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ABSTRACT 

Shaken Baby Syndrome:  Retinal Hemorrhaging - a Biomechanical Approach to 

Understanding the Mechanism of Causation 

Steven Alex Hans 
Old Dominion University, 2007 
Director: Sebastian Y. Bawab  

 
 

Shaken Baby Syndrome (SBS) is a form of abuse where typically an infant, age six months or less, 

is held and shaken.  There may or may not be direct impact associated with this action.   Further, there is 

very little agreement on the actual mechanism of SBS.  Clinical studies are limited in showing the exact 

mechanism of injury and only offer postulations and qualitative descriptions.  SBS has received much 

attention in the media, has resulted in a great deal of litigation and can be the source of unfounded 

accusations.  Therefore, it is necessary to try to quantify the forces that may cause injury due to SBS.   

The physiology of infants makes injury due to SBS more likely.  Infants have relatively large 

heads supported by weak necks that simply act as tethers (Prange et al., 2003).  Therefore, there is minimal 

resistance to shaking.  In addition, the cerebrospinal fluid (CSF) layer surrounding the infant’s brain is up 

to 10 mm thick as opposed to 1 – 2 mm in older children and adults (Morison, 2002).  This thick layer 

reduces the resistance in rotation of the brain and can cause shearing injuries to the brain tissue.  In 

addition, retinal hemorrhaging has been reported in SBS.  The infant’s eyes have a vitreous that is typically 

more gelatinous and with a higher viscosity than in adult eyes.  In addition, this vitreous is firmly attached 

to the retina and is difficult to remove (Levin, 2000).    

A preliminary parametric model of an infant eye will be presented so that resultant nodal retinal 

force of the posterior retina can be investigated and compared with a documented shaking frequency and a 

documented impact pulse.  Retinal forces are then compared with various studies that investigate retinal 

detachment or adhesive strength.  This eye model is built using a variety of material properties that have 

been reported for the sclero-cornea shell, choroids, retina, vitreous, aqueous, lens, ciliary, optic nerve, 

tendons, extra ocular muscles, optic nerve, and orbital fatty tissue.  The geometry of the eye has been 



   

carefully optimized for this parametric model based on scaling to an infant from an adult using idealized 

eye globe geometry and transverse slice tracings of “The Visible Human Project.” 

This model shows promise in investigating the forces and kinematics of the infant eye exposed to 

harmonic shaking and further bolsters some of the few biomechanical studies investigating SBS.  However, 

improvements are necessary to complete the eye model presented.  Specifically, improvements on the 

mechanical properties for the components of the eye and especially the infant eye are needed.  There is 

currently a deficit of biomechanical studies of the materials needed for the infant eye that is specifically 

geared for use in an explicit finite element code package.  Conversions and adaptations of available 

materials are used in this first version of the infant eye model presented here and are in fair agreement with 

some of the clinical studies concerning SBS. 
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CHAPTER I 

INTRODUCTION 

 
 

 Shaken baby syndrome is a controversial issue as the very diagnosis places 

accusations of criminal action on caregivers.  Unfortunately, clinical observations, 

albeit intuitive, are sometimes not enough to define the actual causation of shaken 

baby syndrome.  On the other hand, malignant behavior is easily down played or lied 

about:  the baby fell on the floor.  Over the years, however, research in clinical 

analysis, and now biomechanical modeling, has helped define the actual causation of 

injury.  Specifically, research has compelled the study of both impact and pure 

shaking scenarios.  Most clinical observations support the notion that shaken baby 

syndrome carries unique pathology (Levin, 2000) that cannot be reproduced through 

accident alone.  Where these clinical studies fall short is the certainty that shaking 

alone can cause injuries; this is where the biomechanical modeling can help. 

 Although a very new area, most of the focus of biomechanical investigations 

is concerned with brain injury (Prange & Margulies, 2001; Morison, 2002).  This 

proposed research will also carry over into the retinal hemorrhaging aspects by 

considering a full-featured finite element eye model and ocular region based on 

materials and geometry from all genres of research.  Although the investigative model 

presented does support clinical observations and compliments the work of Morison, 

the work remains an investigation and further enhancements are needed.   
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Aims and Objectives 

 The objective of this research is to build a preliminary computer eye model 

that compares the resultant nodal retinal forces from a pure shaking motion to an 

impact pulse representive of a fall.  This computer model will be a coupling of rigid 

body dynamics and finite element analysis with material properties from various 

references.  This model is a complex endeavor and will contain several components 

of the eye, and surrounding area.  Retinal hemorrhaging mostly occurs in the 

posterior region of the eye and this is where the focus of the modeling is.  In order to 

model the kinematics, the entire eye complex with orbit, muscles, optic nerve, fatty 

tissue, and eyelid are modeled.   

 The secondary objective of this work is to perform a parametric study of the 

vitreous materials currently available from the literature.  The vitreous body occupies 

4/5ths of the volume of the eye globe (Hogan, Alvarado, & Weddell, 1971) and is a 

critical component to eye.  The vitreous interaction with the retinal wall is of 

particular interest as Levin (2000) suggests that the viscous vitreous shears the retinal 

blood vessels due to vitreous shaking.  As presented in chapter 7, the material 

compliancy varies greatly from study to study.  Unfortunately, no vitreous testing has 

been reported for human infants.  Only information regarding the qualitative nature of 

the vitreous is given for infants (Hogan, Alvarado, & Weddell, 1971; Zimmerman, 

1980; Sebag, 1998; Levin, 2000).  Currently, no such study exists that compares 

published vitreous materials in a dynamic saccadic movement with all of the 

considered components of the eye and surrounding tissues for adult or infant. 
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Thesis Overview 

 Chapter 2 of this thesis contains the literature review section that is split into 

several categories.  Clinical background on shaken baby syndrome (SBS) will be 

discussed followed by retinal hemoraging related studies.  The following reviews will 

cover mathematical eye models with emphasis on the cornea and sclera materials.  A 

review of the optic nerve and related clinical, histological, and biomechanical studies 

is presented.  A review is presented regarding the brain biomechanical studies, which 

includes studies of the infant brain.  The vitreous body review contains histological 

and material property determinations.  The retina and choroid are grouped together as 

most of the studies that will be presented discuss both of these delicate membranes. 

 Included in the retina and choroid review are studies concerned with retinal 

adhesion and detachment.  Muscle model studies regarding finite element models and 

analytical models are reviewed followed by fatty tissue and skin studies.  Finally, the 

literature review is concluded with mention of some of the eye structures that are 

simplied in the current work such as the lens and ciliary body.   

 Chapter 3 discusses the influences that go into determining the geometry of 

the eye and ocular cavity.  Details of eye dimensioning are given as well as build-up 

geometries from the Visible Human Project.  Details are discussed that did not make 

the final presented model, and scaling methods to infant dimensions are provided. 

 Chapter 4 goes into extreme detail on meshing the eye and fatty tissue.  

Included in this section are various techniques that are utilized to build the eye mesh.  
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In particular, the fatty tissue, vitreous, and aqueous proved to be extremely 

challenging.   

 The next three chapters break the eye into three primary sections:  the ocular 

shell layers, the structures that encase and tether the eye, and the interior vitreous 

material.  Chapter 5 examines the cornea, sclera, choroid, and retina in detail and 

considers possible constitutive material fits that could be used in finite element 

analysis.  Also discussed in this chapter are the retinal adhesive and peeling studies.  

Chapter 6 goes into the analytical muscle modeling and the optic nerve studies.  

Included in this study is the fatty tissue model comparison.  Included also are separate 

investigative models into the optic nerve response and muscle activation dynamics 

with calibration to previous muscle model studies for horizontal eye motion.   

 Chapter 7 provides a critical comparison and analysis of possible candidate 

vitreous materials in a saccadic eye movement.  In this section a detailed description 

of the eye model is provided with a look into the shear strain at the posterior pole.  

This chapter not only compares the materials from different studies, but also 

examines different constitutive models using these materials.  Also included is the 

parameterization of the optic nerve and eye mesh density to investigate the sensitivity 

on the shear strain.   

 Chapter 8 presents an investigative study using a possible vitreous material 

candidate from chapter 7 for shaken baby syndrome.  Specifically, the harmonic 

shaking sequence is used from past research and compared to an impact simulation.  

A comparison of the posterior retinal forces is given to study the differences between 

the two types of motion.  Also considered in this chapter is the possibility of 
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modeling retinal detachment.  Parameterization of the fatty tissue and optic nerve is 

also investigated in the chapter. 

 Finally, chapter 9 provides concluding remarks with final opinions and ideas 

for future work in the area of infant eye models. 

 

 

Eye and Surrounding Tissue Anatomy 

 In order for the reader to have a perspective on the relevant ocular and extra-

ocular components in this work, a description of anatomy is presented.  The gross 

anatomy of the eye (Figure 1.0) contains three fundamental membrane layers starting 

outward with the cornea and sclera shell.  The second layer inward is the choroid 

layer, which interfaces the retina.  The interior of the eye is divided into two 

chambers by the lens and ciliary body.  The anterior chamber is the aqueous humor 

and is enclosed between the cornea, lens and ciliary body.  The posterior chamber is 

the vitreous body and interfaces the entire retinal membrane.   

 Connecting this eye globe is the optic nerve located at the posterior-medial 

area interfacing the sclera shell.  The optic nerve is essentially an extension of the 

brain (Hogan, Alvarado, & Weddell, 1971) with a dura sheath followed by a pia and 

arachnoid layer.  There is also cerebral fluid encasing the optic nerve tissue matter 

with more of a concentration of fluid just posterior to the eye globe attachment 

(Hayreh, 1984).   

 Attached to the eye are six extra-ocular muscles (Figure 1.1) that control eye 

movement.  Of these muscles, four are the rectii (medial, lateral, superior, and 
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inferior).  There are also two oblique muscles (superior and inferior).  All the 

muscles, with the exception of the inferior oblique, originate from the apex of the 

ocular cavity.  The superior oblique also goes through a boney loop known as the 

trochlea pulley before attaching to the eye globe, while the rectii and inferior oblique 

are directly attached to the eye.  The inferior oblique muscle is attached to the base of 

the ocular cavity directly below the eye globe.  Encasing the eyeball, optic nerve, and 

muscles is the ocular fat tissue. 
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Figure 1.0:  Superior view of the eye and surrounding tissues.  
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Figure 1.1:  Extra-ocular muscle locations showing a (A) lateral and (B) superior view.   
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CHAPTER II 

LITERATURE REVIEW 

 

 

Introduction 

 The literature is broken into several sections.  The first two sections deal with 

the clinical aspects of shaken baby syndrome (SBS) and retina hemorrhaging as a 

result of shaking.  The SBS section highlights historical information and also 

describes the diagnosis and associated injuries.  In addition, a critical argument is 

posed that discusses the necessity of impact in combination with shaking or shaking 

alone that is sufficient to cause injury.  Retinal Hemorrhaging (bilateral) is one 

indication in the diagnosis of SBS.  This section will cover the specific definition of 

retinal hemorrhaging and the locations in the eye that have been reported in abuse 

studies.  In addition, other injuries will be discussed that may cause retinal 

hemorrhaging that is different than injuries from SBS.  Finally, this section will 

discuss the physiological differences of infant eyes compared to the adult that 

predisposes infants to injury as a result of SBS.   

 In order to build a biomechanical eye model to help explain the input forces 

required to cause retinal hemorrhaging, a look at previous eye models is considered.  

In the biomechanical eye models section, finite element eye models are compared.  

Most of these eye models deal with impact trauma to the cornea and sclera shell and 

are therefore optimized for this loading condition.  Most of the emphasis on modeling 

impacts to the eye globe involves the consideration of the cornea and sclera materials.  
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Other studies considering the cornea and sclera are included in the biomechanical eye 

section.   

 Hemorrhaging has been reported in the optic nerve in SBS; therefore, a 

comprehensive look into optic nerve biomechanical, clinical, and anatomical studies 

is presented.  Very few groups have built models of the optic nerve, and those that 

have focus on the optic nerve head (part of the optic nerve that interfaces with the 

posterior sclera shell) in glaucoma investigations.  Briefly, glaucoma is the second 

leading cause of adult blindness that results from intraocular pressures that are too 

much for the nerve to withstand.  While most of these studies are concerned with 

glaucoma, they can still provide insight into this biomechanical eye model.  This 

work considers the optic nerve as a tether and so an attempt is made to adapt the 

comprehensive works in the optic nerve section into the eye model.   

 The optic nerve is an extension of the brain so that the next logical literature 

review covers biomechanical models and material studies of the brain for humans 

(adult and infant) and other species.  Included in this section is some research on the 

compliant infant skull.  The brain is not modeled in this work; however, the influence 

of these presented studies is important to point out.  The most important discussion is 

the work done by Morison (2002) that modeled SBS and effects on the bridging 

veins.  The other studies mentioned have been used to gather knowledge on 

viscoelastic properties of the brain and some of the modeling methods that are 

considered.   

 The vitreous body, a semi-fluid substance, occupies most of the eye globe 

volume and offers mechanical support and energy absorption properties.  Some of the 
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studies considered here discuss material testing of the vitreous body.  And as will be 

considered, there are variations in the final material parameters that can be used in the 

finite element model due to testing and sample preparation protocol.  The 

composition and histology of the vitreous body are also detailed.   

 Next, literature concerned with the retina and choroid is presented.  Material 

determinations of both the choroid and retina are considered here in addition to the 

studies of retinal detachment/adhesion to the choroid.  Most of these studies 

determine the linear elastic modulus based on simple axial tension tests, although the 

authors of these studies maintain that the retina and choroid are more hyperelastic.  

The detachment studies discussed have two methods of testing the retinal adhesive 

force.  The first method proposes pealing the retina off the choroid and the second 

method induces bubbles (called blebs) in the retina and calculates the force needed to 

remove the retina from the pigment epithelium.   

 The extra-ocular muscles are considered next in the biomechanical model.  

Most of the work done on muscles utilizes an analytical phenomenologic model 

called the Hill-type muscle.  This method of muscle modeling is able to model 

complex motions with various control algorithms.  In addition to the Hill-type muscle 

properties, finite element muscles are also discussed.  An interesting investigation 

into the modeling of the extraocular muscles is the determination of the plant 

properties.  The plant is the eyeball in these studies and has the unique feature to have 

the dynamic effects of the optic nerve tested by isolating the contribution of the 

muscle attachments.  This is important as most of the optic nerve papers discussed 

propose experimental properties mostly from other tissue studies under the 



   10

assumption that the optic nerve is composed of the same material.  In the analytical 

muscle models, the plant parameters are directly measured from a patient (Collins, 

Scott & O’Meara 1969).   

 Finally, a review of the fatty tissue and skin research is considered.  Most of 

the biomechanical eyes discussed do not include the fatty tissue or do not consider the 

eyelid.  However, exclusion may or may not be valid.  In this study the infant eye 

must have this feature as the rotational motion applied justifies it.  The eye can be 

considered a spherical joint (mostly) and the fatty tissue would represent the other 

portion of this joint.  In addition, the fatty tissue plays an important role in impact 

studies as it offers energy absorption capabilities.  This section highlights properties 

of skin from various studies and also discusses various fatty tissue studies.  As will be 

shown, fatty tissue has been considered from all over the human body (buttocks, foot 

pad, and breast tissue).  

 

 

Shaken Baby Syndrome 

 Clinical observations and diagnosis of SBS started when Caffey (1972, 1974) 

coined the phrase Whiplash Shaken Infant Syndrome.  In the following years this 

diagnosis would simply be called Shaken Baby Syndrome.  The actual mechanism of 

injury is debatable, but the injuries associated with SBS are subdural hematomas 

(SDH) (Duhaime et al., 1996), diffuse axonal injury (DAI) (Margulies & Thibault, 

1992; Jafari et al., 1997; Bain & Meaney, 2000; Prange & Margulies, 2001), and 

retinal hemorrhaging (Lambert, Johnson, & Hoyt, 1986; Gilliland, Luckenbach, & 
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Chenier, 1994; Betz et al., 1996; Gilliland, Luckenbach, & Chenier, 1994; Kapoor et 

al., 1997).  There appears to be evidence that bilateral SDH and retinal hemorrhaging 

would indicate abuse while unilateral injuries would be associated with accidental 

impacts or falls (Duhaime et al., 1996).  This also leads to the belief that to get 

bilateral SDH and retinal hemorrhaging the infant would have been shaken 

vigorously about the sagittal plane (Gilliland & Folberg, 1996; Levin, 2000).  Further, 

Levin defines SBS as aform of child abuse “in which the perpetrator violently shakes 

an infant resulting in brain, skeletal and/ or retinal haemorrages” (p. 151).  However, 

the force required to cause SBS associated injury is not agreed upon and is a source of 

controversy.  As Caffey defines SBS it appears that only severe shaking of the head is 

needed.  In addition, arguments have been made regarding the frequency of shakes.  

Is it one or several?  What are the manners of these shakes?  It appears that there 

needs to be an extreme amount of shaking according to a postmortem study with 

perpetrator confessions (Betz, Püschel, Miltner, Lignitz, & Eisenmenger, 1996).      

 In addition, accidental injuries have typically not shown similar patterns of 

retinal hemorrhaging or SDH as those attributed to SBS (Elder, Taylor, & Klug, 

1991; Johnson & Braun, 1993; Reiber, 1993; Duhaime et al., 1996).  Concerning fall 

accidents, Chadwick et al. concludes that falls of less than four feet that are reported 

to cause fatalities are inconclusive and falls from buildings and the like are more 

accurate to look at when studying injuries due to falls (1355).  Deaths from falls four 

feet or less are suspicious. At the same time, diagnosis of abuse can be wrong 

(Kirschner & Stein, 1985; Weissgold et al., 1995).  Careful examination is needed to 

avoid false accusations of abuse.   
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 There are two camps of belief with regards to SBS.  Duhaime et al. concluded 

that shaking alone could not generate enough force to cause subdural haematoma.  

Supporting their findings were lifelike dolls with accelerometers affixed to their 

heads.  These dolls were then shaken violently and then shaken followed with an 

impact to the head.  Comparing the mean head acceleration to known tolerance 

criteria led to the conclusion that shaking alone was not the cause of acute subdural 

haematoma.   

 However, this study has been under scrutiny.  Specifically, the dolls used are 

not representative of the infant.  Morison (2002) built a model that included the 

cerebrospinal fluid layer (CSF) that surrounds the brain.  This CSF layer can be up to 

10 mm thick as compared to 1-2 mm thick in adults.  Morison’s model showed that 

the brain in the CSF could not resist the shearing forces imposed on it.  Looking at the 

bridging vein response showed that failure occurred when simple harmonic 

oscillations were applied.  Morison assumed a position where the baby is held by the 

torso and is shaken back and forth.  Morison concluded based on the breached stretch 

ratio of the bridging veins that indeed “shaking can be just as dangerous as hard 

impacts, and considerably more dangerous than soft impacts” (p. 106). 

 

 

Retinal Hemorrhaging 

 The assertion is made that “retinal hemorrhage is perhaps no more specific as 

fracture and one surely would not suggest that all fractures are the same in terms of 

pathogenesis or aetiology” (Levin, p. 157).  Further retinal hemorrhages can be 
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described by the location and severity.  Kapoor, Shiffman, Tang, Kiang, and 

Woodward (1997) describe the mapping of the hemorrhages in the different layers of 

the retina (e.g. preretinal, intraretinal, subretinal).  Lancon, Haines, and Parent (1998); 

Betz et al. describe the distribution of hemorrhages.  Lambert, Johnson, and Hoyt 

(1986) examined optic nerve sheath hemorrhages.  Optic nerve sheath hemorrhaging 

is perhaps attributed to the slack in the nerve sheath combined with the passive 

response of the ocular muscle attachments (Levin).  Green et al. (1996) concludes that 

hemorrhages were most likely to occur in the posterior pole in a study including 16 

children who had died from SBS.  Gilliland, Lieberman, Milroy, and Parsons (1996) 

claim that these peripheral retinal hemorrhages are from acceleration-deceleration 

injury with a few cases involving direct head trauma.  Levin concludes, “The findings 

of massive hemorrhages throughout the retinal surface at all layers reflects a shaking 

aetiology [(i.e., the study of cause)] unless proven otherwise. Traumatic retinoschisis 

[(i.e., splitting of the retina)] has only been reported in SBS” (p. 161).  Hadley, 

Sonntag, Rekate, and Murphy (1989) report a 100% incidence of retinal 

hemorrhaging from children who died from SBS.  However, in another study this rate 

has been reported as low as 49%-57% (Gilliland & Folberg, 1996).  In yet another 

study with 16 children, 81% had ocular abnormalities (Green et al., 1996).  Studies 

conflict saying that vitreous hemorrhaging is not common, 27% occurrence (Pounder, 

1997), and then another study claims 100% occurrence (S. G. Elner, V. M. Elner, 

Arnall, & Albert, 1990) in postmortem studies.  Also, postmortem studies indicate the 

distribution of the hemorrhage to be mostly posterior but also mention that it can 

extend anteriorly as far as ora serrata (Green et al.; Betz et al., 1996).  The 
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pathophysiology of retinal hemorrhages is unknown in SBS (Levin).  However, 

Green et al. explains that the force based on statistics is relatively small to create 

intraretinal, subhyaloid (i.e., canal located in the vitreous body that supplies nutrients 

to the anterior eye), or optic nerve sheath hemorrhage than for retinoschisis, choroidal 

(layer between the retina and sclera), or vitreous hemorrhages.   

 Extending the pathophysiology of retinal hemorrhages, Terson syndrome is 

compared to SBS (Levin).  A characteristic of Terson syndrome is the optic nerve 

sheath hemorrhage (Betz et al.; Levin).  Terson syndrome has been used to describe 

SBS postmortem studies.  However, Terson syndrome can happen without the optic 

nerve sheath hemorrhage (Levin).  Further, Bedell (1955) explains that SBS can occur 

with subdural optic nerve sheath hemorrhage without intracranial hemorrhage.  

Brinker et al. (1997) argue blood located in the optic nerve sheath results from 

intracranial pressure.  However, Paton (1924) and Levin contradict this.  Levin 

believes that the mechanism is due to orbital shaking causing direct trauma to the 

optic nerve.  Further, Levin explains for this to be a fluid problem, blood would have 

to be found along the entire length of the optic nerve, and this is not considered in the 

postmortem studies carried out by Green et al.  Therefore, Terson syndrome may 

resemble SBS but arguments show that there is no relation.  Levin concludes that an 

overwhelming majority of SBS victims with retinal hemorrhages do have intracranial 

bleeding despite the exceptions.   

 The vitreous in an infant is well attached to the retina in the posterior pole, 

peripheral retina all the way to the ora serrata (Hogan, 1963).  In addition, the 

vitreous is more viscous in infants than children and adults (Matthews & Das, 1996; 
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Ferrone & de Juan, 1994).  As a result, the retina of a child is more resistant to 

mechanical stress (Feldman, Brewer, & Shaw, 1995).  When an infant is shaken, the 

vitreous causes shear stresses at the points of attachment (Sebag, 1991).  The 

posterior retina can be sheared in any of the layers (Levin).  Tongue (1991) mentions 

that one cannot be certain that the retinal folds are a causation of child abuse.  

However, Levin; Weinberg and Tunnessen (1996); Andrews (1996); Betz et al.; 

Bedell; Spaide, Swengel, Scharre, and Mein (1990) disagree; retinal folds are caused 

by SBS.  Further head trauma is not needed to cause retinoschisis (Massicotte et al., 

1991).  The vitreous is also well attached to the superficial retinal blood vessels 

(Levin).  Therefore, at detachment, these blood vessels can rupture due to shearing 

(Andrews).   

 As mentioned before, the optic nerve has slack that allows movement of the 

eye.  This may also allow the eyeball to shake when the child is shaken.  The eye is 

tethered via the muscle attachments and may explain the findings in optic nerve 

sheath hemorrhages (Budenz et al., 1994).  Further, this would imply that the problem 

is not a fluid mechanics issue (Green et al.).  Interestingly, all infants involved in SBS 

in Budenz et al. had intradural hemorrhages of the optic nerve sheath.  Clearly, there 

are conflicting accounts of the injury mechanism of retinal hemorrhaging.  Studies try 

to compare the retinal hemorrhaging in SBS with other symptoms.  Current research 

on the magnitude and type of force are still inconclusive.  Further, the word ‘retinal 

hemorrhage’ is used loosely as it may describe the overall phenomenon of 

hemorrhaging in the eye.  Clinical studies have shown hemorrhaging in just about any 

portion of the posterior pole with a few cases describing hemorrhaging towards the 
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anterior.  In addition, the physiological make up of the eye in the infant is different 

from a child or adult (e.g., the vitreous being more viscous and firmly attached to the 

retina).   

 

Biomechanical Eye Models 

 Several Eye models exist to examine blunt trauma or intraocular pressure 

(Kobayashi, Woo, Lawrence, & Schlegel, 1971; Woo, Kobayashi, Lawrence, & 

Schlegel, 1972a; Woo, Kobayashi, Schlegel, & Lawrence, 1927b; Vito & Carnell, 

1992; Uchio, Ohno, Kudoh, Aoki, & Kisielewicz, 1999; Power et al., 2002; Stitzel, 

Duma, Cormier, & Herring, 2002).  Woo et al. (1972a & b); Kobayashi et al.; Vito 

and Carnell modeled the cornea-scleral shell with two-dimensional finite element 

analysis utilizing symmetry.  These computer models were used to investigate 

intraocular pressure (IOP).  Both the Kobayashi et al. and Vito and Carnell models 

considered an elastic modulus for the material properties.  And both studies 

considered incompressible material as well (i.e., Poisson’s ratio is 0.49).  However, 

Woo et al. (1972a & b) approximated the moduli of the sclera, cornea to be 

exponential.  Further, a Poisson’s ratio of 0.49 was assumed for nearly 

incompressible tissue.  

 Uchio et al. (1999) furthered the modeling to include a full eye geometry 

including a rigid body lens and attachment to the cornea representing the ciliary body. 

The cornea and sclera were modeled using shell elements and the aqueous humor and 

vitreous body were modeled using solid elements.  The actual material properties are 

unclear for the aqueous and vitreous as the only mention of material properties is that 
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it is modeled with a hydrostatic pressure of 20 mm Hg.  The Uchio et al. geometry of 

the cornea-sclera shell varies in thickness in anterior to posterior and is denoted in a 

midsagittal view of the eye.  In addition, Uchio et al. determined the stress-strain 

relationship of the cornea and sclera to be nonlinear and did strip tests to measure 

this.  In addition, Poisson’s ratio was calculated from the strip tests and did not equal 

0.49 as assumed in the previous two-dimensional model studies.  Uchio et al. built 

this eye model to investigate the behavior (i.e. stress-strain and failure) of the eye 

response to impacts with a blunt object to determine the threshold of penetrating 

ocular injury.  Later studies utilizing the Uchio et al. eye model studied the effects of 

air-bag impacts (Uchio, Kadonosono, Matsuoka, & Goto, 2004) and airbags with 

photorefractive keratectomy (Uchio, Watanabe, Kadonosono, Matsuoka, & Goto, 

2003).  A major limitation in the Uchio et al. eye model highlighted by Power (2001) 

is that the boundary conditions of the eye are not modeled.  The eye is supported to 

the posterior pole to the socket of a rigid body skull.   

 Power and Power et al. considered several components of the eye while using 

geometry and material properties from previous literature.  The Power model 

considers the cornea and sclera with material properties from Uchio et al., and 

geometric properties described by Woo et al. (1972a & b).  The lens and ciliary body, 

like Uchio et al., are considered.  The lens is rigid while the ciliary body is a tension 

only elastic muscle with an initial guess on the material properties.  Similarly, the six 

ocular muscles that tether the eye use this same guessed muscle model.  The aqueous 

humor and vitreous body are also guessed quantities based on the properties of fatty 

tissue (Todd & Thacker, 1994).  The geometrical properties of the lens are based on 
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visual anatomy sources.  This eye complex is then inserted into a rigid body socket 

with the muscle tethers attached.  The socket void is then filled with fatty tissue from 

Todd and Thacker.  This fatty tissue is modeled as linear elastic material with 

Poisson’s ratio of 0.49.  The parametric study concluded with the head complex 

affixed to a Hybrid III 50 percentile dummy model and tested.  Power et al., did 

mention a validation of the eye model using (Scott, Lloyd, Benedict, & Meredith, 

2000; Vinger, Duma, & Crandall, 1999).  In the Scott et al. study, projectiles of 

various sizes are impacted into porcine eye samples to study the kinetic energy and 

visualize ocular failure.  In the Vinger et al. study, unembalmed cadaver eyes are 

mounted into a fixture and impacted with baseballs to investigate injury levels.   

 The Stitzel et al., eye model is designed for high deformation rates.  Further, 

the material properties use an orthotropic material with nonlinear stress-strain in 

plane and a nonlinear shear modulus.  Additionally, a separate constant is used for the 

compressive modulus.  Like the Power and Power et al. model, Stitzel et al. utilizes 

the material properties from Uchio et al.    The geometric detail of the lens and ciliary 

body is enhanced compared to the Power model.  However, the muscles of the ciliary 

body are adapted from the Power material properties, which were based on an initial 

guess.  The aqueous and vitreous are modeled using the Eulerian approach to model 

fluid in contrast to the Power model.  Testing similar to the approach in Vinger et al. 

is done and compared to the simulation model.  However, unlike the Power model, 

the validation process is more rigorous with experimental-simulation comparisons 

with a spherical ball (i.e., a BB pellet), a foam cylinder modeled after foam in a 

typical car interior, and a baseball. 
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Optic Nerve and Related Studies in Pia-mater and Axonal Materials 

 The modeling of the optic nerve head and optic nerve sheath remain 

underdeveloped as compared to the cornea-sclera models mentioned above.  This is 

actually quite surprising as this area of the eye is of interest in the study of glaucoma 

(Morrison, 1995; Quigley, 1995; Anderson, 1995).  However, mostly histological 

studies cover the lamina cribrosa and the scleral tissue anterior to it in response to 

intraocular pressure (IOP) (Bellezza et al., 2003; Jonas, Berenshtein, & Holbach, 

2003; Jonas, Gusek, Holzmann, & Naumann, 1988; Jonas, Maradin, Schrehardt, & 

Naumann, 1991; Jonas & Buddle, 2000; Quigley, 1981; Quigley, Flower, Addicks, & 

McLeod, 1980; Swindale, Stjepanovic, Chin, & Mikelberg, 2000; Britton, Drance, 

Schulzer, Douglas, & Mawson, 1987; Caprioli & Miller, 1988; Ethier et al., 1999; 

Levy & Crapps, 1984; Rohrschneider, Burk, & Völcker, 1993; Yan, Flanagan, Farra, 

Trope, & Ethier, 1998; Hernandez, 2000).  These studies are useful but incomplete 

for building a computer model.  Dimensional properties and boundary conditions can 

be gathered from these histological studies however.   

 Dongqi and Zeqin (1999) and Edwards and Good (2001) both propose a 

mathematical model to predict behavior due to IOP on the lamina cribrosa.  Both 

studies examine the lamina as a circular plate and base the calculation on elastic 

stress-strain theory.  This study assumes isotropy; however, the lamina cribrosa is 

reported to be porous (Morrison, 1995).  Comparing the theoretical values with 

experimental data, Dongqi and Zeqin show a good prediction on a displacement 

versus IOP plot.  Edwards and Good make similar assumptions as Dongqi and Zeqin 

but adjust the Young’s modulus to fit experimental data of displacements.  The 
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predictability of this model is examined by plotting displacement versus radial 

position and shows to be within a reasonable range.  However, the displacement 

versus IOP appears to have an “approximate agreement” (Edwards and Good, p. 218). 

 Two other studies are conducted that use finite element modeling to examine 

and predict optic nerve head (ONH) behavior (Bellezza, Hart, & Burgoyne, 2000; 

Sigal et al.).  Bellezza et al. considered a half, idealized (i.e. perfectly spherical and of 

uniform thickness) sclera shell of solid elements.  This sclera shell is built with two 

layers except at the posterior end where there is only a single layer of elements 

representing the ONH.  The scleral material is adapted from Kobayashi et al.  An 

interesting suggestion in Bellezza et al. is to model within the ONH the axonal 

bundles.  The axonal modulus is an initial guess based on the modulus from 

Kobayashi et al. to be two magnitudes of order less.  Bellezza et al. justify this to be 

appropriate because “the axons are likely to be compliant and unlikely to bear 

significant load” (p. 2994).  The study tests the sensitivity of geometry features with 

imposed IOP.  There is not a validation and Bellezza et al. conclude that more work 

needs to be done and stress that this is an initial investigative study.   

 Sigal et al. stress the importance of geometry and expose the mathematical 

models previously presented (Dongqi and Zeqin; Edwards and Good).  In addition, 

Sigal et al. highlight the differences from the Bellezza et al. model and include 

biofidelic geometry in a progression of models.  The mesh data is extremely refined 

and includes varying sclera thickness at the posterior region.  In addition, a portion of 

the optic nerve is considered and composed of the pia mater, CRA (central retinal 

artery), scleral tissue, lamina cribrosa, and neural tissue.  These values are based on 
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previous literature and are all elastic and isotropic.  The mesh utilizes a shell element 

labeled as a 2-D 8-Node Structural Solid (Ansys, 2005).  Therefore, the model is only 

a cross-sectional view with a slice along the equator.  Sigal et al. determine that the 

CRA does not contribute to the ONH biomechanics.  However, this may be due to the 

simplification of the CRA and the boundary conditions of the CRA wall assumed to 

be attached to the neural tissue.  Sigal et al. decided to investigate another model in a 

parametric study that neglected the CRA.  Despite the biomechanical materials used, 

Sigal et al. stress that very little is known about the CRA and pia mater and so values 

are adapted to these structures.  There is a comparison with tomography images with 

IOP induced.  However, Sigal et al. are careful not to conclude a validation and 

mention, “this finding implies that scanning laser tomography has limited ability to 

estimate lamina cribrosa deformation” (p. 4378).  In addition, Sigal et al. stress, 

“biomechanical effects … depend strongly on scleral properties” (p. 4378).   

 Concerning the vascular physiology Sigal et al. is the only study to consider 

the CRA.  Further details of the vascular physiology are considered by Bill (1993) in 

regards to glaucoma but are only a clinical study.  Gundiah, Ratcliffe, and Pruitt 

(2007) determine the strain energy function for arterial elastin utilizing thoracic aortas 

from adult porcine.  The mechanical testing apparatus employed a biaxial stretcher 

(similar to that used by Rivlin and Thomas in one of the experiments of material 

determination of rubber).  The study concluded with mention that the Mooney-Rivlin 

data did not adequately fit and a neo-Hookean model is able to model the arterial 

elastin much better (coefficients given are 162.57 kPa for the autoclaved sample and 

76.94 kPa for the alkali extracted sample).  However, it is not clear if these 
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mechanical properties for the arterial elastin would be appropriate to use to model the 

CRA in the optic nerve.   

 Also furthering the biomechanical work presented by Bellezza et al., Downs 

et al. (2003)1 present a study that fits the peripapillary sclera (i.e. ONH area) with a 

linear viscoelastic equation.  Sclera tissue is extracted from rabbit and monkey eyes.  

Several samples are taken at different orientations using a cutting die to get precise 

sample dimensions.  However, the thickness measured under a microscope was 

averaged for each sample over the area.  Ultimately, the study determines the long 

and short-term moduli (i.e. E0 and E∞).  In addition, the short and long term time 

constants are determined.  A comparison is made between the rabbit and monkey 

stress relaxation curves.  The monkey sclera is determined to be stiffer and exhibits a 

slower relaxation.  The limitations presented by Downs et al. are the constant 

thickness of the samples and the impossibility of removing the episclera.  In addition, 

orientation is considered when excising the sclera samples, all but radial orientation.  

Downs et al. mention that the fibril orientation in this direction may demonstrate a 

stiffer response, and further, the anisotropy of material cannot be determined from 

tensile tests performed in this study.   

 Burgoyne, Downs, Bellezza, Suh, and Hart (2005) elaborate on the model 

from Bellezza et al. utilizing material properties determined from Downs et al.  A 

technique of continuum finite element models is used where each continuum element 

represents a model of a micro-finite element structure.  The continuum element will 

be the boundary conditions for the micro-finite element structure and the material 

                                                           
1 Downs et al. (2003) and later mentioned Burgoyne et al. (2004) are continuations and refinements from 
the original Bellezza et al. (2000) study. 
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orientation of the continuum will be based on the micro-finite element structure.  

Downs et al. mentions that this provides an optimal computation of the ONH.  Downs 

et al. reports that the initial results from the micro-finite element structure produced 

von Mises stresses many times higher than the continuum element.  This mapping of 

stresses from continuum element to substructure is an interesting approach, and 

Downs et al. plan to extend the study to include astrocytes (Ellis, McKinney, 

Willoughby, Liang, & Povlishock, 1995; Lamb, Harper, McKinney, Rzigalinski, & 

Ellis, 1997) and retinal ganglion cell axons (Triyoso and Good, 1999; Jafari, 

Maxwell, Neilson, & Graham, 1997; Bain & Meaney, 2000).   

 Hayreh examines the optic nerve sheath of rhesus monkeys, humans, and 

rabbits (1984).  Of particular interest is the description of the nerve sheath just 

posterior the sclera attachment is described to be rather bulbous with a larger space 

between the optic nerve and dura.  Observations in cadavers showed wrinkling in this 

area that became bulbous with injection.  These wrinkles are non-existent posterior 

the nerve.  Dissection of the sheath from the nerve was achieved with little resistance.  

Despite this particular paper being a purely clinical and pathological review, it 

highlights important features of the optic nerve and also agrees with the bulbous area 

of the optic nerve from the transverse slices of the Visible Human Project.  Other 

research related to the optic nerve is the various microanatomy studies on axonal 

nerves in guinea pigs.  Guy et al. examine axon and Fiber diameter of guinea pig 

optic nerves in detail and they report a mean diameter of 1.18 micrometers (1989).   

Thresholds of axonal damage reported for the optic nerve in adult male guinea pigs is 

a strain of 0.21 (Bain & Meaney, 2000).  This is considered to be the optimal strain at 
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which false negatives and false positives are prevented.  However, it is not clear if 

these can be translated to humans.  Observations of the fiber alignment of the sclera 

shell and optic nerve sheath are made and compared.  These histological comparisons 

show that the sclera and dura collagen are large and non-uniform as opposed to the 

optic nerve sheath, which is smaller and uniform (Raspanti et al., 1992).  This would 

indicate that both these structures would respond to mechanical loading differently.   

 Human spinal cord pia mater biomechanical properties are investigated 

(Mazuchowski & Thibault, 2003).  In this study, the stretch ratio is determined to be 

1.1 at which plastic deformation started.  This pia mater is considered, as it is one of 

the substructures of the optic nerve.  Further, this study concludes with an average 

elastic modulus of 1.4 MPa.  While this sample was tested in vitro, another group 

(Chang, Hung, & Feng, 1988) did an in-vivo study of the viscoelastic properties of 

the spinal cord of cats.  The test determined the viscoelastic response of the spinal 

cord under a uniaxial experiment.   A comparison of gray and white matter of rabbit 

spinal cord is investigated and the moduli are determined (Ozawa et al., 2001).  The 

value reported by Ozawa et al. is averaged to be 3.3 kPa.  Mechanical tests on 

cadaver spinal cords reveal nonlinear stress-strain response with relaxation observed 

over one minute (Bilston & Thibault, 1996).  The data is fitted to both hyperelastic 

and viscoelastic models.  

 Optic nerve sheath diameter measurements are studied using sonographic 

measurements in normal adults (Ballantyne et al., 2002).  Three measurements are 

made of each eye in the sample pool and within a narrow variation.  The mean optic 

nerve sheath diameter is reported to be 3.2 mm.  This value is within the same range 
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observed in the Visible Human Project transverse slices.  Mean nerve diameters are 

reported to be 3.2 ±0.4 mm anteriorly to 2.6 ±0.4 mm posteriorly (Lam, Glasier, & 

Feuer, 1997).  In addition, the sheath diameter is reported to be 5.2 ±0.9 mm 

anteriorly to 3.9 ±0.4 mm posteriorly by Lam & Feuer.  Ultrasound measurements of 

the optic nerve sheath diameter of children age 10 days to 13 years old are examined 

(Newman et al., 2002).  Also noted in this clinical study are indications of whether 

the optic disc appears normal or has some abnormalities.  This study is particularly 

useful in comparing the scaled infant to clinical observations. 

 

 

Infant Brain Studies/Infant Skull Studies/Adult Brain Studies 

 Morison (2002) created a biomechanical model of the brain and bridging 

veins to model SBS.  The literature review of this SBS is divided in two parts:  in 

support of pure shaking and shaken impact syndrome.  The latter group is fairly 

sparse with Duhaime et al. (1987) being the main proponent of shaken impact 

syndrome.  There appears to be overwhelming support for pure shaking.  Further 

review of brain scaling methods along with describing the importance of the 

rotational component in head injury is reviewed.  Possible candidates for bridging 

veins and brain materials are examined.  In addition, physical testing on a small 

sample of infant bridging veins is conducted with the ultimate conclusion being that 

testing these fragile veins is difficult and suffers from breakage.   

 The sample pool of bridging veins was relatively small and the spread of 

failure due to stretch varied.  A vein could very likely break at 15% strain.  Despite 
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this, there was good repeatability at low strain rates that allowed the usage of the 

force-displacement of a typical sample in the biomechanical model.  This was done 

by specifying spring elements between nodes of the brain (nine in total) and applying 

this force-displacement curve in a non-linear spring formulation.  This allowed the 

complex model to display very simple results that could allow for definitive answers 

on bridging vein stretch.  Morison also mentions that the current quoted ultimate 

stretch of 1.5 may be significantly overestimated and failure can occur, as seen in the 

testing, at rates lower than this.  Essentially, any maximum stretch ratio seen in this 

biomechanical model should be considered a possibility for failure.   

 The brain materials considered in this work are tabulated showing the bulk, 

short and long term modulus, and decay constant.  Morison makes particular 

distinction between the studies that include the cerebrospinal fluid layers (CSF) or the 

lack of this layer.  Either previous works disregard this important layer by fixing 

nodes of the skull to the brain, model with friction (frictionless) contacts, or create a 

“soft solid” layer between the skull and brain.  One of the key features in this 

biomechanical model is the CSF layer that is modeled as a fluid using a coupling 

between the Lagrangian mesh to a Eulerian mesh by an Arbitrary Lagrange Euler 

(ALE) coupling algorithm.  This allows the fluid to be modeled without concern to 

extreme deformation of the Lagrange solid elements that would be considered in a 

“soft solid” layer.  Modeling this fluid layer is particularly important in infants as the 

CSF is up to 10 mm in thickness as opposed to 1-2 mm in adults.  Ultimately, the 

properties of Zhou et al. (1996) are chosen as they provide several data points of the 
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complex shear modulus and a method of conversion to the short and long term 

modulus and the beta constant.   

 The motion of brain model is made to be simple harmonic rotation by 

specifying the moment arm of the neck to the head assuming that the perpetrator of 

the shaking would more likely grab the torso.  The frequency of the shake is 4 Hz and 

is documented in Duhaime et al. (1987) in a plot showing the acceleration trace of 

four peaks with the distance from the start of the first peak to the end of the last peak 

equal to 500 msec.  In addition, this was determined to be the limit that an adult could 

possibly shake an infant.  The amplitude of this harmonic motion is made to be ±60 

degrees and represents the limits of motion of the system.   

 The positional information is then converted to rotational and translational 

velocity and applied to the rigid body skull that encases the brain model.  The 

positioning at the start of the simulation is located at –60 degrees and represents the 

head location close to the torso.  The simulation is run for four cycles, and it is noted 

that the first peak of the stretch ratio is the highest.  This observation is explained to 

be caused by subsequent oscillations having the brain compressed.  At the start of the 

simulation the brain is centered in the skull and would have more travel causing a 

higher stretch ratio.  Morison concludes that the first shake could still be the worst 

however.  

 Ultimately, this work provides valuable insight on bridging vein failure under 

documented motions from previous motions of SBS.  Morison varies the frequency 

and amplitude of the shakes conducting parameter studies and also compares to 

impacts with soft and hard surfaces.  Comparison of the 4Hz, ±60 degree shakes with 
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the hard and soft impact shows stretch ratios greater than 1.2 for the hard surface and 

shake.  The shake is actually a little worse with regard to the stretch ratio than for the 

hard surface.  The soft surface impact shows the stretch ratio between 1.1 and 1.15.  

Morison mentions that future work would include improvements to the brain model, 

parameter studies on different height/weights, more motion studies, and inclusion of 

eye components to investigate retinal hemorrhaging.   

 The Morison study made the assumption that the skull is rigid when compared 

to the brain dynamics.  Typically, this assumption has been made for investigative 

studies looking at brain damage and axonal injury (Brands, 2002; Brands, 

Bovendeerd, & Wismans, 2002; Prange & Margulies, 2001; Zhou, Khalil, & King, 

1996).  One study investigates (Lapeer & Prager, 2001) the biomechanics of the fetal 

skull subject to uterine pressures under birth.  The skull is modeled using laser-

scanning techniques to create a detailed final mesh with separate fetal skull bones 

connected by fontanelles and sutures using a Mooney-Rivlin model with C1 = 1.18 

MPa and C2 = 0.295 MPa (Rivlin & Thomas).  These values are used from previous 

studies of fetal dura mater.  The cranial bone of the infant is thin and yielding uses an 

orthotropic material formulation with E1 = 3.86 GPa, E2 = 0.965 GPa, ν12 = 0.22 and, 

ν21 = 0.055.  Lapeer & Prager conclude that the deformation of the fetal skull is in 

good agreement with clinical experimental data.  Marguiles and Thibault (2000) also 

investigate the infant skull and suture properties.  Measuring infant cranial bone and 

porcine cranial bone showed similarities between the two allowing further 

investigation into the infant porcine suture properties as well.  An idealized skull 

mesh with the sutures was created for finite element analysis.  A brain mesh using 
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linear viscoelastic solid properties (G ∞ = 2.32x10-3 MPa, G0= 5.99x10-3 MPa and β 

= 0.09248 s-1) is modeled and shares the same nodes as the skull cap modeling no slip 

at the interface.  Impacts determined by Duhaime et al. (1987) are used for loading 

conditions, and the results conclude that the cranial suture is not capable of absorbing 

shock in the infant. This shock absorption increases with age and while the pliant 

skull and sutures are important for newborns, this does leave them vulnerable to 

injury.   

 Considering axonal injury in infant brains, Prange and Margulies (2001) 

examined 3-5 day-old piglet brains subjected to non-impact rotations.  The locations 

of injury in the white matter of the axons were documented, and a finite element brain 

using material properties based on Ogden hyperelastic and viscoelastic material is 

made.  The mesh, tetrahedral, contained 49565 elements encased in a rigid skull.  

Angular velocity is applied and the locations of axon injury previously determined in 

the white matter are compared to the equivalent element locations.  The results 

yielded show to be greater than adult guinea pig axonal threshold strain at 21%.  

Metz, McElhaney, and Ommaya (1970) make a comparison between elasticity of live, 

dead, and fixed brain tissue.  The experiment involved insertion of a cylinder into the 

brain tissue that was encased in a rubber membrane, which was expanded with fluid.  

This tube was inserted in anesthetized adult Rhesus monkeys and then again in 

another location after sacrificed.  The experiment is repeated again after perfusing 

fluid into the heart.  The modulus2, E, is determined by (2.0) and plotted versus 

inflation.  It is observed that the modulus increases after death and fixation and that 

                                                           
2 Terms and nomenclature are with respect to the sourced documents.  In this case Poisson’s ratio is labeled 
as µ where typically it is referred to as ν in other texts. 
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the elastic modulus increases concavely upward with strain varying between 1x105 

and 3.5x105 dyn/cm2. 
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Where P1 = internal pressure, r1 = internal radius, r2 = external radius, E = elastic 

modulus, µ = Poisson’s ratio, and δ = radial deformation.   

 Margulies and Thibault (1992) propose a criterion to use for diffuse axonal 

injury (DAI) in place of the current HIC3 (head injury criteria).  In this research they 

consider animal studies, analytical model experiments, and physical models.  Animal 

studies consisted of inducing comas in baboons by moving the head suddenly in 

rotation without impact.  The brains are then excised and examined.  The threshold of 

injury is compared to the load time history.  The analytical models utilize a 

viscoelastic solid material for the human and baboon brain simulations.  The physical 

models involved filling human and baboon skulls with a transparent material 

representative of the brain.  Deformations of an orthogonal grid inserted into this 

material are recorded, and the shear strain is noted.  Compiling all of these techniques 

concludes the critical strain ranged from 0.05 to 0.10 for moderate to severe DAI in 

areas of interest.   

 Ellis et al. (1995) created a model to characterize the stretch-induced injury of 

cells of brain origin.  This involved using rat cortical astrocytes by creating a cell 

culture on a silastic membrane and inducing controlled stretch by applying a pressure 

pulse.  Ellis et al. record the membrane deformation versus pressure.  The 

                                                           
3 The head injury criterion (HIC) is an injury index for the head defined by the U.S. government 
(MADYMO, 2004). 
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morphologic examination of the astrocytes did not detach from the membrane.  Some 

of the cells did show swelling when exposed quickly to a deformation.  The test is 

developed to provide a simple, reproducible in vitro method of studying the 

mechanical injury to cells.   

 Zhou, Khalil, and King (1996) built a three-dimensional model of the human 

head with rigid body skull and viscoelastic brain material.  Morison (2002) uses the 

viscoelastic materials from Zhou, Khalil, and King (1996).  Deducing the complex 

modulus from Shuck, Haynes, & Fogle (1970) the short and long term shear modulus 

and beta constant is determined using the empirical inter-conversion equation from 

Christensen (1982).  The study differentiated between the white and gray matter 

assigning different short and long-term shear moduli but keeping the same beta 

constant.  From Zhou, Khalil, and King (1996) the G0 = 41 kPa, G∞ = 7.6 kPa, and β 

= 700 s-1 for white matter.  G0 = 34 kPa, G∞ = 6.3 kPa, and β = 700 s-1 for gray 

matter.  The original study (Shuck, Haynes, & Fogle, 1970) determined the complex 

shear moduli by testing specimens from human and monkey brains.  Further, Zhou, 

Khalil, and King (1996) scaled impact test results using Holbourn’s scaling law as a 

basis to scale from rhesus monkey brain to human.  Not only did they do mass 

scaling, but they considered time scaling as well.  They conducted parametric studies 

and showed that material properties of the brain have influence over the stretch of the 

parasagittal bridging veins.   

 An investigation of the pressure-volume relationship of the CSF space has 

been done (Sahay & Kothiyal, 1984).  From this, a qualitative study discusses a new 

modeling technique using a hyperelastic spherical model. Comparing to an actual 
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CSF pressure-volume curve shows a similarity when using this model.  One of the 

deficiencies in this model is that the hyperelastic model does not take into account the 

history-dependence of soft biological materials.  Sahay and Kothiyal highlight the 

fact that, while more accurate, viscoelastic modeling would involve more complexity 

than the current proposed model using two constants.   

 Miller (1999) determined the mechanical properties of the brain using a 

combined hyperelastic and viscoelastic formulation.  Porcine brain was used in this 

study and procedure compressed the sample in unconfined compression.  Using these 

results and varying the loading velocity so as to determine time constants, a total of 

four parameters are left to be determined.  This formulation agreed very well with 

finite element analysis and has the benefit of modeling large deformations and 

requiring fewer parameters than in non-linear modeling.   

 Lippert, Rang and, Grimm (2004) determine the material properties of the 

brain at frequencies greater than 400 Hz.  The argument is made that the simulation 

range includes higher frequencies and therefore material testing should be done in 

higher frequencies as well.  The testing approach involved separating a lamb brain 

into white and gray matter with no regard to maintaining cell structure.  Intentionally 

disturbing the fine structure allowed for the brain material to become homogenized.  

In addition, a sample from more than one lamb is used with the understanding that the 

study is to consider the average material properties.  The testing method employed 

involved stuffing the brain matter into test tubes and sending a pressure wave through 

the material.  Referred to as the “wave-in-a-tube” (Lippert, Rang, & Grimm, 2004) 

method, the pressure wave undergoes partial mode conversion and is turned to a shear 
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wave. Once at the other end the wave is converted back to a pressure wave.  The 

difference in the wave can be used to determine the elastic material properties as long 

as the material is homogenous (explaining the reasoning behind mixing up the brain 

matter).  This method is used to determine the complex material properties but is 

unable to determine the components of those properties.  Thus the complex shear can 

be determined, but the G’ and G” cannot be found (2.1).   

  G* = G’(ω) + iG”(ω)   (2.1) 

Where G* is the complex shear modulus, G’ is the storage shear modulus, G” is the 

loss modulus. 

This study calculates the complex bulk modulus while other researchers base their 

values on observations.  Typically, the standard value for Poisson’s ratio is 0.5 for 

brain matter.  This is a valid assumption based on observations that the material is 

incompressible.  This study reports a range within 0.3140 to 0.4715 for Poisson’s 

ratio and is expected, as the moduli determination at the higher frequencies is much 

larger.  The study investigates pressure waves all the way to the 10 MHz range.   

 Brands (2002) built a model containing a non-linear viscoelastic formulation 

for use in predicting brain injury in head impact simulations.  In this work, numerical 

accuracy is discussed.  Wave propagation inside brain tissue should be considered, 

and the rule of thumb of 24 elements per wavelength is suggested for accurate 

modeling.  In addition, FE codes using explicit time integration methods such as 

MADYMO (2004) should use a time step such that speed of the fastest wavelength 

multiplied by the time step is smaller than the smallest element size in a given mesh.  

A highlight of this work is the work on non-linear viscoelastic material development.   
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 Oscillatory strain loading is applied to determine linear viscoelastic properties, 

and the stress relaxation test is used to determine the non-linear portion of the 

viscoelastic properties.  The bulk modulus is determined from ultrasonic experiments 

and is equal to the dilatation wave speed through the material squared multiplied by 

the density of the material.  Solid brick elements are used with reduced integration to 

prevent mesh locking.  Simple shear experiments are performed on a rotational 

viscometer using porcine, gelatin, and silicone gel.  The latter two have been used to 

mimic brain material.  A three-dimensional model is studied containing the skull, 

meningeal layers and CSF, and brain tissue.  The model is composed of solid brick 

elements and is used to investigate the effects of shear softening and to compare 

different modeling parameters.   

 Molloy et al. (1990) determine the force needed to traverse a small metal 

sphere through brain material using in vitro canine specimens.  This group concluded 

the force needed to move a three-millimeter sphere to be 0.07 ±0.3 N.  The purpose of 

the work is to investigate the possibility of moving a thermal-seed through the brain 

material for use in eradication of brain tumors.  Unlike the work of Weber and 

Landwehr (1982) and Lee, Litt, and Buchsbaum (1992), which use manipulation of 

metallic spheres for mechanical property determination, no information is provided 

on the displacement-force characteristics that would be suitable for use in 

biomechanical modeling.  Continuing a review of magnetic manipulation 

instrumentation, Gillies et al. (1994) provide a comprehensive overview of the 

technological advances of this method. 
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Vitreous Body 

 The importance of the vitreous in SBS is considered (Levin; Andrews).  

Unlike the Power and Power et al. model, the vitreous is a viscoelastic gel-like 

substance (Wolter, 1961) and should not be considered linear elastic.  Tokita, Fujiya, 

and Hikichi (1984) measured the viscoelastic properties of a bovine vitreous to 

determine the complex shear modulus4.  The storage and loss shear moduli are plotted 

versus frequency.  The test apparatus employs a torsion pendulum.   

 Bettelheim and Wang (1976) used bovine eyes as well to determine the 

complex modulus.  The testing in Bettelheim and Wang involved the placement of 

chucks in directions running laterally, along the Cloquet’s canal, and obliquely.  

Careful cuts are made and the chucks are placed.  From this setup, the storage and 

loss moduli are examined at different frequencies for different samples.  There are 

small differences, but Bettelheim and Wang explain that these differences are 

consistent and probably are due to the collagen fibers running parallel to the 

Cloquet’s canal.  Bettelheim and Wang test the viscoelastic properties of the vitreous 

using an in vivo method while Tokita et al. employ an in vitro procedure.   

 The concern with the shearing of the in vitro procedure can cause the collagen 

fibers to be compromised (Weber & Landwehr, 1982).  Therefore, the vitreous would 

appear to be weaker than it actually is.  Weber and Landwehr test the vitreous by 

inserting a small steel sphere in the vitreous in an attempt to leave the vitreous with 

the collagen fiber network intact.  Assuming a Voigt-Kelvin model (Flügge, 1967; 

Drozdov 1998), an equation of motion is assumed for this system given the mass of 

                                                           
4 Measured in the frequency domain, the complex modulus takes the form: G*

α(iω) = G’α(ω)+iG”α(ω) 
where G’ is referred to as the storage modulus and G” is the loss modulus (Christensen, 1982) 
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the small sphere and force amplitude applied sinusoidally.  In order to achieve this 

model, Weber and Landwehr place coiled magnets laterally on either side of the eye.  

Periodic excitement of the sphere is achieved by energizing these magnets alternately.  

Plotting this information, the damping and spring constant can be determined which 

describe the vitreous material.  This approach is similar to a viscoelastic material with 

a spring and damper in parallel (Flügge, 1967).   

 In an extended study, Weber, Landwehr, Kilp, and Neubauer (1982) examine 

a larger sample of pig eyes and include the examination of human eyes.  Results of 

the testing determined that the vitreous response of human and pig eyes are similar.  

Analytical and numerical solutions of the vitreous humor under saccadic movements 

have been performed (David et al., 1998).  This study considers retinal detachment 

due to tears or holes are more susceptible in myopic eyes.  This time dependent shear 

motion is modeled using material properties fitting a Maxwell-Voigt model from 

parameters determined from Lee, Litt, and Buchsbaum (1992).  The work shows the 

analytical and numerical solutions to be in good agreement with results showing the 

motion of vitreous to be dominated by circumferential velocity following the motion 

of the eye wall.  

 The rheological properties of the human vitreous are measured (Lee, Litt, & 

Buchsbaum, 1992) using a microrheometer.  Unlike some rotational rheometers, this 

test leaves the delicate structures of the collagen fibers intack.  A four-parameter 

model is considered when testing the creep response of the viscoelastic vitreous.  

From a sample of twenty eyes, each is sectioned into three parts, anterior, central, and 



   37

posterior.  The four-parameter model gives six parameters that are used in comparing 

the three areas of the vitreous of the human:  

  µm = unrecoverable viscosity in units dyne-sec/cm2 

  µk = internal viscosity in units dyne-sec/cm2 

  τm = relaxation time in seconds 

  τk = retardation time in seconds 

  Jm = instantaneous elastic compliance in units cm2/dyne 

  Gk = internal elastic modulus in units dyne/cm2 

 The tabulated results are compared and show the unrecoverable viscosity to be 

almost 3.5 times greater in the posterior region of the eye as compared to the anterior 

region.  The internal elastic modulus is twice as large in the anterior region of the eye 

as compared to the posterior region.  There are differences in all the variables but 

these appear to be the greatest.   

 In a second study a comparison is made between the bovine and porcine 

vitreous and the human (Lee, Litt, & Buchsbaum, 1994).  The same methodology is 

considered when measuring these samples comparing the six parameters of the 

species together.  The unrecoverable viscosity is the greatest in the bovine increasing 

from anterior to posterior with posterior magnitude of 250.  The porcine is 

considerably lower in magnitude (125) with the anterior and posterior portions 

showing similar values as opposed to the central, which is extremely small (18).  The 

lowest values are from the human, but like the bovine values increase anterior to 

posterior with the posterior magnitude of (50).   
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 A similar trend in relative proportions is examined with the internal viscosity 

parameter as the unrecoverable viscosity.  The posterior magnitude of the bovine (20) 

is four times that of the human posterior region and almost double the porcine.   

 The compliance parameter in the bovine appears to be uniform in all three 

sections with the anterior being the greatest (0.06).  The porcine samples show the 

anterior region to be the greatest of all regions from all three species with a value 

approaching 0.08.  The central portion of the vitreous for the porcine is low by four 

times the anterior region and the magnitude climbs back up in the posterior region to 

0.05.  The human has the lowest compliance of all with the anterior region being 

extremely low by three times the central and posterior portions, which are about 

equal.   

 The internal elastic modulus for the bovine increases from anterior to 

posterior with the posterior magnitude over 25.  The porcine is about 10 and is fairly 

uniform through the three sample areas.  The human anterior internal elastic modulus 

magnitude is comparable to the bovine posterior while a sharp decrease in value is 

indicated in the central and posterior to levels just greater than the porcine (porcine is 

around 10 and human anterior and posterior is around 12).   

 The relaxation time is relatively the same in the bovine with the posterior 

having a higher value greater than 10. Comparably, the porcine anterior and posterior 

(a little lower for the posterior) are in the 8-9 ranges.  However, the central portion of 

the porcine has an extremely low value of just greater than 2.  The human relaxation 

time is extremely low compared to the bovine and porcine with anterior and central 
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values approximately ¼ magnitude.  The posterior of the human has a relaxation time 

approaching 2.   

 The last parameter in the Lee, Litt and, Buchsbaum study compares the 

retardation time between the three species.  The bovine samples decrease going 

anterior to posterior with anterior magnitude close to one and the posterior around 

0.7.  As seen in other parameters (unrecoverable viscosity, internal viscosity, elastic 

compliance, and relaxation time), the porcine retardation time for the anterior and 

posterior is significantly greater than the central portion with values around 0.8 for 

the anterior and posterior and ½ that for the central.  The human as in the other 

parameters is lower than the bovine and porcine.  The values increase going anterior 

to posterior unlike the bovine, which decreases in this manner.  The magnitude of the 

retardation time for the human is around 0.3 anterior increasing to around 0.4 

posterior.   

 As can be seen in this study (Lee, Litt, & Buchsbaum, 1994), the vitreous is 

extremely non-homogenous throughout the sample.  In addition, adapting mechanical 

properties from other species needs scrutiny as the values of the measured parameters 

show great variation between them.  Supplementing this work, Lee, Litt and, 

Buchsbaum (1994) also look at the concentration of electrolytes, collagen, and 

hyaluronic acid in each of the three species for each sample divided into anterior, 

central, and posterior sections.  This study also showed considerable differences 

between the species.  The vitreous of the eye (for porcine) is made up of hyaluronan 

forming a gel and is supported by a fine collagen mesh of type II and IX fibers 

(Noulas et al., 2002).  The hyaluronan (HA) concentrations, in human eyes, increase 
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going anterior to posterior while the viscosity decreases in this order (Bettelheim & 

Zigler, 2004).   

 Vitreous obtained from an autopsy of an infant (9-month-old) is almost 

entirely gel and retains it shape when placed on a surgical towel exposed to air 

(Sebag, 1991).  Changes in the physical properties are noted when the vitreous is 

introduced to temperature changes (Kawano, Honda, & Negi, 1982).  The viscosity is 

reduced as the vitreous is heated, while freezing was observed to have less of an 

effect.  Tensile tests have been conducted on vitreous membranes by embedding silk 

sutures in rabbit eyes (Numata, Constable, & Whitney, 1975).  After two weeks the 

rabbits are killed, and the membrane is prepared for tensile testing.  Separate plots for 

elongation and force in milligrams is reported.  Type I membranes broke with 2 to 16 

grams of force and with a corresponding elongation of 127- 200%.  Type II 

membranes broke with 200 milligrams to 2 grams of force and the elongation was 51-

152% before breaking.  The last, type III, broke with 200 milligrams to 5.5 grams of 

force and elongated to 53-186% before breaking.   

 The acoustic parameters are determined for human and pig eyes and compared 

(Thijssen, Mol, & Timmer, 1985).  The sound velocity is measured for the cornea, 

vitreous humor, lens, retina, choroids, and sclera.  The vitreous humor of the porcine 

is measured to be 1497 ±2 ms-1 compared to the human with value 1506 ±3 ms-1.   

 Buchsbaum et al. (1984) model the vitreous humor as a homogenous 

viscoelastic sphere.  This study employs the moduli from Zimmerman (1980).  

Zimmerman (1980) determined the elastic shear modulus to be ½ dyn/cm2 based on 

methods where the subject tracks light scattering patterns caused by inducing motion 
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in the vitreous humor.  Zimmerman determined from this study that the vitreous 

humor is over-damped.    Buchsbaum et al. mentions that the Zimmerman method 

deviates from their in vitro values of porcine vitreous and also from Bettelheim and 

Wang (1976) for the bovine concluding that there is probably significant differences 

in human gel properties.   

 The mechanical properties of hyaluronic acid are investigated (Gibbs, Merrill, 

& Smith, 1968).  The viscoelastic response is measured in an oscillating Couette 

rheometer.  It is observed that the moduli of the hyaluronic acid are a function of 

concentration, temperature, pH, and ionic strength.  However, the vitreous properties 

are expected to differ as the collagen network has a great influence on the viscosity 

(Weber & Landwehr, 1982).   

 Nickerson et al. (2005) creates a cleated rheometry tool for use in testing the 

mechanical properties of the vitreous humor.  This tool proved valuable in preventing 

slip and thus provides viscoelastic properties that are higher than previously 

published.  The vitreous humor of the eye is described to be a network of collagen 

type II fibrils with coils of hyaluronan filling the spaces between the fibrils.  The G’ 

and G” are reported for bovine vitreous to be 30 Pa and 16 Pa respectively.  The G’ 

and G” for the porcine vitreous is considerably lower than the reported bovine 

vitreous G’ and G” with values equal to 9.5 Pa and 3.6 Pa respectively.  In addition, 

the steady state values for bovine are reported to be 6.5 Pa for G’ and 2.0 Pa for G”.  

For porcine, the steady state values are 2.6 Pa for G’ and 0.65 Pa for G”.  Nickerson 

et al. notes that the initial moduli may be closer to the in vivo case while the steady 

state moduli represents a minimum value (five times lower than the in vivo moduli).  
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A small puddle of liquid is left behind over a period of time explaining the lower 

moduli values of the steady state.  However, Nickerson et al. maintain that these 

values are greater than the current viscoelastic properties published.   

 On the replacement of the vitreous, Chirila et al. (1998) and Dalton et al. 

(1995) consider various polymers.  Dalton et al. provide a comprehensive review of 

previous mechanical modeling of the vitreous (influenced by the viscoelastic studies 

and not the work of Weber and Landwehr (1982)).  They consider potential 

substitutes that would have similar magnitudes as previous viscoelastic studies (ten 

years before the Nickerson et al. study).  Of particular importance is the selection of a 

material that could be injected through a needle and still maintain the proper G’ G” 

moduli.   

 

 

Retina Properties/ Choroid Properties/ Retinal Adhesion/ Detachment Studies  

 Mechanical properties of the retina in simple elongation have been performed 

(Wu, Peters, & Hammer, 1987; Jones, Warner, & Stevens, 1992; Stevens et al., 

1992).  Wu, Peters and, Hammer explain that there are several studies that investigate 

the sclera strength and disregard the retina and choroids since these structures are 

several magnitudes weaker and can be neglected.  In this work retina specimens are 

prepared from bovine eyes.  The isolated retina is then sectioned into 13 mm x 5 mm 

strips.  The thickness measurement is not attempted in this study; however, a figure 

showing the varying thickness in the human eye is illustrated.  Three locations are 

selected for the specimens (meridional with meridional vessel, meridional without 
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visible vessel and, equatorial).  The strips are fastened to the testing apparatus using 

an adhesive (super glue) and then soaked in a physiological saline solution during the 

testing process.  Applying three loading cycles preconditions the strip samples. It 

appears that this was done to remove the hysteresis effects as observed in the force 

versus normalized displacement curves.  The effects of strain rate are examined and 

the retina is shown to be sensitive to strain rate.  Failure of these samples is noted 

with loading of 0.2 grams to 0.33 grams with an extension ratio 1.7 to 1.95.  

Comparing the tensile strength with the adhesive strength of the retina, it is noted that 

the tensile is “roughly twice the adhesive strength” (Wu, Peters, & Hammer, p. 67) 

and is compared with deGuillebon and Zauberman (1972).  Concluding with the 

elastic modulus, it is compared to that of choroidal strips to be an order of magnitude 

less.  The tangent modulus is 0.46-0.58 x 104 Pa at a middle stress level of 1.2 x 103 

Pa.   

 A mathematical model is developed by Jones, Warner and, Stevens (1992).  In 

this study the retina is regarded as an elastic membrane or sheet.  The thickness for 

this study is assumed to be 0.1 mm and the Poisson’s ratio is set to 0.5 for 

incompressibility.  The experimental portion of this study involves excising fresh 

bovine retina and stretching the sample onto a metal washer with known inner and 

outer diameter.  To maintain a non-slip boundary on the washer butylacrylate cement 

is applied to the retina.  The sample is then placed in a humid environment to prevent 

the sample from drying out.  Then a suture is made with the center of the retina and 

drop of glue runs down the thread.  Measurements of the height and traction force are 

made.  Finally, utilizing the mathematical model by a simple Hooke’s law 
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relationship, the calculated force predicted by the model is compared to the 

experiment giving a seven percent difference in the forces.  From this, the elastic 

modulus is determined to be 2x104 Pa and is comparable to the work of Wu, Peters, 

and, Hammer (1987).   

 Graebel and van Alphen (1977) performed uniaxial measurements on choroids 

and sclera samples from humans and determined the stress-strain behavior of the 

scleral strips follow an exponential trend while the choroidal strips follow a power 

law.  Specimens are attached to a loading machine with grips made of sand paper 

glued to the samples.  Strain rate is rather slow with the displacement rate set at about 

one mm/min.  The thickness of the samples is assumed to be 0.16 mm for the 

choroids and 0.85 mm for the sclera samples.  The elastic modulus is determined to 

be 9.68x104 Pa (this is noted to be the tangent modulus).  Graebel and van Alphen 

emphasize that these samples are taken post mortem, same as Moses (1985), causing 

the blood in the veins to have drained, which could cause variations from the actual 

living choroidal elastic modulus.   

 Moses (1985) determines the modulus using an assumed thickness of 0.002 

cm for strip samples 1 cm by 1 cm.  The values are tabulated in two sections 

(meridional strips and equatorial strips) and organized by age.  The Young’s modulus 

for the meridional strips on average seems to be larger than the equatorial strips.  

Averaging the values for the initial test, the Young’s modulus for the meridional 

strips is 3.16 x 104 Gm/cm2 and 1.28 x 104 Gm/cm2 for the equatorial strips.  The 

elongation versus grams for eye number seven is plotted and shows the hysteresis 
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loops during the repeated stress-relaxation cycles indicating the very non-linear 

nature of this material.   

 Friberg and Lace (1988) conducted simple tension experiments of choroids 

and sclera strips from the human eye bank.  Testing is done in different locations and 

orientations of the eye (anterior strips, posterior strips and, radial strips proximal the 

equator).  The average modulus for the choroidal strips is 2.2x105 Pa for the anterior, 

7.5x105 Pa for the posterior, and 8.2x105 Pa for the radial strips.  The average failure 

stress is 3.3x105 Pa.    

 Coleman and Lizzi (1979) determine the in vivo choroidal thickness using 

radio frequencies.  This method allows for measurements to be taken from the living 

state and the accuracy is better than 20 µm.  The retinal thickness is also displaced so 

that it can be subtracted from the thickness of the retina-choroid.  This retina 

thickness is derived spectrally and is 170 µm in the location of the signal.  The 

choroidal thickness is greatest in the posterior pole and is determined to be 420 µm.  

This is larger than any previously reported values.   

 Zauberman and deGuillebon (1972) investigate traction force in rabbits by 

anesthetizing the rabbits and inserting a glass capillary tube into the eye. 

Cyanoacrylate adhesive is then inserted into the tube so as to attach the glass tube to 

the retina.  The tube is then pulled inducing retinal detachment in vivo in the living 

rabbit.  The detachment diameter in the living rabbit was observed to be between 0.6 

and 0.9 mm.  As the tube is elevated, the retina began to tear at a height range of 0.2 

to 0.3 mm.  The tip of the tube broke away at a height of 0.7 to 1.1 mm.  The rabbets 

are then killed and after a time lapse similar experiments are performed.  The 
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diameter of detachment is noted to be 3 to 8 times larger than in the living rabbit.  

Tears in the postmortem test are observed when the glass pipe is elevated 0.2 to 0.4 

mm in height and total break away occurs at an elevation of 1.8 to 2.4 mm.   

 In another study, Zauberman and deGuillebon (1972) performed tests on owl 

monkey and albino rabbit eyes.  In this experiment the traction speed is varied and a 

force transducer is added to the instrumentation.  The study quantified low rates of 

traction to be between 0.2 and 0.8 mm/min, medium traction rates to be 8.5 and 21.5 

mm/min and high rates to be 42.5, 85.0, and 425.0 mm/min.  Low traction rates 

resulted in higher retinal detachments and larger areas of detachments.  Increasing the 

detachment rates resulted in lower and smaller retinal detachments.  The force versus 

detachment is shown for the traction rate of 8.5 mm/min.  From start of detachment to 

the start of the tear the slope is roughly 150 mg/mm.   

 Retinal traction is determined in vivo by Kain (1984) who investigates the 

retinal adhesion between the retina and pigment epithelium.  The method involves 

inserting micropipette into the retina pigment epithelium layer and injecting Ringer’s 

solution.  A second pipette is located on the surface of the bleb (retinal bubble) and 

attached to a pressure transducer.  The pressure versus time is recorded.  This test is 

performed in vitro.   

 DeGuillebon and Zauberman (1972) measure the force and elongation 

associated with retinal pealing of retina sample strips 6.5 mm wide by 7 mm in 

length.  The test setup involves placing the sample strip on a suction platform inclined 

at 23 degrees.  The end of the retina is glued to a metallic rod that contains a 

transducer to measure force.  The suction platform is then moved at various rates (8.5, 
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42, and 210 mm/min).  It is observed at pealing rates 2 and 8.5 mm/min the retina 

pealed smoothly from the pigment epithelium.  At the rate of 42 mm/min the choroid 

would detach from the sclera initially.  At the rate of 210 mm/min the retina pealed 

away erratically and choroids would partially become detached as well.  Plots of the 

force versus pealing rate and percent elongation versus pealing rate are displaced. 

Cross plotting these two graphs would yield force versus percent elongation and 

would be suitable for finite element software.   

 Marmor, Abdul-Rahim and, Cohen (1980) also performed strip testing similar 

to deGuillebon and Zauberman (1972).  Dutch rabbit samples are taken and the strips 

are placed in a water bath to prevent dehydration.  The force versus time of the 

pealing is displaced.  The experimental setup used the same 23-degree orientation as 

deGuillebon and Zuaberman (1972) in order to minimize tissue drag in the bath 

medium.  Initially, the force spikes past 100 mg and drops down sharply to a 

relatively constant value of 20 mg for approximately 25 seconds.  Next, the study 

induced local detachments in vivo by injecting fluid to create blebs in the retinal 

surface.  Then the time for resorption of the retina is recorded in a plot that graphs 

resorption time in minutes to bleb area in mm2.  Visually, the median resorption time 

is about 150 minutes for a bleb area of 2.5 mm2.  Other studies would follow that 

would vary the parameters by studying the resorption in cats (Negi & Marmor, 1986).   

 It is also noted that retinal adhesion deteriorates rapidly after enucleation  

(Endo, Yao, & Marmor, 1988) and a streamlined method is developed for in vitro 

testing of retinal adhesiveness in rabbits.  This study ranked the pigment adherence 

based on a visual scale and plotted versus pealing rate.  Another study investigated 
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the retinal adhesiveness in monkey retina and plotted the percent retinal pigment to 

enucleation time and incubation time (Endo, Yao, & Marmor, 1988).  It is noted that 

the adhesiveness is sensitive to temperature, pH, and concentrations of calcium and 

magnesium.   

 Kita et al. (1989) and Kita et al. (1990) determined the adhesive force in 

Dutch rabbits to be 1.8x102 dyne/cm from a sample of 84 and 87 respectively.  A 

small dome-shaped retinal detachment (referred to as a bleb) is made in the posterior 

pole of the retina.  This bleb is considered as an idealized sphere and the subretinal 

and intravitreal pressures are measured along with the radius of the bleb.  Then (2.2) 

is used to determine the retinal force.  

  PS – PV = 2T / R  (2.2) 

Where PS is the subretinal pressure, PV is the intravitreal pressure, T is the tension, 

and R is the radius of the sphere (bleb).   

 Kita and Marmor (1992) would later conduct a similar study comparing 

rabbit, cat, and monkey eyes.  The retinal adhesive force for them is noted to be 1.0, 

1.8, and 1.4x102 dyne/cm.  There appears to be a decrease in the rabbit eyes from 

both Kita et al. studies.  Other variations related to bleb creation and adhesive force 

investigates the effects of calcium concentrations (Kita, Negi, & Marmor, 1992) and 

other agents used to induce bleb creation (Kita & Marmor, 1992).  

 

 



   49

Muscle Modeling Studies 

 Six extra-ocular muscles control the eye.  Interestingly, the eye represents a 

simple joint (Robinson, 1981).  Each pair of muscles controls a plane of motion and 

the eye center becomes the joint.  In most of the studies considered, muscles 

measured in length are converted to degrees or radians by using the globe radius.  

Muscle modeling in general is comprehensive and describes the phenomenological 

properties using the Hill type description (Hill, 1950).  The muscle is composed of a 

passive element in parallel with a series and contractile element in serial (Maxwell 

model)  (Hatze, 1977).   However, the muscle can also be modeled as a Voigt model 

with the passive and contractile element in parallel which is in series with the series 

element (Winters, 1985).  Zajac (1989) details muscle-modeling fundamentals using 

the Hill type formulation.  The MADYMO software models the muscle using a Voigt 

model.  The original work from Hill considered the heat of shorting of a muscle and 

(2.3) that resulted is used to determine the contractile force-velocity relationship.   

  

( )
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v

+
−

= 0

   (2.3) 

Where P is the force exerted by the contractile element, v is the velocity at that force 

P, P0 is the isometric tension, and a and b are constants.  These constants are 

properties of the muscles and determine the shape of the force-velocity relationship 

curve.   

 Winters (1985) and Winters and Stark (1985 and 1988) tabulate various 

muscle properties using the force-velocity relationship from the classic Hill equation 

in a modified form in order to streamline the usage of the shape parameters.  Using a 

dimensionless Hill parameter (called Af in Winters and Stark 1988), the peak 
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unloaded shortening velocity can be determined based on the rest length of the 

muscle and the fraction of fast fibers in the muscle.   

 The dimensionless Hill parameter, fast fiber ratio, and muscle lengths are 

tabulated for elbow flexion, knee flexion, ankle dorsal flexion, ankle plantar flexion, 

wrist flexion, wrist extension, and, eye rotation.  The eye rotation parameters, which 

are of particular interest, are for horizontal motion as elaborated in Winters (1985).  

Parameters in this study are also given to determine the series elastic and passive 

elastic properties.  Last, the excitation and activation time constants are given.  

Winters and Stark (1985) list parameters as well and perform sensitivity analysis.  

There are some slight variations in the tabulated values given from Winters and Stark 

(1988).   

 Lehman and Stark (1983) utilized mathematical muscle modeling in 

perturbation analysis of the eye, head, and arm movements.  Each movement is 

originated from a second order differential equation with a force function.  The plant 

parameters (inertial, viscous, and elastic) for the eye are given.  A unique property of 

the eye is that these values can be determined by isolating the muscle.  Concerning 

the rotational properties of the eye, the measurements are taken during strabismus 

surgery.  Collins, Scott and O’Meara (1969) provided these values by isolating the 

contributions from the muscle.  Lehman and Stark (1979) investigate saccades in eye 

movement using non-linear and linear models based on the Hill force-velocity 

equation.  Also, Winters, Nam, and Stark (1984) investigate saccadic eye movements 

and the slower eye movements using the mathematical modeling.  Stark et al. (1980) 

create a helmet apparatus to measure movements of the head and eye saccades.   
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 Rath (2005) studies the effects of extraocular muscles on the sclera tabulating 

the width, length, physiologic cross sectional area, and the maximum force.  The 

force equation uses a constant of 30 N/cm2 and is the same value used in Winters and 

Stark (1988).   

 Van der Horst (2002) models the human neck response in accident collisions 

using the Hill type muscle model with varying levels of activation.  This work is of 

particular interest as the MADYMO software is utilized and provides insight into the 

methodology of determining and inserting the necessary parameters unique to this 

software package.  The passive muscle behavior is examined and follows a similar 

methodology as Deng and Goldsmith (1987).  Also highlighted, is the process of 

muscle activation.  Two first order differential equations are solved.  The first 

concerns the neural excitation and the second is the active state dynamics.  The time 

constants from Winters and Stark are used to determine the time signals.  

Interestingly, Winters (1985) exhaustively tested the response of the eye muscles for 

horizontal motion by applying various neural step functions.   

 Other systems are utilizing these hill type muscles.  Delp et al. (1990) and 

Delp (1990) consider the lower extremity modeling using mathematical muscles.  

Biomechanical modeling during gait of the ankle is considered (Buchanan et al., 

2005) using the Hill muscles.  Crandall et al. (1996) investigate the biomechanics of 

the lower extremities testing the passive and active responses.  He (1988) models the 

cat hind limb using the Hill type muscles.  Woittiez, Huijing, and Rozendal (1983) 

investigate the twitch forces in rats and diagram the active length-force 

characteristics.  Durfee and Palmer (1994) use the Hill type muscles doing 
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experiments on hind-limb muscles in cats to determine the parameters rather than 

acquire them from literature.    

 Finite element analysis has also been employed in modeling muscles and 

tendons, although not as comprehensively as the Hill type.  Power (2001) models the 

passive behavior of the extraocular muscles using membrane tria-elements with a 

linear elastic modulus based on the tensile strength of collagen from rat-tails.  Zobitz, 

Luo, and An (2001) determine the compressive material properties of supraspinatus 

tendon using a hyperelastic formation (Ogden model).  The material parameters are 

modified till the finite element model gives the same response as the experimental 

compression tests on cadaver specimens.  Hirokawa and Tsuruno (2000) model the 

anterior cruciate ligament using finite element analysis with material properties using 

Mooney-Rivlin parameters.  The material parameters are compiled from previous 

works.  The work provides insight into the shape changing effects having an influence 

on the stress- something that analytical models cannot do.   

 Meshing muscles can be an extremely difficult task; Fernandez et al. (2004) 

describe meshing techniques using volumetric datasets from the Visible Human 

Project.  Dong et al. (2002) also develop methods to model the muscle geometry, 

deformation, and texture in various visual simulations.  This work is more appropriate 

for visualization studies and not biomechanical modeling; however, the group uses 

the visible human dataset and does provide interesting details on building the 

muscles.   

 Johansson, Meier, and Blickhan (2000) investigate muscle modeling using 

finite element analysis but include the Hill type muscle formulation into the 
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continuum mechanics.  The work is verified using a simple model of a squid tentacle 

and compares the response to the experimental results.  The advantages of this 

modeling method are the ability to model the muscle behavior in three-dimensional 

space.  The disadvantage is the computational cost.   

 Sarma et al. (2003) investigate the material properties of a smooth tracheal 

muscle tissue using a hyperelastic formulation.  An experiment using canine tracheal 

smooth muscles is used in an electrical stimulation test.  The resulting stiffness and 

length are recorded and the stress-strain behavior is obtained.  The hyperelastic 

studies involved tried more than one formulation for comparison.  Material models 

used include Ogden, Mooney-Rivlin, and Yeoh.  It is determined that the Ogden 

model fit the experimental data the best, so that is what is used in the study.  A finite 

element model of the smooth tracheal muscle is created and compares well with the 

experimental data.   

 On the importance of tissue preparation and freezing effects on vocal fold 

tissue, Chan and Titze (2003) measure the viscoelastic properties from adult dogs ten 

minutes postmortem and at various freezing rates.  The groups of tissue samples are 

divided into slow and fast freezing.  The elastic shear modulus and dynamic viscosity 

is compared between the three groups (ten minutes postmortem, slow freezing, and 

fast freezing) revealing that the slow freezing method has the adverse effect of 

lowering the elasticity and viscosity of the sample.  The fast freezing method showed 

little difference from the postmortem samples. 
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Skin and Fatty Tissue Material Studies 

 Chabanas, Luboz, and Payan (2003) investigate patient specific finite element 

meshes of the facial soft tissues and muscles.  Essentially, the study uses hexahedral 

meshes to model the soft skin tissue and underlying muscles around the orbicularis 

oris.  The study mentions that hexahedral elements are preferred to tetrahedral for 

their convergence, error estimation, and time.  This study considers the practicality in 

maxillofacial surgery by acquiring CT scans from various patients and transforming 

the hexahedral mesh to each of the skull surfaces.  The benefit of the semi-automatic 

method is that the time consuming meshing is prevented.  However, examination of 

the mesh is still required to remove or modify some of the hexahedral meshes that 

may have adversely changed shape due to the transformation.  The study relies on the 

mechanical properties from Duck (1990) for the skin and muscle tissue.  These 

materials are linear elastic.  The skin tissue is assigned a value of 15 kPa for the 

modulus and the Poisson’s ratio is set to 0.49 for incompressibility.  The muscle 

stiffness is given linear orthotropic values for the modulus.  From Duck (1990), the 

modulus of the fibers at rest is 6.2 kPa and the modulus of the fibers at full activation 

is set to 110 kPa.  The study mentions the modulus across the fibers remains constant 

but does not specify the value.  In addition, it is not explained how the modulus of the 

fibers at rest and at full activation are introduced into the model, nor is the Possion’s 

ratio mentioned for the muscle material (assuming it is 0.49 as the skin tissue).  The 

boundary conditions with the skull can be rather complex; the study currently fixes 

the tissue to the bones so there is no sliding.  The nodes around the cheek and lip are 

free to move however.  The validation of this work relies heavily on the clinical 
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application.  However, this method is useful for clinical applications as a tool to 

estimate errors between surgical procedures and the planning.   

 Shergold, Fleck, and Radford (2004) examine the stress-strain of pigskin 

using uniaxial testing at low and high strain rates.  This study uses as a comparison 

silicone rubber.  The study mentions that uniaxial tensile tests on human tendons and 

rat tendons show that the collagen fibers can be considered elastic-plastic; however, 

skin cannot be expressed using these properties alone.  The constitutive model 

employed is an Ogden model (the Mooney-Rivlin material model is shown to be 

inappropriate despite its use in other studies) using two coefficients.  The study does 

emphasize that an orthotropic formulation may be more appropriate; however, this 

would require more variables and be inapplicable to many of the finite element 

packages.  The experiment involves circular cylindrical specimens of silicone rubber 

(specimen diameter of 7.7 mm and thickness 2.0 mm) and pigskin (specimen 

diameter of 7.0 mm and thickness 2.3 mm).  Impact testing is employed at various 

rates, and the results are plotted.  Further axial tension tests are performed on the 

rubber sample using a dog-bone shaped specimen.  The axial tensile test is not 

performed on the pigskin; however, information is gathered from previous studies.  

Pigskin is chosen, as it is comparable to human skin and also to avoid the ethical and 

immunological issues with testing human skin.   

 Strain rate is considered with the Ogden hyperelastic constitutive model 

plotting the absolute stress versus stretch ratio. The Ogden is able to fit the data 

extremely well as opposed to the Mooney-Rivlin fit, which is only able to give an 

accurate description at low rates of strain hardening.  The experiment shows that 
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strain hardening is strong at high compressive strains for the silicone rubber and pig 

skin and these samples are sensitive to strain rate.  The Ogden model is able to 

capture the effects of the strain hardening versus the Mooney-Rivlin model.  In 

addition, it is revealed that the strain rate sensitivity is described by an increase in the 

shear modulus with increasing strain rate without change to the strain-hardening 

exponent.   

 Todd and Thacker (1994) develop a method to determine the elastic modulus 

of the buttocks in vivo from male and female volunteers.  The objective of this study 

is to show the applicability of using finite element analysis in the design of seat 

cushions.  The geometry of the volunteers is gathered from magnetic resonance 

imaging (MRI).  A two-dimensional map with one-millimeter resolution of the 

transverse sections of the abdomen is taken.  After digitizing the images, the finite 

element model is created using hexahedral elements.  The finite element model 

contains the bone, tissue, and cushion properties.  The cushion and buttocks share the 

same node in order to prevent complex contact gap interface from needing to be 

modeled.  The force-displacement of the subjects is measured using a contour gage 

consisting of a steeper motor attached to a threaded shaft with a strain gage to 

measure axial compression.  As the contour gage progressed, the axial force is 

measured.  Data acquisition methods transform the information into a force-deflection 

curve and follow the form (2.4). 

  F = -0.112 + 0.967x + 10(-0.908+0.0704x)   (2.4) 

Where F is the axial force and x is the displacement.   From this information, the 

modulus information is tabulated for the seated and supine positions for each of the 
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male and female and are as follows:  female seated is 47.5 kPa, female supine is 11.9 

kPa, male seated is 64.8 kPa, and male supine is 15.2 kPa.  Power (2001) uses the 

value of 47 kPa in the fatty tissue for the eye globe, which is the elastic modulus of 

the female in the seated positioning.   

 Luboz et al. (2004) investigated the prediction of tissue compression in orbital 

surgery.  The study includes a finite element model and a two dimensional 

mathematical model.  The study obtains the CT scans of the ocular cavity, muscles, 

optic nerve, and eye globe geometry from a patient with exophthalmia.  The study is 

of interest to help surgical procedures in pre-operative diagnosis and analysis.  The 

eye globe is considered rigid in this case with the fatty tissue being composed of solid 

hexahedral elements in the finite element model.  The material of the fatty tissue is 

assigned an elastic modulus of 20 kPa influenced from previous published values.  

The Poisson ratio is set to 0.1 to model the poroelastic properties of the fatty tissue.  

This study explains that the fat tissue is a combination of fat fibers (mostly collagen) 

and pockets of physiological fluid; hence, the assignment of 0.1 for the Poisson ratio.   

 Exophthalmia corrections require the surgeon to apply pressure to the eye 

globe in order to compress the fatty tissue and force it out towards the sinus cavity.  

This is a very delicate procedure and special care must be taken to prevent damage to 

the eye globe or optic nerve.  The force of this pressure is measured using a custom 

sensor and is 12 N in magnitude.  The boundary conditions at the orbital wall involve 

fixing the nodes of the fatty tissue except where incisions are made.  The study 

concludes that the mathematical model is able to predict globe displacement to within 

3% of the clinical results while the finite element model under-predicts by 36%. 
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 Explanations of this under prediction are due to the selected parameters of the 

fatty material (despite the parameters being tuned to the data).  Further work needs be 

done to include the muscles and properties need to be determined from a large base of 

patients.  However, no mention of the contribution of under prediction is attributed to 

the fixing of the fatty tissue to the ocular cavity or that the globe is a deformable body 

and the stress contour would surely be different if the globe was not considered rigid.   

 Miller-Young, Duncan, and Baroud (2002) conducted axial compression tests 

at varying strain rates on cylindrical fatty heal pads excised from cadaver heels.  A 

total of ten samples are used and a strict criteria of rejecting the sample is employed if 

the sample is loaded in the test unevenly (slip occurrence) or if the mass 

measurements before and after indicate shrinkage of the sample.  The constitutive 

equations used a hyperelastic formulation by way of the Mooney-Rivlin equation.  In 

addition, the constants of the Mooney-Rivlin equation are modified to account for the 

viscoelastic parameters.  The time constants for the viscoelastic properties are 

determined from the stress-relaxation data of the loading test.  The quasi-static 

loading determines the strain energy density.  Then a comparison of the experimental 

results is compared with the constitutive equation showing a good correlation of 0.9.  

The study mentions that these parameters can easily be introduced into finite element 

packages; however, it is unclear how this would be used in MADYMO software, as 

the coefficients for the Moony-Rivlin material cannot be variables dependent on the 

viscoelastic properties.  Finally, mention of further validation is necessary by creating 

a simple finite element model and comparing it to the experimental data.   
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 Verver (2004) creates a full-featured finite element buttocks model with skin 

and bone structures modeled using triangular elements.  The rest of the soft tissue has 

been lumped together to form a homogenized tetrahedral tissue mesh.  The model 

contains 158,310 elements and 29,661 nodes with an element size set to ten 

millimeters.  Of interest, the soft tissue is modeled as Moony-Rivlin material with the 

two coefficients set to 1.65 kPa and 3.35 kPa.  The Poisson ratio is assumed to be 

0.49 for incompressibility.  Unfortunately, no material testing is performed and the 

influence of the parameters is based on values that are within ranges of other 

published values.   

 Samani et al. (2001) present a method of modeling the human breast using 

MRI Data.  Emphasis on this research is given to mesh generation.  The favorable 

choice of element is the hexahedral as the tetrahedral element is claimed to have slow 

convergence with mesh refinement, and also exhibit over-stiffening with volumetric 

locking possible with incompressible material.  The logical choice then would be to 

use hexahedral elements in conjunction with voxel-based mesh generation, transfinite 

interpolation mesh generation, and manual mesh generation.  The breast skin is 

modeled as linear elastic material with Young’s modulus of 10.0 kPa and thickness of 

one millimeter.  The fatty tissue is acquired from experimental data in another work.  

The data is curve fitted to a hyperelastic Neo-Hookean model.  This study did not 

conduct a validation and proposed to material test in another study that will be 

presented next.   

 Samani and Plewes (2004) determine the hyperelastic parameters of breast 

tissue samples (ex vivo) gathered from breast reduction surgery.  Axial compression 
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tests are performed on samples sized to 15 x 15 x 10 mm3.  The specimens are 

visually identified as adipose or fibroglandular tissue.  The tissue samples are 

preconditioned with 25 cycle sinusoidal indentations; then 5 cycles are used for the 

force-displacement data.  Using this experimental force-displacement data, finite 

element models representing the performed experiment are created and the material 

parameters are set using hyperelastic parameters (Mooney-Rivlin model).  The 

parameters in the finite element model are modified until they converge to the same 

force-deflection curve determined from the compression tests.  This optimization 

technique performed a minimization of the least squares of the force-displacement 

and is referred to as the data inversion technique in this study.   

 

 

Conclusion 

 A review of some of the relevant studies investing shaken baby syndrome 

have been given.  A comparison is given highlighting the argument for and against 

injury induced by pure shaking.  In addition, a description and definition of retinal 

hemorrhaging is provided, highlighting the need for this biomechanical eye model.  

The sections to follow discuss the studies (biomechanical and clinical) that influence 

the current eye model.   

 What is not discussed are some of the structures of the eye that have little 

biomechanical research or can be simplified via assumptions in the modeling process.  

The hyaloid is an artery traversing the vitreous body providing nutrients to the lens 

and anterior section during development in the embryonic stages.  By birth this artery 
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has usually regressed (Jack, 1972; Elliott & Elliott, 1973; Ruiz-Moreno & Perez-

Santonja, 1998; Torii et al., 2001).  Very little biomechanical information is available 

and most of the vitreous studies leave this out; therefore, it is left out of the proposed 

model.   

 The anterior portion of the eye contains a complex structure detailing the 

ciliary body and zonular processes attached to the lens.  These structures are 

important, but in this first model, most of the clinical studies with retinal 

hemorrhaging are concerned with the posterior region.  These structures are modeled 

but are simplified and based on the work of Power (2002) rather than doing a 

complete and extensive literature review.  However, information concerning lens 

accommodation and compliance are quite involved and interrelated with the ciliary 

body (Fisher, 1986; Fisher, 1987; Quigley et al., 1990; Schachar, Huang, & Huang, 

1993; Burd, Judge, & Flavell, 1999; Heickell et al., 2001; Schachar & Bax, 2001; 

Burd, Judge, & Cross, 2002; Judge & Burd, 2002; Krag & Andreassen, 2003). 
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CHAPTER III 
 

GEOMETRY OF EYE AND OCULAR REGION 

 
 
 
 
Introduction 

 A biomechanical model of an infant eye is developed using finite element 

method and rigid body analysis.  The computational software used is MADYMO 

(2004) version 6.2 and the preprocessing consisted of using Easicrash (2007) and 

other meshing and modeling techniques that are highlighted in chapter four.  The eye 

model consists of the extraocular muscles modeled using a Hill-type (Hill, 1950) 

muscle for the contractile and passive parts attached to the tendon (series elastic) 

composed of membrane elements.  The cornea and sclera are modeled as a non-

uniform thickness globe with the choroid, retina, ciliary body, lens, vitreous, and 

aqueous inside of this globe.  Posterior to the eye globe, the optic nerve is modeled to 

mainly act as a tether as postulated in Levin (2000).  The fatty tissue is also modeled 

encasing the globe and conforming to the eye socket geometry.  The fatty tissue 

completely encases the eye globe and at the surface (most anterior) the skin is 

modeled using membrane elements.  This entire eye complex is attached to a rigid 

body representing the head center of gravity (C.G.).  In addition, for visualization, the 

skull is modeled using shell elements and fixed to the head C.G. completely.   

 In order to build the eye model, the geometry needs to be developed and 

meshed.  This proved to be rather time consuming, as the desire was to create 
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geometry that was true to reality.  The geometry resources describe the dimensions 

for an adult eye, as very little detailed information exists for an infant eye.  There are 

some sources that are used to verify the scaling to an infant, and those will be 

discussed in this chapter (Hogan, Alvarado, & Weddell, 1971; Newman et al., 2002).   

 

Eye Geometry 

 The non-uniform geometry of the cornea and sclera is used from Woo et al. 

(1972) as is used in Power (2001) and Stitzel et al. (2002).  The eye is composed of 

spherical shells with two radii with centers separated 5 mm apart.  The posterior 

radius is 12 mm and the anterior radius is 7.8 mm (Figure 3.0).  The thickness of the 

eye is non-uniform as well being thickest in the posterior region at 1 mm decreasing 

in thickness in the equatorial area to 0.55 mm and increasing anteriorly to 0.8 just 

posterior the limbus, which is 0.66 mm in thickness.  The most anterior eye thickness 

is 0.52 mm in the area of the cornea.   

 

 

0.55 mm 

7.8 mm 
12 mm 

1 mm 0.52 mm 

5.5 mm 

5 mm 

0.8 mm 

0.66 mm 

 
Figure 3.0: Geometry of the idealized cornea-sclero shell from Woo et al. (1972) 
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 The inside of the eye contains two main chambers (aqueous and vitreous) 

separated mainly by the lens and ciliary body (Figure 3.1).  The geometrical locations 

of the lens and ciliary body are gathered from the work of Power (2001).  Comparing 

this work to the geometrical considerations of the Visible Human Project, the eye 

geometry is about the same size.  The eye globe geometry is also in agreement with 

the histological average provided in Hogan, Alvarado, & Weddell (1971), which 

details the gross anatomy of the eye showing the cornea to be 11.7 mm in diameter 

looking from the frontal projection.  The cornea radius is 7.8 mm and the sclera 

radius is 11.5 mm (Figure 3.2).  The average eye diameter from this histological study 

is 24 mm in the anteroposterior, transverse and vertical directions.   

 

 

Ciliary Body
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Figure 3.1: Location and dimensions of the lens from Power (2001) 
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Figure 3.2: Diagram outlining cornea and sclera dimension from Hogan, Alvarado, & Weddell (1971) 

 

 

 The overall geometry of the eye socket in relation to the muscles, eye, and 

optic nerve is considered.  Rather than solely gathering this information based on 

descriptive histological studies and diagrams alone, an attempt is made to build the 

geometry of these structures and then add the idealized geometry of the eye.  The 

geometry of these other structures is derived from transverse slices scanned in at 1 

mm increments (Visible Human Project, 2007).  The slices of interest around the eye 

socket are used (Figure 3.3).  A typical slice trace is shown in Figure 3.4 with the 

final slice layers represented as spline curves shown in Figure 3.5.  The geometry of 

the eye socket, optic nerve, eyeball, and muscles for each slice is created with spline 

curves traced on each image dataslice.  Once all of the spline curves are created for 
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the slice layers of interest, each is then offset by 1 mm.  The geometry is then 

surfaced and ultimately meshed (a very tedious process).  Finally, the dimensions are 

checked against histological studies to verify that the curve data (Figure 3.5) agrees.  

Ultimately, the muscles (Figure 3.6) are made analytical since there is really no 

suitable finite element property available as compared to the verified analytical Hill-

type muscles.  In addition, the ultimate locations of the muscles are modified to 

coincide with Hogan, Alvarado, & Weddell (1971) (Figure 3.7).  Interestingly, the 

optic nerve sheath that is built from the transverse slices matches the description 

provided by Hayreh (1984).  The most anterior section of the nerve is rather bulbous 

(Figure 3.8).  The final location of the optic nerve head is changed to a new location 

based on Hogan, Alvarado, & Weddell as this represents more of an average location.   

 

 

 
Figure 3.3:  Transverse slice number 104 detailing the eye and optic nerve (Visible Human Project, 2007) 
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Figure 3.4:  A typical spline curve tracing of a transverse slice (Visible Human Project, 2007) 

 

 

 

 
Figure 3.5:  Complete build up of spline curves offset 1 mm based on Visible Human Slices 
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Figure 3.6:  Using transverse slices to create muscle geometry 
 

 

 

 In the Power (2001) model, the orbital opening is based on Sauerland and 

Grant (1994) as simplified pyramids (Figure 3.9).  This assumption is probably 

appropriate, except that the fatty tissue is neglected anterior the cornea (including 

eyelid).  This is probably done to create a worst-case scenario as this Power study is 

concerned with ocular injuries from night vision goggles.  In the current eye model, 

the non-uniform pyramid is created based on the transverse slices and totally encases 

the eye (Figure 3.10). 
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Figure 3.7:  Muscle locations from Hogan, Alvarado, & Weddell (1971) 
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Figure 3.8: Bulbous portion of the nerve is shown which is built from the transverse slice information 
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Figure 3.9: Bony orbit as used in the Power (2001) model 
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Figure 3.10:  Fatty tissue modeled from transverse slice data 

 

 

Figure 3.10 describes the boundary of the ocular socket with the anterior section 

covering the eye considered as well.  The MADYMO finite element human model 

influences the anterior portion that resembles the eyelid boundary.   

 The lid information is originally based on this information and at one time 

included the eye opening as shown in Figure 3.11.  However, during the initial tests 

unrealistic contact interactions resulted as the eyelid edge interfacing the eye globe 

caused the eyeball to squish into the lid opening.  Therefore, the eyelid opening is 

removed to simplify the contact algorithm.  In addition, this removal of the eyelid is 

justified as the fatty tissue interface for this study serves to encase the eyeglobe only.  

The inside of the fatty tissue contains a void area large enough for the eye globe to fit 
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into totally encasing the eye.  Modeling the fatty tissue in this way allows the eye to 

rotate within this void as a kind of spherical joint. 

 

 

 
Figure 3.11:  First version of fatty tissue displaying eyelid opening. 

 

 

Scaling to infant dimensions 

 At birth the eye diameter is 16 to 17 mm in diameter and is used in this study 

as the main scaling factor (Hogan, Alvarado, & Weddell 1971).  Comparing the 

diameter at birth to the diameter of an adult gives a scale factor of 0.645.  Therefore, 

all structures after modeling are ultimately scaled by 64.5%.  There is not much 

information concerning infant size structures in the eye; however, there is a study that 

measured the optic nerve sheath diameters (Newman et al., 2002).  A comparison is 

made between this study and the optic nerve dimensions after scaling.  The scaled 
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optic nerve, using the 64.5% reduction factor, measures to be 2.4 mm inferior to 

superior and 3.0 mm medial to lateral at the optic nerve head (ONH).  The study 

tabulates the clinical details of the patient and for an infant aged ten days, with 

normal optic disc appearance noted, the right optic nerve sheath diameter is 1.9 mm 

and the left optic nerve sheath diameter is 2.6 mm.  Another patient, 18 months of age 

with normal optic disc appearance noted, has a right optic nerve sheath diameter of 

2.5 mm and the left optic nerve sheath diameter of 2.9 mm.  Therefore, using this 

study as a check, it would appear that basing the scaling on the eye globe 

anteroposterior diameter would be an appropriate approximation to acquiring the eye 

complex geometry for an infant.  Further, this scaling reduction is used later in the 

reduction of muscle properties for the analytical Hill-type muscles and of the stiffness 

and damping characteristic of the eye response.   

 

 

Conclusion 

 This chapter highlights some of the modeling that goes into creating the 

geometry for the eye structure.  Modeling the geometry of the eye is a rather complex 

endeavor.  As will be illustrated in later chapters, meshing is not an easier process 

either.  Initially, the geometry is modeled in the most detailed manner to capture all 

possible information.  As the early biomechanical models advanced, some of the 

complexity is taken out to streamline and stabilize the simulation where appropriate. 
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CHAPTER IV 

MESHING OF THE EYE AND FATTY TISSUE 

 

 

Introduction 

 This chapter highlights some of the meshing techniques that are involved in 

creating the complex geometry of the eye and fatty tissue.  Essentially, the hardest 

components to mesh are the fatty tissue and eye globe with interior structures.  The 

techniques in this study utilized tetrameshing, manual meshing, automeshing, volume 

dividing for hexahedral meshing, and hexahedral dominant algorithms (Joe 2006).  

Another technique involves a bottom up approach when meshing volumetric datasets 

(Zhang and Bajaj, 2004).  This technique creates hexahedral elements and then 

refines the mesh near the surface boundary.  This technique has not been used in this 

work.  However, opposing this is the technique provided by Geompack++ (Joe 2006).  

Essentially this software is able to create hexahedral dominant meshes by taking the 

surface quadrilateral mesh and building hexahedral elements inwards.  The term 

hexahedral dominant comes into play when the algorithm can no longer fit hexahedral 

elements and starts filling voids with tetrahedral elements, pyramids, and wedges.  

The pyramids and wedges are degraded hexahedral elements in the MADYMO 

software and it is advised to avoid their use if possible.  In addition, this method also 

ends up creating some elements with off aspect ratios and extremely small edges that 

can adversely affect the time step in MADYMO.   
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 When deciding the mesh, one must consider the meshing density, element size 

(for Courant time step), the type of mesh, the type of material model that will be used, 

contact gaps, and interfacing other structures.  All these items are considered when 

meshing the eye and fatty tissue and will be discussed.  The order will start with the 

eye globe and inner structures and then the fatty tissue. 

 

Eye Meshing 

 The eye geometry considered in this model contains the cornea-scleral shell, 

aqueous humor, vitreous body, cilliary body, lens, and interface to the optic nerve.  

The muscle attachments are directly attached to the sclera shell using locations from 

Hogan, Alvarado, and Weddell (1971) as mentioned in chapter 3.  The muscles and 

optic nerve will be discussed in more detail in chapter 5.  The cornea and sclera, from 

Figure 3.0, have a non-uniform thickness going anterior to posterior.  Consideration 

has been given to capture this thickness variation in the mesh model.  This geometry 

is initially modeled as a solid layer as shown in Figure 4.0.  
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Figure 4.0:  Sagittal view of cornea and sclera elements 
 

  Figure 4.0 shows the mesh of the cornea and sclera about the perimeter as one 

layer of hexahedral elements.  In the Power (2001) model5, the shell of the eye is 

modeled as 3 node membrane elements that only account for in-plane stress.  Bending 

cannot be resisted and is consistent with previous literature that considers the sclera 

and cornea as a membrane (Woo et al., 1972).  The mesh used in the Power model is 

rather course with a typical element edge length around 1.5-4 mm (Figure 4.1).   

 

 

 
 

Figure 4.1:  Mesh size of the Power (2001) eye globe geometry 
 

 

This edge length is based on a reproduction of the eye model based on the Power 

(2001) figures and increases towards the equator with the smallest elements near the 

posterior and anterior poles.  The Stitzel et al. (2002) eye shell used quadrilateral 

                                                           
5 Appendix C details the reconstruction of the Power (2001) eye model including testing as indicated in 
Power et al. (2002). 
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membrane elements with a mesh density 4 to 11 times greater as mentioned in Stitzel 

et al.  The meshing of the eye is done in circumferential rings, as done with Power 

(2001), except that the thickness is specified at each node.  In the Power (2001) 

model, the thickness is only specified per element and is a limitation of the software.  

This will result in discrete steps in the thickness of the shell.   

 In this model, it was originally thought to keep the cornea and sclera as solid 

elements in order to maintain the transitional thickness along the globe (anterior to 

posterior).  However, there are only a handful of material models that can be used in 

conjunction with the hexahedral elements and all of these material properties would 

resist bending.  In order to consider the cornea and sclera as membranes, shell 

elements had be used with a suitable material model able to provide in plane stress 

resistance only.  Unfortunately, this method will cause stepping in the thickness 

gradiant as only the thickness can be specified for the element.  The MADYMO 

software does offer a honeycomb type material that allows one to specify the 3 

triaxial material properties.  However, the next approach is taken and, as with Power, 

membrane elements are used.  In this model, the cornea and sclera are modeled using 

quadrilateral membrane elements.   

 In order to capture the thickness information a script is developed to convert 

the solid element to a two-dimensional quad element located at the mid-plane of the 

solid element (Figure 4.2) with specified thickness noted.  This script creates a 

property for each element with a different thickness.  This allowed for non-

circumferential meshes to have varying thickness from element to element.  There is 

still a discrete difference from one element to the next, but it is a much smaller step 
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due to the smaller mesh size.  The early meshes (Figure 4.19) did not mesh the cornea 

and sclera in perfect circumferential rings as the Power and Stitzel et al. model did.  

However, the mesh refinement initially is 1 mm for each element edge.   

 

 

Thickness added to shell

Shell Elements  
located at mid - plane  
of solid elements 

 
 

Figure 4.2:  Conversion of solid cornea and sclera elements to shell elements 
 

 

The eye model process involved several remeshings, and this edge length still stayed 

in the 1-2 mm length for all meshes.  The posterior and anterior region mesh size is 

typically smaller due to the meshing algorithms that are utilized.   

 Inside the eye globe the vitreous and aqueous meshes are considered and are 

partitioned by the lens and ciliary body mesh.  When creating the eye model, the 

actual surface information that encases the vitreous and aqueous are considered; then 

the solid meshing is created.  The vitreous is considered as a sphere and is thus 

divided up into seven parts (Figure 4.3) in order to proceed with a manual meshing 
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scheme that involved meshing the inner cube and then sweeping the surface mesh to 

each of the six surfaces to create a hexahedral meshed vitreous.  

 

 
Figure 4.3:  Manual Partitioning of the vitreous for hexahedral meshing  (one quarter shown) 

 

 

  The aqueous is meshed using hexahedral elements as well but there was some 

difficulty in creating the mesh as the boundary of the ciliary body to the sclera shell 

posterior the limbus was making it difficult to sweep (Figure 4.4).  Ultimately, 

manual and sweep meshing is employed to create the mesh of the aqueous.  First, a 

sweeping is done except for the outermost perimeter of the aqueous that is wedged in 

between the ciliary body and sclera (Figure 4.4).  Second, the outermost solid element 

is manually meshed using the three points that lie on the sclera and ciliary body and 

the node between the two elements of the aqueous created from the sweep (node is 

highlighted in Figure 4.4).  The four element pairs that are selected create an ill-

formed 8-node solid brick element.  Lastly, the mid-node of the two outermost 

elements from this sweep is moved inward towards the center of the eye, correcting 
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the shape of the element (Figure 4.4 second image).    This process is repeated to 

form the outermost solid elements of the aqueous.  Finally, smoothing algorithms are 

then run in order to optimize the vitreous and aqueous mesh.   

 

Manual element 
creation done second 

Final element after 
moving the node 
downward 

After sweeping, 
manually create 
solid elements in 
the wedge area and 
move highlighted 
node downward 

Sweeping is done 
first to create solid 
layer 

 
Figure 4.4:  Manual meshing process of the aqueous humor   

 

 

 The lens and ciliary body mesh are trivial to create as they are based on the 

surface mesh of the vitreous and aqueous.  The retina and choroid mesh are also 

trivial to make, as they are duplicates of the sclera shell posterior the ciliary body.   

 An early attempt is tried to build the eye mesh manually, and keep the average 

edge length of the cornea and sclera around 1 mm by projecting the sclera and cornea 

mesh to the vitreous cube.  This is a desirable technique because the cornea and sclera 
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shell is an involved process to convert from a solid to a shell with a different 

thickness for each element.  This method would allow the cornea and sclera shell to 

remain the same.  However, this did not produce the desired cubic shapes needed for 

the hexahedral elements.  Instead, a separate mesh of the cornea and sclera is made 

capturing the thickness locations.  Then, a new eye globe is built from the vitreous 

cube out, and the final surface mesh (after converting from solid to shell using a 

thickness script) is then projected to the separate cornea and sclera mesh originally 

created.  This provided the desired results as seen in Figure 4.5 and ensured the final 

globe surface geometry would remain true.   

 

 
 

Figure 4.5:  Final meshed eye after smoothing solid elements (one quarter shown) 
 

 

 However, this manual meshing was rather slow and changes to the mesh 

required complete overhaul of the model.  Therefore, tetrameshing was attempted.  

The tetramesh would use the cornea and sclera shell (Figure 4.6) and fill the volume 

with tetrameshing.  This proved be a trivial process and allowed the complex 
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information of the vitreous and aqueous to be modeled quickly.  However, the 

vitreous would not exhibit shearing despite having a low shear modulus specified.   

 

 

 
 

Figure 4.6:  Tetra-meshing of vitreous and aqueous (sagittal plane section) 
 

 

Unfortunately, for viscoelastic materials with Poisson’s ratio 0.5 mesh locking is 

displayed (Samani et al., 2001).  Samani et al. explain that the tetrahedral elements 

“exhibit over-stiffening and volumetric locking especially with incompressible 

material” (p. 271).  Mesh locking is also mentioned in Brands (2002).  In this case, 

hexahedral elements have been observed to perform as a rigid structure when the full 

integration method is used.  Therefore, it is important to use reduced order 

integration, which uses a single point in each solid element as opposed to all eight 

points.  Manzini and Putti (2007) further discuss mesh locking and proposed methods 
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to overcome and provide accurate results.  In the MADYMO software, an hourglass 

parameter can be specified to help suppress the zero-energy hourglass modes as a 

result of using the reduced integration method (MADYMO 2004).  Gopalakrishnan 

(2002) examines these zero-energy modes in detail concerning meshlocking of 

Lagrangian fluid modeling.   

 The second idea would be to use the Geompack++ algorithm (Joe, 2006) to 

facilitate the aqueous and vitreous meshes.  One of the features of this software is to 

create a hexahedral-dominant mesh based on a surface mesh.  This would be optimal, 

as the steps of creating the surface would be minimized.  Several scripts had to be 

created to convert the MADYMO surface mesh file to a mesh and curve file suitable 

for the Geompack++ software.  Then a script is created to convert the output mesh 

file from Geompack++ software back into a MADYMO syntax mesh file.  Once the 

groundwork is complete, the process is as simple as tetrameshing.  This technique is 

utilized for the aqueous (Figure 4.7), vitreous (Figure 4.8), and the fatty tissue 

(Figures 4.9 and 4.10).  Immediately apparent are the small tetrahedral and degraded 

8-node solid elements located near the center of the aqueous and vitreous (Figures 4.7 

and 4.8).  The vitreous solid elements are rather good and share the same node as the 

shell boundary for the cornea and sclera.  However, after traversing about four 

elements into the center, the element size and shape are fitted with degenerated 

hexahedral (pyramid and wedge) and tetrahedral elements.  These elements also have 

a much smaller element edge and required an Euler time step of the order 1x10-9 to 

compile.  The current eye model is to be used in simulation run times of the order of 

several 100 milliseconds, so this method had to be abandoned.  However, it cannot be 
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stressed enough that this technique is truly pioneering and is very close to allowing 

one to automesh using hexahedral elements the same as if they are tetrahedral.   

 

 

 
 

Figure 4.7:  Hexahedral dominant meshing of the aqueous humor tetra-mesh shaded 
 

 

 
 

Figure 4.8:  Hexahedral dominant meshing of the vitreous body (sagittal plane section) 
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Figure 4.9:  Hexahedral dominant meshing of the fatty tissue (cut away to show interior of globe region) 

 

 

 
 

Figure 4.10:  Hexahedral dominant meshing of the fatty tissue (made transparent to show the solid tetra-
mesh) 

 

 

 The last method involves using Cubit software, a full-featured software, 

allowing generation of two- and three- dimensional finite element meshes and 

geometry preparation.  The Cubit software is particularly good at hexahedral meshing 
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by portioning the desired geometry.  In addition, modifying the entire mesh density is 

simple and automatic once the geometry is portioned and each of the volumes 

contains a mesh algorithm assigned (such as sweeping, mapping, multi-sweeping, or 

other).  First, the geometry profile from Woo et al. (1972) and Power (2001) is 

imported into the CUBIT software (Figure 4.11).   

 

 
 

Figure 4.11:  Curve profile information of the eye geometry 
 

 

 After the importation of the curves, the solid geometry is created for one 

quarter of an eye by sweeping the upper and lower bounds for the sclera and cornea 

(this layer will be created as a solid 8-node element layer one element layer thick) 

about the x-axis (axis traversing from the posterior to anterior pole).  Next the 

vitreous and aqueous quarter geometries are created in the same way (Figure 4.12).  

The cornea portion of the eye does not exist yet.  The information from Figure 3.2 is 

used concerning the cornea diameter of 11.7 mm when viewed from the frontal plane.  

The actual cornea, as seen in Figure 3.2, is really elliptical in shape.  In order to create 

the cornea, and divide up the quarter eye for meshing, a cylinder with diameter 11.7 

mm is created along the x-axis (Figure 4.13 and 4.14).   
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Figure 4.12:  Solid volume creation of quarter eye by sweeping curves about the x-axis 
 

 

 

 
 

Figure 4.13:  Cutting plane and cylinder shown to partition the eye quarter (transparent view) 
 



   88

 
 

Figure 4.14:  Cutting plane and cylinder shown to partition the eye quarter (solid view) 
 

 

 

 
 

Figure 4.15:  11 volumes shown after the cutting plane and cylinder 
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In addition, a plane bisects the eye at the top of the equator parallel to the frontal 

plane (Y-Z plane).  This plane is necessary as it divides the spherical eye into an 

octant, which will allow for easy meshing with hexahedral elements. Figure 4.15 

shows the final geometry after the cylinder and plane cuts take place.  There are a 

total of 11 volumes that will be meshed using various sweep and map commands.  In 

Figure 4.16, the mesh quarter is shown for an adult eye with interval size 1.5 mm 

(scaled to an infant will make this 0.9675 mm).  Figure 4.17 shows the interval size of 

1.8 mm used for the adult eye (scaled to an infant will make this 1.161 mm).   

 

 

 
 

Figure 4.16: Hexahedral mesh of quarter eye with interval size 1.5 mm (adult eye) 
 

 

The objective is to keep the interval size of the hexahedral and cornea-scleral shell 

around one millimeter for the infant eye.  The mesh size with interval 1.161 mm is 

chosen as the aqueous mesh is very course and is not really of concern in this eye 
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model.  The important consideration is with the retinal nodal forces and the vitreous 

response near the posterior pole of the eye.   

 

 

 
 

Figure 4.17:  Hexahedral mesh of quarter eye with interval size 1.8 mm (adult eye) 
 

 

 

 
 

Figure 4.18:  Cornea-scleral shell circumferential rings with varying thickness properties for each ring 
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 The Cubit software also meshed the cornea-scleral shell in circumferential 

rings as in Stitzel et al. (2002) and Power (2001) (Figure 4.18).  This allowed the 

grouping of properties of each ring for a total of 24 as opposed to 236 separate 

properties as before (Figure 4.19).  The cornea and sclera shells are still created as 

before by replacing each solid element with a shell element at the mid-plane with the 

corresponding thickness information captured.  Once the shell layer is created, the 

nodes from the vitreous and aqueous bounding surface are moved to the new location 

of the shell and then made coincident so that the sclera-cornea is fixed to the vitreous 

and aqueous.   

 

 

 
 

Figure 4.19:  Cornea-scleral shell with each element having unique thickness property 
 

 

 

 



   92

Fatty Tissue 
 

 The fatty tissue in the ocular cavity provides cushioning and energy 

absorption capabilities.  In addition to the tethers (optic nerve and muscles), the fatty 

tissue helps keep the eye positioned and acts as part of the spherical joint of the 

eyeball.  The fatty tissue is considered as a homogeneous material; however, it is 

actually a “combination of an elastic phase composed of fat fibers (mainly collagen) 

and a fluid phase composed of fatty nodules saturated by physiological fluid” (Luboz 

et al., 2004, p. 204).   

 The only study to model the ocular cavity in a full-featured eye model is 

Power (2001).  In this case, the fatty tissue is modeled as homogenous material 

composed of solid 8-node elements with a conforming space for the eye globe to fit in 

with a slight air gap to allow for proper contact interactions.  In the Power model, the 

fatty tissue extends up to the equator of the eye globe (visual inspection).  This fatty 

tissue is used for impact simulations.   

 In this SBS study, there is to be a rotational-translational shake, in the sagittal 

plane, applied to the eye, so the fatty tissue needs to extend and include the eyelid 

area to help confine the eye.  Like the Power model, the fatty tissue is supported using 

the outer perimeter nodes except for the eyelid area that has the nodes unsupported.  

The Power model represents the complex geometry of the ocular cavity by 

simplifying to a pyramid shape (Figure 3.9); however, this model utilizes the 

geometrical information of this cavity from the Visible Human Project and the eyelid 

boundary from the MADYMO finite element human mesh (Figure 3.10).  Therefore, 

the final geometry is extremely complex and includes the eye globe space with a gap 

for contact algorithms.   
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 Initial attempts are made to create hexahedral meshes as Power did, but the 

geometry proved to be too difficult to use a manual meshing technique.  Therefore, 

the surface mesh of the ocular cavity and eye globe is used to create a tetra-mesh 

(Figure 4.20).   

 

 

Shell skin layer

Tetra-mesh of fatty tissue 
(half transparent to see eye 

globe insert) 

 
 

Figure 4.20: Final tetra-mesh of the fatty tissue and eye lid 
 

 

In order to use the tetra-mesh function in the EasiCrash software, the surface mesh 

must enclose a volume.  However, in this modeling case, there is the eye globe space 

to contend with.  This issue is overcome by creating a passageway through the ocular 

cavity surface to the eye globe surface mesh via a manual mesh of four quad elements 

linking the two surfaces together (Figure 4.21 and 4.22).  Once this is done, both the 

ocular cavity surface and eye globe surface, which is slightly larger than the actual 
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eye globe to allow for a contact gap, have the quad mesh split into tria elements.  

Finally the entire surface is selected and meshed (Figure 4.20).   

 

 
Figure 4.21: Fatty tissue surface mesh preparation for tetra-meshing (transparent view) 

 

 

 
 

Figure 4.22:  Fatty tissue surface mesh preparation for tetra-meshing (sagittal cut-away view) 
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 Initially, the optic nerve channel was included in the fatty tissue with the eye 

globe space (Figure 4.23); however, the early drafts of the eye model revealed the 

contact interaction between the optic nerve and eye mesh became unstable near the 

corner where the optic nerve cavity meets the eye globe cavity.  In addition, the 

contact of the optic nerve and the fatty tissue contributed little to the overall eye 

kinematics since the posterior nodes of the optic nerve are fixed.  Therefore, this 

complexity is left out in later versions of the model.  This simplification is justified, 

as further tests would include an analytical optic nerve (chapter 5).  The analytical 

optic nerve model does not use a contact algorithm.   

 

 

 
 

Figure 4.23:  Fatty tissue tetra-mesh with optic nerve channel included (partially transparent to show 
cavity) 

 

 

 Attempts are made to create a hexahedral dominant mesh (Figures 4.9 and 

4.10), but instabilities occurred in impact simulations due to the small tetrahedral 



   96

elements.  Therefore, the tetra-mesh fatty tissue is used.  In regards to the mesh 

locking that is considered in the vitreous and aqueous, the fatty tissue is to be used 

mostly to restrict the movement of the eye and provide some support with impact 

situations, so the compressive ability is more important than the shearing.  Also, the 

fatty tissue is to be modeled with material using a Mooney-Rivlin material (Samani & 

Plewes, 2004; Verver, 2004) or a linear elastic material (Todd & Thacker, 1994; 

Luboz et al., 2004).  In the Power model, the elastic material from Todd and Thacker 

is used.  Therefore, mesh locking is not a concern in this situation.  Finally, the most 

anterior of the fatty tissue is composed of shell elements representing the skin layer 

(Figure 4.20). 

 

 

Conclusion 

 This chapter details some of the different techniques that are attempted in 

meshing the eye and fatty tissue.  The most important considerations are given to 

element shape of the vitreous material, as this is the most sensitive area due to the 

compliancy of the material.  The second consideration is the element size.  Accuracy 

is achieved by creating an extremely small mesh; however, a balance of accuracy and 

time efficiency is needed as simulations involve time ranges from 250 milliseconds to 

1 second.  Brands (2002) investigates mesh density on cylindrical samples modeling 

brain tissue and shows that the angular displacements increase as the mesh is refined.  

Refining the mesh also increases peak values by 4% and shows a decrease in radial 
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displacements.  Therefore, it is reasonable to assume similar trends are possible by 

modifying the mesh density in the eye vitreous.   

 The mesh density of the cornea-scleral shell of the Power (2001) eye is shell 

464 triangular elements.  This density would reduce to 232 quad elements if one were 

to compare it with other quad element densities.  The Stitzel et al. (2002) eye cornea-

scleral shell mesh density is 1855 elements for one-quarter eye (7420 elements if a 

full eye is considered).  Uchio et al. (1999) used a mesh density, for the cornea-scleral 

shell, of 1960 elements.  In this current work, two models are investigated, namely 

the manually meshed eye model and the Cubit developed eye model.  The mesh 

density of the manual eye model build is 936 quad elements for the cornea-scleral 

shell and 504 quad elements for the Cubit developed eye model.  Therefore, the mesh 

is rather course compared to previous work other than the Power model.   

 However, the time duration in the dynamic simulation is important to 

consider.  The Stitzel et al. model with one-quarter-eye model used a maximum 

simulation length of 0.6 milliseconds.  Uchio et al. used their eye model in an impact 

study and mention that the computational time is two minutes.  Power considers 

goggle-to-eye contact with airbag deployment.  The time to fully deploy the airbag is 

25 milliseconds, and there is a time history plot showing the time range from 0 to 30 

milliseconds.  The simulation time is 28 milliseconds as noted in the MADYMO 

input file supplied in Appendix B of Power (2001).  The current work of the SBS eye 

will consider a 4 Hz shake, meaning the simulation time is 1000 milliseconds and can 

take 48 to 180 hours to complete based on the material properties of the vitreous 

(detailed in later chapters).  
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CHAPTER V 

OCULAR SHELL LAYERS 

 

 

Introduction 

 The current eye model is composed of membrane shell layers representing the 

cornea-sclera shell, choroid membrane, and the retina membrane. Most of the eye 

models that investigate globe rupture model only the cornea-sclera layer.  Therefore, 

mechanical properties of the choroid and retina are negligible to the mechanical 

strength of the eye (Graebel & van Alphen, 1977).  However, this study is particularly 

interested in investigating retinal forces at the posterior wall of the eye, so the retina 

and choroid are more important to consider.  This investigative study will use elastic 

properties for the cornea and sclera.  The material is highly non-linear (Uchio et al., 

1999); however, inclusion of the nonlinear stress-strain curve would require a 

Poisson’s ratio of zero (a limitation of the MADYMO software).  In addition, the 

choroid and retina are considered linear elastic in this eye model.   

 Current literature explains that the retina and choroid exhibit hyperelastic 

tendencies but only give mechanical properties for an elastic model (Graebel & van 

Alphen, 1977; Friberg & Lace, 1988; Moses, 1985; Wu, Peters, & Hammer, 1987; 

Stevens et al., 1992).  Of particular importance are the retinal adhesive or detachment 

forces in this study.  These forces are used to determine possible thresholds in retinal 

damage (hemorrhaging or detachment).  Utilizing various techniques, this force has 

been reported to be 0.06 to 0.17 N/m for rabbit eye strips, depending on peeling rate 
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(deGuillebon, 1972), to 0.14 N/m for monkey eyes by inducing blebs (Kita & 

Marmor, 1992).   

 

 

Sclera and Cornea 

 The cornea, a clear membrane, is located in the anterior most portion of the 

eye containing five layers (epithelium, Bowman’s membrane, stroma, Descement’s 

membrane, and the endothelium) (Hoeltzel et al., 1992).  The thickness of the cornea 

varies throughout the layer (Woo et al., 1972).  The cornea is avascular, viscoelastic, 

and resistant to deformation (Hogan, 1963).  The sclera shell forms the outermost 

layer of the eye and is avascular and composed mostly of collagen (Hogan, 1963).  

The cornea and sclera provide protection for the intraocular tissues.  Material testing 

of these structures is done using a membrane inflation or uniaxial tension strip test 

methodology.  These materials testing studies show the cornea and sclera to exhibit 

non-linear behavior with rate dependency (Woo et al., 1972).     

 The current model uses the mechanical properties from Uchio et al. (1999) for 

the cornea and sclera (Figure 5.0).  Uchio et al. determined the material properties of 

the cornea and sclera by performing uniaxial tensile tests.  Power (2001) compares 

stress-strain curves from other sources and shows the Uchio et al. strip testing to have 

the steepest slope.  Power (2001) uses the Uchio et al. material as this testing 

determined the mechanical properties up to failure; the model is used to predict globe 

rupture.  MADYMO, the software used by Power, allows the data points for the stress 
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strain curve to be inserted directly in a material type hysteresis.  Unfortunately, this 

material property has no way of entering the Poisson’s ratio and is set to zero.   
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Figure 5.0:  Stress-strain experiment data points for the cornea and sclera (Uchio et al., 1999). 

 
 

 

The Uchio et al. test showed the Poisson’s ratio for the cornea to be 0.42 and 0.49 for 

the sclera.  Stitzel et al. (2002) use an orthotropic material using the Uchio et al. 

materials.  The Poisson’s ratio is assumed to be 0.5.  The compressive stiffness is 

made to be 1/100 of the stiffness in tension for the Stitzel et al. for the cornea and 

sclera shell material.  In the current model, the cornea and sclera shell are not to be 

considered in globe rupture prediction, so the elastic modulus from Figure 5.0 is 

determined to be 124 MPa and 358 MPa for the cornea and sclera shell respectively.  

The Poisson’s ratio is set to be the same as the Uchio et al. test.  In order to account 

for weakness in compression (Battaglioli & Kamm, 1984) as done by Stitzel et al., the 

compressive stiffness is set to 1/100 of the tension stiffness by specifying the 
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reduction factor equal to 0.01 in the MADYMO isolin material card.  This reduction 

factor is used in conjunction with the tension only switch to scale down the negative 

principle stresses.  The density is set to 1076 kg/m3 for the cornea (Duck 1990) and 

1400 kg/m3 for the sclera (Power 2001).  The shell is composed of four node 

membrane elements with varying thickness (Figure 4.2) information to model zero 

resistance from bending as past studies.  The Uchio et al. material properties are 

chosen by Power (2001) since they take both the cornea and sclera samples to failure.   

 The choice is made to use the material parameters from Uchio et al. in this eye 

model as it has been used in previous validation studies concerning globe rupture 

(Power, 2001; Stitzel et al., 2002) and in other dynamic parameter studies 

(Kisielewicz et al., 1998; Uchio et al., 1999; Uchio et al., 2001; Uchio et al., 2003; 

Uchio et al., 2004).  As can be seen in Figure 5.0, the curves are non-linear but do 

exhibit a linear region and a non-linear region, which could be considered the plastic 

region of the curve.  However, one must use caution in making this assumption of 

plasticity.  Uchio et al. took each sample to failure and plotted the average results of 

both the sclera and cornea tissue samples (Figure 5.0).  Therefore, it is not clear if 

these samples would return to their original undeformed state or close to it.  Further, 

hysteresis effects and strain rate are not mentioned in the Uchio et al. study (perhaps a 

quasi-static rate was used).  Despite using this material, serious consideration is given 

to other studies that measure the mechanical properties of the cornea and sclera.   

 Curtin (1969) performed uniaxial tension tests on sclera tissue from human 

and porcine eyes.  A maximum stress level of 7.5 grams/mm2 is used to model 

equivalent intraocular pressure of 100 mm Hg upon a 1 mm thick scleral wall.  These 
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tension tests are conducted on anterior, equatorial, and posterior eye samples.  These 

tests are concerned with loads within the physiological limits of the eyes and do not 

take the tissue samples to failure.  However, the hysteresis effect is noted in Figure 

5.1 for the posterior sclera of a human eye.  This information could be used directly in 

the MADYMO using a finite element material card that can model the hysteresis 

effects.  However, the Poisson’s ratio would be set to zero, and there could be 

extrapolation issues with the low strain limits (only four percent range in Figure 5.1).   

 However, there is interest in determining a constitutive material model that 

could be used to fit6 this data that would be suitable for finite element analysis.  

Particularly, hyperelastic behavior has been used to describe the choroid (Moses, 

1965) and some of the stress-strain plots for the sclera and cornea tissue exhibit 

similar trends (at least for certain levels of strain) (Curtin, 1969; Woo et al., 1972; 

Graebel & Van Alphen, 1977; Friberg & Lace, 1988; Hoeltzel et al., 1992; Buzard, 

1992).   

Hyperelastic behavior can be considered in MADYMO by using the Mooney-Rivlin 

(Rivlin & Thomas) constitutive equation for solid 8-node elements using two material 

parameters and specifying the Poisson’s ratio.  In the case where the deformations can 

be considered small, the Mooney-Rivlin equation can be considered in this form 

(5.0): 

  W = A(I1-3) + B(I2 –3)  (5.0) 

Where W is the strain energy, A and B are the material parameters of the first and 

second invariants of the strain tensor, and I1 and I2 are the strain invariants.   

                                                           
6 The curve fits, in this chapter, are done using the Levenberg-Marquardt method. 
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Figure 5.1:  Stress-Strain curve from Curtin (1969) showing the loading and unloading of the human 

posterior sclera for low strain. 
 

 

The strain invariants are in terms of extension ratios λ1, λ2, and λ3 so that 

  2
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If the extension ratios are aligned such that they are located parallel to the principle 

axis, and assuming the surface of the sample is force free, then σ3 = 0.  So that the 

incompressibility condition implies λ1λ2λ3=1 and λ2 = λ1
−1/2.  Then the strain 

invariants can be considered in this form letting λ1 = λ: 

  
λ

λ 22
1 +=I  and 22

12
λ

λ +=I   (5.2) 

Which gives, 
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Where 1IW ∂∂  is the material parameter of the first invariant (called A from now 

on); 2IW ∂∂ is the material parameter of the second invariant (called B from now 

on); and, σ is the uni-axial stress in extension.  Equation (5.3) is in terms of 

engineering strain as is typically recorded in the material property determination 

studies conducted on the ocular shell layers.  Therefore, the relationship is as follows 

and is similar to that used by Williams (1980) for material parameter fits for 

polyurethane liner material (equation is used for tensile and compressive stress with 

curve through the origin): 
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Where σe is the engineering stress, and the other parameters are defined above.   

 Another constitutive equation that describes hyperelastic behavior for a wide 

range of strain hardening is the Ogden formulation (5.5) (Shergold, Fleck, & Radford, 

2006).   

  ( )32
3212 −++= ααα λλλ

α
µφ   (5.5) 

Where φ is the strain energy density per undeformed unit volume, (λ1 to λ3) are the 

principal stretch ratios, α is the strain-hardening exponent, and µ acts as the shear 

modulus under infinitesimal straining.  For uniaxial compression or tension, the 

Ogden equation takes the following form (Shergold, Fleck, & Radford, 2006) (5.6): 
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Where σ is the engineering stress, and the other variables are defined as in (5.5).  This 

equation is also implemented in some finite element codes (unfortunately not 

MADYMO at this time).   

 Shergold, Fleck, and Radford conduct a comparative study with the Ogden 

and Mooney-Rivlin constitutive equations.  They show that the Mooney-Rivlin 

equation is inappropriate for describing strong strain-hardening characteristics.  Some 

of the figures in their study show the Mooney-Rivlin fits are good up to the point of 

strain hardening while the Ogden fit is rather good in the entire region.  Interestingly, 

some of the studies that describe the cornea and sclera to follow an exponential stress-

strain behavior (Woo et al., 1972; Graebel & Van Alphen, 1977) have poor fits with 

the Mooney-Rivlin equation but excellent fits with the Ogden formulation due to a 

sharp rise in strain hardening.  The Woo et al. and Graebel and Van Alphen studies 

will be examined.   

 The plot from Curtin (Figure 5.1) shows a good fit with the Mooney-Rivlin 

and Ogden formulation as seen in Figure 5.2.  The Curtin sclera sample shows a good 

fit with the hyperelastic formulations for the Mooney-Rivlin and Ogden.  The 

coefficients for the Mooney-Rivlin are 4.19x106 Pa for A and –4.04x106 Pa for B.  

The coefficients for the Ogden fit are 3.24x101 for α and 3.57x105 Pa for µ.  The 

correlation constants for the Mooney-Rivlin and Ogden are 0.999 and 0.998, 

respectively.   

 Friberg and Lace (1988) conducted simple tension tests on choroid and sclera 

strips.  Figure 5.3 illustrates the stress-strain data points for four strip orientations of 

the sclera.  Friberg and Lace use data points to determine an average elastic modulus 
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for the sclera.  They show that the modulus varies with location with the anterior 

region having an averaged modulus of 2.9 +/- 1.4x106 Pa and 1.8 +/- 1.1x106 Pa for 

the posterior region.   
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Figure 5.2:  Curve fit for the Curtin human posterior sclera comparing the Mooney-Rivlin and Ogden 

constitutive equations for strains below 5%. 
 

 

 It is apparent from Figure 5.3 that the strip testing for the posterior region 

exhibits more compliant behavior and is in agreement with the testing done by Curtin 

(1969).  The samples from Figure 5.3 are fit to hyperelastic material properties as 

well as a linear fit (as done in the Friberg and Lace study).  It can be seen that the 

hyperelastic fits are a better match than the linear fit chosen in the study (Figures 5.4 

to 5.7).  All the coefficients, modulus of elasticity, and correlations are compiled in 

Table 5.0.  The curve fitting shown in Figures 5.4-5.7 are done by zeroing out the 

initial stress and strain in order to let the intercept equal zero.  The Young’s moduli 

reported in Table 5.0 agree with the reported values from Friberg and Lace (1988).   
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Figure 5.3:  Stress-strain relationship from Friberg and Lace (1988) from strips of sclera tissue with the 
following orientations:  Sample A: anterior circumferential, Sample B: radial inferotemporal, Sample C: 

radial supernasal, Sample D: posterior circumferential. 
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Figure 5.4:  Curve fit of the sample A sclera strip from Friberg and Lace (1988). 
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Figure 5.5:  Curve fit of the sample B sclera strip from Friberg and Lace (1988). 
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Figure 5.6:  Curve fit of the sample C sclera strip from Friberg and Lace (1988). 
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Figure 5.7:  Curve fit of the sample D sclera strip from Friberg and Lace (1988). 

 

 

 
Table 5.0:  Summary of material parameters for the samples A-D for the sclera strip tensile test conducted 

by Friberg and Lace (1988). 
 

Sclera Strip 
Sample 

Mooney-Rivlin 
Material 

Parameters 

Odgen Material 
Parameters 

Young’s 
Modulus 

Correlation factor 
r 

 A (Pa) B (Pa) α  µ (Pa) E (Pa) MR/Odgen/Linear 
A 2.5E6 -2.2E6 10.4 6.9E5 2.8E6 0.996/0.996/0.988 
B 2.1E6 -1.9E6 9.4 6.2E5 2.5E6 0.988/0.988/0.980 
C 2.3E6 -2.2E6 13.2 3.6E5 1.8E6 0.987/0.988/0.968 
D 9.6E5 -8.8E5 10.8 2.3E5 1.0E6 0.995/0.997/0.980 

 
 

 

 Buzzard (1992) shows a plot of the sclera and cornea for stress versus strain.  

The relationship, on visual inspection, appears to show hyperelastic properties, like 

Friberg and Lace.  This plot is based on the work of Hoeltzel et al. (1992).  In the 

Hoeltzel et al. study, the cornea tensile testing on samples is fit to the following 

constitutive equation: 



   110

  σ = α(ε−εs)β  (5.7) 

Where α is a scale factor in units Pa, ε is the strain, εs is referred to as the slack strain 

(difference between zero strain and the smallest strain in initiate load bearing in the 

sample),and β is the exponent of the non-linear relationship.  This slack strain factor 

is removed by zeroing out the stress and strain so that (5.7) simply becomes: 

  σ = α(ε)β  (5.8) 

Figures 5.8 and 5.9 show the data points for the cornea and sclera curve fitted with 

the constitutive equation (5.8) along with the Mooney-Rivlin and Odgen hyperelastic 

models.  The power fit defined by (5.8) for the cornea is in agreement with the 

tabulated value for the human cycle 1-3 in Hoeltzel et al. (1992).  The material 

parameters and the correlation factors are tabulated in Table 5.1.  In this case, all 

three of the constitutive models fit the data very well for the given strain levels. 

 

 

Table 5.1:  Material Parameters determined for the cornea and sclera from the Buzard (1992) data points. 
 

Test Sample Scale and Power 
Parameters 

Mooney-Rivlin 
Parameters 

Odgen 
Parameters 

Correlation factor 
r  

 α (Pa) β A (Pa) B (Pa) α µ (Pa) Power MR Odgen 
Cornea 3.08E7 1.85 8.26E6 -8.22E6 35.41 4.13E5 1.000 0.999 0.999 
Sclera 3.08E8 2.18 3.31E7 -3.32E7 76.65 5.96E5 0.999 0.999 0.999 

 

 

 

 Woo et al. (1972) and Graebel and van Alphen (1977) determine constitutive 

fits for the ocular tissues.  Woo et al. use a membrane method for determining the 

properties of the cornea, sclera, and optic disc (optic nerve head).  Graebel and van 
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Alphen consider the sclera and choroid using strips in uniaxial tension tests.  Both 

studies consider the constitutive equations for the sclera to be of the following form: 

  σ = α(eβε-1)  (5.9) 

Where σ is the stress, α is a scale factor in units Pa, β is the exponent factor, and ε is 

the strain.  Woo et al. provide the values for α and β used in (5.9); then are tabulated 

in Table 5.2. 
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Figure 5.8:  Cornea stress-strain with curve fit from Buzard (1992). 
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Figure 5.9:  Sclera stress-strain with curve fit from Buzard (1992). 

 

 

Table 5.2:  Material parameters as defined in Woo et al. (1972) for the cornea, sclera, and optic disc 
 

Material Parameters Sclera Cornea Optic Disc 
α (Pa) 1.8E5 Pa 5.4E4 7.7E4 

β 41.8 28.0 11.5 
  

 

 

The material constants shown in Table 5.2 are based on determining the tri-linear 

moduli for each of the structures.  Then the slopes of the tri-linear moduli are aligned 

to create an effective stress versus strain curve that allows the fit of (5.9) with the 

determination of the material parameters to be found by a least-squares method.  

Using the material parameters, curves for the cornea, sclera, and optic disc (ONH) are 

plotted in Figure 5.10. 
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Figure 5.10:  Stress versus strain plot of the Woo et al. (1972) sclera, cornea, and ONH using the provided 

material parameters. 
 

 

As illustrated, the sclera stress exhibits a strain hardening around 10% strain.  The 

other ocular shells also exhibit similar trends but appear linear in Figure 5.10.  As 

shown in the work done by Shergold, Fleck, and Radford (2006), the Mooney-Rivlin 

fit is acceptable for low strain (below 3% for the sclera in Figure 5.11, below 8% for 

the cornea in Figure 5.12, and below 16% for the ONH).  The Ogden fit also shows 

good correlation in the mentioned strain levels. 
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Figure 5.11: Hyperelastic fits with sclera stress versus strain defined by (5.9).  Correlation is 1.000 for both 

fits. 
  

 

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Strain

St
re

ss
 (P

a)

Cornea Stress (Pa)
Cornea MR Fit
Cornea Ogden Fit

 
Figure 5.12:  Hyperelastic fits with cornea stress versus strain defined by (5.9).  Correlation is 0.999 for 

the Mooney-Rivlin fit and 1.000 for the Ogden fit. 
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Figure 5.13:  Hyperelastic fits with the ONH stress versus strain defined by (5.9).  Correlation is 0.999 for 

the Mooney-Rivlin fit and 1.000 for the Ogden fit. 
 

 

 However, as seen in Figures 5.14 to 5.16, the fit for the Mooney-Rivlin 

constitutive equation is inferior despite having correlations above 0.900.  The worst 

fit is associated with the ramp up of strain hardening as seen in Figure 5.14.  What 

appears to happen is the stress is negative for strain levels below 10%; this does not 

make physical sense.  The Ogden fit in this case is able to handle the fit nicely with a 

correlation equal to 1.000.  Shergold, Fleck, and Radford explain the Ogden fit is 

good because the strain hardening exponent α is almost independent of strain rate 

while µ increases with strain rate (5.6).  The values for the curve fits are tabulated in 

Table 5.3.  In particular, the Mooney-Rivlin material parameters determined from 

Figures 5.11 to 5.13 are shown with Ogden fits from Figures 5.14 to 5.16.  It would 

be inappropriate to tabulate the Mooney-Rivlin parameters determined from Figures 

5.14 to 5.16. 
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Figure 5.14:  Hyperelastic curve fits with the Woo et al. (1972) sclera material with behavior from (5.9). 
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Figure 5.15:  Hyperelastic curve fits with the Woo et al. (1972) cornea material with behavior from (5.9). 
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Figure 5.16:  Hyperelastic curve fits with the Woo et al. (1972) ONH material with behavior from (5.9). 

 

 

Table 5.3:  Material parameters for the hyperelastic constitutive fit to the Woo et al. (1972) materials. 
 

Ocular Tissue Mooney-Rivlin 
Parameters 

Ogden Parameters Correlation factor r 

 A (Pa) B (Pa) α µ (Pa) MR Odgen 
Sclera 1.00E7 -1.49E7 50.22 2.44E5 0.833 1.000 
Cornea 2.15E6 -3.21E6 34.03 5.98E4 0.918 1.000 

ONH (Optic Disc) 4.98E5 -7.36E5 16.15 3.56E4 0.974 1.000 
 

 

 Graebel and Van Alphen (1977) also consider (5.9) when fitting the material 

behavior for the sclera samples.  The parameters α and β appear to increase with age 

(exception to eye number 6 where α is extremely low).  A total of nine eyes are used, 

and each sample has its own curve fit to determine the material parameters for the 

constitutive fit.  Of particular interest is the youngest eye specimen from a four-year-

old.  Similar trends can be seen in Figure 5.17, where the attempted Mooney-Rivlin 
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fit fails to describe the trend over the strain range when the strain hardening is 

included.  The Ogden fit, again, excels at lining up with the data points.  In Figure 

5.17, the baseline stress versus strain curve is provided by using α = 205.7 and 

β = 46.56 from Graebel and van Alphen (1977).  In this case, the Ogden parameters 

are 53.86 for α and 3691 Pa for µ with a correlation factor of 1.000.  The Mooney-

Rivlin, which should not be used, is 3.01x106 Pa for A and –3.22x106 Pa for B with a 

correlation of 0.929.  Throughout these curve fits, one would think that the correlation 

factors of 0.900 and greater would indicate a superior fit; however, it is obvious that 

visual inspection of the fit should also be used to influence final decisions.   
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Figure 5.17:  Hyperelastic curve fit to the sclera sample from Eye 1 (4-year-old) using parameters from 

Graebel and van Alphen (1977). 
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 When comparing the material parameters of the sclera and cornea, it is 

apparent that the constitutive equations used from one study to the next vary 

tremendously, due to the type of testing performed (membrane inflation or strip test), 

age of the specimen, preparation of the specimen, species of the specimen, and the 

cycle loading to remove hysteresis effects.  Uniformly comparing these samples by 

curve fitting to hyperelastic material parameters describes these tissues as having 

hyperelastic behavior.  The exception seems to be the material testing done by Uchio 

et al. where they do not consider the hysteresis of the sample and just load to failure.  

However, the Uchio et al. material is chosen because it has been previously used in 

dynamic simulations studies that are able to predict globe rupture.  In addition, the 

Mooney-Rivlin formulation in the MADYMO software can only be used for solid 8-

node elements while most of the studies consider shell membrane elements that do 

not resist bending.  This current study will therefore consider the membrane elements 

for the ocular shells with the Uchio et al. material parameters applied in order to focus 

on the parametric studies for the vitreous body. 

 

 

Choroid 

 The choroid is a thin, highly vascular (with extensive nerve supply) membrane 

that supplies nutrition to the retina and anterior portion of the eye.  This tissue 

exhibits some of the traits of erectile tissue (Hogan, 1971).  The entire traits of the 

choroid are still unknown as all testing that has been done are postmortem and in 

vitro (uniaxial elongation testing).  There is no question that the rich blood supply 

would affect the stiffness characteristic of the choroid.  Friberg and Lace (1988) 
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suspect that in vivo testing would reveal stiffer characteristics, especially in 

compression.  In addition, Friberg did measure the choroid thickness (0.08 mm) but 

assumed the in vivo thickness to be 0.42 mm on account of the full blood vessels.  

Testing by Moses (1965) and Graebel and van Alphen (1977) assumes a thickness of 

0.02 mm and 0.16 mm, respectively.  Further, Graebel and van Alphen explain that 

the elastic behavior of the choroid exhibited a power law behavior and tends to be 

less elastic with age.  Moses (1965) explains that the choroid exhibits hyperelastic 

behavior; the choroid “appears to be an elastomer” (p. 938).  An elongation versus 

grams plot of a meridional strip of choroid shows the repeat loading with hysteresis 

loops.   

 This information does offer flexibility as one could use the non-linear 

characteristics and capture the hysteresis information in the MADYMO material 

model type hysteresis (elastic isotropic material model with hysteresis).  This is 

assuming the Poisson’s ratio is zero which, more likely, it is 0.5 for incompressible 

materials.   

 Another option would be to fit the curve to a hyperelastic constitutive 

equation (disregarding the hysteresis looping) since the author suggests that the 

material is hyperelastic.  Using (5.4) (Williams, 1980), the Mooney-Rivlin parameters 

(A and B), can be solved.  Curve fitting, after translating the curve (Figure 5.18) to 

start at zero force at zero elongation, and converting to stress versus strain, the 

Mooney-Rivlin parameters are determined to be 4.9x106 Pa for A and –4.8x106 Pa for 

B. 
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 MADYMO has a constitutive equation for hyperelastic material using the 

Mooney-Rivlin behavior (5.4).  For comparison, a two parameter Ogden fit is also 

provided by (5.6), a specialized case for uniaxial compression or tension (Shergold, 

Fleck, & Radford, 2006).  This particular constitutive equation yields –27.9 and 

4.1x105 Pa for α and µ, respectively. A comparison is provided (Figure 5.19) that 

compares the measured stress versus strain for the assumed thickness of 0.02 mm of 

the choroid sample strip with initial length equal to 16 mm and width equal to 6 mm.  

Both the Mooney-Rivlin and Ogden constitutive equations fit the data quite well with 

correlations close to one. Moses (1965) determines the elastic modulus using (5.10), 

from seven eyes, for the meridional and equatorial orientations and tabulates them.  

The Young’s modulus corresponding to the strip sample used in Figure 5.18 is given 

as 4.2 MPa (calculated on choroidal strips one cm wide by one cm in length). 

  
δ⋅⋅

⋅=
tw

lFE   (5.10) 

Where E is the Young’s modulus, F is the force, l is the length of the strip, w is the 

width of the strip, t is the thickness (assumed to be 0.002 cm), and δ is the elongation.  

The highest value recorded in the Moses work is a Young’s modulus of 6.9 MPa 

(converting from grams/cm2) for a meridional strip (eye number 5).   
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Figure 5.18:  Elongation versus force of a choroid strip sample (Meridional Eye #7) from Moses (1965) 

with curve shifted to go through the origin for proper curve fitting (hysteresis loop removed). 
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Figure 5.19:  Curve fit of stress versus strain with Mooney-Rivlin and Ogden models from Moses (1965). 

 

 

 

 However, if one were to use the strip sample size information given for eye 

sample 7 (6 mm in width and 16 mm in length), then the modulus would change 

using (5.10) to 10.1x106 Pa for the second loading cycle and 6.5x106 Pa for the first 
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loading cycle (as used in the curve fit in Figure 5.19).  In addition to the hyperelastic 

fits, a linear fit is also done to determine the elastic modulus for comparison and is 

equal to 1.9x106 Pa which is lower than that specified in the Moses work.   

 However, as Graebel and van Alphen suggest, Moses is reporting the secant 

modulus, so using the first and last data point in Figure 5.19 would yield an elastic 

modulus of 2.3x106 Pa, which still is inconsistent with the calculated values using 

(5.10).  One explanation for this difference in elastic moduli is properly due to sample 

size.  Moses reports the sample size in a plot for eye number 7 for the meridional strip 

as having width equal to 6 mm and length equal to 16 mm.  However, in another area, 

the tabulated values for Young’s modulus, in units gm/cm2, use choroidal strip sizes 

of 1 cm in width and length.  One alarming issue is the assumed thickness of the 

choroidal sample being 0.002 cm.  Comparing this thickness to the Graebel and van 

Alphen uniaxial strip test study, which uses an assumed thickness of 0.16 mm, the 

difference is eight times smaller.  This smaller thickness would also explain why the 

elastic modulus is two orders higher in magnitude than the modulus reported by 

Graebel and van Alphen.   Graebel and van Alphen show that the choroid fits a power 

law for the stress-strain behavior as follows: 

  σ = σ0(ε/ε0)a  (5.11) 

Where the σ0 is arbitrarily chosen to be 5x103 Pa, ε0 and a are determined by a least-

square fit, and ε is the strain.  As in the sclera study, the eye sample from the four-

year-old is used in this curve fit examination and is shown in Figure 5.20.  The 

Mooney-Rivlin formulation displays negative strain for positive stress in Figure 5.20. 

The Mooney-Rivlin fit is compared to (5.11) where the coefficients in the power law 
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are determined to be 2.30 for a and 0.2945 for ε0 assuming a σ0 equal to 5x103 Pa.  

The Ogden fit is rather good with α equal to 6.40 and µ equal to 6.45x103 Pa and a 

correlation factor equal to 0.999.  The Mooney-Rivlin is shown to exhibit negative 

stress for positive strain at around 2% strain, which is not correct.  It is concluded that 

relationships that are fit to constitutive models using (5.9) or (5.11) should not be 

converted to Mooney-Rivlin parameters unless only a small region of the stress 

versus strain is of interest.   

 Friberg and Lace (1988) consider the choroid in uniaxial testing using strips 

from human eyes.  Specimens are cut from different locations and orientations like 

the scleral strip samples (Figure 5.21).  The choroidal strips in this case are taken 

from the radial orientation (radial direction is in the posterior-anterior direction while 

circumferential strips are considered in the superior-inferior directions). As can be 

seen in Figure 5.21, sample A from the inferotemporal region is less compliant than 

the samples B and C.  The thickness in this study is measured using a calibrated 

reticule and a microscope as opposed to assuming a thickness.  The average thickness 

is then calculated to be 0.08 mm.  The study linear fits the data points to determine 

the average elastic modulus of the anterior choroidal strips to be 2.2 +/- 1.5x105 Pa, 

the posterior choroidal strips to be 7.5 +/- 7.0x105 Pa, and the radial strips to be 8.2 

+/- 4.8x105 Pa.  The total average elastic modulus across all locations is 6.0 +/- 

2.8x105 Pa with an average stress failure of the samples to be 3.3 +/- 1.3x105 Pa.  As 

can be seen in Figure 5.21, sample A from the inferotemporal region is less compliant 

than samples B and C.  The thickness in this study is measured using a calibrated 

reticule and a microscope as opposed to assuming a thickness.  The average thickness 
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is then calculated to be 0.08 mm.  The study linear fits the data points to determine 

the average elastic modulus of the anterior choroidal strips to be 2.2 +/- 1.5x105 Pa, 

the posterior choroidal strips to be 7.5 +/- 7.0x105 Pa, and the radial strips to be 8.2 

+/- 4.8x105 Pa.   
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Figure 5.20:  Hyperelastic curve fit with the choroid sample from a 4-year-old eye specimen from the 

Graebel and van Alphen (1977) study. 
 

 

 

The total average elastic modulus across all locations is 6.0 +/- 2.8x105 Pa with an 

average stress failure of the samples to be 3.3 +/- 1.3x105 Pa. Curve fits for each of 

the samples noted in Figure 5.21 are shown in Figures 5.22 to 5.24, and the final 

results are tabulated in Table 5.4.  These data points are shifted so that the first data 

point starts with zero stress at zero strain before curve fitting is attempted.  As a 

comparison, the elastic modulus determined by the curve fit shown in Figures 5.22 to 

5.24 in Table 5.4 compares well with that reported by Friberg and Lace (1988).  
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Taking the average gives 9.4x105 Pa, which is comparable to the average determined 

by Friberg and Lace. 
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Figure 5.21:  Choroidal data points from strip samples of the Friberg and Lace (1988) study.  Sample A is 
taken from the radial inferotemporal region.  Sample B is taken from the radial superonasal region.  Sample 

C is taken from the radial superotemporal region. 
 

 

 

 Curve fits for each of the samples noted in Figure 5.21 are shown in Figures 

5.22 to 5.24, and the final results are tabulated in Table 5.4.  These data points are 

shifted so that the first data point starts with zero stress at zero strain before curve 

fitting is attempted.  As a comparison, the elastic modulus determined by the curve fit 

shown in Figures 5.22 to 5.24 in Table 5.4 compares well with that reported by 

Friberg and Lace (1988).  Taking the average gives 9.4x105 Pa, which is comparable 

to the average determined by Friberg and Lace. 
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Figure 5.22:  Curve fit for the choroidal strip sample A from Friberg and Lace (1988). 
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Figure 5.23:  Curve fit for the choroidal strip sample B from Friberg and Lace (1988). 
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Figure 5.24:  Curve fit for the choroidal strip sample C from Friberg and Lace (1988). 

 

 

 

Table 5.4:  Compilation of the material parameter fits for the linear and hyperelastic formations for the 
choroidal strips from Friberg and Lace (1988). 

 
Choroidal strip 

samples 
Linear fit Mooney-Rivlin fit Ogden fit Correlation factor r 

 Elastic 
Modulus 

(Pa) 

A (Pa) B (Pa) α µ (Pa) Lin MR Ogden 

Sample A 1.19E6 9.09E5 -7.92E5 8.16 3.12E5 0.990 0.993 0.992 
Sample B 8.43E5 6.57E5 -5.84E5 7.63 2.20E5 0.991 0.996 0.994 
Sample C 7.95E5 2.61E5 -1.24E5 3.64 2.84E5 0.998 0.998 0.998 

 
 

 
 

 Friberg and Lace also estimate the choroidal thickness in living tissue to be 

approximately 0.43 mm.  Coleman and Lizzi (1979) determine the in vivo choroidal 

thickness to accuracy better than 20 µm using ultrasound technique.  The value 

reported in the posterior region of the eye is 471 µm, which is extremely close to that 

approximated by Friberg and Lace (percent difference of about 5% from estimating).  
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However, some of the other estimates or assumptions for choroidal thickness are 

much smaller and can affect the final modulus.   

 In the current eye model the choroid properties from Graebel and van Alphen 

are used with a thickness of 0.471 mm using shell membrane elements.  Comparing 

the elastic modulus from Graebel and van Alphen to Moses, Graebel and van Alphen 

use the thickness of 0.16 mm and recalculate the Moses modulus to be 16.35x104 Pa 

(averaging all meridional and equatorial sample values), which is almost double the 

final average of 9.68x104 Pa from the Graebel and van Alphen work.  However, it is 

not clear how Graebel and van Alphen exactly converted the Moses values as 

averaging all the moduli for the meridional strips for the initial loading in Moses 

gives 3.48x104 grams/cm2.  Converting this value to Pascal’s gives 3.48x106 Pa.  

Then converting the thickness from 0.002 cm to 0.16 mm gives 4.35x105 Pa, which is 

off by 2 ½ times the reported conversion of 1.71x105 Pa.  The Friberg average elastic 

modulus is 6.0x105 Pa, which is higher than the afore mentioned elastic modulus of 

9.68x104 Pa reported by Graebel and van Alphen, but closer in magnitude to the 

averaged value of 4.35x105 Pa (using Graebel and van Alphen thickness with the 

Moses reported values) and the curve fit modulus from Figure 5.19.  

 

 

Retina 

 This section is concerned with the biomechanical properties of the retina 

(specifically the posterior retina).  The general term retinal hemorrhaging is used 

perhaps because most of the hemorrhaging occurs in the retinal layers.  As understood 
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by Levin (2000), retinal hemorrhaging is a generic term that simply means bleeding 

in the eye.  This work considers the retina as a thin membrane composed of shell 

membrane elements with an elastic modulus and a uniform thickness.  The element 

layer shares a common node with the sclera, choroid, and vitreous body.  This is done 

to keep the model simple to avoid complex contact interactions with the interfacing 

layers.  However, there is investigation into possible adhesive strengths that will be 

discussed.   

 The retina is a very thin, delicate, and clear tissue lining the inner eye and 

interfacing the vitreous body and choroid layer through the pigment epithelium 

(Hogan, 1963).  The retina varies in thickness with the thickest portion near the optic 

disk measuring 0.56 mm thinning to 0.18 mm to the equator, and then to 0.1 mm at 

the ora serrata (Hogan, 1963).   

 Currently, information on the mechanical properties of the retina as compared 

to the cornea-sclera shell and choroid is scarce.  Perhaps, it is because the tissue is so 

compliant compared to the other ocular tissues that it is simply disregarded (Wu, 

Peters, & Hammer, 1987).  However, there are more interesting studies concerning 

the adhesive strength that are considered by Kita and Marmor (1992) and Zauberman 

and deGuillebon (1972).  An investigation into the retinal properties in simple 

elongation is presented (Wu, Peters, & Hammer, 1987).  In this study, the retina is 

taken from various orientations from bovine and rabbit eyes (meridional with 

meridional vessel (MM), meridional without visible vessel (MN), and equatorial 

(EN)).  The samples are tested at various strain rates ranging from 0.36 mm/s to 3.6 

mm/s.  Figure 5.25 shows a plot of a MM specimen with three cycles of loading. 
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Figure 5.25:  Loading of retinal strip sample from Wu et al. (1987) showing the three cycles with 

hysteresis.  Specimen label is MM 81 with stretch rate equal to 0.87 mm/s. 
 

 

 The first cycle in Figure 5.25 is rather compliant as opposed to the other two 

cycles.  Wu et al. suggest this is a result of blood loss in the sample and that it affects 

the mechanical properties significantly.  It is probably more prudent to consider the 

first cycle only and disregard the other cycles; however, Wu et al. compile the results 

afterwards with this preconditioning applied to the samples.  The behavior of the 

force versus stretch ratio is then fit to a constitutive equation of similar form used by 

Graebel and van Alphen (1977) (5.11).  The exception is that force is used instead of 

the stress and leads to (5.12): 

  
a

FF 







=

0
0 ε

ε   (5.12) 

Where F is the force in grams; F0 is chosen to be 0.24 grams for the MM group 

samples and 0.12 grams for the MN and EN group samples; ε is the strain considered 



   132

here as λ-1; ε0 and a are the coefficients determined from curve fitting.  Wu et al. uses 

samples with widths equal to 4.5-5.0 mm and do not consider the thickness through 

measuring or assuming.  However, Wu et al. do compare the values with the Graebel 

and van Alphen work and show that the coefficients determined are within similar 

ranges.  Further, the choroid elastic modulus is listed from Graebel and van Alphen, 

and then they list a tangent modulus at a magnitude lower (0.46-0.58x104 Pa) at a 

middle stress level equal to 1.2x103 Pa.  In the Graebel and van Alphen work an 

arbitrary stress is chosen to be 5x103 Pa for the choroidal strip testing.  Obviously, 

Wu et al. do consider the retinal thickness some how.  Assuming this middle stress 

level of 1.2x103 Pa is based on the F0 = 0.12 grams would indicate an original cross-

sectional area of approximately 1x10-6 m2 or 1 mm2.  Assuming that the width 

mentioned in their sample size is 5 mm would indicate a thickness of 0.2 mm for the 

retina.  This thickness would indicate that Wu et al. considered the thickness of the 

posterior region of the eye for the elastic modulus calculations.  Therefore, an attempt 

is made to convert the values in Figure 5.25 into stress versus stretch ratio for the first 

cycle loading curve (Figure 5.26).  Different constitutive equations are then fit to the 

data using the F0 converted to σ0 in (5.11) for the power fit.  The values are then 

tabulated in Table 5.5 for comparison. 

 

 



   133

-200

0

200

400

600

800

1000

1200

1400

1600

1800

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

λ  stretch ratio

st
re

ss
 (P

a)

1st cycle
MR fit (r=0.996)
Ogden fit (r=1.000)
Power fit (r=0.999)

 
Figure 5.26:  Curve fit to retina sample strip MM for the first cycle loading from Wu et al. (1987). 
 

 

 

Table 5.5:  Compilation of the constitutive equation fits for the retina sample strip MM for the first cycle 
loading from Wu et al. (1987). 

 
Retinal Strip  Power fit Mooney-Rivlin fit Ogden fit Correlation factor r  

 a ε0 A (Pa) B (Pa) α µ (Pa) Power  MR Ogden 
Sample MM 81 2.15 0.29 4.91E3 -5.19E3 11.96 454.1 0.999 0.996 1.000 

 
 

 

 

 The curve fit shows excellent correlation with all of the constitutive equations.  

However, the Mooney-Rivlin fit does dip into negative stress for positive stretch 

indicating a poor fit regardless of the correlation factor equaling 0.996.   

The Ogden fit is good in describing the behavior, as is the power fit.  The coefficients 

of the Power fit are within the reported range of Wu et al. (1.53-2.21 for a and 

0.1810-0.5333 for ε0).  Using the coefficients from Table 5.5 for the power fit gives a 
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strain level of 0.28576 for a stress level of 1.2x103 Pa (indicated as the middle stress 

level).  Therefore, the calculated elastic modulus for the Wu et al. sample shown in 

Figure 5.25 is 0.42x104 Pa and is lower than the reported range of 0.46-0.58x104 Pa.  

The lower value is a result of not including the preconditioning factor and is 

presumably more representative of the true in-vivo sample.  Interestingly, Wu et al. 

mention that the tensile strength is roughly twice the adhesive strength comparing the 

results with the work of deGuillebon and Zauberman (1972).   

 Jones, Warner, and Stevens (1992) consider the retina to be an elastic 

membrane sheet in their determination of the mechanical properties using a 

mathematical model.  Bovine retina is excised and placed on a metal washer with 

known dimensions.  A no-slip boundary condition is imposed on the retinal 

membrane by applying adhesive to the washer.  A suture using a 10.0 nylon thread is 

inserted into the middle of the sample and a bead of adhesive is allowed to traverse 

down the thread.  Once the adhesive is dried, stretching is imposed via the suture and 

the height of deformation and traction force are recorded.  An idealized model is 

constructed using various equations that are numerically solved resulting in a need for 

an elastic constant, k, so that the equations can fit the data profile (which has not been 

provided as a plot as in other studies).  Ultimately, a k value of 2 N/m provides an 

elastic modulus of 2x104 Pa with a difference of 7% in predicting the force compared 

to the actual experimental measurements.  The thickness used in these calculations is 

0.1 mm for the retinal membrane and the results are in good agreement with those of 

Wu et al.  (2x104 Pa from Jones et al. compared to 0.46-0.58x104 Pa from Wu et al.), 

which is about four times as stiff compared to Wu et al.  The retinal membrane in this 
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work is considered to be an elastic membrane with material properties using the 

Young’s modulus determined by Jones et al., Poisson’s ratio equal to 0.49 to model 

incompressibility, a density equal to 1000 kg/m3, and a thickness of .14 mm indicated 

in a figure showing the variation of retinal thickness in the human eye in Wu et al. 

and Hogan (1963).  The influence of the thickness is also from Jones et al.  There 

seems to be an indication that the thickness of 0.14 mm is spread throughout the 

retina with a sharp increase of 0.21-0.23 in a small posterior location (the optic disk 

area) and then thinning out towards the edges (ora serrata) to a thickness of about 

0.10-0.13mm.   

 Interestingly, the thickness of the retina is also measured by spectrally 

deriving the retinal thickness in order to subtract the value from the choroid plus 

retina to determine the choroidal thickness in the work done by Coleman and Lizzi 

(1979).  In this study, ultrasound methods are employed to measure the in-vivo 

choroidal thickness.  The thickness indicated in a figure is 170 µm for the retina with 

an asterisk to indicate that the value is indirectly derived.  This value is really close to 

the assumed value used in the current model.   

 Concerning retinal detachment and adhesive strength, two methods of testing 

have been employed.  Traction force of the retina is measured by peeling the retina 

from a choroid strip (Zauberman & Deguillebon, 1972; Zauberman, Deguillebon, & 

Holly, 1972; deGuillebon & Zauberman, 1972; Marmor, Abdul-Rahim, & Cohen, 

1980) or bleb formations are induced in-vivo, and the pressure difference is used in 

determining the retinal adhesive force (Kita et al., 1990; Kita & Marmor, 1992).  

Another study induces blebs (bubbles of fluid beneath the retina and above the 
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choroid) in-vitro (Kain, 1984).  This retinal force is really a determination of the 

pigment epithelium strength, which acts as an adhesive attaching the retinal processes 

to the choroidal layer (indicated in a diagram from Kain (1984)).  In the peeling 

studies, deGuillebon and Zauberman show that the adhesion is influenced by the 

peeling rate.  At low peeling rates, the retina pulls off the choroid strip rather 

smoothly (rates of 2 and 8.5 mm/min).  At higher rates, the choroid and retina would 

stay attached and peel away from the sclera shell (42 mm/min).  And finally, at a rate 

of 210 mm/min, the retina peeled away in a jerky manner with partial detachment of 

the choroid from the sclera.  A plot of force (mg) versus peeling rate (mm/min) and a 

plot of elongation (%) versus peeling rate (mm/min) is provided in this study.   

 Considering a midlevel force of 80 mg occurring at a peeling rate of 

approximately 15 mm/min (read from plot) gives an elongation of approximately 

24% interpolated from the second plot.  Also, given that the strip width is indicated to 

be 6.5 mm, one can determine the force per length.  In this case, the strip sample is 

oriented 23 degrees counterclockwise from the horizontal.  The sample is then affixed 

to a metallic rod attached to a glass tube with a force transducer.  As the sample is 

pulled in the apposing direction the normal and shear force can be determined and 

converted to SI units and is equal to 0.12 N/m for the total force and 0.1 N/m for the 

normal component and 0.05 N/m for the shear component.  This retinal detachment 

study uses rabbit eyes and is comparable to the work done by Kita et al. in various 

studies with live rabbit in-vivo studies.   
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 In the case of the Kita et al. experiments, bleb formations are induced in live 

rabbits and the pressure difference is used to determine the adhesive force per length 

using (5.13) the following: 

PS – PV = 2T / R  (5.13) 

Where PS is the subretinal pressure, PV is the intravitreal pressure, T is the tension, 

and R is the radius of the sphere (bleb).  The value for the rabbit adhesive force is 

reported to be 0.18 N/m (Kita et al. 1990).  In another study, (Kita & Marmor, 1992) 

a comparison is made with living rabbit, cat, and monkey eyes.  In this study, the 

adhesive force for the rabbit is reported to be 0.1 N/m, 0.18 N/m for cats, and 0.14 

N/m for monkeys.  However, it is not clear why the rabbit eyes in one study would go 

from 0.18 N/m down to 0.1 N/m since both studies consider Dutch rabbits.  However, 

it is interesting to note that two different methods of measuring retinal adhesion 

would yield values of retina force per unit length that are approximately the same for 

rabbit retina.  The current eye model proposes the use of this retinal adhesive force 

from the monkey eyes (0.14 N/m) as an indication of failure in the retinal-choroid 

layer.   

 Further, an assumption is made that failure would not occur in the retinal-

vitreous layer (Levin, 2000).  Levin explains that in severe shaking, it is possible to 

have focal or complete detachment of the retina.  A forensic pathological study 

indicates that the incidence in retinal detachment is 63% (Green et al., 1996).  

Further, this high incident rate is likely due to the vitreous traction.  Levin mentions 

that hemorrhagic detachment can occur but is rarely observed.  Retinal hemorrhages 

with detachment are rarely observed perhaps due to the subretinal resorption times 
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(Negi & Marmor, 1986).  As indicated above, the retinal adhesive force is within a 

comparable range amongst the test samples studied given the different species, testing 

methods, and whether or not the animal is alive.  Perhaps, this would indicate the 

pigment epithelium is similar for human (and even infant) eyes.  In this case, bleb 

resorption time is reported to be 187-561 minutes varying the bleb fluid (Negi & 

Marmor, 1986).  This would provide enough time for the retina to reattach to the 

pigment epithelium before an infant is examined for possible SBS.  Further, it is 

suggested that this absorption could occur and still show retinal hemorrhaging.  

Therefore, given the physiological properties of infant eyes, it is quite possible that 

retinal detachment with hemorrhaging is more common in SBS.   

 In order to include this detachment information in the biomechanical eye 

model, the MADYMO software is capable of modeling node-node welds.  Therefore, 

the once coincident nodes of the retina are moved in the normal direction of the 

element to provide a small gap between the choroid and retina.  Then, node-node 

welds are introduced binding the choroid node with the once coincident retina node.  

This model would still have the retina sharing the nodes with the outer surface of the 

vitreous body solid however.  In this study, the focus is on the posterior region of the 

eye; therefore, only the nodes in the posterior pole are considered for the node-node 

weld (Figure 5.27).   

 Contact interactions would then be included between the retina and choroid so 

as to prevent the retina from seeping out of the sclera shell during applied motions.  

The preferred way to model this adhesive force would be to model the retina-choroid 

interface as a de-lamination process ((Kostopoulos et al., 2002).  In this case, the 
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nodes of the choroid and retina would remain coincident until a force is reached that 

would separate them.  This would make more physical sense.  Another area that 

welds in the eye model mentioned is with sutures after LASIK surgery (Uchio et al., 

2004).  Interestingly, a force breach of 0.16 N (comparable to the retinal adhesion 

force) is used for the propylene suture strength.  In Uchio et al.’s work, it is not clear 

if the mentioned spot-weld is the same type of node-node weld used in the 

MADYMO software, where one cannot have zero distance between the welded 

nodes.   

 

 

 
Figure 5.27:  Detail of node-node weld implemented in the biomechanical model between the choroid 

layer (wire-frame) and the retinal layer (shaded-wire-frame). 
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 The spot-weld as modeled in MADYMO (5.14) uses the normal and shear 

force component in the following form: 

  1
maxmax

<+
sn a

s

s

a

n

n

F
F

F
F

  (5.14) 

Where Fn is the force parallel to the line connecting the two nodes; Fs is the 

perpendicular force to the line connecting the two nodes; Fnmax and Fsmax are the 

maximum allowable normal and shear force components; an and as are the exponents 

that determine the shape of the rupture.  Therefore, if one were to consider purely 

normal force, these exponents would each equal infinity.  If only the shear component 

were considered, then the exponents would each equal one.  Lastly, if a combination 

of shear and normal force were used (mentioned in an example in MADYMO syntax 

in the reference manual section), then each of the exponents would equal two.  In 

Figure 5.27, when motion is imposed on the entire eye, nodes between the weld act as 

spherical joints and have no resistance (at least visually).  Using exponents each equal 

to two yields a similar response as if they are infinity.  It is assumed that the shear 

effects would have a minimal effect and so only the normal force is considered by 

specifying the Fnmax equal to 0.14 N and an = as = infinity.  An arbitrary value is set 

for Fsmax in case of syntax errors.  The response of adding nodal welds will be 

discussed in a later chapter.  
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Conclusion 

 A comprehensive investigation into the ocular tissue layers has been 

conducted.  Immediately apparent is the breadth of biomechanical models and 

mechanical property determinations of the cornea and sclera.  In this section, 

researchers have either done strip testing or membrane inflation with finite element 

methods used to help determine the material properties.  The material properties of 

the ocular shells, from previous research, have not explicitly been fit to a hyperelastic 

material form.  This chapter provides these material property fits from previous 

literature on the ocular shell layers.   It appears the trend is either to report the values 

in a plot or fit a constitutive equation using power laws or exponential forms (5.7) 

(5.8) (5.9).  Unfortunately, the MADYMO code utilized in this dissertation does not 

support these forms.   

 Extensive work has been done on the cornea-sclera shell with regard to globe 

rupture prediction and other impact studies using the work from Uchio et al.  The 

work done on the choroid is not as comprehensive as the cornea and sclera.  Perhaps, 

the lack of study is due to the trend of study, which is concerned with impact trauma 

to the cornea-scleral shell.   

 The choroid is also considered in hyperelastic fits as Moses (1965) mentions 

hyperelastic properties are exhibited by the choroid.  Current research presented in 

this chapter has measured the choroid in uniaxial elongation using excised strips.  The 

choroid is highly vascular and preconditioning the sample would increase the rigidity 

(as in the case with the retinal preconditioning, Figure 5.25) (Wu, Peters, & Hammer, 

1987).   
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 The retina membrane mechanical properties are mostly concerned with 

adhesive force with the pigment epithelium.  However, two groups (Wu, Peters, & 

Hammer, 1987; Jones, Warner, & Stevens, 1992) do consider the actual mechanical 

properties of the membrane itself either by strip testing or elongating vertically from 

an affixed position on a metal washer.   

 This chapter looks into the mechanical properties of the cornea, sclera, 

choroid, and retina.  Further, research has been presented that discusses the retinal 

adhesive strength and a possible modeling technique using the node-node weld 

method to model retinal detachment.    
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CHAPTER VI 

EXTRA-OCULAR RESTRAINTS 

 

 

Introduction 

 This chapter will consider the eye tethers, which are composed of the muscle-

tendon attachments and the optic nerve.  The fatty tissue contains a spherical void 

(Figure 4.20) containing the eye globe and helps restrict the motion of the eye so that 

it behaves mostly as a spherical joint.  The optic nerve modeling is approached by 

two methods of research.  The first method of modeling the optic nerve is as a full 

finite element cylinder attached to the posterior eye using literature from optic nerve 

head (ONH) studies.  These studies are mostly concerned with glaucoma (Bellezza, 

Hart, & Burgoyne, 2000; Sigal, Flanagan, & Tertinegg, 2004) and the biomechanics 

of the ONH and the lamina cribrosa.  However, there is a compilation of mechanical 

properties from Sigal et al. that are considered in the SBS eye model.  All of these 

ONH studies that contain finite element analysis are considered for static analysis.   

 In this study, the optic nerve is going to be utilized as a tether, as suggested by 

Levin (2000), in order to investigate the dynamic reaction at the posterior eye region.  

Collins et al. (1969) have measured the damping and stiffness parameters of the eye 

during surgery.  These parameters are utilized as the plant parameter in muscle model 

studies conducted by many authors.  These parameters are for an adult eye and are 

modified in such a way as to achieve the same response when shifting the location of 

the nerve and also when scaling the properties down to an infant eye.   
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 The material parameters for the finite element optic nerve are assumed to be 

the same for an infant and adult, so only the geometry is scaled.  Initially, 

investigation into the use of full finite element muscles is considered as these have the 

ability to capture the detailed geometry from the Visible Human Project transverse 

slice scans.  However, material properties for these finite muscles are rather sparse for 

usage in the MADYMO code.   

In addition, modeling the muscle mechanics by inducing neural excitation to the 

muscles in order to produce saccades is desirous.  Therefore, the complexity of the 

Hill-type muscle is considered with major influence from Winters and Stark (1985 

and 1988) concerning the parameters of the muscles and tendons.   Most of these 

studies consider the eye parameters in terms of rotation; however, for usage in the 

SBS model, these parameters are converted to lengths using the globe radius arm 

(Robinson, 1981).  Considerable analysis using step inputs and comparing the 

position, velocity, and acceleration response of the eye (plant) is done to calibrate the 

modeling parameters using Winters (1985).  Modifying these parameters is done for 

an infant eye and calibrated to achieve the same response as the adult.   

 Utilizing these analytical muscles allows flexibility in examining the dynamic 

response of the eye while saving computational time.  A comparison of the dynamic 

response of the different optic nerves suggested (finite element and analytical) and the 

muscles is presented in this chapter.   
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Fatty Tissue 

 The fatty tissue is modeled using tetrahedral meshing with the most anterior 

surface containing a layer of membrane elements modeling the skin.  The skin layer 

mechanical properties are used from Verver (2004), which specifies an elastic 

modulus equal to 0.15 MPa, a density equal to 1000 kg/m3, and a Poisson’s ratio of 

0.46.  In addition, a damping coefficient equal to 0.05 is specified as biological 

structures exhibit some material damping (MADYMO 6.2).  This elastic modulus is 

ten times that used by Chabanas, Luboz, and Payan (2003) (15 kPa).  In addition, 

Chabanas et al. used a Poisson’s ratio equal to 0.49 for incompressibility.  The 

thickness of the skin layer is set to 1 mm and is within the range of 0.5 to 4 mm for 

the facial dermis layer (Chabanas, Luboz, & Payan, 2003).  A total of four materials 

have been examined for use in the eye model (Table 6.0).   

 In conjunction with the contact interactions, the fatty tissue holds the eye 

globe in place and helps absorb energy.  The eye globe placement is such that there is 

a gap as shown in Figure 6.0.  This gap ensures that the nodes of the eye globe 

surface do not initially penetrate the elements of the fatty tissue.  Three primary cases 

are considered in this research regarding the eye model, the impact case, pure shaking 

case, and saccade movements.  These cases will be discussed in later chapters.  

However, depending on the case, different mechanical properties and contact 

interactions are used.  This typically depends on the amount of energy absorption that 

is required from the fatty tissue.  For example, the saccade movements do not require 

energy absorption; rather they are required to keep the eye in place allowing mostly 

rotational motion without translation.  The saccade simulations use the Todd and 
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Thacker (1994) material properties as used in the Power (2001) model.  This material 

is extremely stiff compared to the other fatty tissue mechanical properties (Figure 

6.1); however, in this particular case, the saccade positional output is calibrated to an 

analytical model from Winters (1985), which considers the eye simply as a revolute 

joint for horizontal eye motion.   

 Therefore, in conjunction with the Todd and Thacker fatty tissue, the contact 

algorithm is such that a penetration gap is introduced with size equal to 0.4 mm.  This 

results in a net physical gap of around 0.4 mm in the sagittal plane.  However, this 

gap also happens to be the minimum gap without nodes of the eye globe penetrating 

the gap layer.  Any larger specifications of this contact gap resulted in some of the 

nodes penetrating the gap layer, albeit the gap is of the order 1x10-7 meters.   

 Since the biological materials in this study are so compliant, effort is made to 

prevent initial penetrations of the nodes, as the contact algorithm in the MADYMO 

code will introduce velocity to the node in order to position the node at the surface of 

the element or specified gap.  The contact interactions use a penalty method for the 

contacting node-element relationship.  The maximum force parameter for these 

contacts is defaulted to 1.00 as recommended in the MADYMO reference manual.  

However, with the more compliant materials this parameter has been set as low as 

0.1-0.001 when instabilities occurred in previous test runs.  The contact between the 

fatty tissue and the eye globe is considered frictionless.   

 The impact simulations use the materials provided by Verver (2004), which 

are half the values, reported in the MADYMO version 6.2 Human models manual.  

The Samani and Plewes (2004) materials are considered for the impact simulations; 
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however, instability occurs when using this material as some of the elements in the 

fatty tissue tetra-mesh undergo severe element deformation as this material is 

extremely compliant.  Compounding this instability is the assumption that the fatty 

tissue is supported by the orbital socket as in previous studies (Power, 2001; Luboz et 

al., 2004). 

 

 

Table 6.0:  Comparison of material properties considered for the fatty tissue.   
 

Source Material Model E (Pa) A (Pa) B (Pa) Poisson’s 
Ratio 

Density 7 
(kg/m3) 

Todd & 
Thacker 

Elastic 4.7x104 - - 0.49 999.0 

Luboz et 
al. 

Elastic 2.0x104 - - 0.1 999.0 

Verver Hyperelastic - 1.65x103 3.35x103 0.49 928.0 
Samani & 

Plewes 
Hyperelastic - 310 300 0.49 928.0 

 
 

 

 The material parameters of Samani and Plewes (2004) as well as Verver 

(2004) are used in the SBS model for comparison.  The purpose of using the more 

compliant materials in the impact and SBS runs is to provide energy absorption of the 

fatty tissue.  The contact interactions used in the impact and SBS simulations 

(discussed in chapter 8) use the same method as the saccade simulations.  A 

comparison is made between the difference of having a contact gap function specified 

and not having one in Figures 6.2 and 6.3.  These figures show the simulation of 

impact simulation at times 0, 5, and 10 milliseconds into the impact.  The initial 

                                                           
7 The density is from Power (2001) for the elastic material models and Duck (1990) for the hyperelastic 
material models. 
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distance between the fatty tissue and the most posterior node (shown in Figure 6.0) is 

0.97 mm.  The minimum distance, based on this initial 0.97 mm gap, for the 

simulation where a 0.4 mm contact gap is specified, is 0.383 mm.  Therefore, for the 

contact gap simulation, the penetration into this gap is about 0.017 mm.  The 

minimum distance for the simulation where no contact gap is specified is –0.136 mm.  

This means that the sclera shell penetrates into the fatty tissue by 0.136 mm.  The 

time history, (Figures 6.4 and 6.5) comparing the no contact gap to the contact gap 

simulation, shows that the position of the most posterior node is greater for the no gap 

simulation as a result of momentum build up. The first spike in the positional data 

(Figure 6.4) shows a maximum displacement of the most posterior node of the eye 

globe to be approximately –2.0 mm for the no contact gap simulation versus –1.25 

mm for the contact gap simulation.  As expected, the acceleration plot also shows 

higher values.  Most noticeable is the acceleration of the no contact gap simulation at 

the time 8-10 msec range.  During this time, the no contact gap simulation spikes to 

values close to the initial loading.  In the physiological case, it is more likely that 

there is not an air gap between the fatty tissue and the eye globe; therefore, it is 

suggested that specifying a contact gap is more conservative (and perhaps more 

realistic).   

 The Luboz et al. (2004) is not used in this model, as the material is 

comparable (Figure 6.1) to the Verver (2004) material but with a Poisson’s ratio of 

0.1.  The rationale behind using 0.1 is that the orbital tissue is considered poro-elastic.   
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Figure 6.0:  Sagittal view of eye model showing the gap dimensions from the cornea-scleral shell to the 

fatty tissue void. 
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Figure 6.1:  Comparison of fatty mechanical properties of different research groups.  The constants for the 

elastic and hyperelastic constitutive equations are in Table 6.0. 
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Figure 6.2:  Impact simulation showing sagittal slice of the eye globe and fatty tissue.  From left to right, 

the animation captures are taken at 0, 5, and 10 milliseconds.  Apparent in all three views is the small 
contact gap. 

 

 

 
Figure 6.3:  Impact simulation showing sagittal slice of the eye globe and fatty tissue.  From left to right, 

the animation captures are taken at 0, 5, and 10 milliseconds.  This simulation does not use the contact gap 
algorithm causing more momentum build-up (compare with Figure 6.2), which results in greater eye globe 

compression. 
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Figure 6.4:  Relative displacement of the most posterior node comparison from the no contact gap and with 

contact gap simulations.   
 

 
Figure 6.5:  Acceleration of the most posterior node comparison from the no contact gap and with contact 

gap simulations.   
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Optic Nerve 

 The optic nerve in this study is considered to be a tether and is of interest in 

SBS (Levin, 2000).  Levin suggests that the nerve is firmly attached to the eyeball 

with some slack.  Injury can be localized at these tether locations (including muscles) 

as a result of motion to the eye.  The optic nerve in this study is fixed at the apex 

(entry point in the posterior ocular cavity) for both the analytical and finite element 

nerves.   

 Considering the analytical model, the mathematical models in previous works 

consider the horizontal motion of the eye (Collins, Scott, & O'Meara, 1969; Lehman 

& Stark, 1979; Lehman & Stark, 1979; Robinson, 1981;Winters & Stark, 1985; 

Winters & Stark, 1988).  These analytical models consider the eye as the “plant” 

which acts as a revolute joint in horizontal motion.  The stiffness is estimated to be 

0.5 grams/degree (2.5 grams/mm using radius arm of 12 mm) for the passive orbital 

tissues Collins et al. (1969).  This stiffness is estimated during corrective surgery of 

12 strabismus adult patients.  Robinson (1981) considers the passive orbital tissues by 

the following (6.0): 

  P = 0.48 E + 1.56x10-4E3  (6.0) 

Where P is the force and E is the displacement.  Out to 20 degrees rotation, the cubic 

term can be neglected resulting in a stiffness coefficient equal to 0.48 grams/degree, 

which is comparable to Collins et al.  The following is considered (6.1) for modeling 

the movement of the eye system (Lehman & Stark, 1983): 

  NKBI =++ θθθ &&&   (6.1) 
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Where I, B, and K are the plant parameters equal to 2.7x107 Nms2, 9.3x10-5 Nms, and 

1x10-2 Nm.  The inertia of the eye is determined assuming a density of 1 gram/cm3 

and a radius equal to 1.1 cm.  In order to construct a rigid body eye model that will be 

used to calibrate the positional response to that of Winters (1985), the values for I, B, 

and K are taken from Winters and Stark (1985) and are equal to 3x10-7 kg-m2, 1x10-4 

Nms, and 1x10-3 Nm.   

 A model is constructed containing a body with a mass of 5.6x10-3 kg and 

inertial properties for Ixx = Iyy = Izz = 3x10-7 kg-m2.  The joint of this body is a revolute 

joint with the damping and stiffness equal to 1x10-4 Nms and 1x10-3 Nm, 

respectively.  An initial rotation of 30 degrees is applied and the simulation duration 

is one second.  The rotational time history is then used as a calibration in order to 

shift the location of the nerve from a revolute joint to a location lateral (translational 

nerve) to the eye globe (Figure 6.6).  

 

 

spring nerve 

revolute joint 

eye globe 

radius = 1.1 cm 

 
Figure 6.6:  Diagram of analytical eye model with passive plant properties.  The spring nerve is a 

conversion of rotational constants to linear constants. 
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The revolute joint from the initial model has the stiffness removed.  The nerve 

parameters are then scaled to an infant so that the response is the same (Figure 6.7).  

The infant plant mass is 1.5x10-6 kg and the inertia is 3x10-8 kg-m2 with rotational 

damping and stiffness (1x10-4 Nm for the stiffness and 1x10-5 Nms for damping) 

converted to translational values, via the rotational arm with length 7.1 mm, equal to 

1.98 N/m for the stiffness and 0.198 Ns/m for the damping.  The positional response 

is the same for the adult rotational stiffness model (as used in Winters (1985)), the 

adult translational spring, and the infant translational spring. 
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Figure 6.7:  Rotational response comparison of the analytical plant models. 
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 In order to match the response of an infant to an adult (Figure 6.7), the 

frequency is matched so that the stiffness constant for the infant optic nerve can be 

determined (ωnAdult = ωnInfant).  Similary, the damping ratio is set equal (ζAdult = ζInfant) 

so that the damping coefficient for the infant optic nerve can be determined.  

Therefore, K = ωn
2I and ceq = 2ζ(IK)1/2 with ωn equal to 57.7 rad/sec and ζ equal to 

2.89 (over-damped case).  This is consistent with the findings of Lehman and Stark 

(1983) with the eye movement system being highly damped.  This damping is not 

captured in the finite element model of the optic nerve that will be discussed further.  

The developed nerve-spring response is correct for a one-degree motion such as an 

eye fixed with a revolute joint.  However, the simulation to be considered involves 

general motion, so the response of the spring has to show resistance to more than 

translational motion (as shown in Figure 6.6).  Therefore, before incorporating a 

nerve-spring into the main simulation model, a simplified model of the infant eye is 

created with diameter 15 mm (Figure 6.8).   

 
 

15 mm 

 
Figure 6.8:  Developed eye model for testing the spring-nerve response with anterior section removed at 

the meridian to show vitreous mesh detail. 
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 The eye model geometry is a sphere and is composed of solid brick elements 

(vitreous body only) meshed using the CUBIT software by considering an octant of 

the geometry.  The outer ocular shell layer, of this simple eye model, is made into 

scleral material with uniform thickness (0.6 mm).  The spring-nerve is constructed 

using a beam element in order to consider tension, bending and torsional loading.  

The material properties and element number are detailed in Table 6.1. 

 

 

Table 6.1:  The material properties and number of elements used in spring-nerve development testing. All 
material parameters and density are in SI units. 

 
Ocular 

Component 
Element 

Type 
Number 

of 
Elements 

Element 
Property 

Material 
Type 

Material 
Parameters8 

Density9 

Vitreous 
Body 

8-node 
solid 

2688 SOLID8 
reduced 

integration 

ISOLIN E=43/ν=0.49/ 
Damp=200.0 

999.0 

Sclera 
Shell 

4-node 
shell 

552 MEM4 
reduced 

integration 

ISOLIN 
Tension only 

E=3.58x108/ν=0.49/ 
reduction factor = 

0.01 

1400 

Spring-
Nerve 

2-node 
Beam 

1 BEAM2_ 
DISCRETE 

KELVIN3D_ 
NL 

Loading and 
damping functions 

Figure 6.9 

- 

 

 

The sclera shell uses the Uchio et al. (1999) material properties, discussed in chapter 

5 (Figure 5.0), for the linear region of the curve.  The spring-nerve beam element has 

its orientation specified (Figure 6.8) such that the local x-axis points from the apex 

node to just posterior the scleral shell.  The y and z-axis point into the inferior and 

medial directions, respectively.  The orientations are needed when specifying the 

                                                           
8 The vitreous material is derived from the works of Weber and Landwehr (1982) and will be discussed in 
chapter 7. 
9 Density information is from Power (2001). 
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loading and damping functions for the bending, tension, and torsional loading of the 

spring (Figure 6.9). 
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Figure 6.9:  Spring-Nerve stiffness characteristic functions for axial, bending, and torsional resistance.  

The axial loading is such that only tension is enabled (hence, the need for KELVIN3D_NL property 
method). 

 

 

 The spring-nerve is attached to the eyeball by using a simple constraint where 

the nodal degrees of freedom for a group of nodes are set equal (Figure 6.10). 
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Figure 6.10:  Selected nodes for simple constraint relationship.  The black node belongs to the nerve 
group, and the white nodes (forming the ONH) belong to the optic nerve head group. 

 
 

 

Initially, the node of the optic nerve (black node in Figure 6.10) was made to be the 

same node as the most posterior node on the eye globe (middle white node in Figure 

6.10); however, the node attachment acted as a spherical joint with no resistance.  

Therefore, it was necessary to add the simple constraint.  The eye model in Figure 6.8 

is positioned so that the axial direction of the spring-nerve is pointing downward in 

the negative z-axis direction.  To view the response due to gravity, the field is applied 

at a 45° angle with respect to the z-axis so that the eye model behaves as a pendulum 

(Figure 6.11) and then let go. 
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Figure 6.11:  Animation sequence of the simplified eye globe and spring nerve (A is at time 0 
milliseconds, B is at 50 milliseconds, C is at 100 milliseconds, and D is at 200 milliseconds). 

 

 

 The simulation (Figure 6.11) is actually taken to 0.75 seconds, but not much 

changes after 200 milliseconds as a result of the heavy damping from the spring-

nerve (ζ = 2.89).  There is some pinching effect that is apparent in Figure 6.11c 

because of the definition of the ONH.  This pinching effect is also observed in the 

actual SBS runs that will be discussed in chapter 8.  The simulation is analogous to a 

balloon membrane filled with gel-fluid and attached to a semi-rigid tube.  For extreme 

impact simulations, large deformations can cause the ocular shell to pinch off a 

section of the vitreous (Stitzel et al. 2002).  The studies considered in this work do not 

take the eye to extreme impacts, so the pinching effect of the rear optic nerve is not as 

extreme, but it still provides an area of relatively higher stress as postulated by Levin 

(2000).   

 The properties developed and tested in this test eye model are then 

incorporated into the actual eye model by using the original geometry of the finite 
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element nerve.  Five spring-nerve beam elements are created and attached to the 

posterior region (Figure 6.12) of the eye using material parameters from Figure 6.9 

(dividing by 5 for the equivalent stiffness). 

 

 

ONH interface

orientations for 
spring-nerves 

spring-nerves

 
Figure 6.12:  Layout of the spring-nerve and ONH interface for the SBS eye model. 

 

 

There are five individual simple constraint groups for each of the spring-nerves in 

Figure 6.12 so that the ONH interface does not completely behave as a rigid disc 

(Figure 6.13).  The ONH interface is composed of the same material properties as the 

sclera shell with thickness equal to 0.6 mm and uses membrane elements, which 

account for in-plane stress and strain.  However, the simple constraint groups make 

each section of the ONH behave as rigid shells that help to induce the pinching as 

mentioned in Figure 6.11c. 
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middle group 
superior group
inferior group 
medial group 
lateral group 

 
 

Figure 6.13:  The ONH detailing the simple constraint groups for the corresponding spring-nerve.  There 
are five groups in total. 

  

 

 The ONH dimensions are approximately 3 mm (lateral-medial) and 2.5 mm 

(superior-inferior) and are within reported ranges for infants (Newman et al., 2002).  

The actual shapes of the ONH and optic nerve are approximate so that the vitreous 

mesh remains at an optimum shape.  This is a valid modeling method as the optic 

nerve is only considered to be a tether.  The length of the nerve is approximately 14.7 

mm.   

 The finite element nerve is actually created by extruding the ONH along the 

length of the nerve.  The original apex attachment point is derived from the same 

location as the Visible Human dataset while the ONH location is defined based on 

Hogan (1963) (Figure 3.7).  The material parameters are from Sigal et al. (2004) for 

their model 3 run.  In this case, the pre-laminar neural tissue, lamina cribrosa, scleral-

cornea, post-laminar neural tissue, and pia mater are considered.  Values are tabulated 

and an average value for the elastic modulus is specified.  As in Sigal et al.’s study 
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the optic nerve is made up of solid neural tissue and a membrane layer representing 

the pia mater.  The pia mater in Sigal et al. is given the same modulus as the sclera 

shell.  The finite element properties and element type are detailed in Table 6.2. 

 

 

Table 6.2:  The material properties and number of elements used in the finite element optic nerve model 
based on the Sigal et al. (2004) literature.  All material parameters and density are in SI units. 

  
Ocular 

Component 
Element 

Type 
Number 

of 
Elements 

Element 
Property 

Material 
Type 

Material 
Parameters 

Thickness Density 

ONH 4-node 
shell 

12 MEM4 
reduced 

integration 

ISOLIN 
 

E=3x105/ 
 ν = 0.49 

6x10-4 1000 

Neural 
Tissue 

8-node 
solid 

168 SOLID8 
reduced 

integration 

ISOLIN E=3x104/  
ν = 0.49/ 

damp =0.2 

- 1000 

Pia Mater 4-node 
shell 

224 MEM4 
reduced 

integration 

ISOLIN E=3x106/  
ν = 0.49/ 

damp=0.2/ 
reduction 

factor=0.01 

 
5.35x10-4 

1000 

 

 

 The density information is not reported in Sigal et al. and is set to 1000 kg/m3 

(the same as water).  The assigned density is within published values for the spinal 

chord nerve, which is 1038 kg/m3 (Duck, 1990).  The pia mater thickness in Sigal et 

al. is set to 0.06 mm thickness; however, for the SBS eye model this thickness has 

been increased to .535 mm, which is more representative of the sclera thickness in the 

posterior region.  The reason for modifying the thickness is that the material of the 

optic nerve sheath is the outermost layer while the pia mater is between the arachnoid 

and dura (Hayreh, 1984).  The dura in this case has similar properties as the sclera 

shell and is also considered so in the Sigal et al. work where the elastic modulus for 
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both materials is set to 3 MPa.  Poisson’s ratio is set to 0.49 in the Sigal et al. work to 

model incompressibility and 20% material damping is applied to account for the fact 

that biological structures exhibit some form of damping (MADYMO 2006).   

 The finite element model (Figure 6.14) of the optic nerve and ONH is by no 

means physiologic in this SBS model as the current model is mostly concerned with 

the vitreous material.  Levin (2000) does explain that the optic nerve has been 

reported to hemorrhage in SBS abuse studies.  In the current work, the focus is on the 

posterior vitreo-retinal forces with the extra-ocular tethers acting on the eye globe.  

Future studies will investigate further the optic nerve sheath and the fluid layer that is 

between the dura and pia mater.  This fluid layer actually is greater just posterior the 

ONH entry point and the nerve, due to the fluid build up, have been reported to be 

bulbous (Hayreh, 1984).  

 

 

membrane pia layer 

solid neural tissue 

ONH interface 

 
 Figure 6.14:  Layout of the finite element optic nerve and ONH interface for the SBS eye model.  

The material properties are from Sigal et al. (2004). 
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Extra-Ocular Muscles 

 There are six extrinsic muscles (Figure 6.15a and b) of the eyeball that 

provide the fastest and most precise movement in the human body (Tortora & 

Grabowski, 2001).  A saccade (fast movement of the eye like reading this text) 

movement of the eye can reach peak velocities up to 1000 deg/sec (Lehman & Stark, 

1979).   

 

eye globe 

inferior oblique 

superior oblique superior rectus 

lateral rectus 
inferior rectus 

medial rectus 

 
Figure 6.15:  Layout of extra-ocular muscles of the eye.  Geometry build-up is created from the Visible 

Human Project transverse slices. 
 

 

 

The muscles (Figure 6.15) of the eye provide three planes of motion: horizontal 

rotation, vertical rotation, and torsional rotation.  However, the torsional rotation is 

dependent on the horizontal and vertical rotations by phenomena known as Listing’s 
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law (Lockwood-Cooke, Martin, & Schovanec, 1999).  In the saccade studies 

presented, only horizontal motion is to be considered by neural excitation to the 

lateral and medial recti muscles while the other muscles will remain in a minimally 

active state “Hatze passive state” (Hatze, 1977; MADYMO, 2004).  During the 

impact and shaking simulations, this passive state is considered for all the six 

muscles.  The muscles to be in a passive state during a shaking episode as mentioned 

in Levin (2000) and act as mere tether attachments to the eyeball.  The muscles 

depicted in Figure 6.15 are used to approximate the attachment points near the apex 

of the socket, the trochlea attachment, and the attachment to the eyeball.  

 Details of the actual eyeball-to-tendon attachment in the Visible Human 

Project transverse slice data are difficult to discern.  Therefore, using anatomical 

diagrams (Figure 3.7) (Hogan, Alvarado, & Weddell, 1971), the attachment points of 

the muscles are refined at the eyeball by extending a tendon from the muscle end to 

the nodes of the sclera shell.  The tendon width (scaling of adult widths) is 

approximated from Hogan et al. and is mentioned in Table 6.3.  The actual width 

varies, as the attachment points of the nodes are approximate to the actual locations of 

the tendon attachments.  The length of the muscles is first determined by fitting a 

three-dimensional curve through the muscle body starting from the posterior of the 

muscle to the anterior.  The distance from the anterior muscle end to the eye 

attachment is considered to be the tendon length.  The thickness of the muscles is 

determined from (6.2): 

  
ρlw

mt =   (6.2) 
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Where t is the thickness, m is the mass, l is the length of the muscle, w is the width of 

the muscle, and ρ is the density.  The density is 1041 kg/m3 (Duck, 1990) for muscle 

tissue and the mass is 0.1 grams for an ocular muscle (Winters & Stark, 1988).   

 Actually the mass is different for each of the muscles (Rath, 2005); however, 

for the purpose of calibrating to the position output from Winters (1985), the mass is 

made the same for all recti and oblique muscles in the eyes in this study.  The mass 

for the infant eye, utilizing the scaling factor of 64.5%, is approximately 3x10-5 kg 

(0.03 grams).  Rath (2005) tabulated the muscle lengths and physiological cross-

sectional areas for the work of Tian and Volkmann.  Using this information and 

scaling to the infant, the average mass for the Tian specimen measurements is 

1.79x10-4 kg and 1.42x10-4 kg for the Volkmann.  The mass used from the Winters 

and Stark study is a magnitude less than the Rath; however, the mass contribution is 

relatively insignificant as will be presented later with the eye movement calibration 

study. The thickness is irrelevant for the muscles (will be using analytical muscles) 

but is assumed to be the same for the muscle and tendon attachments.  The tendons 

will be made of membrane finite elements so that the attachment points into the eye 

globe provide a distributed force due to muscle pull. The final dimensional 

information for the muscles and tendons is provided in Table 6.3.   

 The purpose of the thickness information of the tendons is so that the force 

versus elongation function of the tendon can be converted to stress versus strain.  

Rather than using a spring element, like the optic nerve, the tendon utilizes three-node 

membrane elements attached to the eye globe so that the muscle-pull force can be 

distributed.  In addition, a contact algorithm between the eye globe and tendons is 
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specified so that the tendon wraps around the eye as it rotates (as opposed to 

penetrating through the eye).   

 

 

Table 6.3:  Dimensional information for the muscle and tendons in the infant eye simulation model. 
  

Muscle Name Muscle 
Length (mm) 

Tendon Length 
(mm) 

Tendon Width at 
globe attachment 

(mm) 

Tendon Thickness 
(mm) 

Oblique 
Superior 

29.87 8.10 6.98 0.2 

Oblique Inferior 9.42 3.87 6.78 0.3 
Rectus Superior 17.13 8.06 6.15 0.2 
Rectus Inferior 19.10 7.41 6.15 0.2 
Rectus Medial 17.91 8.04 5.76 0.2 
Rectus Lateral 18.84 8.20 6.18 0.2 

 
 

 

As with the fatty tissue to eye shell contacts, the tendon to eye globe contact uses a 

penalty algorithm (6.3) (MADYMO, 2004) 

  Fc = (K/V0)A2ψ[min(λ,MAX_FORCE_PAR * te)]  (6.3)  

 Where MAX_FORCE_PAR, a tuning parameter, is equal to 0.1 (the fatty to eye shell 

uses the recommended value equal to 1.0); Fc is the contact force; K is the bulk 

modulus of the contact segments penetrated; V0 is the initial volume of the contact 

segment; A is the area of the contact segment; ψ is the penalty factor (the default 

value is 0.1 and is recommended not to change this value); λ is the penetration of the 

contact node; te is the penetrated element thickness that is multiplied by the 

MAX_FORCE_PAR.  The parameter value is reduced to stabilize the contacts and 

prevent undue nodal velocities of the tendon as they penetrate the sclera shell.  The 

contact, as a result, is more compliant, which is acceptable in this study and provides 
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realistic globe motion.  The contact interaction is such that the nodes of the tendon 

shell elements contact the elements of the sclera shell.  In this case, no contact gap is 

specified.  The contact gap is not really needed in this case and saves computation 

time.   

 

 

SE1 M1 M2 SE2 
PE 

CE 

 
Figure 6.16:  A Hill-type muscle schematic as implemented in MADYMO (2004). 

 
 

 

 The muscles used in this study are the Hill-type (Hill, 1950) formulation 

(Figure 6.16).  The series elastic element (SE) represents the tendons; the mass (M1 

and M2) represent the muscle mass; the parallel elastic element (PE) represents the 

passive strength of the muscle; the contractile element (CE) represents the dynamic 

properties of the muscle (Figure 6.16).  In addition, complex controls can be 

implemented into the muscle models, but in this study, the muscles are either 

considered passive or neural excitation is imposed as a function of time.  Figure 6.16 

represents just one schematic that can be used to model the muscles.  Depending on 

the muscle, the mass or one (both) of the series elements can be eliminated.  The 

current study considers Figure 6.17 for the muscles used in the final SBS eye.   
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The calibration studies that used the Winters (1985) step excitation showed the 

similar response as Figure 6.16 and 6.17.  In addition, simply attaching the muscle 

with no SE or mass calibrated well to the Winters work as will be discussed. 

 

 

 

Apex 
Attachment 

PE

CE

M SE
Eye Globe

 
Figure 6.17:  Muscle model used in the SBS eye model.  The CE is not used (Hatze passive) in the SBS 

and impact studies. 
 

 

 

 The muscle model used in Figure 6.17 is influenced by the calibration studies, 

but the finite element models involved are also considered.  The deviation of Figure 

6.17 is for the oblique muscles.  The oblique inferior is attached to the base of the 

ocular socket and the oblique superior loops through the trochlea point (modeled as a 

tying with zero friction and is analogous to a mathematical eyelet). The Hill-type 

muscle used in MADYMO cannot directly attach to a node, providing a simple 

model.  The attachment of the Hill-type muscle has to be located on a rigid body or to 

the inertia space (ground).  However, taking advantage of this fact, the finite element 

series element is attached to the sclera nodes, and then the posterior end of the tendon 
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is supported on the mass body with a free joint.  The parent body of the masses is the 

attachment body, which is the root body of the entire skull complex located at the 

occipital condyle (allowing one to simply fix the entire model on a standard dummy).  

The Hill-type muscle (CE and PE) are then attached to the mass body and then to the 

attachment body at a location determined by the Visible Human geometry.  This 

hybrid analytical-finite element muscle is robust, generalized (offering one to 

introduce controls or time function neural excitation), optimized for computation 

time, and most important, validated with previous literature for horizontal motion 

(Figure 6.18). 

 

 

optic nerve with orientation coordinate

typical muscle mass 
typical Hill-type segment 

typical membrane tendon

Trochlea (pulley) 

muscle attachments to eye socket 

Frontal-Medial View Inferior-Lateral View 
 

Figure 6.18:  Muscle and tendon details of the SBS eye model. 
 

 

 The geometrical considerations of the muscle-tendons have been presented.  

Now the material parameters for the Hill-type muscles are investigated (PE, CE, and 

SE).  The total muscle force is (6.4): 
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  Fmuscle = FCE+FPE  (6.4) 

Where Fmuscle is the sum of the passive and active part of the muscle.  The maximum 

force generated from a muscle is determined from (Winters & Stark, 1988) (6.5): 

  Fmax = 0.5Apcs [MPa] = 0.5 )2sin(
2

α
ρ 







t

m [MPa]  (6.5) 

Where m is the muscle mass, t is the muscle thickness, ρ is the density, Apcs is the 

physiological cross sectional area, α is the pennation angle, the value 0.5 MPa is the 

peak muscle stress.   

 Therefore, the passive force (6.4) from (Winters & Stark, 1988) is (6.6): 
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Where PExm is the relative elongation (l-lref)/lref and PEsh is the shape of the force-

length curve.  Also noteworthy, FPE is Fmax when lr = PExm + 1.  The passive force of 

the muscle is only considered when the muscle is stretched beyond the reference 

length (Table 6.3); therefore, for lr < 1, the FPE contribution is zero.   

 The active muscle behavior is given by (MADYMO, 2004): 

  FCE = A FmaxfH(vr)fL(lr)  (6.7) 

Where A is the activation and varies between 0 (rest state) and 1 (maximum 

activation); fH(vr) defines the normalized active force-velocity relationship (Hill 

curve); fL(lr) is the normalized active force-length relationship.  The force-velocity 

relationship considered takes the following form (MADYMO, 2004): 
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Where vr = v / Vmax (Vmax is the maximum shortening velocity and is a function of 

muscle fiber composition (Winters & Stark, 1985)), CEsh is the shape parameter of 

the force-velocity during normal shortening, CEshl is the shape parameter of the force-

velocity during lengthening, CEml is the ultimate tension during lengthening.  The 

work done by Winters and Stark (1985) uses a similar formulation as (6.8) for torque-

velocity noting that the Vmax and shape parameters are scaled to obtain the inverted 

Hill-curve (where the values are typical 1/3 of the shorting muscle values) (Winters 

and Stark 1988).  Therefore, only the Hill shape parameter CEsh, the Vmax, and the 

Fmax are needed to obtain the force-velocity relationship.  The CEsh and Vmax are a 

function of muscle fiber composition.  CEml is typically 1.3*Fmax and CEshl is 

typically 0.5 (Winters & Stark, 1985).   

 The next force contribution to the FCE, the normalized active force-length 

relationship is represented by (MADYMO, 2004): 

  FL(lr) = 

2
1







 −
−

k

r

S
l

e   (6.9) 

Where the parameter Sk determines the width of the active force-length curve.  

However, the curve represents a gaussian-type shape and is also known for the 

torque-angle relationship to be (Winters, 1985): 
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Where M(θ) is the normalized torque, θ is the joint angle, MXoo is the angle at the 

maximum moment, MXsh is the gaussian-type shape parameter, MXsl is the linear 

slope coefficient.  These values are tabulated in Winters and Stark (1985); however, 

direct curve fitting using 6.10 is performed, and then the torque-angle relationship is 

converted to force-length via the radius of the eye globe.  Finally, the Sk value from 

6.9 is determined from the curve fit.   

 The series elastic element can also be determined from (6.6) by replacing the 

PExm and PEsh with SExm and SEsh, which have similar meanings as the PE 

parameters (xm is the rotation or length at Mmax or Fmax and sh is the shape) (Winters 

& Stark, 1988).  However, for the tendons, a function of force versus strain (lr-1) will 

be specified for the characteristic materials.  The force will further be divided by the 

Apcs term for the membrane elements representing the tendons.   

 The values for the muscle and tendon parameters are presented in the Winters 

work in terms of torque and rotations; however, for inclusion into the SBS model, 

these values are converted to force and length parameters.  The force-length 

relationship fL of the ocular muscle is determined by curve fitting the Winters (1985) 

ER curve for eye rotation and solving for the shape parameters from (6.10) (Figure 

6.19).  The values are first normalized before determining the parameters (MXoo = -

0.515, MXsh = 1.38, MXsl = 0.048 determined from curve fitting). The values are 

comparable to the tabulated values in Winters & Stark (1985).  Figure 6.19 is 

provided for completeness; however, the original values are converted to relative 

length (lr) and the relative force (fL) and then (6.9) is used to determine the parameter 
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Sk = 0.35 (MADYMO has a default value of 0.54).  The passive element parameters 

are also determined from curve fitting a torque-rotation plot from Winters (1985) and 

compared to Winters and Stark (1985).  Finally, the values are converted to force-

length values using the radius of the eye globe (radius = 1.1 cm (Winters & Stark, 

1988)).  The passive element parameters are in Table 6.4.  The values from the curve 

fit and those directly read from the Winters and Stark (1985) table are comparable. 

 

 

Table 6.4:  Passive element parameters determined from curve fitting and directly from Winters tabulation. 
 PEsh PExm F or M max 

From Winters Table 4 60 deg 0.01 Nm 
From Curve Fit 3.32 58.57 deg 0.01 Nm 
Winters Table 

Converted 
3.32 0.258  1 N 
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Figure 6.19:  Curve fit of moment-rotation relationship of the eye rotation from Winters (1985). 
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 Finally, Figure 6.20 shows the relationship for both the passive and active 

element relative force versus relative length based on the determined parameters.  The 

values for the force-velocity relationship are curve fitted from Winters (1985) by 

taking the torque-angular velocity relationship and converting to force-velocity by 

using the radius of the eye globe giving a Vmax = 0.495 m/s and a Fmax = 1 N.  The 

shape parameters are then determined from (6.8) by curve fitting (CEsh = 0.437, CEshl 

= 0.0797, and CEml = 1.38).  The data points from Winters (1985) and (6.8) are 

compared in Figure 6.21.  Interestingly, CEml is about 1.3 * Fmax; however, CEshl is 

not close to 0.5 (Winters & Stark, 1985). 
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Figure 6.20:  Relative force versus relative length for both the passive and active muscles with the total 

contribution shown as the addition of both curves. 
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Figure 6.21:  Force-velocity curve fH(vr) comparing the curve fit values to the data points (Winters, 1985). 

 

 

 

 Curve fitting using (6.6) and the data from Winters (1985), the series elastic 

constants are determined and compared to tabulated values from Winters and Stark 

(1985) (Table 6.5).  For inclusion into the model, the torque-rotation is converted to 

force-elongation by considering the eye globe radius when converting the moment to 

force and also the muscle reference length (5 cm from Winters and Stark (1988)).  

Specifically, the rotation given in degrees is converted to strain by (6.11): 

  1180 −
+

=
muscle

muscle

l

lrθπ

ε   (6.11) 



   177

Where ε is the strain (also considered lr – 1), θ is the rotation in degrees, r is the 

radius of the eye globe, lmuscle is the reference length of the muscle equal to 5 cm 

(Winters & Stark, 1988).   

 The force-strain constants are also in Table 6.5. 

 

 

Table 6.5:  Series elastic constants from curve fitting using (6.6) to Winters (1985). 
 

 SEsh SExm Fmax or Mmax 
From Winters Table 1.6 20 deg 0.01 N-m 

Curve fit to Winters data 1.56 20 deg 0.01 N-m 
Winters converted data 1.64 0.091 m/m 1 N 

 

 

 The curve fit values are in good agreement with the tabulated values from 

Winters and Stark (1988).  The final force versus strain is shown in Figure 6.22, 

where the data from Winters (1985) is converted from rotation versus torque.  In 

addition, the curve fit using (6.6) is also shown reflecting the constants used in Table 

6.5.  Interestingly, when Fmax is equal to 1 N, the strain is equal to SExm using (6.6). 

The tendons in the SBS eye model utilize the force-strain curve plot from Figure 6.22.  

In order to do this, the material type HYSISO from MADYMO is selected which 

allows one to model the stress-strain of materials with various types of hysteresis 

characteristics.   
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Figure 6.22:  Tendon force versus strain curve fit from Winters (1985) compared to (6.6). 

 

 

 

 However, the original four-node shell membrane elements needed to be 

converted to three-node membrane elements in order to use the material type.  The 

material also considers tension only and the density of the material is 1165 kg/m3 

(average value for ox tendon from Duck (1990).  The tendons are split into three 

groups when modifying the function derived from Figure 6.22.  That is, the recti 

muscles use a multiplier of 8.33x105, the superior oblique uses a multiplier of 

1.11x106, and the inferior oblique uses a multiplier of 5.56x106.  These multipliers are 

the inverse of the Apcs used to convert the force to stress.  The tendons in this model 

are stiffer than the muscle tissue and are only engaged when the muscle is stretched 

beyond the physiological limits.  Winters also considered this issue by only exciting 

the muscles for horizontal motion of the eye within physiological limits.   
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 The final consideration in the active force (6.7) is the muscle activation.  The 

activation dynamics of muscles is described to be an “ideal neuro-controller input 

signal” (Winters, 1985) that is separated into two parts:  neural excitation and active 

state dynamics.  The latter is the electro-chemico-mechanical contraction coupling 

dynamics that is considered the measured EMG10 signal (Winters, 1985).  The neural 

excitation is described by (Van Der Horst, 2002):   

  
eT
Eu

dt
dE −=   10 ≤≤ E   (6.12) 

Where E is the normalized neural excitation, t is the time, Te is the excitation time 

constant, and u is the normalized neural input (0 ≤ u ≤ 1).  The active state dynamics 

are represented by (Van Der Horst, 2002): 

  
aT

AE
dt
dA −=  10 ≤≤ A  and 





=
da

ac
a T

T
T   

AE
AE

≤
>

  (6.13) 

Where A is the normalized active state, Tac is the activation time constant, and Tda is 

the deactivation time constant.  Finally, tact is the delay time that is incorporated into 

the u(t) function.  The time constants are determined by the mass and the fraction of 

slow fibers in the muscle (Winters & Stark, 1988).  For the eye, the time constants 

and model delay are (Table 6.6).  The delay time, tact, is extremely small for the eye 

as opposed to the neck muscles (tact = 74 ms) (Van Der Horst, 2002). 

 

 

 

                                                           
10 EMG stands for electromyography and is the study of muscle electrical signals. 
 



   180

Table 6.6:  Activation time constants for the eye motion (Winters, 1985). 
 

 Activation Tac 
(ms) 

Deactivation Tda 
(ms) 

Activation Delay tact 
(ms) 

Neural Excitation Te 
(ms) 

Eye motion 5 30 2 30 
 

 

 The muscle activation is important to consider, as the muscle never stays in a 

full activation state for long without fatigue setting in.  In order to include the 

activation state into the model, the signal function is used in the control system model 

in the SBS eye model.  This is a straightforward way to model the eye dynamics 

without the need for complex PID controllers and is also used by Winters (1985).  

Essentially, a unit step function, u(t), with the activation delay included, is inputted 

into the system.  Then, using the times constants (Table 6.6), the neural (6.12) and 

activation (6.13) response is determined.11  Therefore, given a unit step input, with a 

tact = 2 ms, with width of 50 ms produces the neural and activation curves represented 

in Figure 6.23. 
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Figure 6.23:  Time signals with input u(t); E is the neural excitation; A is the activation state.  

 

                                                           
11 Using a fourth-order Runge Kutta method for solving (6.12) and (6.13) given u(t) and Ta(t) (RK, 2005). 
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Muscle Calibration Dynamic Study 

 Using the parameters determined for the Hill-type muscle model, an analytical 

model is created and modified to compare the response to work done by Winters 

(1985).  The first model, for an adult horizontal eye motion, considered is like the 

analytical model described in the optic nerve section, where a rigid body with radius 

1.1 cm is modeled with a revolute joint.  The stiffness information of the “plant” is 

the same as in the optic nerve section (I = 3x10-7 Nms2/rad, K = 1x10-3 Nm/rad, c = 

1x10-4 Nms/rad).  The lateral and medial muscle is modeled by attaching the segment 

to the eye body at the specified radius with a length of 5 cm.  The posterior segment 

is attached to a body with a mass of 0.1 grams.   

 

 

 
Figure 6.24:  Analytical adult eye model for use in neural signals.  Calibrated with Winters (1985). 
 

 

This mass is attached to a separate system with a free joint, allowing all degrees of 

motion.  This mass is then attached to a kelvin element representing the tendon body.  

The tendon uses the stiffness information from Figure 6.22 and is attached to the 
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background.  The model is then given an initial rotational displacement of –30 

degrees to correspond to the initial rotation specified by Winters (1985) when 

considering idealized neural signals (Figure 6.24).   

 The medial muscle will act as the agonist and the lateral the antagonist.  

The simulation time is 1000 ms and starts by placing the eye at an initial steady-state 

position near the extreme of the mid-operating range of movement.  The antagonist 

muscle at this point is at a larger contraction than the agonist with co-contraction 

level 3% neural activity.  The antagonist muscle neuro-input is specified with a 100% 

neural activity for 500 ms duration.   
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Figure 6.25:  Time signals of the neuro-input u(t), neural excitation E and activation state A. 

 

 

 

 After the 500 ms, both step functions for the agonist and antagonist go to a 

minimal value of 1% neural activity (Winters, 1985).  In the Winters study, the 
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agonist muscle has varying levels of neural activity showing the sensitivity.  Using all 

the time constants from Table 6.6, the signal function for the neural and active state is 

determined by inducing the neuro-input, u(t) (Figure 6.25).  In Figure 6.25, the neuro-

input does include the tact = 2 ms duration.   The antagonist muscle uses Figure 6.26 

as the signal input. 
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Figure 6.26:  neuro-input signal for the antagonist muscle. 

 
 

 

The antagonist muscle uses u(t) directly as the input and predicts the position very 

well to the Winters (1985) output Figure 6.27.  This model is labeled “calibrated” in 

Figure 6.27.  The muscle modeling in this analytical eye model considers the muscle 

mass posterior attaching to a tendon.   
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 In the MADYMO applications manual (MADYMO, 2004) there is an 

example of a neck model with a muscle model similar to Figure 6.16 with the 

difference being a mass body centered with two muscles attached in series and with a 

muscle-tendon attached to both ends.  The logic with this three-mass system is to 

prevent artificial rotations from the muscle system.  Therefore, the analytical model 

has been expanded to include this situation (Figure 6.28).  The muscle mass is divided 

into three parts and attached at the extreme ends of the total muscle segments.  The 

middle attachment point has the center mass where both muscle segments meet.  The 

tendon characteristic is divided into two parts with one tendon attaching to the eye 

globe and the other to the background. 
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Figure 6.27:  Comparison of the rotational output from the muscle systems.  The muscle only and 

calibrated models predict the Winters (1985) model for horizontal eye motion well. 
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Figure 6.28:  Analytical adult eye model for use in neural signals.  Modifications include two muscles in 

series with three masses divided along the total length of the series muscle.  Tendons are attached at the eye 
globe and the posterior end of the series muscle. 

 

 

 

 The analytical muscle described in Figure 6.28 does not compare well with 

the same activation levels as the calibrated model.  This model is labeled 3-mass in 

Figure 6.27.  The muscles are added in series, which would affect the shortening 

force of the muscle; therefore, the 3-mass model is further modified to only have one 

muscle total with the middle mass acting as a tying.  This tying is similar to that used 

in the superior oblique muscle where the trochlea point is modeled as a slip ring 

rigidly attached to the attachment body.  In this case, the middle muscle body is 

attached to a free joint but still acts as a slip ring of the single continuous muscle 

segment.  The response (labeled 3-mass w/ tying) of the rotation in Figure 6.27 is 

only marginally better than the 3-mass system with two muscles in series.   

 The last model to consider is the case with only the muscle segment attached 

to the eye globe and to the background.  This system (Figure 6.29) does not include 

the mass or the tendons and predicts the rotation versus time as well as the calibrated 
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model (label is muscle only in Figure 6.27).  The correlation factor, comparing the 

muscles only with the calibrated model, is 0.995 for the muscles only and 0.996 for 

the calibrated.  The difference in the predictability of the muscle only model is an 

indication that the effects of the mass and tendon are insignificant for this neural 

input. 

 

 

 
Figure 6.29:  Analytical adult eye model for use in neural signals.  Only the analytical muscle is 

considered with the eye globe. 
 

 

 

 While using the simple model represented in Figure 6.29 is ideal, the 

attachment points of the muscles can only be on rigid bodies and not finite element 

nodes.  In addition, the attachment point of the muscle to a single node would create 

more of an artificial stress point versus a tendon attached to a line of nodes.  Further, 

the analytical muscle has no means of contacting the eye globe while the tendon can 

wrap the eye during the limits of rotation or translation of the eye providing a more 

realistic motion and interaction with the eye.  Figure 6.30 shows that the derived 
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muscle parameters for the Hill-type muscle match the response of the Winters (1985) 

model.   

 Another examination is considered where a saccade is induced considering an 

operating range of 40 degrees.  The eye model is initially positioned at –20 degrees 

with a neural excitement applied to the agonist muscle and a minimal activation of 

1.1% is applied to the antagonist muscle for the 200 ms duration.  The motion change 

takes place from –20 to 20 degrees in about 60 to 70 ms and maintains the final 

rotation of 20 degrees for the rest of the simulation (Figure 6.30). 
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Figure 6.30:  Eye model behavior due to a 40 ms u(t) pulse.  Comparison to Winters (1985), the calibrated 

eye, and the scaled down infant eye model. 
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The calibrated eye model is excited with the same neuro-input that is applied to the 

Winters model (Figure 6.31) in order to achieve the matching response.  The infant 

model scales the geometry, inertia, mass, and optic nerve response.  However, only 

the reference length in the Hill-type muscle is modified keeping the shape parameters 

the same as an adult.  The tendon also uses the same stiffness properties as the adult.  

The overall force of the muscle (6.4) needs to adjust by modifying the activation of  

(6.7).  In order to approximate the response, the neuro-input is adjusted (Figure 6.32) 

by lowering u(t) over the 40 ms range from 100% activation to 35% activation.  

Modifying the step response in this way shows a correlation factor of 0.997 for the 

infant eye while the adult eye is 0.999 (Figure 6.30).   
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Figure 6.31:  Adult eye time signals of the neuro-input u(t), neural excitation E and activation state A for 

the 40 degree saccade movement. 
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 In addition to lowering the activation level of the u(t) for the infant eye, 

further modifications are done by delaying the start of the neuro-input by 8 ms (tact = 

8 ms).  And finally, after the 40 ms pulse width is complete the agonist muscle neuro-

input equals 15% as opposed to 20% for the adult eye.  The antagonist muscle is set at 

7% neural activity for the duration of the simulation.  The purpose of including the 

saccade calibration is to use the neural excitation in the SBS eye when considering 

the response of various vitreous materials.  Therefore, a comparison is made between 

the finite element infant eye (SBS model) and the analytical rotation response as a 

result of the neuro-input from Figure 6.32. 
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Figure 6.32:  Infant eye time signals of the neuro-input u(t), neural excitation E and activation state A for 

the 40 degree saccade movement. 
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 A saccade is induced using the neuro-input from Figure 6.32 to the finite 

element eye for both the analytical nerve (Figure 6.12) and the finite element nerve 

using the material properties from Sigal et al. (Figure 6.14).  The rotational response 

in Figure 6.30 starts at –20 degrees; however, the finite element models will only start 

at normal rest position (0 degrees) looking forward.  The induced saccade will have 

only a maximum rotation of approximately 20 degrees.  A comparison of the infant 

eye models using the finite element method is detailed in Figure 6.33.  The only 

difference in the models is the type of optic nerve model used.  The angle from the 

finite element model is approximated by: 

  






 −= 2

22

2
2cos

l
dlaθ     (6.14) 

Where θ is the angle of the eye rotation measured at the equator of the eye ball 

(Figure 6.34), d is the distance of the medial node in the equator plane relative to the 

position at the start of the simulation, and l is the distance from the medial node to the 

center of the eye.  This angle is approximate since the eye is also allowed to translate 

in the fatty tissue and the motion is not completely in the horizontal plane.  However, 

the point of this comparison is to visualize the overall kinematics of the finite element 

eye when a saccade is induced.   
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Figure 6.33:  Comparison of the finite element eye models with a 20° saccade. 
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Figure 6.34:  Angle determination of the eye globe with a saccade movement using (6.14). 
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 The eye globe cannot achieve the maximum angle of 20° when the FE Nerve 

is completely supported and plateaus around 11.5 degrees.  Modifying the support, 

the FE Nerve (DOF) model allows translation in the global X direction and rotation 

about the global Y and Z-axes.  The reasoning behind this method is to introduce 

slack (Levin, 2000) into the nerve and have comparable response to the analytical 

nerve model.  Modifying the supports helps to achieve this goal but is not totally 

correct, as the optic nerve is not aligned along the X; rather it is 30 degrees from the 

axis.  Further complicating matters, the nodes have to be supported in all degrees 

when supported on a body.  The FE Nerve (DOF) is supported to the background; 

however, this support method is not applicable in the general simulations with the 

harmonic shaking and impacts.  Therefore, the next model in Figure 6.33 (labeled FE 

Nerve Trans) considers a body attached to the apex of the ocular cavity proximal to 

the optic nerve supports.  This body utilizes a translational joint that is oriented along 

the axis of the finite element optic nerve.  The supports of the optic nerve are then 

fixed to this body to allow slack in the nerve and achieve a like response as the 

analytical spring nerve model.  The results are comparable for the spring nerve and 

FE nerve Trans model. 

 

 

Conclusion 

 This chapter has covered the aspects of the fatty tissue interfacing the eye 

globe and the ocular tethers.  Important consideration is given to the contact 

interactions between the fatty tissue and the eye globe.  Also important to mention, 
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the contact interactions in the entire eye model are reduced to a minimum to avoid 

introducing undue complexity and instability into the model.  The optic nerve is 

influenced by major studies in eye motion controls and from glaucoma investigations.  

Details are explained regarding the modifications of the optic nerve properties for 

inclusion into the infant SBS eye model.  The Hill-type muscle model is used in the 

SBS eye model and explanation of the parameters and constitutive equations is given.  

The response of the eye with the Hill-type muscles is compared to Winters (1985) and 

correlates well.  Finally, the saccade neuro-input is considered and calibrated to the 

Winters (1985) response by reducing the activation level for the infant eye so that a 

similar saccade motion is achieved.  This response is then imposed on finite element 

model with the analytical optic nerve and the finite optic nerve.  Modifications to the 

support of the finite element optic nerve are included so that a similar response is 

achieved compared to the Winters (1985) study and the analytical optic nerve.  This 

saccade motion is of interest when comparison is performed in the next chapter 

between different material properties for the vitreous body.   
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CHAPTER VII 

A PARAMETER STUDY OF THE VITREOUS HUMOR DURING 

SACCADIC MOVEMENTS IN AN INFANT EYE 

 

 

Abstract 

 A parametric investigative study is conducted where various vitreous 

materials are considered in a finite element eye model.  The ocular shell, muscle 

tethers, optic nerve, and encasing fatty tissue are considered in this model.  The 

model utilizes a LaGrangian mesh when considering five vitreous material 

candidates.  In addition, the constitutive material models are also varied to understand 

the response.  A comparison of the shear strain located at the equatorial wall is 

compared between the candidate vitreous materials, as eye radius is proportional to 

the maximum shear (David et al., 1998).  A 20-degree saccadic horizontal motion is 

induced to the eye using Hill-type muscles (Winters, 1985).  A comparison between 

different optic nerve models is also considered along with the mesh density of the 

finite element model.   

 The vitreous materials respond drastically from each other.  Some of the 

vitreous materials are not appropriate to use in a LaGrangian mesh due to high shear 

strains as a result of compliant shear moduli.  The purpose of this study is to 

determine which vitreous materials would be suitable for use in impact and pure 

harmonic shaking simulations. 
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Introduction 

 A finite element model of an infant eye that includes the extra-ocular muscles, 

optic nerve and fatty tissue-eyelid enclosure is presented.  The geometry of an adult 

eye is scaled to infant dimensions using the eye globe diameter (Hogan, Alvarado, & 

Weddell, 1971) to give a scale factor of 0.645 (infant eye diameter / adult eye 

diameter = 16 mm / 24.8 mm).  The optic nerve diameter, as a result of scaling, is 

compared to values measured using ultrasound measurements from children age 10 

days to 13 years old (Newman et al., 2002) and are comparable to the infant 

dimensions.   

 Two models for the optic nerve (analytical spring-type and finite element 

model) will be investigated.  Considering the analytical model, the mathematical 

models done in previous works consider the horizontal motion of the eye (Collins, 

Scott, & O'Meara, 1969; Lehman & Stark, 1979; Lehman & Stark, 1979; Robinson, 

1981;Winters & Stark, 1985; Winters & Stark, 1988).  These analytical models 

consider the eye as the “plant” which acts as a revolute joint in horizontal motion.  

The properties are scaled from the adult to infant (ωnAdult = ωnInfant and ζAdult = ζInfant) 

matching the same dynamic response (over-damped spring model).   

 The finite element model of the optic nerve models the optic nerve head, pia 

mater, and the nerve tissue (Sigal, Flanagan, & Tertinegg, 2004).  In the finite 

element optic nerve model, the material properties are assumed to be the same for an 

infant.  Both optic nerve models are supported in the apex of the ocular socket, which 

is built up from the Visible Human transverse dataset.   
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 The muscle tethers considered in the model are a Hill-type (Hill, 1950; 

MADYMO, 2004) with a lumped muscle mass attached to membrane element 

tendons that are affixed to the eye globe sharing common nodes.  The analytical 

muscle parameters are derived from the work of Winters (1985).  The tendons are 

also adapted from Winters (1985) with modifications so that membrane elements can 

be utilized.  The parameters of the muscles and tendons are not scaled to an infant; 

however, the muscle force for the active response is scaled in order to get comparable 

responses to neural excitation. Currently, there is no data on infant extra-ocular 

muscles or the fiber composition, which is what the muscle parameters are based on 

(Winters & Stark, 1988).   

 The fatty tissue that encases the eye globe is modeled using similar properties 

as Power (2001), which uses the properties from Todd and Thacker (1994) for 

determination of an elastic modulus for buttocks tissue.  This modulus is stiffer than 

other soft tissue studies (Luboz et al., 2004; Samani & Plewes, 2004; Verver, 2004); 

however, this study is going to consider the horizontal saccade motion (Winters, 

1985) so that the fatty tissue and eye globe behave as a revolute joint.  There is still 

going to be rotations about the other two axes, but the values are minimal.  The 

interface between the eye globe and fatty tissue is considered by using a contact gap 

with a penalty method algorithm (MADYMO, 2004).  Contact interactions with soft 

biological tissues are kept to a minimum to simplify the model and reduce instability.   

 The ocular shell tissues are composed of the cornea-sclera shell, choroid layer, 

and retina layer.  All the ocular shells are considered to be membranes (Graebel & 

Van Alphen, 1977; Uchio et al., 1999; Wu, Peters, & Hammer, 1987).  The anterior 
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portion of the eye containing the aqueous, lens, and cilliary body are modeled as well.  

The lens and cilliary body properties are adapted from Power (2001) and the aqueous 

is considered to be composed of the same material as the vitreous (Stitzel et al.).  The 

aqueous is actually more fluid than the vitreous body (Hogan, Alvarado, & Weddell, 

1971); however, the current study is concerned with the vitreous body shear strain at 

the equatorial posterior pole, and the aqueous is assumed not to influence the strain 

during the saccadic motion.   

 Several vitreous materials will be included into the eye model for 

investigation.  However, the mechanical properties determined need to be converted 

into suitable parameters for use in the MADYMO software.  An investigation into the 

shear strain is then conducted comparing the vitreous materials from different studies 

using different constitutive models in order to investigate the response.   

 One material investigation will utilize an elastic modulus (Landwehr, 1982).  

Four other vitreous materials (Bettelheim & Wang, 1976;Tokita, Fujiya, & Hikichi, 

1984; Power, 2001; Nickerson et al., 2005) will be considered viscoelastic using three 

constitutive models in the MADYMO software (linear viscoelastic (CPL) with 

deviatoric and hydrostatic coupling, linear viscoelastic (REF) with deviatoric and 

hydrostatic stresses decoupled, and non-linear viscoelastic (SOL) considering shear 

softening).  The material model variants have the same naming convention as used in 

the Brands (2002).  The vitreous material in this study will be considered 

homogenous given the current material determinations.  The vitreous is of course not 

homogenous and it various throughout (Lee, Litt, & Buchsbaum, 1992).   
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 The shear strain is then compared amongst all the vitreous materials, 

constitutive equation, and models.  David et al. (1998) developed an analytical 

viscoelastic model using properties from Lee et al. (1992) in order to study the shear 

stress during a saccadic eye movement.  The shear stress is proportional to radius of 

the globe implying that measurements should be taken at the equator of the globe.  In 

addition, animation sequences of the transverse section at the equator are compared 

for each computation (23 simulations total).   

 

 

Vitreous Body 

 The vitreous body, occupying four fifths of the volume of the eye globe, 

provides structural support for the outer ocular tissues and helps maintain intraocular 

pressure (Hogan, Alvarado, & Weddell, 1971). The vitreous is a clear gel-like 

structure composed of mostly hyaluronan with a network of collagen fibers ((Dalton 

et al., 1995; Sebag, 1998).  Dalton et al. describe the network of collagen fibers to act 

as a rigid truss network while the hyaluronan provides shock-absorbing properties to 

the system.  Nickerson et al. (2005) describe the collagen type II fibers as a network 

spanning the full diameter eye in a random pattern with hyaluronan molecules 

described as coils in between the voids of the fiber network.  The tensile strength of 

the type II fibers has been quantified to be around 200 milligrams to 2 grams of force 

with elongations, before breaking, equal to 51 to 152 percent (Numata, Constable, & 

Whitney, 1975).  The composition of fibers appears to be at greater concentrations 

around the ora serrata (Hogan, Alvarado, & Weddell, 1971) and is affixed to the lens 
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when dissection is attempted on an adult eye (Wolter, 1961).  In addition, the vitreous 

is seen to be hanging from the posterior lens as it is lifted upwards with forceps.  

Quantifying the concentration of collagen fibers, in the anterior section, shows the 

elastic modulus to be twice that in the central and posterior regions of the eye for 

adults (Lee, Litt, & Buchsbaum, 1992).  In addition to the structural properties, the 

vitreous also serves the purpose of providing nutrients to the lens and retina (Hogan, 

Alvarado, & Weddell, 1971) and also affects vision by scattering light (Zimmerman, 

1980).   

 Considering the infant eye, the vitreous is more gel-like and has a higher 

viscosity.  Further, the retina is well attached to the vitreous from the posterior pole 

all the way to the ora serrata (Levin, 2000).  Sebag (1998) shows the vitreous of a 9-

month-old child attached to the lens with a band of gray tissue posterior the ora 

serrata.  This band of tissue is retina that could not be separated from the vitreous.  

Further, the vitreous gel is resting on a surgical towel exposed to air with no weeping 

of fluid indicated.  Fluid loss is mentioned in Nickerson et al. when conducting 

material testing on porcine and bovine vitreous.  This fluid loss tends to lower the 

shear modulus of the material.  The vitreous posterior the lens is more firmly attached 

in infants and becomes less so with increasing age (Hogan, Alvarado, & Weddell, 

1971).  Zimmerman (1980) mentions that the young eyes often scatter less light but 

does not reveal age trends in viscoelasticity of the vitreous.  This lack of scatter is due 

to the more viscous nature of the infant vitreous, which after age four shows evidence 

of a more liquid vitreous.  By the time the human eye approaches adult size at age 14-
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18, the vitreous is 20% liquid.  Finally, by age 80-90, the vitreous is more than half 

liquid (Sebag, 1998). 

 

 

Previous Models 
 

 Modeling of the vitreous in finite element models has been considered in past 

eye models (Uchio et al., 1999; Power et al., 2002; Stitzel et al., 2002).  The vitreous 

body in Uchio et al. is considered using solid elements and material model specifying 

hydrostatic pressure of 20 mm Hg only.  This material is not producible in the 

MADYMO software considered here; however, it is proposed that a bulk modulus is 

specified for this material.  This is perplexing as the bulk modulus should be of the 

order 109 and not 103 if this is the case, and the author does not elaborate on the 

constitutive model for the vitreous.  The aqueous is also considered using solid 

elements but no mention of the material properties is given.   

 The model considered in Power et al. also models the vitreous and aqueous as 

solid elements.  The vitreous material is assumed to be linear elastic and is assigned a 

value of 42 kPa, which is a reduction of 47 kPa for human buttocks testing (Todd & 

Thacker, 1994).   

 Considering the appropriateness of this assigned modulus, a comparison is 

made between brain material and vitreous material studies to understand the 

magnitude.  Most of the material studies for the brain and vitreous utilize oscillatory 

shear experiments for determining the viscoelastic properties (Shuck, Haynes, & 

Fogle, 1970; Bettelheim & Wang, 1976; Tokita, Fujiya, & Hikichi, 1984; Dalton et 

al., 1995; Zhou, Khalil, & King, 1996; Chirila et al., 1998; Brands, 2002; Lippert, 
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Rang, & Grimm, 2004; Nickerson et al., 2005).  Converting the Power et al. vitreous 

model to a shear modulus yields 14 kPa.  Morrison (1995) tabulates some of the brain 

material parameters used in previous finite element brain models with an average 

short term shear modulus of 170 kPa and 64 kPa for the long term shear modulus.   

 However, Morrison is persuaded to use the values from Zhou et al., which are 

converted from Shuck et al. oscillatory shear experiment.  Therefore, the value of the 

short and long-term moduli is 41 and 7.6 kPa, respectively.  As seen, the Power et al. 

shear modulus is within the lower bounds of the brain material testing.  Recent work 

developed by Brands (2002) uses a viscoelastic model for the brain properties 

considering a multi-mode Maxwell model (MADYMO, 2004) as opposed to the 

comparison from Morrison, which considers only one mode.   

 A crude curve fit of the multi-mode model into one-mode shows the short and 

long-term modulus of the Brands porcine brain test to be 3.2 and 0.67 kPa, 

respectively.  This is considerably smaller than what is reported in the Morrison table 

and would put the Power et al. vitreous out of bounds of the brain material in this 

case.   

 Vitreous material determination for the highest reporting viscoelastic shear 

modulus properties is provided from the work of Nickerson et al. by using a cleated 

rheometry tool.  The initial G’ for the bovine vitreous is 30 ± 12 Pa, and the final 

steady state value is 6.5 ± 2.0 Pa.  However, the sample preparations are such that the 

anterior and posterior sections of the vitreous are cut away leaving the central 

cylindrical disc with fluid loss over a period of time.  The author mentions that the 

initial modulus of 30 Pa is perhaps closer to the moduli of the in vivo modulus.   
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 Therefore, the Power et al. vitreous value of 14 kPa is about 470 times the 

value of the Nickerson modulus.  The Power et al. vitreous stiffness is approximately 

between measured values for adult vitreous and brain material studies.  The Power et 

al. vitreous is influenced by the lumped soft tissue modulus from Todd and Thacker 

(1994), which is considerably higher than any other material determination study for 

soft tissue (Verver, 2004).  There are plenty of observations that support a higher 

shear modulus for the infant eye; however, the Power et al. is probably an 

overestimate based on the presented material property determination studies.   

 The Stitzel et al. eye model considers quarter geometry of the eye, which is 

used for impact studies, where the eye undergoes extreme deformation.  The 

Lagrangian elements would undergo extreme shape changes (perhaps causing 

negative volume elements).  To overcome this problem, an equation of state (EOS) is 

defined for the pressure of the system using a coupling LaGrange-Euler mesh.  The 

total stress is a combination of the hydrostatic ( ))(3
1 σtr and deviatoric (σd).   The 

state equation chosen is the Gruneisen (Hallquist, 2004) EOS (considers the 

hydrostatic component) where the density, speed of sound through the material, and 

other coefficients are inserted.  In this case the speed of sound and the density of the 

aqueous and vitreous are set to the same values using 1006 kg/m3 for the average 

density (Duck, 1990) and 1503 m/s for the speed of sound (all other constants are set 

to values for water).  This EOS is appropriate for very high strain rates.  The bulk 

term is represented by K = ρC2 (where ρ is the density of the material and C is the 

speed of sound through the material).  However, the viscous term is not introduced in 

this model.  For low strain rates, as considered in the current model, simple 



   203

hydrostatic behavior can be modeled by using the linear polynomial model by setting 

all constants to zero except C1 giving (Hallquist, 2004): 

  





 −= 11
V

Kp   (7.0) 

Where p is the pressure, K is the bulk modulus (K = ρC2), and V is the relative 

volume.  The same model can be used for the Gruneisen equation by setting all 

constants except K to zero.  The bulk modulus is extremely high for the vitreous 

(order is 109), which is typical for incompressible fluids (1/K gives the 

compressibility).  Unfortunately, there is no method in the MADYMO software that 

can use the EOS for fluids.  In fact, this method in LS-DYNA seems to be insufficient 

for modeling the viscoelastic effects of the vitreous.  However, for simulations that 

require high impacts, where the volumetric compression is a leading factor, this is a 

fairly robust method.   

 Modeling a solid bulk material in the MADYMO is quite possible using the 

linear viscoelastic model (LINVIS) by setting the shear modulus extremely low.  In 

this case, the deviatoric and hydrostatic components are added together.  Using this 

method certainly aids in resisting volumetric changes, but it also exhibits extremely 

stiff vitreous material that is resistant to shear as will be discussed in this work. 

 

 

Vitreous Materials 

 Currently, there is no study that examines the mechanical behavior of infant 

vitreous.  Further, limited studies have considered modeling the vitreous using the 

material parameters from these vitreous studies.  Bovine vitreous samples are 
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prepared and tested in a torsion pendulum in order to measure the complex shear 

modulus from frequency ranges from 0.1 to 0.003 Hz and at temperatures from 3.6 to 

41.2°C.  The complex shear modulus (G’ and G”) is then plotted along with the loss 

tangent using superposition on a log-log plot (Tokita, 1984).  The storage modulus 

(G’) has the following fit: 

  096.078.6 fG =′   (7.1) 

Where f is the frequency in Hz and the units of G’ are in dyn/cm2.  Bettelheim and 

Wang (1976) determine the complex modulus of bovine vitreous using an oscillatory 

compression chuck located at three directions of the eye.  The study does not provide 

a plot but does show the complex modulus (E’ and E’’) for 3.5, 11, 35, and 110 Hz.  

The study also mentions that the chuck would affect the behavior of the vitreous 

outside the cross-sectional area and introduces a referenced empirical method to 

account for this.  However, the benefit of this testing method would keep the vitreous 

in place with minimal disturbance to the collagen fiber network.  In the case of 

Tokita, the vitreous needs to be removed and sliced before it is inserted into the 

testing apparatus.  Further, it is not clear if there is slip at the boundary walls and if 

there is degradation to the testing sample.  The values are converted to complex shear 

by dividing by 3 (ν = 0.5 for incompressibility).  

 The Bettelheim and Wang study compares the three directions of compression 

(medial-to-lateral, oblique direction approximately 40° to the medial-lateral direction, 

and along the Cloquet’s canal).  The results between the three directions are 

approximately the same (comparing the E’ values).  Lee, Litt, and Buchbaum (1992) 

perform creep tests on the vitreous by inserting a small sphere into the medium and 
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applying magnetic force.  The testing compares the properties of the anterior, central, 

and posterior of human eyes.  The study in 1994 includes bovine and porcine 

vitreous.  The study fits the compliance versus time plots into a six-parameter 

Maxwell model in series with a Kelvin model.  Unlike the Bettelheim and Wang 

study, differences in the elastic modulus are shown to be consistent with reports of 

higher concentrations of collagen fibers in the anterior section.  However, the 

magnitudes of the modulus are comparable to Bettelheim and Wang.  Landwehr 

(1982) also uses a steel sphere inserted into the vitreous but performs oscillations as 

opposed to creep testing.  Interestingly, Landwehr considers the vitreous body as 

rubber-elastic as opposed to the viscoelastic studies conducted by other authors.  

Because of the collagen fiber network, the author maintains that the vitreous cannot 

really be considered viscoelastic and fits the data to a Voigt-Kelvin model under 

harmonic excitation.  Using the mass of the inserted steel sphere the damping and 

stiffness coefficients can be solved.  Work after Landwehr make mention of the 

study; however, no further consideration is given to study the effects or expand on the 

author’s work.   

 Nickerson et al. (2005) perform oscillatory strain tests on vitreous samples 

from bovine and porcine eyes.  Attempts are made to duplicate the procedure as in 

Tokita; however, wall slip was noted, so a cleated tool was developed that pierces the 

lubricated vitreous in order to measure the mechanical properties without wall slip.  

The study also measures the mass of each sample immediately and to a maximum of 

150 minutes after dissection.  Weeping of fluid from the samples is noted.  Sample 

preparation involved excising the vitreous from the eye and slicing the central region 
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out to form a disk.  This would have the effect of disrupting the collagen fiber 

network near the wall of the slice.  Nickerson et al. report the initial and final 

complex moduli for both bovine and porcine with the bovine having higher values, 

which is consistent with previous measurements (Lee, Litt, & Buchsbaum, 1994).  A 

plot (log G’ versus time) is provided comparing the Nickerson et al. bovine and 

porcine storage modulus (G’) with previous studies.  The initial values of the storage 

modulus for bovine are in excess of 30 times any other study previously viscoelastic 

mechanical property determination study.  An important observation is that the initial 

modulus is probably closer to the actual value in vivo.  However, the plot shows the 

value of G’ at the start to be approximately 17 Pa and decreasing to 5.5 Pa at time 90 

minutes.  The author does mention that this is a plot of typical time-dependent 

behavior, so this will be used in order to determine the time constants in the 

constitutive material model fits.  Nickerson et al. say that the final steady state moduli 

represent a minimum value that is five times that of the in vivo moduli.  Therefore, 

the steady state will be scaled (by five times) in order to achieve the proposed in vivo 

steady state value.   

 Although based on a guess, the Power (2001) vitreous will be considered in 

this study as well.  Since the Nickerson et al. measured values are higher than any 

other viscoelastic study, the time constants will be considered the same for the Power 

(2001).  It turns out that scaling the Nickerson et al. to the point where the short term 

modulus is the same as Power (2001) value involves a scaling factor of 1869 times.  

This is extremely stiff comparatively but should allow one to see the effects of the 

constitutive models considered in this study.   
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Methods 

 Before inclusion into the finite element eye model, the vitreous mechanical 

properties are converted to values that can be used in the MADYMO software.  

Vitreous properties are gathered from five separate studies for investigation.  In 

particular, three of the studies are dynamic viscoelastic determination studies of the 

vitreous (Tokita, Fujiya, & Hikichi, 1984; Bettelheim and Wang, 1976; Nickerson et 

al., 2005).  The fourth study is from Power (2001) using a conversion from linear 

elastic material.  The last study by Weber and Landwehr (1982) considers the vitreous 

“rubber-elastic” and fits the behavior to a Voigt-Kelvin model and determines the 

spring and damping coefficients.  These data are used to determine an equivalent 

elastic material model for finite element analysis.  The material model naming 

convention will be as follows (Table 7.0): 

 

Table 7.0:  Material model labeling. 
 

Material Label Mechanical Behavior Author(s) 
Weber Linear elastic with damping Weber & Landwehr, 1982 
Nick5 Viscoelastic material 5x in 

magnitude 
Nickerson et al., 2005 

Bet Viscoelastic material Bettelheim and Wang, 1976 
Tok Viscoelastic material Tokita, Fujiya, & Hikichi, 1984 

Power Viscoelastic material 
conversion 

Power, 2001 

 

 

Vitreous Material Properties 
 

 The Weber values for human damping and stiffness are given as 7.35x10-4 

Ns/m and 6x10-2 N/m, respectively for a steel ball inserted into the vitreous with 

radius 0.5 mm and density = 7850 kg/m3  (Weber et al., 1982).  A mathematical 
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model is created using the spring and damping attached to the mass representing the 

steel ball (mass is set to 1.0x10-4 kg).  The natural frequency (ωn) and the damping 

ratio (ζ) are m
k = 24.5 rad/s and ( )mkc 2 = 0.15, respectively.  The displacement of 

the model is set to 2 mm at time zero and let go.  The response of the position time 

history, ( )
2

1ln X
X=δ , is used to match an equivalent solid beam element with a linear 

elastic modulus and damping for ν = 0.5.  The modulus and damping are then solved 

until the damping ratio and natural frequency are the same for the analytical and finite 

element model yielding the following:  E = 43 Pa, damping = 200 Ns/m for ν = 0.5.   

 The rest of the materials considered are viscoelastic and are modeled as a 

multi-mode Maxwell model (Figure 7.0), with the exception of the Power vitreous, 

which is scaled from the Nick5 fit.  The storage modulus (G’) versus frequency is 

used to curve fit to the following (Brands, 2002): 

  ∑
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  (7.2) 

Where i indicates the different modes (up to n = 4 modes total), τ is the relaxation 

time constant determined from curve fitting,12 ω is the frequency, Gi is the short-term 

modulus for each mode, G∞ is the long-term modulus.   

 

                                                           
12 The curve fits, in this chapter, are done using the Levenberg-Marquardt method. 
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Figure 7.0:  Viscoelastic schematic of the Maxell multi-mode material model used in MADYMO (2004). 

 

 

 The bulk modulus, K = cp
2ρ (speed of sound squared times the density of the 

material), is used in all the constitutive viscoelastic equations for the hydrostatic 

component.  The speed of sound is determined to be 1506±3 m/s for the vitreous 

material (Thijssen, Mol, & Timmer, 1985) and the density is averaged between the 

aqueous and vitreous, as in Stitzel et al., and is 1006 kg/m3 (Duck, 1990).  In this 

case, as with Stitzel et al., the speed of sound (cp) is considered the average between 

the vitreous and aqueous and is assigned the value 1503 m/s, which is the lower 

bound for the vitreous from Thijssen, Mol, and Timmer (1985).   

 Nickerson et al. averages the initial G’ and G” of the bovine vitreous to be 30 

±12 Pa and 16 ± 7 Pa, respectively.  The steady state values of G’ and G” are reported 

to be 6.5 ± 2 Pa and 2.0 ± 0.6 Pa, respectively.  Nickerson et al. plot a comparison of 

previous G’ values with their own material study for the bovine and porcine vitreous.  

The bovine vitreous will be considered as it has higher reported moduli values.  The 

data points from this plot are used to curve fit to a two-mode Maxell model (Figure 
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7.0) with R = 0.992.  The data points are scaled by five so that the long-term modulus 

(G∞) is approximately equal to the reported average of 30 Pa for G’ in order to 

consider the in vivo steady-state values (Nickerson et al., 2005).  The one and two 

modes are shown in Figure 7.1.  The fit of the two-mode vitreous sufficiently fits the 

data points.  All values are tabulated in Table 7.1. 

 Bettelheim and Wang (1976) determine the complex moduli (E’ and E’’) of 

bovine samples and tabulate the samples for four discrete frequency values (3.5, 11, 

35, and 110 Hz).  The values for the storage modulus (E’) are converted to shear 

using ν = 0.5 and plotted.  A two-mode fit describes the four data points with R = 

1.000 (Figure 7.2).  The correlation factor does not indicate a true representation of 

the material; unfortunately, only the values at the four frequencies are given.  Values 

are tabulated in Table 7.1. 

 

 

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

freq. (Hz)

G
' (

Pa
)

5*G'
5*G' Fit 1 mode (R=0.966)
5*G' Fit 2 mode (R=0.992)

 
Figure 7.1:  Nick5 material curve fit using a multi-mode Maxwell model. 
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Figure 7.2:  Bet material curve fit using a multi-mode Maxwell model. 

 

 

 

 The Tok material is based on curve fitting a log-log plot of the storage 

modulus versus frequency into (7.1) for a composite master relaxation plot for the 

bovine vitreous (Tokita, Fujiya, & Hikichi, 1984).  The values for G’ are then fit 

using the multi-mode Maxwell model up to four modes until the fit is good (R=0.999) 

(Figure 7.3).  The values for the Tok material are the lowest of all the viscoelastic 

materials considered in this study.  The material parameters are tabulated in Table 

7.1. 
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Figure 7.3:  Tok material curve fit using a multi-mode Maxwell model. 

 

 

 

 The final vitreous material, Power, is based on the Power (2001) vitreous 

material converted to a shear modulus.  The Power material is scaled from the Nick5 

material by letting G1 equal 14 kPa, which gives a scale factor equal to 1869.  This 

material is considerably higher and is probably not representative of human infant 

vitreous; however, the inclusion of this material is important to illustrate the 

limitation of some of the constitutive material models that will be used.  The material 

properties are tabulated in Table 7.1.  
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Table 7.1:  Vitreous material properties for the multi-mode Maxwell model. 
 

Material Mode Shear modulus 
Gi, i = ∞,1,2,3,4 

[Pa] 

Time constants 
τi, i = ∞,1,2,3,4 

[sec] 

Bulk 
modulus 
K [GPa] 

R Fit 

Nick5 1 27.65, 37.45 ∞, 537.08 2.27 0.966 
Nick5 2 25.48, 20.37, 29.34 ∞, 1271.48, 

138.79 
2.27 0.992 

Bet 2 1.46, 0.057, 0.139 ∞, 0.025, 0.0012 2.27 1.000 
Tok 1 0.375, 0.355 ∞, 11.04 2.27 0.934 
Tok 2 0.330,0.280, 0.197 ∞, 1.31, 131.38 2.27 0.991 
Tok 3 0.317, 0.210, 0.183, 

0.129 
∞, 0.44, 12.12, 

372.11 
2.27 0.997 

Tok 4 0.293, 0.190, 0.147, 
0.121, 0.106 

∞, 0.30, 3.87, 
59.34, 1162.46 

2.27 0.999 

Power 1 10335.34, 14000 ∞, 537.08 2.27 - 
 

 

Vitreous Constitutive Models 
 

 Aside from the linear elastic model used by the Weber material, three 

constitutive equations are considered for the viscoelastic material.  The CPL material 

uses the MADYMO LINVIS material property, where the hydrostatic and deviatoric 

stress is coupled.  The REF material is the MADYMO VISCO_NL material model, 

originally developed by Brands (2002), which decouples the hydrostatic from the 

deviatoric stress with the non-linear shear parameter (FNLS) set to zero.  Both the 

CPL and REF materials are linear viscoelastic.  The final consideration is the SOL 

material, which is the same as the REF material but with the added effects of the 

FNLS number.  The SOL material allows for shear softening when the number is less 

than zero and hardening when the value is greater than zero (MADYMO, 2004).  

Further, use of this material model allows a correction parameter (f3) for when FNLS 

< 0 that applies a small amount of stiffening to the material that has negligible effects 

on small strains but applies a stiffness to larger strains.  This correction is good for 
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stabilizing the simulation but can also provide unrealistic results at high strains.  

Unfortunately, there are currently no experimental results available for the vitreous 

that can be used for the FNLS factor.   

 Brands (2002) uses stress relaxation experiments to investigate the non-linear 

strain behavior and is able to separate the strain and time dependent parts by 

observing that changes to the applied strain revealed parallel relaxation curves.  The 

time dependent part is considered the damping function and is used to determine the 

FNLS factor.  The closest study to the stress relaxation experiments is the work 

performed by Lee, Litt, and Buchsbaum (1992), where creep tests are conducted 

given a constant magnetic force.  Using the methodology of Oza, Vanderby, and 

Lakes (2003), the creep test can be converted to shear relaxation curves.  

Unfortunately, the stress level (σ0) for the creep test needs to be known for the 

interrelation and Lee (1992) only gives the following ratio: 
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Where J(t) is the compliance, ε(t) is the strain, Rrun is the radius of the inserted sphere, 

Fm run is the magnetic force, L(t) is the displacement of the fluid.  Further, only one 

force is given in Lee (1992) for the creep test, while Brands uses varying strain levels.  

However, for simplicity, the effects of the non-linear FNLS factor are investigated for 

the Nick5 material by varying the factor at levels 0.01, 0.1, 1.0, 5.0, and 10.0 (the 

sign is negative to indicate shear softening) and the f3 parameter is defaulted to 0.2 

(third order Mooney-Rivlin parameter). 
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Geometry 

 The model considers the eye globe with inner structures, the muscle tethers, 

tendons, optic nerve, fatty tissue, eyelid, and the encompassing orbital socket.  Most 

information for the geometry is available for the adult eye.  In order to consider the 

infant eye, the geometry of the adult eye is scaled down to 64.5% using the eye 

diameter from Hogan, Alvarado, and Weddell (1971) and the optic nerve sheath 

diameter from (Newman et al., 2002).  The ocular shell dimensions are based on Woo 

et al. (1972) (Figure 7.4) and the lens and ciliary placement on Power (2001) (Figure 

7.5).   
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Figure 7.4:  Geometry of the idealized cornea-sclero shell from Woo et al. (1972) for an adult eye. 
 

 

The placement of the idealized geometry of the eye is positioned inside a built up 

model of the ocular cavity, muscles, optic nerve, and eyeball from the Visible Human 

Project transverse slice scans.  The ocular cavity cone geometry is built from the 

Visible Human scans as is the apex muscle and optic nerve attachments, the oblique 

inferior, and superior attachments.  The final position of the optic nerve and tendon 
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attachments to the eyeball are based on Hogan, Alvarado, and Weddell (1971) and 

differ from the Visible Human Model slightly.  However, the attachment locations to 

the eyeball from Hogan et al. are an average of several eyes and are more appropriate 

to use.  The fatty tissue/eye lid is considered to fill the entire ocular cavity.  A void is 

inserted into the fatty tissue where the location of the eyeball is to be so that the 

eyeball is totally encased in the fatty tissue.   
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Figure 7.5:  Location and dimensions of the lens and ciliary placement for an adult eye (Power, 2001). 

 

 

Mesh/Model Creation 

 The eye model is meshed from the vitreous body outward to the ocular shell 

structures.  The vitreous and aqueous are modeled using hexahedral elements with 

reduced integration to prevent mesh locking (Samani et al., 2001; Brands, 2002; 

Gopalakrishnan, 2002; Manzini and Putti, 2007).  Two meshing methods are 

considered in this work: manual meshing and cubit meshing.  The manual meshing 
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method depends on dividing the vitreous into a central cube with six sides (anterior 

interface to lens and ciliary, posterior side, inferior side, superior side, medial side, 

and lateral side).  The cubit meshing utilizes the CUBIT software by dividing the 

volume into manageable volumes for meshing and provides a more uniform mesh. 

For both meshing techniques quarter symmetry is used for the build up before 

mirroring to build the full finite element eye model.  The initial cube is meshed first 

and then sweeping techniques are used to extrude the solid mesh to the outer spherical 

surface of the eye.   

 The anterior section of the eye with the lens depression proved challenging 

but is meshed in the same extrusion manner.  The mesh density of the ocular shell is 

around 1 mm2 for each of the elements.  In order to achieve this density, the vitreous 

cube had to have a much finer mesh density as the extrusion process takes elements 

from a smaller surface and extrudes them to a larger.  The Cubit software uses the 

same overall ocular mesh density but is able to achieve a more uniform mesh density 

for the vitreous as well reducing the total element amount.  The lens and ciliary body 

are modeled as shell elements and the aqueous is modeled using hexahedral elements.  

The aqueous mesh only involved extruding the posterior lens interface surface to the 

anterior eye globe surface (cornea region).   

 The sclera-corneal shell is first modeled as solid elements to capture the non-

uniform thickness as shown in Figure 7.6.  Each solid of the sclera-corneal layer is 

then converted to a shell element with the thickness information stored for each 

element.  Power (2001) and Uchio et al. (1999) perform similar techniques by 

partitioning the ocular shell into bands of thickness.   
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Figure 7.6:  Hexahedral mesh of cornea-sclero shell converted to membrane elements for infant eye. 
 

 

 The shell meshing method presented here and done by Power and Uchio et al. 

is lacking in that there is a stepping from one element to another with the different 

thickness information.  Stitzel et al. is able to overcome this by specifying the 

thickness at the nodes; this is not possible in the MADYMO software (only element 

thickness can be specified).  Two intermediate layers are considered in the eye model 

to represent the choroid and retina membranes in the posterior region of the eye up to 

the ora serrata.  All ocular shell layers are modeled using membrane elements with in 

plane stresses only.   

 The fatty tissue is meshed using the boundary of the ocular socket and larger 

eye globe geometry.  The larger eye globe surface ensures that nodes and elements of 

the eye globe do not intersect or penetrate the fatty tissue elements.  A contact gap 

will be specified between the eye globe and fatty tissue.  The geometry of the fatty 

tissue is difficult to mesh using hexahedral elements as partitioning the volume into 
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sweepable sections presents a problem with the eye globe void.  Meshing the volume 

using tetrahedral elements is simpler but not without complication.  The meshing 

process is a two-step process.  Typically, auto-meshing tetrahedral elements involves 

the selection of a closed volume; however, the eye globe void in the middle prevents 

this.  Simply creating a connection between the eye globe surface mesh and the outer 

ocular cavity surface mesh allowed for the entire volume to be meshed- minus the 

connection boundary (the connection boundary is analogous to sprue in an injection 

molding process).  Second, the connection boundary is meshed and common nodes 

are equivalenced to provide one monolithic volume mesh with the eye globe void 

(Figure 7.7).  Finally, the skin layer on the anterior most section is modeled using 

membrane elements.   
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Figure 7.7:  Fatty tissue tetra-mesh with membrane skin layer. 
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 Two optic nerve models are considered in this study.  The first uses analytical 

values (Collins, Scott, & O’Meara, 1969; Lehman & Stark, 1979; Robinson, 1981; 

Winters & Stark, 1985; Winters & Stark, 1988) in four beam elements attached in 

parallel to the posterior region of the eye globe at locations determined from Hogan, 

Alvarado, and Weddell (1971).  The only geometrical requirements for the beam 

elements are the local coordinate system orientations (Figure 7.8) (cross sectional 

area is not used as these are simply analytical torsional, rotation, and translational 

spring elements).   

 

 

 

ONH interface

orientations for 
spring-nerves 

spring-nerves

 
Figure 7.8:  Layout of the spring-nerve and optic nerve head (ONH) interface for the infant eye model. 
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The posterior nerve attachments at the apex of the socket are fixed in all degrees 

while the anterior nerve utilizes a simple constraint equation to tie the optic nerve 

head to the nerve bundle.   

 The second optic nerve (Figure 7.9) is modeled by extruding the optic nerve 

head from the posterior back to the apex location.  The nerve is broken into three 

sections to account for the optic nerve head (ONH), neural tissue, and pia mater as 

considered by Sigal et al. (2004).  The ONH interface uses membrane elements with 

in plane stresses only.  The pia layer also uses the membrane elements while the 

neural tissue is composed of solid elements.  The support for the finite element optic 

nerve is attached to a rigid body in all degrees of freedom.  The body has a 

translational joint along the axis of the optic nerve to allow for nerve slack and to give 

a similar response to the overall rotational position as the analytical optic nerve. 

 

 

membrane pia layer 

solid neural tissue 

ONH interface 

 
Figure 7.9:  Layout of the finite element optic nerve and ONH interface for the infant eye model. 
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 The muscles originally are based on the Visible Human transverse slices by 

fitting 2-D surfaces along the length of the muscle body.  However, insufficient 

properties for the muscle exist to consider them as finite element structures.  At most, 

only the passive behavior could be modeled.  Therefore, a hybrid approach is 

considered by using a Hill-type muscle (Figure 7.10) that is fixed at one end and 

attached to a free body at the other (lumped mass).  This mass body allows the tying 

of the finite element tendon (SE element) to the muscle and attached to the eye globe.  

The MADYMO software limits the Hill-type muscle attachments to rigid bodies only; 

therefore, node attachments are not possible.   

 

 

Apex 
Attachment 

PE

CE

M SE
Eye Globe

 
Figure 7.10:  Hybrid analytical muscle-tendon model used in the infant eye saccade study. 

 

 

 

 Differences in Figure 7.10 are the oblique muscles.  The inferior oblique 

muscle is attached at the base of the ocular socket and not the apex.  The superior 

oblique is attached to the apex but also loops through the trochlea.  The trochlea is 

modeled as a tying point or simple mathematical eyelet.   



   223

 The tendon is modeled as three-node membrane elements with contact 

interactions with the scleral shell so that the tendon can wrap the eye as it undergoes a 

horizontal saccadic movement.  The tendon elements are modeled as surfaces so that 

the attachment points to the sclera shell distribute the stresses versus a one-point 

connection with artificial force spikes.  Consideration for the infant eye involves 

scaling the analytical properties of the rigid body muscle mass and the muscle tying 

location points and are presented in Table 7.2.  The details of the muscle and tendon 

placement are represented in Figure 7.11. 

 

 

 

Table 7.2:  Dimensional information for the muscle and tendons in the infant eye simulation model. 
 

Muscle Name Muscle 
Length (mm) 

Tendon Length 
(mm) 

Tendon Width at 
globe attachment 

(mm) 

Tendon Thickness 
(mm) 

Oblique 
Superior 

29.87 8.10 6.98 0.2 

Oblique Inferior 9.42 3.87 6.78 0.3 
Rectus Superior 17.13 8.06 6.15 0.2 
Rectus Inferior 19.10 7.41 6.15 0.2 
Rectus Medial 17.91 8.04 5.76 0.2 
Rectus Lateral 18.84 8.20 6.18 0.2 
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optic nerve with orientation coordinate

typical muscle mass 
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typical membrane tendon

Trochlea (pulley) 

muscle attachments to eye socket 

Frontal-Medial View Inferior-Lateral View 
 

 
Figure 7.11:  Muscle and tendon details for the infant eye model. 

 

 

 

Contact Interactions 

 Contact interactions introduce complexity and computational time to the 

model efforts.  However, some contacts are unavoidable and are needed to represent 

realistic behavior.  Two major contacts are considered in the presented eye model, 

fatty tissue to scleral-cornea shell and the tendons to the sclera shell.  The fatty tissue 

contact uses a contact gap (Figure 7.12) to minimize the overall geometrical gap.  The 

algorithm uses a penalty method (MADYMO, 2004): 

 ( )[ ]ec tPARFORCEMAXA
V
KF ⋅







= __,min2

0

λψ   7.4 

Where MAX_FORCE_PAR, a tuning parameter, is equal to 1.0; Fc is the contact 

force; K is the bulk modulus of the contact segments penetrated; V0 is the initial 

volume of the contact segment; A is the area of the contact segment; ψ is the penalty 
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factor (default value is 0.1 and is recommended not to change this value); λ is the 

penetration of the contact node; te is the penetrated element thickness that is 

multiplied by the MAX_FORCE_PAR.  The penalty factor (ψ) for the tendons is 

reduced to 0.1 when contacting the sclera shell to reduce the contact force.  This was 

necessary to reduce localized artificial nodal motions that resulted from the 

penetrating nodes of the tendons into the eye globe. A contact gap for the tendon-

scleral shell is not used.  The most important contact, the fatty tissue with the scleral-

corneal shell, creates a spherical joint with the eye globe and provides motion that is 

comparable to the Winters (1985) horizontal motion studies.  The tendon to sclera 

contact is of secondary importance and provides realistic behavior of the muscle 

without muscle penetration into the eye globe.  The analytical muscle segments or 

beam-tendons are unable to contact the eye globe making the membrane tendons 

necessary. 
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Figure 7.12:  Sagittal view of eye model showing the geometrical gap dimensions between the fatty tissue 

and eye globe. 
 

 

Material Properties 

 Unlike previous finite element eye models (Uchio et al., 1999; Power et al., 

2002; Stitzel et al., 2002), large deformations are not considered in this study.  

Therefore, some of the non-linear materials of the ocular shells can be considered in 

the linear region.  The cornea and sclera material are based on the work of Uchio et 

al. (1999) where the ocular shell can be considered a membrane (Woo et al., 1972).  

Power (2001) used the MADYMO software and modeled the cornea and sclera using 

a hysteresis material type definition allowing one to insert the non-linear stress-strain 

curves directly.  However, in this case ν = 0.0, and only three node membrane 

elements can be used.  The Stitzel et al. model also uses the material properties of 

Uchio et al. using LS-DYNA and an orthotropic formulation.  The current model 
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considers the cornea and sclera shells to be material linear elastic using the modulus 

from Uchio et al. up to the point before increases in strain result from decreases in 

stress.  The modulus, as reported by Stitzel et al., is 124 MPa and 358 MPa for the 

cornea and sclera, respectively.  To account for the compressive stiffness, a reduction 

factor is set for the tension only elastic material to 1/100th of the stiffness in tension 

(Stitzel et al.) and to circumvent possible stability issues which could result from pure 

tension-only material (especially if contact interactions are used) (MADYMO, 2004).  

The mass density of the cornea and sclera is set to 1076 kg/m3 (Duck, 1990) and 1243 

kg/m3 (Uchio et al., 1999), respectively.  Stitzel et al. assumes incompressibility by 

setting ν = 0.49 for both materials, while this study uses the values for the cornea and 

sclera directly from Uchio et al. (0.42 and 0.49 for cornea and sclera).   

 The choroid (Graebel & Van Alphen, 1977) and retina (Jones, Warner, & 

Stevens, 1992) are also considered to be membrane structures as well with linear-

elastic, tension-only material characteristics.  As reported, the elastic modulus for the 

retina and choroid are 20 kPa and 96.8 kPa, respectively.  The density is set to 1000 

kg/m3 and ν = 0.49 for incompressibility.  The retina is a very thin, delicate, and clear 

tissue lining the inner eye and interfacing the vitreous body and choroid layer through 

the pigment epithelium (Hogan, 1963).  The retina varies in thickness with the 

thickest portion near the optic disk measuring 0.56 mm thinning to 0.18 mm to the 

equator, and then to 0.1 mm at the ora serrata (Hogan, 1963).  However, the retinal 

thickness is set to 0.14 mm for the current investigation (Wu, Peters, & Hammer, 

1987).  The choroid is a thin, highly vascular (with extensive nerve supply) 

membrane supplying nutrition to the retina and anterior portion of the eye.  This 
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tissue exhibits some of the traits of erectile tissue (Hogan, 1971).  The entire traits of 

the choroid are still unknown as all testing that has been done are postmortem and in 

vitro (uniaxial elongation testing).  There is no question that the rich blood supply 

would affect the stiffness characteristic of the choroid.  Friberg and Lace (1988) 

suspect that in vivo testing would reveal stiffer characteristics, especially in 

compression.  In addition, Friberg did measure the choroid thickness (0.08 mm) but 

assumed the in vivo thickness to be 0.42 mm on account of the full blood vessels.  

Testing by Moses (1965) and Graebel and van Alphen (1977) assumed a thickness of 

0.02 mm and 0.16 mm, respectively.  In this study the thickness of Graebel and van 

Alphen is used (thickness is 0.16 mm).   

 The lens is made rigid as in the previous eye models (Uchio et al. 1999; 

Power, 2001) and has little influence during the saccadic motion where the posterior 

region is of interest.  The ciliary body attaches the lens to the ocular shell and the 

modulus is set to 350 kPa (Fisher, 1986).  The density and ν are from Power et al. and 

are 1600 kg/m3 and 0.40, respectively.  The anterior section of the eye is not modeled 

in detail as the focus of the study is with shear strain at the posterior scleral wall. 

The vitreous material considerations have been presented; however, the aqueous is 

also considered.  In this case, the aqueous for all simulation is set to the same material 

as the Weber vitreous material, which has the added benefit of quicker computational 

times.  The viscoelastic materials with the bulk (K) modulus around 109 Pa in 

magnitude increase the computational efforts tremendously.   

 The fatty tissue is modeled using an elastic modulus from (Todd & Thacker, 

1994) and the same density and ν as Power et al., where E = 47 kPa, density is 999 
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kg/m3 and ν is 0.49.  The stiffness characteristic of the Todd and Thacker tissue is 

extremely stiff compared to other studies (Figure 7.13); however, to model the 

horizontal saccade, as in Winters (1985), limits on the fatty tissue deformation are 

desired.  In this way, the combination of the eye globe and fatty tissue create a 

spherical joint without considering the fatty tissue so rigid that contact interactions 

could be problematic. 
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Figure 7.13:  Comparison of fatty mechanical properties of different research groups illustrating the 

extreme stiffness characteristic of the Todd & Thacker soft tissue properties. 
 

 

 The material parameters for the finite element optic nerve (Sigal nerve) are 

based on the work of Sigal et al. (2004), which compiles mechanical properties from 

previous works and averages the values for the elastic moduli for all the structures 



   230

considered.  The density information is not reported in Sigal et al. and is set to 1000 

kg/m3 and is within published values for spinal chord nerve tissue (1038 kg/m3) 

(Duck, 1990).  The pia mater thickness in Sigal et al. is set to 0.06 mm; however, for 

the infant eye model the thickness is increased to 0.535 mm so that the most outer 

sheath of the optic nerve is included (Hayreh, 1984) and is within values reported for 

the posterior sclera shell and is more representative of the dura layer.  The ONH 

thickness is set to 0.6 mm.  Poisson’s ratio (ν) is assigned a value of 0.49 to model 

incompressibility and 20% material damping is assigned as biological structure 

exhibit some form of damping (MADYMO, 2006).  Further, as will be described in 

the analytical optic nerve model, the optic nerve does have considerable damping 

(over-damped actually) (Lehman & Stark, 1983).  The neural tissue modulus is 

assigned 0.03 MPa (Sigal et al., 2004) and the pia mater/dura layer is assigned a 

modulus of 3 MPa (Sigal et al., 2004).  The ONH is given a modulus of 0.3 MPa 

(Sigal et al., 2004).   

 The considerations of the analytical optic nerve properties consider 

mathematical models in previous works for horizontal eye motion (Collins, Scott, & 

O’Meara, 1969; Lehman & Stark, 1979; Lehman & Stark, 1979; Robinson, 1981; 

Winters & Stark, 1985; Winters & Stark, 1988).  These analytical models consider the 

eye as the “plant” which acts as a revolute joint in horizontal motion.  The eye system 

“plant” parameters can be modeled as the following (Lehman & Stark, 1983): 

 NKcI =++ θθθ &&&   (7.5) 

Where I, c, and, K are the plant parameters 3x10-7 kg-m2, 1x10-4 Nms, and 1x10-3 Nm 

(Winters & Stark, 1985), respectively.  Scaling these parameters to an infant is trivial 
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and involves matching the natural frequency and damping ratios to the adult system 

such that I, c, and, K are equal to 3x10-8 kg-m2, 1x10-5 Nms, and, 1x10-4 Nm, 

respectively.  Conversion to translational values is desired and achieved by using the 

infant eye radius with length 7.1 mm.  These values are then used in non-linear 3-

dimensional Kelvin element material (spring-damper type material), which are 

composed of the axial, bending, and shear values (Figure 7.14).  The non-linear 

Kelvin material is necessary as can be seen in the first two plots of the axial stiffness 

where compressive values are set to zero (specifying linear in MADYMO only allows 

insertion of a single stiffness number). 

 The Hill-type muscle consists of a passive (PE), contractile (CE), and series 

(SE) component (Figure 7.10).  In addition, the mass can be modeled as a lumped 

parameter.  The total muscle force is the summation of the contractile and passive 

force contributions: 

 Fmuscle = FCE + FPE  (7.6) 

The passive force is considered when the muscle is stretched beyond the reference 

length and the active muscle behavior is given by (MADYMO, 2004): 

 FCE = AFmaxfH(vr)fL(lr)  (7.7) 

Where A is the activation and varies between 0 (rest state) and 1 (maximum 

activation); fH(vr) defines the normalized active force-velocity relationship (Hill 

curve); fL(lr) is the normalized active force-length relationship.  The necessary 

parameters that define the behavior of the muscles are presented in Table 7.3.  Also 

presented is the series element (SE), which is then converted into values suitable for 

the membrane tendon with material type hysteresis so that the stress-strain curve can 
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be directly inserted.  The density of the tendons is set to 1165 kg/m3, which is the 

average value for ox tendon (Duck, 1990).  The parameters are a function of muscle 

fiber composition (Winters & Stark, 1985) and are assumed to be the same for infant 

muscles. 
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Figure 7.14:  Spring-Nerve stiffness characteristic functions for axial, bending and torsional resistance for 

the infant optic nerve. 
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Table 7.3: Hill-type parameters for the CE, PE, and SE elements.  Parameters are based on the work of 
Winters & Stark (1985 & 1988) and Winters (1985). 

 
Hill-type parameter Element type Symbol Value 

Maximum muscle force CE Fmax 0.909 
Maximum shortening velocity CE Vmax 0.495 

Shape force-velocity shortening CE CEsh 0.437 
Shape force-velocity lengthening CE CEshl 0.0797 

Ultimate tension during lengthening CE CEml 1.381 
Width of active force-length curve CE Sk 0.35 

Relative elongation PE PExm 0.258 
Shape force-length curve PE PEsh 3.321 

Shape force-length SE SEsh 1.64 
Relative elongation SE SExm 0.091 

 

 

 The activation dynamics are considered by solving two differential equations 

for neural excitation and general activation.  The neural excitation is described by 

(Van Der Horst, 2002):   

  
eT
Eu

dt
dE −=   10 ≤≤ E   (7.8) 

Where E is the normalized neural excitation, t is the time, Te is the excitation time 

constant, and u is the normalized neural input (0 ≤ u ≤ 1).  The active state dynamics 

are represented by (Van Der Horst, 2002): 

  
aT

AE
dt
dA −=  10 ≤≤ A  and 





=
da

ac
a T

T
T   

AE
AE

≤
>

  (7.9) 

Where A is the normalized active state, Tac is the activation time constant, Tda is the 

deactivation time constant.  Finally, tact is the delay time that is incorporated into the 

u(t) function.  The time constants are determined by the mass and the fraction of slow 

fibers in the muscle (Winters & Stark, 1988).  For the eye, the time constants and 

model delay are presented in Table 7.4.  The delay time, tact, is extremely small for 

the eye as opposed to the neck muscles (tact = 74 ms) (Van Der Horst, 2002). 
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Table 7.4:  Activation time constants for the eye motion (Winters, 1985). 
 

 Activation Tac 
(ms) 

Deactivation Tda 
(ms) 

Activation Delay tact 
(ms) 

Neural Excitation Te 
(ms) 

Eye motion 5 30 2 30 
 

 

 The muscle activation is important to consider, as the muscle never stays in a 

full activation state for long without fatigue setting in.  In order to include the 

activation state into the model, the signal function is used in the control system model 

in the SBS eye model.  This is a straightforward way to model the eye dynamics 

without the need for complex PID controllers and is also used by Winters (1985).  

Essentially, a unit step function, u(t), with the activation delay included, is input into 

the system.  Then, using the times constants (Table 7.4), the neural (7.8) and 

activation (7.9) response is determined.13  In order to model the eye rotation similar to 

Winters (1985) saccadic motion for the adult eye, the neuro-input, u(t) is scaled until 

the response of the infant eye matches the adult eye dynamics.  The final activation is 

then inserted into the infant model (Figure 7.15) so that the agonist response is 

assigned for the rectus medial muscle and the antagonist response is assigned for the 

rectus lateral muscle.  The activation value for all other muscles is set to 0.005 to 

represent the minimal active rest-state (Hatze, 1977).   

 The rotational response is compared between the finite element optic nerve 

(Sigal nerve) and the analytical spring-nerve model (Figure 7.16).  The saccade, for 

the eye, starts at rest position, zero degrees, and then rotates to the left by 20 degrees 

within 45 ms and held constant for the rest of the simulation time up to 200 ms.   

                                                           
13 Using a fourth-order Runge Kutta method for solving (7.8) and (7.9) given u(t) and Ta(t) (RK, 2005). 
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Figure 7.15:  Infant eye time signals of the neuro-input u(t), neural excitation E and activation state A for 

the 20 degree saccade movement. 
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Figure 7.16:  Comparison of the finite element eye models with an induced 20° saccade. 

 

 

 

Simulation Matrix 

 Very little work has been done to include vitreous materials that are not based 

on the bulk modulus alone in dynamic eye simulations.  An exception to this is the 

study by David et al. (1998) where the fluid motion of the vitreous humor is modeled 
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during a saccade.  The optic nerve has been considered from different studies (Sigal 

et al., 2004; Winters, 1985) to investigate the effects on shear strain.  Also, the 

meshing density is investigated (Brands, 2002).  Also considered are the various 

constitutive models (REF, CPL, and SOL) for the viscoelastic materials, as well as 

the elastic vitreous material.   

 Two primary eye models are considered (Cubit meshing and manual 

meshing).  The Cubit and the manual meshed eye are detailed in Table 7.5.  The optic 

nerve material properties and element information is tabulated in Table 7.6 for both 

the analytical and Sigal nerve.  The same nerves are used for both the Cubit meshed 

eye and the manual meshed eye and have the same element density.  Both these 

meshes are utilized in comparing the vitreous materials for the REF constitutive 

equation for all the vitreous materials, except the Weber material, which uses an 

elastic modulus with damping coefficient.  This REF material will decouple the 

deviatoric stress from the hydrostatic and provide the most extreme shear strains.  The 

Cubit mesh is used to study the shear strains of the CPL constitutive equations.  The 

CPL material couples the deviatoric stress with the hydrostatic, and will illustrate the 

effects of very low shear moduli with a very high bulk modulus.  To study the effects 

on non-linearity, the SOF material will be used, which is based on REF but with the 

FNLS (non-linear factor) incremented.   
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Table 7.5:  Material properties and element number for the Cubit and manual meshed eye model. 
 

Ocular 
Componen

t 

Element 
Type 

Element 
No# 

Cubit 
Mesh 

Element 
No# 

Manual 
Mesh 

Element 
Property 

Material 
Type 

Material 
Parameters 

Thicknes
s 

(mm) 

Densit
y 

(kg/m3

) 

Cornea 4-node 
shell 84 60 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E= 124 MPa / ν 
= 0.42 / 

Reduction factor 
= 0.01 

Figure 
7.4 

(varies) 
1076 

Sclera 4-node 
shell 420 872 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E = 358 MPa / ν 
= 0.49 / 

reduction factor 
= 0.01 

Figure 
7.4 

(varies) 
1243 

Vitreous 8-node 
hexahedral 1620 7300 

SOLID8 
reduced 

integration 

ISOLIN 
/ REF / 
CPL / 
SOF 

Weber or Table 
7.1 - 1006 

Aqueous 8-node 
hexahedral 108 304 

SOLID8 
reduced 

integration 
ISOLIN 

Weber mat’l: E = 
43 Pa / ν = 0.49 / 
damping = 200 

- 1006 

Ciliary 
Body 

4-node 
shell 48 112 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E = 0.35 MPa / ν 
= 0.40 0.2 1600 

Lens 4-node 
shell 120 120 SHELL4 RIGID - - - 

Retina 4-node 
shell 372 772 

MEM4 
reduced 

integration 
ISOLIN E = 20 kPa / ν = 

0.49 0.14 1000 

Choroid 4-node 
shell 372 772 

MEM4 
reduced 

integration 
ISOLIN E = 96.8 kPa / ν 

= 0.49 0.16 1000 

Tendons 3-node 
shell 36-48 48-96 

MEM3 
Reduced 

integration 

HYSIS
O 

Tension 
only 

Table 7.3 SE 
element 

properties 
Reduction factor 

= 0.1 

0.2 1041 
 

Fatty 
Tissue 

4-node 
tetrahedral 16552 16552 SOLID4 ISOLIN E = 47 kPa / ν = 

0.49 - 999 

Skin 4-node 
shell 272 272 MEM4 ISOLIN 

E = 0.15 MPa / ν 
= 0.46 / damping 

= 0.05 
1 1000 

 

 

 Unfortunately, the non-linearity has not been investigated for the vitreous and 

is only considered for the Nick5 material.  The non-linearity is defined as not 

imposing a constitutive equation on the behavior (Brands, 2002).  This factor is 

determined from stress relaxation tests.  Finally, the Weber and Nick5 vitreous 

materials are used to compare the effects of both the Sigal nerve and analytical nerve 

with the Cubit and manual meshed eye.  The Weber material uses the elastic modulus 

and the Nick5 material uses the REF material for this comparison.  All simulations 
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(Table 7.7) are run using the saccadic motion (Figure 7.16) and the equatorial shear 

strain at the posterior pole of the eye is examined.  

 

 

Table 7.6:  Material properties and element number for the Sigal and analytical spring optic nerves. 
 

Ocular 
Component 

Element 
Type 

Element 
no# for 
Sigal 
nerve 

Element 
no# for 
spring 
nerve 

Element 
Property 

Material 
Type 

Material 
Parameters 

Thickness Density 

ONH 4-node 
shell 

12 12 MEM4 
reduced 

integration 

ISOLIN 
 

E=3x105/ 
 ν = 0.49 

6x10-4 1000 

Neural 
Tissue 

8-node 
solid 

168 0 SOLID8 
reduced 

integration 

ISOLIN E=3x104/  
ν = 0.49/ 

damp =0.2 

- 1000 

Pia Mater 4-node 
shell 

224 0 MEM4 
reduced 

integration 

ISOLIN E=3x106/  
ν = 0.49/ 

damp=0.2/ 
reduction 

factor=0.01 

 
5.35x10-4 

1000 

Spring 
Nerve 

2-node 
beam 

0 4 BEAM2 
DISCRETE 

KELVIN 
3D_NL 

Figure 7.14 - - 

 

 

Table 7.7:  Simulation matrix of all the vitreous materials. C = cubit mesh, M = manual mesh, SP = spring 
nerve, and S = Sigal nerve 

 
Model Type Vitreous Material Constitutive Model C & SP M & SP C & S M & S 

Weber Elastic X X X X 
Nick5 REF X X X X 
Nick5 CPL  X   
Nick5 SOL (FNLS=0.01)  X   
Nick5 SOL (FNLS=0.1)  X   
Nick5 SOL (FNLS=1.0)  X   
Nick5 SOL (FNLS=5.0)  X   
Nick5 SOL (FNLS=10.0)  X   

Bet REF X X   
Bet CPL  X   
Tok REF X X   
Tok CPL  X   

Power REF X X   
Power CPL  X   



   239

Results 

 A comparison is made between the various runs from the simulation matrix 

(Table 7.7).  Specifically, the shear strain is calculated, assuming planar strain, by 

taking the outermost vitreous element at the posterior pole and in the equatorial plane 

of symmetry of the eye (Figure 7.17).  A similar method is employed by Brands 

(2002) for testing the wall shear in silicon filled cups during loading.  The shear strain 

is then: 
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Where γ(t) is the shear strain, R is the eye radius, M is the distance from the eye 

center to the node point, W is the distance from the node point to a node located at the 

posterior wall pole.   
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Figure 7.17:  Graphical description of strain determination of the vitreous. 
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 If one considers simple shear then the maximum principal strain is (Brands, 

2002): 
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Equation 7.11 is considered for comparison in strain time history of the vitreous 

material.  In addition to strain time history plot comparisons, each simulation is 

represented by an animation sequence (Figures A.1 to A.23) of at most six views 

showing a transverse slice at the equator of the eye globe exposing the vitreous mesh 

details.  The typical time increment of 20, 40, 60, 80, 120, and 180 ms is shown for 

all runs except for the vitreous material using the Bet vitreous material with the REF 

constitutive model (Figure A.8) and the Tok vitreous material with the REF 

constitutive model (Figure A.9).  Both of these simulation models, utilizing the 

manual mesh (Table 7.5), become unstable due to high shearing strains that cause the 

elements along the wall to have negative volume errors.   

 Comparing the five vitreous models of the manual meshed eye with the REF 

constitutive equations for the viscoelastic materials (Figure 7.18) show the Tok and 

Bet simulations terminating at 50 ms due to instability.  The shear strains approach 

80% for these compliant materials.  The Nick5 material reaches a strain level of 30% 

around the 50 ms mark, while the Weber and power vitreous models are well below 

3% strain (Figure 7.19).  Brands (2002) investigated the effects of mesh density and 

showed an increase of angular displacements with increased mesh refinement.  The 

manual meshed vitreous is 4 ½ times the number of elements than the Cubit meshed 



   241

vitreous due to the methods of meshing as explained.  As a result the Cubit mesh 

shows lower strain values than the manual meshed vitreous (Figure 7.20). 

 

 

 

 
 

Figure 7.18:  Shear strain comparison of eye models with the manual meshed eye.  Material models are 
REF for the viscoelastic materials and elastic for the Weber model. 
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Figure 7.19:  Shear strain comparison of eye models with manual meshed eye showing the Weber (elastic) 
and the Power (REF). 

 

 

 

 

 
 

Figure 7.20:  Shear strain comparison of eye models with the Cubit meshed eye.  Material models are REF 
for the viscoelastic materials and elastic for the Weber model. 
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 Isolating the vitreous materials to one per plot while highlighting the 

difference between the two meshing methods, Figures 7.21 to 7.25 show the time 

histories of the shear strain.  Notable are the Tok and Bet material models where the 

manual meshed models become unstable around 50 ms, the Cubit mesh (courser 

mesh) has the effect of stiffening the elements and results in lower shear strain 

allowing the simulation to complete.  However, Figures A.3 and A.4 highlight 

element distortions at 180 ms for the Tok material model.  This is perhaps an area 

where the reduced integration causes some of the hourglass modes despite specifying 

an hourglass parameter of 0.5, which is at the highest range specified in the reference 

manual in the MADYMO 6.2 software.  This hourglass parameter of 0.5 is used for 

all simulations, and the software default is 0.1.  Using the material type VISCO_NL 

for the REF and SOL requires reduced integration with the hourglass parameter.  The 

LINVIS material that is used for the CPL material can use the full integration method 

for the elements but results in mesh locking and is not used.   

 The shear strain in Figure 7.21 for the Weber vitreous shows minimal 

difference between the Cubit and manual mesh.  Interestingly, the Cubit mesh has a 

higher strain between times 50-150 milliseconds. The rest of the vitreous models 

show a pronounced increase in shear strain for a more refined mesh.  The Nick5 

vitreous (Figure 7.22) at around 50 ms has a shear strain of about 20% for the Cubit 

mesh versus 32.5% for the manual; an increase of 12.5%.  Brands (2002) notes an 

increase of 10.8% for refinements of the cup simulation meshes.  The Bet material 

(Figure 7.23) has a reduction to 45% shear strain for the Cubit mesh versus the 80% 

for the manual mesh for an increase of 35%.  The trend in the Tok manual mesh 
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(Figure 7.24) appears to want to increase past 80% shear strain, but the simulation 

becomes unstable at this point.  Reducing the mesh density, the Cubit mesh as a shear 

strain around 45%, similar to the Bet material.  The Power material also shows an 

increase in strain with an increase in mesh density (Figure 7.25).  The shear strain at 

50 ms decreases to about 1.25% for the Cubit mesh.  The Power vitreous is so stiff 

that filtering using a low pass filter was necessary, which is compounded with little 

damping in this material model. 

 

 

 

 
 

Figure 7.21:  Comparison of the Cubit and manual eye meshed models for the Weber vitreous. 
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Figure 7.22:  Comparison of the Cubit and manual eye meshed models for the Nick5 vitreous. 
 

 

 

 

 
 

Figure 7.23:  Comparison of the Cubit and manual eye meshed models for the Bet vitreous. 
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Figure 7.24:  Comparison of the Cubit and manual eye meshed models for the Tok vitreous. 

 
 
 
 
 
 
 

 
Figure 7.25:  Comparison of the Cubit and manual eye meshed models for the Power vitreous. 

 

 

 The CPL constitutive model is compared to the viscoelastic vitreous materials 

(Figure 7.26) for the manual meshed eye model.  Apparent is the minimal difference 
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between the Nick5, Bet, and Tok vitreous materials.  In this case, the bulk modulus is 

the same while the shear modulus is relatively low.  The Power vitreous material, 

using the CPL model, is an exception as the shear modulus is considerably high 

compared to the bulk modulus and shows very little difference with the REF (Figure 

7.27).   

 The SOL constitutive model is investigated using the Nick5 vitreous material 

by modifying the FNLS (Figure 7.28).  Comparing it to the REF material, very little 

difference is noted in the FNLS = 0.01 and 0.1.  As the FNLS increases to 1, the shear 

strain at about 50 ms decreases a bit but shows peaks that are higher and delayed from 

the REF material throughout the simulation.  The decrease is most extreme at FNLS = 

10. 

 

 

 

 
Figure 7.26:  Comparison of the CPL constitutive models for the viscoelastic vitreous materials using the 

manual meshed eye model. 
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Figure 7.27:  Comparison of the Power vitreous shows the differences between the REF Cubit, REF 

manual, and CPL manual models. 
 
 
 
 
 
 
 
 

 
 

Figure 7.28:  Comparison of the SOL constitutive model for the Nick5 vitreous material with the manual 
meshed eye model. 
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 Inclusion of the Sigal optic nerve is compared to the Weber and Nick5 

vitreous material using the REF model for the Nick5 (Figure 7.29).  A comparison 

between the Cubit and manual mesh is shown and the shear strain for the Nick5 

around 50 ms is 40% for the manual mesh and 30% for the Cubit mesh.  The Weber 

vitreous material shows little difference between the meshed models using the Sigal 

nerve.  However, comparing the analytical nerve to the Sigal nerve shows an increase 

in shear strain for both the Weber vitreous model (Figure 7.30) and the Nick5 (Figure 

7.31).  An increase from 2.5% to 4% in shear strain is due to the Sigal nerve in the 

Weber vitreous material.  In Figure 7.31, the Nick5 vitreous material uses the manual 

meshed eye model for comparison showing the difference between the analytical 

optic nerve for the REF and CPL material models with the Nick5 vitreous using the 

REF model with the Sigal nerve.  Addition of the Sigal nerve increases the shear 

strain by 10% from the Nick5 REF model. 

 

 

 
Figure 7.29:  Comparison of the Weber and Nick5 vitreous models using the Sigal optic nerve model. 
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Figure 7.30:  Comparison of the Weber vitreous material with the Cubit and manual meshed eye and the 

analytical and Sigal optic nerve models. 
 
 
 
 
 
 

 
 

Figure 7.31:  Comparison of the Nick5 vitreous material using the manual meshed eye model with the REF 
and CPL constitutive models and the analytical and Sigal optic nerve models. 
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Discussion 

 In the current work, vitreous materials are compared with varying constitutive 

models.  The REF material decouples the deviatoric and hydrostatic behavior and 

results in a greater shear strain (Figure 7.18).  The angular displacement is extreme 

for the low shear modulus materials (Figures A.3, A.4, A.8, A.9).  When the CPL 

model is used, very little difference is noted between the viscoelastic models for the 

Nick5, Bet, and Tok vitreous materials.  In this case, the bulk modulus is coupled 

with the shear strain.  Assuming simple shear, then (Brands, 2002): 
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Where τ is the shear stress, G is the shear modulus, γ is the shear strain, K is the bulk 

modulus.  In the case of Bet vitreous, G = 1.46 Pa and K = 2.27 GPa for small shear 

strains (γ = 1%), the hydrostatic behavior is an astounding 78000 times greater.  This 

difference is more extreme for the Tok vitreous, which is the most compliant of all 

the materials.   

 The Nick5 vitreous material is several times that of the Bet and Tok materials 

and still the hydrostatic behavior is 3800 times greater.  The effects of the coupling 

are minimal for the Power vitreous material where the hydrostatic is only 8 times 

greater (Figure 7.27).  The CPL material disregards the low shear modulus properties 

for the vitreous and behaves as in previous studies for simple hydrostatic material 

(Uchio et al, 1999; Stitzel et al. 2002).  The SOL material (Figure 7.28) is also 

investigated for the Nick5 material by varying the non-linear factor (FNLS) to 

account for shear softening (Brands, 2002; MADYMO, 2004).   
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 The Weber vitreous is comparable to the Power (Figure 7.19) in that the 

shearing is minimal.  The small strains of around 2.5% are a result of using an elastic 

modulus based on the assumption that the vitreous is “rubber-elastic” (Weber & 

Landwehr, 1982).  This material also showed little sensitivity to mesh density (Figure 

7.30) as opposed to the viscoelastic models.   

 The Tok material (Figure A.9) exhibits high angular displacements of the 

vitreous material next to the sclera wall while the middle remains unchanged causing 

instability.  Decreasing the mesh density (Figure A.4) allows the simulation to 

complete with ill-shaped elements in the center of the vitreous material.   

 The Bet vitreous behaves in a similar manner where the manual meshed 

model (Figure A.8) undergoes shearing near the sclera wall while the center remains 

still.  However, the decreased mesh density (Cubit mesh) simulation (Figure A.3) 

response does not produce ill-shaped elements as the Tok material.   

 The effects of the optic nerve are also considered for the Weber (Figure 7.30) 

and Nick5 (Figure 7.31) vitreous materials.  The Sigal optic nerve model has the 

effect of increasing the shear strain.  This is visually apparent in the Nick5 vitreous 

model comparing the simulation sequence at time 80 ms (Figures A.7 and A.23).  The 

angular displacement is more cyclonic with the Sigal optic nerve than the analytical 

model. 
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Conclusion 

 A model is presented that considers a complete model of the infant eye with 

muscle activation.  A 20-degree saccade (Winters, 1985) is applied for horizontal 

motion and the response of the vitreous is examined.  A total of five vitreous 

materials are examined based on previous literature.  In addition, shear strain 

increases with further refinements to the mesh density for the viscoelastic materials 

(Brands, 2002).  The elastic vitreous model (Weber vitreous) does not have an 

appreciable increase with mesh density however.   

 The optic nerve is considered from different studies.  The analytical model is 

based on actual measurements (Collins, Scott, & O'Meara, 1969) and is used in 

horizontal eye motion studies (Lehman & Stark, 1979; Lehman & Stark, 1979; 

Robinson, 1981; Winters & Stark, 1985; Winters & Stark, 1988).  The second optic 

nerve (Sigal nerve) is considered in studies concerned with the ONH (Sigal, 

Flanagan, & Tertinegg, 2004) and builds the model on previous material parameters.  

The inclusion of this nerve model exhibits higher shear strain in the various vitreous 

materials.   

 In addition to the mesh density, optic nerve, and vitreous materials, the effects 

of constitutive models are examined.  Brands (2002) examines the difference between 

the REF, CPL, and SOL and notes the effects.  Similar trends are realized in the 

vitreous materials where the decoupling of the deviatoric and hydrostatic stresses 

(REF material) show higher shear strains and the CPL material results in a larger 

contribution of the hydrostatic stresses since the bulk modulus is considerably higher 

than the more compliant shear modulus.  Unfortunately, little work has been done on 
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the vitreous to determine the non-linear effects so that the SOL material can be used. 

Current studies fit the response of the vitreous to viscoelastic equations or other 

formulations.  Brands (2002) determines the shear softening parameter by not 

imposing a constitutive fit and includes this into the viscoelastic material.  This 

nonlinear effect is determined by shear relaxation experiments and none have been 

done for the vitreous body.   

 Previous finite element eye models that consider the vitreous for impact 

simulations either assume the parameters (Power, 2001) or specify a bulk modulus 

(Uchio et al., 1999; Stitzel et al., 2002).  When examining the shear strain, however, 

specifying the bulk may not be enough to model the vitreous behavior.   

 Weber and Landwehr (1982) is the only group not to consider the vitreous as 

viscoelastic and determine the stiffness and damping of the vitreous material.  The 

work of Weber and Landwehr is sited in Nickerson et al. (2005) where previous 

vitreous studies (Bettelheim & Wang, 1976; Zimmerman, 1980; Tokita, Fujiya, & 

Hikichi, 1984; Lee, Litt, & Buchsbaum, 1992) are considered “unsatisfactory.”   

 A major limitation of this study is the physiological differences of the infant 

vitreous.  Currently, there exists no study that determines the material parameters of 

the infant eye.  The next limitation is the use of solid elements with extremely 

compliant vitreous materials.  Instability is an issue with element shape during the 

saccadic motion and no doubt will cause problems for more violent simulations that 

would consider impacts or shaking.  Improvements to the simulation would perhaps 

include a coupling of the Euler-Lagrange mesh that would include the viscosity of the 
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vitreous body and would eliminate the possibility of large deformations to the 

elements as in Stitzel et al. (2002).   

 Currently, the likely vitreous candidates to use in aggressive impact 

simulations with a Lagrangian mesh would be the Weber and Nick5 vitreous 

materials.  The Tok and Bet are too compliant to be considered.  The Power vitreous 

is unrealistically high but is considered in this study to show the effects of a high 

shear modulus with a coupled bulk modulus. 
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CHAPTER VIII 

AN INVESTIGATIVE STUDY USING AN INFANT EYE MODEL 

FOR DETERMINATION OF RETINAL HEMORRHAGING IN 

SHAKEN BABY SYNDROME DYNAMICS    

 

 

Abstract 

 Shaken Baby Syndrome (SBS) is a form of abuse in which an infant, typically 

six months or less (Duhaime et al., 1998), is held and shaken.  Direct impact does not 

have (Levin, 2000) to take place; however, conflicting studies would disagree 

(Duhaime et al., 1987).  In the investigation using biomechanical models, a brain 

model has been developed modeling the brain tissue, bridging veins, and the 

cerebrospinal fluid (CSF) layer (Morison, 2002).  This brain model undergoing 

simple harmonic shaking, agrees with the premise that pure shaking would cause 

bridging vein failure.   

 Expanding this model, a full-featured eye model complete with surrounding 

boundary tissues is presented.  The same harmonic motion used in Morison is 

considered here as well as an impact study (Duhaime et al., 1996).  Retinal 

hemorrhaging is investigated by comparing the retinal forces at the posterior wall 

proximal the macular region.  Quantifying retinal adhesive failure (Kita et al., 1989 & 

1990) gives a possible threshold into retinal injury and is also considered in possible 

detachment (Green et al., 1996) in abuse studies.  The current investigative study does 

support possible retinal damage due to pure shaking only with forces that breach the 
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thresholds adapted from Kita et al. –these forces are more sustained than for the 

impact study.  However insightful these models are, caution is still suggested in 

considering this parametric study as an absolute determination as more work needs to 

be done to help validate some of the select materials that are adapted for the infant 

eye model. 

 

 

Introduction 

 Clinical observations and diagnosis of SBS started when Caffey (1972, 1974) 

coined the phrase Whiplash Shaken Infant Syndrome.  In the following years this 

diagnosis would simply be called Shaken Baby Syndrome.  The actual mechanism of 

injury is debatable, but the injuries associated with SBS are subdural hematomas 

(SDH) (Duhaime et al., 1996), diffuse axonal injury (DAI) (Margulies & Thibault, 

1992; Jafari et al., 1997; Bain & Meaney, 2000; Prange & Margulies, 2001), and 

retinal hemorrhaging (Lambert, Johnson, & Hoyt, 1986; Gilliland, Luckenbach, & 

Chenier, 1994; Betz et al., 1996; Gilliland, Luckenbach, & Chenier, 1994; Kapoor et 

al., 1997).  There appears to be evidence that bilateral SDH and retinal hemorrhaging 

would indicate abuse while unilateral injuries would be associated with accidental 

impacts or falls (Duhaime et al., 1996).  This would also lead to the belief that to get 

bilateral SDH and retinal hemorrhaging the infant would have been shaken 

vigorously about the sagittal plane (Gilliland & Folberg, 1996; Levin, 2000).  Further, 

Levin defines SBS as a form of child abuse “in which the perpetrator violently shakes 
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an infant resulting in brain, skeletal and/ or retinal haemorrages (p. 151).”  However, 

the force required to cause injury is not agreed upon and is a source of controversy.   

 Levin asserts, “retinal hemorrhage is perhaps no more specific as fracture and 

one surely would not suggest that all fractures are the same in terms of pathogenesis 

or aetiology” (p. 157).  Further retinal hemorrhages can be described by the location 

and severity.  Kapoor, Shiffman, Tang, Kiang, and Woodward (1997) describe the 

mapping of the hemorrhages in the different layers of the retina (e.g. preretinal, 

intraretinal, subretinal).  Lancon, Haines, and Parent (1998) and Betz et al. describe 

the distribution of hemorrhages.  Lambert, Johnson, and Hoyt (1986) examined optic 

nerve sheath hemorrhages.  Optic nerve sheath hemorrhaging is perhaps attributed to 

the slack in the nerve sheath combined with the passive response of the ocular muscle 

attachments (Levin).  Green et al. concludes that hemorrhages were most likely to 

occur in the posterior pole in a study including 16 children who died from SBS.  

Gilliland, Lieberman, Milroy, and Parsons (1996) claim that these peripheral retinal 

hemorrhages are from acceleration-deceleration injury with a few cases involving 

direct head trauma.  Levin concludes, “The findings of massive hemorrhages 

throughout the retinal surface at all layers reflects a shaking aetiology [(i.e., the study 

of cause)] unless proven otherwise” (p. 161).  

 A parametric model of an infant eye is presented that is able to quantify retinal 

forces due to a documented shaking frequency (Morison, 2002).  This eye model is 

built using a variety of material properties that have been reported for the eye tissues, 

optic nerve, extra-ocular muscles, and fatty tissue.  The geometry of the infant eye is 

scaled from the adult eye model and is based on idealized eye geometry (Woo et al., 
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1972) and the dataset from the Visible Human Project.  MADYMO (2004) software, 

which is able to combine finite element analysis with rigid-body computation, is used 

to model the simulation.  The infant eye model is mostly finite element based 

containing the ocular membrane shells that represent the cornea-sclera shell, the 

choroid, and the retina.  Inside the eye globe, the vitreous body and aqueous humor 

are divided into two chambers by a simplified lens-ciliary body structure.  Posterior to 

the eye the optic nerve is considered using an analytical approach from mathematical 

models done in previous work for horizontal eye motion (Lehman & Stark, 1979; 

Lehman & Stark, 1979; Robinson, 1981; Winters & Stark, 1985; Winters & Stark, 

1988).  Specifically, most of the “plant” properties are determined by measuring the 

damping and stiffness during surgery (Collins, Scott, & O’Meara, 1969).   

 In addition to this analytical model, a simple finite element model is also 

considered where the soft tissue material properties are determined from Sigal, 

Flanagan, & Tertinegg (2004).  The focus of the finite element optic nerve (Sigal 

nerve) is the optic nerve head (ONH), but the material properties are averaged from 

previous research in this study.   

 The muscle tethers are modeled as Hill-type (Hill, 1950; MADYMO, 2004) 

segments attached to finite element tendons with lumped-mass muscle bellies.  These 

analytical muscle properties are primarily derived from the Winters (1985) work.  

Although sophisticated controls and/or functions can be used to model muscle 

activation, the current study only considers the muscles as passive tethers, and 

support for this is found in the work of Levin (2000) where orbital shaking is 

described by the muscle tethers and slack in the optic nerve.   
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 The fatty tissue and anterior tissue including the eyelid skin are modeled 

encasing the eye globe.  Interfacing the eye globe and fatty tissue boundary is a small 

contact gap with contact logic specified so that forces can be transmitted between the 

soft tissue bodies.   

 The geometry of the infant is scaled from an adult using the infant dimensions 

of the eye globe diameter (Hogan, Alvarado, & Weddell, 1971) to give a scale factor 

of 0.645.  In agreement with this factor is the optic nerve diameter measurements 

using ultrasound from children with age range 10 days to 13 years old (Newman et 

al., 2002).  The analytical optic nerve is scaled based on this information comparing 

the dynamic response of the adult (setting the natural frequency and damping ratio 

equal).  The properties for the muscles are assumed the same as adult muscles since 

no information for infant eye muscles exists.  In addition, all mechanical properties 

that are measured from adult or other species is not scaled and assumed the same.   

 Retinal detachment has been reported in SBS (Green et al., 1996) and is noted 

in Levin be fairly uncommon perhaps based on the resorption tines of the sub-retina 

(Negi & Marmor, 1986).  Modeling the detachment is possible using the MADYMO 

software and relies on physically separating the retina from the choroid by moving 

the nodes a very small distance normal and away.  Then a node weld is used with 

strength properties (Zauberman & DeGillebon, 1972; Zauberman, DeGuillebon, & 

Holly, 1972; DeGuillebon & Zauberman, 1972; Marmor, Abdul-Rahim, & Cohen, 

1980, Kita et al., 1990; Kita & Marmor, 1992) applied that allows the weld to break 

when the defined strength is breached.  Ideally, a de-lamination (Kostopoulos et al, 

2002) process would define the behavior better allowing the nodes of the retinal-
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choroid boundary to be coincident.  However, the node-weld syntax must have a 

distance between the nodes greater than zero.  A study using the node-weld technique 

for eye sutures has been implemented (Uchio et al., 2004) however.  Once the weld is 

broken, the once constrained nodes are free to move requiring additional contact 

algorithms of the intra-ocular tissues or the inside structures would be free to move 

outside the eye globe.   

 A well-defined shaking motion is applied to the eye model such that the 

equivalent motion would be the same as the perpetrator grabbing the torso of the 

infant.  The frequency of the shake, 4 Hz, is documented in Duhaime et al. (1987) and 

is perhaps the most vigorous frequency possible considering the head starts at –60 

degrees representing the chin resting on the torso (Morison, 2002).  The total 

amplitude is ±60 degrees and represents the maximum range of motion possible.  

 For comparison, a well-documented impact (Duhaime et al., 1996) is 

considered where a father is swinging an 8-month old infant in a seated position.  The 

father is hunched over and is cradling the infant underneath the infant’s legs close to 

the knees.  The swing motion is to-and-fro and the infant accidentally strikes his 

occiput on the floor.  The pulse information is gathered by simulating this effect using 

the MADYMO (2004) CRABI (Child Restraint AirBag Interaction) 12 month ATD 

(anthropometric test dummy).  A simulation matrix is performed, and the retinal 

forces are investigated. 
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Methods 

 The eye model is influenced by previous impact studies (Uchio et al., 1999; 

Power et al., 2002; Stitzel et al., 2002) where the cornea and sclera are concerned.  

Further influence is introduced in the ciliary and lens structures from Power (2001) 

that separates the aqueous humor from the vitreous body.  In addition, the Power 

model did include the fatty tissue up to the eye globe meridian with passive muscles 

modeled as membrane elements.  The proposed model considers the fatty tissue as an 

entire enclosure with the eyelid skin.  Parameterization is performed for the fatty 

tissue enclosure by consideration of two compliant, hyperelastic (Rivlin & Thomas) 

materials.   

 In addition, current literature on muscles is more complete for the analytical 

Hill-type (Winters & Stark, 1985 and 1988; Winters, 1985; Lehman & Stark, 1979 & 

1983) than for finite element based muscles (Duck, 1990; Power, 2001; Zobitz, Luo, 

& Au, 2001; Hirokawa & Tsuruno, 2000; Sarma et al., 2003).  Most of the finite 

element muscle materials only consider passive behavior.  Johansson, Meier, and 

Blickhan (2000) investigate muscle modeling using finite element analysis with the 

inclusion of the Hill-type muscle formulation in the constitutive equation. The 

proposed model will consider a hybrid muscle-tendon, where the muscle is an 

analytical muscle with the contractile element and passive element.  The tendon is a 

finite element membrane representing the series elastic element.   

 The optic nerve is modeled as an analytical spring-damper (Kelvin element) 

(Winters and Stark, 1985) and also as a finite element structure modeling the neural 

tissue and pia mater (Sigal et al., 2004).   
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 Simulations are performed for an impact with duration of 100 ms and a four-

cycle shake (frequency is 4 Hz and amplitude is ±60 degrees) lasting one second.    

 

 

Geometry 

 The model considers the eye globe with inner structures, the muscle tethers, 

tendons, optic nerve, fatty tissue, eyelid, and the encompassing orbital socket.  Most 

information for the geometry is available for the adult eye.  In order to consider the 

infant eye, the geometry of the adult eye is scaled down to 64.5% using the eye 

diameter from Hogan, Alvarado, and Weddell (1971) and the optic nerve sheath 

diameter from (Newman et al., 2002).  The ocular shell dimensions are based on Woo 

et al. (1972) (Figure 8.0) and the lens and ciliary placement on Power (2001) (Figure 

8.1).   
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Figure 8.0:  Geometry of the idealized cornea-sclero shell from Woo et al. (1972) for an adult eye. 
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The placement of the idealized geometry of the eye is positioned inside a built up 

model of the ocular cavity, muscles, optic nerve, and eyeball from the Visible Human 

Project transverse slice scans (Figure 8.2).  The ocular cavity cone geometry is built 

from the Visible Human scans as is the apex muscle and optic nerve attachments, the 

oblique inferior, and superior attachments.  The final position of the optic nerve and 

tendon attachments to the eyeball are based on Hogan, Alvarado, and Weddell (1971) 

and differ from the Visible Human Model slightly.  However, the attachment 

locations to the eyeball from Hogan et al. are an average of several eyes and are more 

appropriate to use.  The fatty tissue/eye lid is considered to fill the entire ocular 

cavity.  A void is inserted into the fatty tissue where the location of the eyeball is to 

be so that the eyeball is totally encased in the fatty tissue.   
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Figure 8.1:  Location and dimensions of the lens and ciliary placement for an adult eye (Power, 2001). 
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Figure 8.2:  Complete build up of spline curves offset 1 mm based on Visible Human Slices 

 

 

 

Model Creation 

 The eye model uses the idealized geometry of the ocular shells (Figure 8.0) 

with the lens and ciliary dimensions (Figure 8.1) for meshing of a quarter eye with 

final meshing mirrored about the sagittal and transverse planes of the eye.  The model 

is built from the inside out starting with the vitreous and aqueous.  The vitreous and 

aqueous are modeled using hexahedral elements with reduced integration to prevent 

mesh locking (Samani et al., 2001; Brands, 2002; Gopalakrishnan, 2002; Manzini and 

Putti, 2007).  This mesh-locking phenomenon is most apparent with viscoelastic 

materials.   

 The vitreous quarter is divided into five parts with a central cube and a 

generalized volume using the surface of the top, side, front, and back of the cube to 

the outer cornea-sclera shell (Figure 8.3). 
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Figure 8.3:  Partitioning of the vitreous for hexahedral meshing  (one quarter shown). 

 

 

 Sweeping of shell elements is performed to fill the volume by selecting the 

two surfaces in an extrusion process.  During the extrusion, the element count is set to 

five elements thick for each of the volumes interfacing the cubed volume (Figure 

8.3).  The overall outer ocular shell mesh density is around one millimeter square for 

each element.  The vitreous mesh is modified until this density is achieved.  The 

anterior surface of the vitreous quarter mesh is then used to extrude the aqueous to the 

cornea-scleral shell on the anterior of the eye.   

 Once the solid vitreous and aqueous are created, the cornea-scleral shell is 

modeled as solid elements to capture the non-uniform thickness.  Unfortunately, the 

meshing method used for vitreous and aqueous makes uniform meridian bands of 

thickness anterior to posterior of the eye shell impossible without restricting the outer 

eye shell mesh and possibly creating ill-shaped hexahedral elements.  Uniform 

thickness bands are specified in the previous eye models (Uchio et al., 1999; Power et 

al., 2002; Stitzel et al., 2002) simplifying the thickness specifications.  Instead, a 
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macro is developed to create a shell at the mid-plane of each of the solid elements 

representing the sclera and cornea capturing the thickness information at the same 

time (Figure 8.4).  Utilization of this macro for the quarter eye geometry creates 16 

separate parts for the cornea each with unique thickness and 240 parts for the scleral 

shell with unique thickness specifications. 

 The other ocular tissues in the model are meshed based on the outer surface of 

the vitreous and aqueous.  The retina and choroid are duplicated from the surface 

elements posterior to the aqueous-vitreous boundary.  The ciliary body and lens are 

duplicated from the anterior face of the vitreous and the posterior face of the aqueous.  

All tissues inside the eye share the same common nodes.  The vitreous-retina-

choroid-sclera share the same nodes and influence of this type of condition is 

supported where the infant vitreous is reported to be more difficult to remove.  The 

vitreous-ciliary body-lens-aqueous nodes are shared and represent the same 

physiologic conditions for infants and adult eyes where the collagen fibers are greater 

around the ora serrata (Hogan, Alvarado, and Weddell, 1971; Wolter, 1961; Lee, Litt, 

& Buchsbaum, 1992). 
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Figure 8.4:  Conversion of solid cornea and sclera elements to shell elements 
 

 

 The optic nerve head (ONH) near the posterior pole of the scleral shell is 

approximated based on Hogan, Alvarado, and Weddell (1971) location.  The elements 

in this region are modified slightly (Figure 8.5 A) to approximate the diameter of the 

optic nerve in a roughly circular shape while being mindful of element shape.  To 

model the finite element optic nerve, this ONH is extruded posterior towards the apex 

location determined from the “Visible Human” data slices.  The finite element optic 

nerve is then filled with a solid hexahedral mesh with an outer membrane 

quadrilateral mesh sharing the same nodes (Figure 8.5 B).  The analytical optic nerve 

is modeled using five beam elements with locations influenced by the extruded finite 

element nerve model in the general locations (central, superior, inferior, lateral, 

medial) (Figure 8.5 A).  To tie the analytical nerve bundle to the ONH five individual 

simple constraint groups are created so that each beam-nerve is attached to a region in 
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the ONH (Figure 8.5 C).  Initially, the analytical beam elements were directly 

attached to the sclera nodes; however, the node attachment acted as a spherical joint 

with no bending resistance. 

 

 

ONH interface 
orientations for 
spring-nerves 

spring-nerves 
 

membrane pia layer 

solid neural tissue 

ONH interface 

 

middle group 
superior group 
inferior group 
medial group 
lateral group 

 
(A) (B) (C) 

 
Figure 8.5:  A: ONH interface detailing the analytical spring nerves.  B: Extrusion of the ONH is 

performed to build finite element nerve model. C: Simple constraint group layout for tying the analytical 
optic nerve to the posterior sclera. 

 

 

 The fatty tissue in the ocular cavity provides cushioning and energy 

absorption capabilities.  Further, along with the ocular tethers, the fatty tissue helps 

keep the eye positioned to form part of a spherical joint with the eye globe.  The mesh 

of the fatty tissue is composed of tetrahedral elements with membrane elements 

modeling the skin layer on the anterior most surface.  Meshing the fatty tissue 

involved using the ocular cavity (Figure 8.2) and the surface of a larger eye globe.  

This larger globe introduces a physical gap between the two structures.  The final two 

surfaces are then meshed using three node elements and the volume between filled 

with solid tetrahedral elements.  What results is a solid object with a spherical void 

(Figure 8.6) that houses the eye globe. 
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Figure 8.6:  Fatty tissue tetra-mesh with membrane skin layer. 

 

 

 The extra-ocular muscles are originally based on the Visible Human 

information by approximating a 2-D surface along the muscle length.  The attachment 

to the eye globe shell is accomplished using the information from histological studies 

(Hogan, Alvarado, & Weddell, 1971).  The surfaces for the muscles are then modified 

so that only the tendon portion attached to the eye remains while analytical muscle 

segments defined only by points replace the original surface location (Figure 8.7).  

Tendons are then meshed using 3-node membrane elements sharing common nodes 

with the sclera shell and supported on lumped mass bodies, which interface the 

analytical muscle segments.   
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Figure 8.7:  Muscle and tendon details for the infant eye model. 
 

 

 

 The complete eye model is shown (Figure 8.8) with a quarter cut from the eye 

globe exposing the interior sections.  The fatty tissue is also sectioned by removing 

one quarter and made transparent so that the finite element optic nerve is visually 

exposed.   
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Figure 8.8:  Entire eye model showing the posterior-lateral and anterior-lateral views. 

 

 

 

Material Definitions 

 The eye model contains a number of material properties from previous 

literature.  Most of the finite element models of the past, involved in dynamic 

simulations, develop the eye to model impact cases (Uchio et al., 1999; Power et al., 

2002; Stitzel et al., 2002).  In these models the cornea and sclera are considered to be 

membrane material consistent with Hoeltzel et al. (1992).  In addition, the vitreous 

body and aqueous are modeled using a hydrostatic formulation in Uchio et al. and 

Stitzel et al., while Power et al. propose an elastic value based on an estimation from 

fatty tissue (Todd & Thacker, 1994).  None of these studies considers the retina, 

choroid, or optic nerve attachment.  This is perhaps appropriate as the case studies 

only consider impact to the cornea and proximal to the cornea.  Only the Power et al. 

study considers modeling the eye with fatty tissue and muscle tethers, while Uchio et 
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al. fix the eye directly to the skull and Stitzel et al. model the eye in vitro utilizes the 

same fatty tissue as Power et al.   

 The current model considers all previous ocular structures including the 

retina, choroid, and optic nerve.  In addition, the fatty tissue is modeled encasing the 

eye globe with detailed muscle models tethering the eye. 

 The cornea and sclera material are based on Uchio et al. test strips taken to 

failure.  There is a linear region of these materials up to the point before increasing 

strain results in decreasing stress.  The moduli, as reported by Stitzel et al., for the 

linear region are 124 MPa and 358 MPa for the cornea and sclera, respectively.  To 

account for the compressive stiffness, a reduction factor is introduced in this tension 

only material so that the compression factor is 1/100th of the tension (Stitzel et al.).  

Specifying the reduction factor also aids in reducing instability that may occur with 

the tension-only material with contact interactions (MADYMO, 2004).  The mass 

density of the cornea and sclera is set to 1076 kg/m3 (Duck, 1990) and 1243 kg/m3 

(Uchio et al.), respectively.  The Poisson’s ratio, ν, is measured for cornea and sclera 

(Uchio et al.) and is 0.42 and 0.49, respectively.   

 The choroid is a thin, highly vascular membrane supplying nutrition to the 

retina and anterior eye.  This tissue exhibits traits similar to erectile tissue (Hogan, 

Alvarado, & Weddell, 1971).  Current studies only consider the elastic modulus for 

the choroid (Graebel & Van Alphen, 1977) and are used in this eye model (Table 

8.0).  The thickness of the choroid in this eye model is a uniform 0.16 mm as 

presented in Graebel and Van Alphen.  However, the postmortem testing produces a 

thinner representative thickness and is closer to 0.42 mm in vivo (Friberg and Lace, 
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1988).  This estimate of 0.42 mm is very reasonable compared to ultrasound 

techniques showing the choroid to be 0.471 mm in vivo (Coleman & Lizzi, 1979).  

 The retina is a very thin, delicate, and clear tissue lining the inner eye and 

interfacing the vitreous body and choroid layer through the pigment epithelium.  The 

retina varies in thickness with the thickest portion near the optic disk measuring 0.56 

mm thinning to 0.18 mm at the equator, and then to 0.1 mm at the ora serrata (Hogan, 

Alvarado, & Weddell, 1971).  The mechanical properties of the retina (Table 8.0) are 

from Jones, Warner, and Stevens (1992).  Although the retina varies in thickness 

throughout the eye, a value of 0.14 mm (Wu, Peters, & Hammer, 1987) is used for the 

entire membrane structure.  This thickness is reasonably close to ultrasonic 

measurements (0.17 mm) (Coleman & Lizzi, 1979). 

 The lens is considered rigid in this study as in previous dynamic models 

(Uchio et al., 1999; Power, 2001).  The assumption is reasonable as the current model 

is concerned with the posterior retinal forces with no external impacts to the anterior 

eye.  For impacts to the cornea and anterior eye shell, this assumption needs 

evaluating.  Stitzel et al. do model the lens using an elastic modulus rather than 

modeling the structure as rigid so that deformation of the lens is accounted for during 

severe impacts. 

 The ciliary body is modeled (Table 8.0) the same as Power et al. where the 

tensile strength is assigned a value of 11 MPa.  The rational behind this assignment is 

that collagen in rat tail tendons varies between 50 and 100 MPa and the ciliary body 

does have a large amount of collagen but not as much as rat tails.  The same material 
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is utilized in the Stitzel et al. model that is also validated with experimental impacts 

on cadaver eyes. 

 Previous eye models consider the vitreous body (Uchio et al., 1999; Power et 

al., 2002; Stitzel et al., 2002) for eye impact studies.  Uchio et al. and Stitzel et al. 

utilized a hydrostatic formulation.  Specifically, Uchio et al. modeled the vitreous 

using solid elements and assigning the material a hydrostatic pressure of 20 mm Hg.  

The Stitzel et al. model utilized the bulk modulus of the vitreous, K = ρC2 (where ρ is 

the density of the material and C is the speed of sound through the material), in 

pressure state equation model, Gruneisen equation.  Interestingly, in the Stitzel et al. 

model, the vitreous body is modeled using a Eulerian grid interfacing the Lagrangian 

element boundary.  This mesh coupling approach allows the eye to undergo extreme 

impacts with local ocular shell pinching without simulation instability.  Power et al. 

utilizes a linear elastic model deriving the material properties from the fatty tissue 

study (Todd & Thacker, 1994) and making the material 42 kPa for a total reduction of 

approximately 11%.  However, this fatty tissue is considerably stiff compared to other 

studies (Luboz et al., 2004; Verver, 2004; Samani & Plewes, 2004).   

 The current vitreous used in this investigative study utilizes an elastic model 

(Table 8.0) where the vitreous is considered “rubber-elastic” (Weber & Landwehr, 

1982).  Because of the collagen fiber network, Weber and Landwehr claim that the 

vitreous cannot really be considered viscoelastic and fits the response of a steel 

sphere harmonically excited to a Voigt-Kelvin model.  Using the mass of the steel 

sphere, the damping and stiffness coefficients are solved.  The damping and stiffness 
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values for the human vitreous are 7.35x10-4 Ns/m and 6x10-2 N/m, respectively 

(Weber and Landwher).   

 In order to use this information in a constitutive model for solid hexahedral 

meshes, a mathematical beam model is created supplying the damping and stiffness 

values from Weber and Landwher directly.  A mass is attached to the end of the 

model (mass = 1.0x10-4 kg) and an initial displacement of 2 mm at time zero is given.  

The natural frequency (ωn) and the damping ratio (ζ) are =m
k 24.5 rad/s and 

=
mk
c

2
0.15, respectively.  A second model with a finite element hexahedral beam is 

created with similar boundary conditions with initial guesses for the modulus (E) and 

the damping value (c).  The response of the position time history, ( )
2

1ln x
x=δ , is used 

to match an equivalent solid beam element (E and c) for a Poisson’s ratio (ν) equal to 

0.5.  After a few iterations, the natural frequency and damping ratio are 

approximately the same as the analytical model yielding the tabulated values (Table 

8.0) for the finite element model.   

 The aqueous humor is modeled similar to the vitreous as it is assumed the 

liquid nature of the aqueous has little effect on the posterior vitreous during a shake 

or impact fall at the back of the head.   

 Other vitreous materials assume a viscoelastic fit (Bettelheim & Wang, 1976; 

Tokita, Fujiya, & Hikichi, 1984; Lee, Litt, & Buchbaum, 1992; Nickerson et al., 

2005); however, these compliant materials are unreliable under extreme rotational 

motions or impacts using Lagrangian meshes. 

 The presented eye model study utilizes two models for the fatty tissue.  Both 

models use a hyperelastic Mooney-Rivlin material (Williams, 1980): 
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Where σe is the engineering stress, A and B are the material parameters of the first 

and second invariants of the strain tensor, λ is the extension ratios (1+ε).   

 Samani and Plewes (2004) determine the hyperelastic parameters (A and B) of 

breast tissue samples (ex vivo) gathered from breast reduction surgery.  Using the 

experimental force-displacement data, finite element models representing the 

experiment are created with the hyperelastic parameters.  The parameters are 

modified until they converge to the experimental force-deflection curve- an 

optimization technique using a least-squares fit.   

 Verver (2004) creates a model of the buttocks for comfort studies.  In this 

case, the material parameters are assigned based on ranges of reported values.  Both 

the material parameters are tabulated in 8.0, and a comparison of the materials is 

provided in Figure 8.9.   

 Power et al. used the properties from Todd and Thacker, which compared to 

the other materials, is extremely stiff.   

 The material from Luboz et al. (2004) uses a linear elastic formulation with 

modulus set to 20 kPa influenced by previous published values.  The Poisson’s ratio 

is set to 0.1 to account for the poro-elastic properties of the fatty tissue.   

 All other studies use a Poisson’s ratio of 0.5 for incompressibility.  The 

overall stiffness is similar to Verver (Figure 8.9) and is not considered in this eye 

model study.  The most compliant of these materials is the work of Samani and 

Plewes, which almost appears as a straight horizontal line close to zero when 

compared to the other material models (Figure 8.9).   The density of the fatty tissue 
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for both the Verver study and Samani and Plewes study is set to 928 kg/m3 (Duck, 

1990).  The membrane skin is modeled based on the human model study from the 

MADYMO software (2004) and is linear elastic.   

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Strain

St
re

ss
 (P

a)

Todd & Thacker, 1994
Luboz et al., 2004
Verver, 2004
Samani & Plewes, 2004

 
Figure 8.9:  Comparison of fatty mechanical properties of different research groups illustrating the extreme 

stiffness characteristic of the Todd & Thacker soft tissue properties. 
 

 

 

 The muscle-tendons are modeled using a combination of Hill-type muscles 

(Figure 8.10) and finite element membrane tendons.  The muscle is modeled using 

attachment points (apex location for the recti muscles) with a contractile element 

(CE) in parallel with a passive element (PE) attached to a point mass.  This mass 

couples the Hill muscle with the series elastic (SE) element represented by the finite 
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element tendon.  This tendon is then attached to the eye globe sharing common nodes 

with the sclera shell.  The total muscle force is the summation of the contractile and 

passive force contributions: 

  Fmuscle = FCE + FPE  (8.1) 

The passive force is considered when the muscle is stretched beyond the reference 

length and the active muscle behavior is given by (MADYMO, 2004): 

  FCE = AFmaxfH(vr)fL(lr)  (8.2) 

Where A is the activation and varies between 0 (rest state) and 1 (maximum 

activation), fH(vr) defines the normalized active force-velocity relationship (Hill 

curve), fL(lr) is the normalized active force-length relationship.  The necessary 

parameters are provided in Table 8.1, which also accounts for the SE element that is 

converted to a material type hysteresis so that the stress-strain curve can be directly 

inserted.  The density of the tendon is set to 1165 kg/m3, which is the average value 

for ox tendon (Duck, 1990).  The parameters are a function of muscle fiber 

composition (Winters & Stark, 1985) and are assumed to be the same for infant extra-

ocular muscles in the parameter study.  The activation dynamics can be modeled by 

solving two differential equations simultaneously for the neural excitation and general 

activation.  However, this study will consider the muscles to be passive by specifying 

the activation (A in 8.2) at a low value of 0.005 to represent the minimal active rest-

state (Hatze, 1977). 
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Figure 8.10:  Hybrid analytical muscle-tendon model used in the infant eye SBS and impact simulations. 

 

 

 

Table 8.0:  Material properties and element number for the eye model. 
 

Ocular 
Component 

Element 
Type Element No# Element 

Property 
Material 

Type 
Material 

Parameters 
Thickness 

(mm) 
Density 
(kg/m3) 

Cornea 4-node 
shell 60 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E= 124 MPa / ν = 
0.42 / 

Reduction factor = 
0.01 

Figure 8.0 
(varies) 1076 

Sclera 4-node 
shell 872 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E = 358 MPa / ν = 
0.49 / reduction 

factor = 0.01 

Figure 8.0 
(varies) 1243 

Vitreous 8-node 
hexahedral 7300 

SOLID8 
reduced 

integration 
ISOLIN E= 43 Pa/ ν= 0.49/ 

damping = 200 - 1006 

Aqueous 8-node 
hexahedral 304 

SOLID8 
reduced 

integration 
ISOLIN 

E = 43 Pa / ν = 
0.49 / damping = 

200 
- 1006 

Ciliary 
Body 

4-node 
shell 112 

MEM4 
reduced 

integration 

ISOLIN 
Tension 

only 

E = 0.35 MPa / ν 
= 0.40 0.2 1600 

Lens 4-node 
shell 120 SHELL4 RIGID - - - 

Retina 4-node 
shell 772 

MEM4 
reduced 

integration 
ISOLIN E = 20 kPa / ν = 

0.49 0.14 1000 

Choroid 4-node 
shell 772 

MEM4 
reduced 

integration 
ISOLIN E = 96.8 kPa / ν = 

0.49 0.16 1000 

Tendons 3-node 
shell 48-96 

MEM3 
Reduced 

integration 

HYSISO 
Tension 

only 

Table 8.1 SE 
element properties 
Reduction factor = 

0.1 

0.2 1041 
 

Verver study: A = 
1.65 kPa / B = 

3.35 kPa / ν = 0.49 
Fatty Tissue 4-node 

tetrahedral 16552 SOLID4 MOON
RIV Samani & Plewes 

study: A = 310 Pa 
/ B = 300 Pa / ν = 

0.49 

- 928.0 

Skin 4-node 
shell 272 MEM4 ISOLIN 

E = 0.15 MPa / ν 
= 0.46 / damping 

= 0.05 
1 1000 
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Table 8.1: Hill-type parameters for the CE, PE, and SE elements.  Parameters are based on the work of 
Winters & Stark (1985 & 1988) and Winters (1985). 

 
Hill-type parameter Element type Symbol Value 

Maximum muscle force CE Fmax 0.909 
Maximum shortening velocity CE Vmax 0.495 

Shape force-velocity shortening CE CEsh 0.437 
Shape force-velocity lengthening CE CEshl 0.0797 

Ultimate tension during lengthening CE CEml 1.381 
Width of active force-length curve CE Sk 0.35 

Relative elongation PE PExm 0.258 
Shape force-length curve PE PEsh 3.321 

Shape force-length SE SEsh 1.64 
Relative elongation SE SExm 0.091 

 

 

 Two optic nerve models are presented in this parametric model.  The first 

(Figure 8.5.A) model utilizes previous mathematical models for horizontal eye 

motion (Lehman & Stark, 1979; Robinson, 1981; Lehman & Stark, 1983; Winters & 

Stark, 1985; Winters & Stark, 1988).  These analytical models consider the eye to be 

the “plant” which acts as a revolute joint in the horizontal motion models.  Originally, 

the stiffness and damping were measured by Collins, Scott, and O’Meara (1969) 

during eye surgery and can be modeled as the following (Lehman & Stark, 1983): 

  NKcI =++ θθθ &&&   (8.3) 

Where I, c, and K are the plant parameters 3x10-7 kg-m2, 1x10-4 Nms, and 1x10-3 Nm 

(Winters & Stark, 1985), respectively.  Scaling these parameters to an infant yields 

the following for I, c, and K:  3x10-8 kg-m2, 1x10-5 Nms, and 1x10-4 Nm, 

respectively.  Conversion to translation values from rotational is achieved by using 

the infant eye radius (7.1 mm).  These values are then introduced into a non-linear 3-

D Kelvin element material that is composed of axial, bending, and shear 

characteristics (Figure 8.11).   
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 The second (Figure 8.5.B) model is based on the work of Sigal, Flanagan, and 

Tertinegg (2004), where the biomechanics of the ONH and lamina cribrosa are of 

interest.  The material parameters for the finite element nerve (Sigal nerve) are 

averaged values from previous literature and all considered linear elastic for a static 

finite element analysis (Table 8.2).  The density is not reported in Sigal et al. and is 

set to 1000 kg/m3.  This density is within published values for spinal cord nerve tissue 

(1038 kg/m3) (Duck, 1990).  The pia mater thickness in Sigal et al. is set to 0.06 mm; 

however, for the infant eye model the thickness is increased to 0.535 mm so that pia 

represents the outermost optic nerve sheath.  Sigal et al. do not model the dura layer 

(Hayreh, 1984) and only consider the pia as the outermost layer.  The ONH thickness 

is set to 0.6 mm as well.  The Poisson’s ratio (ν) is assigned a value of 0.49 for 

incompressibility and 20% material damping is assigned (MADYMO, 2006).  In 

comparison to the analytical model, the optic nerve is an over-damped system 

(Lehman & Stark, 1983).  

 

 

Table 8.2:  Material properties and element number for the Sigal and analytical spring optic nerves. 
 

Ocular 
Component 

Element 
Type 

Element 
no# for 
Sigal 
nerve 

Element 
no# for 
spring 
nerve 

Element 
Property 

Material 
Type 

Material 
Parameters 

Thickness Density 

ONH 4-node 
shell 

12 12 MEM4 
reduced 

integration 

ISOLIN 
 

E=3x105/ 
 ν = 0.49 

6x10-4 1000 

Neural 
Tissue 

8-node 
solid 

168 0 SOLID8 
reduced 

integration 

ISOLIN E=3x104/  
ν = 0.49/ 

damp =0.2 

- 1000 

Pia Mater 4-node 
shell 

224 0 MEM4 
reduced 

integration 

ISOLIN E=3x106/  
ν = 0.49/ 

damp=0.2/ 
reduction 

factor=0.01 

 
5.35x10-4 

1000 

Spring 
Nerve 

2-node 
beam 

0 4 BEAM2 
DISCRETE 

KELVIN 
3D_NL 

Figure 8.11 - - 
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 The presented optic nerve models are simplified to model the tethering effects 

to the eye globe.  Actually, the optic nerve contains a cerebral fluid layer between the 

dura and pia mater that is greater just posterior the ONH entry point.  This fluid build up 

causes the nerve sheath to be bulbous at the ONH entry point (Hayreh, 1984).  There are 

also concerns with hemorrhages in the optic nerve (Levin, 2000); however, this model 

limits the study to the investigation of retinal forces. 
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Figure 8.11:  Spring-Nerve stiffness characteristic functions for axial, bending and torsional resistance for 
the infant optic nerve. 
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Retinal Detachment 

 On the possibility of posterior retinal detachment, Levin (2000) suggests that 

failure in the retinal-vitreous layer would not occur as the retina and vitreous are 

tenaciously attached.  Levin explains that it is possible to have focal or complete 

detachment of the retina in severe shaking.  A forensic pathological study indicates 

that the incidence of retinal detachment is 63% (Green et al., 1996).  Levin does 

indicate that observations in hemorrhagic detachment are rare.  This rarity is possibly 

due to the resorption times of the retinal to the pigment epithelium (Negi & Marmor, 

1986) and the lapse in time in diagnosing SBS. 

 The current model investigates retinal detachment between the choroid and 

retina in the posterior eye by using a node-node weld technique (Figure 8.12).  The 

retina and choroid nodes that are once common in the posterior eye are separated and 

the retinal node is then nudged in the normal direction away from the choroid layer a 

distance half the thickness of both the choroid and retina.  A node-node weld 

algorithm is then specified using the following (MADYMO, 2004): 

  1
maxmax

<+
sn a

s

s

a

n

n

F
F

F
F

  (8.4) 

Where Fn is normal force (the line connecting the two nodes), Fs is the shear force 

(perpendicular to the line connecting the two nodes), Fnmax and Fsmax are the 

maximum allowable normal and shear force components, an and as are the exponents 

that determine the shape of the rupture.  Therefore, if one were to consider purely 

normal force, the exponents would equal infinity.  If only shear is considered, the 
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exponents would each equal one.  Finally, if a combination of normal and shear force 

is required, the exponents would each equal two.   

 The current maximum force for retinal adhesion is adapted from monkey eyes 

(0.14 N/m) (Kita & Marmor, 1992) with no distinction of normal or shears.  The bleb 

formation in the Kita and Marmor study would indicate that this force is normal.  

Further investigation in the eye simulation showed the weld attachment between the 

two nodes to behave as a rod attached to spherical joints.  This would imply that the 

highest component of failure would be in the normal direction with this node-node 

weld.  Therefore the maximum normal force (Fnmax) is set equal to 0.14 N and the 

exponents are given extremely high values, while an arbitrary value is set for 

maximum shear force (Fsmax). 

 

 

 
Figure 8.12:  Detail of node-node weld implemented in the biomechanical model between the choroid 

layer (wire-frame) and the retinal layer (shaded-wire-frame). 
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Contact Interactions 

 There are three contact interactions specified in the model, depending on the 

type of simulation.  A contact interaction is a relationship between at least two finite 

element structures where the nodes of one surface interact with the elements of 

another.  Further enhancements to a contact specification can include node-to-edge 

contacts, self-contacts, and contacting nodes to defined gaps.  Gaps are extensions of 

the element surfaces in the normal direction and help minimize a physical gap 

between finite element structures.  During a given time step, three phases are 

performed involving a search phase, a detailed search phase, and a force calculation 

phase (MADYMO, 2004).  Ultimately, if a node is penetrating an element or gap of 

an element, a force is applied to position the node at the surface of the element.  The 

algorithm used for all contacts in this parametric study uses a penalty method 

(MADYMO): 
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Where MAX_FORCE_PAR, a tuning parameter, is equal to 1.0; Fc is the contact 

force; K is the bulk modulus of the contact segments penetrated; V0 is the initial 

volume of the contact segment; A is the area of the contact segment; ψ is the penalty 

factor (default value is 0.1 and is recommended in MADYMO not to change); λ is the 

penetration of the contact node; te is the penetrated element thickness that is 

multiplied by the MAX_FORCE_PAR.  The fatty tissue utilizes a contact gap to 

reduce the overall geometrical gap between the eye globe and tissue (Figure 8.13).  

The contact interactions use the surface elements of the fatty tissue and the nodes of 
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the cornea and sclera.  The tendon-to-sclera contact lowers the penalty factor (ψ) to 

0.1 lower the overall force as the nodes of the tendon contact the elements of the 

sclera shell.  This reduced the artificial nodal velocities that resulted due to the 

contacting algorithm while still providing realistic interactions.  No contact gap is 

specified for the tendon-to-sclera contacts. 
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Figure 8.13:  Sagittal view of eye model showing the geometrical gap dimensions between the fatty tissue 

and eye globe. 
 

 

 Finally, the simulations that include retinal detachment need to have a contact 

interaction specified between the choroid and retina surfaces.  In this case the 

MAX_FORCE_PAR is reduced to 0.1, the same as the tendon-to-sclera contacts.  

Failure to specify this contact interaction would result in the retina-vitreous exiting 
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the posterior eye shell when a weld is breached.  The welds would also be 

compromised as the material exists the eye globe due to momentum build-up, and the 

simulation would therefore be incorrect. 

 

 

Pure Shaking Motion 

 In order to model SBS, a motion is modeled such that when a baby is held by 

the torso and shaken back and forth along the sagittal plane, the motion is similar to 

harmonic oscillations about the neck pivot (Morison, 2002).  The motion is applied 

directly to the pivot point at the base of the infant’s skull location by applying the 

angular and translational accelerations versus time using Figure 8.14.     
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Figure 8.14:  Motion of infant skull adapted from Morison (2002). 
 

 

In order to incorporate this motion into the eye model, rigid bodies are located to 

model the locations of the neck pivot location, head cg, and lumped brain mass.  The 
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current simulations do not need the mass properties of the rigid bodies even though 

they are included as the motion information (8.8, 8.9, 8.10) is used in the prescribed 

acceleration.  The head weight is 820 grams and is the average value reported in 

Duhaime et al. (1987).  The total brain mass is 500 grams from Duhaime et al., while 

scaling from a 50 percentile14 gives a mass of 685 grams.  The pivot joint is a free 

joint with angular acceleration about the Y-axis prescribed and translational 

accelerations in the X and Z-axes prescribed.  From Figure 8.14, the moment arm (r) 

is the distance from the neck pivot to the head center of gravity.  A reported neck 

length of 4.0 cm is used in the moment arm (Duhaime et al.).  The frequency of 4 Hz 

is directly from Duhaime et al. (circular frequency, ω, is 25.13 rad/s).  Based on the 

maximum range of 20 infant heads, the amplitude of motion is measured with a 

goniometer by Dr. Sunderland (Birmingham Children’s Hospital), Morison specifies 

the amplitude (θ0) equal to ±60°.  Finally, a gravity field is applied to the eye model 

in the downward direction.  The motion is applied for one second for a total of four 

complete oscillations starting at -60° for a worst case starting position.  Figure 8.15 

shows details the overall motion for one half of an oscillation cycle with start position 

at -60°.   

 

 

                                                           
14 The term 50 percentile refers to the size and weight of an “average” adult male population (MADYMO, 
2004). 
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Figure 8.15:  Animation sequence of a shake (Figure 8.14) for times 0, 50, 75, and 125 milliseconds. 
 
 
 
 
 
Impact Pulse 

 A documented impact scenario (Duhaime et al., 1996) is included for 

comparison to the pure shaking case.  In this case, a father is swinging a 9-month-old 

baby in a hunched over manner with hands underneath the legs.  The arms of the 

father support the baby’s torso as the father swings to-and-fro.  Unfortunately, the 

baby falls backwards through the father’s arms whilst the father is gripping the baby’s 

legs.  The distance of the fall is approximately 30-45 cm.  The infant strikes the back 

of his head on the floor.  At the emergency room, a CT scan reveals blood over the 

left hemisphere with unilateral hemorrhaging in the retina in the posterior pole of the 

left eye.  After a couple of days, the baby recovers.  No description of the impacting 

surface is given nor the manner of the swing.   

 Assuming no momentum build up due to the swing is present and only gravity 

is applied, an impact simulation is created.  The contact interaction between the floor 

and the infant’s head is assumed to be rigid.  The distance of the fall is interpreted as 

the distance the father held the baby by the legs to the floor and is set to 45 cm.  A 

TNO P3/4 (MADYMO, 2004) child dummy, representing a 9-month-old child, is 

positioned in a seated position with a rigid body cylinder underneath the legs 
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modeling the grip of the father’s hands.  Applying a gravity field to the dummy 

results in an impact to the head (Figure 8.16) with measured pulse approximated by a 

half sine with amplitude 60 G’s for duration of 15 milliseconds.  This pulse 

information is directly applied as a field to the eye globe fixing the all the rigid bodies 

to prevent motion of the skull during the impact.  The total simulation duration is 100 

milliseconds allowing suitable time for the eye to rebound back to its pre-impact 

state. 

 

 

45 cm 

   
Figure 8.16:  Impact sequence of the P3/4 child dummy at times 0, 275, and 475 milliseconds. 

 

 

Simulation Matrix 

 Simulations are conducted for the impact and pure shaking inputs (Figure 

8.17).  A cross comparison is conducted with the type of optic nerve and the material 

property of the fatty tissue.  In addition, an investigation into retinal detachment is 

considered using the node-node weld syntax in the eye model.  The fatty tissue from 

Samani and Plewes (2004) is extremely compliant and fails in the impact simulations 

but is very stable in the pure shaking runs.  The Verver (2004) is able to complete 
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every simulation scenario.  Retinal detachment is only considered for the pure 

shaking runs since the impact simulations involve the eye globe depressing into the 

posterior direction and involves little shear or tension of the retinal-choroid layer.  

The total simulation time for the pure shaking runs is 1000 milliseconds and includes 

four cycles.  The impact pulse simulation runs are 100 milliseconds in length.  The 

total processing time for the impact runs is just over an hour on a four-processor 

computer.  This time is increased to just over 10 hours for the four-cycle pure shaking 

simulations. 

 

 

Table 8.3:  Simulation matrix for both the pure shaking and impact runs. 
 

 Optic Nerve Type Fatty Tissue Type Welds 
Pure Shaking Analytical nerve  Samani & Plewes, 

2004 
No 

 Analytical nerve Verver, 2004 No 
 Analytical nerve Samani & Plewes, 

2004 
Yes 

 Analytical nerve Verver, 2004 Yes 
 Sigal et al., 2004 Samani & Plewes, 

2004 
No 

 Sigal et al., 2004 Verver, 2004 No 
 Sigal et al., 2004 Samani & Plewes, 

2004 
Yes 

 Sigal et al., 2004 Verver, 2004 Yes 
    

Impact Pulse Analytical nerve Verver, 2004 No 
 Sigal et al., 2004 Verver, 2004 No 

 

 

 

Results and Discussion 

 A comparison is made with the various runs from the simulation matrix (Table 

8.3) regarding the resultant nodal force of the posterior retina.  In addition, an 
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investigation into retinal detachment is presented.  In the order of the simulation 

matrix, screen captures are presented for all pure shaking and impact simulations 

(Figures B.1 to B.10).  Specifically, the figures for the pure shaking simulations are 

separated into four rows corresponding to each of the cycles during the 1000 

millisecond time duration (4 Hz shake).  Each of the rows contains five time divisions 

starting at the beginning and end of the shake cycle.  A cycle is the total time it takes 

for the infant head to traverse the entire amplitude (±60°).  Each of the figures is 

sliced along the sagittal plane of symmetry of the eye exposing the vitreous and other 

interior components of the eye.  The orientation of each figure is in the -60° as the 

camera view is locked onto the eye globe itself so that the focus remains on the eye.   

The impact simulation Figures (B.9 and B.10) also show the eye globe from the 

sagittal plane with six animation views (0, 5, 10, 15, 50, and 100 milliseconds). 

 A comparison (Figure 8.17) is made between the eye model that utilizes the 

analytical optic nerve and the two fatty tissue materials (Samani & Plewes, 2004; 

Verver, 2004).  In addition, a limit line is indicated showing the 0.14 N retinal 

detachment force (Kita & Marmor, 1992).  A total of 273 retinal nodes make up the 

posterior region of the eye.  For each node, the output frequency is 10,000 Hz.  

Accounting for every node for both simulation is an extreme amount of data to 

process for the resultant nodal forces.  However, the only information of interest are 

the maximum values at each time.  Therefore, at a given time step all 273 nodal 

forces at that time step are evaluated so that only the maximum value is returned.  

What results is a concise plot showing the same plot information as if all forces are 
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plotted without the minimum values.  This process is continued for all of the nodal 

force plots. 

 

 

 
Figure 8.17:  Resultant posterior retina nodal forces for shaking only with the analytical optic nerve. 
 

 

 

 Comparing the two resultant force plots (Figure 8.17), each of the cycles is 

clearly outlined as nodal forces follow a harmonic pattern.  The approximate peak of 

each cycle occurs when the head is at the +60° amplitude of the shake.  Despite the 

harmonic acceleration being applied to the sagittal plane of the eye, the model is not 

symmetric due to the off-center optic nerve insert and the asymmetrical muscle 

tethers (oblique tethers).  As a result, each cycle is a little different.  The most severe 

simulation involves the use of the more compliant Samani and Plewes fatty tissue, 

which results in a larger bandwidth of force at the top of each cycle.  The simulation 

utilizing the Verver fatty tissue shows similar trends but not as extreme until the third 
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cycle.  Comparing the animation time sequence data between the two runs (Figure 

B.1 and B.2) shows localized pinching of the posterior eye globe as the infant head 

goes into the +60° limit and then back down again with the eye globe reclaiming the 

original spherical shape at the -60° limit.  This local pinching is attributed to the use 

of simple constraints (Figure 8.5.C) and the lack of resistance to bending of the ocular 

shell layers.  Otherwise, the animation cycles are almost indistinguishable with the 

only visible difference being the more severe deflection of the Samani and Plewes 

tissue (Figure B.1). 

 A similar comparison is conducted utilizing the Sigal et al. nerve model and 

the two fatty tissues for the shaking only simulation.  Comparing the animation 

sequences (Figures B.5 and B.6) indicates no localized globe pinching as in the case 

with the analytical optic nerve.  In addition, little deformation of the vitreous body is 

detected with the exception of the central block swaying about due to the external 

motion.  Comparing the retinal forces (Figure 8.18) shows a similar non-eventful 

trend.  The forces are well below the retinal detachment threshold with the exception 

of a few spikes in force.  The finite element optic nerve is over constraining the eye 

globe instead of acting as a tether.  At the apex connection, the optic nerve is 

supported by a translational body with negligible mass to allow sliding along the 

length of the optic nerve and to introduce slack.  However, the motion of the shake 

and the asymmetrical location of the nerve cause localized bending resistance at the 

ONH interface. 
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Figure 8.18:  Resultant posterior retina nodal forces for shaking only with the finite element optic nerve. 

 

 

 

 The impact simulations utilize the Verver fatty tissue materials comparing the 

analytical optic nerve to the finite element optic nerve.  The Samani and Plewes 

material properties are too compliant for the current fatty tissue tetrahedral mesh 

model and become unstable after about 10 simulation milliseconds.  Comparing the 

animation sequence (Figures B.9 and B.10) shows very little difference between the 

two nerve choices.  The response is visually identical and is perhaps attributed to the 

support of the finite element nerve allowing free motion along the axis of the nerve 

and the analytical model axial spring force set to zero for compression.  In short, the 

optic nerve is all but removed from the model due to the application of the pulse.  The 

nodal resultant force of the posterior nodes also is in approximate agreement with 

each other (Figure 8.19) where comparison shows forces well below the threshold 

limit. 
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Figure 8.19:  Comparison of the posterior retina resultant nodal forces for both optic nerve models with the 

Verver (2004) fatty tissue. 
 

 

 

 There are some differences between the two results (Figure 8.19) that are 

attributed to rebounding of the eye globe and the reaction of the optic nerve.  For the 

first 15 milliseconds, both plots are very similar until after 15 milliseconds to 25 

milliseconds when the analytical optic nerve model shows an increase in nodal force 

before dropping to similar levels around 30 milliseconds.  Between 40 and 50 

milliseconds the force is again increased due to stretching of the optic nerve causing 

some localized retinal forces to increase a bit.  Again, the analytical nerve shows 

much greater values than the finite element nerve model.   

A comparison is presented for the eye model utilizing the analytical optic nerve and 

the fatty tissue using the Verver material properties (Figure 8.20).   
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Figure 8.20:  Resultant posterior nodal forces for both the shaking and impact simulations using the 

analytical optic nerve model with the Verver material for the fatty tissue.   
 

 

 

 In Figure 8.20, the first cycle of the shaking is shown compared to the 100-

millisecond duration of the impact simulation.  Immediately apparent is the breach of 

force for the pure shaking, while the impact is well below the limit.  This would 

indicate that forces due to shaking that involve shearing as the eye globe rotates 

causing stress areas when the nerve and muscles are engaged in full tension.   

 Retinal weld results are examined  (Figures B.3, B.4, B.7, & B.8) for four 

cases and compared (Figure 8.21).  The inclusion of the retinal detachment is 

extremely experimental, and there are limitations to the model as a result.  As seen in 

Figures B.3 and B.4, the analytical nerve is attached to the ONH using simple 

constraints.  A modeling limitation in MADYMO is that nodes involved in simple 

constraints or welds cannot be included in other types of welds or simple constraints.  

Therefore, the retinal attachment point at the ONH head will never separate.  This 

issue does not exist in the model using the finite element optic nerve (Figures B.7 and 
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B.8), and as a result, the entire posterior retina can separate from the choroid.  To 

interpret Figure 8.21, the total number of welds at the start of the simulation is 100%.  

As the simulation time increases for the shaking run, the welds start to fail and the 

time is recorded for each weld failure.  The trend of the models using the analytical 

optic nerve start at 100% but quickly decline (more so for the Samani and Plewes 

fatty tissue material) to less than 10% total welds left before the first shake cycle is 

complete.  The values for the model using the finite element optic nerve (Sigal nerve) 

stay at 100% until 200 milliseconds for the Verver fatty tissue material and 250 

milliseconds for the Samani and Plewes fatty tissue.  While the analytical nerve in the 

eye model showed similar trends in weld breaks for the different fatty tissue 

materials, the use of the Sigal nerve is quite different.  At 200 milliseconds a 

significant drop in welds is seen in the SigalVerver eye model (about 75% welds are 

left).  Then a plateau region occurs from 200 to 350 milliseconds, after which, almost 

all welds are broken and the retina-vitreous completely separates (Figure B.8 at time 

437 milliseconds).  The SigalSamani run maintains a plateau up to 500 milliseconds 

with two reductions at 250 milliseconds to 95% and then to 90% at 500 milliseconds.  

Just before 550 milliseconds a large amount of welds break leaving only 40% left for 

the rest of the simulation. 
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Figure 8.21:  Retinal node welds for all eye models in the pure shaking motion runs. 

 

 

 

 The inclusion of the retina node welds neglects the strain rate characteristics 

of the applied force (Deguillebon & Zauberman, 1972) and only considers the 

instantaneous force limit.  Indeed, increasing the time delay before a weld breaks to 

just one-millisecond results in no weld breaks at all.  This is not surprising since most 

of the forces are only short duration peaks (Figure 8.17).  Ideally, to model retinal 

adhesion would be to consider the retina-choroid interface by having the nodes of 

each structure start at a coincident location until a strain rate or force is applied that 

would separate the two (Kostopoulos et al., 2002).  However, the current limitation of 

the node-node weld requires a distance greater than zero between the nodes and only 

allows the input of rupture force, the shape of the rupture, and a time window of 

rupture (see equation 8.4). 
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Conclusion 

 The parametric investigative eye model is the first to address retinal forces as 

a result of shaken baby syndrome.  Although the finite element model is not validated 

as no experiment has been conducted (and may never be) to validate such a model.  

The best that can be done is to provide a comprehensive study of all possible 

materials that exist.  In regards to material properties, the infant and infant eye has 

unique physiological characteristics (Levin, 2000) that specifically predispose them to 

injury due to shaking.  Unfortunately, there are no materials testing of the ocular 

components of infant eyes currently in existence that can be utilized in a 

mathematical model.  There are several clinical observations and histological studies 

that describe the geometry and qualitative properties that can be used to influence the 

finite element model. 

 Some conclusions can be formulated about the current study.  The first 

consideration looks at the tethering of the eyeball where the passive muscles and 

slack nerve are firmly attached to the eyeball.  Levin coins the term “orbital shaking” 

where the eyeball rotates and, at the limits of the optic nerve length, causes stresses 

on the eye.  Further, this also explains hemorrhaging in the optic nerve sheath itself.  

In order to model this in a violent dynamic simulation, two camps of research are 

considered.   

 One group (Lehman & Stark, 1979; Robinson, 1981; Lehman & Stark, 1983; 

Winters & Stark, 1985; Winters & Stark, 1988) models the eye in dynamic 

simulations with original measurements of the orbital tissue damping and stiffness 

performed by Collins, Scott, and O’Meara (1969).  These models are extensive and 
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complete and lend themselves to be easily incorporated into the MADYMO software, 

which allows coupling between rigid body dynamics and finite element method.  

Another benefit is that these properties are easily scalable to infant dimensions 

provided that the eye would respond the same for an infant as an adult, which may be 

an invalid assumption.   

 The second group of studies focuses efforts on glaucoma studies and the 

effects of the lamina cribrosa (Dongqi & Zeqin, 1999; Edwards & Good, 2001; 

Bellezza, Hart, & Burgoyne, 2000; Sigal et al. 2004; Burgoyne et al., 2005).  Of these 

studies, the most applicable for use in the current model is the work from Sigal et al. 

where static finite element analysis is conducted centered on the strain levels in the 

lamina cribrosa.  The authors provide a literature review of material candidates that 

are very approximate and averaged.  Unfortunately, some of these small, delicate 

structures have little information on mechanical properties, so substitutes are used.  

For example, the neural tissue in the optic nerve is approximated by brain and spinal 

cord tissue.  This is perhaps a valid assumption, but only testing can verify this.   

 Inclusion of these materials into a finite element optic nerve is rather crude to 

only consider the optic nerve a tether in this case.  Simplifying the optic nerve 

components adversely affects the overall kinematics of the eyeball by stiffening the 

motion.  The optic nerve does not behave totally as a slack tether despite the apex 

fixation allowing translation along the axis of the nerve.  In order to use this model, 

complexity needs to be introduced into the optic nerve so that the structure is more 

compliant.  This would involve building the dura, cerebral fluid layer, pia layer, 

arachnoid layer, and optic nerve tissue.  Specifically, just posterior the ONH, the 
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optic nerve is bulbous with a greater amount of fluid between the sheath and nerve 

tissue (Hayreh, 1984).  This would create a more narrow and compliant interface to 

the eye globe.  However, the current model considers the materials and model build 

up from Sigal et al. with modifications to the outermost pia layer so that it is more 

representative of the dura.  This would also add stiffness to the nerve sheath.  

Therefore, there is more confidence with the analytical optic nerve model as this was 

derived from previous dynamic models and previous measurements of the overall 

response. 

 The next parameterized material is the fatty tissue.  Surprisingly, the eye globe 

kinematics are more sensitive to the different optic nerve models considered; 

however, there are higher forces associated with the more compliant Samani and 

Plewes (2004) material properties for the harmonic shaking.  Unfortunately, this same 

material was too compliant in the impact simulations, so the stiffer Verver (2004) 

material is also considered. 

 One of the most important structures to consider is the vitreous body.  At birth 

and early stages of life this vitreous body is very gelatinous and tenaciously attached 

to the retina (Levin, 2000).  Most studies consider this material viscoelastic 

(Bettelheim & Wang, 1976; Tokita, Fujiya, & Hikichi, 1984; Lee, Litt, & 

Buchsbaum, 1994; Nickerson et al., 2005); however these studies did not consider 

finite element analysis with Lagrangian meshes.  For gentle eye motions these 

materials would perform reasonably well but are simply too compliant to use in a 

violent motion of the eye.  In addition, there is debate regarding the inappropriate 

handling and testing of these delicate structures (Nickerson et al., 2005).  The vitreous 
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determination from Weber and Landwehr (1982) approached the vitreous in a non-

invasive manner and postulated the material as “rubber-elastic.”  No other study since 

as made such a conclusion; however, the material performance is stable in violent 

simulations.  The only other option would be to model the vitreous using a bulk 

modulus in a hydrostatic formulation (Uchio et al., 1999; Stitzel et al., 2002).  

However, the current study only considers the material from Weber and Landwher.  

One of the pinnacle advancements that could be made to this model is to have 

material testing on infant vitreous, as this material is physiologically different from 

adults and would certainly affect the retinal-choroid layer.   

 Very little information is given about the retina and choroid, and this is the 

first model to include these structures in a dynamic finite element model.  Currently, 

the model considers the retina and choroid to have uniform thickness with 

homogenous elastic properties.  These assumptions are based on very limited 

mechanical property studies.  Of interest is the retinal adhesion studies which give 

force values ranging from 0.1 to 0.14 N (Zauberman & deGuillebon, 1972; Kita & 

Marmor, 1992).  These studies are useful for understanding the current retinal forces- 

assuming that these forces are appropriate for infant retina.   

 The motion studies for shaken baby syndrome are well quantified (Duhaime et 

al., 1987; Morison, 2002) and provide a continuation.  In fact, the infant brain model 

from Morison addresses further work in this area would include the eye model for 

study of retinal hemorrhaging.  Therefore, using the same harmonic shaking motion 

would seem appropriate.  Also important to consider are impact studies.  As diagnosis 

of shaken baby syndrome would directly place caretakers as perpetrators of violence, 
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the most common cover up of shaking would be to say that the infant fell.  However, 

falls less than four feet that cause death are very suspicious (Chadwick et al., 1991).   

 Accidental injuries such as bilateral retinal hemorrhaging have not been able 

to show similar patterns as SBS (Elder, Taylor, & Klug, 1991; Johnson & Braun, 

1993; Reiber, 1993; Duhaime et al., 1996).  Duhaime et al. (1996) provide a unique 

study where an actual accidental injury is witnessed with clinical examination 

allowing for the reproduction of the scenario using a TNO P3/4 (MADYMO, 2004) 

child dummy, representing a 9-month-old child.  As the clinical examination states 

there was indication of retinal hemorrhaging in the left eye with blood over the left 

hemisphere of the brain.   

 Considering the retinal forces in the simulation, they are not high enough for 

retinal detachment in the Kita and Manor study assuming adhesive strength is the 

same as monkeys; however, the lower bound is 0.1 N for rabbit retina and they do 

manage to just breach this bound (Figure 8.20).  What is quite remarkable is the 

comparison of the posterior retinal forces for the shake and impact simulations 

(Figure 8.20).  This is no indication that the current study is validated; however, it 

does provide insight into the mechanisms of possible retinal hemorrhaging and 

supports clinical observations further bolstering the fact that shaking without impact 

causes injury in infants. 
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CHAPTER IX 

CONCLUSIONS    

 

 

Modeling Assumptions  

 A comparison is presented between various vitreous materials from the 

literature.  From this important review, as presented in chapter 7, another layer of 

validity is provided for these materials.  Although some of the testing approaches the 

material as mostly a liquid, one cannot deny that the collagen fiber network inside the 

vitreous should preclude this assumption (especially for the infant vitreous).  Serious 

consideration for likely candidate materials for the shaken baby syndrome and impact 

pulse simulations presented in chapter 8 is given to material studies that try to 

maintain this collagen network.  Also important, constitutive equations that couple 

the deviatoric and hydrostatic stress components need to be ruled out as these 

material behaviors are overruled by the bulk modulus.   

 The viscoelastic properties of the Nickerson et al. (2005) test is attractive in 

that the shear modulus is 30 times greater than other viscoelastic studies.  However, 

the sample is compromised by the preparation method.  In addition, weeping of fluid 

from these samples is reported, which would increase the compliancy.  The work of 

Weber and Landwehr (1982) is promising as inserting a steel sphere into the vitreous 

and controlling the motion via magnetic force maintains the integrity of the sample.  

In addition, Weber and Landwehr assume the vitreous to behave as a “rubber elastic” 

material and determine the stiffness and damping constants.  Chapter 7 compares this 
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material with the viscoelastic materials of Nickerson et al., Bettelheim and Wang 

(1976), and Tokita, Fujiya, and Hikichi (1984).  There is a strong resistance to shear 

that would be transferred to the retinal interface as reported in Levin (2000).  This 

material would be the best fit for modeling the infant vitreous due to this high 

resistance to shear.  Bettelheim and Wang also perform noninvasive methods of 

measuring the vitreous material assuming viscoelasticity.  However, only four data 

points per sample are given, which would not allow for a reliable curve fit.  An issue 

with all these vitreous materials is assuming the material is homogenous, which it is 

not.  However, this is also an issue with the finite element method and needs to be 

understood when interpreting results.  The viscoelastic materials are sensitive to mesh 

density as reported by Brands (2002).   

 Coarseness in the vitreous hexahedral mesh shows a stiffening or resistance to 

shearing strain for the viscoelastic materials.  Comparing the more refined mesh to 

the courser mesh of the Weber material, in chapter 7, shows that this material is 

insensitive to the difference in the mesh density of the two mesh models. 

 Another assumption in the current study is not detailing the anterior chamber 

of the eye.  This is perhaps a minor issue as most of the interest is with the posterior 

region of the eye and is rather far from the anterior chamber.  The vitreous body 

attachment to the anterior lens and ciliary body is fixed and is consistent for adult 

(Wolter, 1961) and infant vitreous (Sebag, 1998).  A special consideration of the 

infant eye is that the vitreous is tenaciously attached to the retinal interface (Levin, 

2000).  This would allow for the assumption that the vitreous and retina share the 

same boundary so that they both share the same nodes in the model.  However, 
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furthering the assumption, the choroid, sclera, and retina share the same nodes.  This 

assumption is based on peeling rate testing performed (Zauberman & Deguillebon, 

1972), where a jerky or quick peeling rate resulted in both the choroid and retina 

peeling off.  Therefore, the bond is considered strong for the current simulation cases 

presented in chapters 7 and 8.   

 However, at slower peeling rates the retina removes smoothly from the 

choroid.  Test cases are considered where the retina may detach from the choroid in 

chapter 8.  Using retina adhesion studies (Kita & Marmor, 1992), a possible means of 

modeling the detachment is accomplished by using a node-node weld method.  

Unfortunately, this method required moving the retina from the choroid so that the 

distance between the nodes is greater than zero.  A single weld is analogous to a rod 

attached to one spherical joint (retina node) to another spherical joint (choroid node).  

This would not be an appropriate way to model the detachment.  A better way would 

be to allow the nodes to be coincident and a force or stress applied that will remove 

the retina from the choroid- a delamination method.   

 The retina and choroid also assume a constant thickness and are homogenous 

elastic materials that act as perfect membranes.  These assumptions are carried over 

from other studies that test the elastic properties of the retina and choroid.  The retina 

and choroid are extremely thin structures, so assuming they act as membranes is a 

valid assumption.  The thickness information and elastic assumptions may cause 

problems as assuming a thickness in the materials testing changes the modulus.  Also 

in-vitro studies compromise the thickness and stiffness of the material and may not be 

representative of the actual structures. 
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 The cornea and sclera shell are also considered membranes, although not on 

the same scale as the retina and choroid.  There would be some localized bending 

resistance, especially in the thicker region of the sclera and cornea shell that should 

be considered.  The current eye model assumes that this layer is a membrane, so there 

is no resistance to bending at the immediate attachment of the optic nerve.  This 

causes more deformation in the posterior region of the eye during the shaking 

sequence in chapter 8.  Compounding this deformation is the lack of self-contact 

interactions of the tissue structures.  The self-contact is assumed to be minor 

compared to assuming the shell being a membrane.  The cornea-sclera shell does vary 

in thickness; however, the thickness is defined per element so that a discrete step 

between the elements exists.   

 The optic nerve has been measured in-vivo during surgery (Collins, Scott, & 

O'Meara, 1969) providing stiffness and damping coefficient.  Assuming that the optic 

nerve in this parametric model acts as a simple tether as indicated in Levin (2000) 

provides a means to include the nerve in the dynamic simulation.  Further, confidence 

in this method is provided as the properties have been used in dynamic horizontal eye 

movement studies in the past (Winters, 1985).  An experimental effort is considered 

regarding an optic nerve composed of hexahedral elements for the neural tissue and 

membrane elements for the outer sheath layers.  This idea is adapted from Sigal, 

Flanagan, and Tertinegg (2004), where they considered effects on the laminar 

cribrosa.  Unfortunately, the literature review of the materials used is composed of 

elastic values with an average modulus value assigned.  Further, the current model 

uses a simplified version of the optic nerve geometry in order to maintain the idea of 
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a simple tether.  However, as a result, the optic nerve using the hexahedral elements 

results in an over stiffening of the eye globe response and equally resists compression 

as well as tension.  The analytical model based on specifying the stiffness and 

damping coefficient allows the specification of tension resistance with no resistance 

to compression that is consistent with allowing slack in the nerve as reported in Levin 

(2000).  In order to use the finite element nerve based on the work of Sigal et al., it 

would be necessary to introduce complexity into the model so that the bulbous 

anterior nerve is modeled (Hayreh, 1984) just posterior the sclera shell attachment.  

This would also have to include a way to model the cerebral fluid between the dura 

and nerve tissue.   

 The muscles used in the current model use a Hill-type formulation with 

variables provided by Winters (1985) for horizontal motion.  These values are based 

on an adult eye and not an infant eye.  The assumption is made here that the adult 

extra-ocular muscles would have the same fiber composition as the infant extra-

ocular muscles and are set to be the same.  Currently, there exists no study that 

describes the material properties or Hill-type parameters for the infant eye.  In 

addition, an assumption is made that all six muscles have the same Hill-type 

parameters.  This assumption is acceptable in chapter 7, as all the other muscles are 

made passive allowing the lateral rectus and medial rectus to move the eye in a 

saccade.  In chapter 8, all the muscles are considered passive as mentioned in Levin 

(2000) during a shake.  These muscles are also made passive for the impact pulse case 

as well.   
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 Distributing the muscle force are the membrane tendons that are attached to 

the eye globe.  This provides a more realistic method of distributing the force to the 

sclera shell than applying point attachments.  In addition, contact interaction between 

the tendon and sclera is specified to account for the muscle wrapping the eye during 

eye rotations.  This is realized more in the vitreous studies in chapter 7 where a 20° 

saccade is induced.  This contact interaction may not be as important in the impact 

case presented in chapter 8.  The contact between the tendon and sclera shell would 

have more influence in the shaking sequence however.   

 The eye model is completely encased in the fatty tissue and eyelid with 

material properties compared from tissue samples from various studies presented in 

chapters 6, 7, and 8.  No study has been done that measures the mechanical properties 

of the orbital fat.  However, Luboz et al. (2004) did compare their tissue model with 

actual globe depression measurements and are able to predict tissue decompression in 

orbital surgery.  A material that is comparable in stiffness to the Luboz et al. study is 

the work of Verver (2004).  Verver determined the hyperelastic coefficients of fatty 

tissue for buttocks comfort analysis based on an average of reported values in 

theliterature.  These values are used and compared with Samani and Plewes (2004) in 

chapter 8.  The Samani and Plewes study used material properties from breast tissue 

samples and determined the hyperelastic coefficients.  This material is too compliant 

for the impact simulation in chapter 8 but can be utilized in the shaking sequence.  

The most reliable material to use for the fatty tissue is the Verver or Luboz material 

presented in chapter 6, 7, and 8.  In this study, the Verver material, which is based on 

average values of fatty tissue, is chosen.   
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 The orbital fat is directly supported by the ocular cavity as in Luboz et al. and 

Power (2001).  However, during severe simulations this could present a potential 

problem by either adding falsely to the stiffness of the material or causing element 

shape deformations that are unrealistic at the ocular cavity wall.  Using the 

hyperelastic material and considering Luboz et al. are able to perform a validation 

using this support, this study considers the support assumption acceptable for the 

current motions applied.   

 The contact interaction is also specified between the fatty tissue and cornea-

sclera shell.  There is no information regarding the contact and what friction forces 

would be between the two tissues.  However, it is assumed that the friction would be 

zero, as the fatty tissue would provide a slick surface to the moist eye globe and allow 

for little resistance during the quick eye movements.  This assumption is based more 

on intuition. 

 A summary of modeling assumptions with support for the first version infant 

eye model is discussed.  Based on the assumptions, the model that utilizes the 

analytical optic nerve, Weber vitreous body, and Verver fatty tissue is chosen for the 

initial modeling effort.  Without conducting a parameter study by applying various 

force conditions and modeling conditions, it would be impossible to choose, with 

confidence, a preliminary model that can be potentially useful in investigating 

posterior retinal forces in impact and pure shaking motions. 
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Conclusions 

 The motivation of this research is to continue the biomechanical modeling of 

shaken baby syndrome from the bridging vein studies of Morison (2002) in order to 

investigate retinal hemorrhages.  Several eye models have been investigated in the 

past and provide a starting point for this research.  Unfortunately, these simulations 

(Uchio et al., 1999; Power et al., 2002; Stitzel et al., 2002) concentrate on direct 

trauma to the cornea and sclera shells.  Assumptions for these types of simulations are 

quite different than those for runs that deal with indirect trauma through kinematics 

between the soft ocular tissues and surrounding structures.  Assuming only a bulk 

modulus property or a pressure state for the vitreous may not capture the behavior at 

the retinal-vitreous boundary, as is the scope of this effort.  Immediately apparent is 

the fact that the vitreous body is an extremely important, prominent, and complex 

structure of the eye.  Modeling this structure that occupies 4/5th of the eye globe 

presents a problem due to materials testing showing the vitreous to have low shear 

strain moduli with a high bulk modulus.  Applying the finite element method using 

Lagrangian meshes causes severe shape deformation for the viscoelastic materials.   

 Literature review highlights the highly sensitivity of determining the material 

properties of this structure.  How can one group present values below 1 Pa for the 

shear modulus (Bettelheim & Wang, 1976) while another reports values in excess of 

30 Pa (Nickerson et al., 2005)?  One could ascertain that one group mishandled the 

tissue or improperly conducted the experiment.   

 Another issue is assuming a constitutive model for the vitreous.  Although 

many maintain the vitreous as viscoelastic, there are variations on the actual 
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viscoelastic model.  Lee, Litt, and Buchbaum (1992) perform creep test and fit the 

vitreous behavior to a Burger’s model while Weber and Landwher (1982) perform 

oscillatory tests and fit the behavior to an elastic Voigt-Kelvin model.  Which is 

correct?  In this case, they both utilize small steel spheres into the vitreous so that the 

integrity of the complex collagen fiber network is maintained as opposed to 

Nickerson et al. and Tokita, Fujiya, and Hikichi (1984) who remove the sample and 

prep for testing.  Finally, the infant vitreous is reported to be more viscous 

(Zimmerman, 1980) than the adult and no group has investigated the material 

properties of human infant vitreous.   

 This work leads into the actual force mechanism investigation of shaken baby 

syndrome and impact dynamics.  A full-featured eye model with complete 

surrounding boundary tissues is presented with harmonic oscillatory shaking applied.  

The manner of the shake is extremely violent and is derived from Morison (2002) and 

Duhaime et al. (1996).  The investigative study addresses retinal forces to the 

posterior retina in an infant eye and provides some supportive results to previous 

clinical studies when compared to a well-documented impact due to a fall.  This study 

provides a reasonable correlation to clinical assessments on shaken baby syndrome in 

that pure shaking is enough to cause retinal forces that may be consistent with 

hemorrhaging.  Comparing an impact pulse to a pure shake, in chapter 8, illustrates 

that there are considerably higher retinal forces and a greater bandwidth of these 

forces in the pure shaking case regardless of knowing the magnitude of force needed 

for retinal damage.    
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 In addition, this entire work provides parameter studies comparing previously 

reported values for the optic nerve, fatty tissue, and vitreous body, allowing for an 

increase in confidence when choosing a particular model.  Further, these simulations 

provide a tool for highlighting possible trouble areas due to invalid assumptions by 

examining the model behavior under long time durations under physiological or near 

physiological loading conditions –something that has not been done before. 

 

 

Further Work 

 This research effort involves building a preliminary model of the infant eye 

and surrounding tissues.  In order to further the predictive reliability of such a model, 

material testing needs to be done on infant tissue even though this is controversial.  

The vitreous body of the infant needs to be tested so that material parameters can be 

refined to use in the infant eye model.  Testing the vitreous body to capture material 

properties is not an easy process and, as the literature shows, not a consistent process.  

Perhaps there needs to be a new method of determining the material properties of the 

vitreous.  Certainly, using the method of Weber and Landwehr (1982) for the infant 

vitreous would be interesting in order to compare it to current published values.   

 Currently, the optic nerve uses a simple analytical spring model to represent a 

tether to the eye globe.  This is an acceptable assumption until there is a desire to see 

forces and stresses in the actual optic nerve sheath.  Levin (2000) does report 

hemorrhaging in the optic nerve sheath as well.  In order to assess forces in the optic 
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nerve, material parameters and the cerebral fluid layer need to be included in the 

model.   

 The current eye model considers the cornea and sclera to be a membrane.  

This assumption is maintained through several studies.  However, when considering 

localized stress concentrations and bending, this assumption may not be as valid.  The 

more correct way to model the outer most cornea-sclera shell would be to use solid 

elements with triaxial stress-strain characteristics included so that there is slight 

resistance to bending.  This triaxial stress-strain characteristic would also better 

approximate the collagen fiber alignment in the shell (assuming that the fibers are 

aligned in an orthotropic manner).   

 Concerning the shaking sequence and impact in chapter 8, the dynamics of an 

actual cadaver (infant or adult) would be very useful in comparing the behavior of the 

optic nerve tether with the muscles attached to the eye globe.  This could be achieved 

by tracking the motion of these structures. 

 

 

Final Thoughts 

 When building a mathematical model to model a complex biological structure, 

there are several variables that need to be considered.  In addition, complexity 

introduced into the model needs to be scrutinized, as additions may look more 

believable but need justification (Morison, 2002).  Initial complexity added to the 

model caused bizarre behavior and needed removal (i.e. adding an eyelid opening 

caused instability with contact interaction).  Each chapter provided in this work is 
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done in such a way that the reader hopefully understands all the details that went into 

the model.  All aspects are important- from geometrical modeling to mesh creation to 

the detailed parameter studies of the ocular components.  While this research is not a 

validation study, it does provide some insight into the modeling of the infant eye and 

supports clinical assessments that pure shaking is more injurious then impact alone.  

This work provides a continuation from Morison where mention of further 

refinements into biomechanical modeling of SBS would include eye modeling with 

retinal hemorrhaging.    
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APPENDIX A 
 

ANIMATION SEQUENCE FOR SACCADIC STUDIES 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.1:  Sequence of using Weber vitreous material with elastic constitutive model.  Eye model is the 

CUBIT mesh using the analytical spring optic nerve. 
 

 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.2:  Sequence of frames using the Nickerson (x5) vitreous with REF constitutive model.  Eye 

model is the CUBIT mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.3:  Sequence of frames using Bettelheim vitreous material with REF constitutive model.  Eye 

model is the CUBIT mesh using the analytical spring optic nerve. 
 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.4:  Sequence of frames using Tokita vitreous material with REF constitutive model.  Eye model 

is the CUBIT mesh using the analytical spring optic nerve. 
 



   342

 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.5:  Sequence of frames using Power vitreous material with REF constitutive model.  Eye model 

is the CUBIT mesh using the analytical spring optic nerve. 
 

 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.6:  Sequence of frames using Weber vitreous material with elastic constitutive model.  Eye model 

is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.7:  Sequence of frames using Nickerson (x5) vitreous material with REF constitutive model.  Eye 

model is the manual mesh using the analytical spring optic nerve. 
 

 
 

 
t =10 ms t = 20 ms t = 30 ms 

  

X 
t = 40 ms t = 58 ms instable after 58 ms 

 
Figure A.8:  Sequence of frames using Bettelheim vitreous material with REF constitutive model.  Eye 

model is the manual mesh using the analytical spring optic nerve. 
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t =10 ms t = 20 ms t = 30 ms 

  

X 
t = 40 ms t = 48 ms instable after 48 ms 

 
Figure A.9:  Sequence of frames using Tokita vitreous material with REF constitutive model.  Eye model 

is the manual mesh using the analytical spring optic nerve. 
 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.10:  Sequence of frames using Power vitreous material with REF constitutive model.  Eye model 

is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.11:  Sequence of frames using Nickerson (x5) vitreous material with CPL constitutive model.  

Eye model is the manual mesh using the analytical spring optic nerve. 
 

 
  

t =20 ms t = 40 ms t = 60 ms 

  
 

t = 80 ms t = 120 ms t =180 ms 
 

Figure A.12:  Sequence of frames using Bettelheim vitreous material with CPL constitutive model.  Eye 
model is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.13:  Sequence of frames using Tokita vitreous material with CPL constitutive model.  Eye model 

is the manual mesh using the analytical spring optic nerve. 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.14:  Sequence of frames using Power vitreous material with CPL constitutive model.  Eye model 

is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.15:  Sequence of frames using Nickerson (x5) vitreous material with SOF constitutive model 

(FNLS = 0.01).  Eye model is the manual mesh using the analytical spring optic nerve. 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.16:  Sequence of frames using Nickerson (x5) vitreous material with SOF constitutive model 

(FNLS = 0.1).  Eye model is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.17:  Sequence of frames using Nickerson (x5) vitreous material with SOF constitutive model 

(FNLS = 1.0).  Eye model is the manual mesh using the analytical spring optic nerve. 
 

 
  

t =20 ms t = 40 ms t = 60 ms 

  
 

t = 80 ms t = 120 ms t =180 ms 
 

Figure A.18:  Sequence of frames using Nickerson (x5) vitreous material with SOF constitutive model 
(FNLS = 5.0).  Eye model is the manual mesh using the analytical spring optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.19:  Sequence of frames using Nickerson (x5) vitreous material with SOF constitutive model 

(FNLS = 10.0).  Eye model is the manual mesh using the analytical spring optic nerve. 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.20:  Sequence of using Weber vitreous material with elastic constitutive model.  Eye model is the 

CUBIT mesh using the FE Sigal optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.21:  Sequence of using Nickerson (x5) vitreous material with REF constitutive model.  Eye 

model is the CUBIT mesh using the FE Sigal optic nerve. 
 
 

   
t =20 ms t = 40 ms t = 60 ms 

 
  

t = 80 ms t = 120 ms t =180 ms 
 

Figure A.22:  Sequence of frames using Weber vitreous material with elastic constitutive model.  Eye 
model is the manual mesh using the FE Sigal optic nerve. 
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t =20 ms t = 40 ms t = 60 ms 

   
t = 80 ms t = 120 ms t =180 ms 

 
Figure A.23:  Sequence of frames using Nickerson (x5) vitreous material with REF constitutive model.  

Eye model is the manual mesh using the FE Sigal optic nerve. 
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APPENDIX B 
 

ANIMATION SEQUENCE FOR PURE SHAKING AND IMPACT 

SIMULATIONS 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.1:  Animation sequence of pure shaking simulation using the analytical nerve with the Samani & 

Plewes (2004) fatty tissue. 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.2:  Animation sequence of pure shaking simulation using the analytical nerve with the Verver 

(2004) fatty tissue. 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.3:  Animation sequence of pure shaking simulation using the analytical nerve with the Samani & 

Plewes (2004) fatty tissue and retinal welds. 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.4:  Animation sequence of pure shaking simulation using the analytical nerve with the Verver 

(2004) fatty tissue and retinal welds. 



   357

 
1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.5:  Animation sequence of pure shaking simulation using the Sigal et al. (2004) nerve with the 

Samani & Plewes (2004) fatty tissue. 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.6:  Animation sequence of pure shaking simulation using the Sigal et al. (2004) nerve with the 

Verver (2004) fatty tissue. 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.7:  Animation sequence of pure shaking simulation using the Sigal et al. (2004) nerve with the 

Samani & Plewes (2004) fatty tissue and retinal welds 
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1st Cycle 

  
t = 0 ms t = 62 ms t = 125 ms t = 187 ms t = 250 ms 

     
2nd Cycle 

  
t = 250 ms t = 312 ms t = 375 ms t = 437 ms t = 500 ms 

     
3rd Cycle 

  
t = 500 ms t = 562 ms t = 625 ms t = 687 ms t = 750 ms 

     
4th Cycle 

  
t = 750 ms t = 812 ms t = 875 ms t = 937 ms t = 1000 ms 

 
Figure B.8:  Animation sequence of pure shaking simulation using the Sigal et al. (2004) nerve with the 

Verver (2004) fatty tissue and retinal welds 
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t = 0 ms t = 5 ms t = 10 ms 

   
t = 15 ms t = 50 ms t = 100 ms 

 
Figure B.9:  Animation sequence of impact pulse using the analytical nerve with the Verver (2004) fatty 

tissue. 
 
 
 

   
t = 0 ms t = 5 ms t = 10 ms 

   
t = 15 ms t = 50 ms t = 100 ms 

 
Figure B.10:  Animation sequence of impact pulse using the Sigal et al. (2004) nerve with the Verver 

(2004) fatty tissue. 
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APPENDIX C 
 

RECONSTRUCTION OF AN EYE MODEL BASED ON PREVIOUS 

WORK 
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Finite Element Eye Model and Testing 

 Currently, studies are conducted on the assembly of an eye model based on 

Power’s (2001) eye model.  Fortunately, Power includes the abridged input file 

(MADYMO, 1999) (mesh data excluded).  Using the material properties and 

thickness information, a reconstruction of a finite element eye is made using the 

Power thesis as a guide.  Power constructed the eye based on geometrical information 

from Woo et al. (1972).  Using the same technique (Figures C.1, C.2, and C.3), an eye 

mesh is constructed manually by observing screen shots from the Power thesis so that 

the element placement would be approximately the same.  As a check, the number of 

elements and nodes are compared to the Power tabulated summary to make sure the 

totals match.   Figure C.3 describes the mesh that is comparable to the Power model.  

The cornea and sclera vary in thickness as seen in the sagittal view (Figure C.1).  

Therefore, a distribution of thickness is represented (Figure C.3) by the various color 

variations.  Unfortunately, MADYMO only allows a uniform thickness along an 

element, so there are discrete steps in thickness from one radial mesh strip to the next; 

this is pointed out as a limitation in the Power model as well.  Likewise, the vitreous, 

aqueous humor, lens, and ciliary body are created using figures from the Power thesis 

as a visual guide. 
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Figure C.1: Construction of cornea and sclera based on Woo et al. (1972). 
 

 

 

 

Figure C.2:  Surface creation of cornea and sclera creation from the construction curves in Figure C.1. 
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Figure C.3: Manual construction of the mesh data of the cornea and sclera based on Power. 

 

 

The assembled eye (Figures C.4, C.5 and C.6) is comparable to the Power model and 

the summary of the finite elements is tabulated (Table C.1) below. 

 

 

Table C.1: Summary information of the finite element eye mesh matching the Power model. 
 

Component Element Type Element Amount Node Amount 

Cornea Membrane 64 41 

Sclera Membrane 400 193 

Lens Membrane 16 10 

Ciliary Body Membrane 32 32 

Aqueous 8-node Solid 72 123 

Vitreous 8-node Solid 80 125 
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Figure C.4: Completed Eye mesh showing the cornea sclera. 
 

 

 

 

Figure C.5: Inside of the eye structure showing sagittal view of the lens and ciliary body. 
 

 

 

 

Figure C.6: The vitreous body is shown inside the posterior end of the eye (sagittal view). 
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Twelve discrete layers of the cornea and sclera structure are assigned thickness to 

approximate the dimensions in Figure C.4.  The thickness for each is tabulated (Table 

C.2) starting with the apex on the anterior pole and going back to the posterior pole. 

 

 

Table C.2: Cornea and sclera thickness distribution. The color of each layer is referenced from Figure C.4. 
 

Location Layer Color Thickness 

Corneal apex Green 0.52 mm 

2nd radial shell strip Magenta 0.59 mm 

3rd radial shell strip Cyan 0.66 mm 

Limbus White 0.80 mm 

5th radial shell strip Light green 0.72 mm 

6th radial shell strip Blue 0.63 mm 

Scleral thinning center strip Red 0.55 mm 

8th radial shell strip Purple 0.64 mm 

9th radial shell strip Orange 0.73 mm 

10th radial shell strip Dark Blue 0.82 mm 

11th radial shell strip Yellow 0.91 mm 

Posterior pole Green 1.00 mm 

 

 

 

 The material properties used for the cornea and sclera are adopted from Uchio 

et al. (1999).  Power applied this data to a hysteresis material type to model the non-

linear stress-strain relationship.  Unfortunately, the limitation of using this type of 

material property is that the Poisson’s ratio cannot be specified (MADYMO, 1999).  
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The cornea and sclera stress-strain is displayed in Figure C.7.  The density is 

estimated from Power to be between water (999 kg/m3) and collagen (1800 kg/m3) 

and is set to 1400 kg/m3.   
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Figure C.7: Cornea and Sclera non-linear stress-strain adapted from Uchio et al. (1999). 
 

 

 

 The lens is made rigid as Power explains the initial study does not consider 

deformation of the lens.  The ciliary body is specified as a tension only muscle with 

properties approximated from rat-tail tendon (Power).  The values for this isotropic 

assumption are 5E6 Pa for the modulus of elasticity and 0.4 for the Poisson’s ratio 

and 1600 kg/m3 for the density.   
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 Power models the fatty tissue of the orbital socket using properties (Todd & 

Thacker, 1994) that are isotropic and elastic.  The values are 0.047E6 Pa for the 

Young’s modules, 0.49 for Poisson’s ratio (incompressible material), and the density 

is set equal to water.  This value for the fatty tissue is extrapolated to the aqueous 

humor and vitreous body.  Power approximates the Young’s modulus for the aqueous 

humor to be 0.037E6 Pa or about 21% lower than the fatty tissue.  Further, Power 

approximates the Young’s modulus for the vitreous to be 0.042E6 Pa or about 11% 

lower than the fatty tissue.  The aqueous humor is more fluid than the gel-like 

vitreous (Wolter, 1961), so Power justifies the arbitrary assignments.  However, no 

mention of why the material is made a derivative of the fatty tissue is mentioned. 

 Contact interactions in the model are made between all the structures.  In the 

model, contact is made with the gel like vitreous and the posterior chamber made up 

of the sclera and the posterior end of the ciliary body and lens.  The aqueous contacts 

the anterior chamber made up of the cornea and anterior side of the ciliary body and 

lens.   

 When testing the simulation of the eye, the vitreous and aqueous would not 

stay within the defined chambers.  In MADYMO version 5.4, nodes of one system 

contact the element surface of another.  Therefore, the aqueous nodes would contact 

the element surface of the ciliary body.  However, if the nodal coordinate information 

is coincident or located on the edge of an element, the contact is not recognized 

(MADYMO).   

 Therefore, deviating from Power, the nodes around the perimeter of the ciliary 

body that share a common node with the sclera (Figure C.8) had to be changed.  The 
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ciliary body and lens were scaled down by 0.5% and the node that once was shared 

was duplicated.  The new node location is simply constrained to the once common 

node of the sclera so that the simulation remains the same and allows the node of the 

aqueous, which is also rotated about the sagittal plane by 0.5 degrees, to have a solid 

contact with the ciliary element surface (Figure C.9).  Similar modifications had to be 

done to the vitreous as well to ensure good contact.  There is no mention of this issue 

with the Power model. 

 

 

 

 

Figure C.8: Before modifying the common node of the ciliary and sclera. 
 

 

Common node 
between the sclera and 

ciliary body 
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Figure C.9: After modifying, the two separate nodes now are simply constrained. 
 

 

 

 Power et al. (2002) validate the finite element eye model by impacting the eye 

with a baseball (Vinger, Duma, & Crandall, 1999) and a steel rod (Scott et al., 2000).  

The model is able to predict globe rupture with the baseball, but it did not produce 

rupture with the rod.  A similar test is conducted where the fatty tissue from Todd and 

Thacker is used to hold the eye in place (Vinger et al.).  Then a baseball (Figure C.10) 

with properties determined from Stitzel et al. (2002) is given an initial velocity of 

24.7 m/s (mentioned in Power et al.).  Unfortunately, major instability occurred after 

only a few milliseconds of impact.  Could this be the failure of the eye that Power et 

al. is referring to?  Further analysis needs to be done with this scenario before 

assumptions are made to make sure the model is behaving as intended.   

 Using this same test apparatus (Vinger et al.), a steel rod (Figure C.11), 

reported by Power et al. to have a diameter of 9.53 mm and mass of 45.5 g (Scott et 

The node is now 
separated and joined 
with a simple constraint 
relationship 
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al.), is given an initial velocity of 4 m/s and impacts the eye.  The simulation is stable 

until 12 milliseconds into the run.  The eye rebounds after nine milliseconds because 

of the elastic and isotropic property assigned to the fatty tissue.  Therefore, the 

simulation is only valid up to this nine millisecond run.  Figures C.12 and C.13 show 

the animation sequence at various time stamps.  Energy is stored in the fatty tissue, 

and at nine milliseconds the stored energy is released pushing the eye outwards.  The 

von Mises stress is visualized for the same time stamps (Figures C.14 and C.15) with 

an oblique view (Figures C.12 and C.13) of the eye for clear visualization of the peak 

stress in the cornea.  Since Uchio et al. (1999) measured the non-linear properties of 

the cornea and sclera up to failure, the results for the rod impacting the eye are in 

disagreement with the Power et al. assessment.   

 However, since the simulation for the baseball impact needs to be 

investigated, the results should be considered preliminary for the steel rod simulation 

as well.  Nevertheless, the values of each of the times reflected in Figures C.14 and 

C.15 are tabulated below (Table C.3).  As can be seen, the cornea limit from Uchio et 

al. (1999) is 9.54E6 Pa.  However, at five milliseconds the peak stress comes very 

close to this limit until it is breached at 7.01 milliseconds with a value of 1.1E7 Pa 

(13% higher than the failure value). 
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Figure C.10: Baseball testing apparatus (transverse view). 
 

 

 

Table C.3: Rod impacting the eye globe von Mises stress results. 
 

Time Stamp Stress Proximity Location von Mises Stress Value 

0 msec n/a 0 Pa 

1.5 msec Corneal Apex 1.2E7 Pa 

3 msec Corneal Apex 3.8E6 Pa 

5 msec Cornea close to Limbus 9.4E6 Pa 

7.01 msec Cornea close to Limbus 1.1E7 Pa 

9.01 msec Cornea close to Limbus 6.6E6 Pa 
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Figure C.11: Cylindrical Rod testing apparatus (transverse view). 
 

 

 

 

 

Figure C.12: Animation sequence at times 0, 1.5, & 3 msec (transverse view). 
 

 

 

 

 

Figure C.13: Animation sequence at times 5, 7.01, & 9.01 msec (transverse view). 
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Figure C.14: Animation sequence at times 0, 1.5, & 3 msec (oblique view stress contour). 
 

 

 

 

 

Figure C.15: Animation sequence at times 5, 7.01, & 9.01 msec (oblique view stress contour). 
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