
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mechanical & Aerospace Engineering Theses & 
Dissertations Mechanical & Aerospace Engineering 

Summer 2015 

Constrained Discrete Phase Control of a Heaving Wave Energy Constrained Discrete Phase Control of a Heaving Wave Energy 

Converter in Irregular Seas Using Reinforcement Learning Converter in Irregular Seas Using Reinforcement Learning 

Praveen D. Malali 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds 

 Part of the Ocean Engineering Commons 

Recommended Citation Recommended Citation 
Malali, Praveen D.. "Constrained Discrete Phase Control of a Heaving Wave Energy Converter in Irregular 
Seas Using Reinforcement Learning" (2015). Doctor of Philosophy (PhD), Dissertation, Mechanical & 
Aerospace Engineering, Old Dominion University, DOI: 10.25777/w2m7-0564 
https://digitalcommons.odu.edu/mae_etds/142 

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & 
Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/302?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/142?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


CONSTRAINED DISCRETE PHASE CONTROL OF A HEAVING WAVE ENERGY CONVERTER

IN IRREGULAR SEAS USING REINFORCEMENT LEARNING

Praveen D. Malali
B.E. July 2006, Visvesvaraya Technological University, India 

M.S. December 2010, Old Dominion University

A Dissertation Submitted to  the Faculty o f 
Old Dominion University in Partial Fulfillm ent o f the 

Requirements fo r the  Degree o f

by

DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING

OLD DOMINION UNIVERSITY 
August 2015

Approved by:

M iltiad is Kotinis (D irector)

Sushil K. Chaturvedi (M em ber)

Gene Hou (M em ber)

Jin Wang (M em ber)



ABSTRACT 

CONSTRAINED DISCRETE PHASE CONTROL OF A HEAVING WAVE ENERGY CONVERTER 
IN IRREGULAR SEAS USING REINFORCEMENT LEARNING

Praveen D. Malali 
Old Dominion University, 2015 

Director: Miltiadis Kotinis

Designed for offshore deployment in irregular seas, the point absorber wave energy conversion 

(WEC) system is promisingly attractive amongst the currently available WEC technologies. The 

effectiveness o f phase control when applied to a heaving point absorber through a hydraulic 

power take-off (PTO) system is systematically investigated in both regular and irregular waves. 

For this purpose, two phase control accumulators are utilized in the hydraulic PTO system. 

Simulations are performed in MATLAB® using the Cummins equation to model the dynamics of 

the heaving point absorber in the time domain.

For a given sea state, the opening instant o f the control valves of the phase control accumulators 

relative to the wave excitation peak and the volumetric displacement of the hydraulic motor are 

utilized as parameters in a number of simulation runs. In regular waves, the parametric 

investigation demonstrates that in most cases there is a trade-off between maximizing the mean 

generated power and minimizing the maximum motion amplitude. In fully developed irregular 

seas, a parametric investigation of different sea states in the North Atlantic demonstrates that by 

utilizing phase control a significant increase in the power absorption efficiency can be obtained 

compared to the WEC system operation without phase control.

The problem of providing an effective phase-control strategy that maximizes the mean generated 

power of the WEC system subject to motion amplitude constraints is formulated and solved using 

a Reinforcement Learning (RL) approach based on the Q-learning algorithm. The RL-based 

controller chooses actions that determine the opening instant of the phase control accumulator



valves and the volumetric displacement o f the hydraulic motor. As demonstrated in both regular 

and irregular waves, the RL-based controller is successful in finding the optimal phase-control 

strategy. Finally, the prediction of the wave excitation force is performed using a Radial Basis 

Function (RBF) network ensemble in order to evaluate the impact of the prediction accuracy on 

the RL-controller's performance. The results show that the computed mean generated power and 

maximum motion amplitude values using the RBF network ensemble predictions compare very 

well with the corresponding values computed assuming perfect knowledge of the future wave 

excitation.
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CHAPTER I 

INTRODUCTION

1.1 Global Energy Demand and Renewable Energy Resources

According to a recent estimate by Mora et al. [1], planet Earth is home to roughly 8.7 million 

species. All living organisms need energy in order to survive. The primary source of energy on our 

planet is the Sun: Earth receives approximately 5.71024 Joules of solar energy on an annual basis

[2]. Living organisms harness this energy either directly or indirectly, e.g., plants harness energy 

from the Sun directly during photosynthesis whereas humans acquire energy by consuming plants

[3]. Research shows that plants capture about 2 1023 Joules of energy per year from solar radiation 

(sunlight) for photosynthesis [4], During photosynthesis, plants use sunlight, water, and carbon 

dioxide to synthesize sugars and organic compounds [4],

Human beings occupy the apex position in the ecological food chain [5] and, as such, they have 

devised complex survival techniques like agriculture and animal-rearing. Energy from various 

entities such as sunlight, firewood, and certain forms of dehydrated biomass are used by humans 

for comfort, safety, warmth, and heat [6]. This broad range of natural entities that are utilized by 

humans for survival and comfort are commonly referred to as natural resources of energy. 

Human beings rarely live in isolation [7], Their tendency to congregate gave rise to communal 

living and settlements. Later, these settlements evolved and developed into rural villages, towns 

and cities [8]. In 2014, out of a total human population of 7.25 billion people, nearly 3.8 billion 

people live in urban areas (towns and cities) [9]. According to a recent report released by the 

United Nations, the urban population is expected to grow and comprise nearly 60 percent o f the 

total human population by 2030 [9], This development in the pattern o f human settlement has 

led to increased energy consumption. Urban areas such as towns, cities, and mega-cities are 

responsible for 75 percent of the world's energy consumption [10]. The demand for energy has



fuelled the efforts to find natural resources of energy which can provide cheap and reliable energy 

for human consumption.

Firewood or wood fuel is one of the oldest natural resource o f energy known to humans [11]. 

Consisting mainly of carbon, the burning o f wood releases significant amount of heat and light. 

With a specific energy o f 14.9 MJ/kg [12], firewood has been used to supply energy for cooking, 

heating in colder climates, and protection against wild animals. Fossil fuels -  mainly coal, natural 

gas, and petroleum - have profoundly impacted human societies since the era of the Industrial 

Revolution. Coal, which has a specific energy of 30.2 MJ/kg [12], facilitated the beginning of the 

Industrial Revolution in Western Europe in the early 17th century. Petroleum and its derivatives 

are currently used as the primary source of energy in transportation, e.g., automobiles, aircraft, 

ships, and trains. Coal and natural gas are also used for electricity generation in thermal power 

plants. About 67 % of the total electricity generated in the United States in 2013 was from fossil 

fuels (coal, natural gas, and petroleum) [13].

In the early 20th century, it was discovered that radioactive isotopes of uranium, plutonium, and 

thorium, commonly referred to as "nuclear fuels", can be made to undergo controlled nuclear 

fission [14], In the process of nuclear fission, a significant amount of energy in the form of heat 

and radiation is released. Since the early 1960's, nuclear fuels have been used for the purposes of 

steam generation in electricity generation plants, submarines, and naval aircraft carriers [15]. 

With a specific energy of 3.910s MJ/kg (for uranium enriched to 3.5% in light water reactor) [16], 

nuclear fuels are the densest, usable energy resource. About 19% of the total electricity generated 

in the United States in 2013 was from nuclear fuels [13].

Although fossil and nuclear fuels are energy-rich, their usage could have detrimental impact on 

human societies and the earth's ecosystem [17], The combustion of fossil fuels results in the 

emission o f greenhouse gases such as carbon dioxide, carbon monoxide, and methane [18].



Various studies have shown that increased greenhouse gas emissions eventually lead to the 

occurrence of the greenhouse effect [19]. This effect causes the earth's surface temperature to 

increase due to the radiation-absorbing properties of the emitted greenhouse gases. Melting of 

the polar ice caps followed by a sea-level rise has also been attributed to increased greenhouse 

gas emissions [19].

Even though nuclear fuels have higher energy densities than fossil fuels, the nuclear-reactor 

related accidents at Three Mile Island [20], Chernobyl [21], and Fukushima Daiichi [22] have 

demonstrated the disastrous effects that the release of highly radioactive substances could have 

on the earth's ecosystem.

Considering the shortcomings and risks of utilizing nuclear and fossil fuels, several attempts have 

been made in recent years to explore cost-efficient ways of utilizing alternative resources of 

energy, such as solar, wind, and ocean-wave energy [23]. Collectively referred to as renewable 

resources of energy, they are readily available to harness and utilize through processes that are 

fairly unintrusive to the earth's ecosystem.

1.2 History and Current Status of Wave Energy Harnessing

Even to an untrained eye, the energy transported by ocean waves is hard to go unnoticed. The 

total wave energy available on a world scale is approximately 2 TW [24], This is the same order of 

magnitude as the world's electricity consumption [24], Therefore, wave energy could be a 

potentially significant contributor to the overall energy demand. The earliest known effort to 

harness energy from waves was made by Pire et al. in 1799 [25]. In recent years, the number of 

patented wave energy conversion techniques across Japan, North America, and Europe has seen 

a substantial increase [26]. Based on these techniques, many devices were built and tested in the 

late 20th century by companies and research universities. Devices that have shown great potential
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in terms of energy conversion efficiency have been deployed o ff the coast of Scotland, Portugal, 

Western Australia, and the United States [27],

Wave energy extraction can be carried out in devices operating on-shore, near-shore, and off­

shore depending on the operating principle of the corresponding wave energy converter (WEC) 

[28]. The latter is commonly utilized in order to classify these devices; according to [29], there are 

four categories of WECs:

1) Oscillating Water Column (OWC): These devices have a chamber that is partially submerged 

below the mean sea level. The chamber is partially filled with water and, thus, a free surface is 

formed between the water column and the air column trapped in the chamber. Due to the 

variation in the incoming wave elevation, the height of the water column changes in time and, 

thus, compresses and decompresses the trapped air column. The air flow is channeled through a 

double-acting turbine which is connected to a generator. Examples of OWCs are the Land Installed 

Marine Power Energy Transmitter (LIMPET) deployed on-shore near the Scottish island o f Islay 

and the Oceanlinx Port MacDonnell project deployed in South Australia [29].

2) Overtopping WEC: The working principle of these devices involves capturing the water that 

forms the wave crest in an incoming wave front. The captured water is stored in a reservoir which 

is at a higher level than the average free-surface of the surrounding body of water. The stored 

water is then released into the sea through a series of low-head turbines. This process converts 

the potential energy of the stored water into electrical energy. Examples o f overtopping devices 

are the Tapered Channel Wave Power Device (TAPCHAN) developed in Norway [28] and the Wave 

Dragon Project in Denmark [29].

3) Attenuator and Terminator: These devices have multiple floating segments that are hinged at 

specific points. They typically have one dominant horizontal dimension, which corresponds to the 

length o f the device [30]. When deployed in a wave field, the incoming waves cause the device to
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flex and move because of the hinged joints. This mechanical movement is then used to generate 

electricity. Devices placed perpendicularly to the wave crest are referred to as Attenuators. The 

device is called a Terminator when it is placed parallel to the wave crest. An example of such a 

device is the Pelamis WEC, which is currently deployed off-shore in Agucadoura, Portugal and in 

Orkney, Scotland [29].

4) Point absorber: This WEC is axisymmetric about its vertical axis and has much smaller physical 

dimensions relative to the incident waves. Furthermore, a typical point absorber is much smaller 

compared to most other types of WECs. Nonetheless, point absorbers are capable o f providing 

high efficiency regarding their energy absorption capabilities [30]. On the other hand, the 

magnitude of the absorbed power from a single point absorber is relatively small and, thus, an 

array o f point absorbers (wave farm) is typically deployed to increase the overall power 

absorption. An example of a point absorber WEC is the Power Buoy developed by Ocean Power 

Technologies, which has been deployed off the coast of Reedsport, Oregon [31].

Despite the fact that numerous WEC designs have been proposed over the last few years, wave 

energy technology as a whole is yet to become a viable method for production of electricity. This 

is due to factors such as low efficiency of wave energy devices, high installation cost, and high 

maintenance costs. Current estimates suggest that the cost per MWh of wave energy production 

is higher than 1.5 times that of wind energy and approximately three times that of coal-based 

energy [29]. Compared to some o f the existing renewable energy conversion technologies, WEC 

technology is still in the early phases of development [29]. More research needs to be conducted 

in the field of wave energy conversion with an overall aim of eliminating barriers such as high 

operating costs and low conversion efficiencies of wave energy converters. Studies show that 

accurate prediction o f ocean wave characteristics improves the efficiency of wave energy
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converters [28]. Also, the earth's ecosystem will benefit from WECs, given the non-polluting 

nature of wave energy devices.

1.3 Summary and Objectives of the Proposed Research

The main objective of this dissertation is to develop a novel strategy for constrained discrete 

phase control of a WEC system of the heaving-point-absorber kind in irregular seas. The 

hydrodynamic modeling of the wave field around the point absorber and the modeling of the 

hydraulic system for the power take-off and storage is done using MATLAB®, where a code 

capable of performing numerical simulations of the WEC system has been developed; this part of 

the research is described in Chapter III. A controller based on reinforcement learning (RL) - a 

computational intelligence tool - is developed and utilized to obtain an optimal policy to control 

the point absorber WEC. The theoretical background of RL, included a case study, is provided in 

Chapter IV. A prediction algorithm based on radial basis function networks is also developed in 

order to obtain the future wave excitation that is required as input to the control algorithm in a 

real implementation of the proposed WEC system. The prediction algorithm is validated in 

benchmark problems, including time-series forecasting. Its development and validation are 

presented in Chapter V. An extensive parametric investigation is performed in order to provide 

insight into the WEC system control requirements in both regular and irregular waves. The case 

studies and the corresponding results for regular and irregular waves are provided in Chapters VI 

and VII, respectively. In order to demonstrate the effectiveness of the RL-based controller in 

increasing the efficiency of the WEC system while satisfying the heaving motion amplitude 

constraint, numerical simulations in regular and irregular waves are performed and the results 

are provided and discussed in Chapter VIII along with the impact of the prediction algorithm 

accuracy on the performance of the proposed RL-based WEC controller.



CHAPTER II 

LITERATURE SURVEY

A scholarly article on the topic of utilization of wave power was published as early as 1892 by Stahl 

[32], However, with the discovery of energy resources such as petroleum and nuclear fuels, the 

interest in ocean waves as a resource of energy gradually diminished. Nevertheless, a few 

researchers/inventors continued to design and develop wave energy extraction devices. 

Noteworthy among them is the Japanese inventor Yoshio Masuda, who developed a navigation 

buoy powered by wave energy [28]. In the US and Europe, the impetus for research in the design 

and development of wave energy extraction devices increased after the Middle-Eastern oil crisis 

in 1973. Pioneering research in wave energy extraction was performed by Kjell Budal and Stephen 

Salter in Europe [33], while in the USA, research in wave energy extraction was pioneered by 

Michael E. McCormick [33]. The 1974 publication o f a paper in Nature by Stephen Salter from the 

University of Edinburgh on the power of waves increased awareness about the potential usage of 

wave energy for human needs and purposes [28], More recently, the signing of the Kyoto 

protocols to reduce C02 emissions into the atmosphere have also helped renew the interest in 

wave energy extraction [33].

Since then, several wave energy extraction concepts have been proposed and studied [28]. Falnes 

[34] showed that a heaving point absorber is a viable concept for wave energy conversion (WEC) 

[34], Point absorbers are devices that are axisymmetric about their vertical axis and have small 

physical dimensions (in the horizontal plane) compared to the wave length of the incident waves. 

As a result, they can achieve a high ratio between converted energy and structural volume. Point 

absorbers typically have a simple design and, thus, present less challenges from a mathematical 

modeling point of view [34], For instance, due to their small physical dimensions, the scattering 

of the incident waves and the scattered wave field can be neglected [35] and, thus, only the
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incident wave forces need to be considered. Of significant advantage is the capability of the point 

absorber to absorb energy many times its key horizontal dimension. Also, the point absorber- 

wave interaction is independent of the incident wave direction. Point absorbers can be used to 

harness wave energy from powerful wave regimes available in deep water (> 40 m depth) [36].

A point absorber WEC typically uses a hydraulic PTO system [36] to transform the absorbed wave 

energy, first, into mechanical energy and, subsequently, into electricity. Maximum energy from 

the ocean waves is absorbed by the point absorber WEC when it operates at resonance conditions 

[37]. Analytical expressions for optimal conditions of motion amplitude and phase angle for 

maximum power absorption have been derived for a heaving point absorber in regular waves by 

Falnes [35]. For a point absorber WEC, the converted energy per unit volume can be high if there 

are no constraints on the oscillation amplitude. However, a high oscillation amplitude can be 

potentially damaging to the WEC system [38]. Therefore, imposing a constraint on the heaving 

WEC motion amplitude is necessary. Furthermore, uncontrolled floating point absorbers will, 

more frequently than not, operate in off-resonance conditions resulting in lower energy 

absorption efficiency [37], Clearly, protecting the WEC system while maximizing its power 

absorption efficiency can only be achieved by proper control of the oscillatory motion of the point 

absorber.

Various studies [37,39, and 41] have shown that high power absorption efficiency can be achieved 

by controlling the phase of the point absorber oscillation. In this type of control, the objective is 

to alter the natural response of the point absorber in such a way that the point absorber's velocity 

and the wave excitation force reach their peak value almost at the same time [41]. This leads to 

resonance or near-resonance operating conditions for the WEC system, which increases the 

power absorption efficiency. One way of controlling the phase o f the point absorber oscillation is 

via a power take-off (PTO) mechanism [39, 40]. A hydraulic PTO mechanism or system, usually
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consists of a hydraulic cylinder, a variable or fixed displacement hydraulic motor, and several high 

pressure accumulators [40-42],

Falnes [40] and Eidsmoen [42] showed that high pressure accumulators can be used, as part of 

the hydraulic PTO system, to achieve phase control. These phase control accumulators are 

opened and closed in order the point absorber velocity to attain a peak value in correspondence 

with the instance at which the wave excitation force attains a peak value [41]. In regular waves, 

the phase control accumulator is opened at an instant which is approximately a quarter o f the 

point absorber's natural period prior to the occurrence of the wave excitation force peak value 

[43], A requirement for phase control is the knowledge of the future incident wave elevation [35] 

and, thus, an accurate prediction of the ocean wave elevation is required for effective phase 

control. A comprehensive survey of wave prediction algorithms can be found in [44],

The mathematical modeling and simulation of a point absorber WEC system is a key aspect of 

wave energy research. Early theories describing the hydrodynamics of point absorbers made 

various assumptions including energy extraction from regular sinusoidal waves, oscillation in a 

single mode (one degree of freedom), and a linear PTO [45]. Based on these assumptions, the 

governing equations can be linearized and solved in the frequency domain. Hulme [46] was able 

to determine analytically the wave forces acting on a floating hemisphere undergoing periodic 

oscillations. Important theoretical results such as conditions for maximum absorbed power were 

derived independently by Falnes [47], Mei [48], Evans [49], and Newman [50].

Nevertheless, a solution in the frequency domain cannot be obtained for irregular seas, which 

constitute realistic seas, and PTO mechanisms with non-linear dynamics [28]. Taking these key 

details into account, a time-domain theory for oscillating-body converter in irregular waves was 

developed by Jefferys in [51]. The theory is closely based on the Cummins equation derived for 

ship hydrodynamics [52]. Many studies involving active control of the point-absorber WEC in
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irregular seas use a time-domain model [36-37, 41-42]. Also, theoretical studies of the 

hydrodynamic interactions between WECs in an array formation have been performed by Budal 

[53], Falnes and Budal [40], and Evans [54].

Along with the mathematical modeling of the point absorber WEC system, an accurate model of 

the free surface of the ocean is also required. The ocean surface is assumed to be stochastic. The 

sea surface is assumed to be a stationary random process and statistical estimates such as wave 

energy spectral density (wave spectrum) are used to describe the ocean surface elevation. Linear 

wave theory is used to simulate irregular waves through the linear superposition of discrete 

components of regular waves at various frequencies and amplitudes [55]. Wave energy spectral 

density can be estimated from wave-amplitude measurements obtained from buoy networks, e.g. 

the NOAA-NDBC buoy network around the US coastline [56]. Alternatively, wave spectral 

formulations, such as the modified Pierson-Moskowitz spectrum, can be utilized to model long- 

crested, fully developed irregular seas [57], In the case of developing seas, the JONSWAP (Joint 

North Sea Wave Project) wave spectrum can be used, instead [57]. Average values of the wave 

spectrum parameters for different sea states in the North Atlantic can be obtained from various 

sources, e.g., from Lee et al. [58].

As already mentioned, the control o f the WEC system will be performed by obtaining an optimal 

strategy using reinforcement learning, which is a computational intelligence tool. According to 

Kaelbling et al. [59] -  'Reinforcement learning (RL) is the problem faced by an agent that learns 

behavior through trial and error interactions with a dynamic environment.' According to Sutton 

and Barto [60] -  'Reinforcement learning is a computational approach to understanding and 

automating goal-directed learning and decision making.' Since its inception in 1979, RL has been 

used in the fields of machine learning, artificial intelligence, cybernetics, and robotics [59].
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CHAPTER III 

THE POINT ABSORBER WAVE ENERGY CONVERTER SYSTEM

3.1 Introduction

A point absorber WEC system is used to convert wave energy to useful electrical energy. In order 

to compute the motion response of the point absorber to the incident ocean waves of varying 

frequencies, a mathematical model for the point absorber wave energy converter (WEC) system 

is developed. This numerical model is used to calculate the power generated by the WEC system 

at different sea states and, thus, quantify its energy conversion efficiency.

A freely-floating object on the free surface of water is a familiar sight to all of us. When the free 

surface is calm, the object is in mechanical equilibrium with the hydrostatic forces. However, in a 

wavy free surface, the floating object experiences forces due to the incident waves. These forces 

produce motion of the object in each of the six degrees of freedom, i.e., along and/or about one 

or more axes shown in Figure 3.1 (for a Cartesian coordinate system).

heave A  z

yaw

pitch
roll

sway
surge

Figure 3.1. Degrees of freedom of a freely-floating object.
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Using terminology commonly utilized in marine hydrodynamics, the three translational motions 

along the x, y, and z axis are termed surge, sway, and heave respectively. The three rotational 

motions about the x, y, and z axis are termed roll, pitch, and yaw, respectively. The motion of the 

freely-floating object due to the incident waves generates waves which propagate away from it. 

These outgoing, or radiating, waves exert on the object the radiation force [45] and need to be 

included in a mathematical model that solves the equation o f motion o f a WEC system.

3.2 Description of the Point Absorber Wave Energy Conversion System 

In a typical point absorber WEC system, the point absorber is axisymmetric, has either a spherical 

or a cylindrical shape, and its motion is constrained in most degrees of freedom. The point 

absorber is connected to a power take-off (PTO) system and kept in place via mooring cables. The 

PTO system converts wave energy to electrical energy using either mechanical or electro­

mechanical mechanisms. Springs and end-stop devices are included within the PTO system to 

mitigate the effects of shocks or jerks caused due to the motion o f the point absorber. Different 

phase control techniques are applied to the point absorber through the PTO system.

For the purpose of this dissertation, the point absorber WEC system consists of a spherical point 

absorber (that is half submerged in water and is only allowed to heave) and a hydraulic PTO 

system. The schematic o f the WEC system is displayed in Figure 3.2.
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Point absorber WEC

Heaving
buoy

L.___

Hydraulic PTO system

HP accumulator

4-way
control

Hydraulic motor + 
Generator

Hydraulic cylinder/ 
piston assembly

Compressibility 
accumulator 2

LP accumulator

Figure 3.2. Schematic of a point absorber WEC with a hydraulic PTO system [41].

When the point absorber interacts with the wavy ocean surface, it undergoes heaving motion. 

The energy of the heaving point absorber is then transformed into electrical energy by the 

hydraulic PTO system, which consists of a piston-cylinder assembly, two compressibility 

accumulators (c & d), two phase control accumulators (e & f), two two-way control valves, one 

four-way control valve, a high pressure (HP) accumulator (g), a low pressure (LP) accumulator (/?), 

a variable-displacement fixed-speed hydraulic motor, and an electric generator.

3.3 Operational Details of the Hydraulic Power Take-Off (PTO) System 

The piston rod of the bi-directional piston in the hydraulic piston-cylinder assembly is connected 

to the heaving point absorber. The hydraulic cylinder contains oil with a sufficiently large bulk 

modulus, which is pushed out of the hydraulic cylinder by the piston due to the heaving motion 

of the point absorber. During operation of the system, the oil pressure on either side of the piston, 

i.e., a and b, is considerably higher than the atmospheric pressure. At any given instant during the
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operation of the hydraulic PTO system, the pressure difference between a and b provides the 

power take-off force, FPTo, that is applied to the point absorber. The wave excitation force must 

overcome the power take-off force for the point absorber to undergo motion. The oil inside the 

hydraulic cylinder may be subjected to pressures high enough to lead to its compression. This 

effect is mitigated by the introduction of two compressibility accumulators, c and d [41], which 

both contain gas whose pressure is approximately equal to the pressure of the oil in a and b. The 

compressibility accumulators also reduce any pressure peaks which might occur during operation. 

The oil contained in the hydraulic PTO system flows through a hydraulic circuit which connects 

the compressibility, the phase control, and the HP and LP accumulators.

The two phase control accumulators, e and /,  are used to alter the phase of the heaving point 

absorber velocity. When the point absorber is not subjected to phase control, oil in the hydraulic 

cylinder flows either to the HP or to the LP accumulator depending on the relative magnitude of 

the pressure in portions a and b of the hydraulic cylinder. The direction o f oil flow is controlled 

using a four-way control valve.

When the point absorber moves upward, the pressure in part a of the hydraulic cylinder becomes 

greater than the pressure in the HP accumulator and oil flows from a to the HP accumulator. 

When the point absorber moves downward, the pressure in portion b of the hydraulic cylinder 

becomes greater than the pressure in the HP accumulator and oil flows from b to the HP 

accumulator.

Once the operation of the WEC system begins, the pressure in the HP accumulator attains a higher 

value relative to the pressure in the LP accumulator and oil flows from the HP accumulator to the 

LP accumulator through the variable-displacement fixed-speed hydraulic motor, which is 

connected to the electrical generator. When the pressure in either portion a or portion b falls 

below the LP accumulator pressure, oil flows from the LP accumulator to either portion a or
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portion b through the four-way control valve [61], and replenishes the oil of the hydraulic cylinder. 

The four-way control valve prevents oil from flowing from the HP accumulator into either part a 

or part b of the hydraulic cylinder.

As mentioned in Chapter II, when the velocity of the point absorber and the wave excitation force 

are in phase, the energy absorbed by the WEC is optimized [35]. Various research investigations, 

e.g. [35,42], show that the usage of the phase control accumulators during the operation of the 

WEC system could match the phase of the point absorber velocity with the phase of the wave 

excitation force. Initially, the fluid in the phase control accumulators is gas [42] whose pressure 

varies through the course of the WEC system operation. The initial pressure in the two phase 

control accumulators is equal to the oil pressure in a and b. The two phase control accumulators 

are activated via the two two-way control valves shown in Figure 3.2. Oil either enters or leaves 

the phase control accumulators through these control valves. The desired alignment in the phases 

of the velocity and the excitation force is achieved by increasing the acceleration of the point 

absorber at a specific instant so that the point absorber's velocity attains a maximum value at the 

same instant when the wave excitation force attains its maximum value [41].

Several heuristic approaches to determine the appropriate opening instant of the control valve 

for the phase control accumulators have been proposed [42, 62, and 63]. A typical heuristic rule 

corresponds to the optimal policy in regular waves, i.e., open the control valve to the phase 

control accumulator at an instant equal to a quarter of the heave natural period of the point 

absorber before the instant at which the wave excitation force attains a peak (maximum) value. 

For effective use of the phase control accumulators, it is obvious that knowledge of the future 

wave excitation force is required [64],

Let us assume that the wave excitation force is predicted to attain positive values in the 

immediate future and the nearest maximum is determined. As the point absorber starts to move
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upwards, the phase control accumulator (e) is opened a quarter o f the resonance period of the 

point absorber before the instant at which the wave excitation force is predicted to attain the 

maximum positive value. Due to the relatively low pressure in the phase control accumulator (e), 

the point absorber accelerates, oil is pumped into phase control accumulator (e) and, thereby, 

the gas pressure in (e) increases. After a period of acceleration, the point absorber comes to rest. 

At this moment, the control valve of the phase control accumulator (e) is closed. The pressurized 

phase control accumulator (e) is discharged into part a of the hydraulic cylinder when the point 

absorber starts to move downwards [41].

On the other hand, when the wave excitation force is predicted to attain negative values in the 

immediate future, the aforementioned sequence of events is repeated, but now, given that the 

direction of motion of the point absorber is downward, phase control accumulator (/) is used to 

achieve phase alignment. As a result of phase control, the power take-off mechanism of the 

hydraulic PTO system is strongly non-linear [41, 61]. In the following sections o f this chapter, the 

mathematical model o f a heaving point absorber connected to a non-linear hydraulic PTO system 

is provided. A MATLAB® code has been developed based on this mathematical model (see 

Appendices A, B, and C).

3.4 Mathematical Modeling of a Heaving Point Absorber with a Hydraulic PTO System

The mathematical model for the heaving point absorber WEC with a hydraulic PTO system must 

collectively represent the wavy ocean surface, the point absorber's heaving motion, and the flow 

in the hydraulic PTO system.

Ocean waves are modeled using linear wave theory. The fluid flow is assumed to be inviscid, 

irrotational, and incompressible [65]. A velocity potential for the fluid flow domain can then be 

defined. Additionally, the wave height is assumed to be small when compared to the wavelength 

and the water depth. Therefore the ocean surface boundary conditions can be linearized. Due to
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the small wave amplitude or height assumption, the Keulegan-Carpenter number is less than 

three. Therefore, there is insufficient time for vortices to develop at the wave-body interface [66] 

and, thus, the fluid flow around the point absorber can be modeled using potential flow theory. 

The linearization allows for the fluid forces on the point absorber to be decomposed into three 

components: the incident wave force, the radiation force, and the hydrostatic force. The linear 

combination o f the incident wave force and the radiation force is the total hydrodynamic force 

acting on the point absorber. The incident wave force is decomposed into the excitation force and 

the diffraction force. The radiation force consists of added mass and radiation damping terms 

[65], Using the Froude-Krylov approximation, the diffraction forces are assumed to be small and, 

therefore, can be neglected.

The motion response o f the heaving point absorber is assumed to be small compared to the body 

dimensions of the point absorber. More importantly, the point absorber's motion response is 

assumed to be proportional to the fluid forces that are exerted on it. The point absorber's heaving 

motion response to the incident ocean waves can be mathematically modeled in either the 

frequency domain or the time domain [66]. Modeling in the frequency domain assumes that the 

wavy ocean surface comprises only monochromatic or regular waves and, thus, the heaving point 

absorber executes steady harmonic oscillations. Non-linearities are introduced to the point 

absorber's motion when the point absorber is subjected to either phase control or motion 

constraints by the hydraulic PTO system. Due to these key details, a non-linear mathematical 

model for the heaving point absorber developed in the time domain is used.

As shown in Figure 3.2, the hydraulic PTO system consists o f several key components. In this 

investigation, two fluids -  oil and gas, are used in the hydraulic circuit. Oil w ith a large bulk 

modulus is chosen as the working fluid in the hydraulic cylinder. The power take-off force F p t o  is 

applied to the point absorber by the hydraulic PTO system. The direction and magnitude of this
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force are determined by the magnitude of pressure in the compressibility accumulators of the 

hydraulic PTO system [67]. The buoyancy force on the point absorber is balanced by the weight 

of the buoy and the pre-tension force in the mooring cables. The fluid flow inside the hydraulic 

circuit is assumed to be one-dimensional and frictional losses in the pipes are neglected.

During operation, the compression and expansion of the gas inside the compressibility, the phase 

control, and the HP and LP accumulators is assumed to be an isentropic process [68]. This 

assumption implies that no heat is allowed to enter or leave the accumulators and the frictional 

effects are assumed to be zero. The assumption of an isentropic process is reasonable given the 

short time scales over which the expansion and compression of the gas occurs in comparison to 

the temperature changes in the surrounding water. The walls of the accumulators and the ducts 

o f the hydraulic circuitry are assumed to be rigid. The fluid pressure losses due to fluid flow within 

the hydraulic circuit are assumed to be negligible. The total volume of gas inside the hydraulic 

PTO system is kept constant.

3.5 Time-Domain Hydrodynamic Model of a Heaving Point Absorber

The motion of a heaving point absorber due to incident ocean waves is analyzed in the time 

domain using the mathematical model developed by Cummins [52]. Even though the Cummins 

model was originally used to analyze ship motion in rough seas, it was later modified and applied 

to wave energy converters by Jefferys [69]. This model can be used to analyze the dynamics of 

point absorber WEC systems that have non-linear PTO systems. According to [45], the equation 

describing the body dynamics of a point absorber WEC system in the time domain for a single 

degree o f freedom (heave) is:

t

(m b +  m a) ( ( t )  +  J [ (  ( t  -  t )  K  ( 0 ]  d r  + PpTO "f" (^ h s )C  CO — W excCO (3.1)

0
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where:

m b =  p r r r3 is the mass of the point absorber,

p is the density of water, 

r  is the radius of the spherical point absorber, 

m a is the added mass of the point absorber,

K (t)  is the radiation force kernel for radiation damping of the point absorber,

FPT0 is the externally applied power take-off (PTO) force from the hydraulic PTO system, 

k hs =  p g n r2 is the hydrostatic stiffness,

wexc( t ) is the excitation force from either regular waves or irregular seas,

( ( t )  is the acceleration of the point absorber at time t,

( ( t )  is the velocity of the point absorber at time t,

and £ ( t )  is the displacement of the point absorber at time t.

In order to solve this integro-differential equation, a code has been developed in MATLAB® (see 

Appendix A), which is used to compute the response (displacement and velocity) o f the point 

absorber WEC system to either regular waves or irregular seas. In Eq. (3.1), the radiation force is 

represented by a convolution integral whose integrand is commonly referred to as the radiation 

force kernel. It has the form of an impulse response function. The radiation kernel, K (t) , depends 

only on the body shape and is independent of the body dynamics [66],

3.5.1 Computation of the excitation force due to regular waves

In regular waves (monochromatic seas), the wave excitation force is assumed to be sinusoidal. It 

is calculated for a particular wave frequency using the formula shown below.

(3.2)
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where wexc( t)  is the wave excitation force, f amp is the wave excitation force amplitude, T is the 

wave period, and tm is the discretized time instant. The wave force amplitude, f amp, is calculated 

for a given wave amplitude using the following formula [55], which is derived from the Haskind 

relation [65],

where wamp is the wave amplitude, p is the density of water, g  is the acceleration due to gravity, 

and B(a>) is the radiation damping of the spherical point absorber.

The radiation damping #(&)) at a particular frequency is estimated by using the radiation damping 

coefficients derived by Hulme [46] for a spherical point absorber undergoing forced periodic 

oscillations. These are listed in Appendix D as a function of non-dimensionalized wave frequency. 

A piecewise cubic Hermite polynomial is fitted to the set of radiation damping coefficients, so that 

the radiation damping of the spherical point absorber can be estimated at any wave frequency 

during the numerical simulations.

In regular waves, the added mass ma of a heaving spherical point absorber at a certain wave 

frequency is calculated in a similar manner as the radiation damping coefficient. Specifically, the 

added mass coefficients calculated by Hulme [46] for specific wave frequencies (see Appendix E) 

are interpolated using a piecewise cubic Hermite polynomial. In irregular seas, the added mass of 

a heaving spherical point absorber is computed at infinite frequency moo [66] and has a value 

equal to 50% of the point absorber structural mass.

3.5.2 Computation of the wave excitation force in irregular seas

For the case of irregular waves (polychromatic seas), the ocean surface is modeled as a stationary 

random process using the modified Pierson-Moskowitz spectrum for a given sea state,

(2 n /T )
(3.3)

(3.4)
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where 5(a)) is the wave energy spectral density, oj is a frequency value obtained from a specific 

frequency range, com is the modal (peak) frequency, and H1/3 is the significant wave height, which 

is the mean o f one-third of the highest waves. The statistics of different sea states in the North 

Atlantic [55] (also listed in Appendix F) are utilized in order to obtain values for wm and 3.

In order to calculate the wave excitation force, the spectral density o f the wave excitation force 

S f e ( o j )  is computed through the spectral density of the wave spectrum [70],

Sfe (u )  =  \fe(.w)\2 ■ S(oj) (3.5)

where fe((o) is the excitation force per unit incident wave amplitude at wave frequency o j . The 

formula for the wave excitation force amplitude is obtained using the Haskind relations [65],

2pmbg 3B(a))
l/eO ) | 2 =

OJ2
(3.6)

The random process that models the ocean surface is assumed to follow a Gaussian distribution 

[71]. Therefore, based on the theory of Gaussian processes [72], two independent random 

variables an and bn are chosen from a common Gaussian distribution with variance Ato • Sfe . Here 

the variable Ao) is the frequency interval used to discretize the wave spectrum. The expressions 

for an and bn are:

an =  VAco •* 5/e (a0 ) • Af(O.l) (3.7)

bn =  V A ^ 5 ^ ) )  ■ N(0,1) (3.8)

In the above equations, N(0,1) is a normally distributed pseudorandom number with zero mean

and variance equal to 1, and n is the number o f points in the time series o f the numerical

simulation. Therefore, the independent random variables an and bn correspond to the 

coefficients of a discrete Fourier series in the frequency domain. The values of these variables are 

computed with the assumption that the wave excitation force is in phase with the wave elevation,
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i.e., the point absorber contours the waves. In order to compute the wave excitation force in the 

time domain an inverse fast Fourier transform is performed.

3.5.3 Computation of the power take-off (PTO) force of the hydraulic system

The power take-off force, FPT0, is calculated in both regular and irregular seas using the following

expression [68]:

In Eq. (3.9), Sp is the cross-sectional area of the piston, Pc is the pressure of gas in the 

compressibility accumulator c, and Pd is the pressure of gas in the compressibility accumulator d. 

As the gas in the compressibility accumulators is assumed to undergo an isentropic process, the 

gas pressures, Pc and Pd, are computed using the following equations [73]:

where Vc and Vd are the volume of gas in compressibility accumulators c and d, respectively, y is 

the ratio of specific heat for the gas used in the accumulators, and i is the discretized time index. 

Assuming isentropic process in the other accumulators, as well, similar expressions for the gas 

pressure and volume can be derived:

FPto — Sp(Pc — Pd) (3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



As shown in Figure 3.2, the hydraulic cylinder, the compressibility accumulators, the phase control 

accumulators, and the HP and LP accumulators are inter-connected through ducts which form the 

hydraulic circuit of the PTO system. When the piston moves due to the motion of the point 

absorber and displaces fluid within the hydraulic circuit, the magnitude of pressure and volume 

in every accumulator changes. Therefore, a set of expressions that relates the hydraulic fluid flow 

rate from either part of the hydraulic cylinder to the pressure and volume in each accumulator is 

required. The set of expressions is as follows [41]:

For the compressibility accumulators:

max
2

((Pc -  pg) ' ° )  +  “ i M v   rnax{(Ph -  Pc), 0)
'  '  U n i ty Poi l

\PC -  Pe\ ■ sign(Pc -  Pe) (3.16)

2
„   max

y Poi l
m ax

y Poi l

(3.17)

For the phase control accumulators:
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For the HP and LP accumulators:

dVg

y P o l l
max

2
, — max 
^  Poll

{ ( P i  -  P„),o)

-  P m (3.20)

^  Poil

2
max((Ph -  Pc), 0) -  u tCvAv

y Poll

2
max((Ph -  Pd), 0)

+  Pm (3.21)

where:

m, v, and P are the mass, specific volume, and pressure of gas, respectively, in the corresponding 

accumulator (refer to Figure 3.2),

Cv is the discharge coefficient of the control valve to the compressibility accumulators c & d,

Cc is the discharge coefficient of the control valve to the phase control accumulators e & /, 

poii is the density of the oil used in the hydraulic circuit,

Av is the cross-sectional area of the control valve to the HP & LP accumulators,

Ac is the cross-sectional area of the control valve to the phase control accumulators,

Sp is the cross-sectional area of the piston in the hydraulic cylinder,

U[ is the phase control activation parameter, and

qm is the volumetric flow rate through the hydraulic motor.

The differential term on the left hand side of Eqs. (3.16-3.21) represents the rate o f change of 

specific volume of gas in each accumulator. The value of the volume o f the gas in each 

accumulator at step i is computed using a forward differencing scheme:

(3.22)
At



where a is any one of the accumulators (c, d, e ,f ,g &  h) in the hydraulic PTO system and At is the

time interval. The phase control activation parameter is a binary parameter used to activate

the phase control accumulators (e & f)  of the hydraulic PTO system:

_  fO, Phase co n tro l activa ted
U( ~  | l ,  No phase con tro l

The pressure difference between the HP and the LP accumulators is used to operate a variable-

displacement, fixed-speed hydraulic motor. The fixed rotational speed of the hydraulic motor Shm

is set at 3,000 revolutions per minute; the corresponding angular speed is iohm =  2nShm/6Q. The

volumetric flow rate through the hydraulic motor qm is computed using the following expression

[74]:

fdc^m ax^hm  
S -------

where Dmax is the maximum volumetric displacement of the motor and f dc is the utilized fraction

° f  Dmax■ The torque of the generator matches the torque of the hydraulic motor during the

operation of the WEC system. The hydraulic motor torque Tm is computed using the following 

expression:

fdcD m ax(.P g  P h )  

2n

The generated electrical power Pgw is calculated using the following expression:

P g w  =  P m  ' w h m  (3.26)

3.5.4 Computation o f the phase control accumulator opening instance

The phase control accumulator opening instant, t pco, is defined as the instant at which the control 

valve to the phase control accumulator is opened. For the purpose of this investigation, the 

opening instant tpco is computed using the following expression:
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where tfpeak is the instant at which the wave excitation force attains a local-peak value, T0 is the 

heave natural resonance period, and Ccoe is the control coefficient. The latter is utilized as a 

parameter in order to study its effect on the power absorption efficiency of the WEC system. 

Along with phase control, the case of having no phase control on the point absorber is also 

considered.

3.5.5 Computation of the radiation force (convolution integral) of the point absorber

The radiation force is represented in Eq. (3.1) by a convolution integral. The computation o f the 

convolution integral is performed using the trapezoidal rule. In this way, the value of the 

convolution integral at time tN is computed as follows:

tN N

I  ( ( t - r ) K  ( t )  d r * ±A tK ( tN) ( (0 )  +  t K ( 0 ) ( ( tN) + £ At K(tN -  t ^ )  ( ( t ^ )  (3.28)
0 1=2

The radiation damping kernel is a causal impulse response function which depends only on the 

body geometry [66]. The analytical formula for the radiation damping kernel is the following:

QO

K(t )  =  m b —j  B{oS) cos (cut) da> (3.29)
o

The numerical code used to compute the convolution integral is provided in Appendix C.

3.6 Solving the Integro-Differential Equation for the Heaving Point Absorber

The time-domain equation of the heaving motion of a point absorber given in Eq. (3.1) is solved 

numerically using a non-adaptive version of the fourth order Runge-Kutta method (R-K4). The 

solver is listed in Appendix B. The solver computes the displacement and velocity o f the heaving 

point absorber at each discrete time t. These values are subsequently utilized to compute the 

average power absorbed by the heaving point absorber for the specified simulation time.
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CHAPTER IV 

REINFORCEMENT LEARNING

4.1 Introduction

Reinforcement learning (RL) is an unsupervised learning technique where an agent learns a certain 

behavior by interacting with the surrounding environment. Reinforcement learning has evolved 

from fields like cybernetics, neuroscience, psychology, statistics, and computer science [59]. A 

distinctive feature of reinforcement learning is that the agent learns a certain behavior by 

interacting with the environment, whereas, in supervised learning the agent learns a certain 

behavior from the instructions it receives from a supervisor [60].

Every action taken by the agent is evaluated using a reward function. Based on the accumulated 

reward, the agent learns the appropriate behavior for a given environmental setting. The 

environment can either be static or dynamic in nature. RL has been utilized to control complex 

technical systems like flight control, avionics, and automated manufacturing systems [76],

4.2 Reinforcement Learning Model

The reinforcement learning model (Figure 4.1) consists of an agent 8, the agent's surrounding 

environment 5, and the interaction between the agent and its surrounding environment at every 

discrete time t. Everything external to the agent constitutes the surrounding environment and is 

characterized by its state s at time t  [60]. The interaction entails the agent taking an action a on 

the surrounding environment at each time t. Every action the agent takes is evaluated by the 

environment and a reward r  is computed. The information about the reward and the state s of 

the environment is passed on to the agent for further usage in action selection.
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Figure 4,1. Interactions between the agent and the environment in reinforcement learning.

Initially, the agent implements a policy denoted by n  at each discrete time t. This policy associates 

every state s and action a to the probability (n(s , a )) o f taking the action a when the environment 

is in state s. The policy is repeatedly modified by the agent depending on the experience learned 

through their interaction with the surrounding environment. In the reinforcement learning 

problem, the agent is tasked with searching for an optimal value function which maps states to

actions and maximizes the long-term accumulated reward [60]. The optimal policy for the

problem is obtained from the optimal value function.

The environment in the RL model is external to the agent. The agent uses the information about 

the environment's current state to formulate and execute a response. This information is 

conveyed to the agent through a signal called the state signal. The state signal is expected to have 

all the relevant information about the environment's current state. A state signal which 

successfully retains all the relevant information is said to have the Markov property; the

corresponding state is called a Markov state [60].

The concepts o f Markov signal and Markov state can be illustrated with an example of a chess 

game. At any given time t  during a chess game, the positions of the chess pieces provide the 

relevant information necessary to decide on the future course of action. Information about the
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history of the path that have been followed by each chess piece is irrelevant. A signal about the 

state o f the chess game has the Markov property and, therefore, the state o f the chess game is a 

Markov state. In general, if a reinforcement learning task satisfies the Markov property, it can be 

modelled as a Markov decision process (MDP). Furthermore, if the reinforcement learning task 

has a finite number of states and action values, it is termed a finite MDP.

In a finite MDP, for a given state s and action a, the probability of occurrence of a possible next 

state s' is called the transition probability, which is calculated as:

Ps% =  P r{s t+ l =  s '\st =  s ,a t =  a } (4.1)

A collection of transition probability values is called the transition probability set. A well-defined 

finite MDP has a transition probability set. The expected reward r  of an action a taken in state s 

thereby leading to the transition to the next state s' is calculated as follows,

R?s' =  £ fa + il  =  s ,a t =  a ,s t+1 =  s '}  (4.2)

The interactions that occur between the agent and its surrounding environment can be divided 

into two categories [60]: Continuous interactions and episodic interactions. Interactions that 

occur continuously between the agent and its surrounding environment are called continuous 

interactions. The agent receives continuous feedback from the environment and learns the 

optimal behavior. In episodic interactions, the agent interacts with the environment on an 

episode-by-episode basis. The feedback, i.e., the accumulated reward, from each episode is used 

by the agent to formulate an optimal policy. Episodic interactions are mathematically easier to 

handle because of the finite number of reward values in every episode.

Considering the fact that the objective of RL is to find a policy which maximizes the accumulated 

reward or the expected return in the long term, the manner in which rewards are computed 

becomes very important. Basically, reward is a numerical value ( r t ) awarded to the agent that 

takes an action at when the environment is in state st at time t. For an RL task with N discrete
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time instants, the agent can receive rewards at each time t. The total sum of all the rewards is 

referred to as the expected return (Rt ). The expression for Rt is given as,

Rt =  £ t=o (rt)  (4-3)

The above expression is for a RL task in which the interaction between the agent and the 

environment is episodic with tN being the final step. Such RL models are called finite-horizon 

models. For RL tasks that involve continuous interaction with the environment (infinite-horizon 

models), the calculation o f the expected return is modified by including a discount rate y :

Rt =  Z " = o (Yt r t)  (4.4)

The discount rate estimates the present value of a future reward. Its value can be assigned in the 

range between 0 and 1.

The ultimate goal of RL is to search and find an optimal policy ( V )  so that the expected return is 

maximized. The RL algorithm searches for the optimal policy using value functions. A value 

function provides an estimate of the expected return by associating the state of the environment 

to the actions taken by the agent when following a specific policy. Whereas reward functions 

provide an estimate of how good the action taken is in the short term, value functions provide a 

goodness estimate o f actions taken in the long term.

State-based value functions, or state-value functions, (Vn) and action-based value functions, or 

action-value functions (Qn), can be constructed by an agent following a policy n in a 

reinforcement learning task modelled as a MDP. The state-value function (V 71) estimates the 

expected return given a starting state 5 of the environment upon which the agent follows a policy 

n, and is defined as follows,

V” ( s ) =  En[Rt \st =  s) (4-5)

In the above formulation, En{ } is the expected return when a policy n is followed; Rt is the reward 

obtained in state st at time t. The action-value function (Qn) estimates the expected reward
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when the agent takes an action a while the environment is in state s and thereafter follows a 

policy n. The action-value function (Qn(s, a )) is defined as follows,

Qn(s, a ) =  En = s ,a t -  a}  (4.6)

In the above formulation, En{ } is the expected return for action at taken by the agent in state st 

under policy n. In conclusion, a solution to a RL task provides a policy that maximizes the expected 

return in the long term. Such a policy is called the optimal policy (n*). The value functions for this 

policy are called optimal state-value function ^*(5 ) and optimal action-value function Q*(s, a).

4.3 Methodologies to Solve Reinforcement Learning Problems

Three solution methodologies are widely used to solve reinforcement learning problems are [60]: 

Dynamic Programming (DP) methods, Monte Carlo (MC) methods, and Temporal-difference (TD) 

learning methods. The RL approach adopted in this research, Q-learning [77], is based on TD 

learning. A concise description of TD-learning and Q-learning is provided in the following section.

4.3.1 Temporal-difference learning

Temporal-difference (TD) learning is a hybrid methodology of the MC and DP methods. In TD 

learning, the agent learns the optimal behavior both through experience (like in MC methods) 

gained by interacting with the environment and, also, by using other estimates such as action- 

values or state-values (like in DP methods). There are three main approaches in TD learning [60]: 

Sarsa, Q-learning, and Actor-Critic methods. A variant of Q-learning is the method utilized in this 

research.

Q-learning involves the construction o f a matrix known as the Q-matrix. The Q-matrix is iteratively 

updated in every RL trial (or episode). The elements of the Q-matrix are computed using the Q 

function. The environment is approximately represented by a set of discrete states 5. The set of 

actions >4 that can be taken by the agent is also specified. Using the Q-function and the action set,
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the Q-matrix is updated in every trial. If the environment at time t occupies state st , and action 

at is taken by the agent, the Q function is updated as follows [78],

Q(st ,a t ) <- Q(st ,a t ) +  a [R(st l at ) +  y max<?(st+1,a ) -  <2(st ,a t ) ] (4.7)

In the above expression, R(st a t ) is the reward or reinforcement function for the action at taken 

when the environment is in state st . The parameters a and y  correspond to the learning rate and 

the discount rate, respectively. The reward is a system-dependent function. After a sufficient 

number of trials has been performed, Q-learning converges to the policy that is optimal for the 

RL task at hand. In the following section, a case study using Q-learning to solve a RL task is 

presented.

4.3.2 Case Study: Using RL to Control a Heating Coil

The research presented in [79] by Anderson et al., explores the possibility of utilizing 

computational intelligence techniques, such as neural networks (NNs) and reinforcement learning 

(RL), to improve the efficiency of PI feedback controllers o f HVAC systems. Anderson et al. explore 

an alternative approach wherein the output of a single PI feedback controller is augmented by 

the output of an adaptive system which uses a combination of NNs and RL. In As part of this 

research, and in order to evaluate the capabilities o f RL, it was decided to perform the same test 

but to utilize only RL to augment the PI controller.

A schematic of the heating coil with the PI controller is provided in Figure 4.2. The heating coil 

consists of an inlet, an exit, and the coil itself. Water enters the coil at a flow rate f w and 

temperature Twi. Air enters the inlet section at a flow rate f a and temperature Toi. Heat exchange 

occurs between the low temperature air and the high temperature water and, thus, air flows out 

of the exit section at a higher temperature T00. Water leaves the coil at a lower temperature Tw0- 

The PI feedback controller is trying to reach the requested temperature set point Tsp for the air
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temperature at the exit by generating the control signal c which controls the water flow rate/*, to 

the coil.

INLETi
EXIT

Mass Flow Air 
(f a)

Temp Air In

—M Tai)

Temp Air Out

Duct Temp Water In (Tw j) control signal
.(c)

Temp Water Out 
(TWo)

(fw)
Mass flow 
rate of water

PI Controller ^
itir . ^ _Temp 

Set Point 
<Tsp)

Figure 4.2. Schematic of the heating coil with the PI controller.

A mathematical model o f the heating coil, developed by Underwood and Crawford [80], is used.

/ w( t )  =  0.008 +  0.00703 ■ (-4 1 .2 9  +  0.30932 ■ c (t  -  1) -  3.2681 ■ 10~4 • c ( t -  l ) 2 +

+  9.56 • 10~8 • c ( t  -  l ) 3) (4.8)

Two( t )  =  Two( t  -  1) +  0.64908 • / w( t  -  1) ■ {Tw i( f  -  1) -  Two( t  -  1 )) +  (0.02319 +

+  0.10357 ■ f w( t  -  1) +  0.02806 • f a( t  -  1 )) • ( r at{ t  -  1) -  (4 g)

TaoiO =  Tao( t  -  1) + 0.19739 ■ f a( t  -  1) ■ (Ta i( t  -  1) -  Ta0( t  -  1 )) +  (0.03184 +  

+  0.15440 ■ f w( t  -  1) +  0.04468 • f a( t  -  1 )) ■ ^ Twi{t~1)+2Twô ~ ^  -  Ta i( t  -  1) j  +  0.20569 • 

(Ta iiO  ~  Ta i( t  -  1 )) (4.10)

The constants in the above expressions are determined by applying the method o f least squares 

to the measurements from the actual heating coil. The state of the virtual heating coil at any given 

time is represented by the temperatures and flow rates of air and water at the inlet and exit
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sections. The inlet temperature of water Twl, the inlet flow rate of a ir /0 and the inlet temperature 

of air T0i are randomly varied over the specific ranges listed in Table 4.1.

Input parameters Range of variation
Inlet water temperature (Twi) 73 °C - 81 °C

Inlet air temperature (Tai) 4 °C -1 0  °C
Inlet a irflow  rate {fa) 0.7 kg/s -  0.9 kg/s

Table 4.1. Range of variation for key input variables.

Before applying the RL algorithm to the PI controller, the proportional and the integral gains of 

the controller are determined. The PI controller tuning algorithm is as follows,

c '( t )  =  kp e (t)  +  k t f  e ( t )  d t  (4.11)

In the above expression, kp is the proportional gain, k t is the integral gain, e (t)  is the difference 

between the set-point temperature Tsp and the actual outlet air temperature Tao at time t, and 

c '( t )  is the normalized control signal in the range from 0 to 1. The set-point temperature is 

changed every 100 seconds. The optimal values of kp and k ( were found to be 0.185 and 0.0178, 

respectively [79], after tuning the PI controller. The value o f the control signal c ranges from a 

minimum of 670 (valve fully open) to a maximum of 1400 (valve fully closed). The PI controller 

tries to minimize e(t) by varying c(t). Even though the PI feedback controller is suited to perform 

this task, the possibility of augmenting the efficiency of the PI controller using RL is explored. The 

schematic of the RL algorithm applied to the PI controller along with the heating coil is shown 

below. This combination is henceforth referred to as the RL/PI controller. The value of each 

variable is allowed to vary in the specific ranges listed in Table 4.2.

Each of the seven variables is discretized into six intervals with equal length, such that the state 

space of the heating coil system consists of 67 states. The RL agent performs an action on the
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control signal. This action involves adding a certain value, selected from the action matrix A, to 

the PI controller control signal: A =  { -1 0 0 ,-5 0 ,-2 0 ,-1 0 ,0 ,1 0 ,2 0 ,5 0 ,1 0 0 } . The reward 

function R (t)  is defined as follows,

=  ~  ( ‘Tsp(t) -  Tao( t ) ) 2 +  (a t -  at_a)2 (4.12)

In the above expression, the terms at and at_x are the indices of the action values from the action 

matrix A obtained at consecutive discrete times. The value of parameter p is set at 0.1.
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■IT.,)

Ducti Temp Water In (Tw j)
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□

control signal (c)

Temp Water Out 
(Two)|

(fw>
Mass flow 
rate of water

PI Controller

Reinforcement 
Learning Agent

-Temp Set Point(TSp)
-Other
variables

Figure 4.3. RL agent applied to the PI controller.

Input variables to the RL/PI controller Range
Inlet water temperature (Twl) 73 °C -  8 1 °C

Inlet air temperature (T0I) 4 °C -  10 °C
Inlet a irflow  rate (f„) 0.7 kg/s-0 .9  kg/s

Exit air temperature (Tao) 36 °C -  52 °C
Exit water temperature (Tw0) 40 °C -  60 °C

Inlet water flow rate (/w) 0.10317 kg/s-0.34546 kg/s
PI controller control signal (c) 670-1400

Table 4.2. Ranges for the variables of the RL/PI controller.
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In order to generate the Q-values for the heating coil system, a MATLAB® code was developed 

(see Appendix H) and executed for 1000 episodes. The set-point temperature is defined at the 

beginning o f each episode and is changed after 500 steps. The parameters a  and y are assigned 

values of 0.1 and 0.95, respectively. The Q-learning algorithm converges to an optimal policy only 

after a sufficient number of trials has been performed. A random action is chosen with probability 

pt at time t and the action with the maximum Q value at the corresponding state is selected with 

probability l-p t . The probability value is calculated as: p t+1 =  X pt where p0 =  1 and the value 

of A is set equal to 0.995. As time t  increases, the chances of selecting a random action are 

reduced. The RL/PI controller, therefore, is able to choose an action at and alter the control signal, 

c, such that the root mean square error between the set point temperature (Tsp) and the exit air 

temperature (Tao) over several episodes is reduced.

The variation of the root mean squared error (RMSE) versus the number o f episodes, when only 

the PI controller is applied to the heating coil and when the RL/PI controller is applied is 

demonstrated in Figure 4.4. It is concluded from the plot that the RL/PI controller combination is 

capable of reducing the RMSE by a greater magnitude than the stand-alone PI controller after 

approximately 600 trials: Whereas, the RMSE remains at a constant value o f 0.76 for the stand­

alone PI controller, the RMSE has been reduced to 0.556 by the RL/PI controller by the 1000th trial.
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CHAPTER V 

A PSO-TRAINED, ELM-BASED RBF NETWORK ENSEMBLE FOR THE PREDICTION OF THE 

WAVE-EXCITATION FORCE

5.1 Introduction

In order to effectively perform phase control operations on a point absorber, the knowledge of 

the future wave excitation force is required. This chapter details the development o f a time series 

prediction algorithm based on an ensemble of Radial Basis Function (RBF) networks. The RBF 

networks have been trained using the Extreme Learning Machine (ELM) algorithm [81] and 

Particle Swarm Optimization (PSO) [82]. An experimental investigation was conducted to compare 

the performance of the proposed prediction algorithm with the performance of other single- 

hidden-layer feedforward neural networks (SLFNs).

The extreme learning machine (ELM) is a fast machine learning algorithm utilized for the training 

of single-hidden-layer feedforward neural networks (SLFNs) [81, 83], It was developed as an 

alternative to gradient-based learning algorithms, e.g., back-propagation, in order to accelerate 

the training of the network, provide good generalization performance by obtaining the smallest 

norm o f the connection weights, and also obviate the need for time-consuming algorithmic 

parameter tuning [81]. Various ELM-based algorithms have been proposed over the last few years 

[84, 85] in an attempt to reduce the typically high number of hidden nodes required by the ELM 

due to the random determination of the connection weights between input and hidden layer. 

Furthermore, the ELM has been combined with evolutionary algorithms [86] in order to evolve 

the network parameters in tandem with the connection weights.

Radial basis function (RBF) networks [87, 88] are a particular type of SLFNs, which has been used 

extensively for function approximation and time series prediction. RBF networks are universal 

approximators [88], i.e., given a sufficiently large number of hidden layer nodes they, can be
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trained to approximate any real multivariate continuous function on a finite data set. An RBF 

network utilizes a radial basis kernel in each hidden node in order to obtain accurate local, relative 

to the kernel center, approximations of the unknown function. The Gaussian and the inverse 

multiquadric kernels, which are radially symmetric and bounded, are frequently used as basis 

functions in RBF networks. The output of the network is obtained through a linear combination 

of the hidden nodes' output.

A comparison between the performance of an ELM-based RBF network and a support vector 

regression (SVR) algorithm in a very small number of regression problems is presented in [89]. 

The two methods have comparable performance in terms of approximation accuracy, but the 

ELM-based RBF network requires a significantly shorter time for training. Given that the kernel 

centers and basis widths are selected randomly in the aforementioned ELM-based methodology, 

the algorithmic performance would most likely improve via a less-random selection scheme; 

however, such a scheme should not mitigate the major advantage of ELMs, i.e., the fast training 

of the network. Furthermore, as shown in [90], the performance o f an RBF network in a number 

of time series prediction problems strongly depends on the choice of kernel function, number of 

hidden nodes, and basis width values.

The training of artificial neural networks (ANNs), including RBF networks, using evolutionary 

algorithms has been an active area of research during the last fifteen years. Evolutionary 

algorithms have been employed in order to evolve the network connection weights [91-92], the 

location of the kernel centers of an RBF network [93], and also to evolve basis width values, 

location of kernel centers, and connection weights simultaneously [94], The determination of the 

values of the network connection weights in tandem with the network architecture has also been 

investigated in [95-97]. Finally, evolutionary multi-objective optimization algorithms have been 

employed in order to generate ensembles of neural networks and/or learning machines [98-101],
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The main advantage of using stochastic evolutionary algorithms for the network training over 

traditional, gradient-based algorithms is the inherent capability o f the former to minimize the risk 

of getting trapped in locally optimal values during the search/training process. Furthermore, most 

evolutionary algorithms are population-based, i.e., perform multiple parallel searches during a 

single run; this enables them to explore different regions of the decision variable space 

simultaneously and through the utilization of appropriate mechanisms to transmit search-related 

information across the population. In this work, PSO and the ELM are combined in order to 

develop an algorithm that generates ensembles of RBF networks. The generalization error of an 

ensemble of networks/learners is equal to the weighted average of the generalization error of the 

individual networks minus the ensemble ambiguity [102]; the latter quantifies the diversity within 

the ensemble. Therefore, the objective when generating such an ensemble is that it comprises a 

diverse set of accurate learners. The global best (gbest) PSO search mechanism [103] attempts to 

direct each population member towards the global optimal solution vector that has been found 

up to the current iteration, but also towards the personal best position (solution vector) that has 

been found by the corresponding population member thus far. In this chapter, it is shown that 

these two features of the gbest search and network training mechanism provide the desirable 

diverse ensemble of accurate learners. Diversity is preserved via the attraction of each population 

member towards its current personal best solution and improved prediction accuracy is achieved 

via its attraction towards the solution with the current minimum validation error. When the 

stopping criterion of the training process has been met, the current set of personal best solution 

vectors comprises the ensemble of RBF networks that is utilized to compute the network output. 

The proposed methodology for training, pruning, and ensembling of RBF networks is presented 

in Section 5.2. The results of its application to regression and time series prediction benchmark 

problems and comparisons with other SLFN learners are presented in Section 5.3.



5.2 Training, Pruning, and Ensembling of RBF Networks using PSO and the ELM

5.2.1 ELM-based RBF network

An RBF network is an SLFN with a radial basis function assigned to each hidden node. Therefore, 

the function to be approximated is represented as an expansion in basis functions, which are 

modeled using kernel functions. Even though, there are no connection weights between input 

and hidden layer, the coordinates of the kernel centers need to be determined and, thus, are 

considered parameters o f the network. In this work, the inverse multiquadric kernel is utilized in 

the following form:

where x is the kernel center coordinate vector, x is the input vector, and a  is the basis width, or 

smoothing parameter, which also needs to be determined for each kernel. The RBF network 

output is computed as the weighted average of the output of the hidden nodes, including the 

contribution of a bias node. Assuming a network with N hidden layer nodes and a single output 

node, the value o f the approximated function at x is computed as follows,

where wnis the weight of the nth radial basis function in the corresponding hidden node and w0 

is the bias node weight. These N + l  weights are obtained through a supervised learning approach, 

i.e., the network is trained by adjusting its parameters so that the overall output error is 

minimized when it is evaluated on a training dataset. The training objective is typically formulated 

as a minimization of the sum-of-squares problem:

0  00  =  (llx -  x||2 +  a 2) 1/2 (5.1)

N

(5.2)
n =1

P

(5.3)
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where P is the number o f instances in the training dataset. The optimization problem defined in 

eq. (5.3) is nonconvex with multiple local minima [105], Gradient descent can be utilized to obtain 

a solution for the network weights, the kernel centers, and the basis widths [88]. Given the local- 

approximator nature o f bounded radial basis functions, a clustering algorithm, e.g., K-means, can 

also be employed at the initial phase of the training process to determine the positions of the 

kernel centers [106]. The ELM algorithm adapted for RBF networks [90] provides a much faster 

approach: The kernel centers and basis widths are initialized with random values from within a 

specific range and the problem of determining the weights is then formulated as follows,

N

^  vvn0 n(xp) +  w0 =  y (x p), p G {1  P} (5.4)
n = 1

This corresponds to a linear system of P equations, which can be written in a compact matrix form 

as follows,

H w  =  Y (5.5)

The training of the network can then be accomplished by finding a least-squares solution w  of eq. 

(5.5): m in ||/Av -  K||. In most practical applications, the number of hidden nodes is much smaller
W

than the size of the training dataset. In this case, eq. (5.5) corresponds to an over determined 

system of equations and the unique smallest-norm least squares solution is as follows.

w  =  H +Y (5.6)

where is the Moore-Penrose generalized inverse matrix [107]. This can be computed using a 

number o f methods; in this work this is done using the singular value decomposition (SVD)

approach. As is pointed out in [90,108], in general, the smaller the network weights, the better

the generalization performance; using the H + matrix, the smallest hidden-to-output layer weights 

are obtained.
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5.2.2 Particle swarm optimization

The utilization of the ELM for the training of SLFNs results in a significant reduction in the training 

time compared to gradient-based tuning algorithms. However, as is reported in [86], when the 

ELM is employed for the training of ANNs, the random selection of the values of the input weights 

tends to favor networks with a larger number of hidden nodes compared to gradient-based 

network tuning. In order to address this issue, an evolutionary algorithm can be utilized to evolve 

the network parameters, as is done in [86] where a differential evolution algorithm is combined 

with the ELM to train ANNs. In addition to a shorter training time, a more compact network 

architecture could also result in better generalization performance. These observations are 

expected to be applicable to other types of SLFNs like RBF networks. In this work, PSO is utilized 

to evolve both the position o f each kernel and the corresponding basis width.

The gbest PSO model [109] uses a population of swarm particles (solution vectors) that search for 

the optimal solution simultaneously and in a cooperative manner. The position vector o f each

particle x E RJ is updated at each iteration t  + 1 using the following scheme Vy 6 {1 ,..... , / } :

x j{ t  +  1) =  X j{t) +  V j(t +  1) (5.7)

v j( t  +  1) =  x (y j ( t )  +  fa .U jtO .l). ( y , ( t )  -  xy (t))  +  02- U j(0,1). (y ; ( t )  -  xy( t ) )  (5.8) 

where Xj(t) ,V j( i) ,  X j(t  +  1) and v; ( t  +  1) are the particle's/ h position coordinate and velocity 

over a single time increment at iteration t and t + 1, respectively. 0 X and 0 2 are coefficients that 

adjust the attraction of the particle towards the global best solution that has been found by the 

swarm thus far, y ( t) ,  and towards the best solution that has been found by the particle up to 

iteration t, y ( t) ,  respectively. U j(0,1) is a uniformly distributed random number in (0,1) sampled 

anew for each j  and particle.

In order to prevent the velocity of each particle from increasing uncontrollably when using eq. 

(5.7), various methods have been proposed over the years; here the concept of the constriction
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coefficient [110] is adopted. The constriction coefficient, x> is computed using the following 

scheme as shown.

2k
(5.9)

|2 -  0  -  ,J(t>2 — 40  

where 0  =  0 j  +  0 2, 0  >  4, E [0,1]

In this work, k is set equal to one in order to promote a high degree o f exploration of the search 

space, 0  is set equal to 4.1, as is suggested in [111], and 0 X is set equal to 0 2. The condition 0  > 

4 is a necessary condition for the convergence of the particle's trajectory to a position inside the 

search space. This is proven in [110], where the equations of motion are modeled as a discrete­

time dynamic system and a stability analysis is performed in order to derive conditions for its 

convergence to an equilibrium point. Using the gbest model, the particle attractor (equilibrium 

point) corresponds to a weighted average between its personal best and global best positions. In 

the current application, when the network training has been completed, it is anticipated that the 

set of personal best positions contains solution vectors close to the global best solution, 

depending on the size of the attraction basin, which are also distinct enough to satisfy the diversity 

requirement for the ensemble members.

The positions of the particles are initialized randomly within the range of each coordinate (input

variable): Xj E [x ^ L\ x j ^ ] , j  E {1 , ...... / } .  The velocities are initialized with zero values. During

the iterative search process, when a particle moves to a position outside of the allowable range 

in coordinate j ,  its position coordinate j  is set equal to the closest boundary value and the 

corresponding velocity component is set equal to zero. At the end o f each iteration, the 

performance o f the swarm particles is assessed by computing the root mean squared error (RMSE) 

on a validation set, which contains data that are not included in the training dataset. This is done
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in order to update, if applicable, the global best and personal best solution vectors. The RBF 

network parameters that are optimized are the kernel center coordinates and basis widths.

In this research, the PSO algorithm is modified as follows: The particle with the worst (highest) 

RMSE value at the end o f each iteration is replaced by a mutated (perturbed) copy of the global

best solution vector. The mutation is performed using the following scheme j  G {1 ....... / }  as

shown below.

where msf is the mutation scaling factor and mrt is the mutation rate. In this way, the optimizer 

is able to perform a local search in the vicinity of the global best solution found thus far through 

small perturbations of the corresponding solution vector. During the initialization of the PSO 

parameters' values for each swarm particle, the input layer of each corresponding RBF network, 

/, is pruned by randomly selecting the input variables that will be included in the network as shown 

below.

where prr  is the pruning rate and j  G {1 ,...... ,/} ,  iG  {1 , .........., / } .

The main reason for pruning the input layer is to remove variables that do not contribute towards 

a better understanding of the underlying process that produced the dataset and, thus, their 

inclusion does not cause a substantial increase in the accuracy o f the approximation/prediction 

model. In the proposed approach, the importance of the input variables is not estimated explicitly; 

the determination o f the optimal input layer architecture is done gradually through the 

aforementioned particle replacement operation as, at each iteration, the network with the worst 

performance is discarded and replaced by a network with the optimal input layer architecture 

that has been found thus far.

y} +  msf. ( x jW  -  i f  £ //(0 ,l) <  m rt
(5.10)

otherwise

deactivated, i f  l / i ; (0 , l )  <  p rr  

activated  , otherwise
(5.11)



5.2.3 Implementation of the proposed algorithm for training and ensembling of RBF networks

The PSO algorithm described in the previous section is utilized for the training o f the ELM-based 

RBF networks. The training of the ELM-based RBF networks is stopped if either the global optimal 

solution has not changed after lCh iterations or the algorithm has reached the maximum allowable 

number o f iterations, lmax. Two distinct sets of data points are used during the training process; 

the first corresponds to the training data set, which is used to compute the network weights via 

Singular Value Decomposition (SVD). The particles (solution vectors) are then evaluated on a 

validation set in order to find global and personal best positions. In this way, the risk of 

overtraining the network is reduced. The global best position corresponds to the network with 

the smallest prediction error on the validation set. The prediction error is quantified by computing 

the root mean squared error (RMSE). The training and validation data sets, both input and output 

values, are normalized in the range [-1.0,1.0],

The ensembling process commences immediately after the training o f the RBF networks has been 

finalized. The output of the ensemble is obtained by averaging the output of its members, i.e., the 

personal best solutions of the swarm particles. Prior to the evaluation of the generalization 

performance of the ensemble on a testing dataset, the existence o f outliers among the ensemble 

members is investigated by applying Chauvenet's criterion [112]. This criterion specifies that all 

points that fall within a band around the mean that corresponds to a probability o f [1 -  1 /(2 £ )] 

should be retained. E is the original size of the ensemble and, thus, is equal to the swarm 

population size. The criterion is applied only once for each point of the testing dataset. Using 

Gaussian probabilities, the ratio of maximum acceptable deviation to sample standard deviation 

is computed and utilized for the detection of outliers [113]. The algorithm has been developed in 

FORTRAN 95 (Appendix I). The training and testing processes of the PSO-trained ELM-based RBF 

network ensemble are outlined in the figure 5.1.



47

Specify the RBF network architecture
Initialize the swarm population particles (each particle corresponds to an RBF network) 
iter = 0 
do

Compute the connection weights of each RBF network using the training data set and SVD 
Evaluate each RBF network on the validation data set by computing the RMSE 
Find the global best RBF network up to the currect iteration 
Update, if applicable, the personal best position of each particle
Move each particle to a new position inside the search space using the gbest PSO algorithm 
Iter = iter +1  

until stopping criterion is satisfied
Form RBF network ensemble by combining the personal best positions of the swarm particles 
Apply Chauvenet's criterion while computing the ensemble prediction on the testing data set

Figure 5.1. Pseudo-code of training and testing process o f the PSO-trained ELM-based RBF
network ensemble.

5.3 Experimental Investigation

The generalization performance of the RBF networks trained using the proposed methodology is 

investigated and the results are presented in this section. In all the experiments, the swarm 

population size, /, is set equal to 20 and lCh and I  max are set equal to 8 and 50, respectively. In the 

first part of this investigation, the number of hidden nodes is set equal to 10 in order to observe 

the algorithmic effectiveness and efficiency using a small-sized network. The coordinates of the 

kernel centers are allowed to vary within the range [-1.0,1.0], while the basis width values within 

the range [1.0, 60.0], The mutation parameters, msf and mrt, are set equal to 0.2 and 0.5, 

respectively, and the pruning rate, prr, is set equal to 0.2. The training and validation datasets are 

normalized in the range [-1.0,1.0].

Ten widely-utilized benchmark problems are considered: Eight regression and two time series 

prediction problems. The datasets of the majority of these problems have been obtained from 

the UCI machine learning repository [114]. The problem features and additional references are 

provided in Table 5.1.
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ID Problem description Number of 
data points

Number 
of inputs

Input types

BNK Bank queues simulation1 8192 8 integer, real

FF Forest fires [116] 517 4 real

BH Housing values in Boston 506 13 categorical, 
integer, real

CCS Concrete compressive strength [117] 1030 8 real

SRV Servomechanism 167 4 categorical,
integer

CS Concrete slump test [118] 103 7 real

CH Computer hardware performance 209 7 integer

WBP Breast Cancer Wisconsin (Prognostic) 198 32 real

BJ Box-Jenkins time series [119] 290 10 real

MG Mackey-Glass time series [120] 4898 11 real

Table 5.1. Features of regression and time series prediction benchmark problems.

The dataset of each problem is first randomized and then split into three groups: 40% of the data 

are used for training, 10% for validation, and 50% for testing. Fifty independent runs are 

performed for each problem. The RMSE and the mean absolute error (MAE) of the predictions on 

the testing set are computed using the network output, after it has been transformed back to its 

original scale, and recorded for the ensemble and for the RBF network with the lowest RMSE value 

on the validation set. The same 10 problems are used in all phases o f this investigation. The 

computational cost of obtaining the ensemble predictions is negligible compared to the

1 http://www.cs.toronto.edu/~delve/data/datasets.htm l (last accessed on 7 /25/2015)

http://www.cs.toronto.edu/~delve/data/datasets.html
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corresponding cost of the training process; on average, the time used to compute the ensemble 

predictions is equal to 0.7% of the time required for the training process on a machine with 16 

GB of RAM and a quad-core 2.80 GHz processor running on a 64-bit Linux operating system.

5.3.1 Effectiveness of the proposed ensembling methodology

In the first part, the effectiveness of the proposed methodology is tested, and in particular the 

utilization of the mutation operator combined with the pruning of the input layer. The RMSE and 

the mean absolute error (MAE) of the predictions are computed on the testing dataset using the 

network output, after the latter has been transformed back to its original scale, and recorded for 

the ensemble (ENS) and for the global best RBF network (GB), i.e., the network with the lowest 

RMSE value on the validation set at the end of each run. The corresponding versions without 

mutation and pruning are denoted by ENS_NMP and GB_NMP, respectively. The lower the RMSE 

and the MAE values, the better the algorithmic performance.

In all cases, a single hidden layer with 10 nodes is utilized and the maximum number o f training 

iterations per run is set equal to 1000. A pairwise comparison between ENS and ENS_NMP to 

determine the statistical significance of the results is also performed using the two-tailed p-values, 

which have been computed using the t-test for unequal variances. In the problems where an 

algorithm has statistically better performance than the other at the 0.05 significance level, the 

mean value of its RMSE is highlighted in bold font. The results are shown in Table 5.2.

The results reported in Table 5.2 demonstrate the effectiveness of mutation and input-layer 

pruning on the algorithmic performance: ENS outperforms ENS_NMP in all 10 problems and in 

both metrics; the difference in the mean values is statistically significant at the 0.05 level in 7 

problems using either metric. Furthermore, the generalization performance of the ensemble 

(ENS) is clearly better than the performance of the global best network (GB) in both metrics when 

mutation and input-layer pruning are incorporated into the algorithm; the same conclusion



cannot be drawn from a generalization performance comparison between GB_NMP and 

ENS_NMP, which further corroborates the claim that mutation and pruning enhance the PSO- 

training and ensembling effectiveness.

ID RMSE & MAE ENS GB ENS NMP GB NMP
BNK RMSE 7.209-102 7.254-10'2 8.721-10'2 8.725-10'2

MAE 5.457-10'2 5.497-102 6.797-10'2 6.793-10'2
FF RMSE 1.338 1.340 13.341 1.340

MAE 1.067 1.069 1.096 1.092
BH RMSE 4.436 4.601 4.986 4.893

MAE 3.411 3.545 3.897 3.820
CCS RMSE 1.281 101 1.368-101 1.531-101 1.536-101

MAE 1.006-101 1.055-101 1.258-101 1.247-101
SRV RMSE 9.675 101 1.038 9.973-10'1 1.002

MAE 5.442-10"1 5.941-101 6.200-101 6.156-101
CS RMSE 8.133 9.139 8.295 9.764

MAE 6.612 7.253 6.728 7.781
CH RMSE 1.265-101 1.474-101 1.311-101 1.617-101

MAE 5.581 6.338 5.801 6.967
WBP RMSE 3.546-101 3.832-101 4.160-101 4.237-101

MAE 2.953-101 3.198-101 3.497-101 3.546-101
BJ RMSE 4.324-10'1 4.437-101 4.414-10'1 4.559-101

MAE 3.095-101 3.171-10"1 3.128-10'1 3.225-10'1
MG RMSE 1.187-102 1.276-10'2 2.165-10'2 2.144-10'2

MAE 1.027-102 1.034-102 1.783-10'2 1.759-10'2

Table 5.2. RMSE and MAE results for ENS, GB, ENSJMMP and GB_NMP.

In the next part, the performance of the ensemble (ENS) and of the global best (GB) of the PSO- 

ELM-trained RBF networks is compared with the performance of two other SLFN learners: an 

artificial neural network (ANN) that uses the back propagation algorithm for training and an RBF 

network that uses K-means clustering (RBF_K) to obtain the kernel parameters and linear 

regression to compute the network weights. Both algorithms are available in the open source data 

mining software WEKA [122], The ANN uses a momentum term with value set equal to 0.2 and a
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learning rate with value set equal to 0.3. Both SLFN learners use a single hidden layer with 10 

nodes; the number o f training iterations is set equal to 1000.

ID Mean & 
Deviation

RBF_K ANN GB ENS

BNK Mean (1.420-101)* (8.130-102)* 7.254-102 7.209 102
Deviation 1.484-10'4 1.276 102 2.640-104 3.545-10'4

FF Mean (1.359)* (1.461)* 1.340 1.338
Deviation 1.391102 1.326-101 2.500-10'2 2.562-10'2

BH Mean (7.505)* (5.455)* 4.601 4.436
Deviation 2.919-10'1 1.089 4.694-10'1 2.954-101

CCS Mean (1.844-101)* (1.727-101)* 1.368-101 1.281-101
Deviation 1.870 3.071 2.052 1.969

SRV Mean (1.524)* 1.014 1.038 9.675 101
Deviation 7.097-10’2 2.278 101 6.677-10‘2 4.355-10"2

CS Mean (1.169-101)* (8.715)* 9.139 8.133
Deviation 9.547 1.381 1.085 9.001-10'1

CH Mean (1.261-102)* 1.380-101 1.474-101 1.265-101
Deviation 3.996-101 1.271-101 6.197 3.342

WBP Mean (3.835-101)* (4.172-101)* 3.832-101 3.546-101
Deviation 1.222 9.467 2.114 5.716-10'1

BJ Mean (1.364)* (5.893-101)* 4.437-10'1 4.324-101
Deviation 1.102-10'1 1.91310'1 2.878-10'2 2.236-10'2

MG Mean (8.180-10'2)* 1.068-10‘2 1.276-102 1.187-10'2
Deviation 5.506-10’3 3.257-10'3 3.624-10'3 2.809-10'3

Table 5.3. Mean and standard deviation values of RMSE for RBF_K, ANN, GB and ENS.

The computed mean (Mean) and standard deviation (Deviation) values of RMSE are listed in Table 

5.3. Pairwise comparisons between ENS, RBF_K, and ANN are performed in order to determine 

the statistical significance of the results. If the performance o f ENS in a problem is statistically 

better than the performance o f another algorithm, then there is an asterisk (*) next to the other 

algorithm's corresponding mean RMSE value. If the difference in performance between ENS and 

GB is statistically significant at the 0.05 level, the mean value of the more accurate algorithm is 

highlighted in bold font.
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The RMSE results displayed in Table 5.3 reveal that the PSO-ELM-trained RBF network ensemble 

has better generalization performance than the RBF_K learner in 10 problems, a result that is 

statistically significant in all 10 problems, and in 9 problems compared to the ANN, a result that is 

statistically significant in 7 problems. Furthermore, the variance in the ENS results is very small 

compared to the other two SLFN learners. In none o f the 10 problems the performance o f either 

ANN or RBF_K is statistically better than the performance of ENS. A comparison between the 

results of GB and ENS shows that the latter performs better in all 10 problems, a result that is 

statistically significant in 8 problems. Overall, these results demonstrate that the PSO-trained 

ELM-based RBF network ensembling methodology has very good generalization performance 

even when applied to a small-sized network. The proposed PSO-ELM-based training methodology 

without the ensembling is also successful as GB has a lower mean RMSE value than the RBF_K and 

the ANN in 10 and 6 problems, respectively.

5.3.2 RBF networks with optimal number of hidden layer nodes

In this section, the number of hidden layer nodes is varied in an attempt to optimize the network 

size. Starting with 2 hidden nodes, the number is increased manually in steps of 1 node to a 

maximum number of 20 nodes. The network size of the ensemble (ENS_OPT) that produces the 

lowest mean RMSE value in each problem is (following the sequence used in Table 5.1): {20,11, 

5,12, 20,12, 20,18, 20, 20}. The corresponding mean RMSE values are shown in Table 5.4.

The results obtained using the IB5 k-nearest neighbor algorithm [123], a Gaussian process (GP) 

learner, and M5P J124], a tree-based method with pruning, are also listed in Table 5.4. GP uses 

the Gaussian kernel function with a basis width that is varied manually from within the following 

set of discrete values: {0.25, 0.5, 1.0,1.5, 2.0, 3.0, 5.0, 10.0}. The results that correspond to the 

basis width value that produces the lowest mean RMSE in each problem are shown in Table 5.4. 

The corresponding basis width values are: {1.0,1.0,1.5,1.0, 0.5, 5.0,1.5, 3.0, 2.0,10.0}. The data



mining software WEKA was utilized to generate the results for IB5, GP, and M5P. The lowest mean 

RMSE and MAE values in each problem are highlighted in bold font in Table 5.4.

The generalization performance o f the proposed methodology is significantly improved by using 

an optimal-sized hidden layer as is observed through a comparison between the results of ENS 

listed in Table 5.2 and the results of ENS_OPT listed in Table 5.4. A comparison between the results 

of the GP and the IB5 learners and the results of ENS_OPT reveals that the latter outperforms 

both learners in all 10 problems using either metric. It also outperforms M5P in 9 problems using 

the RMSE metric and in 8 problems using the MAE metric.

ID RMSE & MAE GP IB5 M5P ENS OPT
BNK RMSE 7.251-10"2 1.155101 7.090-10'2 7.085 10'2

MAE 5.491-10'2 8.940-102 5.322-10"2 5.331-10'2
FF RMSE 1.345 1.443 1.352 1.336

MAE 1.060 1.095 1.124 1.058
BH RMSE 4.715 6.615 3.776 4.139

MAE 3.180 4.602 2.797 3.152
CCS RMSE 1.317-101 1.743 101 1.308-101 1.264-101

MAE 1.094-101 1.410-101 1.036-101 9.972
SRV RMSE 1.061 1.098 9.261-10'1 9.030 10 1

MAE 5.514-10'1 5.644-101 4.611-10 1 4.350-10 1
CS RMSE 8.218 8.519 8.194 8.073

MAE 6.401 6.625 6.409 6.395
CH RMSE 4.328-101 5.904-101 3.189-101 9.121

MAE 1.678 101 1.953-101 1.476-101 4.385
WBP RMSE 3.664101 3.965-101 3.549-101 3.404-101

MAE 3.116-101 3.291-101 2.877-101 2.770 101
BJ RMSE 1.003 1.074 4.521-10'1 3.915-10'1

MAE 7.00110'1 7.899-101 3.213-101 2.867 10 1
MG RMSE 1.540-102 1.07 MO-2 3.612-102 7.238-10'3

MAE 1.18010'2 8.700-103 2.860-10'2 5.758-103

Table 5.4. RMSE and MAE results for GP, IB5, M5P and ENS_OPT.
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CHAPTER VI 

SIMULATION RESULTS FOR REGULAR WAVES

6.1 Introduction

The WEC system described in Chapter II! is simulated in MATLAB®. In this way, the response of 

the point absorber to regular waves, with and without phase control, is computed. Subsequently, 

the mean generated power of the point absorber WEC system, the corresponding efficiency, 

relative capture width, and maximum and minimum amplitude o f the point absorber are 

computed and tabulated. The first half of the simulation is excluded from the computations due 

to the transient character of the response of the heaving point absorber.

6.2 Definition of Evaluation Criteria

The output of the numerical simulations in regular waves with and without phase control is 

evaluated using the following criteria:

a) Mean generated power (Pmg): The mean of the values of the generated power in the second 

half of the simulation.

b) Power absorption efficiency (rjpa): Ratio of mean generated power (Pmg)  to available 

power (Pav),

The available power (Pav) of an incident wave front is the power of the wave front whose width 

is equal to the diameter (D ) of the point absorber.

c) Maximum amplitude (Amax): The absolute value of the maximum distance attained by the 

heaving point absorber measured from the equilibrium position and along the vertical axis during 

the second half of the simulation.



6.3 Settings for the Point Absorber WEC System

The point absorber WEC system consists of numerous components whose physical properties 

must be initialized prior to performing the simulations. The values of key physical properties and 

constants of the WEC system used in the simulations are listed in Table 6.1.

Component Notation Units Value
Radius o f the point absorber r m 4
Piston surface area *P m2 0.05
Density of oil in the hydraulic cylinder rho o kg/m3 850
Ratio of specific heats (gamma) for nitrogen V - 1.4
Volume o f gas in compressibility accumulator (c) veal m3 0.05
Volume of gas in compressibility accumulator (d) veal m3 0.05
Volume of gas in phase control accumulator (e) vpcl m3 0.5
Volume of gas in phase control accumulator (f) vpc2 m3 0.5
Volume of gas in HP accumulator (g) v_hp m3 2
Volume of gas in LP accumulator (h) v jp m3 1
Gas pressure in HP accumulator (g) P_hp Pa 107
Gas pressure in LP accumulator (h) PJP Pa 107
Gas pressure in compressibility accumulator (c) peal Pa 107
Gas pressure in compressibility accumulator (d) pca2 Pa 107
Gas pressure in phase control accumulator (e) ppcl Pa 107
Gas pressure in phase control accumulator (f) ppc2 Pa 107
Maximum continuous speed of the hydraulic motor speed_max rev/min 3000
Maximum volumetric displacement o f the hydraulic motor max dhm m3/rev 165-10'6
Maximum output torque of the hydraulic motor torqm_max Nm 659
Control valve discharge coefficient for compressibility 
accumulators

cv 0.95

Control valve discharge coefficient for phase control 
accumulators

Cc “ 0.95

Cross sectional area of the control valve to the phase 
control accumulators

Ac m2 0.002

Cross sectional area of the control valve to the 
compressibility, HP and LP accumulators

Av m2 0.002

Combined rotational inertia of motor-generator-shaft Jr kgs2 7.5

Table 6.1. Initial values and constants for components of the point absorber WEC system.
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The pressure and volume changes of the gas in the accumulators are assumed to follow an 

isentropic process. The rotational speed of the motor is assumed to be fixed. Also, the generator 

torque is assumed to match the hydraulic motor torque.

6.4 Calculation of Available Power in Regular Waves

The available power in a regular wave is the maximum power that can be extracted from the wave 

using a point absorber o f known diameter. The available power for a point absorber, Pav, which 

depends on wave amplitude and wave frequency [35], corresponds to the product of the wave 

power per meter o f the incident wave crest and the diameter of the point absorber. The formula 

to compute available power for in regular waves is as follows,

D p g 2T H 2

=  ~ Ek r ~  (6-2)

where D is the diameter of the point absorber, p is the density of sea water, g  is the acceleration 

of gravity, T is the wave period, and H is the wave height. The wave height is equal to twice the 

absolute value of the wave amplitude, A. The available power for various combinations o f wave 

period and amplitude is listed in Table 6.2 and plotted in Figure 6.1.

Wave period, T (s) P a v  (kW) - A = 0.5 m P a v  (kW) - A = 1.0 m P a v  (kW) - A = 1.5 m

5 39.3 157.0 353.2

6 47.1 188.4 423.9

7 55.0 219.8 494.5

8 62.8 251.2 565.2
9 70.7 282.6 635.8
10 78.5 314.0 706.5

11 86.4 345.4 777.1
12 94.2 376.8 847.8

13 102.1 408.2 918.4

Table 6.2. Values of available power for various wave periods and amplitudes.
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Figure 6.1. Variation of available power in regular waves.

6.5 Simulation of the WEC System Operation in Regular Waves

The performance o f the point absorber WEC system is evaluated in all the combinations o f wave 

period and amplitude listed in Table 6.2. When phase control is utilized, the valve of the phase 

control accumulator is set to open (T0/Ccoe) seconds before the peak of the excitation force, 

where T0 is the undamped and uncoupled heave natural period of the point absorber. Therefore, 

the values of the control coefficient Ccoe correspond to different fractions of T0. The following 

values are utilized in this parametric investigation: Ccoe =  {4, 7, 10, 15}.

The undamped and uncoupled heave natural period is computed from the following equation:

T0 — 2n
N

y m°- (6.3)
C/lS
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where m b is the mass of the point absorber, m a is the added mass at wave frequency cu, which is 

calculated using the piecewise cubic Hermite polynomial (see Appendix E), and k hs is the 

hydrostatic stiffness of the buoy. The equations for the calculation of m b and k bs for a spherical 

point absorber are provided in the nomenclature list of Eq. (3.1). For a point absorber radius of 4 

m, T0 varies monotonically in the range from 4.04 to 4.47 seconds for the wave period values 

listed in Table 6.2. All the simulations are conducted for a simulated time o f 500 seconds with a 

time step of 0.04 seconds. The motor displacement is kept at its maximum value, i.e., f dc = 1.00.

6.5.1 Results for wave amplitude of 0.5 m

Regular waves with various periods but with a constant wave amplitude of 0.5 m are considered. 

The mean generated power of the point absorber without phase control (NPC) and with phase 

control (for each Ccoe value) is listed in Table 6.3. The corresponding power absorption efficiency 

is reported in Table 6.4.

Wave period, 
T(s)

P m g  (kW) 
(NPC)

P m g  (kW)

(C coe =  4 )

P m g  (kW)

( C coe =  7 )

P m g  (kW)

(C coe  =  1 0 )

P m g  (kW)

(C coe =  1 5 )

5 11.9 8.53 18.2 20.1 20.2
6 12.8 13.1 18.2 20.3 20.0

7 13.3 10.6 17.9 18.5 19.7
8 13.3 10.0 15.9 17.0 17.2
9 13.1 8.08 12.8 14.2 15.2
10 12.1 4.95 9.77 11.5 12.5
11 6.96 2.05 6.97 6.98 6.96

12 1.97 1.90 2.02 2.05 2.06
13 1.82 1.71 1.86 1.89 1.97

Table 6.3. Mean generated power as a function of wave period for A = 0.5 m.
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The highest value of the mean generated power for each wave period is highlighted in bold font. 

It becomes quite clear based on the results listed in Table 6.3 that phase control can have a 

significant impact on the power absorption of the WEC system for a wide range o f wave periods.

Wave period, 

H  s)
Vpa (%) 
(NPC)

rtpa (%)
(Ccoe =  4)

Vpa (%)

{C coe  =  7)

*]pa (%)

{C coe  =  10)

1}pa (%)

{C coe  =  15)
5 30.3 21.7 46.4 51.0 51.4
6 27.3 27.9 38.6 43.2 42.5
7 24.1 19.3 32.6 33.7 35.8
8 21.2 16.0 25.3 27.1 27.4

9 18.5 11.4 18.1 20.1 21.5

10 15.4 6.31 12.5 14.7 15.9
11 8.05 2.38 8.07 8.08 8.06

12 2.09 2.01 2.14 2.17 2.18

13 1.78 1.67 1.82 1.85 1.92

Table 6.4. Power absorption efficiency as a function o f wave period for A = 0.5 m.

Furthermore, opening the control valve later, i.e., at an instant closer to the wave peak, seems to 

work best for almost all wave periods at a fairly small wave amplitude.

The power absorption efficiency is quite high for wave periods near the natural heave period of 

the point absorber and they decrease monotonically with increasing wave period. Values greater 

than 50% are observed with phase control. The absolute value of the maximum motion amplitude 

of the point absorber for each test case is provided in Table 6.5. The lowest value for each wave 

period is highlighted in bold font.
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Wave period, 
T(s)

A-max  ( ^ )  

(NPC)
A m a x  (P^) 

(C coe  =
A m a x  ( m )

(Ccoe =: 7)

A m a x  ( m )  

(Ccoe =
A m a x  ( m )  

(C co e  =  1 5 )

5 0.258 0.698 0.677 0.637 0.568

6 0.308 0.651 0.613 0.563 0.530

7 0.350 0.591 0.578 0.554 0.523

8 0.390 0.571 0.569 0.542 0.518

9 0.429 0.559 0.543 0.526 0.524

10 0.469 0.521 0.529 0.514 0.505

11 0.487 0.501 0.488 0.488 0.487
12 0.486 0.505 0.480 0.477 0.485

13 0.477 0.506 0.487 0.481 0.479

Table 6.5. Maximum motion amplitude as a function of wave period for >4 = 0.5 m.

Phase control increases the motion amplitude compared to the no-phase-control case for wave 

periods less than 10 seconds. Overall, the difference diminishes as the wave period increases. 

When utilizing phase control, the motion amplitude is lower for the cases when the valve is open 

later, and thus, it seems that there is no trade-off between minimizing the motion amplitude while 

maximizing the mean generated power.

6.5.2 Results for wave amplitude of 1.0 m

Similar to the previous case, but with a constant wave amplitude o f 1.0 m, regular waves with 

various periods are considered. The mean generated power of the point absorber with and 

without phase control is listed in Table 6.6.
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Wave period, 
T(s)

P m g  (kW) 
(NPC)

P m g  (kW)

( Ccoe =  4 )

P m g  (kW)

(C coe  ~  7 )

P r n g i m

(C coe  =  1 0 )

P m g  (kW)

(C coe  =  1 5 )

5 26.1 32.1 56.1 59.7 58.5

6 29.5 59.5 72.8 72.0 71.5

7 32.6 71.0 79.8 78.2 75.1

8 35.8 74.7 81.2 78.6 75.3

9 40.1 74.4 78.9 77.0 74.3

10 43.1 70.3 75.7 74.7 72.4

11 40.8 67.4 72.5 72.4 70.7

12 37.9 68.8 74.2 73.6 72.4

13 35.6 75.1 79.8 79.3 77.9

Table 6.6. Mean generated power as a function of wave period for A = 1.0 m.

For a wave period o f 5 seconds, the highest value of mean generated power is attained when the 

control coefficient is equal to 10. For all the other wave periods, the highest value of mean 

generated power is attained when the control coefficient is equal to 7. It can be easily observed 

that phase control has a significant impact on the power absorption of the WEC system, but 

contrary to the 0.5-m-amplitude case (see Table 6.3), all the control coefficients and for all wave 

periods provide a substantial increase in the mean generated power compared to NPC. In contrast 

to what is observed for a smaller wave amplitude, opening the control valve earlier, i.e., Ccoe =  

7, seems to have a small advantage over the Ccoe =  10 and the Ccoe =  15 cases. Furthermore, 

with a wave amplitude of 1.0 m, the mean generated power is not a monotonic function of the 

wave period.

The corresponding power absorption efficiency is reported in Table 6.7. The efficiency is quite 

high for wave periods near the natural heave period of the point absorber but, in this case, it 

attains its maximum value for a wave period of 6 seconds. In the 1.0-m-amplitude case, the 

efficiency attains lower values up to a wave period of 7 seconds compared to the 0.5-m-amplitude 

case, and it does not fall for longer wave periods as steeply as it does in the latter.
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Wave period, 
T(s)

Vpa (%) 
(NPC)

Vpa (%)

(C co e  =  4)

Vpa (%)

(Ccoe ~  7)

Vpa (%)

(C co e  =  1 0 )

Vpa (%)

(C co e  ~  1 5 )

5 16.6 20.4 35.8 38.0 37.3

6 15.7 31.6 38.6 38.2 37.9

7 14.8 32.3 36.3 35.6 34.2

8 14.2 29.7 32.3 31.3 30.0

9 14.2 26.3 27.9 27.3 26.3
10 13.7 22.4 24.1 23.8 23.1

11 11.8 19.5 21.0 20.9 20.5

12 10.1 18.3 19.7 19.5 19.2

13 8.72 18.4 19.6 19.4 19.1

Table 6.7. Power absorption efficiency as a function of wave period for A = 1.0 m.

The absolute value o f the maximum motion amplitude o f the point absorber for each test case is 

provided in Table 6.8.

Wave period, 
T(s)

A m a x  (m) 
(NPC)

A m a x  ( m )  

( C Co e  =  4 )

A m a x  ( m )  

( C c o e  =  7 )

A m a x  M

( C c o e  =  10)
A m a x  M  

( C COe  =  15)

5 0.328 1.29 1.16 1.06 0.912

6 0.390 1.26 1.12 1.01 0.931
7 0.444 1.34 1.19 1.10 0.999

8 0.501 1.42 1.28 1.16 1.09

9 0.568 1.51 1.37 1.26 1.18

10 0.626 1.58 1.46 1.36 1.26

11 0.654 1.63 1.52 1.45 1.35

12 0.682 1.67 1.58 1.52 1.44

13 0.709 1.60 1.52 1.49 1.43

Table 6.8. Maximum motion amplitude as a function of wave period for A -  1.0 m.

Phase control increases the motion amplitude significantly compared to the no-phase-control 

case for any wave period listed in Table 6.8. This difference remains significant even for long wave
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periods, in contrast to what is observed in Table 6.5 for a smaller wave amplitude. In addition to 

this, when utilizing phase control, the motion amplitude is lower for the cases when the valve is 

open later, however, in this case, there is a trade-off between minimizing the motion amplitude, 

with Ccoe =  15, and maximizing the mean generated power, with Ccoe =  7.

6.5.3 Results for wave amplitude of 1.5 m

The mean generated power of the point absorber with and without phase control is listed in Table

6.9 for a number of wave periods with a constant wave amplitude of 1.5 m.

Wave period, 
T(s)

P m g  (kW) 
(NPC)

P m g  (kW)

( C c o e  =  4)

P m g  (kW)

( C c o e  =  7)

P m g  (kW)

( C c o e  =  10)

P m g  (kW)

( C c o e  =  15)
5 40.7 56.5 97.2 103.3 106.6
6 46.4 117.6 139.3 139.6 132.5

7 51.4 153.8 164.3 156.1 146.7
8 56.6 159.5 170.9 164.3 156.9

9 64.3 154.2 166.6 164.1 159.1

10 67.3 140.9 151.3 150.2 147.9

11 66.6 146.3 161.1 159.5 154.3

12 65.6 163.8 171.2 170.7 166.0

13 65.2 164.1 171.8 170.2 168.5

Table 6.9. Mean generated power as a function of wave period for A = 1.5 m.

With the exception of the wave periods of 5 and 6 seconds, where the maximum mean generated 

power is attained at Ccoe =  15 and Ccoe =  10, respectively, for all the other wave periods, the 

highest value o f mean generated power is attained at Ccoe =  7. This is similar to what is observed 

for A = 1.0 m, however, in this case, the mean generated power for almost all the considered wave 

periods is approximately three times the corresponding power generated without phase control. 

The differences in mean generated power between the employed control coefficient values are 

fairly small for wave periods greater than 6 seconds. For a wave amplitude of 1.5 m, the mean
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generated power is not a monotonic function of the wave period in all five control approaches 

considered.

The corresponding power absorption efficiency is reported in Table 6.10. The efficiency is quite 

high for wave periods near the natural heave period of the point absorber but, in this case, it 

attains its maximum value at a wave period of 7 seconds for Ccoe =  4 and Ccoe =  7, while it 

attains its maximum value at a wave period of 6 seconds for Ccoe =  10 and Ccoe =  15. Even 

though there is a slight decrease in maximum attained efficiency for the 1.5-m-amplitude case 

compared to the 1.0-m-amplitude case, a closer inspection of the data listed in Tables 6.7 and

6.10 reveals that the variation in power absorption efficiency between corresponding pairs of 

wave period and wave amplitude is not substantial.

Wave period, 
T(s)

nPa (%) 
(NPC)

Vpa (%)
(Ccoe =  4)

Vpa (%)

(.Ccoe ~  7)

Vpa (%)
(|Ccoe =  10)

Vpa (%)

(Ccoe =  15)
5 11.5 16.0 27.5 29.3 30.2
6 11.0 27.7 32.9 32.9 31.3
7 10.4 31.1 33.2 31.6 29.7

8 10.0 28.2 30.2 29.1 27.8

9 10.1 24.3 26.2 25.8 25.0

10 9.53 19.9 21.4 21.3 20.9

11 8.57 18.8 20.7 20.5 19.9

12 7.74 19.3 20.2 20.1 19.6

13 7.10 17.9 18.7 18.5 18.4

Table 6.10. Power absorption efficiency as a function of wave period for A = 1.5 m.

The absolute value o f the maximum motion amplitude o f the point absorber for A = 1.5 m is listed 

in Table 6.11. Phase control increases the motion amplitude substantially compared to the no- 

phase-control case for any wave period listed in Table 6.11. A closer inspection of the data listed 

in Tables 6.8 and 6.11 reveals that the increase for the NPC case is fairly small, the opposite is true
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for every value of the control coefficient. Similar to the conclusions drawn for A = 1.0 m, there is 

a trade-off between minimizing the motion amplitude, with Ccoe =  15, and maximizing the mean 

generated power, with Ccoe =  7.

Wave period, 

T{ s)
A m a x  (m) 

(NPC)
A  m ax  ( m )

( C coe =  4)
A m ax  (m)

(C coe  =  7)
A m a x  ( m ) 

(C coe  =  10)
A m ax  (m)

(C coe  =  15)
5 0.400 1.77 1.58 1.46 1.25

6 0.470 1.84 1.62 1.44 1.32

7 0.542 2.05 1.83 1.66 1.51
8 0.608 2.29 2.09 1.91 1.78

9 0.694 2.49 2.33 2.19 2.05
10 0.740 2.59 2.42 2.30 2.17

11 0.790 2.66 2.53 2.44 2.33

12 0.830 2.70 2.56 2.49 2.40

13 0.860 2.71 2.60 2.50 2.42

Table 6.11. Maximum motion amplitude as a function of wave period for A = 1.5 m.

6.6 Impact of Phase Control on the Point Absorber Response in Regular Waves

As mentioned earlier, the phase control accumulators are used in an attempt to match the phase 

of the point absorber velocity with the phase of the wave excitation force. Prior to discussing the 

impact o f phase control on the point absorber motion, the case o f no phase control (NPC) is 

considered. Figure 6.2 shows the variation of the point absorber velocity and wave excitation 

force during a specific part of the simulation when there is no phase control on the point absorber. 

The maximum value of the velocity is 0.5 m/s. The regular wave considered has a wave amplitude 

of 1.5 m and a wave period of 13 s. Evidently, the velocity and the wave excitation force are out 

of phase. Let us now consider the case of the point absorber subject to phase control. The control 

coefficient chosen for the phase control operation is Ccoe =  7. Figure 6.3 shows the phase control
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accumulator opening instant tpco, and the wave excitation force peak instant t f peak. The time 

(Tq/7 )  is also shown in the plot.

wave excitation force

No phase control

tim e (s)

Figure 6.2. Point absorber velocity and wave excitation force without phase control.

A

I

«•f
(•> »

Figure 6.3. Point absorber velocity and wave excitation force with phase control.
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The valves of the phase control accumulators are opened at 314.6 seconds and the wave 

excitation force attains a peak value at 315.4 seconds. After the valves have been opened, the 

velocity of the point absorber attains a peak value of approximately 2.46 m/s at 315.5 seconds. 

Therefore, phase control has successfully altered the natural response of the point absorber in 

such a way that the point absorber's velocity and the wave excitation force reach their peak values 

almost simultaneously. Subsequently, the control valves are closed when the point absorber 

velocity becomes zero at time 316.6 seconds. The aforementioned procedure is then repeated 

before reaching the wave trough, as can be seen in Figure 6.3.

6.6.1 Pressure and volume variation in the compressibility accumulators during phase control

The pressure and volume in the compressibility accumulators (c & d) vary during phase control 

operations. Figures 6.4 and 6.5 show the variation in pressure and volume, respectively. The phase 

control accumulators are activated at time 321.1 seconds, which results in pressure increase in 

accumulator d and pressure drop in accumulator c. The point absorber motion is accelerated 

downward and attains a maximum velocity o f 2.46 m/s at time 322.1 seconds. The wave force 

attains a peak value of -6.7020 105 N at time 321.8 seconds. Subsequently, at time 323.2 seconds, 

the control valves of the phase control accumulators are closed. This cycle is then repeated before 

reaching the wave crest.
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Figure 6.4. Pressure variation in compressibility accumulators during phase control operations.
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Figure 6.5. Volume variation in compressibility accumulator during phase control operations.
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6.6.2 Pressure and volume variation in the phase control accumulators during phase control

During phase control operations, the phase control accumulators are alternatively charged and 

discharged depending on the direction o f motion of the point absorber. For instance, when the 

point absorber, subject to phase control, is moving upwards, the pressure in phase control 

accumulator e increases (charged) and the pressure in phase control accumulator /  decreases 

(discharged). The opposite occurs when the phase controlled point absorber starts to move 

downwards. Figures 6.6 and 6.7 show the variation in pressure and volume, respectively. When 

the control valves o f the phase control accumulators are closed, the pressure in the accumulator 

remains a constant.

x 1Ef

10 !

8.5

6.5

290 310 330 360 370

Figure 6.6. Pressure variation in phase control accumulators during phase control operations.
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Figure 6.7. Volume variation in phase control accumulators during phase control operations.

6.6.3 Pressure and volume variation in the HP and the LP accumulators during phase control

The pressure difference between the HP and the LP accumulator is used to run a fixed-speed, 

variable-displacement motor in the hydraulic PTO system. Figures 6.8 and 6.9 show the variation 

in pressure and volume, respectively, in the HP and LP accumulators.
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Figure 6.8. Pressure variation in the HP and LP accumulators during phase control operations.
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Figure 6.9. Volume variation in the HP and LP accumulators during phase control operations.
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CHAPTER VII

SIMULATION RESULTS FOR IRREGULAR SEAS

7.1 Introduction

The components of the point absorber WEC and the hydraulic PTO system described in Chapter 

III are modelled in the MATLAB® code. This code is used to compute the motion response of the 

point absorber to irregular waves. Also, motion response of the point absorber when subjected 

to phase control and no phase control is computed. Furthermore, parameters such as mean 

generated power o f the point absorber WEC system, point absorber efficiency and maximum 

motion amplitude are computed and tabulated. The point absorber WEC system settings are the 

same as in the simulations o f the regular waves (see Table 6.1).

7.2 Computation of Available Power of Fully-Developed, Deep-Water Irregular Seas

The available power for deep-water, fully developed irregular seas is the maximum power that 

could be extracted from the waves using a point absorber of known diameter. In the case of 

irregular seas, the modified Pierson-Moskowitz (P-M) energy distribution spectrum is used in the 

simulations and, thus, to compute the available power, Pav. The modified P-M spectrum is 

characterized by two parameters: The significant wave height and the modal wave period. The 

available power in each sea state for fully developed irregular seas, depends on the characteristics 

of that particular sea state [55]. The expression for the modified P-M spectrum as a function of 

the wave period, T, is as follows [57]:

where Hx/ 3 is the significant wave height or mean of one-third highest waves for the chosen sea 

state and Tm is the corresponding modal wave period. The available power equation for a given 

sea state and using the modified P-M spectrum can be computed in the following manner:

m
(7.1)



where p is the density of sea water, g is the acceleration of gravity and r  is the radius of the point 

absorber. In the MATLAB® code, the value of the integral is computed in the wave period range 

of [0, 100] seconds. A detailed derivation of Equation (7.2) is provided in Appendix G. The 

computed available power in sea states no. 3 through no. 5 is provided in Table 7.1.

Sea state no. P a v i  k W )

3 19.5
4 104.6

5 344.7

Table 7.1. Available power for each sea state.

The available power in sea state no. 5 is higher than the available power in sea states no. 3 and 4. 

This is due to the higher values of Tm and H 1/3 for sea state no. 5 when compared with the values 

of the same parameters for sea states no. 3 and 4. This is inferred from the data listed in Table 

7.2, which provides the values of modal wave period, significant wave height, and annual 

probability of occurrence of the most frequently occurring sea states in the North Atlantic [58]. 

These sea states are used in this investigation.

Sea
state

Significant wave 
height (m) ( f f 1/3)

Most probable modal wave 
period (s) (Tm)

Percentage probability of 
sea state (%)

3 0.88 7.5 23.70
4 1.88 8.8 27.80
5 3.25 9.7 20.64

Table 7.2. Annual sea state characteristics and occurrence in the North Atlantic.
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7.3 Simulation Results for Fully-Developed Irregular Seas

As mentioned earlier, the modified P-M energy spectrum is used to represent the state of the sea. 

It is assumed that the waves are irregular and occur in deep water. The state of the sea is assumed 

to be fully developed. Sea states no. 2 and 6 are not considered in the irregular wave simulations 

because sea state no. 2 has a low probability of occurrence of 6.8 % and sea state no. 6 has a very 

high significant wave height of 5.0 m.

The fraction of the maximum volumetric displacement of the hydraulic motor, f dc, is also utilized 

as a control coefficient. Four discrete values are considered: fdc=  {0.25,0.50,0.75,1.00).

Given that irregular seas are non-deterministic by nature, a random number generator (RNG) is 

used in order to set the random seed and provide the series of random numbers used in the 

computation of the wave excitation force. The random number generator seed is varied from one 

to ten in steps of one. For each sea state and value of f dc, ten simulation runs are performed for 

each value of Ccoe, and also for the case of no phase control (NPC). After each run, the numerical 

values of critical parameters such as mean generated power, power absorption efficiency, and 

the absolute value of the maximum motion amplitude are recorded. Data sets of two critical 

parameters, mean generated power and maximum motion amplitude, are subjected to statistical 

analysis because of their usage in assessing the performance of the point absorber WEC system. 

The non-parametric Kolmogorov-Smirnov (K-S) test for normality is performed to see whether the 

data follows a normal distribution. The null and alternative hypotheses fo r the K-S test are as 

follows,

Null hypothesis: The data set follows a normal distribution.

Alternative hypothesis: The data set does not follow a normal distribution.

Subsequently, if it has been verified that the examined data sets follow a normal distribution, the 

two-tailed Student's t-test with paired samples (same rng seed) is performed on the
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corresponding data for a given sea state and value of fraction of the motor's maximum volumetric 

displacement. The first set of hypotheses involves testing whether phase control has a statistically 

significant effect on the mean generated power by applying the t-test to the Ccoe data set with 

the highest average value (HAV) of the mean generated power in the ten runs and to the 

corresponding NPC data set. The null and alternative hypotheses for this test are as follows,

Null hypothesis: The means of the populations from which HAV and NPC are obtained are equal, 

i.e., phase control does not have a statistically significant effect on the mean generated power. 

Alternative hypothesis: The means of the populations from which HAV and NPC are obtained are 

not equal, i.e., phase control has a statistically significant effect on the mean generated power.

A similar test is applied to the Ccoe data set with the lowest average value (LAV) of the maximum 

motion amplitude and to the corresponding NPC data set. Subsequently the t -test is employed in 

order to investigate whether the instant at which the control valves are opened, t pco, relative to 

the instant when the next wave excitation peak occurs, t f peakl has a statistically significant effect 

on the mean generated power. The t-test is applied to the data sets with the highest and lowest 

average values, HAV and LAV, respectively.

The aforementioned t-tests are two tailed. The statistical significance is investigated at the 0.05 

(5%) level. In this way, if the probability of obtaining the investigated data sets when the null 

hypothesis is true, or else the p-value is less than or equal to 0.05, then the null hypothesis is 

rejected. All the simulations for irregular seas are conducted for a total time of 1,500 seconds and 

a time step of 0.03 seconds.

7.3.1 Results for sea state no. 3

Sea state no. 3 has an available power of 19.5 kW, significant wave height of 0.88 m, most 

probable wave period of 7.5 seconds, and percentage probability of occurrence o f 23.7 %. For a 

chosen value of fraction of the maximum hydraulic motor displacement, the values of the mean
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generated power and the maximum motion amplitude for different control coefficients are 

provided.

RNG
P m g  (kW) 

(NPC)
P m g  (kW)

( f*c o e  =  4 )

P m g  (kW)

( C c 0 e  =  7 )

P m g  (kW)

( f*c o e  — 1 ® )

P m g  (kW)
(Ccoe =  15)

rng( 1) 0.767 1.011 1.084 1.106 1.133

rng( 2) 0.984 1.309 1.338 1.398 1.322

rng( 3) 1.062 1.448 1.648 1.544 1.595

rng( 4) 1.141 1.631 1.662 1.722 1.675

rng[ 5) 1.026 1.414 1.543 1.539 1.409

rng( 6) 1.019 1.425 1.545 1.626 1.588

rng{ 7) 0.764 0.990 0.967 0.957 1.023

rng{ 8) 0.903 1.263 1.326 1.275 1.253

rng( 9) 1.187 1.758 1.700 1.676 1.561

mg( 10) 1.001 1.507 1.568 1.582 1.528

AVG 0.985 1.376 1.438 1.442 1.409
STD-DEV 0.140 0.244 0.252 0.255 0.219

Table 7.3. Mean generated power, sea state no. 3, f dc = 0.25.

Table 7.3 shows the mean generated power, Pmg, values fo r /dc = 0.25. The overall lowest average 

mean generated power is 0.985 KW and corresponds to the NPC case. The corresponding value 

of power absorption efficiency is 5.04 %. The highest average mean generated power value is 

1.442 kW (shown in bold font and italics) and the corresponding value o f power absorption 

efficiency is 7.38 %. Among the four phase-controlled cases, the lowest average mean generated 

power value of 1.376 kW, shown in bold font, and is computed for Ccoe = 4. The corresponding 

value o f power absorption efficiency is 7.04 %.

The five data sets listed in Table 7.3 are first subjected to the K-S test. The results of the test reveal 

that all the data sets most likely follow a normal distribution. Therefore, it is appropriate to utilize 

Student's t-test for further statistical comparisons. The t-test is employed twice. The first time, it
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is used to check whether phase control has a statistically significant effect on the mean generated 

power. In this case, the test is performed between the NPC and the Ccoe = 10 cases. The calculated 

p-value of the t-test is 1.43-10'6. Therefore, the null hypothesis is rejected and, thus, phase control 

has a statistically significant effect on the mean generated power of the heaving point absorber 

WEC system.

Subsequently the t-test is employed in order to investigate whether the instant at which the 

control valves are opened, tpco, relative to the instant when the next wave excitation peak occurs, 

tfpeak> has a statistically significant effect on the mean generated power. The t-test is applied to 

the aforementioned Ccoe values with the highest and lowest average mean generated power 

values, 10 and 4, respectively. The calculated p-value of the t-test is 2.84-10'2 and, thus, the null 

hypothesis is again rejected.

The statistics regarding the maximum motion amplitude are also of some interest because high 

motion amplitudes could potentially compromise the structural integrity of the WEC system. 

Another cause for concern is the conclusion drawn in Chapter VI regarding the trade-off between 

maximizing the mean generated power while minimizing the maximum motion amplitude. Even 

though, the latter is more a constraint than an optimization objective, control strategies that 

provide smaller motion amplitudes at higher sea states might be preferable than their power- 

absorption-maximizing counterparts. The data sets listed in Table 7.4 show the maximum motion 

amplitude values, Amax, for the f dc value of 0.25. Using a similar statistical testing procedure as 

in the mean generated power case, the statistics of the simulation results listed in Table 7.4 are 

analyzed and the impact of different control strategies on the WEC system performance is 

assessed. First, the K-S test is applied to the five data sets and reveals that all the data sets 

probably follow a normal distribution. The t-test is then applied, first, to the pair of NPC and the 

Ccoe value with the lowest average maximum motion amplitude value (shown in bold font and
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italics), which in this case corresponds to Ccoe = 4; subsequently, it is applied to the pair with the 

lowest/highest average maximum motion amplitude values, Ccoe = 15 and Ccoe = 4, respectively.

RNG A m a x  (m) A m a x  M A m a x  (**0 A m a x  (™ ) A m a x  ( m )

(NPC) ( Q o e  =  4 ) (C co e  = (C c o e  =  1 0 ) (C co e  =  1 5 )

rng( 1) 0.322 0.392 0.379 0.372 0.335

rng{ 2) 0.429 0.542 0.506 0.490 0.464

rng( 3) 0.399 0.493 0.472 0.465 0.443

rng{ 4) 0.365 0.460 0.437 0.419 0.415

rng{ 5) 0.341 0.410 0.385 0.375 0.370

rng{ 6) 0.416 0.606 0.586 0.498 0.476

rng( 7) 0.302 0.365 0.410 0.405 0.401

rng( 8) 0.288 0.402 0.361 0.387 0.357

rng( 9) 0.524 0.666 0.633 0.610 0.583

rng( 10) 0.442 0.557 0.529 0.508 0.497

AVG 0.383 0.489 0.470 0.453 0.434

STD-DEV 0.073 0.101 0.092 0.076 0.075

Table 7.4. Maximum motion amplitude, sea state no. 3, f dc = 0.25.

The calculated p-value of the first test is 7.3310'5. Therefore, phase control has a statistically 

significant effect on the maximum motion amplitude of the point absorber. For the second t-test, 

the p-value is 2.38-10'3. Therefore, the change in the control coefficient value has a statistically 

significant effect on the maximum-motion-amplitude of the point absorber.

The results that are presented for the other test cases are given in terms of their statistical 

properties, i.e., average and standard deviation values. The HAV of the mean generated power 

among the four phase-controlled data sets is highlighted in bold font and italics, while the LAV is 

displayed in bold font. Regarding the maximum motion amplitude, the LAV of the four phase- 

controlled data sets is highlighted in bold font and italics, while the HAV is displayed in bold font.
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It needs to be mentioned that in all cases the application of the K-S test to the corresponding data 

sets reveals that all the data sets probably follow a normal distribution.

f d c
Statistical
parameter

P m g  ( k W )

NPC Ccoe ~  4 C = 7*-coe ' Ccoe =  10 C coe =  I 5

fd c  -  0.50
AVG 0.476 0.406 0.461 0.471 0 .4 7 2

STD-DEV 0.067 0.077 0.089 0.094 0.088

fd c  ~  0.75
AVG 0.475 0.323 0.362 0.385 0 .3 9 3

STD-DEV 0.026 0.037 0.035 0.034 0.042

fd c  -  100
AVG 0.573 0.339 0.390 0.407 0.429

STD-DEV 0.011 0.024 0.023 0.019 0.035

Table 7.5. Mean generated power, sea state no. 3, f dc= {0.50, 0.75,1.00}.

In Table 7.5, the average and standard deviation values of the mean generated power for f dc 

values o f 0.50, 0.75, and 1.00 are provided. The corresponding t-test results, in terms of the 

calculated p-values, are listed in Table 7.6. In the cases where the p-values are less than or equal 

to 0.05, the corresponding values are highlighted in bold font.

In Table 7.7, the average and standard deviation values of the maximum motion amplitude for 

f dc values of 0.50, 0.75, and 1.00 are provided. The corresponding t-test results are listed in Table
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fd c
p-value

NPC - HAV HAV - LAV

f d c  =  0.50 6.44-10 1 2.41-10'5

f d c  =  0.75 3.8710'7 3.3610'6

f d c  =  i-o o 7.0910'8 3.7210'6

Table 7.6. T-test results for mean generated power, sea state no. 3, f d c =  {0.50,0.75,1.00}.

f d c
Statistical
parameter

A m a x  (ttt)
NPC C = 4*-coe Ccoe ~  7 Ccoe =  1 0 Ccoe  =  I 5

f d c  ~ 0.50
AVG 0.412 0.494 0.481 0.475 0.462

STD-DEV 0.070 0.083 0.080 0.094 0.093

f d c  ~  0.75
AVG 0.437 0.513 0.485 0.481 0.465

STD-DEV 0.073 0.107 0.123 0.095 0.071

f d c  =  i-o o
AVG 0.449 0.501 0.509 0.514 0.509

STD-DEV 0.081 0.111 0.116 0.130 0.126

Table 7.7. Maximum motion amplitude, sea state no. 3, f d c  = {0.50, 0.75,1.00}.

fd c
p-value

NPC - HAV HAV - LAV

f d c  =  0.50 2.29-10'2 4.7410'2

f d c  =  0.75 1.6210'2 2.7610'2

f d c  =  i-o o 6.91-10’3 4 .2 2 10 1

Table 7.8. T-test results for maximum motion amplitude, sea state no. 3, f d c  = {0.50, 0.75,1.00}.

Given that point absorber motion amplitude is critical to the structural integrity of the WEC 

device, it is important to keep the maximum motion amplitude within reasonable bounds.
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However, if the point absorber is too constrained to heave, the mean generated power from the 

point absorber WEC system reduces. Therefore, for a heaving point absorber in a certain sea state, 

values of fraction of motor maximum displacement and control coefficient must be chosen such 

that power generation is maximized and maximum motion amplitude is kept within reasonable 

bounds. To this end, a control strategy can be devised based on the average values of mean 

generated power and maximum motion amplitude shown in Tables 7.3 through 7.8. The following 

section provides details about such control strategies.

As a control strategy, for a point absorber WEC device in sea state 3, the fraction o f motor 

maximum displacement of 0.25 and control coefficient Ccoe value of 10 can be chosen as it leads 

to a peak mean generated power value o f 1.442 kW and maximum motion amplitude o f 0.453 m. 

If the point absorber maximum motion amplitude is to be reduced, an alternate strategy is to 

switch to the control coefficient value o f 15 while maintaining the f dc value at 0.25. This leads to 

a minimum maximum motion amplitude value of 0.434 m and mean generated power of 1.409 

kW. The maximum motion amplitude can be further lowered to 0.383 m by switching to no phase 

control. However, this reduces the mean generated power to 0.985 kW.

When the f dc value is changed to 0.5 the mean generated power reaches a peak value of 0.476 

kW for no phase control. However, the application of phase control for the f dc value of 0.5 

reduces the mean generated power further. Despite a reduction in mean generated power, the 

maximum motion amplitude tends to increase. It reaches a maximum value of 0.494 m for the 

phase control coefficient value of 4. Similar trends are observed for f dc values of 0.75 and 1.00. 

Therefore, for a heaving point absorber in sea state 3, the fraction of motor maximum 

displacement of 0.25 is better suited as it increases mean generated power while keeping 

maximum motion amplitude within reasonable bounds.



7.3.2 Results for sea state no. 4

Sea state no. 4 has an available power of 104.6 kW, significant wave height o f 1.88 m, most 

probable wave period of 8 .8  seconds, and percentage probability of occurrence o f 27.8 %. In Table 

7.9, the average and standard deviation values of the mean generated power for f d c  values of 

0.25, 0.50, 0.75, and 1.00 are provided. The corresponding t-test results are listed in Table 7.10. 

In Table 7.11, the average and standard deviation values of the maximum motion amplitude for 

f d c  values of 0.25,0.50,0.75, and 1.00 are provided with the corresponding t-test results listed in 

Table 7.12.

fd c
Statistical
parameter

Pmg 0<W)

NPC C = 4coe ^ C = 7'-coe ' Ccoe ”  10 Ccoe =  15

f d c  ~  0.25
AVG 4.96 11.51 11.67 11.62 11.53

STD-DEV 0.481 1.12 1.13 1.13 1.29

f d c  -  0.50
AVG 4.03 6.50 6.71 6.56 6.30

STD-DEV 0.533 1.35 1.32 1.28 1.26

f d c  ~  0-75
AVG 2.60 2.44 2.57 2.68 2.60

STD-DEV 0.450 0.657 0.628 0.638 0.631

f d c  -  i - o o

AVG 1.43 1.28 1.47 1.49 1.47
STD-DEV 0.315 0.307 0.373 0.364 0.345

Table 7.9. Mean generated power, sea state no. 4.
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f d c

p-value

NPC - HAV HAV- LAV

f d c  = 0.25 7.05-1010 2.1410*3

f d c  =  0.50 4.9610'6 5.7510'3

f d c  = 0.75 1.5210'3 3.5410 s

f d c  =  i-o o 1.8110'1 9.2410'4

Table 7.10. T-test results for mean generated power, sea state no. 4.

f d c
Statistical
parameter

A m a x  (m)
NPC C = 4Lcoe ^ C = 7  ' - c o e  ' C c o e  =  10 C = 1 5c o e  A J

f d c  -  0.25
AVG 0.805 1.378 1.313 1.278 1.252

STD-DEV 0.154 0.152 0.150 0.142 0.140

f d c  =  0.50
AVG 0.875 1.170 1.129 1.069 1.062

STD-DEV 0.155 0 .2 1 2 0.215 0.143 0.141

f d c  ~  0-75
AVG 0.940 1.183 1.157 1.092 1.051

STD-DEV 0.139 0.241 0.219 0.152 0.138

f d c  =  i-o o
AVG 0.977 1.174 1.218 1.140 1.146

STD-DEV 0.141 0.172 0.233 0.150 0.229

Table 7.11. Maximum motion amplitude, sea state no. 4.

As a control strategy, for a point absorber WEC device in sea state 4, the fraction of motor 

maximum displacement of 0.25 and control coefficient Ccoe value of 7 can be chosen as it leads 

to a peak average mean generated power value of 11.61 kW and maximum motion amplitude of 

1.313 m. However, a reduction in the point absorber maximum motion amplitude can be achieved 

by switching to the control coefficient value of 10 while maintaining the f d c  value at 0.25. This 

leads to a maximum motion amplitude value of 1.278 m and an average mean generated power 

of 11.62 kW. For the same f d c  value, another strategy is to choose the control coefficient value
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of 15 which results in a mean generated power o f 11.53 kW and maximum motion amplitude of 

1.252 m.

f d c

p-value

NPC - HAV HAV - LAV

f d c  =  0.25 7.1910'7 4.83-10'6

f d c  =  0-50 5.74-103

f d c  =  0.75 6.6010'3 1 .3 M 0 '2

f d c  =  i-o o 2.8110'3 1 .3 3 1 0 '1

Table 7.12. T-test results for maximum motion amplitude, sea state no. 4.

The maximum motion amplitude can be further reduced by changing the f d c  value to 0.5 and 

choosing a control coefficient value of 7. This leads to a mean generated power of 6.71 kW and 

maximum motion amplitude of 1.129 m. For the same value of f d c , choosing control coefficient 

value of 10 leads to a further lowering of the maximum motion amplitude to 1.069 m and mean 

generated power to 6.56 kW. An increase in the f d c  value to 0.75, reduces the mean generated 

power to 2.68 kW for the control coefficient of 10. The corresponding maximum motion 

amplitude increases to 1.092 m. A change in the f d c  value to 1.00, further reduces the mean 

generated power to 1.49 kW for the control coefficient of 10. The corresponding maximum 

motion amplitude increases to 1.140 m.

For the f d c  value of 0.25 and no phase control, interestingly, the mean generated power is 4.96 

kW and the maximum motion amplitude is 0.805 m. This mean generated power is higher than 

the mean generated power for f d c  values of 0.75 and 1.00. And the maximum motion amplitude



of 0.805 m is lower than the maximum motion amplitude for f d c  values of 0.75 and 1.00. 

Therefore, a better strategy is to choose the f d c  value of 0.25 and no phase control on the point 

absorber instead of f d c  values of 0.75 and 1.00.

7.3.3 Results fo r sea state no. 5

Sea state no. 5 has an available power of 344.7 kW, significant wave height of 3.25 m, most 

probable wave period of 9.7 seconds, and percentage probability of occurrence of 20.64 %. %. In 

Table 7.13, the average and standard deviation values of the mean generated power are provided. 

The corresponding t-test results are listed in Table 7.14. In Table 7.15, the average and standard 

deviation values of the maximum motion amplitude are provided with the corresponding t-test 

results listed in Table 7.16.

fd c
Statistical
parameter

P m g  ( k W )

NPC Ccoe ~  4 Ccoe ~  7 Ccoe _  10 Ccoe 1®

f d c  -  0.25
AVG 11.80 30.70 31.32 30.98 30.68

STD-DEV 0.80 2.03 2 .1 0 2.36 2.37

f d c  =  0.50
AVG 14.94 35.02 35.38 35.07 34.43

STD-DEV 1.50 3.98 4.20 4.16 4.41

f d c  -  0.75
AVG 12.85 25.80 25.84 25.31 24.72

STD-DEV 1.63 5.06 4.63 4.38 4.14

f d c  -  i - o o

AVG 9.12 12.91 13.15 13.73 13.19
STD-DEV 1.36 2.28 2.31 2.32 2.25

Table 7.13. Mean generated power, sea state no. 5.
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f d c

p-value

NPC- HAV HAV- LAV

f d c  =  0.25 1 .921011 2.1810'3

f d c  =  0.50 8.8410'9 3 .22103

f d c  =  0.75 6.9510'7 8.54-10"3

f d c  =  i-o o 2.3910'6 3.11-10'5

Table 7.14. T-test results for mean generated power, sea state no. 5.

f d c
Statistical
parameter

A m a x  ( m )

NPC f  = 4^ c o e C c o e  ~  7 C c o e  —  10 C c o e  —  15

f d c  ~  0.25
AVG 1.363 2.750 2.684 2.631 2.579

STD-DEV 0.246 0.293 0.278 0.270 0.262

f d c  ~  0.50
AVG 1.441 2.380 2.350 2.304 2.290

STD-DEV 0.29 0.317 0.277 0.266 0.314

f d c  -  0.75
AVG 1.591 2.192 2.097 2.059 2.019

STD-DEV 0.275 0.236 0.236 0.233 0.244

f d c  =  i-o o
AVG 1.698 2.086 2.029 1.987 1.952

STD-DEV 0.256 0.304 0.296 0.285 0.279

Table 7.15. Maximum motion amplitude, sea state no. 5.

As a control strategy, for a point absorber WEC device in sea state 5, the fraction o f motor 

maximum displacement of 0.25 and control coefficient Ccoe value of 7 can be chosen as it leads 

to a peak mean generated power value o f 31.32 kW and maximum motion amplitude of 2.684 m. 

However, a reduction in the point absorber maximum motion amplitude can be achieved by 

switching to the control coefficient value of 10 while maintaining th e /dc value at 0.25. This leads 

to a maximum motion amplitude value of 2.631 m and mean generated power of 30.98 kW. For



87

the same f dc value, another strategy is to choose the control coefficient value of 15 which results 

in a mean generated power of 30.68 kW and maximum motion amplitude of 2.579 m.

fd c
p-value

NPC - HAV HAV - LAV

fdc =  0.25 6.67-10'9 1.0510'5

fdc =  0.50 7.3010'7 3.39102

fdc =  0-75 2.3110'5 4.60-10'7

fdc =  io o 1.5410'4 5.40-10"4

Table 7.16. T-test results for maximum motion amplitude, sea state no. 5.

An increase in mean generated power and a decrease in maximum motion amplitude can be 

achieved by changing the f dc value to 0.5 and choosing a control coefficient value of 7. This 

combination leads to a mean generated power of 35.38 kW and a maximum motion amplitude of 

2.350m. For the same value of f dc, a switch to control coefficient value of 10 reduces the mean 

generated power to 35.07 kW and maximum motion amplitude to 2.304 m. A change in the f dc 

value from 0.5 to 0.75, reduces the mean generated power and maximum motion amplitude to 

25.84 kW and 2.097 m respectively for a control coefficient of 7. While maintaining the same f dc 

value of 0.75, a switch to control coefficient 10, further reduces, though slightly, the maximum 

motion amplitude and mean generated power to 2.059m and 25.31 kW respectively.

When the value of f dc is increased to 1.00, the mean generated power attains a maximum of 

13.73 kW with a corresponding maximum motion amplitude value o f 1.987 m for the control 

coefficient of 10. Although the maximum motion amplitude decreases, a better strategy, instead,
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is to change the f dc value to 0.5 and switch to no phase control on the point absorber. This 

combination results in a mean generated power o f 14.94 kW and maximum motion amplitude of 

1.441 m.
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CHAPTER VIII 

SIMULATIONS OF THE WEC SYSTEM WITH THE REINFORCEMENT LEARNING 

CONTROLLER

8.1 Introduction

In this chapter, numerical experiments are conducted in order to investigate the performance of 

a controller based on Reinforcement learning (RL) when controlling the heaving motion of the 

point absorber of a WEC system in regular and irregular waves. The training of the controller is 

done using a modified version of the Q-learning method described in Chapter IV. The ability of 

the RL-based controller to obtain an optimal policy is validated first in regular waves. 

Subsequently, the modified P-M spectrum is employed to obtain a time series of wave excitation 

and train the controller in irregular seas. The computed optimal policy is then tested on the P-M 

spectrum for fully developed seas. During the training and validation of the controller, perfect 

knowledge of the future wave excitation is assumed. In an actual implementation of the proposed 

control approach, the wave excitation will need to be predicted for a specific time period in the 

near future, thus, the RL-based controller is combined with the RBF-network predictor presented 

in Chapter V. The impact of the level of accuracy of the predicted wave excitation on the 

generated power is then investigated using the previously derived control policy.

8.2 Reinforcement-Learning-based Controller for Constrained Phase Control of a Heaving WEC 

An adaptation of the Q-learning algorithm [78] is utilized to compute the optimal policy in order 

to control the heaving point absorber WEC system presented in Chapter III. The Q-learning code 

has been integrated in the R-K4 solver and is available in Appendix J. Using discrete phase control, 

the valves that connect the hydraulic system to the phase control accumulators are opened at a 

specific instant before the next wave excitation peak and then are closed when the velocity of the 

heaving point absorber is equal to zero. The WEC system can be modeled as a discrete event
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system, where events, e.g. opening/closing the valves, occur at discrete times, but the amount of 

time between events is a real-valued variable [125]. The state of the WEC system is defined by 

the wave excitation peaks. A similar but non-RL-based approach has been utilized in [6 8 ], where 

a threshold value of the pressure difference between the LP and HP accumulators is utilized to 

determine the instant of the valve activation. It has been demonstrated in [126] that the 

correlation between two successive wave peaks is fairly high and its value depends on the wave 

spectrum formulation, but the correlation decreases significantly as the number of consecutive 

waves considered becomes greater than two. These results support the assumption that 

successive wave peaks have properties very close to the Markov property [127] and, thus, can be 

modeled as a Markov Decision Process (MDP) process in an RL-based controller. Considering the 

fact that the system is modeled as a discrete-event system, the process is a semi-Markov Decision 

Process (s-MDP).

The state space of a time series of irregular waves is defined as the wave excitation peak; the 

latter is a continuous variable that is discretized by considering a number of equally divided 

segments. The state space is defined as: S =  {s | sn =  Fwp n , n  £ [1 ,2 ,..., N]}.  The RL-based 

controller can take two actions at each state: The first action, Oi, corresponds to adjusting the 

fraction of the motor displacement, f dc, while the second action, 02, is defined as the value of the 

control coefficient, Ccoe, (defined in Chapter III), which determines the time instant when the 

valve of the phase control accumulator is opened. The action space is defined as follows: A =  

(a | akj  =  k  e [ l - 2< - K ] , j  G [1 ,2 , . . . / ] } .  After the controller has observed the

next state, sc+1, it takes a pair o f actions, i.e. (a l c , a2,c) and receives a reward between the times 

the phase control accumulator valve is opened and closed, t x and t 2, respectively. The reward is 

computed as [125]:
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rc+1 = f  e P{T~tl)rxdT (8 .1)
■ ' t i

where rT =  Pgw, i.e., the generated electric power at time step r, and p  is a parameter that 

controls the rate of exponential decay. A constraint is imposed on the reward by specifying a 

maximum value, x crit, of the motion amplitude. If at any time between t x and t2 the motion 

amplitude exceeds xcrit then rc+1 is set equal to zero.

The discount factor is calculated as:

Y  =  ( 8 .2 ) 

The update of the Q function for the current state sc and action pair a c is then performed as 

follows:

Q(sc,a c) «- Q(sc,a c) +  77 rc+1 +  y max Q(sc+1,a ’c) - Q(sc,a c) (8.3)
ac

where 77 is the learning rate. In order to balance exploration of the search space and utilization of 

the optimal pair of actions, the following scheme is utilized to select a pair of actions in state sc 

at time t: The probability of selecting a random action is defined as, Pc+i( s c) =  a  • P£(sc), with 

a  =  0.99. A uniformly distributed random number is generated and if its' value is less than 

Pt+ i  (sc), a random action is taken. Otherwise, the action with the maximum Q-value at state sc 

is selected. In all the simulations performed as part of the investigation described in this chapter, 

the following parameter values have been utilized: P =  0.01, 77 =  0.05.

8.3 Numerical Experiments with the Reinforcement-Learning-Based Controller

8.3.1 Regular waves

The first test of the RL-based controller is performed in regular waves. In this case, there is only 

one state and the controller needs to find the optimal action pair that maximizes the reward over 

a finite horizon, which corresponds to the total simulation time. For the purpose of this 

investigation, the total simulation time is set equal to 1,500 seconds and the time step to 0.05
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seconds. The wave period is equal to 11 seconds and the wave amplitude is equal to 1.5 m. The 

maximum value of the motion amplitude is set equal to 2.40 m. The action space is defined using 

the following values:

A i=  {0.80,0.84,0,88,0.92,0.96,1.00}, A2 =  {6 ,8 ,10 ,12 ,14}.

In order to validate the results, the WEC system is run by setting the motor displacement fraction 

and valve opening time to various constant values and manually find the pair of values that 

optimizes the power absorption without violating the motion amplitude constraint. The results 

are reported in Table 8.1. The optimal value is shown in bold font. The cases where the motion 

amplitude does not exceed the constraint value are highlighted in bold font and italics.

f  d c >  ^ c o e P m g  ( k W ) A m a x  ( " 1 )

(0.96,10) 165.8 2.462
(1 .0 0 , 1 0 ) 164.0 2.440

(0.96, 12) 164.6 2.426
(1 .0 0 , 1 2 ) 162.0 2.394

(0.92, 14) 163.1 2.403
(0.96,14) 162.9 2.386

(1.00, 14) 159.8 2.372

Table 8.1. Optimal control policy for wave period of 11 seconds and amplitude of 1.5 m.

The RL-based controller is switched on after 375 seconds of simulation time and is able to find the 

optimal policy, i.e., the optimal pair of actions, within approximately 350 seconds of simulation 

time as shown in Figure 8.1. It needs to be emphasized that the RL algorithm has no knowledge 

of the WEC system. The fact that Pt (sc) has not reached a value near zero is the reason why 

random actions are still taken, even though their occurrence has significantly decreased after 

approximately 750 simulation seconds.
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Figure 8.1. RL optimal control policy for wave period of 11 seconds and amplitude of 1.5 m.

A second case with the wave period set equal to 8  seconds and the wave amplitude set equal to 

1.0 m is also investigated. The maximum value of the motion amplitude is set equal to 1.15 m. In 

order to validate the results, the WEC system is run by setting the motor displacement fraction 

and valve opening time to various constant values and manually finding the pair of values that 

optimizes the power absorption without violating the motion amplitude constraint. The results 

are reported in Table 8.2.

f  dc> ^coe Pmg (kW) Amax (m )

(1 .0 0 , 8 ) 81.2 1.234
(1 .0 0 , 1 0 ) 79.5 1.175
(0.96, 12) 77.9 1.154
(1 .0 0 , 1 2 ) 78.6 1.146
(0.92, 14) 75.7 1.128
(0.96, 14) 76.8 1.120

(1.00, 14) 77.3 1.113

Table 8.2. Optimal control policy for wave period of 8 seconds and amplitude of 1.0 m.
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The RL-based controller is switched on again after 375 seconds of simulation time and is able to 

find the optimal policy within approximately 650 simulation seconds as shown in Figure 8.2.

m 0.5

■2 -0.5

250 500 750
Time (seconds)

1000 1250 1500

Figure 8.2. RL optimal control policy for wave period of 8  seconds and amplitude of 1.0 m.

8.3.2 Irregular waves

The modified Pierson-Moskowitz spectrum with sea state no. 5 conditions in the North Atlantic is 

utilized for the training of the RL-based controller. For the purpose of this investigation, the 

simulation time is set equal to 5,000 seconds and the time step equal to 0.05 seconds. The 

maximum motion amplitude is constrained to 2m. Ten simulations, each with a different random 

seed, are performed in order to obtain the optimal policy. The number of states is set equal to 20 

and, thus, the wave excitation force is considered to vary between 0 and 1.2 MN. This range is 

divided in 20 segments of equal length. The action space is defined using the following values:

Ax =  {0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.55,0.60}, A2 =  {6 ,8 ,10 ,12 ,14 }.

The results obtained during the final 1,000 seconds o f each simulation are utilized in order to 

calculate the mean generated power and to check whether the motion amplitude constraint is 

satisfied by the computed optimal policy. The corresponding values are listed in Table 8.3. A plot

2490
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of the motion amplitude for rng(5), the run with the highest maximum motion amplitude for the 

RL-based controller, is shown in Figure 8.3.

RNG P m g  ( M )  

RL
A m a x  i*11) 

RL

P r n g i m

( .C c o e  =  1 0  )
( fdc =  0 .60)

A m a x  (m)

( C c o e  =  1 0  )
(fdc =  0.60)

rng(l) 28.8 1.99 19.8 1.87

rng(2) 33.4 2.1 2 31.9 2.26

rng(3) 36.6 2.19 33.0 2.52

rng(4) 32.1 2.09 31.8 2.24

mg(5) 29.3 2.26 24.5 2.14

rng(6 ) 36.1 2.19 33.1 2.46

mg(7) 34.5 2 .0 1 32.2 2.13

mg(8 ) 32.5 2.0 2 31.0 2.28

rng(9) 32.2 2.05 30.2 2.35

rng(1 0 ) 34.9 2.08 32.2 2.17

AVG 33.0 2.10 29.9 2.24

STD. DEV 2.62 0.09 4.357 0.18

Table 8.3. Mean generated power and maximum motion amplitude with RL-based controller.

Based on the results reported in Table 8.3, the RL-based controller is able to derive a policy that 

satisfies the motion amplitude constraint. The optimality of the policy can be evaluated by 

comparing the average mean absorbed power of the WEC system with the RL-based controller vs. 

the average mean absorbed power in sea state no. 5 o f the WEC system with fixed values of the 

motor displacement fraction, f dc, and the control coefficient, Ccoe. Specifically, through a trial- 

and-error process, it has been determined that f dc =  0.65 and Ccoe =  10 provide a good 

compromise between maximizing the mean generated power and satisfying the motion 

amplitude constraint. The corresponding results are also listed in Table 8.3.

The t-test is performed on the average mean generated power and average maximum motion 

amplitude of the data sets in order to evaluate the statistical significance of the results. The p-
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value of the t-test for the mean generated power and the maximum motion amplitude is 0.0032 

and 0.020, respectively. Therefore, the RL-based has a statistically significant effect on the 

operation of the WEC system.

■2.5........  1------------------ 1---------------------------   1.....  1------------- 1------------- 1-------------1------------------ -------------------
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (seconds)

Figure 8.3. WEC system simulation with RL-based controller in sea state no. 5.

8.3.2 RL-based control with predicted wave excitation values

The RL-based controller is evaluated in a realistic scenario, where the future wave excitation force 

is predicted and is utilized in order to select the f dc, and the Ccoe, values based on the optimal 

policy. In this way, the impact of the prediction accuracy of the RL-based controller can be 

assessed. The PSO-ELM-trained RBF network ensemble is utilized assuming that the wave 

excitation force is required to be known 10 seconds ahead. Through a trial-and-error process, the 

optimal number of hidden nodes has been determined to be equal to 20. Wave excitation is 

derived using the modified Pierson-Moskowitz spectrum with sea state no. 5 conditions. The time 

series is obtained using a time step of 0.05 for 2,500 seconds. Half of the generated points are 

used for the training of the network, 20% for validation, and 30% for testing. The trained network 

is then utilized for the prediction of the wave excitation using the modified P-M spectrum at sea 

state no. 5 and a different random seed for 5,000 seconds. The mean generated power with 

perfect knowledge of the future wave excitation computed for the last 1 ,0 0 0  simulation seconds
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is equal to 33.2 kW with a maximum motion amplitude of 2.15 m. The corresponding mean 

generated power using the predicted wave excitation force is 32.7 kW with a maximum motion 

amplitude of 2.18 m. The difference between the average maximum motion amplitude values is 

fairly small; a similar observation can be made regarding the difference between the average 

mean generated power values.



98

CHAPTER IX 

CONCLUSIONS

The software developed in MATLAB® as part of this investigation is successful in controlling 

effectively the operation of a typical wave energy converter (WEC) system with a single heaving 

point absorber. Furthermore, this software can be utilized for parametric investigations of WEC 

systems using heaving spherical point absorbers. Specifically, using the Cummins equation to 

model the dynamics o f the point absorber in the time domain, the motion response parameters 

such as displacement and velocity of the point absorber in both regular waves and irregular seas 

can be computed. System level parameters such as mean generated power, power absorption 

efficiency, and maximum motion amplitude can be estimated fora broad range o f sea conditions. 

The effectiveness of phase control when applied to the point absorber through a hydraulic power 

take-off (PTO) system is systematically investigated in both regular and irregular waves. Two 

phase control accumulators are utilized in the hydraulic PTO system.

In regular waves, the mean generated power, the power absorption efficiency, and the maximum 

motion amplitude are computed in a number of combinations of wave period and amplitude. The 

results reveal that the mean generated power is not always a monotonic function of wave period 

for large wave amplitudes. The same results also demonstrate that the optimal value of the mean 

generated power does not occur at the same opening instant of the phase control accumulator 

valves, but the optimal opening instant depends on the sea conditions for a given point absorber 

WEC system. In this way, the power absorption efficiency of the point absorber WEC system can 

be increased by altering the phase control opening instant. Furthermore, the maximum motion 

amplitude of the heaving point absorber is taken into consideration as it can affect the structural 

integrity of the WEC system. The results of the parametric investigation reveal that there is a
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trade-off between maximizing the mean generated power and minimizing the maximum motion 

amplitude, especially for large wave amplitudes

Fully developed irregular seas are modelled using the modified Pierson-Moskowitz (P-M) 

spectrum. Based on the results of a parametric investigation of different sea states in the North 

Atlantic, it is demonstrated that by utilizing discrete phase control, a significant increase in the 

power absorption efficiency can be obtained compared to the WEC system operation without 

phase control. Given the stochastic nature of irregular seas, a statistical analysis performed as 

part of this investigation revealed that the observed power increase is statistically significant in 

most cases. In addition to this, by varying the opening instant of the phase control accumulator 

valves, the power absorption efficiency can be increased even further. Finally, by properly 

controlling the volumetric displacement of the hydraulic motor, the generated power can be 

maximized while satisfying specific motion amplitude constraints. These results clearly show that 

a heaving point absorber WEC system cannot operate optimally in irregular seas using a single 

setting of the control parameters.

In the last part of this investigation, the problem of providing an effective phase control strategy 

that maximizes the average mean generated power subject to motion amplitude constraints is 

formulated and solved using a Reinforcement Learning (RL) approach based on the Q-learning 

algorithm. For this purpose, the heaving point absorber WEC system is modelled as a semi-Markov 

decision process. This RL-based controller chooses actions that determine the opening instant of 

the phase control accumulator valves and the volumetric displacement o f the hydraulic motor. A 

reward function appropriate for discrete-event systems is successfully incorporated into the Q- 

learning model. As demonstrated in both regular waves and irregular seas, the RL-based controller 

is successful in improving the phase-control strategy of the WEC system while satisfying the 

imposed motion amplitude constraints.
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The successful implementation of discrete control requires prediction of the wave excitation 

force. For this purpose, a PSO-ELM-trained RBF network ensemble is developed and validated in 

benchmark time-series prediction problems. The wave excitation force is predicted using the RBF 

network ensemble and the data is inputted to the RL-based controller in order to evaluate the 

impact of the prediction accuracy on the controller's performance. The results show that the 

computed mean generated power and maximum motion amplitude values using the RBF network 

ensemble predictions compare very well with the corresponding values computed assuming 

perfect knowledge of the future wave excitation.

In the near future, application of RL-based discrete phase control wave farms, i.e., arrays of 

heaving point absorbers will be investigated. Furthermore, the performance of the RL-based 

controller and RBF network ensemble in developing irregular seas will be explored. The modeling 

of the heaving point absorber WEC system using non-linear wave theory is another interesting 

area of future research. Finally, more research needs to be performed on the effects of other 

types of discrete control, e.g. declutching, or a combination of discrete control methods.
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APPENDIX-A

CODE FOR MOTION RESPONSE OF POINT ABSORBER WEC SYSTEM

% c o d e  d e v e l o p e d  b y  M i l t o s  K o t i n i s  a n d  P r a v e e n  M a l a l i  -  l a s t  u p d a t e d  o n

8 / 1 / 2 0 1 5

c l e a r ;

% c h a r a c t e r i s t i c s  o f  s e a  s t a t e s  i n  N o r t h  A t l a n t i c

% m e a n  s i g n i f i c a n t  w a v e  h e i g h t ,  m o s t  p r o b a b l e  m o d a l  w a v e  p e r i o d ,  % 

p r o b a b i l i t y  o f  s e a  s t a t e  

s e a s t c h  = { 0 . 3 0 ,  7 . 5 0 ,  0 . 0 6 8 0 ;

0  . 2 3 7 0  

0 . 2 7 8 0  

0 . 2 0 6 4  

0 . 1 3 1 5 ;

0 . 0 6 0 5 }  ;

8 8 ,
8 8 ,

2 5 ,

0 0 ,
5 0 ,

7 . 5 0 ,

8 . 8 0 ,  

9 . 7 0 ,  

1 2 . 4 ,  

1 5  . 0 ,

% S e a  S t a t e  n o .  

% S e a  S t a t e  n o .  

% S e a  S t a t e  n o .  

% S e a  S t a t e  n o .  

% S e a  S t a t e  n o .  

% S e a  S t a t e  n o .  

h s ;  g l o b a l  i n x ; g l o b a l  s o l _ t m p ;g l o b a l  m _ b ;  g l o b a l  m _ i n f ;  g l o b a l  

g l o b a l  c o n t r o l _ c o e f _ l ;

g l o b a l  t m _ c ;  g l o b a l  o m e g a _ d ;  g l o b a l  d t ;  g l o b a l  c o n t r o l _ m ;  g l o b a l  

t _ s p a n ;  g l o b a l  c o n v _ i n x ;

g l o b a l  k _ r a d _ 0  ,■ g l o b a l  k _ r a d _ t ;  g l o b a l  p c f _ h ;  g l o b a l  p c f _ k r ;  g l o b a l  

w _ e x c ;

g l o b a l  q _ m ; g l o b a l  h y d r o _ f ;  g l o b a l  g e n _ s p e e d ;  g l o b a l  f _ p e a k ;  

g l o b a l  f p t o ;  g l o b a l  h p w ;  g l o b a l  g p w ;  g l o b a l  t _ l a t c h ;  g l o b a l  t o r q m ;  

g l o b a l  o m e g a _ m ;
g l o b a l  p e a l ;  g l o b a l  p c a 2 ; g l o b a l  p p c l ;  g l o b a l p p c 2  ; g l o b a l  p _ h p ;  g l o b a l  

p _ i p  ;
g l o b a l  v p c l ;  g l o b a l  v p c 2 ; g l o b a l  v _ l p ;  g l o b a l  v _ h p ;  g l o b a l  v e a l ;  g l o b a l  

v c a 2  ;

t i c ( } ;

% i n p u t  s e c t i o n  s t a r t s  h e r e  

g r v  =  9 . 8 1 ;  % a c c e l e r a t i o n  o f  g r a v i t y  i n  m / s A 2 

r h o  = 1 0 2 5 ;  % w a t e r  d e n s i t y  i n  k g / m A 3
w a v e _ t y p e  = 0 ;  % 0 f o r  r e g u l a r  w a v e s ,  1 f o r  i r r e g u l a r  w a v e s  

r n g ( l ) ;  % r a n d o m  n u m b e r  g e n e r a t o r  s e e d  

i f  w a v e _ t y p e  = =  0
w a v e _ a m p  = 1 . 0 ;  % w a v e  a m p l i t u d e  i n  m 

w a v e _ p e r  = 8 ;  % w a v e  p e r i o d  i n  s  

e l s e i f  w a v e _ t y p e  = =  1

i d s t  = 4 ;  % s e a  s t a t e  I D  

e n d '
c o n t r o l _ m  = 1 ;  % 0 f o r  n o  p h a s e  c o n t r o l ,  1 f o r  p h a s e  c o n t r o l  

c o n t r o l _ c o e f _ l  = 1 0 ;  % f r a c t i o n  o f  t h e  n a t u r a l  h e a v e  p e r i o d  b e f o r e  t h e  

w a v e  e x c i t a t i o n  p e a k  v a l u e

’o ' S ' b ' o  o ' ©  o o 1> o ' o ' S ' o ‘o ' 6 ‘0  o ' © " ©  o t >  o ' S ' o ' S ' o ' o ' b

f p t o  =  0 ;  

g e n _ s p e e d  = 0 ;

r d s  =  4 ;  % s p h e i ’ e  r a d i u s  i n  m 

t _ s i m  = 5 0 0 ;  % s i m u l a t i o n  t i m e  i n  s e c o n d s  

d t  =  0 . 0 5 ;  % t i m e  s t e p  i n  s  

% i n p u t  s e c t i o n  e n d s  h e r e ^2'2r£'2'2'-2-S-2'9-'9'£r2-S-2'9-'S '2'£'9'2r£-2'2r2~2-2r2»S'2r

% H e a v e  a d d e d  m a s s  a n d  d a m p i n g  d a t a  o b t a i n e d  f r o m  t h e  p a p e r  " T h e  w a v e  

f o r c e s  a c t i n g  o n  a  f l o a t i n g  h e m i s p h e r e  u n d e r g o i n g  f o r c e d  p e r i o d i c  

o s c i l l a t i o n s , "
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% a u t h o r e d  b y  A .  H u l m e ,  w h i c h  w a s  p u b l i s h e d  i n  t h e  J o u r n a l  o f  F l u i d  

M e c h a n i c s ,  v o l .  1 2 1 ,  p p .  4 4 3 - 4 6 3 ,  i n  1 9 8 2 .

o m e g a _ a d d _ h  =  [ 0 ,  0 . 8 3 1 0 ;  0 . 2 2 3 6 0 6 8 ,  0 . 8 7 6 4 ;  0 . 3 1 6 2 2 7 8 ,  0 . 8 6 2 7 ;  

0 . 4 4 7 2 1 3 6 ,  0 . 7 9 3 8 ;  0 . 5 4 7 7 2 2 6 ,  0 . 7 1 5 7 ;  0 . 6 3 2 4 5 5 5 ,  0 . 6 4 5 2 ;  0 . 7 0 7 1 0 6 8 ,  

0 . 5 8 6 1 ;  0 . 7 7 4 5 9 6 7 ,  0 . 5 3 8 1 ;  . . .

0 . 8 3 6 6 6 0 0 ,  0 . 4 9 9 9 ;  0 . 8 9 4 4 2 7 2 ,  0 . 4 6 9 8 ;  0 . 9 4 8 6 8 3 3 ,  0 . 4 4 6 4 ;

1 . 0 ,  0 . 4 2 8 4 ;  1 . 0 9 5 4 4 5 1 ,  0 . 4 0 4 7 ;  1 . 1 8 3 2 1 6 0 ,  0 . 3 9 2 4 ;  1 . 2 6 4 9 1 1 1 ,  0 . 3 8 7 1 ;

1 . 3 4 1 6 4 0 8 . 0 . 3 8 6 4 ,  . . .

1 . 4 1 4 2 1 3 6 ,  0 . 3 8 8 4 ;  1 . 5 8 1 1 3 8 8 ,  0 - 3 9 8 8 ;  1 . 7 3 2 0 5 0 8 ,  0 . 4 1 1 1 ;

2 . 0 ,  0 . 4 3 2 2 ;  2 . 2 3 6 0 6 8 0 ,  0 . 4 4 7 1 ;  2 . 4 4 9 4 8 9 7 ,  0 . 4 5 7 4 ;  2 . 6 4 5 7 5 1 3 ,  0 . 4 6 4 7 ;

2 . 8 2 8 4 2 7 1 ,  0 . 4 7 0 0 ;  . . .

3 . 0 ,  0 . 4 7 4 0 ;  3 . 1 6 2 2 7 7 7 ,  0 . 4 7 7 1 ;  5 . 0 ,  0 . 5 ] ;  

p c f _ a m  = p c h i p ( o m e g a _ a d d _ h ( : , 1 ) , o m e g a _ a d d _ h ( : , 2 ) ) ;  % c o m p u t e  t h e  

p i e c e w i s e  c u b i c  H e r m i t e  i n t e r p o l a t i n g  p o l y n o m i a l  c o e f f i c i e n t s  f o r  t h e  

h e a v e  a d d e d  m a s s  c o e f f i c i e n t

o m e g a _ d m p _ h  = [ 0 ,  0 ;  0 . 2 2 3 6 0 6 8 ,  0 . 1 0 3 6 ;  0 . 3 1 6 2 2 7 8 ,  0 . 1 8 1 6 ;  0 . 4 4 7 2 1 3 6 ,  

0 . 2 7 9 3 ;  0 . 5 4 7 7 2 2 6 ,  0 . 3 2 5 4 ;  0 . 6 3 2 4 5 5 5 ,  0 . 3 4 1 0 ;  0 . 7 0 7 1 0 6 8 ,  0 . 3 3 9 1 ;  

0 . 7 7 4 5 9 6 7 ,  0 . 3 2 7 1 ;  . . .

0 . 8 3 6 6 6 0 0 ,  0 . 3 0 9 8 ;  0 . 8 9 4 4 2 7 2 ,  0 . 2 8 9 9 ;  0 . 9 4 8 6 8 3 3 ,  0 . 2 6 9 1 ;

1 . 0 ,  0 . 2 4 8 4 ;  1 . 0 9 5 4 4 5 1 ,  0 . 2 0 9 6 ;  1 . 1 8 3 2 1 6 0 ,  0 . 1 7 5 6 ;  1 . 2 6 4 9 1 1 1 ,  0 . 1 4 6 9 ;

1 . 3 4 1 6 4 0 8 . 0 . 1 2 2 9 ,  . . .

1 . 4 1 4 2 1 3 6 ,  0 . 1 0 3 1 ;  1 . 5 8 1 1 3 8 8 ,  0 . 0 6 7 4 ;  1 . 7 3 2 0 5 0 8 ,  0 . 0 4 5 2 ;

2 . 0 ,  0 . 0 2 1 9 ;  2 . 2 3 6 0 6 8 0 ,  0 . 0 1 1 6 ;  2 . 4 4 9 4 8 9 7 ,  0 . 0 0 6 6 ;  2 . 6 4 5 7 5 1 3 ,  0 . 0 0 4 0 ;

2 . 8 2 8 4 2 7 1 ,  0 . 0 0 2 6 ;  . . .
3 . 0 ,  0 . 0 0 1 7 ;  3 . 1 6 2 2 7 7 7 ,  0 . 0 0 1 2 ;  5 . 0 ,  0 . 0 ] ;  

p c f _ h  = p c h i p ( o m e g a _ d m p _ h ( : , 1 ) , o m e g a _ d m p _ h ( : , 2 ) ) ;  % c o m p u t e  t h e  
p i e c e w i s e  c u b i c  H e r m i t e  i n t e r p o l a t i n g  p o l y n o m i a l  c o e f f i c i e n t s  f o r  t h e  

h e a v e  d a m p i n g  c o e f f i c i e n t

m _ b  =  r h o * ( 2 / 3 ) * p i * r d s A 3 ; % m a s s  o f  t h e  h e m i s p h e r i c a l  b u o y  

i f  w a v e _ t y p e  = =  0
m _ i n f  =  p p v a l ( p c f _ a m , s g r t ( r d s / g r v ) * ( 2 * p i / w a v e _ p e r ) ) * m _ b ;  % h e a v e  

a d d e d  m a s s  o f  t h e  b u o y  a t  t h e  w a v e  f r e q u e n c y  

e l s e i f  w a v e _ t y p e  = =  1
m _ i n f  = o m e g a _ a d d _ h ( e n d , 2 ) * m _ b ;  % h e a v e  a d d e d  m a s s  o f  t h e  b u o y  a t  

i n f i n i t e  f r e q u e n c y  

e n d
k _ h s  = r h o * g r v * p i * r d s A 2 ; % h y d r o s t a t i c  s t i f f n e s s  o f  t h e  h e a v i n g  b u o y  

o m e g a _ d  = s q r t ( k _ h s / ( m _ b + m _ i n f ) ) ;  % h e a v e  n a t u r a l  r e s o n a n c e  f r e q u e n c y  

( u n d a m p e d  a n d  u n c o u p l e d )
t _ s p a n  = 0 : d t : t _ s i m ; % t h e  i n s t a n c e s  w h e r e  t h e  r e s p o n s e  w i l l  b e  

c a l c u l a t e d

t m _ c  = 0 : d t / 2 : t _ s i m ;  % c o m p u t a t i o n  p o i n t s  f o r  R - K 4

n _ p t s  =  2 * t _ _ s i m / d t ;  % n u m b e r  o f  p o i n t s  i n  t h e  t i m e  s e r i e s  ( t = 0  i s  n o t  

i n c l u d e d )
i n x  =  1 ;  s o l _ t m p  = z e r o s ( s i z e { t m _ c , 2 ) , 2 ) ;  k _ r a d _ t  =  

z e r o s ( 1 , s i z e ( t m _ c , 2 ) ) ;
f _ i r f _ 0  =  @ ( y )  y . * p p v a l ( p c f _ h , s q r t ( r d s / g r v ) * y ) ; k _ r a d _ 0  =
m _ b * ( 2 / p i ) * q u a d g k ( f _ i r f _ 0 , 0 , 5 ) ;  % c o m p u t e  t h e  m e m o r y  k e r n e l  a t  t i m e

z e r o
w h i l e  t m _ c ( l , i n x )  < =  1 5  % c o m p u t e  t h e  m e m o r y  k e r n e l  f o r  h e a v e  a t  t h e  

s p e c i f i e d  s e t  o f  d i s c r e t e  p o i n t s
f _ i r f _ t  =  @ ( y )  y . * p p v a l ( p c f _ h , s q r t ( r d s / g r v ) * y ) . * c o s ( y * t m _ c ( 1 , i n x ) ) ;  

k _ r a d _ t ( 1 , i n x )  =  m _ b * ( 2 / p i ) * q u a d g k ( f _ i r f _ t , 0 , 5 ) ;  

i n x  =  i n x + 1 ;  

e n d
c o n v _ i n x  =  i n x ;

«



113

i n x  = 1 ;  p c f _ k r  =  p c h i p ( t m _ c , k _ r a d _ t ) ;  % c o m p u t e  t h e  p i e c e w i s e  c u b i c  

H e r m i t e  i n t e r p o l a t i n g  p o l y n o m i a l  c o e f f i c i e n t s  f o r  t h e  m e m o r y  k e r n e l  f o r  

h e a v e

i f  w a v e _ t y p e  = =  0 

b _ r a d _ h  =

m _ b * ( 2 * p i / w a v e _ p e r ) * p p v a l ( p c f _ h , s q r t ( r d s / g r v ) * ( 2 * p i / w a v e _ j p e r ) ) ;  % 

c o m p u t e  t h e  r a d i a t i o n  d a m p i n g  o f  t h e  h e a v i n g  s p h e r e

f _ a m p _ h  = w a v e _ a m p * s q r t ( r h o * g r v A 3 * 2 * b _ r a d _ h / ( 2 * p i / w a v e _ p e r ) * 3 ) ;  % 

c o m p u t e  t h e  w a v e  e x c i t a t i o n  f o r c e  a m p l i t u d e  o f  t h e  h e a v i n g  s p h e r e  

w _ e x c  = f _ a m p _ h * s i n ( ( 2 * p i / w a v e _ p e r ) * t m _ c ) ' ;  % c o m p u t e  t h e  w a v e  

e x c i t a t i o n  f o r c e  o f  t h e  h e a v i n g  s p h e r e  

e l s e i f  w a v e _ t y p e  = =  1

d w  = 4 * p i / t _ s i m ;  % f r e q u e n c y  i n t e r v a l  i n  r a d / s  -  w a v e  s e r i e s  r e p e a t s  

i t s e l f  a f t e r  2 * p i / d w  s e c o n d s

w  = d w : d w : ( n _ p t s / 2 ) * d w ;  % f r e q u e n c y  r a n g e  i n  r a d / s e c  

wO = ( 2 * p i ) / s e a s t c h { i d s t , 2 } ;  % m o d a l  ( p e a k )  f r e q u e n c y
f _ e _ s q  = a b s ( 2 * r h o * m _ b * ( g r v A 3 ) * p p v a l ( p c f _ h , s q r t ( r d s / g r v ) * w ) . / w . A2 ) ; %

c o m p u t e  t h e  s q u a r e  o f  t h e  e x c i t a t i o n  f o r c e  a m p l i t u d e  p e r  u n i t  i n c i d e n t  

w a v e  u s i n g  t h e  H a s k i n d  r e l a t i o n
s  = ( ( ( 1 . 2 5 / 4 ) * w 0 a 4 * s e a s t c h { i d s t , 1 } A2 ) . / w . A ( 5 ) ) . * e x p ( -

1 . 2 5 * ( w O . / w )  . * 4 )  ; % c o m p u t e  t h e  s p e c t r a l  d e n s i t y  o f  t h e  m o d i f i e d  P - M  

s p e c t r u m  f o r  t h e  s e l e c t e d  s e a  s t a t e
a _ n  = z e r o s ( 1 , n _ p t s / 2 + l ) ; b _ n  = z e r o s ( 1 , n _ p t s / 2 + l ) ; %  i n i t i a l i z e  t h e  

F o u r i e r  s e r i e s  c o e f f i c i e n t s  a__n a n d  b _ n  w i t h  z e r o  v a l v i e s

a _ n ( l , 2 : n _ p t s / 2 + l )  =  s q r t ( d w * ( f _ e _ s q . * s ) ) . * r a n d n ( l , n _ p t s / 2 ) ; % 

c o m p u t e  a _ n  a n d  b _ j i  a s s u m i n g  t h a t  t h e y  a r e  i n d e p e n d e n t  r a n d o m  v a r i a b l e s  
c h o s e n  f r o m

b _ n ( l , 2 : n _ p t s / 2 + l )  =  s q r t ( d w * ( f _ e _ s q . * s ) ) . * r a n d n ( 1 , n _ p t s / 2 ) ;  % a  

G a u s s i a n  d i s t r i b u t i o n  w i t h  z e r o  m e a n  a n d  c o m m o n  v a r i a n c e  S ( w _ n ) * d w  

c _ n  = c o m p l e x ( n _ p t s * a _ n / 2 , - n _ p t s * b _ n / 2 ) ; c _ n ( I , n _ p t s / 2 + 2 : n _ p t s + l )  =  

c o m p l e x ( n _ p t s * f l i p l r ( a _ n ( 2 : n _ p t s / 2 + l ) ) / 2 , n _ p t s * f l i p l r ( b _ n ( 2 : n _ p t s / 2 + 1 ) ) 

/ 2 )  ;
w _ e x c  = r e a l ( i f f t ( c _ n ) ) %  u s e  i n v e r s e  F a s t  F o u r i e r  t r a n s f o r m  t o  

c o m p u t e  t h e  w a v e  e x c i t a t i o n  f o r c e  i n  t h e  t i m e  d o m a i n  

e n d
p k  = 0 ;  z c r  = 0 ;  f _ p e a k  =  z e r o s ( l , l ) ;  % f i n d  t h e  w a v e  e x c i t a t i o n  p e a k s  

f o r  i = 3 : s i z e ( w _ e x c , 1 ) - 1

i f  a b s ( w _ e x c ( i ) ) > a b s ( w _ e x c ( i - 1 ) ) && a b s ( w _ e x c ( i ) ) > = a b s ( w _ e x c ( i + 1 ) ) % 

f i n d  t h e  e x t r e m e  v a l u e s  o f  t h e  w a v e  e x c i t a t i o n  

p k  = p k + 1 ; f _ p e a k ( p k , l )  =  i ;  

e n d  

e n d

x p _ h  = f e v a l ( ' o d e 4 ' , @ B u o y _ h e a v e , t _ s p a n , [ 0 ; 0 ] ) ;  % s p e c i f y  i n i t i a l  

c o n d i t i o n s  a n d  r u n  s i m u l a t i o n  f o r  h e a v i n g  s p h e r e

f i g u r e d )  ; p l o t  ( t _ s p a n ,  x p _ h  ( : , 1 )  ) ; % p l o t  t h e  d i s p l a c e m e n t  o f  t h e  

h e a v i n g  s p h e r e

f i g u r e ( 2 ) ;  p l o t ( t _ s p a n , x p _ h ( : , 2 ) , t m _ c , w _ e x c / 1 0 0 0 0 0 0 ) ; % p l o t  t h e  

v e l o c i t y  o f  t h e  h e a v i n g  s p h e r e  a n d  t h e  w a v e  e x c i t a t i o n  ( i n  IVIN)

i f  w a v e _ t y p e  = = 0
a v p w  = ( r h o * 2 * r d s * g r v A 2 / ( 3 2 * p i ) ) * ( w a v e _ p e r ) * ( 2 * w a v e _ a m p ) A 2 % 

a v a i l a b l e  p o w e r  o f  r e g u l a r  w a v e s  

e l s e i f  w a v e _ t y p e  = = 1
a _ p m  = ( ( 0 . 3 1 2 5 * ( w O A4 ) * s e a s t c h { i d s t , l } A2 ) / ( 2 * p i ) * 4 ) ;  

i n t _ p m  = @ ( y )  ( y . A4 ) . * e x p ( ( - ( 1 . 2 5 * w 0 A4 ) / ( 2 * p i ) A4 ) * y , A4 ) ;
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a v p w  = ( ( r h o * g r v * 2 ) * r d s * a _ p m * q u a d g k ( i n t _ p m , 0 , 1 0 0 ) ) / ( 2 * p i )  % 

a v a i l a b l e  p o w e r  o f  t h e  g i v e n ,  s e a  s t a t e  w i t h  t h e  m o d i f i e d  P - M  s p e c t r u m  

e n d

m g p w  = m e a n ( g p w ( c e i l ( 0 . 7 5 * t _ s i m / d t ) : e n d , : ) )  % a v e r a g e  v a l u e  o f  t h e  m e a n  

g e n e r a t e d  p o w e r

e f f  =  1 0  0 * ( m g p w / a v p w )  % p o w e r  a b s o r p t i o n  e f f i c i e n c y

a m p _ m i n  = m i n ( x p _ h ( ( 0 . 7 5 * t _ s i m / d t ) : e n d , 1 ) ) ;  % m a x i m u m  m o t i o n  a m p l i t u d e  

( t r o u g h )
a m p _ m a x  = m a x ( x p _ h ( ( 0 . 7 5 * t _ s i m / d t ) : e n d , 1 ) ) ;  % m a x i m u m  m o t i o n  a m p l i t u d e  

( c r e s t )

a m p _ m a x _ a b s  = m a x ( a b s ( a m p _ m i n ) , a b s ( a m p _ m a x ) ) % m a x i m u m  m o t i o n  a m p l i t u d e  

c g p w  = c u m s u m ( g p w ) ;  % c u m u l a t i v e  m e a n  g e n e r a t e d  p o w e r  

f i g u r e d ) ;  p l o t ( t _ s p a n , c g p w ) ; 

t o e ( ) ;
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APPENDIX-B

RUNGE-KUTTA (R-K4) SOLVER FOR ODE

f u n c t i o n  Y  = o d e 4 ( o d e f u n , t s p a n , y O , v a r a r g i n )

% OD E 4  T h e  s o l v e r  i m p l e m e n t s  t h e  c l a s s i c a l  R u n g e - K u t t a  m e t h o d  o f  o r d e r  

4

g l o b a l  i n x ;  g l o b a l  s o l _ t m p ;  g l o b a l  f _ p e a k ;  g l o b a l  t _ _ l a t c h ;  g l o b a l  g p w ;  

g l o b a l  c o n t r o l _ c o e f _ l ; g l o b a l  k _ r a d _ 0 ;  g l o b a l  c o n v ;  g l o b a l  c o n t r o l _ m ;  

g l o b a l  o m e g a _ d ;  g l o b a l  t m _ c ;  g l o b a l  d t ;  g l o b a l  g e n _ s p e e d ;  g l o b a l  f p t o ;  

g l o b a l  w _ e x c ;  g l o b a l  k _ h s ;  g l o b a l  q _ m ;  g l o b a l  f _ p t o ;  g l o b a l  m d f ;  

g l o b a l  h y d r o _ f ;  g l o b a l  t o r q m ;  g l o b a l  t o r q g ;  g l o b a l  o m e g a _ m ;  

g l o b a l  p _ h p ;  g l o b a l  p _ l p ;  g l o b a l  p e a l ;  g l o b a l  p c a 2 ;

g l o b a l  v _ l p ;  g l o b a l  v _ h p ;  g l o b a l  v e a l ;  g l o b a l  v c a 2 ;
g l o b a l  p p c l ;  g l o b a l  p p c 2 ; g l o b a l  v p c l ;  g l o b a l  v p c 2 ;

h  = d i f f ( t s p a n ) ;
y O  =  y O ( : ) ;  % M a k e  a  c o l u m n  v e c t o r

n e q  =  l e n g t h ( y O ) ;  N  = l e n g t h ( t s p a n ) ; Y  =  z e r o s ( n e q , N ) ; F  =  

z e r o s ( n e q ,  4 ) ;

Y  ( : , 1 )  =  y O ;
p _ l p  =  z e r o s ( N , l ) ;  p _ h p  =  z e r o s ( N , l ) ;  v _ l p  =  z e r o s ( N , l ) ;  v _ h p  = 

z e r o s ( N , 1 ) ;
p e a l  =  z e r o s ( N , l ) ;  p c a 2  =  z e r o s ( N , l ) ;  v e a l  = z e r o s ( N , l ) ;  v c a 2  = 
z e r o s ( N , 1 ) ;
p p c l  =  z e r o s ( N , l ) ;  p p c 2  =  z e r o s ( N , l ) ;  v p c l  = z e r o s ( N , l ) ;  v p c 2  = 

z e r o s ( N , 1 ) ;
f _ p t o  =  z e r o s ( N , l ) ;  h y d r o _ f  =  z e r o s ( N , l ) ;  g p w  = z e r o s ( N , l ) ;  

t o r q m  =  z e r o s ( N , l ) ;  t o r q g  =  3 0 * o n e s ( N , 1 ) ;  o m e g a _ m  = z e r o s ( N , l ) ;  

q _ m  = z e r o s ( N , 1 ) ;

g a m m a  =  1 . 4 ;  % i s e n t r o p i c  p r o c e s s ,  v a l u e  f o r  n i t r o g e n  

r h o _ o  =  8 5 0 ;  % d e n s i t y  o f  o i l  i n  k g / m * 3
m d f  =  0 . 9 2 ;  % f r a c t i o n  o f  m a x i m u m  v o l u m e t r i c  m o t o r  d i s p l a c e m e n t  

u l  =  1 ;
% i n i t i a l  v a l u e s

v e a l ( 1 ) = 0 . 0 5 ;  % i n  m * 3

v c a 2  ( 1 ) = 0 . 0 5 ;  % i n  m * 3

v p c l ( 1 ) = 0 . 5 ;  % i n  m A3
v p c 2 ( 1 ) = 0 . 5 ;  % i n  m A3

v _l p ( 1 ) = 1 ;  % i n m * 3

v _ h p  ( 1 ) = 2 ;  % i n m * 3

p  l p ( l ) = 1 0  *  1 0  A 6 ; % p r e s s u r e i n

p _ h p ( 1 ) = 1 0  *  1 0  A 6 ; % p r e s s u r e i n

p e a l ( 1 ) = 1 0 * 1 0 * 6 ; % p r e s s u r e i n

N / m * 2
p c a 2 ( 1 ) = 1 0 * 1 0 * 6  ; % p r e s s u r e i n

N / m * 2
p p c l ( 1 ) = 1 0 * 1 0 * 6 ; % p r e s s u r e i n

p p c 2 ( 1 ) = 1 0 * 1 0 * 6 ; % p r e s s u r e i n

p r e s s u r e  i n  c o m p r e s s i b i l i t y  a c c u m u l a t o r  # 2  i n

% c o n s t a n t s
s p  =  0 . 0 5 ;  % p i s t o n  s u r f a c e  a r e a  i n  m * 2  

% h y d r a u l i c  m o t o r  d a t a



116

s p e e d _ m a x  = 3 0 0 0 ;  % m a x i m u m  c o n t i n u o u s  s p e e d  i n  r e v / m i n

m a x _ d h m  = 1 6 5 * 1 0 ^ - 6 ;  % i n  m A 3 p e r  r e v

t o r q m _ m a x  =  6 5 9 ;  % c o n t i n u o u s  o u t p u t  t o r q u e  i n  N * m

o m e g a _ m ( l )  =  2 * p i * ( s p e e d _ m a x / 2 ) / 6 0 ;  % a n g u l a r  v e l o c i t y  i n  r a d i a n s  p e r  

s e c o n d

o m e g a _ m a x  = 2 * p i * s p e e d _ m a x / 6 0 ; % m a x i m u m  a n g u l a r  v e l o c i t y  i n  r a d i a n s

p e r  s e c o n d

% C o n t r o l  p a r a m e t e r s

c v  = 0 . 9 5 ;

c c  =  0 . 9 5 ;

a v  =  0 . 0 0 2 ;  % m A2

a c  = 0 . 0 0 2 ;  % m A 2

J r  =  7 . 5 ;  % k g * s A2 ,  c o m b i n e d  r o t a t i o n a l  i n e r t i a  o f  m o t o r ,  g e n e r a t o r ,  

a n d  s h a f t  

o p e n v  = 1 ;  

f o r  i  =  2 : N

t i  =  t s p a n ( i - 1 ) ; 

h i  =  h ( i - l ) ; 

y i  = Y ( : , i - 1 )  ;

F ( : , l )  =  f e v a l ( o d e f u n , t i , y i ) ; i n x  = i n x + 1 ;

F ( : , 2 )  =  f e v a l  ( o d e f u n ,  t i + 0 . 5 * h i ,  y i  +  0 . 5 * h i * F  ( . - ,  1 )  , v a r a r g i n { : } )  ;

S O l _ t m p ( i n x , : )  =  F ( : , 2 ) ' ;

F  ( : , 3 )  =  f e v a l ( o d e f u n , t i  +  0 . 5 * h i , y i  +  0 . 5 * h i * F ( : , 2 ) , v a r a r g i n j ; } ) ;  

s o l _ t m p ( i n x , : )  =  F ( : , 3 ) 1 ; i n x  = i n x + 1 ;
F  ( :  , 4 )  =  f e v a l ( o d e f u n , t s p a n ( i ) , y i + h i * F ( : , 3 ) , v a r a r g i n { : } ) ;

Y  ( : , i ) =  y i  +  ( h i / 6 ) * ( F ( :  , 1 )  +  2 * F ( : , 2 )  +  2 * F ( : , 3 )  +  F ( : , 4 ) ) ;
s o l _ t m p ( i n x , : )  =  Y ( : , i ) ' ;
h y d r o _ f ( i )  =  - k _ _ h s * Y ( l ,  i )  -  ( 0  . 5 *  ( t m _ c  ( 1 ,  i n x ) - t m _ _ c  ( 1 ,  i n x -  

1 ) ) * k _ r a d _ 0 + c o n v ) * Y ( 2 , i ) + w _ e x c ( i n x , 1 ) ;  % h y d r o d y n a m i c  f o r c e

v c a l ( i )  =  v e a l ( i - 1 ) + d t * { -  

s p * Y ( 2 , i ) + u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p e a l ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )  -  

u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p e a l ( i - 1 ) ) , 0 ) )  -  ( u l -  

1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p e a l ( i - 1 ) - p p c l ( i - 1 ) ) ) * s i g n ( p e a l ( i - 1 ) -  

p p c l ( i - 1 ) ) ) ;
v c a 2 ( i )  =  v c a 2 ( i -

1 ) + d t * ( s p * Y ( 2 , i ) + u l * c v * a v * s q r t { ( 2 / r h o _ o ) * m a x ( ( p c a 2 ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )

-  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p c a 2 ( i - 1 ) ) , 0 ) )  -  ( u l -

1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p c a 2 ( i - 1 ) - p p c 2 ( i - 1 ) ) ) * s i g n ( p c a 2 ( i - 1 ) -  

p p c 2 ( i - 1 ) ) )  ;
v _ l p ( i )  = v _ l p ( i - 1 ) + d t * ( u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) -  

p e a l ( i - 1 ) ) , 0 ) )  +  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p c a 2  ( i - 1 ) ) , 0 ) )
-  q _ m ( i - 1 ) ) ;

v _ h p ( i )  =  v _ h p ( i - 1 ) + d t * ( - u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p e a l  ( i - 1 ) -  

p _ h p ( i - 1 ) ) , 0 ) )  -  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p c a 2 ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )  

+  q _ m ( i - 1 ) ) ;
v p c l ( i )  =  v p c l ( i - 1 ) + d t * ( ( u l - 1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p e a l ( i - 1 ) -  

p p c l ( i - 1 ) ) ) * s i g n ( p e a l ( i - 1 ) - p p c l ( i - 1 ) ) ) ;

v p c 2 ( i )  =  v p c 2 ( i - 1 ) + d t * ( ( u l - 1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p c a 2 ( i - 1 ) -  

p p c 2 ( i - 1 ) ) ) * s i g n ( p c a 2 ( i - 1 ) - p p c 2 ( i - 1 ) ) ) ;

p c a l ( i )  = p e a l ( 1 ) * ( v e a l ( 1 ) / v e a l ( i ) ) Ag a m m a ;  

p c a 2 ( i )  =  p c a 2 ( 1 ) * ( v c a 2 ( 1 ) / v c a 2 ( i ) ) Ag a m m a ;  

p _ l p ( i ) =  p _ l p ( 1 ) * ( v _ l p ( 1 ) / v _ l p ( i ) ) Ag a m m a ;  

p _ h p ( i )  =  p _ h p ( 1 ) * ( v _ h p ( 1 ) / v _ h p ( i ) ) Ag a m m a ;  

p p c l ( i )  = p p c l ( 1 ) * ( v p c l ( 1 ) / v p c l ( i ) ) Ag a m m a ;
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p p c 2 ( i )  =  p p c 2 ( 1 ) * ( v p c 2 ( 1 ) / v p c 2 ( i ) ) Ag a m m a ;

f _ p t o ( i )  =  - s p * { p e a l ( i ) - p c a 2 ( i ) ) ;  

f p t o  =  f _ p t o ( i ) ;

t o r q m ( i )  = m d f * m a x _ d h m * ( p _ h p ( i ) - p _ l p ( i ) ) / ( 2 * p i ) ; 

i f  t o r q m ( i )  > t o r q m _ m a x ,  t o r q m ( i )  =  t o r q m _ m a x ;  e n d

% a n g u l a r  v e l o c i t y  i n  r a d i a n s  p e r  s e c o n d

i f  g e n _ s p e e d  = =  0 % f o r  f i x e d  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r

o m e g a _ m ( i )  =  2 * p i * s p e e d _ m a x / 6 0 ; % t h e  g e n e r a t o r  t o r q u e  m a t c h e s  t h e  

m o t o r  t o r q u e
e l s e  % f o r  v a r i a b l e  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r

o m e g a _ m ( i )  = o m e g a _ m ( i - l ) + d t * ( t o r q m ( i ) - t o r q g ( i ) ) / J r ;  % t h e  

g e n e r a t o r  s p e e d  m a t c h e s  t h e  m o t o r  s p e e d

i f  o m e g a _ m ( i )  > o m e g a _ m a x ,  o m e g a _ m ( i )  = o m e g a _ m a x ;  e n d  

e n d

q _ m ( i )  = m d f * m a x _ d h m * o m e g a _ m ( i ) / ( 2 * p i ) ; % f l u i d  f l o w  r a t e  f r o m  t h e  

h i g h  p r e s s u r e  a c c u m u l a t o r  i n t o  t h e  h y d r a u l i c  m o t o r

i f  ( v _ h p ( 1 ) - v _ h p ( i ) ) / d t  < q _ m ( i )  

q _ m ( i )  = ( v _ h p ( 1 ) - v _ h p ( i ) ) / d t ;  

o m e g a _ m ( i )  =  2 * p i * q _ m ( i ) / ( m d f * m a x _ d h m ) ; 

i f  o m e g a _ m ( i )  > o m e g a _ m a x ,  o m e g a _ m ( i )  =  o m e g a _ m a x ;  e n d  

e n d

i f  g e n _ s p e e d  = =  0 % f i x e d  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r  

g p w ( i )  = t o r q m { i ) * o m e g a _ m ( i ) ; 

e l s e  % v a r i a b l e  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r  

g p w ( i )  =  t o r q g ( i ) * o m e g a _ m ( i ) ; 

e n d

i f  c o n t r o l _ m  = =  1
i f  s i g n ( Y ( 2 , i ) )  ~ =  s i g n ( Y ( 2 ,  i - 1 )  ) &&.  i  > o p e n v  

[ f _ i n d x ]  =  f i n d ( t m _ c ( f _ p e a k ) > t m _ c ( 1 , i n x ) ) ;  

i f  i s e m p t y ( f _ i n d x )  = =  0
i f  ( t m _ c ( 1 , f _ p e a k ( f _ i n d x ( 1 ) ) ) - t m _ c ( 1 , i n x ) ) >

( 2 * p i / ( c o n t r o l _ c o e f _ l * o m e g a _ d ) )
t _ l a t c h  = t m _ c  ( 1 ,  f _ p e a k  { f _ _ i n d x  ( 1 )  ) ) -  

2 * p i / ( c o n t r o l _ c o e f _ l * o m e g a _ d ) ;
o p e n v  = f i x ( t _ l a t c h / d t ) ; % o p e n  v a l v e  a t  t h i s  t i m e  s t e p  

i f  i  < o p e n v

Ul = 1;
e n d

e n d

e n d

e l s e

i f  i  = =  o p e n v  

u l  =  0 ;  

e n d  

e n d  

e n d  

e n d
Y  = Y ' ;
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APPENDIX-C  

CONVOLUTION INTEGRAL FOR THE RADIATION KERNEL

f u n c t i o n  [ x p r ^ h ]  =  B u o y _ h e a v e ( t , x )

% c o d e  d e v e l o p e d  b y  M i l t o s  K o t i n i s  a n d  P r a v e e n  M a l a l i  -  l a s t  u p d a t e d  o n  

7 / 2 5 / 2 0 1 5

g l o b a l  i n x ;  g l o b a l  k _ r a d _ 0 ; g l o b a l  w _ e x c ;  g l o b a l  s o l _ t m p ;  g l o b a l  

t m _ c ;  g l o b a l  c o n v ;  g l o b a l  f p t o ;
g l o b a l  m _ b ;  g l o b a l  m _ i n f ;  g l o b a l  k _ h s ;  g l o b a l  p c f _ k r ;  g l o b a l  k _ r a d _ t ;  

g l o b a l  c o n v _ i n x ;
% c o m p u t e  t h e  c o n v o l u t i o n  i n t e g r a l  

i f  i n x > l

k _ r a d  = p p v a l ( p c f _ k r , t ) ;
c o n v  = 0 . 5 * t m _ c ( 1 , 2 ) * k _ r a d * s o l _ t m p ( 1 , 2 ) ;  

e n d
i f  i n x > 2

i f  m a x ( i n x - c o n v _ i n x - 1 , 0 ) = = 0  

i m i n  = 3 ;  

e l s e
i m i n  = i n x - c o n v _ i n x + 2 ; 

e n d

f o r  i = i m i n : i n x

k _ r a d  = k _ r a d _ t ( 1 , i n x - i + 2 ) ;
c o n v  = c o n v  + 0 . 5 * ( t m _ c ( 1 , i )  -  t m _ c ( 1 , i - 2 ) ) * k _ r a d * s o l _ t m p ( i - 1 , 2 ) ;  

e n d  

e n d

% c o m p u t e  t h e  r e s p o n s e  

i f  i n x  > 1
x p r _ h  = [ x ( 2 , 1 ) ;  ( - k _ h s * x ( 1 , 1 ) - ( 0 . 5 * ( t m _ c ( 1 , i n x )  -  t m _ c ( l , i n x -

1 ) ) * k _ r a d _ _ 0 ) * x ( 2 , 1 ) + w _ e x c ( i n x , 1 ) - c o n v + f p t o ) / ( m _ b + m _ i n f ) ] ;  

e l s e
x p r _ h  = x ;  

e n d  

e n d
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APPENDIX-D

RADIATION DAMPING COEFFICIENT AS A FUNCTION OF NON-DIMENSIONALIZED 

WAVE FREQUENCY

Non-dimensional wave Radiation damping coefficient
frequency

0.0000 0.0000
0.2236 0.1036
0.3162 0.1816
0.4472 0.2793
0.5477 0.3254
0.6325 0.3410
0.7071 0.3391
0.7746 0.3271
0.8367 0.3098
0.8944 0.2899
0.9487 0.2691
1.0000 0.2484
1.0955 0.2096
1.1832 0.1756
1.2649 0.1469
1.3416 0.1229
1.4142 0.1031
1.5811 0.0674
1.7321 0.0452
2.0000 0.0219
2.2361 0.0116
2.4495 0.0066
2.6458 0.0040
2.8284 0.0026
3.0000 0.0017
3.1623 0.0012
5.0000 0.0000

Table D 1. Values of radiation damping coefficient for various non-dimensional frequencies [46],
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APPENDIX-E

ADDED MASS COEFFICIENT AS A FUNCTION OF NON-DIMENSIONALIZED WAVE 

FREQUENCY

Non-dimensional wave Added mass coefficient
frequency

0.0000 0.8310
0.2236 0.8764
0.3162 0.8627
0.4472 0.7938
0.5477 0.7157
0.6325 0.6452
0.7071 0.5861
0.7746 0.5381
0.8367 0.4999
0.8944 0.4698
0.9487 0.4464
1.0000 0.4284
1.0955 0.4047
1.1832 0.3924
1.2649 0.3871
1.3416 0.3864
1.4142 0.3884
1.5811 0.3988
1.7321 0.4111
2.0000 0.4322
2.2361 0.4471
2.4495 0.4574
2.6458 0.4647
2.8284 0.4700
3.0000 0.4740
3.1623 0.4771
5.0000 0.5000

Table E l. Values of added mass coefficients for various non-dimensional frequencies [46],
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APPENDIX-F

PARAMETER VALUES FOR DIFFERENT SEA STATES

Sea state Significant wave 
height (m)

Most probable 
modal wave period 

(s)

Percentage 
probability of sea 

state (%)
1 0.05 - 0.70
2 0.30 7.5 6.80
3 0.88 7.5 23.70
4 1.88 8.8 27.80
5 3.25 9.7 20.64
6 5.00 12.4 13.15
7 7.50 15 6.05

Table F I . Values of characteristic parameters of various sea states in the North Atlantic [58].
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APPENDIX-G  

AVAILABLE POWER IN IRREGULAR SEAS

The expression for the modified P-M spectrum of the angular frequency, co, is as follows [55],

, f m n s ) . , ( h 1/3) 2\  t  _  f a>m^

SM = [------ ^-j *exp r 1-25 * OrJ) <G1)
where S(oS) is the spectral density for the given sea state, co is a frequency value from a given

frequency range, ojm is the modal or peak frequency for a given sea state and 3 is the

significant wave height which is the mean of one-third highest waves.

The transformation of the frequency spectrum to a period spectrum is as follows [75].

S(T) =  ^  S(u>) (G2)

where T is the wave period.

Therefore, the expression for the modified PM spectrum of the wave period, T is as follows.

0.3 1 2 5. ( H 1/3) 2 „ 3
.......................      *  T  *  '  ' m /=  ----------------------  * r  * e V Tm > (G3)

T t'  m

where is the significant wave height or mean of one-third highest waves for the chosen sea 

state, Tm is the modal wave period for the chosen sea state and T  is the wave period from a given 

wave period range.

The wave power per meter of the incident wave crest for a deep-water irregular wave, i, is as 

follows [35],

P 9 2Ti H f

f  ,G4)

where p is the density o f sea water, g  is the acceleration due to gravity, T( is the wave period of 

the i th wave, Ht is the wave height of the i th wave. The wave height is twice the absolute value 

of the wave amplitude 04,) of the i th wave.
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The available power for a point absorber of known diameter, D, interacting with only the irregular 

deep water wave, i, is as follows.

p  1 > P 9 2 T ,  H i
pi =  — ;------* - r -  (G5)

47T 8

The total energy, E, for deep-water wave component, i, is as follows [2],

Hf
E =  TT  =  <G6>O

Equation (G5) can be written as follows,

Dpq2Tj
Pt =  i  * S(Ti)dt  (G7)

1In

or

d p S t,
- - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - '—  *  7  .• *  e  v 1 m /  (P i=  x * T ? * e  v 7’m U t  (G8 )

1 4tt T 4 11 m

Therefore, the available power in a sea state for fully developed irregular seas can be computed 

as:

, 2
2 0.3125 * ( W )P0 r V 3/

“** —— *
'0

r ° °  / 1 .2 5  4 \

I T 4 *  e  >ri £ 
JoPav = ^ r * — r '1 ' T * e ™ dt  (G9)

where p.is the density of sea water, <7 is the acceleration due to gravity, r  is the radius o f the point 

absorber, H x/ 3 is the significant wave height or mean of one-third highest waves for the chosen 

sea state, Tm is the modal wave period for the chosen sea state and T  is the wave period from a 

given wave period range.



APPENDIX-H

CODE FOR RL/PI CONTROLLER FOR HEATING COIL

% i n i t i a l i z e  

c l e a r ; 

c l c  ;

n e p  = 1 0 0 0 ;  % n u m b e r  o f  e p i s o d e s

s p t  =  [ 4 5  4 0  4 5  4 0  4 5 ] ;  % s e t p o i n t  v a l u e s

n s t p  = 1 0 0 ;  % n u m b e r  o f  s t e p s  p e r  s e t p o i n t  c h a n g e  i n t e r v a l  

n s p  = s i z e ( s p t , 2 ) * n s t p ;  % t o t a l  n u m b e r  o f  s t e p s  p e r  e p i s o d e

n f i  =  6 ;  % n u m b e r  o f  i n t e r v a l s  f o r  e a c h  d i s c r e t i z e d  v a r i a b l e

% h e a t i n g  c o i l  d a t a
k p  =  0 . 1 8 5 ;  % p r o p o r t i o n a l  g a i n s  c o e f f i c i e n t  

k i  =  0 . 0 1 7 8 ;  % i n t e g r a l  g a i n s  c o e f f i c i e n t

% i n l e t  a i r  t e m p e r a t u r e  

Tai_min = 4; Tai_max = 10;
d T a i  = ( T a i _ m a x  -  T a i _ m i n ) / n f i ; s T a i  =  T a i _ m i n : d T a i : T a i _ m a x ;  

% T a i  =  T a i _ m i n  + r a n d  ( n s p ,  1 )  *  ( T a i _ m a x  -  T a i _ _ m i n )  ;

% i n l e t  w a t e r  t e m p e r a t u r e  

T w i _ m i n  = 7 3 ;  T w i _ m a x  =  8 1 ;
d T w i  =  ( T w i _ m a x  -  T w i _ m i n ) / n f i ; s T w i  =  T w i _ m i n : d T w i : T w i _ m a x ; 

% T w i  =  T w i _ m i n  + r a n d ( n s p , 1 ) * ( T w i _ m a x  -  T w i _ m i n ) ;

% a i r  f l o w  r a t e
f a _ m i n  =  0 . 7 ;  f a _ m a x  = 0 . 9 ;
d f a  =  ( f a _ m a x  -  f a _ m i n ) / n f i ;  s f a  =  f a _ m i n : d f a : f a _ m a x ;

% f a  = f a _ m i n  + r a n d ( n s p , 1 ) * ( f a _ m a x  -  f a _ m i n ) ;

% o u t l e t  a i r  t e m p e r a t u r e
T a o _ m i n  =  3 6 ;  T a o _ m a x  = 5 2 ;  T a o  =  z e r o s ( n s p , 1 ) ;

d T a o  =  ( T a o _ m a x  -  T a o _ m i n ) / n f i ; s T a o  =  T a o _ m i n : d T a o : T a o _ m a x ;

% o u t l e t  w a t e r  t e m p e r a t u r e

T w o _ m i n  = 4 0 ;  T w o _ m a x  =  6 0 ;  T w o  = z e r o s ( n s p , 1 ) ;
d T w o  =  ( T w o _ m a x  -  T w o _ m i n ) / n f i ; s T w o  = T w o _ m i n : d T w o : T w o _ m a x ;

% w a t e r  f l o w  r a t e

f w _ m i n  =  0 . 1 0 3 1 7 ;  f w _ m a x  = 0 . 3 4 5 4 6 ;  f w  =  z e r o s ( n s p , 1 ) ;  

d f w  =  ( f w _ m a x - f w _ _ m i n )  / n f  i ;  s f w  = f w _ m i n : d f w :  f w _ m a x ;

% P I  c o n t r o l l e r  s i g n a l
c _ m i n  =  6 7 0 ;  c _ m a x  = 1 4 0 0 ;  c  =  z e r o s ( n s p , 1 ) ;  c p  =  z e r o s ( n s p , l )  

d c  =  ( c _ m a x  -  c _ m i n ) / n f i ;  s c  =  c _ m i n : d c : c _ m a x ;



% r e i n f o r c e m e n t  l e a r n i n g

A  = [ - 1 0 0  - 5 0  - 2 0  - 1 0  0 1 0  2 0  5 0  1 0 0 ] ;  % a c t i o n s
Q = z e r o s ( n f i , n f i , n f i , n f i , n f i , n f i , n f i , s i z e ( A , 2 ) ) ;  % Q v a l u e s  s t o r a g e  

m a t r i x

b e t a _ i n t  =  0 . 1 ;  a l p h a  = 0 . 1 ;  g a m m a  = 0 . 9 5 ;  l a m b d a  = 0 . 9 9 5 ;  p r b ( l )  = 1

%Q l e a r n i n g  p a r a m e t e r s

s t _ v s t  =  z e r o s ( n f i , n f i , n f i ) ; % c o u n t e r  o f  n u m b e r  o f  v i s i t s  p e r  s t a t e

r m s e  =  z e r o s ( n e p , 1 ) ;

r w d  =  z e r o s ( n s p , 1 ) ;  % r e w a r d

a c t n  =  z e r o s ( n s p , 1 ) ;  % i n d e x  o f  a c t i o n s

s u m _ i n t  = 0 ,-
T a i ( l : n s p , l )  =  T a i _ m i n  + r a n d ( l ) * ( T a i _ m a x  -  T a i _ m i n ) ; % i n i t i a l i z e  

e x t e r n a l  v a r i a b l e s  f o r  1 s t  s e t p o i n t

T w i ( 1 : n s p , 1 )  =  T w i _ m i n  +  r a n d ( 1 ) * ( T w i _ m a x  -  T w i _ m i n ) ; 

f a ( l : n s p , l )  =  f a _ m i n  +  r a n d ( l ) * ( f a _ m a x  -  f a _ m i n ) ;

f o r  j  =  l : n e p , j
T s p  = s p t ( 1 ) ;  % i n i t i a l  s e t p o i n t  t e m p e r a t u r e

p r _ i n d  = 1 ;  % i n i t i a l i z e  r a n d o m  a c t i o n  p r o b a b i l i t y  i n d e x  

p r b ( l )  =  l a m b d a * p r b ( 1 ) ;

f o r  i  = 2 : n s p ,
p r b ( i )  = l a m b d a * p r b ( i - 1 ) ;

e n d

T a o ( l )  =  4  5 . 1 ;  % T a o _ m i n ;

T w o ( 1 )  =  4  8 ;  
f w ( l )  =  f w _ m a x ;

a c t _ t e m p  = r a n d p e r m ( s i z e ( A , 2 ) ) ;

a c t n ( l )  =  a c t _ t e m p ( l ) ;  % t a k e  r a n d o m  i n i t i a l  a c t i o n  

e r r ( l )  =  T s p - T a o ( l ) ;

% s u m _ i n t  = 0 ;
s u m _ i n t  =  s u m _ i n t  +  e r r ( 1 ) ;
%c = z e r o s ( n s p , 1 ) ;  c p  = z e r o s ( n s p , 1 ) ;  

c p ( l )  = k p * e r r ( 1 ) + k i * s u m _ i n t ;  

n o r m c p  = 1 ;
c ( 1 )  =  c _ m a x  -  ( c _ m a x - c _ m i n ) * n o r m c p  +  A ( a c t n ( l ) ) ;  

r w d ( l )  =  - ( e r r ( l ) * 2  +  b e t a _ i n t * a c t n ( 1 ) ' 2 ) ;

i f  c ( 1 ) >  c _ m a x ,  

c ( 1 )  =  c _ m a x ;

e n d

i f  c  { 1 )  < c _ m i n , 
c ( l )  =  c _ m i n ;

e n d

% d e t e r m i n e  c u r r e n t  s t a t e

i d T a i  =  m a x ( c e i l ( ( T a i ( 1 ) - T a i _ m i n ) / d T a i ) , 1 ) ;  

i d T w i  =  m a x ( c e i l ( ( T w i ( 1 ) - T w i _ m i n ) / d T w i ) , 1 ) ;  

i d T a o  = m a x ( c e i l ( ( T a o ( 1 ) - T a o _ m i n ) / d T a o ) , 1 ) ;  

i d T w o  = m a x ( c e i l ( ( T w o ( 1 ) - T w o _ m i n ) / d T w o ) , 1 ) ;  

i d f a  =  m a x ( c e i l ( ( f a ( 1 ) - f a  m i n ) / d f a ) , 1 ) ;
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i d f w  = m a x ( c e i l ( ( f w ( l ) - f w _ m i n ) / d f w ) , 1 ) ;  

i d c  =  m a x ( c e i l ( ( c ( 1 ) - c _ m i n ) / d c ) , 1 ) ;

s t _ v s t ( i d T a i , i d T w i , i d f a )  = s t _ v s t ( i d T a i , i d T w i , i d f a )  +  1 ;  

r m s ( l )  =  e r r ( 1 ) A2 ;  % i n i t i a l i z e  R MS  e r r o r  

s p c  = 1 ;  % c o u n t e r  f o r  s e t p o i n t  a d j u s t m e n t

f o r  t  = 2 : n s p ;  % l o o p  

s p c  = s p c  +  1 ;  

i f  r e m ( s p c - l , n s t p ) = = 0 ,

T s p  = s p t ( ( s p c - 1 ) / n s t p + 1 ) ; 

e n d  % a d j u s t  s e t p o i n t  t e m p e r a t u r e

% s t o r e  c u r r e n t  s t a t e  d a t a

i d T a i _ c  =  i d T a i ;  i d T w i _ c  = i d T w i ;  i d T a o _ c  = i d T a o ;  

i d T w o _ c  = i d T w o ;  i d f a _ c  = i d f a ;  i d f w _ c  =  i d f w ;  i d c _ c  =  i d c ;

% d e t e r m i n e  n e x t  s t a t e
f w ( t )  = 0 . 0 0 8 + 0 . 0 0 7 0 3 * ( - 4 1 . 2 9 + 0 . 3 0 9 3 2 * c ( t - 1 ) - 3 .  2 6 8 1 * 1 0 A - 4 * c ( t -  

1 ) A 2 + 9 . 5 6 * 1 0 A - 8 * c ( t - 1 ) * 3 )  ;

T w o ( t ) =  T w o ( t - 1 ) + 0 . 6 4 9 0 8 * f w ( t - 1 ) * ( T w i ( t - 1 ) - T w o ( t -  

1 ) ) + ( 0 . 0 2 3 1 9 + 0 . 1 0 3 5 7 * f w ( t - l ) + 0 . 0 2 8 0 6 * f a ( t - 1 ) ) * ( T a i ( t - l ) - ( T w i ( t -  

1 ) + T w o ( t - 1 ) ) / 2 ) ;
T a o ( t ) =  T a o ( t - 1 ) + 0 . 1 9 7 3  9 * f a ( t - 1 ) * ( T a i ( t - 1 ) - T a o ( t -  

1 ) ) + ( 0 . 0 3 1 8 4 + 0 . 1 5 4 4 0 * f w ( t - l ) + 0 . 0 4 4 6 8 * f a ( t - l ) ) * ( - T a i ( t - 1 ) + ( T w i ( t -  

1 ) + T w o ( t - l ) ) / 2 ) + 0 . 2 0 5 6 9 * ( T a i ( t ) - T a i ( t - 1 ) ) ;

i d T a i  =  m a x ( c e i l ( ( T a i ( t ) - T a i _ m i n ) / d T a i ) , 1 ) ;  

i d T w i  =  m a x ( c e i l ( ( T w i ( t ) - T w i _ m i n ) / d T w i ) , 1 ) ;  

i d T a o  = m a x ( c e i l ( ( T a o ( t ) - T a o _ m i n ) / d T a o ) , 1 ) ;  

i d T w o  = m a x ( c e i l ( ( T w o ( t ) - T w o _ m i n ) / d T w o ) , 1 ) ;  

i d f a  =  m a x ( c e i l ( ( f a ( t ) - f a _ m i n ) / d f a ) , 1 ) ;  

i d f w  = m a x f c e i l ( ( f w ( t ) - f w _ m i n ) / d f w ) , 1 ) ;  

e r r ( t )  =  T s p - T a o ( t ) ;
s u m _ i n t  =  s u m _ i n t  +  0 . 5 * ( e r r ( t ) + e r r ( t - 1 ) ) ;

r m s  = r m s  +  e r r ( t ) A2 ;

c p ( t )  =  k p * e r r ( t ) + k i * s u m _ i n t ;
n o r m c p  = ( c p ( t ) -  m i n ( c p ) ) / ( m a x ( c p ) -  m i n ( c p ) ) ;  

c ( t )  = c _ m a x  -  ( c _ m a x - c _ m i n ) ‘ n o r m c p ;

i d c  = m a x ( c e i l ( ( c ( t ) - c _ m i n ) / d c ) , 1 ) ;

i f  t  > 2 ,  % c o m p u t e  r e w a r d

r w d ( t - l )  =  - ( e r r ( t - l ) A2 +  b e t a _ i n t * ( a c t n ( t - l ) - a c t n ( t - 2 ) ) A2 ) ;

e n d

% U p d a t e  Q v a l u e  o f  c u r r e n t  s t a t e  

f o r  i  =  l : s i z e ( A , 2 )
Q _ t e m p  = m a x ( Q ( i d T a i , i d T w i , i d T a o , i d T w o , i d f a , i d f w , i d c , : ) ) ;

e n d
Q ( i d T a i _ c , i d T w i _ c , i d T a o _ c , i d T w o _ c , i d f a _ c , i d f w _ c , i d c _ c , a c t n ( t -  

1 ) )  =  a l p h a * r w d ( t - l )  +  a l p h a * g a m m a * Q _ t e m p  + ( 1 -
a l p h a ) * Q ( i d T a i _ c , i d T w i _ c , i d T a o _ c , i d T w o _ c , i d f a _ c , i d f w _ c , i d c _ c , a c t n ( t -  

1 ) ) ;

i f  r a n d ( l )  < =  p r b ( p r _ i n d )
a c t _ t e m p  = r a n d p e r m ( s i z e ( A , 2 ) ) ;
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a c t n ( t )  = a c t _ t e m p ( l ) ;  

e l s e
[ d u m m y , a c t n ( t ) ] = 

m a x ( Q ( i d T a i , i d T w i , i d T a o , i d T w o , i d f a , i d f w , i d c , : ) ) ;  

e n d

c ( t )  =  c ( t ) +  A ( a c t n ( t ) ) ;

i f  c ( t ) > c _ m a x , c ( t ) =  c _ m a x ; e n d  

i f  c ( t )  < c _ m i n ,  c ( t )  =  c _ m i n ;  e n d  

p r _ i n d  = p r _ i n d  +  1 ;

e n d

r m s e ( j )  =  s q r t ( r m s / j ) ;  

r e f r e s h

e n d
f i g u r e  ( 1 ) ;  p l o t ( T a o ,  ' c o l o r ' ,  1r  1 ) 

f i g u r e  ( 2 ) ;  p l o t ( r m s e ) ;
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A PPEN D IX-I 

FORTRAN CODE FOR RBF NETWORK ENSEMBLE

P r o g r a m  E L M R B F  

I m p l i c i t  n o n e

I n t e g e r  ( K I N D  = 4 )  : :  i ,  j ,  i j ,  j i ,  j j ,  c l k l ,  c l k 2 ,  c l k 3 ,  n p m a x ,

n v t m a x ,  e n s c o u n t ,  x i ,  x i t e r

I n t e g e r  ( K I N D  = 4 )  : :  s w s z ,  i n n i t ,  n f e a t ,  n h l ,  n t r ,  n v d ,  n t s ,  i d u m ,

g b e s t ,  g b d u m m y ( l ) , f r n s l ,  i n d f
R e a l  ( K I N D  = 8 )  : :  r n d l ,  r n d 2 ,  s t a r t n ,  s i g m a m i n ,  s i g m a m a x ,  o m e g a m i n ,

o m e g a m a x ,  x m i n ,  x m a x ,  p h i l ,  p h i 2 ,  p h i ,  c h i

R e a l  ( K I N D  = 8 )  : :  r m s e g b ,  p v g b s ,  p v g b o m ,  w m i n ,  w m a x ,  e p s ,  p f e a t ,  p m u t ,  

m a e ,  r m s e f ,  m a e f ,  t c r i t ,  t m p y t e n s  

R e a l  ( K I N D  = 4 )  : :  r a n 4
R e a l  ( K I N D  =  8 ) ,  a l l o c a t a b l e  : :  p v ( : , : ) ,  v p v ( : , : ) ,  X V ( : , : , : ) ,  

v x v  ( : , : , : ) ,  t m  ( : , : ) , v l d  ( : , : ) , t s t  ( : , : ) , y t  ( : , : ) ,  y t e n s  ( : )
R e a l  ( K I N D  = 8 ) ,  a l l o c a t a b l e  : :  m i n v ( : ) ,  m a x v ( : ) ,  r m s e ( : ) ,  r m s e p b ( : ) ,  

k r n ( : , : , : ) ,  p v p b ( : , : ) ,  x v g b ( : , : ) ,  x v p b ( : , : , : ) ,  p b r s l t ( : ,  : )
R e a l  ( K I N D  = 8 ) ,  a l l o c a t a b l e  : :  v ( : , : ) ,  o u t w ( : ) ,  n r m t r n ( : , : ) ,  

n r m v l d ( : , : ) ,  n r m t s t ( : , : ) ,  y o u t ( : ) ,  r s l t ( : , : ) ,  r s l t g b ( : ) ,  s t d e v ( : )

I n t e g e r  ( K I N D  =  4 ) ,  a l l o c a t a b l e  : :  f e a t ( : , : ) ,  f g b ( : )

O p e n ( 1 , F i l e = ' T r a i n D . t x t 1 )
O p e n ( 2 , F i l e = ' V a l D . t x t 1 )

O p e n ( 3 , F i l e = ' T e s t D . t x t ' )

O p e n ( 4 , F i l e = 1R e s u l t s D . t x t ' )

C a l l  s y s t e m _ c l o c k ( c o u n t = c l k l )

! S e t  p a r a m e t e r  v a l u e s
s w s z  = 2 0  ! n u m b e r  o f  p a r t i c l e s  i n  s w a r m

i n n i t  = 5 0  ! n u m b e r  o f  i t e r a t i o n s

s t a r t n  =  l . d + 8

e p s  =  l . d O

p f e a t  =  O . d O

p m u t  =  0 . 2 d 0
x i t e r  =  5 0

n h l  =  2 0  . ' n u m b e r  o f  h i d d e n  n o d e s

n f e a t  =  5  ! n u m b e r  o f  f e a t u r e s
n t r  = 2 2 7  I n u m b e r  o f  p o i n t s  i n  t r a i n i n g  s e t

n v d  = 5 6  [ n u m b e r  o f  p o i n t s  i n  v a l i d a t i o n  s e t
n t s  =  2 8 4  [ n u m b e r  o f  p o i n t s  i n  t e s t i n g  s e t

n p m a x  =  m a x ( n t r , n v d , n t s )
n v t m a x  = m a x ( n v d , n t s )

[ K e r n e l  p r o p e r t i e s  

s i g m a m i n  =  l . d O  [ s i g m a  

s i g m a m a x  =  1 0 0 . dO

x m i n  =  - l . d O  [ c o o r d i n a t e s  o f  c e n t e r s  

x m a x  =  1 . d o

p h i l  =  2 . 0 5 d 0  

p h i 2  =  2 . 0 5 d 0
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p h i  =  p h i l  +  p h i 2

c h i  =  2 . d O / ( p h i - 2 . d O + s q r t ( p h i * * 2 - 4 , d O * p h i ) )

A l l o c a t e ( p v ( s w s z , 2 )  , v p v ( s w s z , 2 ) , x v ( s w s z , n h l , n f e a t ) , v x v ( s w s z , n h l , n f e a t ) , 

p v p b ( s w s z , 2 ) , x v p b ( s w s z , n h l , n f e a t ) , x v g b ( n h l , n f e a t ) )

A l l o c a t e ( k r n ( s w s z , n p m a x , n h l + 1 ) , f e a t ( s w s z , n f e a t ) , f g b ( n f e a t ) , p b r s l t ( s w s z , 

n h l + 1 ) , y t ( s w s z , n v t m a x ) , y t e n s ( n v t m a x ) , s t d e v ( n v t m a x ) )

A l l o c a t e ( t r n ( n t r , n f e a t + 1 ) , v l d ( n v d , n f e a t + 1 ) , t s t ( n t s , n f e a t + 1 ) , n r m t r n ( n t r , 

n f e a t  +  1 ) , n r m v l d ( n v d , n f e a t  +  1 ) , n r m t s t ( n t s ,  n f e a t  +  1 ) )

A l l o c a t e ( m i n v ( n f e a t + 1 ) , m a x v ( n f e a t + 1 ) , r m s e ( s w s z ) , r m s e p b ( s w s z ) , y o u t ( n v t m a  

x ) , o u t w ( n h l + 1 ) , v ( n h l + 1 , n h l + 1 ) , r s l t ( s w s z , n h l + 1 ) , r s l t g b ( n h l + 1 ) )

! R e a d  t r a i n i n g  d a t a  s e t  

D o  i  =  l , n t r

R e a d ( l , * )  ( t r n ( i , j ) ,  j  =  1 , n f e a t + 1 )

E n d  d o

! R e a d  v a l i d a t i o n  d a t a  s e t  

D o  i  =  1 , n v d

R e a d ( 2 , * )  ( v l d ( i , j ) ,  j  =  1 , n f e a t + 1 )

E n d  d o

( R e a d  t e s t i n g  d a t a  s e t  

D o  i  = l , n t s
R e a d ( 3 , * )  ( t s t ( i , j ) ,  j  =  1 , n f e a t + 1 )

E n d  d o

( N o r m a l i z e  i n p u t  a n d  o u t p u t  d a t a  b e t w e e n  - 1  a n d  1  

D o  j  =  1 , n f e a t + 1

m i n v ( j ) = m i n ( m i n v a l ( t r n ( : , j ) ) , m i n v a l ( v l d ( : , j ) ) , m i n v a l ( t s t ( : , j ) ) )  

m a x v ( j ) =  m a x ( m a x v a l ( t r n ( : , j ) ) , m a x v a l ( v l d ( : , j ) ) , m a x v a l ( t s t ( : , j ) ) )  

E n d  d o

D o  i  =  l , n t r

D o  j  = 1 , n f e a t + 1
n r m t r n ( i , j )  = ( 2 . d O * t r n ( i , j ) -  m a x v ( j )  -  m i n v ( j ) ) / ( m a x v ( j ) -

m i n v ( j ) )

E n d  d o  

E n d  d o

D o  i  = 1 , n v d
D o  j  =  1 , n f e a t + 1

n r m v l d ( i , j )  =  ( 2 . d O * v l d ( i , j ) -  m a x v ( j )  -  m i n v ( j ) ) / ( m a x v ( j  ) -

m i n v ( j ) )

E n d  d o  

E n d  d o

D o  i  =  l , n t s
D o  j  =  1 , n f e a t + 1

n r m t s t ( i , j )  =  ( 2 , d O * t s t ( i , j ) -  m a x v ( j )  -  m i n v ( j ) ) / ( m a x v ( j  ) -
m i n v ( j ) )

E n d  d o  

E n d  d o

C a l l  R a n d o m _ S e e d

C a l l  R a n d o m  N u m b e r ( r n d l )
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i d u m  = - m a x ( n i n t ( r n d l * s t a r t n ) , 1 )

D o  x i  =  1 , x i t e r  

p r i n t * ,  x i

U n i t i a l i z e  k e r n e l  c e n t e r s  a n d  P U F  p a r a m e t e r s  f o r  e a c h  p a r t i c l e  

D o  i  =  l , s w s z  

i n d f  =  0

D o  j i  =  1 , n f e a t  ! D e s i g n  s w a r m  a r c h i t e c t u r e

r n d l  =  r a n 4 ( i d u m )

I f  ( r n d l  < =  p f e a t )  t h e n  ! P r u n e  i n p u t  l a y e r  

f e a t ( i , j i )  = 0

E l s e

f e a t ( i , j i )  =  1 

i n d f  =  i n d f  +  1  

E n d  i f  

E n d  d o

I f  ( i n d f  = =  0 )  t h e n  ! i f  n o  f e a t u r e  h a s  b e e n  s e l e c t e d  t h e n ,  

r n d l  =  r a n 4 ( i d u m )

f r n s l  =  c e i l i n g ( r n d l * r e a l ( n f e a t ) ) ' s e l e c t  o n e  r a n d o m l y  

f e a t ( i , f r n s l ) = 1 

E n d  I f

r n d l  =  r a n 4 ( i d u m )
p v ( i , l )  =  s i g m a m i n  + r n d l * ( s i g m a m a x - s i g m a m i n )  U n i t i a l i z e  s i g m a  

D o  j  =  1 , n h l
D o  i j  =  1 , n f e a t

r n d l  =  r a n 4 ( i d u m )
x v ( i , j , i j )  = x m i n  +  r n d l * ( x m a x - x m i n )  U n i t i a l i z e  c e n t e r

c o o r d i n a t e s

E n d  d o  

E n d  d o  

E n d  d o
v p v  = 0 . d o  U n i t i a l i z e  p a r t i c l e  v e l o c i t i e s  f o r  p a r a m e t e r s  ( s e t  e q u a l  t o  

z e r o ) .
v x v  =  O . d O  ! I n i t i a l i z e  p a r t i c l e  v e l o c i t i e s  f o r  c e n t e r  c o o r d i n a t e s  ( s e t  

e q u a l  t o  z e r o ) . 
r m s e p b  =  0 . d O ; r m s e g b  = 0 . dO  

D o  j j  =  1 , i n n i t  

r m s e  = 0 . d O ;

! F i n d  H - 0  l a y e r  w e i g h t s  u s i n g  S V D  

D o  i  =  l , s w s z
k r n ( i , : , : )  = 0 . d O  

D o  j  =  l , n t r
D o  i j  = l , n h l

D o  j i  = 1 , n f e a t
I f  ( f e a t ( i , j i )  = =  1 )  k r n ( i , j , i j )  =  k r n ( i , j , i j )  +

( x v ( i , i j , j  i ) - n r m t r n ( j , j  i ) ) * * 2  

E n d  d o
k r n ( i , j , i j ) = 1 . d O / s q r t ( k r n ( i , j , i j ) + p v ( i , 1 ) * * 2 )

E n d  d o
k r n ( i , j , n h l + 1 )  =  l . d O  

E n d  d o
o u t w  = O . d O ;  v  =  O . d O ;  r s l t ( i , : )  =  O . d O  

C a l l  s v d c m p ( k r n ( i , 1 : n t r , : ) , n t r , n h l + 1 , o u t w , v )  

w m a x  = m a x v a l ( o u t w )

w m i n  = w m a x * r e a l ( m a x ( n h l + 1 , n t r ) ) * e p s i l o n ( e p s )  

w h e r e  ( o u t w  < w m i n )  o u t w  = O . d O
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C a l l

s v d k s b ( k r n ( i , 1 : n t r , : ) , o u t w , v , n t r , n h l + 1 , n r m t r n f : , n f e a t + 1 ) , r s l t ( i , : ) )  

[ E v a l u a t e  p a r t i c l e s  o n  t h e  v a l i d a t i o n  s e t  

k r n ( i , : , : )  = 0 . dO  

y o u t  = O . d O  

D o  j  = 1 , n v d

D o  i j  =  l , n h l

D o  j i  =  1 , n f e a t
I f  ( f e a t ( i , j i )  = =  1 )  k r n ( i , j , i j )  =  k r n ( i , j , i j )  +  

( x v ( i , i j , j  i ) - n r m v l d ( j , j  i ) ) * * 2  

E n d  d o

k r n ( i , j , i j ) = 1 . d O / s q r t ( k r n ( i , j , i j ) + p v ( i , 1 ) * * 2 )  

y o u t ( j )  = y o u t ( j )  +  r s l t ( i , i j ) * k r n ( i , j , i j )

E n d  d o

y o u t ( j )  = y o u t ( j )  +  r s l t ( i , n h l + 1 )

r m s e ( i )  = r m s e ( i )  +  ( y o u t ( j ) - n r m v l d ( j , n f e a t + 1 ) ) * * 2  

E n d  D o

r m s e ( i )  =  s q r t ( r m s e ( i ) / r e a l ( n v d ) )

E n d  d o
g b d u m m y ( l )  =  m i n l o c ( r m s e , 1 )  [ F i n d  g l o b a l  b e s t  s o l u t i o n  

g b e s t  = g b d u m m y ( l )

I f  ( r m s e ( g b e s t )  < r m s e g b  . o r .  j j  = =  1 )  t h e n  

x v g b  = x v ( g b e s t , : , : )  

p v g b s  = p v ( g b e s t , 1 )  

p v g b o m  = p v ( g b e s t , 2 )  

r m s e g b  = r m s e ( g b e s t )  
r s l t g b  = r s l t ( g b e s t , : )  

f g b  = f e a t ( g b e s t , : )

E n d  I f
D o  i  =  l , s w s z  I F i n d  p e r s o n a l  b e s t  s o l u t i o n  f o r  e a c h  p a r t i c l e  

I f  ( r m s e ( i )  < r m s e p b ( i )  . o r .  j j  = =  1 )  t h e n  

x v p b ( i , : , : )  = x v ( i , : , : )  

p v p b ( i , 1 )  =  p v ( i , 1 )  

p v p b ( i , 2 )  =  p v ( i , 2 )  

r m s e p b ( i )  =  r m s e ( i )  

p b r s l t ( i , : )  =  r s l t f i , : )
E n d  I f  

E n d  d o
I f  ( j j  = =  i n n i t )  e x i t

[ O p t i m i z e  k e r n e l  c e n t e r s  a n d  p a r a m e t e r s  f o r  e a c h  p a r t i c l e  

i d u m  =  i d u m  -  1  

D o  i  =  l , s w s z

r n d l  =  r a n 4 ( i d u m )

I f  ( r n d l  > p m u t )  t h e n  

r n d l  =  r a n 4 ( i d u m )  

r n d 2  = r a n 4 ( i d u m )
v p v ( i , l )  =  c h i * ( v p v ( i , 1 ) + p h i l * r n d l * ( p v p b ( i , 1 ) -  

p v ( i , 1 ) ) + p h i 2 * r n d 2 * ( p v g b s - p v ( i , 1 ) ) )
p v ( i , 1 )  =  p v ( i , 1 )  +  v p v ( i , 1 )

I f  ( p v ( i , l )  > s i g m a m a x )  t h e n
p v ( i , l )  =  s i g m a m a x ;  v p v ( i , l )  = O . d O

E n d  I f
I f  ( p v ( i , l )  < s i g m a m i n )  t h e n

p v ( i , l )  = s i g m a m i n ;  v p v ( i , l )  =  O . d O

E n d  I f

D o  j  =  1 ,  n h l
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r n d l  = r a n 4 { i d u m )  

r n d 2  = r a n 4 ( i d u m )

D o  j i  = 1 , n f e a t  

v x v ( i , j , j  i ) = 

c h i * ( v x v ( i , j , j i ) + p h i l * r n d l * ( x v p b ( i , j  , j i )  -  

x v ( i , j , j i ) ) + p h i 2 * r n d 2 * ( x v g b ( j , j i ) - x v ( i ,  j  , j i ) ) )

x v ( i , j , j  i ) = x v { i , j , j  i ) +  v x v ( i , j , j  i ) 

I f  ( x v ( i , j , j i )  > x m a x )  t h e n

x v ( i , j , j  i ) = x m a x ; v x v ( i , j , j  i ) =  0

E n d  I f

I f  ( x v ( i , j , j i )  < x m i n )  t h e n

x v ( i , j , j i ) =  x m i n ;  v x v ( i , j , j i )  =  0

E n d  I f  

E n d  d o  

E n d  d o

E l s e
r n d l  =  r a n 4 ( i d u m )

p v ( i , l )  =  s i g m a m i n  + r n d l * ( s i g m a m a x - s i g m a m i n )  

D o  j  =  1 , n h l

D o  i j  =  1 ,  n f e a t

r n d l  =  r a n 4 ( i d u m )

x v ( i , j , i j )  =  x m i n  + r n d l * ( x m a x - x m i n )  

E n d  d o  

E n d  d o  

E n d  I f  

E n d  d o
p r i n t * ,  j j ,  r m s e g b  

E n d  d o

C a l l  s y s t e m _ c l o c k ( c o u n t = c l k 2 ) 
c l k 3  =  c l k 2  -  c l k l  

p r i n t * ,  c l k 3

! C o m p u t e  o u t p u t  o f  e n s e m b l e  o n  t e s t i n g  s e t  

y t =  O . d O ;  y t e n s  = O . d O ;  k r n  = O . d O  

d o  j  =  l , s w s z
d o  j j  = l , n t s

d o  i j  =  l , n h l

d o  j i  =  1 , n f e a t
i f  ( f e a t ( j , j i )  = =  1 )  k r n ( j , j j , i j )  =  k r n ( j ,

( x v p b ( j , i j , j  i ) - n r m t s t ( j j , j  i ) ) * * 2  

e n d  d o

k r n ( j , j j , i j ) = 1 . d O / s q r t ( k r n { j , j j , i j ) + p v p b ( j , 1 ) *  

y t ( j , j j )  = y t ( j , j j )  +  p b r s l t ( j , i j ) * k r n ( j , j  j , i j  

e n d  d o
y t  ( j , j j ) = y t ( j , j j )  +  p b r s l t ( j , n h l  +  1 )  

e n d  d o  

e n d  d o
r m s e f  = O . d O ;  m a e f  = O . d O ;  t c r i t  =  2 . 2 4  

d o  j j  =  l , n t s
y t e n s ( j j )  =  s u m ( y t ( 1 : s w s z , j j ) ) / r e a l ( s w s z )  

s t d e v ( j j )  = O . d O  

d o  j  =  1 , s w s  z

s t d e v ( j j )  =  s t d e v ( j j )  +  ( y t ( j  , j j ) - y t e n s ( j j ) ) * * 2  

e n d  d o

s t d e v ( j j )  =  s g r t ( s t d e v ( j j ) / r e a l ( s w s z - 1 ) ) 

t m p y t e n s  = O . d O ;  e n s c o u n t  =  0

. dO

. dO

j j . i j )  +

* 2 )
)
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! U s e  C h a u v e n e t ' s  c r i t e r i o n  f o r  o u t l i e r  d e t e c t i o n  

d o  i  = l , s w s z

i f ( a b s ( ( y t ( i , j j ) - y t e n s ( j j ) ) / s t d e v f j j ) ) < = t c r i t )  t h e n  

t m p y t e n s  = t m p y t e n s  +  y t ( i , j  j ) 

e n s c o u n t  = e n s c o u n t  +  1  

e n d  i f  

e n d  d o

y t e n s ( j j )  =  t m p y t e n s / r e a l ( e n s c o u n t )

y t e n s ( j j )  = ( y t e n s ( j j ) * ( m a x v ( n f e a t + 1 )  -  m i n v ( n f e a t + 1 ) ) +  

m i n v ( n f e a t + 1 )  +  m a x v ( n f e a t + 1 ) ) / 2 . d O

r m s e f  =  r m s e f  +  ( y t e n s ( j j ) - t s t ( j j f n f e a t + 1 ) ) * * 2  

m a e f  =  m a e f  +  a b s ( y t e n s ( j j ) - t s t ( j j , n f e a t + 1 ) ) 

e n d  d o

r m s e f  =  s q r t ( r m s e f / r e a l ( n t s ) ) 

m a e f  =  m a e f / r e a l ( n t s )  

p r i n t * ,  r m s e f ,  m a e f
( E v a l u a t e  g l o b a l  b e s t  p a r t i c l e  o n  t h e  t e s t i n g  s e t

k r n ( 1 , : , : )  = 0 . dO

y o u t  =  O . d O

r m s e ( l )  =  O . d O

m a e  = O . d O

D o  j  =  l , n t s

D o  i j  =  l , n h l

D o  j i  =  1 , n f e a t
I f  ( f g b ( j i )  = =  1 )  k r n ( l , j , i j ) = k r n ( l , j , i j )  +  ( x v g b ( i j , j i ) -  

n r m t s t ( j , j i ) ) * * 2  
E n d  d o
k r n ( 1 , j , i j ) = 1 . d O / s q r t ( k r n ( 1 , j , i j ) + p v g b s * * 2 )  

y o u t ( j )  =  y o u t ( j )  +  r s l t g b ( i j ) * k r n ( 1 , j , i j )

E n d  d o
y o u t ( j )  = y o u t ( j )  +  r s l t g b ( n h l + 1 )

y o u t ( j )  = ( y o u t ( j ) * ( m a x v ( n f e a t + 1 )  -  m i n v ( n f e a t + l ) ) +  m i n v ( n f e a t + 1 )

+  m a x v ( n f e a t + 1 ) ) / 2 . d O
r m s e ( l )  =  r m s e ( l )  +  ( y o u t ( j ) - t s t ( j , n f e a t + 1 ) ) * * 2  

m a e  = m a e  +  a b s ( y o u t ( j ) - t s t ( j , n f e a t + 1 ) )

E n d  D o

r m s e ( l )  =  s q r t ( r m s e ( 1 ) / r e a l ( n t s ) )
m a e  = m a e / r e a l ( n t s )

p r i n t * ,  ' '
p r i n t * ,  r m s e ( l ) ,  m a e

w r i t e ( 4 , 5 )  r m s e ( l ) ,  r m s e f ,  m a e ,  m a e f
5  f o r m a t  ( 4 F 9 . 5 )

E n d  d o

D o  j  =  l , n t s
p r i n t * ,  y o u t  ( j ) , t s t ( j , n f e a t + 1 )

E n d  d o  

C l o s e  ( 4 )
C l o s e ( 3 )

C l o s e ( 2 )

C l o s e ( 1 )

E n d  P r o g r a m  E L M R B F
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APPENDIX-J

RUNGE-KUTTA (R-K4) SOLVER FOR ODE COMBINED WITH ADAPTATION OF 

Q-LEARNING ALGORITHM

f u n c t i o n  Y  =  o d e 4 _ R L ( o d e f u n , t s p a n , y O , v a r a r g i n )

% O D E4  T h e  s o l v e r  i m p l e m e n t s  t h e  c l a s s i c a l  R u n g e - K u t t a  m e t h o d  o f  o r d e r  

% 4  c o m b i n e d  w i t h  t h e  a d a p t a t i o n  o f  t h e  Q - l e a r n i n g  a l g o r i t h m  

%

g l o b a l  i n x ;  g l o b a l  s o l _ t m p ;  g l o b a l  f _ p e a k ;  g l o b a l  t _ l a t c h ;  g l o b a l  g p w ;  

g l o b a l  c o n t r o l _ c o e f _ l ; g l o b a l  k _ r a d _ 0 ;  g l o b a l  c o n v ;  g l o b a l  c o n t r o l _ m ;  

g l o b a l  o m e g a _ d ;  g l o b a l  t m _ c ;  g l o b a l  d t ;  g l o b a l  g e n _ s p e e d ;  g l o b a l  f p t o ;  

g l o b a l  w _ e x c ; .  g l o b a l  k _ h s ;  g l o b a l  q _ m ;  g l o b a l  f _ p t o ;  g l o b a l  m d f ;  

g l o b a l  h y d r o _ f ;  g l o b a l  t o r q m ;  g l o b a l  t o r q g ;  g l o b a l  o m e g a _ m ;  

g l o b a l  p _ h p ;  g l o b a l  p _ l p ;  g l o b a l  p e a l ;  g l o b a l  p c a 2 ; 

g l o b a l  v _ l p ;  g l o b a l  v _ h p ;  g l o b a l  v e a l ;  g l o b a l  v c a 2 ; 

g l o b a l  p p c l ;  g l o b a l  p p c 2 ; g l o b a l  v p c l ;  g l o b a l  v p c 2 ;

g l o b a l  Q _ f ;  g l o b a l  A l ;  g l o b a l  A 2 ; g l o b a l  p r b t ;  g l o b a l  o p t _ p o l ;

h  =  d i f f ( t s p a n ) ;

y O  = y O ( : ) ;  % M a k e  a  c o l u m n  v e c t o r
n e q  = l e n g t h ( y O ) ;  N = l e n g t h ( t s p a n ) ; Y  =  z e r o s ( n e q , N ) ; F = 
z e r o s ( n e q , 4 ) ;

Y (  : , 1 )  =  y O ;
p _ l p  =  z e r o s ( N , l ) ;  p _ h p  = z e r o s ( N , l ) ;  v _ l p  =  z e r o s ( N , l ) ;  v _ h p  =  

z e r o s ( N , 1 ) ;
p e a l  =  z e r o s ( N , l ) ;  p c a 2  = z e r o s ( N , l ) ;  v e a l  =  z e r o s ( N , l ) ;  v c a 2  =  

z e r o s ( N , 1 ) ;
p p c l  = z e r o s ( N , l ) ;  p p c 2  = z e r o s ( N , l ) ;  v p c l  =  z e r o s ( N , l ) ;  v p c 2  =  

z e r o s ( N , 1 ) ;
f _ p t o  =  z e r o s ( N , l ) ;  h y d r o _ f  = z e r o s ( N , 1 ) ;  g p w  = z e r o s ( N , l ) ;  

t o r q m  = z e r o s ( N , l ) ;  t o r q g  = 3 0 * o n e s ( N , 1 ) ;  o m e g a _ m  = z e r o s ( N , l ) ;  

q _ m  = z e r o s ( N , 1 ) ;

% R L  s e t t i n g s
m _ d i s p _ m i n  = 0 . 8 ;  % m i n i m u m  m o t o r  d i s p l a c e m e n t  v a l u e

m _ d i s p _ m a x  = 1 . 0 ;  % m a x i m u m  m o t o r  d i s p l a c e m e n t  v a l u e

m _ d i s p _ d  = 6 ;  % n u m b e r  o f  d i s c r e t e  a c t i o n  v a l u e s  -  a c t i o n  # 1
m _ d i s p  = l i n s p a c e ( m _ d i s p _ m i n , m _ d i s p _ m a x , m _ d i s p _ d ) ' ;  % d i s c r e t e  a c t i o n

v a l u e s  -  a c t i o n  # 1
c f _ f r  =  [ 6 ;  8 ;  1 0 ;  1 2 ;  1 4 ] ;  % d i s c r e t e  a c t i o n  v a l u e s  -  a c t i o n  # 2  

w a v e  p  m i n  = 0 . ;  % m i n i m u m  w a v e  e x c i t a t i o n  p e a k  v a l u e  t o  d e f i n e  r a n g e  

( M N )

w a v e _ p _ m a x  = 1 . 2 ;  % m a x i m u m  w a v e  e x c i t a t i o n  p e a k  v a l u e  t o  d e f i n e  r a n g e  

( M N )
w a v e _ p _ d  = 5 ;  % n u m b e r  o f  d i s c r e t i z e d  w a v e  e x c i t a t i o n  p e a k  s t a t e s
w a v e _ p  = l i n s p a c e ( w a v e _ p _ m i n , w a v e _ p _ m a x , w a v e _ p _ d ) ' ;

d _ w a v e  = ( w a - v e _ p _ m a x - w a v e _ p _ m i n )  /  ( w a v e _ p _ d - l )  ; % d i s c r e t i z a t i o n

i n t e r v a l
A l  =  m _ d i s p ;  % a c t i o n  # 1 :  a d j u s t  m o t o r  d i s p l a c e m e n t  v a l u e  

A 2  = c f _ f r ;  % a c t i o n  # 2 :  a d j u s t  v a l v e  o p e n i n g  i n s t a n t
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Q _ f  =  z e r o s ( l e n g t h ( w a v e _ p ) , l e n g t h ( A l ) , l e n g t h ( A 2 ) ) ;  % Q v a l u e s  s t o r a g e  

m a t r i x

p r b t  =  o n e s ( w a v e _ p _ d , 1 ) ;  

o p t _ p o l  =  z e r o s ( w a v e _ p _ d , 2 ) ;

b e t a _ d  = 0 . 0 1 ;  % R L  d i s c o u n t  f a c t o r  p a r a m e t e r ;

e t a _ d  = 0 . 0 5 ;  s i g m a _ r l  = 0 . 9 9 ;

g p w _ i n d  = 0 ;  r w d _ i n d  = 0 ;  r w d _ i n d _ c  = 0 ;  s t a t e _ i n d  = 0 ;

Y _ f l a g l  =  0 ;  Y _ f l a g 2  = 0 ;

a c t l  =  r a n d p e r m ( l e n g t h ( A l ) ) ;  a c t 2  =  r a n d p e r m ( l e n g t h ( A 2 ) ) ;

a c t n _ l  =  a c t l ( l ) ;  a c t n _ 2  = a c t 2 ( l ) ;

m d f  =  A l ( a c t n _ l , 1 ) ;

c o n t r o l _ c o e f _ l  =  A 2 ( a c t n _ 2 , 1 ) ;

g a m m a _ r l  =  0 ;

Y _ c r i t  =  2 . 4 0 ;  % m o t i o n  a m p l i t u d e  c o n s t r a i n t  i n  m

g a m m a  

r h o _ o  

u l  = 1 
% i n i t  

v e a l ( 1  

v c a 2 ( 1  

v p c l ( 1  

v p c 2 ( 1  

v _ l p ( 1  

v _ h p ( 1  

p _ l p ( 1  
p _ h p ( 1  

p e a l ( 1  

N / m * 2  

p c a 2 ( 1  

N / m A2 

p p c l ( 1
p p c 2 ( 1

= 1 . 4 ;  % i s e n t r o p i c  p r o c e s s ,  v a l u e  f o r  n i t r o g e n  

=  8 5 0 ;  % d e n s i t y  o f  o i l  i n  k g / m A3

i a l  v a l u e s

) = 

) = 
) = 
) = 

) = 
) = 
) =

0 . 0 5 ;  % i n  m 3  

0 . 0 5 ;  % i n  m * 3  

0 . 5 ;  % i n  m A3 

0 . 5 ;  % i n  m * 3  

1 ;  % i n  m A 3 

2 ;  % i n  m ‘ 3

1 0  *  1 0  A 6 ; % p r e s s u r e  i n  L P  a c c u m u l a t o r  i n  N / m A2
1 0 * 1 0 A 6 ;  % p r e s s u r e  i n  H P  a c c u m u l a t o r  i n  N / m A2
1 0 * 1 0 a 6 ;  % p r e s s u r e  i n  c o m p r e s s i b i l i t y  a c c u m u l a t o r  # 1  i n

1 0 * 1 0 a 6 ;  % p r e s s u r e  i n  c o m p r e s s i b i l i t y  a c c u m u l a t o r  # 2  i n

) =  1 0 * 1 0 a 6 ;  % p r e s s u r e  i n  p h a s e  c o n t r o l  a c c u m u l a t o r  # 1  i n  N / m A2 

) =  1 0 * 1 0 a 6 ;  % p r e s s u r e  i n  p h a s e  c o n t r o l  a c c u m u l a t o r  # 2  i n  N / m A2

% c o n s t a n t s
s p  .= 0 . 0 5 ;  % p i s t o n  s u r f a c e  a r e a  i n  m A2  

% h y d r a u l i c  m o t o r  d a t a
s p e e d _ m a x  = 3 0 0 0 ;  % m a x i m u m  c o n t i n u o u s  s p e e d  i n  r e v / m i n

m a x _ d h m  = 1 6 5 * 1 0 A - 6 ;  % i n  m A3 p e r  r e v
t o r q n w n a x  =  6 5 9 ;  % c o n t i n u o u s  o u t p u t  t o r q u e  i n  N * m
o m e g a _ m ( l )  = 2 * p i * ( s p e e d _ m a x / 2 ) / 6 0 ; % a n g u l a r  v e l o c i t y  i n  r a d i a n s  p e r  

s e c o n d
o m e g a _ m a x  = 2 * p i * s p e e d _ m a x / 6  0 ; % m a x i m u m  a n g u l a r  v e l o c i t y  i n  r a d i a n s

p e r  s e c o n d
% C o n t r o l  p a r a m e t e r s

c v  =  0 . 9 5 ;

c c  =  0 . 9 5 ;
a v  =  0 . 0 0 2 ;  % m A2

a c  = 0 . 0 0 2 ;  % m A2
J r  =  7 . 5 ;  % k g * s A 2 ,  c o m b i n e d  r o t a t i o n a l  i n e r t i a  o f  m o t o r ,  g e n e r a t o r ,  

a n d  s h a f t  

o p e n v  = 1 ;  

f o r  i  =  2  : N

t i  =  t s p a n ( i - 1 ) ; 

h i  =  h ( i - l ) ; 

y i  =  Y ( : , i - 1 ) ;
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F  ( : , 1 )  =  f e v a l { o d e f u n , t i , y i ) ; i n x  =  i n x + 1 ;

F { : , 2 )  =  f e v a l ( o d e f u n , t i + 0 . 5 * h i , y i + 0 . 5 * h i * F ( : , 1 ) , v a r a r g i n { : } )  ; 

S O l _ t m p ( i n x , : )  =  F ( : , 2 ) ' ;

F  ( : , 3 )  =  f e v a l  ( o d e f u n ,  t i  +  0 . 5 * h i , y i  +  0 . 5 * h i * F  ( : ,  2 ) ,  v a r a r g i n {  : } )  ,- 

s o l _ t m p ( i n x , : )  =  F ( : , 3 ) 1 ; i n x  =  i n x + 1 ;

F ( : , 4 )  =  f e v a l ( o d e f u n , t s p a n ( i ) , y i + h i * F ( : , 3 ) , v a r a r g i n { : } ) ;

Y ( :  , i ) = .  y i  +  ( h i / 6 ) * ( F ( : , 1 )  +  2 * F ( : , 2 )  +  2 * F ( : , 3 )  +  F ( : , 4 ) )  ;

S o l _ t m p ( i n x , : )  =  Y ( : , i ) ' ;

h y d r o _ f ( i )  =  - k _ h s * Y ( l , i ) - ( 0 . 5 * ( t m _ c ( 1 , i n x ) - t m _ c ( 1 , i n x -  

1 ) ) * k _ r a d _ 0 + c o n v ) * Y ( 2 , i ) + w _ e x c ( i n x , 1 ) ;  % h y d r o d y n a m i c  f o r c e

v c a l ( i )  =  v e a l ( i - 1 ) + d t * ( -  

s p * Y ( 2 , i ) + u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p e a l ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )  -  

u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p e a l ( i - 1 ) ) , 0 ) )  -  ( u l -  

1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p e a l ( i - 1 ) - p p c l ( i - 1 ) ) ) * s i g n ( p c a l ( i - 1 ) -  

p p c l ( i - 1 ) ) ) ;
v c a 2 ( i )  =  v c a 2 ( i -

1 ) + d t * ( s p * Y ( 2 , i ) + u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p c a 2 ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )

-  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p c a 2 ( i - 1 ) ) , 0 ) )  -  ( u l -
1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p c a 2 ( i - 1 ) - p p c 2 ( i - 1 ) ) ) * s i g n ( p c a 2 ( i - 1 ) -  

p p c 2 ( i - 1 ) ) ) ;

v _ l p ( i )  = v _ l p ( i - 1 ) + d t * ( u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) -  

p e a l ( i - 1 ) ) , 0 ) )  +  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p _ l p ( i - 1 ) - p c a 2 ( i - 1 ) ) , 0 ) )

-  q _ m ( i - 1 ) ) ;

v _ h p ( i )  =  v _ h p ( i - 1 ) + d t * ( - u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p e a l ( i - 1 ) -  

p _ h p ( i - 1 ) ) , 0 ) )  -  u l * c v * a v * s q r t ( ( 2 / r h o _ o ) * m a x ( ( p c a 2 ( i - 1 ) - p _ h p ( i - 1 ) ) , 0 ) )  

+  q _ m ( i - 1 ) )  ;
v p c l . ( i )  =  v p c l  ( i - 1 )  + d t *  ( ( u l - 1 )  * c c * a c * s q r t  ( ( 2 / r h o _ o )  * a b s  ( p e a l  ( i - 1 )  -  

p p c l  ( i - 1 )  ) ) * s i g n  ( p e a l  ( i - 1 )  - p p c l  ( i - 1 )  ) ) ,-
v p c 2 ( i )  =  v p c 2 ( i - 1 ) + d t * ( ( u l - 1 ) * c c * a c * s q r t ( ( 2 / r h o _ o ) * a b s ( p c a 2 ( i - 1 ) -  

p p c 2 ( i - 1 ) ) ) * s i g n ( p c a 2 ( i - 1 ) - p p c 2 ( i - 1 ) ) ) ;

p c a l ( i )  =  p e a l ( 1 ) * ( v e a l ( 1 ) / v e a l ( i ) ) Ag a m m a ;  

p c a 2 ( i )  =  p c a 2 ( 1 ) * ( v c a 2 ( 1 ) / v c a 2 ( i ) ) Ag a m m a ;  

p _ l p ( i ) =  p _ l p ( 1 ) * ( v _ l p ( 1 ) / v _ l p ( i ) ) Ag a m m a ;  

p _ h p ( i )  =  p _ h p ( 1 ) * ( v _ h p ( 1 ) / v _ h p ( i ) ) Ag a m m a ;  

p p c l ( i )  =  p p c l ( 1 ) * ( v p c l ( 1 ) / v p c l ( i ) ) Ag a m m a ;  

p p c 2 ( i )  =  p p c 2 ( 1 ) * ( v p c 2 ( 1 ) / v p c 2 ( i ) ) Ag a m m a ;

f _ p t o ( i )  = - s p * ( p e a l ( i ) - p c a 2 ( i ) ) ;  

f p t o  =  f _ p t o ( i ) ;
t o r q m ( i )  =  m d f * m a x _ d h m * ( p _ h p ( i ) - p _ l p ( i ) ) / ( 2 * p i ) ; 

i f  t o r q m ( i )  > t o r q m _ m a x ,  t o r q m ( i )  =  t o r q m _ m a x ;  e n d

% a n g u l a r  v e l o c i t y  i n  r a d i a n s  p e r  s e c o n d
i f  g e n _ s p e e d  = =  0 % f o r  f i x e d  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r

o m e g a _ m ( i )  =  2 * p i * s p e e d _ m a x / 6 0 ; % t h e  g e n e r a t o r  t o r q u e  m a t c h e s  t h e  

m o t o r  t o r q u e
e l s e  % f o r  v a r i a b l e  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r

o m e g a _ m ( i )  =  o m e g a _ m ( i - 1 ) + d t * ( t o r q m ( i ) - t o r q g ( i ) ) / J r ;  % t h e  

g e n e r a t o r  s p e e d  m a t c h e s  t h e  m o t o r  s p e e d

i f  o m e g a _ m . ( i )  > o m e g a _ m a x ,  o m e g a _ m ( i )  =  o m e g a _ m a x ;  e n d  

e n d
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q _ m ( i )  =  m d f * m a x _ d h m * o m e g a _ m ( i ) / ( 2 * p i ) ; % f l u i d  f l o w  r a t e  f r o m  t h e  

h i g h  p r e s s u r e  a c c u m u l a t o r  i n t o  t h e  h y d r a u l i c  m o t o r

i f  ( v _ h p ( 1 ) - v _ h p ( i ) ) / d t  <  q _ m ( i )  

q _ m ( i )  =  ( v _ h p ( l ) - v _ h p ( i ) ) / d t ; • 
o m e g a _ m ( i )  = 2 * p i * q _ m ( i ) / ( m d f * m a x _ d h m ) ; 

i f  o m e g a _ m ( i )  > o m e g a _ m a x ,  o m e g a _ m ( i )  = o m e g a _ m a x ;  e n d  

e n d

i f  g e n _ s p e e d  = =  0 % f i x e d  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r  

g p w ( i )  =  t o r q m ( i ) * o m e g a _ m ( i ) ; 

e l s e  % v a r i a b l e  r o t a t i o n a l  s p e e d  o f  t h e  g e n e r a t o r  

g p w ( i )  =  t o r q g ( i ) * o m e g a _ m ( i ) ; 

e n d

i f  g p w _ i n d  = =  1

i f  ( a b s ( Y ( l , i ) )  > Y _ c r i t  | |  i  < f l o o r ( N / 4 ) ) % i f  t r u e ,  d o  n o t

c a l c u l a t e  r e w a r d

Y _ f l a g l  =  1 ;  

e l s e

Y _ f l a g l  =  0 ;  

e n d
r w d ( r w d _ i n d )  =  e x p ( - b e t a _ d * ( r w d _ i n d - l ) * d t ) * g p w ( i ) ; 

r w d _ i n d  = r w d _ i n d  +  1 ; .  

e n d  ^

i f  i  < f l o o r ( N / 4 )

Y _ f l a g 2  = 1 ;  

e l s e
Y _ f l a g 2  = 0 ;  

e n d

i f  c o n t r o l _ m  = =  1

i f  s i g n ( Y ( 2 , i ) )  ~ =  s i g n ( Y ( 2 , i - 1 ) ) && i  > o p e n v  

g p w _ i n d  = 0 ;  r w d _ i n d _ c  = r w d _ i n d ;  

i f  s t a t e _ i n d  > 0 

i f  Y _ f l a g l  = =  1 

r w d _ d  = 0 ;  

e l s e
r w d _ d  = d t * t r a p z ( r w d ( 1 : r w d _ i n d _ c - 1 ) ) ;  % c a l c u l a t e  r e w a r d  

e n d

t 2 _ r l  =  t m _ c ( l , i n x ) ;

g a m m a _ r l  =  e x p ( - b e t a _ d * ( t 2 _ r l - t l _ r l ) ) ;  % c a l c u l a t e  d i s c o u n t
f a c t o r

e n d
[ f _ i n d x ]  =  f i n d ( t m _ c ( f _ p e a k ) > t m _ c ( 1 , i n x ) ) ;  

i f  i s e m p t y ( f _ i n d x )  = =  0 

i f  s t a t e _ i n d  > 0
i d _ w a v e _ p _ c  = i d _ w a v e _ p ; 

e n d
w a v e _ p  = w _ e x c  ( f _ j p e a k  ( f _ i n d x  ( 1 )  ) ) ; 

i d _ w a v e _ p  = m i n ( c e i l ( ( a b s ( w a v e _ p / 1 0 A 6 ) -  

w a v e _ p _ m i n ) / d _ w a v e ) , w a v e _ p _ d ) ; % i d e n t i f y  t h e  n e x t  s t a t e  b a s e d  o n  t h e  

n e x t  w a v e  e x c i t a t i o n  p e a k

s t a t e _ i n d  = s t a t e _ i n d  +  1 ;
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i f  s t a t e _ i n d  > 1

Q _ f { i d _ w a v e _ p _ c , a c t n _ l , a c t n _ 2 ) =

Q _ f  ( i d _ w a v e _ _ p _ c , a c t n _ l , a c t n _ 2 ) +  e t a _ d *  ( r w d _ d  +  

g a m m a _ r l * m a x ( m a x ( Q f ( i d _ w a v e _ p , : , : ) ) )  -
Q _ f ( i d _ w a v e _ p _ c , a c t n _ l , a c t n _ 2 ) ) ;  % u p d a t e  Q f u n c t i o n  v a l u e  

e n d

i f  Y _ f l a g 2  = =  0

p r b t ( i d _ w a v e _ p , 1 )  = s i g m a _ r l * p r b t ( i d _ w a v e _ p , 1 ) ;  

i f  r a n d  < =  p r b t ( i d _ w a v e _ p )  % t a k e  r a n d o m  a c t i o n s  

. a c t l  =  r a n d p e r m ( l e n g t h ( A l ) ) ;  a c t 2  =  r a n d p e r m ( l e n g t h ( A 2 ) ) ;  

a c t n _ l  =  a c t l ( l ) ;  a c t n _ 2  = a c t 2 ( l ) ;  

m d f  = A l ( a c t n _ l , 1 ) ;  

c o n t r o l _ c o e f _ l  =  A 2 ( a c t n _ 2 , 1 ) ;  

e l s e

d m y l  =  m a x ( m a x ( Q _ f ( i d _ w a v e _ p , : , : ) ) ) ;  

d m y 2  =  f i n d ( Q _ f = = d m y l , 1 ) ;
[ ~ ,  d m y 3 , d m y 4 ]  =  i n d 2 s u b ( s i z e ( Q _ f ) , d m y 2 ) ;  

m d f  = A l ( d m y 3 , 1 ) ;  

c o n t r o l _ c o e f _ l  =  A 2 ( d m y 4 , l ) ;  

a c t n _ l  =  d m y 3 ; 

a c t n _ 2  = d m y 4 ; 

e n d  

e n d

i f  ( t m _ c  ( 1 ,  f _ _ p e a k  ( f _ i n d x  ( 1 )  ) ) -  t m _ c  ( 1 ,  i n x )  ) >

( 2 * p i / ( c o n t r o l _ c o e f _ l * o m e g a _ d ) )

t _ l a t c h  = t m _ c ( 1 , f _ p e a k ( f _ i n d x ( 1 ) ) )  -  
2 * p i / ( c o n t r o l _ c o e f _ l * o m e g a _ d ) ;

i f  s t a t e _ i n d  > 0 

t l _ r l  =  t _ l a t c h ;  

e n d
o p e n v  =  f i x ( t _ l a t c h / d t ) ; % o p e n  v a l v e  a t  t h i s  t i m e  s t e p  

i f  i  < o p e n v  

u l  =  1  ; 
e n d  

e n d  

e n d  

e l s e
i f  i  = =  o p e n v  

u l  =  0 ;
g p w _ i n d  = 1 ;  r w d _ i n d  = 1 ;  % o p e n  v a l v e  a n d  s t a r t  m e a s u r i n g

r e w a r d ;

e n d

e n d
e n d

e n d
d m y l  =  m a x ( m a x ( Q _ f ( i d _ w a v e _ p , : , : ) ) ) ;  

d m y 2  = f i n d ( Q _ f = = d m y l , 1 ) ;
[ ~ ,  d m y 3 , d m y 4 ]  =  i n d 2 s u b ( s i z e ( Q _ f ) , d m y 2 ) ;  

v o l _ f  =  A l ( d m y 3 , l )  

c o n _ c o e f  =  A 2 ( d m y 4 , l )
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