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ABSTRACT

BUCKLING ANALYSIS AND OPTIMUM DESIGN OF
MULTIDIRECTIONALLY STIFFENED
COMPOSITE CURVED PANEL

Navin Jaunky
Old Dominion University

Director: Dr. Norman F. Knight

Continuous filament grid-stiffened structure is a stiffening concept that com-
bines structural efficiency and damage tolerance. However, buckle resistant design
optimization of such structures using a finite element method is expensive and time
consuming due to the number of design parameters that can be varied. An analytical
optimization procedure which is simple, efficient and supports the preliminary design

of grid-stiffened structures for application to combined loading cases is needed.

An analytical model for a general grid-stiffened curved panel is developed
using an improved smeared theory with a first-order, shear-deformation theory to
account for transverse shear flexibilities and local skin-stiffener interaction effects.
The local skin-stiffener interaction effects are accounted for by computing the stiffness
due to the stiffener and the skin in the skin-stiffener region using the neutral surface
profile of the skin-stiffener semi-infinite plate model. The neutral surface profile
for the skin-stiffener semi-infinite plate model is obtained analytically using a stress

function approach, minimum potential energy principle, and statics conditions.

Analysis methods for buckling of general parallelogram-shaped and general

triangular-shaped curved panels are developed. These analyses are required in order
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to assess the local buckling of grid-stiffened curved skin segments. The buckling -
analysis makes use of “circulation” functions as Ritz functions which account for
material anisotropy and different boundary conditions. The local buckling of stiffener

segments between stiffener interaction points are also assessed.

Using these analyses and a genetic algorithm as optimizer, an optimiza-
tion tool is developed for minimum weight design of composite grid-stiffened panel
subjected to combined in-plane loads with a global buckling design constraint. De-
sign variables are the axial and transverse stiffener spacings, the stiffener height and

thickness, and the stiffener pattern.

Results are presented for buckling loads of composite grid-stiffened panels
which are obtained using the improved smeared theory and are compared with de-
tailed finite element analysis. Buckling loads for anisotropic skewed and triangular
plates, and curved panels are presented and compared with results from finite ele-
ment analysis. Finally, designs for grid-stiffened panels obtained using the design

optimization process are presented.

ii
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

In aircraft structures, structural efficiency dictates that most of the primary structure
be of stiffened construction. In conventional metallic structures, stiffened structures
are assemblies predominantly of a large number of structural elements including skin,
stringers, spars, ribs, and clips put together by bonding or mechanically fastening
them together. Such an approach is not cost effective due to a large part count and
assembly costs. Metallic structures are susceptible to corrosion and fatigue problems
which need additional expensive treatments and periodic inspections to prolong their
life considerably. The advent of composite materials makes it possible to overcome
most of these problems if structures utilizing these materials are designed to exploit
their improved mechanical properties, tailorability, and fabricated in a cost-effective

manner.

The types of composite materials that are widely used in primary structural
applications are graphite-epoxy material systems. These materials have high spe-
cific modulus and strength to make them efficient for aircraft structural applications.
Corrosion problems that are typical of most metallic structures are virtually elimi-
nated, and the designs are mostly driven by static-strength requirements rather than

fatigue-life considerations. But composite structures are generally more expensive
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than metallic structures due to their high material and manufacturing costs. There .
is potential for composite structural cost reductions by using automated manufac-
turing processes to make large subassemblies in a single process. Such efforts led
to cocuring/cobonding processes which dramatically reduce part count. With higher
utilization of composite materials in larger transport aircraft and in a variety of other
classes of aircraft, the material cost per pound is expected to come down making

composites a viable structural material.

The design driver for the current generation graphite-epoxy materials is
their tolerance to low-velocity impact damage. Even at impact velocities that result
in barely visible damage, the residual strength of composite structures reduces by
half compared to undamaged laminates. For this reason, the damage tolerance con-
straint limits the applied strains to about 4500y in./in., even though cormmoily used

composite laminates are capable of loading to 10,0004 in./in.

Continuous filament grid-stiffened structural design concept [1] is a dam-
age tolerant stiffening concept that combines the structural efficiency of a stiffened
structure with the advantages of composite materials in an automated manufactur-
ing process. High volume manufacturing processes like filament winding and tow
placement, have been used in the past to produce these structures in a cost efficient

manner (2],[3].

In aerospace vehicles, most of the structural components have a curved panel
geometry. The %uselage structure of an aircraft can be designed as an assembly of
curved panels of different radii. Figure 1.1 shows a typical aircraft fuselage construc-
tion. The fuselage is in general a non-circular cylinder, but the portion between two
bulkheads and longerons approximates a simply-supported cylindrical panel. Design
configurations for a grid-stiffened shell [4] include isogrid, orthogrid or generalized

orthogrid layout of stiffener.
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Composite grid-stiffening structures are efficient as they utilize the 0° fibers .
placed along the length of the stiffener for large axial and bending stiffnesses. Unlike
prismatically and orthogonally stiffened structures, the general grid-stiffened struc-
tures have diagonal stiffeners which are capable of carrying inplane shear due to
fuselage twisting. The improved damage tolerance of grid-stiffened structures is due

to a multiplicity of load paths to redistribute the loads [3].

Continuous filament grid-stiffened structures also present structural stiffness
tailoring possibilities by skewing the stiffener with respect to load direction [4],[5] and
tapering the height of the stiffeners in the grid along both length and width of the

stiffened panel.

An aircraft in flight is subjected to air loads which are imposed by maneuver
and gusts. Figure 1.2 shows typical aerodynamic force resultants experienced by an
aircraft in steady flight. These force resultants act on isolated curved segments of
the fuselage as shown in Figure 1.1 The aerodynamic drag acting on the fuselage and
the bending moment due to the lift on the fuselage induce an axial loading which
changes from tension to compression around the fuselage. Cabin pressure results in
circumferential or hoop tensile loading and a tensile axial load as well. In-plane shear
loading results from load transfer between bulkheads and longitudinal frames, due to
rolling and yawing of the aircraft, since these motions involve a differential lift on the
wings and from gust loading on the vertical fin. This combined load state may cause
a panel segment of the fuselage to buckle. The deformation pattern associated with
a buckling load may be an overall or global mode or it may be local to some segment
of the fuselage or to a panel skin or stiffener element. A need for understanding
the buckling response of general composite grid-stiffened curved panels subjected to
combined loading is needed in order to identify the best-suited geometries for different
locations of fuselage and wing structures since loading conditions on these structures

is a function of spatial variables. Additionally, understanding the buckling response
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of general grid-stiffened curved panel with variable curvature is needed in order to

identify best-suited geometries for fuselage and wing cross-sections.
1.2 REVIEW OF PAST WORK

Most of the research work on stiffened panels presented in the literature addresses
axially stiffened panels subjected to compression. A limited amount of work has been
reported on stiffened panels subjected to combined in-plane loading. Axially stiffened
prismatic panels subjected to axial compression and in-plane shear was considered by
Stroud, Greene and Anderson [6]. Stroud et. al. [6] used complex Fourier series in
their analysis and compared their results with finite element analysis. Their solution
was essentially exact for axially stiffened panels subjected to axial compression. Gen-
dron and Gurdal [7] considered grid-stiffened composite cylindrical shells subjected
to axial compression and torsional shear loadings. They used finite element analysis
and a gradient based optimizer to optimize composite grid-stiffened cylinders. Finite
element analysis was again used by Rao and Tripathy [8] for buckling analysis of com-
posite orthogrid cylindrical panels. They used the method of ranking to determine
the optimum lay-up for orthogrid skins. Buckling of grid-stiffened cylindrical shells
subjected to combined in-plane loading is reported by Reddy, Valisetty, and Rehfield
[9]. A smeared stiffener approach was used to obtain the global buckling response for
the cylindrical shells and simplified analysis was used to determine the local buckling

response of skin and stiffener segments.

Apart from the published research work on buckling of stiffened plates and
shells utilizing the finite element method, research work on buckling of stiffened plates
and shells utilize three different modeling approaches. These approaches are method
of elastic equivalence or smeared stiffener approach, the column approach, and discrete

stiffener plate approach.
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In the first approach, the stiffness of the stiffeners are “smeared” over the .
panel, and the final equilibrium equations for a generally orthotropic panel are then
solved numerically (e.g., see [9]-[17]). In Ref. [9] and [17], a First-Order Shear-
Deformation Theory (FSDT) [18] has been used in constructing the smeared stiffener
approach. The smeared stiffener approach is applicable in general to stiffened panels
where the local buckling load is equal to or greater than the global buckling load.
This approach for preliminary design is consistent with the widely used aeronautical
design philosophy where the design goal is a buckling-resistant design. As observed
in Refs. [6],[7] and [17], the traditional or conventional smeared stiffener approach
may overestimate the buckling load of stiffened panels for a certain range of geometric
parameters because the traditional smeared stiffener approach does not account for
local skin-stiffener interactions. This effect should be included in an improved smeared
stiffener approach to make the approach a more reliable tool for the analysis and

design of grid-stiffened panels.

The column approach [19] has been widely used in design codes due to its
simplicity. Here it is assumed that the portion of the stiffened panel between the
stiffeners can be modeled mathematically as a uniformly compressed plate, simply
supported along its loaded edges and built-in or clamped along its unloaded edges
(i.e., those abutting the stiffeners) The compressive force and bending moment on the
section can be derived as functions of the local and overall buckling deflections. This
approach has been extensively used in studying interaction phenomena between local
and global buckling. However, this approach is restricted to plates with stiffeners

running in one direction only, (i.e., prismatically stiffened plates).

The discrete stiffener approach (e.g., see [20]-[22]) considers the discrete ef-
fects of stiffeners in the plate buckling behavior by modeling stiffeners as lines of
bending (EI) and torsion (GJ) stiffnesses on panel skin. The stiffener’s axial stiff-

ness (EA) is included in the overall prebuckling stress state determination. Some
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local cross-sectional deformations are lost when stiffeners are modeled as EI and GJ
stiffeners. This approach becomes difficult for plates stiffened in more than two di-
rections and also when the stiffener is not symmetric with respect to the mid-surface
of the skin. Most of the work done using the discrete stiffener approach involved the

Classical Laminated Plate Theory (CLPT) rather than the FSDT.

The buckling analysis of a curved panel with variable curvature appears to
have drawn much less attention by researchers. In 1946, Marguerre [23] addressed
this problem for isotropic panels. He expanded the curvature term, (1/R), which
is a function of the arc length along the panel in a Fourier series and then solved
the buckling problem using trigonometric series as Ritz functions. The approach,
however, becomes tedious if a large number of terms is required to represent the
curvature of the panel accurately. For elliptical cylindrical shells where very few
terms are required to represent the curvature of the shell, Marguerre’s approach has

been used successfully (see [24]).
1.3 SCOPE OF PRESENT STUDY

Finite element analysis has been used for the analysis of grid-stiffened panels (e.g.,
[7]). Such a method, even though sophisticated and accurate, poses problems in
modeling such panels. There are a number of factors to be considered while creating
the finite element model. The finite element model involves detailed discretization of
each stiffened panel which is very tedious and time consuming and thereby limits the
number and type of configurations that can be readily examined by the designer. The
buckling load prediction is influenced by the type of elements used in modeling the
structure, the form of prebuckling stress state, and the type of boundary conditions
that are applied. Buckling loads obtained from finite element solutions involve solving
a large eigenvalue problem and hence not well suited within a design optimization

procedure.
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The overall objective of this dissertation is to develop and validate an an-
alytical tool for design and analysis of composite grid-stiffened circular cylindrical
panels exhibiting global buckling. This analytical tool involves the development of an
improved smeared stiffener theory for the global buckling analyses, and a Rayleigh-
Ritz-type buckling analysis for panels with general parallelogram-shaped and general
triangular planform to assess local skin buckling, and the integration of these analysis
tools with a design optimization process for discrete design variable. The improved
smeared stiffener theory is implemented through a mathematical study of the stress
state in an isolated semi-infinite stiffened panel leading to the location of the neutral
surface as a function of distance away from the stiffener in the semi-infinite stiffened
panel. The effect of skin-stiffener interaction is then introduced in the smeared stiff-
ener theory by computing the stiffness due to the stiffener with respect to a shift in
the neutral surface. As grid-stiffened cylindrical shells have closely spaced stiffeners,
smeared stiffener approach with a first-order, shear-deformation theory can be used
for an elastic buckling analysis under combined loading. FSDT is preferred over CLPT
because it has been shown that buckling loads of composite stiffened plates are over-
estimated by 8 to 20 percent when transverse shear effects are neglected (e.g., [17]).
The Rayleigh-Ritz-type buckling analysis for general parallelogram-shaped and gen-
eral triangular-shaped planform with various boundary conditions is achieved through
the use of a “circulation” function and accounts for material anisotropy and combined
in-plane membrane loadings. The crippling of a stiffener segment is examined using
the procedure given in Ref. [9]. The global and local buckling analyses are performed

repeatedly in a design cycle until optimum or near-optimum design is obtained.
1.4 ORGANIZATION

The remainder of this dissertation is organized as follows. Chapter 2 presents the

formulation of the improved smeared stiffener theory. Results for grid-stiffened

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



panels obtained from the improved smeared theory are compared with those from the .

traditional smeared theory and also with those obtained from detailed finite element
analyses. Chapter 3 deals with the buckling analysis using the Rayleigh-Ritz method
and a “circulation” function. The method is implemented using different shell theo-
ries and addresses general parallelogram-shaped and general triangular-shaped plate
planforms. Buckling loads for cylindrical panels are presented and compared with
those obtained using finite element analyses. Buckling loads for skewed and triangu-
lar plates are presented and compared with those from obtained using finite element
analyses and with existing solutions when available. Chapter 4 presents the design
strategy for optimal design of grid-stiffened panels for global buckling. The design
strategy utilizes the Genetic Algorithm ([25]) and results are presented for panels
with different in-plane loading conditions. Finally, conclusions from this study and

suggested future directions are listed in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Bulkhead Longeron

1 NY
SECTioN” Nev o
Nx 1 x
— —
~———= Nxy
Ny
CONCEPTS
e
LN~
N S
S S ,
Orthogrid Isogrid General grid

Figure 1.1 Aircraft structural applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

Directional
Control

Wing Lift

Rolling
Moment

~
~h
X

y 7 Aircraft Weight
: :
Pitching U Yawi
Moment | awing
M
7 oment

i 4

Figure 1.2 Typical resultants forces due to air loads on airplane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

IMPROVED SMEARED
STIFFENER THEORY

An improved smeared stiffener theory for stiffened panels is presented that includes
skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener com-
bination is developed analytically using the minimum potential energy principle and
statics conditions. The skin-stiffener interaction is accounted for by computing the
bending and coupling stiffness due to the stiffener and the skin in the skin-stiffener
region about a shifted in the neutral axis at the stiffener. Buckling load results
for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using
the smeared stiffness combined with a Rayleigh-Ritz method and are compared with

results from detailed finite element analyses.
2.1 ANALYTICAL APPROACH

If a stiffened plate is bent while it is supported on all four edges, the neutral surface
in the neighborhood of the stiffener will lie between the mid-plane of the plate and
the mid-plane of the stiffener. It is convenient to think of this as a shift of the neutral
surface from the mid-plane of the stiffener. Hence, the approximate stiffness added
by a stiffener to the skin stiffness will then be due to the plate-stiffener combination
being bent about its neutral surface rather than due to the stiffener being bent about

its own neutral surface or the plate neutral surface. The location of the neutral surface

12
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is determined theoretically through a study of the local stress distribution near the
skin-stiffener interface similar to the approach presented in Ref. [26] for a panel with
a blade stiffener. However, the study presented in Ref. [26] does not provide a general

solution that is applicable to all classes of symmetric laminates.

A grid-stiffened panel may be considered to be an assembly of repetitive
units or unit cells (see Figure 2.1). Any stiffener segment in the unit cell may be
isolated in a semi-infinite skin-stiffener model as shown in Figure 2.1 for a diagonal
stiffener. An approach for obtaining the stress distribution in a semi-infinite stiffened
panel is given below.

The average membrane stresses in the local coordinate system of the semi-
infinite stiffened panel model for the plate are obtained by combining the constitutive
relations with the strain compatibility equations and the use of a stress function

approach. The stress function is
P. = 8°F/8y?, P, = 0*°F/8z*, P,, = —0*F/0zdy (2.1)

where F is defined as the stress function and P,, P, and P,, are the average axial,

transverse, and in-plane shear membrane stresses and are given by;

Cg Au/t Alg/t Ale/t -t P,;
Cg = Aum/t A22/t Aze/t Py (22)
Try A/t At Aes/t P,

where €, € and 72, are the membrane strains, A;; is the extensional stiffness coeffi-
cients obtained from the classical lamination theory ([27]), and ¢ is the skin thickness.
The stress function F satisfies the conditions for equilibrium of a rectangular plate

element. The compatibility equation is
9% /0y® + 0%€0/0z* = 0%, /0Dy (2.3)

Using Equation (2.1) and substituting for the strains from Equation (2.2) in Equation

(2.3), a fourth-order partial differential equation is obtained

. O'F . O'F . .. O0'F . O'F . O'F
11‘3‘:57 - 2Azsm + (2A12 + Aee)m - QAmaxaya + Az 9yt =0 (2-4)
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where Aj; is given by [4;;/t]~!. Dividing Equation (2.4) by Aj; and transforming the
y coordinate by n = egy results in

0‘F Ajs O'°F (241, + As) O'F 3 Alg O'F  9'F

0L 5 M2 _9e316 — ~ 4”0 (2
0zt~ A1 5z90p T A3, 0z%0n? e°A:13x6n3+3n“ ¢ &3

where ey = [A],/A3,])'/4. This equation is solved by assuming that stresses decay
rapidly as the distance, y, away from the stiffener centerline becomes large, that the
stresses are localized near the stiffener, and that a symmetric loading condition exists

along the stiffener. The membrane stress function is assumed to be of the form
F = Real(e™ @+ireaw)) = Reql(eimk(z+irn) (2.6)

where k = 7, m =1,2,3, ..., 7 is an unknown, and z and y are local coordinates in the
semi-infinite model. Substituting this stress function into the fourth-order differential
equation (Equation (2.5)) results in a quartic equation in terms of the unknown r.
The roots of the quartic equation are computed using subroutine CXPOLY from the
Mathematical and Statistical Software (Ref. [28]) at NASA Langley Research Center.

The roots of the quartic equation occur as two pairs of complex numbers given by

Erp1+irn
= . 2.7
{ drps+irp (27)

The membrane solution corresponds to the root with the largest magnitude of the

real part for r and is developed as follows
Fim = Réalleimkletitratirdnl] = e-rrmbncosimk(z — rig)], for >0
Fym = Real[emka+il-ratirinl] = e=ramkncos[mk(z +rim)}, for 7 <0
Fm = A;"(Flm'!'FZm)

= Ame ™keorr(y=t:/2)cos[mkz]cos[mkeori(y — t5/2)] (2.8)

where rg and r; are the real and imaginary parts of the root, respectively, ¢, is the

thickness of the stiffener, and A,, are the unknown coefficients to be determined.
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A similar approach is taken for the bending solution using the fourth-order
partial differential equation for the out-of-plane deflection in terms of the local co-
ordinate system, which requires that the resulting moments acting on a rectangular

element vanish. That is,

3D26 64w 3“w

64w D]s 6“w 2(2D12 4 Dee) 64w
2 + o

'&-4-4'4

+ 4e

—_— =0 .
“ Dy, 9z30n % Dy dz%0n? b Dy, 0x0n? 2 9)

where D;; are the bending stiffness coefficients of the skin, e, = [D11/D32)'/* and
7 = epy. The solution for the out-of-plane deflection is obtained by assuming that the
out-of-plane deflection decays as y becomes large and that the loading is symmetric

along the stiffener. The out-of-plane deflection is assumed to be of the form
w = Real(e™k(=+ires)) (2.10)

which on substitution into Equation (2.9) gives another quartic equation in r. The
solution for the out-of-plane displacement corresponds to the root with the smallest

non-zero magnitude of real part for part for r and is developed as follows

Wy = emKEHilrRtirndnl for p > 0

Wop = el (=TrRetir)n for p < 0
W = 1 RealliBrwim + Crnwin — iBrwim + Crwam]
Wy, = e~mRTRW=%/2) [.B_ sin[mkeyriy(y — t4/2)]

+Cnm cos|mkeyrpp(y — t5/2)] } cos[mkz] (2.11)

where rgp and rjy are the real and imaginary parts of the root, respectively, and B,

and C,, are the unknown coefficients to be determined.

Expressions for the membrane strains and the curvatures can now be ob-
tained using Equation (2.8) and (2.11). The membrane strains are obtained by also

using Equation (2.2):
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60 — Am. kZ m2e-mkeorn(y—t,/2) x

{ [ (A5, (v} — r})ed — A},)cos(mkz) — eorrAigsin(mkz) ]
x cos(mkeori(y — t5/2))
+ [ 22 A} riTRcos(mkz) — eorpAjgsin(mkz) ]
x sin(mkeori(y — ts/2)) }
@ = A, k? m2e-mkeorrly=ti/2)
{1 (Airh - 13)ed — Ag)cos(mhka) — eorrAzgsin(mka) |
x cos(mkegri(y — ts/2))
+ [ 2¢2 Aj,rirRcos(mkz) — eorpAsgsin(mkz) ]

x sin(mkeor;(y — t,/2)) }

e, = Am K m2e~mkeotr(y-t/2)
([ (A3elrh — 12)ed — Agp)cos(mbz) — eorpAgsin(mkz)]
x cos(mkegri(y — t5/2))
+ [ 2e2Aj¢rirReos(mkz) — egriAggsin(mkz) )
x sin(mkeqri(y — ts/2)) }
—g—:l-f- = k? m2e mkarr-t/Deos(mikz)
[ Cncos(mkeyrp(y — ts/2)) + Bmsin(mkeyrp(y —t5/2)) |
—?;Tu; = —k? m2e? emmkarTRlv=t/D o5 (mkz)
{1}y = r3)Cm — 2rRyr 5B Jcos(mkeyr(y — t,))
+ [ (v = 73) B + 2rpyrnCom Jsin(mkerrn(y —t,)) }
—23—3:; = —4k? m?e; e kTR0 D 5in(mkz)

{ [ *rRCm = rRsBm Jcos(mkesrn(y — t,))

+ [ t1vCrm + TR Bm Jsin{mkerrn(y — t,)) } (2.12)
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These two solutions (Equations (2.8) and (2.11)) are valid near the skin-
stiffener interface but not within the stiffener itself (i.e., y > t;/2). It is assumed
that, since the stiffener is thin, the strain within the stiffener is approximately equal
to the strain at the edge of the stiffener (at y = ¢,/2). The total strain energy, Ur, of
the skin-stiffener combination is developed next from expressions for the out-of-plane
deflection, wy,, and the membrane stress function, Fy,. The total strain energy is

obtained by evaluating the following integrals:

1. The strain energy of the skin is

Uskin = /:/02 /_I; ({e}T[Ail{ec} + {,}T[Di;){x} ) dzdy (2.13)

where {e} = {€2 € 72} are the membrane strains and {x} = {r; £, £z} are

the curvatures.

2. The strain energy of the stiffener is

1 -tz L . ,
Usiss = '2'ts /—(t/2+h) /—L Qu (& +2k: )y:t./2 dzdz (2.14)

where @y is the longitudinal modulus of the stiffener and t is the total thickness

of the skin.

3. The strain energy of the skin attached to the stiffener is

t, (L
Uattach = _2—/-1.( A11(62)3=g,/2 + Dn('%)f,:g,/z )d-‘ﬁ (2-15)

Hence, the expression for the total strain energy, Ur, is obtained by summing these

contributions to obtain

Ur = C4A% + CgB2% + CcC2 + CpcAmCrn + CopCrnBn (2.16)
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where the coefficients C4, Cg, Cc,Cac and Ccp are obtained by evaluating the strain
energy integrals and A,,, Bm, and C,, are the unknown coefficients of the assumed

functions F;, in Equation (2.8) and w,, in Equation (2.11).

The total bending moment transmitted at any cross-section perpendicular
to the longitudinal axis of the stiffener due to the eccentricity of the stiffener for the
symmetric case can be represented by the series

m >4
M = Y My cos(mkz) (2.17)
m=1
From statics, the normal stresses over the cross-section of plate-stiffener combination

must satisfy the following conditions

Jy0.dA =

2 [ [y 0edzdy + 1, [ Qul € + 282 )ymtyp dz = O (2.18)

Jy20:dA =

2 [ I, z0udzdy + 1, [17 50 2@u( € + 252 Yymty 2 d2

= Yooo1 M, cos(mkz) (2.19)

where ¢ is the total thickness of the skin, ¢, is the total thickness of the stiffener,
k is the height of the stiffener above the outer surface of the skin, and o is the
normal stress distribution over the cross-section. Evaluating the integrals defined by
Equations (2.18) and (2.19) results in the following relations after neglecting coeffi-
cients of sin(mkz) which are due to the A;¢ and Dj¢ terms in the extensional and
bending stiffness matrices, respectively, and also due to Ajs in the expression for €2

in Equation (2.12):

SnAm + S513Cn =0
S2Am + S2Bm + S23Cm = Mp (2.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

where S;; coefficients are determined by collecting like coefficients multiplying the
unknowns A,,, B, and Cp, in Equations (2.18) and (2.19). Using Equations (2.20),
the following expressions for B,, and C,, are obtained in terms of A,, and M,

Cm = ShAnm

B, = 83Am+ S3,M, (2.21)
where

Sir = ~u/Sis, S = (S = i) / SieS
and S3,=1/52» (2.22)

Equations (2.21) are substituted into Equation (2.16) and the total energy is mini-

mized with respect to A,, to yield
An = VM, [V, (2.23)
where
Va = 2(Ca+Cp(S;) +Cc(511) CesShiSi
and Wy = 2CpS5;S5;,+ CcpSyy52, (2.24)

Using Equation (2.23), B, and Cy, can be expressed in terms of M,,, Vi and Vy,

with M,, as the only unknown. That is,

. . VMM,
A

The expression for axial strain in the skin-stiffener combination is obtained from

Equation (2.12) as
0w
0 - z-——aw2 (2.26)

Substituting for Apm, By, and Cp, in Equation (2.26) from Equations (2.23) and (2.25)

€z =¢€

and solving for the value of z for which ¢, is zero, an expression for the neutral surface,
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Z'(y), is obtained. Only one term (m = 1) in the series expansion is used to obtain

the expression for Z'(y)

2
Z'(y) =€ 0w

z dz?
where

62. = _VmMm k2 mZe-mkeorR(y—t.ﬂ) x

Va
{ (A3,(r% — r})e2 — A3,)cos(mkz) x cos(mkeori(y — ts/2))
+ 2¢2 A} rirRcos(mkz) x sin(mkeori(y — 5/2)) }

0w
— = —k*m?Ezp[-mkeyrpy(y — t./2)] cos[mkz] x

0z?
VmMn
{(- fl"MV—) cos[mkeyrn(y —t5/2)]
A

VMM,

+ (—S;lT + S5 My )sin[mkeyrn(y — t,/2)]} (2.28)

The coefficients of sin(mkz) in the expression for €2 are neglected. These coefficients
are due to Ajs and hence, the expression for Z’(y) is independent of M,, and the
axial distance z. Since the expression for Z’ involves ezp[mk(eyrry — eorr)(y — t2/2)],
the choice of roots for the solution of the stress function, F, and the out-of-plane
deflection, w, ensures that the neutral surface Z’(y) decays as the distance away
from the centerline, y, becomes large. Finally, the shift in the neutral surface at the

stiffener is obtained by setting y = ¢,/2 in the expression for Z'(y).

. 2002 _ .2 _ A=
Z'n - _(AIICO(TR Sl-:l) 12) (2.29)

A typical profile of the neutral surface for a skin-stiffener combination is
shown in Figure 2.2. The distance y* represents the distance from the centerline of
the stiffener to the point where the neutral surface coincides with the rﬁid-surface of
the skin. The average of the neutral profile over the distance y* is Z*. The quantities

y* and Z* are obtained numerically.

The smeared stiffnesses of a stiffened panel is obtained by mathematically

converting the stiffened panel to an unstiffened panel (Ref. [17]. The smeared
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stifinesses are developed on the basis that the strain energy of the stiffened panel
should be the same as that of the equivalent unstiffened panel. These smeared stiff-
nesses can then be used in a Rayleigh-Ritz type analysis to solve for buckling loads
of the stiffened panel. In Reference [17], the strain energy of the skin and stiffeners
in the unit cell is obtained by using stiffnesses of the skin and the stiffeners which
are computed about the mid-surface of the skin. Since, there is a shift in the neutral
surface at the stiffener, the stiffness of the stiffeners and the skin segment directly
above it has to be computed about a shift in the neutral surface so as to account for

the skin-stiffener interactions.

The correction to the smeared stiffnesses due to the skin-stiffener interaction
is herein introduced by computing the stiffness of the stiffener and the skin segment

directly contiguous to it according to the following criteria.
1. If y* < t/4, then the reference surface for the stiffener is Z,.
2. If y* > t/4, then the reference surface for the stiffener is Z*.

In either case, the reference surface of the skin is taken to be its mid-surface. Other
more elaborate and accurate schemes can be used to introduce the skin-stiffener inter-
action using the neutral surface profile. However, the one described herein is simple,

and provides sufficiently accurate buckling loads for the preliminary structural design.
2.2 NUMERICAL RESULTS

Three stiffened panels with different stiffener configurations and simply-supported
boundary conditions are used as examples to demonstrate the present analytical ap-
proach. Panel 1 is an axially-stiffened panel, Panel 2 is an orthogrid-stiffened panel,
and Panel 3 is an example for a general grid-stiffened panel. Detailed finite element
analyses of these three panels have been conducted to verify the results of the present

analytical approach. The finite element analysis codes STAGS ([29]) and DIAL ([30})
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have been used for this purpose. In the STAGS finite element model, a nine-node
shear-flexible element (i.e., STAGS element 480) is used while an eight-node isopara-
metric shear-flexible element is used in the DIAL model. Finite element analysis
results for all panels indicate that the panels buckle globally under the applied in-
plane loading conditions.

Panel 1

Panel 1 is 30.0-in. long and 30.0-in. wide with axial stiffeners only. The
stiffener height and thickness are 1.86958 in. and 0.20084 in., respectively. The unit
cell is 30.0-in. long and 10.0-in. wide (see Figure 2.3). The skin ply stacking sequence
is [£45/F45/0/90], with thicknesses of 0.00637 in. for the 45° and —45° plies, 0.0249
in. for the 0° plies and 0.0416 in. for the 90° plies. The stiffener ply stacking sequence
is [£45/ F45/0], with thicknesses of 0.00823 in. for the 45° and —45° plies and 0.0675 -
in. for the 0° plies. The nominal ply mechanical properties used are: longitudinal
modulus = 19.0 Msi; transverse modulus = 1.89 Msi; shear modulus = 0.93 Msi and

major Poisson’s ratio = 0.38.

The four panel load cases considered are shown in Table 2.1 The STAGS
analysis results are compared with solutions from the smeared stiffener approach
without skin-stiffener interaction effects included (the traditional approach) and with
skin-stiffener interaction effects included (the present approach). It can be seen that
the value of Z, for the axial stiffener is not small compared to the height of the
stiffener. The result obtained from the traditional approach is in good agreement
with the STAGS analysis result for the case of axial compression and the result from
present approach is less than the STAGS analysis result by 7.5 percent. For the other
load cases shown in the Table 2.1, the results obtained by the traditional approach
are greater than those of STAGS by 8 to 13 percent and those of the present approach

are in good agreement with the STAGS results.
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Panel 2

Panel 2 is 60.0-in. long and 36.0-in. wide with axial and transverse stiffeners
only. The stiffener height and thickness are 0.5 in. and 0.12 in., respectively. The
unit cell is 20.0-in. long and 9.0-in. wide (see Figure 2.4). The skin ply stacking
sequence is [£45/90/0], and each ply thickness is 0.008 in. The stiffener is made of
graphite epoxy material with 0° orientation. The nominal ply mechanical properties
used are: longitudinal modulus = 24.5 Msi; transverse modulus = 1.64 Msi; shear

modulus = 0.87 Msi and major Poisson’s ratio = 0.3.

The panel buckling response when subjected to four loading conditions is
indicated in Table 2.2. The DIAL analysis results are compared in Table 2.2 with solu-
tions from the smeared stiffener approach with and without skin-stiffener interaction
effects included. The value of Z, for the transverse stiffener is not small compared
to the height of the stiffener. The results obtained using the traditional approach
overestimate the DIAL analysis result by 12.6 percent for the axial compression load
case, by 4.0 percent for the transverse compression load case, and by 8.4 percent for
the combined load cases. Results from the present approach agree with the DIAL
analysis results except for the transverse compression load case where the present

result is 5.2 percent less than the DIAL analysis resulit.
Panel 3

Panel 3 is 56.0-in. long and 20.0-in. wide with transverse and diagonal
stiffeners only. The stiffener height and thickness are 0.276 in. and 0.1125 in., re-
spectively. The unit cell dimensions for this panel are 7.0 in. in length and 5.0 in.
in width (see Figure 2.5). The skin stacking sequence is [45/90/ — 45],, and each ply
thickness is 0.008 in. The stiffener for this case is also made of 0° material. The nom-
inal ply mechanical properties used are: longitudinal modulus = 24.5 Msi; transverse

medulus = 1.64 Msi; shear modulus = 0.87 Msi and major Poisson’s ratio = 0.3.
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The panel is analyzed for the three load conditions shown in Table 2.3. The

DIAL analysis results are compared with results from the smeared stiffener

approach with and without skin-stiffener interaction effects in Table 2.3. For this
panel, the values of Z, are small compared to the height of the stiffener. The results
obtained from the traditional approach are approximately 11 percent greater than
the DIAL analysis results, and the results obtained using the present approach are
approximately 6.5 percent less than the DIAL analysis results. For this panel, the
results obtained using the present approach are conservative since the contribution
due to stiffness terms A6 and Dig, and the flexibility term Ajg to Pr (Equation 2.2)
and € (Equation 2.12) are not small and does influence the neutral surface profile

position for the diagonal stiffener.
2.3 SUMMARY

An improved smeared stiffener theory that includes skin-stiffener interaction effects
has been developed. The skin-stiffener interaction effects are introduced by computing
the stiffness of the stiffener and the skin at the stiffener region about the neutral axis at
the stiffener. The neutral surface profile for the skin-stiffener combination is obtained
analytically through a study of the local stress distribution near the skin-stiffener

interface.

The results from the numerical examples considered suggest that skin-stiffener
interaction effects should be included in the smeared stiffener theory to obtain good
correlation with results from detailed finite element analyses. In a few cases, the
present analysis appears to underestimate the buckling load by 5 to 7 percent. In
spite of this limitation, the smeared stiffener theory with skin-stiffener interaction ef-
fects included is still a useful preliminary design tool and results in buckling loads that

are more accurate than the results from the traditional smeared stiffener approach.
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Table 2.1 Results for axially stiffened panel (Panel 1).

X-stiffener: Z, = -0.4386 in., Z* = -0.1020 in., y* = 4.7512 in.
Critical Eigenvalue

N, N, STAGS Traditional Present
Ibs/in. lbs/in. Approach Approach
1000 0 9.9636 9.9659 9.2135
0 1000 6.3016 6.7985 6.3483
1000 1000  4.9512 5.6018 4.9491
500 1000  5.5023 6.2007 5.5838

Table 2.2 Results for orthogrid panel (Panel 2).

X-stiffener: Z, = -0.0949 in., Z*
Y-stiffener: Z, = -0.1295 in., Z*

-0.0165 in., y= = 0.0280 in.
-0.0177 in., y* = 0.0131 in.

Critical Eigenvalue

N. N, N., DIAL Traditional Present

Ibs/in. lbs/in. Ibs/in. Approach Approach
400 0 0 0.7909 0.8903 0.8161
0 200 0 0.6281 0.6536 0.5956
400 200 0 0.3504 0.3799 0.3463
400 200 50  0.3500 0.3796 0.3458

Table 2.3 Results for grid-stiffened panel (Panel 3).

Y-stiffener: Z, = -0.0135 in., Z* = -0.0043 in., y* = 2.3636 in.
D-stiffener: Z, = -0.0698, Z* = -0.0349 in., y* = 0.0239 in.

Critical Eigenvalue

N; Ny N. DIAL Traditional Present

Ibs/in. lbs/in. lbs/ iyn. Approach Approach
0.0 400 0.0  0.3290 0.3646 0.3045
0.0 400 300 0.3224 0.3595 0.3008
100 400 300 0.3121 0.3486 0.2917
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Chapter 3

BUCKLING ANALYSIS OF
CURVED PANELS

This chapter deals with the buckling analysis of curved panels and makes use of
the principle of minimum potential energy and a Rayleigh-Ritz solution procedure
based on high-order complete polynomial functions. These polynomials are expressed
in terms of natural coordinates for a quadrilateral plate geometry and in terms of
area coordinates for a triangular plate geometry. The approach makes use of finite
element concepts for mapping an arbitrary quadrilateral plate geometry to a square
plate geometry and mapping a general triangular plate geometry to an equilateral
triangular plate geometry. The Ritz functions include “circulation” functions that
can be used to impose different boundary conditions. The mapping is important so
as to facilitate computations of linear and geometric stiffness matrices and imposition
of boundary conditions. The formulation accounts for transverse shear flexibility and
for material anisotropy. Buckling loads are presented for flat skew parallelogram-
shaped plates, triangular plates, and curved cylindrical panels. Results are compared

with existing solutions and finite element solutions.
3.1 PREAMBLE

The stiffener pattern on a grid-stiffened panel is determined primarily by the combi-

nation of in-plane axial, transverse and shear loading experienced by the structure.

28
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In the case of a diagonal-stiffener configuration, the skin segments have a rhombic
geometry. Even for the case of a more conventional orthogonal stiffener pattern used
for a swept-back wing, the skin segments have a skewed quadrilateral geometry. For a
stiffener pattern with diagonal and axial stiffeners, the skin segments have a triangu-
lar geometry. The boundary conditions imposed on the structural skin segments are
determined by the stiffness of the stiffeners. Therefore, the buckling analysis method
for composite skin segments should be general enough to include different boundary
conditions, general quadrilaterals and triangular geometries, and anisotropic material
properties in order to assess accurately the local buckling response of the composite

skin segments in composite grid-stiffened panels.

A review of the existing literature on the buckling of arbitrary quadrilateral
plates indicates that some aspects have been addressed, mostly for skewed isotropic
plates using classical laminated plate theory (CLPT). A thorough review of the lit-
erature for buckling of skewed plates with different boundary conditions using CLPT
and the Rayleigh-Ritz method is presented in Ref. [31]. Results are compared with
those published by different authors. None of the references cited in Ref. [31] or any
other recent publications in the open literature (e.g., Ref. [32] and [33]), address the
buckling of skewed or rhombic anisotropic plates with or without transverse-shear

flexibility. Most authors focus only on the vibration response rather than buckling.

The problem of buckling and vibration of triangular plates has been ad-
dressed mostly for isotropic plates. Buckling solutions for simply supported equi-
lateral triangular isotropic plates were presented in 1933 by Woinowsky-Krieger as
cited in [11] and validated in 1957 by Taylor [34]. The structural stability of sim-
ply supported, right-angle isosceles triangular isotropic plates subjected to in-plane
shear loading was presented in 1951 by Klitcheiff [35]. In 1953, Wittrick [36] im-
proved Klitcheiff’s solution to include combined in-plane normal loading and differ-

ent boundary conditions. In 1956, Li-Chow [37] obtained the buckling solution for a
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simply-supported 30° — 60° — 90° triangular isotropic plate subjected to compression.
This solution was validated in 1963 by Reipert [38]. Finally, Valisetty and Reddy
[39] presented solutions for simply supported isosceles triangular orthotropic plates
in 1985. However, the solutions in Ref. [39] do not satisfy the zero-moment conditions
at all points along the plate boundaries. The solutions in these references use clas-
sical laminated plate theory (CLPT). The vibration analysis of triangular plates has
been studied to a larger extent than the buckling analysis. Vibration of triangular
isotropic and/or orthotropic plates are addressed in references [32], [40]-[42], using
CLPT and in Ref. [43] using a first-order, shear-deformation theory (FSDT). The
only work dealing with triangular anisotropic plates is reported in Ref. [44] which
deals with the free vibration of right-angle triangular plate using CLPT. No work
has been reported on the buckling of anisotropic triangular plates with or without

transverse shear flexibility.

The following sections describe the analysis methods developed for the buck-
ling of general parallelogram-shaped and general triangular-shaped anisotropic panels

using FSDT, and the results obtained using these methods are presented.
3.2 STRAIN-DISPLACEMENT RELATIONS

The displacement field for a cylindrical shell, according to a first-order, shear-deformation
theory is given by

u(z,y,2) = uo(z,y) + 24:(z,y)
v(:z:,y,z) = vo(x,y)+z¢y(z,y)

w(z,y,2) = wo(z,y) (3.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

where ug is the membrane displacement in the z-direction, vg is the membrane dis-
placement in the y-direction, wp is the out-of-plane transverse displacement in the
z-direction, ¢, and ¢, are the cross-sectional rotations about the r and y axes, re-

spectively.

According to FSDT, cross-sections normal to the reference plane before de-
formation are assumed to remain planar but not necessarily normal to the mid-surface
after deformation. Figure 3.1 shows a cylindrical shell element with the coordinate
axes, notations and sign convention given. The circumferential coordinate 6 is re-
placed by y = R, where R is the radius of the cylindrical shell segment. Noting that

Jdy = RO0, the linear strain-displacement relations [45] can be written as;

€L = 62 + 2Kz
€L = 62 + 2Ky
YzyL = 7gy + 2Ky
Yzl = 722
VL = Ve
where
auo
o _ 2
“ = Bz
O = dw w
v dy R
o _ O I
Yoy = dy Oz
o %
T - aax
¢
Ky = Fy!
_ 6¢, a¢y Cz a‘vo a’Llo
Foy = dy + oz + 2R( oz Oy )
ow
722 = ¢-’C + '_0
aw
Te = yt e - Clﬁ (3.2)

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.



32

Here C; and C are “tracer” coefficients used to implement different strain-displacement.
relations or shell theories. Accordingly when Cy = C, = 1, the first approximation
of Sanders-Koiter shell theory [46, 47] is obtained and when C; = 1, C; = 0, Love’s
shell theory [48] including transverse shear deformations is obtained. Finally, when
C: = 0 and C; = 0, Donnell’s shell theory [49] including transverse shear deformation
is obtained. The linear strain-displacement relations with tracer coeflicients can be

written in matrix form as

3 -
o) Z 0 0 00
7, w oz g 0 o
Kz _ 0 0 0 8_:: 0
Be=16 (] 0 0 00 2 : (3.3)
- 3 C, 8 3 2] z
Roy || SRy ke 0 5 o | g,
Vzz 0 0 ai 1 0
Yoz = & g9
\ 1yz J L 0 R 5; J

The nonlinear strain-displacement relations for a circular cylindrical shell or

panel as given by Ref. [50] are
€z = Uy +%(U,§ +w’3: )

= €z + €NL
w
R

= €L + €yNL

1 v
€ = Uyt '*'5["’124'*‘(’”’1/"_)2]

R
C, w v
Yoy = Uy +Vyz +ﬁ('00ax —UQ,y ) — Uy (vay +E) — Uyz Uyr + Wz (way ——.é)
= YryL + YzyNL
Voz = Wiz U,z — W,z Uyy —W,z Uyz TV Uy

= YrzL + Vz:NL

v v w
Yyz = Wy v, _Cl—}—i - (w,y —'R')(U,y +’E) = Uy Wyz +Uyy U,

= YyzL + YzyNL
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where a comma is used to indicate differentiation with respect to the next subscripted
independent variable and the subscripts “L” and “NL” denote the linear part and
the nonlinear part, respectively. For example u,, denotes %, €-1 denotes the linear
part of the axial strain €, and e;n1 denotes the nonlinear part of the axial strain
€z. Substituting Equation (3.1) in (3.4), neglecting higher-order terms for the cross-
sectional rotations since in the prebuckled state the cross-sectional rotations tend to
zero, the nonlinear terms in the transverse shear strains, and the z/R terms, these

nonlinear strains reduce to the following form:

1
€z = Upyz +2Pzyz +§(v033: +w’§ )

= €L+ €nNL
w 1 Vo
€y = Uy +—é + 2y, +§[UD,§ +(w9y "‘72')2]
= €Lt &NL

C
TYzy = Ugyy +vg,z +ﬁ(vo,z —Ugyy ) + 2(¢:,y +¢ya:: )

w Yo
—Ug,y (vOsy +§) — U0,z UQyz W,z (w’y —'72')

= zyL +7z:yNL
Yzz = Wy +¢z

= YzzL

v
Yyz = Wy +¢y - Cl'}—g'

= YL

(3.5)
3.3 PHYSICAL AND COMPUTATIONAL DOMAINS

The buckling analysis of these local skin segments is enhanced by mapping their
physical domain into a computational domain. Consider a general quadrilateral or
triangular panels subjected to a state of combined in-plane loading as shown in Figure

3.2, where the loading and material properties are defined using the coordinate system
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shown. The transformation from a physical domain to computational domain is
necessary when dealing with general quadrilateral and triangular geometries in order
to facilitate the computation of linear stiffness and geometric stiffness matrices and

imposition of boundary conditions.

The physical domain D[z,y] is transformed to a computational domain

DI¢,n] as indicated in Figure 3.2. The mapping for a quadrilateral is

£7 7’) - E_:N (6’
y(f,fl = iNx (36)

where z;(; = 1,2,3,4) and y:(¢ = 1,2,3,4) are the physical coordinates of the i** cor-
ner of the plate, £ and 7 are the natural coordinates for the quadrilateral geometries,

and N; (i = 1,2,3,4) are the bilinear mapping functions given by

Ny(€,7) = l(1 —&)(1+7)
Nof6sm) = 31+ 61 +7)
Na(E,n) = (1 +E)(1-1)

Ni(6,) = (1= O)(1 =)

The Jacobian of the transformation is

8z Jy
J= [a, _z_g] (3.7
dn 97

which is independent of the natural coordinates for general parallelogram-shaped ge-

ometries. This results in substantial computational savings in the overall formulation.

The mapping for a general triangle is

z(&,mp) = €x1+nz2+ pz3

y(&mp) = €y +ny2+pys (3.8)
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where £, 7 and p are the area coordinates for the case of triangular geometries, and

z;(i = 1,2,3) and y;(¢ = 1,2,3) are the physical coordinates of the i** corner of the

plate. Note that the third area coordinate will be expressed in terms of the other

two or p = (1 — £ — 77) based on the constraint that the sum of the area coordinates

must be equal to one. The Jacobian of the transformation is independent of the area

coordinates. The Jacobian, in either case, is used to relate derivatives in the two

domains.

3.4 STRESS-STRAIN RELATIONS

The stresses are related to the strains for the k** ply of a laminate by ([27])

k

Qn
Q12

Q16
0

0

@iz Qe O 0 €z

Q2 Q2 O 0 €y

Q26 QGG 0 0 ‘7:ry (3 9)
0 0 Qu Qs Yzz
0 0 Qs @ss kN Tz Mg

The force and moment resultants acting on the differential element shown in Figure

3.1 are

/

20y
2Tzy

TZ z

- (3.10)

\ Tyz )

k

Substituting Eqbation (3.9) in Equation (3.10) and carrying out integration over the

laminate thickness gives;

(N,
N,

N.
M.
M,

M,
Q
Q

88 e

8 e

v

]

\ v

5\

/

[ An
Az
A
Bn
B2
Bie
0

0

Aj
Az
Az
B,
Bs,
Bas
0
0

Ass
Az
Ags
B
B3
Begs
0
0

Bm 0 0 1( 62 )

st 0 0 60

Bss 0 0 ‘)’fv

g:: 8 g < ,’:: b (3.11)
Des 0 0 Kzy

0 Csu Css Yz

0 Cus Css_ L Yyz J
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where A;; are the extensional stiffness coefficients, B;; are the coupling stiffness co-
efficients, D;; are the bending stiffness coefficients, and C,, are the transverse shear

stiffness coefficients.
3.5 THE MINIMUM ENERGY PRINCIPLE

The strain energy of a three-dimensional body is
- 1
U= 3 /V(cr:e: + Oy€y + 026, + ToyVoy + TrzVzz + TyzVyz)dV (3.12)

Substituting the strains from Equation (3.5) and the stresses from Equation (3.9) in

Equation (3.12) for the potential energy functional leads to

-1

{ezL(@ui€zL + @26yt + Qr6Vzyr) + €xL(QuieznL + Qr2€ynL + Qr67zyNL)
+eone(Quiezr + Qrz6yr + QueYzyL) + €2NL(Quieant + Qr26,nL + Qre7zynL)}
+{eyL(Q226yL + Q2621 + Q26Vryr) + €yL(Q226ynL + Qr2€znL + Q267VzyNL)
+eynL(Q22eyr + Qu2ezr + Q26VeyL) + €ynL(Q226yNL + Qr262nL + Q26Y2yNL)}
+{ Y2y (Qre€zL + @266y + QosVzyL) + Yryr(Qre€znr + Q26€ynL + QesVzyNL)
+YzyNL(Q16€:L + Q2e€yL + QosVzyL) + YoyNL(Qre€zNL + Q26€ynL + QesVzynL)}
F{Vz2L(QaaVz2L + QusyzL)}

{2 (@ssVyeL + Qusvezr)}dV (3.13)

Terms like €;1(Qui€zr + Q126 + Q167zyL) contribute to the linear stiffness matrix
whereas terms like €;1(Qui€znr + Qr26ynL + Q167yne) and €xnL(Qui€ons + Qr2€yn +
@167zynL) contribute to the nonlinear stiffness matrix. In a linear buckling analysis,
the nonlinear stiffness matrix is linearized and higher-order terms neglected. If a

uniform prebuckling stress state is prescribed then
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N. /Ex z= /(Qu?xL + Q2L + Q167 zyL)d2
N, = / 7,dz = / (@12EoL + @208y + Q2672yL)d2

J_\’fzy = /?zydz = /(QISEIL + QZGEyL + Q667;-yL)dz (314)

where N, N, and N, are the prescribed in-plane loadings in terms of the membrane

prebuckling stress resultants based on a linearized analysis.

Hence considering a linear buckling analysis and a uniform prescribed pre-

stress state, the potential eniergy for 2 circular cylindrical panel or shell is

1
T= -
2Jv

{ CIL(QIIC:L + Q]2€yL + Qle‘)’:yb) + eyL(lesz + Q225yL + Q267xyL) +
Yeyr(@Qr6€zL + Qasyr + Qo6VzyL) + YzL(QaaVzzL + Qasvy=L) +
7!/-’-[4(@55'7;1:[4 + Q4571:2L) }d‘/

1 — — —
-3 /A( Nzezng + Nyeynt + Nzyvzyne ) dA (3.15)

The volume integral represents the linear elastic strain energy, and the area integral
represents the work done by the in-plane prebuckling stress state. The critical loading
is determined on the basis that during buckling the elastic strain energy stored in the
structure is equal to the work done by the applied loading [51, 52]. The potential
energy is thus minimized to yield the critical buckling load of the structure. The
above expression for the potential energy functional will be used with a Rayleigh-Ritz
method to develop the buckling analysis formulation for panels with parallelogram-
shaped and general triangular-shaped geometries. The linear strain used will be that

of Equation (3.5) in order to implement different shell theories.
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3.6 THE RAYLEIGH-RITZ METHOD

The Rayleigh-Ritz method is an approximate method for solving a certain class of
problems. Accordingly, trial functions with some unknown coefficients and satisfying
the essential or geometric boundary conditions are introduced in the energy functional
of the problem. The minimum conditions of this functional are then imposed, and
resulting algebraic equations are solved for the unknown coefficients. These trial

functions are called the “Ritz” functions.

The Ritz functions used here are expressed in terms of natural coordi-
nates for the quadrilateral geometry or area coordinates for the triangular geom-
etry for displacement field. The components of the displacement vector are three
translations (D;,Dz,D3 = uo,v0,w) and two cross-sectional or bending rotations
(D4, Ds = ¢z, ¢y) when considering transverse-shear deformation effects. Each dis-
placement component is approximated independently by a different Ritz function.

The approximation for the :** component of the displacement vector is given by

Di(¢,n) = Zau i
Za;jre(ﬁan)fj(fsﬂ) for i = 1,2,3,4,5 (316)
j=1

where d;; represents the j** term in the N-term approximation for the i** displace-
ment component, a;; are unknown coefficients to be determined, and I';(,7) are the

circulation functions.

The circulation functions I'; in Equation (3.16) are the used to impose differ-
ent boundary conditions along each edge of the plate. Each term I'; is the product of
three functions in the case of the triangular plate geometry and four functions in the
case of the quadrilateral plate geometry. Each function is the equation of an edge of
the triangular or quadrilateral plate as shown in Figure 3.2 raised to an independent

exponent for each displacement component. Thus, the circulation functions for the
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quadrilateral plate are
Ii = (1-n)P1-*"Q+n)"(1+£)*
and for the triangular plate are
Ii = &p¥(1-§—n)" (3.17)

For example, considering the quadrilateral plate case, p; refers to edge 1, g¢; refers
to edge 2, r; refers to edge 3, s; refers to edge 4 as indicated in Figure (3.2) These
exponents are used to impose different boundary conditions. If the :** displacement
component is restrained or free on a given edge, then the exponent for that edge will
have a value of zero. If the :** displacement component is constrained on a given edge,
then the exponent for that edge will have a value of one. Only geometric boundary
conditions are imposed in this approach. Thus, a simply supported condition for
bending fields can be imposed on edge 1 by setting:

e p3=1forw, ps =0, for ¢; ps = 0 for ¢,
A clamped conditions for bending fields can be imposed on edge 1 by setting:

o p3=1forw, pg =1for ¢,, ps =1for ¢,
A free-edge condition can be imposed on edge 1 by setting:

e p; = 0 for uo, vo, w, ¢; and ¢,

In the case of classical laminated plate theory, these exponents takes on
different values depending on the type of boundary conditions. If the i** displacement
component is free on a given edge, then the exponent for that edge is zero. If the itt
displacement component is constrained but not clamped, then the exponent for that
edge is one. If the :** displacement component is constrained and clamped, then the
exponent for that edge is two which will force the slope to be zero as well. Thus a
simply supported condition for bending can be imposed on edge 1 by setting:

o p3=1forw

A clamped conditions for bending fields can be imposed on edge 1 by setting:
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e p3 =2 forw
A free-edge condition can be imposed on edge 1 by setting:
e p; =0 for uq, vo and w
The term f; in Equation (3.16) is a polynomial function in { and 7, and in

its simplest form is a power series in ¢ and 7 (regular polynomial) and is expressed

as

fi€n) = €rig™
m;, n; = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2),... (3.18)

The values of m; and n; are used basically to define terms in a two-dimensional
Pascal’s triangle. The number of terms N in Equation (3.16) defines the order of a
complete function in two variables. One disadvantage of this polynomial function is
the tendency for ill-conditioning that occurs when N is very large. Characteristic or-
thogonal polynomials can be used to overcome the ill-conditioning problem (e.g., Ref.

[42]). These are generated by the Gram-Schmidt process which can be summarized

as follows. Let

N
d,' = Z a.-_,-@,-
i=1
where
i-1
®; =Ty — ) s
k=1
then
Ta =Ti(&,n), Ty =Ti&n)Em™n™
and

S Ti;®dldy
%k = T @idedn (3.19)
The use of characteristic orthogonal polynomials, however, significantly increases the

computing time needed to evaluate the linear and geometric stiffness matrices.

In the case of the quadrilateral plate geometry, most of the orthogonalizing coefficients
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are zero corresponding to a circulation function (I';) as defined by Equation (3.17). .
Orthogonal polynomials such as Legendre polynomials [53] can also be used where

the function term f; is defined as

fi = Pn,(£)Pn,(n)
{(0,0), (0,1), (0,2), ... (0, N —1)
m;, n; = 1< (1,0), (1,1), (1,2), ... (L, N =1) ... (3.20)
(N -1,0), (N-1,1), (N-1,2), ...(N=1,N —=1)

where P, () denotes a Legendre polynomial of degree m; in variable {. The Legendre
polynomial, P, (), is defined over the interval, —1 < ¥ < 1 and it has some properties
that can be exploited for computational efficiency in setting up the stiffness matrices.
Regular polynomial will be used in buckling analyses of general parallelogram-shaped
and general triangular-shaped geometries. The use of Legendre polynomial is re-
stricted only to arbitrary quadrilateral geometries, because the natural coordinates
are defined in the interval, —1 < £,7 < 1, and (&, 7) is an orthogonal coordinate

system.

3.7 FORMULATION OF LINEAR STIFFNESS MATRIX

The linear stiffness matrix is derived from the linear elastic strain energy (Equation
(3.15)) using the strain-displacement relation of Equation (3.3). Integrating in the

z-direction the linear elastic strain energy, U, is

(&)Y [An A A Bu Bz Bis 0 07](€)

63’0 Az A Ax Bz B By 0 0 669

Yzy A A Aes B¢ B Begs 0 O YTzy

B B B D D D 0 0 K

U =1 Kz 1 12 16 11 12 16 = 44

2'['“ Ky L B2 By, By Dz Dy Dy 0 0 Ky ;

Kzy By By Bes Dig D Dgg 0 0 Kzy

Yzz 0 0 0 0 0 0 044 045 Yz
(%w:) L O 0 0 0 0 0 Cis Css) )

or
U= EJQE, (3.21)

Since the physical domain of the structure has been transformed to a computational

domain and the Ritz functions are expressed in terms of ¢ and 7, the strains have
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to be expressed in terms of £ and 7. This can be done by using the elements of the

inverse of the Jacobian, and therefore

where
T=
R e 0 0 0 0 0 0 0 0 0 0 0 0]
0 0 €,y My 0 0 0 0 0 0 0 712- 00
£sy Ty E,x Tz 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 ¢z 17z O 0 0 0 0 0
0 0 0 0 0 0 0 &, 7y O 0 0 0
"%f’y _"%3'77711 %6,2 2%%777:: 0 0 &y ny €&z nz 0 0 0 0
0 0 0 0 €z 7, O 0 0 0 0 0 10
0 0 0 0 & 75 0 0 0 0 = 0 0 1]
(3.23)
and
Ec=
{UO,E Ugyy Vosg Voyy Wy W,y ¢zs£ ¢xm ¢ya€ ¢ym Vo W ¢z ¢y }T
(3.24)

The elements of matrix T are all constant since the Jacobian for general parallelogram-

shaped and general triangular plate geometries is independent of £ and 7.

The i** term of the N-term approximation for the displacement vector is

Ug Uu; 0 0 0 0 ay;
Vo 0 ‘/, 0 0 0 Qo
wy=(0 0 W; 0 0 as; (3.25)
¢ 0 0 0 o, O ayi
&y 0 0 0 0 o, as;

where U;, V;, W, @, and ®,; are Ritz functions as discussed in the previous section.
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Using Equation (3.25), E¢ can be written as

[ Uo,¢ ) Ui O 0 0 0 ]

Uy U,’,f, 0 0 0 0
Vose 0 Vie O 0 0
Vosn 0 Vi, O 0 0
Wy 0 0 Wi O 0 _
Wi 0 0 W, 0 0 o

) ¢z‘a£ \ = 0 0 0 <I):x:nf 0 22‘
- 0 0 0 &, 0 [)*
Pyt 0 0 0 0 Byl "
Bysm 0 0 0 0 &y, 5
vo 0 V. o 0 0
w 0 0 W; 0 0
b= 0 0 0 &; O

L ¢, ) LO 0 o0 0 o,

or
E. = O;q; (3.26)

Therefore, using Equation (3.22) and (3.26) the strain vector, Ep, is written as
Ep = TOq; (3.27)
which on substitution in Equation (3.21) for the linear elastic strain energy gives
1
U = 5 [ o [0 TT QT )] q 3] dedn
Ac
1
=3 /A qi” [©;" H O;] g |J] dédn
1 —
= sa {/A kij [9] dédn } g

CIiT Kij qj (328)

N =

where
H = TTQT
E;j = &TH G;
K; = /A kij 13| dédn
where A, is the area for the computational domain.

The non-zero entries of matrix H are shown below in a generic manner. Al-

though H is obtained numerically in the computerized implementation of the buckling
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analysis, only the non-zero entries are used in computing the stiffness matrix to avoid

unnecessary computations. The non-zero entries are identified for fully populated J,

Ai;, Bij, Dij, and C, matrices. Hence,

H=

[ hi1 hiz his by 0 0 Az his his higo
ha1 haz hos hag 0 0 hyy hag ha hano
hay haz has has 0 0 har hsg ha hsno
har ha haz haa 0 0 hyr his hag hano
0 0 0 0 hss hsge O 0 0 0
0 0 0 0 hes hes O 0 0 0
h71 hza hzzs hsy O 0  hyz hig hae h7io
hsy hey hss hgs O 0 hgr hss hse hsgao
hor hoz hes hes 0 0 hgy hos hee hsno
hioq hio2 hio3 hiog 0 0 higr hios hiog hioo
0 0 0 0 hushus 0 0 0 0
hi2a hi22 hi23 hi2a 0 0 hyzz hi2s hizg hi2,0
00 0 0 0 hgshage 0 0 0 0

| 0 0 0 0 hushue 0 0 0 0

The matrix, kjj, is also fully populated and has the form

where

ki

Fun
ka1
Fan
Fan
k51

k13
ka3
ka3
ka3
ks3

3

k24

k34

kyy
k54

Fis
kas
kas
kas
kss

(h11Uise +h12Uisn )Uj s +(R12Uise +ha2Uisg )Usjo
(h13Uise +h23Usn )Vioe +(R1aUsse +h24Uisy )Vion
(h1,12Uise +ha12Usn )W;

(h17Uise +horUisn )®rjse +(h18Uise +hogUsiyn )Pzjsn

(h19Uise +h29Ussn )®yise +(R1,10Uise +h2,10Uism )Pysom

(hSI‘/isf +h41‘/im )Uj9€ +(h32‘/ia€ +h42‘/im )Uj?ﬂ

hlJ2
h2J2
hSJZ
h4J2

h7,12
hg 12
hg 12
k10,12
0
k12,12
0
0

(ha3Vise +hasVin )Vise +(haaVise +haaVisy )V +h11, 11 ViV

0 0 7
0 0
0 0
0 0
hsiz hsaa
he13  he4
0 0
0 0
0 0
0 0
h11,13 P11,14
0 0
h1313 P34
h1413 h14:4.
(3.29)
(3.30)
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ks = hnsViWie +hneViWim +ha2Vie Wi + ha12Viy W;

kag = (harVie +harVin )®Prjse +(hasVise +hagVisn )®rjon +h11,13Vi s

kas = (hagVise +haoVivg )®yjse +(h310Vire +ha10Virn )Pyson Th11,14Vi0y;

kn = (h1,312Uj5¢ +ho12Uj00 ) Wi

kzaa = hysViWie +hn6V;Win +ha12Vie Wi + haa2Vim Wi

kaz = (hssWise +hesWivy )Wise +(hseWise +hes Wiy ) Wi +hiz12WiW;

kag = h12,79zje Wi+ ha2,8®@rjsn Wi + (hs13Wine +he1aWisn ) @rj

kas = hy29®yj.e Wi+ h1210®@ys00 Wi + (hs1aWise +h61aWisn ) Oy;

kn = (hn®@uise +hs1®rivg )Ujg +(h72®@zise +h72Puisn )Ujsn

ka2 = (h73®zise +hea®zrivn )Vise +(hr4®Pzive +h74Psisn ) Viin +h131182:V;

kazs = h127%zive Wi + h12,8P iy W; + (hs13Wj.e +he,13Wiisn ) Ori

kag = (h779Pzive +herPrivn ) Prjre +(h78Prive +hssPrim ) Prjm +R131382:i P45

ks = (h19®rise +haoPrisn )Pyjse +(h7,10Pzise +h8,10Pzisn )‘p.yjm +h13,1492i Dy

ksi = (ho1®yise +h101Pyisn )Ujse +(ho2Pyire +h10,2Pyisn )Ujom

ks2 = (ho3®yire +h103Pyisn )Vise +(hoaPuise +h10,4Pyisn )Vion +h141194V;

kss = (ho12Pyise +R10,12Pyiry )W + (R14,sWse +h14,6Wion )Py

kss = (hor®Pyise +h10,7Pyisn )Pzire +(hosPyise +h108Pyivn ) Prjsn +h1413P4i Po;

kss = (heo®yise +h109Pyism )Pysse +(Ro,10Pyise +h10,10Pyisn )Pyjsn +h14,14P4iPy5
(3.31)

Finally, the structure’s stiffness matrix, Kj; is obtained on integrating Eﬁ over the
computational domain. The integration is carried out analytically by utilizing sym-
bolic computational techniques rather than numerical integration which result in

significant savings in computational time. The analytical integration is discussed in

Appendix A.
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3.8 THE GEOMETRIC STIFFNESS MATRIX

The geometric stiffness matrix is derived from the work done, Wg, by the applied
prebuckling loading as given by Equation (3.15) as identified by the linearization
process. The formulation is done in a similar way as that for the linear stiffness

matrix beginning with

1 —_ — — 1
Wy 5/,4( Nienp + NyeyNL + N:y')’xyNL ) dA = —2-/,4Wd dA

where the nonlinear strain components from Equation (3.5) are

1

EzNL = §(v0’§ +w,})
1 VYo
EyNL = §(u0a§ +(way __R_)2)
w Vo
YeyNL = —UQyy (Uan +_R‘) — V0yz Uyz TW,z (way -E) (332)
This equation can be written in matrix form as;
(we \'[ N: N 0 0 0 0 -N, 0 ]f
W,y Nz, N, 0 0 0 0 -N, 0
Vosz 0 0 N; 0 ~Nz 0 0 0
_} voyy 0 0 0 0 0 —Ngy 0 0
“=Vue[ | 0 0 -No 0 0 0 0 0 |
U,y 2 _0_ 0 —ny 0 Ny __Q _'ny
B ~Ngz —-N, 0 0 0 0 Ny 0
- 0 0 0 0 0 Nzy 0 0 |1
or
wq = DpT P Dp
Expressing the vector Dp, in terms of £ and 7
( W,z ) [0 0 0 0 C’z Ny 0 01 ¢ Uo,¢ )
W,y 0 0 0 0 &y, ny 0 O )
Voyz 0 0 &z N 0 0 0 0 Vo,¢
) Voyy - 0 0 £,y My 0 0 0 0 ) Voyn |
e { = €z 7 0O 0 0 0 0 O We
Uy gw Ny 0 0 0 0 0 0 Wiy
2 0 0 0 0 0 0 £ 0O Vo
- 0 0 0 0 0 0 0 %)l w |

or
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D, = TgDc (3.34)
The 7** term of the N-term approximation for uo, vo, and w is

Ug U;: 0 0 ai;
Vo = 0 V, 0 az; (335)
w 0 0 W as;

and, thus D¢ is expressed as

( Ug,¢ ) -Ui,{ 0 0

Uo,,, Ui,n 0 0

Vo.¢ 0 V,‘,g 0

Vo, 0 1/|'$ 0 i

< nt o= 7 az;
W,e 0 0 "Viaf an
W,y 0 0 Wyl ™
Vo 0 ‘/, 0

| w 0 0 W

or
D. = Ogqg (3.36)

Therefore, using Equation (3.34) and (3.36), Dp can be written in terms of the

unknown coefficients as

Dp = Tg Og; qgi (3.37)

which on substitution into Equation (3.33) for the work done by the applied loading

gives
Wa = %-/;1 qgi’ [Og” Tg” P Tg O ] qg; |I|d¢dn
- % /A 45" [ @y G Ogy] gy 13]dcdn
= % qgi” { /A Kgij [J|dédn} qg;
= 5o Ky (3.38)
where

G = T PTy
kg = Ogi’ G Og;
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The non-zero entries of matrix G are shown below in a generic manner. Al-
though G is obtained numerically in the computerized implementation of the buckling
analysis, only the non-zero entries are used in computing the stiffness matrix to avoid
unnecessary computations. These non-zero entries are identified for N, Ny, and Ny,

combined in-plane loading.

-

G0
)

gin g1z g1z 9.« 0 0 0 @
g21 G222 G223 g2 0 0 0 g2
g1 932 gz g« 0 0 O 0
_lgn 942 ga3 g4 O O 0 O 3.39
G= 0 6 0 0 gss gse gs7 O (3:39)
0 0 0 0 Gges ges ger O
0 0 0 0 g5 g g7 O
[gs1 922 0 0 0 O O O
The matrix Egij is 3 B B
_ Egll 5912 Eng
kgiz = | ko1 kg2 Kga (3.40)
k931 kg32 kg33
where
ko1 = (91Uie +921Uirn YUise +(912Uir¢ +922Uisn )Uirn
75912 = (yxaU.',e +g23Uim )V;',e +(914Ui,e +g24Uim )ij
kgs = (918Uise +928Us0n )W;
Eg?l = (931Vi,e +941 Vim )Uj,e +(932Viaf +g42V,-,,, )Ujm
ngz = (923Vise +943Visn )Vjse +(934Vise +944Vinn Wi +972ViV;
kgs = (g7sVi + gr6Vi) Wiy
kor = (91Ujh¢ +982Uj 00 ) Wi
kg2 = (957Wise +961Wis )V;
Eg33 = (gSSVVi,E +965u,im )Wjaf +(956vva"5 +9661/Vs'm )"ij (341)
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Finally, the structure’s geometric stiffness matrix, Kgj; is obtained on integrating

kgi; over the computational domain. The integration is carried out analytically by

utilizing symbolic computational techniques as discussed in Appendix A.
3.9 THE EIGENVALUE PROBLEM

The critical loading is determined on the basis of the principle that during buckling the
elastic strain energy stored in the structure is equal to the work done by the applied
loading and that adjacent equilibrium configuration exists at the same loading level
[51, 52]. Having thus obtain the linear elastic strain energy and the work done by the
applied in-plane loadings in terms of unknown Rayleigh-Ritz coefficient, the potential

energy can be written as

N
T = ZquT (K;j - /\Kgij ) 9j (3.42)

i=1 j=1

[N ]

where X is a load factor used to identify the critical in-plane loadings. Minimizing
the potential energy with respect to q; leads to
N N
2.2 (K —AKgij)q5 = 0 (3.43)
i=1 j=1
which is an eigenvalue problem. The eigenvalues and the eigenvectors of this system of
equations can be obtained using an eigensolver. In this case, the minimum eigenvalue
is the critical load factor (. ), and the eigenvector corresponding to the minimum

eigenvalue is the mode shape (q;).
3.10 BUCKLING OF QUADRILATERAL PLATES

Numerical results are presented for the buckling analyses of quadrilateral plates.
Isotropic, orthotropic and anisotropic plates with different boundary conditions are
considered. The present formulation is based on the principle of minimum total
potential energy which slightly overpredicts buckling load results compared to val-

ues obtained from exact solutions. Also the present formulation does not introduce
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any geometric distortion for the skewed plates considered since the mapping between
the physical and computational domains does not introduce any errors. For sim-
ply supported conditions, only geometric boundary conditions are prescribed for the
transverse deflection, and since transverse shear deformations are included, the bend-
ing rotations are independent of the out-of-plane deflection. Results from the present
analysis were obtained using a larger number of terms than necessary for obtaining
converged solutions. These results are compared with existing solutions and with

results generated from finite element analyses.

Finite element results were obtained using STAGS [29]. The STAGS finite
element analyses were carried out using a 30 x 30 mesh of C! 4-node shell elements
(element denoted as 410). More refined finite element meshes were considered and
gave the same solutions as the 30 x 30 mesh. In these studies, the prebuckling
stress state was prescribed to be uniform, and hence the linear static solution is
avoided and a precisely defined prestress state is achieved. In the STAGS models, the
simply supported boundary conditions along the skewed edges are only established
approximately; that is, only the out-of-plane deflection is constrained to zero while
the moment is not prescribed. An additional consideration for the finite element
solutions for plate geometries with a non-zero skew angle is the susceptibility of the
results to the effects of mesh or element distortion. Mesh distortion is known to
affect the linear stress solution (e.g., Ref. [54]), and this behavior may also affect the
buckling solution.

The finite element solutions may become increasingly susceptible to mesh distortion

effects as the skew angle, 1, increases.

Simulations are also made using VICON [55] wherein a semi-infinite plate is
analyzed using complex Fourier series with constraints imposed at points along user-
defined lines across the plate width at regular intervals to simulate a finite length

plate. In the VICON models, the simply supported boundary condition is only
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approximately satisfied along skewed edges, while along horizontal edges the simply
supported boundary condition is exactly satisfied. As such, the VICON models for
skewed plates with simply supported boundary conditions represent a plate which
is continuous over the supports as is the case for an array of skewed panels rather
than for a plate with moment free edges. Hence, the VICON models do not exactly
represent a finite plate but approximate it depending on the number and type of
constraint points and modes. Ten modes and ten constraint points were used in all
VICON analyses. The VICON results converged from above for an increasing number

of constraint modes and from below for an increasing number of constraint points.

Analytical results are now presented for four categories of problems. The
first set of problems involves skewed isotropic plates with simply supported and
clamped boundary conditions subjected to axial compression which was originally
solved by Wittrick [56]. The second set of problems involves skewed orthotropic
plates subjected to combined loading with simply supporf:ed boundary conditions.
The third set of problems involves skewed anisotropic plates subjected to combined
loading with various boundary conditions. Finally, the effect of transverse-shear de-
formation is studied for isotropic and anisotropic skewed plates. Results from the
present analyses include those obtained using “regular” and “Legendre” polynomials

in order to assess the pérformance of orthogonal polynomials.

3.10.1 Isotropic Plates Subjected to Uniaxial Compression

The buckling of clamped and simply supported isotropic skewed plate under uniaxial
loading N has been studied by many researchers (e.g., see Refs. [31], [56]-[62]). Of
these references, only Kitipornchai, et al. [58] included transverse-shear deforma-
tions using a first-order, shear-deformation theory (FSDT). Results from the present
analysis are presented and compared with existing results in Tables 3.1 and 3.2. Re-

sults obtained using the STAGS finite element code and VICON are also presented.
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Results are non-dimensionalized and presented as a buckling coefficient defined as

_ N bcos'd

= I _—= 3.44
K 77Drs (3.44)

where N, is the critical load, b is width of the plate, ¢ is the skew angle (see Figure

3.3), and D, is the transverse bending stiffness from classical laminated plate theory.

The convergence of the buckling coefficient versus the order of polynomial
for a simply supported isotropic plate with skew angle () of 45 degrees and subjected
to axial compression is given in Figure 3.5. It can be seen that the solutions obtained
using Legendre polynomial converge faster than solutions obtained using regular poly-
nomial. Results from the present analysis were obtained using a 66-term series solu-
tion (complete 10** order polynomial per degree of freedom). Results obtained using
Legendre polynomials are also obtained using up to 10**-order polynomials. Results
given in Tables 3.1 and 3.2 are for cases with all edges simply supported and all edges
clamped, respectively, with an aspect ratio (a/6) = 1 and a thickness-to-width ratio

(/b) = 0.001.

Results shown in Table 3.1 for simply supported plates indicate that all
solution methods are in excellent agreement for the rectangular plate geometry case
(zero-skew-angle case). In all cases, the buckling mode shape has one half-wave in
each direction. The analyses of Wang, et al. [31] and Kitipornchai, et al. [58]
are essentially identical except that the latter study accounted for transverse-shear
deformation effects. As such, the results from Ref. [58] are slightly lower in value
(more flexible) than those of Ref. [31]. However, these plates are very thin and
transverse-shear-deformation effects should be negligible. The results from the present
formulation correlate very well with the results presented by Wang, et al. {31} and
Kitipornchai, et al. [58]. Those presented by Mizusawa, et al. [61] are below that of
the present analysis results and any other results shown. The STAGS finite element

results follow the results of the present formulation, but mesh distortion appears to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

influence the results as the skew angle increases. The VICON results are much higher
in value than any other results except for the zero-skew-angle case. The differences
for non-zero skew angle cases is due to the fact that the constraints on the skewed

edges satisfy only the geometric boundary conditions.

The results obtained using Legendre polynomials are closer to those of Ki-
tipornchai, et al. [58] and those of STAGS than the results obtained using regular
polynomials. For skew angle of ¢ = 45°, converged results are obtained with the use
of Legendre polynomials up to 10** order, while a 12!* order regular polynomial with
91-term series is needed to obtained converged results. Hence, the Ritz functions
consisting of Legendre polynomials provide a more robust formulation for buckling

analysis.

Results shown in Table 3.2 for the clamped plates indicate that the present
approach gives buckling coefficients that are in good agreement with existing results.
The results obtained using Legendre polynomials are in better agreement with the
other results than those obtained using regular polynomials. For a skew angle of
¥ = 45°, the formulation using Legendre polynomials is more robust. In all cases,
the buckling mode has one half-wave in each direction. The VICON results for these
cases are very close to the other results since clamped boundary conditions can be
approximated easily along the skewed edges. The STAGS analysis results seem to
be affected less by mesh distortion for clamped boundary conditions than for simply

supported boundary conditions.

3.10.2 Orthotropic Plates under Combined Loading

Results are presented for orthotropic skewed plates with ratios (a/b) = 1 and (t/b)
= 0.001. The boundary conditions considered are all edges simply supported. Four

load cases are also considered for each set of boundary conditions:

—— e

e Load Case A: N, = yNy=Ng =0
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o Load Case B: N, = N, =1, ny =-0.5

e Load Case C: N, =N, =1, N, =0

¢ Load Case D: N, =N, =1, N, = 0.5

Load Case A corresponds to uniaxial compression; Load Case C corresponds to biaxial
compression; and Load Cases B and D correspond to combined loading with negative
and positive in-plane shear, respectively. These analysis results are presented in

subsequent tables as a non-dimensional buckling coefficient K given by:

b2
k=2 (3.45)

7T2D22

Results from the present analyses were obtained using a 78-term series (complete 11t
order polynomials). Results generated using STAGS and VICON are also presented

and compared.

Orthotropic skewed plates with all edges simply supported and subjected
to combined loading were also treated by Kennedy and Prabhakara [62] using the
Galerkin method with Fourier series as approximation functions to solve the linearized
stability equations for thin plates. The series solution satisfies natural boundary
conditions, while the remaining boundary conditions are satisfied indirectly by a
procedure given by Green [63]. A similar formulation used by Phillips and Gurdal
[7] for buckling of orthotropic rhombic plates concluded that the solution from such
a formulation converged from below. Kennedy and Prabhakara [62] used a 9-term
series in their solution, while Phillips and Gurdal [7] used a 20-term series which they
showed to represent a converged solution. However, Phillips and Gurdal [7] did not
consider the variety of cases considered by Kennedy and Prabhakara [62]. Herein,
results obtained from the present analysis are compared with those of Ref. [62] for
cases with Dyy/D,; = 1 and Dy /D3, = 5 in Tables 3.3 and 3.4, respectively. For

both cases, Deg/D2; = 0.5 and the major Poisson’s ratio v12 = 0.25.
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Comparison between results from Kennedy and Prabhakara [62] and those
from the present formulation is very good for the case of ¥ = 15° and deviate as
the skew angle increases. However, based on similar results in Ref. [7], the results
from Ref. [62] converged from below and results from Ref. [62] may not represent
completely converged solutions. Comparison between finite element results and those
of the present formulation is also good with small differences occurring as the skew
angle increases. A contributing factor to these differences is believed to be related
to the increasing mesh distortion in the finite element models which in linear static
analyses is known to cause a reduction in stiffness for the STAGS 410 element. The
buckling coefficients predicted by VICON are all higher than any other results because
of the manner in which the simply supported boundary conditions are imposed on

the skewed edges.

Finally, the sign of the in-plane shear prestress has a significant effect on
the buckling coefficient for skewed plates. The buckling coefficient for the load case
with negative shear (Load Case B) is less than that for the load case with positive
shear (Load Case D). Considering the buckling coeflicients for simply supported plates
with Dy1/D,; = 1in Table 3.3, the percentage decrease of buckling coefficient of Load
Case B from Load Case D for skew angle 1 = 15° is 13.7 percent. The decrease in
buckling coefficient is 23.4 and 28.3 for 1 = 30° and v = 45°, respectively. For simply
supported plates with D,;/D,; = 5 the decrease in buckling coefficient of Load Case
B from Load Case D is 18.3 percent for 3 = 15°, 29.9 percent for ¢ = 30°, and 34.2
percent for ¥ = 45°. Hence, decrease in buckling coefficient due to the sign of the
in-plane shear prestress increases with increase in skew angle and also as the degree

of material orthotropy increases.

Finally, differences between the present formulation results obtained using
regular polynomials, and those of STAGS for Dy, /D»; = 1 are approximately 8 percent
for ¢ = 45°, while those for Dy1/D;, = 5 are approximately 3 percent for 1 = 45°.
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This suggests that errors due to mesh distortion are compensated, in some way, by
material orthotropy. The results obtained using Legendre polynomials are closer to

those from STAGS than the results obtained using regular polynomials.

3.10.3 Anisotropic Plates under Combined Loading

Anisotropic skewed plates with an aspect ratio (a/b) = 1, a thickness-width-ratio
(t/b) = 0.001, and two laminate stacking sequences are considered here. Laminates
1 and 2 have ply stacking sequences of [£45/90/0], and [45/90/ — 45], , respectively.
The nominal mechanical properties are Ey; = 24.5 Msi, Ey; = 1.64 Msi, G12 = G13 =
G23 = 0.87 Msi and v, = 0.3. The flexural orthotropy parameter, 3, and the flexural

anisotropy parameters 7, and &, defined by Nemeth [64] are given by

8= (D12 + 2Degs)
(D11D22)1/2
_ Dis
V= (D3 D)V
_ D
b= ED.T 349

and used to identify the degrees of orthotropy and anisotropy. For an isotropic plate,
only B is non-zero and has a value of one. For an orthotropic plate, again only 3
is nonzero and increases in value as the degree of orthotropy increases. Laminate
1 has flexural anisotropy parameters of 0.208 and 0.182 for «, and 6, respectively,
and a flexural orthotropy parameter, 3, of 1.99. Laminate 2 has flexural anisotropy
parameters of 0528 and 0.376 for v, and &, respectively, and a flexural orthotropy
parameter, (3, of 1.66. The flexural orthotropy parameter of Laminate 1 is of the same
order as Laminate 2. However, Laminate 2 has higher flexural anisotropy parameters
than Laminate 1 by at least a factor of two. Hence, Laminate 2 has a higher degree
of anisotropy than Laminate 1. The buckling results are presented in terms of a

non-dimensional buckling coefficient, given by Equation (3.45).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(<51
-1

Results for anisotropic skewed plates are obtained using a 78-term series
(11** order) for regular polynomials and Legendre polynomials up to 11** order. Re-
sults are given in Tables 3.5 and 3.6 for all edges simply supported, in Tables 3.7
and 3.8 for the horizontal edges simply supported and skewed edges clamped, and
in Tables 3.9 and 3.10 for all edges clamped. The results in Tables 3.5, 3.7 and
3.9 are for Laminate 1 and those in Tables 3.6, 3.8 and 3.10 are for Laminate 2.
For simply supported boundary conditions, the VICON results are above any other
results since only out-of-plane displacement boundary conditions are imposed along
the skewed boundary lines of the semi-infinite plate. For simply supported-clamped
and clamped-clamped boundary conditions, the results from the present formulation
are in good agreement with VICON since the clamped boundary conditions on the
skewed edges can be approximated easily. The STAGS results compare very well
with those of the present formulation especially for simply supported-clamped and

clamped-clamped boundary conditions.

The sign of the in-plane shear prestress has considerable effect on the buck-
ling coefficient of anisotropic skewed plates. Considering Laminate 1, the percentage
decrease of the buckling coefficient for Load Case B from Load Case D is 26.4 percent
for 1 = 30° and 30.1 percent for ¢ = 45° for simply supported plates. For simply sup-
ported plate made of Laminate 2, the decrease in buckling coefficient for Load Case
B from Load Case D is 30.56 and 31.9 percent for 3 = 30° and 3 = 45°, respectively.
It is seen that for Laminate 2 the percentage decrease in buckling coefficient for Load
Case B from Load Case D for 1) = 30° and 1) = 45° are close to each other whereas for
Laminate 1 the percentage decrease in buckling coefficient of Load Case B from Load
case D for 1 = 30° and 3 = 45° are not close to each other. The buckling coefficients
for anisotropic plates with other boundary conditions reflect the same observation.
Hence, increasing degree of anisotropy has more effect on the buckling coefficients for

positive shear loading conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

3.10.4 Effect of Transverse-Shear Deformation

The effect of transverse-shear deformation is studied by considering isotropic and
anisotropic skewed plates with different thickness-to-width ratios, ¢/b, and a fixed
plate aspect ratio (a/b) of 1. Clamped and simply supported boundary conditions are
considered, and the plates are subjected to Load Case D only. Regular polynomials are
used for clamped plates, while Legendre polynomials are used for simply supported
plates, since results obtained using Legendre polynomials are in better agreement

with STAGS results for simply supported plates.

The present analysis results obtained using up to 11%

order polynomial
series solution are shown in Table 3.11 for clamped plates and Table 3.12 for simply
supported plates. Considering the isotropic clamped plate, the buckling coefficients
for t/b=0.001 and 0.01 differ by less than one percent for both skew angles considered.
As the plate thickness increases (t/b = 0.1), a significant decrease in the value of the
buckling coefficients occurs due to shear flexibility. The buckling coefficients for the
t/b = 0.1 case are reduced by 16 percent and 36 percent compared to the ¢/b = 0.01
case for skew angles of 30° and 45°, respectively. Considering the simply supported
plate, the buckling coeflicients for ¢/b = 0.001 and 0.01 differ by less than four percent
for skew angle of 30° and 45°, respectively. The buckling coefficients for the ¢/b =
0.1 case are reduced by 22 and 27 percent compared to the ¢/b = 0.01 case for skew
angles of 30° and 45°, respectively. These results indicate that transverse-shear effects

become more important as the plate thickness increases, as the skew angle increases

and, as the boundary fixity is relaxed.

For clamped anisotropic plates, the buckling coefficients for plate thickness
to width ratio (¢/b) = 0.001 and 0.01 differ by less than two percent for both skew
angles and both laminates as shown in Table 3.11. As the plate thickness increases

further (¢/b = 0.1), a significant decrease in the value of buckling coefficient occurs.
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For both laminates, this decrease is 49 percent and 59 percent compared to the values
obtained for the ¢ /b = 0.01 case for skew angles of 30° and 45°, respectively. For simply
supported anisotropic plates, the buckling coefficients for ¢/b = 0.001 and 0.01 differs
by less than 3 percent for skew angle of 30°. However, for skew angle of 45°, the
buckling coefficients for /b = 0.001 and 0.01 differ by over twice the difference noted
for the 30° skew angle case. The buckling coefficients for ¢/b = 0.1 are reduced by
50 to 54 percent when compared to values for /b = 0.01 and a skew angle of 30°
whereas the decrease is 59 percent for skew angle of 45°. These results indicate that
for laminated anisotropic plates the buckling coefficient is significantly reduced as the
thickness increases. For the 30° case, the change in buckling coefficient for anisotropic
plates with /b = 0.01 to /b = 0.1 is nearly three times that for the isotropic plates
with the same t/b ratios. As the skew angle increases, the difference in buckling

coefficients between the isotropic and the anisotropic plates decreases.

Therefore, the size of the skew angle significantly affects the buckling re-
sponse of thick skewed plates. The percentage decrease for Laminate 1 and Laminate
2 is more than that for isotropic plate since laminated composites have a lower shear

modulus compared to isotropic material.
3.11 BUCKLING OF TRIANGULAR PLATES

Numerical results are presented for buckling of triangular plates with isotropic and
anisotropic material properties. Various geometries, combined in-plane loading con-
ditions, and boundary conditions are considered. Some results obtained using the
present method are compared with results from existing series solutions. The effect
of transverse-shear deformation on the buckling coefficients of triangular plates is also

studied.
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3.11.1 Isotropic Triangular Plates

The results for isotropic triangular plates are expressed in terms of a non-dimensional

buckling coeflicient defined as
Aerb?

= 72 D5

(3.47)

where A, is the critical eigenvalue, b is the height of the triangle, and D,; is the
transverse plate bending stiffness. The types of triangular plates (see Figure 3.4) and

boundary conditions considered are:
1. Simply supported equilateral triangle [34].
2. Right-angled isosceles triangle with simply supported edges [36].

3. Right-angled isosceles triangle with simply supported perpendicular edges and

clamped hypotenuse [36].

4. Right-angled isosceles triangle with clamped perpendicular edges and simply

supported hypotenuse [36].

5. Simply supported 30° — 60° — 90° triangle [38].

The results obtained using the present analysis are shown in Tables 3.13
and Table 3.14 for different in-plane loading conditions. The number of terms used
in the polynomials for all these cases is 45 since as shown in Figure 3.6 for the
different types of simply supported triangular plates subjected to uniform compression
(N. = N, = 1), the buckling coefficients converged well before 45 terms. These
triangular plates have a thickness-to-height ratio (t/b) of 0.0003, and transverse-
shear effects are negligible for these thin isotropic plates. Agreement between results

obtained using the present method and existing results is very good.
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3.11.2 Simply Supported Anisotropic Triangular Plates

Buckling loads for simply supported anisotropic equilateral triangular plates, right-
angled isosceles triangular plates, and 30° — 60° — 90° triangular plates are considered
in this study. The height of each triangle is 10.0 inches (see Figure 3.4). The load

cases considered are:

1. Load Case A: N, = N, = 1, N, = -0.5

2. Load Case B: N, = T\f,, =1,N;, =0.0

vy =1,N; =05

2
I

3. Load Case C: N, =

The laminate stacking sequences considered herein are the same as the two considered
for the anisotropic quadrilateral plates described in Section 3.10.3. Laminates 1 and
2 have ply stacking sequences of [£45/90/0], and [45/90/ — 45], with 0.005-inch-thick
and 0.007-inch-thick plies, respectively. The nominal ply mechanical properties used
are: Fy; = 24.5 Msi; Ey; = 1.64 Msi; G13 = G13 = Ga3 = 0.87 Msi and 42 = 0.3 and
Laminate 2 being more anisotropic than Laminate 1 as discussed in the Section 3.10.3.
Converged results are obtained using 36 terms (complete eighth-order polynomials in

two variables) for each displacement component are shown in Table 3.15.

For the right-angled isosceles triangular plate and the 30° —60°—90° triangu-
lar plate, made of Laminate 1, the buckling loads for Load Case C are approximately
1.4 times the buckling loads for Load Case A. For the equilateral triangular plate, the
buckling load for Load Case C is approximately 1.1 times the buckling load for Load
Case A. For the right-angled isosceles triangular plate and the 30° —60° —90° triangu-
lar plate made of Laminate 2, the buckling loads for Load Case C are approximately
1.6 times the buckling loads for Load Case A. For the equilateral triangular plate,
the buckling load for Load Case C is approximately 1.3 times the buckling load for
Load Case A. These results indicate that the buckling load is significantly influenced

by the symmetry of the triangular plate geometry and material anisotropy when the
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shear load direction is reversed. The equilateral triangle has three lines of symmetry,
the right-angled isosceles triangle has one line of symmetry and the 30° — 60° — 90°
triangle has no lines of symmetry. The differences between buckling loads obtained

using FSDT from those obtained using CLPT are small.

3.11.3 Effect of Transverse-Shear Deformation

The effect of transverse-shear deformation is studied by considering simply supported
triangular plates with isot ratio, t/b. The triangular plates are subjected to uniform
compression (N; = N, = 1). The results for right-angled isosceles and equilateral tri-
angular plates are shown in Table 3.16 and are expressed in terms of a non-dimensional
buckling coefficient as defined by equation (3.47). The number of terms used for each
displacement component is 45, which corresponds to a complete ninth-order polyno-

mial in two variables.

For both the isotropic triangular plates and anisotropic triangular plates
made of Laminates 1 and 2, the effect of transverse-shear deformation had no signifi-
cant effect on the buckling coefficient results when the t/b ratio is increased from 0.001
to 0.01. When the t/b ratio is increased from 0.01 to 0.1 for the isotropic triangular
plates, the buckling coefficient reduces by 18 percent for the right-angled isosceles
triangle and 15 percent for the equilateral triangle. The corresponding reduction
in buckling coeflicients for Laminate 1 are 42 percent for the right-angled isosceles
triangle and 38 percent for the equilateral triangle. For right-angled triangular and
equilateral triangular plates made of Laminate 2, the reduction is approximately the
same at 35 percent. For typical grid-stiffened composite fuselage structure designs,
the ¢/b ratio for triangular plates is greater than 0.025 and, hence transverse-shear

effects need to be included in the analysis.
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3.12 NUMERICAL RESULTS FOR CURVED PANELS

Numerical results are presented for anisotropic curved panels with length of 60.0 in.,
arc length of 18.85 in., and a radius of 6.0 in., subjected to axial compression as shown
in Figure 3.7. The panel is simply supported on all edges since the bending rotations
are not constrained on any edge. The other geometric boundary conditions are shown
in Figure 3.7. The nominal mechanical properties are Fy; = 13.75 Msi, Ey;, = 1.03
Msi, G12 = Gz = Ga3 = 0.42 Msi and vy; = 0.25. The thickness of the 10-ply panel
is 0.12 in. The laminate stacking sequence is [0/ & 6/6], with 0° < 6 < 90° which

is the winding angle. Each ply is of the same thickness.

The critical buckling load for this curved panel is computed using Sanders-
Koiter shell theory, Love’s shell theory, and Donnell’s shell theory through the “tracer”
coefficients discussed in Section 3.2. This problem ([65]) displays significant differ-
ence in critical load between Sanders-Koiter shell theory and Donnell’s shell theory,
depending on the winding angle 8. This problem was proposed by Professor Isaac El-
ishakoff and communicated by Dr. David Bushnell. The buckling loads for the curved
panel using Sanders-Koiter shell theory, Love’s shell theory, and Donnell’s shell the-
ory are shown in Figure 3.8 for various values of §. The buckling loads were obtained
using Ritz function consisting of Legendre polynomials up to 11** order. For the
case 6 = 90°, Legendre polynomials up to 19** order was used. These buckling loads
are also compared with results obtained using the STAGS finite element code ([29)]),
where a mesh of 30 x 30 elements (480 Element) is used. The 480 Element accounts
for transverse shear flexibilities. The curved panel is modeled as an assembly of flat
elements in STAGS and hence the results obtained using STAGS are independent of

any shell theory.

The results obtained using Love’s shell theory are very close to that obtained

using Sanders-Koiter shell theory. The STAGS finite element results are also in
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good agreement with those obtained using Love’s and Sanders-Koiter shell theory.
The results obtained using the Donnell’s shell theory are close to results obtained
by Love’s and Sanders-Koiter shell theory for § between 0° and about 15°. For
6 > 15°, Donnell’s shell theory overestimates the buckling loads when compared to
Sanders-Koiter or Love’s shell theory. The difference in buckling loads between those
obtained by Sanders-Koiter and Donnell’s theory is largest for 50° < § < 70°. After
6 = 70°, the difference between the buckling loads obtained by Sanders-Koiter and
Donnell decreases, and at § = 90° the loads obtained using Donnell’s and Sanders-
Koiter shell theory are close to each other. According to Ref. [12], Donnell’s theory
give accurate results for cylindrical panels that are relatively flat before deformation
and for complete cylindrical shells whose displacement components in the deformed
configuration are rapidly varying functions of the circumferential coordinate. Such
shells are sometimes termed quasi-shallow. Figure 3.9 shows the buckling mode shapes
obtained from STAGS for various values of . For § = 0° and and 90°, there are more
than two half-waves in the curved direction. Hence, the buckling loads obtained by
Donnell’s theory is in good agreement with the other results. For 8 = 10°, there are
still more than two half-waves on part of the panel and therefore, the result from
Donnell’s theory is still in agreement with the other results. For § = 20° and 30°,
there is only one half-wave in the curved direction, and for § = 40°, 50°, 60° and 70°,
there are no half-wave in the curved direction on part of the panel, therefore for these
values of 8, the results obtained by Donnell’s theory are not in good agreement with
the other results. For § = 80°, the deformation pattern is more in a skewed direction
rather than along the curved direction, therefore the result obtained by Donnell’s

theory is not in agreement with the other results.

Buckling loads for § = 70° for different radius to thickness ratio R/t are
shown in Table 3.17. Buckling loads for an isotropic case with nominal mechanical

properties of Ey; = 10.0 Msi and 1, = 0.30 for different R/t are also shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

For R/t = 25, the percentage difference between the result of Donnell’s theory and
Sanders-Koiter theory is approximately 23 % for both cases. For the [+70/ % 70/70],
laminate, the difference between the result of Sanders-Koiter theory and Donnell’s
theory is approximately 20 % for R/t = 50 and 100. For R/t = 200 and 600, the
difference is 8.3 % and 4.8 %, respectively. For the isotropic curved panel, the differ-
ence between the result of Sanders-Koiter theory and Donnell’s theory approximately
11 % for R/t = 50 and less than 5 % for the other R/t ratios. Since, the results
of the isotropic case also show differences between results of different shell theories
moderate R/t ratios, it is concluded that such discrepancy between various shell the-
ories is not mainly due to anisotropy, but rather to the geometry of the problem.
Figure 3.10 shows the contour plots of the mode shape of the radial displacement (w)
obtained from the Rayleigh-Ritz buckling analysis using Sanders-Koiter theory. for
the [£70/ £ 70/70}, laminate for different R/t ratio. It is seen that only the mode
shape for R/t = 600 has more than two half-waves in the curved directions, hence,

the results of Donnell’s theory and Sanders-Koiter are close to each other.
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3.13 SUMMARY

A Rayleigh-Ritz method combined with a variational formulation and a first-order,
transverse-shear-deformation theory and various shell theories has been presented for
buckling of arbitrary quadrilateral panels and general triangular panels with various
boundary conditions and subjected to combined inplane loading. The Ritz func-
tions consist of polynomials which include “circulation” functions to impose various
boundary conditions. Numerical results are obtained for isotropic, orthotropic and
anisotropic plates with skewed geometries, triangular geometries, and curved panels.
The present analysis method does not exhibit any mesh distortion sensitivity, ac-
curately models parallelogram-shaped geometries, and general triangular geometries,
accounts for material anisotropy, and can accommodate combined loading conditions.

It also accounts for different shell theories.

For the skew plates, the sensitivity of the buckling coefficient to the direction
of the in-plane shear prestress application is studied for increasing skew angles. The
influence of the skew angle on the buckling coefficient is more pronounced as the
skew angle increases for thin plates as well as thick plates. The results also suggest
that material anisotropy accentuates this effect. For the analysis cases studied here,
the present formulation provides accurate buckling results for skewed isotropic and

anisotropic plates which will be useful in the preliminary design of stiffened structures.

The direction of the in-plane shear load is studied for different triangular
geometries and degrees of material anisotropies. The symmetry of the triangular
plate geometry seems to influence the buckling load more than the degree of material
anisotropy for the cases considered in this study. The effect of transverse-shear defor-
mation is studied for different triangular geometries which confirms the importance

of including these effects in the buckling analysis of composite plates.
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Accurate buckling load results for isotropic and anisotropic triangular plates and

will be useful in the preliminary design of grid-stiffened structures.

Buckling loads for curved panels subjected to axial compression are obtained
using Sanders-Koiter, Love’s, and Donnell’s shell theory. There are significant dif-
ference between buckling loads obtained using Sanders-Koiter or Love’s shell theory
and Donnell’s shell theory for the curved panel and material considered. Results
show that Donnell’ theory is in close agreement with other theories for large radius
to thickness ratio or for very thin shell and also when displacements in the deformed

configuration vary rapidly with the circumferential coordinate.
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Table 3.1 Buckling coefficient, K, for simply supported isotropic plates, a/b = 1.

Pp=0° =15 ¢ =30° ¢ =45

Mizuswa, et al. [61] 4000 3778 3160  2.160
Wang et al. [31] 4.000 3.860 3.480 2.650
Kitipornchai, et al. [58] 4.000  3.825 3.331 2.526
VICON 4.000 4.126 4.250 3.387
STAGS 4.003 3.825 3.288 2.426

Present analysis:

Regular polynomial 3.999 3.832 3.380 2.709*
Legendre polynomial 3.999 3.825 3.320 2.536

*Using 91 terms, Present analysis gives 2.630

Table 3.2 Buckling coefficient, K, for clamped isotropic plates, a/b = 1.

Yp=0" ¢=15 ¢ =30° =45

Wittrick [56) 10.080 - 7.670 5.410
Durvasula [57] 10.080 9.462  7.639  5.110
Wang et al. [31) 10.080  9.479 7.734 5.170
Kitipornchai, et al. [58] 10.080  9.431 7.615  5.028
VICON 10.081  9.445 7.639 5.025
STAGS ) 10.081 9.416 7.579 4.980

Present analysis:

Regular polynomial 10.073  9.432 7.621 5.154"
Legendre polynomial 10.073  9.431 7.615 5.026

*Using 91 terms, Present analysis gives 5.051
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Table 3.3 Buckling coefficient, K, for simply supported skewed plates, a/b = 1,

Dn/Dgz = l
Kennedy VICON STAGS Present Analysis
et al. [62] Regular Legendre
polynomial polynomial
Load Case P = 15°
A . 4.739 4.770 4.773 4.768
B 2.150 2.186 2.114 2.116 2.114
C 2.340 2.435 2.296 2.298 2.296
D 2.490 2.707 2.452 2.454 2.451
P = 30°
A - 7.555 6.217 6.356 6.282
B 2.300 2.775 2.340 2.383 2.363
C 2.640 3.333 2.677 2.730 2.704
D 3.020 4.009 3.054 3.121 3.086
P = 45°
A - 13.548  10.108 11.043 10.582
B 2.900 4.412 3.119 3.342 3.239
C 3.380 5.368 3.656 3.938 3.805
D 4.000 6.732 4.334 4.697 4.519

Table 3.4 Buckling coefficient, I, for simply supported skewed plates, a/b = 1,

Du/Dzz = 5
Kennedy VICON STAGS Present Analysis
et al. [62] Regular ~ Legendre
polynomial polynomial
Load Case P = 15°
A - 9.295 9.122 9.131 9.129
B 3.869 3.875 3.883 3.888 3.887
C 4.290 4.353 4.319 4.324 4.323
D 4.730 4.922 4.759 4.763 4.762
P = 30°
A - 13.750 11.601 11.700 11.669
B 3.810 4.317 3.930 3.962 3.955
C 4.480 5.220 4.654 4.693 4.684
D 5.440 6.550 5.613 5.661 5.647
P = 45°
A - 25.170  18.606 19.269 18.986
B 4.350 5.440 4.649 4.787 4.739
C 5.260 6.740 5.626 5.802 5.738
D 6.500 8.800 7.060 7.296 7.204
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Table 3.5 Buckling coefficient, K, for simply supported anisotropic skewed plates,
[£45/90/0], laminate.

Load VICON STAGS Present Analysis

Case Regular Legendre
polynomial polynomial

P = 30°

B 2.725 2.373 2.396 2.382

C 3.269 2.758 2,787 2.767

D 4.017 3.227 3.264 3.237
P = 45°

B 4.153 3.001 3.155 3.068

C 5.070 3.553 3.749 3.635

D 6.415 4.286 4.545 4.390

Table 3.6 Buckling coefficient, K, for simply supported anisotropic skewed plates,
[45/90/ — 45], laminate.

Load VICON STAGS Present Analysis

Case Regular Legendre
polynomial polynomial

P = 30°

B 1.552 1.484 1.488 1.486

C 1.870 1.764 1.769 1.766

D 2.321 2.139 2.144 2.140
P = 45°

B 2.510 2.023 2.106 2.061

C 3.040 2.419 2.523 2.465

D 3.800 2.969 3.105 3.027
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Table 3.7 Buckling coefficient, K, for simply supported-clamped anisotropic
skewed plates, [+45/90/0], Jaminate.

Load VICON STAGS Present Analysis

Case Regular Legendre
polynomial polynomial
P = 30°
B 4.170 4.130 4.158 4.155
C 4.901 4.850 4.884 4.878
D 5.718 5.644 5.685 5.675
: P = 45°
B 5.791 5.722 5.849 5.812
C 6.990 6.917 7.085 7.025
D 8.512 8.455 8.688 8.588

Table 3.8 Buckling coefficient, K, for simply supported-clamped anisotropic
skewed plates, [45/90/ — 45], laminate.

Load VICON STAGS Present Analysis

Case Regular Legendre
polynomial polynomial

Y = 30°

B 1.976 1.967 1.973 1.972

C 2.388 2.374 2.381 2.380

D 2.942 2.915 2.923 2.921
P = 45°

B 2.857 2.832 2.872 2.855

C 3.480 3.450 3.505 3.477

D 4.360 4.327 4.407 4.359
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Table 3.9

Table 3.10

-1
o

Buckling coefficient, I, for clamped anisotropic skewed plates,

[£45/90/0], laminate.

Load VICON STAGS Present Analysis

Case Regular Legendre
polynomial polynomial

Y = 30°

B 6.134 6.090 6.126 6.125

C 7.043 6.988 7.019 7.019

D 7.717 7.657 7.680 7.677
b = 45°

B 8.743 8.629 8.737 8.731

C 10.154  10.008 10.121 10.102

D 11.273  11.212 11.302 11.243

Buckling coefficient, K, for clamped anisotropic skewed plates,

[£45/90/0], laminate.

Load VICON STAGS

Present Analysis

Case Regular Legendre
polynomial polynomial

P = 30°

B 3.783 3.765 3.784 3.782

C 4.590 4.576 4.589 4.588

D 5.453 5.436 5.440 5.439
P = 45°

B 5.617 5.478 5.602 5.592

C 6.850 6.807 6.850 6.848

D 8.107 8.083 8.106 8.087
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Table 3.11 Buckling coefficient, K, for clamped skewed plates with different

thickness-to-width ratio.

Regular polynomial
Isotropic Laminate 1l Laminate 2

t/b P = 30°
0.001  7.138 7.680 5.440
0.010  7.117 7.596 5.382
0.100  5.970 3.868 2.727

P = 45°
0.001  10.601 11.302 8.106
0.010 10.525 11.106 7.972
0.100  6.719 4.636 3.299

Table 3.12 Buckling coefficient, K, for simply supported skewed plates with

different thickness-to-width ratio.

Legendre polynomial
Isotropic Laminate1 Laminate 2

t/b % = 30°
0.001  2.904 3.245 2.739
0.010  2.872 3.153 2.690
0.100  2.350 2.041 1.793

P = 45°
0.001  4.368 4.436 3.903
0.010  4.209 4.170 3.721
0.100  3.305 2.621 2.333
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Table 3.13 Buckling coefficient, K, for simply supported triangular isotropic plates.

Triangle Loading Buckling Coefficient
Geometry Ref. [34] Present Present
(CLPT) (CLPT) (FSDT)
Equilateral N =Ny =1,
triangle N, =0 4.0000 4.0038  4.0038
Buckling Coefficient
Ref. [36] Present Present
(CLPT) (CLPT) (FSDT)
Right-Angled N, =N, =0,
1sosceles Ny =-1 11.5500 11.5580 11.5580
triangle
N, =N, =1,
N,y =0 5.0000  5.0051  5.0051
N =N, =6.29,
N, =11.57 1.0000  0.9984  0.9984

Buckling Coefficient
Ref. [38] Present Present
(CLPT) (CLPT) (FSDT)

30° — 60° ~ 90° "N, = N, = I,
triangle N, =0 9.3300  9.3370  9.3370
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Table 3.14 Buckling coefficient, K, for right-angled isosceles triangular plates with

different boundary conditions.

Boundary Loading Buckling Coeflicient
condition Ref. [36] Present Present
(CLPT) (CLPT) (FSDT)

Perpendicular edges N, = N, =0
simply supported Ny =-1 22.0200 21.9500 21.9500
Hypotenuse clamped

N;=N,=1
Nz, =0 7.8200 7.8171  7.8171
N; =N, =823
Ny, =12.34 1.0000  0.9898  0.9898
Perpendicular edges N, = N, =0
clamped Nzy=-1 17.1200 16.9390 16.9390
Hypotenuse
simply supported N,=N, =1
Ny =0 9.3500  9.3420  9.3420
N;=N, =109
Nz, =12.34 1.0000  1.0001  1.0001
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Table 3.15 Buckling load results for simply supported triangular anisotropic plates.

Triangle Load Laminate 1 Laminate 2
Geometry Case N (lbs/in) N (lbs/in)
(FSDT) (CLPT) (FSDT) (CLPT)

30° — 60° — 90°

Triangle A 39.035  39.135  26.795  26.885
B 45.850 45999  33.192  33.306
C 53.960  54.108 42.3444  42.495

Right-Angled

Isosceles Triangle A 21.464  21.515 15.574  15.597
B 25.578  25.642  19.547  19.577
C 30.567  30.635  25.328  25.372

Equilateral

Triangle A 23.702  23.752  20.780  20.789
B 25.140  25.197  23.626  23.629
C 25.746  25.804  26.311  26.354

Table 3.16 Buckling coeflicient, K, for simply supported triangular plates with

different thickness to height ratios (¢/b).

Right-Angled Isosceles Equilateral
Triangle Triangle
t/b 0.001 0.010 0.100 0.001 0.010 0.100

Isotropic 4.9998 4.9813 4.1014
Laminate 1 5.1528 5.0670 2.9445

Laminate 2 2.6575 2.6311 1.7220

3.9999 3.9885 3.3864
4.2697 4.2179 2.6340

2.6517 2.6263 1.7194
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Table 3.17 Buckling loads for curved panel with different R/t ratio.

-1
-

t R/t As—k AIove )‘don '("\'_Tk;;\i.l)'
(in.) (Ibs/in.) (lbs/in.) (Ibs/in.)

[£70/ £ 70/70], | 10 x 0.024 25 1.21e4  1.22e4  1.6ed  -23.7%
10 x 0.012 50 3417.1  3432.0  4303.1  -20.5%
10 x 0.006 100 920.6 9222  1163.6  -20.8%

10 x 0.003 200 264.1 264.2 288.7 -8.3%

10 x 0.001 600 32.83 32.86 34.50 -4.8%

Astags = 3349.1 for R/t = 50

ISOTROPIC 0.24 25 4.24e4 4.27e4  5.5le4 -22.98%
0.12 50  1.22e4 1.24e4 1.39e4 -11.61%
0.06 100 35279  3533.6  3663.0 -3.70%

0.03 200 916.5 917.4 964.6 -4.97%

0.01 600 113.6 113.6 116.9 -2.75%

Astags = 1.236e4 for R/t = 50
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Figure 3.1 Sign convention for cylindrical shell element.
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Figure 3.2 Transformation from physical to computational domain.
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Figure 3.3 Skewed plate geometry.
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Figure 3.4 Triangular plate geometries.
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Fig. 3.5 Convergence of buckling coefficient with increasipg order of polynomial for
simply supported, isotropic, 45° skew plate subjected to axial compression.
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Fig. 3.6 Convergence of buckling coefficient with number of terms used in Ritz func-
tion for different simply supported isotropic triangular plates subjected to compres-
sion (N; = N, =1).
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Fig. 3.8 Comparisons of buckling loads for curved panel from different theories.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o



CH

Fig. 3.9 Buckling mode shape of curved panel for different winding angle 6.
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Figure 3.10 Modé shape for [70/-70/70/-70/70) ¢ laminate with

different R/t ratios.
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Chapter 4

OPTIMAL DESIGN OF
GRID-STIFFENED
COMPOSITE PANELS USING
GLOBAL AND LOCAL
BUCKLING ANALYSES

An aircraft in flight is subjected to air loads which are imposed by maneuver and
gust conditions. These external loads are resisted by the structure, and an inter-
nal load distribution is established based on the structural layout and given exter-
nal loads. These internal loads, which depend on the location of the panel in the
aircraft structure, may result in either overall panel buckling, buckling of the skin
between stiffeners, or stiffener crippling. Hence, an efficient and accurate method
for developing a buckle-resistant design of general grid-stiffened panels subjected to
combined in-plane loading conditions is needed in order to identify the most effective
grid-stiffened geometries for structural panels for different locations in fuselage and
wing structures. The identification of effective grid-stiffened geometries also requires
optimization techniques in addition to accurate structural analyses. Thus, optimiza-
tion of composite structures has drawn considerable attention in the recent years.
Composite plates have been optimized to maximize buckling loads as presented in

the literature survey of Reference [66]). According to Reference [66], the basic design
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problem is to determine the stacking sequence of the composite laminate since in .
many practical applications the ply orientations are limited to either 0°, 90° or £45°
and, the laminate thicknesses can only be integer multiples of commercially available
ply thicknesses. Thus, the optimization of a laminate stacking sequence involved
discrete design variables due to manufacturing constraints and represent an integer

programming problem.

Design optimization of stiffened panels for buckling has also drawn attention
in recent years (e.g., [7]-[9], [22], [66], [67]). These researchers did not consider the
stiffener spacings as design variables even though the skin thickness, stiffener thick-
ness and stiffener height were design variables. For the most part, gradient-based
optimizers were used in References [9], [7], [22] and [67). However in Reference [8],
the ranking method was used as the optimizer, while in Reference [66], the genetic
algorithm, [25], was used to optimize the laminate stacking sequence in the skin and
stiffener. Geodesically stiffened panels were considered in References {22] and [7],
while orthogrid panels were considered in Reference 8] and axially stiffened panels
were considered in References [67] and [66]). The optimization of grid-stiffened panels
with stiffener spacings and stiffener layout as discrete design variables pose the same
problems as that of optimizing the laminate stacking sequence discussed in Reference
[66]. Since stiffener spacings are discrete variables, the optimum grid-stiffened geome-
try may contain any combination of axial, transverse and diagonal stiffeners, and the
stiffener and skin thicknesses can only be integer multiples of commercially available
ply thicknesses. The genetic algorithm has emerged as a viable tool for dealing both
with the problem of discrete variables and with the need to find multiple minima.
The genetic algorithm evolves the design by randomly searching the design space
and maintaining a family of design for each generation (or iteration). This process
provides multiple near-optimum designs for evaluation and selection rather than a

single-design configuration provided by gradient-based algorithms.
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This chapter presents the analysis strategy and design strategy for designing .
grid-stiffened composite panels subjected to combined loads and a global buckling de-
sign constraint. The global buckling constraint of the grid-stiffened panel is important
so as to prevent localized skin buckling. This constraint reduces the risk of failure
of the panel by stiffener-skin separation (e.g., Reference [68]) and also avoids per-
turbing the aerodynamic performance caused by skin buckling of the wing or fuselage

surfaces.
4.1 PANEL BUCKLING ANALYSIS

The analysis and design of grid-stiffened composite panels subjected to combined
loads require several key steps. In the present study, acceptable designs are those
which buckle globally and do not exhibit any local skin buckling or stiffener crippling,.
The first step is to assess the global buckling response of the grid-stiffened panel. Once
this global buckling response is determined, the second step is to determine the local
skin buckling response for general the quadrilateral and/or triangular skin segments
that occur locally between stiffeners. The third step is to determine whether stiffener
buckling or stiffener crippling has occurred at this global load level. This sequence
of steps is performed repeatedly in a design cycle until an optimum or near-optimum

design is obtained.

The global buckling analysis is based on a Rayleigh-Ritz method using a
first-order, shear-deformation theory and an improved smeared-stiffener modeling ap-
proach as discussed in Chapter 3 and 2, respectively. The buckling analysis of local
skin-segments is also based on a Rayleigh-Ritz analysis using a first-order, shear-
deformation theory and accounts for material anisotropy. Boundary restraints on the
skin segments are provided by the stiffeners, and hence, the analysis must be able to
accommodate a variety of boundary conditions and a variety of skin segment shapes.

In most cases, the shape of the skin segments for grid-stiffened panels will be either
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a general quadrilateral or a triangle. Analysis procedures presented in Chapter 3 are

used for the local buckling analyses.

In addition to analyzing the local skin segment for buckling, the local stiff-
ener segments must be analyzed to determine whether stiffener crippling will occur.
Reference [9) provides a method for determining the buckling load of a stiffener seg-
ment. Accordingly, the stiffener segment at the nodes or intersection point of stiffeners
are assumed to be clamped while the stiffener-skin attachment is assumed to be sim-
ple support. From Ref. [9], the crippling load of the stiffener is N, and is given
by

Ncrl'p = %[ 1+

4N,
3,1 B 1]

where

472Ey, Gm]

t3 =< 4.1
: [12Lg[1 CGARERED] T R (4.1)

Ncl

where 3, = %G;at,, is a shear correction factor, Ly = 2L is the length of the stiffener,

h is the width of the stiffener, and ¢, is the thickness of the stiffener.

These global and local analysis methods have been integrated into a com-
puter code to provide a computationally efficient tool for predicting the buckling load

of a grid-stiffened composite panel.
4.2 PANEL DESIGN PROCEDURE

The design of grid-stiffened composite panels requires that many of the design vari-
ables, such as stiffener spacing and stiffener thicknesses may only take on certain dis-
crete values rather than vary continuously over the design space, and often a “family”
of good designs is needed rather than a single-point design due to manufacturing re-
quirements. Gradient-based methods for structural optimization are not appropriate

in this case.
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Over the last several years, researchers have investigated the use of genetic
algorithm as a method for “evolving” a given design problem to a family of near-
optimum designs (e.g., see Reference [25], [66] and [69]). Based on Darwin’s theory of
survival-of-the-fittest, the genetic algorithm involves the random creation of a design
population that “evolves” towards some definition of fitness. The genetic algorithm
is attractive due to their simplicity of approach in discrete variable combinatorics.
The genetic algorithm can be used directly to solve unconstrained optimization prob-
lems, while constrained optimization must first be transformed to an unconstrained
optimization problem (e.g., use of an exterior penalty function). Stochastic processes
are used to generate an initial population of individual designs and the process then
applies principles of natural selection and survival of the fittest to find improved de-
signs. Furthermore, since the discrete design procedure works with a population of
designs it can explore a large area of design space and climb different hills. This is
a major advantage as the converged solution contains many optima of comparable
performance. The cost of having a large number of function evaluations is offset by
the fact that a large number of optima solutions are now available. In a gradient-
based optimization procedure, only a single-point design, usually the extremum to
the starting point, is obtained. However, different starting points can be tried to
increase the chance of locating the global optimum as well as other local optima. The
genetic algorithm produces a population or family of good designs which may include
the global optimal design, rather than a single design. Hence, it is an appropriate

tool for designing general grid-stiffened panels.
4.3 DESIGN PROBLEM DEFINITION

The present design problem is to minimize the weight per unit area of a grid-stiffened
composite panel given the design loading condition, the length and width of the

panel, the material properties for the skin and stiffeners, and the boundary conditions
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of the panel. The design variables include stiffener spacings (a, b), the stacking
sequence of the skin, stiffener layout, stiffener thickness (¢;), and stiffener height
(h1 = ha = hz = k) as shown in Figure 4.1. All stiffeners are assumed to be of the
same height and thickness for manufacturing and assembly reasons. The design sought
here is a panel of minimum weight in a certain design space which buckles globally at
the design loads. This design problem can be defined by setting up the optimization
procedures in the following way. First, the global buckling load is assumed to be a

scalar multiple of design loads and has the form
Nz =AgN1, Ny = AgN2, Ny = AeNig (4.2)

where Ny, Nz, Nj; are the applied in-plane prebuckling loads. These values represent
the design loads for the grid-stiffened panel. Second, the design constraints imposed

on panel include

1. The critical buckling load should be greater than or equal to the design loads,

that is, A, > 1.
2. Skin segments should not buckle at the critical buckling load, that is, A,z > 1.

3. Stiffener segments should not cripple at the critical buckling load, that is,
A1, A2, A3 2> 1 where Ay, );, A; is the crippling load factor of the x-direction

stiffener, y-direction stiffener and diagonal stiffener, respectively.

The general form of each constraint equation is written as

gi = (le- 1)<00 j=1,.., N, (4.3)
J

Finally, the “Fitness” expression based on exterior penalty function approach is

itness = _Q = Max Q
Fit (F(X,r.)) M W(X) + 7 Z;Vc [Ig:(x)l +gJ(X)]2 (44)

where X = design variable vector

F(X,r;) = Modified objective function
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W(X) = weight of panel per unit area
riy; [19i(X)] + g;(X)]? = penalty function
@ = normalizing constant

N, = Number of design constraints

r; = penalty parameter

i = generation or iteration cycle in the optimization procedure.

Once the global buckling load factor has been determined using the improved
smeared stiffener theory, the loads acting on the stiffener and skin segments have to
be determined by distributing the loads based on the extensional stiffness of the skin
and the stiffener. The procedure for distributing the applied loads for a general grid-
stiffened panel involves three steps. First, the extensional stiffness coefficients for

grid-stiffened panel are computed as follows (Ref. [17]):

Q(Au)l h + 2(A11)3 h sin30

(An)r = b b + (A11)s
2(A h  2(A h cos30

(A)r = ( 1;)2 . ( 11)3a 0% | (A,
2(A h cosf sin®d

(AGG)T — ( 11)3 :0“ sin + (Ase),

(4.5)

where (A;1)r is total smeared axial extensional stiffness of the grid-stiffened panel,
(A22)7 is the total smeared transverse extensional stiffness of the grid-stiffened panel,
(Age)r is the total smeared in-plane shear stiffness of the grid stiffened panel, (A1y);,
(A11)2, (A11)3 are the extensional stiffness of the axial, transverse and diagonal stiff-
eners, respectively, (4;;), is the extensional stiffness of the skin, 8 is the orientation
of the diagonal stiffener, and & is the height of the stiffener. Second, the loads carried
by the skin segment which could be either a general parallelogram-shaped geometry

or a general triangular-shaped geometry, at the global buckling load are

L () y  (Au)
(Nadoe = 7™ = (e

Ac My
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_ (Az)s o, (A22)s
Wde = G = () o
(No)oe = Assdsy  (Aes)s ) (4.6)

(Ass)T” ¥ (Ass)r
These values then correspond to the design loads used for the in-plane prebuckling
load in the skin-segment local buckling computation. If the critical buckling load
factor of the skin segment A is greater than or equal to one, then the skin-segment
buckling load is greater than or equal the global buckling load of the grid-stiffened
panel. Third, the loads carried by each stiffener type are computed. The load carried

hy the avial stiffener is
_ (Anh
(An)r

where N, is determined using Equation (4.1), and the critical buckling load factor,

(N-‘L‘)l N; = Aljvcrip (47)

A1, of the axial stiffener has to be greater than or equal to one. The load carried by

the transverse stiffener is

(An)2
(A22)r

and the critical buckling load factor, ), of the transverse stiffener has to be greater

(Nz)2 = Ny = \2Ngip (4.8)

than or equal to one. The load in the diagonal stiffeners has components from the

axial, transverse, and in-plane shear loadings and is given by

(Nz)s = Ngsind + Ngycosd + (Nizy)zc0568 + (Nazy)ysind = A3 Nerip

where
(Au)asz'n30
(An)r
(A11)360830
(A22)r
(A11)3cosfsin?@ b
(Ndsv)x = )(Ase)T ZNW
(A1 )acosfsin?o

(Ndxv)v = (Ace)r Nzy (4.9)

Ny: is the contribution from the axial in-plane loading, Ny, is the contribution from

Ndz: Nz

Nay N,

the transverse inplane loading, (Nyy ). is the contribution from the in-plane shear
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loading along the edge where z is constant, and (Ngzy )y is the contribution from the -
in-plane shear loading along the edge where y is constant. The critical buckling load

factor, A3, of the diagonal stiffener has to be greater than or equal to one.

The weight per unit area of the grid-stiffened panel is

W = ﬁ(wl + wy + w3 + w;)

where
wy, = 2hat,
w, = 2hbt,
w3 = 2htVa?+b?

wy = abt,k,-,, (410)

w; is the volume of the axial stiffeners in the unit cell, w, is the volume of the
transverse stiffeners in the unit cell, w; is the volume of the diagonal stiffeners in the
unit cell, w, is the volume of the skin in the unit cell, {4, is the thickness of skin,

and p is the mass density of the material.

4.4 DESIGN PROCESS BASED ON GENETIC
ALGORITHM

Implementation of the genetic algorithm is shown schematically in Figure 4.2. The
design process begins with a random selection of a specified number of designs which
comprise the initial population (i.e., first generation) for the genetic algorithm. Mate-
rial properties, length and width of panel, boundary conditions of the stiffened panel,
and design loadings are input to the analysis processor routine. The buckling analysis
is performed which provides the critical eigenvalues for the global buckling response
of the grid-stiffened panel and the local buckling response of the skin and stiffener
segments, which also computes the weight per unit area of the grid-siiifenca panel.

This procedure is repeated for each design configuration in the population.
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The “fitness” processor then evaluates the “fitness” of each design using Equation -
(4.4) and assign a rank based on the fitness expression or objective function. The
current population of design configurations is then processed by the genetic operators
(crossover, mutation, and permutation) to create a new population of design config-
urations for the next generations which combines the most desirable characteristics
of previous generations. Designs from previous generations may be replaced by new
ones (i.e., children) except for the “most fit” designs (i.e., parents) which are always
included in the next generation. The process is repeated until design convergence is
obtained, which is defined herein by specifying a maximum number of generations
that may occur without improvement in the best design. The design procedure will

now be demonstrated on flat and curved grid stiffened panels.

4.5 NUMERICAL RESULTS FOR FLAT
GRID-STIFFENED PANELS

A composite grid-stiffened panel 20.0-in. long and 56.0-in. wide representative of
a generic transport helicopter fuselage structural component is used as an example
to demonstrate the capabilities of the design optimization tool using the genetic
algorithm and global and local analyses. The panel is subjected to load cases shown
in Table 4.1. The panel was optimized for a load case of 400.0 lbs/in. in axial
compression, which is considered to be the most critical load case for this panel, the
stopping criterion is 30 generations, and the population size is eight. The probabilities
used for crossover, mutation, and permutation are 1.0, 0.10, and 0.95, respectively.
Also, the penalty parameter r; is kept constant for all iterations. Two skin laminate
stacking sequences were chosen. The first stacking sequence is [60/0/—60],, the second
one is [+45/90/0],, and each ply is 0.006-in. thick. Both of these laminates are quasi-
isotropic. The stiffener is made of 0° material only. The nominal ply mechanical

properties used are: Ey; = 20.2 Msi; Ez; = 1.9 Msi;
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Gi12 = Giz = Gy3 = 0.73 Msi and vy, = 0.3. The mass density of the material p, -
is 0.0570 Ibs/in.® The grid-stiffened panel has simply supported boundary conditions
on all edges, and the skin segments are considered to be simply supported also.
The grid-stiffened panel is assumed to have only axial and diagonal stiffeners. The
axial and transverse stiffener spacings considered were such that all stiffener patterns
closely approximate an isogrid configuration. Hence, the axial stiffener spacing a and
transverse stiffener spacing b are not independent but are considered as a single design
variable, (i.e., (a,, bs) is one variable). The stiffener height h and thickness ¢, are also
design variables. The design space explored is indicated in Table 4.2, where due to
manufacturing constraints, the height of the triangle (b,/2) is kept between 2.9 and
6.0 in., and the stiffener aspect ratio (h/t,) is kept between 4.5 and 9.0. Each design

variable can assume only eight discrete values.

In the buckling analyses, regular polynomials are used for the buckling anal-
yses since it is computationally faster than the analysis using Legendre polynomials.
The grid-stiffened panel is simply supported on all edges and so are the local skin

segments.

The results obtained by using the present design optimization tool are shown
in Table 4.3 for the skin with a laminate stacking sequence of [60/0/ — 60], and in
Table 4.4 for the skin with a laminate stacking sequence of [+£45/90/0],. Since only
three design variables are present, the size of each population of the genetic algorithm
is taken as eight.- Only the five best designs are given for each of the two grid-stiffened

panels with different skin stacking sequences.

For the grid-stiffened panel with the [60/0/ — 60], skin laminate, the first
three designs in Table 4.3 correspond to grid-stiffened panels that buckle globally at
a load factor of Ag, since the local buckling load factor of the skin segment A, axial
stiffener segment );, and diagonal stiffener segment A3, are greater than one. The

third design however, has a global buckling load factor (Ag) of 0.969, which may still
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be an acceptable design since A¢ is very close to one. The fourth and fifth designs -
have local buckling load factors of the skin segment less than one, and therefore the
buckling mode of these designs will contain local skin buckling at a load factor equal
to Ag X As. The buckling load factor for the fourth and fifth designs is 1.244 and
1.089, respectively, however the weight per unit area of these two panels are about
18 percent greater than those of the first three designs. From Table 4.3, only the
stiffener height appears to be evolving while the stiffener spacing appears to have
locked on to a specific value. Therefore, the best design for the grid-stiffened panel
with [60/0/ — 60], skin laminate is the first design given in Table 4.3 within the
design space considered. The behavior of the genetic algorithm convergence for the
grid-stiffened panel with [60/0/ — 60], skin laminate, is shown in Figure 4.3 and is

very rapid.

For the grid-stiffened panel with [£45/90/0], skin laminate, the designs
shown in Table 4.4 are of grid-stiffened panels that buckle globally at the indicated
load factor of Ag, since the local buckling load factors (A5, A1, A3) are all greater than
one. The first and third designs have a global buckling load factor Ag of 0.995 and
0.991, respectively, and could still acceptable designs. The second and third designs
have different stiffener spacing, and yet the global buckling load factor and weight
per unit area of these two panels are very close to one another. The fourth and fifth
designs show the same behavior also. Hence, the ability of the genetic algorithm to
obtain multiple 6ptima of comparable performance is demonstrated. The best design
for the grid-stiffened panel with a [£45/90/0], skin laminate is the first design given
in Table 4.4. The convergence behavior of the genetic algorithm for the grid-stiffened

panel with a [+45/90/0], skin laminate is also shown in Figure 4.3.
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The best designs with the [60/0/ — 60], skin laminate and the [+45/90/0], -
skin laminate are now assessed using the load cases given in Table 4.1. The results are
shown in Table 4.5 for the grid-stiffened panel with [60/0/ — 60], skin laminate and
in Table 4.6 for the grid-stiffened panel with [£45/90/0], skin laminate. Additional
load cases are also considered in order to obtain a profile for the critical loads of these
panels. They are 400.0 lbs/in. axial compression and 10.0 lbs/in. axial compression
with 100.0 lbs/in. in-plane shear. Both panels buckle globally for most of the load
cases considered. Both grid-stiffened panels exhibit crippling of the diagonal stiffener
for load case of N, = 100 lbs.in., N; = 10 lbs/in. In addition, the grid-stiffened
panel with the [+£45/90/0], skin laminate exhibits local skin buckling for load case
of N; = 174.0 lbs/in. and N,, = 154.0 lbs/in. The global buckling load factor Ag
for this load case is 2.2382 and the skin local buckling load factor A,k is 0.9855, and
hence the buckling load factor is 2.2057 for this load case of N, = 174.0 lbs/in. and
Ny = 154.0 Ibs/in. As shown in Figure 4.4, the designed load cases are within the
critical loading profile or envelope for the grid-stiffened panels with [60/0/ — 60], skin
laminate and [+45/90/0], skin laminate. The grid-stiffened panel with [60/0/ — 60],
skin laminate is a better design than the one with [£45/90/0], skin laminate, since it
has a weight of 0.549 Ibs/ft> compared to 0.578 Ibs/ft’ for the latter panel. Also the
former design has a larger critical load envelope compared to the grid-stiffened panel

with [+45/90/0], skin laminate (see Figure 4.4).

4.6 NUMERICAL RESULTS FOR CURVED
GRID-STIFFENED PANELS

The fuselage design of a generic wide-body transport aircraft is typically divided into
three different quadrants as shown in Figure 4.5. These quadrants include a crown
panel, two side panels and a keel panel. A side quadrant panel of a fuselage structure

representative of a generic transport aircraft fuselage section is considered herein and
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designed for buckling. The side quadrant panel is shown in Figure 4.6 and longerons
and frames divide the side quadrant panel into four curved panels. Each panel is
22.0-in. long and 22.0-in. wide with a radius of 120.0-in. in the width direction.
Panel 1 is the forward top panel of the side quadrant panel and is subjected to a load
case of N; = 1250 lbs/in., Ny, = 250 lbs/in., and N, = 2200 lbs/in. hoop tension.
Panel 2 is the aft top panel of the side quadrant panel and is subjected to a load case
of Ny = 300 Ibs/in., N, = 1350 Ibs/in., and N, = 2200 lbs/in. hoop tension. Panel
3 is the bottom top panel of the side quadrant panel and is subjected to a load case
of Ny = 2250 lbs/in., N, = 250 lbs/in., and N, = 2200 lbs/in. hoop tension. The
panel hoop tension is due to internal pressurization of the fuselage. The nominal ply
mechanical properties used are: E;; = 20.2 Msi; Ey; = 1.9 Msi; G2 = G13 = Go3 =
0.73 Msi and vz = 0.3. The mass density of the material p is 0.0570 lbs/in.® The
- grid-stiffened panel has simply supported boundary conditions on all edges, and the
individual skin segments are considered to be simply supported also. The stiffeners
are made of unidirectional material. The stopping criteria for the design evolution is
25 generations with no improvement in the “best ” design, and the population size
is twelve. The probabilities used for crossover, mutation, and permutation are 1.0,
0.10, and 0.95, respectively. Also, the penalty parameter r; is kept constant for all

iterations.

The design variables are the axial stiffener spacing (a), the transverse stiff-
ener spacing (b), the stiffener height (k), stiffener thickness (t,), the stacking se-
quence of the skin laminate (LAMI), and the geometry of the stiffening configuration
(IGEO). The design variables are shown in Table 4.7, and the design space explored
is shown in Table 4.8 for Panels 1 and 3, and in Table 4.9 for Panel 2. In either
design space, the minimum stiffener spacing is restricted 4o two inches, and the as-
pect ratio of the stiffener (k/t,) was kept between 3.5 and 10.5 due to manufacturing

constraints. Each design variable can assume eight discrete values.
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In the buckling analyses, regular polynomials are used for the buckling anal-
yses since it is computationally faster than the analysis using Legendre polynomials.
The grid-stiffened panel is simply supported on all edges and so are the local skin

segments. Sanders-Koiter shell theory is used.

The results obtained for Panel 1 using the present design optimization tool
are shown in Table 4.10. Eight best designs are presented here. All panel designs
presented in Table 4.10 buckle globally at the corresponding global load factor of Ag.
The buckling load factor of some stiffener segments are negative, which means that
these stiffener segments are in tension and do not buckle due to the in-plane loads
considered. Hence, the magnitude of negative buckling load factors for rib segments
are assumed to be one in computing the objective function (Equation 4.4). The
optimum value of the stiffening geometry variable (/GEQ) for all the panels is six
(i.e., the grid-stiffened panel has only transverse and diagonal stiffeners). The first six
best designs have the same stiffener spacings of a = 4.889 in., and b = 6.2857 in., while
the stiffener height (k), the stiffener thickness (2,), and the skin-laminate stacking
sequence (LAMI) are evolving. However, the stiffener height is evolving more than
the stiffener thickness (¢,), and the skin laminate stacking sequence (LAMI). The
first four designs have a stiffener thickness of 0.06 in., while the fifth and sixth design
have stiffener thickness of 0.09 in. and 0.102 in., respectively. The fourth design
has a skin laminate stacking sequence of [+£45/0]2, (LAMI = 1), while the other
five designs have a skin laminate stacking sequence of [£45/90},, (LAMI = 2). The
seventh and eighth designs have the same stiffener spacings (a = 4.0 in., and b = 5.5
in.), and stiffener thickness (¢, = 0.09 in.), but the stiffener height and skin laminate
stacking sequence are different from the first six designs. The best design for Panel 1
is the first design in Table 4.10. The convergence behavior of the genetic algorithm
for Panel 1 is shown in Figure 4.7, and convergence is achieved after 75 iterations (i.e,

75 generations).
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The results obtained for Panel 2 using the present optimization tool are -
shown in Table 4.11. The panel designs presented in Table 4.11 buckle globally
at the corresponding global load factor of Ag. The genetic algorithm produces a
large pool of good designs in this case. Most of the good designs are panels with
only axial stiffeners. These axially stiffened panels have stiffener spacings such as
those of the first three designs presented in Table 4.10, but with different stiffener
height and thickness. The fourth design in Table 4.10 has transverse and diagonal
stiffeners (JGEO = 6); however, this design is 14 percent heavier than the first design.
Panels stiffened in only one direction do not typically have good damage tolerance
characteristics, since multiple or redundant load paths for load redistribution are
absent. Therefore, the design process was performed with a modified design space for
the stiffening geometry wherein values of JGEO = 1 and 2 are replaced by IGEO =
5 and 6 respectively. That is, all designs will include stiffeners in multiple directions.
The results for this optimization are shown in Table 4.12. The panels presented in
Table 4.12 buckle globally at the corresponding global load factor of Ag. Here again,
the genetic algorithm produces a large pool of good designs with axial and transverse
stiffeners (IGEO = 3). These panels have stiffener spacing such as the first six
designs of Table 4.12, with variation in stiffener height and thickness and with a skin
laminate stacking sequence of [£45/0],, (LAMI = 1) or [£45/90), (LAMI = 2).
The weight of each panel is comparable to the weight of the axially stiffened panels
presented in Table 4.11. The seventh design has both axial and diagonal stiffeners
(IGEO = 5), while the eighth design is the same as the fourth design presented in
Table 4.11. The best design for Panel 2 is the design with transverse and diagonal
stiffeners, which is the fourth design in Table 4.11 and eighth design in Table 4.12.
This design is preferred over the lighter weight axially stiffened panel and the axially
and transversely stiffened panel since panel with diagonal stiffening is more damage

tolerant. It is also preferred over the seventh design in Table 4.12, since it has more
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stiffeners than the axially and diagonally stiffened and its weight is close to that of -
the latter. The convergence behavior of the genetic algorithm for Panel 2 is shown
in Figure 4.7. The convergence is faster when there is no restriction on the stiffening

geometry variable (IGEQ).

The results obtained for Panel 3 using the present optimization tool is shown
in Table 4.13. The panel designs presented in Table 4.13 buckle globally at the
corresponding global load factor of Ag. The best design is obtained with stiffener
spacings of @ = 5.5 in. and b = 4.4 in. The panel has transverse and diagonal
stiffeners (IGEO = 6) and a skin laminate stacking sequence of [£45/90]o, (LAMI
= 2). The second design is essentially same as the first design with the stiffener
height being different. The other good designs are panels with axial and transverse
stiffeners, which are about 36 percent heavier than the first two design. The best
design for Panel 3 is the first design in Table 4.13 and the convergence is achieved

after 29 iterations as shown in Figure 4.7.

The best design obtained for Panel 3 is now assessed for the design load
cases used for Panel 1 and Panel 2. The results are shown in Table 4.14. For the load
case corresponding to Panel 1, the panel buckles globally at a buckling load factor
of 2.114, and hence, this design represents a conservative design for these loads.
However, for the load case corresponding to Panel 2, the bucklingload factor of the
diagonal stiffener is 0.255, and hence, the buckling deformation contains local buckling
of the diagonal stiffener at a load factor of A3z X A\g = 1.172. Therefore, this design
also represents a conservative design for these loads. of Panel 3. The best design for
Panel 3 can also be used for Panel 1 and Panel 2 with a weight penalty of 6.7 and 22.9
percent, respectively, when compared to their respective best design. For a fuselage
structure, it is desirable that all the panels have the same stiffening pattern. This is
not only due to manufacturing consideration, but also due to structural consideration.

The region where stiffeners from two different panel meet will have to be joined and
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is a critical area if the stiffening patterns of the two panels are not the same. To -
alleviate that problem, these nodes have to be reinforced, and could result in a higher

weight penalty than using Panel 3 configuration also for Panels 1 and 2.

4.6.1 Curved Panels without Hoop Tension

Since the hoop tension of N, = 2200 lbs/in. due to fuselage internal pressurization is
a stabilizing in-plane load, the design optimization is performed for the three panels
without any hoop tension (i.e., N, = 0). The results are shown in Table 4.15, Table
4.16, and Table 4.17 for Panel 1, Panel 2, and Panel 3, respectively. The seven best
designs obtained by the genetic algorithm for Panel 1 are shown in Table 4.15. All the
designs presented in Table 4.15 buckle globally at the corresponding global buckling
load factor Ag. The top two best designs have diagonal stiffeners only (IGEO=4).
These two designs are essentially the same, except for the stiffener height. The next
three best designs have diagonal and transverse stiffeners (/GEO=6), and have the
same stiffener spacing and skin-laminate stacking sequence, but with different stiffener
height and thickness. The sixth design has axial and transverse stiffeners, whereas the
seventh design has transverse and diagonal stiffeners. The first four designs presented
in Table 4.15 are lighter than the best design for Panel 1 with the hoop tension by 1.7
to 4.1 percent. These designs have skin-laminate stacking sequence of [£45/0,],, and
an axial stiffener spacing of 11.0 in. compared to a skin-laminate stacking sequence
of [£45/90]2, and an axial stiffener spacing of 4.889 in. for the best design of Panel

1 with the hoop tension.

For Panel 2, the eight best designs are shown in Table 4.16. All designs
presented in Table 4.16 buckle globally at the corresponding global buckling load
factor A\g. The first five designs have diagonal stiffeners only, and the last three
designs have axial and diagonal stiffeners only. Here all the design variables are

evolving without being locked on any particular value. Only the first two designs
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have a weight per unit area comparable to the best design for Panel 2 with the hoop
tension load included (fourth design in Table 4.11). These two panels are about 7
percent heavier. Optimization results for Panel 3 are shown in Table 4.17 where only
| the five best design are shown. These designs buckle globally at their corresponding
global buckling load factor Ag. The first four designs have transverse and diagonal
stiffeners only, while the fifth design have axial and diagonal stiffeners only. The first
four designs have a small variation in value for the axial and transverse spacings,
and stiffener height and thickness, and the weight per unit area of these designs are
comparable to each other. The best design in Table 4.17 is heavier than the best

design for Panel 3 with the hoop tension by 11.6 percent.

The best design for Panel 3 without the hoop tension load is now assessed
for the load case of Panel 1 and Panel 2 without the hoop tension load. The results
are shown in Table 4.18. For the load case corresponding to Panel 1 without the
hoop tension, the panel buckles globally at a global buckling load factor of 1.797.
Therefore, the panel does not buckle for the load case corresponding to that of Panel
1 without the hoop tension. However, for the load case corresponding to Panel 2
without the hoop tension, the buckling load factor of the diagonal stiffener is 0.697,
and hence the buckling deformation contains local buckling of the diagonal stiffener
at a load factor of A3 x A\g = 1.719. Therefore, the panel does not buckle at a load
case corresponding to that of Panel 3 without the hoop tension. The best design for
Panel 3 can be used for Panel 1 and Panel 2 with a weight penalty of 24.3 and 28.5

percent respectively, when compared to their respective best design.
4.7 SUMMARY

A minimum-weight design optimization tool for grid-stiffened panels with a global
buckling constraint using global and local analyses and the genetic algorithm has

been developed. Design variables used are the axial and transverse stiffener spacing,
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stiffener height and thickness, the skin-laminate stacking sequence, and the stiffen- .
ing geometry. Results for flat and curved grid-stiffened panels indicate that the best
designs obtained by the genetic algorithm depend mostly on the applied load cases.
In most combined applied load cases, the best designs have diagonal stiffeners. How-
ever in certain cases, the best design obtained by using the genetic algorithm solely
based on buckling considerations may not be suitable for structural application due
to considerations related to manufacturing, joining, and damage tolerance. In this
case, the pool of good designs obtained by the genetic algorithm is useful in providing

alternative design options for a given structural application.
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Table 4.1 Service load cases for flat composite grid-stiffened panel.

Load case | N (lbs/in.) | N, (Ibs/in.)

1 396.0 130.0
2 326.0 178.0
3 271.0 139.0
4 174.0 154.0

Table 4.2 Design space.

Design Variable 1 Design Variable 2 | Design Variable 3
Stiffener spacing stiffener stiffener
axial, in. transverse, in. height, in. thickness, in.
(a,) (bs) (h) ()
6.667 11.200 0.49375 0.060
5.714 10.182 0.50000 0.066
5.000 8.615 0.50625 0.072
4.444 8.000 0.51250 0.078
4.444 7.467 0.51875 0.084
4.000 7.000 0.52500 0.090
3.636 6.222 0.53125 0.096
3.333 5.894 0.53750 0.102

Table 4.3 Best designs obtained by genetic algorithm for grid-stiffened panel with
skin of [60/0/ — 60}, stacking sequence.

a b h t, Ac sk o Az weight
(in.) (in.) | (in.) | (in.) Ibs/ft?

3.333 5.894 | 0.50000 | 0.060 | 1.002 | 1.044 2.072 34.594 | 0.549
3.333 5.894 | 0.50625 [ 0.060 | 1.034 [ 1.016 2.002 33.421 [ 0.552
3.333 5.804 10.49375 | 0.060 |{ 0.969 | 1.073 2.147 35.856 | 0.545
3.333 5.894 | 0.51875 | 0.084 | 1.403 | 0.887 3.241 54.130 | 0.663
3.636 6.222 | 0.53750 | 0.084 | 1.487 | 0.733 2.669 41.656 | 0.651
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Table 4.4 Best designs obtained by genetic algorithm for grid-stiffened panel with
skin of [+45/0/90], stacking sequence.

a b h t, Ag Ask M Az weight
(in.) (in.) | (in) | (in.) Ibs/ft?

5.000 8.615 | 0.53750 { 0.060 ; 0.995 | 1.024 1.341 21.208 | 0.578
4.444 8.000 | 0.53750 | 0.060 | 1.047 | 1.179 1.470 25.608 | 0.596
4.444 7.467 | 0.51250 { 0.060 | 0.991 | 1.392 1.637 24.507 | 0.594
4.444 7.467|0.51250 | 0.072 | 1.139 | 1.285 2.146 32.120 | 0.634
4.444 8.000 { 0.53750 | 0.072 | 1.207 | 1.084 1.920 33.458 | 0.636

Table 4.5 Buckling loads for grid-stiffened panel with skin of [60/0/ — 60], stacking

sequence.
N N, Buckling load | Buckling
(Ibs/in.) (lbs/in.)  factor (A) [ mode
400.0 0.000 1.002 global buckling
396.0" 130.0" 1.015 global buckling
326.0" 178.0* 1.226 global buckling
271.0" 139.0* 1.477 global buckling
174.0" 154.0% 2.268 global buckling
10.00 100.0 6.407 diagonal stiffener
buckling

* refers to service load cases from Table 4.1
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Table 4.6 Buckling loads for grid-stiffened panel with skin of [£45/0/90], stacking .

sequence.
N; Ny Buckling load | Buckling
(Ibs/in.) (lbs/in.)  factor () | mode
400.0 0.000 0.995 global buckling
396.0" 130.0" 1.002 global buckling
326.0" 178.0% 1.211 global buckling
271.0° 139.0" 1.458 global buckling
174.0% 154.0% 2.206 skin buckling,
Ag = 2.238, Ay = 0.985

10.00 100.0 4.145 diagonal stiffener

buckling

* refers to service load cases from Table 4.1

Table 4.7 Design variables.

Design variable

D O W N

axial stiffener spacing, a

transverse stiffener spacing, b

stiffener height, k

stiffener thickness, ¢,

stacking sequence of skin laminate, LAMT
stiffening geometry, IGEO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Table 4.8 Design space for curved Panel 1 and 3.

Design Variable

1 2 3 4 9 6
a,in. b,in. | h,in. |, in. | LAMI IGEO

1]11.000 11.000 | 0.49375 | 0.060 | [£45/0]2 axial
stiffening

2| 8.800 8.800 {0.50000 | 0.066 | [+45/90]., transverse
stiffening

3| 7333 7.333 |0.50625 | 0.072 | [£45/0/90),, | orthogrid
stiffening

4] 6.286 6.286 |0.51250 | 0.078 | [£45/02)2s diagonal
stiffening

5[ 5.500 5.500 |0.51875 { 0.084 | [£45/902]2s axial and diagonal
stiffening

6| 4.889 4.889 |0.52500 | 0.090 | [£45/02/90];, | transverse and diagonal
stiffening

7| 4400 4.400 |0.53125 | 0.096 | [£45/0/90,],s | axial, transverse and
diagonal stiffening

8| 4.000 4.000 |0.53750 | 0.102 | [£45/02/90;];s | no stiffening
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Table 4.9 Design space for curved Panel 2.

Design Variable

1 2 3 4 |5 6
a, in b,in. | h,in. | t,, in. | LAMI IGEO

1]11.000 11.000 | 0.30 [ 0.042 | [£45/0], axial
stiffening

2| 8.800 8.800 | 0.32 | 0.048 | [£45/90],, transverse
stiffening

5[ 7.333  7.333 | 0.34 | 0.054 | [£45/0/90];, | orthogrid
stiffening

41 6.286 6.286 | 0.36 | 0.060 | [£45/0,]2s diagonal
stiffening

5[ 5.500 5.500 | 0.38 | 0.066 | [+45/90,)2s axial and diagonal
stiffening

6| 4.889 4.889 | 0.40 | 0.072 | [£45/0,/90];, | transverse and diagonal
stiffening

7| 4.400 4.400 | 0.42 | 0.078 | [£45/0/90;]2s | axial, transverse and
diagonal stiffening

8| 4.000 4.000 | 0.44 | 0.084 | [£45/05/90]2, | no stiffening
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Table 4.10 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 1.
Design variables Weight | Buckling load
1bs/ft2 factors
a = 4.8890 in., b = 6.2857 in., 0.819 | A\g = 1.080, A, = 1.290

h = 0.500 in., ¢, = 0.060 in.,
LAMI:= [£45/90),,, IGEO:= 6

A2 = -0.394, A3 = 18.189

a = 4.8890 in., b = 6.2857 in., 0.825 | A\g = 1.132, A\ = 1.232
h =0.5125 in., t, = 0.060 in., A = -0.368, A3 = 16.343
LAMI:= [£45/90),, IGEO:= 6

a = 4.8890 in., b = 6.2857 in., 0.831 | Ag = 1.121, A, = 1.246
h = 0.525 in., t, = 0.060 in., A = -0.363, As = 15.588
LAMI:= [£45/90)s,, IGEO:= 6

a = 4.8890 in., b = 6.2857 in., 0.833 | Ag = 1.018, Ay = 1.512
h =0.53125 in., t, = 0.060 in., A2 =-0.250, A3 = -1.990
LAMI:= [+£45/0],,, IGEO:= 6

a = 4.8890 in., b = 6.2857 in., 0.929 | A\ = 1.292, A, = 1.102
h = 0.49375 in., t, = 0.090 in., Az =-0.841, A3 = -19.891
LAMI:= [+45/90),,, IGEQ:= 6

a = 4.8890 in., b = 6.2857 in., 0.974 | A\g = 1.398, Ay = 1.027
h = 0.49375 in., t, = 0.102 in., Ay = -1.034, A3 = 20.672
LAMI:= [+£45/90),,, IGEQ:= 6

a = 4.000 in., b = 5.500 in., 0.999 | Ag = 1.338, A\, = 1.387
h = 0.49375 in., t, = 0.090 in., A2 =-0.989, A3 = 125.174
LAMI:= [+45/90);,, IGEQO:= 6

a = 4.000 in., b = 5.500 in., 1.004 | Ag = 1.253, Ay = 1.577

h = 0.500 in., t, = 0.090 in.,
LAMI:= [£45/0),,, IGEQ:= 6

Az = -0.740, A3 = -6.016
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Table 4.11 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 2.

Design variables Weight | Buckling load
Ibs/ft? | factors

b =11.0 in., 0.6232 | A\g = 1.061, Ay = 16.494
h = 0.360 in., t, = 0.060 in., A1 = 2.745
LAMI:= [£45/0),,, IGEO:= 1
b = 7.333 in., 0.6229 | Ag = 0.998, A\ = 221.17
k = 0.340 in., t, = 0.042 in., A =162
LAMI:= [£45/0),,, IGEO:= 1
b = 6.2857 in., 0.6283 | Ag = 1.129, Ay = 206.79
h = 0.340 in., t, = 0.042 in., A = 1.45
LAMI:= [+45/0),,, IGEO:= 1
a =5.51in., b= 6.2857 in., 0.711 | Ag = 0.996, A\ = 5.01
h =0.320 in., t, = 0.054 in., Az =-.30, A3 = 1.650

LAMI:= [+45/0),,, IGEO:= 6
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Table 4.12 Best designs obtained by genetic algorithm for grid-stiffened curved
Panel 2, with IGEO = 1,2 not being a design variable.

Design variables Weight | Buckling load
Ibs/ft? | factors

a=11.0in.,b = 8.8 in., 0.6389 | A\¢ = 1.038, Ay = 3.05
h = 0.340 in., t, = 0.042 in., A = 2.01, A; = -0.149
LAMI:= [£45/0];,, IGEO:= 3
a=11.0in., b= 11.0in., 0.6396 | A\g = 1.022, A\, = 2.07
h = 0.340 in., ¢, = 0.048 in., A = 1.28, A; = -0.360
LAMI:= [£45/90),,, IGEO:= 3
a=11.0in., b= 7.333 in., 0.6411 | Ag = 1.076, Mg = 4.141
h = 0.320 in., ¢, = 0.042 in., A = 1.07, A, = -0.366
LAMI:= [£45/90)2,, IGEO:= 3
a=11.0in., b= 7.333 in., 0.6411 | Ag = 1.061, Ay = 4.162
h = 0.320 in., t, = 0.042 in., A =217, A; = -0.178
LAMI:= [£45/0]s,, IGEO:= 3
a =88in.,b=288in, 0.6442 | A\g = 1.083, A = 2.979
h = 0.340 in., t, = 0.042 in., A = 1.08, A\; = -0.300
LAMI:= [£45/90)2,, IGEO:= 3
a =8.8in., b=8.8in, 0.6442 | A\g = 1.055, A, = 3.169
h = 0.340 in., ¢, = 0.042 in., A = 2.26, A, = -0.151
LAMI:= [£45/0);5, IGEO:= 3
a =11.0in., b =110 in., 0.6938 | A\g = 2.160, A, = 2.442
h = 0.340 in., {, = 0.084 in., Ay = 3.23, A3 = 1.234
LAMI:= [+45/0)2,, IGEO:= 5
a = 5.5 in., b = 6.2857 in., 0.711 | Ag = 0.999, A, = 5.01

= 0.320 in., t, = 0.054 in., A2 =-.30, A3 = 1.650

LAMI:= [£45/0),,, IGEO:= 6
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Table 4.13 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 3.

Design variables 'Weight Buckling load
Ibs/ft? | factors

a = 5.500 in., b = 4.400 in., 0.874 | A\g = 1.014, A, = 1.369
h = 0.50625 in., t, = 0.072 in., A2 = -0.781, A3 = 1.191
LAMI:= [+45/90]2,, IGEO:= 6
a = 5.500 in., b = 4.400 in., 0.881 | Ag = 1.055, Ay = 1.325
h = 0.51875 in., t, = 0.072 in., Ay =-0.741, X3 = 1.134
LAMI:= [£45/90),,, IGEO:= 6
a = 5.500 in., b = 7.333 in., 1.182 | Ag = 1.139, A = 4.142
b = 0.525 in., ¢, = 0.072 in., A = 1.161, ), = -1.183
LAMI:= [£45/0/90,)2,, IGEO:= 3
a = 4.889 in., b = 7.333 in., 1.194 | Ag = 1.121, dy = 3.477
h = 0.51875 in., t, = 0.072 in., A = 1401, X, =-1.234
LAMI:= [£45/0/90,)2, IGEO:= 3
a = 6.2857 in., b = 8.8 in., 1.202 | Ag = 1.146, A = 2.707
h = 0.50625 in., t, = 0.096 in., A = 1.679, A; = -1.722
LAMI:= [£45/0/90;])2,, IGEO:= 3
a = 6.2857 in., b = 8.8 in., 1.205 | Ag = 1.168, A = 2.662
h = 0.5125 in., t, = 0.096 in., A1 = 1.641, X; = -1.676
LAMI:= [£45/0/902)25, IGEO:= 3

Table 4.14 Buckling loads for Panel 3 best design subjected to the load case of

Panels 1 and 2.

Load Case (lbs/in.)

Buckling load factors

(Panel 1) | N; = 1250, N, = -2200,

N,y = 250.

Ag = 2.114, ), = 1.488,
A2 = -0.374, A3 = 1.0113
(Global buckling at Ag = 2.114)

(Panel 2) | N,

= 300, N, = -2200,
Ny, =

1350.

A¢ = 4.595, A, = 2.409,
A2 =-0.172, A3 = 0.255
(Local buckling at A3 x Ag) = 1.172
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Table 4.15 Best designs obtained by genetic algorithm for grid-stiffened curved
Panel 1, with N, = 0.

Design variables Weight | Buckling load
Ibs/ft? | factors
a =11.0in., b = 4.0 in., 0.785 | A\¢ = 1.027, A, = 1.193
h = 0.49375 in., t, = 0.090 in., A3 = 1.676
LAMI:= [£45/05)25, IGEQ:= 4
a =11.0in., b = 4.0 in., 0.787 | Ag = 1.045, Ay = 1.178
= 0.5 in., t, = 0.090 in., A3 = 1.630
LAMI.= [:i:45/02]2,, IGEO:=4
a=11.01in., b =4.4in., 0.803 | A\g = 1.065, A\;x = 1.185
h = 0.49375 in., t, = 0.078 in., Az = 1.168
LAMI:= [+45/0,)2,, IGEO:= 6
a=11.0in.,b=4.41in., 0.805 | A\g = 1.085, A = 1.167
h = 0.5 in., t, = 0.078 in., Az = 1.167
LAMI:= [ﬂ:45/02]2,, IGEO= 6
a =11.0in., b = 4.4 in,, 0.852 | A¢ = 1.179, Ay = 1.135
h = 0.49375 in., t, = 0.096 in., A3 = 1.648
LAMI:= [:l:45/02]2,, IGEO= 6
a = 6.2857 in., b = 4.4 in., 0.899 | Ag = 1.059, Ay = 2.896
h = 0.50625 in., t, = 0.096 in., A = 3.657
LAMI:= [:l:45/02]2,, IGEO:=3
a="1733in.,b=44in., 0.903 | Ag = 1.313, A = 1.156
h = 0.49375 in., t, = 0.096 in., A3 = 2.278

LAMI:= [ﬂ:45/02]2,, IGEO= 6
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Table 4.16 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 2, with N, = 0.

Design variables Weight | Buckling load

lbs/ft? | factors
a =4.4in., b= 6.2857 in., 0.759 | Ag = 1.017, A, = 1.329
h = 0.440 in., t, = 0.084 in., s = 1.425
LAMI:= [£45/90]5,, IGEO:= 4
a=733in.,b=4.0in, 0.764 | Ag = 1.003, Az = 1.681
h = 0.440 in., t, = 0.084 in., s = 1.262
LAMI:= [£45/90),,, IGEO:= 4
a =4.0in., b= 4.0 in., 0.913 | A\g = 1.020, A, = 4.885
h = 0.360 in., t, = 0.060 in., Az = 1.171
LAMI:= [£45/0/90]y,, IGEO:= 4
a =44 in., b= 6.2857 in., 0.925 | Ag = 1.005, Ag = 3.038
h = 0.360 in., ¢, = 0.084 in., Az = 1.783
LAMI:= [+£45/0/90),,, IGEO:= 4
a =5.51n., b = 6.2857 in., 0.908 | Ag = 0.992, Ay = 2.406
h = 0.360 in., ¢, = 0.084 in., Az = 1.572
LAMI:=[+45/0/90),,, IGEO:= 4
a = 6.2857 in., b = 7.33 in., 0.959 | Ag = 1.025, Ay = 3.148
h =0.360 in., t, = 0.084 in., Ay = 11.539, A3 = 1.364,
LAMI:= [:l:45/02]2,, IGEO:=5
a=44in.,b="733in., 0.965 | Ag = 1.007, A = 4.494
h = 0.320 in., t, = 0.084 in., A = 11.152, A5 = 1.909,
LAMI:= [+£45/0/90),,, IGEO:= 5
a = 4.889 in., b = 6.2857 in., 0.995 | Ag = 1.071, Ay = 4.656
h = 0.360 in., t, = 0.084 in., A1 = 5.420, A3 = 1.549,
LAMI:= [£45/90,)2,, IGEQ:= 5
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Table 4.17 Best designs obtained by genetic algorithm for grid-stiffened curved
Panel 3, with N, = 0.

Design variables Weight | Buckling load

Ibs/ft? | factors
a = 6.2857 in., b = 4.0 in., 0.976 | A\g = 1.005, Ay = 1.271
h = 0.5375 in., t, = 0.096 in., Az = 1.529
LAMI:= [+45/90),,, IGEO:= 6
a = 6.2857 in., b = 4.4 in., 0.983 | A\g = 1.014, A = 1.045
h = 0.5375 in., t, = 0.162 in., Az = 1.721
LAMI:= [£45/90),,, IGEO:= 6
a = 6.2857 in., b = 4.0 in., 0.986 | Ag = 0.979, Ay = 1.320
h = 0.51875 in., t, = 0.102 in., Az = 1.813
LAMI:= [£45/90),,, IGEO:= 6
a = 6.2857 in., b = 4.4 in., 0.970 | Ag = 0.954, A, = 1.094
h = 0.0.51875 in., t, = 0.102 in., Az = 1.845
LAMI:= [£45/90]2,, IGEO:= 6
a=44in., b=4.889 in., 1.215 { Ag = 0.980, A, = 5.899
h =0.0.5in., t, = 0.102 in., A1 = 1.215, A3 = 5.583

LAMI:= [£45/90,),,, IGEO:= 5

Table 4.18 Buckling loads of best design for Panel 3 subjected to load case of Panel

1 and 2 (no hoop tension).

-| Load Case (lbs/in.) | Buckling load factors

(Panel 1) | N; = 1250, N, =0, | A\g = 1.797, A = 1.279,
N, = 250. Az = 1.380
(Global buckling at A\g = 1.797)

(Panel 2) [ N, = 300, N, =0, | Ag = 2.467, Aoy = 1.393,
N,, = 1350. X3 = 0.697
(Local buckling at A3 x Ag) = 1.719
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Figure 4.1 Unit cell of grid-stiffened panel showing design variables.
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Fig. 4.5 Quadrant approach to fuselage design.
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Chapter 5

CONCLUDING REMARKS

5.1 SUMMARY

The aim of the present work was to develop and validate a set of analytical tools
for design and analysis of composite grid-stiffened panels exhibiting global buckling
for aircraft primary structures. Global and local analyses were developed and used
in order to assess grid-stiffened panels for global buckling subjected to combined in-
plane loadings. The analysis tools were incorporated in an optimization procedure
based on the genetic algorithm to provide a discrete design variable optimizer design
code, capable of preliminary design of composite grid-stiffened panel for aerospace

structural applications.

The global analysis adopted was an improved smeared stiffener theory, which
accounts for the local skin-stiffener interactions for blade stiffeners. Including the local
skin-stiffener interactions is important, since the traditional smeared stiffener theory
may overestimate buckling loads within a range of geometric parameters. The skin-
stiffener interaction is accounted for by computing the stiffness due to the stiffener and
the skin in the skin-stiffener region about a shift in the neutral axis at the stiffener.
The location of the neutral surface is obtained from a theoretical study of the skin-
stiffener interface of a semi-infinite stiffened panel. A stress function approach, with

the principle of minimum potential energy, is used in the theoretical study wherein
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the axial strain in the stiffener is assumed to equal the strain in the skin at the edge .
of the stiffener. Numerical results are presented for simply supported grid-stiffened
panels of different stiffening geometry, and are compared with those obtained from
detailed finite element analysis as well as with those from the traditional smeared

stiffener theory.

The local analyses required for assessing the global buckling of grid-stiffened
panel are that of determining the buckling response of anisotropic panels with gen-
eral parallelogram-shaped and general-triangular shaped planiorms, and that of de-
termining the buckling response of stiffener segments. Buckling response of stiffener
segments is assessed using the stiffener crippling analysis presented in Reference [9].
Analysis method for buckling of anisotropic panels with general parallelogram-shaped
and general triangular-shaped planforms are developed using a Rayleigh-Ritz tech-
nique and a minimum energy principle. The buckling analysis of these quadrilaterals
and triangular planforms is enhanced by mapping their physical domain into a com-
putational domain. Bilinear finite element shape functions in natural coordinates are
used in the case of quadrilateral planforms and linear finite element shape functions
in area coordinates are used in the case of triangular planforms. The transformation
from physical domain to computational domain facilitates the computation of linear
stiffness matrices and geometric stiffness matrices and also the imposition of bound-
ary conditions. The Rayleigh-Ritz functions are formulated in natural coordinates

for each planform geometry.

The Rayleigh-Ritz functions consists of the product of distribution func-
tions (regular polynomials or Legendre polynomial) and circulation functions which
are used to impose different boundary conditions along each edge of the panel. Each
circulation function is the product of the equation of each edge raise to an indepen-
dent exponent for each displacement component of the computational domain of the

triangular or quadrilateral geometry.
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Regular polynomials and Legendre Polynomials are used for quadrilateral geome- .
try, and for triangular geometry only regular polynomials are used. The strain-
displacement relations used account for a first-order, shear-deformation theory to be
used with the minimum en<rgy principle and also allow different shell theories to be
used through tracers coefficients. The Ritz function accounts for material anisotropy.
Numerical results were obtained for isotropic, orthotropic, and anisotropic skewed
plates and are compared with existing solutions and finite element solutions. The
effect of transverse shear deformations is also studied for isotropic and anisotropic
skewed plates. Results for triangular plates were presented for equilateral trian-
gle, right-angled isosceles triangles, and 30° — 60° — 90° triangle with isotropic and
anisotropic material properties, and with different boundary conditions. Results are
compared with existing solutions, and the effect of transverse shear deformation for
isotropic and anisotropic triangular plates are studied. Finally, numerical results for
anisotropic curved panels subjected to axial compression are obtained using Sanders-
Koiter, Love’s, and Donnell’s shell theory and are compared with those obtained using

the STAGS finite element code ([29]).

The global and local buckling analyses were incorporated in a genetic algo-
rithm optimizer to provide a design code involving discrete optimization for optimal
design of grid-stiffened panel with a global buckling constraint. The design variables
include the axial and transverse stiffener spacing, the stiffener height and thickness,
the skin-laminate stacking sequence, and the stiffening geometry. The design problem
was to minimize the weight per unit area of a composite grid-stiffened panel given
the loading condition, the length, width and radius of the panel, the material prop-
erties of the skin and stiffener, and the boundary conditions of the panel. The design
constraints on the panel include a global buckling constraint which does not allow
localized buckling of skin or stiffener segments. Also constraints on the stiffener spac-

ings, stiffener aspect ratio, and skin thicknesses, which may be due to manufacturing
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requirements are imposed through proper selection of the design space explored by
the genetic algorithm. Results are presented for simply supported flat and curved

composite grid-stiffened panels.
5.2 CONCLUSIONS

o The improved smeared stiffener theory provides better correlation with detailed
finite element analyses than the traditional smeared stiffener theory. Buckling
loads obtained using the improved smeared stiffener theory are within eight
percent or less compared to detailed finite element results. Hence, the design
approach based on the improved smeared stiffener theory is a useful preliminary

design tool.

e The analysis method developed for panels with general parallelogram-shaped
quadrilateral and general triangular shaped planform provides accurate buckling
solutions for isotropic and anisotropic skewed plates and also for the different

triangular plates considered. The method does not exhibit any mesh distortion.

o The change in buckling coeflicient is more pronounced as the skew angle in-

creases for thin plates as well as thick plates.

o The buckling response of skewed plates is also affected considerably by material
anisotropy. Results of the buckling coefficients for simply supported plates made
of Laminate 1 and Laminate 2 shows that the buckling coefficients of Laminate
2 for the 45° skew angle case is about 30 percent less than those of Laminate 1

and Laminate 2 is about twice more anisotropic than Laminate 1.

o The buckling coefficient for skewed plates subjected to load cases with positive
in-plane shear is higher than those with negative shear this effect increases
with increasing material anisotropy even for moderate skew angle. For simply

supported plate with 30° skew angle, the buckling coefficient with positive shear
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load is 30 percent higher than the buckling coefficient with negative shear load.
The corresponding percentage increase for Laminates 1 and 2 is 36 and 44

percent respectively.

o The buckling response of triangular plates with in-plane shear loads depends on
the symmetry of the triangular geometry and the degree of material anisotropy.
For the equilateral triangular plate, the buckling load with positive in-plane
shear load is 1.1 times the buckling load with negative in-plane shear load for
Laminate 1 where as for Laminate 2, the buckling load with positive in-plane
shear is 1.3 times the buckling load with negative in-plane shear load. For the
right-angled isosceles triangles, the buckling load with in-plane shear load is 1.4
and 1.6 times the buckling load with negative in-plane shear for Laminates 1

and 2, respectively.

¢ Results indicate the importance of including transverse-shear deformation in
the design of skin laminate for grid-stiffened panels, since the thickness-to-width

ratio for skin segments of grid-stiffened panel is about 0.025.

o Results obtained for anisotropic curved panels subjected to axial compression
using Sanders-Koiter, Love’s, and Donnell’s shell theory show that Sanders-
Koiter or Love’s shell theories gives results that are in good agreement with finite
element analysis results. Results from Donnell’s theory are in agreement with
results frorn other theories when the displacement components in the deformed
configuration are rapidly varying function of the circumferential coordinate.
Such a variation of displacement occurs for panels with large R/t ratio (R/t >
200). When a panel deforms with more than two half-waves occurs in the curved
direction, the displacement can be considered as rapidly varying. Results for
isotropic panels also shows that the difference in buckling loads obtained from

Donnell’s theory and other theories is not due to material anisotropy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

o The results obtained from the optimization using the global and local analyses
and the genetic algorithm indicate that the stiffening configuration depends

mostly on the load case to which the panel is subjected to.

e For most combined load cases, the best design have diagonal stiffeners. In
certain cases, the best design may not be suitable for structural application due
to other considerations. In such a case, the pool of good designs obtained by

the genetic algorithm may be considered.
5.3 RECOMMENDATIONS FOR FUTURE WORK

o Other considerations for the design of grid-stiffened panel such as damage toler-
ance capability can be included as additional objective functions or constraints

in the genetic optimization.

o The buckling analysis method developed should be extended in order to analyze
buckling of variable-radius cylindrical shells which consist of two or more curved
segments, each with a constant, but different, radius. These types of panels are
more representative of fuselage structures. Such an analysis can be achieved by
imposing continuity of displacements and rotations at the intersection of the
segments. Alternatively, Ritz functions, that cover the whole of the variable-
radius panel can be employed, and the linear and geometric stiffness matrices

can be computed from integration over each segment at a time.

o A discrete analysis using Lagrange multipliers ([22]) to impose compatibility be-
tween skin and stiffeners can be developed using Ritz functions with circulation
functions, to account for material anisotropy and different boundary conditions.
The three-dimensional deformation of the stiffener can be accounted to some

extent to provide more accurate modeling of the stiffener response.
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o The effect of pressure loading on grid-stiffened panel should be investigated by -

developing an appropriate analysis tool.

o The stress at the skin-stiffener interface due to combined loads can be studied by
using a semi-infinite skin-stiffener model similar to the model used in developing

the improved smeared stiffener theory.
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APPENDIX A

INTEGRATION SCHEMES FOR
STIFFNESS MATRICES

The integration schemes for computing the linear and geometric stiffness matrices
are presented and discussed here. The schemes make use of symbolic and numerical
computations to achieve computational efficiency. This approach is necessary since
cumbersome integrations result in the use of polynomials as Ritz functions. Inte-
gration schemes are presented for the use of regular polynomials, which are used in
the buckling analyses of panels with parallelogram-shaped quadrilateral and general
triangular-shaped planforms. Also, integration schemes are presented for Ritz func-
tions involving Legendre polynomials which are also used for in the buckling analysis

of panels with parallelogram-shaped quadrilateral planform.
A.1 TYPES OF INTEGRALS

The buckling analyses presented in Chapter 3, involve a Rayleigh-Ritz formulation
with the minimum potential energy principle, and hence, the linear and geometric
stiffness matrices are developed from the strain energy as shown in Chapter 3. Fur-
thermore, since a first-order, shear-deformation theory is used, the integrals involve

only first derivatives of the Ritz functions as shown in Equation (3.31) and (3.41).

137
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The types of integrals encountered are

Ja RiR; dédn (A.1)
Ja RigR; dédn (A.2)
Ja RinR; dédy (A3)
Ja Ri¢Rj¢ dédn (A.4)
Ja RigR;y dfdn (A.5)
4 RinR;n dédn (A.6)

where R; and R; can be any of U;, Vi, W;, &, ¥y, and U;, V;, W;, @5, &,
respectively, in Equation (3.31) and (3.41). These integrals correspond to the inte-
gration over the computational domain. Only the integration scheme for the integral

of Equation (A.4) will discussed, since others are similar.
A.2 SCHEME FOR QUADRILATERALS

The Ritz functions for quadrilaterals are written in natural coordinates (¢,7), and
consists of circulation function and regular polynomials or Legendre polynomials.

Therefore Equation (A.4) can be written as

Ja RigRigdédn = ([, £(€)d€ ) (f2y9(n)dn) = I I,
where
Ie = [ (A=A +EX(€) le [(1=EP (X486 X;(E) L dE

I, = [}, (1 =n)%(1+n)"Yi(n) (1 = n)*(1+n)*Y;(n) dn (A7)
and

Xi, Xj = ém‘, émj or Pm.'(E)a Pm,(é)

Y, Y 7™, 0™ or Py(n), Pn_,'(ﬂ) (A.8)

I

The limits of the integration are from —1 to +1 since £ and 75 are natural coordinates.
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A.2.1 Regular Polynomials

In the case of regular polynomials, the integral I; of Equation (A.7) can be expanded

as

I, = /-11 {’I‘l(l =P (1 + §)r1-16m.' + mi(1 - &)1 +€)fx€m,~—1
+ p(l =PI+ €)™} x
{rf1 = &P (L+ 6™ + my(1 — E)P (1 + €)™

+ p(1 =PI+ €)™} dE (A.9)

which can be written as

1 3
fe= [ (X an(1-g (148 )
=
3

X (D7 ajs (1= €)1 (14 €)% £30 )d¢ (A.10)

s=1
The coefficients a;, and a;,, and exponents elix, €2in, €3ix, €ljs, €2;,, €3;, in Equa-

tion (A.10) are obtained by comparing terms with Equation (A.9).

The next step is to determine the integral of the form
1
L = /1 (1 -v)" (14 v)¥2* dy (A.11)

which can be used in two computational loops to evaluate the integral of Equation
(A.10). Symbolic computations using Mathematica ([70]) are obtained here to eval-
uate integral of the type of Equation (A.11). For any k1, k2 and k3, Mathematica

evaluate integral I; as

I = (_l)kaHzn [—k1, (1 + k3),(2 + k2 + £3), —1] (1 + k2) T(1 + £3)
(2 + k2 + k3)

4 Hora[=k2, (1 + k3), (2 + k1 + £3), —1] T(1 + 1) T(1 + £3)
T(2 + k1 + k3)

(A.12)

where Hary is the Hypergeometric2F1[a, b, ¢, z] function ([53]) with z = —1, and

[= <2 k
Hypergeometric2F1(a, b, ¢, 2] = Z ___.(a),, (b)"f_

2. H (A.13)
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where the symbol (), is the Pochhammer symbol ([53]) and
(ao=1, (a)n=a(a+1)..(ea+n-1), n=1,2,3,.. (A.14)

I'(m) is the Euler gamma function ([53]), and T'(m) = (m — 1)! for m being a positive
integer. However, the Hyp, function and I'(n) tend to be computationally expensive
for large values of k3. Since the value of the exponent of (1 £ £) and (1 £7) is either
zero or one, k1 and k2 can assume values of 0, 1, or 2 only. The maximum value of k3
depends on the order of polynomial being used in the buckling analysis. Therefore,
thé integral of Equation (A.11) is evaluated for all nine possible combinations of k1
and k2, in terms of k3, using Mathematica. The results of the symbolic computations

using Mathematica is shown below;

M0, =0 L= 1 + (—1)1+k3
(1+k3) * (1+£3)
_1)k3 .
Fl=1, k=0 h=g7 k3)1(2 + k3) ((1 Bkg(gi ?))
2 —1)"(=14 — 16 k3 — 4 k3?
M=2, =0 h=gms e ( (11)+(k3;12 +1£3) (33 +4k3;°» )
_1\43
H=0, ki2=1 L= (1+ §:3)1()2 +43) ' (1 J(r3k;):(z2k43r)k3)
3 .22
F=0, k=% h=g7 k3)(22( 1123)(3 T%3) " (1(11:11:;)}g f-gk;)?;j ’23)
k3
H=l k=1 h=mg k3)2(3 1) T +2k(:5(13)+ k3)
k1l =2, k2=.1; Il:(1-:}:3)_(2-:163)—(3‘:k3)+(4:k3) -
(G ;1k3) - (2+1k3) M€ +1k3) T :k?’) )
Kl=1, k2=2% I = (1+1k3) +(2+1k3) —(3+1k3) _(4+1k3) _
0% (g -_klk3) ’ (2: 83" (3+1 k) (4 +1 )
_1}k3
=2 k=% h=mis kafg 2+ ) T (15423 I§:§+1£)) k3 1 k39)

(A.15)
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Using these symbolic computations, the integral of Equation (A.11) can be evaluated

based on the values of k1 and k2.

An outline of the algorithm for computing the integral of Equation (A.7) is

then
o Computation of I¢

1. compute a;p, €lin, €2in, €3;in from py, 7y, m;.
2. compute aj;, €elj,, €2js, €3;j, from py, 1y, mj.

3. using two computational loops with indices h and s, compute

3

1 3

I€ =/ E Z aihajs(l _ 6)e1m+el,,(1 + {)e2m+c2,‘,€c3m+c3‘,-,d€ (AIG)
“1 p=1 a=1

using the symbolic computations of Equation (A.15).

e Computation of I,

1. compute I, using Equation (A.15)
1
L= [} @ by (A7)
e Compute I¢ x I,

The value of the integral of Equation (A.7) is I¢J,. Other integrals (Equations (A.1)

- (A.6)) are computed in a similar way.
A.2.2 Legendre Polynomials
When using Legendre polynomials, the integral of Equation (A.7) can be written as

23 [ (ceib? + dea€ + egt) P (€) Lug [ (ceb? + deek + €¢e) Py (€) g d€ %

J21 (cam?® + dum + eqt) Pag (1) (cnen® + dyent + €e) Poy (1) dn
= Ipg Ipn (A-18)
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since the exponent of (1 + £) and (1 £ 7) can be either zero or one. The coeflicients
Cnty dyly €nly Cnty Aoty €nty Cety det, €gry Cety der, and ey, depend on the exponents of

(1£¢€) and (1 £ 7). After expansion, I, can be written as

= /_ 11 [ (agi€ + bet) Py (€) + (ca€® + daé + eq) PL.(€) ] x
[ (agel + bee) Py (€) + (cee® + deel + €ea) PL (€) ] € (A.19)

Next the properties of Legendre polynomials ([53]) are used to write Equa-
tion (A.18) and (A.(19) in a more appropriate form for analytical integration. The

properties of Legendre polynomial (P,(v) = P,) are

P, = Py (A.20)
vP! = nP, + Pl (A.21)
VP, = ((,)’;*;11))13”1 + b (A.22)
Pl = ?("I:))pm + (szm 1 + (n=1)Py + P, (A.23)
VP = ((2:111)) { ((2n 123)) nt2 ("(2%+T1§)5P n (A.24)
+ (27:; o, { (2nn_1)P n ot ((21__11))1’ =3 (4.25)

P, = %:;%l (A.26)

Two other useful properties are

1 0 for n#m
= A.27
[,1 PoPr dv {2n+1 for n=m ( )
1 0 for (n+m) odd
/ p/ =
/_1 Fobn dv = {n(n+ 1) for (n+m) even bnsm (A-28)

Hence, using Equation (A.21) - (A.26), the following relations can be established;
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[(cv*+dv+e)P), =
a(n +1) /
@ity ™2 T
(b+nd)
RS
( an B a(n+1)
(2n+1)(2n - 1) (2n 4+ 1)(2n +3)
(b+nd) |,
(d- @t )Py +

an

(e (2n+1)(2n—1)) n=3

= kz adkP,{adk (A.29)
=1

e )P +

[(cv®+dv+e)P,]
c(n+1)(n+2)
(2n+1)(2n + 3)
d(n+1)
(2n +1)
( c(n+1)(n+2) c n?

(2n + 1)(2n + 3) (2n+1)(2n-1)
dn
(2n+1)

c(n—1)n
(2n +1)(2n — 1)P“'2

5
— Z aiPo,, (A.30)

n+2 +
Pn+l +

+ e)P, +

n1+

_%__p/ %2 _pl
(2n + E;)p"‘“3 + (2n + 3)P"+2 +
a3z _ o /

(Gt Gnym on t

a4 Q2

- P/

pm—y (2n+3)) +
(o )P/

(2n - 3) (2n + 1) 7t

Q4 / _ Qs /

(2n D T o)

= Eﬂdk R (A.31)
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Therefore, I,¢ from Equation (A.18) is

1 S 5
Ie = /1 E z Qidh ajth"{'aidkPT{'-o)dk d¢ (A.32)

i h=1 s=1

and Equation (A.28) is used to evaluate each integral in the summation and Equation

(A.20) is used when Legendre polynomials with negative indices occur. I, is

1 S 5
Ipe = /_ . > >, ik @pPnyy P, dn (A.33)

h=1 s=1

and Equation (A.27) is used to evaluate each in integral in the summation. If I,
is simplified using Equation (A.31), then Equation (A.28) is used to evaluate each
integral in the summation. Finally, I, x Ip¢ evaluates integral of the type of Equation
(A.4). Equation (A.31) is necessary when evaluating integrals of the type of Equation
(A.2), (A.3), and (A.5).

A.3 SCHEME FOR TRIANGLES

The integration schemes used in the buckling analysis of panel with triangular geom-
etry is similar to that of the buckling analysis of panel with quadrilateral geometry.

Equation (A.4) for triangular geometries is
1 1
I = PLpdQi(] — £ — p)TIEMiphi
T¢e /O/O[CTI( E—n)"E™n™ e x
[£Pn7(1 =& —n)"*E™ 0™ ¢ dédn (A.34)

The limits of the integration is from 0 to 1 since £ and 5 are area coordinates. The

expression in the square bracket in Equation (A.34) can be written in a general form

as
[’ —€-n)F)e = a1 =E=n)° — cnP1—E—n)"
2
= Y ozl - - ) (A.35)
h=1
Hence,
1 a1 2 2
= rye LOihFaianbintcis(1 _ £ n)CintCa
Iree= [ [} X3 ooy gvremtatonl = ¢ —g)tor dedn - (A.30)
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Each integral in the summation of Equation (A.36) is evaluated using

a! bl !
(a+b+c+2)!

L[ enta - e -nraean = (A37)

Other types of integral are evaluated in a similar way.
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