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ABSTRACT
BUCKLING ANALYSIS AND OPTIMUM DESIGN OF 

MULTIDIRECTIONALLY STIFFENED 
COM POSITE CURVED PANEL

Navin Jaunky 
Old Dominion University

Director: Dr. Norman F. Knight

Continuous filament grid-stiffened structure is a stiffening concept tha t com­

bines structural efficiency and damage tolerance. However, buckle resistant design 

optimization of such structures using a finite element m ethod is expensive and tim e 

consuming due to the number of design param eters that can be varied. An analytical 

optimization procedure which is simple, efficient and supports the preliminary design 

of grid-stiffened structures for application to combined loading cases is needed.

An analytical model for a general grid-stiffened curved panel is developed 

using an improved smeared theory with a first-order, shear-deformation theory to 

account for transverse shear flexibilities and local skin-stiffener interaction effects. 

The local skin-stiffener interaction effects are accounted for by computing the stiffness 

due to the stiffener and the skin in the skin-stiffener region using the neutral surface 

profile of the skin-stiffener semi-infinite plate model. The neutral surface profile 

for the skin-stiffener semi-infinite plate model is obtained analytically using a  stress 

function approach, minimum potential energy principle, and statics conditions.

Analysis methods for buckling of general parallelogram-shaped and general 

triangular-shaped curved panels are developed. These analyses are required in order
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to assess the local buckling of grid-stiffened curved skin segments. The buckling 

analysis makes use of “circulation” functions as Ritz functions which account for 

material anisotropy and different boundary conditions. The local buckling of stiffener 

segments between stiffener interaction points are also assessed.

Using these analyses and a genetic algorithm as optimizer, an optimiza­

tion tool is developed for minimum weight design of composite grid-stiffened panel 

subjected to combined in-plane loads with a global buckling design constraint. De­

sign variables are the axial and transverse stiffener spacings, the stiffener height and 

thickness, and the stiffener pattern .

Results are presented for buckling loads of composite grid-stiffened panels 

which are obtained using the improved smeared theory and are compared with de­

tailed finite element analysis. Buckling loads for anisotropic skewed and triangular 

plates, and curved panels are presented and compared with results from finite ele­

m ent analysis. Finally, designs for grid-stiffened panels obtained using the design 

optimization process are presented.
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Chapter 1 

INTRODUCTION

1.1 MOTIVATION

In aircraft structures, structural efficiency dictates tha t most of the prim ary structure 

be of stiffened construction. In conventional metallic structures, stiffened structures 

are assemblies predominantly of a large number of structural elements including skin, 

stringers, spars, ribs, and clips put together by bonding or mechanically fastening 

them  together. Such an approach is not cost effective due to  a large part count and 

assembly costs. Metallic structures are susceptible to corrosion and fatigue problems 

which need additional expensive treatm ents and periodic inspections to prolong their 

life considerably. The advent of composite m aterials makes it possible to  overcome 

m ost of these problems if structures utilizing these m aterials are designed to  exploit 

their improved mechanical properties, tailorability, and fabricated in a  cost-effective 

manner.

The types of composite materials th a t are widely used in prim ary structural 

applications are graphite-epoxy material systems. These m aterials have high spe­

cific modulus and strength to make them  efficient for aircraft structural applications. 

Corrosion problems th a t are typical of m ost metallic structures are virtually elimi­

nated, and the designs are mostly driven by static-strength requirements rather than 

fatigue-life considerations. B ut composite structures are generally more expensive

2
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than m etallic structures due to  their high m aterial and manufacturing costs. There 

is potential for composite structural cost reductions by using autom ated manufac­

turing processes to make large subassemblies in a single process. Such efforts led 

to  cocuring/cobonding processes which dram atically reduce part count. W ith higher 

utilization of composite m aterials in larger transport aircraft and in a variety of other 

classes of aircraft, the m aterial cost per pound is expected to come down making 

composites a viable structural material.

The design driver for the current generation graphite-epoxy m aterials is 

their tolerance to low-velocity im pact damage. Even at im pact velocities th a t result 

in barely visible damage, the residual strength of composite structures reduces by 

half compared to undam aged laminates. For this reason, the damage tolerance con­

straint lim its the applied strains to about 4500/z in. / in.,  even though commonly used 

composite laminates are capable of loading to 1 0 ,0 0 0 /z in . / in .

Continuous filament grid-stiffened structural design concept [1] is a dam ­

age tolerant stiffening concept tha t combines the structural efficiency of a  stiffened 

structure with the advantages of composite materials in an autom ated m anufactur­

ing process. High volume manufacturing processes like filament winding and tow 

placement, have been used in the past to  produce these structures in a cost efficient 

manner [2],[3].

In aerospace vehicles, most of the structural components have a curved panel 

geometry. The fuselage structure of an aircraft can be designed as an assembly of 

curved panels of different radii. Figure 1 .1  shows a  typical aircraft fuselage construc­

tion. The fuselage is in general a  non-circular cylinder, but the portion between two 

bulkheads and longerons approximates a  simply-supported cylindrical panel. Design 

configurations for a grid-stiffened shell [4] include isogrid, orthogrid or generalized 

orthogrid layout of stiffener.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



4

Composite grid-stiffening structures are efficient as they utilize the 0° fibers 

placed along the length of the stiffener for large axial and bending stiffnesses. Unlike 

prismatically and orthogonally stiffened structures, the general grid-stiffened struc­

tures have diagonal stiffeners which are capable of carrying inplane shear due to 

fuselage twisting. The improved damage tolerance of grid-stiffened structures is due 

to a m ultiplicity of load paths to redistribute the loads [3].

Continuous filament grid-stiffened structures also present structural stiffness 

tailoring possibilities by skewing the stiffener with respect to load direction [4],[5] and 

tapering the height of the stiffeners in the grid along both length and width of the 

stiffened panel.

An aircraft in flight is subjected to  air loads which are imposed by maneuver 

and gusts. Figure 1.2 shows typical aerodynamic force resultants experienced by an 

aircraft in steady flight. These force resultants act on isolated curved segments of 

the fuselage as shown in Figure 1.1 The aerodynamic drag acting on the fuselage and 

the bending moment due to  the lift on the fuselage induce an axial loading which 

changes from tension to  compression around the fuselage. Cabin pressure results in 

circumferential or hoop tensile loading and a tensile axial load as well. In-plane shear 

loading results from load transfer between bulkheads and longitudinal frames, due to 

rolling and yawing of the aircraft, since these motions involve a differential lift on the 

wings and from gust loading on the vertical fin. This combined load state may cause 

a panel segment of the fuselage to  buckle. The deformation pattern  associated with 

a buckling load may be an overall or global mode or it may be local to some segment 

of the fuselage or to a panel skin or stiffener element. A need for understanding 

the buckling response of general composite grid-stiffened curved panels subjected to 

combined loading is needed in order to identify the best-suited geometries for different 

locations of fuselage and wing structures since loading conditions on these structures 

is a function of spatial variables. Additionally, understanding the buckling response
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of general grid-stiffened curved panel with variable curvature is needed in order to 

identify best-suited geometries for fuselage and wing cross-sections.

1.2 REVIEW OF PAST WORK

Most of the  research work on stiffened panels presented in the literature addresses 

axially stiffened panels subjected to  compression. A limited amount of work has been 

reported on stiffened panels subjected to  combined in-plane loading. Axially stiffened 

prism atic panels subjected to axial compression and in-plane shear was considered by 

Stroud, Greene and Anderson [6]. Stroud et. al. [6 ] used complex Fourier series in 

their analysis and compared their results with finite element analysis. Their solution 

was essentially exact for axially stiffened panels subjected to  axial compression. Gen- 

dron and Gurdal [7] considered grid-stiffened composite cylindrical shells subjected 

to  axial compression and torsional shear loadings. They used finite element analysis 

and a  gradient based optimizer to optimize composite grid-stiffened cylinders. Finite 

element analysis was again used by Rao and Tripathy [8 ] for buckling analysis of com­

posite orthogrid cylindrical panels. They used the method of ranking to determine 

the optim um  lay-up for orthogrid skins. Buckling of grid-stiffened cylindrical shells 

subjected to  combined in-plane loading is reported by Reddy, Valisetty, and Rehfield 

[9]. A smeared stiffener approach was used to obtain the global buckling response for 

the cylindrical shells and simplified analysis was used to determine the local buckling 

response of skin and stiffener segments.

A part from the published research work on buckling of stiffened plates and 

shells utilizing the finite element method, research work on buckling of stiffened plates 

and shells utilize three different modeling approaches. These approaches are method 

of elastic equivalence or smeared stiffener approach, the column approach, and discrete 

stiffener p late approach.
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In the first approach, the stiffness of the stiffeners are “smeared” over the 

panel, and the final equilibrium equations for a generally orthotropic panel are then 

solved numerically (e.g., see [9]-[17]). In Ref. [9] and [17], a First-O rder Shear- 

Deformation Theory (FSDT) [18] has been used in constructing the smeared stiffener 

approach. The smeared stiffener approach is applicable in general to stiffened panels 

where the local buckling load is equal to or greater than the global buckling load. 

This approach for preliminary design is consistent with the widely used aeronautical 

design philosophy where the design goal is a buckling-resistant design. As observed 

in Refs. [6 ],[7] and [17], the traditional or conventional smeared stiffener approach 

may overestimate the buckling load of stiffened panels for a certain range of geometric 

param eters because the traditional smeared stiffener approach does not account for 

local skin-stiffener interactions. This effect should be included in an improved smeared 

stiffener approach to make the approach a more reliable tool for the analysis and 

design of grid-stiffened panels.

The column approach [19] has been widely used in design codes due to its 

simplicity. Here it is assumed tha t the portion of the stiffened panel between the 

stiffeners can be modeled m athematically as a uniformly compressed plate, simply 

supported along its loaded edges and built-in or clamped along its unloaded edges 

(i.e., those abutting the stiffeners) The compressive force and bending moment on the 

section can be derived as functions of the local and overall buckling deflections. This 

approach has been extensively used in studying interaction phenomena between local 

and global buckling. However, this approach is restricted to  plates with stiffeners 

running in one direction only, (i.e., prismatically stiffened plates).

The discrete stiffener approach (e.g., see [20]-[22]) considers the discrete ef­

fects of stiffeners in the plate buckling behavior by modeling stiffeners as lines of 

bending (El) and torsion (G J) stiffnesses on panel skin. The stiffener’s axial stiff­

ness (EA) is included in the overall prebuckling stress s tate  determ ination. Some
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local cross-sectional deformations are lost when stiffeners are modeled as El and GJ 

stiffeners. This approach becomes difficult for plates stiffened in more than two di­

rections and also when the stiffener is not symmetric with respect to the mid-surface 

of the skin. Most of the work done using the discrete stiffener approach involved the 

Classical Lam inated P late Theory (CLPT) rather than  the  FSDT.

The buckling analysis of a curved panel with variable curvature appears to 

have drawn much less attention by researchers. In 1946, M arguerre [23] addressed 

this problem for isotropic panels. He expanded the curvature term , (1 //? ), which 

is a function of the arc length along the panel in a Fourier series and then solved 

the buckling problem using trigonometric series as R itz functions. The approach, 

however, becomes tedious if a  large number of term s is required to represent the 

curvature of the panel accurately. For elliptical cylindrical shells where very few 

term s are required to represent the curvature of the shell, M arguerre’s approach has 

been used successfully (see [24]).

1.3 SCOPE OF PRESENT STUDY

Finite element analysis has been used for the analysis of grid-stiffened panels (e.g., 

[7]). Such a m ethod, even though sophisticated and accurate, poses problems in 

modeling such panels. There are a number of factors to  be considered while creating 

the finite element model. The finite element model involves detailed discretization of 

each stiffened panel which is very tedious and tim e consuming and thereby lim its the 

number and type of configurations tha t can be readily examined by the designer. The 

buckling load prediction is influenced by the type of elem ents used in modeling the 

structure, the form of prebuckling stress state, and the  type of boundary conditions 

tha t are applied. Buckling loads obtained from finite elem ent solutions involve solving 

a large eigenvalue problem and hence not well suited w ithin a  design optimization 

procedure.
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The overall objective of this dissertation is to  develop and validate an an­

alytical tool for design and analysis of composite grid-stiffened circular cylindrical 

panels exhibiting global buckling. This analytical tool involves the development of an 

improved smeared stiffener theory for the global buckling analyses, and a  Rayleigh- 

Ritz-type buckling analysis for panels with general parallelogram-shaped and general 

triangular planform to assess local skin buckling, and the integration of these analysis 

tools with a design optim ization process for discrete design variable. The improved 

smeared stiffener theory is im plem ented through a  m athem atical study of the  stress 

state in an isolated semi-infinite stiffened panel leading to the location of the neutral 

surface as a function of distance away from the stiffener in the semi-infinite stiffened 

panel. The effect of skin-stiffener interaction is then introduced in the smeared stiff­

ener theory by computing the  stiffness due to the stiffener with respect to  a  shift in 

the neutral surface. As grid-stiffened cylindrical shells have closely spaced stiffeners, 

smeared stiffener approach w ith a first-order, shear-deformation theory can be used 

for an elastic buckling analysis under combined loading. FSDT is preferred over CLPT 

because it has been shown th a t buckling loads of composite stiffened plates are over­

estim ated by 8  to  20 percent when transverse shear effects are neglected (e.g., [17]). 

The Rayleigh-Ritz-type buckling analysis for general parallelogram-shaped and gen­

eral triangular-shaped planform with various boundary conditions is achieved through 

the use of a “circulation” function and accounts for material anisotropy and combined 

in-plane membrane loadings. The crippling of a stiffener segment is exam ined using 

the procedure given in Ref. [9]. The global and local buckling analyses are performed 

repeatedly in a design cycle until optim um  or near-optimum design is obtained.

1.4 ORGANIZATION

The rem ainder of this dissertation is organized as follows. Chapter 2 presents the 

formulation of the improved smeared stiffener theory. Results for grid-stiffened
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panels obtained from the improved smeared theory are compared with those from the 

traditional smeared theory and also with those obtained from detailed finite element 

analyses. Chapter 3 deals with the buckling analysis using the Rayleigh-Ritz method 

and a “circulation” function. The m ethod is implemented using different shell theo­

ries and addresses general parallelogram-shaped and general triangular-shaped plate 

planforms. Buckling loads for cylindrical panels are presented and compared with 

those obtained using finite element analyses. Buckling loads for skewed and triangu­

lar plates are presented and compared with those from obtained using finite element 

analyses and with existing solutions when available. Chapter 4 presents the design 

strategy for optimal design of grid-stiffened panels for global buckling. The design 

strategy utilizes the Genetic Algorithm ([25]) and results are presented for panels 

with different in-plane loading conditions. Finally, conclusions from this study and 

suggested future directions are listed in Chapter 5.
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Chapter 2

IMPROVED SMEARED 
STIFFENER THEORY

An improved smeared stiffener theory for stiffened panels is presented th a t includes 

skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener com­

bination is developed analytically using the minimum potential energy principle and 

statics conditions. The skin-stiffener interaction is accounted for by com puting the 

bending and coupling stiffness due to the stiffener and the  skin in the skin-stiffener 

region about a  shifted in the neutral axis a t the stiffener. Buckling load results 

for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using 

the smeared stiffness combined with a Rayleigh-Ritz m ethod and are compared with 

results from detailed finite element analyses.

2.1 ANALYTICAL APPROACH

If a stiffened plate is bent while it is supported on all four edges, the neutral surface 

in the neighborhood of the  stiffener will lie between the mid-plane of the  plate and 

the mid-plane of the stiffener. It is convenient to think of this as a shift of the neutral 

surface from the mid-plane of the stiffener. Hence, the approxim ate stiffness added 

by a stiffener to  the skin stiffness will then be due to the plate-stiffener combination 

being bent about its neutral surface rather than due to the  stiffener being bent about 

its own neutral surface or the  plate neutral surface. The location of the neutral surface

12
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is determ ined theoretically through a study of the local stress distribution near the 

skin-stiffener interface similar to the approach presented in Ref. [26] for a panel with 

a blade stiffener. However, the study presented in Ref. [26] does not provide a general 

solution th a t is applicable to  all classes of symmetric laminates.

A grid-stiffened panel may be considered to be an assembly of repetitive 

units or unit cells (see Figure 2.1). Any stiffener segment in the unit cell may be 

isolated in a  semi-infinite skin-stiffener model as shown in Figure 2.1 for a  diagonal 

stiffener. An approach for obtaining the stress distribution in a  semi-infinite stiffened 

panel is given below.

The average membrane stresses in the local coordinate system of the semi­

infinite stiffened panel model for the plate are obtained by combining the constitutive 

relations w ith the strain  compatibility equations and the use of a  stress function 

approach. The stress function is

Px =  d2F / d y 2, Py =  d 2F / d x 2, Pxy = - d 2F / d x d y  (2.1)

where F  is defined as the stress function and Px , Py, and P ry are the average axial, 

transverse, and in-plane shear membrane stresses and are given by;

A n  f t  A i i j t  Aie /<1
$\ ixy )

ii
i ■■■

A u / t  A n / t  Ai&ft  ̂ Py > (2.2)
. A i e j t  A2&/t A e s / i . [ Pxy ,

where e°, e° and 7 °y are the membrane strains, A{j is the extensional stiffness coeffi­

cients obtained from the classical lamination theory ([27]), and t is the skin thickness.

The stress function F  satisfies the conditions for equilibrium of a  rectangular plate 

element. The com patibility equation is

a^Jdy1 +  dV jdx2 = dh ljdxdy  (2.3)

Using Equation (2.1) and substituting for the strains from Equation (2.2) in Equation 

(2.3), a fourth-order partial differential equation is obtained

d 4F  d 4F  dAF
An ^ J  -  2 A 2 S ^ 7 .  + ( U n  + A l e ) ^ ^ :  -  2Ad x 4

‘ 26 d x 3dy d x 2dy 2
16

d 4F  d4F
+  ^ 2 ?TT =  0 (2.4)

d x d y 3 dy4
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where A'j is given by [A,j/f] 1- Dividing Equation (2.4) by A ^  and transforming the 

y coordinate by 77 =  e0y results in

a'F A j ,  d'F , . , (2 .4 ;,-M ;„ )  S'F .3 ^ ; ,  a'F , d ‘F 
d x A 0 A \ l d x zdT] 0 A'n  d x 7d i f  ° A i 1 dxdrj3 d i f

where e0 =  This equation is solved by assuming that stresses decay

rapidly as the distance, y,  away from the stiffener centerline becomes large, tha t the 

stresses are localized near the stiffener, and th a t a  symmetric loading condition exists 

along the stiffener. The membrane stress function is assumed to be of the form

F  = Real(eimk{x+iT£oy)) = Real(eimk(x+irr))) (2.6)

where k = £ , m =  1 , 2 , 3 ,..., r  is an unknown, and x  and y are local coordinates in the 

semi-infinite model. Substituting this stress function into the fourth-order differential 

equation (Equation (2.5)) results in a quartic equation in term s of the unknown r. 

The roots of the quartic equation are com puted using subroutine CXPOLY from the 

M athematical and Statistical Software (Ref. [28]) at NASA Langley Research Center. 

The roots of the quartic equation occur as two pairs of complex numbers given by

<2-7>

The membrane solution corresponds to  the root with the largest magnitude of the 

real part for r and is developed as follows

Fim =  Rea/[e,m*tx+‘(rR+,r/M] =  e~rRmkvcos[mk(x — r/77)], f o r  t) > 0 

F2m =  Rec/[e,m^x+,(-rR+,r/M] =  e~TRTnkvcos[mk(x + rt f)] ,  f o r  tj < 0

Fm =  ^f-(Fim  +  i^m)

=  A me~mke°rR v̂~t,^cos[mkx]cos[mkeori(y — <*/ 2)] (2.8)

where tr and r /  are the real and imaginary parts of the root, respectively, t ,  is the 

thickness of the stiffener, and A m are the unknown coefficients to be determined.
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A similar approach is taken for the bending solution using the fourth-order 

partial differential equation for the out-of-plane deflection in term s of the local co­

ordinate system, which requires tha t the resulting moments acting on a rectangular 

element vanish. T hat is,

where Z?,j are the bending stiffness coefficients of the skin, =  [ D i i / D h Y ^4 and 

77 =  efy. The solution for the out-of-plane deflection is obtained by assuming that the 

out-of-plane deflection decays as y becomes large and tha t the loading is symmetric 

along the stiffener. The out-of-plane deflection is assumed to be of the form

w =  _Rea/(e,mfc(l+,Vety>) (2 .1 0 )

which on substitution into Equation (2.9) gives another quartic equation in r. The

solution for the out-of-plane displacement corresponds to the root with the  smallest 

non-zero m agnitude of real part for part for r and is developed as follows

wlm =  e,'TnfclI+,(r«i>+l>7‘’)T'l for 77 >  0

Wim =  e,T’1*(I+ '(-,'*l>+,T,76H for -q <  0 

Wm — ^Real\ iBmWim -f- Cm^lm  713mw2m "f" ^ m ]

wm = e- mke>>TRb(v-t.l2) { B m sin[mkebrib(y -  f»/2 )]

+ C m cos[mkebrib(y -  t , / 2 )] } cos[mkx] (2 .1 1 )

where r m  and rjb are the real and imaginary parts of the root, respectively, and B m

and Cm are the unknown coefficients to be determined.

Expressions for the membrane strains and the curvatures can now be ob­

tained using Equation (2.8) and (2.11). The membrane strains are obtained by also 

using Equation (2.2):
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e° =  A m k 2 m 2e- m^orH(y-<./2) x

{ [ ( ^ 1 1  (rR ~  r))e2 — A ’u )cos{mkx) — eorRA l 6s in (m kx)  ] 

x cos(mkeori(y — i 3/ 2))

+  [ 2 ^ A \ lrirRC0s(mkx)  — eoriA\6s in{m kx)  ] 

x s in (m ke 0 ri(y -  t 3 / 2)) } 

e° =  A m k 2 m 2e- mfce°r* (* -''/2> x

{ [ ( ^ 12 i rR ~  r / ) eo — A 22)cos(mkx)  — eorfiA26 s i n ( m k x ) ] 

x cos{mkeQri(y -  t s/ 2))

+  [ 2 e l A i 2rirRCOs(mkx) — eoriAl6s in (m kx )  ] 

x sin(mkeor i(y  — ta/ 2 )) }

7°y =  A m k 2 m 2e - mfceor*(!' - ,' /2> x

{ [ (-^1 6 (rR ~  r / ) eo — A l 6)cos(mkx)  — eorRA l 6s i n ( m k x ) ] 

x cos(mkeori(y — t 3 / 2))

+  [ 2elA^6r j rRcos(mkx)  — tQrjA'ms in { m k x ) ] 

x sin(mkeorj(y — t 3j 2)) }

=  k 2 m 2 e - mkeir*'>lv- t'Mcos{mkx)
o x 2

[ CmCOsimketfuiy -  t s/ 2 )) +  5 tnsm(mfce1r /b(y -  t 3/ 2)) ]

=  - k 2 m 2 e\ e -mfceir«b(y- t' / 2>cos(mfcx)

{ I (rRb ~  r /b)Cm -  2rRbrIbB m ]cos(mkeirIb(y -  t 3))

+  [ (rRb ~  r )b)Bm +  2rRbrIbCm ]sin(mkeir ib(y -  t 3)) }
o2

~2~dxy =  “ 4fc2 m2ei c" m*eir" (l'"<,/2)sin(m fcl)

{ [ -  rRbB m ]cos(mkeirIb(y -  t3))

+  [ r JbCm +  ]sin(mkeirib(y -  t 3)) } (2.
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These two solutions (Equations (2.8) and (2.11)) are valid near the skin- 

stiffener interface but not within the stiffener itself (i.e., y > tsj 2). It is assumed 

th a t, since the stiffener is thin, the strain within the stiffener is approximately equal 

to the strain at the edge of the stiffener (at y =  t a/ 2 ). The total strain energy, U t ,  of 

the skin-stiffener combination is developed next from expressions for the out-of-plane 

deflection, wm, and the membrane stress function, Fm. The to tal strain energy is 

obtained by evaluating the following integrals:

1. The strain energy of the skin is

Uskin = /  /  ( {eo}T[Ai]{eo} +  {«}r [Aj]{«} ) dxdy (2.13)
Jtc/2 J - L

where {eo} =  {e? 7°} are the membrane strains and {«} =  { kx ny Kxy} are

the curvatures.

2. The strain energy of the stiffener is

Ustiff = ̂ t a J  J_L Q n ( e° + ZK* )l=t,/2 dxdz (2.14)
where Q n  is the longitudinal modulus of the stiffener and t is the total thickness

of the skin.

3. The strain  energy of the skin attached to  the  stiffener is

Uattach ~  ~2 J  J , -̂ll(ex)v=<,/2 + -̂11 (K*)y=t,/2 )dx (2.15)
Hence, the expression for the total strain energy, U t , is obtained by summing these

contributions to obtain

Ut  — C a A^ -f- C b B  ̂+ CcCm +  CAcAmCm + CcBCmB m (2.16)
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where the coefficients C a ,  C b ,  C c ,  C a c  and C c b  are obtained by evaluating the strain 

energy integrals and A m, B m, and Cm are the unknown coefficients of the assumed 

functions Fm in Equation (2.8) and wm in Equation (2.11).

The total bending moment transm itted  a t any cross-section perpendicular 

to the longitudinal axis of the stiffener due to the eccentricity of the stiffener for the 

symmetric case can be represented by the series

A/ =  M m cos(mkx)  (2-17)
771 =  1

From statics, the normal stresses over the cross-section of plate-stiffener combination 

m ust satisfy the following conditions

Sa °xdA =

C / 2  °*dzdy  +  t ,  f % +h) Q n (  4  +  zk* )y=<</2 dz = 0  (2.18)

f A za xdA =

2 / —1/2 it j /2  zoxdzdy  +  t s / _ ^ 2+/i) z Qu{  4  +  ZKx )v=W2 dz

— !Cm=l M n cos(mkx)  (2.19)

where t is the total thickness of the skin, ts is the total thickness of the stiffener,

h is the height of the stiffener above the outer surface of the skin, and ax is the

normal stress distribution over the cross-section. Evaluating the integrals defined by 

Equations (2.18) and (2.19) results in the following relations after neglecting coeffi­

cients of s in (m kx)  which are due to  the A 16 and D j6  term s in the extensional and 

bending stiffness matrices, respectively, and also due to A ^6  in the expression for 4  

in Equation (2.12):

+  S\zCm — 0

^21^m +  S 2i B m +  SizCm =  M m (2.20)
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where 5 ,j coefficients are determined by collecting like coefficients multiplying the 

unknowns A m, B m and Cm in Equations (2.18) and (2.19). Using Equations (2.20), 

the following expressions for B m and Cm are obtained in term s of A m and M m

Cm =

Bm = S 2 1A m +  S'22M m (2.21)

where

■Sjl =  — S n / S l 3 ,  S 21 =  ( S \ i*?23 — S 2 1 S 1 3 ) /  S 1 3 S 22

a n d  S 22 =  I / S 2 2  ( 2 .22)

Equations (2.21) are substituted into Equation (2.16) and the total energy is mini­

mized with respect to A m to yield

A m = - V m M J V a (2.23)

where

VA =  2 ( C a  +  C b ( S 21)2 +  C c ( S u ) 2C Cb S u S 21 

and Vm  =  2 C b S 21S 22 +  C c b S u S 22 (2.24)

Using Equation (2.23), B m and Cm can be expressed in term s of Mm, Vm  and VA,

with M m as the only unknown. T hat is,

V]tfMm
Cm = S mn A m = S ' n -

Va

B m =  S'21A m +  S ‘22Mm =  +  5 2*2Mm (2.25)
VA

The expression for axial strain in the skin-stiffener combination is obtained from 

Equation (2.12) as

<2-26)

Substituting for A m, B m and Cm in Equation (2.26) from Equations (2.23) and (2.25) 

and solving for the value of z for which ex is zero, an expression for the neutral surface,
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Z'(y),  is obtained. Only one term (m  =  1) in the series expansion is used to obtain 

the expression for Z'(y)

Z 'M  = /  £  <2-27>

where

£0 =  _ K n M n  k 2 m 2e -m fceor fl( y - t , / 2 )  x

Va
X

d2w
!h?

{ — r / ) eo — A^2 )cos(mkx)  x cos(mkeori(y — ta/2))

+ 2e\A*u rirjicos(mkx)  x s in (m ke 0rj(y — t , / 2)) }

—k2m 2Exp[—mkebrRt,(y — ts/2)] cos[mkx] x 

{ cos[mfcefcr/i,(y -  <s/ 2 )]

+  (~ 5 2'i  +  SZ2 M m)sin[mkebrib{y -  t,/2)]} (2.28)
va

The coefficients of s in (m kx)  in the expression for are neglected. These coefficients 

are due to A ^6 and hence, the expression for Z'(y)  is independent of M m and the 

axial distance x.  Since the expression for Z '  involves exp[mfc(ejrR{, — eorp,)(y — 2̂ / 2 )], 

the choice of roots for the solution of the stress function, F,  and the out-of-plane 

deflection, w, ensures th a t the neutral surface Z ' (y ) decays as the distance away 

from the centerline, y, becomes large. Finally, the shift in the neutral surface a t the 

stiffener is obtained by setting y =  ta/2  in the expression for Z'(y).

z.  =  - 3 A  (2 .2 9 )
“Sii

A typical profile of the neutral surface for a skin-stiffener combination is 

shown in Figure 2.2. The distance y * represents the distance from the centerline of 

the stiffener to the point where the neutral surface coincides with the mid-surface of 

the skin. The average of the neutral profile over the distance y* is Z *. The quantities 

y* and Z* are obtained numerically.

The smeared stiffnesses of a stiffened panel is obtained by m athem atically 

converting the stiffened panel to an unstiffened panel (Ref. [17]. The smeared
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stiffnesses are developed on the basis th a t the strain energy of the stiffened panel 

should be the same as th a t of the equivalent unstiffened panel. These smeared stiff­

nesses can then be used in a  Rayleigh-Ritz type analysis to solve for buckling loads 

of the stiffened panel. In Reference [17], the strain energy of the skin and stiffeners 

in the unit cell is obtained by using stiffnesses of the skin and the stiffeners which 

are computed about the mid-surface of the skin. Since, there is a shift in the neutral 

surface at the stiffener, the stiffness of the stiffeners and the skin segment directly 

above it has to  be com puted about a  shift in the neutral surface so as to  account for 

the skin-stiffener interactions.

The correction to  the smeared stiffnesses due to the skin-stiffener interaction 

is herein introduced by com puting the stiffness of the stiffener and the skin segment 

directly contiguous to it according to the following criteria.

1 . If y m < t / 4, then the  reference surface for the stiffener is Z n.

2 . If y* > t/4 , then the  reference surface for the stiffener is Z ' .

In either case, the reference surface of the skin is taken to  be its mid-surface. O ther 

more elaborate and accurate schemes can be used to  introduce the  skin-stiffener inter­

action using the neutral surface profile. However, the one described herein is simple, 

and provides sufficiently accurate buckling loads for the preliminary structural design.

2.2 NUM ERICAL RESULTS

Three stiffened panels with different stiffener configurations and simply-supported 

boundary conditions are used as examples to dem onstrate the present analytical ap­

proach. Panel 1 is an axially-stiffened panel, Panel 2 is an orthogrid-stiffened panel, 

and Panel 3 is an example for a  general grid-stiffened panel. Detailed finite element 

analyses of these three panels have been conducted to verify the results of the present 

analytical approach. The finite element analysis codes STAGS ([29]) and DIAL ([30])
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have been used for this purpose. In the STAGS finite element model, a nine-node 

shear-flexible element (i.e., STAGS element 480) is used while an eight-node isopara­

metric shear-flexible element is used in the DIAL model. Finite element analysis 

results for all panels indicate tha t the panels buckle globally under the applied in­

plane loading conditions.

Panel 1

Panel 1 is 30.0-in. long and 30.0-in. wide with axial stiffeners only. The 

stiffener height and thickness are 1.86958 in. and 0.20084 in., respectively. The unit 

cell is 30.0-in. long and 10.0-in. wide (see Figure 2.3). The skin ply stacking sequence 

is [± 4 5 /4 5 /0 /9 0 ]„  with thicknesses of 0.00637 in. for the 45° and —45° plies, 0.0249 

in. for the 0° plies and 0.0416 in. for the 90° plies. The stiffener ply stacking sequence 

is [± 4 5 /q=45/0], with thicknesses of 0.00823 in. for the 45° and —45° plies and 0.0675 

in. for the 0° plies. The nominal ply mechanical properties used are: longitudinal 

modulus =  19.0 Msi; transverse modulus =  1.89 Msi; shear modulus =  0.93 Msi and 

m ajor Poisson’s ratio =  0.38.

The four panel load cases considered are shown in Table 2.1 The STAGS 

analysis results are compared with solutions from the smeared stiffener approach 

without skin-stiffener interaction effects included (the traditional approach) and with 

skin-stiffener interaction effects included (the present approach). It can be seen tha t 

the value of Z n for the axial stiffener is not small compared to the height of the 

stiffener. The result obtained from the traditional approach is in good agreement 

with the STAGS analysis result for the case of axial compression and the result from 

present approach is less than the STAGS analysis result by 7.5 percent. For the other 

load cases shown in the Table 2.1, the results obtained by the traditional approach 

are greater than  those of STAGS by 8  to 13 percent and those of the present approach 

are in good agreement with the STAGS results.
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Panel 2

Panel 2 is 60.0-in. long and 36.0-in. wide with axial and transverse stiffeners 

only. The stiffener height and thickness are 0.5 in. and 0.12 in., respectively. The 

unit cell is 20.0-in. long and 9.0-in. wide (see Figure 2.4). The skin ply stacking 

sequence is [±45/90/0]s and each ply thickness is 0.008 in. The stiffener is made of 

graphite epoxy material with 0° orientation. The nominal ply mechanical properties 

used are: longitudinal modulus =  24.5 Msi; transverse modulus =  1.64 Msi; shear 

modulus =  0.87 Msi and m ajor Poisson’s ratio =  0.3.

The panel buckling response when subjected to four loading conditions is 

indicated in Table 2.2. The DIAL analysis results are compared in Table 2.2 with solu­

tions from the smeared stiffener approach with and without skin-stiffener interaction 

effects included. The value of Z n for the transverse stiffener is not small compared 

to the height of the stiffener. The results obtained using the traditional approach 

overestimate the DIAL analysis result by 12.6 percent for the axial compression load 

case, by 4.0 percent for the transverse compression load case, and by 8.4 percent for 

the combined load cases. Results from the present approach agree with the  DIAL 

analysis results except for the transverse compression load case where the  present 

result is 5.2 percent less than  the DIAL analysis result.

Panel 3

Panel 3 is 56.0-in. long and 20.0-in. wide with transverse and diagonal 

stiffeners only. The stiffener height and thickness are 0.276 in. and 0.1125 in., re­

spectively. The unit cell dimensions for this panel are 7.0 in. in length and 5.0 in. 

in width (see Figure 2.5). The skin stacking sequence is [45/90/ — 45],, and each ply 

thickness is 0.008 in. The stiffener for this case is also made of 0° material. The nom­

inal ply mechanical properties used are: longitudinal modulus =  24.5 Msi; transverse 

modulus =  1.64 Msi; shear modulus =  0.87 Msi and major Poisson’s ratio =  0.3.
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The panel is analyzed for the three load conditions shown in Table 2.3. The 

DIAL analysis results are compared with results from the smeared stiffener 

approach with and without skin-stiffener interaction effects in Table 2.3. For this 

panel, the values of Zn are small compared to the height of the stiffener. The results 

obtained from the traditional approach are approximately 1 1  percent greater than 

the DIAL analysis results, and the results obtained using the present approach are 

approximately 6.5 percent less than the DIAL analysis results. For this panel, the 

results obtained using the present approach are conservative since the contribution 

due to stiffness terms Aie and Die, and the flexibility term  Aj6 to Px (Equation 2.2) 

and e° (Equation 2.12) are not small and does influence the neutral surface profile 

position for the diagonal stiffener.

2.3 SUMMARY

An improved smeared stiffener theory tha t includes skin-stiffener interaction effects 

has been developed. The skin-stiffener interaction effects are introduced by computing 

the stiffness of the stiffener and the skin at the stiffener region about the neutral axis at 

the stiffener. The neutral surface profile for the skin-stiffener combination is obtained 

analytically through a study of the local stress distribution near the skin-stiffener 

interface.

The results from the numerical examples considered suggest tha t skin-stiffener 

interaction effects should be included in the smeared stiffener theory to obtain good 

correlation with results from detailed finite element analyses. In a few cases, the 

present analysis appears to  underestim ate the buckling load by 5 to 7 percent. In 

spite of this limitation, the smeared stiffener theory with skin-stiffener interaction ef­

fects included is still a useful preliminary design tool and results in buckling loads that 

are more accurate than the results from the traditional smeared stiffener approach.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u r th er  r ep r o d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



Table 2.1 Results for axially stiffened panel (Panel 1 ).

X-stiffener: Zn =  -0.4386 in., Z '  =  -0.1020 in., y" =  4.7512 in.
Critical Eigenvalue

N x N xv STAGS Traditional Present
lbs/in. lbs/in. Approach Approach

1 0 0 0 0 9.9636 9.9659 9.2135
0 1 0 0 0 6.3016 6.7985 6.3483

1 0 0 0 1 0 0 0 4.9512 5.6018 4.9491
500 1 0 0 0 5.5023 6.2007 5.5838

Table 2.2 Results for orthogrid panel (Panel 2).

X-stiffener: Zn =  -0.0949 in., Z * =  -0.0165 in., y* =  0.0280 in. 
Y-stiffener: Zn =  -0.1295 in., Z '  =  -0.0177 in., y ’ =  0.0131 in.

N x
lbs/in.

N y
lbs/in,

N xy
. lbs/in.

Critical Eigenvalue

DIAL Traditional
Approach

Present
Approach

400 0 0 0.7909 0.8903 0.8161
0 2 0 0 0 0.6281 0.6536 0.5956

400 2 0 0 0 0.3504 0.3799 0.3463
400 2 0 0 50 0.3500 0.3796 0.3458

Table 2.3 Results for grid-stiffened panel (Panel 3).

Y-stiffener: Zn =  -0.0135 in., Z ’ =  -0.0043 in., y* =  2.3636 in. 
D-stiffener: Z n =  -0.0698, Z* =  -0.0349 in., y m =  0.0239 in.

Critical Eigenvalue

N x N Xy DIAL Traditional Present
lbs/in. lbs/in. lbs/in. Approach Approach

0 . 0 400 0 . 0 0.3290 0.3646 0.3045
0 . 0 400 300 0.3224 0.3595 0.3008
1 0 0 400 300 0.3121 0.3486 0.2917
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panel ■ unit cell

SECTION A-A 

1
.  skin

t
stiffener

SEMI-INFINITE 
PLATE MODEL

Figure 2.1 Semi-infinite plate model for skin-stiffener element.

skin middle 
suirface

skin
stiffener

Figure 2.2 Typical profile for neutral surface for skin-stiffener element.
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Figure 2.3 Simply supported axially stiffened panel 
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Figure 2.4 Simply supported orthogrid-stiffened panel, 
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Figure 2.5 Simply supported grid-stiffened panel.
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Chapter 3

BUCKLING ANALYSIS OF 
CURVED PANELS

This chapter deals with the buckling analysis of curved panels and makes use of 

the principle of minimum potential energy and a Rayleigh-Ritz solution procedure 

based on high-order complete polynomial functions. These polynomials are expressed 

in term s of natural coordinates for a quadrilateral plate geometry and in term s of 

area coordinates for a  triangular plate geometry. The approach makes use of finite 

element concepts for mapping an arbitrary quadrilateral plate geometry to a  square 

p late geometry and mapping a general triangular plate geometry to an equilateral 

triangular p late geometry. The Ritz functions include “circulation” functions tha t 

can be used to  impose different boundary conditions. The mapping is im portant so 

as to  facilitate computations of linear and geometric stiffness matrices and imposition 

of boundary conditions. The formulation accounts for transverse shear flexibility and 

for m aterial anisotropy. Buckling loads are presented for flat skew parallelogram- 

shaped plates, triangular plates, and curved cylindrical panels. Results are compared 

with existing solutions and finite element solutions.

3.1 PREAMBLE

The stiffener pattern  on a  grid-stiffened panel is determined primarily by the combi­

nation of in-plane axial, transverse and shear loading experienced by the structure.

28
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In the case of a diagonal-stiffener configuration, the skin segments have a rhombic 

geometry. Even for the case of a more conventional orthogonal stiffener pattern  used 

for a swept-back wing, the skin segments have a skewed quadrilateral geometry. For a 

stiffener pattern  with diagonal and axial stiffeners, the skin segments have a  triangu­

lar geometry. The boundary conditions imposed on the structural skin segments are 

determined by the stiffness of the stiffeners. Therefore, the buckling analysis method 

for composite skin segments should be general enough to include different boundary 

conditions, general quadrilaterals and triangular geometries, and anisotropic material 

properties in order to assess accurately the local buckling response of the composite 

skin segments in composite grid-stiffened panels.

A review of the existing literature on the buckling of arbitrary quadrilateral 

plates indicates tha t some aspects have been addressed, mostly for skewed isotropic 

plates using classical laminated plate theory (CLPT). A thorough review of the lit­

erature for buckling of skewed plates with different boundary conditions using CLPT 

and the Rayleigh-Ritz method is presented in Ref. [31]. Results are compared with 

those published by different authors. None of the  references cited in Ref. [31] or any 

other recent publications in the open literature (e.g., Ref. [32] and [33]), address the 

buckling of skewed or rhombic anisotropic plates with or without transverse-shear 

flexibility. Most authors focus only on the vibration response rather than buckling.

The problem of buckling and vibration of triangular plates has been ad­

dressed mostly for isotropic plates. Buckling solutions for simply supported equi­

lateral triangular isotropic plates were presented in 1933 by Woinowsky-Krieger as 

cited in [11] and validated in 1957 by Taylor [34]. The structural stability of sim­

ply supported, right-angle isosceles triangular isotropic plates subjected to  in-plane 

shear loading was presented in 1951 by Klitcheiff [35]. In 1953, W ittrick [36] im­

proved Klitcheiff’s solution to include combined in-plane normal loading and differ­

ent boundary conditions. In 1956, Li-Chow [37] obtained the buckling solution for a
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simply-supported 30° — 60° — 90° triangular isotropic plate subjected to compression. 

This solution was validated in 1963 by Reipert [3S]. Finally, Valisetty and Reddy 

[39] presented solutions for simply supported isosceles triangular orthotropic plates 

in 1985. However, the solutions in Ref. [39] do not satisfy the zero-moment conditions 

at all points along the plate boundaries. The solutions in these references use clas­

sical lam inated plate theory (CLPT). The vibration analysis of triangular plates has 

been studied to  a larger extent than  the buckling analysis. V ibration of triangular 

isotropic and /o r orthotropic plates are addressed in references [32], [40]-[42], using 

CLPT and in Ref. [43] using a first-order, shear-deformation theory (FSDT). The 

only work dealing with triangular anisotropic plates is reported in Ref. [44] which 

deals with the  free vibration of right-angle triangular p late using CLPT. No work 

has been reported on the buckling of anisotropic triangular plates with or without 

transverse shear flexibility.

The following sections describe the analysis methods developed for the buck­

ling of general parallelogram-shaped and general triangular-shaped anisotropic panels 

using FSDT, and the results obtained using these methods are presented.

3.2 STRAIN-DISPLACEM ENT RELATIONS

The displacement field for a cylindrical shell, according to a  first-order, shear-deformation 

theory is given by

u ( x , y , z )  

v ( x , y , z )  

w { x , y , z )
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where up is the  membrane displacement in the x-direction, v0 is the membrane dis­

placement in the y-direction, wo is the out-of-plane transverse displacement in the 

z-direction, <j>x and <f>y are the cross-sectional rotations about the x and y axes, re­

spectively.

According to FSDT, cross-sections normal to the  reference plane before de­

formation are assumed to  remain planar but not necessarily normal to the mid-surface 

after deformation. Figure 3.1 shows a cylindrical shell elem ent with the coordinate 

axes, notations and sign convention given. The circumferential coordinate 9 is re­

placed by y = R 9 , where R  is the radius of the cylindrical shell segment. Noting that 

dy — RdO, the  linear strain-displacement relations [45] can be w ritten as;

txL “  ^x ”b

tyL =  ey "b

7xyL = 7xy "b ZKxy 

~1xzL = 7xz

lyzL = 7°yz

where
du 0

dx
0 dv0 w0

£y dy + R
o dtio 9 vq

lxv =  i h i i h

Kx —

Ky

d<f>x
dx
d<t>y
dy

_  d(j>x d<f>y C2 ,d v 0 dup .
Kxy dy dx  2 R  dx  dy

0  _  a . dw°7,, <f>x + dx
0  , , dwp v0  ( .

7-  =  * ^ - a 7 - - c ' R  (3’2)
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Here Ci and C2 are “tracer” coefficients used to implement different strain-displacement 

relations or shell theories. Accordingly when C\ =  C2 =  1, the first approximation 

of Sanders-Koiter shell theory [46, 47] is obtained and when C\ =  1 , C2 =  0, Love’s 

shell theory [48] including transverse shear deformations is obtained. Finally, when 

Ci =  0 and C2 =  0, Donnell’s shell theory [49] including transverse shear deformation 

is obtained. The linear strain-displacement relations with tracer coefficients can be 

w ritten in m atrix form as

Ep =

r JLdx 0 0 0 0 -
'■’x 0 d_

dy
1
R 0 0

y
7°Ixy

_a_
dy

a_
dx 0 0 0

Kx 0 0 0 d_
dx 0

Ky 0 0 0 0 a
dy

Kxy -c? a
2H 9y

C2. a
2/i ax 0 d_

dy
d_
dx

7x2 0 0 a

3y
1 0

. 7y2 , . 0 /? 0 1 .

w0
Wo
w
<t>x
<f> y

(3.3)

The nonlinear strain-displacement relations for a circular cylindrical shell or 

panel as given by Ref. [50] are

C r =  U,x + ^ ( v , l + W , l )

=  f-xL +  ZxNL

U) I . 9  . u s2l
ey =  v v +rH + 2 ^ + ^ “ ^ )  ]

=  £yL T  tyNL
W,

'fxy — u iy 4"W,x +  0  D (U0 )X u0 ?y ) u iy {v iy T D) V,XU,X-\-W,x [w,y ^ )2 "u?y / -iy\~:y i

= 7xyL 4" 'IxyNL 

'Ixz =  W),x -j-U,z W,X U,X W,z U,2 4"W,x

=  7 x z L  +  I x z N L

_ u . v . . in.
7 y* =  Wby +w , 2 —Ci — — (iv,y w,z tn,x-(-u,y u , 2

=  7yzL  4" ' f x y N L

(3.4)
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where a comma is used to indicate differentiation with respect to the next subscripted 

independent variable and the subscripts “L” and “N L n denote the linear part and 

the nonlinear part, respectively. For example u,x denotes |^ ,  t xi  denotes the linear 

part of the axial strain ex, and eXNL denotes the nonlinear part of the axial strain 

ex. Substituting Equation (3.1) in (3.4), neglecting higher-order term s for the cross- 

sectional rotations since in the prebuckled state the cross-sectional rotations tend to 

zero, the nonlinear term s in the transverse shear strains, and the z / R  term s, these 

nonlinear strains reduce to the following form:

=  u0 ,x +z<f>x,x + ^ ( v 0 , l + w , l )

=  t x L  +  f-xNL

W , 1 , / U0 \2 l
-  v0,y + Z<f>y,y + 2 LU°’V J

=  tyL + CyNL
C 2

=  u (by + ^ ( u o , x  u Oiy ) 4" 2 (<Ax>j/ " b ^ ji ix  )

/  w \  ,  V 0 .
U0 iy  \VQ,y  4 * ^ )  U0)X u 0 ,x  4 ~V),X \ W iy )

—  1/xyL  4* ~1xyNL 

= W,x +<f)x

=  'IxzL

=  W ,y  4 "<^y C \  —

=  7y2L

(3.5)

3.3 PHYSICAL AND COMPUTATIONAL DOMAINS

The buckling analysis of these local skin segments is enhanced by mapping their 

physical domain into a computational domain. Consider a general quadrilateral or 

triangular panels subjected to a  state of combined in-plane loading as shown in Figure 

3.2, where the loading and material properties are defined using the coordinate system

Ixy

7x2
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shown. The transformation from a physical domain to com putational domain is 

necessary when dealing with general quadrilateral and triangular geometries in order 

to  facilitate the computation of linear stiffness and geometric stiffness matrices and 

imposition of boundary conditions.

The physical domain X>[x,y] is transformed to a com putational domain 

£>[£,77] as indicated in Figure 3.2. The mapping for a quadrilateral is

x (Z,y) = '52Ni(Z,v)x i
1=1

y ( Z, v )  =  53-W«(f,»7)yi (3.6)
1=1

where x,(i =  1 ,2,3,4) and y,(z =  1 ,2 ,3 ,4) are the physical coordinates of the  ith cor­

ner of the plate, f  and 77 are the natural coordinates for the quadrilateral geometries, 

and Ni  (i =  1 ,2 ,3 ,4) are the bilinear mapping functions given by

m ( , v )  =  j u - 0 (1 + 1 )

A'2«,>!) =  j (  1 + 0 ( 1  +>!) 

m , v )  =  j ( i + 0 ( 1 - ’))

The Jacobian of the transformation is

J =
~ dx dy •

di 9{dx dy 
. di) dr] .

(3.7)

which is independent of the natural coordinates for general parallelogram-shaped ge­

ometries. This results in substantial com putational savings in the overall formulation.

The mapping for a  general triangle is

x iC ,V r P )  = £*i + Vx 2 +  Px 3

VitrVrP) = &/1 + W 2 +  W3 (3.8)
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where f ,  tj and p are the area coordinates for the case of triangular geometries, and 

X{(i = 1 ,2 ,3) and y,-(z =  1,2,3) are the physical coordinates of the i th corner of the 

plate. Note th a t the th ird  area coordinate will be expressed in term s of the  other 

two or p =  ( 1  — £ — t/) based on the constraint th a t the sum of the area coordinates 

m ust be equal to one. The Jacobian of the transformation is independent of the area 

coordinates. The Jacobian, in either case, is used to  relate derivatives in the two 

domains.

3.4 STRESS-STRAIN RELATIONS

The stresses are related to the strains for the kih ply of a lam inate by ([27])

(3.9)

The force and moment resultants acting on the differential element shown in Figure 

3.1 are

' CTx ' Qn Q 12 Ql6 0 0 ■ ’ tx  '
Oy Q\2 Q 22 Q 26 0 0 ey
rXy ' = Ql6 Q 26 £?66 0 0 <7xy ►
Txz 0 0 0 Q 44 Q 45 7x z

• Tyz • k .  0 0 0 Q 45 Q 55. k 7y« Jk

N x 1 Ox
N y °v

N xy T*y
M x r z a x
M y ZOy
M Xy ZTXy

Q x Txz
Qy . ry* ,

dz (3.10)

Substituting Equation (3.9) in Equation (3.10) and carrying out integration over the 

lam inate thickness gives;

N x  ) ■4ii A \2 A \6 B n B \  2 B \ 6 0 0 ' f
Ny A 12 A 22 A 26 B \2 B 22 B 26 0 0

e°H
Nxy A \s A 26 Aee B \e B 2 6 Bee 0 0 Ixy
M x B n B \2 B ie D n D \2 D ie 0 0 Kx
My B\2 B 22 B 26 A  2 D 22 D 2e 0 0 *

Ky
M xy B \6 B 26 Bee D ie D 26 Dee 0 0 Kxy
Q . 0 0 0 0 0 0 C44 C45 7XZ

. Qv . . 0 0 0 0 0 0 Cue C55. . 7v* ,

(3.11)
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where Aij are the extensional stiffness coefficients, Bij are the coupling stiffness co­

efficients, Dij are the bending stiffness coefficients, and Cr3 are the transverse shear 

stiffness coefficients.

3.5 THE MINIMUM ENERGY PRINCIPLE

The strain  energy of a three-dimensional body is

U — ~ J^O'xtx "b "b Gẑ -z "b T"xy7xy "b Txz'ixz "b TyZ7yz)dV (3.12)

Substituting the strains from Equation (3.5) and the stresses from Equation (3.9) in 

Equation (3.12) for the potential energy functional leads to

2 J v

{^xl{Qh^xL  +  Q\2tyL + Qielxyl) + ^xL(Qll^xNL b  Ql2^yNL +  QlGlxyNL) 

-\-£XNl{Q\\£xL + Q\2tyL + Q\&7xyL) + ^xNL(Qll^xNL + QntyNL + Ql67xyNL)}

+  { ey L ( Q 2 2 t y L  +  Q  12^xL +  £ ?267x j/l) +  ^ y L (Q 2 2 ^ y N L  +  Q l 2 ^ x N L  +  Q 2 & lx y N L )  

Jr £ y N L { Q 2 2 t y L  +  Q l 2 ^ x L  +  Q 2 6 l x y L ) +  £ y N L ( Q 2 2 t y N L  +  Q l 2 ^ x N L  +  Q 2 ( f l x y N L ) }

+  {~ fx yL (Q l6£xL + Q 26CyL +  Q sGlxyL)  +  7 x y L { Q l 6^xNL +  Q 26^yNL +  QeG^xyNL,)  

+ 7 x y N L ( Q l 6^xL + Q 26^yL +  Qgg1xvl )  +  7 xyNL , (Q ie t xNL  +  Q 26^yNL +  Qgg7x VN l ) }  

~^{.7xzL(Q447xzL b  Q457yzL)}

Jr { 7 y z L , { Q t t 7 y z L  b  Q 4 S'1x z L ) } d V  (3.13)

Terms like tXL{Q\\^xL b  QutyL  b  Qi6jxyL) contribute to  the linear stiffness m atrix 

whereas term s like €xL{Qn^xNL + Qi2^yNL + Qi6 7 xyNL) and exNL(Qn^xNL-i-Qi2 ^yNL + 

Q\G7 xyNl) contribute to the nonlinear stiffness m atrix. In a linear buckling analysis, 

the nonlinear stiffness m atrix is linearized and higher-order term s neglected. If a 

uniform prebuckling stress state is prescribed then

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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Nx — J  (Txdz — J{Q\\(-xL "b Q\2 -̂yL "b Q\6*)xyL)dz 
Ny = J  Gydz = J(Qn^xL + Q22tyL + Q2&) XyL)dz

NXy — J  Txydz = J{Ql6^xL "I" Q26 -̂yL ~b Q&&~1xyL)dz (̂ '̂ )

where N x, N y, and N xy are the prescribed in-plane loadings in term s of the membrane 

prebuckling stress resultants based on a linearized analysis.

Hence considering a linear buckling analysis and a uniform prescribed pre- 

stress state, the potential energy for a circular cylindrical panel or shell is

* 4 /2 J v

{ (-x l { Q \ \ ^ xL  +  Q l 2 t y L  +  Q i e l x y L ) +  f - yL{Q\2^xL  +  Q 22^ yL  +  <?267xyi-) +

7xyIj(.Q 16̂ xL *b Q26^yL ”b Qs&'YxyL) "b 'YxzLi{QiA^xzL "b Q AS'lyzL) "b 
IfyzUQsslyzL +  QasIxzL) }dV  

2  J  ( Nx€xNL "b NyCyNL, -b TVxy^fxyNL ) dA. (3.15)

The volume integral represents the linear elastic strain energy, and the area integral 

represents the work done by the in-plane prebuckling stress state. The critical loading 

is determ ined on the basis tha t during buckling the elastic strain energy stored in the 

structure is equal to the work done by the applied loading [51, 52]. The potential 

energy is thus minimized to yield the critical buckling load of the structure. The 

above expression for the potential energy functional will be used with a Rayleigh-Ritz 

method to  develop the buckling analysis formulation for panels with parallelogram­

shaped and general triangular-shaped geometries. The linear strain used will be tha t 

of Equation (3.5) in order to implement different shell theories.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



3 S

3.6 THE RAYLEIGH-RITZ METHOD

The Rayleigh-Ritz m ethod is an approxim ate method for solving a certain class of 

problems. Accordingly, trial functions with some unknown coefficients and satisfying 

the essential or geometric boundary conditions are introduced in the energy functional 

of the problem. The minimum conditions of this functional are then imposed, and 

resulting algebraic equations are solved for the unknown coefficients. These trial 

functions are called the “R itz” functions.

The Ritz functions used here are expressed in term s of natural coordi­

nates for the quadrilateral geometry or area coordinates for the triangular geom­

etry for displacement field. The components of the displacement vector are three 

translations ( D \ , D 2 ,Dz — uo,Vo,w) and two cross-sectional or bending rotations 

(D4,D$ =  (f>xi4>y) when considering transverse-shear deformation effects. Each dis­

placement component is approxim ated independently by a different Ritz function. 

The approximation for the i lh component of the displacement vector is given by

N
7?) =  y i  aqdjj 

j=i 
N

= £ a * T i ( e ,  ?)/,•(£,»?) for i =  1 ,2 ,3 ,4 ,5  (3.16)
i=i

where d,j represents the j th term  in the TV-term approximation for the i th displace­

m ent component, a,j are unknown coefficients to  be determined, and T, (<f, i)) are the 

circulation functions.

The circulation functions T,- in Equation (3.16) are the used to  impose differ­

ent boundary conditions along each edge of the plate. Each term  Tt- is the product of 

three functions in the case of the triangular plate geometry and four functions in the 

case of the quadrilateral plate geometry. Each function is the equation of an edge of 

the triangular or quadrilateral plate as shown in Figure 3.2 raised to an independent 

exponent for each displacement component. Thus, the circulation functions for the

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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quadrilateral plate are

r,' =  ( i - ^ r ( i - e H i  +  i r o + « * ‘

and for the triangular plate are

r f =  { « ,* ( i  (3.17)

For example, considering the quadrilateral plate case, p,- refers to edge 1, q; refers 

to edge 2, r,- refers to edge 3, s,- refers to edge 4 as indicated in Figure (3.2) These

exponents are used to impose different boundary conditions. If the i ih displacement

component is restrained or free on a given edge, then the exponent for th a t edge will 

have a value of zero. If the i th displacement component is constrained on a  given edge, 

then the exponent for th a t edge will have a value of one. Only geometric boundary 

conditions are imposed in this approach. Thus, a simply supported condition for 

bending fields can be imposed on edge 1 by setting:

• p3 =  1 for w, p4 =  0, for <f>x p5 =  0 for <j>y

A clamped conditions for bending fields can be imposed on edge 1 by setting:

• p3 =  1 for w, P4 =  1 for <f>x , p$ =  1 for <j>y

A free-edge condition can be imposed on edge 1 by setting:

•  pi = 0 for uo, Vo? w, <f>x and <f>y

In the case of classical lam inated plate theory, these exponents takes on 

different values depending on the type of boundary conditions. If the i ih displacement 

component is free on a given edge, then the exponent for th a t edge is zero. If the i th 

displacement component is constrained but not clamped, then the exponent for that 

edge is one. If the i tk displacement component is constrained and clamped, then the 

exponent for tha t edge is two which will force the slope to  be zero as well. Thus a 

simply supported condition for bending can be imposed on edge 1 by setting:

•  p3 = 1 for w

A clamped conditions for bending fields can be imposed on edge 1 by setting:

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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•  P3 =  2  for w

A free-edge condition can be imposed on edge 1 by setting:

• pi =  0  for uq, vo and w

The term  f j  in Equation (3.16) is a polynomial function in £ and 77, and in 

its simplest form is a power series in £ and 77 (regular polynomial) and is expressed 

as

m , v )  =  r * v nj

mj,  nj = (0,0), (1,0), (0,1), (2,0), (1 ,1), (0 ,2 ),... (3.18)

The values of rrij and nj  are used basically to define term s in a two-dimensional 

Pascal’s triangle. The num ber of term s N  in Equation (3.16) defines the order of a 

complete function in two variables. One disadvantage of this polynomial function is 

the tendency for ill-conditioning th a t occurs when N  is very large. Characteristic or­

thogonal polynomials can be used to overcome the ill-conditioning problem (e.g., Ref. 

[42]). These are generated by the Gram-Schmidt process which can be summarized 

as follows. Let

N
d{ =

i= 1

where

then

and

j- i
=  r.-j -  ^ 2  a jk$k  

k=i

r tl =  r,(£,77), r ti =  r , ( £ ,7 7 ) r ^ nj

f f ^ k d z d T )  ( • }

The use of characteristic orthogonal polynomials, however, significantly increases the 

com puting tim e needed to  evaluate the linear and geometric stiffness matrices.

In the case of the quadrilateral plate geometry, most of the orthogonalizing coefficients

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u rth er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .
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are zero corresponding to a circulation function (T,) as defined by Equation (3.17). 

Orthogonal polynomials such as Legendre polynomials [53] can also be used where 

the function term  f j  is defined as

U = P m t f ) P n](v)
(0,0), (0,1), (0 , 2 ), , . . (0 ,7 V -1 )  

m,-, ns =   ̂ (1,0), (1 ,1), (1,2), ... ( l . J V - 1 ) ... (3.20)
.(AT- 1 ,0 ) ,  (AT- 1 , 1 ), ( N  — 1 , 2 ), ... (A T - 1 , A T - 1 )

where Pm} (f) denotes a Legendre polynomial of degree rrij in variable if. The Legendre 

polynomial, Pn(d), is defined over the interval, — 1 <  i? <  1 and it has some properties 

tha t can be exploited for com putational efficiency in setting up the stiffness matrices. 

Regular polynomial will be used in buckling analyses of general parallelogram-shaped 

and general triangular-shaped geometries. The use of Legendre polynomial is re­

stricted only to  arbitrary quadrilateral geometries, because the natural coordinates 

are defined in the interval, — 1 <  <  1 , and (£, 77) is an orthogonal coordinate

system.

3.7 FORMULATION OF LINEAR STIFFNESS MATRIX

The linear stiffness m atrix is derived from the linear elastic strain energy (Equation 

(3.15)) using the strain-displacement relation of Equation (3.3). Integrating in the 

z-direction the linear elastic strain energy, U, is

U = \ S a

f e° 1
T ■j4ii A 12 A \ q B n B n B ie 0 0 ‘

e°
7*Ixy

j4i2 A 22 A 26 B n B 22 B 26 0 0
A is A 26 Ae6 B u B 26 Bee 0 0

«x B n B n B \6 D n D n D ie 0 0
Ky

►
B \2 B 22 B 26 D n D 22 D 26 0 0

KXy B l6 B 26 B&6 D ie D 26 Dee 0 0
Ixz 0 0 0 0 0 0 C44 C45

. 7y* . . 0 0 0 0 0 0 C45 Css.

f n ^

J7ly
Kx
Ky

KXy
7x2

. 7y2 .

> dA

or

U =  E nr  Q E rjp vj xjp (3.21)

Since the physical domain of the structure has been transformed to a com putational 

domain and the Ritz functions are expressed in term s of <f and t), the strains have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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to be expressed in term s of £ and 77. This can be done by using the elements of the 

inverse of the Jacobian, and therefore

E p =  T E C (3.22)

where

t i x V i x 0 0 0 0 0 0 0 0 0 0 0 0

0 0 u Vi y 0 0 0 0 0 0 0 1
R 0 0

Vi y V i x 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 V i x 0 0 0 0 0 0

0 0 0 0 0 0 0 0 e * Vi y 0 0 0 0
Q z c  
2 R ^ i y - ^ 7 ?2 R Jh y

Q2. C
2 / 0 ’* ^ 7 7  2 r V ix 0 0 t i y Vi y £ ,« V i x 0 0 0 0

0 0 0 0 £ ,* VlX 0 0 0 0 0 0 1 0

0 0 0 0 £ i y Vi y 0 0 0 0
- C l

R 0 0 1

(3.23)

and

v 0 w  <j)x <f)y } T

(3.24)

The elements of m atrix T  are all constant since the Jacobian for general parallelogram- 

shaped and general triangular plate geometries is independent of £ and 77.

The i th term  of the iV-term approximation for the displacement vector is

u 0  ' r  Ui 0 0 0 0  ■ ’ Oli '
U o 0 Vi 0 0 0 an
w , = 0 0 Wi 0 0 < ^ 3 *
<t>x 0 0 0 * « • 0 Q>4i
<(>y . . 0 0 0 0 $V y i  J > f l 5 «  -

where Vi, Wi, $ x,-, and $j,; are Ritz functions as discussed in the previous section.

E c =

{ Wqjt) v 0 iZ Vq ,ti W ,£  U7„j f y x i t  ^ x i t )  4>yii fivvn
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Using Equation (3.25), E c can be written as

' ' r u * 0 0 0 0 ■
u 0i?7 Ui, „ 0 0 0 0
VO* 0 Vi* 0 0 0
VOlTl 0 Vi 0 0 0
w* 0 0 Wi* 0 0
W,v 0 0 Wi,v 0 0
4>x* 0 0 0 * 0
fixiT] 0 0 0 0
4>y* 0 0 0 0
^ y ir t 0 0 0 0 ^ y * iv

Vo 0 Vi 0 0 0
w 0 0 Wi 0 0
<f>x 0 0 0 <b ■^  x t 0

. <t>y . . 0 0 0 0 J

Ol« 
02. 
G3i 
an  
<*5 i

or

E c =  ©; q; (3.26)

Therefore, using Equation (3.22) and (3.26) the strain vector, E p , is w ritten as

E p =  T Q iqi (3.27)

which on substitution in Equation (3.21) for the linear elastic strain energy gives

u = \
= | j f <qir [©|TH0j]qi|J|(ifcfi7 

=  \  q iT { JA kjj |J | d£dT) } qj

where

=  r q i r ] Kycy

H  =  T r Q T

(3.28)

ky =  0 i r H 0 j  

Kjj  =  / k y | J |  dtdn
JAc

where A c is the area for the com putational domain.

The non-zero entries of m atrix H  are shown below in a  generic manner. Al­

though H  is obtained numerically in the computerized im plementation of the buckling
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analysis, only the non-zero entries are used in computing the stiffness m atrix  to avoid 

unnecessary computations. The non-zero entries are identified for fully populated J ,  

Aij, B i j , D{j, and Cpq matrices. Hence,

hu h\2 h i3 h \4 0 0 h\7
H =

h\8 h\9 ^1,10 0 ^1,12 0 0 '

h-21 ^22 h 23 h 24 0 0 ^27 ^28 h 29 ^2,10 0 ^2,12 0 0
^31 fl32 h 33 h-34 0 0 ^37 3̂8 h-39 ^3,10 0 ^3,12 0 0
h.41 h-42 ^43 h 44 0 0 fl47 ^48 h 49 ^4,10 0 ^4,12 0 0
0 0 0 0 hss ^56 0 0 0 0 ^5,11 0 ^5,13 ^5,14
0 0 0 0 ^65 h&6 0 0 0 0 ^6,11 0 ^6,13 ^6,14

h~i h~2 h 73 h~4 0 0 hj7 ^78 ^79 ^7,10 0 ^7,12 0 0
hg\ h$2 h$z h&4 0 0 hg7 =3

-
00 00 ^89 ^8,10 0 ^8,12 0 0

hg i h$2 hg 3 hg4 0 0 hg7 ^98 hgg ^9,10 0 ^9,12 0 0
^10,1 h\Q,2 ^10,3 ^10,4 0 0 h\0,7 ^10,8 ^10,9 ^10,10 0 ^10,12 0 0

0 0 0 0 ^11,5 ^11,6 0 0 0 0 ^11,11 0 ^11,13 ^11,14

^12,1 h\2,2 h\2,3 ^12,4 0 0 h\2,7 ^12,8 ^12,9 ^12,10 0 ^12,12 0 0

0 0 0 0 ^13,5 hl3,6 0 0 0 0 ^13,11 0 ^13,13 ^13,14
. 0 0 0 0 ^14,5 h \4 f i 0 0 0 0 ^14,11 0 ^14,13 ^14,14.

(3.29)

The m atrix, ky, is also fully populated and has the form

I,.. _
ij —

' k u k \2 k}3 k i 4 1̂5"
k 21 k}2 2̂3 &24 kfS
&31 k 32 k_33 &34 k 35
k 4\ k 42 k43 fc44 4̂5

■ k s i ks2 k&3 &54 ^55-

(3.30)

where

^11 =  (hnUi,Z+hi2Uiir,)Uj,t+(hi2Ui,Z+h22Ui,r) )Uj,n

612 =  (h\3Ui,t+h23Ui,v )Vj,z+(hi4Ui,t-\-h24Ui,r))Vj,r)

613 =  {hi,nUi,t+h2,i2Ui,ii)Wj

k u  =  {hi7Ui,t+h27Ui,v ) $ xj,t+(hi$Ui,z+h2&Ui,v )$xj,p

kl5 = {hlsUi^ +/l29tA>T) )$i/j)£ +{hl,loUi,t -bh2,\oUi,r) )$yj,n

&21 = {h3lVi,£ )Uj,t +(/l32K',€ + 4̂2Vi,„ )Uj,v

^22 =  {h33Vi,(+h43Vi,v )Vj,t-\-(h34Vi,t+h44Vi,n)Vj,q+huinViVj
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&23 = h u , s V i \ V j , z  + / j3 , i2 k i i€  W j  +  ^ 4 ,i2 K it)  W j

&24 = {h 3 ~ V i , t  + ^4 7 V f,rj ) j +  (^38V ti£  + ^ 4 8 Vijtj )$xj77) +  A ll,1 3 K '$ x j

^'25 = (^ 3 9 V i , i  + ^ 4 9 l /i'i77 ) $ y j i{  + ( h 3 , l o V i , t  +  ̂ 4 ,1oK ,t) )^ y jn ?  +  ̂ l l ,1 4 V |$ y j

&31 = (^1 ,12U j,£  + h 2 , \2 U j ,r )  )W i

&32 = h n t V j W i i t  Jr h \ \ f i V j W i , n + ^ 3 ,12^ ' ^  W i  +  h ^ V i i - n  W i

&33 = ( h s s W u z  + h 65W i ,ri ) W j <  + ( h 56W i ,i  + h e6W i ,ri ) W j ,r> + h u , n W i W j

k  34 = W i  +  / l l2 ,8 $ x j?r) W i  +  ( h S,13W i , t  + ^ 6 ,1 3 l F f ^  ) $ xj

&35 = ^ i2 ,9 ^ y j ,?  W i  +  h \ 2 , \ o $ yj , v W {  +  ( h 5A4W i , z  • \-he , i4W i , JI ) $ w-

k 4i = (^ 7 1 $ x n £  +^81^x«)77 ) U j *  + ( h 7 2 $ x i , £  +  ̂ 72$xi7T) )U j,r i

k 42 = { h 7 3 $ x i i i  +  ̂ 83$xi>?) +  (^ 7 4 $ x t7 {  +  ̂ 74$xt)7 j ) V j , v  +  ̂ 1 3 ,n $ x i k j

k 43 = ^ 1 2 ,7 $ x t,£  W j  +  h u , 8^X157) W j  +  [ h $ ' i 3 W j , t  + ^ 6 ,1 3 ^ ,7 )  ) $ x i

k 44 = ( / l7 7 $ x t ,$  +  ̂ 87$x i,7 j ) $ x j i£  +  (^ 7 8 $ x i i£  +  ̂ 8 8 $ x«i7) )$ x j i7 j +  ̂ 1 3 ,1 3 $ x « $ x j

k 45 = ( h j g $ x i,£ +  h $ g $ x iiT) ) $ y j i{  +  (^7 ,10$x j7£  +  ̂ 8,10$xt77j ) $ y j 57) + f t l3 ,1 4 ^ x « ^ y j

k s i = (/* 9 1 $ y i,£ + /llO ,l^y t7 7 ) ) U j i t  +  (^ 9 2 $ y t)£  +^10 ,2$yi77 j ) U j , v

ks2 = (^ 9 3 $ y n {  + ^1 0 ,3 ^y i)7 ) )V j,{  + { h g 4 $ yi , z  +/jlO ,4$yi77} ) V j , v +  h i 4tu $ y i V j

ks3 = (/l9 ,12$y»,{  + A lO ,1 2 ^y i jtj ) W j  +  (^14 ,5  W j)£  + f t l4 ,6 W j,i j  ) $ vj

k s 4 = (/*97$y« ,( +  /*10,7$y«,7) ) $ x j i*  +  (^ 9 8 $ y i ,{  +  ̂ 1 0 ,8 $ y t jtj ) $ x j 57, +  fc l4 ,1 3 $ y i$ x j

&55 = ( h g g $ yi , z  +ftlO ,9^yi77) ) ^ y i + ( f t 9 , 1 0 $ y : , {  +  Al0,10$yi77) ) ^ y j  777 +  ̂ 14 ,14$y t$y ,j

(3.31)

Finally, the  structure’s stiffness m atrix, K y  is obtained on integrating ky  over the 

com putational domain. The integration is carried out analytically by utilizing sym­

bolic com putational techniques rather than  numerical integration which result in 

significant savings in com putational tim e. The analytical integration is discussed in 

Appendix A.
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3.8 THE GEOMETRIC STIFFNESS MATRIX

The geometric stiffness m atrix  is derived from the work done, Wd, by the applied 

prebuckling loading as given by Equation (3.15) as identified by the linearization 

process. The formulation is done in a similar way as tha t for the linear stiffness 

m atrix beginning with

W d =  -  J ( NxexHL + N ytyNL +  N xylxyNL ) dA =  - Ĵ Wd dA

where the nonlinear strain components from Equation (3.5) are

txNL =  2

1 . 9 / Vo\2 \
W  =  2 ^ 0,v *

7xyNL = —‘UO,y(Vo,y+-jj)—V°,xUo,x+W,x(w,y— — ) (3.32)

This equation can be w ritten in m atrix form as;

’ W,x ' T
’ Nx NXy 0 0 0 0 -Nxy 0  ' ’ W,x

W,y NXy Ny 0 0 0 0 -Ny 0 *»>»

Vo,x 0 0 Nx 0 -Nxy 0 0 0 VOix
VOiy 0 0 0 0 0 -Nxy 0 0 <VQiy
Uo>x 0 0 ~Nxy 0 0 0 0 0 U o,x

Uq ,y 0 0 0 -Nxy 0 Ny 0 1 H UOiy
WQ.R -Nxy ~Ny 0 0 0 0 Ny 0 20.RwR 0 0 0 0 0 Nxy 0 0 wR i

w d =  D PT P  D p (3.33)

Expressing the vector D p in term s of (  and 77

w,x ' ' 0 0 0 0 0 o ' U0 ,{

W,y 0 0 0 0 £n/ >?,* 0 0 ^057)

t>0)X 0 0 >7IX 0 0 0 0 » 0 i{

vOiy 0 0 V,y 0 0 0 0 4 U0lT)

U o,x
* —

£>x 0 0 0 0 0 0 w*
Uo,j/ £iv V,y 0 0 0 0 0 0
20.R 0 0 0 0 0 0

1R 0 v0wR . 0 0 0 0 0 0 0
1R j w
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Dp — Tg Dc (3.34)

The i th term  of the iV-term approximation for uq, uq, and w is

uQ
vo
w

'U i 0 0 ' Ou
> = 0 Vi 0 <a 2i

J 0 0 Wi . “3;.

(3.35)

and, thus D c is expressed as

u o 5$ 'U {* 0 0 ‘
u 0iv Ui,n 0 0

Uo,c 0 Vi* 0

VO 17} 0 Vi,v 0

w,z 0 0 W i*
W,T} 0 0 W i*
Vo 0 V 0
w 0 0 W i .

an
02 i 

. °3i .

or

Dc — ®gi <4gi (3.36)

Therefore, using Equation (3.34) and (3.36), D p can be w ritten in term s of the 

unknown coefficients as

D p =  Tg ©gi cjgi (3.37)

which on substitution into Equation (3.33) for the work done by the applied loading 

gives

Wi = \  JAc qgiT [ ©giT TgT P Tg 0gj ] qgj m d r j

\  JA qgiT [ ©gir © ©gj ] q&i W t d r )

2 qgi { JA ^gij | q g j

where

1 T —

2 q« ^g»j qj

G = Tgr P Tg

(3.38)

p .. _  (=) .T f j  P) .KgIJ — '“'gl «  wgJ
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K g«J
_  [  f [ k g i j ] 3 x 3  [ 0 ] 3x2

Ja c L [ 0  ] 2 x 3  [ 0  ] 2x2 J
\ J \ d £ d T ]

The non-zero entries of m atrix  G  are shown below in a generic manner. Al­

though G  is obtained numerically in the computerized im plementation of the  buckling 

analysis, only the non-zero entries are used in computing the stiffness m atrix  to  avoid 

unnecessary computations. These non-zero entries are identified for N x, N y, and N xy 

combined in-plane loading.

G  =

’ 011 012 013 014 0 0 0 018

021 022 023 024 0 0 0 028

031 032 033 034 0 0 0 0

041 042 043 044 0 0 0 0

0 0 0 0 055 056 057 0

0 0 0 0 065 066 067 0

0 0 0 0 075 076 077 0

.081 082 0 0 0 0 0 0

The m atrix  kg;j is

where

1/  •  •  —  
K g I J  “

k g l l k g l 2 k g l 3

k g l l k g 2 2 k g 2 3

. k g 3 l k g 3 2 k g 3 3 .

(3.39)

(3.40)

kgU =

kg!2 =

kgl3 =

kg21 = 

kg22 = 

kg23 =  

k g 3 1  =  

k g 3 2  =  

kg33 =

{gnUi,£ +g2iUi ,v )Uj,z + (g uU i , z  +g2iUi ,v )Uj ,v

(gi3Ui,( +g23Ui,v )Vj,£ + ( g u U i , t  + 0 2 4 )Vj ,v 

(gi&Ui* + 5 2 8 ^ ' , t) )W j

(gaiVili +041^1)7) ) U j + ( ^ 3 2 V f + 0 4 2 ^7 7 ) )Uj,r)

(033V; ,£ +043^777 )V M  + (g 3 4 V i,£  + 0 4 4  ̂ 777 W jiV  + 0 7 7  K + j

( g r M + g n W W j n

(081 U j + 0 8 2 ^ 7 ,7 , )Wi

(0 5 7 ^ ,4  +067VK.-,t, )Vj

(055V K *  + 065^»77 ) )W j,£  + ( 0 5 6 ^ , 4  +066^1777 )^ j i7 7 (3.41)
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Finally, the structure’s geometric stiffness m atrix, K gy is obtained on integrating 

kgjj over the com putational domain. The integration is carried out analytically by 

utilizing symbolic com putational techniques as discussed in Appendix A.

3.9 T H E  EIG EN V A LU E P R O B L E M

The critical loading is determined on the basis of the principle th a t during buckling the 

elastic strain energy stored in the structure is equal to the work done by the  applied 

loading and th a t adjacent equilibrium configuration exists a t th e  same loading level 

[51, 52]. Having thus obtain the linear elastic strain energy and the work done by the 

applied in-plane loadings in term s of unknown Rayleigh-Ritz coefficient, the potential 

energy can be w ritten as

v  =  9  Xy X ! 9 iT ( Ky — A Kgy ) cy (3.42)

where A is a  load factor used to identify the critical in-plane loadings. Minimizing 

the potential energy with respect to  cy leads to

E E t K u  “  A K gy ) cy =  0 (3.43)
.=i j=i

which is an eigenvalue problem. The eigenvalues and the eigenvectors of this system of 

equations can be obtained using an eigensolver. In this case, the  minimum eigenvalue 

is the critical load factor (A^), and the eigenvector corresponding to  the  minimum 

eigenvalue is the mode shape (qj).

3.10 B U C K L IN G  OF Q U A D R IL A T E R A L  PLA TES

Numerical results are presented for the buckling analyses of quadrilateral plates. 

Isotropic, orthotropic and anisotropic plates with different boundary conditions are 

considered. The present formulation is based on the principle of minim um  total 

potential energy which slightly overpredicts buckling load results compared to  val­

ues obtained from exact solutions. Also the present formulation does not introduce
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any geometric distortion for the skewed plates considered since the mapping between 

the physical and com putational domains does not introduce any errors. For sim­

ply supported conditions, only geometric boundary conditions are prescribed for the 

transverse deflection, and since transverse shear deformations are included, the bend­

ing rotations are independent of the out-of-plane deflection. Results from the  present 

analysis were obtained using a  larger number of term s than necessary for obtaining 

converged solutions. These results are compared with existing solutions and with 

results generated from finite element analyses.

Finite element results were obtained using STAGS [29]. The STAGS finite 

element analyses were carried out using a 30 x 30 mesh of C1 4-node shell elements 

(element denoted as 410). More refined finite element meshes were considered and 

gave the same solutions as the  30 x 30 mesh. In these studies, the prebuckling 

stress state was prescribed to  be uniform, and hence the linear static solution is 

avoided and a precisely defined prestress s ta te  is achieved. In the STAGS models, the 

simply supported boundary conditions along the skewed edges are only established 

approximately; th a t is, only the  out-of-plane deflection is constrained to zero while 

the moment is not prescribed. An additional consideration for the finite element 

solutions for p late geometries with a  non-zero skew angle is the susceptibility of the 

results to the effects of mesh or element distortion. Mesh distortion is known to 

affect the  linear stress solution (e.g., Ref. [54]), and this behavior may also affect the 

buckling solution.

The finite element solutions may become increasingly susceptible to mesh distortion 

effects as the skew angle, increases.

Simulations are also made using VICON [55] wherein a semi-infinite plate is 

analyzed using complex Fourier series with constraints imposed a t points along user- 

defined lines across the plate width at regular intervals to simulate a  finite length 

plate. In the VICON models, the simply supported boundary condition is only
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approximately satisfied along skewed edges, while along horizontal edges the simply 

supported boundary condition is exactly satisfied. As such, the VICON models for 

skewed plates with simply supported boundary conditions represent a plate which 

is continuous over the supports as is the case for an array of skewed panels rather 

than for a plate with moment free edges. Hence, the VICON models do not exactly 

represent a finite p late but approximate it depending on the number and type of 

constraint points and modes. Ten modes and ten constraint points were used in all 

VICON analyses. The VICON results converged from above for an increasing number 

of constraint modes and from below for an increasing number of constraint points.

Analytical results are now presented for four categories of problems. The 

first set of problems involves skewed isotropic plates with simply supported and 

clamped boundary conditions subjected to  axial compression which was originally 

solved by W ittrick [56]. The second set of problems involves skewed orthotropic 

plates subjected to combined loading with simply supported boundary conditions. 

The th ird  set of problems involves skewed anisotropic plates subjected to combined 

loading with various boundary conditions. Finally, the effect of transverse-shear de­

formation is studied for isotropic and anisotropic skewed plates. Results from the 

present analyses include those obtained using “regular” and “Legendre” polynomials 

in order to assess the performance of orthogonal polynomials.

3.10.1 Isotropic P la tes  Subjected  to  U niaxia l C om pression

The buckling of clamped and simply supported isotropic skewed plate under uniaxial 

loading N x has been studied by many researchers (e.g., see Refs. [31], [56]-[62]). Of 

these references, only Kitipornchai, et al. [58] included transverse-shear deforma­

tions using a first-order, shear-deformation theory (FSDT). Results from the present 

analysis are presented and compared with existing results in Tables 3.1 and 3.2. Re­

sults obtained using the STAGS finite element code and VICON are also presented.
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Results are non-dimensionalized and presented as a buckling coefficient defined as

K  =  ^ 4 ^  (3-44)
'Ki D 22

where No- is the critical load, b is width of the plate, xp is the skew angle (see Figure 

3.3), and D 22 is the transverse bending stiffness from classical lam inated plate theory.

The convergence of the buckling coefficient versus the order of polynomial 

for a simply supported isotropic plate with skew angle (xp) of 45 degrees and subjected 

to axial compression is given in Figure 3.5. It can be seen that the solutions obtained 

using Legendre polynomial converge faster than solutions obtained using regular poly­

nomial. Results from the present analysis were obtained using a  66-term series solu­

tion (complete 10^ order polynomial per degree of freedom). Results obtained using 

Legendre polynomials are also obtained using up to  101/l-order polynomials. Results 

given in Tables 3.1 and 3.2 are for cases with all edges simply supported and all edges 

clamped, respectively, with an aspect ratio (a/b ) =  1 and a thickness-to-width ratio 

(i/6) = 0.001.

Results shown in Table 3.1 for simply supported plates indicate th a t all 

solution methods are in excellent agreement for the rectangular plate geometry case 

(zero-skew-angle case). In all cases, the buckling mode shape has one half-wave in 

each direction. The analyses of Wang, et al. [31] and Kitipornchai, et al. [58] 

are essentially identical except tha t the la tter study accounted for transverse-shear 

deformation effects. As such, the results from Ref. [58] are slightly lower in value 

(more flexible) than those of Ref. [31]. However, these plates are very th in  and 

transverse-shear-deformation effects should be negligible. The results from the present 

formulation correlate very well with the results presented by Wang, et al. [31] and 

Kitipornchai, et al. [58]. Those presented by Mizusawa, et al. [61] are below th a t of 

the present analysis results and any other results shown. The STAGS finite element 

results follow the results of the present formulation, but mesh distortion appears to
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influence the results as the skew angle increases. The VICON results are much higher 

in value than any other results except for the zero-skew-angle case. The differences 

for non-zero skew angle cases is due to the fact tha t the constraints on the  skewed 

edges satisfy only the geometric boundary conditions.

The results obtained using Legendre polynomials are closer to  those of Ki­

tipornchai, e t al. [58] and those of STAGS than the results obtained using regular 

polynomials. For skew angle of %p =  45°, converged results are obtained with the use 

of Legendre polynomials up to  10t/l order, while a 12th order regular polynomial with 

91-term series is needed to  obtained converged results. Hence, the R itz functions 

consisting of Legendre polynomials provide a more robust formulation for buckling 

analysis.

Results shown in Table 3.2 for the clamped plates indicate th a t the present 

approach gives buckling coefficients th a t are in good agreement w ith existing results. 

The results obtained using Legendre polynomials are in better agreement with the 

other results than  those obtained using regular polynomials. For a skew angle of 

ip =  45°, the formulation using Legendre polynomials is more robust. In all cases, 

the buckling mode has one half-wave in each direction. The VICON results for these 

cases are very close to  the  other results since clamped boundary conditions can be 

approxim ated easily along the skewed edges. The STAGS analysis results seem to 

be affected less by mesh distortion for clamped boundary conditions than for simply 

supported boundary conditions.

3.10.2 O rthotropic P la tes  under C om bined Loading

Results are presented for orthotropic skewed plates with ratios (a /b) =  1 and (t/b) 

=  0.001. The boundary conditions considered are all edges simply supported. Four 

load cases are also considered for each set of boundary conditions:

• Load Case A: N x =  1, N y =  N xv =  0
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• Load Case B: N x = N y =  1, N xy =  -0.5

• Load Case C: N x =  N y =  1, N xy =  0

• Load Case D: N x =  7Vy =  1, N xy =  0.5

Load Case A corresponds to uniaxial compression; Load Case C corresponds to biaxial 

compression; and Load Cases B and D correspond to combined loading with negative 

and positive in-plane shear, respectively. These analysis results are presented in 

subsequent tables as a  non-dimensional buckling coefficient K given by:

K  =  ^  (3'45> 

Results from the present analyses were obtained using a  78-term series (complete l l t/l 

order polynomials). Results generated using STAGS and VICON are also presented 

and compared.

Orthotropic skewed plates with all edges simply supported and subjected 

to combined loading were also treated  by Kennedy and Prabhakara [62] using the 

Galerkin method with Fourier series as approximation functions to  solve the linearized 

stability equations for thin plates. The series solution satisfies natural boundary 

conditions, while the remaining boundary conditions are satisfied indirectly by a 

procedure given by Green [63]. A similar formulation used by Phillips and Gurdal 

[7] for buckling of orthotropic rhombic plates concluded th a t the solution from such 

a  formulation converged from below. Kennedy and Prabhakara [62] used a 9-term 

series in their solution, while Phillips and Gurdal [7] used a 20-term series which they 

showed to  represent a  converged solution. However, Phillips and Gurdal [7] did not 

consider the  variety of cases considered by Kennedy and Prabhakara [62]. Herein, 

results obtained from the present analysis are compared with those of Ref. [62] for 

cases with D 11/ D 22 =  1 and D n / D 22 =  5 in Tables 3.3 and 3.4, respectively. For 

both cases, £>6 6 / ^ 2 2  =  0.5 and the m ajor Poisson’s ratio i/12 =  0.25.
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Comparison between results from Kennedy and Prabhakara [62] and those 

from the present formulation is very good for the case of ip =  15° and deviate as 

the skew angle increases. However, based on similar results in Ref. [7], the results 

from Ref. [62] converged from below and results from Ref. [62] may not represent 

completely converged solutions. Comparison between finite element results and those 

of the present formulation is also good with small differences occurring as the skew 

angle increases. A contributing factor to  these differences is believed to be related 

to  the increasing mesh distortion in the finite element models which in linear static 

analyses is known to cause a  reduction in stiffness for the STAGS 410 element. The 

buckling coefficients predicted by VICON are all higher than  any other results because 

of the manner in which the simply supported boundary conditions are imposed on 

the skewed edges.

Finally, the sign of the in-plane shear prestress has a significant effect on 

the buckling coefficient for skewed plates. The buckling coefficient for the load case 

with negative shear (Load Case B) is less than tha t for the load case with positive 

shear (Load Case D). Considering the buckling coefficients for simply supported plates 

with D 11/ D 22 =  1 in Table 3.3, the percentage decrease of buckling coefficient of Load 

Case B from Load Case D for skew angle ip =  15° is 13.7 percent. The decrease in 

buckling coefficient is 23.4 and 28.3 for ip =  30° and ip =  45°, respectively. For simply 

supported plates with D n / D 22 = 5 the decrease in buckling coefficient of Load Case 

B from Load Case D is 18.3 percent for ip =  15°, 29.9 percent for ip =  30°, and 34.2 

percent for ip =  45°. Hence, decrease in buckling coefficient due to  the sign of the 

in-plane shear prestress increases with increase in skew angle and also as the degree 

of m aterial orthotropy increases.

Finally, differences between the  present formulation results obtained using 

regular polynomials, and those of STAGS for D 11/ D 22 =  1 are approximately 8 percent 

for ip =  45°, while those for D 11/ D 22 =  5 are approximately 3 percent for ip — 45°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 6

This suggests that errors due to mesh distortion are compensated, in some way, by 

m aterial orthotropy. The results obtained using Legendre polynomials are closer to 

those from STAGS than the results obtained using regular polynomials.

3.10.3 A nisotropic P la tes  under C om bined Loading

Anisotropic skewed plates with an aspect ratio ( a / 6 ) =  1, a thickness-width-ratio 

(t/b)  =  0.001, and two lam inate stacking sequences are considered here. Laminates 

1 and 2 have ply stacking sequences of [±45/90/0], and [45/90/ —45], , respectively. 

The nominal mechanical properties are E n  =  24.5 Msi, E 22 =  1-64 Msi, G n  =  G n  =  

G23 =  0.87 Msi and v n  =  0.3. The flexural orthotropy param eter, /?, and the flexural 

anisotropy parameters 7 t and St defined by Nemeth [64] are given by

{ E n  +  2T>66)

76 =

(Dn D22 y /2
D ie

(^£>22)1/4

k  =  (346)

and used to identify the degrees of orthotropy and anisotropy. For an isotropic plate, 

only /3 is non-zero and has a  value of one. For an orthotropic plate, again only (3 

is nonzero and increases in value as the degree of orthotropy increases. Laminate 

1 has flexural anisotropy param eters of 0.208 and 0.182 for 7 & and St, respectively, 

and a  flexural orthotropy param eter, /?, of 1.99. Lam inate 2 has flexural anisotropy 

param eters of 0.-528 and 0.376 for 7 4  and St, respectively, and a flexural orthotropy 

param eter, /?, of 1.66. The flexural orthotropy param eter of Laminate 1 is of the same 

order as Laminate 2. However, Laminate 2 has higher flexural anisotropy param eters 

than Laminate 1 by at least a factor of two. Hence, Lam inate 2 has a higher degree 

of anisotropy than Lam inate 1. The buckling results are presented in term s of a 

non-dimensional buckling coefficient, given by Equation (3.45).
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Results for anisotropic skewed plates are obtained using a 78-term series 

( l l t/l order) for regular polynomials and Legendre polynomials up to l l tA order. Re­

sults are given in Tables 3.5 and 3.6 for all edges simply supported, in Tables 3.7 

and 3.8 for the horizontal edges simply supported and skewed edges clamped, and 

in Tables 3.9 and 3.10 for all edges clamped. The results in Tables 3.5, 3.7 and 

3.9 are for Laminate 1 and those in Tables 3.6, 3.8 and 3.10 are for Laminate 2. 

For simply supported boundary conditions, the VICON results are above any other 

results since only out-of-plane displacement boundary conditions are imposed along 

the skewed boundary lines of the semi-infinite plate. For simply supported-clamped 

and clamped-clamped boundary conditions, the results from the present formulation 

are in good agreement w ith VICON since the clamped boundary conditions on the 

skewed edges can be approxim ated easily. The STAGS results compare very well 

with those of the present formulation especially for simply supported-clamped and 

clamped-clamped boundary conditions.

The sign of the in-plane shear prestress has considerable effect on the buck­

ling coefficient of anisotropic skewed plates. Considering Laminate 1, the  percentage 

decrease of the buckling coefficient for Load Case B from Load Case D is 26.4 percent 

for ip =  30° and 30.1 percent for ip =  45° for simply supported plates. For simply sup­

ported plate made of Lam inate 2, the decrease in buckling coefficient for Load Case 

B from Load Case D is 30.56 and 31.9 percent for ip =  30° and ip =  45°, respectively. 

It is seen th a t for Laminate 2 the percentage decrease in buckling coefficient for Load 

Case B from Load Case D for ip =  30° and ip =  45° are close to each other whereas for 

Lam inate 1 the percentage decrease in buckling coefficient of Load Case B from Load 

case D for ip = 30° and ip =  45° are not close to  each other. The buckling coefficients 

for anisotropic plates with other boundary conditions reflect the same observation. 

Hence, increasing degree of anisotropy has more effect on the buckling coefficients for 

positive shear loading conditions.
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3.10.4  Effect o f  T ransverse-Shear D eform ation

The effect of transverse-shear deformation is studied by considering isotropic and 

anisotropic skewed plates with different thickness-to-width ratios, t / b , and a fixed 

plate aspect ratio (a/6) of 1. Clamped and simply supported boundary conditions are 

considered, and the plates are subjected to Load Case D only. Regular polynomials are 

used for clamped plates, while Legendre polynomials are used for simply supported 

plates, since results obtained using Legendre polynomials are in better agreement 

with STAGS results for simply supported plates.

The present analysis results obtained using up to l l </l order polynomial 

series solution are shown in Table 3.11 for clamped plates and Table 3.12 for simply 

supported plates. Considering the isotropic clamped plate, the buckling coefficients 

for t / b  =  0.001 and 0.01 differ by less than  one percent for both skew angles considered. 

As the plate thickness increases ( t /b  =  0.1), a significant decrease in the value of the 

buckling coefficients occurs due to  shear flexibility. The buckling coefficients for the 

t / b  =  0.1 case are reduced by 16 percent and 36 percent compared to the t /b  =  0.01 

case for skew angles of 30° and 45°, respectively. Considering the simply supported 

plate, the buckling coefficients for t / b  =  0.001 and 0.01 differ by less than four percent 

for skew angle of 30° and 45°, respectively. The buckling coefficients for the t /b  =

0.1 case are reduced by 22 and 27 percent compared to the t /b  — 0.01 case for skew 

angles of 30° and 45°, respectively. These results indicate th a t transverse-shear effects 

become more im portant as the p late thickness increases, as the skew angle increases 

and, as the boundary fixity is relaxed.

For clamped anisotropic plates, the buckling coefficients for plate thickness 

to  width ratio (t/b) =  0.001 and 0.01 differ by less than two percent for both skew 

angles and both laminates as shown in Table 3.11. As the plate thickness increases 

further ( t /b = 0.1), a  significant decrease in the value of buckling coefficient occurs.
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For both laminates, this decrease is 49 percent and 59 percent compared to the values 

obtained for the t /b  =  0.01 case for skew angles of 30° and 45°, respectively. For simply 

supported anisotropic plates, the buckling coefficients for t / b  =  0.001 and 0.01 differs 

by less than 3 percent for skew angle of 30°. However, for skew angle of 45°, the 

buckling coefficients for t /b  =  0.001 and 0.01 differ by over twice the  difference noted 

for the 30° skew angle case. The buckling coefficients for t / b  =  0.1 are reduced by 

50 to 54 percent when compared to values for t /b  =  0.01 and a  skew angle of 30° 

whereas the decrease is 59 percent for skew angle of 45°. These results indicate th a t 

for lam inated anisotropic plates the buckling coefficient is significantly reduced as the 

thickness increases. For the 30° case, the change in buckling coefficient for anisotropic 

plates with t /b  =  0.01 to t /b  =  0.1 is nearly three times th a t for the isotropic plates 

with the same t /b  ratios. As the skew angle increases, the difference in buckling 

coefficients between the isotropic and the anisotropic plates decreases.

Therefore, the size of the skew angle significantly affects the buckling re­

sponse of thick skewed plates. The percentage decrease for Lam inate 1 and Laminate 

2 is more than tha t for isotropic plate since laminated composites have a  lower shear 

modulus compared to isotropic material.

3.11 B U C K L IN G  OF T R IA N G U L A R  PLA TE S

Numerical results are presented for buckling of triangular plates with isotropic and 

anisotropic material properties. Various geometries, combined in-plane loading con­

ditions, and boundary conditions are considered. Some results obtained using the 

present method are compared with results from existing series solutions. The effect 

of transverse-shear deformation on the buckling coefficients of triangular plates is also 

studied.
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3.11.1 Isotropic Triangular P la tes

The results for isotropic triangular plates are expressed in term s of a non-dimensional 

buckling coefficient defined as

*  “  (3'47)

where ACT is the  critical eigenvalue, 6 is the height of the triangle, and £>22 is the 

transverse p late bending stiffness. The types of triangular plates (see Figure 3.4) and 

boundary conditions considered are:

1. Simply supported equilateral triangle [34].

2. Right-angled isosceles triangle with simply supported edges [36].

3. Right-angled isosceles triangle with simply supported perpendicular edges and 

clamped hypotenuse [36].

4. Right-angled isosceles triangle with clamped perpendicular edges and simply 

supported hypotenuse [36],

5. Simply supported 30° — 60° — 90° triangle [38].

The results obtained using the present analysis are shown in Tables 3.13 

and Table 3.14 for different in-plane loading conditions. The number of term s used 

in the polynomials for all these cases is 45 since as shown in Figure 3.6 for the 

different types of simply supported triangular plates subjected to uniform compression 

( N x =  N y =  1), the buckling coefficients converged well before 45 terms. These 

triangular plates have a thickness-to-height ratio (t/b) of 0.0003, and transverse- 

shear effects are negligible for these thin isotropic plates. Agreement between results 

obtained using the present method and existing results is very good.
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3.11.2 S im ply Supported  A nisotropic Triangular P la tes

Buckling loads for simply supported anisotropic equilateral triangular plates, right- 

angled isosceles triangular plates, and 30° —60° —90° triangular plates are considered 

in this study. The height of each triangle is 10.0 inches (see Figure 3.4). The load 

cases considered are:

1. Load Case A: N x =  N y =  1 , N xy = —0.5

2. Load Case B: N x = N y = l , N xy =  0.0

3. Load Case C: N x =  N y =  1, N xy =  0.5

The lam inate stacking sequences considered herein are the same as the two considered 

for the anisotropic quadrilateral plates described in Section 3.10.3. Laminates 1 and 

2 have ply stacking sequences of [±45/90/0], and [45/90/ —45], with 0.005-inch-thick 

and 0.007-inch-thick plies, respectively. The nominal ply mechanical properties used 

are: E n  =  24.5 Msi; E 22 =  1-64 Msi; G n  =  <^13 =  G23 =  0.87 Msi and 1/12 =  0.3 and 

Laminate 2 being more anisotropic than Laminate 1 as discussed in the Section 3.10.3. 

Converged results are obtained using 36 terms (complete eighth-order polynomials in 

two variables) for each displacement component are shown in Table 3.15.

For the right-angled isosceles triangular plate and the 30° — 60° — 90° triangu­

lar plate, made of Laminate 1, the buckling loads for Load Case C are approximately 

1.4 times the buckling loads for Load Case A. For the equilateral triangular plate, the 

buckling load for Load Case C is approximately 1.1 times the buckling load for Load 

Case A. For the right-angled isosceles triangular plate and the 30° — 60° — 90° triangu­

lar plate made of Laminate 2, the buckling loads for Load Case C are approximately 

1.6 times the buckling loads for Load Case A. For the equilateral triangular plate, 

the buckling load for Load Case C is approximately 1.3 tim es the buckling load for 

Load Case A. These results indicate tha t the buckling load is significantly influenced 

by the symmetry of the triangular plate geometry and m aterial anisotropy when the
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shear load direction is reversed. The equilateral triangle has three lines of symmetry, 

the right-angled isosceles triangle has one line of sym m etry and the 30° — 60° — 90° 

triangle has no lines of symmetry. The differences between buckling loads obtained 

using FSDT from those obtained using CLPT are small.

3.11.3  Effect o f  Transverse-Shear D eform ation

The effect of transverse-shear deformation is studied by considering simply supported 

triangular plates with isot ratio, t/b. The triangular plates are subjected to uniform 

compression (N x =  N y =  1). The results for right-angled isosceles and equilateral tri­

angular plates are shown in Table 3.16 and are expressed in term s of a non-dimensional 

buckling coefficient as defined by equation (3.47). The num ber of term s used for each 

displacement component is 45, which corresponds to  a  com plete ninth-order polyno­

mial in two variables.

For both the isotropic triangular plates and anisotropic triangular plates 

made of Laminates 1 and 2, the effect of transverse-shear deformation had no signifi­

cant effect on the buckling coefficient results when the t /b  ratio  is increased from 0.001 

to 0.01. W hen the t /b  ratio  is increased from 0.01 to  0.1 for the isotropic triangular 

plates, the buckling coefficient reduces by 18 percent for the right-angled isosceles 

triangle and 15 percent for the equilateral triangle. The corresponding reduction 

in buckling coefficients for Laminate 1 are 42 percent for the right-angled isosceles 

triangle and 38 percent for the equilateral triangle. For right-angled triangular and 

equilateral triangular plates made of Laminate 2, the  reduction is approximately the 

same a t 35 percent. For typical grid-stiffened composite fuselage structure designs, 

the t /b  ratio for triangular plates is greater than 0.025 and, hence transverse-shear 

effects need to  be included in the analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 3

3.12 N U M E R IC A L  R ESULTS F O R  C U R V E D  PA NELS

Numerical results are presented for anisotropic curved panels with length of 60.0 in., 

arc length of 18.85 in., and a radius of 6.0 in., subjected to  axial compression as shown 

in Figure 3.7. The panel is simply supported on all edges since the bending rotations 

are not constrained on any edge. The other geometric boundary conditions are shown 

in Figure 3.7. The nominal mechanical properties are E \ i  =  13.75 Msi, E n  =  1.03 

Msi, Cr 12 =  G\z = G23 =  0.42 Msi and uu  =  0.25. The thickness of the 10-ply panel 

is 0.12 in. The lam inate stacking sequence is [± 0 / ±  8/9]s with 0° <  6  <  90° which 

is the winding angle. Each ply is of the same thickness.

The critical buckling load for this curved panel is computed using Sanders- 

Koiter shell theory, Love’s shell theory, and Donnell’s shell theory through the “tracer” 

coefficients discussed in Section 3.2. This problem ([65]) displays significant differ­

ence in critical load between Sanders-Koiter shell theory and Donnell’s shell theory, 

depending on the winding angle 6 . This problem was proposed by Professor Isaac El- 

ishakoff and communicated by Dr. David Bushnell. The buckling loads for the curved 

panel using Sanders-Koiter shell theory, Love’s shell theory, and Donnell’s shell the­

ory are shown in Figure 3.8 for various values of 0. The buckling loads were obtained 

using Ritz function consisting of Legendre polynomials up to 11*A order. For the 

case 8  = 90°, Legendre polynomials up to  191/l order was used. These buckling loads 

are also compared with results obtained using the STAGS finite element code ([29]), 

where a  mesh of 30 x 30 elements (480 Element) is used. The 480 Element accounts 

for transverse shear flexibilities. The curved panel is modeled as an assembly of flat 

elements in STAGS and hence the results obtained using STAGS are independent of 

any shell theory.

The results obtained using Love’s shell theory are very close to th a t obtained 

using Sanders-Koiter shell theory. The STAGS finite element results are also in
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good agreement with those obtained using Love’s and Sanders-Koiter shell theory. 

The results obtained using the Donnell’s shell theory are close to results obtained 

by Love’s and Sanders-Koiter shell theory for 9 between 0° and about 15°. For 

9 >  15°, Donnell’s shell theory overestimates the buckling loads when compared to 

Sanders-Koiter or Love’s shell theory. The difference in buckling loads between those 

obtained by Sanders-Koiter and Donnell’s theory is largest for 50° <  9 <  70°. After 

9 =  70°, the difference between the buckling loads obtained by Sanders-Koiter and 

Donnell decreases, and a t 9 =  90° the loads obtained using Donnell’s and Sanders- 

Koiter shell theory are close to  each other. According to Ref. [12], Donnell’s theory 

give accurate results for cylindrical panels tha t are relatively flat before deformation 

and for complete cylindrical shells whose displacement components in the deformed 

configuration are rapidly varying functions of the circumferential coordinate. Such 

shells are sometimes term ed quasi-shallow. Figure 3.9 shows the buckling mode shapes 

obtained from STAGS for various values of 9. For 9 = 0 ° and and 90°, there are more 

than two half-waves in the curved direction. Hence, the buckling loads obtained by 

Donnell’s theory is in good agreement with the other results. For 9 =  10°, there are 

still more than two half-waves on part of the panel and therefore, the result from 

Donnell’s theory is still in agreement w ith the other results. For 9 =  20° and 30°, 

there is only one half-wave in the curved direction, and for 9 =  40°, 50°, 60° and 70°, 

there are no half-wave in the curved direction on part of the panel, therefore for these 

values of 9, the results obtained by Donnell’s theory are not in good agreement with 

the other results. For 9 =  80°, the deformation pattern  is more in a skewed direction 

rather than along the curved direction, therefore the result obtained by Donnell’s 

theory is not in agreement with the other results.

Buckling loads for 9 =  70° for different radius to thickness ratio R / t  are 

shown in Table 3.17. Buckling loads for an isotropic case with nominal mechanical 

properties of E n  =  10.0 Msi and v\i  =  0.30 for different R / t  are also shown.
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For R / t  =  25, the percentage difference between the result of Donnell’s theory and 

Sanders-Koiter theory is approximately 23 % for both cases. For the [±70/ ±  70/70)3 

lam inate, the difference between the result of Sanders-Koiter theory and Donnell’s 

theory is approximately 20 % for R / t  =  50 and 100. For R / t  =  200 and 600, the 

difference is 8.3 % and 4.8 %, respectively. For the isotropic curved panel, the differ­

ence between the result of Sanders-Koiter theory and Donnell’s theory approximately 

11 % for R / t  =  50 and less than 5 % for the other R / t  ratios. Since, the results 

of the isotropic case also show differences between results of different shell theories 

m oderate R / t  ratios, it is concluded tha t such discrepancy between various shell the­

ories is not mainly due to anisotropy, but rather to the geometry of the problem. 

Figure 3.10 shows the contour plots of the mode shape of the radial displacement (u>) 

obtained from the Rayleigh-Ritz buckling analysis using Sanders-Koiter theory, for 

the [±70/ ±  70/70], lam inate for different R / t  ratio. It is seen that only the mode 

shape for R / t  =  600 has more than two half-waves in the curved directions, hence, 

the results of Donnell’s theory and Sanders-Koiter are close to each other.
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3.13 SU M M A R Y

A Rayleigh-Ritz method combined with a variational formulation and a first-order, 

transverse-shear-deformation theory and various shell theories has been presented for 

buckling of arbitrary quadrilateral panels and general triangular panels with various 

boundary conditions and subjected to  combined inplane loading. The Ritz func­

tions consist of polynomials which include “circulation” functions to impose various 

boundary conditions. Numerical results are obtained for isotropic, orthotropic and 

anisotropic plates with skewed geometries, triangular geometries, and curved panels. 

The present analysis method does not exhibit any mesh distortion sensitivity, ac­

curately models parallelogram-shaped geometries, and general triangular geometries, 

accounts for material anisotropy, and can accommodate combined loading conditions. 

It also accounts for different shell theories.

For the skew plates, the sensitivity of the buckling coefficient to the  direction 

of the in-plane shear prestress application is studied for increasing skew angles. The 

influence of the skew angle on the buckling coefficient is more pronounced as the 

skew angle increases for thin plates as well as thick plates. The results also suggest 

tha t material anisotropy accentuates this effect. For the analysis cases studied here, 

the present formulation provides accurate buckling results for skewed isotropic and 

anisotropic plates which will be useful in the preliminary design of stiffened structures.

The direction of the in-plane shear load is studied for different triangular 

geometries and degrees of material anisotropies. The symmetry of the triangular 

plate geometry seems to influence the buckling load more than the degree of material 

anisotropy for the cases considered in this study. The effect of transverse-shear defor­

m ation is studied for different triangular geometries which confirms the importance 

of including these effects in the buckling analysis of composite plates.
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Accurate buckling load results for isotropic and anisotropic triangular plates and 

will be useful in the preliminary design of grid-stiffened structures.

Buckling loads for curved panels subjected to axial compression are obtained 

using Sanders-Koiter, Love’s, and Donnell’s shell theory. There are significant dif­

ference between buckling loads obtained using Sanders-Koiter or Love’s shell theory 

and Donnell’s shell theory for the curved panel and m aterial considered. Results 

show tha t Donnell’ theory is in close agreement with other theories for large radius 

to  thickness ratio or for very thin shell and also when displacements in the deformed 

configuration vary rapidly with the circumferential coordinate.
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Table 3.1 Buckling coefficient, K,  for simply supported isotropic plates, a/b

ip = 0 ° 0  =  15° iP =  30° rp = 45°

Mizuswa, et al. [61] 
Wang et al. [31] 
Kitipornchai, e t al. [58] 
VICON 
STAGS

4.000
4.000
4.000
4.000 
4.003

3.778
3.860
3.825 
4.126
3.825

3.160
3.480
3.331
4.250
3.288

2.160
2.650
2.526
3.387
2.426

Present analysis:

Regular polynomial 3.999 3.832 3.380 2.709*
Legendre polynomial 3.999 3.825 3.320 2.536

“Using 91 terms, Present analysis gives 2.630

Table 3.2 Buckling coefficient, K ,  for clamped isotropic plates, a/b  =  1 .

oO 
1

II ip =  15° II C
O o o rp = 45°

W ittrick [56]
Durvasula [57]
Wang et al. [31] 
Kitipornchai, e t al. [58] 
VICON 
STAGS

10.080
10.080
10.080
10.080
10.081
10.081

9.462
9.479
9.431
9.445
9.416

7.670
7.639 
7.734 
7.615
7.639 
7.579

5.410
5.110
5.170
5.028
5.025
4.980

Present analysis:

Regular polynomial 10.073 9.432 7.621 5.154*
Legendre polynomial 10.073 9.431 7.615 5.026

‘Using 91 term s, Present analysis gives 5.051
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Table 3.3 Buckling coefficient, A', for simply supported skewed plates, a/b =

D 1 1 / D 22 =  !•

Kennedy 
et al. [62]

VICON STAGS Present Analysis 
Regular Legendre 

polynomial polynomial
Load Case xp = 15'0

A - 4.739 4.770 4.773 4.768
B 2.150 2.186 2.114 2.116 2.114
C 2.340 2.435 2.296 2.298 2.296
D 2.490 2.707 2.452 2.454 2.451

OC
OII-3- 9

A - 7.555 6.217 6.356 6.282
B 2.300 2.775 2.340 2.383 2.363
C 2.640 3.333 2.677 2.730 2.704
D 3.020 4.009 3.054 3.121 3.086

xp =  45‘J

A - 13.548 10.108 11.043 10.582
B 2.900 4.412 3.119 3.342 3.239
C 3.380 5.368 3.656 3.938 3.805
D 4.000 6.732 4.334 4.697 4.519

Table 3.4 Buckling coefficient, K ,  for simply supported skewed plates, a/b  =

D 1 1 / D 22 =  5.

Kennedy VICON STAGS Present Analysis
et al. [62] Regular

polynomial
Legendre

polynomial
Load Case xp = 15°

A - 9.295 9.122 9.131 9.129
B 3.869 3.875 3.883 3.888 3.887
C 4.290 4.353 4.319 4.324 4.323
D - 4.730 4.922 4.759 4.763 4.762

xp =  30°
A - 13.750 11.601 11.700 11.669
B 3.810 4.317 3.930 3.962 3.955
C 4.480 5.220 4.654 4.693 4.684
D 5.440 6.550 5.613 5.661 5.647

xp = 45°
A - 25.170 18.606 19.269 18.986
B 4.350 5.440 4.649 4.787 4.739
C 5.260 6.740 5.626 5.802 5.738
D 6.500 8.800 7.060 7.296 7.204
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Table 3.5 Buckling coefficient, K ,  for simply supported anisotropic skewed plates,

[±45/90/0]s laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomial

II C
O o o

B 2.725 2.373 2.396 2.382
C 3.269 2.758 2.787 2.767
D 4.017 3.227 3.264 3.237

=  45°

B 4.153 3.001 3.155 3.068
C 5.070 3.553 3.749 3.635
D 6.415 4.286 4.545 4.390

Table 3.6 Buckling coefficient, K , for simply supported anisotropic skewed plates,

[45/90/ — 45]a laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomial

QoC
OII

i

B 1.552 1.484 1.488 1.486
C 1.870 1.764 1.769 1.766
O 2.321 2.139 2.144 2.140

0  =  45°

B 2.510 2.023 2.106 2.061
C 3.040 2.419 2.523 2.465
D 3.800 2.969 3.105 3.027
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Table 3.7 Buckling coefficient, A', for simply supported-clamped anisotropic

skewed plates, [±45/90/0]s laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomial
0  =  30°

B 4.170 4.130 4.158 4.155
C 4.901 4.850 4.884 4.878
D 5.718 5.644 5.685 5.675

ijf =  45°

B 5.791 5.722 5.849 5.812
C 6.990 6.917 7.085 7.025
D 8.512 8.455 8 . 6 8 8 8.588

Table 3.8 Buckling coefficient, K ,  for simply supported-clamped anisotropic 

skewed plates, [45/90/ — 45]s laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomial
0  =  30°

B 1.976 1.967 1.973 1.972
C 2.388 2.374 2.381 2.380
D 2.942 2.915 2.923 2.921

=  45°

B 2.857 2.832 2.872 2.855
C 3.480 3.450 3.505 3.477
D 4.360 4.327 4.407 4.359
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Table 3.9 Buckling coefficient, K , for clamped anisotropic skewed plates,

[±45/90/0 js laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomial

II C
O o o

B 6.134 6.090 6.126 6.125
C 7.043 6.988 7.019 7.019
D 7.717 7.657 7.680 7.677

xl> = 45°

B 8.743 8.629 8.737 8.731
C 10.154 10.008 1 0 . 1 2 1 1 0 . 1 0 2

D 11.273 1 1 . 2 1 2 11.302 11.243

Table 3.10 Buckling coefficient, K ,  for clamped anisotropic skewed plates,

[±45/90/0]j laminate.

Load VICON STAGS Present Analysis
Case Regular Legendre

polynomial polynomialOOC
OII-Sr-

B 3.783 3.765 3.784 3.782
C 4.590 4.576 4.589 4.588
D 5.453 5.436 5.440 5.439

=  45°

B 5.617 5.478 5.602 5.592
C 6.850 6.807 6.850 6.848
D 8.107 8.083 8.106 8.087
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Table 3.11 Buckling coefficient, K,  for clamped skewed plates with different

thickness-to-width ratio.

Regular polynomial
Isotropic Lam inate 1 Laminate 2

t /b =  30°

0 . 0 0 1 7.138 7.680 5.440
0 . 0 1 0 7.117 7.596 5.382
0 . 1 0 0 5.970 3.868 2.727

4> =  45°

0 . 0 0 1 10.601 11.302 8.106
0 . 0 1 0 10.525 11.106 7.972
0 . 1 0 0 6.719 4.636 3.299

Table 3.12 Buckling coefficient, K ,  for simply supported skewed plates with 

different thickness-to-width ratio.

Legendre polynomial
Isotropic Lam inate 1 Laminate 2

t /b

OOC
OII

0 . 0 0 1 2.904 3.245 2.739
0 . 0 1 0 2.872 3.153 2.690
0 . 1 0 0 2.350 2.041 1.793

il> = 45°

0 . 0 0 1 4.368 4.436 3.903
. 0 . 0 1 0 4.209 4.170 3.721

0 . 1 0 0 3.305 2.621 2.333
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Table 3.13 Buckling coefficient, K, for simply supported triangular isotropic plates.

Triangle Loading Buckling Coefficient
Geometry Ref. [34] 

(CLPT)
Present
(CLPT)

Present
(FSDT)

Equilateral
triangle

N x = N y = 1 , 
JV.y =  0 4.0000 4.0038 4.0038

Buckling Coefficient
Ref. [36] 
(CLPT)

Present
(CLPT)

Present
(FSDT)

Right-Angled
isosceles
triangle

N x = Ny  =  0, 
X xy =  - 1

N x = Ny = 1 , 
Nxy = 0

11.5500

5.0000

11.5580

5.0051

11.5580

5.0051

Nx = Ny = 6.29, 
N xy =  11.57 1 . 0 0 0 0 0.9984 0.9984

Buckling Coefficient
Ref. [38] 
(CLPT)

Present
(CLPT)

Present
(FSDT)

30° -  60° -  90° 
triangle

N x = N y = 1,
N Xy =  0 9.3300 9.3370 9.3370
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Table 3.14 Buckling coefficient, K, for right-angled isosceles triangular plates with

different boundary conditions.

Boundary
condition

Loading Buckling Coefficient 
Ref. [36] Present Present 
(CLPT) (CLPT) (FSDT)

Perpendicular edges 
simply supported

N x = Ny = 0
N xy = - 1 2 2 . 0 2 0 0 21.9500 21.9500

Hypotenuse clamped
N x = N y = l  
N xy = 0 7.8200 7.8171 7.8171

N x = Ny = 8.23 
N xy =  12.34 1 . 0 0 0 0 0.9898 0.9898

Perpendicular edges 
clamped

N x = N y = 0 
N xy = - 1 17.1200 16.9390 16.9390

Hypotenuse 
simply supported N x = N y = l 

N xy = 0 9.3500 9.3420 9.3420

N x =  N y =  10.9 
N xy =  12.34 1 . 0 0 0 0 1 . 0 0 0 1 1 . 0 0 0 1
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Table 3.15 Buckling load results for simply supported triangular anisotropic plates.

Triangle Load Laminate 1 Lam inate 2
Geometry Case N ^ l b s / i n ) Ncr^bs/ in)

(FSDT) (CLPT) (FSDT) (CLPT)

30° -  60° -  90°
Triangle A 39.035 39.135 26.795 26.885

B 45.850 45.999 33.192 33.306
C 53.960 54.108 42.3444 42.495

Right-Angled
Isosceles Triangle A 21.464 21.515 15.574 15.597

B 25.578 25.642 19.547 19.577
C 30.567 30.635 25.328 25.372

Equilateral
Triangle A 23.702 23.752 20.780 20.789

B 25.140 25.197 23.626 23.629
C 25.746 25.804 26.311 26.354

Table 3.16 Buckling coefficient, K, for simply supported triangular plates with 

different thickness to height ratios (t/b).

Right-Angled Isosceles Equilateral
 Triangle__________________ Triangle

t /b 0 . 0 0 1 0 . 0 1 0 0 . 1 0 0 0 .0 0 1 0 . 0 1 0 0 . 1 0 0

Isotropic 4.9998 4.9813 4.1014 3.9999 3.9885 3.3864

Laminate 1 5.1528 5.0670 2.9445 4.2697 4.2179 2.6340

Laminate 2 2.6575 2.6311 1.7220 2.6517 2.6263 1.7194
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Table 3.17 Buckling loads for curved panel with different R/t ratio.

t
(in.)

R/t
(lbs/in.)

love
(lbs/in.)

d̂on
(lbs/in.)

( t̂ — k -̂ dorj) 
d̂on

[±70/ ±  70/70], 10 x 0.024 25 1.21e4 1.22e4 1.6e4 -23.7%

1 0  x 0 . 0 1 2 50 3417.1 3432.0 4303.1 -20.5%

1 0  x 0.006 1 0 0 920.6 922.2 1163.6 -2 0 .8 %

10 x 0.003 2 0 0 264.1 264.2 288.7 -8.3%

1 0  x 0 . 0 0 1 600 32.83 32.86 34.50 -4.8%

stags =  3349.1 for R/t  = 50

ISOTROPIC 0.24 25 4.24e4 4.27e4 5.51e4 -22.98%

0 . 1 2 50 1.22e4 1.24e4 1.39e4 -11.61%

0.06 1 0 0 3527.9 3533.6 3663.0 -3.70%

0.03 2 0 0 916.5 917.4 964.6 -4.97%

0 . 0 1 600 113.6 113.6 116.9 -2.75%

Ktags =  1.236e4 for R/t  = 50
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dy = Rd0

Mx

Figure 3.1 Sign convention for cylindrical shell element
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Physical
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Computational
Domain

y

Physical Computational
Domain Domain

Figure 3.2 Transformation from physical to computational domain.
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►  x

Figure 3.3 Skewed plate geometry.

xRight-angle
triangle

y

30-60-90°Equilateral
triangle triangle

Figure 3.4 Triangular plate geometries.
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Fig. 3.5 Convergence of buckling coefficient with increasing order of polynomial for 
simply supported, isotropic, 4 5 ° skew plate subjected to axial compression.
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Fig. 3.6 Convergence of buckling coefficient with number of term s used in R itz func­
tion for different simply supported isotropic triangular plates subjected to  compres­
sion (N x =  N y = 1 ).
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Fig. 3.8 Comparisons of buckling loads for curved panel from different theories.
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Fig. 3.9 Buckling mode shape of curved panel for different winding angle 9.
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Figure 3.10 Mode shape for [70/-70/70/-70/70] s laminate with 

different R/t ratios.
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Chapter 4

OPTIMAL DESIGN OF 
GRID-STIFFENED 

COMPOSITE PANELS USING 
GLOBAL AND LOCAL 

BUCKLING ANALYSES

An aircraft in flight is subjected to air loads which are imposed by maneuver and 

gust conditions. These external loads are resisted by the structure, and an inter­

nal load distribution is established based on the structural layout and given exter­

nal loads. These internal loads, which depend on the location of the panel in the 

aircraft structure, may result in either overall panel buckling, buckling of the skin 

between stiffeners, or stiffener crippling. Hence, an efficient and accurate method 

for developing a buckle-resistant design of general grid-stiffened panels subjected to 

combined in-plane loading conditions is needed in order to identify the most effective 

grid-stiffened geometries for structural panels for different locations in fuselage and 

wing structures. The identification of effective grid-stiffened geometries also requires 

optim ization techniques in addition to accurate structural analyses. Thus, optim iza­

tion of composite structures has drawn considerable attention in the recent years. 

Composite plates have been optimized to  maximize buckling loads as presented in 

the literature survey of Reference [6 6 ]. According to  Reference [6 6 ], the basic design
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problem is to determine the stacking sequence of the composite lam inate since in 

many practical applications the ply orientations are limited to  either 0°, 90° or ±45° 

and, the  lam inate thicknesses can only be integer multiples of commercially available 

ply thicknesses. Thus, the optim ization of a lam inate stacking sequence involved 

discrete design variables due to  m anufacturing constraints and represent an integer 

programming problem.

Design optimization of stiffened panels for buckling has also drawn attention 

in recent years (e.g., [7]-[9], [22], [6 6 ], [67]). These researchers did not consider the 

stiffener spacings as design variables even though the skin thickness, stiffener thick­

ness and stiffener height were design variables. For the most part, gradient-based 

optimizers were used in References [9], [7], [22] and [67]. However in Reference [8 ], 

the ranking method was used as the  optimizer, while in Reference [6 6 ], the genetic 

algorithm, [25], was used to optim ize the lam inate stacking sequence in the skin and 

stiffener. Geodesically stiffened panels were considered in References [22] and [7], 

while orthogrid panels were considered in Reference [8 ] and axially stiffened panels 

were considered in References [67] and [6 6 ]. The optim ization of grid-stiffened panels 

with stiffener spacings and stiffener layout as discrete design variables pose the same 

problems as tha t of optimizing the lam inate stacking sequence discussed in Reference 

[6 6 ]. Since stiffener spacings are discrete variables, the optim um  grid-stiffened geome­

try may contain any combination of axial, transverse and diagonal stiffeners, and the 

stiffener and skin thicknesses can only be integer multiples of commercially available 

ply thicknesses. The genetic algorithm has emerged as a viable tool for dealing both 

with the  problem of discrete variables and with the need to  find multiple minima. 

The genetic algorithm evolves the  design by randomly searching the design space 

and m aintaining a family of design for each generation (or iteration). This process 

provides multiple near-optimum designs for evaluation and selection rather than a 

single-design configuration provided by gradient-based algorithms.

R e p r o d u c e d  w ith  p e r m is s io n  o f  th e  c o p y r ig h t  o w n e r . F u r th er  r ep ro d u c tio n  p ro h ib ited  w ith o u t p e r m is s io n .



ss

This chapter presents the analysis strategy and design strategy for designing 

grid-stiffened composite panels subjected to combined loads and a global buckling de­

sign constraint. The global buckling constraint of the grid-stiffened panel is im portant 

so as to prevent localized skin buckling. This constraint reduces the risk of failure 

of the panel by stiffener-skin separation (e.g., Reference [6 8 ]) and also avoids per­

turbing the aerodynamic performance caused by skin buckling of the wing or fuselage 

surfaces.

4.1 PANEL BUCKLING ANALYSIS

The analysis and design of grid-stiffened composite panels subjected to combined 

loads require several key steps. In the present study, acceptable designs are those 

which buckle globally and do not exhibit any local skin buckling or stiffener crippling. 

The first step is to assess the global buckling response of the grid-stiffened panel. Once 

this global buckling response is determined, the second step is to determine the local 

skin buckling response for general the quadrilateral and /o r triangular skin segments 

th a t occur locally between stiffeners. The th ird  step is to determ ine whether stiffener 

buckling or stiffener crippling has occurred a t this global load level. This sequence 

of steps is performed repeatedly in a  design cycle until an optim um  or near-optimum 

design is obtained.

The global buckling analysis is based on a Rayleigh-Ritz method using a 

first-order, shear-deformation theory and an improved smeared-stiffener modeling ap­

proach as discussed in Chapter 3 and 2, respectively. The buckling analysis of local 

skin-segments is also based on a Rayleigh-Ritz analysis using a first-order, shear- 

deformation theory and accounts for material anisotropy. Boundary restraints on the 

skin segments are provided by the stiffeners, and hence, the analysis must be able to 

accommodate a  variety of boundary conditions and a variety of skin segment shapes. 

In most cases, the shape of the skin segments for grid-stiffened panels will be either
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a general quadrilateral or a triangle. Analysis procedures presented in Chapter 3 are 

used for the local buckling analyses.

In addition to analyzing the local skin segment for buckling, the local stiff­

ener segments must be analyzed to determ ine whether stiffener crippling will occur. 

Reference [9] provides a method for determ ining the buckling load of a stiffener seg­

ment. Accordingly, the stiffener segment a t the nodes or intersection point of stiffeners 

are assumed to  be clamped while the stiffener-skin attachm ent is assumed to be sim­

ple support. From Ref. [9], the crippling load of the stiffener is N crip and is given

by

4N ci

s*
where

i f  «  +  T r ]  <4 - '>l l 2 L f [ l  -  (vtiEv/Eun n2 J

where s z =  is a shear correction factor, L \ =  2L  is the length of the  stiffener,

h is the width of the stiffener, and t 3 is the thickness of the stiffener.

These global and local analysis methods have been integrated into a com­

puter code to provide a com putationally efficient tool for predicting the buckling load 

of a  grid-stiffened composite panel.

4.2 PA NEL D E S IG N  P R O C E D U R E

The design of grid-stiffened composite panels requires that many of the design vari­

ables, such as stiffener spacing and stiffener thicknesses may only take on certain dis­

crete values rather than vary continuously over the design space, and often a  “family” 

of good designs is needed rather than a  single-point design due to manufacturing re­

quirements. Gradient-based methods for structural optimization are not appropriate 

in this case.
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Over the last several years, researchers have investigated the use of genetic 

algorithm as a method for “evolving” a  given design problem to a family of near­

optimum designs (e.g., see Reference [25], [6 6 ] and [69]). Based on Darwin’s theory of 

survival-of-the-fittest, the genetic algorithm involves the random  creation of a design 

population th a t “evolves” towards some definition of fitness. The genetic algorithm 

is attractive due to their simplicity of approach in discrete variable combinatorics. 

The genetic algorithm can be used directly to solve unconstrained optim ization prob­

lems, while constrained optim ization must first be transformed to  an unconstrained 

optimization problem (e.g., use of an exterior penalty function). Stochastic processes 

are used to generate an initial population of individual designs and the process then 

applies principles of natural selection and survival of the fittest to find improved de­

signs. Furthermore, since the  discrete design procedure works with a population of 

designs it can explore a  large area of design space and climb different hills. This is 

a m ajor advantage as the converged solution contains many optim a of comparable 

performance. The cost of having a large number of function evaluations is offset by 

the fact th a t a large num ber of optim a solutions are now available. In a  gradient- 

based optimization procedure, only a single-point design, usually the extrem um  to 

the starting point, is obtained. However, different starting points can be tried to 

increase the chance of locating the global optimum as well as other local optim a. The 

genetic algorithm produces a  population or family of good designs which m ay include 

the global optimal design, ra ther than  a single design. Hence, it is an appropriate 

tool for designing general grid-stiffened panels.

4.3 DESIGN PROBLEM DEFINITION

The present design problem is to  minimize the weight per unit area of a  grid-stiffened 

composite panel given the design loading condition, the length and w idth of the 

panel, the m aterial properties for the skin and stiffeners, and the boundary conditions
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of the panel. The design variables include stiffener spacings (a, b), the stacking 

sequence of the skin, stiffener layout, stiffener thickness (ts), and stiffener height 

(hi =  hi =  hz = h) as shown in Figure 4.1. All stiffeners are assumed to be of the 

same height and thickness for manufacturing and assembly reasons. The design sought 

here is a  panel of minimum weight in a certain design space which buckles globally at 

the design loads. This design problem can be defined by setting up the optimization 

procedures in the following way. First, the global buckling load is assumed to  be a 

scalar multiple of design loads and has the form

N x = Xg N i , N y = \ GN 2, N xy = XGN u  (4.2)

where N 2, N \ 2 are the applied in-plane prebuckling loads. These values represent 

the design loads for the grid-stiffened panel. Second, the design constraints imposed 

on panel include

1 . The critical buckling load should be greater than or equal to the design loads, 

th a t is, A„. >  1 .

2 . Skin segments should not buckle at the critical buckling load, th a t is, A,* >  1 .

3. Stiffener segments should not cripple a t the critical buckling load, th a t is, 

Ai, A2 , A3  >  1 where Ai, A2 , A3 is the crippling load factor of the x-direction 

stiffener, y-direction stiffener and diagonal stiffener, respectively.

The general form of each constraint equation is w ritten as

9j =  ( ^ 7  -  1) <  0.0 i  =  1,..., N c (4.3)

Finally, the “Fitness” expression based on exterior penalty function approach is

Fitness =  ( - - , S — -) =  M ax-------------------rj——-----------------------  (4.4)
'F (X ,r,)' lV(X) + r ,E f  [|Si(X)| +ft(X )]’ 1

where X =  design variable vector

F(X, r,) =  Modified objective function
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W (X ) =  weight of panel per unit area

r« [|^j(X)| + (X)]2 =  penalty function

Q =  normalizing constant

N e =  Num ber of design constraints

r,- =  penalty param eter

i =  generation or iteration cycle in the optimization procedure.

Once the global buckling load factor has been determ ined using the improved 

smeared stiffener theory, the loads acting on the stiffener and skin segments have to 

be determ ined by distributing the loads based on the extensional stiffness of the skin 

and the stiffener. The procedure for distributing the applied loads for a  general grid- 

stiffened panel involves three steps. First, the extensional stiffness coefficients for 

grid-stiffened panel are com puted as follows (Ref. [17]):

( a \ _  2(;4n)i h 2(v4h) 3  h sin30
{ A n ) T  =  ----- £------+ ----------jr---------- +  (A n),

/ a \ _  2(/4n ) 2 h 2 (j4h ) 3 h cos30
[A22)T — -------------1----------------------h (^ 2 2 ) 3

, 3 \ 2(y4n) 3  h cos0 s in20 , , A A
\ A g6)T — --------------------------- F (>166)3

(4.5)

where ( A n ) r  is total smeared axial extensional stiffness of the grid-stiffened panel, 

( ^ 2 2 ) 7  is the total smeared transverse extensional stiffness of the grid-stiffened panel, 

(>^66)t is the  total smeared in-plane shear stiffness of the grid stiffened panel, (i4n)i, 

( A n ) 2 > ( A n ) 3 are the extensional stiffness of the axial, transverse and diagonal stiff­

eners, respectively, (A<j)a is the extensional stiffness of th e  skin, 0 is th e  orientation 

of the diagonal stiffener, and h is the height of the stiffener. Second, th e  loads carried 

by the skin segment which could be either a general parallelogram-shaped geometry 

or a  general triangular-shaped geometry, a t the global buckling load are

/ A T  \    (Al l)* AT (All)* x KT
(^ x ) s fe  =  t~ j— r - 7VI  =  - r - A c i V i

( A n ) r  ( A n ) r
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( M \  -  (A ™)» x
{ v U  "  (-4 2 !) t  ’  “  ( ^ ) t  G 2 

(,n„u  =  r r T -K , = Tr4L̂ N tl (4.6)
[Aee)T (,>i66jT

These values then correspond to  the design loads used for the in-plane prebuckling 

load in the skin-segment local buckling com putation. If the critical buckling load 

factor of the skin segment A** is greater than or equal to one, then the skin-segment 

buckling load is greater than  or equal the global buckling load of the grid-stiffened 

panel. Third, the loads carried by each stiffener type are computed. The load carried 

by the axial stiffener is

(Nx )i =  =  XiNcrip (4.7)
(-Anjr

where is determined using Equation (4.1), and the critical buckling load factor,

Ai, of the axial stiffener has to be greater than or equal to one. The load carried by

the transverse stiffener is

(Wx)2 =  (4.8)
[A22)T

and the critical buckling load factor, A2, of the transverse stiffener has to be greater 

than or equal to one. The load in the diagonal stiffeners has components from the 

axial, transverse, and in-plane shear loadings and is given by

(■̂ 1 ) 3  =  NdxsinO + Ndycos0 +  (Ndxy)xcos9 +  (Ndxy)ysin9 =  A 3iVcrip

where

Ndx „
( A u ) t  

\A22)T
/ kt  ̂ (A n )3cos9sin29 b
{ Ndxy ) x =  ----------- ------------------N xy

(/l66)T 0,

( A W ,  =  ( 4 . 9 )
{AeejT

Ndx is the contribution from the axial in-plane loading, Ndv is the contribution from 

the transverse inplane loading, (Ndxy)x is the contribution from the in-plane shear
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loading along the edge where x  is constant, and (Ndxy)y is the contribution from the 

in-plane shear loading along the edge where y is constant. The critical buckling load 

factor, A3, of the diagonal stiffener has to be greater than or equal to one.

The weight per unit area of the grid-stiffened panel is 

W  =  £ j ( ^ i  +  w2 4- w3 +  w3)

where

w\ = 2 h a t s 

W2 = 2 h b t, 

u>3 =  2 h t  s/a1 +  b2

w3 -  a b t,kin (4.10)

u>i is the volume of the axial stiffeners in the unit cell, w 2 is the volume of the 

transverse stiffeners in the unit cell, w3 is the volume of the diagonal stiffeners in the 

unit cell, w3 is the volume of the skin in the unit cell, tsjt,n is the thickness of skin, 

and p is the mass density of the material.

4.4 DESIGN PROCESS BASED ON GENETIC
ALGORITHM

Implementation of the genetic algorithm is shown schematically in Figure 4.2. The 

design process begins with a random selection of a specified num ber of designs which 

comprise the  initial population (i.e., first generation) for the genetic algorithm. M ate­

rial properties, length and width of panel, boundary conditions of the stiffened panel, 

and design loadings are input to the analysis processor routine. The buckling analysis 

is performed which provides the critical eigenvalues for the global buckling response 

of the grid-stiffened panel and the local buckling response of the skin and stiffener 

segments, which also computes the weight per unit area of th e  grid-stjjfencu panel. 

This procedure is repeated for each design configuration in the population.
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The “fitness” processor then evaluates the “fitness” of each design using Equation 

(4.4) and assign a rank based on the fitness expression or objective function. The 

current population of design configurations is then processed by the genetic operators 

(crossover, m utation, and perm utation) to create a new population of design config­

urations for the next generations which combines the m ost desirable characteristics 

of previous generations. Designs from previous generations may be replaced by new 

ones (i.e., children) except for the “most fit” designs (i.e., parents) which are always 

included in the next generation. The process is repeated until design convergence is 

obtained, which is defined herein by specifying a  maximum number of generations 

th a t may occur w ithout improvement in the best design. The design procedure will 

now be dem onstrated on flat and curved grid stiffened panels.

4.5 NUMERICAL RESULTS FOR FLAT 
GRID-STIFFENED PANELS

A composite grid-stiffened panel 20.0-in. long and 56.0-in. wide representative of 

a  generic transport helicopter fuselage structural component is used as an example 

to  dem onstrate the capabilities of the design optim ization tool using the genetic 

algorithm and global and local analyses. The panel is subjected to  load cases shown 

in Table 4.1. The panel was optimized for a  load case of 400.0 lbs/in. in axial 

compression, which is considered to be the m ost critical load case for this panel, the 

stopping criterion is 30 generations, and the population size is eight. The probabilities 

used for crossover, m utation, and perm utation are 1.0, 0.10, and 0.95, respectively. 

Also, the penalty param eter r,- is kept constant for all iterations. Two skin laminate 

stacking sequences were chosen. The first stacking sequence is [60 /0 /—60],, the second 

one is [±45/90/0],, and each ply is 0.006-in. thick. Both of these laminates are quasi- 

isotropic. The stiffener is made of 0° m aterial only. The nominal ply mechanical 

properties used are: E n  = 20.2 Msi; E 2% =  1.9 Msi;
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G u  =  G13 =  G 23 =  0.73 Msi and ui2 = 0.3. The mass density of the m aterial p, 

is 0.0570 lb s /in .3  The grid-stilFened panel has simply supported boundary conditions 

on all edges, and the skin segments are considered to be simply supported also. 

The grid-stiffened panel is assumed to have only axial and diagonal stiffeners. The 

axial and transverse stiffener spacings considered were such tha t all stiffener patterns 

closely approxim ate an isogrid configuration. Hence, the axial stiffener spacing a and 

transverse stiffener spacing b are not independent but are considered as a single design 

variable, (i.e., (a,, 6 ,)  is one variable). The stiffener height h and thickness t ,  are also 

design variables. The design space explored is indicated in Table 4.2, where due to 

manufacturing constraints, the height of the triangle {ba/ 2) is kept between 2.9 and 

6.0 in., and the  stiffener aspect ratio (h / t a) is kept between 4.5 and 9.0. Each design 

variable can assume only eight discrete values.

In the buckling analyses, regular polynomials are used for the buckling anal­

yses since it is com putationally faster than  the analysis using Legendre polynomials. 

The grid-stiffened panel is simply supported on all edges and so are the  local skin 

segments.

The results obtained by using the present design optimization tool are shown 

in Table 4.3 for the skin with a lam inate stacking sequence of [60/0/ — 60], and in 

Table 4.4 for the skin with a  lam inate stacking sequence of [±45/90/0],. Since only 

three design variables are present, the  size of each population of the genetic algorithm 

is taken as eight. Only the  five best designs are given for each of the two grid-stiffened 

panels with different skin stacking sequences.

For the grid-stiffened panel with the [60/0/ — 60], skin lam inate, the first 

three designs in Table 4.3 correspond to  grid-stiffened panels th a t buckle globally at 

a  load factor of Ac, since the  local buckling load factor of the skin segment A,*, axial 

stiffener segment Ai, and diagonal stiffener segment A3 , are greater than  one. The 

th ird  design however, has a global buckling load factor (Ag ) of 0.969, which may still
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be an acceptable design since Xq is very close to one. The fourth and fifth designs 

have local buckling load factors of the skin segment less than one, and therefore the 

buckling mode of these designs will contain local skin buckling a t a load factor equal 

to  Ag x Xsk. The buckling load factor for the fourth and fifth designs is 1.244 and 

1.089, respectively, however the weight per unit area of these two panels are about 

18 percent greater than  those of the first three designs. From Table 4.3, only the 

stiffener height appears to  be evolving while the stiffener spacing appears to have 

locked on to a specific value. Therefore, the  best design for the grid-stiffened panel 

with [60/0/ — 60], skin lam inate is the first design given in Table 4.3 within the 

design space considered. The behavior of the genetic algorithm convergence for the 

grid-stiffened panel with [60/0/ — 60], skin lam inate, is shown in Figure 4.3 and is 

very rapid.

For the grid-stiffened panel with [±45/90/0], skin lam inate, the designs 

shown in Table 4.4 are of grid-stiffened panels th a t buckle globally at the indicated 

load factor of Ag, since the local buckling load factors (A,*, Aj, A3 ) are all greater than 

one. The first and third designs have a global buckling load factor Ag of 0.995 and 

0.991, respectively, and could still acceptable designs. The second and th ird  designs 

have different stiffener spacing, and yet the global buckling load factor and weight 

per unit area of these two panels are very close to one another. The fourth and fifth 

designs show the same behavior also. Hence, the ability of the genetic algorithm to 

obtain multiple optim a of comparable performance is dem onstrated. The best design 

for the grid-stiffened panel with a [±45/90/0], skin lam inate is the first design given 

in Table 4.4. The convergence behavior of the genetic algorithm for the grid-stiffened 

panel with a [±45/90/0], skin lam inate is also shown in Figure 4.3.
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The best designs with the [60/0/ — 60], skin lam inate and the [±45/90/0], 

skin lam inate are now assessed using the load cases given in Table 4.1. The results are 

shown in Table 4.5 for the grid-stiffened panel with [60/0/ — 60], skin lam inate and 

in Table 4.6 for the grid-stiffened panel with [±45/90/0], skin laminate. Additional 

load cases are also considered in order to obtain a profile for the critical loads of these 

panels. They are 400.0 lbs/in. axial compression and 10.0 lbs/in. axial compression 

with 100.0 lbs/in. in-plane shear. Both panels buckle globally for most of the load 

cases considered. Both grid-stiffened panels exhibit crippling of the diagonal stiffener 

for load case of N xy =  100 lbs.in., Nx =  10 lbs/in. In addition, the grid-stiffened 

panel with the [±45/90/0], skin laminate exhibits local skin buckling for load case 

of N x =  174.0 lbs/in. and N xy =  154.0 lbs/in. The global buckling load factor Xq 

for this load case is 2.2382 and the skin local buckling load factor A,* is 0.9855, and 

hence the buckling load factor is 2.2057 for this load case of N x =  174.0 lbs/in . and 

N xy =  154.0 lbs/in. As shown in Figure 4.4, the designed load cases are within the 

critical loading profile or envelope for the grid-stiffened panels with [60/0/ — 60], skin 

lam inate and [±45/90/0], skin laminate. The grid-stiffened panel with [60/0/ — 60], 

skin lam inate is a better design than the one with [±45/90/0], skin laminate, since it 

has a weight of 0.549 lb s/ft2 compared to 0.578 lb s/ft2 for the la tter panel. Also the 

former design has a larger critical load envelope compared to  the grid-stiffened panel 

with [±45/90/0], skin lam inate (see Figure 4.4).

4.6 NUMERICAL RESULTS FOR CURVED 
GRID-STIFFENED PANELS

The fuselage design of a generic wide-body transport aircraft is typically divided into 

three different quadrants as shown in Figure 4.5. These quadrants include a  crown 

panel, two side panels and a keel panel. A side quadrant panel of a fuselage structure 

representative of a generic transport aircraft fuselage section is considered herein and
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designed for buckling. The side quadrant panel is shown in Figure 4.6 and longerons 

and frames divide the side quadrant panel into four curved panels. Each panel is 

2 2 .0 -in. long and 2 2 .0 -in. wide with a  radius of 1 2 0 .0 -in. in the width direction. 

Panel 1 is the forward top panel of the side quadrant panel and is subjected to a load 

case of N x =  1250 lbs/in., N xy =  250 lbs/in ., and N y =  2200 lbs/in. hoop tension. 

Panel 2 is the aft top panel of the side quadrant panel and is subjected to a load case 

of N x =  300 lbs/in., Nxy =  1350 lbs/in ., and N y =  2200 lbs/in . hoop tension. Panel 

3 is the bottom  top panel of the side quadrant panel and is subjected to a  load case 

of N x =  2250 lbs/in ., Nxy = 250 lbs/in ., and N y =  2200 lbs/in. hoop tension. The 

panel hoop tension is due to internal pressurization of the fuselage. The nominal ply 

mechanical properties used are: E n  =  2 0 . 2  Msi; E 22 =  1.9 Msi; G n  =  G 13 =  G23 =  

0.73 Msi and =  0.3. The mass density of the m aterial p is 0.0570 lb s/in . 3 The 

grid-stiffened panel has simply supported boundary conditions on all edges, and the 

individual skin segments are considered to  be simply supported also. The stiffeners 

are m ade of unidirectional material. The stopping criteria for the  design evolution is 

25 generations with no improvement in the “best ” design, and the population size 

is twelve. The probabilities used for crossover, m utation, and perm utation are 1.0, 

0.10, and 0.95, respectively. Also, the penalty param eter r,- is kept constant for all 

iterations.

The design variables are the axial stiffener spacing (a), the transverse stiff­

ener spacing (by, the stiffener height (h),  stiffener thickness ( ta), the stacking se­

quence of the skin laminate (L A M I ) ,  and the geometry of the stiffening configuration 

(I G E O ). The design variables are shown in Table 4.7, and the design space explored 

is shown in Table 4.8 for Panels 1 and 3, and in Table 4.9 for Panel 2. In either 

design space, the minimum stiffener spacing is restricted to  two inches, and the as­

pect ratio  of the stiffener (h / t 3) was kept between 3.5 and 10.5 due to manufacturing 

constraints. Each design variable can assume eight discrete values.
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In the buckling analyses, regular polynomials are used for the buckling anal­

yses since it is com putationally faster than the analysis using Legendre polynomials. 

The grid-stiffened panel is simply supported on all edges and so are the local skin 

segments. Sanders-Koiter shell theory is used.

The results obtained for Panel 1 using the present design optim ization tool 

are shown in Table 4.10. Eight best designs are presented here. All panel designs 

presented in Table 4.10 buckle globally at the corresponding global load factor of Ag. 

The buckling load factor of some stiffener segments are negative, which means that 

these stiffener segments are in tension and do not buckle due to the in-plane loads 

considered. Hence, the m agnitude of negative buckling load factors for rib segments 

are assumed to be one in computing the objective function (Equation 4.4). The 

optimum value of the stiffening geometry variable (I G E O ) for all the panels is six 

(i.e., the grid-stiffened panel has only transverse and diagonal stiffeners). The first six 

best designs have the same stiffener spacings of a = 4.889 in., and b =  6.2857 in., while 

the stiffener height (h), the stiffener thickness (fa), and the skin-laminate stacking 

sequence (L A M I ) are evolving. However, the stiffener height is evolving more than 

the stiffener thickness (t a), and the skin lam inate stacking sequence (L A M I ). The 

first four designs have a stiffener thickness of 0.06 in., while the fifth and sixth design 

have stiffener thickness of 0.09 in. and 0.102 in., respectively. The fourth design 

has a skin lam inate stacking sequence of [± 4 5 / 0 )2* (L A M I  =  1), while the other 

five designs have' a  skin lam inate stacking sequence of [±45/90)2* (L A M I  =  2). The 

seventh and eighth designs have the same stiffener spacings (a =  4.0 in., and b =  5.5 

in.), and stiffener thickness (t s =  0.09 in.), but the stiffener height and skin lam inate 

stacking sequence are different from the first six designs. The best design for Panel 1 

is the first design in Table 4.10. The convergence behavior of the genetic algorithm 

for Panel 1 is shown in Figure 4.7, and convergence is achieved after 75 iterations (i.e, 

75 generations).
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The results obtained for Panel 2 using the present optimization tool are 

shown in Table 4.11. The panel designs presented in Table 4.11 buckle globally 

a t the corresponding global load factor of Ag. The genetic algorithm produces a 

large pool of good designs in this case. Most of the good designs are panels with 

only axial stiffeners. These axially stiffened panels have stiffener spacings such as 

those of the first three designs presented in Table 4.10, bu t with different stiffener 

height and thickness. The fourth design in Table 4.10 has transverse and diagonal 

stiffeners (I G E O  =  6 ); however, this design is 14 percent heavier than the first design. 

Panels stiffened in only one direction do not typically have good damage tolerance 

characteristics, since multiple or redundant load paths for load redistribution are 

absent. Therefore, the design process was performed with a modified design space for 

the stiffening geometry wherein values of I G E O  =  1 and 2 are replaced by I G E O  =  

5 and 6  respectively. T hat is, all designs will include stiffeners in multiple directions. 

The results for this optimization are shown in Table 4.12. The panels presented in 

Table 4.12 buckle globally a t the corresponding global load factor of Ag- Here again, 

the genetic algorithm produces a large pool of good designs with axial and transverse 

stiffeners (I G E O  =  3). These panels have stiffener spacing such as the first six 

designs of Table 4.12, with variation in stiffener height and thickness and w ith a skin 

lam inate stacking sequence of [± 4 5 / 0 ]23 (L A M I  =  1 ) or [±45/90]23 (L A M I  =  2). 

The weight of each panel is comparable to  the  weight of the axially stiffened panels 

presented in Table 4.11. The seventh design has both axial and diagonal stiffeners 

{ IG E O  — 5), while the eighth design is the same as the fourth design presented in 

Table 4.11. The best design for Panel 2 is the design with transverse and diagonal 

stiffeners, which is the fourth design in Table 4.11 and eighth design in Table 4.12. 

This design is preferred over the lighter weight axially stiffened panel and th e  axially 

and transversely stiffened panel since panel w ith diagonal stiffening is more damage 

tolerant. It is also preferred over the seventh design in Table 4.12, since it has more
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stiffeners than the axially and diagonally stiffened and its weight is close to tha t of 

the latter. The convergence behavior of the genetic algorithm for Panel 2 is shown 

in Figure 4.7. The convergence is faster when there is no restriction on the stiffening 

geometry variable (IGEO).

The results obtained for Panel 3 using the present optimization tool is shown 

in Table 4.13. The panel designs presented in Table 4.13 buckle globally at the 

corresponding global load factor of Xq . The best design is obtained with stiffener 

spacings of a =  5.5 in. and b =  4.4 in. The panel has transverse and diagonal 

stiffeners (I G E O  =  6 ) and a skin laminate stacking sequence of [±45/90]2a (L A M I  

=  2). The second design is essentially same as the first design with the stiffener 

height being different. The other good designs are panels with axial and transverse 

stiffeners, which are about 36 percent heavier than the first two design. The best 

design for Panel 3 is the first design in Table 4.13 and the convergence is achieved 

after 29 iterations as shown in Figure 4.7.

The best design obtained for Panel 3 is now assessed for the design load 

cases used for Panel 1 and Panel 2. The results are shown in Table 4.14. For the load 

case corresponding to  Panel 1, the panel buckles globally a t a buckling load factor 

of 2.114, and hence, this design represents a conservative design for these loads. 

However, for the load case corresponding to Panel 2, the buckling'load factor of the 

diagonal stiffener is 0.255, and hence, the buckling deformation contains local buckling 

of the diagonal stiffener a t a load factor of X3 x  Xq = 1.172. Therefore, this design 

also represents a  conservative design for these loads, of Panel 3. The best design for 

Panel 3 can also be used for Panel 1 and Panel 2 with a  weight penalty of 6.7 and 22.9 

percent, respectively, when compared to their respective best design. For a  fuselage 

structure, it is desirable tha t all the panels have the same stiffening pattern. This is 

not only due to manufacturing consideration, but also due to  structural consideration. 

The region where stiffeners from two different panel m eet will have to be joined and
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is a critical area if the stiffening patterns of the two panels are not the same. To 

alleviate th a t problem, these nodes have to be reinforced, and could result in a higher 

weight penalty than using Panel 3 configuration also for Panels 1 and 2.

4.6.1 C urved P anels w ithou t H oop Tension

Since the hoop tension of N y =  2200 lbs/in. due to fuselage internal pressurization is 

a stabilizing in-plane load, the design optimization is performed for the three panels 

without any hoop tension (i.e., N y = 0). The results are shown in Table 4.15, Table 

4.16, and Table 4.17 for Panel 1, Panel 2, and Panel 3, respectively. The seven best 

designs obtained by the genetic algorithm for Panel 1 are shown in Table 4.15. All the 

designs presented in Table 4.15 buckle globally a t the corresponding global buckling 

load factor \ q . The top two best designs have diagonal stiffeners only (I G E O = $ ). 

These two designs are essentially the same, except for the stiffener height. The next 

three best designs have diagonal and transverse stiffeners ( IGEO=6),  and have the 

same stiffener spacing and skin-laminate stacking sequence, but with different stiffener 

height and thickness. The sixth design has axial and transverse stiffeners, whereas the 

seventh design has transverse and diagonal stiffeners. The first four designs presented 

in Table 4.15 are lighter than the best design for Panel 1 with the hoop tension by 1.7 

to 4.1 percent. These designs have skin-laminate stacking sequence of [± 4 5 / 0 2 )2* and 

an axial stiffener spacing of 11.0 in. compared to a skin-laminate stacking sequence 

of [±45/90)2* and an axial stiffener spacing of 4.889 in. for the best design of Panel 

1 with the  hoop tension.

For Panel 2, the eight best designs are shown in Table 4.16. All designs 

presented in Table 4.16 buckle globally at the corresponding global buckling load 

factor A©. The first five designs have diagonal stiffeners only, and the last three 

designs have axial and diagonal stiffeners only. Here all the design variables are 

evolving without being locked on any particular value. Only the first two designs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

have a weight per unit area comparable to the best design for Panel 2 with the hoop 

tension load included (fourth design in Table 4.11). These two panels are about 7 

percent heavier. O ptim ization results for Panel 3 are shown in Table 4.17 where only 

the five best design are shown. These designs buckle globally a t their corresponding 

global buckling load factor A a- The first four designs have transverse and diagonal 

stiffeners only, while the fifth design have axial and diagonal stiffeners only. The first 

four designs have a small variation in value for the axial and transverse spacings, 

and stiffener height and thickness, and the weight per unit area of these designs are 

comparable to each other. The best design in Table 4.17 is heavier than the best 

design for Panel 3 with the hoop tension by 11.6 percent.

The best design for Panel 3 w ithout the  hoop tension load is now assessed 

for the load case of Panel 1 and Panel 2 w ithout the hoop tension load. The results 

are shown in Table 4.18. For the load case corresponding to  Panel 1 w ithout the 

hoop tension, the panel buckles globally at a global buckling load factor of 1.797. 

Therefore, the panel does not buckle for the load case corresponding to that of Panel 

1 without the hoop tension. However, for the load case corresponding to  Panel 2 

without the hoop tension, the buckling load factor of the diagonal stiffener is 0.697, 

and hence the buckling deformation contains local buckling of the diagonal stiffener 

at a load factor of A3 x Ag =  1.719. Therefore, the panel does not buckle a t a load 

case corresponding to th a t of Panel 3 without the  hoop tension. The best design for 

Panel 3 can be used for Panel 1 and Panel 2 with a  weight penalty of 24.3 and 28.5 

percent respectively, when compared to their respective best design.

4.7 SUMMARY

A minimum-weight design optimization tool for grid-stiffened panels with a global 

buckling constraint using global and local analyses and the genetic algorithm has 

been developed. Design variables used are the axial and transverse stiffener spacing,
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stiffener height and thickness, the skin-laminate stacking sequence, and the stiffen­

ing geometry. Results for flat and curved grid-stiffened panels indicate th a t the best 

designs obtained by the genetic algorithm depend mostly on the  applied load cases. 

In most combined applied load cases, the  best designs have diagonal stiffeners. How­

ever in certain cases, the best design obtained by using the genetic algorithm solely 

based on buckling considerations may not be suitable for structural application due 

to considerations related to  manufacturing, joining, and dam age tolerance. In this 

case, the pool of good designs obtained by the genetic algorithm is useful in providing 

alternative design options for a  given structural application.
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Table 4.1 Service load cases for flat composite grid-stiffened panel.

Load case Ni  (lbs/in.) N n  (lbs/in.)
1 396.0 130.0
2 326.0 178.0
3 271.0 139.0
4 174.0 154.0

Table 4.2 Design space.

Design Variable 1 Design Variable 2 Design Variable 3

Stiffener spacing stiffener stiffener
axial, in. transverse, in. height, in. thickness, in.

(a.) (M (h) (*.)

6.667 1 1 . 2 0 0 0.49375 0.060
5.714 10.182 0.50000 0.066
5.000 8.615 0.50625 0.072
4.444 8 . 0 0 0 0.51250 0.078
4.444 7.467 0.51875 • 0.084
4.000 7.000 0.52500 0.090
3.636 6 . 2 2 2 0.53125 0.096
3.333 5.894 0.53750 0 . 1 0 2

Table 4.3 Best designs obtained by genetic algorithm for grid-stiffened panel with 

skin of [60/0/ — 60]a stacking sequence.

a
(in.)

b
(in.)

h
(in.)

t .
(in.)

Ag Asfe \
•'■1 A3 weight

lb s /f t2

3.333 5.894 0.50000 0.060 1 . 0 0 2 1.044 2.072 34.594 0.549
3.333 5.894 0.50625 0.060 1.034 1.016 2 . 0 0 2 33.421 0.552
3.333 5.894 0.49375 0.060 0.969 1.073 2.147 35.856 0.545
3.333 5.894 0.51875 0.084 1.403 0.887 3.241 54.130 0.663
3.636 6 . 2 2 2 0.53750 0.084 1.487 0.733 2.669 41.656 0.651
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Table 4.4 Best designs obtained by genetic algorithm for grid-stiffened panel with 

skin of [±45/0/90], stacking sequence.

a
(in.)

b
(in.)

h
(in.)

t.
(in.)

Ag A,t Ai A3 weight
lb s /ft2

5.000 8.615 0.53750 0.060 0.995 1.024 1.341 21.208 0.578
4.444 8 . 0 0 0 0.53750 0.060 1.047 1.179 1.470 25.608 0.596
4.444 7.467 0.51250 0.060 0.991 1.392 1.637 24.507 0.594
4.444 7.467 0.51250 0.072 1.139 1.285 2.146 32.120 0.634
4.444 8 . 0 0 0 0.53750 0.072 1.207 1.084 1.920 33.458 0.636

Table 4.5 Buckling loads for grid-stiffened panel with skin of [60/0/ — 60], stacking

sequence.

N x N xy Buckling load Buckling
(lbs/in.) (lbs/in.) factor (A) mode

400.0 0.000 1 . 0 0 2 global buckling
396.0* 130.0* 1.015 global buckling
326.0* 178.0* 1.226 global buckling
271.0* 139.0* 1.477 global buckling
174.0* 154.0* 2.268 global buckling
1 0 . 0 0 1 0 0 . 0 6.407 diagonal stiffener

buckling
* refers to  service load cases from Table 4.1
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Table 4.6 Buckling loads for grid-stiffened panel with skin of [±45/0/90], stacking

sequence.

N x
(lbs/in.)

N Xy
(lbs/in.)

Buckling load 
factor (A)

Buckling
mode

400.0 0.000 0.995 global buckling
396.0* 130.0* 1 . 0 0 2 global buckling
326.0* 178.0* 1 .2 1 1 global buckling
271.0* 139.0* 1.458 global buckling
174.0* 154.0* 2.206 skin buckling,

AG =  2.238, \ 3k = 0.985
1 0 .0 0 1 0 0 .0 4.145 diagonal stiffener 

buckling
* refers to service load cases from Table 4.1

Table 4.7 Design variables.

Design variable
1 axial stiffener spacing, a
2 transverse stiffener spacing, b
3 stiffener height, h
4 stiffener thickness, f.
5 stacking sequence of skin laminate, L A M I
6 stiffening geometry, IG E O
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Table 4.8 Design space for curved Panel 1 and 3.

Design Variable
1 2 3 4 5 6

a , in. b, in. h , in. in. L A M I I G E O

1 11.000 11.000 0.49375 0.060 [±45/0]2j axial
stiffening

2 8.800 8.800 0.50000 0.066 [±45/90]2j transverse
stiffening

3 7.333 7.333 0.50625 0.072 [±45/0/90]2s orthogrid
stiffening

4 6.286 6.286 0.51250 0.078 [±45/02]2j diagonal
stiffening

5 5.500 5.500 0.51875 0.084 [±45/902]23 axial and diagonal 
stiffening

6 4.889 4.889 0.52500 0.090 [±45/02/90]2j transverse and diagonal 
stiffening

7 4.400 4.400 0.53125 0.096 [±45/0/902]2i axial, transverse and 
diagonal stiffening

8 4.000 4.000 0.53750 0 . 1 0 2 [±45/02/902]2a no stiffening
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Table 4.9 Design space for curved Panel 2.

Design Variable
1 2 3 4 5 6

a, in. 6 , in. h , in. f4, in. L A M I IG E O

1 11.000 11.000 0.30 0.042 [±45/0]2. axial
stiffening

2 8.800 8.800 0.32 0.048 [±45/90]24 transverse
stiffening

0O 7.333 7.333 0.34 0.054 [±45/0/90]24 orthogrid
stiffening

4 6.286 6.286 0.36 0.060 [±45/02 ] 24 diagonal
stiffening

5 5.500 5.500 0.38 0.066 [±45/902]2s axial and diagonal 
stiffening

6 4.889 4.889 0.40 0.072 [±45/02/90]24 transverse and diagonal 
stiffening

7 4.400 4.400 0.42 0.078 [±45/0 /902]24 axial, transverse and 
diagonal stiffening

8 4.000 4.000 0.44 0.084 [±45/02/902]2j no stiffening
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Table 4.10 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 1.

Design variables Weight
lb s /ft2

Buckling load 
factors

a =  4.8890 in., b =  6.2857 in., 
h = 0.500 in., t3 =  0.060 in., 
L A M 1 : =  [±45/90]2s, I G E O : =  6

0.819 Ag =  1.080, A3jfc =  1.290 
A2 =  -0.394, A3 =  18.189

a =  4.8890 in., b =  6.2857 in., 
h = 0.5125 in., t 3 =  0.060 in., 
L A M I : =  [±45/90]2s, I G E O : =  6

0.825 Ag =  1.132, Ask =  1.232 
A2 =  -0.368, A3 =  16.343

a =  4.8890 in., b =  6.2857 in., 
h =  0.525 in., t3 =  0.060 in., 
L A M I - . =  [±45/90]2j, I G E O : =  6

0.831 Ag =  1.121, As* =  1.246 
A2 =  -0.363, A3 =  15.588

a =  4.8890 in., b =  6.2857 in., 
h =  0.53125 in., t3 =  0.060 in., 
L A M I : =  [±45/0]2s, I G E O : =  6

0.833 Ag =  1.018, Asjt =  1.512 
A2 =  -0.250, A3 =  -1.990

a =  4.8890 in., b =  6.2857 in., 
h —  0.49375 in., t3 =  0.090 in., 
L A M I : =  [±45/90]2j, I G E O : =  6

0.929 Ag =  1.292, X3k =  1.102 
A2 =  -0.841, A3 =  -19.891

a =  4.8890 in., b =  6.2857 in., 
h =  0.49375 in., t3 =  0.102 in., 
L A M I : =  [±45/90]2a, I G E O : =  6

0.974 Ag =  1.398, X3k =  1.027 
A2 =  -1.034, A3 =  20.672

a =  4.000 in., b =  5.500 in., 
h =  0.49375 in., t3 =  0.090 in., 
L A M I : = [ ± 4 5 / 9 0 ] 2 s , I G E O : =  6

0.999 Ag =  1.338, X3k = 1.387 
A2 =  -0.989, A3 =  125.174

a =  4.000 in., b =  5.500 in., 
k = 0.500 in., i3 =  0.090 in., 
L A M I : =  [±45/0]2j, I G E O : =  6

1.004 Ag =  1.253, X3k =  1.577 
A2 =  -0.740, A3 =  -6.016
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Panel 2.

Design variables Weight
lb s /ft2

Buckling load 
factors

b =  11.0 in.,
h =  0.360 in., ta = 0.060 in., 
L A M I : =  [±45/0]2s, IG EO :=  1

0.6232 Ag =  1.061, \ sk = 16.494 
Ai =  2.745

b = 7.333 in.,
k  =  0.340 in., t, =  0.042 in., 
L A M I : =  [±45/0]23, IG EO :=  1

0.6229 AG =  0.998, Xak = 221.17
Aj =  1.62

b = 6.2857 in., 
h =  0.340 in., ta =  0.042 in., 
L A M I : =  [±45/0]2s, IG EO :=  1

0.6283 Ag =  1.129, As* =  206.79 
Ax =  1.45

a = 5.5 in., b = 6.2857 in., 
h =  0.320 in., t , =  0.054 in., 
L A M I : =  [±45/0]23, IG EO :=  6

0.711 Ag =  0.996, Xak =  5-01 
A2 =  -.30, A3 =  1.650
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Table 4.12 Best designs obtained by genetic algorithm for grid-stiffened curvi 

Panel 2, with I G E O  = 1 , 2  not being a design variable.

Design variables Weight
lb s/ft2

Buckling load 
factors

a =  11.0 in., 6 =  8.8 in., 
h — 0.340 in., t,  =  0.042 in., 
L A M I : =  [±45/0]2s, IGEO:=  3

0.6389 AG =  1.038, X3k = 3.05 
Aj =  2.01, A2 =  -0.149

a = 11.0 in., b =  11.0 in., 
h =  0.340 in., t ,  =  0.048 in., 
L A M  I'.— [±45/90]2s, IG EO :=  3

0.6396 Ag =  1.022, \ 3k = 2.07 
Aj =  1.28, A2 =  -0.360

a =  11.0 in., 6 =  7.333 in., 
h =  0.320 in., t3 =  0.042 in., 
L A M I : =  [±45/90]2s, IGEO:=  3

0.6411 Ag =  1.076, X3k =  4.141 
Aj =  1.07, A2 =  -0.366

a =  11.0 in., b = 7.333 in., 
h =  0.320 in., t3 =  0.042 in., 
L A M I : =  [±45/0]2s, IGEO:=  3

0.6411 Ag =  1.061, X3k =  4.162 
Aj =  2.17, A2 =  -0.178

a =  8.8 in., b =  8.8 in., 
h =  0.340 in., t 3 =  0.042 in., 
L A M I : =  [±45/90]2„  IGEO:=  3

0.6442 Ag =  1.083, X3k = 2.979 
Aj =  1.08, A2 =  -0.300

a =  8.8 in., b = 8.8 in., 
h =  0.340 in., t 3 =  0.042 in., 
L A M I : =  [±45/0]2„  IG EO :=  3

0.6442 Ag =  1.055, X3k = 3.169 
Ai =  2.26, A2 =  -0.151

a =  11.0 in., b = 11.0 in., 
h =  0.340 in., t3 = 0.084 in., 
L A M I : =  [±45/0]2<, IG EO :=  5

0.6938 Ag =  2.160, X3k =  2.442 
Ax =  3.23, A3 =  1.234

a =  5.5 in., b = 6.2857 in., 
h =  0.320 in., t3 =  0.054 in., 
L A M I : =  [±45/0]2s, IGEO:=  6

0.711 Ag =  0.999, X3k =  5.01 
A2 =  -.30, A3 =  1.650
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Table 4.13 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 3.

Design variables Weight
lb s/ft2

Buckling load 
factors

a = 5.500 in., b = 4.400 in., 
h — 0.50625 in., t3 = 0.072 in., 
L A M I : =  [±45/90]2s, I G E O :=  6

0.874 Ag =  1.014, Asfc =  1.369 
A2 =  -0.781, A3 =  1.191

a =  5.500 in., b = 4.400 in., 
h =  0.51875 in., t3 =  0.072 in., 
L A M I : =  [±45/90]2„  IG E O :=  6

0.881 Ag =  1.055, X3k = 1.325 
A2 =  -0.741, A3 =  1.134

a =  5.500 in., 6 =  7.333 in., 
h =  0.525 in., t s =  0.072 in., 
L A M I : =  [±45/0/902]2s, IG EO :=  3

1.182 Ag =  1.139, X3k = 4.142 
Aj =  1.161, A2 =  -1.183

a =  4.889 in., b =  7.333 in., 
h =  0.51875 in., t3 =  0.072 in., 
L A M I : =  [±45/0/902]2s, IG E O :=  3

1.194 Ag =  1.121, Aifc =  3.477 
A! =  1.401, A2 =  -1.234

a =  6.2857 in., b =  8.8 in., 
h =  0.50625 in., t s =  0.096 in., 
L A M I : =  [±45/0/902]2„  IG E O :=  3

1.202 Ag =  1.146, \ 3k =  2.707 
Aj =  1.679, A2 =  -1.722

a = 6.2857 in., b =  8.8 in., 
h =  0.5125 in., t„ =  0.096 in., 
L A M I : =  [±45/0/902]2s, IG E O :=  3

1.205 Ag =  1.168, A3jfc =  2.662 
Ai =  1.641, A2 =  -1.676

Table 4.14 Buckling loads for Panel 3 best design subjected to  the load case of

Panels 1 and 2.

Load Case (lbs/in .) Buckling load factors

(Panel 1) N x = 1250, N y = -2200, 
N xy = 250.

Ag  =  2.114, X3k =  1.488,
A2 =  -0.374, A3 =  1.0113 
(Global buckling a t A a =  2.114)

(Panel 2) N x = 300, N y =  -2200, 
N xv =  1350.

Ag  =  4.595, Xak =  2.409,
A2 =  -0.172, A3 =  0.255
(Local buckling a t A3 x Ag ) =  1.172
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Table 4.15 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 1, with N y = 0.

Design variables Weight
lb s /f t2

Buckling load 
factors

a =  11.0 in., b =  4.0 in., 
h =  0.49375 in., i 3 =  0.090 in., 
L A M I : =  [±45/02]2s, IGEO:=  4

0.785 Ag =  1.027, Xak = 1.193 
A3 =  1.676

a =  11.0 in., b =  4.0 in., 
h =  0.5 in., t3 =  0.090 in.,
L A M / : =  [±45/02]2s, IGEO:=  4

0.787 Ag =  1.045, \ ak = 1.178 
A3 =  1.630

a =  11.0 in., b =  4.4 in., 
h =  0.49375 in., t3 = 0.078 in., 
L A M I : =  [±45/02]2i, IGEO:=  6

0.803 Ag =  1.065, \ 3k = 1.185 
A3 =  1.168

a =  11.0 in., b =  4.4 in., 
h =  0.5 in., ta =  0.078 in., 
L A M I : =  [±45/02]2j, IGEO:=  6

0.805 Ag =  1.085, Xak =  1.167 
A3 =  1.167

a =  11.0 in., b =  4.4 in., 
h =  0.49375 in., t a =  0.096 in., 
L A M I : =  [±45/02]2s, IGEO:=  6

0.S52 Ag =  1.179, X3k = 1.135 
A3 =  1.648

a =  6.2857 in., b = 4.4 in., 
h =  0.50625 in., ta =  0.096 in., 
L A M I : =  [±45/02]2i, IGEO:=  3

0.899 Ag =  1.059, Xak = 2.896 
Aj =  3.657

a =  7.33 in., b = 4.4 in., 
h = 0.49375 in., t a = 0.096 in., 
L A M I : =  [±45/02]2i, IGEO:=  6

0.903 Ag =  1.313, Xsk =  1.156 
A3 =  2.278
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Table 4.16 Best designs obtained by genetic algorithm for grid-stiffened curvi

Panel 2, with N y =  0.

Design variables Weight
lb s /ft2

Buckling load 
factors

a =  4.4 in., b =  6.2857 in., 
h =  0.440 in., t3 =  0.084 in., 
L A M I : =  [±45/90]2j, IG EO :=  4

0.759 Ag =  1.017, \ 3k = 1.329 
A3 =  1.425

a =  7.33 in., b =  4.0 in., 
h =  0.440 in., t s =  0.084 in., 
L A M I \ — [±45/90]2a, IGEO:=  4

0.764 Ag =  1.003, X3k = 1.681 
A3 =  1.262

a =  4.0 in., b =  4.0 in., 
h =  0.360 in., t„ =  0.060 in., 
L A M I : — [±45/0/90]2s, IGEO:=  4

0.913 Ag =  1.020, \ 3k =  4.885 
A3 =  1.171

a =  4.4 in., b =  6.2857 in., 
h =  0.360 in., t s = 0.084 in., 
L A M I : =  [±45/0/90]2i, IGEO:=  4

0.925 Ag =  1.005, X3k =  3.038 
A3 =  1.783

a =  5.5 in., b = 6.2857 in., 
h =  0.360 in., t s =  0.084 in., 
L A M I : =  [±45/0/90]2, ,  IG EO :=  4

0.908 Ag =  0.992, Xsk =  2.406 
A3 =  1.572

a =  6.2857 in., b =  7.33 in., 
h =  0.360 in., t 3 =  0.084 in., 
L A M I : =  [±45/02]2„  IG EO :=  5

0.959 Ag =  1.025, Xsk =  3.148 
Ai =  11.539, A3 =  1.364,

a =  4.4 in., b = 7.33 in., 
h =  0.320.in., t ,  =  0.084 in., 
L A M I : =  [±45/0/90]2i, IGEO:=  5

0.965 Ag =  1.007, Xsk = 4.494 
Ax =  11.152, A3 =  1.909,

a =  4.889 in., 6 =  6.2857 in., 
h =  0.360 in., t3 =  0.084 in., 
L A M I : =  [±45/902]2a, IGEO:=  5

0.995 Ag =  1.071, X3k =  4.656 
Ax =  5.420, A3 =  1.549,
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Table 4.17 Best designs obtained by genetic algorithm for grid-stiffened curved

Panel 3, with N y =  0.

Design variables Weight
lbs/ft2

Buckling load 
factors

a =  6.2857 in., b =  4.0 in., 
h = 0.5375 in., t3 =  0.096 in., 
L A M I : =  [±45/90)23, IGEO:=  6

0.976 Ag =  1.005, X3k =  1.271 
A3 =  1.529

a =  6.2857 in., b =  4.4 in., 
h =  0.5375 in., t3 =  0.102 in., 
L A M I : =  [±45/90]23, IGEO:=  6

0.983 Ag =  1.014, \ 3k = 1.045 
A3 =  1.721

a =  6.2857 in., b ~  4.0 in., 
h =  0.51875 in., t3 =  0.102 in., 
L A M  I —  [±45/90)23, IGEO'.— 6

0.986 Ag =  0.979, \ sk = 1.320 
A3 =  1.813

a =  6.2857 in., b =  4.4 in., 
h =  0.0.51875 in., t3 =  0.102 in., 
L A M I : =  [±45/90]23, I G E O —  6

0.970 Ag =  0.954, X3k =  1.094 
A3 =  1.845

a — 4.4 in., b =  4.889 in., 
h =  0.0.5 in., t3 =  0.102 in., 
L A M I : =  [±45/902)2„  IGEO:=  5

1.215 Ag =  0.980, X3k =  5.899 
Ax =  1.215, A3 =  5.583

Table 4.18 Buckling loads of best design for Panel 3 subjected to  load case of Panel

1 and 2 (no hoop tension).

- Load Case (lbs/in.) Buckling load factors

(Panel 1)

11 
11

S
g II 0 Ag =  1.797, As* =  1.279,

A3 =  1.380
(Global buckling a t Ag =  1.797)

(Panel 2) Nx =  300, N y = 0, 
N xy =  1350.

Ag =  2.467, X3k =  1.393,
A3 =  0.697
(Local buckling a t A3 x Ag) =  1.719
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Figure 4.2 Flow chart for the optimization using the genetic algorithm.
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Chapter 5 

CONCLUDING REMARKS

5.1 S U M M A R Y

The aim of the present work was to develop and validate a  set of analytical tools 

for design and analysis of composite grid-stiffened panels exhibiting global buckling 

for aircraft primary structures. Global and local analyses were developed and used 

in order to  assess grid-stiffened panels for global buckling subjected to combined in­

plane loadings. The analysis tools were incorporated in an optim ization procedure 

based on the genetic algorithm to provide a discrete design variable optim izer design 

code, capable of preliminary design of composite grid-stiffened panel for aerospace 

structural applications.

The global analysis adopted was an improved smeared stiffener theory, which 

accounts for the local skin-stiffener interactions for blade stiffeners. Including the local 

skin-stiffener interactions is im portant, since the traditional smeared stiffener theory 

may overestimate buckling loads within a range of geometric param eters. The skin- 

stiffener interaction is accounted for by com puting the stiffness due to the stiffener and 

the skin in the skin-stiffener region about a shift in the neutral axis at the  stiffener. 

The location of the neutral surface is obtained from a  theoretical study of the skin- 

stiffener interface of a semi-infinite stiffened panel. A stress function approach, with 

the principle of minimum potential energy, is used in the theoretical study wherein
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the axial strain in the stiffener is assumed to equal the strain in the skin at the edge 

of the stiffener. Numerical results are presented for simply supported grid-stiffened 

panels of different stiffening geometry, and are compared with those obtained from 

detailed finite element analysis as well as with those from the traditional smeared 

stiffener theory.

The local analyses required for assessing the global buckling of grid-stiffened 

panel are th a t of determining the buckling response of anisotropic panels with gen­

eral parallelogram-shaped and general-triangular shaped planforms, and th a t of de­

termining the buckling response of stiffener segments. Buckling response of stiffener 

segments is assessed using the stiffener crippling analysis presented in Reference [9]. 

Analysis method for buckling of anisotropic panels with general parallelogram-shaped 

and general triangular-shaped planforms are developed using a Rayleigh-Ritz tech­

nique and a minimum energy principle. The buckling analysis of these quadrilaterals 

and triangular planforms is enhanced by mapping their physical domain into a com­

putational domain. Bilinear finite element shape functions in natural coordinates are 

used in the  case of quadrilateral planforms and linear finite element shape functions 

in area coordinates are used in the case of triangular planforms. The transformation 

from physical domain to  computational domain facilitates the computation of linear 

stiffness m atrices and geometric stiffness m atrices and also the imposition of bound­

ary conditions. The Rayleigh-Ritz functions are formulated in natural coordinates 

for each planform geometry.

The Rayleigh-Ritz functions consists of the product of distribution func­

tions (regular polynomials or Legendre polynomial) and circulation functions which 

are used to  impose different boundary conditions along each edge of the panel. Each 

circulation function is the product of the equation of each edge raise to  an indepen­

dent exponent for each displacement component of the com putational domain of the 

triangular or quadrilateral geometry.
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Regular polynomials and Legendre Polynomials are used for quadrilateral geome­

try, and for triangular geometry only regular polynomials are used. The strain- 

displacement relations used account for a  first-order, shear-deformation theory to be 

used with the minimum energy principle and also allow different shell theories to  be 

used through tracers coefficients. The Ritz function accounts for m aterial anisotropy. 

Numerical results were obtained for isotropic, orthotropic, and anisotropic skewed 

plates and are compared with existing solutions and finite element solutions. The 

effect of transverse shear deformations is also studied for isotropic and anisotropic 

skewed plates. Results for triangular plates were presented for equilateral trian­

gle, right-angled isosceles triangles, and 30° — 60° — 90° triangle with isotropic and 

anisotropic m aterial properties, and with different boundary conditions. Results are 

compared with existing solutions, and the effect of transverse shear deformation for 

isotropic and anisotropic triangular plates are studied. Finally, numerical results for 

anisotropic curved panels subjected to  axial compression are obtained using Sanders- 

Koiter, Love’s, and Donnell’s shell theory and are compared with those obtained using 

the STAGS finite element code ([29]).

The global and local buckling analyses were incorporated in a genetic algo­

rithm  optimizer to provide a design code involving discrete optim ization for optimal 

design of grid-stiffened panel with a global buckling constraint. The design variables 

include the axial and transverse stiffener spacing, the stiffener height and thickness, 

the skin-laminate stacking sequence, and the stiffening geometry. The design problem 

was to minimize the weight per unit area of a  composite grid-stiffened panel given 

the loading condition, the length, width and radius of the panel, the material prop­

erties of the skin and stiffener, and the boundary conditions of the panel. The design 

constraints on the panel include a global buckling constraint which does not allow 

localized buckling of skin or stiffener segments. Also constraints on the stiffener spac- 

ings, stiffener aspect ratio, and skin thicknesses, which may be due to manufacturing
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requirements are imposed through proper selection of the design space explored by 

the genetic algorithm. Results are presented for simply supported fiat and curved 

composite grid-stiffened panels.

5.2 CONCLUSIONS

•  The improved smeared stiffener theory provides be tte r correlation with detailed 

finite element analyses than the  traditional smeared stiffener theory. Buckling 

loads obtained using the improved smeared stiffener theory are within eight 

percent or less compared to detailed finite element results. Hence, the design 

approach based on the improved smeared stiffener theory is a useful preliminary 

design tool.

•  The analysis m ethod developed for panels with general parallelogram-shaped 

quadrilateral and general triangular shaped planform provides accurate buckling 

solutions for isotropic and anisotropic skewed plates and also for the different 

triangular plates considered. The m ethod does not exhibit any mesh distortion.

•  The change in buckling coefficient is more pronounced as the skew angle in­

creases for thin plates as well as thick plates.

•  The buckling response of skewed plates is also affected considerably by material 

anisotropy. Results of the buckling coefficients for simply supported plates made 

of Lam inate 1 and Lam inate 2 shows tha t the buckling coefficients of Laminate 

2 for the  45° skew angle case is about 30 percent less than  those of Lam inate 1 

and Lam inate 2 is about twice more anisotropic than Laminate 1 .

•  The buckling coefficient for skewed plates subjected to  load cases w ith positive 

in-plane shear is higher than those with negative shear this effect increases 

w ith increasing m aterial anisotropy even for m oderate skew angle. For simply 

supported plate with 30° skew angle, the buckling coefficient with positive shear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 2 9

load is 30 percent higher than the buckling coefficient with negative shear load. 

The corresponding percentage increase for Laminates 1 and 2 is 36 and 44 

percent respectively.

• The buckling response of triangular plates with in-plane shear loads depends on 

the symmetry of the triangular geometry and the degree of m aterial anisotropy. 

For the equilateral triangular plate, the buckling load with positive in-plane 

shear load is 1 .1  tim es the buckling load with negative in-plane shear load for 

Laminate 1 where as for Lam inate 2, the buckling load with positive in-plane 

shear is 1.3 tim es th e  buckling load with negative in-plane shear load. For the 

right-angled isosceles triangles, the buckling load with in-plane shear load is 1.4 

and 1 . 6  times the buckling load with negative in-plane shear for Lam inates 1 

and 2 , respectively.

• Results indicate the  im portance of including transverse-shear deformation in 

the design of skin lam inate for grid-stiffened panels, since the  thickness-to-width 

ratio for skin segments of grid-stiffened panel is about 0.025.

• Results obtained for anisotropic curved panels subjected to  axial compression 

using Sanders-Koiter, Love’s, and Donnell’s shell theory show th a t Sanders- 

Koiter or Love’s shell theories gives results th a t are in good agreement with finite 

element analysis results. Results from Donnell’s theory are in agreement with 

results from other theories when the  displacement components in th e  deformed 

configuration are rapidly varying function of the circumferential coordinate. 

Such a variation of displacement occurs for panels with large R/ t  ratio  (R/ i  > 

2 0 0 ). When a panel deforms with more than two half-waves occurs in the curved 

direction, the displacement can be considered as rapidly varying. Results for 

isotropic panels also shows th a t the difference in buckling loads obtained from 

Donnell’s theory and other theories is not due to material anisotropy.
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• The results obtained from the optimization using the global and local analyses 

and the genetic algorithm indicate tha t the stiffening configuration depends 

mostly on the load case to which the panel is subjected to.

• For most combined load cases, the best design have diagonal stiffeners. In 

certain cases, the best design may not be suitable for structural application due 

to other considerations. In such a  case, the pool of good designs obtained by 

the genetic algorithm may be considered.

5.3 RECOMMENDATIONS FOR FUTURE WORK

• O ther considerations for the design of grid-stiffened panel such as damage toler­

ance capability can be included as additional objective functions or constraints 

in the genetic optimization.

• The buckling analysis method developed should be extended in order to analyze 

buckling of variable-radius cylindrical shells which consist of two or more curved 

segments, each with a constant, but different, radius. These types of panels are 

more representative of fuselage structures. Such an analysis can be achieved by 

imposing continuity of displacements and rotations a t the intersection of the 

segments. Alternatively, Ritz functions, tha t cover the whole of the variable- 

radius panel can be employed, and the linear and geometric stiffness matrices 

can be computed from integration over each segment at a time.

• A discrete analysis using Lagrange multipliers ([22]) to impose compatibility be­

tween skin and stiffeners can be developed using Ritz functions with circulation 

functions, to account for material anisotropy and different boundary conditions. 

The three-dimensional deformation of the stiffener can be accounted to some 

extent to provide more accurate modeling of the stiffener response.
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•  The effect of pressure loading on grid-stiffened panel should be investigated by 

developing an appropriate analysis tool.

• The stress at the skin-stiffener interface due to combined loads can be studied by 

using a  semi-infinite skin-stiffener model similar to the model used in developing 

the  improved smeared stiffener theory.
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APPENDIX A

INTEGRATION SCHEMES FOR 
STIFFNESS MATRICES

The integration schemes for com puting the linear and geometric stiffness matrices 

axe presented and discussed here. The schemes make use of symbolic and numerical 

com putations to achieve com putational efficiency. This approach is necessary since 

cumbersome integrations result in the  use of polynomials as Ritz functions. Inte­

gration schemes are presented for the  use of regular polynomials, which are used in 

the buckling analyses of panels with parallelogram-shaped quadrilateral and general 

triangular-shaped planforms. Also, integration schemes are presented for Ritz func­

tions involving Legendre polynomials which are also used for in the buckling analysis 

of panels with parallelogram-shaped quadrilateral planform.

A .l  T Y P E S  OF IN T E G R A L S

The buckling analyses presented in Chapter 3, involve a Rayleigh-Ritz formulation 

with the minimum potential energy principle, and hence, the linear and geometric 

stiffness matrices are developed from the strain energy as shown in C hapter 3. Fur­

therm ore, since a first-order, shear-deformation theory is used, the integrals involve 

only first derivatives of the Ritz functions as shown in Equation (3.31) and (3.41).

137
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The types of integrals encountered are

f A R iR j didr, (A .l)

f A R ^ R j  didr, (A.2)

Ia Ri,r,Rjdidrj (A.3)

f A R i{R j,t didr, (A.4)

Sa  i d i d n (A-5)

I a  Ri,nRj,n d Zd V (A.6)

where Ri and R j can be any of U{, V{, W,-, <5yi, and Uj, Vj, W j, $ XJ-, $ yj,

respectively, in Equation (3.31) and (3.41). These integrals correspond to  the inte­

gration over the com putational domain. Only the integration scheme for the integral 

of Equation (A.4) will discussed, since others are similar.

A .2 SC H E M E  F O R  Q U A D R IL A T E R A L S

The Ritz functions for quadrilaterals are written in natural coordinates {i,r,), and 

consists of circulation function and regular polynomials or Legendre polynomials. 

Therefore Equation (A.4) can be w ritten as

Ia R u R u W r i  =  ( / i . / K K X / i . s W d j )  = i , i ,

where

h = /i, [ (1 -  0 ”'(1 + O^iK) k I (1 -  ev(i + 0 r%«) k <*£

I ,  = / - I  (1 -  '))” (! +  n Y 'Y M )  (1 -  ’) )" ( !  +  r/V 'Y A l) dn (A-7)

and

Xi ,  X j  =  C \  C ‘ or

Y l, Y , =  or />„.(,), P „ ,W  (A.8)

The limits of the integration are from —1 to -f 1 since i  and r, are natural coordinates.
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A .2.1 R egular P olynom ials

In the case of regular polynomials, the integral I  ̂ of Equation (A.7) can be expanded 

as

k  =  { r / ( i - o w( i + o r," 1r i +  m i( i - o w( i + o r,r i" 1

+  P / ( i - o pi" 1( i + o r,r ’} x

{r*(i - o p,( i + o r,_1r > +  ^ ( l  - o p,( i + o r,r j_1

+  P < ( i - o p,_1( i + o r' r j } ^  ( a . 9 )

which can be w ritten as

h  = f 1 ( £  a*  ( l ~ o e' ih ( i + o e2,h r 3 ,h)
J~i &[

X ( £  aja (1 -  0 el-  (1 +  0 e2y‘ R  (A .10)
3 =  1

The coefficients a,/, and aja, and exponents el,*, e2,-fc, eS,*, e lJS, e2JS, e3js in Equa­

tion (A .10) are obtained by comparing term s with Equation (A.9).

The next step is to  determine the integral of the form

h  =  f  (1 -  i/)M(l +  i/)*2**3 dv (A .11)

which can be used in two com putational loops to evaluate the integral of Equation 

(A .10). Symbolic com putations using M athem atica ([70]) are obtained here to eval­

uate integral of the type of Equation (A.11). For any Jbl, 12 and 13, M athem atica 

evaluate integral I \ as

j  _  ( ( i +  M ), (2 +  k2 +  *3), - l ]  r ( i  +  k2 ) r ( i  + 1-3 )
1 1 ; r (2  + 1 2  + 1 3 )

, f f2F i[—12, (1 +  13), (2 +  11 -t-13), —1] r ( l  +  H )  r ( l  +  13)
r (2  +  n  +  i3 ) { }

where H 2F1 is the H ypergeom etric2F l[a ,b ,c,z]  function ([53]) with z  =  —1, and

H ypergeom etric2F l[a, b, c, z] =  ^  (A .13)
n = 0  ( C/ n k ‘
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where the symbol ()n is the Pochhammer symbol ([53]) and

(a ) 0 =  l ,  (a)n =  a (a +  1)... (a +  n — 1 ), n =  1 ,2 ,3 ,... (A. 14)

T(m) is the Euler gamma function ([53]), and T(m) =  (m — 1)1 for m  being a positive 

integer. However, the H^fx function and r(m) tend to  be computationally expensive 

for large values of 73. Since the value of the exponent of ( 1  ±  £) and ( 1  ±  77) is either 

zero or one, k l and k2 can assume values of 0, 1, or 2 only. The maximum value of 73 

depends on the order of polynomial being used in the buckling analysis. Therefore, 

the integral of Equation (A .11) is evaluated for all nine possible combinations of k l  

and 72, in terms of kZ, using M athematica. The results of the  symbolic computations 

using M athematica is shown below;

1 ( _ 1  ) l+ * 3
7 1  =  0 , 7 2  =  0 ; II

rHII
1-H 7 2  =  0 ; II

7 1  =  2 , 7 2  =  0 ; II

*+■

7 1  =  0 ,

■ 
1II

CM II

<

OII
1-H c4"II
CM II

7 1  =  1 , ?r to II >—■
» IIH•-i

o
fII

r*H 7 2  =  1; II

<

(1 +  73) (1 +  73)
1 +  (—l ) fc3(3 +  2 Jb3)

(l +  73)(2 +  73) (1 +  kZ)(2 +  kZ)
2 (—1)*3(—14 — 16 A3 —4 kZ2)

( 1  +  73)(2 +  Jb3)(3 +  73) ~  (1 +  *3)(2 +  73)(3 +  *3)
( - 1 ) * 3 (3 +  2 kZ)

(1 +  kZ)(2 +  kZ) (1 +  73)(2 +  *3)
2 (—l ) fc3 (14 +  16 Ar3 +_4_73_2)

(1 +  kZ)(2 +  kZ)(Z +  kZ) (1 +  kZ){2 +  73)(3 +  kZ)
2 2 ( - l )k3

  + V ’  -

(1  +  kZ)(Z +  kZ) ( l  +  73)(3 +  73)
1 1 1 1

+
(1 +  73) (2 + 7 3 )  (3 + 7 3 )  (4 +  73)

f_n*3 (  * 4 . * 4 . * \
' } y (1 + kZ) (2 +  kZ) ^  (3 +  kZ) (4 +  kZ) ’

k l  = 1, k2 =  2; 7X =  - 1 , +  1 1 1
(1 +  kZ) (2 +  kZ) (3 +  kZ) (4 +  7*3)

( - l ) * 3 ( — z l ----|_-------1------+ ----- 1-----------------1-----)
K } v (1 +  73) (2 +  73) (3 +  73) (4 +  73) '

71 = 2 , 72 =  2 ; 7 X =   ---------------- - -------------    +  8 ( - l ) fc3
(15 +  23 73 +  9 kZ2 +  733) (15 +  23 73 +  9 732 +  733)

(A.15)
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Using these symbolic computations, the integral of Equation (A .ll)  can be evaluated 

based on the values of H  and k2.

An outline of the algorithm for computing the integral of Equation (A.7) is

then

•  Computation of 1$

1 . compute a,/,, el,/,, e2 e 3 f r o m  p\, r/, m,-.

2 . compute a.j3, e l j a, e2 j s, e3j ,  from pt, rt, m j.

3. using two com putational loops with indices h and s, compute

h =  f  E E - e)el’h+el- ( i + o e W ^ e3‘h+e3̂  ( a . i 6 )
h=1 a= l

using the symbolic computations of Equation (A .15).

• Computation of Iv

1 . compute I v using Equation (A .15)

/„ =  J 1 ( 1  -  t/ ) 9 i+ 9 ‘ ( 1  +  v y ‘+3'T)n'+n>dri (A .17)

• Compute x I v

The value of the integral of Equation (A.7) is I^IV. O ther integrals (Equations (A .l) 

- (A.6 )) are computed in a  similar way.

A .2.2 Legendre P olynom ials

W hen using Legendre polynomials, the integral of Equation (A.7) can be written as

f-i [ (CV$2 +  dyt +  eo)PmM) ],{[ (c*t£2 +  d ^  + ê t)Pm}(i) ],€ d£ x 

fh (CrjlV2 + drill) + er,l)Pni(T))(CvtV2 +  n̂tV +  evt)pn,(v) dr)

=  I *  (A .18)
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since the exponent of (1 ±  £) and (1 db t)) can be either zero or one. The coefficients 

£rih drjii ^ih  d^/, ^itt ^it^ and depend on the exponents of

(1 ±  f) and ( 1  ±  77). After expansion, IPz can be written as

h i  =  J  (ailZ +  h i ) P r m ( 0  +  (cit£2 + h i t  +  ev ) P m i ( 0  } x

I (n.( + ki)P (̂i) + (<*«’ + M  + 1 <*£ (a. i9)

Next the properties of Legendre polynomials ([53]) are used to write Equa­

tion (A.18) and (A .(19) in a more appropriate form for analytical integration. The

properties of Legendre polynomial (Pn(v) — Pn) are

P—n = P( |„ |-1) (A.2 0 )

u P l =  nPn +  P U  (A.21)

-  $ n T ) p ~ '  +  ( S T T ) P-  (A '22)

-  p f + r } ' P n + '  +  +  +  ( A 2 3 )

=  I r r r j < < l r l p -  +  }  ( A ' 2 4 )

+  ( S T i j  < ( 5 3 1 ) P " +  } (A-25)
p! _  p!

Pn =  £n±l £j*=! (A.26)
(2n + l) V '

Two other useful properties are

rl „ „ f 0  for rz 7  ̂m  , .L P"Pm {2^ t  lor Ti = m  <A-27>

/ '  P / P /  *  =  f  ° , f”  <" + 'm > ° f d , ) n < m  (A.28)J - 1  n m ( n (n  +  1) for (n +  m) even

Hence, using Equation (A.21) - (A.26), the following relations can be established;
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:p U  2 +

[ (c v2 + d v + e) Pn ],„ =

o(rc +  l)  n /
. ... (2n -f l)(2n  -f 3)

jb + nd) n ,
(2n +  1 ) J

a n a(n  -f 1 )

■p U 1 +

( (2n +  l)(2n  — 1) (2ra +  l)(2n  +  3)

I d  (b + n d ) ) p l  | 
_  (2 n +  1 ) )P- >  +

a n
( C (2 n +  l ) ( 2 n -  1 ) ) P ” " 2

=  Y  a dkp l Qdk

[ (c i/2 + d v + e) Pn ] =

Jfc=1

c(n +  l) (n  +  2 )
n+ 2  T(2n +  l)(2n  +  3) 

d(n  +  1 )
( 2  n  +  1 ) Pn+1 +

c(n +  l) (n  +  2 ) c n2
( (2n +  l)(2n  +  3) +  (2n +  l)(2n  -  1) 4

d n  P  , “ n - l  +(2 n +  1 ) 
c(n — l)n  

(2 n +  l ) ( 2 n -  1 ) Pn- 2

— Y i  a kPnak
k=1

=  Q l  p!  _L ° 2 p i
(2n +  5) n + 3  (2n +  3) n + 2

l  £ l _  ) p l  ,

l (2n +  l)  (2n +  5) +1

(  — — -------------------------— —  )p l  +
V (2n -  1) (2n +  3) "
/- Q5________ <*3 sp /
1 (2n -  3) (2n +  1 ) ’ n _ 1

Q* p i _  Q 5 p /

(2n — 1) n " 2 (2n — 3) n " 3

=
fc=i

+ e )Pl +

(A.29)

e )-fn +

(A.30)

(A.31)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 4 4

Therefore, I *  from Equation (A .18) is

h i  = f\£± (A.32)
• '-1 K=1 5=1

and Equation (A.28) is used to  evaluate each integral in the sum m ation and Equation 

(A.20) is used when Legendre polynomials with negative indices occur. Iprt is

1 5 5

■fp£ =  I ^  ^  &ih &jhPmQikPma)k dj] (A.33)
J ~1 h= l 3=1

and Equation (A.27) is used to evaluate each in integral in the summation. If I pr) 

is simplified using Equation (A.31), then Equation (A.28) is used to  evaluate each 

integral in the summation. Finally, Ipv x / p£ evaluates integral of the type of Equation 

(A.4). Equation (A.31) is necessary when evaluating integrals of the type of Equation 

(A.2 ), (A.3), and (A.5).

A .3 SCHEME FOR TRIANGLES

The integration schemes used in the buckling analysis of panel with triangular geom­

etry is similar to tha t of the buckling analysis of panel with quadrilateral geometry. 

Equation (A.4) for triangular geometries is

h« = f  /' [ «V (i -  f -  vYTn"  ),f x
JO JO

[ W ( 1  -  £ -  v Y 'C ’V*’ ],€ didr! (A.3 4 )

The lim its of the integration is from 0 to 1 since £ and tj are area coordinates. The 

expression in the  square bracket in Equation (A.34) can be w ritten in a general form 

as

u v a - e - vYU = «r - y u -{-!»)■- c f V u - f -■/)“'
2

=  0‘hxiahy bh( 1 —f  —f?)Ch (A.35)
h=1

Hence,
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Each integral in the summation of Equation (A .36) is evaluated using 

r 1 r 1 l c! 6 ! c!I I = (a + i + C H . 2 ) !

O ther types of integral are evaluated in a similar way.

1 4 5

( A . 3 7 )
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