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ABSTRACT 

AERODYNAMIC DESIGN OPTIMIZATION WITH 
CONSISTENTLY DISCRETE SENSITIVITY DERIVATIVES 

VIA THE INCREMENTAL ITERATIVE METHOD

by
Vamshi M. Korivi 

Old Dominion University, 1995 
Director: Dr. A. C. Taylor III

An incremental iterative formulation together with the well-known spatially split 

approximate-factorization algorithm, is presented for solving the large, sparse systems 

of linear equations that are associated with aerodynamic sensitivity analysis. This 

formulation is also known as the “delta” or “correction” form. For the smaller two 

dimensional problems, a direct method can be applied to solve these linear equations 

in either the standard or the incremental form, in which case the two are equivalent. 

However, iterative methods are needed for larger two-dimensional and three dimensional 

applications because direct methods require more computer memory than is currently 

available. Iterative methods for solving these equations in the standard form are generally 

unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome 

when these equations are cast in the incremental form. The methodology is successfully 

implemented and tested using an upwind cell-centered finite-volume formulation applied 

in two dimensions to the thin-layer Navier-Stokes equations for external flow over an 

airfoil. In three dimensions this methodology is demonstrated with a marching-solution 

algorithm for the Euler equations to calculate supersonic flow over the High-Speed 

Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with
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the incremental iterative method from a marching Euler code are used in a design- 

improvement study of the HSCT configuration that involves thickness, camber, and 

planform design variables.
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NOMENCLATURE

a local speed of sound

C chord

C’d drag coefficient

Cl lift coefficient

Cm pitching-moment coefficient

Cx,Cy, Cz force coefficients in x,y,z directions

Cmx ,Cmy, Cmz moment coefficients in x,y,z directions

e total energy per unit volume

F.G ,H  inviscid fluxes in curvilinear coordinates

?T'tl viscous fluxes in curvilinear coordinates

i, j, k nodal points/indices

J Jacobian matrix

Mqo free-stream Mach number

p pressure

Q field variables

R  residual vector
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T temperature
t time

u, v, w velocity components

x, y, z cartesian coordinates

X  vector of grid coordinates

Greek Symbols

a  angle of attack

XI
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k spatial accuracy parameter

A Lagrange multiplier
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p density

r/, C body-fitted coordinates

Subscripts:

B

IP

oo

X, y, z 

Superscripts:

m iteration index

n time iteration index

T transpose

* steady-state

Derivative Quantities

sensitivity of the jth system response with respect to 

sensitivity of field variables with respect to fa  

Approximate Jacobian operator

Jacobian matrices 

grid sensitivity

<5
Q'

0R
dQ
dR

ox
dpk

PR
ax

boundary point 

interior point 

free-stream 

co-ordinate directions
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Miscellaneous

d  partial derivative

A backward difference operator

V  forward difference operator
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Chapter 1

INTRODUCTION

Rapid advances in computer technology have enabled fluid-flow simulations around 

full aircraft configurations with computational fluid dynamics (CFD). Numerical simula

tion of complicated external and internal flows has become a routine practice, replacing 

the expensive alternative of wind-tunnel testing. Successes that are mainly attributed 

to the rapid development of CFD include numerical modeling of the governing fluid 

physics, the ability to define the surfaces of a complicated geometry with volume-grid 

generation around these surfaces, and solution of the system of equations with efficient 

iterative solvers. Advanced research CFD codes such as CFL3D [1] and TLNS3D [2] 

are representative examples of the current state of the art in CFD.

The emerging field of CFD has reached a mature stage in which these codes can be 

employed in a multidisciplinary environment. In his review paper. Jameson [3] concluded 

that the following challenges remain to be met in the area of CFD: development of 

accurate higher order schemes; development of better schemes for capturing shocks 

and internal discontinuities; grid adaptation; use of unstructured grids to easily model 

the flow over and through complicated configurations; turbulence modeling; and design 

optimization.

The National Aeronautics and Space Administration (NASA) research efforts to 

incorporate high-fidelity single-discipline codes (including advanced CFD codes) in a 

multidisciplinary design procedure include the High-Speed Airframe Integration Research 

(HiSAIR) project [4] and the Computational Aerosciences (CAS) project of the High
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Performance Computing and Communications (HPCC) program [5], The HiSAIR 

project is primarily focused on High-Speed Civil Transport (HSCT) design activity, 

with the goal of developing advanced methodology and a computational environment 

for multidisciplinary analysis and design optimization. The HSCT is one application 

of the CAS project. These programs are committed to multidisciplinary design via a 

methodology known as sensitivity analysis (SA).

In reality, the interaction of many disciplines (including aerodynamics) must be con

sidered in predicting the performance of an entire aircraft, and a methodology is needed 

to account for this interaction between the various disciplines. For example, the design 

of an aircraft wing involves the interaction of several disciplines (e.g.. aerodynamics, 

structures, controls, and materials). Sobieski [6] (a pioneer in the development of the 

multidisciplinary approach) formulated a gradient-based multidisciplinary design (MdD) 

procedure based on the “divide and conquer” approach, where many disciplines are 

involved in the design process. This approach utilizes the required function response(s) 

of interest for each individual discipline, as well as the sensitivity derivatives (SD’s) 

from each individual discipline (i.e., the derivatives of each individual discipline’s 

output functions with respect to its input (design) variables). Sobieski [7] addressed 

the need to obtain SD’s from advanced CFD codes, so that these codes can be used in 

a multidisciplinary design environment; furthermore, he derived the general individual- 

discipline discrete sensitivity equation, which is based on the implicit function theorem.

1.1 Literature Review

An SA is defined as the calculation of slopes, known as SD’s, which are derivatives 

of the response(s) (output function(s)) of a particular system of interest taken with respect 

to the design variable(s) of interest. For the designer, an accurate knowledge of the SD’s 

of a particular system under consideration can be used in many ways (e.g., for function 

approximation, trade-off design, and multidisciplinary design optimization (MDO)).
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1.1.1 Sensitivity Analysis

Several procedures exist whereby the SD’s can be obtained from advanced CFD 

codes. For example, these SD’s can be calculated by using finite differencing, by 

hand differentiation, or by using symbolic manipulators, such as MACSYMA [8]. 

Alternatively, an automatic differentiation tool such as ADIFOR [9] can be used. A 

general yet conceptually simple method for computing aerodynamic SD’s is the method 

of “brute force” finite differencing. For this method, under the assumption that forward 

finite-difference approximations are used, the CFD flow-analysis code is used to generate 

a single converged flow solution for a slightly perturbed value of each design variable 

for which SD’s are required. Although this method of computing the SD’s is used [10], 

there are several disadvantages:

1. Extremely high computational costs, particularly for three dimensions, because the 

number of flow analyses required in a typical design problem becomes large as the 

number of design variables becomes large.

2. Lack of robustness and accuracy because of difficulties that are sometimes associated 

with the selection of a proper numerical step size.

The step size can contribute to two types of errors in the finite-differencing method: 

approximation/truncation error and condition error. Truncation error is the difference 

between the exact value and the calculated value of the function. Condition error is due 

to computer round-off error that is associated with the subtraction of large numbers that are 

nearly equal. A trial-and-error approach is usually taken to determine a suitable step size 

when finite differencing is used; this approach can require many function evaluations. A 

method known as the finite-difference algorithm is outlined in Ref. [11] to automatically 

calculate an optimum step size. The finite-difference algorithm was extended in Ref. 

[12] to functions that are governed by matrix equations. This algorithm has not yet been 

demonstrated for cases in which the functions are calculated iteratively.
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As an alternate approach that is typically less costly than finite differencing, 

aerodynamic SD’s can (in principle) be computed by direct differentiation of the 

governing equations that control the fluid flow. Two approaches are commonly used: 

the discrete approach and the continuous approach. With the discrete approach, 

differentiation (with respect to the design variables) is of the discretized flow equations; 

with the continuous approach, differentiation is of the continuous governing equations 

using material derivatives or generalized calculus of variations. Differentiation via the 

continuous approach yields linear differential equations for the SD’s: typically these 

differential sensitivity equations must be discretized and solved numerically for the 

required SD’s. The discrete and continuous methods can yield identical SD’s if the 

governing equations are self-adjoint (which is not the case for the Euler and Navier- 

Stokes equations) and if the discretization that is selected is the same for both methods; 

otherwise, the SD’s obtained via the continuous method may not be consistent with the 

discrete function solutions. However, the advantage of using the continuous formulation 

is that of flexibility, (i.e., the governing equations and the discretization used for the SA 

can be different from that used for the flow analysis). An excellent review article by 

Taylor et al. [13] provides an overview of research activities in the efficient and accurate 

calculation of SD’s with advanced CFD codes.

Early works by Pironneau [14] used the continuous formulation applied to the Navier- 

Stokes equations to derive sensitivity equations for incompressible low-Reynolds-number 

flow. Angrand [15] used a similar approach for flow over an airfoil using the irrotational 

flow (potential flow) approximation. Yates [16] and Yates and Desmarais [17] used 

a continuous formulation applied to the equations of linear aerodynamic theory and 

successfully obtained SD’s from the integral-equation formulation of these governing 

equations in two dimensions. Extension of this method to three-dimensional (3-D) 

flow with the Navier-Stokes equations (for flow analysis and to calculate aerodynamic 

sensitivity derivatives) is possible, in principle. The integral-equation representation of
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5

the governing equations has advantages over conventional finite-difference and finite- 

volume methods, and these advantages carry over to the solution of the resulting 

sensitivity equations.

Jameson [18, 19] and Jameson and Reuther [20] applied control theory to airfoil 

and wing design. They used a continuous formulation together with the adjoint- 

variable approach to obtain the required gradient information. Initially, their method 

was successfully implemented with conformal mapping for potential flow: more recently, 

they have extended it to inviscid flow in two and three dimensions with a finite-volume 

discretization. With this method, 2 + m flow analyses are required per design cycle, 

where two analyses are required to solve the flow equations and the adjoint equations 

(one analysis each) and m is the number of flow analyses required in the line-search 

procedure. The flow equations and the adjoint equations are solved efficiently by using 

the multigrid procedure in incremental iterative form.

Frank and Shubin [21], Shubin and Frank [22] and Shubin [23] obtained aerodynamic 

sensitivity equations using both the discrete and the continuous approaches. These 

studies indicates that consistent, discrete SD’s should be used in aerodynamic design 

optimization; failure to do so can result in a considerable slowdown or complete failure 

of the optimization procedure. (Recall that the continuous method generally does not 

yield consistent, discrete SD’s.)

With a continuous formulation, Borgaard and Bums [24] and Borgaard et al. [ 25] 

derived aerodynamic sensitivity equations in two dimensions by directly differentiating 

the Euler equations and the accompanying boundary conditions. Existing CFD software 

was easily modified to obtain the SD’s with this approach. With this method, the nonlinear 

flow equations and linear flow-sensitivity equations were solved with the same solution 

procedure. However, in contrast to Frank and Shubin [21], Borgaard et al. concluded 

that judicious use of inconsistent, discrete SD’s can sometimes result in successful 

optimization for cases in which the use of the consistent, discrete SD’s sometimes fails.
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With a continuous formulation, Ibrahim and Baysal [26] derived sensitivity equations 

in adjoint form and boundary (transversality) equations for the quasi-one-dimensional 

(quasi-1-D) Euler equations. This approach differs from other methods in that a 

perturbation technique is applied with a variation formulation to find the required gradient 

information. The resulting adjoint sensitivity equations and flow-analysis equations are 

solved with the same solution procedure because the character of these equations is 

similar. The method is applied to the optimization of a quasi-1-D nozzle, that includes 

a normal shock within the nozzle.

Elbanna and Carlson [27] applied the discrete sensitivity approach to calculate 

aerodynamic sensitivity coefficients in the transonic and supersonic flight regimes, where 

the governing equations of fluid flow considered are the transonic small-disturbance 

equations. Later, this approach is applied to the 3-D full-potential equation to compute 

aerodynamic sensitivity coefficients for a wing in a transonic flow. In order to avoid the 

excessive memory of a direct-solver approach, they used a conjugate-gradient iterative 

method to solve the very large system of linear sensitivity equations that is associated 

with 3-D flow. Elbanna and Carlson [28] used a symbolic manipulator, MACSYMA [8], 

to differentiate various parts of the 3-D full-potential flow code and successfully obtain 

these aerodynamic SD.

Baysal and Eleshaky [29], Baysal et al. [30], Burgreen et al. [31], and Eleshaky and 

Baysal [32] applied the discrete sensitivity approach to the steady Euler equations and 

later extended the approach to the thin-layer Navier-Stokes (TLNS) equations; results 

were presented for two-dimensional (2-D) flow. Taylor et al. [33, 34] and Hou et 

al. [35] also derived discrete sensitivity equations for the Euler and TLNS equations, 

with results given for 2-D flow. This discrete method results in very large systems of 

linear sensitivity equations that must be solved to obtain the SD’s of interest. In Refs. 

27 through 39, the sensitivity equations are solved in “standard” (i.e., nonincremental) 

form. Furthermore, in these references, a direct-solver method is applied to solve these
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equations; the single exception is Ref. [39], where a hybrid direct/iterative approach is 

adopted for an isolated airfoil problem.

Eleshaky and Baysal [40] proposed a domain decomposition technique to solve 

the discrete sensitivity equations for large 2-D and 3-D problems. This method 

decomposes the large computational domain into subdomains; the sensitivity equations 

for the interior cells and the sensitivity equations for boundary cells that couple 

the subdomains are iteratively solved with a preconditioned conjugate gradient (CG) 

technique. The feasibility of computing the SD’s on decomposed computational domains 

in two dimensions was demonstrated on a sample airfoil problem by Lacasse and Baysal 

[41]; in three dimensions it was demonstrated on an axisymmetric nacelle configuration 

by Eleshaky and Baysal [40].

Korivi et al. [42] and Newman et al. [43] proposed the incremental iterative method 

(IIM) to solve the sensitivity equation to calculate consistent, discrete SD’s. With this 

approach, approximations of convenience can be introduced into the coefficient matrix 

operator without affecting the accuracy of the SD. The IIM enables the same solution 

strategy that is used to solve the equations of the flow analysis to be used to solve the 

flow sensitivity equations. This IIM strategy was first implemented in two dimensions for 

the TLNS equations with both the direct-differentiation and adjoint-variable approaches; 

the procedure was demonstrated for two airfoil problems: low-Reynolds-number laminar 

flow and high-Reynolds-number turbulent flow. In their work, the failure to differentiate 

the turbulence modeling terms (because of their complexity) resulted in inaccurate discrete 

SD’s. Later, the IIM strategy was implemented in a 3-D marching Euler code to obtain 

SD’s for several nongeometric design variables [44].

Chattopadhya and Pagaldipti [45] obtained quasi-analytical (discrete) SD’s from the 

3D parabolized Navier-Stokes equations and demonstrated the method for flow over a 

delta wing. In their study, grid sensitivity terms were first calculated via finite differences; 

in a later study [46], they were computed with a quasi-analytical method. Huddleston et
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al. [47] applied the IIM strategy to calculate consistent, discrete SD’s from a 2-D Euler- 

solver using the Gauss-Seidel algorithm with subiterations. The example used in their 

study was flow over an airfoil at subsonic and transonic flow conditions; they defined the 

shape of the airfoil with a Bezier-Bernstein parameterization. In their study, they note a 

discrepancy in the SD’s when the quasi-analytical results are compared with the results 

obtained with finite differencing; this discrepancy is attributed to approximation of the 

derivatives of Roe’s flux-difference-splitting scheme.

1.1.2 Design Optimization

Design optimization methods can be roughly classified as inverse design, gradient- 

based design, and nongradient-based design. Inverse aerodynamic design is a procedure 

in which typically a target surface-pressure distribution is specified, and the corresponding 

shape is calculated that will best produce this pressure profile. The disadvantage to this 

method is that physically realizable solutions may not exist. Thus, the inverse design 

problem must be carefully formulated. A review of inverse aerodynamic design methods 

is given in Ref. 48.

Nongradient-based optimization methods are based on genetic algorithms, simulated 

annealing techniques, and neural networks. Gradient-based techniques can be classified as 

either loosely coupled or tightly coupled optimizations. Loosely coupled optimization can 

also be called the “black box” method, in which the optimization software is implemented 

outside of the analysis cycles; the optimizer drives and controls the analysis and SA codes 

in the optimization procedure. The user typically can use the optimization code as a black 

box, in which the existing analysis and SA software are used for optimization without 

modifications. In the tightly coupled optimization procedure, the optimization cycles are 

embedded within (and are concurrent with) the iterations that are required in the function- 

analysis procedure. Gradient information is obtained concurrently within the procedure. 

The end result of the tightly coupled optimization procedure is the final improved design 

at convergence of the function-evaluation code. Gradient information for the loosely
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coupled and tightly coupled methods can be obtained with either the discrete or the 

continuous approach.

Rizk [49] formulated a tightly coupled optimization procedure (also known as 

simultaneous analysis and design optimization) and summarized several CFD applications 

of this technique in Ref. 50. Ghattas and Xiaogang [51] used a discrete formulation to 

obtain the required gradient information and formulated a tightly coupled optimization 

procedure in an application to a low-Reynolds-number viscous flow. Hou et al. [52] 

successfully demonstrated tightly coupled optimization with a discrete adjoint formulation 

in application to a quasi-1-D nozzle problem. These two independent derivations of Hou 

and Ghattas arrive at essentially the same formulation for simultaneous aerodynamic 

analysis and design optimization; their methods are closely related to variational or control 

theory techniques. Ta’asan et al. [53] and Kuruvila et al. [54] used a continuous adjoint 

formulation to obtain gradient information and formulated the “one shot procedure,” 

which is a tightly coupled optimization scheme in which a highly efficient multigrid 

method is used to solve the potential-flow equations and the accompanying adjoint 

sensitivity equation. With this method, the entire optimization procedure requires only 

about two to three times the computational cost of a single flow analysis. Huffman et al. 

[55] used a continuous adjoint formulation coupled with mesh sequencing to implement 

a simultaneous analysis and design optimization procedure in the TRANAIR code, which 

solves the full-potential equations of 3-D fluid flow. They employed a quasi-Newton-type 

solver to efficiently solve the flow analysis and adjoint sensitivity equations.

Other studies have recently been documented that present results for the loosely 

coupled aerodynamic optimization of wings using the 3-D Euler equations together 

with SD’s calculated with either the discrete direct or discrete adjoint method. These 

studies were for transonic flow; therefore, they required a general 3-D flow solver 

(and appropriate computational grid) capable of solving mixed subsonic, transonic, and 

supersonic flows. For 3-D inviscid flow over a wing, Burgreen [56] and Burgreen and
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Baysal [57, 58] considered both wing-section and planform design variables in their 

aerodynamic shape-optimization study. Jameson [59] considered wing-section variables 

only (for a fixed planform) and implemented an optimization technique based on control 

theory. Chattopadhya and Pagaldipti [45] developed a multidisciplinary, multilevel 

decomposition procedure for the optimal design of a high-speed transport wing with 

the parabolized Navier-Stokes equations and quasi-analytical aerodynamic SD.

Korivi et al. ([60] and the present study) use consistent, discrete SD’s obtained by 

the direct-differentiation approach via the IIM with a space-marching algorithm for the 

Euler equations. Design-improvement studies are accomplished by using grid sensitivities 

from an automatically differentiated grid-generation code. The HSCT 24E configuration is 

chosen as the test case for the design-improvement studies in which only fully supersonic 

flow is considered.

1.2 Scope and Objective of the Present Study

. The central focus of this study is to develop and demonstrate a methodology to 

efficiently calculate discrete (quasi-analytical) gradient information from advanced CFD 

codes. The IIM is proposed and successfully demonstrated in two dimensions to calculate 

these SD’s. After successful demonstration in two dimensions, this methodology is 

extended to a 3-D marching Euler flow code to accurately and efficiently calculate 

geometric and non geometric SD’s. Finally, a 3-D feasibility study (with the geometric 

SD) is done for the aerodynamic design improvement of the HSCT 24E configuration.

Fundamental sensitivity equations are derived by direct differentiation of the system 

of discrete nonlinear algebraic equations that model either the Euler or TLNS equations for

2-D and 3-D steady flows. This differentiation results in large systems of linear algebraic 

sensitivity equations that must be solved to obtain the derivatives of interest. Solving these 

sensitivity equations in standard form (i.e., nonincremental form) with a direct-solver 

approach is an option that has been investigated for some applications. Some important
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advantages are realized in using a direct method when feasible. The lower/upper (LU) 

factorization of the coefficient matrix is stored in computer memory, and for multiple 

right-hand sides of the equation (corresponding to different design variables or different 

adjoint variables) the linear sensitivity equations can then be efficiently solved by 

the simple forward and backward substitution procedure. However, the most serious 

disadvantage of a direct method is the extremely large computer storage requirement, 

which appears to be well beyond the current capacity of modem supercomputers for 

practical 3-D problems; this capacity can even be exceeded in two dimensions on 

computational grids that contain .a large number of points.

In an effort to circumvent the computer storage limitation for the direct methods, this 

study focuses on fundamental algorithm development for the efficient iterative solution 

of the aerodynamic sensitivity equations. The objective is to develop a solid framework 

in two dimensions from which extensions to three dimensions are proven feasible. In 

general, a serious difficulty encountered in the development and application of iterative 

techniques is the lack of diagonal dominance or poor overall conditioning in the coefficient 

matrix. Unfortunately, this problem is a very common occurrence in the CFD coefficient 

matrices of interest; the severity varies greatly and depends on many factors. This 

problem can manifest itself in either poor performance or even complete failure (i.e., 

divergence) of an iterative algorithm.

An “incremental” iterative method (also commonly known as the “delta” or “cor

rection” form) is proposed in the present study to iteratively solve the aerodynamic 

sensitivity equations. This method has a computationally useful property that can be 

effectively exploited to combat the problems of poor iterative algorithm performance. 

This useful property allows the introduction of “approximations of convenience” into the 

coefficient-matrix operator of the equations without affecting the accuracy of the SD’s at 

convergence. These approximations must be “reasonable” so that the resulting iterative 

strategy is convergent. In contrast, if approximations are made to the coefficient-matrix
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operator of the equations in the standard form, then the computed SD cannot be consistent 

discrete forms; that is, they will not be the correct derivatives of the nonlinear algebraic 

equations that model the steady-state flow. In particular, it is proposed and successfully 

demonstrated numerically herein that the identical, diagonally dominant, approximate 

coefficient-matrix operator and algorithm, commonly associated with implicit methods for 

solving the nonlinear flow equations, can also be used to iteratively solve (in incremental 

form) the consistent, discrete systems of linear equations for aerodynamic SA.

The truly significant practical benefits of the proposed IIM can be realized only if 

the method can be successfully extended for use in three dimensions; this extension 

is demonstrated herein with the 3-D Euler equations. In particular, a space-marching 

algorithm together with the IIM is developed to calculate SD’s in three dimensions; this 

method is applicable to fully supersonic, inviscid flow.

Another major part of this study focuses on the feasibility of applying the aerodynamic 

SD’s to aerodynamic design optimization procedures in three dimensions; the HSCT 24E 

filleted-wing-body configuration (without nacelles and horizontal fins) is considered in 

this demonstration. A surface/volume-grid-generation code is differentiated to obtain 

the required grid-sensitivity terms, which are subsequently coupled with the SA code. 

The resulting SD’s obtained via the IIM are compared on the basis of accuracy and 

efficiency with the same SD’s obtained via finite differencing. The flow-analysis code, 

the differentiated surface/volume-grid-generation code, the aerodynamic SA code, and 

an optimizer code are coupled to make a complete aerodynamic design package. This 

design package is applied in three dimensions for thickness, camber, and planform design- 

improvement studies of the HSCT 24E configuration at supersonic cruise conditions.

The development of computer codes to conduct this study is summarized as follows. 

A 2-D Navier-Stokes computer code is developed with the capability to compute SD 

for geometric and nongeometric design variables via the IIM; this includes both the 

direct-differentiation and the adjoint-variable formulations. In particular, for accurate
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and efficient applications to airfoil problems, the computer code is developed with 

a “lift-corrected” far-field boundary condition [61] for flow analysis and SA. A 3-D 

space-marching Euler code, MARSEN (marching Euler sensitivities), is developed for 

aerodynamic flow analysis, and the capability is developed for this code to compute 

SD’s for geometric and nongeometric design variables using the IIM with the direct- 

differentiation approach.

1.3 Thesis Outline

This document is organized as follows. In Chap. 1. the introduction, literature review, 

and motivation have been presented. A brief review of the governing equations and 

method of solution is given in Chap. 2 for the 2-D Navier-Stokes equations, and necessary 

modifications are given for the space-marching algorithm applied to the Euler equations 

in three dimensions. The standard sensitivity equations with the direct differentiation 

and adjoint-variable approaches are given in Sec 3.1 and the IIM strategy is given in 

Sec. 3.2; the incremental iterative forms of these standard sensitivity equations are given 

in Sec. 3.3; a discussion with regard to the grid sensitivity is given in Sec. 3.4. The 

IIM methodology is extended to the space-marching Euler algorithm in three dimensions 

in Sec. 3.5. The SD’s in two dimensions for a subsonic laminar case and a transonic 

turbulent case are given in Secs. 4.1 and 4.2, respectively. Similarly, the SD’s in three 

dimensions for geometric and nongeometric design variables are given in Sec. 4.3. In 

Chap. 5, sample results are given from a feasibility study for design improvement of 

the HSCT 24E wing; SD’s with respect to geometric design variables, coupled with an 

automatically-differentiated surface/volume-grid-generation code and an optimizer code 

are used. The summary, conclusions, and suggestions for further research are given in 

Chap. 6. The governing equations in curvilinear coordinates for the 2-D Navier-Stokes 

equations and for the 3-D Euler equations are given in Appendix A. The procedures for 

the linearization of a lift-corrected far-field boundary condition are given in Appendix B.
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The adjoint-variable formulation in IIM form for inviscid flow with the space-marching 

algorithm is given in Appendix C. The parameterization of the HSCT 24E wing is given 

in Appendix D. Finally, a brief review of the automatic differentiation tool ADIFOR is 

given in Appendix E.
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Chapter 2

GOVERNING EQUATIONS AND METHOD OF SOLUTION

In the present study, the governing equations for compressible, unsteady, inviscid 

flows in three dimensions and viscous flows in two dimensions are solved. These solutions 

are summarized in Appendix A. These equations are solved in the present study in their 

integral conservation-law form with a cell-centered finite-volume formulation [62, 63], 

In this section, the procedure adopted to solve the 3-D Euler equations is outlined, and 

necessary modifications are suggested to handle the 2-D TLNS equations and 3-D space 

marching algorithm. The discretization of Eq. (A.l) in space and the application of the 

Euler implicit time discretization yields the following:

1
JAt

{nAQ} = {Rn+1}

Linearization of Eq. (2.1) about the n* time level yields

JAt
<9Rn

[<9Q. {"AQ}= {Rn(Q)}

(2 . 1)

(2.2a)

{"AQ} = {Q’'+1} — {Q11}

n =  1,2,3... (2.2b)

In Eq. (2.2), l 9Rn is a large, banded, sparse matrix. Inis a diagonal matrix, and 

this study, this Jacobian matrix plays another central role in the SA as discussed later. 

As the time step approaches infinity, Eq. (2.2) simply becomes the Newton-Raphson 

method for solving the nonlinear set of equations. Because we are interested only in
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steady-state flow, the right-hand side of Eq. (2.2a) governs the physics of the fluid flow 

and the left-hand side is the matrix operator that governs the rate of convergence of the 

iterative procedure. The solution Q* is the vector of field variables that corresponds to 

the residual at zero (i.e., the steady state). The residual R(Q) includes the flux balances 

across each cell in the computational domain.

R(Q) =  *F>(Q) +  £G„(Q) +  «!>HC(Q) (2.3)

and
/)r '

AQ =
dQ

3HC ' 
— -A Q (2.4)

where F^, G^, and are the inviscid flux terms in the £, t j , and (  curvilinear coordinate 

directions. The inviscid fluxes are calculated with the Van Leer upwind flux-vector- 

splitting method. Van Leer’s flux vector splitting is chosen over other methods because 

with this method the fluxes are continuously differentiable at sonic and stagnation points; 

this feature is vital in the present study. Details of this method are given in Ref. 64.

The terms 5F^(Q) in Eq. (2.3) and 6 in Eq. (2.4) are evaluated as

dQ Q

«F*(Q) =  rF + ( Q - ) + * + F ^ ( Q + )

/3 F + (Q -)  \  J d  F7(Q +) n
(2.5)

where 8~ and 8+ are backward and forward difference operators respectively. These

fluxes are split into positive and negative parts based on the eigenvalues of the Jacobian

matrices of the respective fluxes. Conserved variables Q are extrapolated from cell 

centers to cell faces in evaluating fluxes at cell interfaces based on the monotone 

upstream-centered schemes for conservative laws (MUSCL). The extrapolation procedure 

is accomplished with (f> -  k interpolating polynomials given as

Qi+1/2 =  +  4 ^  K1 ”  Kt)  Vs + ( l  +  « e )A jQ i

Qi+l/2 =  ~  T ^ s tl1 ~  Ks) V s+ (1  +  (2-6)
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where

AfQ i =  Qi+i -  Qi, VfQ i =  Qi -  Q i-i (2.7)

The value of <j> determines whether extrapolation is first order (0 = 0) or higher order (6 

= 1). Spatial accuracy is determined by the value of k, where k = — 1 is second-order- 

accurate fully upwind, k = 1/3 is third-order-accurate upwind biased (less than third 

accurate for multidimensional computations), and k = 1 is equivalent to a second-order 

accurate central difference scheme. The subscript £ denotes the direction in which the
/s

extrapolation is done. Similarly, expressions for and Hf are obtained by replacing 

/ with j  and k , respectively. With Eqs. (2.3) and (2.4), Eq. (2.2) can be written for a 

particular ijk?h interior cell as

+ B$ + B, + Bc AQ"j k 

+Df AQ"_2j ik+Af AQf_ljk + Cf AQ"+1j k + E^AQjl+2,j,k 

+D,AQfJ_2ik+AJ,AQfJ_ltk + C,AQ?J+1,k + E7/AQ|;j+, k 

+ DC AQ{*jt k_2+AcAQ||jk_1 + Cf AQ"j)k+1 + EcAQ?jk+2

=  R-i,j,k(Qi!*j,k> Q i—2,j,k» Q “- l j ,k >  Q i '+ l j .k ’ Q i+ 2 ,j,k ’ Q i\j-2 .k ’

Qi“j-l ,k ’ Q fj+ U ’ Qi’j+2,k> Qi!j,k-2> Qi\j,k-1> Qi*,j,k+1> QI'j,k+2) (2-8)

where A f,B f,C f,D f,and  Ef are 5x5 block matrices in the £ direction and similarly 

for the t] and (  directions. Equation (2.8) shows the left-hand side of the equation as 

a “thirteen point molecule” in a linear sense and the right-hand side of the equation 

represents the same molecule in a nonlinear sense. In two dimensions the block matrices 

are 4x4, and the block matrices A v, B „  C ,, D,, and E^ are zero. Additional contributions 

to the block matrices and residual expression are made to account for the viscous 

terms, when applicable. The finite-volume equivalent of second-order-accurate central 

differences is used for the viscous terms. Details are given in Ref. 65. In two dimensions 

Eq. (2.8) can be written for a general ikfh interior cell as
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+D^AQ"_2 k+A^AQ“_l k + AQj^j k + Ef AQj^o k 

+DcAQ"k_2+AcAQ"k_1 + CcAQ"k+1 + Ef AQ-'k+2

=  Ri,k(Qi"k> Q f -2 ,k ’ Q ?-l,k >  Qi+2,k> Q i+ l,k ,Q r,k -2>  Q f .k - l i  Q i 'k + l’ Q i'k + 2 ) (2 -9 )

Adjustments have to be made to Eq. (2.8) in three dimensions and Eq. (2.9) in two 

dimensions near the boundaries. Furthermore, in the present study, all boundary 

condition relationships are consistently linearized (except lift-corrected far-field boundary

3R
3Q . References 39 and 65conditions) and pre-eliminated in the global Jacobian matrix 

provide more details regarding the linearization of boundary conditions. Inclusion of the 

linearization of the boundary conditions (discussed in Chap. 3) is of utmost importance 

in the present study. The structure of the global Jacobian matrix may change, depending 

on the type of boundary condition. For example, the implicit treatment of the periodic 

type of boundary condition results in off-diagonal terms inside or outside of the main 

bandwidth, depending on the ordering of the cells. Another example is the implicit 

treatment of the lift-corrected far-field boundary conditions [39], which couples the flow 

variables at the far field boundary with the flow variables on and adjacent to the surface 

boundary of the airfoil, and thus destroys the bandedness of the Jacobian matrix.

Equation (2.2) can be repeatedly solved with a direct solver (a Gaussian elimination 

solver) as the solution is advanced in time to steady state. Because of memory limitations, 

this method is not feasible for large 2-D and 3-D problems. The computational effort 

is reduced if first-order implicit discretization is used for the left-hand side of Eq. (2.2); 

this treatment does not affect the computational accuracy of the steady-state solution, 

which is determined by the spatial differencing of R(Q). Note that a first-order implicit 

discretization makes the left-hand-side Jacobian matrix of Eq. (2.2) block diagonally 

dominant and is represented by the approximate operator j ^ j . Typically, the differences
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between the true Newton coefficient operator and the approximate coefficient-matrix 

operator include

(1) A “time-step” term is added, which significantly enhances each diagonal element 

of the coefficient matrix . This addition is equivalent to the inclusion of

underrelaxation in the true Newton’s method and under certain restrictions can make 

the iterative procedure of Eq. (2.2) “time accurate”.

(2) Simplifying linearization errors of various types are included in the construction

of the approximate operator . fo r example, consistent boundary-condition

linearization is typically neglected, or a first-order accurate upwind treatment of the 

inviscid terms may be used in this matrix operator despite the higher order accurate 

treatment of these terms in the vector Rn(Q) on the right-hand side of the equations.

(3) Additional “approximations of convenience” are included in the matrix operator

in order that an efficient (in terms of computational work and computer storage)

approximate solution of the linear problem can be generated at each iteration on 

the nonlinear problem. For example, with the popular, spatially split, approximate- 

factorization method of Ref. 66, an approximate solution of Eq. (2.2) is produced 

at each nth iteration with alternating direction sweeps that involve the solution of a 

series of uncoupled sub-systems of block-tridiagonal linear equations in each sweep 

direction. This algorithm is used in the sample problems for this study. Additional 

well-known iterative algorithms that have been applied to the solution of the Navier- 

Stokes equations include LU approximate factorization [67], conventional relaxation 

methods [68], strongly implicit methods [69], and preconditioned conjugate-gradient 

methods [70, 71].

In Eq. (2.8), D^, E^, Dv, E ,, D^, and E^ are zero for the first-order implicit discretiza

tion. In three dimensions, supersonic flow is solved in a space-marching manner; this 

involves locally iterating in each crossflow plane, solving a local nonlinear problem,
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before proceeding to the next cross plane. In fully supersonic flow, there is no 

upstream dependence on the downstream behavior. Equation (2.8) can be written for fully 

supersonic flow with first-order upwind discretization for the left-hand side as follows:

I
JAt A Qu,k

+A J/AQ"j_lk  +  C^AQj'J+1)k +  A ^A Q Sj^j +  CcAQ[lj>k+1

=  Ri,j,k(Q[j,k> Q f-2 , j ,k ’ Q f—l,j,k? Qf,j-2,k!

Q i J —l ,k ’ Q ij+ l ,k>  Qij+2,k> Q i l j ,k -2 ’ Q i j , k - 1 » Q ! j ,k + H  Qi j ,k + 2 )  (2 .10 )

In Eq. (2.10), the coefficient of AQ;+i, C^, is zero for fully supersonic flow. Space 

marching is done in the direction of the flow (i.e., the i direction in the present study). 

Information in the previous cross plane is known when iterating locally in the i,h cross- 

flow plane [72] (i.e., Q*_jand Q*_2 are the steady-state flow variables in the i-1 and i-2 

cross planes respectively). For this reason, the term AQi_j Jtk is zero and not included 

in Equation (2.10) for the present space-marching algorithm. Equation (2.10) can be 

expressed as

[M +  B , +  B<;] AQ" jlc

+ A ,A Q "j_ljk -1- CvAQ"j+l k +  AcAQ"j k_j +  CcA Q |j k+1

=  R-i,j,k(Qi,j,k5 Q i—2,j,k' Qi-l,j,k> Qi,j-2,k> 

Q ij—l,k> Qij+l,k> Qlj+2,k> QiJ,k—2’ QiJ,k—1 > Qij,k+1> Q ij,k+2) (2.11)

where

M = JAt + Bf

Equation (2.11) is approximately factored as
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[(M +  B„)AQ?Jik +  A,;AQij_j k +  C,AQ{'j+lik] [NT1]

[(M +  BC) AQ?jik +  Af A Q f ^  +  CcAQ?JJh.J

=  Ri,j,k(Q i,j,k> Q i—2,j,k’ Q i—1 ,j,k> Qi!j—2,k->

Q i j - l .k ?  Qi,j+l,k> Q i,j+2 .k’ Q i,j,k-2> Q i,j ,k -1 ' Qi,j,k+1» Q!!j,k+2) (2 .1 2 )

The solution of Eq. (2.12) involves the solution of two block-tridiagonal equations. The 

preceding equation can be written compactly for the i* crossplane as

[(M +  B ,), A ,, C ,],•$,• =  Ri"(Q”)

[(M +  Bc) ,A c,C c] / 1AQ i =  Mi$ i

"AQj =  Q|l+1 -  Q" n =  1,2,3 (2.13)

where is the intermediate solution for the i* crossplane. The flow variables are solved 

and updated at each iteration as shown in Eq. (2.13).
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Chapter 3

DISCRETE SENSITIVITY ANALYSIS

In Sec. 3.1 of this chapter, fundamental sensitivity equations are derived for two di

mensions in standard form with the direct-differentiation and adjoint-variable approaches. 

In Sec. 3.2, the incremental method for solving the linear system of equations is discussed. 

Later, in Sec. 3.3, the standard sensitivity equations are cast in incremental iterative form 

in two dimensions. Various methods for calculating mesh sensitivity are discussed in Sec. 

3.4. In Sec. 3.5, the IIM is extended to solve the sensitivity equations in three dimensions 

with a space-marching procedure for supersonic Euler flow with the direct-differentiation 

approach.

3.1 Fundamental Aerodynamic Sensitivity Equations in Standard Form

In general, the j th aerodynamic system response Cj is functionally dependent on 

the vector of steady-state field variables {Q*}, the vector of the computational grid 

(x,y) coordinates, {X}, and perhaps also explicitly on the vector of independent design 

variables /?. That is,

The SD of Cj with element of /3) is, thus.

where the superscript T denotes transpose.

The notation for a total derivative has been used on the left-hand side of Eq. (3.2) 

which indicates that the total rate of change of Cj with respect to j3k is included in the

(3.1)

* 3 .  =  , f £ C j l T r d x i  aCj
d/?k I # q /  ld/?kj + l a x j  IdI3kj^d/3k (3.2)
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term and distinguishes it from the partial derivative on the right-hand side of the equation. 

Nevertheless, ^  is a partial derivative in the sense that Cj is generally a function of 

multiple independent design variables ft, as seen in Eq. (3.1). In Eq. (3.2), the term 

as ^ e  grid-sensitivity vector; a detailed discussion is given in Sec. 3.4. 

The grid-sensitivity vector is null if the design variable fa  is not related to the geometric 

shape of the domain. The vector | ^ - | ,  which is the sensitivity of the steady-state 

field variables with respect to the kfh design variable, is evaluated for use in Eq. (3.2) by 

solving a large system of coupled linear sensitivity equations.

The large system of coupled nonlinear algebraic residual equations that model the 

fluid flow can be generally expressed as

{ R (Q * (£ ) ,X (£ )J ,C l )} =  {0} (3.3)

where the dependence of these equations on the grid {X} and on the design variables

/? is noted. In addition, Eq. (3.3) includes the possibility of an explicit dependence on

the steady-state lift coefficient Cl- This explicit dependence is found in the far-field

boundary conditions of an isolated lifting airfoil when the accurate, “lift-corrected” far-

field boundary conditions of Ref. [61] have been used, as in the 2-D sample problems

of this study. Note that C l  itself depends on the field variables {Q*}, the grid {X},

and possibly explicitly on the design variables j3, in the manner expressed by Eq. (3.1).

The explicit dependence on Cl noted in Eq. (3.3) might, therefore, appear redundant;

however, the computational advantages of this particular grouping of terms is discussed

in detail in Ref. [39] and will become apparent subsequently.

Differentiation of Eq. (3.3) with respect to fa  yields

f dR)  [ d R l / d C n  , r dRl / dX)  f d R l  f d R ) d C L 
U A i  w I n A , }  [axj {d/Stl \aySkI +  \c>Cl J ”

where in Eq. (3.4) the term ^  is evaluated with a relationship of the form given by

Eq. (3.2). Note that the vector j  is very sparse; nonzero contributions to it arise

only from the “lift-corrected” far-field boundary-condition equations. Equation (3.4) is.
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thus, a large system of coupled linear equations that can in principle be solved for the 

unknown vector one such solution is obtained for each design variable fa. This

method is known as the quasi-analytical method for computing SD’s.

The matrix 0R of Eq. (3.4) is the Jacobian of the nonlinear flow equationsdQ

(evaluated at steady state) with respect to the field variables and includes consistent 

treatment of all boundary conditions; an exception is the contribution that results from the 

explicit dependence of the lift-corrected far-field boundary conditions on Cl. Substitution

of Eq. (3.2) for into Eq. (3.4) reveals that this contribution to fq- is given by the
T

very sparse matrix • The matrix of Eq. (3.4) is the Jacobian of the

flow equations (evaluated at the steady state and including all boundary conditions) with

respect to the grid coordinates [33-37]; again, the exception is the contribution from the

explicit dependence of the far-field boundary conditions on Cl- Here, this contribution is
T

given by the very sparse matrix vector of Eq. (3.4) accounts

for explicit dependencies (if any) of the flow equations (including boundary conditions) 

on fa; the contribution to this vector from the C l dependence of the far-field boundary 

conditions is given by the vector More details in regard to the inclusion of

lift-corrected far-field boundary conditions are given in Appendix B.

3R

The Jacobian matrix 3R
35 must include consistent linearization of boundary condi

tions. This inclusion can be done with or without pre-elimination, the details of which are 

given in Ref. [35]. With pre-elimination, one expresses the boundary unknowns in terms 

of the interior unknowns, whereas without pre-elimination one solves the interior and 

boundary unknowns simultaneously. Inclusion of the linearization of boundary conditions 

in the Jacobian matrix is very important to obtaining accurate SD’s as noted by Hou et 

al. [35].

A well-known, closely related alternate strategy for computing SD’s known as the 

adjoint -variable method, is easily developed with expressions that have been presented
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thus far. The development begins by combining Eqs. (3.2) and (3.4) to yield

££> =  / ® £ j \ T / £ 2 1 l , J £ £ iV r J & \  J. 
i fik  I  9 Q J I  d/3k /  I  SX J ld /? k J  +

dC-,
df3k

+{Ai)'
a R ' f  dQ *  1

+
a R '

I  d ^ k  J d X . J d A J
(3.5)

The adjoint-variable vector {A j } is arbitrary at this point because the inner product of 

{Aj} is taken with the null vector, from Eq. (3.4). Thus, no net change occurs from Eq. 

(3.2) to Eq. (3.5) because the entire additional term on the right-hand side of Eq. (3.5) 

is zero for any and all {Aj}. Expansion and rearrangement of Eq. (3.5) yields

§ -  { § } * «
r dX 1 dC\ r o r

i d A /  +  %  +  <Aj) \ W v

+  a i T / i 5 - ) ^ - t- ( / a c A T 4. a . i T r a R  
+  w  l a c T J d f l T  \ \ 3 q J  + w L5QJ I f }  a 6 >

The necessity of evaluating the vector with Eq. (3.4) is eliminated for all /?k by

selecting the vector {Aj} such that the coefficient of in Eq. (3.6) is null. That

is, select {Aj} so that it satisfies

{
9 C jV  

dQ J
+  {Aj}

aR
[dQ = {0}

or

[5QJ

(3.7)

(3.8)

Therefore, Eq. (3.8) is solved for this particular choice of the adjoint-variable vector {Aj}, 

the SD’s of Cj with respect to all /?k are computed by

dC;
d/3k

9R
ax I—)I d A J

+
ac;
a/?k

T f a R )  d c L 
l 9 C LJd/?k

(3.9)
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Note that Eq. (3.9) can be solved for only if ^  js known or if Cj = Cl- Therefore, 

when the lift-corrected far-field boundary conditions are treated in the manner described, 

then ^  must be the first SD that is calculated (for any and all fa  of concern), regardless 

of whether the sensitivity of CL is of actual interest. (Typically, of course, the SD’s of 

C l will be of interest in most problems.) A particular solution {Aj} is valid only for 

a specific system response Cj; thus, the solution of Eq. (3.8) must be repeated for each 

different system response of interest.

We can easily verify from the preceding equations that each solution j of 

Eq. (3.4) for a particular design variable can be used for an unlimited number of different 

system responses. In contrast, however, each solution {Aj} of Eq. (3.8) for a particular 

system response can be used for an unlimited number of different design variables. 

Therefore, the total number of large linear systems that must be solved for a particular 

problem can be minimized through a judicious selection of one of these two methods, 

depending on whether the number of system responses of interest or the number of 

design variables of interest is larger.

In terms of computational efficiency, the significance of the difference in the two 

methods is diminished greatly if a direct method is used to solve these linear systems (i.e., 

either Eq. (3.4) or (3.8)). The difference is diminished because with either method the 

LU factorization must only be done once and is then repeatedly reused for multiple right- 

hand-side vectors. However, this distinction can become very important if an iterative 

strategy is used to solve these linear systems, particularly if the difference between the 

number of design variables and the number of system responses of interest is very large. 

Despite this difference, these two methods are equivalent in the sense that they yield 

identical values for the SD, if properly implemented computationally.

To briefly summarize, the calculation of the aerodynamic SD’s with both the discrete 

direct differentiation and adjoint methods requires the direct or iterative solution of large 

linear systems of equations of the type given by either Eq. (3.4) or (3.8). These two
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systems of linear equations are referred to as the “aerodynamic sensitivity equations in

standard form.” Fundamental algorithm development for the solution of one of these

two linear systems is easily extended and applied to the other because their respective
T

coefficient matrices 3R
aq and aR

aq are transposes of each other. When the standard- 

form equations are solved, no approximations can be introduced into any of the terms 

without simultaneously introducing error into the resulting SD’s. In this form, the 

framework to support the development of iterative methods is thus rigid and restrictive.

As a consequence, given the choice of a higher order accurate upwind approximation 

for the spatial discretization of the flow analysis, a consistent, higher order accurate, 

upwind spatial discretization, including a fully consistent treatment of all boundary 

conditions, is required in the coefficient-matrix operator of the sensitivity equations 

(in standard form). Furthermore, no “time term” can be added here to enhance each 

element of the diagonal, as is used (in contrast) in the implicit formulation for solving 

the nonlinear flow equations. Unfortunately, the resulting coefficient matrix (either 

or

diagonally dominant [68]; consequently, the computational performance of traditional 

iterative methods for solving these equations in this standard form is expected to be 

poor or even to fail [39]. Therefore, this particular difficulty (i.e., the lack of sufficient 

diagonal dominance) and its resolution are of principal concern in the development of 

the incremental form of the equations in the following sections.

0R
a§

aq
T

) of the linear sensitivity equations in standard form in this case is not block

3.2 Basic Linear Equation Solution in Incremental Form

Consider the linear system of algebraic equations in the general form

[A] {Z*} +  {B} =  {0} (3.10)

where {Z*} is the solution vector. In treating the problem of solving Eq. (3.10), which 

is essentially a “root finding” problem, the application of Newton’s method (traditionally
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used in root finding for nonlinear equations) to the linear problem yields the basic two-step 

incremental iterative formulation

-[A ]{mAZ} =  [A]{Zm} +  {B} (3.11)

{Zm+1} =  {Zm} +  {mAZ}

m =  1,2,3,.... (3.12)

where m is an iteration index and {mAZ} is the incremental change in the solution from 

the known (mf/l) to the next (m,h+l) iteration level. An initial guess j z 1 j  is required to 

begin the procedure, which in the present study is taken everywhere as zero. If Newton’s 

method is applied strictly, the coefficient matrix [A] is equal to the matrix [A], and clearly 

the two-step iterative strategy of Eqs. (3.11) and (3.12) for the linear problem converges 

on the first iteration for any initial guess. Therefore, in this case the solution of the 

linear system in the standard form (Eq. (3.10)) and the solution in the incremental form 

(Eqs. (3.11) and (3.12)) are equivalent.

More generally, however, the matrix [A] is not necessarily equal to the matrix [A], 

The matrix [A] can be any convenient approximation of the matrix [A] .with the restriction 

that [A] must approximate [A] well enough so that the two-step iterative procedure 

(Eqs. (3.11) and (3.12)) converges (or at the very least can be forced to converge by 

including a strategy such as underrelaxation). Simply stated, [A] should capture the 

essence of [A], Furthermore, because the equations have been cast in delta form, the 

incremental method produces the unique solution of Eq. (3.10), {Z*}, if convergent. In 

this formulation, the purpose of the left-hand-side operator is to drive the right-hand-side 

vector to zero; the accuracy of the unknown {Z*} depends on the right-hand side and 

any approximations to the right-hand side result in erroneous final results.

Equation (3.11) can be solved with either a direct solver or an iterative solver. 

With the direct solver, the left-hand-side operator of Eq. (3.11) is LU factorized and
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stored. This LU factored matrix is reused for multiple right-hand sides with forward 

and backward substitutions for multiple iterations. For large problems in two and 

three dimensions, iterative algorithms are the only choice because of the restrictions 

on computer memory. If an iterative algorithm with inner iterations is introduced for 

solving Eq. (3.11) then the the iteration cycle over Eqs. (3.11) and (3.12) becomes 

the outer iteration index. The inner iterative procedure convergence is ensured if the 

left-hand-side matrix approximation is block-diagonally dominant. The outer iterative 

procedure convergence is ensured, as discussed previously, if the approximate operator 

is an adequate approximation to the matrix [A] and, when inner iterations are included,

if the inner iterative procedure is converged to some satisfactory tolerance (whatever that

tolerance may be).

For example, for selection of a conventional relaxation algorithm to solve Eq. (3.11), 

the matrix —[A] is split into two parts as

t j =[ M]  +  [N] (3.13)

The IIM becomes

step 1: [M]|m,iA z | =  [A]{Zm} +  {B} -  A z } s

i =  1,2,3, ....(imax)m 

Step 2 : {Zm+1} =  {Zm} + A z j

m =  1 ,2 ,3 ,..... (3.14)

where (imax)m is the number of inner or subiterations to converge the mth linear 

subproblem at step 1 to some desired tolerance. The splitting of the matrix as in Eq. (3.13) 

is chosen such that Eq. (3.14) can be repeatedly solved efficiently in terms of CPU time 

and memory requirement. Popular choices for splitting the matrix yield either the Jacobi 

or the Gauss-Siedel algorithms of either the point or line-relaxation types. More details
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are given in Ref. [65] in which the delta-form line Gauss-Siedel algorithm with inner

and outer iterations is chosen to solve the nonlinear 2-D fluid equations.

Advantages of using the IIM can be summarized as follows:

(1) Iterative algorithms can be used to solve the sensitivity equations in incremental 

iterative form efficiently. In contrast, for solution of the standard form of these 

equations, iterative algorithms may converge very slowly or even may result in 

complete failure; this is because of the lack of block-diagonal dominance in the 

higher order Jacobian matrix.

(2) The same approximate operator available for solving the flow equations in most 

implicit CFD codes can also be used to solve the sensitivity equation; thus a time 

term that acts as an under relaxation parameter can be added to the approximate 

operator in incremental iterative form.

(3) Solution of the sensitivity equation via the IIM requires less computer memory than 

solution of the sensitivity equation in standard form with in-core banded solvers. 

This reduction in memory enables solution of large 2-D and 3-D problems.

(4) Tools like ADIFOR can be used to compute the right-hand side of the sensitivity 

equation efficiendy and accurately even when complicated turbulence models are 

being used.

3.3 Incremental Solution of the Equations of Aerodynamic Sensitivity Analysis

Application of the fundamental incremental formulation for solution of the linear 

equation (Eqs. (3.11) and (3.12)) to the linear system of Eq. (3.4) (i.e., the quasi-analytical 

method) for computing aerodynamic SD’s gives
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m =  1,2,3,. (3.16)

where

dRm [<9R] f d Q m l r<9Ri
U q J I  d &  Jr dx_

dX
d/?k

dC f f a c L) T f d Q m) 
l ^ Q i  \ d f l j

+
l9 /? k J  l 5 C L / d / ? k

f acLy  f a x )  | acL
+  1 /  {d/3k } + (3.17)

where the left-hand-side coefficient-matrix operator approximates the matrix f q  

(which will be discussed subsequently). The vector j represents the m,h iteration 

on the total derivative of the discrete steady-state nonlinear flow equations (Eq. (3.3)), 

with respect to /?*. From Eq. (3.4), clearly this vector must be driven to zero to find the 

solution j ^ - }  of Eq. (3.4), which, is of course, the objective of the incremental strategy 

of Eqs. (3.15), (3.16), and (3.17). Approximations must not be made to any terms of 

the vector { ^ ^ - | ;  in particular, a consistent treatment of all boundary conditions is 

necessary if the converged solution is to yield the correct, consistent, discrete SD’s. The 

final solution at convergence depends only on the terms of this right-hand-side vector.

aR
aQ and alao-The identical approximate left-hand-side coefficient-matrix operator 

rithm, which are used to solve the nonlinear problem for the flow variables, are also 

proposed for use (when evaluated at the steady state) as the approximate left-hand-side 

operator and algorithm that are used in solving the linear equation (Eq. (3.15)) for the 

flow sensitivities. That is, a first-order-accurate upwind spatial discretization of the 

inviscid terms is used in this operator as an approximation here to the higher order 

accurate, upwind discretization of these terms. Note that as a result of this choice, block- 

diagonal dominance is obtained and maintained in the left-hand side coefficient matrix. 

In addition, a false “time term” is included (i.e., added) so that each diagonal element
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of the matrix f ] | is further enhanced; this additional term is equivalent to under

relaxation in the incremental strategy shown in Eqs. (3.15), (3.16), and (3.17). The 

boundary conditions are not linearized in a fully consistent manner in this approximate 

matrix operator; far off-diagonal contributions from the periodic boundary conditions 

•which arise when calculations are performed on a C- or O-mesh are neglected. However, 

these periodic boundary conditions cause computational difficulties for the standard-form 

equations which require a consistent treatment in the left-hand-side matrix operator [38]. 

Finally, the well-known spatially split approximate factorization algorithm [66] (also used 

here to solve the nonlinear flow equations) is used to solve Eq. (3.15) (approximately) at 

each mth iteration. If the resulting block-tridiagonal coefficient matrices are stored over 

the entire domain, only a single LU factorization of each coefficient matrix is required. 

Hence, the coefficient matrix is reused for all iterations and all design variables. This 

strategy is implemented in the large 2-D sample problems presented.

If the adjoint-variable formulation for computing the SD is preferred, then application 

of the incremental formulation for solution of the linear equation (Eqs. (3.11) and (3.12)) 

to the linear system of Eq. (3.8) for computing the adjoint-variable vector [Aj] yields

For application in Eq. (3.18), the approximate left-hand-side coefficient-matrix operator 

and algorithm (described previously for use in Eq. (3.15)) can be easily transposed. 

Again, only a single LU factorization of the globally stored block-tridiagonal coefficient 

matrices is required.
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{ T +1} =  {Af }  +  {mAAj}

m =  1,2,3, (3.19)
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3.4 Grid (Mesh) Sensitivity

In this section, the sensitivity of the grid or mesh with respect to the design variables is 

discussed. The computational grids used in CFD usually are body-fitted grids. Movement 

of the boundary because of changes in the design variables affects the entire computational 

grid. This term is not zero, and, thus, it needs special consideration.

One method for computing this quantity is to use divided differences. Each 

design variable is perturbed, and a new mesh is generated; mesh sensitivity is calculated 

from

where central differences are used and is the change in the kfh component of

techniques that provide the same number of cells when the design variable is perturbed 

as in the original mesh. Grid-generation equations by formulation are smooth compared 

with the governing equations of fluid flow; finite differencing can provide a good 

approximation. The disadvantage to using this method is its computational cost. If 

hyperbolic or elliptic grid-generation techniques are adopted, this method for computing 

grid sensitivity becomes expensive, particularly when these grid-generation tools are used 

in an automated design environment. Moreover, sophisticated grid-generation tools are 

interactive, which prohibits their use in an automated design loop.

One method for calculating grid sensitivity is to make use of an automatic- 

differentiation (AD) tool to obtain grid sensitivity. Green et al. [77] applied the 

automatic-differentiation tool ADIFOR to obtain the grid sensitivity from a 3-D algebraic 

grid generator and successfully obtained SD’s from an AD -enhanced version of the 

TLNS3D flow code for turbulent flow over an ONER A M6 wing. In the present study, 

grid sensitivity in three dimensions is obtained from an automatic surface/volume-grid- 

generator code [80] by using the AD tool, and the resultant grid sensitivity is successfully
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used in a gradient-based design improvement of the HSCT 24E configuration. This 

method can be expensive if iterative grid-generation techniques are used.

Alternatively, a method of avoiding the evaluation of grid sensitivity and expensive 

regridding in a design loop is the use of using transpiration [22]. With this method, one 

can approximately compute and avoid grid generation when the geometry

shape changes. The zero flux through the boundary is modified on the surface to a fixed 

value to approximate what would have happened if the body shape had actually changed. 

However, this method requires considerable care to compute accurate SD’s and model 

real surface mass transpiration in Navier-Stokes simulations.

A computationally efficient technique is proposed in Ref. [34] that involves the chain 

rule and analytical differentiation of the relationships used to distribute the mesh points 

in the computational domain. Boundary coordinates Xs can be viewed as principal input 

to the grid coordinates in the rest of the domain, and these boundary coordinates are 

defined by some parametric relationship that involves the design variables. Thus, the 

grid generation procedure can be represented as

X = X(X,(/?)) (3.21)

The grid-sensitivity term obtained by differentiating Eq. (3.21) with respect to the design 

variable fa  is

dX
dfa

dX
dXs m

where the matrix aX in Eq. (3.22) is unique to a particular grid-generation program 

and needs to be constructed only once. Smith and Sadrehaghighi [73] and Sadrehaghighi 

et al. [74] applied this approach and obtained the grid sensitivity for a 2-D algebraic 

grid generator TBGG (twin-boundary grid generation), where the surface of the airfoil is 

parameterized with an NACA four-digit representation. Burgreen [56] applied this
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approach in two and three dimensions; the boundary was represented with Bezier- 

Bernstien parameterization. Recently, Jameson and Reuther [20] applied this approach 

to airfoil optimization.

Another approach is to construct a set of rules by which the grid is moved after the 

initial grid is generated and then to differentiate these rules to obtain the grid sensitivity. 

This approach is used, for example, when the initial mesh is generated using a computer 

aided design [CAD] package. Taylor et al. [39] proposed a procedure for calculating grid 

sensitivity terms and for use in efficient grid regeneration. As the shape of the flow domain 

continuously changes as required by any shape optimization process, the mesh points in 

the domain must be properly adjusted in the design iterations to avoid the numerical errors 

induced by excessive mesh distortion. The requirement of mesh regridding distinguishes 

shape design optimization from other design-optimization applications. This procedure 

is used in the present 2-D study to obtain grid sensitivity. This method, which will 

be presented subsequently, is based on an “elastic membrane'’ analogy to represent the 

computational domain, with grid SD!s calculated from a standard siruciurai-analysis code 

by using the finite-element method.

A simple method for automatic mesh regridding can be established by introducing 

a set of basic displacement vectors Vk to describe the patterns by which the mesh is to 

be regridded. The relationship between the original mesh X0 and the regridded mesh X 

can then be expressed in the form of a linear combination of those basic displacement 

vectors and their associated weighting coefficients /3k as

where the weighting coefficients are taken to be the design variables. The vector X0 

represents the initial mesh, and ndv is the number of design variables which is produced 

with any conventional mesh-generation code; A/3k is the change in 0 k which produces

ndv

(3.23)
i= l

the new mesh X from the initial mesh Xq. In this case, the basic displacement vector
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Vk is simply equal to the required mesh sensitivity vector j .  That is, the grid SD’s 

are calculated by differentiation of Eq. (3.23), which yields

Note that the grid-sensitivity vectors [Vk ] do not change when the design variables are 

changed, provided that the domain is always regridded by using Eq. (3.23) as the shape 

of the domain changes. Therefore, these grid SD’s must be calculated once and then 

stored prior to the start of an aerodynamic optimization strategy; they can be reused as 

often as needed for grid SA, as well as for automatic mesh regeneration.

The basic displacement vectors Vk can be in any form as long as they are each 

independent. In structural shape design optimization, the elastic displacements induced 

by the boundary perturbations are commonly selected to represent the basic displacement 

vectors. In this way, the movement of the mesh points is governed by linear elasticity, 

which not only preserves the continuity of the mesh but also avoids any mesh overlapping. 

The same practice must be applied to aerodynamic shape optimization problems, in which 

an imaginary elastic medium is introduced to represent the computational domain.

More specifically, the basic displacement vectors can be generated by either the 

fictitious load method [75] or the prescribed displacement method [76]. The former 

method produces basic displacement vectors by applying one unit load at each node 

along the boundary in the direction along which the node is allowed to move. This 

concept is illustrated in Fig. 3.1 for a representative airfoil grid. The latter method, 

however, produces the basic displacement vectors by imposing a nonzero displacement 

(in response to a unit change in each design variable) along the varied boundary. This 

concept is illustrated in Fig. 3.2 for a representative airfoil grid. The fictitious load method 

is usually applied to cases in which the location of each node on the varied boundary is 

considered as a design variable, whereas the prescribed displacement method is applied 

in cases in which the shape of the boundary to be designed is parameterized.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



In the following example, a NACA four-digit airfoil is used to demonstrate the 

application of the prescribed displacement method for mesh regridding in an aerodynamic 

shape-optimization environment. The profile of the NACA four-digit airfoil can be 

precisely represented by polynomials in terms of the maximum thickness T, the maximum 

camber C, and the lo,cation of maximum camber L as

( f(x) +  C(2Lx — x2)/L 2 x < L
y(x) =  j f(x) +  C (l -  2L +  2Lx -  x2) / ( l  -  L)‘ x > L  (3-25)

where

f(x) =  ±0.5T(0.2969>/x -  0.126x -  0.3516x2

+ 0.2843 x3 -  0.1015x4) (3.26)

and the ±  in the expression for f(x) indicates positive for the upper surface of the airfoil, 

and negative for the lower surface.

Because the derivatives of the airfoil shape with respect to T, C, and L are continuous, 

small changes in T, C, and L will induce small changes in airfoil shape. Therefore, with 

the employment of a Taylor’s series expansion, such a change in the airfoil shape can be

expanded approximately into a linear function of AT, AC, and AL given as

y (x )= y o (x ) +  ^ M A T  + % M A C  +  M ^ A L  (3.27)

where

AT =  T -  T0 

AC =  C -  C0

AL =  L -  Lo (3.28)

Above, T0, C0, and L0 are the initial values of these three shape parameters associated 

with the initial airfoil shape y0(x) and the initial grid X0.
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The derivatives — , and — ■ in Eq. (3.27) represent special patterns that 

control the allowable changes in the airfoil’s shape. The new mesh X can be defined in 

a form given by Eq. (3.23) as

X =  X0 +  AT • Vj +  AC • Vo +  AL • V 3 (3.29)

where AT, AC, and AL are taken to be the design variables (or, equivalently, T, C, 

and L are the design variables through Eq. (3.28)). The basic displacement vectors 

Vi, V2, and V3 can be obtained by the prescribed displacement method as previously 

discussed. These vectors are obtained numerically through implementation of a finite- 

element model, with each cell in the computational mesh considered as a plane stress 

quadrilateral element. A finite-element matrix equation can then be formed to solve for 

each basic displacement vector (i.e., the movements of all grid points) throughout the 

elastic membrane model of the domain, in response to the nonzero boundary movement 

that is specified through Eq. (3.28) for a unit change (or some other conveniently scaled 

change) in each design variable. The finite-element matrix equation is linear with a 

symmetric and banded coefficient matrix. This equation is, therefore, solved directly by 

a single LU factorization; this LU factorization is then reused for multiple solutions (i.e., 

one solution for each design variable).

Equation (3.27) clearly represents a particular parameterization of the airfoil surface 

that will only closely approximate the NACA four-digit parameterization (defined by Eqs. 

(3.25) and (3.26)) if AT, AC, and AL are small. However, if remaining exactly within 

or close to the allowable shapes defined by the NACA 4-digit parameterization is not 

necessary during the design, then Eq. (3.27) is a valid (but different) parameterization of 

the airfoil shape, even for large AT, AC, and AL. Thus, this classic NACA four-digit 

airfoil is presented only as an example.
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A  Symbol Indicates Simple Support, Zero Displacement 
(Points Supported Included Leading And Trailing Edges, 
Points In Wake, And All Points At The Far-Field Boundary)

Fig. 3.1 Illustration of elastic membrane representation of computational 
domain with fictitious load method for computing grid sensitivity.
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\ \ I
Prescribed Boundary Displacement ~r

r  \  i

Symbol Indicates Simple Support, Zero Displacement.
(Points Supported Included Leading And Trailing Edges, 
Points In Wake, And All Points At The Far-Field Boundary)

Fig. 3.2 Illustration of elastic membrane representation of computational domain with 
prescribed boundary displacement method for computing grid sensitivity.
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3.5 Algorithm for SD Calculation From a Marching Euler Code

In this section, a procedure is outlined to calculate SD’s with the direct-differentiation 

approach in three dimensions. The algorithm is the same as that used to solve the 

nonlinear flow equations. This procedure is implemented in the computer code MARSEN, 

which was developed for this study, and was used in a gradient-based design-improvement 

study for the HSCT 24E. The procedure for calculating SD’s with the adjoint-variable 

approach is given in Appendix C. Note that to solve for the adjoint vector, the marching 

must be done backwards (i.e., in the exact opposite direction to that of the flow).

The procedure for calculating SD’s in three dimensions is a direct extension of the 

method in two dimensions. The residual equation in the i‘h cross plane is differentiated 

with respect to the k?h component of the design variable vector by using the implicit 

function theorem. Although the governing fluid equations are nonlinear in the state 

variables Q*, the resulting sensitivity equations are linear in the sensitivity of the state 

variables j ^ - j -  The residual in the ith cross plane is written as a function of the 

state variables in the i, i-1, and i-2, cross planes, the grid coordinates X. with explicit 

dependence on the design variable fa:

{Ri(Qf, Q i-i,Q i-2) x , fa ) } =  {0} (3.30)

Here, the subscripts j  and k on the state variables Q* are suppressed for simplicity. 

Differentiating Eq. (3.30) with respect to the design variable fa , then the following 

equation results:

In Eq. (3.31), the vectors j* j ,  and j  -^ ~ 2- j  are the sensitivities of the fluid 

variables with respect to the design variable fa  in the i, i - 1, and i -  2 cross planes. The
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important point here is that upwind interpolation of the cell-centered values Qj, to the 

cell faces for evaluation of inviscid fluxes involves state variables in only the i -  1 and / 

-  2 cross planes because of the nature of inviscid, supersonic flow. The matrices dR;
#Qi

3R;
#Qi- and dRi

3Qi-

formulation. The Jacobian matrix 

computed as [ | | ]  [ § |

that are the same Jacobian matrices that are discussed in the implicit 

|  is sparse and banded. This Jacobian matrix is 

, where M represents the metric terms and X represents the 

grid coordinates. Differentiation of the residual expression with respect to metric terms 

is straightforward and is not discussed here. The vector | | | ^ |  accounts for explicit 

dependencies, if any, of the residual vector R-, on the design variable fa . Equation (3.31) 

can be written in standard form as

[dRi] J d Q i l [ dRi 1 f d Q r . i i
\ +

\ dRi 1
[dQi\ [ d f a ! ,dQi_i l  dfa  J .dQi_2.

fdOi-al
I  dfa }

dRi
dX

f d X l  f d R n  

U f a S  + \ d f a i (3.32)

The sensitivities of the state variables in the i -  1 and i -  2 cross planes 

( { f a f a } 7 are known when sensitivities of the state variables in the ilh

cross plane are solved with a space-marching algorithm in fully supersonic flow. 

Equation (3.32) is linear in the unknown j .  By casting this equation in incremental 

iterative form the following equation results:

dRi
dQi

dQi
'd fa

dR;i] fd Q iV
9QiJ \ d f a j

+ dRi
dQi_i

dQT-i
dfa

+
r dRi 1 fd Q r.o i [dRjl
,3Qi-2. l  dfa  J .SX . \ d  f a S ^ X d f a (3.33a)

dQiV" +1 =
d f a ]

\ + i m
dfa  

m =  1,2,3,..

dfa J

(3.33b)
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In Eq. (3.33), the left-hand-side matrix operator M l
tfQi is the approximation of

convenience of the matrix Mi
vQi and is chosen such that it makes the iterative process 

convergent. For the present study, the first-order upwind discretization of the Jacobian 

matrix is used as the matrix operator. A time term which acts as an under-relaxation 

parameter is added to the left-hand-side matrix operator. Equation. (3.33) is solved for 

each cross plane, and the vector calculated over the whole domain. After this

complete vector is known, the sensitivity of the system response of interest with respect 

to the design variable can be computed with Eq. (3.2).
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Chapter 4 

COMPUTATIONAL RESULTS

In this chapter, the SD results in two dimensions are given in separate sections for 

two sample airfoil problems: subsonic low-Reynolds-number laminar flow and transonic 

high-Reynolds-number turbulent flow. Sample 3-D SD results are given for geometric 

and non-geometric design variables in separate subsections.

4.1 Subsonic Airfoil, Low Reynolds Number Laminar Flow

The first problem is subsonic low-Reynolds-number, constant-viscosity laminar flow 

over an NACA 1406 airfoil. Flow is considered at a freestream Mach number Moo 

= 0.6, an angle of attack a  = 1.0°, and a Reynolds number Re = 5.0 x 103. A C- 

mesh computational grid of 257 x 65 points is used, with the “lift-corrected” far-field 

boundary placed five chords from the airfoil; points are clustered near the airfoil surface 

to assist with the resolution of gradients in this vicinity. The cell-centered finite-volume 

formulation method with higher upwind differencing for the inviscid terms and central 

differencing for viscous terms is used. The spatially split approximate factorization 

algorithm is used to achieve the converged (i.e., the average global error is reduced 

to machine-zero) steady-state solution {Q*} of the discrete, nonlinear flow equations. 

Figure 4.1 is a plot of the computed steady-state pressure coefficient Cp on the surface 

of the airfoil. The computed lift, drag, and pitching moment coefficients obtained are 

CL = 0.18148, CD = 0.41703 E-01, and CM = -  0.23718 E-01.

The SD’s of Cl , C d , and C m  are computed with respect to six independent design
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variables: airfoil maximum thickness T; airfoil maximum camber C: location of maximum 

camber L; angle of attack a; freestream Mach number Moo; and Reynolds number Re. 

The three design variables related to geometric shape (T, C, and L) are parameters that 

together with well-known analytical expressions (given, for example, in Ref. [39]) define 

the x and y coordinates on the surface (and, hence, the shape) of the NACA four-digit 

airfoil. The SD’s are computed with three methods: the direct-differentiation method; 

the adjoint-variable method; and the “brute-force” finite-difference method. Application 

of these three methods is described subsequently in greater detail; comparisons of the 

computational results are summarized in Table 4.1. For the direct-differentiation and the 

adjoint-variable method, noted that the direct-solver approach was abandoned because of 

storage restrictions. In this case, (“in core”) storage required by the banded matrix far 

exceeded the 40-megaword storage limit placed on the standard Cray-2 computer queue.

For the direct-differentiation method, SD’s are calculated through the iterative 

solution of the incremental form (i.e., Eqs. (3.15), (3.16), and (3.17)) of six large systems 

of linear equations (one system for each of the six design variables considered here). 

The well-known spatially split approximate factorization algorithm [66] is used, with a 

constant Courant number of 45 (i.e., local time stepping is used). This Courant number 

was determined by numerical experimentation to be approximately the optimum for 

computational efficiency for this sample problem. An eight- order-of-magnitude reduction 

in the average global error is the specified convergence criterion for solving each of the 

six linear systems; an average of 683 iterations is required in each case to achieve this 

convergence criterion.

For the adjoint-variable method, SD’s are calculated through the iterative solution 

of the incremental form (i.e., Eqs. (3.18) and (3.19)) of three large systems of linear 

equations, one system for each of the three system responses considered here. Again 

the approximate factorization algorithm is used, and a constant Courant number of 45 is 

determined to be the optimum. In this case, an average of 1743 iterations is required to
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obtain an eight-order-of-magnitude average global error reduction, which is the required 

convergence criterion for each of these three linear system solutions.

In application of the “brute-force” finite-difference method, central finite differencing 

is used, with a forward and backward perturbation of each design variable (A/3k =  

±5.0E -  06 x /3k)- Machine-zero converged, steady-state solutions of the discrete 

nonlinear flow equations are obtained for each forward and backward perturbation of each 

design variable. Thus, for six design variables a total of 12 solutions to the nonlinear 

flow equations are produced. The approximate factorization algorithm is again used to 

solve the flow equations; to reduce computational work during these computations, the 

LU-factored block-tridiagonal systems are stored and are reused for 10 iterations; after 

10 iterations these terms are reevaluated. (See Ref. [65] for additional details in regard 

to this strategy, which was shown with numerical studies to be near optimum.)

The SD’s calculated with the direct-differentiation method agree closely with those 

computed with the adjoint-variable method. However, the computational work required 

by the latter method (in which a total of three linear systems are solved) exceeds that of 

the former method (in which a total of six linear systems are solved). In addition, the 

convergence rates obtained with the latter method were significantly slower than those 

obtained with the former method in this sample problem. The SD’s obtained by using 

finite differencing also agree closely with those obtained from the other two methods. 

In all comparisons, the finite-difference method was much more costly computationally 

than either the direct-differentiation or the adjoint-variable method.
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Fig. 4.1 Chordwise distribution of surface pressure coefficient NACA 
1406 airfoil, Mqc =  0.6; a  = 1.0°; Re = 5 x l0 3; laminar flow.
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Table 4.1 Summary of Computational Results for NACA 1406 Airfoil:
Subsonic Low-Reynolds-Number Laminar H ow Sample Problem

Solution
method

Total CPU
time
(Secs)*

Design
variable dCL 

d 8
dCD 
d B

dCM
d3

Direct- T -1.392 E+00 +2.019 E-01 +1.805 E-01
Differentiation
method.

C +6.583 E+00 +7.583 E-02 -2.240 E+00

458 L -1.154 E-02 +5.544 E-05 -2.122 E-02approximately
factored a +6.122 E+00 +9.181 E-02 -3.168 E-02
incremental Moo +5.428 E-03 +1.628 E-02 -4.732 E-03
scheme Re +5.958 E-06 -4.912 E-06 -6.564 E-07

Adjoint T -1.392 E+00 +2.019 E-01 +1.805 E-01
-variable C +6.583 E+00 +7.583 E-02 -2.240 E+00
method.

579 L -1.154 E-02 +5.544 E-05 -2.122 E-02approximately
factored a +6.122 E+00 +9.181 E-02 -3.168 E-02
incremental Moo +5.428 E-03 +1.628 E-02 -4.732 E-03
scheme Re +5.958 E-06 -4.912 E-06 -6.564 E-07

"Brute -force" 
finite difference 7404

T

C

L

-1.392 E+00 

+6.583 E+00 

-1.154 E-02

+2.019 E-01 

+7.583 E-02 

+5.548 E-05

+1.805 E-01 

-2.240 E+00 

-2.122 E-02

method a +6.122 E+00 +9.181 E-02 -3.168 E-02

Moo
Re

+5.426 E-03 

+5.958 E-06

+1.628 E-02 

-4.912 E-06

-4.732 E-03 

-6.564 E-07

*A11 calculations performed on Cray-2 computer.
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4.2 Transonic Airfoil, High Reynolds Number Turbulent Flow

The second sample problem is transonic high-Reynolds number turbulent flow over 

an NACA 1406 airfoil. The variation of the molecular viscosity with temperature 

is computed with Sutherland’s law, and turbulence is simulated with the well-known 

algebraic model of Baldwin and Lomax [78]. The flow is considered at a freestream Mach 

number Moo = 0.8, an angle of attack a  = 1.0°, and a Reynolds number Re = 5.0 x 106. A 

C-mesh with 257 x 65 grid points is again used with the lift-corrected far-field boundary 

placed five chords from the airfoil; clustering of points near the surface is tighter in the 

present example than in the previous example because of the higher Reynolds number. 

The cell-centered finite-volume formulation method with higher upwind differencing for 

the inviscid terms and central differencing for viscous terms is used. The spatially split 

approximate factorization algorithm is used to achieve a machine-zero converged, steady- 

state solution. Figure 4.2 is a plot of the computed steady-state pressure coefficient Cp 

on the surface of the airfoil, and Fig. 4.3 is a complete contour plot of the static pressure, 

which clearly shows the presence of a shock wave on the suction surface of the airfoil. 

The computed lift, drag, and pitching moment coefficients are-C l = 0.41662, Cd = 

0.77501 E-02, and CM = -  0.45633 E-01.

The SD’s of Cl , Cd, and Cm are computed with respect to the same six independent 

design variables previously considered. The direct-differentiation, the adjoint-variable, 

and the “brute-force” finite-difference methods are also applied in computing these 

SD’s. However, for the direct-differentiation and adjoint-variable methods, laminar 

and turbulent viscosities are assumed to be constant with respect to the field variables 

{Q*} and the computational grid {X}. That is, in the analytical construction of all

derivatives (including the Jacobian matrices 3 R and 3R
ox ), which are used to calculate

the SD’s, both laminar and turbulent viscosities are constant. For this reason, the 

direct-differentiation and the adjoint-variable methods cannot give SD’s that are exact, 

consistently discrete forms. Thus, the results from the “brute-force” finite-difference
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procedure are considered to be more accurate in this example. This approximation is 

made because of the complexity involved in the consistent treatment the derivatives of 

the turbulent viscosity. In fact, a fully consistent treatment of these terms is not possible 

at points where this turbulence model is not continuously differentiable. Application 

of the three methods is described subsequently in greater detail. Comparison of the 

computational results are summarized in Table 4.2.

For the direct-differentiation and adjoint-variable methods, the SD’s are computed 

with the spatially split approximate factorization algorithm to iteratively solve in 

incremental form the required linear systems that have been described. With both 

methods, a constant Courant number of 30 is numerically determined as the optimum 

for the computations. In all cases an eight-order-of-magnitude reduction in the average 

global error is enforced for convergence. For the direct-differentiation method, an average 

of 1619 iterations is needed to achieve convergence; for the adjoint-variable method, an 

average of 1798 iterations is required. Finally, the “brute-force” finite-difference method 

is applied here in a manner identical to that described in the previous sample problem.

The SD’s calculated with the direct-differentiation method and with the adjoint- 

variable method agree well, as expected. In addition, the total computational cost of 

the direct-differentiation method is approximately twice the cost of the adjoint-variable 

method. This result is expected because with the direct-differentiation method six linear 

systems are solved compared with only three for the adjoint-variable method. The SD’s 

calculated using the method of finite differences are compared with those from the other 

two methods; some discrepancy occurs in the results because of the aforementioned 

neglected consistent treatment of the viscosity terms. For the most part, the agreement 

between these calculated derivatives is good. The most significant discrepancy is noted in 

the SD’s of Cl with respect to maximum airfoil thickness T, where the derivatives differ 

by a factor of approximately three to four. However, this SD is smaller in magnitude than
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the largest derivatives. As in the first sample problem, the “brute-force” finite-difference 

method is much more costly computationally than either the direct-differentiation or the 

adjoint-variable method.
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Fig. 4.2 Chordwise distribution of surface pressure coefficient. NACA 
1406 Airfoil; =  0.8; a  = 1.0°; Re = 5 x l0 6; turbulent flow.
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Fig. 4.3 Static pressure contour plot. NACA 1406 airfoil,
M r 0.8; a  = 1.0°; Re = 5 x l0 6; turbulent flow.
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Table 4.2 Summary of Computational Results for NACA 1406 Airfoil: 
Transonic High-Reynolds-Number Turbulent Flow Sample Problem

Solution
method

Total CPU
time
(Secs)*

Design
variable

0k
dCL
d0

dCD
d0

dCM
d 3

Direct-
Differentiation,
approximately
factored
incremental
scheme

1052

T

C

L

a

Moo

Re

+2.275 E-01 

+1.942 E+01 

+1.338 E-01 

+1.198 E+01 

+1.772 E+00 

+4.145 E-09

+2.654 E-01 

+6.511 E-01 

-1.151 E-02 

+4.200 E-01 

+1.921 E-01 

-4.881 E-10

-3.124 E-01 

-5.516 E+00 

-5.589 E-02 

-4.675 E-01 

-5.430 E-01 

-4.397 E-10
Adjoint T +2.275 E-01 +2.654 E-01 -3.124 E-01
-variable C +1.942 E+01 +6.511 E-01 -5.516 E+00
method.
approximately 586 L +1.338 E-01 -1.151 E-02 -5.589 E-02

factored a +1.198 E+01 +4.200 E-01 -4.675 E-01
incremental Moo +1.772 E+00 +1.921 E-01 -5.430 E-01
scheme Re +4.145 E-09 -4.881 E-10 -4.397 E-10

T +7.919 E-01 +2.744E-01 -4.153 E-01

C +2.063 E+01 +6.776 E-01 -5.770 E+00
Brute-force
finite-difference 8526 L +1.107 E-01 -1.174 E-02 -5.350 E-02

method a +1.299 E+01 +4.346 E-01 -6.328 E-01

Moo +2.040 E+00 +1.969 E-01 -5.972 E-01

Re -1.185 E-09 -2.829 E-10 +1.497 E-10

*A11 calculations performed on a Cray-2 computer.
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4.3 Comparison of SD Results in Three Dimensions

The 3-D Euler equations are solved here for a fully supersonic flow with the 

space-marching method described in Chap. 2. The method is an upwind cell-centered 

finite-volume scheme that is higher-order accurate (second-order streamwise and third- 

order in the cross plane) and fully conservative in all directions, including the streamwise 

(marching) direction. The method is locally time iterative in each cross plane with 

a spatially split approximate-factorization approach. The Mach 2.4 filleted wing-body 

surface definition was processed with the method given in Ref. [79] and a volume grid 

subsequently generated as in Ref. [80]. Figure 4.4 is a view of the HSCT 24E (High- 

Speed Civil Transport) filleted wing-body configuration, including the wake portion of 

the computational grid.

4.3.1 Geometric Design Variables

Comparisons are made of the SD’s obtained with central finite differencing (SD fd) 

and the IIM for several geometric variables. The geometric design variables are those 

variables that define the surface of the HSCT 24E wing. Details of the wing-geometry 

parameterization are given in Appendix D. Grid generation and grid sensitivity for 

the present study are obtained by automatically differentiating the surface/volume-grid 

generator (Refs. [79, 80]). The flight conditions chosen are Moo= 2.4, a = 1°, /? = 0°.

The geometric SD results are computed on a half-space grid (37 streamwise x 49 

circumferential x 15 normal points) with a symmetry plane at y = 0; some forces, 

moments, and SD’s are not balanced by their images and, therefore, do not vanish. 

These nonvanishing components do not affect the geometric SD comparisons for the six- 

component force and moment coefficient (Cx, Cy, Cz, Cm* , CMy, Cm2) SD ’s with respect 

to the geometric design variables. In obtaining the SDfd, analysis solutions at design- 

variable perturbations of approximately 10~5 from the baseline were run from restart 

solution files and converged to a relative residual reduction of 10~n . This process results 

in an appreciable time savings for obtaining the SD fd, at least from the present CFD
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algorithm and code. The spatially split approximate-factorization algorithm is used to 

solve the sensitivity equation in each cross plane with IIM. A constant Courant number of

10 is used for the computations. In obtaining the SD’s via the IIM (S D qA), the relative 

derivative-residual reduction was done to several levels: 10-3 (3 orders of magnitude 

(OM)), 10~7 (7 OM), and 10-11 (11 OM). Comparisons are shown for both accuracy and 

computational efficiency.

Six SD’s are compared with respect to three wing-section thickness ratios (t/C) in 

Table 4.3. This table has five parts: part (a) gives the 18 SDqA; parts (b), (c), and (d) 

show the 18 ratios (SDfd/SDqA) for 3, 7, and 11 OM, respectively; and part (e) gives 

computational time comparisons. Table 4.3(a) shows that these derivatives range in size 

over nearly 3 OM and are both positive and negative. Tables 4.3(b)-(d) show that the 

SDqA agree with the SDfd to between three and four significant figures. Table 4.3(e) 

shows the computation of SDqA to be 1.5 to 2 times faster than the computation of the 

efficient SDfd (i.e.. with restarts, central finite-difference time is about 2.3 rather than 

6 times a baseline analysis solution time). The speed-up depends on the SD accuracy 

required and the analysis code convergence performance from restarts.

Tables 4.4, 4.5, and 4.6 compare similar SD results for sample section twist, camber, 

and flap-deflection geometric variables, respectively. For these cases, however, only the

11 OM S D q A comparisons are shown. Again, these derivatives vary over several OM in 

size; however, agreement with the SDfd remains better than to three significant figures; 

the derivatives are obtained about 1.5 times faster than those derivatives obtained with 

the best S D fd  computation.

Comparison of the six SD’s with respect to three wing planform variables is shown 

in Table 4.7. Here, SD comparisons are shown at all three S D qA convergence levels. 

The S D qA agree with the S D fd  to about four significant figures; in addition, they are 

obtained faster with the IIM.
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4.3.2 Nongeometric Design Variables

As a consequence of using the IIM, the linear sensitivity equations are solved for the 

SD’s of the field variables in each cross plane with the identical space-marching algorithm 

that is used to solve the nonlinear flow equations. The computational grid used for this 

study (37x121x15, with 37 points in streamwise direction, with 121 circumferential 

direction, and 15 points in the normal direction) is different from the grid used to study 

the geometric design variables. Force and moment coefficients for the flight conditions 

Moo = 2.4, a  = 0°, = 0° are shown in Table 4.8. The SD’s of six output functions

(Cx,Cy,C z,CMx, C M, , C MJ  with respect to Mach, Alpha, and Beta are given in Table 

4.9(a). Calculated SD ratios, (forward finite differences with a perturbation size, A fa  

= l.E-05 to quasi-analytical derivatives) are shown in Table 4.9(b); these ratios are 

seen to be unity to four significant figures. Table 4.9(c) shows computational time 

comparisons for the calculation of SD’s with using both forward finite differences and 

the quasi-analytical IIM; all times are given in terms of a baseline time. The measure of 

convergence levels used for the solutions of the nongeometric design variables is given 

in the footnote to Table 4.9(c). Three nonlinear flow solutions, which correspond to the 

perturbed flow conditions, are obtained by using the freestream conditions as the initial 

guess. The computational cost of the finite-difference method is approximately seven 

times greater compared with that for quasi-analytical method.
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Table 4.3 (a) Geometric Section Thickness SD’s of Force and 
Moment Coefficients With Quasi-Analytical Incremental Iterative 

Method (QAHM) for HSCT 24E at = 2.4, a  = 1°, and 0 = 0°

SDqa Scaled design variables 0

Root t/c Break t/c Tip t/c

dCy
d/4 +3.8635 E-04 +2.8663 E-04 +3.3805 E-05

dCy
d/dk -2.4830 E-05 -2.8052 E-04 -2.0875 E-05

dC,
d/dk +4.5475 E-04 +6.1267 E-05 +4.7231 E-06

dCMy
d/dk +2.0925 E-05 -1.2866 E-05 +6.1225 E-07

dCMy
d/dk

+3.4438 E-06 -5.7055 E-06 -2.0632 E-06

dCM, 
d/d k +1.7229 E-04 -7.6030 E-05 -1.3698 E-05

Table 4.3 (b) Geometric Section Thickness SD Ratios ( Fllllt-e Difference ^

sDed.
S D q a

Design variables 0

Root t/c Break t/c Tip t/c

dCy
ddk 1.0000 0.9999 1.0000

dCy
d^k 1.0054 0.9997 1.0004

dC,
d/dk 0.9995 0.9999 1.0011

dCMy 0.9984 1.0005 1.0023

dCMy
d/8k

1.0431 1.0018 1.0007

dCw7
dA 0.9997 0.9996 1.0003

(Reduction of 3 OM)
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Table 4.3 (c) Geometric Section Thickness SD Ratios ( Fl,llte P‘{rereiice)

SDfd.
SDqa Design variables 0

Root t/c Break t/c Up t/c

dCy
dj3k 0.9999 0.9999 0.9999

dCv 1.0000 0.9999 1.0000

0.1
6. 0.9999 0.9999 1.0000

dC\iv
d/Jk 1.0000 0.9999 1.0000

dCMy 0.9999 1.0000 1.0000

dC\i,
d/?k 1.0000 0.9999 0.9999

(Reduction of 7 OM)

Table 4.3 (d) Geometric Section Thickness SD Ratios ( Fll-Ute ^^fereuce)

SDfd
SDqa Design variables 0

Root t/c Break t/c Tip t/c

a q
dpk 0.9999 0.9999 0.9999

dCy
dft 1.0000 0.9999 1.0000

d a
d/*k

dCMv
df)u

0.9999

1.0000

1.0000

0.9999

0.9999

1.0000

d Cm v 
dft

0.9999 1.0000 1.0000

dCM, 1.0000 0.9999 0.9999

(Reduction of 11 OM)
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Table 4.3 (e) Geometric Section-Thickness SD Computational-Time Comparisons

Solution Method Number of solutions Ratio

Baseline 1 1.000*

Central finite differencing 6 1.289

Quasi-analytical (3 OM) 3 0.2032

Quasi-analytical (7 OM) 3 0.2817

Quasi-analytical (11 OM) 3 . 0.3714
* / T?n \Baseline solution run time for ( reduction to

e =  10 11 on Cray-2 is 152 sec.
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Table 4.4 (a) Geometric Twist SD of Force and Moment Coefficients
With QAIIM for HSCT 24E at M*, = 2.4, a  =  1°, and /? = 0°

SDQA Scaled design variables ft

Root twist Break twist Tip twist

d a
dft, -3.6909 E-04 +2.3174 E-05 -1.7165 E-07

d q  
cl lik +5.3123 E-03 -1.0226 E-04 -1.7900 E-06

d a
dtf, +4.8539 E-03 -1.2541 E-03 -5.6965 E-06

dCMv +1.0684 E-04 -1.3584 E-04 -1.1203 E-06

dCMy
dj?k

-1.9188 E-03 +3.5747 E-04 +2.1336 E-06

dC\i,
dft +1.8410 E-03 -3.6119 E-05 -1.060 E-06

e 4.4 (b) Geometric Twist SD Ratios (Finite DifTorenre) Except Terms of

SDfd
SDqa Design variables

Root twist Break twist Tip twist

d q
dft 0.9999 1.0000 a

dCy 1.0000 0.9999 0.9999

a q
d/?k 1.0000 1.0000 1.0007

dCMr
d0k 1.0000 1.0000 0.9999

dCMy
dft 1.0000 1.0000 1.0013

dCM,
d/?k 0.9999 0.9998 1.0000

a Ratio for extremely small quantities is meaningless.
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Table 4.4 (c) Computational Time Comparisons

Solution Method Number of solutions Ratio

Baseline 1 1.000*

Central finite differencing 6 1.0755

Quasi-analytical 3 0.3141

* See note at Table 4.3.
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Table 4.5 (a) Geometric Camber Surface SD of Force and Moment
Coefficients With QAIIM for HSCT 24E at = 2.4. a  = 1°, and 8  = 0°

SDqa Scaled design variables 0

Root C Break C Tip C

dCy
d/4 -6.7160 E-06 +1.6566 E-05 -9.7360 E-08

dCy
d/4 2.4396 E-05 -3.0371 E-05 +7.3377 E-08

d q
d/4 +6.1329 E-05 -7.8495 E-05 +1.3783 E-06

dCM,
d/4 -7.9197 E-06 -9.2387 E-06 +3.4155 E-07

dCMy
d/4

-6.7634 E-05 +6.4016 E-07 -4.6827 E-07

dC\iy
d/4 +1.0487 E-05 -8.5257 E-06 +3.8453 E-08

Table 4.5 (b) Geometric Camber Surface SD 
Ratios (Fi- ite-§ A ~ ~ )  Terms of ° ( e)

SDfd
SDqa Design variables 0 •

Root C Break C Tip C

dC* 
3 4 0.9999 1.0000 a

dCy
d/4 0.9999 0.9999 a

dSs.d/4 0.9999 1.0000 1.0003

dCMy
dj4 1.0000 1.0000 1.0003

dCMy
d/4

0.9999 1.0000 1.0003

dCM,
d/4 0.9999 0.9999 a

a See note at Table 4.4.
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Table 4.5 (c) Geometric Camber Surface SD Computational-Time Comparisons

Solution method Number of solutions Ratio

Baseline 1 1.000*

Central finite differencing 6 0.883

Quasi-analytical 3 0.3084

* See note at Table 4.3.
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Table 4.6 (a) Geometric Flap-Deflection SD of Force and Moment
Coefficients With QAIIM for HSCT 24E at Moo = 2.4, a  = 1°, and 0 = 0°

SDqa Scaled design variables 0

Flap I Flap II Flap III Flap IV

d a
d.flk +7.7336 E-06 +5.5417 E-06 +7.2944 E-08 +7.3339 E-07

dCy
d/fk -6.5184 E-06 +2.3167 E-05 -4.4830 E-08 +5.5264 E-06

dCi
dft -2.1190 E-04 9.6692 E-04 -4.6974 E-06 +2.8558 E-04

dC\tx
d/Jk -3.0110 E-05 +1.2727 E-04 -9.2512 E-07 +5.5924 E-05

dCMy
d.flk +5.8343 E-05 -3.1718 E-04 +1.5573 E-06 -9.7259 E-05

dC'M.
ddk -3.6965 E-06 +9.5445 E-06 -3.0774 E-08 +2.0969 E-06

Table 4.6 (b) Geometric Flap-Deflection SD Ratios (e.nite_Diffe_rencs) Except Terms Qf Q(e)

SDfd.SDqa Design variables f}

Flap I Flap II Hap in Flap IV

dCr
dftc 0.9999 0.9999 a a

dCy 1.0002 1.0001 a 0.9997

dC,
d/?k 0.9999 1.0000 0.9998 1.0003

dCMr
dft, 0.9999 1.0000 0.9998 1.0006

dCMy 
d ft, 0.9999 1.0000 0.9998 1.0006

dC\i,
d̂ k 1.0000 1.0000 a 1.0003

a See note at Table 4.4.
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Table 4.6 (c) Geometric Flap-Deflection SD Computational-Time Comparisons

Solution method Number of solutions Ratio

Baseline 1 1.000*

Central finite differencing 8 0.877

Quasi-analytical 4 0.3439

* See note at Table 4.3.
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Table 4.7 (a) Geometric Planform SD of Force and Moment Coefficients
With QAIIM for HSCT 24E at M*, = 2.4, a  = 1°, and j9 = 0°

SDqa Scaled design variables /?

Root chord Break chord Tip chord

d C ,
d/dk

-1.5421 E-02 +1.0243 E-03 +2.1698 E-05

d C y
d/dk

+1.6117 E-01 -5.0936 E-04 +7.1228 E-05

d C ,
d/dk

+4.7495 E-03 7.7265 E-04 +4.6021 E-05

d C \ t v
d/dk

+7.1231 E-04 +1.1721 E-04 +1.7400 E-05

dC M y

d;dk
-7.9255 E-03 -1.9745 E-04 -2.3264 E-05

dCM y
d d k

+2.4522 E-02 -2.9745 E-04 -5.9707 E-05

Table 4.7 (b) Geometric Planform SD Ratios (.FM*e D e fence)

SDfd.
S D q a

Scaled design variables ft

Root chord Break chord Tip chord

d C y

d / f k
1.0000 1.0000 0.9999

d C y

d /d k
1.0000 1.0000 0.9991

d C *

d /d k
1.0018 0.9998 0.9999

d C M y

d /3 k
1.0009 0.9998 1.0001

d C M y

d /d k
1.0004 0.9998 0.9997

d C \ t .

d /d k
1.0002 1.0000 1.0005

(Reduction of 3 OM)
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Table 4.7 (c) Geometric Planform SD Ratios ( FlIU-te Deference ̂

SD fd
SD q a

Scaled design variables /?

Root chord Break chord Tip chord

dC r 
d f t ,

1 . 0 0 0 0 0.9999 0.9999

dC v
dft,

1 . 0 0 0 0 0.9999 1 . 0 0 0 0 ,

d a
dft,

0.9999 1 . 0 0 0 0 1 . 0 0 0 0

dCM^
dft.

0.9999 1 . 0 0 0 0 0.9999

dCMy
dft.

0.9999 1.0001 1 . 0 0 0 0

dCM,
l A

1 . 0 0 0 0 0.9999 0.9999

• (Reduction of 7 OM)

Table 4.7 (d) Geometric Planform SD Ratios (IjniteDMerence}

SDf d .
SD q a

Scaled design variables j3 -

Root chord Break chord Tip chord

d q
dft,

0.9999 0.9999 0.9999

dCy
d f t

0.9999 0.9999 1 . 0 0 0 0

0.
1 

C
L

H
° 0.9999 1 . 0 0 0 0 1 . 0 0 0 0

dCMr
dft.

0.9999 1 . 0 0 0 0 0.9999

dCMy
dft,

0.9999 1.0001 1 . 0 0 0 0

dCw,
dft,

1 . 0 0 0 0 0.9999 0.9999

(Reduction of 11 OM)
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Table 4.7 (e) Geometric Planform SD Computational-Time Comparisons

' Solution method Number of solutions Ratio

Baseline 1 1.000*

Central finite differencing 6 1.322

Quasi-analytical ( 3 OM) 3 0.2046

Quasi-analytical (7 OM) 3 0.2829

Quasi-analytical (11 OM) 3 0.3606

* See note at Table 4.3.
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Table 4.8 Force and Moment Coefficients for HSCT 24E at = 2.4, a  =  0°, and 6 =  0°

Cx («  Drag) 0.0044

Cy («  Side) O(e)

Cz («  Lift) -0.0133

CMx (Roll) < O(e)
CMy (Pitch) 0.0055

CMz (Yaw) < O(e)

a Baseline solution runtime for reduction to e =  10 8 on Cray-2 is 827 sec.

Table 4.9 (a) Nongeometric SD of Force and Moment coefficients 
With QAIIM for HSCT 24E at = 2.4, a  = 0°, and /3 = 0°

SDqa Design Variables 0

Moo a 0

d q
d f t

-0.0024 -0.0225 0 (e)

dCy
Ah < 0 (e) 0 (e) -0.0614

dC ,
d f t +0.0079 +1.4714 O(10e)

dCMr
Ah < O(e) < 0 (e) -0.0094

dCMy
Ah

-0.0033 -0.3244 O(10e)

dC M,
Ah < O(e) 0 (e) -0.0009
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Table 4.9 (b) Nongeometric SD ratios (Q u^-A V ^ ical) excePt terms of 0 (e)

S D f d
S D q a

Design Variables 0

Moo Q B

(1C,
d/?k

0.9999 1.0000 a

dOy a a 0.9999

d C ,
d/?k

0.9999 1.0000 a

d C w ,
d  f t a a 0.9999

dCntv
"aisr

0.9999 1.0000 a

dC M ,
d/3k

a a 0.9999

a Ratio for extremely small quantities is meaningless.

Table 4.9 (c) Nongeometric SD Computational-Time Comparisons

Solutions
Number of 
solutions

Ratio

Baseline 1 1.000a

Central finite differencing 6 3.426

Quasi-analytical 3 0.487

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 5

HSCT AERODYNAMIC OPTIMIZATION STUDIES

The purpose of the initial studies presented in this chapter is simply to indicate the 

feasibility of using the SD obtained by the IIM in aerodynamic design optimization or 

MDO procedures. A generic MDO via SA for two disciplines is flowcharted in Fig. 5.1. 

These initial applications of the 3-D marching Euler code (MARSEN) with efficient 

geometric SD calculations are for aerodynamic optimization studies in which the CFD and 

grid-generation codes are considered as separate disciplines. The optimization procedure 

is demonstrated in the present study for 3-D inviscid, fully supersonic flow over the 

HSCT 24E configuration.

5.1 Grid Generation and Grid Sensitivity

The geometry processing and grid-generation codes used here [79, 80] take as input 

the simplified numerical descriptions of configuration components in a wave-drag, or 

Harris, format. The various component surfaces are first intersected and filleted into 

a continuous surface; then suitable computational grids are generated. A sample Euler 

marching grid generated for the HSCT 24E is given in Fig. 5.2. For the present study, 

geometric SD are propagated from a design-variable parameterization of the HSCT 24E 

configuration through these surface-processing and volume-grid-generation codes. These 

latter codes have been linked together, front ended with a 42-variable wing-geometry 

parameterization [81, 82], and automatically differentiated. The parameterization [81] of 

the HSCT 24E wing geometry is divided into three variable types: 7 planform variables,
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15 section-thickness variables (5 each at the root, break, and tip sections), and 20 

camber-surface variables. The geometry parameterization used herein is discussed in 

appendix D; the camber parameterization used in Ref. [81] has been replaced. As in 

Ref. [81], propagation of the geometric SD through the automated geometry package is 

accomplished with the AD [83, 84] precompiler tool ADIFOR (Automated Differentiation 

of FORtran) [9]). Execution of the ADIFOR-enhanced automated geometry package then 

calculates not only the grid but also the grid SD’s with respect to the design variables 

used in the geometry parameterization. Both are required as input to the flow code, 

which has been differentiated “by hand”.
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Fig. 5.2 Automated geometry and grid generation for marching Euler code.
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5.2 Sample 3-D  Optimization Results

The Automated Design Synthesis (ADS) program [85] is used for the optimization 

code in these studies, basically in a “black box” manner. The two disciplines, CFD 

and the geometry and grid generation, are coupled sequentially at each optimization 

step; that is, information passes from the geometry to the grid generation to the flow 

code with no feedback within each step. The design variables for thickness, camber, flap 

deflection, and planform have been activated separately to ascertain whether the predicted 

changes are reasonable when only a supersonic cruise point is considered. The fact that 

other discipline codes are not participating in the MDO requires that side constraints 

be specified on the design variables (i.e., with no structural input, minimum thicknesses 

must be set). Use of the ADS code requires that three options be selected: a strategy, 

an optimizer, and a one-dimensional search. The following options have been selected 

for the present constrained optimization results: the sequential quadratic programming 

strategy, the modified method of feasible directions optimizer, and the Golden section 

line search. Function and first-order derivative information is given to the ADS code. 

Because the SD’s obtained via the IIM are local derivatives, this combination of methods 

in ADS appears to provide the most consistent optimization results. However, many 

function evaluations are required by the selected search procedure.

The HSCT 24E filleted wing-body configuration generated at NASA Langley 

Research Center is the baseline for these shape-design-improvement studies. These 

sample studies are done separately for 15 wing-thickness variables, both 28 and 8 wing- 

camber variables, 4 flap-deflection variables, and 5 wing planform design variables. A 

summary of results for each of these five studies is given (Tables 5.1 to 5.6, which also 

will be discussed individually). For these studies, the flow conditions are: Moo = 2.4, 

o  = l°, and ft = 0° (also noted in each table title). Convergence of both the nonlinear 

iterative flow analysis and the linear iterative SA was to a relative residual reduction of 

6 OM for all required solutions. Extensive use was made of restart solution files for the
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flow analysis solutions.

5.2.1 Drag Reduction: Wing-Section Thickness Design Variables

Sample results for the HSCT design improvement study with wing-section thickness 

variables are given in Table 5.1. Table 5.1(a) is a summary and 5.1(b) gives the initial 

and final values of the 15 design variables. The 15 thickness design variables are the 5 

parameters listed in Table D3 in Appendix D at the wing root, break, and tip locations. 

The wing thickness is linearly lofted from root to break and break to tip to supply thickness 

information at all other wing stations (Table D1 in Appendix D). The objective function 

is drag minimization, and the wing-root bending moment and lift are constrained to their 

baseline values; that is,

Cx
minimize ——

' “ 'X o

subject to  < 1 .0
M*0 -

The drag improvement evident in Table 5.1(a) is about 10.5 percent, and both constraints 

are active (within ±0.5 percent of the baseline value). This improvement was obtained in 

8 optimization steps, which required 117 function evaluations and 8 gradient evaluations; 

the Cray-2 run time was approximately 1.2 hours.

With regard to the run time of the codes on the Cray-2 for a relative residual reduction 

of 6 OM with 15 design variables, the initial 267 seconds consists of about 67 seconds 

for an analysis run from a dead start and 200 seconds for the 15 SD evaluations by the 

IIM. If all function evaluations, including those for the central S D fd  required for this 

study, were done from a dead start (i.e., with a uniform free stream), then the total CPU 

time would have been about 23,920 seconds or 6.64 Cray-2 hours. Therefore, the total
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time savings with the use of restart files is about 18.750 seconds; the savings due to the 

use of SD evaluations via the IIM is an additional 800 seconds. Note, however, that the 

time savings due to the use of restart files is code dependent and appears to be large for 

the present analysis code; the time savings for using SD evaluations via the IIM instead 

• of using SDfd  from a dead start would be about 14,480 seconds.

For supersonic flow considerations alone, the wing would be expected to become 

thinner, which occurs as shown in Fig. 5.3. Table 5.1(b) shows the initial and final values 

of the 15 thickness design variables and indicates those variables that are influenced by 

the side constraints (bounds). For 6 of the 15 variables, the side constraints are active 

(within 5 percent of the specified bounds, which for the thickness variables were taken 

to be ±  50 percent of the baseline values). These active side constraints tend to “trap” 

the optimization in a “comer” of the design parameter space, which may not be realistic 

because the nonparticipation of the other disciplines has only been mimicked by the side 

constraints.
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5.2.2 Lift Improvement: Wing-Section Camber Surface-EIevation Design Variables

Sample results for the HSCT lift-improvement studies with wing-camber surface- 

elevation design-variables are given in Tables 5.2 and 5.3 for cases with 28 and 8 design 

variables respectively. In these studies, the camber design variables at the first two 

wing stations were held constant because the body camber line of the filleted wing-body 

configuration was fixed and because the wing lofting to determine the body intersection 

and filleting involved these first two wing stations. The camber surface, for most of the 

baseline HSCT 24E outboard wing, appeared to vary linearly from just beyond the break 

to the tip. Therefore, 28 camber variables were active in the first study: 4 each (Table D4 

in Appendix D) at wing stations 3 through 8 (break) and at wing station 18 (tip) (Table 

D1 in Appendix D) with linear lofting from break to tip. Eight camber variables were 

active in the second study: four each at both wing station 8 (break) and at wing station 

18 (tip) with a parabolic lofting from root to break (i.e., a curve that passes through the 

break variable and the fixed camber variables at wing stations 1 and 2) and with a linear 

lofting from break to tip. For these studies, the objective and the constraints are

Cz
minimize — ——

Cz0

subject to ——— < 1.0
Mx0

Cx
< 1-0

Wo

As shown in Table 5.2(a), a lift improvement of about 7 percent was obtained in 

nine optimization steps, and the constraints were active. The nine optimization steps 

required 136 function evaluations and 9 gradient evaluations for 28 design variables. If 

all function evaluations and central SDfd  were done without the restart, the total CPU 

time would be approximately 42,900 seconds rather than 6680 seconds. The camber
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design-variable changes for this improvement study are given in Tables 5.2(b)—(e). for 

each of the four camber parameters respectively. For 22 of the 28 variables, the side 

constraints are active.

Contour plots of the camber surface elevation Zc are compared in Fig. 5.4. The con

tour plot for the HSCT 24E is shown in Fig. 5.4(a), and the plot from the lift-imrovement 

study with 28 wing-camber design variables in Fig. 5.4(b). The latter plot appears to be 

rougher than that for the baseline. The difference is more evident in Fig. 5.5, which 

compares the spanwise variations of the camber-surface elevations at the wing midchord 

and the wing trailing edge. As noted in Appendix D, this camber surface elevation 

includes not only the customary camber parameter A but also a wing-twist parameter 

ZTE and camber-inflection parameter E. No spanwise control or smoothing was enforced 

in the 28-variable optimization case.

The purpose of the 8-variable study was to add spanwise control on the adjustment 

of the wing-section camber design variables. The effect is evidenced in both Fig. 5.4(c) 

and Fig. 5.5 as a much smoother spanwise variation of the camber surface elevation in 

comparison with the variation seen in the 28-variable study. Wing lift-improvement 

results for the 8-variable case are summarized in Table 5.3. The lift increase of 

approximately 2.6 percent was obtained in eight optimization steps; both constraints, as 

well as the side constraints on four of the eight design variables, are active. Comments 

similar to those made about the previously shown sample studies also apply to the CPU 

times for this case.
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(a) - BASELINE HSCT24E WING.

(b) - FINAL HSCT, 28 VARIABLE DESIGN.

(C) - FINAL HSCT, 8 VARIABLE DESIGN.

Fig. 5.4 Camber contours of wing camber surface elevations 
(contours of constant Zc) for HSCT lift-improvement studies.
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At X/C=50%

Baseline 
28D Final 
8D Final

Root Break

At X/C = 100%

Baseline 
28D Final 
8D Final

Root Break

Fig. 5.5 Comparison of spanwise variations of wing 
camber surface elevation for HSCT lift-improvement study.
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5.2.3 Lift Improvement: Flap-Deflection Variables

In MDO applications, all CFD solutions should be provided for at least an approxi

mately deflected and a trimmed configuration. As a first step in this multiple discipline 

interaction, the static balance and trim control-surface deflections should be investigated 

' for advanced CFD code solutions. Four outboard flaps were defined as part of the baseline 

HSCT 24E wing; these are shown in Fig. D2 in Appendix D for the design. Typically, 

the flaps would be “designed” at low-speed flow conditions with takeoff and landing. At 

high-speed flow conditions, they might be deflected for trim and control purposes. An 

indication of their effectiveness for lift improvement on the HSCT 24E is demonstrated 

by the sample results shown in Table 5.4. The objective and constraint functions are the 

same as in the other lift-improvement studies; here, Table 5.4 shows that a 1-percent lift 

increase is obtained in five optimization steps and both constraints are active. Initial and 

final values of the scaled flap deflections are shown in Table 5.4.

Table 5.4 shows that the flap deflection SD’s for these outboard flaps are rather small 

in comparison with the SD’s for some of the other geometric design variables. As a 

result, no attempt has yet been made to trim the pitching moment for the HSCT 24E. 

Two studies were done, however, on a delta wing for which larger inboard and outboard 

flaps were defined. In the first study, a lift improvement of 1.2 percent, with bending 

moment and drag constrained, was obtained in five optimization steps. In the second 

study, the pitching moment was changed approximately 8.6 percent in six optimization 

steps, with bending moment, lift, and drag constrained.

5.2.4 Lift Improvement: Wing Planform Design Variables

Planform optimization should be accomplished as a MDO study because input from 

other disciplines is required. Therefore, planform optimization is typically done (1) early 

in the design cycle at the conceptual or early preliminary design stages in which these 

other disciplines participate and (2) with linear aerodynamic codes. Generally, several 

(or more) discrete planforms are selected, and section variables are then optimized for
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each planform study. In the sample case presented in this section, lift optimization for 

constrained wing bending moment and drag has been done with five planform variables 

(those shown with solid arrows in Fig. D1 in Appendix D); all other design variables 

were held at their baseline HSCT 24E values. In the next section, samples of the more 

conventional camber optimization for different planforms are given and discussed.

Results for lift optimization with respect to five planform variables are given in 

Table 5.5. A minimum (perhaps a local minimum) has been found in four optimization 

steps with a lift improvement of 5.5 percent and the drag constraint violated by 3.8 

percent. Neither the wing bending-moment constraint nor any of the design-variable side 

constraints are active or violated.

The baseline and optimized planforms are shown in Fig. 5.6. For supersonic flow 

considerations alone, the wing tip should be swept more than in the baseline HSCT 24E: 

Fig. 5.6 shows that the optimization procedure is in agreement with this result. At a 

Mach number of 2.4, the Mach angle is 24.6°. The angle subtended by the wing-tip 

leading edge from the root leading edge is 25.9° for the baseline HSCT 24E and 23.8° 

for the final optimized planform, as depicted in Fig. 5.7. That is, the planform optimized 

for only supersonic flow lies behind the Mach cone.

Planform optimizations with other objectives (e.g., drag minimization or lift to 

drag ratio maximization) and different design variables have been completed: however, 

comprehensive conclusions cannot yet be drawn. In particular, for the optimization results 

just presented, the planform area changed. In the present study, the geometry and grid- 

generation codes have not been differentiated with respect to planform area in order to 

constrain it formally in the optimization. For the double trapezoidal wing planform, this 

can be done with the three wing chords and two wing spans held fixed, which allows only 

the inboard and outboard wing panel sweeps to change. (See Fig. D1 in Appendix D)
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Fig. 5.6 Planform design improvement at cruise condition.
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— Baseline
— Final
— Mach line

Fig. 5.7 Planform design improvement shown with Mach angle.
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5.2.5 Lift Improvement: Camber Variables, Various Planforms

Two planforms that differ from the baseline HSCT 24E were selected for camber 

optimization studies to improve lift, subject to constrained wing bending moment and 

drag. The two planforms were a clipped delta wing and a clipped arrow wing with 

planform area and root chord equal to those for the baseline HSCT 24E. The tip chord 

for these two clipped planforms was 1/10 of the HSCT 24E tip chord. The leading-edge 

sweep of the arrow wing was taken to be that of the inboard panel of the HSCT 24E. 

These three planforms are shown in Fig. 5.8.

A summary of the camber optimization study for the three planforms is given in 

Table 5.6. The results for the HSCT 24E are those given in Table 5.2 for the 28-variable 

case: these results have already been discussed in detail. Lift improvement and active 

constraints occur for all three planforms. The resulting camber surface for the delta wing 

is rough, as for the HSCT 28-design-variable case previously discussed. The camber 

surface for the arrow wing was not nearly as rough; however, only three optimization 

steps were taken. Comments similar to those made previously about the HSCT camber 

optimization also apply to the CPU times for these two clipped planform studies.
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(a) - BASELINE HSCT24E WING

(b)-DELTA WING

(c) - ARROW WING

Fig. 5.8 Comparison of various planforms for lift-improvement studies.
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Table 5.1 (a) Wing Thickness Optimization Study: Design-Improvement Summary 
with 15 Design Variables for HSCT 24E at Moc = 2.4, a  = 1°, and 0 = 0°

Initial Final % Change

Objective (Cx) 1.9361 E-03 1.7311 E-03 -10.59E+00

Constraint I (Cmx) 8.4735 E-04 8.4735 E-04 +0.55E-03**

Constraint II (C2) 1.9086 E-02 1.9087 E-02 +0.68E-02**

Number of function 1 117evaluations

Number of gradient 
evaluations

1 8

CPU time (sec)* 267 4369

* Run time on Cray-2 for reduction of 6 OM in analysis and SD residuals at every 
evaluation.
** Active constraint or side constraint on design variable.
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Table 5.1 (b) Wing Thickness Optimization Study: Scaled Design-Variable Changes

Design variable Initial value Final value % change

Root I 3.6811 3.2830 - 10.8

Break I 4.0288 2.8481 -29.31

Tip I 4.0288 2.1917 -45.60**

Root B 4.8950 5.8788 +20.10

Break B 6.1160 8.6057 +40.71

Tip B 6.1160 8.9049 +45.60**

Root t/C 2.9710 2.8824 -2.98

Break t/C 2.5000 2.4141 -8.59

Tip t/C 2.5000 1.3084 -47.66**

Root Xm 6.0000 5.0874 -15.21

Break Xm 5.0000 4.5458 -9.08

Tip Xm 5.0000 4.1718 -16.56

Root Tau 4.1830 2.1763 -47.97**

Break Tau 2.8980 1.5078 -47.97**

Tip Tau 2.8980 1.5765 -45.60**
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Table 5.2 (a) Wing Camber Optimization Study: Design Improvement Summary 
with 28 Design Variables for HSCT 24E at Moo = 2.4, a = 1°. and ,3 = 0°

Initial Final % Change

Objective (Cz) 1.6446 E-02 1.7584 E-02 +6.92

Constraint I (Cmx) 4.0315 E-04 4.0228 E-04 - 0.22**

Constraint II (Cx) 2.0253 E-03 2.0259 E-03 +0.03**

Number of function 
evaluations

1 136

Number of gradient 
evaluations

1 9

CPU time (Sec)* 400 6676

* See note at Table 5.1.
** See note at Table 5.1.

Table 5.2 (b) Wing Camber Optimization Study: Scaled Twist Design-Variable Changes

Wing station Initial value Final value % change

3 9.6 4.820 _49 79**

4 8.22 4.110 -50.00**

5 1.425 0.998 -42.70

6 1.714 0.999 -41.72

7 1.780 1.637 -18.33

8 (break) 1.493 1.624 +8.77

18 (tip) 2.660 3.990 +50.00**
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Table 5.2 (c) Wing Camber Optimization Study: 
Scaled Camber Design-Variable Changes

Wing station Initial value Final value % change

3 2.780 4.163 +49.75**

4 2.684 3.425 +27.61

5 2.371 1.187 -49.94**

6 1.952 0.976 -50.00**

7 1.508 0.754 -50.00**

8 (break) 1.028 0.514 -50.00**

18 (tip) 1.640 1.977 +20.61

Table 5.2 (d) Wing Camber Optimization Study: 
Camber-Inflection Design-Variable Changes

Wing station Initial value Final value % change

3 2.092 1.047 -49.95**

4 1.557 0.780 -49.90**

5 1.228 1.842 +50.00**

6 9.944 4.986 -49.86**

7 7.738 11.607 +50.00**

8 (break) 5.722 8.565 +49.69**

18 (tip) 8.572 12.591 +46.89**
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Table 5.2 (e) Wing Camber Optimization Study: Scaled 
Maximum-Camber-Location Design-Variable Changes

Wing station Initial value Final value % change

3 4.000 5.994 +49.85**

4 4.000 5.996 +49.90**

5 4.000 2.003 -49.90**

■6 4.000 2.000 -50.00**

7 4.000 2.000 -50.00**

8 (break) 4.000 2.000 -50.00**

18 (tip) 5.000 2.500 -50.00**
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Table 5.3 (a) Wing Camber Optimization Study: Design-Improvement Summary
with 8 Design Variables for HSCT 24E at Moo = 2.4, a = 1°, and B = 0°

Initial Final % change

Objective (Cz) 

Constraint I (CmJ

Constraint II (Cx)

Number of function 
evaluations

Number of gradient 
evaluations

CPU time (sec)*

1.5186 E-02 

2.9336 E-04 

2.0496 E-03

1

1

137

1.5578 E-02 

2.9338 E-04 

2.0498 E-03

105

8

2978

+2.58 

+0.49 E-02** 

+0.75 E-02**

* See note at Table 5.1. 
** See note at Table 5.1.

Table 5.3 (b) Wing Camber Optimization Study: Design-Variable Changes

Design variable Initial value Final value % change

Break ZTE 1.4930 1.3318 -10.80

Break A 1.0283 0.9914 -3.59

Break E 5.7222 6.0098 +5.03

Break XMA 4.0000 2.2021 -44.50

Tip ZTE 2.6600 4.7880 +80.00**

Tip A 1.6400 2.9520 +80.00**

Tip E 8.5717 15.4290 +80.00**

Tip XMA 5.000 9.000 +80.00**

** See note at Table 5.1.
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Table 5.4 (a) Wing Flap-Deflection Optimization Study: Design-Improvement 
Summary with 4 Design Variables for HSCT 24E at Moo = 2.4, a  = 1°, and (3 = 0°

Initial Final % change

Objective (Cz) 1.9087 E-02 1.9309 E-02 +1.17 E+00

Constraint I (Cmx ) 8.4736 E-04 8.4727 E-04 -0.10 E-02**

Constraint II (Cx)

Number of function 
evaluations

Number of gradient 
evaluations

1.9361 E-03 

1

1

1.9361 E-03 

76 

5

+0.63 E-05**

CPU time (sec)* 99 1581

* See note at Table 5.1. 
** See note at Table 5.1.

Table 5.4 (b) Wing Flap Deflection Optimization Study: Scaled Design-Variable Changes

Flap number Initial value Final value

I 0 -2.4125

II 0 + 0.2644

m 0 + 10.000

IV 0 -1.7263
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Table 5.5 (a) Wing Planform Optimization Study: Design-Improvement Summary
with 5 Design Variables for HSCT 24E at = 2.4, a = 1°, and 0 = 0°

Initial Final % change

Objective (Cz) 1.9086 E-02 2.0133 E-02 +5.5

Constraint I (C ^ J 8.4736 E-04 8.4153 E-04 -0.69

Constraint II (Cx)

Number of function 
evaluations

Number of gradient 
evaluations

CPU time (sec)*

1.9361 E-03 

1 

1

132

2.0104 E-03 

102 

4 

2701

+3.83***

* See note at Table 5.1.
*** Constraint violated.

Table 5.5 (b) Wing Planform Optimization Study: Scaled Design-Variable Changes

Design Variable Initial value Final value % change

Root chord 1.420 1.456 +2.52

Break chord 4.236 4.269 +3.24

Tip chord 9.303 1.488 -84.00

X break Leading Edge 9.965 10.358 +3.94

X tip Leading Edge 13.840 15.263 +10.28
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Table 5.6 Wing Camber Optimization Study: Summary 
for Various Planforms at Moo = 2.4, a = 1°, and j8 = 0°

HSCT DELTA ARROW

Objective (Cz), % + 6.92 +5.17 +3.23

Constraint I (Cmx), % -0.22 E+00** -0.52 E-04** —0.68 E+00

Constraint II (Cx). % +0.32 E-01** +0.81 E-01** +0.43 E+00**

Number of function 
evaluations

136 150 53

Number of gradient 
evaluations

9 9 3

CPU time (sec)* 6676 6888 2760

* See note at Table 5.1.
** See note at Table 5.1.
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Chapter 6

SUMMARY AND CONCLUSIONS

The Incremental Iterative Method (EM) is developed to calculate consistent, discrete 

sensitivity derivatives (SD’s). The method is successfully implemented in the calculation 

of consistent, discrete SD’s for the two-dimensional (2-D) thin layer Navier-Stokes 

equations and the three-dimensional (3-D) Euler equations. The lift-corrected far-held 

boundary condition is implemented in the 2-D aerodynamic analysis code and sensitivity 

analysis (SA) code.

The SD’s obtained in two dimensions with the direct-differentiation and adjoint- 

variable approaches are compared with SD’s from hnite differences for accuracy and 

efficiency. Not only do the results from these two methods compare well with those 

from the finite-difference approach, they are computationally less expensive to obtain. In 

two dimensions, these methods are applied to two example airfoil problems: subsonic 

low-Reynolds-number laminar flow and transonic high-Reynolds-number turbulent flow, 

for which the three geometric design variables and three nongeometric design variables 

(Mach number, angle of attack, and Reynolds number) are considered. The SD’s obtained 

for the turbulent flow case do not agree “exactly” with the finite-difference results, as 

expected, because the differentiation of the turbulence terms is neglected due to the 

complexity of these terms; for the most part, this error was small, but in a few cases, 

it was significant.

The SD’s obtained in three dimensions with the direct-differentiation approach are 

compared with finite differences for accuracy and efficiency. In three dimensions, this
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procedure is demonstrated on the High-Speed Civil Transport (HSCT) configuration 

generated at NASA Langley Research Center, and SD’s are obtained with respect to 

three nongeometric design variables (Mach number, angle of attack, and yaw angle) and 

many geometric design variables.

After successful implementation of the IIM in two and three dimensions, these SD’s 

are used in a gradient-based design optimization. Planform, thickness, and camber design 

improvement studies are done for the HSCT 24E for a supersonic cruise condition with 

efficiently calculated SD’s via the IIM. Remarks in regard to the design-improvement 

study are summarized as follows:

1. Formulation of the optimization problem is critical. Based on how a problem is 

posed, the optimization procedure may give completely different answers.

2. An optimization procedure that uses local exact derivatives should not take large 

step sizes in the design variables.

3. A certain degree of robustness is required in all steps of the optimization. For 

example, in the present study, the surface/volume-grid generation procedure failed to 

generate the grid for certain shapes generated by the optimizer.

This IIM is very general and can be easily implemented in any existing CFD code 

to obtain SD’s. Approximations of convenience can be introduced in the matrix operator 

and thus the same solver that is used for aerodynamic analysis can be used for the SA. 

Tools like ADIFOR can be used to construct the right-hand side of the sensitivity equation 

in incremental iterative form. This method currently is being implemented in TLNS3D, 

for example to calculate SD’s. Furthermore, efforts are underway at Argonne National 

Laboratories to construct a template that can differentiate any CFD code with the IIM.

The design-package code developed in this study can be used for static balance 

and trim control of the HSCT 24E configuration, in which the objective is to stabilize 

the configuration with flap deflection as the design variable. This design-package code
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can also be coupled with a finite-element structures code for aeroelastic studies and for 

multidisciplinary design optimization studies in which structures and aerodynamics are 

treated as separate disciplines; this effort is currently under investigation. The marching 

Euler code, equipped with the capability to calculate efficient SD’s can also be used for 

shock-wave propagation and sonic boom studies for the HSCT 24E configuration. The 

single-block marching Euler code developed in this study can be extended to a multiblock 

version with the added capability to perform viscous calculations. The viscous terms can 

be differentiated with ADIFOR, and the resulting differentiated code can be coupled 

with the existing hand-differentiated code, MARSEN (marching Euler sensitivities), to 

calculate the SD’s.

Currently, the linearized system for aerodynamic analysis and the linear system for 

SA are solved with the spatially split approximate factorization algorithm. To further 

improve efficiency in solving the linear system, a Krylov-subspace-based method, such 

as the Generalized Minimal Residual (GMRES) solver, can be added to the existing 

code. As an additional future application, the IIM can be used on unstructured grids to 

calculate SD’s; unstructured grids can be used more easily than structured grids to model 

complicated geometries such as the HSCT 24E.
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APPENDIX A 
GOVERNING EQUATIONS IN CURVILINEAR COORDINATES

The governing equations in the present study in three dimensions are the inviscid, 

compressible, unsteady Euler equations given in generalized curvilinear coordinates as 

follows:

where
’  p  ' ■ pU ■
pu. F pUu +  £xp
pv

’ F = J =
pUv +  £yp

pw J pUw +  £zp
e . (e +  p)U .

'  pV - ' pW
pVll +  T)s  p

T-I
pWu +  CxP

pVV +  JJyP , H =  j  = pWv +  CyP
pVw+7/zp pVVw +  c z P

. (e +  p)V . . (e +  P)W .

U =  £xu +  £y v +  £zw

v  =  T]XU +  T]yV  + Tjz\v

w =  Cxtl + CyV + CzW

above J is the Jacobian of the transformation from the Cartesian coordinates (x,y,z) 

to the generalized curvilinear coordinates (£,t/,CX where £ corresponds to the streamwise 

direction, r\ corresponds to the circumferential direction, and £ corresponds to the direction 

normal to the body surface. The conservation laws of mass, and momentum in the X, Y, 

and Z directions and the energy equations are expressed symbolically in Eq. (A.l).
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In the present study, the governing equations in two dimensions are the unsteady, 

compressible thin-layer Navier-Stokes equations given as

d / * '

where

and

d_
dC

Q =  — =  
^  J

S  =  7  =

’  p '

pu
F = £  =pv J

e
Pv

p v U +  7/x p

pVv + VyV 
. (e +  p)V

pV
pUu +  £xp 
pUv +  £yP

G" == (JL
\ReL

§Vl
OV2
gva 

.0 V 4 J

(A.2)

§Vl =  0

gV2 =  » iu c +  a 3v c

gv, =  a 3U£ +  cv2v  ̂

1
gv4 =  (u2) c +  ^ a 2 (v 2) c +  a 3(u v )c +  p ^ 4_  ^  (a2) c

a  -
a i ~  T  +  3 T

or ( Cx , 4 '
a 2 =  T  +  3 T

'UxCy
3 J 04

The molecular viscosity is calculated with Stokes’s hypothesis, a is the speed of sound, Pr 

is the Prandtl number (Pr = 0.72), and RfiL is the Reynolds number. The nondimensional 

molecular viscosity is calculated with Sutherland’s law and a reference temperature Too, 

which is the static temperature of the free stream. For turbulent flow calculations, the 

algebraic turbulence model of Baldwin-Lomax is used to calculate the turbulent viscosity.
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APPENDIX B 
LINEARIZATION OF FAR-FIELD BOUNDARY 

CONDITIONS FOR LIFTING AIRFOILS

The far-field boundary conditions used in this study are Riemann invariants. In 

this appendix, a procedure is outlined to linearize the far-field boundary conditions: this 

procedure is extended to include the lift-corrected far-field boundary condition.

The nonlinear residual expression on each boundary cell face can be written 

symbolically as

boundary cell face Qb, state variables at the first interior point Qip, local grid coordinates 

Xj, and explicit dependence on the design variables /3. The two relationships enforced 

at each boundary cell face are given as follows (two components of {Re}):

( B . l )

where {Rg } is a four-component vector written as a function of the state variables on the

*R = > R g  -  Rjp

"R  = '>R,g — R qc (B.2)

where JR is the outgoing Riemann invariant and 2R is the incoming invariant. With 

these Riemann invariants, the local velocity Ub and the local speed of sound ae are 

calculated as follows:

Or - ^ X t - u
a B = ---------------- ------------------as = (B.3)
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Based on the value of the local velocity Ub. 3R and 4R (the third and fourth 

components of {Rb}) are enforced with the tangential velocity V and the entropy S 

as shown in Eqs. (B.4), where Ub > 0 indicates the outgoing flow and Ub < 0 indicates

Ub > 0,

3R => VB -  Vi? = 0, 

4R =>  SB -  Sip = 0,

Ub < 0  

3R => VB -  Voo = 0 

4R = >  SB — Soo = 0

(B.4)

the incoming flow. Here, the subscripts B, IP, and oo represent flow-field quantities on 

the boundary, on the first interior point, and for the free-stream, respectively.

By taking the derivative of the Eq. (B.l) with respect to the design variable in 

the following equation results:

3Rb

L̂ QbJ
f dQB \  dRB ( dQip'l 
l d ) 9 k J + l 3 Q i p j \  d/?k j  +

dRB] fdXi'l 
. ld/?kj.a x ! +® } “ {o) (B-5)

where 3 k
<?Qb and

dX,
3 Q i p

SRfi.
OXi is a 4x2  Jacobian matrix.are 4x4  Jacobian matrices and Uj\\

Here, the term |  j  represents the grid-sensitivity vector. The vector is nonzero

if the residual expression is explicitly dependent on the design variable /?k. Calculation 

of the expressions in Eq. (B.5) is straightforward and is not discussed here.

The lift-corrected far-field condition discussed in Ref. [61] has a distinct advantage 

because accurate force and moment coefficients can be calculated with a reduced extent 

of the far-field boundary. The use of the “point-vortex” correction to improve the 

far-field boundary condition is straightforward to implement in an explicit sense. Its 

explicit implementation involves the use of a point-vortex (centered at the quarter-chord) 

representation of the airfoil, where the strength of the point vortex (i.e., the circulation 

H  is proportional to the lift coefficient Cl of the airfoil. The purpose of this point vortex 

is to more accurately model the influence of the lifting airfoil on the velocity field in the
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vicinity of the far-field boundaries (compared with the alternative of assuming a free- 

stream velocity field here), which results in more accurate airfoil calculations, particularly 

as the extent of the far-field boundary from the airfoil is decreased.

The implementation of this point-vortex correction results in a numerical coupling 

■of the far-field boundary-condition equations to (through the lift coefficient Cl) the field 

variables and also to the (x, y) grid coordinates on and adjacent to the surface of the 

airfoil. As a consequence of this coupling between each far-field boundary condition 

equation and the field variables and grid points on and adjacent to the surface of the airfoil.

(whichalgebraically, complex additions are necessary to the global Jacobian matrix 

destroys the banded matrix structure) and also to [§ j|]. To avoid the task of explicitly 

deriving these terms and their precise locations in these Jacobian matrices, a simplifying 

strategy is proposed.

Equation (B.l), with lift-coefficeint Cl as the additional field variable, is written as

{R-b (Qb (/?), Qip (/?), Xi (/J), CL) } =  {0} (B.6)

The second and third components of Eq. (B.6) are different from Eq. (B.l), and the 

remaining two components of this four-component residual expression are the same. Only 

these two components are different because of the involvement of free-stream quantities, 

which are redefined with the lift-corrected far-field boundary condition. The free-stream 

quantities Uqq, v ^ , and aM are defined for the lift-corrected far-field boundary condition 

as

Uoo =  cos a  +  F sin 0 

Vqo =  sin a  — F cos 6
CL • C /

4 7T V
1 - M 2  1*007[1 -  M2osin(0 -  a)]

-I- '
hooo =— 1 ( 7 - 1 )  (B.7)
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where r and 6 are the radius and polar angle in the physical plane. Moo is the free-stream 

Mach number, a  is the angle of attack, 7 is the ideal gas constant, C is the chord of 

the airfoil, and h0oo is the stagnation enthalpy. The polar angle is defined as positive 

counterclockwise from the chord line downstream of the airfoil quarter-chord. The speed 

of sound aoo is determined by ensuring that the total enthalpy is constant. Here, the 

modified free-stream quantities are’ represented with The sine and cosine of the

polar angle can be calculated as

above, the quantities (x0, yo) represent the aerodynamic center of the airfoil. For the 

present study, xo = C/4 and yo = 0, where C is the chord of the airfoil. Quantities (xp, 

yp) represent the coordinates of a cell face, calculated by taking the average of the edges 

of the cell face. If we substitute for sin# and cos# in Eq (B.7) the following equation 

results:

r

cos # =  —: 
r

where

Ax =  xp -  x0, A y= yp -  y0

! /  1 /
*P =  2 'Xi +  x2)> yp =  2 ' yi +  y2)

(B.8)

(B.9)
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where

f =  (l — M^csin2a )A x 2 +  (l — M ^cos2a )A y 2 +  (2^1^, s in ac o sa )  AxAy

If we differentiate Eq. (B.6) with respect to the design variable /?k, the result is

3Rb

9Q b .
( i S a \  +
I  d A  J

5R b

.dQip
fd Q ip l
\ W k )

#Rb dXt l  f a R f l l  
dfik J I d(3k )

raRsiacL
+ i a c r / d A - <0}

(B. 10)

The additional term in Eq. (B.10) compared with Eq. (B.5) is The f°ur'

component vector j f ^  |  can be easily computed because the explicit dependence of 

{Rb } on Cl is known. The term ^  is a scalar term that represents the sensitivity of 

the lift coefficient with respect to the design variable /?k. Throughout the remainder of this 

appendix, geometric design variables are discussed because the analytical expressions are 

not as straightforward to obtain in comparison with the expressions for the nongeometric 

design variables.

Here, the second and third components of Eq. (B.10) are discussed because of 

the complexity involved in calculating Uoo,Vco, a n d a ^ .  The second component of 

Eq. (B.10) can be written as shown below:

d2R dRB dR:

where

d/?k

d/?k d/?k d/?k

UooMj -f VqqIVR +  ( Mi +  ) Uqq +  ( Mo +

(B.l 1)

v ^ \ l f d X |  
a o o /J 1 d f t j

dR:The derivative of can be calculated analytically; the term involves the metric 

terms Mi and M2 as well as the free-stream velocities Uoo and Vqo and their derivatives.

These derivatives and are given as 

^  _  / Cl v T T m T N
U°° I 47T
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' c Ly T ^ M g
47T t £ U ( £ ' i r

(Ax)y = 0 ,  ( A y ) y  = V p  

(Ax)x = ŷ , (Ay)x = 0 
fx = (l — M̂0sin2a)2AxAx + 2M̂, sin a cos a  Ay Ax 
fy = (l — cos2 a) 2 Ay Ay + 2M̂  sin a cos a  Ax Ay (B.12)

The derivatives of Uoo and vM with respect to x and y can be obtained by substituting the 

corresponding derivatives of Ax, Ay, and f  as shown below. For example, the derivative 

of Uqo with respect to x can be shown as

—— j  ( ~ ^ )  [2A*(l “ M̂ sin2a) + 2M̂  sin a cos a Ay] xj,
(B.13)

where the derivatives of f  and Ay with respect to x are substituted in the expression 

for u'M.

The third component of Eq. (B.10) can be written as

3R = >  VB -  Voo =  0 (B.l4)

where Vg and are tangential velocities on the boundary and at the free stream. The

velocities Vb and Voo can be calculated as

V b =  Moub — Mi vg

Voo =  M2Uoo -  Mi Voo (B.15)

where Mi and M2 are metric terms and ub and vB are the Cartesian components of 

velocity on the boundary cell face.
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If we differentiate Eq. (B.14) with respect to the design variable /3k, then the following 

equation results:

d3R dVB dVoo
dA  =  d ( B16)  

In Eq. (B .l6), the term ^  is straightforward to obtain. Derivatives of Voo with respect 

to the design variable /3k can be obtained by differentiating the expression for Voc 

from Eq. (B.15), where the derivative quantities and are calculated as shown 

in Eq. (B .l2).
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APPENDIX C
ADJOINT VARIABLE FORMULATION FOR MARCHING 

EULER PROBLEMS IN THREE DIMENSIONS

In this appendix, the adjoint-variable approach to calculate SD’s is outlined for the 

Euler equations in three dimensions with a space marching algorithm. This procedure 

has not yet been implemented in the present study. The system response C is augmented 

with the product of the Lagrangian multiplier A; and the residual R; (where i corresponds 

to the ith cross plane in the streamwise direction) as

(C.1)

At steady state, R* clearly is equal to zero. Here, Q*, Q*_], and Q*_,, represent the 

steady-state field variables in the i, i -  1 and i -  2 cross planes, respectively, and the j  

and k indices are suppressed. If we differentiate Eq. (C.l) with respect to the design 

variable fa,  the following equation results:

i £  = / i £ \ T/ M l  , f s c  i T r dQr.
ii%. 13Ql /  ld/?ki \ 8 Q i J  I dflk /   \  ^Q im ax  J 1  dflk

:)

IS}*

wmax

r a c ^ f d x i  dc_ 
+  \ a x /  \d/3kJ + a A

+ A?

+ .....

+  A?

-1- . . . .

+ A

\8Ri'
[dQi\

5R-,

’3Ri

dQi
dRi

J M \  +
I dfa  J

_5Qo

dR\

f d Q o K
I  dfa  J

5 R r
dX

dX
dfa - t } )

dX I— 1\ d f a j

. # Q i - l .  

* < » )

fdQf,^ 9Rj lfdQ?.2n
I  dfa  J + |dQi-2J 1 dfa } )

T
imax

3R'imax

LdQi'imax.

f  dQi*max \ , ^R-imax f dX  j  f <9Rjmax
1 dfa dX  J \  dfa  J \  dfa

(C.2)
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In Eq. (C.2), the terms that correspond to the first cross plane, the ith cross plane, and 

the imax cross plane (imax is the number cross planes in the / direction) are given: the 

reason for showing these terms in the equation becomes clear later in this appendix. The

Jacobian matrix dR;ax 5Max , whereis a sparse, banded matrix and is calculated as 

M is the metric term. The derivative of the residual expression with respect to the metric 

terms is straightforward and is not given here. More details in regard to the construction 

of this Jacobian matrix are given in Ref. [35]. Contributions from boundary conditions 

are included in the above Jacobian matrix, which are essential for calculating accurate 

SD’s. The term is the grid-sensitivity vector, which is discussed in detail in

Chap. 3. As can be seen from Eq. (C.2), necessary adjustments are needed when i — 1 

and the flow variables that correspond to the free stream are used for Qo- In Eq. (C.2), 

|qj- is the implicit Jacobian matrix discussed in Chap. 2. The term { H t}  is 

nonzero if the design variable is geometric, and the term | f ^ - |  is nonzero if the design 

variable is nongeometric. By rearranging Eq. (C.2) and collecting terms that correspond

to the sensitivity of the flow variables, we obtain
T r , v  i  imaxdC

dXJ td j8k J ' d/3k 

fdRjl

,(S
\ d &

A;

dQi

dR{

+ A?

i= l

dRol

SRi
a x +

dQi
+  A»

dR3 +

+

+

dQi

f dQimax 1 
I dft J

+  ^i+1 

+  .........

dR;•i+1

Ai

L d Qi

dRimax

+  A;Ti+2

d Qi 

dR;+o

dC ] 
d Q i j

dRi
ddk
T \

LdQj +

dC V

I — Y )\  dQimax j  J (C.3)

In Eq. (C.3), if we set the coefficients of to zero, the following equation results:

J dC ^ T / r d R i l  f d X  j  f  dRi 1 \a c  f d c y f d x  
d/?k - \ d X J  \d /?k

where the adjoint vectors are solved with Eq. (C.5)
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I" dRi 1T rdRo' T [dR,l
IdQiJ

Ai =
L^q i J

A2
[dQi\

A3 +
r ac
IdQi

9Ri

L^Qi
Ai =

dR;■i+1

dQi
A i+ l +

aR;i+ 2

L dQi
A i+ 2  +

f  dC 

l3Qi

dR;ir\\ax

dQ im ax
A jm ax —

dC
dQ im ax

(C.5)

As can be seen from Eq. (C.5), we must solve for the adjoint vectors backwards (i.e.. 

we solve for Aimax first and use it to solve for Aima*^ and so on). Equation (C.5) can 

be cast in incremental form. The incremental form to solve for A* is given as a two-step 

procedure in Eqs. (C.6a) and (C.6b):

dRi
dQi

AA; = dRi
dQi

Af* +
[dR•i+1

dQi
Ai+i +

f dR:i+ 2

dQi A i+ 2  +
dC
dQ;

(C.6a)

{Aim+i} =  {Ar} +  r A A i }  

m =  1,2,3... (C.6b)
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APPENDIX D 
WING-GEOMETRY PARAMETERIZATION

The baseline HSCT 24E wing-geometry parameterization of Ref. [81] was divided 

into three types: 7 planform variables, 15 section-thickness variables (5 each at the 

root, break, and tip section), and 20 camber surface variables. These camber surface 

elevation variables were simply the coefficients in a monomial product expansion of 20 

terms, such as <*(§)" . In the present work, the camber parameterization has been

changed from that shown in Ref. [81]; however, the parameterization for the planform 

and thickness variables have been retained.

The HSCT 24E geometry generated at NASA Langley Research Center resulted from 

a multidisciplinary preliminary design based on linear aerodynamic codes; the geometry 

is. given in the wave-drag format. The wing is described at 18 span stations, which 

are located as shown in Table D l. The seven planform variables required to describe 

the double trapezoidal wing used in Ref. [81] are defined in Table D2 and Fig. Dl. 

The inboard- and outboard-span variables are shown with dashed arrows because they 

are not involved in any present optimization studies. Because the HSCT 24E wing- 

thickness distribution was linearly lofted from root to break and from break to tip, a 

thickness parameterization is required only at these three wing stations. The thickness 

parameterization used in Ref. [81] and in this work is defined in Table D3.

The HSCT 24E wing camber surface is described in the wave-drag, or Harris, format 

by 20 chordwise entries at each of the 18 span stations (i.e., 360 parameters). In the 

present work, the camber has been described at each wing station so that twist and both 

leading- and trailing-edge flaps can be included. Locations of the four outboard flaps 

on the HSCT 24E are shown in Fig. D2. The twist, camber, and flap parameterizations
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are defined and shown in Table D4, Fig. D3, and Fig. D4. This present parameterization 

requires the 72 (18x4) camber variables to approximate the HSCT 24E wing camber 

surface elevation; this representation is better than that obtained with the representation 

with 20 camber variables given in Ref. [81]. Additional spanwise control (or smoothing) 

is required to model the flaps and for the optimization design-variable changes discussed 

in the text.
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Table D l HSCT 24E Wing-Section Locations

Wing section % distance along the span from side of fuselage

1 (Root) 0.00

2 5.94

3 11.88

4 17.82

5 23.77

6 29.71

7 35.65

8 (Break) 42.44

9 47.53

10 53.47

11 59.42

12 65.36

13 71.30

14 77.24

15 83.18

16 89.12

17 95.06

18 (Tip) 100.00
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Table D2 Planform Parameters

RC Root chord

BC Break chord

TC Tip chord

XBC X - location of leading edge at break

XTC X - location of leading edge at tip

IS Inboard span

OS Outboard span

Table D3 Thickness Parameters

I

B

11C 

Xm 

TAU

Table D4 Camber and Flap Parameters

ZTE Twist

A Camber

E Camber inflection

XMA X/C location of maximum camber

XHL X/C location of leading-edge flap hinge

h Deflection of leading-edge flap

XHT X/C location of trailing-edge flap hinge

Deflection of trailing-edge flap

Leading-edge radius parameter, Ro =  1.1019 * [(1/6.0) * *2] 

Curvature forward of airfoil maximum thickness 

Thickness to chord ratio 

Location in (x/C) of airfoil maximum thickness 

Thickness trailing-edge half-angle

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission

Fi
g.

 
Dl

 
W

in
g-

pl
an

fo
rm

 
pa

ra
m

et
er

iz
at

io
n.



130

HH

HHHH

HH

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Fi
g.

 
D2

 
O

ut
bo

ar
d 

wi
ng

 
fla

p 
lo

ca
tio

ns
 

for
 

HS
CT

 
24

E.



Zc- Maximum 
camber, A

(0,0)

Location of maximum 
camber, XMA

Twist parameter, ZTE
X/C

(1, ZTE)

Maximum camber 
inflection, E

X/C

Fig. D3 Wing-section camber parameterization: Twist and camber.



Leading-edge flap 
hinge line, XHL

Trailing-edge flap 
hinge line, XHT

ZC1 = ZTE * (X/C) + (A -  ZTE) * (X/C) * [(X/C) -  1] 

ZC2 = E * (X/C) * [(X/C) -  1] * [(X/C) -  (XMA/C)] 

Zq — ZC1 ZQg hh Zp

Fig. D4 Wing-section camber parameterization: Flaps.
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APPENDIX E 
AUTOMATIC DIFFERENTIATION

An AD tool is a chain-rule-based technique for differentiating an output function of 

a program with respect to some specified input parameters. This technique is as old as 

programmable systems [84]. This AD tool relies on the technique that every function is 

calculated on a computer by executing some basic operations such as addition, subtraction, 

and multiplication. Principally, two modes exist in automatic differentiation: the forward 

mode and the reverse mode (which closely resembles the adjoint approach with a low 

operation count and a large computational memory requirement).

An AD tool computes derivatives within the accuracy of the original function, unlike 

divided differences. These tools differ from a symbolic manipulator in that the operation 

count and memory are bounded a priori in terms of the complexity of the original code. 

Calculation of the SD’s by hand differentiation is not feasible for complicated CFD 

codes. For example, the differentiation of turbulence models by hand-differentiation is 

not feasible, and failure to consistently differentiate these terms results in inaccurate SD’s 

as shown by Korivi et al. [42]. Hand differentiation is error prone and requires a lot 

of time to construct the differentiation code; on the other hand, automatic differentiation 

constructs accurate derivatives of very complex codes in a very short time. In the near 

future, usage of these codes may become routine for computing derivatives accurately 

and efficiently; this tool can be used judiciously to obtain SD’s. (The case of using an 

AD tool to obtain SD via the IIM is discussed later.)

The AD source tool used in the present study, ADIFOR (Automatic Differentiation 

of FORTRAN) [86- 88], is jointly developed by Argonne National Laboratories and 

Rice University. The ADIFOR tool differentiates any specified FORTRAN program
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output with respect to any program input parameters and uses a hybrid mode of forward 

and reverse modes of AD: ADIFOR is a general-purpose tool that supports almost 

all of FORTRAN 77 and is based on the ParaScope FORTRAN environment. The 

differentiation of a FORTRAN program output with respect to an input parameter using 

ADIFOR produces a FORTRAN code that computes the derivative of the function and 

also computes the function itself upon execution of the resultant code. The original 

program vectorization and parallelization are preserved and supports the error exception 

handling routines. The Jacobian matrix is computed with the low-memory-based seed 

matrix concept. The number of columns in the seed-matrix is the number of design 

variables. More details in regard to how ADIFOR handles sparsity are given in Ref. [87].

The ADIFOR tool has been applied to various Fortran codes to obtain SD’s from 

advanced CFD codes. Bischof et al. [89] and Green et al. [90] applied ADIFOR to 

TLNS3D to obtain accurate SD’s with respect to turbulence modeling parameters and 

nongeometric design variables. The application of ADIFOR to an iterative algorithm 

is demonstrated in these studies. The application of ADIFOR to an iterative procedure 

such as

Xn+1 =  X" -  P -1 * R (E.l)

(which is a common iterative procedure in any CFD code, where P is the preconditioner, 

R is the residual, and n is the iteration index) results in the following iterative procedure:

X'n+1 =  X'n -  (P_1) ’ * R -  P " 1 * r '  (E.2)

/

where the derivative of the preconditioner (P-1 ) is also calculated. This iterative 

procedure is used to compute derivatives from a differentiated version of TLNS3D. 

However, in Eq. (E.2) the derivative of the preconditioner is computed and multiplied 

by the residual at each iteration. This can be avoided because R is equal to zero at 

steady state. Bischof et al. [89] suggested the deactivation of certain parts of the 

differentiated program to calculate the derivatives. This step needs user intervention
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and is not automatic. Newman et al. [43] suggested that the use of ADIFOR with the 

IIM results in an accurate and efficient evaluation of derivatives where only the derivative 

of the residual is computed. The preconditioner used for the SD evaluation is the same 

as that used for the analysis. Sherman et al. [91] applied ADIFOR via the IIM to 

.compute first- and second-order derivatives from a Navier-Stokes code with an algebraic 

turbulence model. The SD’s computed with respect to geometric and nongeometric 

design variables compare well with those computed with finite differences. Korivi et 

al. [60] and Green et al. [77] applied ADIFOR to an algebraic grid-generation code 

to compute the grid sensitivity and successfully obtained the SD’s with respect to the 

geometric design variables.
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