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ABSTRACT

NUMERICAL SIMULATION OF COMPLEX, 

THREE-DIMENSIONAL, TURBULENT FREE JETS

Robert Vance Wilson 
Old Dominion University, 1996 

Director: Dr. Ayodeji O. Demuren

Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross- 

section are simulated with a finite-difference numerical method. The full Navier-Stokes 

equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered 

forms of the equations are solved along with a sub-grid scale model to approximate the 

effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used 

for temporal discretization and a fourth-order compact scheme is used for spatial discreti

zation. Although such methods are widely used in the simulation of compressible flows, 

the lack of an evolution equation for pressure or density presents particular difficulty in 

incompressible flows. The pressure-velocity coupling must be established indirectly. It is 

achieved, in this study, through a Poisson equation which is solved by a compact scheme 

of the same order of accuracy. The numerical formulation is validated and the dispersion 

and dissipation errors are documented by the solution of a wide range of benchmark prob

lems. Three-dimensional computations are performed for different inlet conditions which 

model the naturally developing and forced jet. The experimentally observed phenomenon 

of axis-switching is captured in the numerical simulation, and it is confirmed through flow 

visualization that this is based on self-induction of the vorticity field. Statistical quantities
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



such as mean velocity, mean pressure, two-point velocity spatial correlations and Rey

nolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress 

equations are presented to aid in the turbulence modeling of complex jets. Simulations of 

circular jets are used to quantify the effect of the non-uniform curvature of the non-circu

lar jets.
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Chapter 1

INTRODUCTION

1.1 Motivation

Turbulent jets are present in many physical processes and technological applications. 

Turbulent jets can be found in combustors where the fuel and oxidizer are introduced as 

co-flowing jets, where the efficiency of such a process is largely determined by the mixing 

of the jets. Recently, jet aircraft noise has received much attention due to plans for a high

speed civil transport. A critical issue for the project’s success is reducing jet noise to 

acceptable levels near populated areas. The belief is that acoustic patterns can be altered 

by manipulating the large scale structures in turbulent jet flows through external forcing. 

Non-circular jets can also be used to enhance the mixing of hot jet gases with the sur

roundings in aerospace applications and thus avoid aircraft detection. In industrial applica

tions. efficient mixing is required to mix pollution issuing from smokestacks with the 

ambient surroundings to avoid its harmful effects.

In the laboratory, turbulent jets usually originate from a high pressure stagnation 

chamber. Typically, the flow is then expanded through either a contoured nozzle or an ori

fice plate which caps the stagnation chamber. The jet is then allowed to mix with the ambi

ent surroundings and to develop in the streamwise direction.

Experiments have shown that three-dimensional (3-D) jets can be used to enhance 

mixing and entrainment rates compared to nominally two-dimensional (2-D) jets. A

I
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fundamental understanding of the dynamics of complex, turbulent jets is required for their 

prediction and control. The present study is concerned with understanding the spatial 

evolution of incompressible 3-D jets in the near to medium field.

12 Survey of Previous Work - Experimental

Early experimental studies of three-dimensional, turbulent jets issuing from nozzles 

and orifices (Sforza et al. 1966, Trentacoste and Sforza 1967, and Sfeir 1976) revealed a 

phenomenon known as axis switching whereby the orientation of the jet major and minor 

axes at the nozzle exit switch at a downstream location.

Sforza et al. (1966) and Trentacoste and Sforza (1967) studied the mean flow of 3-D 

jets issuing from round, elliptical, and rectangular orifices of various aspect ratios. They 

characterized the streamwise development of the mean velocity using three distinct 

regions: (i) potential core, (ii) characteristic decay, and (iii) axisymmetric decay regions. 

In the potential core region, the mixing layer separating the jet core from the ambient 

surroundings at the orifice exit, has not spread to the jet centerline. As a result, the 

streamwise velocity near the jet centerline is constant in this region. In the second region, 

the velocity profiles in the plane containing the minor dimension of the orifice were found 

to be similar whereas those in the major plane are non-similar. Because the decay of 

centerline velocity was found to be dependent on orifice geometry, this region is referred 

to as the characteristic decay region. A third region is characterized by an axisymmetric 

decay of the centerline velocity which is proportional to the inverse of the streamwise 

coordinate. Velocity profiles in both major and minor planes were found to be similar and 

mostly independent of initial geometry. The results show that the length of the potential 

core region is roughly 5 diameters for rectangular and elliptical geometries of aspect ratio, 

AR = 10. The start of the axisymmetric decay region was roughly 50 diameters

2
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downstream of the exit Saddle-shaped streamwise velocity profiles (the maximum value 

occurs away from the jet centerline) were observed in the minor axis plane in the 

characteristic decay region. One axis switching was reported at 40 equivalent diameters 

downstream of the exit for the rectangular orifice of Aft = 10.

Sfeir (1976) extended the earlier results by studying rectangular jets issuing from both 

nozzles and orifices for aspect ratios of Aft = 10, 20, and 30. Axis switching and saddle

shaped velocity profiles were found for both orifice and nozzle jets. In general, jets from 

orifices showed axis switching locations closer to the exit when compared to jets from 

nozzles of equal aspect ratio. The saddle-shaped velocity profiles were more pronounced 

for jets from orifices.

Krothapalli et al. (1981) performed experiments of rectangular jets from a moderate 

aspect ratio nozzle, Aft = 16.7 at Reynolds number of 12,000. In the characteristic or two- 

dimensional region, they found self-similar profiles for the mean velocity, Reynolds shear 

and normal stresses and a linear growth of the jet width in the minor axis plane. The shape 

of the self-similar profiles was found to be insensitive to aspect ratio, for Aft > 10. How

ever, the location where the self-similar profiles begin was found to be directly influenced 

by aspect ratio. Non-similar profiles were found in the major axis plane.

Tsuchiya et al. (1985) studied the effect of exit shape on the mean velocity field of 

rectangular jets of aspect ratios, Aft = 2 and 5. Smoothly contoured nozzles of various 

lengths and sharp-edged orifices were utilized as exit shapes. Only the jets issuing from 

orifice configurations produced saddle-shaped velocity profiles. All three configurations 

produced at least one axis switching event with the orifice jet the closest to the jet exit. In 

a later study, Tsuchiya et al. (1989) reported the saddle-shaped velocity profiles in nozzle 

jets as well.

3
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Ho and Gutmark (1987) studied jets issuing from elliptic nozzles with AR =2. Entrain- 

ment rates for the elliptic jet were found to be several times larger than equivalent area 

plane or axisymmetric jets. The increased entrainment rate was explained in terms of vor

tex induction due to the non-uniform azimuthal curvature of the shear layer. Fluid was 

found to be preferentially entrained at the minor axis plane as this portion of the vortex 

moved outward, thus resulting in an axis switching. Three such events were observed 

before the jet approached a circular shape.

Hussain and Husain (1989) extended the study of elliptic jets to include the effect of 

initial condition of the boundary layer at the jet exit plane, such as azimuthal variation of 

momentum thickness, turbulence level and effect of forcing. Axis switching was reported 

for up to 100 equivalent diameters. Subsequent studies explained the vortex ring pairing 

process (Husain and Hussain 1991) and the preferred mode coherent structure (Husain and 

Hussain 1993).

Zaman (1996) used azimuthal and streamwise vorticity dynamics to explain the pres

ence (or absence) of axis-switching in low aspect ratio, AR =3, rectangular jets. The study 

also investigated the effect of adding vorticity generating tabs at the nozzle ex it It was 

shown that contracting nozzles upstream of the jet exit plane could produce two pair of 

counter-rotating streamwise vortices which eject fluid form the jet core to the ambient 

This sense of rotation did not promote axis-switching within the measurement domain. 

Tabs placed on the short sides of the rectangular jet produced two pair of streamwise vor

tices which pump fluid from the ambient to the jet core resulting in rapid axis switching. 

Tabs placed on the long sides of the jet produced streamwise vortices of the same sense as 

that from contracting nozzles, resulting in no axis-switching.

4
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Periodic forcing of the jet was shown to spatially organize the azimuthal vortex struc

tures resulting in the first axis-switching location being closer to the jet exit when com

pared to the naturally developing je t  This was used to explain axis switching in supersonic 

screeching jets. The authors note that the effects of azimuthal and streamwise vorticity are 

not mutually exclusive and that the effect of streamwise vorticity pairs can either stop or 

augment axis-switching.

1.3 Survey of Previous Work - Analytical

Analytical techniques have been used to study non-circular jets in the literature. These 

methods fall roughly into two categories: (i) linear stability analysis, and (ii) vortex meth

ods. In the former method, the governing equations are linearized about a base flow and 

the perturbation quantity is assumed to be composed of normal modes. The linear stability 

analysis of non-circular layers is more complex than nominally 2-D, plane shear layers 

due to the inherent three-dimensionality of the base flow.

The stability of elliptic jets was initially studied by Crighton (1973) using a vortex 

sheet model. Morris (1988) extended the analysis to finite thickness shear layers. 

Koshigoe and coworkers (Koshigoe and Tubis 1986, 1987, Koshigoe et al. 1987) studied 

the instability of circular and elliptical jets using a generalized shooting method. The stud

ies showed that for elliptic jets, instabilities associated with the lower curvature portion of 

the jet boundary layer are dominate inferring that large scale coherent structures would 

form first in the minor axis plane.

Tam and Thies (1993) investigated instability waves of rectangular jets using a vortex 

sheet model which approximates the region very close to the jet exit where the boundary 

layer thickness is very small. The analysis identified four linearly independent families of 

instability modes based on mode shape (symmetry considerations). The authors found that

5
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within each family, the first and third modes are associated with jet comer instability. The 

second mode is associated with instability of the mixing layers of the center of the flat 

sides of the je t  The second mode was found to have the largest spatial growth rate and is 

thus expected to be the dominate instability in rectangular jets.

The dynamics of isolated inviscid elliptic vortex rings was studied by Viets and Sforza 

(1972) and Dhanak and DeBemandis (1981) in an effort to model elliptic jets from noz

zles. An analysis using the Biot-Savart law predicts induced velocity perpendicular to the 

plane containing the vortex core. The magnitude is proportional to the local curvature of 

the vortex tube, C, and the log of the inverse of the cross-sectional area, A; ii ~ c£log(yr‘) , 

where t  is the local bi-normal vector. Therefore, vortex tubes with high local curvature 

and small cross-sectional areas will experience larger induced velocities. The analysis pre

dicts that an initially planar elliptic ring will become distorted and switch its major and 

minor axis. Axis switching in jet issuing from nozzles and orifices is considerably more 

complex due to viscous and turbulent diffusion, shear, entrainment, and flow instabilities.

1.4 Survey of Previous Work - Computational

Previous computational studies of three-dimensional free jets are reviewed in this sec

tion. In comparison to the available experimental studies, the number of computational 

studies in the literature is sparse.

Early attempts at a numerical solution of 3-D jet flow utilized the Reynolds Averaged 

Navier-Stokes (RANS) equations whereby the instantaneous Navier-Stokes equations are 

first time-averaged and a turbulence model is used to close the system of equations (the 

well-known closure problem). The RANS equations are then solved for the time-averaged 

velocity and pressure. This procedure was followed by McGuirk and Rodi (1979) in their 

study of 3-D free jets of aspect ratio, AR = 1, 5, 10, and 20. A * -e  turbulence model was

6
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used to close the system of equations. The flow was assumed to be parabolic in the stream- 

wise direction, allowing the use of a spatial marching procedure in the downstream direc

tion. While this procedure requires less CPU time and memory than an elliptic solution, a 

boundary layer analysis shows that the flow is only parabolic in the far field. The computa

tions were unable to reproduce the experimentally observed axis switching and saddle

shaped velocity profiles. One axis switching event was predicted only after an ad-hoc 

specification of the lateral velocity components at the inflow of the computational domain 

was made. The saddle-shaped velocity profiles were never predicted. The authors attrib

uted this deficiency to the jfc-e turbulence model which is incapable of capturing the 

effects of turbulence driven secondary motion.

Quinn and Militzer (1988) utilized a 3-D elliptic solution procedure to solve the 

RANS equations for the turbulent square jet from a sharp-edged orifice. Unlike the 

McGuirk and Rodi study, the velocity components at the inflow were specified from the 

author’s experimental results, which were also presented in the paper. The computations 

were successful in predicting the decay of the centerline velocity in the medium to far 

field. Results in the near field, xlDe < 5, were only qualitatively predicted, which the 

authors attributed to a relatively coarse grid. The experimental results showed off-center- 

line peaks of mean streamwise velocity in the near field, a faster spread rate when com

pared to a circular jet of equivalent area, and positive mean static pressure in the very near 

field at the jet centerline. Saddle-shaped profiles were also reported for the normal Rey

nolds stress components. Detailed velocity profiles from the numerical solution were not 

provided so that a comparison with the above mentioned trends is not possible.

Only in the last decade an unsteady numerical solution of the Navier-Stokes equations 

for 3-D jet flows has been possible. In the direct numerical simulation (DNS) approach, all 

scales of motion are resolved by the computational grid and no modeling is required. In
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the iarge eddy simulation (LES) approach, the energy containing large scales of motion 

are resolved, while the unresolved small scales are modeled.

Grinstein and DeVore (1992) performed LES of spatially-developing square jets at 

moderate Reynolds numbers to study large scale coherent structures. The Euler equations 

of motion were solved (i.e. molecular viscosity is neglected) and an explicit filtering of the 

velocity was used as a minimal subgrid model for the unresolved scales of motion. The 

authors explain the jet dynamics in terms of the deformation, merging, and breakdown of 

initially planar square vortex rings. The deformation of the initially planar rings was 

attributed to the induced velocity due to azimuthal curvature present in the jet comers. The 

relative induced velocity results in the comers of the square ring moving ahead and 

towards the jet centerline, while the flat sides remain behind and move away from the cen

terline. The deformation results in a switching of the orientation of the square jet by 45° at 

an axial location downstream of the jet exit (x/De -  0.8 -1.0). Flow visualization of the 

results revealed pairs of counter-rotating streamwise hairpin vortices in the high strain cor

ner region between two adjacent vortex rings. Pairing of the vortex rings was accompanied 

by amalgamation of neighboring hairpin vortices which doubled their streamwise extent 

and led to the eventual breakdown of the rings. Subsequently, the flow was characterized 

by less organized, small scale vortices, indicative of fully turbulent flow.

Later studies (Grinstein 1993) focused on the LES of the very near field (xlDe < 5) of a 

2:1 aspect ratio rectangular jet. Thus, the experimentally observed axis switching at jcID e = 

7 is not captured in the author’s computation. Other studies focused on the vorticity 

dynamics of isolated, rectangular vortex rings (Grinstein 1995) and the effects of com

pressibility and initial condition (Grinstein 1996).

8
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Miller et al. (1996) performed simulations of non-circular jets at low Reynolds number 

(ReD = 800) for a streamwise extent of x/De = 9. The jets are forced at the inflow plane 

with a single sinusoidal mode. Iso-surfaces of instantaneous vorticity magnitude show the 

flow to be laminar - i.e. composed of smooth, symmetrical structures. Axis-switching is 

predicted at xlDe = 3.1 for the 2:1 AR elliptical je t and x/De = 6.3 for the 2:1 AR rectangu

lar jet. Plots of centerline velocity reveal that the end of the potential core is not reached 

within the computational domain (0 -9  De).

1.5 Summary of Literature Survey

General conclusions from the experimental and computational studies on non-circular 

jets in the literature are made in this section. Even though there are some conflicting opin

ions, trends are consistently observed in many experiments.

Early studies showed that the decay of centerline velocity in rectangular jets was char

acterized by three distinct regions: (i) potential core region, ending at roughly four to five 

diameters, where the centerline velocity is constant, (ii) characteristic decay region, end

ing at roughly 20 - 60 diameters (dependent on aspect ratio), where decay is dependent on 

initial geometry and profiles in the minor axis plane only are similar, and (Hi) the axisym- 

metric region where the decay is proportional to the inverse of the streamwise coordinate 

and is mostly independent of initial condition. There is evidence that for je t with AR > 10, 

the axis switching location scales linearly with nozzle aspect ratio. The strong skewing of 

streamlines near the jet exit in orifice jets results in axis switching closer to the jet exit in 

comparison with equivalent nozzle jets. Pronounced saddle-shaped profiles for streamwise 

mean and fluctuating velocity were also observed with orifice jets. Less pronounced sad

dle-shaped profiles were observed for nozzle jets as well. Studies reveal that entrainment
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and mixing in non-circular jets can be several times larger in comparison with equivalent 

area, circular jets. This increase occurs preferentially in the minor axis plane.

Linear stability analysis of rectangular jets indicate that instabilities associated with 

the center of the flat sides of the jet have larger spatial growth rates compared with comer 

modes and are thus expected to be dominant

Numerical studies at lower Reynolds numbers (ReD -  800) where the flow is laminar/ 

transitional, predict axis switching of non-circular jets forced with a single sinusoidal 

mode. The effect of the spectral content of the forcing function has not been addressed in 

such studies. Numerical simulation at higher Reynolds numbers are required for compari

son with most je t experiments. Spatially-developing LES performed at higher Reynolds 

numbers are limited to the potential core region and single sinusoidal mode forcing. Axis 

switching for the rectangular or elliptic jet has not been simulated numerically at higher 

Reynolds number.

1.6 Objectives of the Current Study

The specific objectives of the current study are given in this section which attempt to 

address issues not covered in the literature. The objectives of the current study are enumer

ated below.

(i) Develop a higher-order accurate numerical formulation for the simulation of spatially- 

developing, unsteady, incompressible flows with improved resolution of high fre

quency modes.

(ii) Show the effect of initial condition on jet dynamics by altering the spectral content of 

the forcing function.
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(Hi) Simulate the potential core and characteristic decay regions of non-circular jets at 

higher Reynolds numbers (ReD -  10s ).

(iv) Demonstrate axis switching at higher Reynolds numbers and explore the axis switch

ing mechanism.

(vj Compute budget terms of the mean momentum and Reynolds stress equations which 

can be used in the turbulence modeling of complex jets.

A description of the organization of this study is now given. The governing equations 

for incompressible flow are presented in Chap. 2 along with the necessary subgrid stress 

model required for large eddy simulation. Boundary and initial conditions for the spa

tially-developing jet are also presented. The temporal and spatial discretization of the gov

erning equations are presented in Chap. 3, while the details of the solution of the Poisson 

equation for pressure are presented in Chap. 4. The numerical formulation is validated in 

Chap. 5 through the solution of a variety of benchmark problems. Results of the direct 

numerical simulation of rectangular jets are presented in Chap. 6. In Chap. 7, results from 

the large eddy simulation of rectangular, elliptic, and circular jets at higher Reynolds num

ber are presented, Finally, a summary and conclusions from the study are provided in 

Chap. 8.
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Chapter 2

MATHEMATICAL FORMULATION

The equations governing the conservation of mass and momentum of an isothermal, 

incompressible, time-dependent fluid are developed in this section. The initial and bound

ary conditions for the spatially-developing jet are also given.

2.1 Governing Equations

Figure 2.1 shows the computational domain for the jet simulations along with the 

coordinate system and domain dimensions. The inflow boundary of the computational 

domain is located at a finite distance downstream of a hypothetical nozzle which produces 

a thin boundary layer separating the jet core from a stagnant freestream. It is assumed that 

the streamwise velocity makes a smooth transition from the jet velocity at the core to the 

ambient velocity and is thus modeled with the hyperbolic tangent function. The fluid then 

leaves the computational domain through the outflow boundary located a distance, Lr  

downstream of the inflow boundary.

Freestream boundaries are located in the y and z coordinate directions where fluid is 

entrained into the jet. Unless otherwise specified, the governing equations and reported 

quantities will be normalized using the equivalent jet diameter at the inflow plane, De, as 

the length scale and the jet core velocity at the inflow plane, UQ, as the velocity scale. The 

equivalent diameter for the non-circular jet is defined as the diameter of a circle having the 

same area at the inflow plane. Time will be normalized using the time scale, Dg/U0.
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2.1.1 Continuity and Momentum Equations in Physical Space

The Navier-Stokes equations written in non-conservative form for an incompressible 

fluid are given in this section. The continuity equation in a Cartesian coordinate system 

written in indicial notation is given by:

where Xj, Upj= 1, 2, 3, represent the spatial coordinates and instantaneous velocities in the 

physical Cartesian coordinate system.

The non-dimensionalized momentum equation in a Cartesian coordinate system is 

given by:

where ReD̂ = (iroDe)/v  is the flow Reynolds number, p is the non-dimensional pressure, 

and v the kinematic viscosity of the fluid. The momentum equation has three scalar com

ponents (z = 1,2,3).

The large eddy simulation (LES) approach is explored in this study, in which the large 

scales of turbulent motion are resolved while the smallest scales are not computed directly 

and are modeled in terms of the resolved scales. The filtering operation is defined by:

where the integration is extended over the computational domain, £2, and the general vari

ab le/is  filtered to yield the spatially averaged value, f. The variable G, denotes a spatial 

filter which must satisfy the normalization constraint:

(2.3)
Q
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jG (i-$)d$  = 1 (2.4)
o

It is convenient to define a grid filter that commutes with spatial and temporal differen

tiation, such that:

I  - If <w>
I  ■ i f  w

Applying the grid filtering operation of Eq. (2.3) to the governing equations of motion, 

Eqs. (2.1) and (2.2), the filtered equations of motion are obtained as

= 0 (2.7)

+ u —  = d4> 1 d<7,y
dt Jdxj ReDdxjdXj dxj (2.8)

where <j> = p + ( 1/3 )xw is the pseudo pressure, x,7 = upj-u fij  is the unresolved subgrid 

scale stress due to the non-linearity of the convection terms, and qtj = t iy- (  1 / 3 ) 8 ^  is the 

anisotropic part of the subgrid scale stress. The subgrid scale (SGS) models considered in 

this study are defined in the next section.

2.1.2 Subgrid Scale (SGS) Models

The purely dissipative model of Smagorinsky (1963) is used in the current study. The 

purpose of the SGS model is to account for the unresolved small scales. The Smagorinsky 

model has been applied to the LES of many turbulent flows such as homogenous isotropic 

flow, channel flow, and mixing layer flow. The Smagorinsky model has been one of the 

most popular SGS models for LES, partly because it correctly models the global transfer 

of energy from large to small scales. It provides an energy sink such that the large scale
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energy is drained from the flow. However, it does not correctly model local effects such as 

solid boundaries and near-wall regions, localized transfer of energy from small scales to 

large scales, and laminar and transitional flows.

The anisotropic part of the subgrid stress is modeled in terms of the resolved scales 

using an eddy viscosity model due to Smagorinsky (1963):

where v, is the turbulent viscosity predicted by the SGS and Sy the strain rate tensor of the 

resolved scales, given by

where C = 0.01, A2 is the volume of the computational cell, and |Sy| = JiSijSij is the mag

nitude of the resolved strain rate tensor.

2.1.3 Continuity and Momentum Equations in a Mapped Coordinate System

The governing equations given in Sec. 2.1.1 are mapped to an alternate coordinate sys

tem through the use of the chain rule which introduces “metric” terms. This approach has 

the potential for a more efficient use of grid points in resolving the thin boundary layer at 

the domain inflow. The velocity components are defined using the Cartesian coordinate 

system while the spatial gradients are defined in terms of the computational coordinate 

system with uniform grid spacing. The gradient terms can then be discretized using high- 

order compact finite difference schemes.

?// ~ 2v,S,y (2.9)

(2.10)

The turbulent viscosity is given by

v, = ca2|s,J (2.11)
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Consider the following general mapping of Cartesian coordinates (xx, x2, x3) to the 

alternate coordinates (elt e2, e3) :

= em(xltx2,x 3) (2.12)

First derivatives in the Cartesian coordinate system are expressed in terms of deriva

tives in the alternate coordinate system using the chain rule:

_3_ = 3
dxj dxjdz^ (2.13)

Upon expansion, Eq. (2.13) represents a sum of three products of metrics and deriva

tives. The Laplacian operator in the alternate coordinate system is expressed as

dem d f e n  d )
f e f e n

(2.14)dXjdxj d Xjdem

Equation (2.14) involves 18 terms upon expansion. It is understood that the term 

d/dem operates on the term in parenthesis. Equations (2.13) and (2.14) are used to express 

spatial gradients appearing in the continuity and momentum equations in terms of gradi

ents in the alternate coordinate system. The continuity equation in the alternate coordinate 

system is given by

_ n 
dxjden ~ (2.15)

The momentum equation in the alternate coordinate system is given by

du‘ , u d£mdu‘ = dEmdp i 1 9£m d (d£ndUi dr JdXjdem dxt8em ReDdxjdfQdxjdenj (2.16)
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The non-linear terms present in the momentum equation preclude the exact solution of 

the governing equations which must be solved numerically. The numerical approximations 

to the governing equations are given in Chap. 3.

The continuity and momentum equations represent four scalar equations for the four 

unknown variables (three velocity components in the Cartesian coordinate system and 

pressure). In the next chapter it is shown that the continuity equation is enforced through 

the solution of a Poisson equation for pressure. The Poisson equation is obtained by taking 

the numerical divergence of the discretized momentum equation.

2 2  Boundary Conditions

In order to define a well posed problem, the boundary and initial conditions for the jet 

simulations are defined. The ellipticity in the spatial terms of the governing equations 

requires that boundary conditions be defined at all boundaries. A diagram of the boundary 

conditions is provided in Fig 2.1.

2.2.1 Streamwise Inlet Boundary Conditions

In the laboratory, jet flows are commonly generated by the use of a fan which forces 

fluid along an enclosed nozzle. The jet leaves the exit plane of the nozzle where it interacts 

with the ambient fluid. Prior to exit, the jet can be considered as a relatively uniform 

freestream and a curved boundary layer at the walls of the nozzle. A short distance down

stream of the nozzle exit, the boundary layer is smoothed so that the mean streamwise 

velocity can be modeled using the hyperbolic tangent (tanh) function. The inflow bound

ary of the computational domain is placed at a short distance downstream of the nozzle 

exit which is not actually included in the jet simulations.

17
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(a)  Mean Inlet Boundary Conditions

The mean or time-averaged streamwise velocity component, U, at the inflow boundary 

is given by

where Uc = (UH + UL) / 2 is the convective velocity and and represent the velocities 

of the jet core and ambient fluid, respectively. The quantity, r, represents the minimum 

directed distance from the point, (0, y, z) to the line of constant convective velocity of the 

boundary layer (see Fig. 2.2). Thus, the shape of the line of constant convective velocity 

determines the jet geometry at the inflow plane. A super-elliptic equation was used to 

specify all jet geometries in this study:

where a = AR*b and b represents the semi-major and minor dimensions o f the constant 

convective velocity contour, and n is the exponent in super-elliptic coordinate system. For 

example, n = 2 defines an elliptic contour, while n »  1 defines a rectangular contour with 

slighdy rounded comers. The momentum thickness of the boundary layer at the inflow 

plane, 0, is used to normalize the directed distance, r. If the point (0, y, z) is “outside” the 

boundary layer contour as in Fig. 2.2, r is defined to be negative, while r  is defined to be 

positive if the point lies on the inside of the boundary layer contour. Equation (2.17) pro

duces a constant thickness boundary layer if the momentum thickness, 0O, is constant at 

all azimuthal positions along the boundary layer. Non constant thickness boundary layers 

are generated by specifying the desired variation of 0O along the contour of the boundary 

layer.

(2.17)

(2.18)
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The mean streamwise velocity at the inflow plane is specified by defining the jet core 

and ambient velocities ((JH and U[) and the momentum thickness of the shear layer, 90 in 

(2.17). For this study Ufj = I, UL = 0.01, and De/Qg = 30, which models the experimental 

jet profile a short distance (x!De < 1) downstream from a contoured nozzle. For elliptic jets 

the value of the exponent of the super elliptic coordinate system is n = 2, while for the 

rectangular jet, n = 10 is used which slightly rounds the comers (see Fig. 7.9a). This also 

models experimental jets where viscous diffusion is known to smooth the shear layer exit

ing from rectangular nozzles at the sharp comers. The mean transverse velocity compo

nents at the inflow plane are set to zero.

(b) Forced Inlet Boundary Conditions

In an effort to model jet experiments, a time dependent forcing function of low inten

sity is added to the mean velocity components at the inflow boundary to promote unsteady 

motion. At higher Reynolds numbers and computational lengths, it is speculated that small 

round-off errors would grow to produce unsteady motion of the unstable shear layers, thus 

obviating the need for forcing functions.

Two classes of perturbations are used in the current study; (/) sinusoidal perturbations 

of a specified frequency and (ii) perturbations having an experimentally measured velocity 

spectrum and transverse root mean square (rms) value, i.e.,

(i) Perturbations from linearized viscous stability theory

The first class of perturbations is derived from the solution of the Orr-Sommerfeld 

equation (OSE) which governs the instability of the reference hyperbolic tangent profile to 

spatially developing disturbances. The details of the solution of the OSE are presented in 

Wilson and Demuren (1996) with the general form of the perturbation velocities being;
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u(y, t) = Real^'GOe'6”}, v(y,t) = Real{-/a<ti(y)e,“r} (2.19)

where a ,  4>(y), a> represent the perturbation wavenumber, eigenfunction, and angular fre

quency, respectively. The variables, y  and t  represent the transverse coordinate and time, 

respectively, while i = J - i . The stability equations are solved for the plane mixing layer 

and the resulting eigenfunctions are adapted to non-circular jets by replacing the trans

verse coordinate, y, in Eq. (2.19) with the minimum directed distance, r.

(ii) Random perturbations from experimental data

Perturbations which have a broad spectrum are generated based on experimental data 

for a plane mixing layer. The velocity power spectra and root-mean-square (rms) perturba

tion levels were taken from the experiment of Spencer and Jones (1971). Because phase 

information is not included in the power spectra, a random phase relationship for the 

modes comprising the spectra was assumed. The velocity perturbations are found by per

forming a Fourier transform of the complex Fourier coefficients, atfy.f), defined by:

fi.Cy. / )  = -----4^2----J(cosy(y) + /siny(y)) (2.20)

where Ft(y, / ) ,  u}, T, and y(y) represent the normalized spectrum function, the rms level 

of the i(h velocity component, time interval of the simulation, and the randomly generated 

phase angle, respectively. The velocity perturbations for the mixing layer represented by 

Eq. (2.20) are adapted to non-circular jets by replacing the transverse coordinate, y, with 

the minimum directed distance, r. The complete details of the derivation of time-depen

dent inlet boundary conditions based on a experimentally measured spectra are given in 

Wilson (1993).
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The random inlet boundary conditions are the spatial analog to the random perturba

tions generated for initial conditions in temporal simulations. Figure 7.1a shows represen

tative time traces and power spectra for the broad mode forcing function.

It is widely accepted that the proper boundary condition for the Poisson equation for 

pressure (derived in the next chapter) is the Neumann boundary condition (Gresho and 

Sani 1987). This condition is derived by applying the normal component of the momen

tum equation at the boundary. Applying the i = 1 component of Eq. 2.2 and solving for the 

pressure gradient term results in Neumann condition for pressure at the inflow:

where the subscript “o” is used to denote the inflow boundary plane. The first term on the

shown in the next chapter.

2.2.2 Streamwise Outflow Boundary Condition

A characteristic analysis of the governing elliptic differential equations reveals no real 

characteristic curves along which disturbances travel. A disturbance is instead propagated 

in all directions at once. As a result, the solution of elliptic partial differential equations 

requires the specification of boundary conditions along the entire boundary. Boundary 

conditions are well defined at the inflow plane and can be reasonably approximated at the 

freestream boundary which is placed a large distance from the jet dynamics at the center- 

line. However, the conditions at the outflow boundary are not known a prior and must be

RHS of Eq. 2.21 is known from the inflow velocity boundary conditions, and the second 

and third terms are also known before the solution of the Poisson equation as will be
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specified such that those errors do not adversely affect the accuracy in the interior of the 

domain.

Sources of ellipticity in the governing equations that link errors at the boundary to the 

interior can be traced to pressure and viscous terms. In addition, it is possible to convect 

errors from the outflow to the interior if flow reversal occurs. The source term for the Pois

son equation for pressure also links outflow errors to the interior.

A technique which breaks the link between errors at the outflow boundary and the 

interior solution is the buffer domain technique proposed by Streett and Macaraeg (1990). 

This technique is adapted to the current jet simulations whereby the ellipticity of the gov

erning equations is eliminated in a small region (called the buffer layer) which is appended 

to the solution domain at the outflow. Practically, this is achieved by a factor which turns 

off those elliptic terms in the buffer layer. The resulting momentum equation becomes:

du: du: 3n fd U?2 \ l rt u- cl u
(222 )

\ 1 rd \
* Re0. M dx\j

where f a  is the buffer layer factor which gradually changes from unity in the solution 

domain to zero in the buffer layer through the following function:

fbi C*i) = ^(1 -  tanh[c6,(x, - x 1/2)]} (2.23)

where cbl = ln[/er/ ( l  - / fr)]/(2(xcr- x 1/2)) is a constant which controls the rate of transi

tion between the solution and buffer domains while x l/2 controls the transition location. 

For the simulations presented in Chaps. 6 and 7, the following buffer layer parameters are 

used,/cr = 0.99999, xcr = 0.99L*, and jc//2 = 0 .9 ^  This results in a computational domain 

length of ten diameters and a buffer domain length of two diameters. The convection
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velocity in the buffer domain, Up is computed from the time-averaged velocity as the com

putation progresses. In addition, the source term for the Poisson equation for pressure is 

gradually forced to zero in the buffer domain through the same function. Zero gradient 

boundary conditions for all velocity components and the pressure are then applied at the 

outflow.

2.2.3 Freestream Boundary Conditions

The freestream boundary of the jet simulations is located at a large distance from the 

jet centerline such that the developing structures do not cross this far-field boundary. This 

permits the freestream boundary to be modeled as a zero-traction boundary where pres

sure is set to zero and the gradients of the instantaneous velocity field are set to zero in the 

transverse and lateral directions:

p = 0

where n denotes the direction normal to the freestream boundary

2.3 Initial Conditions

A spatial simulation of turbulent jet flow is performed in this study where a fixed 

region of the flow is computed and disturbances grow in the streamwise direction. This 

can be contrasted with a temporal simulation where a small region of the flow is followed 

in time and the domain moves in the streamwise direction.

As a result of the spatial reference frame, initial conditions are of minor importance 

because they are quickly convected out of the domain and the dynamics of the jet flow are 

determined by the forcing functions applied at the inflow plane. Simulations are started on
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coarse grids with the velocities specified at the inflow plane used to initialize the velocity 

field in the interior at t = 0. After several flow through times (the time required for a fluid 

particle to convect from the inflow to the outflow plane at the convective velocity, Uq) the 

initial conditions are “washed” from the domain. Simulations on finer grids are started 

from results on coarser grids by prolongating the results using a standard, second-order 

accurate interpolation formula.
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V

Freestream boundaries

Outflow Boundary

Inflow Boundary

Fig 2.1 Computational domain and coordinate system for the spatially •develop

ing jet (iso-surface of vorticity magnitude from LES of rectangular jet 

shown).

(0, y, z)

Fig 2.2 Diagram showing the minimum directed distance, r, from the point

(0, y, z) to the contour of constant convective velocity, Uc, at the inflow.
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Chapter 3

NUMERICAL FORMULATION

The numerical approximations of the governing equations are described in this chap

ter. The temporal approximation to the governing equations is given in this section, while 

the spatial approximations are given in the next section.

3.1 Temporal Discretization

The time advancement scheme used to march the momentum equations in time should 

possess several qualities; low dispersion and dissipation errors over a wide range of step 

sizes, low-storage requirements, and a relatively large stability envelope. The family of 

low-storage, Runge-Kutta schemes proposed by Williamson (1980) possesses these desir

able qualities. The scheme is low-storage in the sense that only two storage locations (one 

for the time derivative and one for the variable itself) are required for time advancement. 

In comparison, a third-order fully implicit scheme requires four storage locations. For 

simplicity, the numerical approximations for the governing equations are given in the Car

tesian coordinate system with uniform grid spacing. Extension of the formulation to curvi

linear grids is accomplished by using the chain rule to replace the derivatives in physical 

space with derivatives in the uniform computational space and is straightforward.

The additional metric terms are discretized using the same higher-order compact 

schemes. The momentum equation is advanced from time level, N , to A/+1, using Q
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substages. The temporal derivative in the momentum equation is discretized using a third- 

or fourth-order explicit Runge-Kutta scheme:

01 o'" ai ox-t (3.1)

where bP is a constant of the Runge-Kutta scheme, uf represents the ith velocity compo

nent at the Mth substage (M = 0 is the Nth time level, M=Q is the N+1 time level). The 

term, / / f , denotes the sum of convection and diffusion terms:

1 (-AM[ 3 «,•
ReD, BX;dX; \ J J

The terms on the right hand side (RHS) of Eq. (3.1) are assumed known from the previous 

sub-stage or from the initial conditions at t = 0. The calculation of the pressure is accom

plished by solving a Poisson equation at each sub-stage such that the continuity is 

enforced. Since the pressure, //*, is calculated before the advancement of Eq. (3.1), u f + 1, 

can be calculated explicitly using Eq. (3.1).

The low-storage requirement is accomplished by continuously overwriting the storage 

location for the time derivatives and unknown variables at each sub-stage:

(3.3)

(3.4)

where / /f  = H*f -  [3pM/dxt] and the notation is used to indicate that the storage 

locations, H?_I, uf are overwritten by, w f , u f + 1, respectively. Tables 3.1 and 3.2 show 

the constants, ct* and iF1 (to 8 significant figures) for the low-storage, third- and fourth- 

order schemes, respectively.
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Table 3.1 Coefficients of third-order Runge-Kutta schemes 
from Lowery and Reynolds (1986)

M d*

t 0 0.500

2 -0.68301270 0.91068360

3 -1.33333333 0.36602540

Table 3.2 Coefficients of fourth-order Runge-Kutta schemes 
from Carpenter and Kennedy (1994) (defined there as solution 3)

M d 1 d *

i 0 0.14965902

2 -0.41789047 0.37921031

3 -1.19215169 0.82295502

4 -1.69778469 0.69945045

5 -151418344 0.15305724

The stability characteristics of the Runge-Kutta schemes can be analyzed by consider

ing the model equation:

|J  = £(fcO (3-5)

where <J> is the generic unknown to be advanced in time and H is the time derivative which 

contains the spatial terms of the governing equation. Equation (3.5) is transformed from 

physical space to wavenumber space by decomposing <|> into Fourier modes:

<t> = Ht)eikl (3.6)

where if(t) is the Fourier coefficient of <|>, i = 7^1, and k is the wavenumber. Substituting 

Eq. (3.6) into Eq. (3.5) yields:
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where X (a complex number) is the Fourier symbol of the spatial operator H . The Runge- 

Kutta scheme is used to expand the term on the LHS of Eq. (3.7) which gives an amplifica

tion factor, G = for the third-order scheme:

G = 1 + (XAi) + £ (XAt)2 + i(A.Af)3 (3.8)2 O

It can be shown that all three-stage, third-order Runge-Kutta schemes have the same 

amplification factor given in Eq. (3.8). Solving Eq. (3.7) analytically in time gives the 

exact amplification factor, Ge:

Ge = (3.9)

Comparing Eqs. (3.8) and (3.9), the three-stage, third-order Runge-Kutta scheme is a 

polynomial approximation to the exact solution to third-order. Similarly, the five-stage, 

fourth-order Runge-Kutta scheme has amplification factor:

G = 1 + (XAl) + | ( W  + i(XA/)3 + ^ttAO4 + jgjjf W  (3.10)

The stability of the Runge-Kutta schemes is shown graphically in Fig. 3.1 by plotting 

the |G| = 1 contour of Eq. (3.8) for the three-stage, third-order scheme and Eq. (3.10) for 

the five-stage, fourth-order scheme. A selection of XAi in the interior of the closed curve 

yields |G| < l , i.e. the scheme is stable. Outside the closed curve, |G| > l and the scheme is 

unstable. If the Fourier symbol of the spatial operator, X, is purely imaginary (for example 

the 1-D convection equation) an inspection of Fig. 3.1 reveals that the region, 

-L,<XAt<Lt , is stable. If X is purely real (for example the 1-D diffusion equation) the 

region, - lr < XAi < 0, is stable. The stability limits for these two extreme cases are given in
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Table 3.3 for the third- and fourth-order Runge-Kutta schemes. The fourth-order scheme 

allows time steps roughly twice that of the third-order scheme.

A temporal stability analysis of the 3-D convection-difFusion equation is used to 

model the temporal stability of the 3-D Navier-Stokes equations and is postponed until the 

numerical approximations to the spatial derivatives are defined.

Table 3.3 Stability limits of Runge-Kutta schemes 
for purely imaginary (Lr) or real (LR) spatial operators

Spatial
Operator

third-order, 
three stage

fourth-order, 
five stage

Imag, L[ 1.73 3.34

Real, Lr 2.51 4.65

3.2 Spatial Discretization

The numerical approximations to the spatial derivatives appearing in the semi-discrete 

momentum equations, Eq. (3.1), are given in this section. Standard second-order finite dif

ference approximations to first derivative suffer from large dispersion errors. Spectral 

methods offer exact differentiation for resolved modes but suffer from high cost and low 

flexibility in that simple domains and boundary conditions are required for their imple

mentation. In this study, high-order compact finite differences are used to approximate 

spatial derivatives because of their excellent combination of high-accuracy, flexibility, and 

relatively low cost

3.2.1 Numerical Approximation of First Derivative Terms

The first derivative terms appearing in the governing equations are approximated using 

fourth- and sixth-order compact finite difference schemes proposed by Lele (1992). High
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accuracy is achieved with relatively small computational stencil sizes by treating the 

derivative terms implicitly:

c ttt-i + t t  + o tt* , = + (3.11)

where Ax = LX/(N X- 1), Nx is the number of grid points, <j>’, represents the first derivative 

of the generic variable <{>, with respect to x, and a , a, b are the coefficients of the compact 

scheme which determine the accuracy. Similar expressions are used for derivatives with 

respect to the y and z directions. For the fourth-order scheme: a  = 1/4 , a = 3/2 , and 

6 = 0, and for the sixth-order scheme: a  = 1/3 , a = 14/9 , and b = 1 /9 . The LHS of Eq.

(3.11) contains the unknown derivatives at grid points i and i± 1 while the RHS contains 

the known functional values <(», at the grid points i ± 1 and i±2.

A comparison of explicit central difference and implicit compact approximations to 

the first derivative is given in Table 3.4. It can be seen that the implicit treatment of the 

derivative results in a smaller or more “compact” stencil for a given order. Also, the lead

ing truncation error term for the compact scheme is reduced by 1/4 for the fourth-order 

scheme and 1/9 for the sixth-order scheme compared to explicit central difference 

schemes of the same order.

Table 3.4 Comparison of explicit central difference 
and implicit compact approximations to the first derivative

Scheme Truncation error Stencil Size

fourth-order central (-4/5!)(Ax,.)VJ' 5

fourth-order compact (-l/5!)(Axy)V 5) 3

sixth-order central (-36/7!)(AxyW'1 7

sixth-order compact (-4/7!)(Axy)fy^ 5

Writing Eq. (3.11) at all grid points results in a tridiagonal system of algebraic equa

tions and that is solved efficiently by factoring the LHS into a lower/upper (LU) system
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once at the beginning of the simulation. The LU factors are stored and then used to solve 

Eq. (3.11) for the unknown derivatives.

The resolution properties of the numerical approximation to the first derivative are 

analyzed by transforming the 1-D convection equation from physical to wavenumber 

space. In physical space, the 1-D convection equation is given by:

M - °  (3-12>

where |u| is the wave speed which is assumed to be constant. Decomposing <|> into Fourier 

modes as in Eq. (3.6) and evaluating —  analytically gives:

(3.13)

While evaluating the first derivative numerically gives:

§J = (3.14)

where k* is the numerical wavenumber. For explicit finite difference schemes, a  = 0, and 

the numerical wavenumber is given by:

-  E  X  (3' 15)
t - -W

while for the tridiagonal compact scheme, the numerical wavenumber is given by:

*‘ - r6lx

L
asin(fcAjc) + ^cos(2/fcAx)

1 + 2acos(/tAx) (3.16)
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Note that in general the numerical wavenumber, k*, is complex while the exact wave

number, k, is real. For the numerical approximation to yield an exact solution, the follow

ing two conditions must be met:

Real(ifc*) = k (3.17)

ImagOfc*) = 0 (3.18)

It is easy to show that deviations from Eq. (3.17) indicate dispersion errors due to odd 

derivative terms appearing in the truncation error. Deviations from Eq. (3.18) indicate dis

sipation errors due to even derivative terms appearing in the truncation error. The real and 

imaginary parts of Eq. (3.16) are plotted separately in Fig. 3.2 for the fourth- and sixth- 

order compact schemes. In addition, some popular explicit numerical approximations to 

the first derivative are plotted for comparison; the standard second-order central difference 

scheme and a third-order upwind biased scheme.

From Fig. 3.2a, it can be seen that all four approximations do a reasonable job of 

approximating the exact wavenumber (i.e. very low dispersion errors) at very low wave- 

numbers (k&x -> 0) and that all four approximations do a poor job at very high wavenum- 

bers (kA x-^n ).  For intermediate wavenumbers, the fourth- and sixth-order compact 

schemes provide a much better approximation to the exact wavenumber over a greater 

range of wavenumbers than the explicit schemes. The second-order central difference 

scheme yields a poor approximation to the exact wavenumber for all but the very lowest 

wavenumbers (kAx<0.5). From Fig. 3.2b it can be seen that the compact and second-order 

central difference schemes contain no dissipation errors. The third-order upwind scheme 

adds numerical dissipation errors which are largest at high wavenumbers. Spectral meth

ods yield exact differentiation for all modes which can be resolved on the specified grid 

and thus correspond to the exact relationship for k&x in Fig. 3.2.
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Table 3.5 lists some quantitative measures of resolution for the five schemes. The 

wavenumber, it*, defines the region of acceptable accuracy, i.e. for 0 < k < ke, 

|t*Ax-tAr| <0.01. Modes with k > kc, are not accurately resolved. The quantity, kmax, 

defines the maximum value for the modified wavenumber, i.e. for k < kmaz, the slope of the 

curve is zero. Also listed is the number of spatial grids points per wavelength, 

PPW = 2jc/(t*Ax), to accurately resolve a given mode. From the estimate of PPW, roughly 

five times as many points are required for the second-order central difference scheme to 

achieve the same accuracy as the compact schemes.

Table 3.5 Resolution measures of various 
numerical approximations to the first derivative

Spatial Scheme **AJC
Points per 

wavelength

second-order central 022 1.00 28.6

third-order upwind 0.44 127 14J

fourth-order compact 1.11 1.73 5.6

sixth-order compact 1.55 2.00 4.1

spectral JC TC 2

For non-periodic boundaries, one-sided finite difference expressions are required to 

close the system of equations at the boundary points; i = /  and i = N  for the fourth-order 

scheme and i = 1, 2 and i = N-l, N  for the sixth-order scheme. A third-order compact 

boundary scheme is used at i = /  and i = N  with the fourth-order interior scheme:

3

+ = (3.19)
i -1

where abs = 2 and abSi = -5/2, abŝ  = 2, abSz = 1/2 are the coefficients of the third-order 

boundary scheme. A similar equation is used at i = N.
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For the sixth-order scheme, a boundary and near-boundary scheme are required for 

closure since the interior stencil is pentadiagonal. A fifth-order explicit boundary scheme 

is used at points, i =1 and i = N:

<t>'i =  ( 3 - 2 0 )

; - 1

with coefficients:

abSi = -296/105 a6jj = -215/12 

abSz = 415/48 abSi = 791/80

abSy = -125/8 abSi = -25/8

abs< = 985/48 abs% = 145/336 

A different fifth-order explicit near boundary scheme is used at points, i = 2 and i =  N-l:

8

*2 = (3'21)
i -  I

with coefficients:

anbi = -3/16 anbi = 115/144

anbi = -211/180 anbf = -1 /3

an6, = 109/48 anbi = 23/240

anb< = -35/24 a„6| = -1/72

Similar equations for the boundary and near boundary schemes are used at points i = N 
and i = N-I.
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3.2.2 Numerical Approximation of the Second Derivative

The second derivative terms present in the viscous terms of the momentum equation 

and the Laplacian operator of the Poisson equation for pressure are approximated using 

fourth- and sixth-order compact finite differences. Again, higher accuracy is achieved by 

treating the derivative implicitly:

(Ax f

+ ----------- * 2-20; + <t>£ _ 2) (322)
4 (Ax)

where <t>”, represents the second derivative of the generic variable <|>, with respect to jc, and 

a ,  a, b are the coefficients of the compact scheme. For the fourth-order scheme: 

a  = 1/10, a = 6 /5 , and 6 = 0, and for the sixth-order scheme: a  = 2 /11 , a = 12/11, and 

6 = 3/11. The tridiagonal system of algebraic equations for the second derivatives are 

solved for in the same manner as the first derivatives. A comparison of explicit central dif

ference and implicit compact approximations to the second derivative is given in Table 

3.6. As with the first derivative, the implicit treatment of the second derivative results in a 

smaller stencil size for a given order. The leading truncation error term for the compact 

formulation is reduced by 1/2 for the fourth-order scheme and 1/4 for the sixth-order 

scheme compared to explicit central difference schemes of the same order.

Table 3.6 Comparison of explicit central difference 
and implicit compact approximations of the second derivative

Scheme Truncation error Stencil Size

fourth-order central 5

fourth-order compact ( -3 .6 /6 !  XAjc,- )V 6) 3

sixth-ordered (-72/8!)(Acy-)V k' 7

sixth-order compact ( -  (-16.7/8!))(Ajcy)6<t»(8) 5
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For non-periodic boundaries, one-sided finite differences are required to close the sys

tem of equations. At / = /  and i = N, a third-order compact boundary scheme is used:

4>"i + a6,<D"2 = (3-23)
 ̂ ' i>i

where abs = 11 and abS) = 13, abli = -27, abh = 15, and abSt = -I are the coefficients of the 

third-order boundary scheme. For the sixth-order scheme, a near boundary scheme is 

required at i = 2 and i = N-I. The fourth-order interior scheme is used at these points since 

only a three-point stencil is needed.

A similar analysis of the 1-D diffusion equation is used to investigate the resolution 

qualities of the proposed compact approximation to the second derivative. In physical 

space, the 1-D diffusion equation is written as:

^  = —§ 1  (324)
d '  R e d x > }

where the term 1/Re represents the diffusion coefficient. Equation (3.24) is transferred to 

wavenumber space by decompos 

analytically, Eq. (3.24) becomes:

wavenumber space by decomposing the solution into Fourier modes. If is evaluated
dx

I  = - r / i  (3-25)

Evaluating the second derivative numerically gives:

I  * O'26*

where k* is the numerical wavenumber. For explicit finite difference schemes (a  = 0), the 

numerical wavenumber is given by:
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( k ) 2 = — 2 T  o / * 4* (3.27)

The tridiagonal compact scheme represented by Eq. (3.22) yields a numerical wavenum

ber:

(*V =
(Ax)2

’2a[l -  cos(iAx)] + 1[1 -  cos(2ifcAx)]'

1 + 2acos(/tAr) (3.28)

Since explicit central and implicit compact difference schemes for the second deriva

tive have symmetric stencils (a, = a_,), the numerical wavenumber is always a real num

ber. As a result, there are no dispersion errors in the approximation of the second 

derivative. Only dissipation errors exist The dissipation errors for the explicit second- 

order central difference, and fourth- and sixth-order compact schemes are shown in Fig.

3.3 by plotting the numerical wavenumber in Eqs. (3.27) and (3.28). It can be seen that the 

numerical wavenumber for the compact scheme more closely approximates the exact 

wavenumber over a wider range of wavenumbers. Quantitative measures of resolution 

power for the various schemes are given in Table 3.7. It can be seen from the estimate of 

the PPW that roughly twice as many points are required for the explicit second-order cen

tral difference to produce the same accuracy as the compact schemes.

Table 3.7 Resolution measures of various numerical approximations
to the second derivative

Spatial Scheme (kcAx) (CaxAx)2 Points per 
wavelength

second-order central 0.57 4.00 11.0

fourth-order compart 1.14 6.00 5.5

sixth-order compart 1.52 6.86 4.1

spectral n It2 2
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Upon discretizing the semi-discrete momentum equation using the compact schemes 

for spatial derivatives outlined above:

u f *1 = + buAt[Hi -  5xPM] (3.29)

where:

f  fM j  W 1 c* M
■ -  + n eD

3.2.3 Stability of Runge-Kutta Schemes for the 3-D Convection-Diffusion Equation

A stability analysis of the 3-D convection-diffusion equation with periodic boundaries 

and uniform grid spacing using the Runge-Kutta scheme is given in this section. The 

results of this analysis are used to model the temporal stability of the 3-D Navier-Stokes 

equations and to select a time step size for the simulations presented in this study. The 

analysis neglects the effects of non-linearity of the convection terms, non-periodic bound

aries, the continuity equation, and grid stretching and therefore cannot predict exact stabil

ity limits. The approach is to analyze the convection and diffusion equations separately 

and then to combine the two results to determine stability limits for the convection-diffu

sion equation.

Returning to the 1-D convection equation and comparing Eqs. (3.7) and (3.14), it can 

be seen that the Fourier symbol of the spatial operator, is given by, X = -i\u\k . Recall
O X

that k* is the numerical approximation to the exact wavenumber. The most unstable mode 

in the temporal integration corresponds to the maximum value of XAt over all wavenum

bers:

(X At) max = -i\u\kmaxAt = (3.30)
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where C = kmaxAx is determined by the numerical approximation to the first derivative and 

is given in Table 3.5 for the various schemes. From the results of the stability analysis of 

the model equation presented in Sec. 3.1, the stability limits for the 1-D convection equa

tion are given by:

(3-3l)

where maxl denotes the maximum quantity over all grid points. For the 3-D convection 

equation, Eq. (3.31) becomes:

_i < CA/r]«[ + Jv| +\w[l Kl (332)
L, LA* Ay &z\mazijk

where |v| and M are the convection velocities in the y  and z directions, respectively.

Considering the 1-D diffusion equation, the Fourier symbol of the spatial operator is 

found by comparing Eqs. (3.7) and (3.26). The most unstable mode is given by:

( K M ) max = - j k C A  = - o f — !7 - 5 ] (3.33)
LRe(Ax)

where D = (kmaxAr)2 is determined by the numerical approximation to the second deriva

tive and is given in Table 3.7. The stability limit for the 1-D diffusion equation is given by:

< 1 (3.34)
R'-Re(Ax) 3m0Jt.

For the 3-D diffusion equation, Eq. (3.34), becomes:

r j £ — i + — 2 + - L ^ \  < l  (335)L RR e k  A x) 2 (A y ) 2 (A z )2-U -x iM 

The stability limits of the diffusion and convection equation are combined to give the 

stability limits of the convection-diffusion equation. In this case, XAt, possesses both real
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and imaginary parts. One approach to predicting the stability of the 3-D convection-diffu

sion equation, once the computational grid is specified, is to substitute the expressions for 

XAt into Eq. (3.8) or Eq. (3.10) and solve the polynomial equation for At at all grid points. 

Selecting the time step as the minimum computed over all the grid points ensures that 

|G| <  l  for all grid points. However, the solution of such a polynomial equation involves 

multiple roots (dependent on the order of the polynomial) and is thus difficult to automate.

The present approach is to replace the actual contour, |G| = 1, with an ellipse having 

semi-major and -minor axis lengths of LR and L/, respectively. The region inside the 

ellipse is considered to be stable. The stability criterion from this approach is given by:

to <---------------1 2 175 <336)
[Limconv +

where:

Um = ^ rM  + M + !ndl
L m 'onv Ay  AzJ

,■ D r i ^ i ^ i i
intdiff LR/?eK A x)2 (Ay)2 (Az)2J 

For free shear flows at moderate to high Reynolds numbers, one expects the stability to 

be governed by the inviscid terms. At lower Reynolds number and/or flows with solid 

boundaries where extremely fine grid spacing must be used, the stability requirements 

could be governed by the viscous terms. An analysis of grids and Reynolds numbers used 

in this study indicates that stability is indeed governed by the inviscid limit and thus an 

explicit time differencing scheme such as the third- or fourth-order Runge-Kutta scheme 

allows reasonably large time steps to be taken.
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Since there are a number of simplifying assumptions made in extending the stability 

results to the Navier-Stokes equations, the time step used in the simulations is reduced 

from that predicted by Eq. (3.36):

iU<—  S ^  2-------i75 0-37)[Linegnv + Linijifjf

where i f  is a safety factor, 0 < sf<  1. For the simulations in this study, s f = 0.5 was used.

In using Eq. (3.36) to estimate the time step requirements for stability, the velocity 

components of the flow field are required to evaluate the frozen convection coefficients, 

|u[, |v|, |w|. In the absence of a representative flow field (such as at the beginning of a simu

lation) conservative estimates are used. For non-uniform grids, the local grid spacing 

(Axi/t, Ayijt, Azijk) is used and it is assumed that the effect of grid stretching on the temporal 

stability is negligible.

3.3 Enforcement of the Continuity Equation and Poisson Equation for Pressure

An examination of the governing equations reveals four scalar equations (continuity 

and three scalar components of the momentum equation) in terms of four unknowns (three 

velocity components and pressure). Time derivatives for the velocity components in the 

momentum equation are used to march those equations in time. However, no such time 

derivative exists for pressure, while the continuity equation appears to be an additional 

constraint on the velocity field. The current approach overcomes this problem by taking 

the numerical divergence of the discretized momentum equation and substituting for the 

discretized continuity equation. This results in a Poisson equation for pressure which 

ensures that the velocity field is divergence free at the M+l sub-stage.
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Applying the divergence operator 8X to the discretized momentum equation gives:

b at

The term, 8x.«ff+1, represents the discretized continuity equation at the M + 1 sub-stage 

and is set to zero to enforce the continuity equation. The term, 8xu f , represents the conti

nuity equation at the previous sub-stage M. In practice, this term is retained in the solution 

of the Poisson equation to “kill off” any accumulating divergence of the velocity field at 

the previous sub-stage. The term, 5X H f , is the source term of the Poisson equation and 

represents gradients of the convection and diffusion terms which are known from the pre

vious sub-stage. The term, 8X.8x.pw, represents the discretized Laplacian operator of the 

pressure. Solving for the Laplacian of the pressure in Eq. (3.38) gives:

M ~
V P = 8X,

M ■Uj
1 Mb At

(339)

The solution details of the Poisson equation for pressure are given in Chap. 4.
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tive (a) dispersion errors, (b) dissipation errors (zero except for 3rd-order 

upwind).
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Fig 3.3 Finite differencing error for numerical approximations of the second 

derivative.
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Chapter 4

SOLUTION OF THE POISSON EQUATION FOR PRESSURE

A significant amount of the total computational time required for the solution of the 

incompressible Navier-Stokes equations (as much as half) is devoted to the enforcement of 

the continuity equation/solution of pressure. This stems from the fact that evolution equa

tions exist for the velocity components (i.e. the momentum equations) while none exist for 

the pressure. Instead, an elliptic equation must be solved for the pressure which involves 

the solution of a system of equations and is expensive. Solutions methods for elliptic equa

tions generally fall into two categories - direct or iterative. Direct methods usually involve 

some form of Gaussian elimination where the coefficient matrix is first factored into an 

upper and lower matrix and then the solution is computed using back substitution. The 

operation count and memory requirements for this procedure can be prohibitively large for 

the solution of systems involving a large number of unknowns ( - 106 in typical 3-D 

problems). The alternative to a direct solution is an iterative procedure where an initial 

approximation to the solution is used to yield an improved solution. This process is 

repeated until the solution is converged within a pre-specified convergence criterion. The 

operation count and memory requirements of most iterative methods are less than that of 

Gaussian elimination. Therefore, the iterative solution procedure is used in this study to 

solve the Poisson equation for pressure. The details of this procedure are outlined in this 

chapter. The performance of the computer code using uniform and curvilinear grids is also 

documented and compared with published computational rates of similar codes.
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4.1 Discretized Laplacian Operator

The discrete Poisson equation for pressure which was derived in Sec. 3.3 is given by:

The LHS of Eq. (4.1) represents a discretized Laplacian operator composed of two 

applications of the first derivative operator, 8X.. It is well known that using two first deriva

tive operators to represent the Laplacian operator on non-staggered grids can lead to an 

“odd-even” decoupling of the solution. Indeed, with standard second-order central differ

encing for the first derivative operator, the solution at even grid points completely decou

ples from the odd grid points, leading to unphysical results. One remedy is to introduce 

terms of the same order as the truncation error which in effect replaces the two first deriv

ative operators with a single second derivative operator. This couples the solution at odd 

and even grid points while maintaining the same formal order of accuracy. The Laplacian 

operator is discretized using a single second derivative operator to prevent possible decou

pling and Eq. (4.1) becomes:

where 5„ ,pM represents the discrete Laplacian of pressure and is discretized using the 

compact second derivative operator given by Eq. 3.22.

Writing Eq. (4.2) at all grid points results in a system of equations that is solved at 

each sub-stage of the time advancement scheme. For simplicity, the system of equations

Laplacian operator is discretized using the fourth-order tridiagonal scheme defined in Sec.

(4.1)

(4.2)

are defined for the 2-D Poisson equation with periodic boundaries on a uniform grid. The
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3.2.2. The solution procedure is easily extended to the 3-D Poisson equation. Equation 

(4.2) can be written in the form of a system of equations as:

AP = [A'^B^ + A ^ B ^ P  = F (43)

1  L l a a
I a I ao o

Q where L - e
o o

L a I a
I  I.

a  a  I
(njxnj block matrix)

7 a l  aJ
a l  I  a l

0
A  *  ayy o

a l  1 a l  
a l  a l  7.

(nj x nj block matrix)

flxx = -  A

(nj x nj block matrix)

-27 7 -27
7 - i l l

ay
1-21 1 

r 2 l 1 -27
(njxnjblock matrix)

(«/ x I block vector)

Fmf l  '
(nj x I block vector)

(ni x ni scalar matrix)

where 7 is the ni x ni identity matrix

n -2 1 I 
1 -2 1o O

o where R = O
o o

n I -2 I
R ■ l 1 -2.

(ni x ni scalar matrix)

where * r [ pu jpxj  
(ni x 1 scalar vector)

where P; -[FI<yFi y - - - F a. J T 
(ni x I scalar vector)

where and F, y = 8_t [//I + «I/(6wA/)]i y are the pressure and source term at the i j  grid 

point, respectively. The symbols, Nx +l,Ny +l denote the number of grid points in the x, y
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directions, respectively. Vaiues at / = N'x+I and j  = Ny+l locations are replaced by values 

at i = /  and j  = 1 since the boundaries are periodic. This change results in a non-zero ele

ment in the upper right and lower left comers of the coefficient matrices. The constants, a  

and a, are from the fourth-order tridiagonal scheme for the second deriviative given in Sec.

3.2.2. The sixth-order compact scheme (with pentadiagonal RHS) can be written in the 

same manner by including the i±2 and j±2 terms in the and Byy matrices.

For non-periodic boundaries, the second derivative boundary scheme given by Eq. 

3.23 is used at the boundary points. In addition, the unknown pressures at the boundaries 

are replaced with their boundary values and those terms are moved and added to the RHS 

of Eq. (4.3). For Dirchlet boundary conditions, such as the freestream conditions given by 

Eq. (2.24), this procedure is straightforward. Neumann boundary conditions, such as those 

applied at the inflow and outflow planes, require that the pressure gradient at the boundary 

be discretized using a first derivative scheme (Eq. 3.19):

where the subscripts ‘7  j ” are used to denote the inflow plane for example. The boundary 

pressure, p / j  is then solved for:

Equation (4.5) is then used to substitute for the boundary pressures in Eq. (4.3). The first 

term on the RHS of Eq. (4.5) is known from the boundary condition and is moved and 

added to the RHS of Eq. (4.3). The second term on the RHS of Eq. (4.5) contains the 

unknown pressures, p2j  and p3j, so they are kept on the LHS of Eq. (4.3) and modify the
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existing terms of the coefficient matrix, A. The resulting system of equations contains only 

the interior pressures as unknowns, Pij, 2 ^ i< N x- l  and 2<j<.Ny- \ .

Equation (4.3) results in a “cross” type stencil at the i, j  node in which all points along 

lines passing through the central node contribute to the stencil. The coefficients of this 

stencil are implicitly defined in the sense that the matrix operations, + , in

Eq. (4.3) must be performed to determine their values.

Multiplying Eq. (4.3) by AyyAa  gives:

It is easy to show that the matrices A ^ and Ayy commute, i.e. AyyAxx = AxxAyy. Using this 

property, Eq. (4.6) simplifies to:

Using the coefficients of the fourth-order compact approximation to the second derivative 

results in an explicit nine-point, “grid” type stencil for the LHS and RHS of Eq. (4.7):

Using the coefficients of the sixth-order compact approximation to the second deriva

tive results in the same nine-point stencil for the RHS and an explicit twenty-one point 

stencil on the LHS:

(4.6)

[i4yyBix + '4rc5yy]/> = AyyA ^ (4-7)
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P i j +  (4.9)

y

'  +

+ +  P i + 2 , j - l  + P i - 2 , j + l +f > i - Z j - l l  +

+ l.y + 2 "*■ ^*i + 1. 7 - 2  ^*«- l.y + 2 ^ P  i -  1, 7 - 2 !

+ l.y> 1 + Pi+ l.y-l + f «-i./ + i +*’,•_ i.y-il — ^i,y +

/ +  1 P i . j - l  +  ^*"i+ 1, 7 '*' ^ " i -  l , y l  ■*" ®  l ^ i  + I , / +  1 +  ^ " i+  I , y -  I +  P i - \ , j +  1 +  P i -  l , j - l !

Thus for uniform cartesian grids, the stencils of Eqs. (4.8) and (4.9) are preferred 

because they require fewer operations and their coefficients are explicit as compared to the 

stencil of Eq. (4.3). The commutative property of the A ^  and Ayy matrices is valid even 

with non-periodic boundaries. Numerical experiments confirm that the cross-type stencil 

represented by Eq. (4.3) and the grid-type stencil of Eq. (4.8) or Eq. (4.9) give identical 

results.

4.2 Iteration Matrix

A point relaxation scheme is used to iteratively solve the system of equations repre

sented by Eq. (4.3) of Eq. (4.8). In this approach, only the value at the central node of the 

stencil, Pjj, is treated as an unknown so that the multi-diagonal system of equations 

degenerates to a diagonal system for one relaxation sweep, which is trivial to solve. This 

process can be written in matrix notation by decomposing the matrix, A, into the sum of 

the diagonal, lower, and upper matrices of A (Briggs 1987):
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A F  =  [ D - L -  U]P = F  (4.10)

where the matrix, D, is the diagonal matrix of A, and the matrices, L, U, are the lower and 

upper matrices of A, respectively. The solution at the current iteration level, P*, is cor

rected with the increment, P \  to yield the solution at the next iteration level, P = p '  + p ' .  

For Jacobi iteration the terms, -LP and -UP, are assumed to be known from the previous 

iterate, P*, and are moved to the RHS so that Eq. (4.10) becomes:

DP = F + [L + U]P* (4.11)

Adding the term -DP* to both sides of Eq. (4.11) casts the equations into incremental 

form:

DP' = F -A P ’ = R (4.12)

where R* is the residual vector. Equation (4.12) defines one iteration of the Poisson equa

tion. The increment, P ', is computed by solving the trivial diagonal system of equations 

and is then added to the current iterate to yield the solution at the next iteration level:

P = P* + D~lR (4.13)

This procedure is defined as a Jacobi iteration. Weighted Jacobi iteration can under-relax 

or over-relax the iterative process by multiplying the increment, P’, by a relaxation param

eter, to, so that Eq. (4.13) becomes:

P = p ' + a)D~lR (4.14)

where 0<co< 1 denotes under-relaxation, and ro> 1 denotes over-relaxation. Jacobi 

iteration is equivalent to computing the residual of the current iterate, P*, at all grid points 

followed by an update operation. In this regard, information is held and the solution is 

updated at all grid points simultaneously. Since the computation of the residual vector and 

the updating of the solution vector are completely separate operations, each operation is
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fully vectorizabie. This results in an improved computational rate when those operations 

are performed on vector computers.

Gauss-Seidel iteration makes one modification to Jacobi iteration - the updated solu

tion is used as soon as it is computed. This can be written in matrix form by considering 

Eq. (4.10). The term, -UP, is assumed to be known from the previous iteration and is 

moved to the RHS requiring the solution of the lower triangular system:

[D-L]P  = F + UP' (4.15)

In incremental form, Eq. (4.15) becomes:

P = Pm + [D -L ] 'lR (4.16)

Moving the term, -UP, to the RHS in Eq. (4.10) is equivalent to updating the solution vec

tor in an ascending order (i.e., PIJt P2J, . . .  , Pnijij)- If the term, -LP, is moved to the RHS

instead, the variables are updated in descending order (i.e., PniAj, Pni-ijij P ij)-  Many

other updating strategies are possible. For instance, if the grid points are colored black or 

red similar to a checkerboard pattern then during the first sweep all the red points are 

updated, followed by an update of all the black points. This strategy is referred to as red- 

black Gauss-Seidel. The order in which the grid points are visited for Jacobi iteration is 

immaterial since the solution vector is updated only after the residual is computed at every 

grid point. Similar to weighted Jacobi iteration, Gauss-Seidel iteration can be under- or 

over-relaxed by multiplying the increment, P’, by the relaxation factor, co:

P = p '+  (0[D-L]~lR (4.17)
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4.3 Multigrid Solution

Relaxation schemes such as Jacobi and SOR applied on a single grid level suffer from 

poor convergence rates as the number o f grid points increase. Through Fourier analysis it 

can be shown (Briggs 1987) that the high frequency error components (i.e. the difference 

between the current iterate and the fully convergenced solution) are removed very quickly, 

while the low frequency components require many iterations to be reduced to an accept

able level. In other words, many relaxation schemes are efficient smoothers (i.e. they 

remove high frequency error components with a few iteration sweeps) but are poor solvers 

because they require many iterations to remove low frequency components.

Multigrid methods overcome these deficiencies by utilizing a hierarchy of grids. 

Smooth error components are transfered to coarser grids where they appear as high fre

quency error components and are quickly removed by relaxation sweeps. Relaxation 

sweeps on the coarser grids are also much cheaper to perform.

A coarse grid correction scheme is utilized in the current study to improve the conver

gence rate of the pointwise relaxation scheme on a single grid. Subscripts are used to 

denote grid level, i.e. Ph and P2h denotes the solution on the fine and coarse grids, respec

tively. The symbol, l \h, is used to denote transfer from the fine to the coarse grid, while 

ihlh is used to denote transfer in the opposite direction. The algorithm for one coarse grid 

correction is given below and additional details can be found in Briggs (1987).

(1) Smooth the current iterate, p \ , on the fine grid v1 times:

* A l) = F»
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(2) Calculate the residual on the fine grid:

Rh = Fh- A hPh]

(3) Transfer (restrict) the residual to the coarse grid, where it is used as the source term 

for the error equation:

RlH = l?*H

(4) Solve for the error on the coarse grid:

&2h ~ ^2tF2h

(5) Transfer (prolongate) the error to the fine grid and correct the solution:

p(2) ____  J7
h ~~ * h  ^  * 2 h ^ 2 h

(6) Perform v2 post-relaxation sweeps:

AhPh = Fh

Standard second-order interpolation is used to transfer variables from the coarse to the 

fine grid, while the full weighting operator is used to transfer variables in the opposite 

direction. Although the above algorithm utilizes only two grid levels, improved efficiency 

results from encorporating as many grid levels as possible. In this respect, the direct solu

tion of the error equation in step (5) is performed on a very coarse grid requiring a small 

number of operations. Simulations presented in Chaps. 6 and 7 utilize five grid levels.

Since the simulations are performed on vector computers, Jacobi iteration was utilized 

for relaxation sweeps because it is fully vectorizable. Two pre- and two post-relaxation 

sweeps were performed on each grid. Through numerical experiments, the optimum relax

ation factor for the uniform grid formulation was found to be, co = 0.9. Typically, three
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coarse grid corrections were performed for the solution of the Poisson equation which 

reduced the initial L2 norm of the residual two orders of magnitude. Tests using twice as 

many corrections resulted in a maximum of 3% difference in the pressure.

4.4 Performance of Computer Code

The computational rate of the computer code on uniform and curvilinear grids is given 

in this section. The numerical formulation was extended to curvilinear grids which was 

used to concentrate grid points in the mixing layers of the rectangular jet near the inflow. 

Downstream of the potential core, the flow is fully turbulent Clustering of the grid to 

resolve large gradients due to small scale structures is not possible without the use of time- 

varying, adaptive grids (which is outside the scope of the present study). Therefore, the 

grid is gradually relaxed to uniform spacing in this region. As mentioned in Sec. 4.1, uni

form grids enable manipulation of the discrete Poisson equation leading to a reduced sten

cil size and cost as compared with the curvilinear grids making the computational rate 

roughly one order of magnitude less. Part of the reason for the increase in computational 

rate is that convergence rates for the multigrid solution of the Poisson equation deteriorate 

with grid clustering and large aspect ratio. Table 4.1 lists the computational rate for Carte

sian and curvilinear formulation. Also listed in the table is the rate of a second-order accu

rate formulation from Le and Moin (1994). Therefore, the uniform grid formulation was 

utilized for most of the simulations to be presented in Chaps. 6 and 7.
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Table 4.1 Computational rate

Study Grid Scheme Rate
(cpu/ts../pt)

Wilson Cartesian fourth-order
compact

5.7 x KT6

Wilson curvilinear fourth-order
compact

6.2 x 10*5

Le & Moin (1992) Cartesian second-order
central

3.9 x KT6
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Chapter 5

VALIDATION OF NUMERICAL METHOD

In this chapter, the numerical formulation is validated through the solution of a wide 

range of benchmark problems. Emphasis is placed on the numerical approximation of spa

tial derivatives. In particular, the convection terms (containing first derivatives) present the 

most difficulty in numerical approximation since large dispersion errors exist at high 

wavenumbers {kAx -  it). It is essential that the numerical approximation to the first deriva

tive provide low dispersion errors over a large range of wavenumbers. This is especially 

true in 3-D simulations where reducing the required number of grid points by half in each 

coordinate direction leads to eight times fewer total grid points.

In Chap. 3, the theory showed that compact schemes require roughly five times fewer 

points to accurately resolve a given mode compared to the standard second-order central 

difference approximation to the first derivative. This theory is tested by solving some prac

tical problems ranging from the 1-D convection equation to the 2-D Navier-Stokes equa

tions.

The purpose of the present chapter is to (i) demonstrate the resolution qualities of the 

compact schemes and (ii) compare and contrast results from the compact scheme with 

results from other popular schemes.
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5 .1 1-D Convection Equation

The first problem to be solved is the 1-D convection equation, Eq. (3.12), which tests 

the time advancement scheme and the numerical approximation to the first derivative. The 

exact solution corresponds to convection of the scalar profile at the constant wave speed, c. 

Distortion in the shape of the profile indicates dissipation and/or dispersion errors in the 

solution. The convection of a Gaussian profile was solved using three approximations to 

the first derivative; (i) a second-order central difference, (ii) a third-order upwind, and (iii) 

the fourth-order compact approximation outlined in Section 3.2.1. The third-order Runge- 

Kutta scheme was used to advance the equation in time for all spatial schemes. In addition, 

the CFL number (and thus the time step) was kept small so that resulting errors are due to 

the spatial formulation.

The parameters and initial conditions are those proposed at the ICASE/LARC Work

shop on Benchmark Problems in Computational Aeroacoustics, Hardin et al. (1995):

problem provides an excellent test of the resolution power of the numerical approxima

tion. Figure 5.1 shows the computed solutions at t -  400 after the profile has convected to 

x  = 400. There is little discernible difference between the exact solution and the solution 

with the fourth-order compact scheme. However, the solutions with the second-order cen

tral difference and the third-order upwind approximations show greatly reduced peak val

ues and large, dispersive waves trailing the Gaussian profile. The errors from the second- 

order central difference scheme are the most severe.

(5.1)

-20 <x< 450, Nx = 470 grid points, c = 1 

Since the specified grid is relatively coarse in comparison with the initial conditions, this
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It is difficult to determine by inspection what portion of the error is dispersive and 

what portion is dissipative. The solutions are transformed into wavenumber space using a 

Fourier transform method and compared with the exact solution in Fig. 5.2 to address this 

issue. The graph displays the resulting complex Fourier coefficient in polar form with the 

amplitude displayed in Fig. 5.2a and the phase angle in Fig. 5.2b. It can be seen from Fig. 

5.2a that the solutions computed with the second-order central difference and fourth-order 

compact schemes predict the correct amplitude for all modes. The amplitude of the solu

tion computed with the third-order upwind scheme is reduced or dissipated, especially at 

higher wavenumbers. Figure 5.2b shows that the fourth-order compact scheme predicts 

the correct phase angle even for the highest wavenumbers.

The phase angle from the second- and third-order solutions are only correctly pre

dicted for the very lowest wavenumbers (k < 0.2 for the second-order solution and k < 0.3 

for the third-order solution). Large dispersion errors are evident at high wavenumbers. The 

above trends in the numerical solutions are consistent with the dissipation/dispersion error 

theory for the 1-D convection equation and show the resolution power of the compact 

schemes.

The second problem, also proposed at the ICASE/LARC Workshop on Benchmark 

Problems, is the solution of the 1-D convection equation in a spherical coordinate system. 

The governing equation takes the form:

l?+; +£ - 0 ^
5 <x<450, Nx = 445 grid points

Initial Conditions:

u(x, 0) = 0
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Boundary Conditions:

h(5, r) =  s i n ^ j  j

Figure 5.3 shows the exact solution at t -  400 which corresponds to a damped sine wave 

due to the addition of the u/x term in the governing equation. Fig. 5.4 shows computational 

results for the region, 200 < x  < 220 using the third-order upwind approximation to the 

first derivative on two grids and the fourth-order compact scheme. The solution with 16 

points per wavelength shows a greatly reduced amplitude and a phase shift relative to the 

exact solution. It takes roughly 64 PPW (not shown) to reproduce the exact solution with 

the third-order upwind approximation. The fourth-order compact approximation is able to 

reproduce the exact solution with 8 PPW.

5.2 2-D Convection Equation

Multidimensional effects of the numerical formulation are explored by solving for the 

convection of an inverted cone around a circle. This problem is governed 2-D convection 

equation:

du , du , du n ,c
dt Xd x > d y  = ( )

where cx = -y and cy = x, are the convection speeds in the x  and y  directions, respectively.

The initial conditions are that of an inverted sharp cone centered at x, y  = -0.5,0. The exact

solution corresponds to the cone being convected counterclockwise in a circular path of

radius, r0 = 0.5 with a period of 2re. Distortion of the shape of the cone is an indication of

dispersion and/or dissipation errors.

Figure 5.5 shows computed results after one revolution of the cone using (a) a third-

order upwind approximation and (b) a fourth-order compact approximation to the first
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derivatives on a 32 x  32 grid with uniform spacing. This grid defines the shape of the cone 

with a maximum of 8 points in each coordinate direction. The exact shape of the cone is 

included to the right of the computed solution at x , y  = 0.5,0 for comparison purposes. The 

third-order solution (Fig 5.5a) shows that the sharp point of the cone is greatly diffused 

and that dispersion errors are evident trailing the cone. A grid of 128 x 128 (or 32 points 

defining the shape of the cone) must be used with the third-order upwind approximation 

before the shape of the cone is faithfully reproduced. The fourth-order compact solution 

(Fig 5.5b) shows that the shape of the cone is not distorted as it is convected around the 

circle on the 32 x  32 grid. Indeed, the only noticeable error is a very small “grid to grid” 

oscillation due to the absence of physical viscosity in this problem and numerical viscosity 

in the compact scheme.

Figure 5.6 shows results for the same problem after one revolution obtained by Orszag 

(1971) using (a) second-order Arakawa finite-difference, (b) fourth-order Arakawa finite- 

difference, and (c) a spectral approximation to the first derivatives on a 32 x  32 grid. The 

finite difference solutions show errors similar to the third-order solutions in Fig. 5.5. The 

spectral method, which provides exact differentiation for all wavenumbers representable 

on the 32 x  32 grid, convects the cone without distorting its shape. Thus, the solution using 

the compact scheme is closer to the spectral solution than the solutions obtained with con

ventional finite difference schemes. The higher accuracy and resolution characteristics are 

achieved by the implicit treatment of the derivative. Even though the stencil size of the 

compact scheme is finite, the implicit treatment of the derivatives makes the scheme glo

bal much like that of spectral methods.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S 3  2-D Euler/Navier-Stokes Equations

In the previous sections, the effect of numerical approximation on the accuracy of the 

convection terms was documented. In this section, the accuracy of the enforcement of the 

continuity equation through the solution of the Poisson equation for pressure is 

documented by solving the 2-D Euler/Navier-Stokes equations. Since the Navier-Stokes 

equations contain viscous terms, the numerical approximation to the second derivative is 

also tested. The test problems chosen for validation contain many features of the 3-D jets 

which are simulated in the current study. In this respect, the test problems are not merely 

academic exercises. There benchmark problems are solved; (i) a temporally-developing 

plane mixing layer (2-D Stuart’s problem), (ii) 2-D viscous wave decay, and (iii) the 

doubly periodic je t  Problems (i) and (ii) have exact solutions while results of (iii) will be 

compared to a highly resolved spectral simulation.

5 .3.1 2-D Temporally-Developing Plane Mixing Layer

Exact solutions to the Euler or Navier-Stokes equations for general flows do not exist 

due to the non-linearity of the convection terms. However, under special conditions exact 

solutions may be found. An exact solution for the temporally-developing mixing layer was 

first published by Stuart (1967). The initial conditions for the 2-D Stuart’s problem corre

spond to a steady hyperbolic tangent function for the streamwise velocity component with 

a periodic array of vortex cores in the mixing region which cause the solution to vary in 

time. The wavelength of the disturbance corresponds to the neutral mode such that the dis

turbance is convected in the streamwise direction with no change in amplitude. The exact 

solution for the streamwise velocity component, u, and the transverse velocity component, 

v is given by;

Ccosh (y) + A cos (x -  ct)
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y(x .. -  A a a jx -c t )
’ C cosh (y ) + A cos (x -c t )

where A = J c 2- l  is a parameter which controls the strength of the perturbation and c is

the convective speed of the mixing layer. The flow is periodic in the streamwise direction

with length, Lx = 2%, 0  < x < 2k . The flow is infinite in the transverse direction but in this

study is truncated at a finite distance, -Ly<y<Ly, such that the zero-traction freestream

boundary condition outlined in Section 2.2.3 is well approximated. Tests which vary the

transverse domain height, 2Ly, show that L y -  10 is sufficiently large to implement this

boundary condition. The exact solution is shown in Fig. 5.7a with parameters, c = 1, A = 1/

2. A uniform, cartesian grid is used for the simulations in this section. Unless otherwise

specified, the third-order Runge-Kutta scheme is used for time advancement and time

steps are sufficiendy small so that spatial errors are dominant

Figure 5.7b shows the numerical solution at t = 20rc (ten flow through times) on a rel

atively coarse grid of 13 (streamwise) x  41 (transverse) using the fourth-order compact 

approximation of convection terms and pressure. The solution of pressure involves the 

computation of the source term and the discretization of the Laplacian operator in Eq. 

(3.39). In addition, once the Poisson equation is solved for pressure, the gradient of pres

sure is computed which is required to advance the momentum equation in time. Therefore, 

the phrase “fourth-order solution of pressure” corresponds to the source and pressure gra

dient terms computed with the compact first derivative scheme outlined in Section 3.2.1 

while the Laplacian operator is discretized using the compact second derivative scheme 

outlined in Section 3.2.2.

Even though the grid is relatively coarse (13 streamwise points per wavelength and 

roughly 8 points in the mixing region at y ~ 0 ) ,  there is little discernible difference 

between the exact and numerical solutions after ten flow through times. It is important to
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check the convergence of the error as the grid is refined to expose any coding errors, to 

demonstrate that the order of error convergence seen in practical computations is that pre

dicted by a Taylor series analysis, and to gain confidence in the numerical formulation. 

Tables 5.1 and 5.2 give a quantitative measure of the L2 and maximum errors in the veloc

ity components at t = 0.1 using the fourth- and sixth-order compact approximations to the 

convection terms and solution of pressure, respectively. Solution errors from three grids 

are shown where the grid spacing in the x  and y  directions is halved from coarsest to finest 

grid. The results show that the L2 and maximum errors converge at roughly the rate pre

dicted by a Taylor series analysis as the grid is refined. The order, N,  is computed using the 

solution error from three grids of spacing, h, 2h, and 4h:

where <t>A, <|>2A, <J>4A are the errors on the h, 2h,and 4h grids, respectively. In using Eq. (5.5) it 

is assumed that the solution is fully resolved on all three grids and that the leading trunca

tion error term is dominant (Demuren and Wilson 1994).

Table 5.1 Solution errors for 2-D Stuart’s Problem at t  = 0.1 using fourth-order 
compact approximation for convection terms and solution of pressure.

Grid (iii x ni) Max U Error Max V Error L2 Norm U L2 Norm V
13x41 0.18 x 0.21 x Iff3 0.18 x KT3 0.24 x Iff3
25x81 0.86 x KT4 0.12 x 10-3 0.80 x KT5 0.11 x Iff4

49 x 161 0.47 x icr5 0.68 x nr5 0.57 x Iff* 0.74 x Iff*
Order (N) 4.2 4.1 4.5 45

Table 5.2 Solution errors for 2-D Stuart’s Problem at t = 0.1 using sixth-order 
compact approximation for convection terms and solution of pressure.

Grid (ni x ni) Max U Error Max V Error L2 Norm U L2 Norm V
13x41 0.73 x 10-3 0.10 x 10"3 0.97 x Iff4 0.11 x Iff3
25x81 0.17 x lO"4 0.20 x Iff4 0.12 x Iff5 0.14 x Iff*

49 x 161 0.15 x iff5 0.18 x Iff5 0.25 x IO* 0.45 x Iff*
Order (N) 5.4 5.7 6.3 6.2
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To address the effect of computing the pressure with a lower-order formulation, the 2- 

D Stuart’s problem was solved using second-order central, fourth-order compact and 

sixth-order compact approximation of the convection terms but a second-order central dif

ference solution of the pressure. The results of the three computations are shown in Tables 

5.3 - 5.5. The results of the three computations show that the lower-order solution of pres

sure results in the overall convergence of the error being second-order, even if the convec

tion terms receive a higher-order treatment All terms must be discretized using higher- 

order approximations to achieve higher-order error convergence rates.

Table 5 3  Fourth-order compact approximation for convection terms/ 
second-order solution of pressure.

Grid (oi x ni) Max U Error Max V Error 12 Norm U L2 Norm V

13x41 0.89 x io-* 0.11 x nr1 0.20 x IO'2 0.20 x KT1
25x81 0.20 x l0 ‘2 0.25 xlOr2 0.42 x 10‘5 0.44 xlOr3

49 x 161 051 x IO'3 058 x IO-3 0.11x10** 0.11 xlOr3
Order (N) 2.2 22 2.4 22

Table 5.4 Sixth-order compact approximation for convection terms/ 
second-order solution of pressure.

Grid (ni x ni) Max U Error Max V Error L2 Norm U L2 Norm V
13x41 0.87 x 10‘2 0.11x10-* 0.20 x 10J 0.20 x lOr2
25x81 0.20 x IO'2 0.25 x IQ-2 0.42 x IO'3 0.44 x io--3

49 x 161 0.45 x IO'3 0.60 xlO-3 0.10 x IO'3 0.11 xl(T3
Order(N) 2.1 2.2 2.3 22

Table 5.5 Second-order central difference approximation for convection terms/
second order solution of pressure.

Grid (ni x ni) Max U Error Max V Error L2Norrn U L2 Norm V
13x41 O.Ilx 10'* 0.15 x IO-* 051 x IO*2 0-20x10-*
25x81 0.22 x IO'2 058 x IO-2 0.45 x IO*3 053 x IO-3
49 x 161 0.61 x IO'3 0.98 x KT3 0.11 xlO’3 0.13 x 10-3
Order (N) 2.4 1.9 2.3 2.1

The solution of the 2-D Stuart’s problem validates the numerical formulation for the 

enforcement of the continuity equation and the solution of the Poisson equation for pres

sure. In addition, it has been shown that the zero-traction freestream boundary condition
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for shear flows is a valid approximation provided that the freestream boundary is iocatea a 

sufficiently far distance from the mixing region.

53.2 Viscous Wave Decay

The numerical treatment of viscous terms is validated by solving the 2-D viscous wave 

decay problem which is governed by the Navier-Stokes equations. The domain for this 

problem is periodic in both the x  and y  directions where periodic boundary conditions are 

applied. The exact solution is given by:

u(x,y,t) = -cos(x)sin(y)e 'Re)

J2L)
Kx,y, 0  = sin (x) cos O') e KRe' 

where Re  = 20, Lx = Ly = 1. The exact solution consists of sinusoidal waves in the x  and y 

directions which decay in time. Table 5.6 shows the L2 norm of the error at r = 0.025 using 

the fourth- and sixth-order compact approximations for convection and diffusion terms 

and the solution of pressure. The results are compared to the fourth-order, Essentially 

Non-Oscillatory (ENO) scheme from Weinan and Shu (1992). The error converges at 

fourth- and sixth-order rates thus validating the numerical treatment of the viscous terms 

and again validating the convection terms and the solution of pressure. The error of the 

ENO scheme converges at a fourth-order rate, but is more than two orders of magnitude 

greater than the fourth-order compact results. The error magnitude of the sixth-order com

pact formulation on the 128 x  128 grid has reached the round-off error level ( -  10' 13) of 

the Cray supercomputer, indicating that extremely accurate results are obtained on aver

age-sized grids.
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Table 5.6 Solution errors for 2-D viscous wave decay.

Grid (ni x nj) 4th oa compact 6th oa compact 3rd(4th) oa ENO

16x16 0.14 xUT6 0.10 x l(T -
32x32 0.77 x IO-* 0.15 x Iff* 053 x 1C5
64x64 0.47x10-’ 0.27 x 10'11 0.32 xHT6

128 x 128 0.71 x KT10 0.11 x IO*12 020 x 10r7

OrderfN) 4.0 6.0 4.0

53.3. Doubly Periodic Jet

The last validation test is the solution of the doubly periodic jet which is governed by 

the 2-D Euler equations. The initial conditions correspond to a jet or “top hat” profile for 

the streamwise velocity component The initial conditions and problem parameters are:

«(* y, 0) =
* 4 (35/ 2 ^ 1  >lt

k L P -I i 

v(x, y, 0) = 5sin(jc)

where Lz = Ly = 2re, 8 = 0.05, and p = re/15. The flow begins with two parallel, finite

thickness shear layers, one with positive vorticity and the other with negative vorticity. A 

small amplitude perturbation is provided through the transverse velocity component which 

causes the shear layers to roll up into vortex cores as they evolve. Between the vortex 

cores, the shear layers are stretched and thinned as they are wound around the vortex 

cores. Without viscosity, the scales of motion become smaller and smaller so that eventu

ally resolution is lost on any fixed grid. This problem represents a worst case scenario 

where the scales of motion cannot be resolved on the grid. Therefore, it is an extremely 

demanding test of the resolution power of the numerical formulation.
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Figure 5.8 shows vorticity contours of the evolution of the doubly periodic jet using 

spectral methods on a highly resolved grid of 512 x  512 from Weinan and Shu (1992). An 

18th-order filter has been used to remove energy at the highest wavenumbers which would 

otherwise contain aliasing errors. Since spectral methods yield exact differentiation and no 

unphysical oscillations occur during the time interval, 0 < t  < 8, we can infer that this 

simulation is extremely accurate during this period. The vorticity contours at t  = 10 show 

the beginning of unphysical oscillations or “wriggles” which is a sign that the 

computations are under-resolved and the smallest scales of motion are determined by the 

grid and not the physics of the problem.

Figure 5.9 shows vorticity contours for an unfiltered simulation of the doubly periodic 

jet using the sixth-order compact formulation for convection terms and the solution ot 

pressure on a 128 x 128 grid. Even though the simulation contains l/16th the number of 

grid points used in the spectral simulation, all of the relevant features of the jet are 

captured. The results show that the location of the braids and details of the vortex cores are 

well predicted. However, for t >6,  the results are not as smooth as the spectral simulation 

and unphysical “wriggles” appear in the braid region at t = 10.

Figure 5.10 shows vorticity contours from a simulation using the sixth-order compact 

scheme where the velocity field is filtered every ten time steps with an explicit sixth-order 

filter. For this computation, the velocity field is filtered in the x  and y  coordinate directions 

to remove energy at the highest wavenumbers (kbx-n) .  The unfiltered quantity, <t», is fil

tered in the x  coordinate direction to produce the filtered quantity, <j>:

a$;-i +4>/ + a<t>,-+i (5.6)
b e d  

=  a<t*i +  jO fc + 1 +  <t>i -  1) +  Jj(*i ♦ 2 +  -2 ) +  5  W i ♦ 3 +  -  3)
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where a  , a , b ,  c, and d  are the coefficients of the filter. The coefficients for the sixth-order 

explicit filter are summarized in Table 5.7 along with a second-order explicit and fourth- 

order compact filter. A similar equation exists for filtering in other coordinate directions. 

Since the boundaries for this problem are periodic, no additional boundary schemes are 

required. For problems with non-periodic boundaries, such as the simulations presented in 

Chap. 7, the following fourth-order boundary filters are used at the first three grid points:

3 1
$2 =  4*1*2+  ig(4>l +6<|>3-4<t>4 +  <j>5)

to = |<t>3 + ^ ( -  <1*, + 4<t>2 + 4<t>4 -  <t>5) (5-7)

By transforming the filter from physical to wavenumber space, its effect on the various 

modes can be clearly shown. The transfer function defines the filtering operation in wave

number space (Lele 1992):

t / u a_\ _ a + &cos(/fcAx) + ccos(2/fcAx) + cfcos(3/fcAx) te os
( ) -  1 + 2acos(jfcAjc) ( )

The transfer function for the sixth-order explicit filter is plotted in Fig. 5.11 along with 

a second-order explicit and fourth-order compact filter for comparison. The LES presented 

in Chap. 7 utilizes the fourth-order compact scheme together with this fourth-order 

compact filter. It can be seen that the fourth- and sixth-order filters eliminate the highest 

wavenumber ( kAx -  k ) while leaving the low wavenumbers unchanged. The fourth-order 

compact filter is a high-bypass filter in the sense that relatively high wavenumber modes 

(kAx< 1.5) pass through the filter without being changed. Recall from Fig. 3.2 that the 

approximation to the first derivative is accurate for the low to moderately high
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wavenumbers and that wavenumbers, kAx~n,  are not well represented. Therefore, the 

effect of the filter is to remove energy from those modes which are not well represented.

The vorticity contours from the filtered simulation (Fig. 5.10) show that the filtering 

operation removes the unphysical oscillations while maintaining the fine scale details of 

the flow. In Fig. 5.12, a simulation using the fourth-order ENO scheme from Weinan and 

Shu (1992) is shown for comparison purposes.The simulation using the ENO scheme with 

the same grid shows that the braids and vortex cores are diffused and that information is 

lost for t > 8. A simulation of the doubly periodic jet at t = 10 using the sixth-order com

pact scheme and explicit filter is shown in Fig. 5.13 on a 256 x 256 grid.

Table 5.7 Coefficients for filters

Scheme a a b C d

second-order, explicit 0 1/2 1/2 0 0

fourth-order, compact 0.475 (5 +6a) 
8

(1 +2a) 
2

(I-2a) 
8 0

sixth-order, explicit 0 11/16 15/32 -3/16 1/32
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Fig 5.1 Solution to the 1-D convection equation at t = 400 in physical space for 

various finite difference approximations of the first derivative term.
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Fig 5.2 Solution to the 1-D convection equation at t -  400 in wavenumber space 

for various finite difference approximations of the first derivative term,

(a) amplitude and (b) phase angle.
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Fig S3  Exact solution to the spherical wave problem at t -  400.

0.050 4th—order compact, 8 ppw 
3rd—order upwind, 32 ppw 
3rd—order upwind, 16 ppw 
Exact0.025

[Dq

0.000

-0.025

-0.050
200 205 210 215 220

x

Fig 5.4 Numerical solution of the 1-D spherical wave problem at t = 400 for the 

region, 200 < x  < 220.
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Fig 5.5 Numerical solution of the rotating cone problem after one revolution on a 

32 x  32 grid (a) third-order upwind scheme, (b) fourth-order compact 

scheme. Numerical solution is shown to the left, exact solution to the right.
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Fig 5.6 Numerical solution of the rotating cone problem after one revolution on a 

32 x  32 grid from Orszag (1971), (a) second-order Arakawa scheme, (b) 
fourth-order Arakawa scheme, and (c) spectral methods.
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Fig 5.8 Numerical solution of the double shear layer using spectral methods on a 

5122 grid from Weinan and Shu (1992), (a) t = 4,(b) t -  6, (c) t = S, and (d) 
t -  10.
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(a) (b)

Fig 5.9 Numerical solution of the double shear layer using the unfiltered, sixth- 

order compact scheme on a 128  ̂grid, (a) t = 4,(b) t — 6, (c) t = 8, and 

(d) t  = 10.
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Fig 5.10 Numerical solution of the double shear layer using sixth-order compact 

scheme with filtering on a 1282 grid, (a) t = 4,(b)t  = 6, (c) t = 8, and 

(d)t= 10.
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(a) (b)

(c) (d)

' N

Fig 5.12 Numerical solution of the double shear layer using fourth-order ENO 

scheme on a 1282 grid from Weinan and Shu (1992), (a) t  = 4,(b)t  = 6,

(c) t = 8, and (d) t = 10.
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Fig 5.13 Numerical solution of the double shear layer using sixth-order compact 

scheme with filtering on a 2562 grid at t = 10.
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Chapter 6

DIRECT NUMERICAL SIMULATION - RESULTS

Results from the direct numerical simulation of rectangular jets at Reynolds number of 

Repe = 750 are presented in this section. The Reynolds number of the jet flow is necessar

ily low so that all the scales of motion can be resolved with reasonable computational 

resources and no subgrid scale model is needed. The effect of Reynolds number on jet 

dynamics is addressed in the next chapter where large-eddy simulations are preformed at 

ReDe = 75,000. Emphasis is placed on LES of non-circular jets (Chap. 7) at higher Rey

nolds numbers where the flow is turbulent as occurs in experiment and nature. Spatial sim

ulations are performed in this study where the domain is fixed in space and the flow enters 

and exits the domain through inflow and outflow boundaries, respectively. This is in con

trast to a temporal simulation where the domain moves in the streamwise direction such 

that a small region of the flow is followed in time. The spatial reference frame is the one 

that occurs in nature and is thus preferable. It is also much more computationally demand

ing because the entire domain of interest must solved be simulated for all times.

6.1 Discrete Mode Forcing

As discussed in Sec. 2.2.1, time dependent boundary conditions are applied at the 

inflow to model the jet nozzle a short distance downstream of the exit (x/De < 1) and to 

promote the development of coherent structures within the computational domain. In this 

section, results are presented for simulations using discrete modes given by Eq. (2.19).
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Simulations with discrete modes are used to study shear layer instabilities and the effects 

of forcing. Two cases are simulated with discrete modes corresponding to; (i) the funda

mental mode, (co = 022) at an rms intensity of 3% of the mean core velocity, U0, and (ii) 

the fundamental mode (co = 0.22) and the first subharmonic mode (to = 0.11) at 1.5% 

intensity each. Cases (iii) and (iv) are presented in the next section and utilize the broad 

mode forcing at 3% and 15% total rms intensity, respectively. The domain and grid dimen

sions for the four runs are summarized in Table 6.1.

Table 6.1 Summary of parameters for DNS

Case Forcing function Lx x L y X L z Nx x N y x N z

(i) fund. @ 3% 12 x 5 2 129 x 652

(ii) fund. + 1st Subh. 
@1.5% each

12 x 102 129 x1292

(iii) broad @ 3% 12 x 102 129 x1292

(iv) broad @ 15% 12 x 102 129 x1292

The domain length, Lx, listed in Table 6.1 includes a buffer layer of two diameters in 

length, giving an active computational domain of ten diameters. The streamwise grid spac

ing results in 10 points per fundamental wavelength. In Chap. 4 it was shown through the 

solution of several benchmark problems, that 8 points per wavelength provides adequate 

resolution with the fourth-order compact scheme.

Contours of vorticity magnitude for case (i) at t = 2 flow through times (the time to 

travel from inflow to outflow at the convective velocity) are shown in Figs. 6.1 a-e. Con

tours in the major and minor axis planes (Figs. 6.1a and b) reveal that the shear layers near 

the inflow plane roll up at the fundamental frequency within the first diameter. For the 

region, x/De > 5, the fundamental mode has saturated and decayed. With no additional har

monic modes present in the forcing function, the jet does not transition to turbulence at
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this Reynolds number. Near the outflow plane, x/De -1 0 , the jet width in the minor axis 

(x-y) plane becomes larger than that in the major axis (x-z) plane indicating that axis 

switching has taken place. Figs. 6.1 c - e  shows the vorticity magnitude at three cross-sec

tional planes (xlDe = 0, 5, and 10), while Figs. 6.1f - h  shows streamwise vorticity at three 

cross-sectional planes. (x/De = 2.5,5, and 10). Even though there is no streamwise vortic

ity introduced at the inflow plane (not shown), by xlDe = 2.5 (Fig. 6.1f) four pairs of 

streamwise vortices have formed in the higher curvature comer regions. This results in the 

distortion of the initially rectangular boundary layer at x!De = 0 to the diamond pattern at 

xlDe = 10.

Vorticity contours for case (ii) at t = 2 flow through times show that the effect of add

ing the first subharmonic mode to the fundamental mode is to promote the formation of 

additional structures for the region, x/De > 5. In addition, the shear layer is dominated by 

intense vortices in the minor axis plane spaced at the first subharmonic wavelength. By 

examining the cross-sectional profiles in Fig. 6.2c-e it is apparent that rapid shear layer 

growth takes place in the major axis plane and that axis-switching does not take place. 

Goss-sectional contours of streamwise vorticity a tx/De = 5 (Fig. 6.2g) show that four pair 

of streamwise vortices develop very close to the jet centerline which leads to a a partial 

bifurcation of the jet near x/De = 10. The streamwise vortices must be generated from the 

redistribution of azimuthal vorticity since they are not present at the inflow.

6.2 Broad Mode Forcing

Broad mode forcing is utilized to model naturally developing (unforced) jets with tur

bulent boundary layers. The resulting forcing function is somewhat random and does not 

contain symmetries present in discrete mode forcing. Figure 6.3 shows representative vor

ticity magnitude contours at? = 2 flow through times.
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In contrast with simulations performed with discrete mode forcing, the shear layers do 

not roll up in a periodic fashion. Instead, non-symmetric, random structures are formed 

which are characteristic of naturally-developing jets. Contours at the outflow (Fig. 6.3f) 

show that the jet width in the minor axis plane is larger than that in the major axis plane, 

indicating that axis-switching takes place near the outflow plane.

The impact of the unsteady structures on the mean flow is examined by time-averaging 

the results of case (iii) with broad mode forcing at 3% intensity over a period of 8 flow 

through times. The results from the first flow through time are not included in the time- 

averaging so that transients resulting from the initial conditions are convected out of the 

domain. After the transient period, the flow field at every other grid point and every fourth 

time step is saved to disk. The results are then post-processed to compute statistical quan

tities such as first and second moment quantities, two-point correlations, and budgets. This 

procedure results in roughly 1188 samples in the period of 8 flow through times. The ade

quacy of sample size is addressed in the next chapter.

The time-averaged jet major and minor axis widths, entrainment, decay of centerline 

velocity, and fluctuating centerline velocity from case (iii) are shown in Fig. 6.4 as a func

tion of streamwise coordinate. The results at this level of intensity show that significant 

unsteadiness does not occur until, x/Dt -  7. This results in a small growth of the jet widths 

and no distinctive end to the potential core region as observed in higher Reynolds number 

experimental jets at x/De = 4-5. Decay of centerline velocity plots from the DNS of a rect

angular jet at ReDe = 800 of Miller et al. (1995) also reveal no distinctive end of the poten

tial core within their computational domain of nine diameters.

In order to test the effect of forcing intensity, a fourth simulation is presented at a 

higher intensity of 15%. Jet widths in the major and minor axis planes, entrainment rate,
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centerline velocity, and fluctuating velocity are given in Fig 6.5. Detailed profiles of time- 

averaged velocity, pressure, and Reynolds stress components for case (iv) are shown in 

Figs. 6.6 - 6.15. Time-averaged and fluctuating velocity components are normalized with 

the local velocity on the jet centerline, UCL and transverse coordinates are normalized by 

the local jet width defined by the transverse distance where U/UCL = 0.5. The location, Y q , 

Z0 = 0 ,0  denotes the position of the jet centerline.

Figure 6.5d shows that the effect of increasing the intensity of the inflow forcing func

tion to 15% is to promote unsteadiness at x /D e -  5 . The centerline velocity also begins to 

decay slowly at roughly x /D e -  5 . Figure 6.6 shows time-averaged streamwise velocity 

along the minor and major axis. The experimental results of a jet issuing from a contoured 

rectangular nozzle of AR = 2 at ReDe = 105 (Quinn 1995) are also shown. This experimen

tal jet shows axis-switching at x /D e -  12. The profiles from the DNS at x!De =9 show good 

agreement with experimental profiles in the minor axis plane only. Fluctuating velocity 

profiles shown in Figs. 6.10-6.12 are generally underpredicted in comparison with the 

experimental profiles at higher Reynolds number. This is not surprising since the center- 

line fluctuating velocity is still increasing near the end of the computational domain of ten 

diameters (Fig. 6.5d) while the experimental value reaches its peak at j:/De = 5 - 6  and then 

levels off.
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(f)

Fig 6.1 Contours of vorticity magnitude (a) - (e) and streamwise vorticity (f) - (h) 

for case (i) a tt = 2 flow through times for fundamental forcing function, (a) 

minor axis plane, z!De = 0, (b) major axis plane, y/De = 0, (c) cross flow 

plane, x/De = 0, (d) x/De = 5, (e) x/De = 10, (f) x/De = 2.5, (g) x/De = 5, and 

(h) x/De -  10.
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Fig 6.2 Contours of vorticity magnitude (a) - (e) and streamwise vorticity if)  - (h) 
for case (ii) at t  = 2 flow through times for fundamental and first subhar

monic forcing function, (a) minor axis plane, zJDe = 0, (b) major axis plane, 

yIDe = 0, (c) cross flow plane, x/De = 0, (d) x/De = 5, (e) x/De = 10, (f) x/De =

2.5, (g) x/De = 5, and (h) x/De = 10.
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Fig 6.3 Contours of vorticity magnitude for case (iii) at t = 2 flow through times 

for broad mode forcing function, (a) minor axis plane, zJDe = 0,(b) major 

axis plane, y/De = 0, (c) cross flow plane, x/De =2.5, (d) x/De = 5, (e) x/De =
7.5, and (f) x/De = 10.
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Chapter 7

LARGE EDDY SIMULATION-RESULTS

This chapter discusses the results of large eddy simulation (LES) of non-circular jets at 

a higher Reynolds number, Repe = 75,000. At this Reynolds number, it is not practical 

with current computer resources to fully resolve all scales of motion of the jet flow. The 

Smagorinsky model outlined in Sec. 2.1.2 is included in the computation to account for 

unresolved scales. In addition, the velocity field is filtered every five time steps using the 

fourth-order compact filter outlined in Sect 5.3.3. Filtering removes the highest wave- 

number mode which is not accurately resolved, while passing through modes of low to 

moderate wavenumber. Results are presented for jets with initially rectangular and ellipti

cal cross-sections with low aspect ratio, AR = 2. In addition, LES of a circular jet is per

formed to quantify the effects of non-uniform azimuthal curvature present in the non

circular jets.

7.1 Rectangular Jet

7.1.1 Simulation Parameters

In Sec. 2.2.1, the mean velocity of the rectangular je t at the inflow plane was specified. 

Broad mode forcing functions are used to promote unsteadiness and to model the naturally 

developing jet observed experimentally. A low level of forcing is used at this Reynolds 

number which corresponds to a maximum intensity at the inflow plane of urns/Ax = 0.03.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The domain dimensions are 12 x  10 x  10 and grid dimensions are 1293. The last two 

diameters of streamwise domain length are used as a buffer domain giving an “active” 

computational length of 10 diameters in the streamwise directions. The grid is distributed 

uniformly in all three directions.

7.1.2 Effect of Grid Resolution

The effect of grid resolution on the LES results is presented in this section. In the LES 

approach, it is often difficult to separate the effect of truncation errors, aliasing errors, and 

SGS model errors as the grid is refined. This is contrasted with the DNS approach where 

all scales are resolved such that no SGS modeling errors are committed and the truncation 

error reduces at a known rate with grid refinement Therefore, it is easier to isolate the 

effects of the numerical formation from those due to the physics of the problem.

The approach taken in the current study is to solve the problem numerically on a very 

coarse grid (denoted as the level I grid) using the same parameters identified in the previ

ous sections. After roughly ten flow through times, the results on the coarsest grid are pro

longated to a grid with double the number of grid points in each direction. Those results 

are used as initial conditions for a simulation on the level 2 grid which is run for ten flow 

through times. This process is repeated until it is no longer practical to double the number 

of grid points due to computer resource limitations. This procedure has the advantage of 

efficient use of computer resources in that solutions on the coarsest grid are very cheap 

due to the small number of grid points and large time step taken. Possible problems with 

the processing of the runs and the numerical formulation are identified with minimal com

puter resources, and confidence is gained in the solution procedure by the time the finest 

(and most expensive) grid level is reached. The prolongated result from the coarser grid
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level also provides a “better” initial condition than starting from an artificially created ini

tial condition which is inconsistent with the governing equations.

A by-product of this procedure is that results are generated on a number of grids with 

increasing resolution which can be used to address the issue of the sensitivity of the results 

to grid resolution. A summary for the grids used in the resolution study is given in Table 

7.1. along with the number of streamwise points per fundamental wavelength. The 

increased resolution for the first three grid levels is obtained by doubling the number of 

grid points while keeping the domain dimensions constant Continuing this trend to the 

fourth grid level would require 208 x 2562 grid points which is very computationally 

expensive. A sufficiendy long simulation on this grid would require roughly 350 Cray C- 

90 hours and 920 megawords of memory. An alternative is to examine the resolution of the 

first five diameters (on the fourth grid level only) by fixing the number of grid points and 

halving the domain dimensions. This region includes the entire potential core and the thin 

shear layer region near the inflow where resolution requirements are greatest.

Table 7.1 Summary of grids used in resolution study

Grid Level A x ,  A y ,  Az Nx, N y N z Ly, Lz Points per wave

1 0.386 X 0.3132 26 x 322 103 2.5

2 0.193 x0.1562 52 x 642 103 5

3 0.096 x 0.0782 104 x1282 103 10

4 0.048 x 0.0392 104 x 1282 53 20

Figure 7.1 shows the jet width, decay of centerline velocity, and fluctuating centerline 

velocity for the 4 grid resolutions. The results show that with the level 1 grid with roughly 

2.5 points per fundamental wavelength, very little unsteady is resolved by the grid (see 

Fig. 7. lc). This results in a small spread rate in the minor axis plane and no axis-switching 

(lower curves, Fig. 7.1a). Increasing the grid resolution to the second level increased the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unsteadiness to 5% at xIDe = 10. The results on the third level show a clear end to the 

potential core, followed by a leveling off of the unsteadiness, axis-switching is clearly 

shown in Fig. 7.1a. Increasing the grid resolution to the fourth level has a small impact on 

those trends. The biggest difference between the level 3 and 4  results is that the end of the 

potential core is shifted upstream by roughly 0.7 diameters (from 4. ID on level 3 to 3.4D 

on level 4). To show this point, the results on the third and fourth grid levels are replotted 

in Figs. 7.1 d  - /w ith  the xIDe coordinate shifted 0.7 diameters downstream for the fourth 

level. The graph shows that the results on the third level are relatively insensitive to grid 

refinement after the correction for potential core length. The discrepancy in the potential 

core length is most likely due to differences in the broad mode forcing function on the 

third and fourth grid level. The maximum rms intensity of the streamwise velocity pertur

bation is fixed at 3% of the core velocity for all grids. However, since the time step is 

halved with each grid refinement, the spectra content of the broad mode forcing is neces

sarily different on each grid. As a result of the grid resolution study, simulations in Chaps. 

6 and 7 utilize the grid resolution of grid level 3. Future work should include a simulation 

on the 103 domain using 208 x 2562 grid points, although it will be costly.

7.1.3 Velocity Spectra

Figure 7.2 displays time traces and power spectra for u, v, w, and p  at six spatial loca

tions throughout the computational domain. The first three locations correspond to the 

inflow plane (x/De = 0), roughly halfway (x/De = 4.13) and near the outflow plane (x/De = 

8.34). The transverse location for the first three points is fixed in the center of the major 

axis shear layer (y, z = 0.31, 0), while the last three transverse locations are fixed in the 

minor axis shear layer, (y, z = 0,0.63). The power spectra is computed by transforming the 

time traces from the temporal domain to the frequency domain, and are useful in determin

ing the range of temporal scales and dominant frequencies. The results in Figs. 1.2a and
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12d  show that the forcing function is composed of a wide band of frequencies of similar 

strength. At five diameters (Figs. 1.2b and e) the power spectra show that a dominate fre

quency has emerged, while the highest frequency modes are several orders of magnitude 

smaller. Near the outflow (Figs. 7.1c and f)  the range of scales is more broad suggesting 

that the flow is turbulent A line with slope, is included in the figures which is used to 

infer the presence of an inertial subrange and turbulent flow. The power spectra near the 

outflow (Figs. 7.2c and f) show roughly one decade with the scaling.

7.1.4 Instantaneous Flow Field

Contours of streamwise velocity, pressure, vorticity magnitude, and streamwise vortic- 

ity at t  = 9 flow through times are shown in Figs. 7.3 - 7.9. Negative contours are drawn 

with dashed lines while positive contours are drawn with solid lines. Local maximum and 

minimum values are also indicated in the figure. Contours in the minor axis plane (Fig. 

7.3c) show that the shear layers roll up at roughly, x/De = 3, similar to a plane mixing 

layer. Pressure contours (Fig. 7.3b) show that the shear layers above and below the jet cen

terline roll up in an organized and staggered fashion. At x/De = 4 - 5, the unsteady struc

tures from the upper and lower shear layers meet at the jet centerline (y/D = 0), thus 

signaling the end of the potential core. Downstream, the flow is characterized by smaller 

scale, less organized structures. For x/De < 4 the vorticity is dominated by the azimuthal 

components, i.e. there is no streamwise vorticity present. However, for x/De > 4, it is obvi

ous that significant streamwise vorticity has been generated.

Figure 7.4c shows that shear layer roll up in the major axis plane is suppressed by roll 

up in the minor axis plane. Thus, the spreading of the jet in the major axis plane is sup

pressed resulting in a switching of the major and minor dimensions of the jet at x/De -  7.
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The axis-switching at t = 9 is clearly seen by comparing streamwise velocity contours at 

the cross-section, xIDe = 2.44 (Fig. 7.6) and xIDe = 9.75 (Fig. 7.9).

7.1.5 Time-Averaged Flow Field

In the previous section, the flow field was examined at one instant in time to describe 

the formation and development of the unsteady structures. In this section, the impact of the 

unsteady structures on the mean flow is examined by time-averaging the results over a 

period of 11 flow through times. The results from the first flow through time are not 

included in the time-averaging so that transients resulting from the initial conditions are 

convected out of the domain. The results are then post-processed to compute statistical 

quantities. This procedure results in roughly 1634 samples in the period of 11 flow 

through times. The adequacy of sample size is addressed in the next section. The raw data 

files from the simulation occupy roughly 16 gigabytes of disk space.

Contours of Time-Averaged Flow Field

The time-averaged contours of streamwise velocity are shown in Fig. 7.10. Comparing 

contours of streamwise velocity confirms that axis-switching has indeed taken place at 

roughly seven diameters as was suggested by examining the instantaneous contours at t = 

9 flow through times. Figure 7. lOe and f  shows that roll up and interaction of structures 

result in rapid spreading in the minor axis plane only. The end of the potential core occurs 

at roughly xIDe = 4.5, where the velocity along the jet centerline is no longer equal to the 

core velocity and begins to decrease due to entrainment of ambient fluid.

Profiles of First and Second Moment Quantities

In this section detailed profiles of time-averaged velocity, pressure and the six unique 

Reynolds stress components are shown. In addition, jet widths in the major and minor axis
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planes, entrainment rate, centerline velocity and fluctuating centerline velocity are given. 

The numerical results are compared with available experimental results.

Time-averaged and fluctuating velocity components are normalized with the local 

velocity on the jet centerline, UCti  and transverse coordinates are normalized by the local 

jet width defined by the transverse distance where U/UCL = 0.5. Figure 7.11a shows that 

axis-switching takes place at x/De = 6.8. Tsuchiya (1985) reported the axis-switching 

location of their 2:1 AR jet from a smoothly contoured nozzle to be x/De = 6.0. A second 

axis-switching was reported at x/De = 25 which is beyond the computational domain used 

in this study. Experiments of turbulent jets from contoured nozzles (Quinn 1995) show the 

first axis-switching to be as far as x/De = 12. A measure of entrainment into the jet (Fig. 

7.11b) is provided by computing the difference in mass flux at the cross-section, x, and 

that at the inflow, Q(x) - Q0, where Q(x) = jjpU(x,y,z)dydz and Q0 = JJpf/(0, y,z)dydz. 

Figure 7.1 lc  shows the decay of centerline velocity with streamwise distance. The end of 

the potential core is predicted at x/De -  4.0, which is in excellent agreement with the 

experimentally measured value of x/De = 4.1 by Tsuchiya (1985). The development of 

fluctuating velocity on the jet centerline is shown in Fig. 7.1 Id. For x/De < 4 the velocity 

fluctuations on the centerline are small. Near the end of the potential core, the fluctuating 

velocity rises sharply which is a result of the unsteady structures from the mixing layers 

meeting at the centerline. Downstream of the potential core, the fluctuating velocity is 

roughly constant when scaled with the local centerline velocity.

Profiles of time-averaged streamwise velocity are shown in Fig. 7.12 at various 

streamwise locations. For comparison, the experimental results of Quinn (1995) at x/De = 

10 are included. The LES results at x/De = 9 are in excellent agreement with the experi

mental results. Self-similar profiles are predicted in the minor axis plane downstream of 

the potential core, while non-similar ones are predicted in the major axis plane. This
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observation is consistent with the experimental studies of Sforza et al. (1966), Trentacoste 

and Sforza (1967), and Tsuchiya (1985). Figure 7.13 shows some self-similarity of the 

time-averaged lateral velocity component, V, along the y  axis at the last two cross-sections 

(xIDe > 7). Note that negative (positive) transverse velocity at the top (bottom) edge of the 

jet is consistent with fluid being entrained into je t  The lateral velocity along the z axis 

should be zero due to symmetry. The numerical results predict small lateral velocity along 

the z axis. Time-averaged transverse velocity profiles are shown in Fig. 7.14 which are 

clearly non-similar along the z axis. The transverse component should be close to zero 

along the y axis due to symmetry. Krothapalli et al. (1981) reported similar trends for rect

angular jets from smoothly contoured nozzles at higher aspect ratios AR = 16.7. Time- 

averaged pressure profiles displayed in Fig. 7.15 show small positive values in the poten

tial core followed by large negative values downstream of the potential core.

The normal components of the Reynolds stress tensor (plotted as rms values) are 

shown in Figs. 7.16 - 7.18, while the shear components are shown in Figs. 7.19 - 7.21. In 

general, profiles of the normal components are relatively flat along the y  axis near the cen

terline, while off center peaks are present along the z axis downstream of the potential 

core. Upstream of the end of the potential core, the peaks in the normal components corre

spond to unsteadiness in the mixing layers separating the jet core from the ambient sur

roundings.

Peak values are higher (20 - 30%) than those reported for a rectangular jet by Quinn 

(1995). Similar trends exist for the shear components. The shear components of the Rey

nolds stresses show that the dominant components are predicted for <w’v’> along the y 

axis (Fig. 7.19a) and <u’w’> along the z axis (Fig. 7.20b).
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7.1.6 Two-Point Velocity Correlations

In this section, results of two-point velocity correlations taken on the jet centerline at 

two cross-sections are presented. The correlations are used to estimate the size of the 

coherent structures along the jet centerline downstream of the potential core. In addition, 

the correlations are used to access the placement of the freestream boundaries in the com

putation. Large correlation coefficients at the edges of the computational domain indicate 

that ffeestream boundaries are too close to the centerline.

The transverse size of the coherent structures was estimated using two-point spatial 

correlations which requires prescribing the spatial separation, r, along the transverse direc

tion with zero time separation. The two-point correlation is given by:

R..(> + A )  =   t)UjV0 + K Q ) _____

" '  U u f a t m u p .  + K t m *  ' ;

where < > denotes time-averaging, = (x0, ya, z0) denotes the location of the correlation, 

and > denotes the separation distance and direction of the correlation. An estimate of the 

structure size can be obtained by fitting a parabola through the data points neary = 0 and z 

= 0 in Figs. 7.22 - 7.24. In each figure, the top plot represents the correlation with the sep

aration distance along they axis, while the bottom plot is along the z axis. The correlations 

show that events near the jet centerline are uncorrelated with those near the edge of the 

domain, thus justifying the placement of the free stream boundaries in the computation.

7.1.7 Budgets

In this section a detailed term by term budget is presented for the resolved time-aver

aged momentum equations and the Reynolds stress transport equations. The imbalance in 

the terms of the resulting equation can then be used to access the adequacy of the sample
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size. The momentum and Reynolds stress budgets can also be used for turbulence model

ing of complex three-dimensional jets. Computation of budget terms for the plane mixing 

layer was performed by Rogers and Moser (1994). Demuren et al. (1996) used DNS data 

to develop turbulence models for the pressure diffusion in mixing layers and wakes.

Momentum Equation

The mean momentum equation for the resolved velocities is derived by time-averaging 

the filtered equations of motion given by Eq. (2.8). Omitting the details of the derivation, 

the result becomes:

3C/, r r d U i  B P .  1 d 2U i  ( a V  , ,x
dr  Jd X j  d Xi  R e d x j d x j  U r / " 1' " ' *  ( )

where UL = («,.) and P  = (<j>> denotes the time-averaged velocity and pressure, respec

tively. The first three terms on the RHS of Eq. (7.2) represent the convection, pressure gra

dient, and viscous diffusion terms, respectively.

For statistically stationary results, the terms on the RHS of Eq. (7.2) should sum to 

zero indicating that the time derivative of the average velocity is also zero. The fourth term 

on the RHS of (7.2) represents the resolved stresses due to unsteadiness of the velocity 

field and is similar to the Reynolds stress term in the Reynolds Averaged Navier-Stokes 

(RANS) equations. This term is computed directly in the large-eddy simulation approach. 

The last term on the RHS of Eq. (7.2) represents the contribution of the unresolved 

stresses. The concept of LES is that a large portion of the energy containing large scale 

stresses (fourth term on RHS) is resolved in the computation, compared with the unre

solved portion which is modeled (last term on RHS).
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Profiles of budget terms for the U momentum equation are shown in Fig. 7.25 along 

the y  and z axis at the location, xIDe = 9. Since the unresolved stresses, qyj, are not avail

able from the LES results, the eddy viscosity model given by Eq. (2.9) is used to compute 

the last term in Eq. (7.2). The resulting profiles in Figs. 7.25 - 7.30 have been passed 

through a filter to remove some high frequency noise which tends to obscure the trends. 

The sum of the terms on the RHS of Eq. (7.2) is represented by the symbols. The profiles 

show that the imbalance is relatively small compared to the convection and resolved Rey

nolds stress terms, and that the convection terms balance the Reynolds stress terms. The 

results also show that the unresolved SGS stresses are quite small compared with the 

resolved Reynolds stresses, validating the LES. The budgets for the V momentum equa

tion in Fig. 7.26 show that along the y  axis, the pressure gradient term balances the 

resolved Reynolds stress term at y/D ~ ±2.

The budget terms along the z axis are smaller in comparison as would be expected 

from symmetry arguments. Figure 7.27 shows similar trends for the W equation. The sense 

of the pressure gradient term for the V and W equation is consistent with fluid being 

entrained into the jet on a time-averaged basis.

Resolved Reynolds Stress Equation

The transport equations for the resolved Reynolds stresses are derived by first subtract

ing the filtered equations of motion, Eq. (2.8), from the time-averaged filtered equations, 

Eq. (7.2). The result is a transport equation for the ith component of the resolved fluctuat

ing velocity component Time-averaging the quantity; «/• [u.'equation ] + «,'• 0 /equation] 

gives the transport equation for the resolved Reynolds stresses. Again, omitting the details 

of the derivation:
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The first six terms on the RHS of Eq. (7.3) represent convection of the Reynolds 

stresses by the mean flow, turbulent production, turbulent dissipation, fluctuating velocity/ 

pressure gradient coupling, turbulent diffusion, and viscous diffusion, respectively. The 

last term on the RHS of Eq. (7.3) represents the contribution of the unresolved stresses to 

the resolved Reynolds Stresses equation. As with the momentum budget, the SGS model 

is used to estimate this term.

Figure 7.33 shows profiles of the <u’u’> budget of the resolved Reynolds stress equa

tion at the same location as the momentum budgets. It can be seen that a large positive pro

duction term is opposed by a negative velocity pressure gradient term. Convection and 

turbulent diffusion are also significant Turbulent dissipation and viscous diffusion are 

small. The contribution of the SGS term is estimated to have a modest negative contribu

tion. Budgets for the <u’u’> and <u’u’> are shown in Figs. 7.29 and 7.30a, respectively.

The results show that the imbalance is of the same order as some of the individual 

terms near the jet centerline. The imbalance is most likely due to the unresolved terms 

which are estimated. The dominate role of the very smallest scales (which are not resolved 

in LES) is in the dissipation of turbulent kinetic energy into heat. Since the smallest scales 

are not resolved, the turbulent dissipation term in Eq. (7.3) does not resemble the term in 

the fully resolved Reynolds stress equation. As a result, there is a large positive imbalance 

due to this discrepancy. Indeed, in some experimental studies which measure budgets of
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the Reynolds stress equations, the imbalance is labeled as the turbulent dissipation 

because it cannot be accurately measured. The budget for the <u’u’> equation from the 

DNS of the rectangular jet (case iii of Chap. 6) is shown in Fig. 7.30b. The overall balance 

of terms is better since the dissipation scales are resolved.

1 2  Elliptic Jet

In this section, the results of a large eddy simulation of a 2:1 AR elliptic jet at ReDe = 

75,000 with broad mode forcing are presented. The grid and domain parameters are iden

tical to those described for the LES of the rectangular je t  The jet boundary layer at the 

inflow is generated by using, n = 2 for the exponent of the super-elliptic coordinate sys

tem. Figure 7.31 shows that the mixing layer in the potential core of the elliptic jet rolls up 

preferentially in the minor axis plane at the expense of mixing in the major axis plane. The 

roll ups are not as orderly and well-defined as in the rectangular jet. Contours at the cross- 

section, xlDe = 4.88 (Fig. 7.35d) reveal the generation of significant streamwise vorticity 

around the circumference of the jet boundary layer resulting in the distortion of the elliptic 

cross-section. It is apparent that the major and minor axis have already switched by the 

cross-section, xlDe = 9.75 (Fig. 7.37).

Time-averaged contours of streamwise velocity shown in Fig. 7.38 reveal that axis- 

switching also takes place in the elliptic jet. Time-averaged results for the elliptic jet simu

lation are presented in Figs 7.39 - 7.49. The instantaneous results are averaged over eight 

flow through times resulting in a sample size of roughly 1200. The plot of jet widths (Fig. 

7.39a) confirms that axis-switching has taken place at x/De = 5.9 and that the width in the 

major axis plane actually decreases slightly in agreement with the experimental results of 

unexcited 2:1 AR elliptic jets studied by Hussain and Husain (1989). The axis-switching 

location in that study occurred at roughly x.1De = 5.0. Fig. 7.39b shows that the elliptic jet
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entrains more fluid than the rectangular jet which is consistent with experimental observa

tions. A summary of axis switching location is provided in Table 7.2 along with those 

from experiment

Table 7.2 Summary of axis switching location from LES

Study Geometry AR Location, x/De

Tsuchiya et al. (1985) Rectangular 2 6.0

Quinn (1985) u <c 11.0

Current ti «« 6.8

Hussain and Husain (1989) Elliptic 5.0

Current 5.9

7.3 Round Jet

Large eddy simulation of a round jet is performed to provide a control for the simula

tions of rectangular and elliptic jets. Parameters for the round jet simulation are identical 

to those for the non-circular jets, with the obvious geometrical difference. For the round 

jet simulation, some asymmetry of profiles along the y  and z axis exist beyond 6 diameters 

due to insufficient sample size. Perfectly symmetrical time-averaged profiles are difficult 

to achieve in experiments and computations of fully turbulent flow.

Contours of instantaneous streamwise velocity, pressure and vorticity for the round jet 

are shown in Figs. 7.50 and 7.51 in the x-y and x-i plane, respectively. Cross-sectional 

contours are shown in Figs. 7.52 - 7.56. The contours in the x-y and jc- z  plane show that 

regular, planar rings are not formed with the broad mode forcing function. Cross-sectional 

contours at x/De = 4.88 (Fig. 7.54) show significant generation of streamwise vorticity 

along the jet boundary layer resulting in a distortion of the initially circular profile. Further 

downstream, the vortices breakdown into small scale structures.
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Time-averaged contours of streamwise velocity shown in Fig. 7.57 reveal that jet 

widths in the x-y and x-z planes grow at the same rate and axis-switching does not take 

place. Time-averaged quantities from the round jet simulation are shown in Fig. 7.58 for 

comparison with the non-circular jet simulations.
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and (b) m ajor axis. For symbols see Fig 6.6.
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1995, x/D = 10). For symbols see Fig 6.6.
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Fig 7.31 Contours in the minor axis plane (zJD = 0) at t = 3 for LES of elliptic jet;

(a) streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) 
streamwise vorticity.
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(a) streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) 
streamwise vorticity.
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wise vorticity.
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Fig 7.34 Contours at the cross-section, x/D = 2.44, at t = 3 for LES of elliptic jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 
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Fig 7.35 Contours at the cross-section, x/D = 4.88, at t = 3 for LES of elliptic jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 
wise vorticity.
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Fig 7.41 Time-averaged lateral velocity, V, for the LES of elliptic jet, (a) minor axis 

and (b) m ajor axis. For symbols see Fig 6.6.
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axis and (b) major axis. For symbols see Fig 6.6.
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Fig 7.45 Time-averaged fluctuating lateral velocity, vrms, for the LES of elliptic jet, 

(a) minor axis and (b) major axis (solid - experiment of Quinn 1995, x/D = 

10). For symbols see Fig 6.6.
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Fig 7.50 Contours in the X-Y plane (z/D = 0) at / = 3 for LES of round jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 
wise vorticity.
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Fig 7.51 Contours in the X-Z plane (y/D = 0) at t = 3 for LES of round jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 

wise vorticity.
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Fig 7.52 Contours at the cross-section, x/D = 0, at t = 3 for LES of round jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 

wise vorticity.
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Fig 7.53 Contours at the cross-section, x/D = 2.44, at t  = 3 for LES of round jet; (a) 

streamwise velocity, (b) pressure, (c) vorticity magnitude, and (d) stream- 

wise vorticity.
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Chapter 8

SUMMARY AND CONCLUSIONS

Three-dimensional simulations of turbulent jets with rectangular and elliptical cross- 

section were simulated with a newly developed numerical formulation. At low Reynolds 

numbers the full Navier-Stokes equations were solved, while at higher Reynolds numbers 

the filtered equations of motion were solved along with a sub-grid scale model. The time- 

dependent results from the simulation are used to compute statistical quantities and to 

compare the results to experiment. The results are shown to agree favorably with experi

m ent Quantitative agreement with particular experiments should not be expected due to 

differences in initial conditions such as shape and aspect ratio of the jet nozzle, intensity 

level and spectral content of the jet exit boundary layer and Reynolds number. The present 

results show significant influence of the spectral content of perturbation in the inlet mixing 

layer. Indeed, features of the jet flow such as the axis switching location and the length of 

the potential core vary by as much as 60% from experiment to experiment.

Specific conclusions from the current study are outlined below. The first section 

describes conclusions about the numerical formulation, while the second section discusses 

conclusions based on the numerical simulation of complex jets. Contributions which make 

the present work unique are also highlighted. The final section outlines the suggestions for 

future work.
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8.1 Numerical Formulation

Numerical Approximation of Convection Terms

It has been shown that many popular numerical approximations for convection terms 

lead to large dispersion and/or dissipation errors of the high-frequency modes, thus requir

ing upwards of 20-30 spatial points per wavelength for acceptable accuracy. Higher-order 

accurate compact schemes are used in this study which lead to greatly reduced dispersion 

errors and no dissipation errors. Solutions to relevant benchmark problems indicate that 6 

- 8 points per wavelength are sufficient with the fourth-order compact scheme for accept

able accuracy. The implicit treatment of derivatives results in a global formulation closer 

to spectral methods than explicit finite difference schemes.

Enforcement of Continuity Equation with Higher-Order Compact Schemes

While compact schemes have been widely used for compressible simulations, their use 

for incompressible flows is complicated by the lack of an evolution equation for pressure. 

A numerical formulation was developed in the present study which solves a Poisson equa

tion for pressure using a higher-order compact scheme. The improved accuracy and reso

lution characteristics was demonstrated through the solution of benchmark problems 

governed by the Euler and Navier-Stokes equations. It is confirmed that overall accuracy is 

limited by the weakest link.

Extension to Curvilinear Grids

The numerical formulation was extended to curvilinear grids which was used to con

centrate grid points in the mixing layers of the rectangular jet near the inflow. Downstream 

of the potential core, the flow is fully turbulent. Clustering of the grid to resolve large gra

dients due to small scale structures is not possible without the use of time-varying, adap

tive grids (which is outside the scope of the present study). Therefore, the grid is gradually
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relaxed to uniform spacing in this region. Uniform grids enable manipulation of the dis

crete Poisson equation leading to a reduced stencil size and cost as compared with the cur

vilinear grids making the computational rate roughly one order of magnitude less. Part of 

the reason for the increase in computational rate is that convergence rates for the multigrid 

solution of the Poisson equation deteriorate with grid clustering and large aspect ratio. 

Therefore, the uniform grid formulation was utilized for most of the simulations presented 

in Chaps. 6 and 7.

8.2 Simulation of Complex Jets

Conclusions from the direct and large eddy simulations of complex jets are outlined in 

this section. Aspects of the current work which are different from the current state of the 

art are highlighted.

Effect of Reynolds Number

The results from the DNS of non-circular jets at low Reynolds numbers (Re = 750) in 

Chap. 6 show that many features of experiments at moderate to high Reynolds number are 

not captured. For example, low Reynolds number simulations in the present study and 

those by Miller et al (1995) show that the end of the potential core is not predicted within 

10 diameters, while experiments and the simulations at higher Reynolds number of the 

current study show an end at roughly x/De = 4. Also transition to turbulent flow does not 

occur within the computational domain resulting in symmetrical structures and spikes in 

the velocity power spectra that are characteristic of laminar/transitional flow. It is clear 

that simulations at higher Reynolds numbers must be performed for comparison with 

experiment in the literature.
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Streamwise Extent

Current state of the art for the large eddy simulation of square and rectangular jets at 

moderate to high Reynolds number is that due to Grinstein and DeVore (1992), Grinstein 

(1993), and Grinstein (1996). The streamwise extent of those simulations covers the very 

near field (i.e., only the potential core region, xlDe < 5). The current study is unique in the 

sense that the near and medium fields are simulated. This allows the so-called characteris

tic decay region downstream of the potential core to be studied. In addition, the experi

mentally observed axis switching of the 2:1 rectangular jet at x/De = 7 is captured.

Subgrid Scale Model

The current study employs an explicit Smagorinsky subgrid scale model which allows 

the model effects to be quantified. Moreover, the effect of the unresolved scales was com

pared to those of the resolved scales by computing budget terms of the mean momentum 

equations. This analysis shows that the contribution of the unresolved stresses which are 

modeled are 15 times smaller than the those of the resolved stresses which are directly 

computed in the simulation.

Budgets for Mean Momentum and Reynolds Stress Equations

A numerical database of the time-dependent results from the simulations has been 

archived. The database was post-processed to compute statistical quantities and detailed 

budgets of the resolved mean momentum and Reynolds stress equations. In general, bal

ance of the terms of the mean momentum equation are quite good. Balance of terms in the 

Reynolds stress equations was incomplete because of the under-prediction of turbulent 

dissipation which occurs mostly at small scales not resolved in the simulation. The data

base can be used to aid in the turbulence modeling of complex jets.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Effect of Initial Conditions

The results of the current study show that the initial conditions of the jet boundary 

layer at the inflow strongly effect the resulting dynamics. Forcing functions consisting of a 

single discrete mode show that the mixing layers in the potential core rolls up into planar 

vortex rings. At low Reynolds number, the fundamental mode saturates and decays, while 

at higher Reynolds number, transition to turbulence takes place. Axis-switching was 

observed in both cases. The addition of a subharmonic to the forcing function at low Rey

nolds number is shown to result in the formation of intense vortex ribs near the jet center- 

line which lead to a partial bifurcation of the je t  Axis switching was not observed in this 

case.

Forcing functions based on random, broad band modes show that the roll up of the 

mixing layers in the potential core is fundamentally different than that due to discrete forc

ing. Planar vortex rings are not formed with broad mode forcing and a staggered roll up of 

the upper and lower mixing layer in the minor axis plane only is observed. As a result 

mixing in the major axis plane is suppressed leading to switching of the major and minor 

axis at x!De = 6.6 for the rectangular jet and x!De = 5.9 for the elliptic jet at higher Rey

nolds number. Naturally developing non-circular jets (i.e. without strong discrete forcing) 

are better modeled with broad mode forcing. Therefore, simulations forced with a single 

sinusoidal mode leading to the formation of planar vortex rings provide an incomplete 

description of the axis switching phenomenon in naturally developing jets. The results of 

the present study provide such a picture.
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Effect of Non-Uniform Boundary Layer Curvature

Effects of non-uniform azimuthal curvature of the jet boundary layer at the nozzle are 

studied though large eddy simulations of rectangular, elliptic, and circular jets. The results 

show that the elliptic je t entrains more fluid into the jet core than the rectangular jet.

Grid Resolution

A grid resolution study was performed through simulations on 4 grid levels, by dou

bling the number of grid points on successive levels. The coarsest grid resolution (with 2.5 

points per streamwise fundamental wavelength) does not capture unsteadiness (u ^  = 

0.005 at x!De =10) which is essential for accurate prediction of the potential core length 

and subsequent axis switching. Increasing the grid resolution to the second level results in 

an increased level of unsteadiness ( u ^  = 0.05 at x/De = 10) but does not predict the end of 

the potential core or axis switching within the computational domain. The results from the 

level 3 grid (with 10 points per streamwise fundamental wavelength) show a well defined 

end of the potential core and axis switching in good agreement with experiment. The 

effect of increasing the grid resolution in the near field to the fourth level, does not signifi

cantly change those predictions. The main effect is that the prediction of the end of the 

potential core is shifted upstream by 0.7 diameters, which is most likely due to differences 

in the broad mode forcing function on the third and fourth grid levels. When the results on 

the fourth level are corrected for this difference, relatively grid independent results are 

achieved. The resolution requirement of roughly 10 streamwise grid points per wavelength 

reached through this exercise is consistent with conclusions from the solution of bench

mark problems using compact schemes in Chap. 5.
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8.3 Future Work

Future research directions are identified in this section. In the area of the numerical 

formulation, the efficiency of the Poisson solver with curvilinear grids could be improved 

which would lead to competitive computational rates as compared with the uniform grid 

formulation. This would be used take advantage of grid clustering capabilities in the very 

near field. The resolution after the end of the potential core would still be necessarily uni

form due to the presence of small scale turbulent structures. Time-varying, adaptive 

meshes would be required to track those structures.

While the present numerical simulation extends the state of the art past the end of the 

potential core into the characteristic decay region, it would be desirable to simulate all 3 

regions of the non-circular jet; (i) potential core, (ii) characteristic decay, and (iii) axisym- 

metric region. It would also be desirable to increase resolution to the fourth grid level of 

the resolution study for the entire domain length. Code improvements would be required 

to reduce the required wall clock time and memory for the simulation such as the use of 

parallel processing and Fortran buffer in/ buffer out statements (reading and writing to 

disk to save memory allocation). Parallelization should be a major goal of future work. 

The simulations can also be extended to solve compressible flows for acoustic predictions. 

There, accurate solutions are required for the unsteady flow field which is then used as the 

source term of an acoustic analogy equation.
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