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ABSTRACT 

CAFFEINE MODEL IDENTIFICATION FOR VIGILANCE 
PERFORMANCE PREDICTION 

Chun-Hui Huang 
Old Dominion University 

Director: Dr. Jen-Kuang Huang 

The pharmacodynamics and pharmacokinetics of caffeine have been well 

characterized. In this study, a caffeine dynamic model is developed to describe its 

pharmacodynamic effects on vigilance performance. Validated biomathematical models 

developed to address both individual and group fatigue and alertness in a non-laboratory 

setting represent a tremendous commercial opportunity. First, a test data set with caffeine 

effects isolated from circadian and homeostatic effects is created. Then a modeling 

approach for input and output effects is developed and different model structures for the 

caffeine effects are considered. Observer/Kalman filter Identification (OKTD) algorithm 

is proposed and developed to identify the caffeine model from the created input/output 

data. The identified caffeine model is then tested to fit for the test data. In this caffeine 

model, five system parameters [alia2,cl,c2,d0'\ can be identified by using the proposed 

OKID algorithm. Identification of the individualized caffeine model shows that the first 

two coefficients [alfa2] have small variations for users of both low and high amounts of 

caffeine among all doses. The 100 mg model has a statistically higher caffeine response 

as compared to the response of the 200 mg or 300 mg models based on the individualized 

caffeine models identified from test data. The result also shows that users of both low and 



high amounts of caffeine users have comparable responses based on the 100 mg model. 

However, the responses of the 200 mg or 300 mg models show that users of high 

amounts of caffeine have a statistically higher response to caffeine. In conclusion, the 

results suggest that the caffeine dosage and habitual usage do not have much impact on 

the individualized caffeine model dynamics, and the proposed individualized caffeine 

model can be modified by adding a dose factor to the input of the model to improve the 

prediction of the performance of other caffeine doses. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Sleep deprivation and circadian misalignment occur frequently in military and labor 

operations, particularly during sustained operations and when multiple time zones are 

crossed during deployment. While sleep loss progresses, changes in performance and 

alertness occur in response to both increasing homeostatic sleep drive and circadian 

variation, resulting in an accumulation of performance deficits over time, superimposed 

on circadian modulation. Caffeine is a commonly used stimulant, known to alleviate the 

effects of sleep deprivation and fatigue. The pharmacodynamics and pharmacokinetics of 

caffeine have been well characterized. It is rapidly absorbed after oral dosing, and 

extensively metabolized. In military operations involving round-the-clock missions and 

travel across multiple time zones, biomathematical caffeine models of human 

performance have potential as tools for predicting, analyzing, and estimating the dose 

effect and habitual effect on the fatigue and performance of sleep-deprived soldiers. 

Validated biomathematical models developed to address both individual and group 

fatigue, sleepiness, and performance in non-laboratory settings represent a tremendous 

commercial opportunity. There is an articulated need to quantify the risks associated with 

worker fatigue, optimize schedules and procedures, and apply appropriate fatigue 

countermeasures to ensure acceptable levels of operational performance and safety. 
* Methods in Enzimology of Academic Press was used as format model for this dissertation 
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Applications based on the tools in this research can help meet these needs, particularly in 

areas where human performance has important safety implications, such as military 

operations, air travel, emergency health care, shift work, etc. Therefore, it is essential to 

design biomathematical model development and system identification techniques, and 

develop a comprehensive set of caffeine model structures from both group and individual 

data sets. This approach allows a broad range of possible models to be analyzed and 

predicted. The data sets are from the U.S. Department of Defense, involving subjects 

repeating for one night total sleep deprivation conditions with caffeine doses 

administered through the night. 

1.2 Objective 

The objective of this research is to develop pharmacodynamic and forecasting 

models of caffeine administration as fatigue and performance countermeasures using a 

dynamic, individualized modeling framework. Models are developed that combine 

parameters such as dosage and administration timing with caffeine-related individual 

traits and habituation factors related to recent daily caffeine consumption. The research 

focuses on caffeine consumed in gum form. This modeling approach therefore starts with 

a comparative assessment of a range of model structures of various orders. Following 

testing, the most effective and parsimonious of the models is selected for subsequent 

integration with the Observer / Kalman Filter Identification (OKID) model. It is shown 

that the proposed individualized caffeine model can be modified by adding a dose factor 

to the input of the model to improve the prediction for the performance of other caffeine 

doses. 
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1.3 Dissertation Outlines 

In this study, a caffeine dynamic model is developed to describe its 

pharmacodynamics effects on vigilance performance. First, a test data set with caffeine 

effects isolated from circadian and homeostatic effects is created. Then a modeling 

approach for input and output effects is developed and different model structures for the 

caffeine effects are considered. A system identification algorithm called 

Observer/Kalman filter Identification (OKID) is proposed and developed to identify the 

caffeine model from the created input/output data. The identified caffeine model is then 

tested to fit for the test data. 

From the identified caffeine models, the effect of input noise and the model order on 

the modeling error is evaluated and an optimal model order is selected. After considering 

several model structures, an optimal caffeine model is recommended. Suitable caffeine 

parameters for individualization are identified. Based on the individualized models 

identified, the predicted caffeine performance for different caffeine dose and habitual 

caffeine usage is investigated. Finally, from the study of the group average and 

individualized caffeine-only test data, a state-space caffeine model in controllable 

canonical form is proposed for future study to merge into a two-process model with 

circadian and homeostatic effects. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Caffeine Effects 

It is well known that caffeine has effects on human behavior such as alertness, mood, 

mental performance and sleep. The effects of low doses (75 mg and 150 mg) of caffeine 

on mood and cognition in healthy people were evaluated, with minimal abstinence from 

caffeine of 1 hour. Improvements were obtained in cognition for attention, problem 

solving and delayed recall, but not immediate recall or working memory, but 

performance in the placebo condition was close to the maximum, giving little margin for 

improvement. For mood, there were statistically significant increases in clear-headedness, 

happiness and calmness and decreases in tenseness. These mood and performance-

enhancing effects of caffeine cannot be seen as representing an alleviation of deficits 

induced by caffeine abstinence, because there was only minimal deprivation from 

caffeine (Warburton, 1995). In addition, the effects of caffeine on sleep inertia, which is 

the ubiquitous phenomenon of cognitive performance impairment, are that grogginess 

and tendency to return to sleep immediately after awakening. Caffeine was efficacious in 

overcoming sleep inertia. Caffeine's main mechanism of action on the central nervous 

system is antagonism of the adenosine receptor. Thus, increased adenosine in the brain 

upon awakening may be the cause of sleep inertia (Van Dongen et al., 2001). The ability 

of high doses of caffeine is assessed to reverse changes in alertness and mood produced 

by prolonged sleep deprivation (Penetar et al., 1993). In fact, there is little evidence 
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concerning the effects of caffeine in doses typical of one cup of tea. Durlach's study 

investigated the effect of 60 mg caffeine, consumed in either tea or hot water, on 

performance. The four beverages were created by crossing beverage identity (tea or hot 

water) and caffeine dose (0 or 60 mg). Significant speeding of reaction time by caffeine 

consumption was found in pattern recognition, delayed match to sample, and match to 

sample visual search. The effect on reaction time of 60 mg caffeine can be detected, and 

may be evident within minutes of consumption. Despite objective reports of immediate 

beneficial effects of consumption, most research has postponed measurement to coincide 

with peak plasma caffeine levels. The study was to investigate the effects of consuming a 

single cup of tea on a variety of cognitive tests (Durlach, 1998). A review of Lieberman's 

studies examined whether moderate doses of caffeine would reduce the adverse effects of 

sleep deprivation and exposure to severe environmental and operational stress on 

cognitive performance. Even in the most adverse circumstances, moderate doses of 

caffeine can improve cognitive function, including vigilance, learning, memory, and 

mood state. When cognitive performance is critical and must be maintained during 

exposure to severe stress, administration of caffeine may provide a significant advantage 

(Lieberman and Tharion, 2002). Smith's study suggests that the following effects on 

behavior of adult humans may occur when individuals consume moderate amounts of 

caffeine (Smith, 2002). Caffeine increases alertness and reduces fatigue. This may be 

especially important in low arousal situations (e.g. working at night). Caffeine improves 

performance on vigilance tasks and simple tasks that require sustained response. Again, 

these effects are often clearest when alertness is reduced, although there is evidence that 

benefits may still occur when the person is unimpaired. Effects on more complex tasks 
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are difficult to assess and probably involve interactions between the caffeine and other 

variables that increase alertness (e.g. personality and time of day). In contrast to the 

effects of caffeine consumption, withdrawal of caffeine has few effects on performance. 

There is often an increase in negative mood following withdrawal of caffeine, but such 

effects may largely reflect the expectancies of the volunteers and the failure to conduct 

"blind" studies. Regular caffeine usage appears to be beneficial, with higher users having 

better mental functioning. McLellan's study has demonstrated the effectiveness of 

caffeine for maintaining the performance of military tasks during a period of sleep 

deprivation. Vigilance during both a live-fire marksmanship task and in an urban 

operations environment was maintained at control levels when caffeine was ingested 

throughout the evening. The findings support the recommendation that during periods of 

unavoidable sleep loss the use of caffeine can extend the period of operational 

effectiveness during the conduct of military operations (McLellan et al., 2005). 

Most people are very good at controlling their caffeine consumption to maximize the 

above positive effects. For example, the pattern of consumption over the day shows that 

caffeine is often consumed to increase alertness. Indeed, many people do not consume 

much caffeine later in the day since it is important not to be alert when one goes to sleep. 

In contrast to effects found from normal caffeine intake, there are reports that have 

demonstrated negative effects when very large amounts are given or when sensitive 

groups (e.g. patients with anxiety disorders) were studied. In this context caffeine has 

been shown to increase anxiety and impair sleep. There is also some evidence that fine 

motor control may be impaired as a function of the increase in anxiety. Overall, the 

global picture that emerges depends on whether one focuses on effects that are likely to 
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be present when caffeine is consumed in moderation by the majority of the population or 

on the effects found in extreme conditions. The evidence clearly shows that levels of 

caffeine consumed by most people have largely positive effects on behavior. Excessive 

consumption can lead to problems, especially in sensitive individuals. 

The optimal dose of caffeine for sustaining performance has been determined during 

sleep loss with administration of multiple doses (Kamimori et al., 2005). When used to 

counteract the effects of sleep deprivation, multiple doses of caffeine are typically 

ingested across an extended period of time. The rapid delivery of caffeine in a chewing 

gum formulation can successfully maintain vigilance on a simple reaction time task using 

a multiple administration paradigm during a night without sleep. The ability of caffeine to 

improve or maintain alertness is directly dependent on the amount ingested, an 

individual's sensitivity to caffeine and on how fast it is ingested and absorbed into the 

body. The study findings demonstrate the efficacy of a multiple caffeine administration 

paradigm for maintenance of vigilance during simple reaction time performance through 

a night without sleep. Although any dose of caffeine was significantly better at 

countering the performance decrements observed in the placebo group, the 200-mg dose 

was most effective. 

2.2 Pharmacokinetics and Psychomotor Effects of Caffeine 

Both the pharmacokinetics and psychomotor effects of caffeine in humans have been 

investigated. Most research focused on the pharmacokinetics effect by finding the 

plasma caffeine level from the blood samples after the caffeine is administered. Robelin's 

study suggests that there is little net benefit to be gained from frequent caffeine use. At 
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the very least, it appears that the psychostimulant effects of caffeine cannot on their own 

account for the typical pattern of consumption of caffeine-containing drinks (Robelin and 

Rogers, 1998). Bovim's investigation was of the possible influence of caffeine upon 

motor steadiness performance in tests routinely used in neuropsychological testing. A 

significantly poorer motor steadiness performance was found after ingestion of 300 mg of 

caffeine as compared to a placebo (decaffeinated coffee). Both error time and error count 

were increased after caffeine consumption. Caffeine also tended to reduce maze 

coordination test performance. Hence, caffeine intake preferably should be avoided 

before neuropsychological testing of motor steadiness (Bovim et al, 1995). Furthermore, 

high-frequency low-dose caffeine administration is effective in countering the 

detrimental performance effects of extended wakefulness (Wyatt et al., 2004). 

Kaminmori studied body absorption of a single caffeine dose ingested in capsule form 

and as a gum to evaluate the rate and extent of absorption of three doses of caffeine from 

a gum versus a capsule formulation (Kamimori et al., 2002). The results indicate that the 

rate of drug absorption is significantly faster for the gum formulation. Although the 

bioavailabilities for 50, 100 and 200 mg gum groups are reported as 64, 74 and 77%, 

these bioavailabilities were based on 100% release of caffeine from the gum. However, 

data indicate that only 85% of the caffeine is released from the gum following 5 min of 

chewing (Novum, 2000). Based on an 85% dose, the mean bioavailabilities may be 75, 

87 and 90% for the 50, 100 and 200 mg groups, respectively. It appears that for the 100 

and 200 mg groups, the gum and capsule formulations provide a near comparable amount 

of caffeine to the systemic circulation. These findings suggest that both physical and 

mental performance deficits resulting from sleep loss or fatigue could be more quickly 
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reversed by caffeine administered in a chewing gum formulation compared with a 

capsule formulation. 

Although the caffeine delivered through the gum formulation was intended to be 

absorbed through the oral mucosa, the use of four sticks of gum may have resulted in 

increased salivation (due to the large size of the gum cud) and a corresponding increase 

in the portion of the drug being swallowed with the saliva. The portion of caffeine 

swallowed in the saliva would be absorbed in the gastrointestinal tract, just like a capsule. 

In fact, we did observe multiple peaks in the plasma profiles of a number of subjects 

corresponding to multiple sites of absorption. Dual absorption sites could result in an 

immediate increase in plasma caffeine levels via absorption through the oral mucosa, 

followed by another peak corresponding to subsequent absorption in the gastrointestinal 

tract. However, this may have contributed to the high variability of the pharmacokinetic 

parameters, indicated by their high standard deviations. High variability could have also 

resulted from a parallel design of the study. Although a cross over study would have been 

the most elegant design, it was technically difficult. If the study was performed with a 

cross over design, there was an element of learning in the pharmacodynamic tasks that 

the subjects were asked to perform. Additionally, the subjects would alter their sleep 

pattern before their second study date based on their experience with the first study date. 

This would introduce bias and errors in the pharmacodynamic measurements. Caffeine 

improves performance and alertness in sleep deprived subjects, and in individuals who 

are required to work through the nadir of the circadian rhythm of alertness and 

performance in the early morning hours (e.g. medical and emergency personnel, long 

haul truckers, and shift workers) (Akerstedt and Ficca, 1997; Reyner and Home, 1998). 
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Furthermore, the act of chewing gum itself has been shown to increase alertness in night 

shift workers (Hodoba, 1999). 

Syed investigated body absorption of multiple caffeine doses ingested in gum (Syed 

et al., 2005). The rate of drug absorption from the gum formulation was significantly 

faster and may indicate absorption via the buccal mucosa. In addition, for the 100 and 

200 mg groups, the gum and capsule formulations provide near comparable amounts of 

caffeine to the systemic circulation. These findings suggest that there may be an earlier 

onset of pharmacological effects of caffeine delivered in the gum formulation, which is 

advantageous in situations where the rapid reversal of alertness and performance deficits 

resulting from sleep loss is desirable. Their experimental results showed that the caffeine 

concentration can be described by a first order differential equation. A higher 

concentration of caffeine was found with higher intake dose level and had a nonlinear 

relationship with intake dose level. 

Kaplan et al., 1997 also found that caffeine kinetics was nonlinear and the high-dose 

caffeine (250-500mg) produced less performance enhancement than the lower dose. 

Twelve healthy volunteers received an oral placebo, 250 mg of caffeine, and 500 mg of 

caffeine in a randomized, double-blind, single-dose crossover study. Caffeine kinetics 

was nonlinear, with clearance significantly reduced and elimination half-life prolonged at 

the 500 mg compared to the 250 mg dose. The lower dose of caffeine produced more 

favorable subjective effects than the higher dose (elation, peacefulness, pleasantness), 

whereas unpleasant effects (tension, nervousness, anxiety, excitement, irritability, nausea, 

palpitations, restlessness) following the 500 mg dose exceeded those experiments of the 

250 mg dose. The lower dose of caffeine enhanced performance during the digit symbol 
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substitution test and the tapping speed test when compared to tests run with the placebo. 

High-dose caffeine produced less performance enhancement than the lower dose. The 

plasma concentration versus response relationship revealed concentration-dependent 

increases in anxiety and improvements in cognitive and motor performance at low to 

intermediate concentrations. 

Both caffeine doses reduced electroencephalographic amplitude over the 4 Hz to 30 

Hz spectrum, as well as in the alpha (8-11 Hz) and beta (12-30 Hz) ranges; however, 

effects were not dose-dependent. While favorable subjective and performance-enhancing 

stimulant effects occur at low to intermediate caffeine doses, the unfavorable subjective 

and somatic effects, as well as performance disruption, from high doses of caffeine may 

intrinsically limit the doses of caffeine used in the general population. 

Among the literatures surveyed, no suitable caffeine model has been found to represent 

the pharmacodynamics effects of caffeine on humans. 

2.3 Techniques of Modeling 

The process of using observed data to a mathematical model is fundamental in 

science and engineering. In the control area this process has been termed "System 

Identification" and the objective is then to find dynamical models (difference or 

differential equations) from observed input and output signals. Its basic features are, 

however, common with general model building processes in statistics and other sciences. 

System Identification has been an active research area for more than thirty years. It 

has matured and many of the techniques have become standard tools in control and signal 

processing engineering. The approach is described Ljung (Ljung, 1987) and Soderstrom 
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(Soderstrom and Stoica, 1989). Over the past decades, there has been a significantly 

renewed interest in the area with topics like "unknown-but-bounded" disturbances 

(Schweppe, 1968) and (Milanese and Belforte, 1982), set membership techniques (Fogel, 

1979; Norton, 1987) subspace techniques (Van, 1994), Hx identification (Parker and 

Bitmead, 1987; Helmicki, 1991), worst case analysis Guo and Khargonekar, 1992; 

Makila and Partington, 1991), as well as how to deal with unopened dynamics (Ninness, 

1993). Ljung gave an overview and discussion of the basic steps of system identification 

(Ljung, 1994). The four main ingredients of the process that take us from observed data 

to a validated model are: (1) the data itself, (2) the set of candidate models, (3) the 

criterion of fit and (4) the validation procedure. 

System Identification is used to develop an appropriate model of a dynamic system 

using observed data combined with prior knowledge of relationships between signals, 

input and output. It allows us to establish models for systems with very complex 

dynamics and/or systems with unknown physical parameter values. Juang built a bridge 

between the disciplines of system identification as applied to controls and to modal 

testing (Juang, 1994). The solid theoretical and methodological foundations from the 

control area should be combined with the extensive experimental knowledge from the 

modal testing field. When performing system identification experiments, we need to have 

the purpose of the identification in mind. In control problems, the final goal is to design 

control strategies for a particular system. The major benefit of system identification is the 

improvement of the analytical model of a system. System Identification is widely applied 

in many fields now, including ambient vibration testing and structural evaluation of an 

historic suspension footbridge (Gentile and Gallino, 2008), how stochastic sampling jitter 
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noise affects the result of system identification (Eng and Gustafsson, 2008), guided basis 

selection for reduced-order nonlinear response analysis (Rizzi and Przekop, 2008), the 

energy performance assessment of buildings and building components (Androutsopoulos 

et al., 2008), dynamic fuel cell stack model for real-time simulation (Meiler et al., 2008), 

modeling plant control strategies and their applications into a knowledge-based system 

(Marumo and Sebusang, 2008), input-output modeling with decomposed neuro-fuzzy 

ARX model (Golob and Tovornik, 2008), fast robust regression algorithms for problems 

with Toeplitz structure (Mastronardi and O'Leary, 2007), nonlinear system 

identification and control of chemical processes using fast orthogonal search (Eklund et 

al., 2007), FPGA implementation of a systems identification module based upon 

Hopfield networks (Atencia et al., 2007), A genetic approach to modeling fuzzy systems 

based on information granulation and successive generation-based evolution method 

(Park, 2007), dynamic characteristics of a curved cable-stayed bridge identified from 

strong motion records (Siringoringo and Fujino, 2007), isometric muscle contraction 

induced by repetitive peripheral magnetic stimulation (RPMS)—modeling and 

identification (Bernhardt et al., 2007) and system identification of photosensitiser uptake 

kinetics in photodynamic therapy (Bastogne et al., 2007). 

A system identification algorithm called Observer/Kalman filter Identification 

(OKID) is proposed and developed to identify the caffeine model from the created 

input/output data. The Markov parameters can then be used for identification of a state 

space representation, with associated Kalman gain or observer gain, for the purpose of 

controller design. The algorithm is a non-recursive matrix version of two recursive 

algorithms developed in previous works for different purposes, and the relationship 
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between these other algorithms is developed. The new matrix formulation here gives 

insight into the existence and uniqueness of solutions of certain equations, and gives 

bounds on the proper choice of observer order. It is shown that if one uses data 

containing noise, and seeks the fastest possible deterministic observer, the deadbeat 

observer, one instead obtains the Kalman filter. It is important that the mathematical 

models obtained by means of system identification methods can be directly used for 

control system design purposes. This implies that linear models that take into account 

couplings between different motions should be determined. In fact, in such cases, linear 

control algorithms can be easily implemented and the effect of neglected dynamics can 

be minimized. An identification method that is potentially capable of coping with these 

requirements is observer/Kalman filter identification (OKID) that has proven to be 

numerically very efficient and robust with respect to measurement noise and even in the 

presence of mild nonlinearities. A number of successful applications of this method in the 

area of structural mechanics and aerospace engineering have been developed in recent 

years. The identified caffeine model is then tested to fit for the test data. Currently, 

observer/Kalman filter identification (OKID) algorithm applied to the identification of 

linear discrete-time multivariable models of an autonomous underwater vehicle (AUV) 

(Tiano et al., 2007), active vibration control of piezoelectric smart structures (Dong et al., 

2006), low-order tuner for fault-tolerant control of a class of unknown nonlinear 

stochastic sampled-data systems (Chein et al. 2007), and to identify dynamic models of 

mechanical structures for comparison study of subspace to flexible structures 

(Abdelghani et al., 1998). 
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CHAPTER 3 

PREPARATION OF INPUT/OUTPUT DATA FOR CAFFEINE 

MODELING 

Our caffeine modeling begins with a black-box system identification approach as 

no suitable pharmacodynamics caffeine model has been found in the literature. Several 

laboratory-based test data sets have been provided by the Walter Reed Army Institute of 

Research for study. They include Gum 2 data sets with 0, 50, 100 and 200 mg caffeine 

doses and Gum 3 data sets with 0, 100, 200 and 300 mg caffeine doses for repeated high 

and low users of caffeine. It involved a total sleep deprivation condition with three 

caffeine boluses administered at 0, 120 and 240 minutes. All the data measured are for 

1,000 ms lapses during a 10 minute PVT (Syed et al., 2005). 

A test data set is created with the population averages for four conditions (see 

Figure 3.1) for Gum 2 data (0, 50, 100 and 200 mg), four conditions (see Figure 3.3) for 

Gum 3 low-user data (0, 100 and 200 and 300 mg), and four conditions (see Figure 3.5) 

for Gum 3 high-user data (0, 100, 200 and 300 mg). The measurements are conditioned 

for use as the output test data for system identification by subtracting each performance 

data for the caffeine case from the placebo data (0 mg). The created output data for the 

Gum 2 study is shown in Figure 3.2, for the Gum 3 low-user study in Figure 3.4, and for 

the Gum 3 high-user study in Figure 3.6. It is noted that a higher value of lapses shown 

in this caffeine-only data indicates higher alertness. 
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The caffeine input is structured as impulses proportional to the caffeine dose with 

additive white process noise. The impulse level selected is 5, 10, 20 and 30 for 50, 100, 

200 and 300 mg caffeine doses, respectively. Figure 3.7 shows the input signal used for 

system identification for the Gum 3 200 mg high-user caffeine dose cases. 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 400 510 540 
Running Time (min) 

Figure 3.1: Population average performance measurements from the four test 
groups in the Gum 2 user data set. 
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Figure 3.2: Differential effects between the Gum 2 user performance data and 
placebo data using population averages. 

Gum 3 Low Data 
T 

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 
Running Time (min) 

Figure 3.3: Population average performance measurements from the four test 
groups in the Gum 3 low-user data set. 
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Figure 3.4: Differential effects between the Gum 3 low-user performance data 
and placebo data using population averages. 

Gum 3 High Data 
351 1 1 1 1 1 1 i 1 i 1 1 1 1 r 

Running Time (min) 

Figure 3.5: Population average performance measurements from the four test 
groups in the Gum 3 high-user data set. 
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Gum 3 High Data 
T 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 
Running Time (min) 

Figure 3.6: Differential effects between the Gum 3 high-user performance data 
and placebo data using population averages. 
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Figure 3.7: Input model showing caffeine impulse inputs for Gum 3 200 mg 
high-user at times 0, 120 and 240 min. with additive white process noise. 
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SYSTEM IDENTIFICATION METHOD 

4.1 Observer/Kalman Filter Identification (OKID) Algorithm 

In the past decades, many system identification techniques have been developed 

and/or applied to identify a system model from test data. The Observer/Kalman filter 

identification (OKID) algorithm was first derived by Phan and then applied to many 

applications (Phan et al., 1992; Juang, 1994). The derivation of this algorithm is 

presented in this section. 

A linear system can be represented by 

X(£ + 1) = AX(£) + Bu(£) 

y(k) = CX(*) + Du(*) ' 

where X(k) ei?", j(k) e Rm,u(k) eRr are state, output and control input with dimension 

of n,m,r respectively. From Eq. (4.1), the outputs y(k) with zero initial state can be 

written in terms of the inputs u(/), (i = 0,1,2, • • •, k) as 

y(0) = Du(0) 

y(l)=CX(l) + Du(l) 

= CAX(O) + CBu(O) + Du(l) 



y(2) = CX(2) + Du(2) 

= C[AX(1) + Bu(l)] + Du(2) 

= CA2X(0) + CBu(O) + CBu(l) + Du(2) 

y(3) = CX(3) + Du(3) 

= C[AX(2) + Bu(2)] + Du(3) 

= CA[AX(1) + Bu(l)] + CBu(2) + Du(3) 

= CA2X(1) + CABu(l) + CBu(2) + Du(3) 

= CA2 [ AX(O) + Bu(O)] + CABu(l) + CBu(2) + Du(3) 

- CA3X(0) + CA2Bu(0) + CABu(l) + CBu(2) + Du(3) 

k-\ 
y(k) = CA*X(0) + £CA*-wBu(/) + Du(&) 

(=0 

(4 

When the initial state is zero, it can be written in the matrix form 

rax/ rlxl 

y = Y U 
mxrl 

(4 

where 

y = [ y W Y(\) i(2) - y(i-\)] 

Y = [D CB CAB C A / 2 B ] 

U = 

u ( 0 ) u ( l ) u ( 2 ) 

u ( 0 ) u ( l ) 

u ( 0 ) 

u ( / - 1) 

u (/ - 2 ) 

u ( / - 3) 

u ( 0 ) 
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The matrices D,CB,CAB,--,CA*_1B are called system Markov Parameters, and 

are commonly used as the basis to identify mathematical models for linear dynamic 

systems. A linear state-space model can be derived by forming a Hankel matrix using 

system Markov parameters. 

For lightly damped systems, however, the slow decaying response may produce a 

large Hankel matrix, and long computation time. The OKID method solves this problem 

by adding an observer the system and placing desired eigenvalues, thus "forcing" the 

observer Markov parameters to be deadbeat. It adds and subtracts a term Gy(k) to the 

right-hand side of the state equation in Eq. (4.1), which yields 

x(k +1) = Ax(k) + Bu(k) + Gy(&) - Gy(k) 

- (A + GC)x(yt) + (B + GD)u(yt) - Gy(k) 

or x(k +1) = Ax(yt) + Bv(k) (4.4) 

where 

A = A + GC, B = [B + GD - G ] , v(k) = 

and G is an n x m arbitrary matrix chosen to make the matrix A as stable as desired, i.e. 

places the eigenvalues of A to any desired values. This ensures that CA i_1B=0 for 

k>p. 

u(k) 

y(k) 
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From Eq. (4.4), the output y(k) with nonzero initial state can be written in terms of the 

inputs v(z') (/ = 0,1,2, • • •, k) as 

y(0) = CX(0) + Du(0) 

y(l) = CX(l) + Du(l) 

= CAX(O) + CBv(O) + Du(l) 

y(2) = CX(2) + Du(2) 

= C[AX(1) + Bv(l)] + Du(2) 

= CA2X(0) + CBv(O) + CBv(l) + Du(2) 

y(3) = CX(3) + Dv(3) 

= C[ AX(2) + Bv(2)] + Du(3) 

= CA[ AX(1) + Bv(l)] + CBv(2) + Du(3) 

= CA2X(1) + CABv(l) + CBv(2) + Du(3) 

= CA2 [ AX(0) + Bv(0)] + CABv(l) + CBv(2) + Du(3) 

= CA3X(0) + CA2Bv(0) + CABv(l) + CBv(2) + Du(3) 

y(*) = CA*X(0) + £cA*-1_, 'Bv(0 + Du(ife) 
1=0 

It can be written in the matrix form 

y=init + YV (4.5) 

where 

y = [y(p) y(p+V - y ( / - i ) ] 

Y - [ D CB CAB CA*"1;1] 
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V = 

' n(p) u(p + l) - u ( / - l ) 

v(p-l) v(p) ••• v ( / -2) 

vQ>-2) v(/>-l) - v( / -3) 

v(0) v(l) - v( /- />-l)_ 

ZTKY = [CA'XCO) CA*+1X(0) ••• CA'-'-'XCO)] 

The matrices D,CB,CAB,---,CArp"i;B are called observer Markov parameters. 

The first term in Eq. (4.5) represents the effect of the preceding p-1 time steps. When 

Ap is sufficiently small and all the states in x are bounded, Eq. (4.5) can be 

approximated by neglecting the first term on the right-hand side, 

mx(l-p) [(m-t-r)p+r]x(l-p) 

Y 
mx[(m+r)p+r] 

(4.6) 

From Eq. (4.6), we can calculate the observer Markov parameters from the 

input/output data. The system Markov parameters can then be recovered from the 

observer Markov parameters Y through partition of Y as: 

Y=[D CB CAB CA(p-1>B]=[Y0 Yj Y YJ 

where the observer Markov parameters are 
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Y0=D 

Y t = C A ^ B 

=[C(A + GCf (B + GD) - C(A + GC)* J G] 

= [Yf -Yf]; £ = 1,2,3,-

(4.7) 

The system Markov parameters can be calculated from the observer Markov parameters 

as 

Y, = CB=C(B + GD) - (CG)D 

= Y (V vf2J Y/z;D 

Y2 =CAB (4.8) 

= Y 2 'U -Y 1^Y 1 -Y 2^D (Vt 

According to the above derivation, the general relationship between the system Markov 

parameters and the observer Markov parameters is 

D=Y0=Y0 

Y t = Y , ( 1 ) - £ Y / 2 % _ 0 fovk = l,-,p 

Y t = - ^ Y / 2 ) Y ( i W ) fovk = p + l,p + 2-
(=i 

(4.9) 

or it can be written in system of equation as 

r(2) 

F(2) v ( 2 ) 

V<2> V ( 2 ) V ( 2 ) 
lp-\ X p - 2 lp-3 

r(l) V(2) 

y d ) 
x2 

Y^ ;D 

•YfD 
Y3

( 1 )-YfD 

Y(1)- •YfD 
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Finally, the desired discrete system realization [A,B,C,D] can obtained from the system 

Markov parameters from singular value decomposition (SVD) of the Hankel matrix in 

Eq. (4.5) (see Figure 4.1 to 4.3). 

Gum2200mg(AVG) 
T 

6 8 10 
Singular Value Number (i) 

Figure 4.1: Singular values from Gum 2 using population averages. 
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Gum3200mgLow(AVG) 

-r 

6 8 10 12 14 
Singular Value Number (i) 

Figure 4.2: Singular values from Gum 3 low-user using population averages. 

Giim3200mgHigh|AVG) 

6 
Singular Value Number (i) 

Figure 4.3: Singular values from Gum 3 high-user using population averages. 
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H(*-l) = 

Y Y ••• Y 
-1* x *+l xjt+ /3-l 

Y Y ••• Y 
1 k+\ x k+2 x k+fi 

Y Y ••• Y 
*-k+a-l xk+a ^k+a+p-l 

(4.10) 

H(0)=R„ESn 

1 /2T»7 'TT/1 \C< V - 1 / 2 A=CR;H(1)S ,S ; 

C=ElRE Tn y , l /2 

D = Yn 

where E^ =[lm O m - O j , E^ =[lr O r -O r ] 

The estimation system can be represented by 

(4.11) 

X(* + l) = AX(Jt) + Bu(ifc) 

y(k) = CX(k) + i>u(k) 
(4.12) 

The caffeine model can be identified by using the OKID algorithm with the following 

steps: 
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a. Obtain input/output time histories data. 

b. Calculate Observer Markov parameters. 

c. Calculate System Markov parameters. 

d. Choose system order after finding singular values of the system Hankel matrix. 

e. Find system matrices A, B, C, D. 

f. Derive system parameters. 

Observer/Kalman Filter Identification (OKID) 

I/O Test 

Data* 

Observer % * i « m 

+ Markov > M«rjbav 

X o d e l 

{A, B , C D ] 

Singular Valae HlMMKflSl 

Matrix 

Figure 4.4: Procedure for Observer/Kalman filter identification (OKID) algorithm 
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4.2 Model Validation 

The multi-pulse input signal without additive white process noise is used as the input 

to the identified model for output estimation. The accuracy of the identified model is 

validated by calculating the root mean squared error (RMSE) of the estimated output 

signal: 

RMSE = 
fX n V / 2 

Ye,2 , ei - estimated value - test data at time step i (4.13) 
\ n /=i J 
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CHAPTER 5 

CAFFEINE MODEL USING POPULATION AVERAGE DATA 

The OKID algorithm is used to identify the caffeine model for the Gum 2 and Gum 3 

population average data. In each case, several sets of white process noise are added to 

the multi-pulse input. From OKID, a second order caffeine model is identified for each 

set of input noise. After model validation, the model with the least modeling error is 

selected as the identified model. From the identified caffeine model, the effect of input 

noise and model order on the modeling error is evaluated and an optimal model order is 

selected. After considering several model structures, an optimal caffeine model is 

recommended. 

5.1 Identified Caffeine Model Using Population Average Data 

As a demonstration, this approach applied to the Gum 3 200 mg high-user case 

yields a caffeine effects model of 

x(k +1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) 

A = 
0.890 

0.1870 

-0.187" 

0.863 
, B = 

"- 0.960" 

0.541 _ 
, C= [-0.960 -0.541] D = 0.306 

Its equivalent ARX model is: 

y{k) + axy\k -1)+ a2 y(k — 2) = b0u(k) + bxu(k -1) + b2u(k - 2) 
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ax = -1.753, a2 = 0.803,60 =0.306,6, = 0.093, b2 =-0.096 

Figures 5.1 to 5.9 show the results of caffeine model developed for Gum 2 and Gum 

3 population averages. The input impulse level plotted in the figures is scaled down from 

the actual level used in the simulations by a factor of 10. 
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Figure 5.1: Caffeine model developed for the differential effects between the 
Gum 2 50 mg and placebo cases using population averages. 
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Figure 5.2: Caffeine model developed for the differential effects between the 
Gum 2 100 mg and placebo cases using population averages. 
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Figure 5.3: Caffeine model developed for the differential effects between the 
Gum 2 200 mg and placebo cases using population averages. 
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Figure 5.4: Caffeine model developed for the differential effects between the 
Gum 3 100 mg low-user and placebo cases using population averages. 
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Figure 5.5: Caffeine model developed for the differential effects between the 
Gum 3 200 mg low-user and placebo cases using population averages. 
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Figure 5.6: Caffeine model developed for the differential effects between the 
Gum 3 300 mg low-user and placebo cases using population averages. 
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Figure 5.7 Caffeine model developed for the differential effects between the Gum 
3 100 mg high-user and placebo cases using population averages. 



36 

25 

20 

15 

Lapses 

10 

< 
5 

< 
0 

Gum 3 200 mg High 

1 1 1 1 1 1 1 1 "" 1 1 1"' 1 1 1 1 1 

—•— Test 

• lmput/10 

Br SI / V \/Ot \ 

7/ W 

^ x 

• • • 
- + + + + + + + • • • • • • • • • • • • • 

1 1 1 1 1 1 1 1 1 1 1 

• • • • * \ | • • • «<k 

i i i i i 

0 30 SO SO 120 150 180 210 240 270 300 330 360 390 420 450 480 
Running Time (min) 

Figure 5.8: Caffeine model developed for the differential effects between the 
Gum 3 200 mg high-user and placebo cases using population averages. 
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Figure 5.9: Caffeine model developed for the differential effects between the 
Gum 3 300 mg high-user and placebo cases using population averages. 
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5.2 Input Noise Effect 

As shown in Figure 3.7, the caffeine input is structured as impulses proportional to 

the caffeine dose with additive white process noise. However, the additive noise is not 

completely white because of the limited input data points processed. A different noise 

pattern used for model identification would impact the modeling error. Figure 5.11 shows 

that root mean squared error (RMSE) of an identified model can be reduced when more 

input noise patterns are processed. In this study, for each input/output data set, the 

system identification process is repeated for 5,000 different input noise patterns. An 

optimal noise pattern is selected for each data set with a minimum modeling error from 

identified models. Figure 5.10 shows the noise pattern is selected as the best one for Gum 

3 200 mg high-user from 5,000 different input patterns. 

The effect of input noise level on modeling error is also studied. Three different 

noise levels (3%, 5% and 10%), the ratio of the variances of the signals, are investigated 

(see Table 5.1). The result shows that the effect of input noise level on the accuracy of 

the identified model is negligible. In this study, 5% input noise level is used for all 

caffeine model identification cases. 



38 

Table 5.1: Noise Level Effect on Estimation Errors (RMSE) (2nd order) 

Data Set 

GUM 2 
(AVG) 

GUM 3 
(AVG) 

Low 

High 

Dose (mg) 

50 

100 

200 

100 

200 

300 

100 

200 

300 

Noise 

3% 

2.37 

1.83 

1.89 

2.57 

2.33 

3.32 

2.62 

3.91 

3.67 

5% 

2.37 

1.83 

1.83 

2.57 

2.33 

3.27 

2.57 

2.74 

3.32 

10% 

2.25 

1.76 

1.83 

2.57 

2.33 

3.38 

2.62 

2.80 

3.27 

Gum 3 200 mg High (AVG Data): 5% Noise Level 
40 
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•80 
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-90 

-100 

-110 

-120 

-130 
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Figure 5.10: The best input noise pattern for Gum 3 200 mg high-user. 
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Running ( 
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Figure 5.11: Modeling errors (RMSE) as a function of number of additive input 
noise patterns used for running Gum 3 200 mg high-user data. 

5.3 Optimal Caffeine Model Order 

In this section, effect of the model order on the accuracy of an identified model is 

studied. For each case, 5,000 input noise patterns with 5% noise level are used. Table 5.2 

and Figure 5.12 show that as compared to a second-order model, here is no clear 

advantage to using a third-order model for both Gum 2 and Gum 3 population averages. 

Therefore in this study, a second-order caffeine model is used for all test data. 
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Table 5.2: Modeling Order Effect on Estimation Errors (RMSE) (5% noise) 

Data Set 

GUM 2 
(AVG) 

GUM 3 
(AVG) 

Low 

High 

Dose (mg) 

50 

100 

200 

100 

200 

300 

100 

200 

300 

Model Order 

1st 

2.74 

2.49 

2.31 

4.14 

3.44 

5.42 

3.97 

4.72 

5.42 

2nd 

2.37 

1.83 

1.83 

2.57 

2.33 

3.27 

2.57 

2.74 

3.32 

3rd 

2.49 

1.52 

1.89 

2.04 

2.16 

3.15 

2.39 

3.03 

3.32 

s 

5.5 

5 

4.5 

4 

RMSE 

3.5 

3 

2.5 

2 

1.5 

1 
1 2 3 

Estimated System Order 

Figure 5.12: Modeling errors (RMSE) as a function of estimated system order. 

50 mg Gum 2 

100 mg Gum 2 

200 mg Gum 2 

100 mg Gum 3 Low 

100 mg Gum 3 High 

200 mg Gum 3 Low 

200 mg Gum 3 High 

300 mg Gum 3 Lew 

300 mg Gum 3 High 
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5.4 State-space Model in Controllable Canonical Form 

Since the identified state-space model is not unique, several potential model 

structures are considered. As shown in section 5.1, the second-order ARX model can be 

described as 

y(k)+a1y(k -1)+ a2y(k - 2) = b0u(k)+biu(k-\)+ b2u(k - 2) 

Its equivalent discrete transfer function model is 

Y(z) _b0z
2 +blz + b2 

U(z) z2+a1z + a2 

The corresponding state-space model in controllable canonical form is 

x(k +1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du (k) 

0 1 " 

-a2 -a, 
, B = 

"0" 

_1_ 

C = [b2-a2b0 bx-axbQ] = [cx c2], D = bQ=d0 

(5.1) 

This state-space model in controllable canonical form is proposed as the caffeine 

model due to its simplicity and convenience to be merged into a two-process model with 

circadian and homeostatic effects for future study, hi this caffeine model structure, only 

five system parameters [ax,a2,cl,c2,dQ] need to be identified. Table 5.3 shows all the 
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identified model coefficients from the population averages. It is noted that the first two 

coefficients [ax,a2] (see Table 5.4) have small variations for both low and high users of 

caffeine among all doses. This indicates that the caffeine dosage (see Table 5.5 and 

Figure 5.13) and habitual usage (see Table 5.6 and Figure 5.14) do not have much impact 

on caffeine model dynamics controlled by system matrices A and B . 

Table 5.3: Identified Model Coefficients from Population Averages 

Data Set 

GUM 2 
(AVG) 

GUM 3 
(AVG) 

Low 

High 

Dose 
(mg) 

50 

100 

200 

100 

200 

300 

100 

200 

300 

ax 

-1.571 

-1.715 

-1.562 

-1.750 

-1.793 

-1.792 

-1.702 

-1.753 

-1.632 

a2 

0.609. 

0.766 

0.600 

0.794 

0.827 

0.833 

0.748 

0.803 

0.693 

C\ 

0.212 

0.170 

0.041 

-0.044 

-0.106 

-0.037 

-0.410 

-0.342 

-0.046 

c2 

0.391 

0.077 

0.146 

0.487 

0.252 

0.193 

0.978 

0.629 

0.348 

d0 

-0.162 

0.062 

0.034 

0.446 

0.226 

0.083 

0.981 

0.306 

0.156 

RMSE 

2.37 

1.83 

1.83 

2.57 

2.33 

3.27 

2.57 

2.74 

3.32 
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Table 5.4: Model Coefficients from Population Averages 

Parameters 

ax 

a2 

cx 

c2 

d0 

GUM 2 

Mean 

-1.616 

0.658 

0.141 

0.205 

-0.022 

STD 

0.086 

0.094 

0.089 

0.165 

0.122 

GUM 3 

Mean 

-1.737 

0.783 

-0.164 

0.481 

0.366 

STD 

0.061 

0.054 

0.167 

0.290 

0.326 

Table 5.5: Dose Effect from Population Averages 

Parameters 

ax 

a2 

Mean 

STD 

Mean 

STD 

50mg 

-1.571 

-

0.609 

-

lOOmg 

-1.722 

0.025 

0.769 

0.023 

20Qmg 

-1.703 

0.123 

0.743 

0.125 

300mg 

-1.712 

0.113 

0.763 

0.099 
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Figure 5.13: Dose effect from population averages 

Table 5.6: Habitual Effect from Population Averages 

Parameters 

ax 

a2 

Mean 

STD. 

Mean 

STD. 

Gum 3 High 

-1.696 

0.061 

0.748 

0.055 

Gum 3 Low 

-1.778 

0.025 

0.818 

0.021 
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Figure 5.14: Habitual effect from population averages 

5.5 Comparison of OKID and ARX Method 

We also use the ARX model (autoregressive with exogenous input model) to identify 

the caffeine model for the Gum 2 and Gum 3 population average data. 

The second-order ARX model can be described as 

y (k) + axy (k -1) + a2y (k-2) = b0u (k) + bxu (k -1) + b2u (k - 2) 

Table 5.7 shows that as compared to a second-order OKID model, there is a clear 

disadvantage of using a second-order ARX model for both Gum 2 and Gum 3 population 

averages. 

• 0.9-

• 0.8 • I 

. a2 

• 0.7-

• 0.6-
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Figure 5.15: Estimation result using an ARX model (2n(* order Least-Squares 
Model for Gum 3 200 mg high-users from population averages). 

Table 5.7: Comparison of OKID and ARX Method 

Data Set 

GUM 2 (AVG) 

GUM 3 (AVG) 

Low 

High 

Dose (mg) 

50 

100 

200 

100 

200 

300 

100 

200 

300 

Modeling Error 

OKID 

2.37 

1.83 

1.83 

2.57 

2.33 

3.27 

2.57 

2.74 

3.32 

ARX 

2.62 

2.43 

2.19 

3.91 

3.38 

4.90 

6.36 

5.19 

7.00 
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CHAPTER 6 

IDENTIFICATION OF INDIVIDUALIZED CAFFEINE MODEL 

The OKID algorithm is also used to identify the caffeine model for Gum 2 and Gum 

3 individual subject data. For Gum 3 data, since the same subject was used repeatedly for 

placebo and other caffeine doses, caffeine-only data can be obtained by subtracting each 

individual subject performance data (100, 200 and 300 mg) from the placebo data (0 mg) 

for the same subject. However, for Gum 2 data, different subjects were used for different 

caffeine doses. So we use the placebo population average as the placebo data for each 

subject to calculate the caffeine-only data for all Gum 2 subjects. 

6.1 Individualized Caffeine Model 

Figures 6.1 to 6.69 show some of the individualized caffeine models developed for 

Gum 2 and Gum 3 subjects. The individualized caffeine model developed usually has a 

larger modeling error as compared to the caffeine model developed from the population 

average data shown in the previous section. 

Table 6.1 to 6.4 and Figure 6.70 show identified model coefficients of individualized 

caffeine models from Gum 2 and Gum 3 data. It is also noted that the first two 

coefficients [aj,a2] have small variations for both low and high users of caffeine among 

all doses. The result shows that the caffeine dosage (see Table 6.5 and Figure 6.71) and 

habitual usage (see Table 6.6 and Figure 6.72) do not have much impact on caffeine 

model dynamics. 
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Subject 504 : Gum 2 SO mg 

- e - Estimated (RMSE-2.19) 
- * — Test 
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Figure 6.1: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 504 data and population averages placebo data. 

Lapses 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 
Running Time (min) 

Figure 6.2: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 506 data and population averages placebo data. 
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Figure 6.3: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 511 data and population averages placebo data. 
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Figure 6.4: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 513 data and population averages placebo data. 
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Figure 6.5: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 517 data and population averages placebo data. 
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Figure 6.6: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 521 data and population averages placebo data. 
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Figure 6.7: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 527 data and population averages placebo data. 

Running Time (min) 

Figure 6.8: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 535 data and population averages placebo data. 
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Subject 539 : Gum 2 50 mg 
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Figure 6.9: Individualized caffeine model developed for the differential effects 
between Gum 2 50 mg subject 539 data and population averages placebo data. 
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Figure 6.10: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 507 data and population averages placebo data. 
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Running Time (min) 

Figure 6.11: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 509 data and population averages placebo data. 

Figure 6.12: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 524 data and population averages placebo data. 
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Subject 526: Gum 2100 mg 
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Figure 6.13: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 526 data and population averages placebo data. 
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Figure 6.14: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 529 data and population averages placebo data. 
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Figure 6.15: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 536 data and population averages placebo data. 
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Figure 6.16: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 537 data and population averages placebo data. 
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Figure 6.17: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 543 data and population averages placebo data. 

Subject 545: Gum 2 100 mg 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 
Running Time (mill) 

Figure 6.18: Individualized caffeine model developed for the differential effects 
between Gum 2 100 mg subject 545 data and population averages placebo data. 
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Running Time (min) 

Figure 6.19: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 508 data and population averages placebo data. 
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Figure 6.20: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 510 data and population averages placebo data. 
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Figure 6.21: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 515 data and population averages placebo data. 
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Figure 6.22: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 522 data and population averages placebo data. 
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0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 

Running Time (min) 

Figure 6.23: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 528 data and population averages placebo data. 

Running Time jmin) 

Figure 6.24: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 531 data and population averages placebo data. 
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Figure 6.25: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 533 data and population averages placebo data. 
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Figure 6.26: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 540 data and population averages placebo data. 
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Subject 5 4 1 : Gum 2 200 mg 

Running Time (min) 

Figure 6.27: Individualized caffeine model developed for the differential effects 
between Gum 2 200 mg subject 541 data and population averages placebo data. 

Subject 6 0 1 : Gum 3 100 mg Low 

Running Time (min) 

Figure 6.28: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 601. 



62 
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Figure 6.29: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 603. 
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Figure 6.30: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 604. 
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Running Time (min) 

Figure 6.31: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 609. 

Running Time (min) 

Figure 6.32: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 610. 
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Subject 611 : Gum 3 100 mg Low 
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Figure 6.33: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 611. 

Subject 612 : Gum 3 100 mg Low 

35 

30 

25 

20 

Lapses 

15 

10 

5 

< 
0< 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 
Running Time (min) 

Figure 6.34: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 612. 
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Running Time (min) 

Figure 6.35: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg low-user data and placebo data for subject 616. 

Subject 6 0 1 : Gum 3 200 mg Low 

Running Time (min) 

Figure 6.36: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 601. 
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Subject 603 : Gum 3 200 mg Low 
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Figure 6.37: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 603. 
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Figure 6.38: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 604. 
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Running Time (min) 

Figure 6.39: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 609. 

Subject 610 : Cum 3 200 mg Low 

Running Time {min) 

Figure 6.40: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 610. 
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Figure 6.41: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 611. 

Subject 612 : Gum 3 200 mg Low 
— I — 

- e ~ Estimated (RMSE=9.64) 

—•- -Test 

4 Input/10 

• * * * 

J L 
60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 

Running Time (min) 

Figure 6.42: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 612. 
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Figure 6.43: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg low-user data and placebo data for subject 616. 
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Figure 6.44: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 601. 
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Figure 6.45: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 603. 
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Figure 6.46: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 604. 
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Subject 609 : Gum 3 300 mg Low 

Running Time (mill) 

Figure 6.47: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 609. 
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Figure 6.48: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 610. 
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Figure 6.49: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 611. 
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Figure 6.50: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 612. 
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Figure 6.51: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg low-user data and placebo data for subject 616. 

Running Time (min) 

Figure 6.52: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 602. 
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Subject 605 : Gum 3100 mg High 
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Figure 6.53: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 605. 
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Figure 6.54: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 608. 
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Figure 6.55: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 613. 
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Figure 6.56: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 614. 
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Figure 6.57: Individualized caffeine model developed for the differential effects 
between Gum 3 100 mg high-user data and placebo data for subject 615. 

Running Time (min) 

Figure 6.58: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 602. 
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Figure 6.59: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 605. 

Running Time (min) 

Figure 6.60: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 608. 
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Subject 613: Gum 3 200 mg High 
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Figure 6.61: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 613. 
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Figure 6.62: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 614. 
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Subject 615 : Gum 3 200 mg High 

Running Time (min) 

Figure 6.63: Individualized caffeine model developed for the differential effects 
between Gum 3 200 mg high-user data and placebo data for subject 615. 

Running Time (min) 

Figure 6.64: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 602. 
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Figure 6.65: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 605. 
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Figure 6.66: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 608. 
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Subject 613 : Gum 3 300 mg High 
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Figure 6.67: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 613. 
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Figure 6.68: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 614. 
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Subject 615 : Gum 3 300 mg High 
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Figure 6.69: Individualized caffeine model developed for the differential effects 
between Gum 3 300 mg high-user data and placebo data for subject 615. 



Table 6.1: Individualized Caffeine Model Coefficients Identified for Gum 2 Subjects 

Subject 

504 

506 

511 

513 

517 

521 

527 

535 

539 

AVG 

507 

509 

524 

526 

529 

536 

537 

543 

545 

AVG 

508 

510 

515 

522 

528 

531 

533 

540 

541 

AVG 

Dose 
(mg) 

50 

100 

200 

ai 

-1.814 

-0.699 

-1.592 

-1.743 

-1.952 

-1.174 

-1.735 

-1.685 

-1.757 

-1.572 

-1.109 

-1.437 

-1.315 

-1.636 

-1.786 

-1.408 

-1.801 

-1.687 

-1.749 

-1.548 

-1.529 

-1.495 

-1.678 

-0.017 

-1.706 

-1.769 

-1.786 

-1.716 

-1.745 

-1.493 

a2 

0.837 

0.415 

0.877 

0.767 

1.024 

0.260 

0.780 

0.720 

0.777 

0.717 

0.757 

0.480 

0.380 

0.667 

0.857 

0.652 

1.020 

0.750 

0.773 

0.704 

0.582 

0.499 

0.707 

-0.626 

0.736 

0.794 

0.808 

0.748 

0.771 

0.558 

Cl 

-0.260 

1.810 

0.565 

-0.203 

-0.129 

-0.489 

0.233 

-0.096 

-0.410 

0.114 

-0.516 

0.118 

0.057 

0.055 

0.231 

0.479 

-0.100 

-0.001 

-0.031 

0.033 

0.252 

-0.418 

0.006 

-0.845 

0.078 

-0.005 

-0.056 

0.023 

0.025 

-0.104 

c2 

0.730 

-1.113 

-1.016 

0.779 

-0.683 

-2.456 

0.405 

0.882 

0.824 

-0.183 

0.542 

0.335 

0.458 

0.368 

-0.038 

-1.222 

-0.285 

0.624 

0.366 

0.128 

0.011 

0.467 

0.196 

-0.290 

0.121 

0.163 

0.199 

0.175 

0.148 

0.132 

d0 

0.275 

0.129 

0.087 

-0.073 

-0.503 

-0.200 

0.309 

0.319 

0.079 

0.047 

-0.108 

0.344 

0.092 

0.111 

0.049 

-1.057 

0.360 

0.194 

-0.032 

-0.005 

0.038 

0.176 

0.085 

0.150 

-0.008 

-0.061 

-0.007 

0.056 

0.023 

0.050 

RMSE 

2.19 

3.26 

8.36 

2.57 

7.05 

4.11 

2.96 

2.54 

2.64 

3.96 

5.32 

2.62 

3.99 

1.73 

4.24 

7.90 

7.70 

3.60 

1.69 

4.31 

2.31 

4.46 

1.70 

7.91 

1.88 

1.87 

1.65 

1.93 

1.58 

2.81 
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Table 6.2: Individualized Caffeine Model Coefficients Identified for Gum 3 Low-users 

Subject 

601 L 

603 L 

604 L 

609 L 

610 L 

611 L 

612 L 

616 L 

AVG 

601 L 

603 L 

604 L 

609 L 

610 L 

611 L 

612 L 

616 L 

AVG 

601 L 

603 L 

604 L 

609 L 

610 L 

611 L 

612 L 

616 L 

AVG 

Dose 
(mg) 

100 

200 

300 

ai 

-1.874 

-1.122 

-1.703 

-0.549 

-1.800 

-1.897 

-1.695 

-1.723 

-1.545 

-1.589 

-1.453 

-0.234 

-0.574 

-1.793 

-1.622 

-1.578 

-1.338 

-1.273 

-1.660 

-1.792 

0.034 

-1.578 

-1.275 

-1.041 

-1.727 

-1.869 

-1.364 

a2 

0.943 

0.311 

0.784 

-0.341 

0.825 

0.946 

0.738 

0.764 

0.621 

0.658 

0.589 

0.348 

-0.329 

0.829 

0.681 

0.653 

0.410 

0.480 

0.715 

0.847 

0.450 

0.636 

0.360 

0.171 

0.784 

0.895 

0.607 

C] 

2.860 

1.388 

-0.161 

-0.553 

-0.688 

0.869 

-0.985 

0.567 

0.412 

0.494 

0.182 

0.176 

-0.107 

-0.393 

0.447 

0.583 

0.214 

0.199 

0.031 

0.340 

0.336 

-0.133 

0.124 

-0.362 

0.280 

-0.026 

0.074 

C2 

-1.853 

0.712 

0.307 

1.557 

0.999 

-0.694 

1.817 

-0.018 

0.353 

0.369 

0.317 

0.318 

0.607 

0.668 

-0.754 

-0.047 

0.182 

0.208 

0.442 

0.000 

0.115 

0.459 

0.398 

-0.167 

0.063 

0.095 

0.176 

do 

0.048 

1.194 

0.239 

1.237 

0.974 

-0.206 

0.249 

0.187 

0.490 

0.693 

0.164 

0.589 

0.769 

0.628 

-0.803 

-0.155 

0.226 

0.264 

0.279 

0.285 

0.164 

0.129 

0.338 

-0.366 

-0.107 

-0.271 

0.056 

RMSE 

12.86 

7.87 

4.06 

8.77 

10.50 

4.54 

9.25 

5.71 

7.94 

8.46 

10.66 

5.52 

8.49 

8.73 

8.96 

9.64 

5.31 

8.22 

9.26 

8.52 

4.79 

7.02 

10.22 

6.57 

7.61 

6.14 

7.53 



Table 6.3: Individualized Caffeine Model Coefficients Identified for Gum 3 High-users 

Subject 

602 H 

605 H 

608 H 

613 H 

614 H 

615 H 

AVG 

602 H 

605 H 

608 H 

613 H 

614 H 

615 H 

AVG 

602 H 

605 H 

608 H 

613 H 

614 H 

615 H 

AVG 

Dose 
(mg) 

100 

200 

300 

at 

-1.515 

-1.983 

-1.341 

-1.637 

-0.942 

-1.620 

-1.506 

-1.727 

-1.699 

-0.619 

-1.542 

-1.151 

-1.137 

-1.313 

-1.535 

-1.377 

-1.651 

-1.520 

-1.375 

-0.658 

-1.353 

a2 

0.578 

1.041 

0.442 

0.693 

0.071 

0.665 

0.582 

0.773 

0.794 

-0.226 

0.683 

0.231 

0.275 

0.422 

0.597 

0.459 

0.699 

0.600 

0.454 

-0.073 

0.456 

Cl 

0.344 

0.002 

0.327 

-0.568 

0.480 

-0.498 

0.014 

0.219 

-0.428 

0.582 

0.117 

-0.344 

-0.318 

-0.029 

0.197 

-0.257 

-0.089 

0.085 

-0.165 

0.476 

0.041 

C2 

0.111 

0.391 

1.144 

2.016 

0.440 

1.129 

0.872 

-0.022 

1.060 

0.513 

0.502 

0.699 

1.279 

0.672 

0.012 

0.547 

0.435 

0.462 

0.396 

0.298 

0.358 

do 

0.521 

-0.456 

0.820 

1.406 

0.145 

1.402 

0.640 

-0.159 

0.520 

0.102 

0.474 

0.350 

0.840 

0.355 

-0.057 

0.189 

0.252 

0.650 

0.079 

0.490 

0.267 

RMSE 

5.49 

6.36 

5.25 

5.92 

3.99 

12.23 

6.54 

4.34 

9.09 

7.53 

9.96 

5.18 

11.69 

7.97 

5.05 

14.50 

5.23 

6.91 

4.71 

8.80 

7.53 
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Table 6.4: Individualized Caffeine Model Coefficients Statistics 

Parameters 

ax 

a2 

ci 

c2 

d0 

GUM 2 

Mean 

-1.538 

0.660 

0.014 

0.026 

0.031 

STD 

0.405 

0.312 

0.469 

0.755 

0.283 

GUM 3 

Mean 

-1.392 

0.534 

0.134 

0.412 

0.335 

STD 

0.471 

0.337 

0.623 

0.666 

0.487 

a1 a2 d c2 
Dose |mq) 

Figure 6.70: Individualized Caffeine Model Coefficients Statistics 
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Table 6.5: Individualized Caffeine Model Coefficients Statistics for Dose Effect 

Parameters 

« i 

a2 

c i 

c2 

d0 

50mg 

Mean 

-1.572 

0.717 

0.114 

-0.183 

0.047 

STD 

0.392 

0.236 

0.714 

1.185 

0.270 

lOOmg 

Mean 

-1.536 

0.643 

0.160 

0.400 

0.335 

STD 

0.345 

0.316 

0.797 

0.890 

0.606 

200mg 

Mean 

-1.369 

0.495 

0.021 

0.299 

0.204 

STD 

0.516 

0.396 

0.358 

0.423 

0.371 

300mg 

Mean 

-1.359 

0.542 

0.060 

0.254 

0.147 

STD 

0.512 

0.266 

0.247 

0.226 

0.278 

•1 
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Figure 6.71: Individualized Caffeine Model Coefficients Statistics for Dose Effect 
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Table 6.6: Individualized Caffeine Model Coefficients Statistics for Habitual Effect 

Parameters 

« i 

a2 

ci 

C2 

d0 

Gum 3 Low 

Mean 

-1.394 

0.569 

0.228 

0.245 

0.270 

STD 

0.544 

0.349 

0.759 

0.727 

0.487 

Gum 3 High 

Mean 

-1.390 

0.486 

0.009 

0.634 

0.420 

STD 

0.366 

0.324 

0.360 

0.514 

0.489 

a2 c2 

1.5 

05 

0 

41.5 

1.5 

OJ 

tf.5 

Lw High Low High Low High Low High Low High 

Figure 72: Individualized Caffeine Model Coefficients Statistics for Habitual Effect 
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6.2 Effect of Caffeine Dosage on Individual Subject Performance 

In this section, we study the effect of caffeine dosage on individual subject 

performance. Since different subjects were used for different caffeine doses in Gum 2 

data, the individual models identified from Gum 2 data are excluded from further analysis. 

Based on the individualized caffeine models identified from Gum 3 data, the 

response of these dose-dependent models to a single 100 mg caffeine input can be 

calculated for each subject (see Figure 6.73). Figure 6.74 shows the statistical response 

among eight low caffeine users from dose-dependent (100, 200 and 300 mg) 

individualized low-user models. Figure 6.75 shows the statistical response among six 

high caffeine users from individualized high-user models. As explained in section 2, a 

higher value of lapses shown in this caffeine-only response data indicates higher alertness. 

The results show that for both low and high caffeine users, the individualized model 

identified from 100 mg test data has statistically higher alertness as compared to the 

response of the identified 200 mg or 300 mg model. 
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Caflriiir Gum 100 ing 

I 
/"V 

* n # * & m m m m m m i* m m m .** 
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Figure 6.73: Individualized Performance Prediction Using One Caffeine Dose 
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Figure 6.74: Statistical response of individualized dose-dependent models to a 
single 100 mg caffeine input for eight Gum 3 low-users. 
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Figure 6.75: Statistical response of individualized dose-dependent models to a 
single 100 mg caffeine input for six Gum 3 high-users. 
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6.3 Effect of Habitual Caffeine Usage on Individual Subject 

Performance 

Based on the individualized caffeine models identified from Gum 3 data, the 

response of these models to a single 100 mg dose input can be calculated for each subject. 

Figure 6.76 shows the statistical response of individualized 100 mg models to a single 

100 mg dose input for eight low caffeine users as compared to six high caffeine users. 

The statistical response of individualized 200 mg and 300 mg models is shown in Figure 

6.77 and 6.78, respectively. The results show that both low and high caffeine users have 

comparable responses based on 100 mg models. However, the response of either the 200 

mg or 300 mg model shows that high caffeine users have a statistically higher response 

than low caffeine users. 

Gum 3100 mg 

n—n—r~i—r i i i i T—r 
— B — Gum 3 100 mg Low 
— I — Gum 3 100 mg High 

• Input/10 

l l l l l 

^1 I I I — I — l — J — L _ l — I — l _ l — L _ l — I — L _ l — l _ J I I I I I I ' ' 1 1 1 1 1 1 
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 

Running Time (min) 

Figure 6.76: Statistical response of individualized 100 mg models to a single 
100 mg input for eight low caffeine users as compared to six high caffeine 
users. 
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100 mg input for eight 
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Figure 6.78: Statistical 
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CHAPTER 7 

CAFFEINE M O D E L PREDICTION 

In this chapter, we study how the identified model for one caffeine dose can be used 

to predict the caffeine effects for other caffeine doses. For a demonstration, the caffeine 

model identified from Gum 3 200 mg high-user population averages is selected to predict 

the caffeine effects of other caffeine doses. The results are shown in Figures 7.1 and 7.2. 

It is clear that the lower 100 mg caffeine dose is much more effective than the 200 mg 

model predicts. A higher 300 mg caffeine dose is less effective than the 200 mg model 

predicts. Moreover, the caffeine model identified from Gum 3 200 mg low-user 

population averages is selected to predict the caffeine effects for Gum 3 100 and 300 mg 

low-user. The results are shown in Figures 7.3 and 7.4. It is clear that the lower 100 mg 

caffeine dose is much more effective than the 200 mg model predicts. A higher caffeine 

dose of 300 mg is less effective than the 200 mg model predicts. In addition, the caffeine 

model identified from Gum 2 100 mg high-user population averages is selected to predict 

the caffeine effects for Gum 2 50 and 200. The results are shown in Figures 7.5 and 7.6. 

It is obvious that the lower 50 mg caffeine dose is much more effective than the 100 mg 

model predicts. A higher 200 mg caffeine dose is less effective than the 100 mg model 

predicts. In section 6.2, it is also found that the individual model identified from the 100 

mg test data set a has statistically higher caffeine response as compared to the response of 

the identified 200 mg or 300 mg model. A similar result was found by Kaplan (Kaplan et 

al., 1997). 
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Figure 7.1: Prediction of 100 mg caffeine effect using 200 mg model for high-
users based on population average data. 
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Figure 7.2: Prediction of 300 mg caffeine effect using 200 mg model for high-
users based on population average data. 
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Figure 7.3: Prediction of 100 mg caffeine effect using 200 mg model for low-
users based on population average data. 
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Figure 7.4: Prediction of 300 mg caffeine effect using 200 mg model for low-
users based on population average data. 
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Figure 7.5: Prediction of 50 mg caffeine effect using 100 mg model for Gum 2 
based on population average data. 
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Figure 7.6: Prediction of 200 mg caffeine effect using 100 mg model for Gum 
2 based on population average data. 
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To improve model prediction, a dose factor K is introduced as the scale factor for the 

input dose level. As shown in Figure 7.7, the state-space caffeine model used for 

prediction is modified as: 

x(k + l) = Ax(k) + BKu(k) 

y(Jc) = Cx(k) + I)Ku(k) ' 

The optimal dose factor K for Gum 3 high-user 100 mg and 300 mg can be obtained 

by minimizing the root mean squared error for the prediction. The improved prediction 

using the 200 mg high-user model with the optimal dose factor for the 100 and 300 mg 

dose is shown in Figures 7.8 and 7.9, respectively. 

The optimal dose factor K for Gum 3 low-user 100 mg and 300 mg can be obtained 

by minimizing the root mean squared error for the prediction. The improved prediction 

using 200 mg low-user model with the optimal dose factor for 100 and 300 mg doses is 

shown in Figures 7.10 and 7.11, respectively. 

The optimal dose factor K for Gum 2 50 mg and 200 mg can be obtained by 

minimizing the root mean squared error for the prediction. The improved prediction 

using 100 mg model with the optimal dose factor for the 50 and 200 mg doses is shown 

in Figures 7.12 and 7.13, respectively. 

The use of dose factor to improve model prediction is also applied to all population 

averages and individualized models in Figure 7.14 and 7.15. Figure 7.15 shows that the 

dose factor is higher at low caffeine dose (100 mg) and lower at high caffeine dose (300 

mg). However, there is no significant difference between high and low caffeine users. 
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Figure 7.7: Use of dose factor K to adjust input caffeine level for model prediction. 
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Figure 7.8: Prediction of 100 mg caffeine effect using 200 mg model and an 
optimal dose factor for high-users based on population average data. 
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Figure 7.9: Prediction of 300 mg caffeine effect using 200 mg model and an 
optimal dose factor for high-users based on population average data. 
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Figure 7.10: Prediction of 100 mg caffeine effect using 200 mg model and an 
optimal dose factor for low-users based on population average data. 
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Figure 7.11: Prediction of 300 mg caffeine effect using 200 mg model and an 
optimal dose factor for low-users based on population average data. 
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Figure 7.12: Prediction of 50 mg caffeine effect using 100 mg model and an 
optimal dose factor for Gum 2 on population average data. 
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Figure 7.13: Prediction of 200 mg caffeine effect using 100 mg model and an 
optimal dose factor for Gum 2 on population average data. 
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Figure 7.14: Optimal dose factor K vs. caffeine level for Gum 2 and Gum 3 based 
on population average data. 
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Figure 7.15: Optimal dose factor K vs. caffeine level for Gum 3 individualized 
models. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Overview 

In this study, the following caffeine model is proposed: 

x(k +1) = Ax{k) + Bu(k), y(k) = Cx(k) + Du(k) 

(8.1) 

, C= [cx c2\ D = d0 

This second-order state-space model in controllable canonical form can be easily 

merged into a two-process model with circadian and homeostatic effects for future study. 

In this caffeine model, five system parameters [ax,a2,cx,c2,d0'\ can be identified by 

using the proposed Observer/Kalman filter identification (OKID) algorithm. 

Identification of individualized caffeine model shows that the first two coefficients 

\ax ,a2 ] have small variations for both low and high caffeine users among all doses. This 

indicates that the caffeine dosage and habitual usage do not have much impact on the 

individualized caffeine model dynamics. 

Based on the individualized caffeine models identified from Gum 3 data, the 100 mg 

model has a statistically higher caffeine response as compared to the response of the 200 

mg or 300 mg models. The result also shows that both low and high caffeine users have 

A = 
0 1 

• a - , 
B = 



105 

comparable responses based on the 100 mg model. However, the responses of the 200 

mg or 300 mg models show that high caffeine users have statistically higher responses to 

caffeine. 

Finally, it is shown that the proposed individualized caffeine model can be modified 

by adding a dose factor to the input of the model to improve the prediction for the 

performance of other caffeine doses. 

8.2 Areas for Future Work 

The research will be extended in one-step ahead prediction by using the same test 

data as studied for prospective study since the identified caffeine models can be used for 

prediction of future performance. The second-order state-space model in controllable 

canonical form can be easily merged into a two-process model with circadian and 

homeostatic effects. Therefore, the future work will be integrated into the dynamic two-

process model of human performance, and then adapt the estimation and forecasting 

algorithm for the new, larger model. The first step will be to transform the caffeine model 

so that its structure is described in the form of a nonlinear state space model, as required 

by the Bayesian forecasting algorithm. Furthermore, future work will also integrate the 

caffeine parameters into the existing two-process model to create a single integrated 

model. At this point, the work will be given a fatigue and performance model that has a 

sleep/wake input, a chronic sleep restriction parameter and a caffeine input with 

associated caffeine parameters. Eventually, the estimation algorithm will be reconfigured 

for use with the expanded model, by introducing a new caffeine input to specify timing 
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and quantity of doses, redesigning the algorithm for the expanded number of states and 

inputs, and then selecting new tuning parameters for process covariances. 
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APPENDIX A 

SINGLE TRIAL CAFFEINE DOSES 

Definition Al (Gum 2) Laboratory-based conducted by the Division of Neuropsychiatry, 

Walter Reed Army Institute of Research, involving a range of multiple caffeine doses 

(three repeated doses of Omg, 50mg, lOOmg, or 200mg) during one night total sleep 

deprivation. 

Description of protocol: 

(a) 1 baseline day of 8 hours TIB (23:00 to 7:00). 

(b) 1 night of total sleep deprivation with three repeated caffeine dosages administered at 

2 hour intervals to four experimental groups. 

Definition A2 (Gum 2 Omg) Placebo administered at 03:00, 05:00 and 07:00. 

Definition A3 (Gum 2 50mg) 50mg dosage administered at 03:00, 05:00 and 07:00. 

Definition A4 (Gum 2 lOOmg) lOOmg dosage administered at 03:00, 05:00 and 07:00. 

Definition A5 (Gum 2 200mg) 200mg dosage administered at 03:00, 05:00 and 07:00. 
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APPENDIX B 

REPEATED TRIAL CAFFEINE DOSES 

Definition Bl (Gum 3) Laboratory-based conducted by the Division of Neuropsychiatry, 

Walter Reed Army Institute of Research, involving a range of multiple caffeine doses 

(three repeated doses of Omg, 50mg, lOOmg, or 200mg) during one night total sleep 

deprivation. Two groups participated, low users of caffeine and high users. Each subject 

will complete four separate trials with a minimum of four weeks between trials. 

Description of protocol: 

(a) 1 baseline day of 8 hours TIB (23:00 to 7:00). 

(b) 1 night of total sleep with repeated caffeine dosages to low users of caffeine and high 

users. Participants completed four separate trials with a minimum of four weeks between 

trials. At each trial subjects were given three repeated doses of caffeine (Omg, lOOmg, 

200mg, or 300mg) at two hour intervals. 

Definition B2 (Gum 3 Low Omg) Placebo administered at 03:00, 05:00 and 07:00. 

Definition B3 (Gum 3 Low lOOmg) lOOmg dosage administered at 03:00, 05:00 and 

07:00. 

Definition B4 (Gum 3 Low 200mg) 200mg dosage administered at 03:00, 05:00 and 

07:00. 
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Definition B5 (Gum 3 Low 300mg) 300mg dosage administered at 03:00, 05:00 and 

07:00. 

Definition B6 (Gum 3 High Omg) Placebo administered at 03:00, 05:00 and 07:00. 

Definition B7 (Gum 3 High lOOmg) lOOmg dosage administered at 03:00, 05:00 and 

07:00. 

Definition B8 (Gum 3 High 200mg) 200mg dosage administered at 03:00, 05:00 and 

07:00. 

Definition B9 (Gum 3 High 300mg) 300mg dosage administered at 03:00, 05:00 and 

07:00. 
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