally level to ensure that there is minimal transfer of loads 
between the force vector components. Leveling of the body is done using calibrated 
electrolytic tilt sensors or traditional bubble levels placed on the calibration body. 
With this, there are several sources of uncertainty, such as the sensor accuracy and 
bias, calibration body flatness, and the angular offset between the calibration body 
and the balance. The latter two potential uncertainty sources are considered to be 
relatively small due to the high level of fidelity used to manufacture the calibration 
hardware and balance. It is generally assumed that the primary source for angle 
uncertainty lies in the angle measurement system, but for this study all the considered 
sources will be analyzed and vetted.

The manual stand at NASA LaRC employs a pair of electrolytic bubble levels, 
manufactured by Spectron Glass and Electronics Inc., which are arranged with their 
sensing axis perpendicular to one another, i.e. one measuring the pitch angle and 
the other for the roll angle of the calibration body. These sensors are placed on the 
top surface of the calibration body in a region close to the tip of the balance, if a 
moment balance is used. This placement, for a moment balance, would reduce any 
errors that may arise due to deflections of the calibration body, since the balance tip 
is where the two bodies are mated and pinned. These sensors have a sensing range 
of ±1° and a quoted null repeatability of 0.0008°.
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The rotation convention about the three primary axes of the balance coordinate 
system is illustrated in Figure 23. Where <f>, 6, and ip are the rotations about the 
x, y, and z axes, also are the roll, pitch and yaw angles of the calibration body, 
respectively. This coordinate system and rotation convention will be used exclusively, 
and is similar to the convention of an aircraft body axis coordinate system [37]. A 
vector r  can be transformed between two different coordinate systems that share the 
same origin, with one rotated about the three major axes, using a Euler rotation 
matrix [38]:

where C$ and So represent the cosine and sine values for a given angle 9, and r new 
is the vector r  represented in the new rotated coordinate system. With this Euler 
rotation matrix, a force with magnitude P  that is aligned with the gravity vector,

From Equation 68, it can be seen that any misalignment of the calibration body 
in the pitch and roll axes will allow for a hanger load to apply forces in undesired 
axes. For example, a normal force hanger can apply an axial or side force if the 
calibration body is not level. It should be noted that the yaw angle ip does not have 
any contributions to the applied force vector, since it is assumed that the applied 
gravity load acts through the 2 -axis.

An illustration of side force inadvertently applied by a normal force load due to a 
balance roll angle is shown in Figure 24. Depicted is a misaligned calibration body, 
in gray, with a load applied via knife-edge on the top surface. The variables Fy and 
Fz represent the force components that are applied to the calibration body in the 
y- and 2 -axis of the balance coordinate system. From this it can be seen that the 
force is applied at a half-width, w /2, away from the balance moment center. Thus, a 
rolling moment will be generated with a magnitude of (wFy) /2, for this example. A 
moment vector M  generated by an applied force vector, F ,  is resolved by the cross 
product between a distance vector r  from the BMC and the applied force vector:

new

C^Ce St C0 - S e
S ŜgSff, +  SpCj) S^SgSj, +  C-<hC<p CqSq

C^SeC* +  SipSeCt -  C^Sj, CeC*
(67)

i.e. an original force vector of [0 0 P]', is applied to the balance, the resultant force 
vector F  in a misaligned coordinate system can be represented as:

F  = P  [ - S ,  S./C, C^C,, (68)
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i j k

M  = r  x F  = X y z

Fx Fy Fz

(69)

Substituting Equation 68 into Equation 69 resolves the moment vector into a 
function of applied load, balance angles, and load position:

CqCqu S^CffZ 
M ^ P  - C ^ C g x  -  Sgz (70)

S^Cgx +  S 9y

Equation 70 results in a non-linear formula for the moments due to the non-linear 
force vector. Due to the small uncertainty range of the angle sensors, small angle ap­
proximations can be used, which will allow for linearization of the force and moments 
equations. Linearization will help reduce the complexity of the uncertainty process 
and allow for error propagation methods, since these methods require linearization. 
The small angle approximations for a sine and cosine function about zero angle are:

sin(0) 

cos (4>)
<f>

1 -  02/2

(71)

(72)

For a 1 percent error in the linearized Equations 71 and 72 to occur, an angle of 
14° and 38° for sine and cosine is required, respectively. Note that this linearization
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is only valid for angles in units of radians. The angle term in Equation 72 can be 
seen to provide little contribution for very small angles due to being squared. By 
simply equating cosine to a value of unity, the angle at which a 1 percent error 
will occur is reduced to 8°. The expected maximum error for both pitch and roll 
angles is less then 0.1°, thus the small angle approximations are acceptable for this 
application. Implementing the small angle approximation for Equations 68 and 70 
yields the following simplified force and moment equations:

From Equation 73, it can be inferred that in order to not exceed 1 lb of incidental 
axial force with a 6,000 lb normal force load, an angle setting better than 0.01° is 
required. These loads are based on the NTF-113 balance, which has a normal and 
axial force design load of 6,500 and 400 lbs, respectively. For these balance design

said to affect the other two orthogonal computes, but in lower magnitudes due to

is set to plays a major part in the uncertainty of the applied forces. Using methods 
of error propagation, or Taylor series expansion, the overall uncertainty in the forces 
and moments can be estimated by Equations 75 and 76, respectively [28]:

Equations 75 and 76 are the root-sum square (RSS) of all the partial deriva­
tives that exist in Equations 73 and 74 with respect to the individual error sources. 
The propagation of error presented lacks the correlation terms between uncertain­
ties. It is assumed that correlation between the individual terms is negligible or zero.

F x i P  - 9  <fi 1 (73)

y -  <t>z 
M  = P —x — 6z 

(fix +  6y
(74)

loads, a 0.25% error in axial force is 1 lb. An applied side or axial force can also be

the lower applied loads. This shows that the level of precision that the balance angle

(75)

d M \ 2
s2P +

d M \ 2 2 d M \ 2
dcfi )  *+

(76)
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Correlation would only exist for uncertainties that are measured using the same mea­
surement device, i.e. two uncertainty sources using the same measurement devices. 
This correlation will exist between two sources, since knowledge of one source will 
influence another due to the two sources having the same possible bias. With the 
force and moment equations written in the most fundamental variables as shown 
in Equations 73 and 74 it is assumed that the individual variables do not exhibit 
correlations.

Substituting Equation 73 into the error propagation Equation 75 and evaluating 
the partial derivatives yields the expanded uncertainty for the force components:

(77)

From this equation, the angle contributions, s# and so, to the force uncertainties 
are proportional to the square of the applied load PFz. The applied load uncer­
tainty Sp primarily affects the 2 -component, with very low contributions to the x- 
and ^/-components. This low contribution is due to the use of small angles, which 
are nominally zero, and are much smaller in magnitude than 1 or the applied load 
Ppz. With the assumption that all angles are nominally zero, the force uncertainty 
equation is simplified:

’ e2' /
0

/
'  P 2 '

s 2 -«-> £P — 4>2 S 2p  + P 2 to to
+ 0

l 0 0

s 2f

1
o

1 / 1o1 !
p 2

Fz

0 S2p  + p 2 4  + 0
1 1

o
1

----1
O

i

4 (78)

From Equation 78, it is seen that with the zero angle assumption, the applied load 
uncertainty only applies to the primary component, but the other two components 
have uncertainties due to the angle terms. Substituting in Equation 74 into 76 yields 
the expanded uncertainty for the moment components:
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( V -  9 z ) 2
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" ( P f z z ) 2 '

t
0
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0

s 2 -  M ~ ( — x  — 9 z ) 2 s 2P  + 0 4>  + ( P f z z ) 2 s e +
p 2

{4>x +  6 y ) 2

1 s

to
1 _ ( P f z4>)2 _

p 2r Fz
/

' (Pfz4>)2 '
0 4  + (Pfz9)2

(PfJ ) 2 _ 0

(79)

By applying the same zero angle assumption that was implemented in the force 
uncertainty equation, Equation 79 is simplified to only the significant terms:

y 2

/
'  ( P f z z ) 2 '

/
0

t
0

/ i“
....

I

c 2 -
6 m  — X 2 s 2p  + 0 s l  + ( P f z z ) 2 4  + P i 4  + 0

0

1 ?

to
i .  ( P f . V f  _ 0 0

(80)

In this equation, it is seen that the applied force uncertainty contribution scales 
with the x- and y-position of the load, which suggest that small distances should be 
used in order to minimize the moment uncertainty. Although, if the applied force 
uncertainty is represented as a percentage of full scale u2P, where sp =  Ppzup, the 
terms in the array change to the applied moments M x and M y for the y and x  terms, 
respectively. With this conversion, the applied load contribution, in percent of full- 
scale load, will be constant for a given applied moment. Thus, to reduce the overall 
uncertainty of the moments, reductions must be made with other terms. Prom the 
positional uncertainty terms, sx and sy, a reduction in the applied load will yield a 
reduction in the moment uncertainties. With this, large x  and y values with a low 
applied load, Pfz, reduce the overall moment uncertainty.

With these derivations, the force and moment uncertainties become a function of 
the applied load (P) and load point (x, y, z), which are the fundamental variables 
of the system (for this load case). In order to compute a final overall uncertainty 
the individual variables and their corresponding uncertainties or standard deviations, 
Si, must be quantified. These uncertainty values will be estimated using engineer­
ing judgment, known sensor accuracies and dimensional tolerances. Several of the
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TABLE 13: Position Uncertainty Sources

Source Description Uncertainty
Estimate Impact

Calipers Set point error of vernier 
calipers

0.001-.002 in. X

Knife Edge Geometric tolerance of the 
knife edge blocks

0.0002 in. x, y

Knife Edge 
Groove Groove location on fixture 0.0025 in. y
Balance

Dowel Hole 
(CMM)

CMM measurement of the 
pin location w.r.t. BMC

0.0002 in. X

Fixture
Dowel Hole 

(CMM)
CMM measurement of dowel 
hole location

0.0002 in. X

Fixture QA 
(CMM) CMM measurements of the 

calibration fixture
0.0002 in. x , y , 2

uncertainty sources in Equations 78 and 80 are a composite of multiple individual 
error sources. For example, sx will be based on the root-sum square (RSS) of the 
uncertainties of the vernier caliper, the measurements of the balance moment center, 
dowel-pin fitting, and the knife-edge groove tolerance.

P osition U ncertainty (x , y, z)

The specific uncertainty contributors for the load point position that are con­
sidered in this study are tabulated in Table 13. This table provides details of each 
contributor such as its origin, estimated uncertainty, and the variables that it affects. 
Since these uncertainties are for the load point position, the contributors are primar­
ily from manufacturing and coordinate measurement machine (CMM) errors. For the 
majority of the calibration hardware that is built for NASA LaRC, quality assurance 
(QA) checks are performed via CMM measurements. These CMM results are gen­
erally used to first ensure that the hardware is built to specification and secondarily 
used to know the measured lengths with high precision.

The x  location of the load point can be represented as an offset between the mea­
sured BMC and the location of the knife-edges. These knife-edges are placed along 
the x-axis of the calibration body to apply a pure normal force or with a pitching
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moment, when knife-edges are not located at BMC. Knife-edges are positioned along 
the calibration body by using a vernier caliper, which is set to a distance based on 
the assumed location of the BMC with respect to the calibration body front face. 
With this, the x-offset of the load point is defined by:

An estimate of the x-position uncertainty is derived by implementing propagation 
of error on Equation 81. Prom observation of the equation above, it is seen that the 
results from the propagation of error will be a summation of the contributing factor 
uncertainties, due to all the partial derivatives equating to unity.

where the Scaiipers and SFixtureQA terms are inside parenthesis to represent that the

from both the caliper setting and the fixture QA are independent of each other, 
thus the caliper uncertainty can be a composite of the two sources as shown. The 
same derivations can be done for both the y- and terms that are in the moment 
calculations, with some modification. Calipers are not used for locating the knife- 
edges in the y- or 2 -directions when in the Fz orientation, since the knife edge groove 
runs along the x-direction of the calibration body. Therefore, the load point y- and 
2 -position is represented by:

From Equations 83 and 84, it can be seen that there is a large reduction in 
complexity from Equation 81, which is mainly due to the y- and 2 -positions being 
fixed by physical constrains. Both the y and 2  positions are dependent on a fixture 
QA term, which is how well the balance bore hole is centered about the fixture. 
The y-position has an additional term, yKEGroove, due to the knife edge groove, since 
the machined groove, which runs along the x-axis, will not be perfectly centered on 
the fixture body. As was done with the x-position equation, propagation of error is 
applied to Equations 83 and 84 to derive the uncertainties for these variables:

•E 2 -P in ,B a l T  ^ P in ,F ix tu r e  ^ C a lip e r s  3 -K n ifeE d ge (81)

P in ,F ix tu re C alip ers F ix tu reQ A K n ifeE d ge

fixture QA term was added due to the calipers. This can be done since the errors

V —  2 /F ix tu reQ A  2 /K E G roove (83)

2  —  ^ F ix tu re Q A (84)
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TABLE 14: Load Position Uncertainty Estimates
Variable Estimate, in.

sx 0.0011
sy 0.0025

0.0002

.2
FixtureQ A KEGroove (85)

2
FixtureQ A (86)

Note, that these equations are derived for the case of a normal force hanger 
load. For the case of a side force hanger load, the roles of the y and z variables are 
exchanged, since the balance fixture is rotated 90-degrees about the x-axis. Addi­
tionally, special care should be used to ensure the proper final signs of x, y and 2 , 
since during a rotation of the calibration body the signs of the y- and 2 -positions can 
change.

Entering the estimated uncertainties from Table 13 into Equations 82, 85 and 86 
yields the uncertainty estimates for the x, y and 2  variables. The estimated values 
for the load position uncertainties are tabulated in Table 14. From these values, it is 
seen that the uncertainty estimates are approximately equal to the largest uncertainty 
value in their respective equations. For example, sx is near the largest uncertainty 
value of 0.001 inches.

Angle U ncertainty (<fr, 6)

The specific contributors to the angle uncertainties that are considered in this 
study are tabulated in Table 15. Similar to the position uncertainty table, listed 
are the descriptions of each contributor, uncertainty estimate, and which variables 
that it affects. The contributors that are listed are due to manufacturing and fixture 
leveling errors. Note that the last dowel pin and fixture surface uncertainty estimates 
are based on the CCM accuracies over a distance of 1 inch.

The total angles, <j> and 6, of the calibration body fo ra  load point can be repre­
sented as a function of the error contributors, which will result in an offset from level
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TABLE 15: Angle Uncertainty Sources

Source Description Uncertainty
Estimate Impact

Angle
Measurement Error due to angle measure­

ment device
0.0007 Deg. 0 ,0

Dowel Pin Dowel pin manufacturing er­
ror and pin slop

0.0086 Deg. 0

Fixture
Surface Surface angularity and irreg­

ularities
0.0086 Deg. 0 ,0

TABLE 16: Body Angle Uncertainty Estimates
Variable Estimate, Deg.

0.0122
0.0087

balance coordinate system. A series of angle transformations are not a linear opera­
tion, but linearization is implemented due to the small offset angles. To simplify the 
angle transformation problem, the final measured angle is assumed to be the sum of 
the small offsets from the balance coordinate system to the sensor:

0  =  0 S e n s o r  T  0 S u r fa c e  T  0  D ow el ( 8 7 )

0  ^ S en sor T  ^ S u rfa ce  ( 8 8 )

Applying propagation of error to Equations 87 and 88 to yield the uncertainty 
estimates of the measured calibration body angles:

4  =  4 s c n s o r  +  ^ S u r f a c e  +  4  Do we. ( 8 9 )

4  = s20Smm + 4 urface (90)

With the estimates of the load point and angle uncertainties, they are entered
into the force and moment uncertainty equations 78 and 80, respectively. Unlike the
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FIG. 25: Fy Cable Load Example

load point and angle uncertainties, the force and moment uncertainties are not a 
constant value and will vary for each particular load case.

4.1.2 BELL C R ANK S A N D  PULLEYS

When the application of a side and/or axial force is desired to be in combination 
with a normal force, the axial and side forces must be applied in the horizontal plane 
of the calibration body as shown in Figure 25. In this figure a Fy load is applied via 
cables and a My load is applied by a pitch arm. It is typical to not rotate a balance 
for application of a side or axial force to align one with gravity, since a normal force 
load is generally of higher magnitude and it is undesirable to apply large loads via 
cables. Generally at NASA LaRC, bell cranks and pulleys are used to transfer a load 
from the horizontal plane to the vertical plane.

An example of the load path for a horizontal loading is illustrated in Figure 26. 
In this figure, it can be seen that the gravity load is attached to one end of the 
bell crank and the other is attached to a cable which then applies the load to the 
calibration body via a hanger and knife-edges. The use of a bell crank is preferred 
over a pulley, since the bell crank provides near frictionless movement which reduces 
the uncertainties. The pivot point of a bell crank is a knife-edge which is fixed 
to a movable platform for cable alignment. As discussed prior, knife-edges provide
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FIG. 26: Typical Bell Crank Arrangement

a means to transfer loads without a transfer of moments due to friction, whereas 
bearings in a pulley may result in frictional losses in the cable tension. Cable loads 
can be seen as similar to a pure hanger load, which was discussed in Section 4.1.1, 
but with the hanger aligned horizontally instead of vertically. Due to this analog, 
the derivations and process used for the hanger load uncertainties can be modified 
for the cable loads case.

The alignment of the horizontally pulled cables presents a challenge for the cali­
bration of force balances. Unlike a hanger load, which is aligned with gravity, there 
are no simple references for alignment of the cable in the .x-direction, for a side force 
load. At NASA LaRC, a cathetometer is used for vertical 2 -alignment, where the 
bell crank end of the cable is set to the same height as the knife-edge groove on the 
calibration fixture. At other facilities, simple bubble levels have been used to set the 
cable to level for the 2 -alignment.

At NASA LaRC, the alignment of the cable in the x-direction is achieved with 
“line-up” numbers; these line-up numbers use prerecorded balance outputs of a pure 
hanger load for the component under alignment. For example, a side force cable load 
will reference to the delta balance outputs of a side force hanger load. The cable 
is considered to be aligned once the delta outputs of the balance are equal. Note 
that the delta outputs are the difference between a tare point with the calibration 
hardware attached and a fully loaded point, which will account for the difference in 
tare hardware between the pure hanger and cable load. The cable alignment is only
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TABLE 17: Angle Uncertainty Sources

Source Description Uncertainty
Estimate Impact

Cathetometer 
Line Up 
Numbers 

Realignment

Vertical cable alignment

Initial horizontal alignment

Realignment after line up 
numbers

1/64 in. 

0.0005 mV/V 

1/64 in.

Fy,Fz

Fx , Fy 

0

done with a single load applied at a time, whether it be side or axial force. Once 
these numbers are met, the end of a flexible metal rod is adjusted to mark where 
the cable has to be for it to be aligned properly. On subsequent loads, the alignment 
of the cable loads are made by adjusting the bell crank until the flexible rod end is 
within visual tolerance to the cable.

It can be seen from the alignment process described that there are opportuni­
ties for large uncertainties to exist. Additionally, the uncertainties or biases in the 
alignment process are highly dependent on the calibrator, since many of the steps 
and processes are based on observations and not direct measurements, such as the 
position of the cable with respect to the adjusted rod for cable alignments.

The additional source of uncertainty from the cable loads that are considered in 
addition to the hanger loads are tabulated in Table 17. Note that the bell crank 
friction is not listed, since it is assumed to provide negligible friction to the system. 
Prom this table it can be seen that uncertainty estimates are not in the units of the 
impacted variables, lbs or in-lbs. Thus, the uncertainty estimates must be converted 
over to force and moment units via physics-based equations or characteristics of the 
balance.

The line-up numbers that are used for the cable alignments are in units of the 
balance output, microvolts per volt. The balance output is normalized by the bridge 
excitation voltage to reduce the output sensitivity to the excitation voltage level. 
Since the line-up numbers rely on the balance, these number will have different un­
certainties due to differences in balance sensitivities. The line-up number uncertainty 
estimate can be converted directly to units of force and moment by using the primary 
sensitivities of a balance. This can be done since a balance is fundamentally linear, 
since second order effects relatively small.
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TABLE 18: Balances Sensitivities and Uncertainty Estimates
NTF-118A SS12

Sensitivity 
lbs/mV/V or 
in-lbs/mV/V.

Uncertainty 
lbs or 
in-lbs

Sensitivity 
lbs/mV/V or 
in-lbs/mV/V.

Uncertainty 
lbs or 
in-lbs.

Fx 366.47 0.18 NA NA
Fy 2037.82 1.02 15.5 0.0078
Fz 3175.84 1.59 37.7 0.0189
Mx 14576.89 7.29 45.56 0.0228
My 9225.33 4.61 50.63 0.0253
M z 5785.42 2.89 11.3 0.0057

The primary sensitivities and line-up uncertainty estimates for two NASA LaRC 
balances are tabulated in Table 18. The two balances that are listed are of two 
different sizes and load capacities. The NTF-118A is a 2.375 inch diameter NTF 
internal balance with a normal force capacity of 6,500 lbs; the SS-12 is a 0.6 inch 
internal balance with a normal force capacity of 100 lbs. These two balances represent 
a range of balance ranges available, but this study will focus on larger scale balances 
such as the NTF-118A. Note that the SS-12 does not have a Fx component due to 
being a flow through balance.

In Table 18 a voltage uncertainty of 0.0005 mV/V is used to estimate the uncer­
tainty for the line-up numbers with the balance sensitivities. Note that the units of 
the balance sensitivity listed are lb/m V/V or in-lb/mV/V for the force and moment 
components, respectively. Since the uncertainty estimate is proportional to the bal­
ance sensitivity, the uncertainty remains nearly constant if represented in terms of 
balance design loads. From the two balances listed, the uncertainty of the line-up 
numbers are on the order of 0.02 to 0.08 percent of design loads. With the values 
presented in terms of balance design loads and the results of Table 18, it is shown 
that the line-up number method has a small influence on the overall uncertainty of 
the applied load.

The other two uncertainties that are listed in Table 17 must have the units con­
verted by applying physical trigonometric relations to the values. Both values were 
presented in units of inches, which represents the vertical or horizontal offset of the 
bell crank end of the cable with respect to a level condition. Knowing the length of
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the cable and the vertical offset, the roll angle 4>c at which cable tension acts is found 
by:

4>c = s:
Sz
T (91)

where Sz is the vertical offset of the bell crank cable end from a level condition, 
and I is the distance from the knife-edges to the bell crank cable end. Since Sz 
is much smaller than I, small angle approximations can be used, as represented by 
the approximation in the equation above. For misalignment in the x-direction, a 
small change, Sx, can be exchanged for Sz to provide the yaw angle ipc of the cable’s 
attitude. These small perturbations of the cable end will change the force vector 
which is applied to the knife-edges with respect to the balance coordinate system. 
This force vector definition is due to the assumption that the cable tension acts 
through a line formed by the two fixed cable ends.

A horizontal cable that is simply supported, has zero moment at the ends, where 
the cable will deform or sag due to gravity. The shape which such a constrained cable 
will form is called a catenary, a shape that is proportional to a hyperbolic cosine [39]. 
An illustration of the catenary shape of a tensioned flexible-cable is shown in Figure 
27. As shown in Figure 27, a flexible cable will sag under its own weight, where the 
maximum vertical displacement is at the mid-length of the cable, if the two ends are 
at the same height. Since the lowest point of the cable is at the mid-length distance 
between the free ends, half the weight of the cable is shared equally between each 
fixed end of the cable, assuming constant material properties. During the alignment 
process of the cable loads, preloads are added to keep the hardware in place and 
to prevent significant sag of the system. Assuming that the height difference of the 
cables ends are small, as shown in the uncertainty estimates, the catenary of the 
cables will have negligible effects on the cable tension.

The 20K stand at NASA LaRC employs rods between the hanger and the bell 
crank, instead of cables. A rod will change the end support constraints to cantilever, 
which will change the free hang shape to having zero slope at the fixed ends. Similar 
to the catenary of the cables, any sag in the rods used will be assumed to have 
negligible affects on the overall uncertainties.

With the cable angular offset found by Equation 91, the force vector applied to a 
level calibration body can be estimated. Using an Euler rotation matrix, Equation
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67, the tension in the cable can be represented as a function of the pitch, roll and 
yaw angles of the cable with respect to a level balance coordinate system:

where <f>c, 6C and ipc are rotations about the x, y  and z axes, respectively, and PFy 
is the applied tension to the cable. Small angle approximation can be applied to 
simplify the derived side force vector. Assuming that the pitch angle 9C is zero, the 
force vector can be further approximated as:

The assumption of zero pitch angle is due to pitch causing a rotation about the y-axis 
or about the primary axis of the cable load, thus resulting in no affect on the force 
vector. From Equation 93, it can be seen that the load is primarily along the y-axis 
with only small magnitudes in the two other axes. From observation, the magnitude 
of the force vector FFy, if tpc or <j>c are non-zero, will be greater than the applied load 
PFy due to the small angle approximation error, but only by a small percentage. As

Cecsn>c
F Fy — Pfv C<pccipc T  s<pcs-ipcs$t

C 4,c S ll’c S 6 c  ~  C ll>cS 4>(

(92)

4>c
F Fy ~  PFy 1 (93)
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previously noted, the error due to the small angle approximation is acceptable for 
the angles that are expected in a manual calibration.

The derived force vector Fpy (Equation 93) is only applicable for a side force cable 
load and can not be used for an axial force cable load. For an axial force cable load, 
the cable will misaligned in the y- and 2 -directions, which will result in errors in the 
pitch and yaw angles of the cable’s alignment. Using the Euler rotation matrix, the 
applied load due to an axial force cable load is converted to a force vector Fpx:

C 1pc (  '0c

F x  S 1pcS 6 c S 4>c T  S lpc C <t>c (9 4 )

C ip c s 6 c c 4>c T  Si{>c S (p c

Similar to the side force case, a rotation about the cable axis, will result in no affect 
on the force vector, in this case the roll angle <f>c. As was done to the side force 
vector derivation, small angle approximation and zero roll angle assumption is used 
to simplify Equation 94:

fx P f

1

d c

(95)

W ith Equations 93 and 95, the cable load uncertainty can be finalized with the 
same processes that were used in the hanger load section. Unlike the hanger loads 
where the applied load was aligned with gravity, i.e. single-component, the misalign­
ment of the cable loads may result in a multicomponent applied load. Conversion of 
this multicomponent load to a non-level balance coordinate system requires the full 
Euler rotation matrix:

' Fx '

F y =
Fz

bal

1

F y

1 1 app

FjpCQ SipC@ S q

C-ipSQSffr -|“ SipCffr S fpSgSf i -|- CipCff, CgSfp F y (96)
C-TpSQCf^ - |-  S jp S f i  S ipSffCfi  C ip S ^  C yC ^

iapp are the force vector components of the balance and the applied 
load, respectively. Applying the small angle approximation and equating the yaw
angle ip to zero, the force vector in the balance coordinate system is simplified to:

where JE. , andt-bal 1app
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’ Fx '

Fy

Fz
bal

Fr 9
Fy a pp +  FXapp(pO +  FZapp(p 
Fr Q -  F„

(97)

Vfipp0  ~f" Fzapp

The yaw angle is assumed to be zero in Equation 97, since the method used to 
align the cable loads will account for any calibration body yaw angle. The derivations 
for both the side and axial force, Equations 93 and 95, are substituted into Equation 
97 to provide the final estimate of the applied force vector in the balance coordinate 
system:

F ky b a l

0c -  (t>C9  

1 +  4>c(fi9 +  (j)c(j) 
0 C6> -  <f> + 4>c

(98)

1 -  9C9
’ F x b a l =  f ' F x  'fp c  +  f f l  +  Q c4>  ( " )

6 -  0C0 +  0C

With the derived force vectors for a side and axial force cable load in the balance 
coordinate system, the applied moments to the balance are estimated by substituting 
Equations 98 and 99 into the moment Equation 69. Assuming that the hanger, which 
is attached to the cable, is placed at a position vector r ,  the applied moment is found 
by the cross product taken between the position vector and the derived force vector:

M Fty b a l =  P f.

(4>CQ -  (p +  <pc)y -  (1 +  ipc(f>9 + <t>c(p)z 
(ipc -  4>c9)z -  {ipcQ -  <t> +  <t>c)x

(1 +  Ipc(p9 +  4>c4)x -  (ipc -  4>c9)y
( 100)

(9 -  ^C0 +  9c)y -  (ipc + <p9 + 9c<t>)z 
M Fxbal =  Pfx (1 -  9c9)z -  ( 9 -  4>c4> +  9c)x (101)

(0C + 4>9 + 9c(j>)x -  (1 -  9c9)y 

Error propagation can be used to estimate the force and moment uncertainty of 
the cable loads. Using a Taylor series expansion, similar to the hanger load section, 
the force and moments are expanded to approximate the uncertainties. The general 
form for the force and moment uncertainties, s2Fbal and s\j , for the cable loads are 
written as:



2 _  ( d M f a i  \  2 , ( dMbai \  2 , ( bal \  2

Mbal ~ V d P Fx )  Spr* \  d(f)c )  V d v c )  S -̂

z

Prom Equations 102 and 103, it is seen that the propagation of error method 
expands the force and moment equations as a series of partial derivatives for each 
contributor to the overall uncertainties. The total uncertainty of the force vector 
due to a side force load is found by substituting Equation 98 into Equation 102 and 
taking all the partial derivatives:
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After the partial derivatives are evaluated, the uncertainty equation is evaluated 
at the nominal values of each variable. As was done with the hanger load uncertainty, 
all the angles in the uncertainty equation should be zero, since the cables should be 
perfectly aligned and the calibration body should be level. Setting all the angle 
values in the force equation to zero, while keeping the PFy term as it is, results in a 
simplified uncertainty equation for the force vector:



From Equation 105, several observations are made of the properties of the force 
uncertainties. One observation is that the applied load uncertainty only affects the 
y-component of the force vector due to the zero angle assumption. If the zero angle 
condition was not enforced, the angle terms will have little to no contribution. The 
uncertainty of the pitch angle 9 of the balance does not contribute to the overall force 
uncertainty, since all the terms preceding sq in Equation 104 have angles. Generally, 
for a large scale balance, similar to the NTF-118A, side force loads can be in the 
order of several thousand pounds, whereas the angles are on the order of several arc 
seconds. Thus, the side force load terms dominate the uncertainty equation and any 
angle term is negligible. The uncertainty of the applied moments due to a side force 
cable load is estimated by substituting Equation 100 into 103 and evaluating all the 
partial derivatives:
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The derived moment equation for the side force cable load is similar to that 
of the one derived for the hanger load derived, Equation 80. The two equations 
differ in the placement of the terms, such as the x and z variables for the applied 
load uncertainty, and the inclusion of the cable angle uncertainties. Similar to the 
hanger moment uncertainty, in order to minimize the total uncertainty, the lowest 
load should be used with large arms if an applied moment is required. For a case 
where a moment is not required and only a side force load, the x- and 2 -positions are 
nominally zero. With both x  and 2  set to zero, only the y-position will remain with 
the angle uncertainty terms. Since the y-position can never be zero and is equal to 
half the width of the calibration body due to the placement of the knife-edges, the
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contributions of the s s ^ c and s# can only be minimized by reduction of the side 
force load. This reduction is not preferred, since the required side force load must 
be applied at the proper magnitude.

The same methodology that was used to simplify the force and moment uncer­
tainties for the side force cable loads is used for the axial force equations:
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Equations 107 and 108 are both similar to those of the side force loads, only 
with several of the terms reordered and/or exchanged. The same properties of the 
side force equations apply to the axial force equations, namely, that the moment 
uncertainty is minimized when long arms and low loads are used. With the set 
of uncertainty equations for both side and axial force cable loads, the applied load, 
positional and angular uncertainties that were quantified in Section 4.1.1 can be used 
to provide uncertainty estimates.

4.1.3 M O M ENT A R M  U N CERTA INTY

For the application of moments on a manual stand, arms are attached to the 
calibration body where free weights are hung. The inclusion of these arms leads to 
several sources of uncertainty over the previous uncertainty derivation; namely load 
position, and arm deflections. Generally, manual stand calibrations rely on lengthy 
arms which are called “long arms”. The term long arm relates how low magnitude 
loads are applied to a long arm to generate a pseudo pure moment. This is done 
to reduce the amount of load that is required to be applied at the end of the arm 
and the uncertainty of the applied moment. From the derivations of the moment
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FIG. 28: Mx and My Arm Load Example

uncertainties in a hanger load, it was shown that it is desired to use low loads with 
long arms to reduce the uncertainties.

These arms that are attached to the calibration body provide locations to apply 
hanger loads via knife-edges at fixed moment arm lengths. Since the arm loads rely 
on the use of a hanger and knife-edges, the derived force and moment equations 
in Section 4.1.1 will represent the arm loadings after some modifications are made 
to the equations. These modifications will only pertain to the positioning of the 
applied hanger load, which only affects the moment equation. With the attachment 
of these arms, additional positioning offsets are introduced, since the arm is attached 
mechanically with some error. Under load, these arms will deform and cause a change 
in the position at which the load is applied.

The attached arm behaves as a cantilever beam, due to the assumption of rigid 
attachment to the calibration body. The deformation shape of cantilever beams with 
a constant cross section are well understood and documented in literature [40]. The 
vertical deflection of the free-end is estimated with the knowledge of the material 
and cross sectional properties of the beam under load:

P I 3

*■  =  3 1 7  ( 1 0 9 )
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TABLE 19: NTF-113C Moment Arm Properties
Component L,  in. P,  lbs. 7, in.4 Sz, in.
Mx 38 225 0.677 0.209
My 38 320 0.677 0.298
M z 38 162 0.677 0.151

V
Sz

FIG. 29: Triangle Analog for Deflected Beam

where P  is the applied load at L  distance from the fixed end, E  is the Young’s 
modulus of elasticity of the beam’s material, and I  is the moment of inertia of the 
beam. Prom this it can be seen that the load point deflection will be exponentially 
increased by the length L. From the properties of the moment uncertainty equation, 
it was desired to have lengthy arms which will increase the possibility of deflection. 
Although for a constant applied moment, the increase in arm length will require a 
decreased applied load that will in turn reduce final deflections. The properties of 
the beams used for the NTF-113C calibration are tabulated in Table 19.

In Table 19, the estimated deflection calculations assume a modulus of elasticity 
of 29,000 ksi, which is typical for carbon steel. From these results it is seen that the 
arms do not deflect significantly for their lengths, with the largest deflection being 
for pitching moment. Due to the relatively small deflections, the load point will not 
significantly change along the long axis of the beam, which is the desired property of 
a moment arm. This is shown by equating the beam to a triangle with a hypotenuse 
equal to the beam length L and the opposite side equal to the deflection Sz, as shown 
in Figure 29. With this triangle analog, the adjacent side will signify the load position 
along the long axis of the beam L’\ for the largest computed deflection, the beam 
length would decrease by 0.0012 inches (L' — L ). Assuming that the arm deflection 
will have no affect on the load position, the following equations represent the load 
point:

•E FixtureQA Y arm Y XKnifeEdge ( 110)
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TABLE 20: Arm Load Position Uncertainty Estimates
Variable Estimate, in.

Sx 0.00065
Sy 0.00065
Sz 0.00042

V  —  y F ix tu r e Q A  T  y A r m  T  y K n i f e E d g e  ( H i . )

Z — Z F ix tu reQ A  T  ^ 4 r m  ( H 2 )

Since the moment arms can be used for all three moment types, the x, y and 
2  terms can be interchanged depending on the placement of the arms and balance 
orientation. For the equations shown, it is assumed that x  represents the long axis 
of the beam, y represents the lateral axis of the beam, and 2  represents the normal 
or load direction of the beam. Similar to the previous section, propagation of error 
can be used to estimate the uncertainties for each of the three position terms:

s2 =  s2 + si (113)*• *Fxxtu.ve.Q A A r m  v '

11141V VF i x t u r e Q A  ~  V A r m  ' V K n i f e E d g e  V >

^ X  F i x t u r e Q A  ^ a r m  K n i f  e E d ge  ^ ^

W ith the uncertainty derivations, the values from Table 13 can be used to estimate 
the total uncertainty of the load position. Note that the arm uncertainties siarm are 
assumed to have the same level of uncertainty of the fixture QA, since the arm length 
is measured with a CMM. From Table 20 it is seen that the uncertainty estimates 
for the arm load position is much smaller than the values presented in Table 14 due 
to the lack of certain uncertainty factors, such as calipers.

4.1.4 CALIBRATIO N BO D Y  DEFLECTION

The deflection or torsion of the calibration body may occur while the balance is 
subjected to loads. The calibration body for a balance is generally a hardened steel
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shell with loads applied to the outside. These calibration bodies are long square 
cross section beams, which have a circular bore to house the balances. For moment 
balances such as the NTF-113C, the calibration body only makes contact with the 
balance at the forward end, thus the calibration body can be assumed to be a can­
tilever beam. A beam with constant cross section and subjected to a moment T  will 
result in an angular twist of (j) at some distance L away from the fixed end [40]:

T T

* = wr < n 6 >

where G is the shear modulus for the beam’s material, and Ip is the polar moment of 
inertia of the beam’s cross section. Assuming that the cross section of the NTF-113C 
calibration body is a 4 inch square with a 2.75 inch bore, the polar moment of inertia 
can be found by:

Ip = ~ q —  7 rd 4 / 3 2

where h is the height of the faces of the calibration body and d is the diameter of the 
central bore hole. For the NTF-113C calibration body, the polar moment of inertia 
is assumed to be 37.05 in4. Assuming that the balance is subjected to the maximum 
rolling moment, T  =  9,000 in-lbs, at the BMC, L — 5.7 in., and has a shear modulus 
of 12,000 ksi, which is typical for hardened steels, the maximum angular rotation is 
0.0066 deg. Note that the calibration body for the NTF-113C is PH17-4 stainless 
steel and is hardened to H915. From this result it is shown that the calibration body 
does not deform significantly to warrant any additional uncertainty accounting.

4.1.5 DATA ACQUISITIO N

The balance voltages are considered to be the response of the calibration experi­
ment, although the uncertainty can be combined with the overall uncertainty of the 
manual stand. Measurement of the balance voltages will have errors associated with 
noise and drifts in the data acquisition system. The entire data system consists of 
an electrical connection box, cabling, multiplexer, and a digital multimeter. Each 
of these components adds electrical junctions where thermocouple effects may be 
present. At these junctions two or more dissimilar metals may make contact and 
result in a small electrical voltage being generated, which may influence the voltage 
measured.
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TABLE 21: Data Acquisition Uncertainty Estimates
Component NTF-113C SS-12

Fx, lbs. 0.18 NA
Fy, lbs. 1.02 0.0078
Fz, lbs. 1.59 0.0189

Mx, in-lbs. 7.29 0.0228
My, in-lbs. 4.61 0.0253
M z, in-lbs. 2.89 0.0057

Other sources of electrical uncertainty exists in the stability of the electrical com­
ponents used for voltage supply, voltage measurement and channel switching. Each 
of these components used are susceptible to thermal drift in the systems which can 
affect the bias in the final voltage measurement. These thermal drifts tend to occur 
over long periods of time and may affect day-to-day absolute measurements. During 
a balance calibration, the data system is left on overnight, or longer, to let the system 
reach this stable period.

Prom several years of knowledge, the stability of the data acquisition system is 
around 0.0005 mV/V. This value includes all the noise from the wires, thermal couple 
effects of the connectors and thermal stability of the data acquisition system. Sim­
ilar to line-up numbers described in Section 4.1.2, the uncertainty of the measured 
voltages are a function of the balance sensitivities. The conversion of the voltage un­
certainty can be accomplished by multiplying the known uncertainty by the balance’s 
primary sensitivity, which was done for the line-up numbers. Using this approach, 
the uncertainty estimates for the NTF-113C and SS-12 balances are tabulated in 
Table 21.

The results in Table 21 are similar to the values of the line-up number uncertainty 
due to the similar uncertainty value used for the voltages. Note that the units are lbs 
and in-lbs for the force and moment components, respectively. The converted values 
for the data acquisition uncertainty can be directly used to estimate the overall 
uncertainty of the calibration system.

4.2 OVERALL SY STEM  U N C ER TA IN TY

From the previous sections, the uncertainties in the applied forces and moments 
were derived from the assumed uncertainty sources. These separate sources can be
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combined to yield an overall applied load uncertainty. Since each uncertainty source 
is assumed to be independent of each other, the overall uncertainty is found by the 
root-sum square of all the separate load cases:

sFTotai = Y 2  s % (117)
i=1

where spTotal is the total force vector uncertainty and sFr is the contribution to the 
force vector uncertainty from each uncertainty source. From this equation it is seen 
that the total uncertainty will increase with every additional uncertainty source or 
load applied to the calibration body. For example, if two Fz hangers are applied, 
one for pure Fz and another for a moment arm, the uncertainty in Fz will increase 
by about \/2  times the individual hanger load uncertainty, since this would include 
two separate applied hanger loads. Though, for a case where both a Fz and Fy are 
applied to the calibration body, the increase in overall uncertainty will differ from 
the double Fz load case due to the difference in the uncertainty equations for Fz and 

Fy
The total uncertainty estimates for the manual stand are not constant values for 

any load that is applied. From the equations presented in the previous sections, 
the uncertainties are based on the properties of the individual load case, such that 
the uncertainty estimates would change based on having or not having an applied Fx 
term. To further complicate the matter, every load point in a calibration schedule has 
different sets of load combination which will toggle on and off the added uncertainties. 
Thus, the uncertainty estimates from the components that are not loaded will have 
to be neglected. While computing uncertainties, a case structure can be added to 
each individual uncertainty source checking whether or not the uncertainty should 
be included in the overall estimate. For example, the uncertainty of an applied Fz 
load will be assumed to be zero if no Fz is applied to the balance:

fo  PFz = 0 
sfz =  <

[ S S F  Pfz 7̂  0

The same logic is applied to each of the possible loads that can be applied to 
the balance, including applied moments. Furthermore, special care must be taken to 
ensure that the correct component is in the gravity direction, since this will change
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TABLE 22: Manual Stand Load Combinations
Load Combinations Active Uncertainties Balance Orientation

F z x F x s Pfz (Hanger) and spFx (Cable) F z
F Z x Fy SpFz (Hanger) and s Pf (Cable) F z
F z x M x s Pfz (Hanger) and spFz (Roll Arm) F z
F Z X M y s Pfz (Hanger) and sPFy (Pitch Arm) F z
F z x M z SPfz (Hanger) and s Pf (Cable) F z
Fy  X F x SpFy (Hanger) and sPf.x (Cable) Fy
Fy  X M x SPFy (Hanger) and sPf,y (Roll Arm) Fy
Fy  X M y SPfz (Pitch Arm) and sPf.y (Cable) F z

Fy  X M z SPFy (Hanger) and sPFy (Yaw Arm) Fy
F x x M x spFz (Roll Arm) and sPf.x (Cable) F z
F X X M y SpFz (Pitch Arm) and spFx (Cable) F z
F x x M z SPFy (Yaw Arm) and spFx (Cable) Fy
M X X M y spFz (Pitch Arm) and spFz (Roll Arm) F z
M x x M z SPFy (Roll Arm) and spFy (Yaw Arm) Fy
M y  X M z s Pfz (Pitch Arm) and spFy (Cable) F z

depending on the applied F z . A manual calibration is based on a OFAT calibra­
tion schedule, which was discussed in Section 1.1.3. With an OFAT design, only 
combinations of two component loads are used to build the regression model. Since 
a manual calibration is broken up into these different combinations of loads, the 
uncertainties can be estimated for each of the possible load combinations. All the 
two-component load combinations that are used during the calibration are tabulated 
in Table 22. This table also includes which uncertainty terms will be active for the 
desired combination and the balance orientation. From this table it is seen that there 
is a hierarchy of which force component takes the gravity direction, such as when a 
F z load is required it will be the component loaded via a hanger followed by the F y 

component loaded by cable. Note that the balance orientation column defines which 
load is applied in-line with gravity, such as a notation of F z meaning that the balance 
2 -axis is aligned with gravity.

Estimates of the total uncertainty for the listed combinations can be made using 
the full-scale design loads of a balance. These uncertainties will assume that the 
balance is loaded to 100% of full scale for the listed combinations, which will result 
in the worst case load combinations. Note that these load levels are actually applied 
during a manual stand calibration for the listed combinations. For this research,
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_________________ TABLE 23: NTF-113C Design Loads_________________
Components Fx, lbs Fy, lbs Fz, lbs Mx, in-lbs M y, in-lbs Mz in-lbs 
Design Loads 400 4,000 6,500 9,000 13,000 6,500

TABLE 24: NTF-113C Calibration Properties
Pitch Arm Length 40 in.
Roll Arm Length 40 in.
Yaw Arm Length 40 in.

Calibration Body Width 4 in.
Side Cable Length 8 ft
Axial Cable Length 7 ft

the considered balance is the NTF-113C and the design loads for this balance are 
tabulated in Table 23.

With the applied calibration loads defined by the load combinations and the 
balance design loads, the other variables in the uncertainty equations need to be 
defined. These variables are the lengths of the pitch, roll and yaw arms; Fx and 
Fy cable lengths; and load point information. The values for these variables for 
the 20K manual stand at NASA LaRC and the NTF-113C balance are tabulated in 
Table 24. The listed values only pertain to the NTF family of balances calibrated 
specifically on the 20K stand; the results from this balance/stand combination may 
be used for other balance/stand combinations with similar load ranges and hardware 
arrangements. However, it is cautioned that these values will not represent balances 
and load stands with drastically different load ranges.

Using the inputs from Table 24 and the load combination from Table 22, the un­
certainty estimates and the input loads are tabulated in Table 25. The applied loads 
shown in this table are based on the balance design loads and the load combinations 
listed previously. Note that the units for both the load and the uncertainties are in 
lbs and in-lbs for the force and moment components, respectively. From the table it 
is seen that the load combinations with the largest errors are the combinations that 
involve Fz loads. These loads are the highest due to the heavy loads used to apply 
full-scale Fz. All the moment-only combinations have the lowest uncertainties due to 
the low loads used to provide the moment, typically under 250 lbs. Note that pure
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TABLE 25: Load Combinations and Uncertainty Results
Fx, p  1 y Fz, Mx, M Mz, $FX, SF„, SFZ, ^Mx ’ SMy ,
lbs. lbs. lbs. in-lbs. in-lbs. in-lbs. lbs. lbs. lbs. in-lbs. in-lbs. in-lbs.
400 0 6500 0 0 0 1.02 2.00 2.27 19.5 9.65 4.24

0 4000 6500 0 0 0 1.21 2.01 2.50 19.5 9.72 5.86
0 0 6500 9000 0 0 0.97 1.68 1.61 17.5 8.26 3.19
0 0 6500 0 13000 0 0.96 1.68 1.61 17.5 8.24 4.00
0 0 6500 0 0 6500 1.03 2.00 2.28 19.5 9.80 4.25

400 4000 0 0 0 0 0.66 1.45 2.40 10.5 6.53 6.09
0 4000 0 9000 0 0 0.60 1.04 1.78 7.5 4.80 5.04
0 4000 0 0 13000 0 0.70 1.45 2.48 10.4 6.65 6.48
0 4000 0 0 0 6500 0.61 1.04 1.78 7.5 4.81 5.10

400 0 0 9000 0 0 0.26 1.44 2.24 10.3 6.67 4.24
400 0 0 0 13000 0 0.26 1.44 2.24 10.3 6.54 5.06
400 0 0 0 0 6500 0.26 1.44 2.24 10.3 6.68 4.25

0 0 0 9000 13000 0 0.19 1.02 1.58 7.4 4.62 4.22
0 0 0 9000 0 6500 0.19 1.02 1.58 7.3 5.00 2.92
0 0 0 0 13000 6500 0.32 1.44 2.26 10.3 6.75 5.07

moments are not applied, the application of the moment will result in an applied Fy 
or Fz load, which are not shown in the table but are considered in the uncertainty 
calculations.

The average uncertainty of all the load combinations can be used to represent 
the performance of the manual calibration system for the given balance/stand com­
bination. The average values in both engineering units and percent of full scale are 
tabulated in Table 26 accompanied with the quoted standard deviations of a man­
ual calibration for the NTF-113C balance. Prom the full scale values, the force and 
moment components are mostly below 0.01% of full scale with only the Fx and Mx 
estimates being larger. The uncertainty of Fx is expected to be larger than the other 
two force terms due to the lower load capacity on this component which makes the 
component is sensitive to errors. For the Mx term, it is seen from the balance sensi­
tivities listed in Table 18 that this component has more sensitive than the other two 
moment components which results in the higher uncertainty shown. Comparison of 
the estimated uncertainties to the quoted standard deviations from the balance cali­
bration shows good agreement between the two values for several of the components. 
For the values shown, only the Fx and M x components have larger uncertainties than
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TABLE 26: Average Uncertainty Estimates
SFX, s f v , SFZ, SM ^ SMy, s m z ,
lbs. lbs. lbs. in-lbs. in-lbs. in-lbs.

Engineering Units 0.61 1.48 2.06 12.35 6.98 4.67
Percent of Full Scale 0.15 0.04 0.03 0.14 0.05 0.07

Quoted Std. Dev. 0.12 0.07 0.03 0.09 0.05 0.10

the standard deviations due to these components having high sensitivities. Due to 
these high values, further checks should be made on the uncertainties used in the 
derivations.

From the results of the uncertainty analysis, it was shown that the equations and 
methods developed provide reasonable results of the applied load uncertainty. The 
uncertainty estimates in engineering units will be used later for use in the prediction 
interval equation derived in Section 3. The uncertainty estimates that are presented 
in a percentage of full scale could be used to get a rough estimate of the applied load 
uncertainty for another balance and/or manual stand, since several of the uncertainty 
estimates will remain constant when presented in percent of full scale. It is cautioned 
that this kind of rough estimate only be used for balance and stands of similar range 
to the NTF-113C and the NASA LaRC 20K stand.

4.3 U N C ER TA IN T Y  ESTIM ATE VALIDATION

A MCS was used to validate the uncertainty estimates from the propagation 
of error method. In this simulation the mathematical model implemented was the 
unsimplified model of the manual stand system. In this way, the assumptions of 
linearization and small angle approximation, which were implemented in the prop­
agation of error derivations, are tested against the full unsimplified mathematical 
model. For example, for a hanger load, the force applied to the balance is repre­
sented by Equation 96, where the original force vector, Tkpp, is the applied weight 
acting solely in the gravity direction, such that if a Fz load is desired the force vector 
would equal |o 0 P  • Applied moments to the balance are found by taking the 
cross product between a position vector, r  and the force vector, as shown in Equa­
tion 69. Cable loads that are applied to the balance are calculated through the same
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routine as a hanger load, but with .Fapp equal to the force vector which is the result 
of rotating the applied load by the cable angles.

In a MCS, the input variables to the model are randomly sampled from an as­
sumed statistical distribution and a sample population is formed for the output vari­
ables. Many iterations of this process are made to ensure that a proper distribution 
is formed, in this study 100,000 iterations were made. A normal distribution was 
assumed for all the variables in the mathematical model, since all the variables are 
represented as random noise in the system. The assumed standard deviations for the 
variables are the values shown in the previous sections, such as Tables 13, 15 and 17.

The load schedule shown in Table 25 was used as the inputs to the MSC, where 
the perturbed forces in the balance coordinate system are the outputs. Figure 30 is 
the histogram and the normal distribution for the Fx component of the first load in 
the schedule. From this figure, it is shown that the sample population for the Fx 
component does follow a normal distribution with a mean of 400 lbs and a standard 
deviation of 1.02 lbs, which is the expected result from the MCS.

The standard deviation values for each of the load combinations are tabulated in 
Table 27. These results from the simulation are in agreement with the values that 
were calculated using the propagation of error method in Table 22. This agreement 
shows that the assumptions made for the propagation of error are valid and that
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TABLE 27: MCS Standard Deviation Results
SFX,
lbs. lbs.

SFZ i
lbs.

s Mx i
in-lbs.

SMy ,

in-lbs.
SMZ'

in-lbs.
1.02 2.01 2.27 19.41 9.76 4.23
1.21 2.00 2.52 19.44 9.62 5.99
1.00 1.72 1.61 17.53 8.29 3.18
1.00 1.72 1.61 17.48 8.23 3.99
1.03 2.00 2.28 19.38 9.80 4.27
0.66 1.45 2.39 10.47 6.54 6.09
0.63 1.04 1.80 7.50 4.79 5.06
0.70 1.46 2.49 10.63 6.57 6.63
0.63 1.03 1.79 7.51 4.79 5.12
0.26 1.44 2.24 10.30 6.56 4.23
0.26 1.44 2.24 10.39 6.61 5.08
0.26 1.44 2.25 10.31 6.68 4.25
0.20 1.02 1.59 7.38 4.68 4.23
0.19 1.02 1.58 7.33 5.00 2.93
0.31 1.44 2.25 10.37 6.78 5.08

TABLE 28: Average Difference Between Error Propagation and MCS Results
F x , F  1 y i F z , M x , M y , M z ,
lbs. lbs. lbs. in-lbs. in-lbs. in-lbs.

-0.0094 -0.0051 -0.0029 -0.0131 -0.0001 -0.0222

there are no strong correlations in the system. To further depict the agreement, the 
average differences between the two methods are tabulated in Table 28. Prom the 
average difference values, it is shown that the MCS estimates slightly larger standard 
deviation values, but the difference between the two estimates are negligible. With 
these results, either the MCS or propagation of error can be used to mathematically 
determine the uncertainties of a calibration system. The propagation of error method 
does have added benefits over the MCS, since it provides a direct solution and allows 
for interpretation of the individual uncertainties’ sensitivities.
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CHAPTER 5

UNCERTAINTY AND PREDICTION INTERVAL

INTEGRATION

The results from the manual stand uncertainty derivations in Section 4.2 can be 
used to estimate the prediction interval estimates for a balance undergoing check 
loads. To demonstrate derived prediction interval and manual stand uncertainties, 
data were collected on several check loads that were applied to the NTF-113C balance 
in one of the preparation bays at NASA LaRC’s NTF [36]. For this demonstration a 
manual calibration which was performed on the 20K stand is used for the estimation 
of applied loads, thus the prediction intervals require the estimated uncertainties for 
the manual stand. The ILS estimated bias for the check load system should also be 
entered into the equation to provide the correct total uncertainty for the prediction 
interval estimates.

During the demonstration the balance was loaded with the ILS with a load stack 
of 2,500 lbs at various angles and load positions. The characteristics and capability 
of the ILS were detailed in Section 1.1.4. For these loadings the balance was installed 
to a repositioning system, which allowed for pitch and roll authority, and mimics the 
model support system in the tunnel. For attachment, the ILS was mounted to the 
calibration body of the balance as shown in Figure 31. The loads that were applied 
to the balance during this demonstration are tabulated in Table 5, and are based 
on the physics of the ILS. These load combinations were chosen to provide several 
multi-component loads ranging from one to six simultaneous loads.

From the prediction interval derivation, the estimates for the calibration and 
check system uncertainties must be in units of the balance response, mV/V. In order 
to convert the uncertainty estimates from Section 4.2 to mV/V, the primary sensi­
tivities of the NTF-113C, listed in Table 18, can be used. The assumed estimates for 
the calibration and check system uncertainties in both engineering units (EU) and 
balance response units are tabulated in Table 30. With these uncertainty estimates 
and the calibration properties, from the manual stand calibration of the NTF-113C, 
the prediction intervals can be calculated for the check loads that were applied to
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FIG. 31: ILS Check Load Demonstration at NASA LaRC NTF

TABLE 29: ILS Demonstration Applied Loads
Point No. F x ,

lbs.
F1 y>

lbs.
F z ,
lbs.

M x ,
in-lbs.

M y ,
in-lbs.

M z ,
in-lbs.

1 146.0 -4.1 -2498.8 34.5 4353.1 9.1
2 305.6 347.4 -2459.9 -3017.2 2879.9 -781.5
3 146.1 5.5 -2498.8 -48.0 4352.4 -12.3
4 146.1 5.3 -2498.8 -46.3 4352.5 -11.9
5 -330.3 993.2 -2273.7 -3565.9 2867.1 -734.3
6 -145.0 -340.7 -2475.5 2957.8 -4312.0 -766.7
7 -144.9 -339.8 -2475.6 2950.2 -4312.9 -764.7
8 -224.8 321.5 -2472.1 -2792.6 -3611.3 723.6
9 -146.0 -334.9 -2476.2 2907.7 -4305.3 -753.7
10 -322.2 -991.7 -2275.5 3547.9 2797.1 716.6
11 -70.3 627.3 -2422.1 -58.3 -4840.6 1255.3
12 -70.3 627.2 -2422.2 -57.6 -4840.9 1255.2
13 -327.3 985.1 -2277.6 -3487.5 -2283.6 1488.9
14 -72.0 617.9 -2424.5 28.4 -4830.8 1230.3
15 -284.8 -824.6 -2346.1 1939.8 -2807.0 -1222.1
16 286.2 829.2 -2344.3 -1985.5 2787.7 -1228.5
17 2.2 -1.6 -2503.0 13.0 -20.9 0.0
18 174.0 -305.5 -2478.2 2652.5 -1512.3 -0.2
19 4.1 -6.0 -2503.0 51.6 -36.8 0.0
20 3.9 -6.7 -2503.0 57.5 -35.4 0.0
21 282.1 -829.1 -2344.8 1982.2 2824.7 1237.3
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TABLE 30: Calibration and Check System Uncertainties
Units F x ,

lbs.
Fy,
lbs.

F z ,
lbs.

M x ,
in-lbs.

M y ,
in-lbs.

M z .
in-lbs.

Manual Stand EU 0.615 1.476 2.058 12.35 6.981 4.668
mV/V 1.678 0.724 0.648 0.847 0.757 0.807

ILS EU 0.250 0.626 0.344 2.358 0.256 2.313
mV/V 0.683 0.307 0.108 0.162 0.028 0.400

the balance using Equation 59. The computed intervals for the collected data will 
be made assuming a level of confidence of 95% with a Bonferroni correction from 
Equation 60 where p equals 6. This correction is implemented since all six load 
components are predicted simultaneously.

Equation 59 was used to estimate two sets of prediction intervals; one set included 
both the calibration and check system uncertainties and the other did not include 
both additional uncertainties. The residual errors between the applied, physics based, 
and balance estimated loads can be used to give an indication of the performance 
of the balance with the given regression model. With the residual errors, the pre­
diction interval widths can be plotted about the zero axis. This plotting method 
is implemented, since the applied loads can have large ranges which may obscure 
the interval widths. The residuals for the all the load components of the balance 
are plotted with their respective intervals in Figures 32 through 37 in percent of full 
scale. The following plots include both sets of prediction intervals, where the black 
set represents without the additional uncertainties and the red includes them. Note 
that a confidence level of 95% is used for both estimated prediction interval sets.

In Figure 32, the majority of the residual error points are within the prediction 
interval that includes the calibration and check load system uncertainties, but the 
intervals without the additional uncertainty does not capture the majority of the 
points. This shows that when the prediction interval does not include the additional 
uncertainty due to the two load systems used, the resulting interval is too narrow 
to capture the majority of the points. In the data shown, only 9 out of 21 points 
are captured by the smaller interval, resulting in only a 42.9% capture rate which is 
much lower than the expected 95% defined by the set confidence level. The interval 
for points 5, 10, 13 and 15 have much larger intervals than the majority of the points, 
which may be due to a limitation of the applied F x component with the manual stand.
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FIG. 32: Fx Residuals vs. Run

The manual stand calibration that was performed on the NTF-113C did not include 
negative Fx loads, which will lead to an increase in the variance for load combinations 
with high negative Fx loads, and in turn inflated intervals. The Fx residual errors are 
also seen to be biased high, where the applied load is larger than the estimated. This 
bias can be expected due to using two different systems for calibration and check 
loading of the balance, which may have slight differences in applied loads.

Full capture of every data point is illustrated by the Fy residuals in Figure 33 by 
both intervals. It is also shown that the data are not as biased as the Fx component. 
This lack of bias may suggest that the Fy component is applied similarly for both 
the calibration and check load system. It should be noted that the Fy component 
is not loaded to the same percentage of full scale as the Fx component, where Fy is 
only loaded to 24.1% whereas Fx is loaded to 82.5%. It would be beneficial to load 
the full range of loads in order to exercise the full range of the balance.

Similar to the Fx results, Figure 34 illustrates that for the Fz component the 
prediction interval with the additional uncertainties contains most of the points but 
not the interval without the additional uncertainties. Again, the Fz residuals are all
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FIG. 33: Fy Residuals vs. Run
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FIG. 34: Fz Residuals vs. Run
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FIG. 35: Mx Residuals vs. Run

biased high, which signifies that the physics of the ILS may over predict the load that 
is applied, or the manual stand regression under estimates the load. The bias seen 
in the residuals may be due to only loading the Fz component around negative 2,500 
lbs; loading in the positive Fz direction would be able to indicate if a bias truly exists. 
In Fz results, the prediction interval without the additional uncertainties captures 
more points than the Fx case, but only 10 out of 21 points which is less than 50%. 
For the wider intervals, only one point lies outside of the prediction interval bounds, 
which yields a capture rate of 95.2% as expected by the set confidence level. It should 
also be pointed out that points 5, 10, 13, and 15 have larger intervals for the same 
reason that was explained for the Fx results.

Illustrated in Figure 35 is the capture rate for the two interval sets for the Mx 
component. Again, it is shown that the prediction interval without the additional 
uncertainties fails to capture the proper number of points. The interval without 
the uncertainties only captures 13 out of the 21 points which is only 61.9%. When 
the additional uncertainties are included, 16 points are captured by the intervals, 
which is a capture rate of 76.2%. With this, the intervals still fail to meet the
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FIG. 36: My Residuals vs. Run

desired 95% capture rate for the Mx component. But as seen from the Fx and Fy 
components, for individual components the capture rates may vary. Since the six 
loads are simultaneously predicted, the results from all the components should be 
analyzed as a whole. From the low Mx capture rate, it can also be argued that the 
estimated uncertainty for this component is too small to represent the true systems. 
Several points that are outside of the intervals are not far off from the bounds, and 
that a small increase in the width may allow for it to be captured.

Figure 36 illustrates that the residuals of the My component exhibits similar 
results to the Fy component, such that the both intervals captures all the points. The 
My residuals have a slight negative bias, which can be associated with a difference 
in applied load location inducing slightly different moments. The high capture rate 
of the two intervals may suggest that they are too large to properly represent the 
data collected. The smaller interval is directly based on the regression results and 
calibration load schedule, which should best represent the calibration systems. This 
behavior may suggest that the calibration performed may have larger than expected 
errors that led to a larger interval width.
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FIG. 37: M z Residuals vs. Run

The M z residuals in Figure 37 are seen to have good random distribution and are 
captured by the prediction interval with the additional uncertainty the majority of 
the time. This suggests that the intervals for this component do represent the data 
that was collected. The capture rate for the larger and smaller interval are 90.4% 
and 61.9%; again a prefect capture rate of 95% is not expected due to the small 
sample size of the data. It should be noted that the Mz component is only loaded to 
19.0% of full scale, which shows that the prediction intervals work regardless of the 
magnitude of the applied loads.

The rejection rate for the individual load components and the total capture rates 
for both with and without the additional uncertainties, and the balance two-standard 
deviations, 2cr, are shown in Table 31. From these results it is evident that without 
the additional uncertainties or the use of 2cr will result in capture rates that are too 
low for the set confidence level. This shows that the common practice of using 20- 
values to verify check load data may result in misinformed decisions regarding the 
results. This is also true for prediction interval without the additional uncertainties. 
With the inclusion of the additional uncertainties, the capture rate is closer to the
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TABLE 31: Prediction Interval Capture Rates
Component With Without 2(7
Fx 19 9 5
Fy 21 21 3
Fz 20 10 14
Mx 16 13 9
My 21 21 12
Mz 19 13 19
Sum 116 87 62
Percentage 92.1 69.0 49.2

TABLE 32: Manual Stand Prediction Interval Half Widths, Percent F.S.
Fx Fy Fz Mx My Mz

Max 1.09 0.31 0.23 0.78 0.59 0.56
With Avg 0.63 0.18 0.13 0.50 0.31 0.38

Min 0.51 0.14 0.10 0.42 0.22 0.32
Max 0.99 0.29 0.21 0.62 0.57 0.47

Without Avg 0.44 0.13 0.10 0.29 0.26 0.22
Min 0.27 0.08 0.06 0.18 0.16 0.13

desired 95% capture rate for the given sample size. F'rom these results, it is clear that 
the additional uncertainties must be included in order to have the proper capture 
rate set by the confidence level a. The lower than expected capture rate could be 
attributed to the under-estimation of the manual stand or ILS uncertainties that were 
used for the prediction intervals. Although, the number of check load points used for 
this study are relatively low, but are realistic for tunnel operations, with an increase 
in check loads the overall capture rate may approach 95%. This magnitude difference 
between the two intervals is shown in Table 32, where the maximum, average and 
minimum interval half widths are tabulated.

From Table 32, it is seen that the intervals with the additional uncertainty are 
around 20% to 70% larger in width than without. For the Fy, Fz and My components, 
the difference between the two intervals is much smaller, around 30% wider due to 
the smaller estimated uncertainties of the manual stand. The average half widths 
of the intervals are much larger than the quoted standard deviations of the balance, 
shown in Table 26. Although, these widths are not necessarily large and the averages
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TABLE 33: SYS Prediction Interval Capture Rates
Component No. Captured
Fx 21
Fy 21
Fz 21
Mx 19
My 21
Mz 18
Sum
Percentage

121
96.0

are all below 0.24%. These half-width results with the 92.1% capture rate suggest 
that the uncertainties of a balance are underestimated when using the standard 
deviations and that the developed method should be implemented, but the input 
system uncertainties should be reevaluated.

The prediction interval can also be applied to the SVS calibration system available 
at NASA LaRC, since the NTF-113C has been calibrated on both systems. Lower 
load limits were used during this calibration due to the bearing load limit restriction 
of the SVS. The same methods that were used to calculate the prediction intervals 
for the manual stand are used for the SVS. The results from for this system were 
previously investigated, but several changes in the processing method were made [36]. 
The capture rate for each of the balance components are shown in Table 33 with 
the overall capture and percentage. Prom this table it is illustrated that the SVS 
captures 96% of the data points collected, which is higher than the manual stand 
results. Although, the number of captures per component differ from the manual 
stand results. The Mx and Mz are the only two components with the points falling 
outside the intervals. If more data were processed using this interval method a 
capture rate closer to 95% could be realized.

The maximum, average and minimum interval half-widths which were computed 
for the SVS are tabulated in Table 34. From these widths it is seen that the SVS has 
a more uniform distribution of interval half-widths, as seen by the small difference 
between the maximum and minimum values when compared to the manual results. 
This more uniform distribution is due to the calibration design used for the SVS 
that provides a more uniform variance distribution. When the SVS half widths are 
compared to the manual results, the SVS provides smaller interval widths. Since the
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TABLE 34: SVS Prediction Interval Half Widths, Percent F.S.
Fx Fy Fz Mx My Mz

Max 0.689 0.126 0.155 0.805 0.543 0.314
Avg 0.648 0.121 0.152 0.777 0.537 0.304
Min 0.623 0.116 0.146 0.753 0.520 0.295

capture rate is the same with smaller widths, the residuals of the SVS results are 
smaller than those of the manual stand. The results of the SVS provides smaller 
results overall primarily due to the calibration design, but also due to the lower load 
limits used that more represent the data which was collected.

From the prediction interval results of the manual and SVS calibration systems 
using the ILS as a check load system it is seen that the methods developed can be 
used to rigorously check force balances. Even with the difference in scale of the 
two systems the results are fairly consistent. With modifications to the check load 
system uncertainties to represent the uncertainty in the force applied by a wind 
tunnel, this method could be used to generate intervals about the measured forces 
during experimental testing.
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CHAPTER 6 

CONCLUSIONS

Uncertainties in the explanatory variables during a calibration and check of an 
instrument system are generally not considered when performing system level in­
strument check outs or data analysis. Ignorance of the systems’s uncertainties may 
lead to misinformed decisions to be made in regards to the overall performance and 
accuracy of the instrument. Furthermore, the current use of two standard deviations 
does not rely on the information that is available regrading the calibration metrics 
and the calibration and check systems uncertainties. With the use of a prediction 
interval, the capture rate of confirmations or checks performed to the instrument may 
fall short of expected values. For multi-variate systems such as wind-tunnel balances 
where the desired estimate during use of the instrument is the explanatory variable, 
it is not clear how to implement a typical prediction interval, let alone include the 
additional uncertainties.

The derived prediction interval from this research addresses the issue of including 
additional uncertainties from the equipment used to perform the calibration and 
checks of an instrument. This prediction interval can be applied to the response 
variable of the system and includes the regression model, calibration and check system 
uncertainties in the form of variances. For instrument systems where the explanatory 
variable is desired, the method developed by Tripp and Tcheng is used to covert the 
interval widths over to the explanatory variable.

For multi-component force measurement devices, such as those used in wind tun­
nels, the uncertainty estimates of the calibration systems can be challenging. Manual 
stand calibration systems are highly specialized systems that present many uncer­
tainty sources. These systems currently do not have an uncertainty estimate that can 
be used for the derived prediction interval methods. This research derived a final un­
certainty estimate for the manual stand used at NASA LaRC using the propagation 
of error method. From the derivation of the system uncertainty, several observations 
were made for the NTF-113 and 20K stand combination:

•  The deflections of the calibration body provides negligible effects to the overall 
uncertainty,
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•  Long arms are desired to reduce the overall uncertainty in the applied moments,

•  The uncertainty in the angular position of the balance and the cable loads 
scales with the applied load,

•  The methodology used to align the cable loads scales with the load ranges of 
the balance, such that the initial cable alignment is more accurate for lower 
load capacity balances.

A MCS was implemented on a unsimplified model of the manual stand, unlike 
the simplified model that was used for the propagation of error. A histogram of 
one of the force components showed that enough iterations were done to build a 
sample population of the output forces. The standard deviation results from the 
MCS provided good agreement with the propagation of error results, which were 
within 1%. These positive results shows that the assumptions that were used in the 
propagation of error derivations are valid, such as small angle approximation and no 
correlated uncertainties. With these results, either method could be used to estimate 
the uncertainties of calibration or check load systems. Propagation of error method 
does have added benefits of not requiring computational resources and can reveal 
factors that influence the overall uncertainty.

The developed prediction interval and methodology was implemented on check 
loads that were applied to the NTF-113C force balance using the ILS. This demon­
stration utilized the uncertainties that were estimated in this research in the interval 
calculations for the 20K manual stand at NASA LaRC. The prediction interval results 
demonstrated the need for the inclusion of the system uncertainties in the analysis 
of check loads. Intervals that lacked the additional uncertainties failed to capture 
the expected number of points. Intervals that included the additional uncertainties 
captured nearly the correct number of points in the acquired data. A capture rate 
of 92.1% and 96% was achieved, when 95% was expected due to the confidence level 
used in the prediction interval. Although, more data should be collected to further 
verify the methodology.

The method was also implemented with the calibration metrics from a SVS cali­
bration of the NTF-113C and using the same measurement data as the manual stand. 
The results from the prediction intervals using the SVS calibration provided similar 
results to the manual stand and identical capture percentages. This showed that the
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method developed does not only work for one system, but can be implemented on 
other systems.

With these favorable results, the derived prediction interval method could be 
modified to represent the application of load applied to a wind-tunnel model during 
testing. These intervals can then be used to quantify the uncertainty of the force 
measurements made. Further research could be made in this area to properly quantify 
these type of measurements and how the derived method should be implemented.
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APPEN D IX  A

PREDICTION INTERVAL MATLAB CODE

A .l  PR ED IC TIO N  INTERVAL FR O N T END

The code written to import the proper data to implement the derived prediction 
interval methods is shown below.

%% *** USER SETTINGS *** %%
% SET THE BALANCE CATALOG FILENAME 
B alC at = ’N T F113C _cat(U pdated) ’ ;

%SET THE INPUT DATA FILENAME
I n p u tF i le  =  ’ M anuaL IL S -D ata  (2013 Ju ly 2 3  ) . x lsx  ’ ;

%Set the p r e d i c t i o n  i n t e r v a l  o u t p u t  f i l e  name 
O u tp u tF ile  =  ’ M anualP ID ata  . x lsx  ’ ; 

%%*** End OF USERS SETTINGS ***%% 

%% I n i t i a l i s a t i o n  o f  POI Libs  f o r  x l w r i t e  Fu nc t i o n  Used 
% Set  which f o l d e r  c o n t a i n s  the Java data  
X L W ritePath  =  ’ p o i_ l ib r a r y  /  ’ ;

%Temporary add the  Java p a t h s  to MATLAB 
ja v a a d d p a th  ( [ X L W ritePath  ’ poi —3.8 — 20120326. j a r  ’ ]) ; 
ja v a a d d p a th  ([ X L W ritePath  ’ p o i—ooxml —3.8 — 20120326. j a r  ’ ]) ; 
ja v a a d d p a th  ([ X L W ritePath  ’ p o i—ooxml—schem as —3.8 —20120326. j a r  ’

] ) ;

ja v a a d d p a th  ( [X L W ritePath  ’xm lbeans —2.3 .0 .  j a r  ’ ]) ; 
j a v a a d d p a t h  ([ XLWri tePath  ’dom4j — 1.6.1.  j a r  ’ ]) ; 
j a v a a d d p a t h  ([ XLWri tePath  ’ s t a x — api  —1 . 0 . 1 . j a r ’ ]) ;
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%% Read in  the bal ance  c a t a l og  
%Read bal ance  Catalog  
Ba lDat a  =  R eadB alC at ( BalCat  );

%% Read in  the bal ance  data
PD ata =  d a t a s e t  ( ’X L S F i l e I n p u t F i l e  ) ;

PData .CLoads  =  [PData .  Xl_BalEstLoad , P D a t a . X2_BalEstLoad , 
P D a t a . X3-BalEs tLoad , . . .

P D a t a . X4_BalEstLoad , PData .  
X5-BalEs tLoad , PData .  
X6-BalEs tLoad  ];

PD ata . AppLoad =  [P D a t a . Xl_Appl ied , P D a t a . X2_Applied , PData .  
X3_Applied , . . .

P D a t a . X4_Applied , P D a t a . X5_Applied , PData .  
X6_Applied ] ;

%Compute the  p r e d i c t i o n  i n t e r v a l s
PD ata =  P r e d _ I n t  v l .V3  ( PData ,  Ba lD a t a ,  O u t p u t F i l e ) ;

%Prompt us e r  t h a t  the p r o c e s s i n g  c o mp l e t ed  
msgbox ( ’ C a l c u l a t i o n s  ^Completed ’ )

A .2 PR E D IC T IO N  INTERVAL BACK END

The code that was written to provide the prediction intervals of an estimated 
balance load and generate a report based on the calculations is shown below:

f u n c t i o n  PD ata =  P red_ In tv l_V3  ( PData , BalData  , O u t p u t F i l e  ) 
%Computes the  p re  d i c t i o n  i n t e r v a l  on an e s t i m a t e d  f a c t o r  

g i v e n  r e s p o n s e s .
%
% Wr i t t e n  by Kennet h  Toro (NASA LaRC D209)
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% Las t  Modi f i ed  2 0 1 5 -0 6 -0 8  (YYYY-MM-DD)
%
%- I n t r o d u c t i o n
% This  f u n c t i o n  wi l l  compute a p r e d i c t i o n  i n t e r v a l  on the 

f a c t o r s  o f  a
% g i ven  c a l i b r a t i o n  . This  code was o r i g i n a l l y  i n t e n d e d  to be 

used f o r
% f o r c e  balances  , but  i t  not  c o n s t r a i n e d  to them s p e c i f i c a l l y  

The code is
% w r i t t e n  in a way to be as g e n e r a l  as p o s s i b l e  .
%
%-Func t i on  I n p u t s
% The i n p u t s  to the f u n c t i o n  have been g e n e r a l i z e d  to al low 

data o f  any 2D 
% array  s i z e .  The code w i l l  a u t o m a t i c a l l y  s ca l e  to the  

i n p u t s  s i z e s  ,
% i n c l u d i n g  the e x pan s i on  o f  the f a c t o r s .
%
%Note: need to g e n e r a l i z e  the e x c e l  o u t pu t  to n columns and 

any i n p u t  names
%
% L et ”n ” equal  the number o f f a c t o r s  . I t  is assum ed t ha t  

t her e  are al so
% ”n ” number o f  r e s p ons e s  , such t h a t  the l i n e a r  p o r t i o n  o f  

the r e g r e s s i o n  
% ma t r i x  is n by n.
%
% BalData . F u l l S c a l e s
% This i np u t  v a r i a b l e  s hou l d  be a 6 by n m a t r i x , where the  

rows are in  the  
% f o l l o w i n g  order :
% Ful l  Scale  H i g h ...........................................................( F a c t o r  Un i t s )
% Ful l  Scale  L o w ............................................................. ( Fac t or  Uni t s )
% R e s i d u a l  Degrees  o f  F reedom ............................. ( U n i t —Les s )
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% Mean Square Er ror  f r om the c a l i b r a t i o n  . . ( Response  Uni t s  
Sq uar e d)

% Check Sys t em U n c e r t a i n t y .................................... ( Fac t or  Un i t s )
% C a l i b r a t i o n  Sys t em U n c e r t a i n t y ...................... ( F a c t o r  Un i t s )
%
% Ba l Da t a . CalMatEU
% This i np u t  v a r i a b l e  is the r e g r e s s i o n  model  o f  the s y s t em  

under
% i n v e s t i g a t i o n  . The r e g r e s s i o n  model  s hou l d  be a m by n 

m a t r i x , where n 
% is the number o f  f a c t o r s  and m is the t o t a l  number o f  

co e f f i c i e n t  t e r ms .
% Cu r r e n t l y  the code assumes  t h a t  t he  model  is o f  second  

order  nat ure  , t hus  
% m shou l d  be :
% m = (n + 2) ! / ( 2 f * n ! )  — 1, where ! is the f a c t o r i a l

f u n c t i o n
%
% BalData .xD
% This i np u t  v a r i a b l e  is the des i gn  ma t r i x  o f  f a c t o r  se t  

p o i n t s  t h a t  were 
% used f o r  the c a l i b r a t i o n  e x p e r i me n t  , w hich was used to 

deve l op  the
% s u p p l i e d  r e g r e s s i o n  model .  The de s i gn  ma t r i x  s hou l d  be k 

by n,  where k
% is  the  number o f  i n d i v i d u a l  f a c t o r  s e t  p o i n t s  , which shoul d  

be large
% enough f o r  the des i gn  ma t r i x  to have equal  or g r e a t e r  rank  

t han the
% number o f e s t i m a t e d  t erms  (m + 1).
%
% PData.CLoads
% This i n p u t  v a r i a b l e  i s a l i s t  o f  f a c t o r s  t h a t  are d e s i r e d  

to be check ,
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% t hese  v a l ue s  s hou l d  be the i n v e r s e  p r e d i c t i o n  based on 
measured r e s p o n e s  .

% The 
%
% PDat a . AppLoad
%
%
% Out p u t F i l e  
%
%- Fun c t i on  Out put s
% The f u n c t i o n  can o u t pu t  a f o r m a t t e d  Exce l  s p r e a d s h e e t  , 

which c o n t a i n s  the  
% p r e d i c t i o n  i n t e r v a l  i n f o r m a t i o n  l i s t e d  below:
% P r e d i c t i o n  i n t e r v a l  wi d t hs
% P r e d i c t i o n  i n t e r v a l  high and low l i m i t s
% C a l c u l a t e d  t— s t a t i s t i c
% X  and X^hat  i n p u t s

%% I mpor t  Data f o r  C a l c u l a t i o n s  
%Load bal ance  i n f o r m a t i o n  f r om f i l e  
FS =  Ba lDa t a .  F u l l S c a l e s  ;

%Get the  number o f  l oads  
[neon,  n] =  s iz e  ( PData  . CLoads) ;

%Set  the or de r  num ber, s hou l d  be onl y  2. Thi s  s c r i p t  is not
s e t u p  f o r  any 

%si ze  o r d e r , yet  . . .
M = 2;

%Cal cu l a t e  the number o f  model  t erms
Mz =  f a c t o r i a l  (n + M ) / (  f a c t o r i a l  ( n ) * f a c t o r i a l  (M)) — 1;
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%Set  p a r a me t e r s  f o r  t— s t a t i s t i c  ( B o n f e r r o n i  a d j u s t m e n t )  
a l pha  =  0 .05 :

% Ca l c u l a t e  t s t a t  f o r  each response  , e x t r a c t  MSE va l ues  
t =  t inv (1 — a l p h a / ( 2 * n )  ,FS ( 3 , : )  ) ;
MSe =  FS ( 4 , : )  ; %mi c r o v o l t s  ~2

%% Format I n p u t  I n f o r m a t i o n  f o r  P r e d i c t i o n  I n t e r v a l  
C a l c u l a t i o n s

% Expand coded des i gn  ma t r i x  D to f u l l  2nd order  model  ma t r i x  
X  ( a l l

% t e r ms )  and c o n v e r t  to EUs 
X =  ExpandLoads( Ba lDat a . xD,  Mz ) ;

% Conver t  the B1 f o r m a t t e d  c a l i b r a t i o n  m a t r i x  to a f o r mu l a  
f o r m,  adding the 

% s e n s i t i v i t y  back i n t o  the co e f f i  c i e n t s  
Sens= Ba lDa t a .  CalMatEU (1 , : )  / 1 000; %EU
Cl =(  Ba lDat a  . CalMatEU ( (1 :  n) +1 , : ) . / (  ones (n , 1 )* Sens ) ) %EU
C2 =(  Ba lDat a  . CalMatEU (n+2 : end  , : ) . / (  ones (Mz—n , 1 )* Sens ) ) %

EU
Cal =  [Cl ,  C2]

% S p e c i f y  Bias  e r r o r  i n t r o d u c e d  by s e t t i n g  l oads  wi th  ILS  
% R e s u l t s  in f o r c e  and moment u n i t s  f r o m MC s i m u l a t i o n  , 

c o n v e r t  to coded  
% M u l t i p l y  by s e n s i t i v i t y  f r om coded r e g r e s s i o n  model  
C a l b i a s s q r = ( F S ( 5  , :) . / S e n s )  . ' 2 ;  %( mi c r o  V o l t s / V )  ~2

% I L S b i a s s q r  (1)  is Bias  e r r o r  ( v a r i a n c e )  due to I LS  f o r  N, 2 
is A,  3 is P etc  

App b i a s sq r  =  (FS (6 , : )  . /  Sens ) . ~ 2 ; %(mi c r o  V o l t s / V )  '2

% Expand load v e c t o r  i n t o  model  f o r m.
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ExpCon =  ExpandLoads(  PData  . CLoads , Mz) ;

% I n i t i a l i z e  empty c e l l  m a t r i c e s  
ConRed =  c e l l  . empty (n.O) ;
XXinv =  c e l l ,  empty (n , 0) ;

%Loop t hrough the bal ance  component s  
for  j =  l : n

%Find the i n d i c e s  o f  the non— zero c a l i b r a t i o n  
c o e f f i  c i e n t s  

Idx =  Cal (: , j ) '=  0;

%Reduces the f o l l o w i n g  component s  to c o r r e l a t e  wi t h  the  
non—zero  

%co e f f i  c i e n t s
ConRed{ j } =  ExpCon (: , I d x ) ;
XXRe =  X (: , Idx)  ;
XXinv { j } =  in v  (XXRe’ * XXRe); 

end %End j  , component s  , Loop

% I n i t i a l i z e  v a r i a b l e s  f o r  e f f i c i e n c y  
P l h a l f  =  z e r o s  (neon , n) ; 
dx =  z e r o s ( n e o n , n ) ;

%% Ca l c u l a t e  P r e d i c t i o n  I n t e r v a l
for  i = l : n c o n  % i nd e x  ( row o f  c o n f i r m a t i o n  m a t r i x )

for  j = l : n  % c a l c u l a t e  each l oad ,  bu i l d  p r e d i c t i o n  
i n t e r v a l s  )
% j  i s the colum n t h a t  i d e n t i f i e s  the r e g r e s s  e q n . 

v e c t o r

%Ca l c u l a t e s  the p r e d i c t i o n  i n t e r v a l  on the j t h  y— 
com ponent
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SE =  ( M S e ( j ) * ( l  +  ConRed{ j } ( i , : )  * XXinv{j} * ConRed 
{ j } ( i , :) ’) +  A p p b i a s s q r ( j )  +  C a l b i a s s q r ( j )  ) ~ 0 . 5 ; 

P l h a l f  ( i  , j )  =  t ( j ) * SE;

end  %End j  Loop
%Cal c u l a t e s  the Jacobi an  based on t he  Tr ipp method  
J =  ca l c  J a c o b i a n  ( PData . CLoads ( i , : )  , C l, C2, n , Mz) ;
%Cal c u l a t e s  the p r e d i c t i o n  i n t e r v a l  on the x ’s 
dx ( i  , : )  =  ( i nv  ( J )* P l h a l f  ( i , :) ’ ) ’ ;

end  %End i Loop

%Ca l c u l a t e s  the p r e d i c t i o n  i n t e r v a l  high and low 
PlhiEU =  PData .  CLoads +  dx ;
PIlowEU =  P D a t a . CLoads — dx ;

%Save the p r e d i c t i o n  i n t e r v a l  to the o u t p u t  v a r i a b l e  
PData .  PlhiEU  =  PlhiEU;
P D a t a . PIlowEU= PIlowEU ; 
k ey b o ard
%% Wri te Output  f i l e  
i f  no t ( ise m p ty  ( O u t p u t F i l e  ))

% Header f i l e  o f  data and component s
HHeader =  { ’ P t ’ , ’Comp ’ , ’ B a l . . E s t . .L oad  ’ , ’ P r e d i c t i o n  ’ , ’

9 5 % . P I . l o w ’ , ’ Ap p l i ed .L oa d  ’ , ’95%.P I . h i g h  ’ , ’ t ’ };
VHeader =  { ’NF’ , ’A F’ , ’PM’ , ’RM’ , AM’ , ’S F ’ };

Out =  HHeader;
% F orm ats the r e l e v a n t  data and f o r ms  an o u t p u t  c e l l  
f o r  i = l : n c o n  

f o r  j = l : n
Add =  { i ,  VHeader{ j} ,  P D a t a . CLoads ( i , j ) , ( PlhiEU ( 

i , j ) +P I lo wE U( i  , j ) ) / 2 ,  . . .
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PIlowEU ( i , j ) , P D a t a . AppLoad ( i , j ) , PlhiEU ( i , j ) 

U ( j  ) };
Out =  [ O u t ; Add ] ; 

end  %End j ,  Componnent ,  Loop
Out = [Out;  repmat  ( { ’ ’ },  1 ,8) ] ; %Add spac i n g  be tween  

p o i n t s  
end  %End i , Row, Loop

%Wri te  data to e x c e l  f i l e  
x l w r i t e ( O u t p u t F i l e  , O u t , ’ PI  ̂ Repor t  ’ ) ;

end

end  % Program end 

%% Su ppo r t  f u n c t i o n s  %%
f u n c t i o n  [ OutputLoad ] =  ExpandLoads(  I npu tLoad , Mz) 
93SXPANDLOADS Expands the i n p u t  load f u l l  second  order  
% This  s c r i p t  s i mp l y  expands  an i n p u t  an ar ray  i n t o  a f u l l

second
% order  array  or the o r i g i n a l . The o u t pu t  o f  t h i s  s c r i p t  

i s in the  
% f o l l o w i n g  order :
% [ O r i g i n a l  Ar ray ,  2 Fac t or  I n t e r a c t i o n s  , Squared Terms]
%
% Note t h a t  is i t  assum ed t ha t  f a c t o r s  are in s e p a r a t e

c o l u m n s .
% Also not e  t ha t  any number o f  rows can be s u p p l i e d .

%Get s i z e  the number o f  colum ns o f  the i n p u t  array
[nRow, nCol]  =  s i z e  ( I n p u t L o a d ) ;

SIZE =  Mz;
% I n i t i a l i z e  i t e r a t i o n  ma t r i x  
OutputLoad  =  z e r o s  (nRow, SIZE) ;
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OutputLoad ( : ,  1 : n C o l ) =  In pu tLo ad ;

%Loop t hrough each component  c o mbi na t i on  
z =  nCol +  1; 
for  i =  l : n Co l

for j =  i : nCol
OutputLoad (: , z ) =  InputLoad  (: , i ) . * I nputLoad  (: , j ) ; 
z =  z +  1; 

end %End j ,  C om ponnent, Loop 
end %End i , Row, Loop

end %End f u n c t i o n

fu n c t io n  J =  c a l c J a c o b i a n  ( L o a d , C l ,  C 2 , n,  Mz)
%This f u n c t i o n  c a l c u l a t e s  the expanded load Jacobi an  based on 

the Tripp and 
%Tchen method

%Cal cu l a t e  the number o f  2FI  and q u a d r a t i c  t erms  
SIZE =  Mz -  n;

%I n i  t i a l i z e  W 
W =  zero s  (SIZE,n)  ;

%Bui ld the q u a d r a t i c  l oad Jacobi an
z =  1;
for  i =  l:n

for j =  i : n
W( z , i ) =  Load ( j );
W( z , j ) =  W( z , j )+Load ( i ) ; 
z =  z +  1;

end
end
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%compute the Jacobi an  
J =  Cl 4- C2*W;

end  %End Func t i on
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APPENDIX B 

M ANUAL STAND UNCERTAINTY MATLAB CODE - 

PROPAGATION OF ERROR

B .l  INTERFACE SC RIPT

Below is the MATLAB script that was written to read in the desired applied 
loads, pass the load to the uncertainty estimator, and save the output to file:

%Read in d e s i r e d  loads
[num, t x t ]  =  x l s r e a d  ( ’ ManualStandLoads  . x l sx  ’ ) ; 
rows =  s i z e ( n u m , l ) ;

S_F =  z e r o s  ( rows , 3) ;
SJd =  z e r o s  ( rows , 3) ;

%Loop t hrough the rows o f  the p r o v i d e  load s h e e t  
f o r  j =  1: rows

%Set  the a p p l i e d  l oads  
f o r  i =  1: s i z e  (num, 2)

Papp . ( t x t  { i }) =  num( j , i ) ;
end
%Perform the u n c e r t a i n t y  c a l c u l a t i o n s
[ S _ F ( j , : ) ,  S_M ( j ,: ) ] =  M a n u a l S t a n d U n c e r t a i n t y  ( Papp) ;

end
%Set the o u t p u t  data f i l e  header
Header  =  { ’F x ’ , ’F y ’ , ’F z ’ , ’Mx’ , ’My’ , ’Mz’ . . .

’ sFx ’ , ’ sFy ’ , ’ sFz ’ , ’sMx’ , ’sMy’ , ’sMz’ };

%Output  the data to f i l e
c e l l 2 c s v ( ’ U n c e r t a i n t y R e s u l t s . c s v ’ ,[ Header ;  n u m 2c e l l (  [num, S_F 

, S-M ]) ])
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Header =  { ’F x ’ . ’F y ’ , ’Fz ’ , ’Mx’ , ’My’ , ’Mz’ };
SMean =  [mean(S_F) ,  mean(S_M)];
SMeanFS= S M ean . / [ 4 0 0 , 4 0 0 0 , 6 5 0 0 , 9 0 0 0 , 1 3 0 0 0  ,6500]*100;

c e l l 2 c s v  ( ’Unce r t a in tySummary  . csv ’ , [ { ’na m e ’ ; ’ E n g i n e e r i n g s  
Uni t s  ’ ; ’P e r c e n t s O f s F u l l s S c a l e  ’ } , . . .

[Header ;  num2ce l l  ( [SMean; SMeanFS]) ] ] )

B.2 U N CERTA INTY ESTIM ATOR

Below is the MATLAB script that was written to compute the uncertainty esti­
mates for the force and moment components of a manual stand calibration system:

f u n c t i o n  [S_F, S_M] =  M a n u a l S t a n d U n c e r t a i n t y  (Papp)
%This f u n c t i o n  is w r i t t e n  to p r o v i d e  an e s t i m a t e  f o r  the  

u n c e r t a i n t y
%of the NASA LaRC f o r c e  balance  manual  s t an d  c a l i b r a t i o n  

s y s t e m s  .

%The u n c e r t a i n t y  e s t i m a t e s  f o r  the v a r i o u s  no i se  c o n t r i b u t o r s  
are

%entered  below and a p p l i e d  l oads  are e n t e r e d  i n to  the  
f u n c t i o n  .

%% De f ine  s y s t em  p r o p e r t i e s  
%Balance Angle  U n c e r ta i n t y  
s . phi  =  (0 .0244*  p i / 1 8 0 )  / 2 ;  %Rad 
s . t h e t a  =  ( 0 . 0 1 7 3 * p i / 1 8 0 )  /  2; %Rad

%Cable Angle  U n c e r t a i n t y  
s . phi_c =  ( 1 / 3 2 )  / ( 8 * 1 2 )  / 2 ;
s . t h e t a _ c  =  ( 1 / 3 2 ) / ( 8 * 1 2 ) / 2 ;
s . p s i . c  =  ( 1 / 3 2 ) / ( 8 * 1 2 ) /2 ;
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%Load Po in t  U n c e r ta i n t y  
s . x  =  0 .0 0 2 1 / 2 ;  %inches  
s . y  = 0 . 0 0 5 0 / 2 ;  %inches  
s . z  =  0 . 0 0 0 3 / 2 ;  %inches

%Load U n c e r ta i n t y
s . P  =  0 . 0 0 0 1 / 2 ;  %Percent  o f  Ful l  Scale

% E l e c t r i c a l  U n c e r ta i n t y  
s.DAQ =  0 .0005;  %nV/V 
s .  LineUp =  0 .0005;  %nV/V
s . BalSen =  [3 6 5 . 9 ,  2035 .2 ,  3167 .5 ,  14602,  9208,  5 7 72 .7 ] ;  

%Define Arm Leng ths
C a l .MxArm =  40 
Cal  .MyArni =  52 
C a l . MzArm =  40

%inches
%inches
%inches

%Def ine Cable Leng ths
C a l . FyCable  =  8*12;  %inches
C a l . FxCable =  8*12;  %inches

%Def ine C a l i b r a t i o n  Body 
C a l . F i x T i p  =  8 .305 ;  %in 
Ca l .  Fix Width  = 4 ;  %in 
C a l . CalBodyMz =  6; %in

C a l cu l a t e  Force and Moment U n c e r t a i n t i e s  
%I n i t i a l i z e  To ta l  U n c e r t a i n t i e s  
S_F =  z e r o s (1 , 3 ) ;
S_M =  z e r o s (1 , 3 ) ;

%I n i t i  a l i  z e Var iab l e s  
ReduceFy =  0;
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ReduceFz =  0;

i f  P a p p . Fx ~ =  0
%Add Fx Cable Load
%Calcu la t e  load p o i n t  and magni tude  
P .F x  =  Papp .Fx ;
P . y  =  0;
P . z  =  0;
P . x =  C a l . F ixTip  ;

%Calcu la t e  the u n c e r t a i n t y  f rom the hanger  load  
[ s _ f ,  s_m] =  F x C a b l e ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l
S_F =  S_F +  s . f  +  ( s .  B a l S e n ( l : 3 ) * s  .LineUp) . "2 ;
S_M =  S-M 4- s_m 4- ( s . BalSen ( 4 : 6) * s . L ineUp) . ~ 2 ;

end

i f  Papp .Fz  ~= 0 | |  Papp.My ~= 0
i f  Papp .Fy  ~= 0 | |  Papp.Mz ' =  0

%Calcu la t e  Fy loads  and p o s i t i o n  f o r  moment

%Calcu la t e  load p o i n t  and magni tude  
i f  Papp .Fy  ~= 0

P . F y  =  Papp .Fy ;
P . x  =  Papp .Mz /P . Fy ; 

e l s e  %when Fy = 0
P . x  =  C a l . CalBodyMz ;
P . F y  =  Papp.  Mz/P.  x;

end

P . y  =  0; 
P . z  =  — C a l . Fix Width  /  2;
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%Calcu la t e  the u n c e r t a i n t y  f rom the hanger  load  
[s_f , s_m] =  F y C a b l e ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l
S_F =  S_F +  s_f +  ( s . B a l S e n ( l : 3 ) * s . L i n e U p )  . ' 2 ;
S_M =  S^M +  s_m +  (s  . BalSen (4 :6 )  *s . LineUp) . ~ 2;

end
i f  Papp.Mx ~= 0

%Add Fz Hanger on Mx Arm

%Calcu la t e  load p o i n t  and magni tude  
P .F z  =  Papp .Mx/Cal  .MxAnn;
P . y  =  Cal.MxArm;
P . z  =  C a l . F i x W id th /2 ;
P . x  =  0;

%Calcu la t e  the u n c e r t a i n t y  f rom the hanger  load  
[ s _ f ,  s_m] — FzH an ge r ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l  
S_F =  S_F +  s_f ;
S_M =  S_M +  s_m;

%Reduce Any Fz Load 
ReduceFz =  P . F z ;

end
i f  Papp.My 0

%Add Fz Hanger on My Arm

%Calcu la t e  load p o i n t  and magni tude  
P .F z  =  Papp .My/Cal  .MyArm;
P . y  =  0;
P . z  =  - C a l .  F i x W id th /2 ;
P . x  =  Cal .  MyArm;
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%Calcu la t e  the u n c e r t a i n t y  f rom the hanger  load  
[ s _ f .  s_m] = Fz Ha n g e r ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l  
S_F = S_F + s . f ;
S_M =  S_M +  s_m;

%Reduce Any Fz Load 
ReduceFz =  ReduceFz +  P . F z ;

end
i f  P a p p . Fz ~= 0

%Add Fz Hanger at BMC
%Calcu la t e  load p o i n t  and magni tude
P . F z  =  Papp .Fz  — ReduceFz;
P . y  =  0;
P . z  = C a l . F i x W i d t h / 2 ;
P . x  =  0;

%Calcu la t e  the u n c e r t a i n t y  f rom the hanger  load  
[ s _ f ,  s_m] =  Fz Ha n ge r ( s ,  P)  ;

%Add the u n c e r t a i n t y  to the t o t a l  
S.F =  S_F +  s . f ;
S_M =  S_M +  s_m ;

end
e ls e

i f  Papp.Mx ~= 0
%Add Fy Hanger on Mx Arm

%Calcu la t e  load p o i n t  and magni tude  
P . F y  =  Papp .Mx/ Cal .MxArm;
P . y  = C a l . F i x W i d t h / 2 ;
P . z  =  Ca l .  MxArm;
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P .x  =  0;

%Calcu la t e  the u n c e r t a i n t y  f rom  the hanger  load  
[ s_f , s_m] =  FyHange r ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l  
S_F =  S_F +  s_f ;
S_M =  S_M +  s.m;

%Reduce Any Fy Load 
ReduceFy = P .Fy ;

end
i f  Papp.Mz ' =  0

%Add Fy Hanger on Mz Arm

%Calcu la t e  load p o i n t  and magni tude  
P .Fy  =  Papp . Mz/ Cal .MzArm;
P . y  =  Cal .  F i x W id th /2 ;
P . z  =  0;
P . x  =  Cal .  MzArm;

%Calcu la t e  the u n c e r t a i n t y  f ro m  the hanger  load  
[ s _ f ,  s_m] =  FyHange r ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l  
S_F =  S_F +  s _f ;
S_M =  S_M +  s_m;

%Reduce Any Fy Load  
ReduceFy =  ReduceFy +  P . F y ;

end
i f  Papp .Fy  ~= 0

%Add Fy Hanger at BMC
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%Calcu la t e  load p o i n t  and magni tude  
P .F y  =  Papp .Fy  — ReduceFy;
P . y  =  C a l . F i x W i d t h / 2 ;
P . z  =  0;
P . x  =  0;

%Calcu la t e  the u n c e r t a i n t y  f rom the hanger load  
[ s . f ,  s.m] =  FyHan ge r ( s ,  P) ;

%Add the u n c e r t a i n t y  to the t o t a l  
S.F =  S.F +  s . f ;
S.M =  S.M +  s . m ;

end
end

%Add E l e c t r i c a l  Noise  U n c e r ta i n t y  
S.F =  S.F +  ( s . B a l S e n ( l : 3 ) * s . D A Q )  . "2 ;
S.M =  S.M +  ( s . BalSen (4 :6 )  * s .DAQ) . “ 2;

%Take the square  roo t  o f  the computed u n c e r t a i n t i e s  
%The va lue s  computed be fo re  are va r i a nc e s  , i . e .  s~2 
S.F =  s q r t ( S .F )  ;
S.M =  sq rt (S.M) ;

fu n c t io n  [ s . F ,  s.M] =  F zH an ge r ( s ,  P)
%Define the u n c e r t a i n t y  e q u a t i o n s  f o r  a Fz hanger  load

%This f u n c t i o n  can be used to e s t i m a t e  the u n c e r t a i n t y  f o r  
both

%the f o r c e  and moment components  f o r  a Fz load p laced  on the  
% c a l i b r a t i o n  body or a moment arm

s . F  =  [0 , 0 , P . Fz ' 2] * s . P ' 2  +
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[0,  P . F z ~ 2 ,  0]* s . p h i ~ 2  +

[P . Fz~2 ,  0,  0]* s . t h e t a
~ 2;

s_M =  [ P y ' 2 ,  P . x ' 2 ,  0]* s .P~2 +

[ ( P . Fz *P . z ) ~ 2 , 0,  ( P . F z * P . x ) '2 ]*  s . phi  *2
+  . . .

[0,  (P.  Fz*P.  z) ~2 , (P .  Fz*P.y )  "2]* s . t h e t a
"2 +  . . .

[0 , P.  Fz ‘ 2,  0] * s . x~2 +

[P .Fz  "2,  0,  0]* s . y ~ 2;

f u n c t i o n  [s_F,  s_M] =  FyHange r ( s ,  P)
%Define the u n c e r t a i n t y  e q u a t i o n s  f o r  a Fy hanger  load

%This f u n c t i o n  can be used to e s t i m a t e  the u n c e r t a i n t y  f o r  
both

%the f o r c e  and moment components  f o r  a Fy load p laced  on the  
% c a l i b r a t i o n  body or a moment arm

s_F =  [0,  P - F y ' 2 ,  0]* s . P ' 2
+  . . .

[0 , 0,  P . Fy ~ 2] * s . phi
"2 +  . . .

[ P . F y ' 2 ,  0,  0]* s .
t h e t a  * 2;

s_M =  [ ( P . Fy*P . z )* 2, 0,  ( P . F y * P . x ) ~ 2 ] *  s . P ' 2

+ . . .

[ ( P . F y * P . y ) ' 2 ,  ( P . F y * P . x ) ‘ 2,  0]* s . phi
' 2  + . . .
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[0 -
t h e t a ' 2  +

[ 0 ,

+  . . .

[P • Fy ~ 2 ,
' 2 ;

( P . Fy * P . z ) " 2 ,  ( P . F y * P . y ) ' 2 ] *  s .

0 ,

0 ,

P . Fy ~ 2] *

0 ]

s . x " 2

s . z

f u n c t i o n  [s_F,  s_M ] =  F x C a b l e ( s ,  P)
%Define the u n c e r t a i n t y  e q u a t i o n s  f o r  a Fx cable  load

%This f u n c t i o n  can be used to e s t i m a t e  the u n c e r t a i n t y  f o r  
both

%the f o r c e  and moment component s  f o r  a Fx cable  load p laced  
on the

%c a l i b r  a t i o n  body or a moment arm

s_F
+ .

s_M = 
+

[ P . F x ' 2 ,

[ 0 ,

t h e t a . c  ~2 +

[0
t h e t a . c ~ 2  +

[ 0 ,

0,

0,

P . Fx ~ 2 , 

0,
t h e t a ' 2 ;

[ 0 ,

[ ( P . Fx * P . y ) " 2 ,  ( P . F x * P . x ) ~ 2  , 
t h e t a _ c ~ 2  +  . . .

[ ( P . F x * P . z ) “2, 0,
ps i_c  ~2 +  . . .

[ ( P . F x * P . y ) ~ 2 , ( P . Fx *P . z )* 2, 
t h e t a  ~ 2 + . . .

0]*

P . F x ' 2 ] *

0 ]*

P.  Fx ~ 2] *

s ,P~2

s .

s .

s .

( P . Fx *P . z ) " 2 ,  ( P . F x * P . y )* 2]* s .P~2

0 ]*

( P . F x * P . x ) "2]* s

0]
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[0,  0,  P . F x ' 2 ] *  s . y ~ 2
+ . . .

[0,  P . F x ‘ 2, 0]* s . z
' 2;

f u n c t i o n  [ s_F,  sJVl] =  F y C a b l e ( s ,  P)
%Define the u n c e r t a i n t y  e q u a t i o n s  f o r  a Fy cable load

%This f u n c t i o n  can be used to e s t i m a t e  the u n c e r t a i n t y  f o r  
both

%the f o r c e  and moment components  f o r  a Fy cable  load p laced  
on the

% c a l i b r a t i o n  body or a moment arm

s_F =  [0 , P . F y ' 2 ,  0]* s .P~2

+  . . .

[0,  0,  P • Fy ~ 2] * s .
phi_c  ~2 +  . . .

[ P . F y ' 2 ,  0,  0]* s .
ps i_c  "2 +  . . .

[0 , 0,  P.  F y ' 2] * s . phi

~ 2 ;

s_M =  [ (P . Fy *P .  z)  ~2 , 0,  ( P . F y * P . x) ~ 2] * s .P~2

+  . . .

[ ( P . F y * P . y ) "2,  ( P . Fy*P. x ) ~2, 0]* s .
phi_c ' 2  +  . . .

[0,  ( P . Fy*P . z ) '  2 , (P • Fy * P . y ) ~ 2] * s .
ps i_c  ~2 +  . . .

[ (P.  Fy*P. y ) '  2 , ( P . Fy*P . x ) ~ 2 , 0]* s . phi
~ 2 + . . .

[0 , 0,  P .F y  "2]* s . x ' 2
+  . . .
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[ P . F y  ~  2 .  

~ 2;
0, 0]* s . z
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APPENDIX C 

M ANUAL STAND UNCERTAINTY MATLAB CODE - 

MONTE CARLO SIMULATION

C .l  INTERFACE SCRIPT

Below is the MATLAB script that was written to read in the desired applied 
loads, pass the load to the Monte Carlo Simulation, and save the output to file:

%Read in d e s i r e d  loads
[num, t x t ]  =  x l s r e a d  ( ’ ManualStandLoads  . x l sx  ’ ) ; 
rows =  s i z e ( n u m , l ) ;

F =  z e r o s ( rows , 3 ) ;
M =  z e r o s ( rows , 3 ) ;

%Set ba lance  angle  
P a p p . Phi  =  0;
P a p p . The t a  =  0;
P a p p . Ps i  =  0;

%Set cable  angle  
P a p p . Ph iCab l e  =  0;
P a p p . T he t aCab l e  =  0;
P a p p . P s iC ab l e  =  0;

%Loop t hrough the rows o f  the p rov id e  load s h e e t  
for  j =  1: rows

%Set the a p p l i e d  loads  
for i =  1 : s i z e  (num, 2 )
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Papp .( t x t  { i }) = n u m ( j , i ) ;
end

p a r f o r  k =  1:100000
%Perform the u n c e r t a i n t y  c a l c u l a t i o n s
[ F ( k , : , j ) ,  M ( k , : , j ) ]  =  ManualS tandUncer ta in tyMC (Papp)

end

F-StDev ( j , : ) =  s t d (  F ( : ,: , j ) ) ;
M_StDev( j , : ) =  s t d (  M ( : ,: , j ) ) ;

end
%Set the ou tp u t  data f i l e  header
Header  =  { ’F x ’ , ’Fy ’ , ’F z ’ , ’Mx’ , ’My’ , ’Mz’ . . .

’s F x \  ’sFy \ ’s F z ’s Mx’ , ’sMy’ , ’sMz’ };

%Output the data to f i l e
c e l l 2 c sv  ( ’ U n c e r t a in ty R es u l t s M C  . csv ’ , [ Header  ; num2ce l l  ( [num, 

F.StDev , M-StDev] ) ] )

Header  =  { ’F x ’ , ’Fy ’ , ’Fz ’ , ’Mx’ , ’My’ , ’Mz’ };
Mean =  [mean( F - S tD ev ) , mean(M_StDev) ] ;
MeanFS= M e a n . / [400 ,4000 ,6500 ,9000 ,13000 ,6500]* 100;

ce l l  2c sv  ( ’UncertaintySummaryMC . csv ’ , [ { ’name’ ; ’ E n g i n e e r i n g s  
Uni t s  ’ ; ’ P e r c e n t s O f s F u l l s S c a l e  ’ } , . . .

[Header ;  num2ce l l  ( [Mean; MeanFS]) ] ] )

C.2 SYSTEM  MODEL

Below is the MATLAB script that was written to perform the Monte Carlo Sim­
ulation for the force and moment components of a manual stand calibration system:

func t i on  [F, M] = ManualStandUncertaintyMC (Papp)
%This f u n c t i o n  is wr i t t en  to provide an es t imate  f o r  the 

u nc er ta in t y
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% o f  t h e  NASA L a RC f o r c e  b a l a n c e  m a n u a l  s t a n d  c a l i b r a t i o n  s y s t e m s .

%The  u n c e r t a i n t y  e s t i m a t e s  f o r  t h e  v a r i o u s  n o i s e  c o n t r i b u t o r s  a r e  

% e n t e r e d  b e l o w  a n d  a p p l i e d  l o a d s  a r e  e n t e r e d  i n t o  t h e  f u n c t i o n  .

D e f i n e  s y s t e m  p r o p e r t i e s  

% B a l a n c e  A n g l e  U n c e r t a i n t y  

s .  phi = 0 .0244/2;  %Deg.  

s . t h e t a  = 0 .0173/2;  %D e g .

% C a b l e  A n g l e  U n c e r t a i n t y  

s . ph i_c  = asind ( (1/32) /  (8*12) ) / 2
s . t h e t a _ c  = as ind(  (1 /  3 2) /  (8* 12) ) / 2
s . p s i_ c  = as ind(  ( 1 / 3 2 ) / (8* 12) ) / 2

%Lo a d  P o i n t  U n c e r t a i n t y

s .x = 0 .0021/2 
s . y  = 0 .0050/2  
s . z  = 0 .0003/2

% i n c h e s

% i n c h e s

% i n c h e s

%Lo a d  U n c e r t a i n t y

s . P  = 0 .0001/2 ;  % P e r c e n t  o f  F u l l  S c a l e

% E l e c t r i c a l  U n c e r t a i n t y  

s .DAQ= 0.0005;  % n V /V  

s.  LineUp = 0.0005;  % n V /V

s .BalSen = [365.9,  2035.2,  3167.5,  14602, 9208, 5772.7] ;  

% D e f i n e  A r m  L e n g t h s

Cal.MxArm = 40 
Cal.  MyArm = 52 
Cal.MzArm = 40

% i n c h e s

% i n c h e s

% i n c h e s

% D e f i n e  C a b l e  L e n g t h s  

Cal .FyCable = 8*12; % i n c h e s  

Cal .FxCable = 8*12; % i n c h e s
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% D e f i n e  C a l i b r a t i o n  B o d y  

C a l . F i xTi p  =  8 . 3 0 5 ;  % m  

Cal .  FixWidth =  4; %i n

Cal . CalBodyMz =  6; %i n

C a l c u l a t e  F o r c e  a n d  M om en t U n c e r t a i n t i e s  

% I n i t i a l i z e  T o t a l  U n c e r t a i n t i e s  

F =  z e r o s ( 3 , 1 ) ;

M =  z e r o s ( 3 , 1 ) ;

% I n i t i a l i z e  V a r i a b l e s  

ReduceFy =  0;

ReduceFz =  0;

% L oad B a l a n c e  a n d  C a b l e  A n g l e s  

P.  Phi =  normrnd ( Papp . Phi , s . p h i ) ;

P . T h e t a  =  normrnd ( Papp . Theta  , s . t h e t a ) ;

P . Ps i  =  Papp . Ps i  ;

% S e t  c a b l e  a n g l e  

P . P h i C a b l e  =  P a p p . Ph i Cab l e  ;

P . T h e t a C a b l e  =  P a p p . The t a Ca bl e  ;

P . P s i C a b l e  =  P a p p . P s i C a b l e  ;

i f  Papp.Fx ~= 0
%oAdd Fx Cable Load
%Calculate load point  and magnitude 
P.Fx = normrnd (Papp . Fx , s .P*Papp. Fx) ;
P .y  = 0;
P . z  = 0;
P .x  =  Ca l .F ixTip ;

P = Per turbPos  (P, s ) ;



%Calculate the un cer ta in t y  from the hanger load 
[ f ,  m] =  F x C a b l e ( s ,  P)  ;

%Add the uncer t a i n t y  to the t o ta l  
F =  F +  f +  ( s . BalSen (1:  3 ) *normrnd (0 , s . LineUp)  )

M =  M +  m +  ( s . B a l S e n ( 4 : 6 )  *normrnd (0 , s . L i neUp) ) ’ ;

end

i f  Papp . Fz  ' = 0  | |  Papp.My ' =  0
i f  Papp . F y  ' = 0  | |  Papp.Mz ' =  0

%Calculate Fy loads and po s i t i o n  f o r  moment

%Calculate load point  and magnitude 
i f  Papp . F y  ~= 0

P . F y  =  normrnd (Papp . Fy , s . P*Papp . Fy)  ;

P . x  =  P a p p . M z / P . F y ; 

e l s e  %when Fy = 0
P . x  =  C a l . CalBodyMz ;

P . F y  =  P a pp . M z / P . x ;

P . F y  =  n o r mr n d ( P . F y , s , P * P . F y ) ;

end

P . y  =  —C a l . Fix Width /  2;

P . z  =  0;

P =  P e r t u r b P o s  ( P , s ) ;

%Calculate the un cer ta in t y  from the hanger load 
[ f ,  m] =  F y C a b l e ( s ,  P) ;

%Add the uncer t a i n t y  to the t o ta l  
F =  F +  f 4- ( s . Ba lSen ( 1 : 3 )  *normrnd (0 , s . LineUp)  ) 

M =  M +  m +  ( s . BalSen ( 4 : 6 )  * normrnd (0 , s . L i ne Up) )

end
i f  Papp.Mx ' =  0

%Add Fz Hanger on Mx Arm
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%Calculate load point  and magnitude 
P . F z  =  Papp .Mx/Cal  .MxArm;

%Reduce Any Fz Load 
ReduceFz =  P . F z ;

P . F z  =  normrnd (P.  Fz , s . P * P . F z ) ;

P . y  =  Cal .MxAim;

P . z  =  C a l . FixWidth / 2 ;

P . x  =  0;

P =  P e r t u r bP o s  ( P , s ) ;

%Calculate the un cer ta in t y  from the hanger load 
[ f ,  m] =  F z H a n g e r ( s ,  P) ;

%Add the unc er ta in t y  to the t o ta l  
F =  F +  f ;
M =  M +  m;

end
i f  Papp.My ~= 0

%Add Fz Hanger on My Arm

%Calculate load point  and magnitude 
P . F z  =  Papp . My/Cal  .MyArm;

%Reduce Any Fz Load 
ReduceFz =  ReduceFz +  P . F z ;

P . F z  =  normrnd (P.  Fz , s . P*P.  Fz)  ; 

p . y  =  0;
P . z  =  —C a l . F i x W i d t h / 2 ;

P . x  =  Cal.MyArm;

P = Per turbPos  ( P , s ) ;
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%Calculate the unc er ta in t y  from the hanger load 
[ f ,  m] =  F z H a n g e r ( s ,  P) ;

%Add the uncer t a i n t y  to the t o ta l  
F =  F +  f;

M =  M +  m;

end
i f  Papp . Fz  ~= 0

%Add Fz Hanger at BMC
%Calculate load poin t  and magnitude
P . F z  =  Papp . Fz  — ReduceFz;

P . F z  =  normrnd ( P . Fz , s . P * P . F z ) ;

P . y  =  0;
P . z  =  C a l . F i x W i d t h / 2 ;

P . x  =  0;

P =  P e r t u r bP o s  (P,  s ) ;

%Calculate the un cer ta in t y  f rom the hanger load 
[ f ,  m] =  F z H a n g e r ( s ,  P) ;

%Add the unc er ta in t y  to the t o ta l  
F =  F +  f ;

M =  M +  m;

end
e lse

i f  Papp.Mx ~= 0
%Add Fy Hanger on Mr Arm

%Calculate load point  and magnitude 
P . F y  =  Papp.Mx/Cal  .MxArm;

%Reduce Any Fy Load 
ReduceFy =  P . F y ;
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P . F y  =  no r mr nd( P . F y , s . P * P . F y ) ;

P . y  =  Cal . F ixWidth /  2 ;
P . z  =  Cal .MxAim;

P . x  =  0;

P =  P e r t u r b P o s  (P,  s ) ;

%Calculate the un cer ta in t y  from the hanger load 
[ f ,  m] =  F y H a n g e r ( s ,  P) ;

%Add the unc er ta in t y  to the t o ta l  
F =  F +  f ;
M =  M +  m;

end
i f  Papp.Mz = 0

%Add Fy Hanger on Mz Arm

%Calculate load point  and magnitude  
P . F y  =  Papp .Mz/Cal  .MzArm;

%Reduce Any Fy Load 
ReduceFy =  ReduceFy +  P . F y ;

P . F y  =  normrnd (P.  Fy,  s . P * P . Fy )  ;

P . y  =  Cal . F i x W i d t h / 2 ;

P . z  =  0;

P . x  =  Cal .  MzArm;

P =  P e r t u r b P o s  (P,  s ) ;

%Calculate the unc er ta in t y  from the hanger load 
[ f  , m] =  FyHanger ( s , P) ;

%Add the u n cer ta in t y  to the t o ta l  
F =  F +  f ;

M =  M +  m;
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end

i f  Papp . Fy  ~= 0

%Add Fy Hanger at BMC

%Calculate load point  and magnitude 
P . F y  =  Pa p p . F y  — ReduceFy;

P . F y  =  normrnd ( P . F y , s . P * P . F y )  ;

P . y  =  Cal .  Fi xWidth /  2;

P . z  =  0;

P . x  =  0;

P =  P e r t u r b P o s  ( P , s) ;

%Calculate the unc er ta in t y  f rom the hanger load 
[ f ,  m] =  FyHange r ( s , P) ;

%Add the u nc er t a i n t y  to the t o ta l  
F =  F +  f ;

M =  M +  m;

end

end

%Add E le c t r i c a l  Noise Uncertainty  
F =  F ’ +  ( s . BalSen ( 1 :3) * normrnd (0 , s .DAQ) );

M =  M’ +  ( s . Ba lSen  ( 4 :6) *normrnd (0 , s .DAQ) );

f u n c t i o n  [F,  M] =  F z H a n g e r ( s ,  P)

%Define the un cer ta in t y  equat ions  f o r  a Fz hanger load

%This f u n c t i o n  can be used to es t imate  the unc er ta in t y  f o r  both 
%the force  and moment components f o r  a Fz load placed on the 
%cal ibra t ion  body or a moment arm

F = [0; 0; P .Fz ] ;
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F =  Angl eTrans form ( F,  P . P h i ,  P . T h e t a ,  P . P s i ) ;

R =  [ P. x ;  P . y ;  P . z ] ;

M =  c r o s s ( R , F ) ;

function [F,  M] =  F y H a n g e r ( s ,  P)
%Define the uncer ta in t y  equat ions  f o r  a Fy hanger load

%This f u nc t i on  can be used to es t imate  the un cer ta in t y  f o r  both 
%the force  and moment components f o r  a Fy load placed on the 
%cal ibrat ion  body or a moment arm

P.  Ps i  =  P.  Theta  ;

P.  Theta  =  0;

F =  [0; P . F y ;  0];

F =  Angl eTrans form ( F,  P . P h i ,  P . T h e t a ,  P . P s i ) ;

R == [ P . x ;  P . y ;  P . z ] ;

M =  cross (R, F)  ;

function [F,  M] =  F x C a b l e ( s ,  P)

%Define the uncer ta in t y  equat ions  f o r  a Fx cable load

%This f u n c t i o n  can be used to es t imate  the unc er ta in t y  f o r  both 
%the force  and moment components f o r  a Fx cable load placed on 

the
%cal ibrat ion  body or a moment arm

F =  [P. Fx;  0; 0];
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P . T h e t a C a b l e  =  normrnd ( P . ThetaCabl e  , s . t h e t a . c ) ;

P . P s i C a b l e  =  normrnd (P.  P s iC a b l e  , s . p s i . c ) ;

F =  Ang l eTrans f orm ( F,  P . P h i C a b l e ,  P . T h e t a C a b l e ,  P . P s i C a b l e ) ;

F =  Angl eTrans f orm ( F,  P . P h i ,  P . T h e t a ,  P . P s i ) ;

R =  [ P . x ;  P . y ;  P . z ] ;

M =  c r o s s ( R , F ) ;

function [F,  M] =  F y C a b l e ( s ,  P)

%Define the uncer ta in t y  equat ions f o r  a Fy cable load

%This f u n c t i o n  can be used to es t imate  the uncer t a i n t y  f o r  both 
%the force  and moment components f o r  a Fy cable load placed on 

the
%cal ibra t ion  body or a moment arm 

F =  [0; P . F y ;  0];

P . P h i C a b l e  =  normrnd (P.  PhiCable  , s . p h i . c ) ;
P . P s i C a b l e  =  normrnd(P.  P s i C a b l e  , s . p s i . c ) ;

F =  Ang l eTrans f orm ( F,  P . P h i C a b l e ,  P . T h e t a C a b l e ,  P . P s i C a b l e ) ;

F =  Ang l eTrans f orm ( F,  P.  Phi ,  P . T h e t a ,  P . P s i ) ;

R =  [ P . x ;  P . y ;  P . z ] ;

M =  cross ( R , F)  ;

f u n c t i o n  P = PerturbPos (P, s)
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P . x  =  n o r m r n d ( P . x , s . x )  

P . y  =  n o r m r n d ( P . y ,  s . y )  

P . z  =  n o r m r n d ( P . z ,  s . z )
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