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ABSTRACT 

LARGE-EDDY SIMULATION OF AXIALLY-ROTATING, 

TURBULENT PIPE AND PARTICLE-LADEN SWIRLING JET FLOWS 

Nicolas D. Castro 
Old Dominion University, 2012 
Director: Dr. Ayodeji Demuren 

The flows of folly-developed turbulent rotating pipe and particle-laden swirling 

jet emitted from the pipe into open quiescent atmosphere are investigated numerically 

using Large-Eddy Simulation (LES). Simulations are performed at various rotation rates 

and Reynolds numbers, based on bulk velocity and pipe diameter, of 5.3xl03, 12xl03, 

and 24x103, respectively. Time-averaged LES results are compared with experimental 

and simulation data from previous studies. Pipe flow results confirm observations in 

previous studies, such as the deformation of the turbulent mean axial velocity profile 

towards the laminar Poiseuille-profile, with increased rotation. The Reynolds stress 

anisotropy tensor shows a redistribution due to pipe rotation. The axial component near 

the wall is suppressed, whereas the tangential component is amplified, as rotation is 

increased. The anisotropy invariant map also shows a movement away from the one-

component limit in the viscous sublayer, with increased rotation. Exit conditions for the 

pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow 

without swirl and at a swirl rate of S=0.5 is investigated. Swirl is observed to change the 

characteristics of the jet flow field, leading to an increase in jet spread and velocity decay 

and a corresponding decrease in the jet potential core. Lagrangian tracking with one way 

coupling is used to analyze particle dispersion in the jet flow. Three particle diameter 

sizes are investigated: 10,100, and 500(j,m, which correspond to Stokes numbers of 0.06, 

6, and 150, respectively. Particles are injected with an initial velocity set equal to the 

instantaneous fluid phase flow velocities at the jet inlet. The results show that, in the 

absence of swirl, particle dispersion is inversely proportional to particle size. With the 

addition of swirl, particle evolution is much more complicated. Largely unaffected by 

turbulent structures, the largest particles maintain their initial radial trajectory and 

disperse radially outward significantly more with the addition of swirl. The smaller 



particles, much more susceptible to turbulent structures, are shown to quickly diffuse 

within the jet, and their dispersion is unaffected by swirl. With the addition of swirl, 

dispersion of the midsize particles is shown to increase initially from the jet inlet up to a 

distance of approximately three diameter lengths downstream. Particle tracking and 

particle concentration analysis shows that the increase in particle dispersion of the 

midsize particles upstream is due to an initial outward migration of particles that are 

injected near the edge of the jet inlet. 
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NOMENCLATURE 

II, III Second and third Reynolds stress anisotropic invariants 

h Reynolds stress anisotropic tensor 

cP Pressure loss coefficient; Particle concentration (Chapter 8.2) 

cs Smagorinsky constant 

D Pipe/Jet diameter; Fluid domain (Chapter 3.2) 

Dp Particle diameter 

D T
r { x )  Global particle dispersion in the streamwise direction 

H Shape factor 

i,j,k Components (1,2, or 3) 

L Pipe/Jet domain length 

4 Smagorinsky SGS length scale 

m Mass flow rate 

1% Mass of particles 

mf Mass of fluid 

Np Particle count 

P Pressure 

Q Volumetric flow rate 

q2 turbulent kinetic energy 

rP Mean particle radial distance 

R Pipe/Jet Radius 

Re Reynolds number 

Rep Particle Reynolds number 

S Swirl/Rotation Rate 

4 Rate of strain tensor 

Sc Critical swirl number for vortex breakdown 

St Stokes number. Strouhal number (Chapter 2.2.1) 

t Time 

t* Characteristic time scale 
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tn Kolmogorov time scale 

tp Particle response time 

tn , , Mean particle residence time 
P ( x )  r  

U Mean axial velocity 

U1" Mean axial velocity in wall units 

UT Friction velocity 

Ub Mean bulk velocity 

Uc, Uci Mean axial centerline velocity 

Uj Mean velocity component 

Uf Mean fluid axial velocity 

Up Mean particle axial velocity 

u Velocity vector 

ut Filtered velocity component 

Ui Fluctuating velocity component 

u Streamwise fluctuating velocity component 

v Tangential fluctuating velocity component 

w Radial fluctuating velocity component 

Urms Streamwise root mean square fluctuating velocity 

u+ Streamwise root mean square fluctuating velocity in wall units 

uv Reynolds Stress (axial-tangential) 

uw Reynolds Stress (axial-radial) 

vw Reynolds Stress (radial-tangential) 

Vnns Tangential root mean square fluctuating velocity 

Tangential root mean square fluctuating velocity in wall units 

V Mean Tangential Velocity, Computational volume (Chapter 3.2) 

Vw Pipe Wall tangential Velocity 

Vp Mean Particle tangential velocity; Particle volume (Chapter 2.3) 

Vf Mean fluid tangential velocity; Fluid volume (Chapter 2.3) 

Wrms Radial root mean square fluctuating velocity 
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w+ Tangential root mean square fluctuating velocity in wall units 

W Mean radial velocity 

Time partial derivative 
d_ 

dt 

_d_ 

dx, 
Spatial partial derivative 

S,, Kronecker delta 

At Time step 

e Dissipation 

X Step length factor 

rj Kolmogorov length scale 

K Von Karman constant 

H Dynamic viscosity 

v Kinematic viscosity 

//r Subgrid-scale turbulence viscosity 

p, pf Fluid density 

pp Particle density 

x Stress tensor 

rw Wall shear stress 

Ty Anisotropic stress tensor 

t°j  Isotropic stress tensor 

(j> Generic filtered scalar 

(pm Particle mass loading ratio 

(f)y Particle volume loading ratio 
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1 INTRODUCTION AND MOTIVATION 

In the consideration of fluid flowing through a pipe, addition of rotation applied to 

the pipe about its central axis creates a tangential friction force between the inner wall 

surface of the rotating pipe and the flowing fluid that is in direct contact. The friction 

force gives the fluid flowing inside the pipe a tangential velocity component that causes 

the fluid to rotate along with the pipe. The magnitude of the friction force is dependent on 

the pipe's rotation speed, wall surface roughness, flow conditions and fluid properties. 

Experimental studies of axially rotating pipe flow have shown that addition of pipe 

rotation can have either a stabilization or destabilization effect on the flow, depending on 

the flow's initial conditions. If the pipe flow is initially laminar, addition of pipe rotation 

tends to destabilize the flow with the creation of spiral waves that allow for transition to 

turbulence at lower Reynolds numbers (Itoh, et al. 1992,1996). However, if the pipe flow 

is initially turbulent, axial rotation of the pipe tends to have a stabilizing effect that as 

rotation is increased, gradually transforms the mean axial turbulent velocity profile into a 

shape similar to the mean laminar velocity profile. This phenomena is known as 're-

laminarization' or simply 'laminarization'. Experiments have also shown that addition of 

rotation leads to a reduction in hydraulic loss in pipe flow. 

Applications that may be optimized through proper implementation of rotating-

pipe-flow characteristics includes but is not limited to: fluid transport systems, 

turbomachinery, irrigation systems, agricultural spraying machines, heat exchangers, 

engines, combustion chambers, nuclear reactors and multiphase mixing systems. The 

inclusion of particles in rotating pipe flow is of particular interest in the use of rotational 

phase separators which are used to separate solid particles or liquid droplets from the 

fluid via centrifugal force produced by the pipe's rotation. In the oil and gas industry, 

rotational phase separators are important for the separation of oil/water or liquid/gas 

mixtures. 

Fluid flow forced under pressure that is ejected out of a nozzle into surrounding 

fluid, otherwise known as jet flow, is present in numerous applications such as jet 

propulsion, fuel injection, chemical reactors, mixing devices, fountains and cooling 

systems. Swirling-jet flows, having a tangential velocity distribution superimposed on the 
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axial velocity, are found to occur in both reacting and non-reacting flows such as flow 

over delta wings, combustion flames, turbines and other vortex devices. When compared 

to non-swirling jets, experimental studies have revealed key features that distinguish 

swirling-jets which include: increased spread rate, enhanced fluid entrainment, and 

enhanced convective cooling. Swirling-jets are also known to be capable of exhibiting an 

interesting phenomenon known as 'vortex breakdown', which occurs at a given swirl 

intensity threshold. Swirl intensity is typically defined as the ratio of azimuthal to axial 

momentum of the swirling-jet. Although there are various definitions of what constitutes 

vortex breakdown, it is typically characterized by a transition of a jet-like axial velocity 

profile to a wake-like profile. In combustion, vortex breakdown is essential and is usually 

employed for the purpose of flame stabilization and improved combustion efficiency. For 

swirling-jets emanating from fully-developed turbulent flows in rotating pipes, Facciolo 

(2006) observed that with the addition of moderate swirl, a counter-rotating core about 

the jet's central axis develops at an approximate axial distance of six diameters from the 

pipe exit. 

Examples of particle-laden, turbulent flows important to engineering applications 

include rocket plumes, propulsion devices, aerosol sprays, fluid catalytic cracking in 

petroleum refineries, pharmaceutical crystallizers, and particle transport systems such as 

pneumatic conveying systems. A crucial parameter in combustion/fuel injection is the 

degree of interphase mixing and particle dispersion downstream. In recent years and in 

the wake of post-2001 anthrax attacks, the threat of particle dispersion, as it relates to 

chemical and biological warfare attacks, has also raised significant interest. Both 

experimental and numerical research efforts have been aimed at ultimately having the 

ability to predict particle dispersion to have the ability to quickly and effectively capture 

and contain targeted particles to safely decontaminate an affected building or area. 

Turbulence-particle interaction as it pertains to particle dispersion is thus an important 

aspect in regards to particle-laden turbulent flows. In particular, the addition of particles 

in a turbulent, swirling jet has been found to either attenuate or enhance the fluid phase 

turbulence intensity with respect to its particle-free single-fluid-phase value. 

Despite continuous advances in experimental techniques and computational 

capacity, turbulent, particle-laden, swirling jet flows still present a formidable challenge 
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for both experimental and numerical studies. The obvious practical relevance to 

investigation of turbulent rotating-pipe and particle-laden, turbulent jet flows discussed 

above has attracted the attention of many scholars and has fostered numerous studies. 

Balachandra and Eaton (2010) presented a review of particle-laden jet flows and how 

they could be characterized based on loading, particle sizes, Reynolds numbers, etc. 

However, results of studies with matching geometric boundaries, initial flow conditions 

and flow parameters over a wide range of Reynolds numbers and swirl rates are still 

limited. The scientific challenge to understanding the physical phenomenological 

curiosity of the aforementioned effects of adding rotation/particles to turbulent pipe/jet 

flows, along with their importance in practical industrial applications, provide great 

incentive to continue to investigate particle-laden, turbulent rotating-pipe and swirling-jet 

flows. The objective of this current numerical research is to examine the current viability 

of accurate implementation of the large-eddy simulation (LES) technique in regards to 

modeling turbulent, particle-laden swirling-jet flows. The present investigation has 

considered a swirling-jet emanating from a rotating pipe. Subsequently, particles are 

introduced into the swirling jet to examine the consequent particle-laden swirling-jet 

flows. This investigation seeks to contribute to the available database of results currently 

available by validating results of past studies found in the literature and providing new 

results based on flow parameters not yet investigated. 
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2 LITERATURE REVIEW 

2.1 ROTATING PIPE FLOW 

2.1.1 EXPERIMENTAL STUDIES 

The earliest experimental study of axially-rotating, turbulent pipe flow found in 

the literature is that of White (1964), in which the basic characteristics and behavior of 

rotating pipe flow were first established. In White (1964), it was found that with addition 

of rotation, the pressure loss of initially turbulent pipe flow decreased significantly, as 

much as 40%, when compared to flow through a non-rotating pipe. White (1964) noted 

that a gradual deformation of the turbulent mean velocity profile into a parabolic shape 

similar to laminar flow occurred with the addition of rotation. Flow visualization showed 

that the addition of rotation to pipe flow has one of two effects: destabilization or 

stabilization, depending on the initial state of the flow. White (1964) and subsequent 

experimental studies [Kikuyama, et al. (1983), Itoh, et al. (1996)] have shown that if the 

pipe flow is initially laminar, rotation addition tends to have a destabilizing effect due to 

the large shear produced by the rotating wall in contact with the flow. If the flow is 

initially turbulent, however, the addition of rotation tends to have a stabilizing effect due 

to suppression of turbulent fluctuating components. 

Kikuyama and Murakami (1980) confirmed the decrease in hydraulic loss of a 

rotating turbulent pipe versus a stationary one for a Reynolds number, Re, range of 

104<Re<2xl05. Using a three-hole Pitot tube, they found that after a pipe length of 

approximately 100 diameters downstream, the pressure loss coefficient ratio between a 

rotating pipe and a stationary one is governed solely by the rate of rotation. Defining the 

rotation rate or swirl number, S, as the ratio of the rotating wall velocity Vw, to the 

average bulk velocity Ub (S= VyU/,), Kikuyama and Murakami (1980) found that beyond 

a swirl number of S=1.2, the suppression of turbulence was saturated and the decrease in 

loss coefficients remained unaltered. Kikuyama, et al. (1983) used hot-wire probes to 

examine the destabilization and stabilization effects of adding rotation to initially non-

rotating pipe flows. Their experimental setup consisted of a stationary pipe section 

upstream followed by a rotating pipe section downstream. They studied the effects of 

pipe rotation on both initially laminar and fully turbulent pipe flow. Kikuyama, et al. 
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(1983) showed that for initially laminar flow entering the rotating pipe, the laminar 

boundary layer was destabilized due to the large shear caused by the rotating pipe section 

near the inlet region, resulting in spiral vortices that at sufficient rotation brought about 

bursts of turbulence that shifted the transition point from laminar to turbulent further 

upstream. Further downstream from the inlet region, however, Kikuyama, et al. (1983) 

observed that the stabilizing effect due to the centrifugal force of the tangential velocity 

component of the rotating pipe flow became dominant and turbulence suppression was 

observed. A step-ring placed prior to the inlet of the rotating pipe to trip the flow showed 

that rotation of the pipe suppressed the intensity of turbulence in the boundary layer. 

Kikuyama, et al. (1983), also showed that far downstream of the rotating pipe, the mean 

axial velocity turbulent profile that entered the rotating pipe gradually deformed into a 

parabolic profile as the rotation rate was increased, so as to resemble a laminar profile 

(demnstrating the phenomena known as 'laminarization'). A follow-up study by 

Kikuyama, et al. (1987) showed that the reduction in turbulence level reduces the 

gradient of the axial velocity component at the wall, that in turn reduces the wall shear 

stress and increases the centerline velocity. According to their experiments, complete 

laminarization occurred at a swirl number of S-3.5. Kikuyama, et al. (1987) took 

measurements both far downstream and throughout the rotating pipe to examine the flow 

profile development. For a distance downstream greater than 120 diameters from the 

inlet, the velocity profiles were found to be independent of axial distance. Kikuyama, et 

al. (1987) observed that the tangential velocity of the flow does not approach a solid-

body rotation profile but instead approaches the parabolic profile V/Vw=(r/R)2. 

The aforementioned observations made by Kikuyama, et al. (1980, 1983, 1987) 

were confirmed by the associated experimental study of Reich and Beer (1989) for 

Reynolds numbers of 5xl04<Re<5xl(f. In addition to velocity profiles, Reich and Beer 

(1989) examined temperature distribution profiles and found that heat transfer was 

reduced considerably with pipe rotation, due to radially growing centrifugal forces that 

suppress radial turbulent migration of fluid particles. Itoh, et al. (1996) measured fully-

developed turbulent flow associated with a rotating pipe at a Reynolds number of 20,000 

and swirl rates ranging from 0<S<1. Itoh, et al. (1996) measured mean velocity profiles, 

the distribution of five of the Reynolds shear stresses, and velocity fluctuations along 
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with their power spectra. Their results showed that turbulence intensity decreased with 

increasing rotation. Results showed that the Reynolds shear stresses decreased more 

markedly than the turbulent intensity. Itoh, et al. (1996) also verified the relation of 

mixing length in swirling flows and Richardson number first proposed by Bradshaw 

(1969). 

More recently, Durst, et al. (2006) used a swirl generator made up of a 50mm 

diameter rotating housing and 0.5m long honeycomb formed with 4mm outer-diameter 

tubes. The swirl generator was positioned upstream of a stationary pipe section with a 

matching diameter of 50mm and length of 7m. Using laser doppler anemometry (LDA) 

they measured the swirl decay characteristics of the mean flow and turbulence stresses 

exiting the swirl generator. For the measurements in the region of L/D=3 and L/D=17.3, 

the mean tangential velocity in the vortex core showed a linear variation versus radial 

distance from the pipe centerline. Durst, et al. (2006) showed that pipe rotation 

significantly modifies the anisotropy of turbulence, and their measurements also verified 

previous DNS findings showing turbulence tends towards the isotropic two-component 

limit as pipe rotation increases. 

2.1.2 NUMERICAL STUDIES 

Although experimental studies of turbulent rotating pipe flow date back to the 

1960's, numerical studies of turbulent rotating pipe and its effect on turbulent flow 

statistics have only been reported within the last two decades. The limited number of 

numerical studies is in part due to the fact that conventional two equation k-s and 

k-co models that have generally been considered the working horse of CFD analysis 

and that have been applied with success to many practical flow applications, are not 

readily reliable for rotating pipe flow. It has been well known for some time that the 

performance of two equation models while robust and computationally efficient, offer 

poor results when they are used to evaluate swirling flows [Nallasamy M., (1987)]. Hirai, 

et al. (1988) showed that the conventional k-s model produced unrealistic results for 

rotating pipe flow, predicting a solid body rotation profile for the mean tangential 

velocity that experimental studies show should instead resemble a parabolic distribution 

as rotation is increased. The deviation of tangential velocity from solid body rotation in 
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rotating pipe flow is due to an intricate influence and interaction between the Reynolds 

stress components, a phenomena that standard k-sand k-co two equation models are 

essentially unresponsive to and are therefore unable to predict. Hirai, et al. (1988) also 

showed that the standard k-s model was also incapable of predicting the correct mean 

axial velocity profile that results when rotation is applied. Although there have been 

several studies that have been devoted specifically to developing and assessing modified 

k-s and k-co models to accommodate and account for rotational effects, most are 

typically limited to specific range of flow and boundary conditions and require input 

based on known flow profile characteristics that somewhat defeats the prediction purpose 

of a numerical model. 

Thanks to the advent of computational processing capabilities in recent years, 

direct numerical simulation (DNS) and Large-Eddy simulation (LES) models, capable of 

capturing the complexities of rotating flow and Reynolds stress component interactions 

that were previously beyond computational limits are now computationally feasible and 

are steadily becoming a more prevalent tool being applied to practical engineering 

problems. 

The first DNS and LES study of fully-developed rotating turbulent pipe flow 

found in the literature seems to be that of the doctoral thesis of Eggels (1994) conducted 

at a Reynolds number of Re=5.3x10s and swirl number of S=0.5. Eggels (1994) 

investigated the influence of pipe rotation on mean flow properties and Reynolds stress 

components. Eggels (1994) simulation results for both DNS and LES rotating turbulent 

pipe flow compared well with experimental results predicting a near parabolic profile of 

the mean azimuthal velocity, a smaller friction coefficient (i.e. decreased hydraulic loss), 

an increase in mean axial velocity in the center of the pipe and a decrease in axial 

velocity near the wall (i.e. laminarization). In a follow up study Eggels (1994) also 

investigated the energy budgets of the Reynolds stresses and showed that pipe rotation 

leads to a decrease in turbulence intensity close to the pipe mostly attributed to a 

significant decrease of the streamwise turbulent component. 

The DNS investigations of Orlandi and Fatica (1997) at Re=5xl0s, considered 

higher rotation numbers (5=7,2), were not considered by Eggels (1994). The study 

presented instantaneous flow field data, mean velocity profiles and Reynolds stress 
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components. A key finding in their investigation was that changes in turbulent statistics 

due to rotation are due to tilting of the near wall streamwise vortical structures in the 

direction of applied rotation. A follow up study by Orlandi and Ebstein (2000) extended 

the rotation rates up to S=10 and presented turbulent budgets for various rotation rates. 

Orlandi and Fatica(1997) and Orlandi and Ebstein (2000) showed that the friction factor 

decreases approximately 15% when rotation increases from S=0 to S=2 but actually 

starts to increase upon reaching a rotation rate of 5-5 and beyond. At S=10 it was shown 

that the predicted friction factor was actually higher than the non-rotation case, S=0 . 

Maintaining a constant Reynolds number as swirl number was varied, they showed that if 

the mean axial velocity profile is normalized with the bulk velocity U/Ub, all profiles 

collapse at the value of U/Ub~1.14 at r/R~0.6, which agrees well with experimental 

results. It was found that the change in the normal Reynolds stress components due to 

rotation are markedly reduced for the streamwise component with only a slight increase 

in the radial and azimuthal components. They also noted that the axial-radial ( u w )  shear 

stress (only stress found in non-rotating pipe) decreased with rotation while the other two 

shear stresses, axial-tangential (uv) and radial-tangential (vw) increased. Orlandi and 

Fatica(1997) observed that beyond a swirl number of S~>1, oscillations along the pipe 

radius develop for the mean axial-tangential (uv ) distribution. They go on to explain that 

the observed oscillation behavior is due to the presence of large scale structures in the 

central region of the pipe found at higher rotation rates that makes it necessary to increase 

averaging time to obtain stable distributions. 

Satake and Kunugi (2002) performed DNS simulations at similar Reynolds and 

swirl numbers as Orlandi and Fatica (1997) for a rotating pipe flow with uniform heat 

flux at the wall. Temperature distributions were calculated, and data showed a steady 

decrease in friction factor for increasing swirl. Similar to Orlandi and Fatica(2000), 

Satake and Kunugi (2002) also presented detailed turbulent budgets as well as 

temperature fluctuations. Their results also noted an oscillating behavior for the axial-

tangential (wv) shear stress data for high swirl number (S>1). Feiz, et al. (2002) and 

Yang (2000) conducted LES investigations at higher Reynolds numbers comparing the 
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dynamic and Smagorinsky subgrid scale LES models. Their results generally agreed well 

with previous DNS and experimental simulations. 

2.2 AXISYMMETRIC JET FLOW 

Because of their fundamental significance as a basic flow in the fluid mechanics 

scientific research community and their numerous practical and industrial applications, 

many experimental/numerical investigations have been devoted to the study of turbulent 

axisymmetric swirling jet flows. A brief review of the characteristics of a non-swirling 

axisymmetric jet is included first to help in assessing and distinguishing features and 

effects of swirl addition. 

2.2.1 NON-SWIRLING JET 

An axisymmetric non-swirling jet results when fluid under pressure is ejected 

from a circular pipe/nozzle into ambient fluid, ambient fluid considered in this studyis 

assumed to be quiescent and of the same fluid type as the emerging jet. Upon exiting the 

nozzle/pipe, a thin axisymmetric circular shear layer is formed around the jet perimeter as 

the higher speed jet fluid attempts to slide past the lower speed ambient fluid. Due to the 

Kelvin-Helmholtz process (i.e. velocity difference/shear across continuous fluid), vortical 

structures are formed at the shear layer interface of the discharging jet. The vortical 

structures at the shear layer wrap ambient fluid about itself carrying turbulent jet fluid 

into the irrotational ambient fluid and also entrain irrotational fluid into the jet core in the 

process. The ring shear layer initially formed at the jet's boundary perimeter is unstable 

and grows rapidly with complete breakdown of initially orderly vortex motion typically 

occurring just a few diameters downstream. As seen in Figure 1, jet flow is typically 

characterized by three distinct flow regions: near, intermediate and far field. 

The near field region is considered to be confined to a range of approximately 

0<x/D<6. Within the near field a "potential core" characterized by unchanged axial 

velocity and flow characteristics matching those at the nozzle/pipe exists initially very 

near the jet exit. The potential core begins to diminish within a diameter of the exit as the 

shear layer spreads outward and inward toward the centerline. Upon reaching the end of 

the potential core the appropriate length scale is considered to be the jet diameter, and the 
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frequency of the large-scale structures is referred to as the jet column mode or preferred 

mode. The nondimensional frequency Strouhal number, St = fD/U, is used to describe 

the jet column mode where/is the frequency, D  is the jet diameter and U  is the mean jet 

exit velocity. A broad range of Strouhal numbers for axisymmetric jets (0.25 < St <0.85) 

has been reported in various studies. The intermediate field or transition region following 

the near field of the jet is characterized by eddy structures of various scales that interact 

in a non-linear fashion to entrain fluid from the ambient fluid. The eddy structures 

observed in the intermediate region eventually collapse leaving the jet flow fully 

turbulent showing as it begins to exhibit self-preserving flow characteristics in the far 

field. 

Intermediate 

Mean Velocity 
Profiles 

Mixing Shear 
Layer 

Potential 
Core 

End of 
Core 

Figure 1: Axisymmetric Jet (Contours of mean velocity shown). 

The far field region, characterized by 'self-preserving' or 'self-similar' flow 

behavior is considered to begin at an axial distance far enough downstream where initial 

and transient flow conditions cease to influence the jet's flow development. Self similar 

behavior or 'similarity' in the far field region refers to flow properties becoming invariant 

with axial distance when expressed in terms of local scales, typically the jet half-width. 

The far field region of axisymmetric jets is typically considered to begin at approximately 

x~20D, the point at which the mean axial centerline velocity decay becomes inversely 

proportional to the axial distance as shown in Eqn. 2-1. 
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where b=(const)x Eqn. 2-1 

Self-similar behavior for Reynolds stresses and higher order turbulence statistics 

however are generally exhibited much further downstream, with studies giving estimates 

of approximately x~50-70D diameters from the nozzle/pipe exit. The greater downstream 

length necessary for fluctuating components to exhibit similarity is thought to be due to 

the fact that energy transferred to these components is from the pressure-strain 

components only, unlike the axial velocity fluctuations which have transferred energy 

directly from the mean flow. 

Experimental axisymmetric jet flow studies have typically used one of two types 

of boundary conditions: jet flow exiting a smooth contraction nozzle or jet flow exiting a 

long pipe, with the majority using the former. For a contraction nozzle, the velocity 

profile produced is a nearly uniform 'top hat' velocity profile whereas the velocity profile 

is that of a fully-developed turbulent pipe flow profile for a jet emerging from a long 

pipe without contraction. Several studies have shown that the near field dynamics and 

time-mean structure evolution of the jet is markedly different for a jet emerging from a 

fully-developed pipe without contraction than from a contraction nozzle [Bradshaw 

(1969), Hussain and Zaman (1981)]. Xu and Antonia (2002) showed that a contraction 

nozzle jet flow developed and reached self preservation much faster than the pipe jet. Mi, 

et al. (2001) experimentally studied the differences between jet flow emerging from a 

contraction nozzle and a long straight pipe at a Reynolds number of 16,000. Mi, et al. 

(2001) took scalar field measurements from 0 to 70 diameter lengths from the jet outlet. 

The differences observed between the two jets were attributed to the larger pipe shear 

layer thickness of the pipe jet and differences in turbulence structure in both the near and 

far fields of the two jet configurations. 

Regardless of the outlet type, the near field dynamics of an axisymmetric jet are 

dominated by the inflectional instability mechanism in the shear layer that amplifies 

upstream disturbances to generate large-scale structures with shape and characteristics 

dependent on the Reynolds number and the type of disturbances. In the near field region 
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the disturbances are amplified to give rise to quasi-periodic axisymmetric rings of 

concentrated vorticity. The mean velocity profile and the thickness of the boundary layer 

at the jet exit are factors that determine the rate of amplification. As the structures move 

downstream they start to merge and interact to create even larger structures. This is the 

main mechanism by which the 'memory' of the initial stability is gradually lost. Most 

researchers conclude that lack of agreement observed among studies stems from the jet's 

instability sensitivity to upstream conditions of the experimental setup which typically 

varies from study to study. 

Crow and Champagne (1971) were among the first investigators to recognize and 

study axisymmetric shear layer instabilities and their direct relation to large coherent 

structures. Their study showed the existence of preferred frequency modes at which an 

axisymmetric disturbance exhibits maximum amplification. In their study the Strouhal 

number measured was approximately St=0.3. They also noted that as the Reynolds 

number was increased, the observed coherent structure of the jet evolved from a sinusoid, 

to a helix and finally to a train of axisymmetric waves. Hussain and Zaman (1981) went 

on to distinguish two types of jet instabilities: the shear layer mode and the preferred 

mode. The shear layer mode was found to arise from the instability of the initial shear 

layer where the unstable frequency scales with the shear layer thickness, whereas the 

preferred mode is a global instability of the entire jet column where the unstable 

frequency scales with the jet diameter. 

Ferdman, et al. (2000) investigated a jet issuing from a straight pipe as well as one 

with a bend at a Reynolds number of 24,000 to investigate the effects of an uniform and 

non-uniform initial velocity profile. In their study it was found that the initial growth of 

turbulence intensities was higher for uniform initial-velocity profiles. The Rayleigh light 

scattering (RLS) experiments of Papadopoulos and Pitts (1998,1999) studied the jets 

issuing from a pipe and recognized the initial turbulence intensity per unit area as the 

controlling parameter for the centerline mixing behavior in the near-field of constant and 

variable density jets. 

Similar to Crow and Champagne (1971), Lai (1991) also investigated the 

preferred mode of a jet emerging from a fully-developed laminar and turbulent pipe for 

Reynolds numbers ranging from 200<Re<20,000 and three pipe length/diameter ratios of 
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L/D=576, 1152, and 2304. In this study it was found that for fully-developed laminar exit 

condition the Strouhal number increased with Reynolds number and approaches an 

asymptotic value of St=0.5. For fully-developed turbulent exit conditions it was found 

that the Strouhal number was independent of Reynolds number with a value of 

approximately St=0.4. 

The effects of Reynolds number on turbulent round jets has also been a key 

parameter that has been experimentally investigated extensively especially for top-hat 

velocity profiles of jets issued from a contraction nozzle. The flow visualizations of 

Dimotakis, et al. (1983) showed that near a critical Reynolds number of 103 to 20 xlO3 

the mixing transition and characteristics changed dramatically for jets issued from a 

nozzle. The experimental PIV study of Weisgraber and Liepman(1998) at a Reynolds 

number of 5.5x103 and 16xl03 showed that in the transitional region 15<x/D<30 the 

development of turbulence, vorticity, flow structure, and rate of jet development was 

heavily influenced by the Reynolds number. At a Reynolds number of 19xl03, 

Ganapathisubramani's, et al. (2002) PIV experimental study focused on the identification 

and comparison of four vortex identification schemes. Ganapathisubramani, et al. (2002) 

showed that vortex cores formed as early as x/D~0.5 and showed their evolution 

downstream led to vortex pairing up and the creation of larger-scale structures. Felluoah, 

et al. (2009) also investigated the effect of Reynolds number on the mixing transition of a 

free round jet with a top-hat velocity profile. The transition Reynolds number was found 

to be above 20x10 . Shinneeb, et al. (2008) used particle image velocimetry (PIV) and 

proper orthogonal decomposition (POD) to investigate large-scale structures in the near-

field (0 < x/D < 2.2) of a jet with top-hat velocity profile and Reynolds number 21,900. 

At higher Reynolds numbers of 78,400, 117,600 and 156,800, the hot-wire measurements 

in the near field (2 < x/D < 6) of Jung, et al. (2004) revealed the evolution of 'volcano-

type' eruptions and 'propeller-like' blade patterns near x/D~2-3 where the number of 

blades diminished with downstream distance. Ball and Pollard (2008) give a complete 

review of these and other experimental and numerical studies performed to date on a 

round jet including an appendix with a tabulated list and brief description of every study. 
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2.2.2 SWIRLING JET 

For a non-swirling jet, the near field flow is driven mainly by shear layer 

instabilities and turbulent mixing with pressure effects playing only a minor role in the 

jet's development. Swirling jet flows on the other hand are subjected to combined 

interactions of shear layer and centrifugal instabilities. The addition of tangential velocity 

superimposed on the axial velocity of an axisymmetric swirling jet generates both radial 

and axial pressure gradients that can significantly influence the flow evolution and 

interaction between vortical structures [Farokhi, et al. (1989)]. It is well known that 

addition of moderate swirl to a free turbulent axisymmetric jet increases jet spreading, jet 

width, jet decay, jet entrainment and mixing with the surrounding fluid [Chigier and 

Chervinsky (1967), Lilley (1977), Gupta, et al. (1984), Park and Shin (1993), Panda, et 

al. (1994) Liang and Maxworthy (2005), Ivanic, et al. (2003)]. Gilchrist and Naughton's 

(2005) study of the near field of a swirling jet showed that enhanced growth persisted up 

to 20 diameters downstream of the jet exit even after swirl had decayed to where it was 

nearly undetectable. 

Most experimental swirling jet flow studies have used unique experimental setups 

and varying methods to generate swirl. These include rotating pipe, a rotating 

honeycomb, tangential injection slots, deflecting vanes, and coil inserts. The difference in 

geometry and swirl generation technique used for each particular experimental study is 

such that the initial velocity profile and other flow conditions at the jet outlet can vary 

considerably among experiments and can therefore significantly affect the jet 

development making it difficult to quantify, compare, and validate independent results. 

The swirl intensity is quantified by the swirl number, S, whose definition also varies from 

study to study. Depending on the study, swirl numbers have been defined on the basis of: 

geometric parameters, ratio of tangential velocity versus axial velocity, ratio of angular 

flux to the flux of linear momentum, Reynolds stress components, and/or various 

variations thereof. The swirl number, S, is defined in this current study as the ratio of the 

tangential velocity at the pipe wall and the mean bulk axial velocity, 5= VJUb-

The flow of swirling jets is typically characterized based on the swirl intensity. At 

low swirl numbers, the jet behaves similar to the non-swirling jet with only slight 

modifications in the mean and fluctuating velocity components as well as the spread rate 
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and jet width. At moderate swirl numbers, the distinguishing swirling jet characteristics 

such as considerable increases in jet spreading, jet width, jet decay, jet entrainment and 

mixing are clearly apparent. At even higher swirl numbers, an adverse axial pressure can 

develop and cause what is known as 'vortex breakdown', an interesting and important 

phenomena. Extensive experimental investigations have been carried out in regards to 

understanding vortex breakdown, but it still remains a phenomena without a clear 

unambiguous definitive explanation. Lucca-Negro and Coherty (2001) offer an extensive 

review of numerous vortex breakdown experimental and theoretical studies undertaken in 

the past 50 years. They note that prior to the 1980's experimental studies of swirling jet 

flow focused primarily on the measurement of the mean flow fields and turbulent 

stresses. During this time the main characteristics of swirling jet flow such as the 

displacement of the location of the maximum axial velocity from the axis, the existence 

of a strong reverse flow near the centerline of the jet (i.e. vortex breakdown), change in 

velocity components with increasing swirling jet velocity and high spreading rate were all 

well documented. 

The first experimental investigation of turbulent swirling jets issuing from a fully-

developed turbulent pipe is that of Rose (1962) in which hot-wire anemometry was used 

to determine radial profiles and mean velocity components as well as turbulence 

intensities from the pipe outlet up to approximately 15 diameters downstream. In addition 

Rose (1962) also measured the centerline decay of the streamwise mean velocity as well 

as the turbulence intensity up to 70 diameters downstream. For the flow in the rotating 

pipe, even after 100 pipe diameters it was noted that the mean azimuthal velocity 

deviated from solid body rotation which Rose(1962) figured would occur with a 

sufficiently longer pipe. Follow up studies such as those by Kikuyama, et al. (1983) and 

Itoh, et al. (1996) showed that the fully-developed rotating pipe flow exhibits a parabolic 

profile regardless of the pipe length. 

Chigier and Chervinsky (1967) also measured mean velocity components and 

static pressure distribution for a wide range of swirl numbers from weak to strong swirl 

that included vortex breakdown. Their results showed that after about 10 diameters 

downstream of the jet exit the swirling motion had nearly completely vanished. Similar to 

Chigier and Chervinsky (1967), Pratte and Keffer (1972) measured the streamwise decay 
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and showed that the maximum axial and swirling velocity components varied 

asymptotically as x1 and x'2 in the region beyond the initial formation region. At high 

swirl numbers, Chigier and Chervinsky (1967) observed that the maximum mean axial 

velocity shifted from the centerline outwards (vortex breakdown). After 10 diameters, 

however, the peak mean axial velocity value shifted back to the centerline. 

In recent studies researchers have continued to study vortex breakdown and have 

paid particular attention to the dominant role of vortical flow structure interaction and 

dynamical evolution [Panda, et al.(1994), Billant, et al. (1998), Loiseleux and Chomaz 

(2003), Liang and Maxworthy (2005)]. The critical swirl number value, Sc, for which 

vortex breakdown occurs in swirling jet flow can vary significantly from study to study 

due to the initial conditions that depend on the type of swirl generation technique 

employed, variations in nozzle geometry and the definition of swirl number among 

studies. Studies such as Farokhi, et al. (1989) showed that the flow characteristics of a 

swirling jet are not only dependent on the swirl number but also depend on the initial 

flow velocity distribution. In their study, Farokhi, et al. (1989) observed vortex 

breakdown at a critical swirl number of Sc=0.48 for a swirling jet that had an azimuthal 

velocity profile in the form of a free vortex which is similar to the reported critical swirl 

number of Sc=0.45 found by Panda, et al. (1994) but is lower than the higher value of 

Sc=0.6 found by Chigier and Chervinsky (1967). In the same study, Farokhi, et al. (1989) 

also showed that at the same swirl number of S=0.48, no vortex breakdown occurred for 

a swirling jet with solid body rotation swirl distribution. 

Billiant, et al. (1998) used a rotating honeycomb to generate a high degree of 

swirl with a contraction nozzle at the outlet and studied a swirling water jet at various 

swirl numbers and Reynolds numbers (300<Re<1200). The rotating honeycomb created 

an azimuthal velocity profile with solid body rotation from r/R<0.5 and decreased from 

0.5<r/R<l. Due to the contraction used in Billiant, et al. (1998), the axial velocity was 

distorted with an increase near the centerline axis. Billiant, et al. (1998) found that vortex 

breakdown reached a well defined threshold of Sc~1.3 to 1.4 which was found to be 

independent of Reynolds number and nozzle diameter used. Billiant, et al. (1998) 

discussed different forms of vortex breakdown that can arise with swirl. Four unique 

forms of vortex breakdown were identified: namely, the bubble state, an open conical 
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sheet state and two associated asymmetric states of these two. The latter two vortex 

breakdown configurations differ from the former by the presence of a stagnation point 

around the jet central axis in a co-rotating direction with respect to the upstream flow. 

Although several forms of vortex breakdown have been identified in various studies and 

a clear definition of what it entails is not yet established, most researchers seem to agree 

on the general characteristic of vortex breakdown that results in an abrupt flow transition 

with a free stagnation point on the axis that is followed by a reverse flow and a fully 

turbulent region. 

Liang and Maxworthy (2005) also used a rotating honeycomb to generate high 

swirl but did not include a contraction nozzle at the outlet as in Billiant, et al. (1998). 

Liang and Maxworthy (2005) studied swirling jet flow at a Reynolds number of Re=1000 

for swirling numbers ranging from 0 to 1.1. In their study, Liang and Maxworthy (2005) 

were able to classify the jet flow into four regimes: non-swirling (S=0), weakly swirling 

0<S<Sci (Sci=0.6), strongly swirling before vortex breakdown 0.6<S<SC2 (SC2=0.88), and 

stable vortex breakdown Sc> SC2. 

Among the experimental swirling jet flow studies found in the literature, Rose 

(1962), Pratte & Keffer (1972) Liang & Maxworthy (2005) and Facciolo (2006) are the 

only experimental studies found that have used a rotating pipe to generate swirl. Rose 

(1962) used a pipe with a length to diameter ratio L/D=100. Pratte and Keffer (1972) 

used a shorter pipe with a flow divider at the inlet to generate an azimuthal component to 

the flow. More recently Facciolo (2006) and Facciolo, et al. (2008) have presented 

experimental LES and DNS data for rotating pipe flow as well as the swirling jet at low 

rotation rates. An interesting observation by Facciolo (2006) was the formation of a 

counter rotating core that appears in the near field of the swirling jet at an axial distance 

of 5 to 6 diameters from the jet exit. Facciolo (2006) also observed that double mass 

entrainment occurs at 6D for a non-swirling jet whereas it occurs at around 4D for the 

swirling jet (i.e. enhanced entrainment). 

2.3 PARTICLE-LADEN TURBULENT FLOWS 

In the field of fluid mechanics, the study of turbulence and particle-

laden/multiphase flows pose a great challenge for both experimental and numerical 
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investigations on their own. When the two are combined the challenge of capturing the 

inherently stochastic nature of the carrier fluid as well as capturing the distribution and 

dispersion of the particles becomes much more formidable with complex fluid-particle 

interactions between the fluid carrier phase and particles. Two key parameters that 

determine the degree of fluid-particle interactions and coupling in particle-laden flows 

are the ratio of the particle to fluid mass and volume, respectively defined as mass 

loading (< P m = m p j m f ) and volume fraction {(j>v = VpjVf^. The simplest type of 

interaction is known as "one-way" coupling and is considered for very dilute particle-

laden flow (i.e. low <j>m and (f>v), where the dominant effect is that of the carrier flow on 

the particle dynamics with the presence of the particles having little or no effect on the 

carrier fluid motion. In the case of one-way coupling, studies have shown that the passive 

particle dispersion of particles can be modeled using a simplified form of the particle 

equations of motion. As the particle volume fraction and mass loading increases however, 

the effects of the presence of particles on the fluid phase are no longer negligible, and 

"two-way" coupling is necessary to account for modifications in the carrier phase mean 

flow and turbulence characteristics. In two-way coupling the fluid phase and particle 

equations are thus coupled by source terms representing the inter-phase exchange of 

mass, momentum and energy. Turbulence modulation in this case can be attributed to two 

main mechanisms, gas-particle interaction and inter-particle collision that gives a 

redistribution of the particle fluctuating velocity that in turn imparts velocity fluctuations 

in the gas phase due to modification in the gas-phase Reynolds stress that controls the 

rate of turbulence production and dissipation. At even higher particle volume fraction, 

interactions between particles (particle collision, agglomeration .and break up) also 

become important; this is typically described as "four-way" coupling [Elgobashi (1991, 

1994)]. For the extreme limit of very large particle concentration the flow regime is 

known as "granular" in which interparticle collision is the dominant mechanism and the 

effect of the fluid phase becomes less important. Elgobashi and Truesdell (1992) also 

studied both one way and two-way coupling in a DNS study of solid particles dispersed 

in a homogeneous turbulent shear flow. 

Most experimental research on particle-laden turbulent flows has focused mainly 

on measuring mean velocity and Reynolds stresses of the carrier phase as well as the 
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particle concentration and mean/rms velocities of the particles. Several experimental 

studies have investigated higher-order quantities such as the carrier-fluid turbulent 

dissipation rate, Lagrangian particle velocity correlations, and particle-particle and 

particle-fluid velocity correlations. Prior to the standard laser-Doppler anemometer 

(LDA) it was difficult to measure the carrier phase due to particle interference with tracer 

particles. With the advent of LDA, however, in which small tracer particles are used to 

follow the fluid motion it became a more straightforward task to distinguish the signal 

obtained from the movement of the larger particles in the dispersed particle phase from 

that of the smaller tracer particles used to measure the carrier fluid. In gas flows, tracer 

diameters are typically around 1 whereas dispersed-phase particle diameters are 

typically of the order of (10-1000) /urn. 

In regards to computational investigations, two numerical approaches to 

calculating particle-laden turbulent flows are typically employed and are known as the 

Euler-Lagrange and the Euler-Euler approach. In both approaches the multiphase flow is 

computed at a macroscale only with the details and effects of the flow at the microscale 

(order of the particle diameter) incorporated through models. The Euler-Lagrange 

approach used in this study requires the fundamental assumption that the particles occupy 

a low volume fraction. In the Euler-Lagrange approach the fluid phase is treated as a 

continuum while the dispersed phase is solved by tracking each particle through the flow 

field. The effects of the fluid velocity on the surface of each particle in a large scale 

simulation is not currently a practical approach to resolving particle motion. Instead, a 

simple point particle-tracking approach is usually applied to compute the particle path 

from the fluid velocity field. Balachandar and Eaton (2010) provide a review of some of 

the latest state-of-the art experimental and computational techniques for studying 

turbulent dispersed multiphase flows. Balachandar and Eaton (2010) also review three 

important aspects of turbulent multiphase flow which include preferential concentration 

of particles, coupling effects of turbulence between dispersed and carrier phases, and 

turbulence modulation on the carrier fluid due to the presence of particles. 
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2.3.1 PARTICLE-LADEN SWIRLING JET FLOW 

A key feature observed and studied in particle-laden turbulent flows is that of 

particle distribution and preferential accumulation. It is now well accepted that particle 

distribution is non-uniform even in isotropic turbulence. Studies have shown that heavier 

than fluid particles tend to avoid regions of intense vorticity, accumulating in regions of 

high strain rate, whereas lighter than fluid particles tend to congregate in highly vortical 

regions. Accurate modeling of particle dispersion in a turbulent jet is critical to industrial 

applications that require effective and controlled particle dispersion such as fuel 

combustion. The presence of particles in a turbulent jet has been found to either attenuate 

or enhance the fluid phase turbulence intensity with respect to its particle free single fluid 

phase value. Gore and Crowe (1989) and Hestroni (1989) reviewed data available in the 

literature for both liquid-particle and gas-particle pipe/jet flows for particles of various 

size, density and concentration. Gore and Crowe (1989) and Hestroni (1989) 

summarized turbulence modulation trends using the particle Reynolds number, Rep 

defined as Rep = p f D p  \ U f  -  U p \  where Dp, pj, and /uj are particle diameter, fluid density, 

and viscosity, respectively, whereas Uf and Up are the streamwise mean (i.e. time-

averaged) velocities of the fluid and particle, respectively. In the case of pipe flow it was 

concluded that turbulence intensity was attenuated in the pipe core for small particles 

(low Rep) due to viscous drag force exerted on the small particles traveling with the 

turbulent eddies. For large particles (large Rep), on the other hand, it was found that 

enhancement of turbulence was due to vortex shedding in the wake region of the larger 

particles which enhanced the gas-phase velocity fluctuation. Gore and Crowe (1989) 

went on to propose that the particle diameter to the turbulence length scale could be used 

as an indicator to predict either the attenuation or enhancement of turbulence. 

Crowe, et al. (1989) reviewed several experimental studies of particle dispersion 

in free jets and mixing layers and discussed various mechanisms and models for particle 

dispersion in homogeneous, isotropic turbulence available in the literature. The compiled 

data reviewed included both liquid particle and gas-particle shear flows at a wide range of 

particle size, density and concentration. They were the first to propose the use of the 

Stokes number which is the ratio of the particle aerodynamic response time to the large-
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scale vortex structure time scale of free shear flows. They point out that whereas gradient 

diffusion and stochastic models that are reasonably adequate for modeling particle 

dispersion in homogeneous turbulence, these are not applicable to particle dispersion of 

non-homogeneous, anisotropic flows structures found in free shear layers which must 

take into account fluid dynamic behavior of large-scale structures that dominate the flow. 

Crowe, et al. (1989) concluded that the mixing and dispersion of particles in free shear 

layers are dominated by the motion of large-scale structures. For a given Stokes range 

particles can become entrained in the rotating large-scale structures or centrifuged to the 

outer edges of the structures that can cause a lateral dispersion exceeding that of the fluid 

particle. 

Longmire and Eaton's (1992) experimental investigation of lightly-loaded non-

evaporating droplets dispersion in a round jet clearly showed 'preferential accumulation' 

for particles at a Stokes number near unity where particles concentrate largely in the 

high-strain -rate and low vorticity regions. Uthuppan's, et al. (1994) numerical study 

used various flow visualization and analysis to show the influence of large-scale vortical 

structures on particle dispersion. By examining particle trajectories at various injection 

locations as well as performing a dispersion analysis, their study showed good qualitative 

and quantitative description of the role of large vortex structures on particle dispersion. 

Three dispersion mechanisms were identified and termed that include the vortex, 

centrifugal and inertial mechanisms. The vortex mechanism in which particles are 

trapped by the vortical structures was found to be dominant of small particles with 

St < 0.02 which follow the behavior of tracer particles. The centrifugal mechanism 

identified by particle confinement towards the periphery of the vortex structure due to 

centrifugal action of vortex rotation that causes the particles to be flung was found to be 

mostly responsible for the dispersion of intermediate particles 0.02 <St <4. The inertial 

mechanism which applies to large particles in the shear region and small particles 

injected in the core region which are not subjected to the centrifugal motion but rather by 

the flow induced by the vortex motion. 

Michioka and Kurose (2008) used LES to study the effects of particle size and jet 

swirl on particle dispersion at a Reynolds number of Re=40x10s based on jet diameter 

and bulk velocity. Three particle sizes of 10, 100, and 500 jum with Stokes number of 
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St=(2.31x10s, 0.231,5.78) and Swirl rates of S=(0,0.29,0.5) were studied. In their study it 

was observed that with addition of swirl, particle number density was located on the 

central axis for small size particles. Small size particles were observed to diffuse almost 

uniformly in the radial direction upon exiting the jet inlet. For larger particles, however, 

addition of swirl tended to shift particle outward in the upstream region due to increasing 

centrifugal force with increasing particle size. In the downstream region larger particles 

gradually migrate inward. Particle migration behavior was explained in terms of the 

turbulent motions where in the downstream region, turbulent motions near the central 

axis cause all particles inward whereas particle motions near the edges of the swirling jet 

inversely shift the particles outward. 

Luo, et al. (2006) studied the effects of particle dispersion by turbulence transition 

in a three-dimensional plane jet using DNS. Their study verified dispersion 

characteristics of previous studies [Longmire and Eaton (1992), Uthupan, et al. (1994)] 

when large-scale vortex structures are dominant such as uniform dispersion for particles 

with small Stokes number (St=0.01) that closely follow the vortex motion as well as 

strong particle preferential concentration in the outer boundaries of the large-scale 

structures for particles with Stokes number of St=l. For larger particle sizes with Stokes 

number of St=T0 and above their study showed that particles moved downstream through 

the vortex structure with little lateral dispersion. Luo, et al. (2008) concluded that 

transition of large scale vortex to small-scale turbulence causes a transition in particle 

dispersion not only in time but also in space. Particles with Stokes number of St=l and 10 

transition showed particle dispersion to go from non-uniform to uniform pattern; the 

changes were attributed to the characteristic time scale of vortex structures found in the 

flow. 
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3 NUMERICAL COMPUTATIONS OF TURBULENT FLOWS 

Prior to advances in computational power capable of efficiently processing a large 

number of numerical calculations beginning in the 1980s, analysis of turbulence was 

limited to physical experimental measurements only. This chapter provides a brief 

overview of some of the typical CFD numerical techniques that, thanks to advances in 

computational capabilities, have now been widely used to model turbulence; namely, 

Direct Numerical Simulation (DNS), Reynolds Average Navier Stokes Equations 

(RANS), and the Large-Eddy Simulation (LES) methods are discussed. A brief 

discussion of their advantages and disadvantages along with a brief mathematical 

overview pertinent to each technique are discussed. 

3.1 DIRECT NUMERICAL SIMUALTION AND REYNOLDS AVERAGED 

NAVIER STOKES 

Turbulence is usually regarded as the time-dependent chaotic behavior observed 

in many fluid flows. Although turbulent flows appear to be random, it is generally 

considered that all flows, laminar or turbulent, evolve in a deterministic manner 

according to the physical laws of conservation of mass, conservation of momentum and 

conservation of energy. Five basic variables as functions of space and time are typically 

necessary to determine the flow field evolution of a fluid which includes three velocity 

components and any two thermodynamic properties such as temperature, pressure, 

density, enthalpy, entropy, etc, which, once known, suffice to determine the state and 

hence all other properties of the fluid. Five independent equations are therefore needed. 

These usually include the three components of the equation of motion (conservation of 

momentum), the continuity equation (conservation of mass) and the energy equation. For 

an incompressible and temperature independent fluid the energy equation is not needed 

since density is taken as a known and only conservation of mass and conservation of 

momentum to determine the pressure along with the velocity components are needed to 

completely describe the fluid flow. The conservation of mass and momentum are the well 

known Navier-Stokes equations (NSE) which many textbooks cover in great detail and 
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are therefore not derived in detail here, Rather, they are only presented in their general 

form as given in the Fluent (2006) user manual. 

Conservation of Mass: 

^  +  V - ( p u )  =  S m  Eqn. 3-1 

Conservation of Momentum: 
d {~\ — 
—  ( p u )  +  V  (puti) = -S7p + V  ' | r j  +  PS + F Eqn-3-2 

where Sm is a source term representing mass added to the continuous phase from the 

dispersed second phase plus any user-defined sources, p is the static pressure, T is the 

stress tensor, pg is a body force due to gravity and F is any additional external body 

force. The stress tensor r is defined as 

T =  {L 

where / is the unit tensor and fj, is the molecular velocity. 

For steady laminar flows the conservation of mass and momentum equations 

presented above and initial boundary conditions typically suffice to resolve flow 

characteristics. Most flows in nature however are turbulent and are characterized by 

having a wide range of dynamically significant scales of motion. In theory it is possible 

to resolve the entire spectrum of turbulent scales by spatially and temporally discretizing 

the Navier-Stokes equations so as to account for even the smallest eddy scales of motion, 

an approach known as direct numerical simulation (DNS) in which no modeling is 

required. The possibility that turbulence may occur is generally measured by the flow 

Reynolds number, Re = pLU/fi, which is a measure of the relative importance of fluid 

inertia to viscous forces. Even with the most sophisticated super-computers of today 

however, full resolution using the DNS approach is still not practical for most 

(Vm + VMt)-|V-M/ Eqn. 3-3 
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applications at high Reynolds numbers since the cost required to resolve the entire range 

of scales is found to be proportional to R3 which quickly reaches unfeasible 

computational limits at a large Reynolds number. A great incentive, therefore, has existed 

for developing turbulent models and techniques to efficiently and accurately model the 

effects of turbulence. 

One typical approach has been to apply a process known as Reynolds averaging 

or the Reynolds-averaged Navier-Stokes (RANS) equation in which the idea is to 

attempt to obtain solutions for the average quantities instead of the instantaneous flow 

quantities. As the name implies, in this method the solution variables in the instantaneous 

Navier-Stokes equations are substituted by the averaged and fluctuating components. For 

the instantaneous velocity components: w, = LT + w, where Ui and ut are the mean and 

fluctuating velocity components (i=l,2,3) respectively. Assuming incompressibility and 

omitting gravitational and body forces, Eqn. 3-1 and Eqn. 3-2 gives: 

RANS Conservation of Mass: 

a P  { d ( p u )  0 

dt dx, 
Eqn. 3-4 

RANS Conservation of Momentum: 

HPU.)  , L ,  S(PU.)  AW,^ L ,  8 W 

dt dx. dx. d x .  
Eqn. 3-5 

In this approach the averaging process introduces unknown terms, . known as 

Reynolds stresses which require an additional relation to close the system which in turn 

introduce even more unknowns in an unending process known as the closure problem. 

Various RANS models exist to resolve the Reynolds stresses and can typically be divided 

into two approaches: the Boussinesq hypothesis and the Reynolds stress model (RSM). In 

the Boussinesq hypothesis the concept of an eddy viscosity is introduced, and the process 

involves the use of an algebraic equation for the Reynolds stresses and requires 

determining the turbulent viscosity, and sometimes depending on the level of model 

sophistication also requires solving transport equations for determining the turbulent 
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kinetic energy and dissipation. The mixing length model, Spalart-Allmaras, K - S  (k-

epsilon) and K-CO (k-omega) model are typical models associated with the Boussinesq 

hypothesis approach. The pros of the Boussinesq hypothesis models are their relatively 

simplicity and robustness, but they have the drawback of not being adaptable to different 

flows with the same set of constants (universality) and tend to be overly diffusive. The 

Reynolds stress models attempt to model directly the Reynolds stresses that appear in the 

RANS equations and are typically mathematically more expensive with 6 additional 

equations. There are a lot of variants of the Boussinesq hypothesis and Reynolds Stress 

models that have been developed and tweaked over the years to attempt to overcome 

some of their apparent disadvantages. The biggest drawback to these RANS approaches 

seems to be the difficulty of attempting to establish an accurate relationship between 

transport correlations such as the Reynolds stresses and the complex flow physics that 

might cause them. The alternative to not having a priori averaging of the Navier-Stokes 

equations and keeping the equations in the form of DNS, however, is not usually a 

practical task. The Large-Eddy Simulation (LES) approach which can be considered to be 

somewhere between RANS and DNS has received much attention in recent years and has 

come to the forefront of turbulence flow computations. 

3.2 LARGE-EDDY SIMULATION 

Like DNS, LES is a method that also solves directly for instantaneous velocities. 

The difference, however, is that DNS resolves all length scales of turbulence and thus 

requires a computational domain with sufficient resolution to capture even the smallest 

turbulent scales. Alternatively, LES directly resolves only the larger turbulent scales (i.e. 

low frequency, high energy eddies) while modeling the subgrid scales (i.e. high 

frequency, low energy motions) is responsible for the dissipation of turbulent kinetic 

energy. LES seeks to take advantage of the fact that the geometry and boundary-

condition-dependent larger eddies are mostly responsible for transport of momentum, 

energy and scalars. Small eddies tend to be more isotropic and less flow dependent which 

makes modeling of their independent behavior easier. In LESs, only the larger energy-

carrying eddies are directly computed while the smaller eddies are modeled. 
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Resolving only the large energy eddies allows for the use of a much coarser mesh 

and larger time step size than DNS. When compared to RANS calculations however, LES 

still requires a substantially finer mesh and typically requires a longer flow-time to obtain 

stable statistics of the flow which means that the computational cost of LES is still 

several orders of magnitude more than RANS calculations and, thus, typically requires 

the use of high-performance computing and higher memory and CPU time. 

The main principle of LES is the application of a low-pass filtering of the time 

dependent Navier-Stokes equations in either Fourier (wave-number) space or physical 

space to reduce the range of length scales of the solution which are directly resolved. 

manual. Flow structures that are smaller than the mesh size or subgrid scales that are not 

resolved (filtered out) are modeled, and the equivalent stress is added to the equations of 

motion. A filtered variable, is represented by an over-carrot and is determined 

according to 

In Fluent, the filtered scalars in the fluid domain, D, are reduced to a function that 

is based on the computational cell volume, V, such that 

Eqn. 3-6 through Eqn. 3-10 are taken from the Fluent (2006) user 

(j>(x)= f ^(x')G(x,x')<ix: 
J V 

Eqn. 3-6 

Eqn. 3-7 

and the filtered function G(x,x) is given by a "tophat" filter: 

i / K ,  x  e v  

0, x' otherwise 
Eqn. 3-8 

Applying the filter to the Navier-Stokes equations: 
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LES Conservation of Mass: 

d p  d ( p u )  

dt dx. 
0 Eqn. 3-9 

LES Conservation of Momentum: 

d ( p u i )  d ( p u t u j )  d  f da, A 

— A i - = fj. : 

dt d x ,  dx. dx J J  

d ( P )  a ( r - > )  

dx, dx. 
Eqn. 3-10 

where cr is the stress tensor due to molecular viscosity and ry. is the subgrid-scale 

stress defined as: 

T Y  = PUIIJ  ~  PU,UJ Eqn. 3-11 

Similar to the Reynolds shear stresses ulu] that result from averaging of the 

Navier-Stokes equations in RANS, the subgrid-scale stresses resulting from the filtering 

operations in the LES model are also unknown and require modeling. Also like the 

RANS models, the subgrid-scale turbulence models for LES in Fluent use the Boussinesq 
A 

hypothesis. The subgrid-scale model is a function of the Rate of Strain Tensor, Sy, and 

subgrid-scale turbulence viscosity fj.T. 

1 
*U ~ 3 TuS,j = 2MtSu Eqn. 3-12 

1 
S» = 2 

f dut duj 

\ dx j + dx, J 

Eqn. 3-13 

In this current LES study the default subgrid-scale Smagorinsky-Lilly model in 

Fluent first proposed by Smagorinsky (1963) was used for all simulations performed. The 

subgrid-scale turbulence viscosity is given by: 
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fj.t = plls S Eqn. 3-14 

where ^2SySy and the mixing length, L s ,  is given by Ls = m\n{icd,CsVm^ 

where K is the von Karman constant, d is the distance to the closest wall, V is the 

computational cell volume and Cs is the Smagorinsky constant. 

Various investigators have studied and debated the accuracy and validity of the 

Smagorinsky constant [Germano (1991), Lilly (1992), John and Layton (2002), Chen 

(2006), Leveque (2007)]. It is generally accepted that the value of the Smagorinsky 

constant, Cs, is non-universal and varies widely depending on flow conditions. Germano, 

et al. (1991) discussed the findings of a number of authors who found that the constant 

first proposed by Smagorinsky (1963) was not necessarily constant and for various 

reasons varied between 0.1 and 0.23. Germano, et al. (1991) suggested the incorporation 

of a variable Cs to allow for flexibility and a wider spread application of the Smagorinsky 

turbulent viscosity calculation. This modification by Germano, et al. (1991) also 

resolved some of the backscatter or energy transfer from small to large scale deficiencies 

of the original Smagorinky model. Lilly (1992) went on to improve on the Germano, et 

al. (1991) model to account for numerical instabilities. Fluent offers the option of a 

constant or a dynamic coefficient for the Smagorinsky constant, Cs. The constant default 

option in Fluent of Cs=0.1, which as stated in the Fluent (2006) user manual is found to 

yield the best results for a wide range of flows, was used in this current investigation. 
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4 PIPE FLOW MESH SENSITIVITY TESTS 

4.1 PIPE FLOW MESH AND SIMULATION PARAMETERS 

When considering the computational mesh domain boundary conditions necessary 

to perform simulations of fully-developed turbulent pipe flow, periodic boundary 

conditions are applicable, since the flow pattern of fully-developed pipe flow is 

periodically repeating and the pipe has a cylindrical geometry that remains constant in the 

axial direction. Since transient effects are not considered, periodic boundary conditions 

are used to efficiently compute fully-developed turbulent pipe flow conditions. The total 

pipe length domain used was L=5D. The pipe diameter in this investigation of D=0.06m 

was chosen to match the experimental investigation of Facciolo (2006). 

Temporally developing pipe-flow simulations were performed to test the 

sensitivity of predictions to mesh distribution. All meshes used in this investigation were 

created using the meshing software Gambit. A total of six pipe meshes were tested at a 

Reynolds number of Re=5xl03. The six meshes are referred to as: M100L, M200L, 

M256L, M256L-SF, P130C, and P200C. Cross sections of these meshes are shown in 

Figure 2 and 3. 

The M100L, M200L, M256L meshes shown in Figure 2 were created by splitting 

the cross section of the pipe into 5 sub-mappable regions (dash lines show sub-mappable 

regions). The inner circle sub-mappable region has a radius that is half that of the total 

pipe radius. These meshes all have 120 equally spaced circumferential nodes around the 

perimeter of the pipe. The difference between the M100L, M200L, M256L meshes is the 

total number of axial nodes along the axial distance. The M100L mesh has 100 axial 

nodes along the length of the pipe. The M200L mesh has 200, and the M256L mesh has 

256 axial nodes. The M256L-SF mesh shown in Figure 2b also has 256 axial nodes but 

was created with a paved interior so as to avoid skewed elements observed at the four 

interior intersection nodes of the sub-mappable regions. The P130C and P200C meshes 

shown in Figure 3 were created using a paved scheme throughout the pipe. These two 

meshes were created by first meshing the edges of the pipe perimeter and the edges of 

four internal concentric surfaces at r=(0.2R, 0.4R, 0.6R, and 0.8R) such that equally 

spaced tangential distance, As, between nodes was maintained. The P130C and P200C 
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meshes have 130 and 200 perimeter nodes respectively, and both of these meshes have 

256 axial nodes. 

is 

Figure 2: Pipe mesh cross sections: a. M100L, M200L, M256L b. 
M256L-SF. 

Constant 
As 

130 Outer Nodes 
200 Outer Nodes 

MM 

Figure 3: Pipe mesh cross sections: a. P130C b. P200C. 
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Table 1 summarizes the tested pipe mesh geometries and the total number of 

nodes in the tangential and axial direction, Ng, and Nx respectively. The number of 

tangential nodes shown corresponds to the total number at the pipe wall perimeter, r=R 

where r=(y2+z2)'/2. The number of cells shown refers to the total number of calculation 

cells created from the nodes. All cells are hexahedral for all pipe meshes tested. 

Table 1: Pipe meshes geometry and grid points summary. 

M100L M200L M256L M256L-SF P130C P200C 
L 5D 5D 5D 5D 5D 5D 

Ne,(r=R) 120 120 120 120 130 200 
Nx 100 200 256 256 256 256 

Cells 4.50E+05 9.00E+05 1.31E+06 1.23E+06 6.18E+05 1.11E+06 

The distance in wall units for the first 20 points measured across the center of the 

pipe from the pipe wall is shown in Table 2. Table 3 shows the pressure gradients 

prescribed across the periodic boundaries to produce flows with bulk Reynolds numbers 

of 5x10s, 12x10s, and 24x10s studied in this investigation. It should be noted that the 

same pressure gradient was applied when rotation was introduced. As is well known, 

maintaining the same pressure gradient and adding rotation to a pipe causes the bulk 

velocity to increase. The wall rotation rate to achieve a given desired swirl rate 5= JVC/*, 

was thus initially set using an estimate of the non-rotating pipe bulk velocity but had to 

be re-adjusted a posteriori such that it accounted for the increase of bulk velocity due to 

the addition of rotation effects. 
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Table 2: Mesh comparison of distance in wall units (Re=5xl03, S=0) of the first 
20 grid points from the pipe wall 

Grid 
Point 

M100L 
M200L 
M256L 

M256L-SF P130C P200C 

+ 
y i 0.57 0.57 0.91 0.86 

+ 
y i 120 1.19 1.94 1.89 

+ 
yj 1.88 1.85 3.17 3.12 

+ 
y 4 2.64 2.55 4.65 4.61 

+ 
y s 3.46 3.31 6.43 6.38 

+ 
y 6 436 4.13 8.56 8.52 

+ 
y 7 534 5.01 11.13 11.08 

00 6.42 5.95 14.20 14.15 
+ 

y 9 7.61 6.96 17.88 17.84 

y+ io 8.90 8.04 22.31 22.27 

y+ a 10.32 9.21 28.40 22.62 

y+12 11.88 10.46 34.31 26.15 

y+13 13.58 11.80 42.90 30.15 

y+14 15.44 13.24 51.26 34.31 

y+ is 17.48 14.79 59.94 40.05 

y+ is 19.71 16.45 68.71 45.96 

y+n 22.16 18.24 77.08 51.98 

y+ is 24.84 20.15 85.17 57.81 

y+» 27.78 22.21 94.06 63.36 

y+ 20 30.99 24.42 102.94 68.62 

Table 3: Prescribed Pressure gradient and flow characteristics. 

Re 

Set 
Pressure 
Gradient 
(Pa/m) 

ub 

(m/s) 

Flow 
Rate 

(m3/s) 

T\v 

(Pa) 
Empirical 

Ut 
(m/s) 

E 

(m2/s3) 

t* 
(D/ut) 

5.3E+03 0.661 1.290 3.65E-03 9.47E-03 8.79E-02 6.96E-01 6.83E-01 4.58E-03 
1.2E+04 2.711 2.921 8.26E-03 3.96E-02 1.80E-01 6.47E+00 3.34E-01 1.50E-03 
2.4E+04 9.120 5.843 1.65E-02 1.33E-01 3.30E-01 4.35E+01 1.82E-01 5.79E-04 
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The characteristic timescale, t*, is defined as, 

D_ 

U, 
Eqn. 4-1 

where: Ur  = 
f \V2 

\ y J 
(Friction velocity) Eqn. 4-2 

T w « 0.0396p3/4Ul'4ju1MD 1/4 (Empirical wall shear stress). Eqn. 4-3 

According to Eggels(1996), at a Reynolds number of 5.3xl03 the Kolmogorov 

timescale tv, is related to t* , as tn = 0.0068/ *. This value of 4.64 xlO"3^ compares well 

•5 
with the current simulation value of 4.58 xlO" calculated based on the dissipation rate, e, 

obtained from dimensional analysis. From Eqn. 4-4, £ is a function of the prescribed 

pressure gradient at the periodic boundaries, the bulk flow velocity, the volumetric 

flowrate and mass flowrate. 

£ = PUbQm = 1 _ f k g  \ m  (  3 m  / \ 
s ( 2 "N m  

2 2 {m 5 y \ s  J  K  S , l~J 
Eqn. 4-4 

The Kolmogorov timescale, tn, and length scale, 77, are given as: 

fv\" 
Eqn. 4-5 V 

V / 4 A  

„l/4 Eqn. 4-6 

The characteristic timescale based on the friction velocity found at the Reynolds 

number tested is shown in Table 4. 
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Table 4: Friction velocity, characteristic timescale, and Kolmogorov timescale 

Re UT (m/s) t* (s) tn (s) 

5.3x103 0.083 0.723 0.0049 

12xl03 0.18 0.333 0.0023 

24x103 0.33 0.182 0.0012 

A conservative time step of A/ = 0.000I s ,  well below the Kolmogorov timescale 

at the highest Reynolds number of 24x10 , was chosen for all simulations performed. 

Standard procedures according to Fluent (2006) guidelines were followed in setting up 

and executing all simulations. The flow within the pipe domain was initialized with a 

laminar parabolic profile with the desired bulk velocity. The standard k-e model was 

then used to attain a turbulent profile solution. Once the k-e model converged, 

synthetic turbulence perturbations were added to the flow field and the standard LES 

model using the non-iterative time advancement scheme was started. All subsequent 

LES simulations were initialized using instantaneous LES flow fields of previous runs. 

4.2 PIPE FLOW: Re=5.3xl03; S=0 

Data sampling within FLUENT was enabled to collect statistical quantities 

throughout each simulation. Sampling for data averaging was reset every 5 second 

interval (50,000 time steps, At = 0.0001 sec). One million time steps for a total of 100 

seconds of flow data collection was performed for the non-rotating pipe trials for all 

meshes at Re=5.3x10s, S-0. As shown in Figure 4, statistics were collected at 5 axial 

distances, x=(0, L/3, L/2, 2L/3 and L), in both the y-axis and z-axis directions along the 

pipe's center cross section. For non rotating pipe flow simulations at Re=5.3x10s, 

statistics were gathered and plotted for the following quantities: Mean axial velocity, 

RMS axial, radial, and tangential velocity, Reynolds shear stress, RMS Pressure, and 

mean pressure. The average bulk velocity was calculated using the mean axial velocity 

profile integrated over the pipe's volume. 
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i J 

5 Measured Locations (10 
Pipe cross sections, 
vertical and horizontal) 

Figure 4: Pipe flow simulation data collection locations, 10 total. (5 axial 
distances in both Y and Z directions). 

Entrance (x=0L) 

The first lOseconds (105 time steps) of data are omitted when computing the 

statistical averages. Figure 5 shows the temporal average at all measured locations as well 

as the overall temporal and spatial average for the mean axial velocity for mesh P130C. 

Note that the radial length notation r, where r=(yz+z2)I/2, is used hereafter to denote the 

distance from the center-line of the pipe. 
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Pipe Flow: Re=5.3E03, S=0; Mesh PI30C Measured Location 
— x=0. y=(0toR), z=0 

x=0, z=(0toR), >'=0 
—x=(l/3)L, y=(0toR), z=0 
• x=(l/3)L,z=(0toR),y=0 

—x=(l/2)L, y=(0toR), z=0 
• x=(l/2)L, z=(0toR), y=0 

—x=(2/3)L, y=(0toR). z=0 
• x=(2/3)L, z=(0toR), y=0 

— x=L, y=(0toR), z=0 
x=L, z=(0toR), y=0 

O Average (All Locations) 

0.4 0.6 
r/R 

Figure 5: Mean axial velocity average at each measured location (temporal) and overall 
average for all locations (Mesh P130C). 

The overall mesh average and standard deviation values of bulk velocity are 

shown in Figure 6. The average pipe wall shear stress, rw, is shown in Figure 7. 

Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

1.2 
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0.8 

2*0.6 
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ft 

" " V ; ) 

0 

. _t 
I 
I 

OMIOOL Avg= 1.309 
A M200L Avg=1.312 
• M256L Avg=1.308 
VM256L-SF Avg=1.311 
x P130C Avg= 1.298 
+ P200C Avg=1.304 

std=5.81E-003 
std=3.47E-003 
std=4.01E-003 
std=3.37E-003 
std=5.26E-003 
std=4.79E-003 

4 5 
Time Steps (At= lE-04sec) 

8 

x 10 
10 
5 

Figure 6: Average bulk velocity mesh comparison. Re=5.3xl03; S=0. 
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Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

o.o4--tp » 0 $ a # o $ b ^ h 

0.008 

£ 0.006 

0.004 

0.002 

OMIOOL Avg=9.91E-003 std=6.51E-005 
A M200L Avg=9.92E-003 std=4.05E-005 
• M256L Avg=9.92E-003 std=6.46E-005 
V M256L-SF Avg=9.91E-003 std=4.87E-005 
x P130C Avg=9.92E-003 std=3.80E-005 
+ P200C Avg=9.92E-003 std=4.31E-005 

3 4 5 6 
Time Steps (At=lE-04sec) 

8 
x 10 

10 
5 

Figure 7: Average pipe wall shear stress. Re=5.3xl0 ; S=0. 

Table 5 summarizes the overall bulk velocity and wall shear averages found for 

each mesh simulation tested at Re=5.3x10s, S=0. Shown along with the average 

simulation shear stress is the empirical shear stress calculated using the simulation 

average bulk velocity. With regards to the percent difference between the shear stress 

obtained from the simulations and that of the empirical formulation, Eqn. 4-3 shows that 

the latter is consistently slightly larger by approximately 1-3%. Therefore, all meshes 

give reasonable prediction of these averaged stress quantities. 

Table 5: Pipe Flow: Re=5.3xl03, S=0. Average bulk velocity/wall shear grid comparison. 

M100L M200L M256L M256L_SF P130C P200C 

ub (m/s) 1.309 1.312 1.308 1.311 1.298 1.304 
Re 5377 5389 5373 5384 5333 5355 

Simulation Twl (Pa) 9.91E-03 9.92E-03 9.92E-03 9.91E-03 9.91E-03 9.92E-03 

Empirical tw2 (Pa) 9.71E-03 9.75E-03 9.69E-03 9.73E-03 9.57E-03 9.64E-03 

%Diff (Twl-Tw2) 2.062 1.738 2.273 1.841 3.470 2.826 

Figure 8 shows that for non-rotating pipe flow at Re=5.3xl03 there is negligible 

variation in the mean axial velocity profile found among all meshes tested. 
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Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

A M200L 

• M256L 

V M256L-SF 
x P130C 

+ P200C 

0.5 

0.2 0.3 0.4 0.5 
r/R 

0.6 0.7 0.8 0.9 

201—-

O M100L 

U+=y+ A M200L 
• M256L 

FR -
V M256L-SF 
X P130C 

. ' , • 1 , . , I . 1 + P200C 

4-y 

Figure 8: Average mean axial velocity normalized with bulk velocity Ub (top) 
and in wall units (bottom). Re=5.3xl03; S=0. (/c = 0.4l,y# = 0.59). 

Figure 9 and 10 also show little variation in the turbulent intensity and axial-radial 

Reynolds shear stress profiles among the meshes tested with only the coarser mesh 

M100L showing slightly higher values for the axial turbulence intensity than the rest of 

the meshes from approximately 0.7<r/R<0.9 with a slight shift in the peak magnitude 

further away from the wall. Conversely, the radial and tangential turbulent intensity 

appear to be lower for the M100L mesh. This seems to agree well with the observation 

made in Wu and Moin (2008): "in coarse DNS or LES calculations the streamwise 

component of turbulence intensity is amplified, whereas the other components are lower 

than those in resolved calculations." As pointed out in Wu and Moin (2008), this was the 

case in the coarser DNS simulation of Eggels, et al. (1994) although the effect for the 

radial turbulent intensity and axial-radial shear stress seems to be slightly more amplified 

for the current simulations. 
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Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

JO MIOOL 
A M200L 
• M256L 
V M256L-SF 
x P130C 
+ P200C 

0.8 0.9 0.5 0.6 
r/R 

Figure 9: RMS turbulence intensities in wall units. Re=5.3xl0 ; S=0. 

Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

O Ml00! 
A M200L 
• M256L 
V M256L-SF 
x P130C 
+ P200C 

Figure 10: Reynolds shear stress (axial-radial) normalized with friction 
velocity. Re=5.3xl03; S=0. 

Figure 11 shows only slight variation in the mean pressure profile for each mesh, 

except right near the wall for the M100L mesh and P200C mesh with the former under 

predicting and the latter over predicting. The rms-pressure values in Figure 12, on the 

other hand, do show a trend that appears to be dependent on the type of mesh. The two 
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un-mapped P130C and P200C meshes result in larger values, almost throughout the pipe 

cross-section than all other sub-mappable (MIOOL, M200L, M256L) meshes tested. 

Comparing the sub-mappable meshes, the coarser meshes (MIOOL, M200L) seem to give 

slightly lower values. These results suggest that the MIOOL mesh may not be sufficiently 

fine. 

Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

O MIOOL 
A M200L 
n M256L 
V M256L-SF 
x P130C 
4- P200C 

0.8 

0.6 

0.2 

-0.2, 
0.2 0.3 0.4 0.5 

r/R 
0.6 0.7 0.8 0.9 

Figure 11: Mean Pressure normalized with friction velocity. Re=5.3xl03; S=0. 

Pipe Flow: Re=5.3E03, S=0; Mesh Comparison 

2.6 

2.4 

2.2 

o. 
O MIOOL 
A M200L 
• M256L 
V M256L-SF 
x P130C 
+ P200C 

1.4 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
r/R 

Figure 12: RMS Pressure normalized with friction velocity. Re=5.3xl03; S=0. 
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4.3 PIPE FLOW: RE=5.3X103; S=0.5,1, 2 

For simulations of rotating pipe flow at Re=5.3xl03, meshes MIOOL, M200L, 

P130C, and P200C were used with rotation rates of S= VJUb =(0-5, 1, and 2) chosen to 

match those investigated by the DNS study of Orlandi and Fatica (1997), which were 

performed at a Reynolds number of Re=5.0xl03. Not all meshes were tested for all 

rotation rates. Shown below in Table 6 is a comparison of the results of the centerline 

velocities, normalized with bulk velocity for the current simulations and for those of the 

DNS study of Orlandi and Fatica (1997) hereafter designated OF and experimental results 

of Reich and Beer (1989) hereafter designated as RB. Current results for all meshes 

tested show overall good agreement with both sets of data. 

Table 6: Centerline Velocity normalized with bulk velocity (Re=5.3xl03). 
Orlandi and Fatica (1997, Re=5.03) (OF) and Reich and Beer (1989) (RB). 

MIOOL M200L P130C P200C OF RB 
IS 

Uel/ub UC|/Ub ucl/ub uc,/ub ucl/ub uc./ub 

0 1.318 1.315 1.314 1.316 1.306 1.270 
0.5 1.412 N/A 1.405 1.405 1.440 1.350 
1 N/A 1.502 1.505 N/A 1.503 1.457 
2 1.701 N/A 1.658 1.621 1.660 1.689 

Following Orlandi and Fatica (1997), if we introduce U = U/UCL, the shape factor 

H can be determined as H = ^{\-U)drj(\-U}dr. The shape factor represents the 

ratio of the displacement thickness and momentum thickness that can be used to 

determine the nature of the flow. A value of 1.3-1.4 is typical for turbulent flows. A 

value of 2.6 is typical for laminar flows. Table 7 shows that the shape factor calculated in 

the current simulations also match well with those of Orlandi and Fatica (1997) and 

Murakami and Kikuyama (1987) hereafter designated as MK. The increase in the shape 

factor indicates that with increasing rotation there is a tendency towards laminar flow. 
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Table 7: Pipe Flow: Re=5.3xl03, S=(0.5,l,2) shape factor Coefficient in the 
present simulations and in Orlandi and Fatica (1997) (OF) and Murakami and 
Kikuyama (1987) (MK). 

cj M100L M200L P130C P200C OF MK 
H H H H H H 

0 1.658 1.628 1.628 1.610 1.637 1.625 

0.5 1.672 N/A 1.692 1.672 1.747 1.687 

1 N/A 1.691 1.721 N/A 1.771 1.812 

2 1.855 N/A 1.854 1.813 1.913 1.969 

Figure 13 and 14 show the ratio of the mean axial velocity to the bulk velocity 

and centerline velocity, respectively, at all rotation rates. It can be seen that nearly perfect 

agreement among all meshes is found for the lower rotation rates of S=0.5 and S=l. At 

the higher rotation rate of S=2, however, there is a clear difference among the three 

meshes tested at this rotation rate. Mesh P200C gives a lower peak value than the coarser 

meshes, MIOOL and P130Cs. As expected, with increased rotation rate the velocity 

profile exhibits a more parabolic shape with the central region peak increasing and a 

decrease near the wall (suggesting laminarization). 

1.8 

1.6 

1.4 

1.2 

X> 1 

3 0.8 

0.6 

0.4 

0.2 

°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
r/R 

Figure 13: Mean axial velocity normalized with bulk velocity Ub. Re=5.3xl03; S=0.5,1,2. 

Pipe Flow: Re=5300, S=(0.5,l,2); Mesh Comparison 

w e o o o O o ^ g 

-©- M100L(S=0.5) 
-e-PI30C(S=0.5) 
0-P200C(S=0.5) 

-A-M200L(S=I) 
•A-PI30C(S=1) 

MIOOL(S=2) 
-e-PI30C(S=2) 
•o-P200C(S=2) 
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Figure 14: Mean axial velocity normalized with centerline velocity Uc. 
Re=5.3xl03; S=0.5,1,2. 

The ratio of mean tangential to bulk velocity and wall velocity is shown in Figure 

15 and 16, respectively. Little difference in mean tangential velocity is observed among 

the meshes tested except at the highest swirl rate of S=2. 

Pipe Flow: Re=5300, S=(j0.5tl,2); Mesh Comparison 

-e-M I00L(S=0.5) 
-©- P130C(S=0.5) 
-O" P200C(S=0.5) 
-A-M200L(S=I) 
-A-PI30C(S=I) 
-B-M100L(S=2) 
-e-PI30C(S=2) 
O~P200C(S=2) 

,, Pipe Flow: Re=5300, S=(j0.5,l,2); Mesh Comparison 

> 

-e-MI00L(S=0.S) 
-&• P130C(S=0.5) 
~0-P200C(S=0.5) 
-A-M200L(S=1) 
-<Sr P130C(S= I) 
-e-MI00L(S=2) 

P130C(S=2) 
o-P200C(S=2) 

Figure 15: Mean tangential velocity normalized with bulk velocity Ub. 
Re=5.3xl03; S=0.5,1,2. 
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Pipe Flow: Re=5300, S=(0.5,l,2); Mesh Comparison 
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Figure 16: Mean tangential velocity ratio normalized with pipe wall velocity Vw, 
Re=5.3xl03; S=0.5,1, 2. 

4.4 PIPE FLOW: RE=12X103,24X103; S=0, 0.5 

For simulations at Reynolds numbers of Re=2xl03, 24xl03 only the M256L-SF, 

P130C, and P200C meshes were investigated. Simulations at these higher Reynolds 

numbers were performed for S=0 and S=0.5 rotation. The same time-step of 

At = 1 x 10"4 seconds, as the Re=5.3xl03 simulations is used, but this time unsteady 

statistics were reset every 1,000 iterations instead of every 5,000 previously. 

For pipe flow without rotation, Figure 17 shows that the predicted bulk velocity 

for the M256L-SF mesh is only slightly higher (<3%) at both Reynolds numbers than 

those for the P130C and P200C meshes. With rotation, however, the predicted bulk 

velocity for the M256L-SF mesh is slightly lower (<2%) at both Reynolds numbers. With 

the addition of rotation it can be seen that the bulk velocity increases significantly by 

approximately 11% for all meshes tested at both Reynolds numbers when compared to 

non-rotating pipe flow cases. 

Initially, the wall rotation rates, Vw, were chosen based on the lower non-rotating 

bulk velocity results found such that, Vw=0.5Ub,(s=oj- The significant increase in bulk 

velocity due to the prescribed wall rotation was such that the actual swirl rate observed 
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was well below the desired swirl rate, S<0.5, with S= VJUb,rotation approximately equal to 

0.4. The wall rotation rates were re-adjusted a posteriori to account for the increase in 

bulk velocity observed to achieve a true value of S= Vw/Ub,rotatwn=0.5. The final wall 

rotation rates for all three meshes tested were set to .Vw=55Rad/sec and llORad/sec for 
•2 -5 

Re= 12x10 and Re=24xl0 respectively to produce the desired rotation rate of S=0.5 for 

all meshes tested. 

, Pipe Flow: Re=1.2E04, S=0 
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Figure 17: Average bulk velocity (1,000 time step samples). Re=12xl03, 24xl03; S=0,0.5. 

The pressure loss coefficient C is given by: 

AP 

\pul 
Eqn. 4-7 

where AP is the pressure gradient as given in Table 3. The decrease in Cp at a constant 

pressure gradient associated to an increase in bulk velocity due to addition of rotation is 

shown in Figure 18. The decrease in pressure loss from S=0 to S=0.5 was approximately 
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9% at Re=5.3xlO and approximately 20% for the two higher Reynolds number of 

Re=12xl03 and 24xl03. 

0.8 Pipe Flow: Pressure Loss Coefficient 

0.7-

9% 

-t-
0^0.6- ...20% 
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19% 

O40 
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0.5 1 
S 

f ORC-5.3XI03: 

i^Rc»l2xl03 

' ORe=24xl03 

1.5 

Figure 18: Pressure loss coefficient. Re=5.3xl03 , 12xl03, 24xl03: Effect due to 
pipe rotation. 

Figure 19, showing little variation, is observed in the computed wall shear stresses 

among the three meshes tested, which is to be expected since the same pressure gradients 

applied to the non-rotating cases (see Table 3) of 2.71 and 9.12Pa/m respectively were 

maintained with addition of rotation. 
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Figure 19: Average wall shear (1,000 time step samples). Re=12xl03,24xl03; S=0,0.5. 

The mean axial velocity profiles normalized with the bulk velocity are shown in 

Figure 20. No significant difference in mean axial velocity is observed among the meshes 

tested. When normalized with bulk velocity it is seen that the velocity profile at the 
•> 

higher Reynolds number of Re=24xl0 shows a slightly flatter (more fully turbulent) 

profile at the pipe center for all meshes when compared to Re=12xl03. As expected, the 

addition of rotation tends to deform the velocity profile to a more parabolic profile with a 

higher central region velocity. When the mean axial velocities are normalized in wall 

units and compared to the theoretical law of the wall and log law, Figure 21 shows a 

significant under-prediction near the wall for all meshes tested at both Reynolds numbers. 

The meshes tested were initially created considering a lower Reynolds number of 5300 so 

as to have an approximate starting first point at y+=l. At these higher Reynolds numbers 

of Re=12xl03 and Re=24xl03 the meshes do not appear to have the resolution necessary 

within the viscous layer (y+<5) to accurately capture the log-layer velocity profile near 

the wall. When normalized with the bulk velocities Figure 22 shows little variation 

among the meshes tested for the mean tangential velocity. 
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Figure 20: Mean axial velocity normalized with bulk velocity, Re=12xl03,24xl03; S=0, 0.5. 
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Figure 21: Mean axial velocity in wall units. Re=12xl03,24xl03; S=0. K=0.41 p=5.9. 
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Figure 22: Mean tangential velocity normalized with bulk velocity. Re=12xl03, 
24xl03; S=0.5. 

Figure 23 and 24 show the turbulent intensities normalized with bulk velocity for 
"X ^ 

pipe flow at Re= 12x10 and Re=24xl0 respectively. There is little variation in the 

turbulent intensities found for all meshes tested at either Reynolds number. Addition of 

rotation appears to only give a slight increase in turbulent intensities near the central 

region of the pipe. 
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Figure 23: RMS velocities normalized with bulk velocity. Re=12xl03; S=0, 0.5. 

The uw Reynolds shear stress (axial-radial) for pipe flow at Re=12x10 and 

Re=24xl03 is shown in Figure 25 and 26 respectively. It can be seen that in both cases 

the P130C mesh which is the coarser of the three meshes tested gives lower axial-radial 

stress values for both Reynolds numbers tested. Both the M256L-SF and P200C meshes 

give nearly identical results with only a slight deviation observed at Re=12xl03 from 

approximately 100<y+<180 due to a drop in the axial-radial stress observed in the 

M256L-SF mesh simulation most likely due to insufficient data samples. 
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Figure 24: RMS velocities normalized with bulk velocity. Re=24xl03; S=0,0.5. 
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Figure 25: Reynolds shear stress (axial-radial) normalized with bulk velocity. 
Re=12xl03; S=0,0.5. 
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Figure 26: Reynolds shear stress (axial-radial) normalized with bulk velocity. 
Re=24xl03; S=0,0.5. 

Figure 27 shows the mean pressure results for non-rotating and rotating pipe flow 

for all meshes tested. It can be seen that all meshes give nearly identical results. The 

mean pressure results show little difference among the meshes tested with a slightly 

higher pressure near the wall observed for the higher Reynolds number of Re=24xl03 

when rotation is included. When compared to the non-rotating case, the mean pressure 

observed is 30 times bigger near the wall. The rms-pressure results shown in Figure 28 

show a similar trend as the mean pressure with a considerable increase when rotation is 

included. Based on the mesh results comparison of pipe flow at these higher Reynolds 

numbers of Re= 12x10 and Re=24xl0 , there does not appear to be any significant 

difference among the three meshes tested. A noticeable deviation of the P130C RMS 

pressure at the higher Reynolds number of Re=24xl0 with rotation S=0.5 is the only 

indication that the coarser P130C may be the least adequate. 
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Figure 27: Mean Pressure. Re=12xl03,24xl03; S=0,0.5. 
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Figure 28: RMS Pressure. Re=12xl03,24xl03; S=0, 0.5. 
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5 JET FLOW MESH SENSITIVITY TESTS 

5.1 JET FLOW MESH AND SIMULATION PARAMETERS 

The computational mesh and domain geometry for the jet simulations is shown in 

F i g u r e  2 9 .  T h e  d o m a i n  c o n s i s t s  o f  a  r e c t a n g u l a r  b o x  w i t h  d i m e n s i o n s  o f  1 0 D  x  5 D x  5 D  

(D=0.06m). Figure 29 also shows the boundary types used which include a jet velocity 

inlet (blue), a wall boundary (black) and five pressure outlets (red) (front side and upper 

not shown). The center mid plane (green) nodes of the jet computational grid is also 

shown. 

Grid 
(Mid-plane 

Velocity 
Inlet, 

Wall 

Pressure Outlets, 
(5 total) 

Figure 29: Jet mesh domain dimensions and boundary conditions. 
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Five jet meshes were created to test for grid independence. These meshes, shown 

in Figure 30 through 33, are referred to as Meshl, Mesh2, Mesh3, Mesh4 and Mesh5. A 

brief description of each mesh is presented below. 

• Meshl: Has 6.65x10s hexahedral cells with a minimum cell volume of 
1.75x10'9 m3 and maximum cell volume of 1.44 xlO'6 m3. 

• Mesh2: Created by grid refinement of Meshl based on the mean axial velocity 
values calculated at a Reynolds number of 12x10s after 10,000 iterations. Grid 
refinement was performed on all cells in the Meshl domain having a mean x-
velocity iso-value greater than 0.1 m/s. Refinement of cells meeting this criteria 
was accomplished by setting the maximum allowable cell volume within the 

O 5 
mean x-velocity iso-value range to 5x10'm . The refined mesh, Mesh2 has 
1.33xl06 cells. 

• Mesh3: Created using a 'size function' which is a tool in the meshing software 
Gambit that allows for control of the mesh intervals for edges and mesh elements 
within the computational domain. Please see the Gambit user guide for a complete 
description of the types and detailed usage of meshing size functions. A 'fixed 
size' mesh sizing function was set at the jet inlet and attached to the entire 
computational domain with a starting size of 0.001m, growth rate of 1.05 and 
maximum edge length of 0.005m. The resulting mesh domain has 1.23xl06 cells. 

• Mesh4: Was created by refining Mesh3 using the same refinement method used 
for Mesh2 completed on the original Meshl. Mesh 3 has 1.69xlO6 cells. 

• Mesh5: Created with a sizing function as with Mesh3 but with a starting size of 
0.001m, growth rate of 1.05, and maximum edge length of 0.003m. Mesh5 has 
3.3lxl06 cells. 

All jet meshes were created by first tracing the cells of the cross section of the 

P200C pipe (shown in Figure 3b) onto the jet inlet. Based on the pipe simulation results, 

it was decided that instantaneous velocity data collected from the P200C pipe simulations 

would be used as the initial condition for the jet simulations. Matching the cross section 

of the P200C pipe mesh cross section was thus done to avoid the need for spatial 

interpolation of the instantaneous velocity profiles set at the jet inlet. Figure 30 shows a 

side view of the mid plane grid along the axial direction of each mesh. Figure 31 through 

Figure 33 show cross sections of the jet meshes at X=(0D, 5D, and 10D). As stated 
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earlier, the inlet for all jet meshes correspond to the cross section of the P200C pipe mesh 

as shown in Figure 3b, and all jet mesh volume cells within the domain are hexahedral. 

riuuiiueai 

uw hb«» wmuyfr Won*' iuimwi; 

c 
I 

Figure 30: Jet meshes tested. 
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Figure 31: Jet mesh cross sectional 
views at Jet inlet fblue^. x=0D. 
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Figure 32: Jet meshes cross sectional views 
at x=5D. 



Figure 33: Jet mesh cross sectional 
views at x=10D. 
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5.2 JET FLOW: RE=12X103,24X103; S=0, 0.5 
-j 

For non-swirling jet flow at Re= 12x10 , the 5 jet meshes described in section 5.1 

were tested. However, not all meshes were tested for all flow configurations. For non-

swirling jet flow at Re=24xl03 all jet meshes were tested with the exception of jet 

mesh#4. For jet flow with rotation of S=0.5 at Reynolds numbers of Re=12xl03 and 

Re=24xl0 only jet mesh#3, which produced relatively similar results to the much finer 

but more computationally intensive mesh#5, was used. As described in the previous 

section, the instantaneous cross sectional area velocity profiles collected for the P200C 

pipe flow case were used as the input boundary conditions at the jet inlet for all 5 meshes. 

"P200C-Meshl" and "P200C-Mesh2" and so on refers to using the P200C pipe flow 

simulation instantaneous velocity profiles with Jet Mesh#l and Jet Mesh#2 respectively. 

In addition, the pipe instantaneous velocity profiles of both the P200C and M256L-SF 

mesh were tested with jet rotation to check for possible differences due to application of 

different input boundary conditions at the jet inlet. 

As seen in Figure 34, for jet flow without rotation, the mean axial center-line 

velocity only seems to differ slightly for the coarser meshes #1 and #2, with the 

remainder of the meshes showing nearly identical results. The denser Mesh#5 does 

appear to give slightly larger centerline velocity values with a slower velocity decay 

starting from approximately x/D>4 for both Reynolds numbers tested. As expected due to 

increased jet spreading, the beginning of the mean axial velocity decay appears to be 

further upstream for jet flow with rotation at approximately x/D~3. Results for jet flow 

with rotation show that there is no significant difference between the two input conditions 

for the centerline mean axial velocity for either Reynolds number. 
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Figure 34: Jet Centerline Axial velocity normalized with bulk velocity. 
Re=12xl03,24xl03; S=0,0.5. 

Figure 35 and 36 show 3-D views of the mean velocity profiles at several axial 

locations (x/D-0,2,4,6,8,10) normalized with the bulk velocity for Re=12xl03 at S=0 and 

S=0.5, respectively. As expected, the axial velocity decreases more rapidly with rotation 

and spreads outward faster. For swirling jet flow, Figure 36 and 37 of the mean 

tangential velocity again confirm that there does not appear to be any significant 

difference between the two input conditions applied at the jet inlet for either Reynolds 

number. 

Figure 39 through 41 show comparisons of the turbulent intensities. They confirm 

previous observations that the coarser mesh #1 and mesh #2 show slight deviations from 

the rest of the meshes. As was the case for pipe flow the coarser meshes appear to over 

predict the axial turbulent intensity and under-predict both the radial and tangential 

turbulent intensities. 



63 

D 
3 

Jet: Re=1.2E04, S=0 

O P200C-Meshl 
A P200C-Mesh2 
o P200C-Mesh3 
V P200C-Mesh4 
x P200C-Mesh5 

X/D 

Figure 35: Jet mean axial velocity normalized with bulk velocity. Re=12xl03; 
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Figure 36: Jet mean axial velocity normalized with bulk velocity. Re=12xl03; S=0.S. 
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Figure 38: Jet mean tangential velocity normalized with bulk velocity at x=(0, 

2,4,6,8,10)D. Re=24xl03; S=0.5 
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Figure 39: Jet Centerline RMS Axial velocity normalized with bulk velocity. 
Re=12xl03,24xl03; S=0,0.5. 
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Figure 40: Jet Centerline RMS Radial velocity normalized with bulk velocity. 
Re=12xl03^4xl03; S=0,0.5. 
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Figure 41: Jet Centerline RMS Tangential velocity normalized with bulk 
velocity. Re=12xl03, 24xl03; S=0,0.5. 

All three centerline Reynolds shear stress plots, uw (axial-radial), uv (axial-

tangential) and uv (radial-tangential), are shown in Figure 42 through Figure 44. For jet 

flow without rotation all Reynolds shear stress results show a similar trend with a nearly 

zero value up to about x/D~3.5 at which point the values begin to oscillate with a greater 

magnitude. For jet flow with rotation the oscillations begin further upstream at around 

x/D~2.5 and appear to be greater in magnitude especially for the axial-radial and axial-

tangential stresses. The change in Reynolds stress magnitudes observed for all cases 

correspond to the point at which the centerline jet axial velocity begins to decay and the 

flow becomes fully turbulent. 
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Figure 42: Jet centerline Reynolds shear stress (axial-radial) normalized with 
bulk velocity. Re=12xl03,24xl03; S=0,0.5. 
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Figure 43: Jet centerline Reynolds shear stress (axial-tangential) normalized 
with bulk velocity. Re=12xl03,24xl03; S=0,0.5. 
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Figure 44: Jet centerline Reynolds shear stress (radial-tangential) normalized 
with bulk velocity. Re=12xl03,24xl03; S=0,0.5. 
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6 PIPE FLOW VALIDATION 

Based on the results of grid sensitivity test in Section 4, mesh P200C was chosen 

for simulations to be compared to available data and to perform further analysis. All 

results presented hereafter are for the P200C pipe mesh only. Instantaneous axial 

velocities at various radial locations from non-rotating pipe flow simulations were 

recorded and are shown in Figure 45 at the various Reynolds numbers tested. 
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Figure 45: Instantaneous axial velocity. Re=5.3xl03,12xl03,24xl03; S=0. 

To determine proper turbulence decay of the LES solver in FLUENT, a spectral 

analysis using the discrete Fourier transform algorithm in MATLAB, fft, is implemented 

on the instantaneous velocity signals and compared with the Kolmogorov -5/3 energy 

spectrum power decay in the inertial subrange prediction. As shown in Figure 46 and 47 

for Reynolds number of Re=5.3xl03 and Re=24xl03 respectively, current results show 

that sufficiently far from the wall r<0.9R, there is a universal decay region which agrees 

with the f5/s law. Note that the four points shown correspond to the viscous 

sublayer(r=0.99R, y+=3), the buffer layer(r=0.9R, y+=20), intermediate layer(r=0.5R, 

y+=80) and the outer layer(r=0, y+=170) for flow at the lowest Reynolds number of 
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Re=5.3xl03. As expected, very near the wall (r=0.99), within the viscous layer where 

there is less turbulence, especially at the lower Reynolds number, the area of turbulence 

decay is minimal. At Re=5.3xl03 the location of r=0.9R corresponding to the buffer layer 

as seen in Figure 46 shows an extension of the turbulence decay region occurs. Even 

further from the wall in the intermediate(r=0.5R) and outer layerOr^O) region where 

turbulence is fully-developed the area of turbulence decay is even larger. As seen in the 

significant fluctuations in velocity in Figure 45, at the higher Reynolds number 

Re=24xl03 the point of r/R=0.99 appears to already be within the buffer layer. As seen in 

Figure 47 a slight extension of the turbulent decay region is still noticeable going away 

from the wall up to r/R=0.9 which appears to lie within the intermediate/fully-developed 

region since no further increase in the turbulent decay region is noticeable beyond that. 

As expected, the turbulent decay region is more prevalent at the larger Reynolds numbers 

which are more turbulent. 
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Figure 46: FFT power decay. Pipe flow Re=5.3xl0 S=0. 
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Figure 47: FFT power decay. Pipe flow Re=24xl03 S=0. 
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6.1 PIPE FLOW: RE=5.3X103; S=0 

Current LES simulation parameters for the P200C pipe mesh are shown in Table 

8 along with the DNS simulation studies by Loulou-1997 (NASA), Orlandi and Fatica-

1997 (Stanford), Eggels-1994 (Delft University) and Wu and Moin-2008 at the center for 

turbulence research (CTR). Data for three of the four DNS studies ('NASA', 'Stanford', 

'Delft') used to validate the current simulations can be found in the AGARD(1997) 

database compiled on October 1997 by the Working Group 21 of the Fluid dynamics 

panel. CTR data of Wu and Moin (2008) can be found on the Center for Turbulence 

Research website. 

The axial spacing in wall units, Ax+, and the tangential spacing at the outer 

perimeter in wall units, A 6+, shown in Table 8 are found according to the following 

expressions. 

Ax+ = t/Ax: 
Eqn. 6-1 

_  U A s  
AO = —1 Eqn. 6-2 
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where: Ax = — = JV = (# of axial Nodes) 
Nx Nx 

x K 

nRa 3 6 0  , r  / » / • « •  .  » ,  j  x  
As = a = ivfl = (# of Perimeter Nodes) Eqn. 6-3 

180 Ng 
e 

Table 8: Pipe flow results and grid comparison with available validation data. 
(Re=5.3xl0\ S=0, *Re=5.6xl03, **Re=4.9xl03) 

Current 
LES Study 

Previous DNS Studies 

Mesh P200C NASA* Stanford** Delft CTR 
L 5D 5D 7.5D 5D 7.5D 

ub 1.304 1.000 0.500 0.039 1.000 

uc 1.715 1.294 0.648 0.051 1.290 

Reb 5355 5600 4900 5300 5300 

nu (m2/s) 1.46E-05 3.57E-04 2.04E-04 1.46E-05 3.77E-04 

"x 9.00E-02 6.77E-02 3.47E-02 2.63E-03 6.84E-02 

iyuT 14.489 14.770 14.397 14.730 14.610 

Uc/Ux 19.063 19.110 18.669 19.310 18.850 

Uc/Ub 1.316 1.294 1.297 1.311 1.290 

Cf(xl0"3) 9.53 9.16 9.22 

Qblas(x10 ̂  9.23 9.13 9.44 9.26 9.26 

Nr 40 72 96 96 256 

Ne 200 160 128 128 512 

Nx 256 192 256 256 512 
+ 

r w 0.86 0.39 0.37 0.94 0.17 

max 7.37 5.71 2.35 1.85 1.65 

Ar+ 
iii aVg 4.27 2.79 1.34 1.85 0.71 

Ax 1.17E-03 0.0521 0.0586 0.0391 0.0293 

A(R©)W 9.42E-04 0.0393 0.0491 0.0491 0.0123 
+ 

x 7.22 9.87 9.97 7.03 5.31 
(R0)+ 5.81 7.44 8.35 8.8 2.2 

For grid wall boundary layer resolution comparison purposes, the distance in wall 

u y 
units, y+ = , is shown in Table 9 for the first 20 points from the wall for the P200C 



pipe mesh in this current investigation at Re=5.3xl03, as well as the meshes of the 

aforementioned DNS studies of turbulent pipe flow found in the literature. 

Table 9: Distance in wall units, for first 20 points from pipe wall at Re=5.3xl03, 
S=0. *NASA (Re=5.6xl03), **Stanford (Re=4.9xl03) . 

Current 
LES Study 

Previous DNS Studies 

Grid 
Point 

P200C NASA* Stanford** Delft CTR 

+ 
y i 0.00 0.00 0.18 0.93 0.00 
+ 

y 2 0.86 0.39 0.54 2.78 0.17 
+ 

y 3 1.89 0.91 0.95 4.63 0.34 
+ 

y 4 3.12 1.48 1.39 6.49 0.51 
+ 

y s 4.61 2.09 1.88 8.34 0.68 
+ 

y« 6.38 2.75 2.41 10.20 0.86 
+ 

y ? 8.52 3.45 2.99 12.05 1.04 
+ 

y s 11.08 4.20 3.62 13.90 1.22 
+ 

y 9 14.15 5.01 4.31 15.76 1.40 

y+io 17.84 5.87 5.06 17.61 1.59 

y\i 22.27 6.79 5.88 19.47 1.78 

y+n 22.62 7.78 6.76 21.32 1.97 

y+i3 26.15 8.83 7.72 23.17 2.16 

y+i4 30.15 9.95 8.75 25.03 2.36 

y+is 34.31 11.15 9.87 26.88 2.56 

y+i6 40.05 12.43 11.07 28.74 2.76 

y+i? 45.96 13.79 12.35 30.59 2.97 

y+is 51.98 15.23 13.72 32.45 3.17 

y+i9 57.81 16.76 15.18 34.30 3.38 

y 20 63.36 18.39 16.73 36.15 3.60 

Figure 48 shows excellent agreement for the mean axial velocity for non-rotating 

pipe flow at Re=5.3xl03 between current LES simulation and DNS data. 
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Figure 48: Mean axial velocity, normalized with bulk velocity (top), in wall 
units (bottom) Re=5.3xl03; S=0. 

The turbulent intensity profiles in the axial, radial and tangential directions shown 

in Figure 49 also agree well with the validation data. The axial turbulence intensity 

profile found for the peak magnitude of the axial velocity turbulent intensity, however, 

seems to be shifted slightly further away from the wall and seems to slightly under 

predict the turbulent axial intensity near the wall from 0.9<r/R<l. The turbulent radial 

intensity also shows slight under-prediction from 0.6<r/R<0.9 when compared to the 

validation data. Similar under-prediction behavior is observed for the axial-radial shear 

stress as shown in Figure 50. Overall, the results appear to be reasonable and compare 

well with the DNS data. 

Pipe Flow: Re-5.3E3, S=0; Validation 
1 1 1 1 1 1 1 i i 

• NASA(DNS Re=5.6E3) 
-*-Stanford(DNS Re=4.9E3) 
-*-DeIft(DNS Re=5.3E3) 
-*-CTR(DNS Re=5.3E3) 
-0 P200C(LES Re=5.3E3) 

1 1 I 1 1 J t 1 

20 
U+=(l/ic)ln(y+ 

U+=y+ 

-•-NASA(DNS Re=5.6E3) 
Stanford(DNS Re=4.9E3) 

-"-Delft(DNS Re=5.3E3) 
-»-CTR(DNS Re=5.3E3) 
© P200C(LES Re=5.3E3) 
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Pipe Flow: Re~5.3E3, S=0; Validation 

-•-NASA(DNS Re=5.6E3) 
-*-Stanford(DNS Re=4.9E3) 
-»-Delft(DNS Re=5.3E3) 
-*-CTR(DNS Re=5.3E3) 
-0 P200C(LES Re=5.3E3) 

r/R 

Figure 49: Turbulence intensities in wall units. Re=5.3xl03; S=0. 
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Pipe Flow: Re~5.3E3, S=0; Validation 
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Figure 50: Reynolds shear stress (axial-radial) normalized with friction 
velocity. Re=5.3xl03; S=0. 
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6.2 NON-ROTATING PIPE FLOW: RE=12X103,24X103; S=0 

For pipe flow at a Reynolds number of Re=12xl03 and 24xl03 without rotation, 

results were compared to the experimental results of Durst (1995), Facciolo (2006), Itoh, 

et al. (1996), and Eggels (1994-Delft) as well as the DNS results of Wu and Moin (2008-

CTR). All plotted figures include the Reynolds number used in each study. Figure 51 

shows good agreement in the mean axial velocity with all available data found in the 

literature with a slight under prediction near the wall. This under prediction as explained 

earlier is likely due to insufficient grid resolution near the wall within the viscous layer 

(y+<5) as was shown to be the case in Figure 21. 

Pipe Flow: Re~(1.2E04, 2.4E04), S=0; Validation 

0.8 0.8 O 
5 
D 

0.6 0.6 
• Facciolo{Exp Re=1.2E4) 
* ltoh(ExpRe=2.0E4) 
• Delft(Exp Re=2.4E4) 

-t-CTR(DNS Re=4.4E4) 
© P200C(LES Re=1.2E4) 
-A P200C(LES Re=2.4E4) 

,0.4 

0.2# ^0.2 

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 
r/R 

Figure 51: Mean axial velocity, normalized with centerline velocity (left) and 
with bulk velocity(right). Re=12xl03,24xl03; S=0. 

Figure 52 shows that when normalized by the bulk velocity the axial turbulence 

intensity appears to significantly under predict the experimental results of Facciolo 

(2006) throughout the central region of the pipe from 0<r/R<0.8 but appears to agree well 

for this same region with both the experimental results of Itoh, et al .(1996) and DNS 

results of Wu and Moin (2008-CTR). For the same region of 0<r/R<0.8 both the radial 

and tangential turbulent intensities agree quite well with the DNS data of Wu and Moin 
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(2008-CTR) but significantly under predict the experimental results of Itoh, et al.(1996), 

especially for the radial turbulent intensity component. Very near the wall, experimental 

results are not available; when compared to the DNS results of Wu and Moin (2008-

CTR) performed at a higher Reynolds number of Re=44 xlO3, the axial turbulence 

intensity maximum peak appears to be shifted further away from the wall. 

Current simulations results suggest this discrepancy could be in part due to a 

Reynolds number dependence since the simulations results at the higher Reynolds 

number of Re=24 xlO3 do appear to show an axial turbulence intensity maximum peak 

that is shifted closer to the wall than at the lower Re=12xl03. Very near the wall at 

0.9<r/R<l the axial turbulence peak also shows a slight over prediction at the highest 
•5 

Reynolds number of Re=24 xlO when compared to Wu and Moin (2008-CTR) while 

both the radial and tangential turbulent intensities seem to be well under predicted. This 

behavior observed could again be in part due to the difference in Reynolds number used 

but is more likely due to the lack of grid resolution near the wall of the current LES 

simulations which would seem to agree well with the observation made in Wu and Moin 

(2008) that "in coarse DNS or LES calculations the streamwise component of turbulence 

intensity is amplified, whereas the other components are lower than those in resolved 

calculations." When normalized in wall units the axial turbulent intensity results of the 

P200C mesh shown in Figure 53 still show a significant shift in the maximum peak away 

from the wall, but the peak magnitude is actually lower than that of Wu and Moin (2008) 

which again suggests a Reynolds number dependence that affects the friction velocity 

used to scale the turbulence component. Further away from the wall the axial turbulent 

intensity results agree reasonably well with the experimental results of Durst (1994) 

appearing to follow the trend of increasing turbulent intensity accordingly as the 

Reynolds number increases. 

Discrepancies in rms values could also be due to inadequate near-wall mesh 

resolution, previously shown in Figure 21. Another possibility is the use of the sub-grid 

scale model with a constant value of Cs as the Smagorinsky model. The Germano, et al. 

(1991) model might have produced better results but at increased computational cost. 
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Pipe Flow: Re~(1.2E04, 2.4E04), S=0; Validation 

Facciolo(Exp Re=l .2E4) 
* Facciolo(Exp Re=2.4E4) 

Itoh(Exp Re=2.0E4) 
CTR(DNS Re=4.4E4) 
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A^P200C(LES Re=2.4E4) 

D 0.12 
.0 A 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Figure 52: RMS velocities normalized with bulk velocity. Re=12xl03, 24xl03; S=0. 

Pipe Flow: Re~(1.2E04,2.4E04), S=0; Validation 
• Durst(Exp Re=7.0E3) 

Durst(Exp Re=1.3E4) 
Durst(Exp Re=2.0E4) 
CTR(DNS Re=4.4E4) 

© P200C(LES Re=1.2E4) 
A P200C(LES Re=2.4E4) 

A-a./ 
A-A-A_.A-A-A-A 

250 

Figure 53: RMS axial velocity in wall units. Re=12xl03,24xl03; S=0. 

Figure 54 and 55 show under-prediction of both the radial and tangential turbulent 

intensities near the wall but also seem to give acceptable results further away from the 

wall. A clear under prediction is also noted for the uw Reynolds shear stress in Figure 56 
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for the results at Re=24xl03 when compared to the results of Eggels(1994-Delft) 

performed at the same Reynolds number. 

Pipe Flow: Re~(l .2E04, 2.4E04), S=0; Validation 

„ l l l  T T  T  T  T  T  T  »  »  »  T  —» W 
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• *053 
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Figure 54: RMS radial velocity in wall units. Re=12xl03,24xl03; S-0. 

Pipe Flow: Re~(1.2E04,2.4E04), S=0; Validation 

A'A-a-A-A-A-A A-AA-A 
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a Durst(Exp Re=1.3E4) 
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A P200C(LES Re=2.4E4) 

250 

Figure 55: RMS tangential velocity in wall units. Re=12xl03,24xl03; S=0 
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j Pipe Fjovy: Reny .2 £04,2.4E04), S^O; Validation 
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p. ^  ^ A - A  •• 

,• J 0.6! 

0.4-

! • Delft(Exp Re»2.4E4) 1 
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Figure 56: Reynolds shear stress (axial-radial) velocity normalized with friction 
velocity Re=12xl03,24xl03; S=0. 
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6.3 ROTATING PIPE FLOW: RE=5.3X103; S=0.5,1,2 

For pipe flow at a Reynolds number of Re=5.3xlO with rotation (S=0.5,l,2), 

current LES results were compared to the DNS results of Facciolo (2006) and Orlandi 

and Fatica (1997-Stanford) as well as the LES results of Feiz(2003) which were 

performed at comparable Reynolds numbers and swirl rates. All plotted results include 

the Reynolds number and rotation rates used in each study. 

Figure 57 and 58 show excellent agreement with all validation data for the mean 

axial results normalized with the bulk velocity and centerline velocity respectively. 

Figure 57 shows how the velocity profile of rotating pipe flow becomes more peaked 

with an increase in centerline velocity as the rotation rate increases, clearly demonstrating 

previous findings of the mean axial velocity profile tending toward a parabolic shape 

with increased rotation (i.e. laminarization). Figure 59 shows the velocity profile 

normalized in wall units. It is seen that addition of rotation to the pipe shows a slight 

decrease in velocity in the buffer with increasing rotation. Rotation causes a disruption in 

the log-layer such that it does not follow the log-layer law as it does for pipe flow without 

rotation. This is the main reason why, as pointed out in Hirai, et al. (1988), traditional 2-

equation models that rely on the log-layer wall are incapable of predicting rotating pipe 

flow. 
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Pipe Flow: Re~5.3E3, S=(0.5,l,2); Validation 
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Figure 57: Mean axial velocity normalized with bulk velocity. Re=5.3xl0 ; S=0.5,1, 2. 
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Figure 58: Mean axial velocity normalized with centerline velocity. Re=5.3xl03; S=0.5,1,2. 
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Figure 59: Mean axial velocity in wall units. Re=5.3xl03; S=0.5, 1, 2; K=0.41; 
(3=5.9. Rotation effects on log-layer. 

Figure 60 shows the mean tangential velocity normalized with the bulk velocity. 

There is excellent agreement with both the DNS results of Facciolo (2006) and LES 

results of Feiz (2003). However, they all appear to differ significantly in the central 

region of the pipe from the results of Orlandi and Fatica (1997-Stanford) which do not 

seem to follow the expected parabolic curve and instead appear to give a more solid body 

rotation profile. As rotation increases Figure 61 shows that when normalized with the 

pipe wall velocity Vw the current LES simulations capture the same profile trend in the 

central region observed by DNS results of Facciolo (2006) and LES results of Feiz (2003) 

but show discrepancy with the Orlandi and Fatica (1997-Stanford) data. 
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Pipe Flow: Re~5.3E3, S=(0.5,l,2); Validation 
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Figure 60: Mean tangential velocity normalized with bulk velocity. Re=5.3xl03; S=0.5,1, 2. 

Pipe Flow: Re~5.3E3, S=(0-5,l,2); Validation 
-*-Facciolo(DNS Re=5.0E3; S=0.5) 
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Figure 61: Mean tangential velocity normalized with Vw. Re=5.3xl03 S=0.5,1, 2. 

Figure 62 through 64 of the turbulent intensities show generally good agreement 

with the other data available. For swirl rates of S=0.5 to S=1 the addition of rotation 

causes the axial turbulent intensity to decrease near the wall and increase near the central 
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region. At the highest swirl rate of S=2 the axial RMS velocity peak becomes a flat 

region from approximately 0.65<r/R<0.9. This flattening is considered by Orlandi and 

Fatica (1997) to be a low-Reynolds number effect since this flattening behavior was not 

observed in the higher Reynolds number (Re=3E4) experiments undertaken by 

Nishibori, et al.(1987). All results show that the central region axial turbulent intensity 

near the central region decreases going from a swirl number of S=1 to S=2 although it is 

much more subtle in the current LES simulations than validation data of Feiz, et al.(2003) 

and Orlandi and Fatica (1997-Stanford). Figure 63 and Figure 64 show increases in both 

the radial and tangential turbulent intensities throughout the pipe with increase in swirl 

rate from S=0.5 to S=l, especially in the central region of the pipe. The increase in radial 

and tangential RMS velocities, however, seems to be minimal for the current LES 

simulation going from a rotation rate of S=1 to S=2. 

„ Pipe Flow: Re~5.3E3, S=(0.5,l,2); Validation 
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Figure 62: RMS Axial velocity in wall units. Re=5.3xl03; S=0.5,1, 2. 
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Pipe Flow: Re~5.3E3, S=(0.5,l ,2); Validation 
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Figure 63: RMS radial velocity normalized with bulk velocity. Re=5.3xl03; S=0.5,1,2. 
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Figure 64: RMS tangential velocity normalized with bulk velocity. Re=5.3xl03; S=0.5,1,2. 

The influence of rotation has been found to reduce the axial-radial shear stress, 

«w, while increasing the other two Reynolds stresses, axial-tangential (uv) and radial-

tangential vw, as can be seen in Figure 65 thru 67. Axial-radial (uw) Reynolds shear 
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stress results shown in Figure 65 are in good agreement between current LES simulations 

and available validation data. Figure 66 shows the axial-tangential ( u v )  Reynolds shear 

stress which is zero in non-rotating pipe flow. As rotation is increased beyond S=0.5 

oscillatory behavior in the axial-tangential Reynolds stress is observed. As explained by 

Orlandi (2000), these oscillations occur due to long spiral structures that form in the 

central region of the pipe with their effect being more pronounced as rotation increases. 

The high values of axial-tangential stress are related to the tilting of the near wall vortical 

structures (Orlandi, 1997). The radial-tangential vw shear stress in Figure 67 does not 

show such oscillatory behavior and has the smallest magnitude of all Reynolds shear 

stresses. The current LES results for Reynolds stresses show satisfactory trends and 

values that match validation data. 
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Figure 65: Reynolds shear stress (axial-radial) normalized with friction 
velocity. Re=5.3xl03; S=0.5,1,2. 



Pipe Flow: Re~5.3E3, S=(0-5,l,2); Validation 
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Figure 66: Reynolds shear stress (axial-tangential) normalized with friction 
velocity. Re=5.3xl03; S=0.5,1,2. 

„ , .. Pipe Flow: Re~5.3E3, S=(0.5,l,2); Validation 0.14,—K s— 1 ——r—— r 1 
J-*-Facciolo(DNS Rc=5.0E3: S=0.S) " 
[-©-Slnnford(DNS Rc=4.9E3: S=0.5) \ 
j O P200C(LES Re=5.3E3; S=0.S) 

i-A-Stanford(DNS Rc=4.9E3: S=l) 

friction 

-0.02 

Figure 67: Reynolds shear stress (radial-tangential) normalized with 
velocity. Re=5.3xl03; S=0.5,1,2. 
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6.4 ROTATING PIPE FLOW: RE=12X103, 24X103; S=0.5 

For pipe flow with S=0.5 rotation at Reynolds numbers of Re=12xl03 and 

Re=24xl03 results of the LES on the P200C mesh are compared to the DNS and 

experimental results of Facciolo (2006), Itoh, et al. (1996) and the LES simulations of 

Yang (2000). As seen in Figure 68, the current mean axial velocity agrees well with all 

available validation data. When normalized with the bulk velocity it appears that the 

experimental data results for mean axial velocity of Facciolo(2006) are significantly 

higher than all other data. It should be noted that this data of Facciolo(2006) is what will 

be used to validate the jet flow results in the following sections. 

Pipe Flow: Re~(1.2E4, 2.4E4), S=0.5; Validation 
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Figure 68: Mean axial velocity, normalized with centerline velocity (left) and 
bulk velocity (right) Re=12xl03,24xl03; S=0.5. 

Figure 69 shows that current LES results of the mean tangential velocity are 

nearly a perfect match when compared to both the DNS and experimental data of 

Facciolo (2006) but appear to deviate significantly from the LES results of Yang (2000) 

and experimental results of Itoh, et al. (1996). 
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Figure 69: Mean tangential velocity normalized with Ub. Re=12xl03, 24xl03; S=0.5. 

Figure 70 shows that the current LES results for the RMS axial velocity appear to 

be in very good agreement with the experimental data of both Facciolo (2006) and Itoh, 

et al. (1996). The LES results of Yang(2000) seem to significantly under predict the 

RMS axial velocity and their maximum peak also seems to be shifted further away from 

the wall when compared to available experimental data and the current LES simulations. 

The current results for the RMS radial velocity shown in Figure 71, however, seem to 

over-predict near the central region while under predicting the peak value near the wall 

displaying an overall flatter shape than all the other data. A possible reason for this 

discrepancy could be the highly dissipative nature of the Smagorinsky subgrid scale 

model used. The results for the RMS tangential velocity shown in Figure 72 are in better 

agreement than the radial rms results, especially with the Facciolo (2006) experimental 

results. 
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Pipe Flow: Re~(1.2E4,2.4E4), S=0.5; Validation 
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Figure 70: RMS axial velocity normalized with centerline velocity (left) and 
bulk velocity (right). Re=12xl03, 24xl03; S=0.5 
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Figure 71: RMS radial velocity normalized with centerline velocity (left) and 
bulk velocity (right). Re=12xl03, 24xl03; S=0.5 
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Pipe Flow: Re~(1.2E4, 2.4E4), S=0.5; Validation 
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Figure 72: RMS tangential velocity normalized with centerline velocity (left) 
and bulk velocity (right). Re=12xl03,24xl03; S=0. 5. 

6.5 PIPE FLOW: REYNOLDS STRESS ANISOTROPY 

The invariant representation of Reynolds stresses is a useful tool to quantify the 

departure from isotropy, axisymmetry and two-component turbulence. A brief review of 

the invariant analysis developed by Lumley and Newman(1977) is presented. The 

Reynolds stress tensor (ry = putuy), may be written in terms of an anisotropic (TtJ) and 

an isotropic tensor (T°). The isotropic part may be written as R° = (1/3)^(5^ and the 

anisotropic part as ri} = TlJ - (Ttt / 3)5tj. In order to define the limiting states of turbulence 

Lumley and Newman(1977) defined the anisotropic tensor 

u,u1 
bij=—2--^S

V Eqn.6-4 
*7 * 

where q2 ~[ukuk jis twice the turbulent kinetic energy, and the coordinate indices i,j,k 

range over the set {1,2,3} corresponding to 1-u (Axial), 2-v (Tangential) and 3-w 

(Radial). The first invariant of the anisotropic tensor b:i is zero. The second and third 

invariants can be written as: 
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Eqn. 6-5 

I l l^byb^b, Eqn. 6-6 

For realizable turbulence, the diagonal elements of bjj are restricted to (-1/3 < by 

<2/3). Based on these restrictions, in the simplest case of axisymmetric turbulence 

Lumley(1978) concluded that all realizable turbulence must lie inside the region bounded 

by the joint variations of lib and Mb as follows: 

In the case of isotropic two-component turbulence all off diagonal components of 

upj vanish such that the relation between the invariants for the two-component 

turbulence may be expressed as: 

Figure 73 shows the anisotropy-invariant map defined by Eqn. 6-5 and Eqn. 6-6 

which bounds all realistic turbulence. The two curves shown in the figure correspond to 

axisymmetric turbulence and the straight line corresponds to two-component turbulence. 

The limiting points in the right and left corner points correspond to one-component and 

isotropic two-component turbulence, respectively. At the origin, turbulence is isotropic 

with all diagonal components equal, and off diagonal values are zero. 

Eqn. 6-7 

Eqn. 6-8 
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Figure 73: Reynolds stress anisotropy invariant map showing limiting boundaries. 

The Reynolds stress anisotropic tensor components and the scalar invariants map 

for pipe flow at Re=5.3xl03 and S=(0,0.5,l,2) are shown in Figure 74 and 75, 

respectively. Figure 74 shows that the bu component is dominant in the near wall region, 

0.8<r/R<l. In the absence of rotation it approaches the one-component value of 0.67. 

With the introduction of rotation, there is a transfer of turbulent energy from the 

component to the 622 component, whereas 633 is unchanged. The 622 component is in the 

tangential direction; hence, pipe rotation imparts additional turbulent energy in the 

direction of rotation. On the other hand, near the center of the pipe, with increased 

rotation, energy is transferred from the bu to both the 62? and 633 component, resulting in 

near isotropy. With respect to the shear stress components, increased rotation led to 

reduction of the bn component and increases in the bu component. In the absence of 

rotation, the pipe flow is axi-symmetric and the bis component is zero. With the addition 

of pipe rotation, the moving wall imparts strong shear at the wall; hence, the bis 

component is increased significantly. 

Figure 75 shows the Reynolds stress anisotropy invariant map, between the wall 

and the center of the pipe, for various swirl rates. Each map starts on the 2-component 

limit in the viscous sublayer, because of the blocking effect. They move rightwards, 
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towards the 1-component limit, in the buffer layer. They then turn and move towards 

isotropy in main turbulent inner and outer layers. At the pipe center, r=0, the Reynolds 

stress is essentially isotropic. The effect of rotation is to move the maps leftwards away 

from the one-component limit, thereby reducing near-wall anisotropy and increasing the 

rate of return to isotropy as the pipe center is approached. 
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Figure 74: Reynolds stress anisotropy tensor components for pipe flow at 
Re=5.3xl03 and S=0,0.5,l»2: Effect of rotation rate. 
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Figure 75: Reynolds stress anisotropy invariant map of pipe flow Re=5.3xl03 

and S=0,0.5,l>2: Effect of rotation rate. 

Figure 76 shows the anisotropy tensor components at the three Reynolds numbers 

tested. All components collapse at the higher Reynolds numbers of Re= 12x10 and 

24xl03. All nonzero components (bn, bzi, b33,bi2) differ for the lower Reynolds number 

Re=5.3xl03 suggesting there is a Reynolds number effect present. The anisotropy 

invariant map also shows a collapse of the higher Reynolds number and shows a return 

towards isotropy moving towards the center of the pipe (r=0) that is further from the 

axisymmetric limit than the lower Reynolds number of Re=5.3xl0 . 
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Figure 76: Reynolds stress anisotropy tensor components for pipe flow at 
Re=5.3xl03,12xl03,24xl03; S=0: Effect of Reynolds number. 
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Figure 77: Reynolds stress anisotropy invariant map for pipe flow at 
Re=5.3xl03,12xl03,24xl03; S=0: Effect of Reynolds number. 
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7 JET FLOW VALIDATION 

7.1 JET FLOW: RE=12xl03,24X103; S=0,0.5 

Axisymmetric jet flow studies have typically used one of two boundary 

conditions: either jet flow exiting a smooth contraction nozzle or jet flow exiting a long 

pipe, with the vast majority using the former. Only a limited number of studies of round 

turbulent jet flow emitted from a fully-developed pipe were found in the literature, 

[Rose(1962), Boguslawski and Popiel(1979), Lai(1991), Papadopoulos and Pitts(1998), 

Ferdman, et al.(2000), Facciolo(2006)]. The parameters for fully-developed turbulent jet 

flow exiting a pipe were chosen in this investigation to match the experimental data of 

Facciolo (2006) since this was the only study found to include and report data for rotating 

pipe flow as well as swirling jet flow emitted from a fully-developed rotating pipe. 

For jet flow with no rotation the two current cases used for validation comparison 

purposes are the "P200C-Mesh3" and "P200C-Mesh5" simulations which refer to the 

cases where the instantaneous cross sectional area velocity profiles collected for the 

P200C pipe flow simulation were used as the jet inlet boundary condition using jet 

mesh#3 and jet mesh#5 respectively. Non-swirling jet flow results were compared to the 

experimental results of Facciolo(2006), Lai(1991) and Ferdman, et al.(2000). For jet flow 

with rotation, only mesh#3 was tested and current results were once again compared to 

the experimental results of Facciolo(2006) as well as their DNS results performed at a 

Reynolds number of Re=104, and the experimental results of Rose(1962) were performed 
-j 

at a Reynolds number of 9.6x10 and slightly higher rotating rate of S=0.6. 

As shown in Figure 78, the mean centerline axial velocity when normalized with 

the bulk velocity of the current simulations seems to be significantly lower than all the 

experimental data of Facciolo(2006) throughout the domain, including immediately near 

the jet inlet, for both Reynolds numbers of Re=12x10 and Re=24xl0 , with and without 

rotation. When compared to the experimental data of Ferdman, et al. (2000) at a 

Reynolds number of Re=24xl03 and S-0, however, Figure 79 shows that the current 

results agree more closely and are actually slightly higher near the jet inlet. 
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Figure 78: Jet centerline axial velocity normalized with Ub. 
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Figure 79: Jet profiles of axial velocity normalized with Ub. Re=24xl0 ; S=0. 

For jet flow with rotation of S-0.5, Figure 78 shows that current results again 

seem to under predict the experimental results of Facciolo(2006) at both Reynolds 

numbers tested. At a Reynolds number of Re= 12x10 with rotation current results agree 

better with the DNS data of Facciolo(2006) performed at a slightly lower Reynolds 
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number of Re=104 especially near the inlet from 0<x/D<2 and further downstream from 

6<x/D<10 but still exhibits a slightly faster decay in the intermediate region from 

2<x/D<6. As seen in Figure 78, the current simulations also display the influence of jet 

rotation to change the velocity decay curve as observed by Facciolo(2006). Without 

rotation the velocity decay is nearly linear, but with addition of rotation the velocity 

decay is slightly curved, with an initially larger decay slope from approximately 

2<x/D<7, followed by a lower decay slope thereafter from 7<x/D<10. 

It should be pointed out that the discrepancy (lower velocity) observed between 

the current LES simulations jet mean axial velocity normalized with the bulk velocity and 

the experimental data of Facciolo(2006) was also observed in the validation of the mean 

axial velocity of the non-rotating pipe flow, as was shown in Figure 51. Compared to 

other validation data (both experimental and DNS) of non-rotating pipe flow, it was 

shown in Figure 51 that they agreed better with current results and appear to collapse to 

the same profile regardless of Reynolds number when normalized with the bulk velocity, 

suggesting that the experimental data of Facciolo (2006) may be slightly higher, perhaps 

due to experimental error in accurately determining a bulk velocity value used to scale 

the mean axial velocity. 

The centerline velocity, normalized with value at the jet inlet (x/D=0), is shown in 

Figure 80 to decay faster for the current simulations than in other data with the exception 

of the experimental data of Rose(1962), which was performed at a Reynolds number of 

9.6x103 and rotation rate of S=0.6, which appears to closely match current results of jet 

flow at a higher Reynolds number of Re=12xl03 and S=0.5. When normalized with the 

centerline velocity, both non-swirling experimental data sets of Lai(1991) and Ferdman, 

et al.(2000) closely match that of Facciolo(2006) and seems to suggest that the mean 

centerline velocity decay of the current LES simulation is indeed over predicted, with the 

end of the potential core region occurring about half a diameter further upstream than 

both sets of experimental data. The faster decay rate is likely due to a combination of 

insufficient grid resolution as well as the known highly dissipative nature of the 

Smagorinsky subgrid scale model used in the current LES simulations. As expected, the 

over prediction in decay seems to be slightly larger for the coarser jet mesh#3 than the 

finer jet mesh#5. 
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Figure 80: Jet Centerline Axial velocity normalized with Uc. 

Figure 81 shows the axial velocity profiles normalized with the local centerline 

velocity, at various axial locations. The agreement with the experimental data of 

Lai(1994) is excellent throughout the domain, with perhaps a slight over prediction after 

x/D>8 for the coarser jet mesh#3. Figure 82 shows similar agreement between the 

current LES and the experimental results of Facciolo(2006) and Ferdman, et al.(2000) 

for non-swirling jet flow at a Reynolds number of Re=24xl03. 



102 

Jet Flow: Re=1.2E04, S=0 

• Lai(Exp: Re=1.4E4) 
-o- P200C-Mesh3(LES) 

P200C-Mesh5(LES) 

x/D=2 

gocgpu CCT -y 

3 0.4 

x/D=4 

caragvcg •g"? 

• x/D=10 
vv.;©..n 

v . . a © „  
• V, 

0.5 1 
r/D 

1.5 

Figure 81: Jet profiles of axial velocity normalized with Uc. Re=12xl03; S=0. 
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Figure 82: Jet profiles of axial velocity normalized with Uc. Re=24xl03; S=0. 

Axial velocity profiles for jet flow with rotation of S=0.5 are shown in Figure 83 

and 84 for Reynolds number of Re=12xl03 and Re=24xl03 respectively. At Re=12xl03, 

the current results are normalized with the bulk velocity Ub and compared to the DNS 

(Re=104) results of Facciolo(2006) at six axial locations. As was seen in Figure 80, the 
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centerline decay in the current simulations is faster which is consistent with a wider jet 

spread at all measured locations. It is interesting to note that the DNS results of 

Facciolo(2006) show an increase in velocity decay rate after x/D=5, which is higher 

than the current simulations such that by x/D=7 the mean centerline is actually lower 

than in the current simulations. From x/D=7 till x/D=10, the centerline velocity 

decreases significantly for the DNS data of Facciolo(2006) such that it is equal in 

magnitude to the jet centerline velocity predicted by the current LES simulations at 

x/D=10 although the jet spread of the current simulations is still considerably larger. The 

larger spread rate observed is in part explained due to the fact that no entrainment was 

allowed for the DNS simulations of Facciolo(2006) which used a code that required that 

the mass be conserved such that jet expansion is given only by diffusivity. 

Facciolo(2006) stated that since rotation greatly influences entrainment, the axial decay 

in their DNS simulation is not able to follow the correct trend of the jet. Furthermore, 

although their experimental and DNS start from very similar values, as seen in Figure 78, 

the axial decay in the latter is much slower compared to their experimental data such that 

the potential core is much longer. No explanation is offered, but after x/D>3 

Facciolo(2006) point out that the trend changes and the axial velocity decay of their DNS 

simulation changes with the axial velocity decay of their DNS simulations being much 

higher such that the experimental and DNS simulation curves cross each other around 

x/D~5 with the DNS simulation showing lower axial velocities than the LDV 

experimental data thereafter downstream. 

For jet flow with S=0.5 and Re=24xl0 , Figure 84 compares the mean axial 

velocity profiles. Results are plotted at three axial distances and are normalized with both 

the bulk velocity Ub and local centerline velocity Uc. Those normalized with Uc agree 

better with the experimental data of Facciolo(2006) than those normalized with Ub, which 

suggests that the correct jet spread rate is predicted. 
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Figure 83: Jet profiles of axial velocity normalized with Ub. Re=12xl0 ; S=0.5. 

Jet Flow: Re=2.4E04, S=0.5 
* Facciolo(Exp) 
o P200C-Mesh3(LES) 

JO 

x/D=0 x/D=2 x/D=6 0.4 
0.2 

0 CO 

1 

0.8 

5" 0.6 

3 0.4 

0.2 

x/D=0 x/D=2 x/D=6 

SSTfOOG-G 00 CCCCuX CCOOOO 
20  0.5 0.5 0.5 20 

r/D r/D r/D 

Figure 84: Jet profiles of axial velocity normalized with Ub (top) and Uc 

(bottom). Re=24xl03; S=0.5. 

Figure 85 shows the jet half width, r\/2 , the radial distance where the jet axial 

velocity is half the centerline velocity, (U=0.5UC). It is seen that within the potential 

core, x<3D, the jet spread rate is nearly unaffected by the addition of swirl at either 



105 

Reynolds number. Beyond the jet core, however, the jet spread increases with swirl, more 

so at the higher Reynolds number of Re=24xl0 . 
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Figure 85: Jet half width. Re=12xl03,24xl03; S=0,0.5. 
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Mean tangential velocity results for the jet flow with S=0.5 are compared in 

Figure 86 and 87 for Re=12xl03 and Re=24xl03, respectively. The current LES results 

of the mean tangential velocity normalized with the pipe wall tangential velocity, Vw, for 

Re=12xl03, S=0.5 are compared to the DNS results of Facciolo(2006) at six axial 

locations. Within the potential core region 0<x/D<2 the results compare reasonably well, 

but similar to the mean axial velocity, there are significant deviations further 

downstream. The difference in spread rate is again likely due to the lack of jet 

entrainment of the DNS simulations of Facciolo(2006). Figure 87 shows much better 

agreement between the current LES simulations and the experimental data of 

Facciolo(2006) for Re=24xl03 at S=0.5, matching magnitude and velocity profiles nearly 

perfectly throughout the domain. 
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Figure 86: Jet profiles of mean tangential velocity normalized with Vw. Re=12xl03; S=0.5 

Jet Flow: Re2.4E04, S=0.5 

£ 
> 

-0.2 

1 
0.8 

5 0.6 

: 0.4 

1 9 

0.8 0.8 O i 
5 0.6 /<? 

0.4 '•i 

0.2 £ 
x/D=0 

ssEeoea>E0D<H3o-o-os-o-s 

A Facciolo(Exp) 
© P200C-Mesh3(LES) 

r\ 
* \ x/D=l 

Or ̂OWOlO&00-&-00-0-0 

x/D=5 x/D=7 

x/D=2 

-^s<H3oe-e©-&-o 

x/D=8 

o eo-£.^30_ 

Figure 87: Jet profiles of mean tangential velocity normalized with Vw. Re=24xl03; S=0.5 

For jet flow without rotation, the centerline variation of the turbulence intensity of 

the axial component is shown in Figure 88 to closely match the experimental results of 

Facciolo(2006) and Ferdman, et al.(2000). Both mesh#3 and mesh#5 give similar results, 

but the finer Mesh5 does show somewhat better agreement with experimental data from 
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3<x/D<6 at the higher Reynolds number of Re=24xl03. Results for jet flow without 

rotation show an initial region of weak increase in the turbulence level from about 

l<x/D<3, characteristic of the jet's potential core region. Downstream of the core region 

the axial turbulence intensity grows significantly for approximately 3 diameter lengths, 

over-predicting the experimental data from 4<x/D<6, prior to reaching a maximum at 

around x/D=6. The decrease after reaching a maximum is more pronounced for the 

current LES simulations than the experimental data of Facciolo(2006), which appears to 

simply level off beyond x/D>7. 

For jet flow with S=0.5, Figure 88 shows that the increase in axial turbulence 

intensity is greater, and the rise occurs about a diameter length further upstream than the 

jet flow without rotation. The maximum also moves upstream by approximately one 

diameter length to around x/D=5. The shift and increase in axial turbulence intensity is 

due to a decrease in the jet's potential core length and enhanced mixing due to jet 

rotation. At a Reynolds number of Re=12xl0 and S=0.5, current results agree with the 

experimental results of Facciolo(2006). The magnitude is a close match as well from the 

jet inlet all the way to near the maximum peak, that is from 0<x/D<5. The observed 

decrease in magnitude after reaching the maximum, however, is significantly more for 

the current simulations and considerably under predicts the experimental data of 

Facciolo(2006) beyond x/D>5. At a Reynolds number of Re=24xl03 and S=0.5, the 

initial increase and maximum axial turbulence peak seem to be about a diameter further 

upstream than the experimental data of Facciolo(2006). It is also seen that the decrease in 

axial turbulence is also greater for the current simulations beyond reaching a maximum. 

Although the current results of axial turbulent intensities seem to under predict the 

experimental results of Facciolo(2006) downstream, it is interesting to note that 

regardless of Reynolds number or rotation rate, all current LES simulations seem to give 

the same axial turbulent intensity value of urm/Ub~0.1 at x/D=10. This is interesting 

since it is consistent with the observation made by Facciolo(2006) who pointed out that 

all their axial turbulent intensity data tested for Re=12xl03, 24x103 and S=0,0.2,0.5 also 

collapsed at the same location, albeit at a higher value of urm/Ub -0.16. 
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Figure 88: Axial component of turbulent intensity along the centerline. 

Figure 89 and 90 show the axial turbulence profiles at various axial distances for 

current LES simulations as well as the experimental results of Facciolo(2006) and 

Ferdman, et al. (2000) at a Reynolds number of Re=24xl03 and S=0. Unfortunately, the 

experimental data of Facciolo(2006) and Ferdman, et al.(2000) have only one common 

location; x/D=6. From the available profiles, however, the current results match the axial 

turbulent intensity profiles of both sets of data reasonably well at all compared locations. 

When compared to the experimental data of Ferdman, et al. (2000), Figure 91 shows that 

the current LES simulations show a significantly larger magnitude near the jet center 

(r/D<0.5) at x/D=(l,3,6) but appear to match in magnitude further from the center. At 

x/D=9 current results match Ferdman, et al. (2000) in both magnitude and profile shape. 

At yJD-2 the current LES simulations coincide quite well with the results of 

Facciolo(2006), especially for the finer mesh#5. At x/D=6, it is seen that near the center 

of the jet the current results begin closer in magnitude to the experimental results of 

Facciolo(2006) but appear to fall right in between their data and that of Ferdman, et al. 

(2000) from approximately 0.25<x/D<0.75. Beyond x/D>0.75, the current LES 

simulations and both sets of experimental data agree well. 
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Figure 91 shows the centerline variation of the turbulence intensity component, 

Vrm/Ub. At a Reynolds number of Re=24xl0E5 and S=0.5 the radial component, wrm/Ub, 

made available in Facciolo(2006) is also plotted in Figure 91. Similar to the axial 
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turbulence intensity component for jet flow without rotation, the current simulations 

display an initial region of weak increase in the turbulence level of v^JUb within the 

core region (l<x/D<3) followed by a large increase in magnitude that reaches a 

maximum at approximately x/D=6. Beyond the maximum there is also a decrease in the 

vrm/Ub turbulence intensity component not noticeable in either the experimental data of 

Facciolo(2006) or Ferdman, et al. (2000). Unlike the axial component, however, at a 

Reynolds number of Re=12xl03 and S=0 the current results seem to match the 

experimental data of Facciolo(2006) in the intermediate region (3<x/D<7) more closely, 

although the offset near the jet inlet of the current magnitude seems to be considerably 

lower. At the higher Reynolds number of Re=24xl03, the offset is much less. These 

offsets were also present in the non-rotating pipe flow data as was seen in Figure 52. 

Similar to the higher values of the mean axial velocity data of the experimental data of 

Facciolo(2006), Figure 52 seems to suggest that their pipe flow values are significantly 

higher at r=0 for all turbulent intensities when compared to other validation data made 

available. 

At Re=24xl0 and S=0, current results of vrms/Ub again seem to over predict the 

data of Facciolo(2006) in the intermediate region (3<x/D<7) but appear to match the 

magnitude of the few available experimental data points of Ferdman, et al. (2000) much 

closer. Again little difference is observed between the two meshes tested with perhaps a 

slightly better agreement of mesh#5 with the experimental data in the intermediate region 

(3<x/D<7). 

For rotating jet flow at Re=12xl03 and S=0.5 Figure 91 shows that when 

compared to the experimental data of Facciolo(2006), there is a notable under prediction 

in vrmJUb throughout the jet domain although the profile shape seems to accurately 

match and the under prediction appears to be due to an offset that is likely due to a 

difference in bulk velocities used for scaling. For rotating jet flow at the higher Reynolds 

number of Re=24xl03 and S=0.5, both current results and experimental results of 

Facciolo(2006) shows that there is little difference between the two turbulence intensity 

components vrm/Ub and wrm/Ub. As was the case in the axial component of turbulence 

intensity, the same shift is observed in the current simulation for both the radial and 

tangential component with a shift of approximately 1 diameter length upstream. 
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Figure 91: Radial (wrms) and tangential(v„m) components of turbulent intensity 
along the centerline normalized with Ub. 

Experimental validation data of the transverse turbulence intensity profiles at 

various axial locations were only available for Ferdman, et al. (2000) at Re=24xl03, S=0. 

As seen in Figure 92, current vrm/Ut turbulence intensity profile results at Re=24xl03, 

S=0 match reasonably well with the available results of Ferdman, et al. (2000) at all axial 

locations [x/D=(l,3,6,9)]. The shape and maximums predicted in the current simulations 

seem to coincide well with Ferdman, et al. (2000) with only a slight over prediction in the 

turbulent intensity beyond x/D=6 in the outer edge of the jet (r/D>0.5). 

At Re=24xl0 , S=0.5, both the azimuthal and radial velocity components were 

made available for Facciolo(2006) and are plotted against current results in Figure 93. 

Besides the offsets discussed previously for the centerline turbulent intensities as 

observed in Figure 91, current LES profiles seem to match reasonably well at all 

locations. As noted in Facciolo(2006) there is little difference between the development 

of both components and lay almost entirely on the same curve in both the central and 

outer part of the jet. The maximum peak occurs at approximately r/D=0.5 at an axial 

distance of x/D=l. As the jet moves downstream, the jet maximum proceeds to gradually 

decrease and move toward the centerline due to the shear layer penetrating into the jet. At 



112 

around x/D=7 both radial and tangential turbulent intensity profiles become almost flat 

the center of the jet. 
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The Reynolds shear stress results for jet flow at Re=24xl03, S=0, are presented in 

Figure 94. Current simulation results show fair agreement with experimental results of 

Ferdman, et al. (2000) and Facciolo(2006) at all axial locations. As expected due to 

symmetry, the value of the Reynolds shear stress is zero along the jet axis throughout. 

The maximum is observed at an axial distance of x/D=l and radial distance of 

approximately r/D=0.5. The current LES maximum observed seems to be significantly 

higher than Ferdman, et al. (2000). This over prediction also observed at x/D=3 is 

possibly due to lack of resolution in the experimental results. Despite the over-prediction 

the location of the maximum peaks and general profile shapes of the Reynolds shear 

stress seem to be a good match. Further downstream as the maximum gradually 

decreases, the Reynolds shear stress magnitude at x/D=(6,9) of the current simulations 

seems to be much closer in agreement to the experimental results of Ferdman, et al. 

(2000) and both show a slight shift in the maximum towards the jet's center axis. 

For jet flow with S=0.5 rotation at a Reynolds number of Re=24xl03, Figure 95 

shows the shear Reynolds stress results for both uv/Uc
2 and vw/Uc

2 compared to those of 

Facciolo(2006) at an axial distance of x/D=6. The increase in uv/JJc of the current 

results seems to initially match both the experimental and LES data of Facciolo(2006) but 

under predicts l<r/D<0.5 due to a slight oscillation observed in the slope. As seen in 

Figure 95 oscillations in the current data are even more apparent for the low magnitude 

vw/Uc Reynolds shear stress and seem to suggest either an error in the data collected or 

insufficient samples. 
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7.2 JET FLOW: REYNOLDS STRESS ANISOTROPY 

The anisotropic tensor by components of Eqn. 6-4 are shown in Figure 96 for all 

jet configurations simulated at an axial distance of x/D=6. The values are calculated and 

plotted up to a radial distance of r/R=2. There does not appear to be any notable 

differences in the anisotropic tensor component due to the Reynolds numbers or rotation 

rates tested. The bn component decreases toward zero moving away from the jet center. 

The b22 component shows an opposite trend, increasing towards zero from 0<r/R<2. In 

the same range that the b22 component begins to oscillate and decrease, the b33 

component which was relatively constant from 0<r/R<2 begins to increase. The bi2 shear 

stress anisotropy tensor component is zero at the jet center and increases up to 

approximately r/R=0.8 reaching a maximum and remaining /Constant all the way up to 

approximately r/R=2 at which point oscillations are present. The bi2 and bo components 

which remain at zero except in the outer region beyond r/R>2 (not shown) of the jet 

where oscillations are observed. The oscillating behavior beyond r/R>2 observed in the 

anisotropic component is due to the intermittency of turbulence approaching the jet's 

edge where incursion of irrotational ambient fluid due to entrainment is present. 
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Figure 96: Anisotropy tensor components for Jet flow at Re=12xl03, 24xl03; 
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Figure 97 thru 99 show, side by side, the global view and a zoomed in view of the 

anisotropy invariant map. For all jet flow configurations tested it is seen that the 

anisotropy invariants lie near the isotropic limit, between the axi-symmetric boundaries. 

Figure 97 compares the effect of Reynolds numbers, Re=12 xlO3, 24xl03. The close up 

view of the invariant map in Figure 97 shows that for both Reynolds number the 

anisotropy invariants begins near the isotropic the center of the jet (r=0) and follow the 

axisymmetric turbulent line moving from the center of the jet (r=0) towards the jet's edge. 

The proximity of the invariant values to both the isotropic and axisymmetric limit is 

closer for the higher Reynolds number of Re= 24xl03. The departure from axi-symmetry 

that occur faster at the lower Reynolds number and the smaller magnitude values of the II 

invariant for the higher Reynolds number show a higher level of isotropy suggesting 

there may be a Reynolds number effect present. 
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Figure 97: Jet flow anisotropy invariant map at x/D=6 for Re=12xl03,24xl03; S=0. 

The effect on anisotropy due to rotation is shown in Figure 98 and 99 for Re=12xl03 

and 24x10 respectively. Figure 98 shows that at a Reynolds number of Re= 12x10 

rotation of S=0.5 results in a shift of the anisotropy invariants away from the 

axisymmetry boundary near the jet center (r=0). Somewhere in the radial range of 
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R<r<2R it is seen that for both S=0 and S=0.5 there is an irregular departure from the 

axi-symmetry boundary on the right hand side of the invariant map. Figure 99 shows that 

at the higher Reynolds number of Re=24xl03 the anisotropy invariants in the range of 

R<r<2R are more closely compacted and remain closer to the axi-symmetric boundary 

than the lower Reynolds number. A comparison between Figure 98 and 99 clearly shows 

that at both S=0 and S=0.5 the magnitudes of the II invariant are lower and remain closer 

to the isotropic limit with a closer proximity to the axi-symmetric line at the higher 

Reynolds number further suggesting there is a Reynolds number effect present. 
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Figure 98: Jet flow anisotropy invariant map at Re= 12xl03; S=0,0.5. 
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8 PARTICLE-LADEN JET 

8.1 PARTICLE-LADEN JET SETUP AND PARAMETERS 

To simulate particle laden jet flow, spherical particles were injected at the 

interface between the pipe outlet and the jet inlet. Particle injection was initialized after 

initial jet flow development of 1000 time steps at t=0.1sec. Subsequent injections 

occurred every 100th time step (At - 0.0001 sec) or every 0.01 sec thereafter. Particles 

were introduced at the jet inlet plane, x=0, with an initial velocity equal to the local 

instantaneous fluid velocity. As shown in Figure 100, one particle was injected at every 

jet inlet cell (2796Total, ID: 0-2795). Location of the particles is initially at the center of 

each injection cell. 
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Figure 100: Jet inlet depicting particle injection locations. (Particles colored by particle ID). 

Injected particles are considered to be rigid spheres with uniform diameter and 

constant density, /?p=T000kg/m3. Particles injected into the jet flow had diameters of 10, 

100 or 500 jum. These particles are considered to be large such that sub-grid scales would 

have a negligible effect on their trajectories. Table 10 summarizes parameters of the 

particle injection. 



120 

Table 10: Particle response time and Stokes number. Bulk velocity estimate of Ub=5.8m/s, 
correspond to non-rotating (S=0) jet flow at Re=24xl03. 

Diameter Re Ub Volume Mass Response Stokes 
Dp(nm) (S=0) (m/s) Volp (m3) m

P (kg) time (sec) tp St = (tpUb/R) 

10 24x103 5.8 5.2xl0~16 5.2xl0"13 3.1x10^ 0.06 

100 24x103 5.8 5.2xl0"13 5.2xl0"1<3 3.1xl0"2 6 

500 24x103 5.8 6.5x10" 6.5xl0"8 7.8x10"' 150 

p D 
Where particle response time: t = ——- Eqn. 8-1 

18pv 

t Uh 
Stokes: St =JLJL Eqn. 8-2 

R 

Simulations were performed using jet mesh#3, which has 1.23xl06 cells. Grid 

dependency tests in Section 5 showed that it produced results that were almost as good as 

the finer jet mesh#5 which has 3.31xl06cells. Because the discrete phase model in the 

FLUENT code did not allow for the use of the fractional time step method, an iterative 

time step method had to be utilized. A maximum of 20 iterations could be used at each 

time step to allow for convergence. The discrete phase model requires a particle mass or 

volume flow rate below 10% of the fluid flow rate. 

Table 11 shows that the mass flow ratio is <1% in this study. 

Table 11: Particle Volume/Mass fraction. 

Re (S=0) Ub (m/s) 
Air Mass Flow 

Rate (kg/s) 

10% 
Mass Flow 
Rate (kg/s) 

# Particles to 
achieve 

10% Mass Flow 

Actual # of 
Particles (2796) 

mass% 

24x103 5.84 0.02 0.002 30921 0.9 

Time integration of particle trajectory equations can be set in FLUENT by 

specifying either the "length scale" or "length step factor". Integration time step is 

equivalent to the approximate distance a particle will travel before its motion equations 

are solved again and its trajectory is updated. Length scale, L, controls integration time 

step size used to integrate equations of motion for the particle for iteration within each 

control volume. A smaller length scale gives more accuracy. It is recommended that 
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L-X/100 where the domain boundary in this case is X=10D=0.6m so that L~X/100 

-0.006. The option for the specification of the step length factor, on the other hand 

allows Fluent to compute the time step in terms of the number of time steps required for a 

particle to traverse a computational cell. The estimated transit time, At*, is the time for a 

A t* 
particle to traverse the current continuous phase control volume, At = . Where X is 

A 

the step length factor and is roughly equivalent to the number of time steps required to 

traverse the current continuous phase control volume. One simple rule of thumb given in 

the FLUENT user guide is to allow the setting of the parameters above; if you want the 

particles to advance through a domain consisting of N grid cells into the main flow 

direction, then the step length factor, X times N should be approximately equal to the 

maximum number of time steps XNx ~ Max Number Steps . The step length factor for all 

simulations was changed from the default value of 5 to 10. To prevent the possibility of 

stagnant particles staying in the computational domain indefinitely the max number of 

steps is set to 10,000, such that particles do not reside in the jet domain for longer than 

1 second. 

Two-way turbulence coupling or the effect of particle on turbulent quantities was 

not explored. Experiments by Kulick, et al. (1994) and Kaftori, et al. (1995) showed that 

for low volume fractions, as is the case in the current simulations, the turbulence 

modifications are negligible. Inter-collision forces of particles was also neglected due to 

low volume fraction of the particles. The spherical drag law with unsteady particle 

tracking was implemented. As recommended by the Fluent(2006) user manual for 

unsteady simulations, DPM sources were updated every flow iteration. The number of 

continuous phase iterations per DPM iteration were set to the default of 10. If the 

number of continuous phase iterations per DPM iteration is less than the number of 

iterations required to converge the continuous phase between time steps, then sub-

iterations are done. Here, particles are tracked to their new positions during a time step 

and DPM sources are updated; particles are then returned to their original state at the 

beginning of the time step. At the end of the time step, particles are advanced to their new 

positions based on the continuous-phase solution. If the number of continuous phase 
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iterations per DPM iteration is larger than the number of iterations specified to converge 

the continuous phase between time steps, however, the particles are advanced at the 

beginning of the time step to compute the particle source terms. 

The stochastic (discrete random walk model-DRW) model for turbulent 

dispersion of particles was enabled. In this model the dispersion of particles due to 

turbulence includes the instantaneous value of the fluctuating fluid velocity. Random 

effects of turbulence accounted for by a "number of tries" or computing of trajectories of 

representative particles. The integral time scale or time spent in turbulent motion along 

the particle path is proportional to particle dispersion rate. The larger its value, the more 

turbulent motion in the flow. The integral time-scale constant was left at the default value 

of 0.15. 

8.2 PARTICLE-LADEN JET RESULTS 

Particles data within the jet domain collected included particle location, particle 

velocity components, particle id and particle residence time. Figure 101 shows the total 

global particle count in the domain collected every 1000th time step (every 0.1 sec). 

Figure 101 shows that for both non-rotating (S=0) and rotating (S=0.5) jet flow, it takes 

approximately 1 second or 10,000 time steps for both 10 fj.m (St=0.06) and 100 ̂ im 

(St=6) particles to saturate the domain and reach a total particle count equilibrium, 

whereas it only takes 2-3 thousand time steps (0.2-0.3Sec) for the heavier particle of 

500/iw (St=l 50) to do so. 
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Figure 101: Global particle count within domain. 

For non-rotating, S-0 jet flow, the count for lighter particles in the domain is 

greater than heavier particles with the total count of the lighter 10 /jm particles 

approximately 28% and 57% more than the 100 fim and 500 /j.m particles respectively. 

For the non-rotating jet the initial instantaneous velocity of the particles is nearly entirely 

in the axial direction, heavier particles which have more axial momentum, move axially 

through and out of the domain at a faster rate than the lighter particles and thus have a 

lower total particle count. With the addition of rotation, however, Figure 101 shows that 

the particle count is actually greater for medium sized particles with a diameter of 

100 /j,m than the smaller 10 jum particles by approximately 15%. 

Figure 102 shows the instantaneous particle distribution for particles found within 

a plane of thickness Az = 0.1Z) (with z = ±0.1i?) from the center midplane (z=0) at 

t=2sec. Without rotation, the spread of smaller 10 /urn (St=0.06) and 100 nm (St=6) 

particles is greater than the larger 500 /j.m (St=150) particles which remain more 

concentrated towards the center of the jet. Addition of rotation produces a significant 

effect on particle distribution for both the 100 /urn and 500 jum particles but does not 

seem to considerably change the particle distribution of the smaller 10 jum particles. It 
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appears that the radial velocity component causes the largest (500 fim) particles to 

maintain their initial trajectory and continue to move outwards and eventually exit the jet, 

whereas the lighter particles of 10 /urn, with less radial momentum, simply diffuse and 

tend to remain closer to the jet core with little noticeable change in spread in comparison 

to the non-rotating jet flow. Figure 103 superimposes instantaneous axial velocity 

contours onto the particle distribution at t=2sec. Figure 104 and 105 show similar 

pictures at cross-sections x/D=l and 5, respectively. Without swirl, the particles remain, 

mostly, within the core of the jet, at both cross-sections. The addition of swirl has a 

profound effect on the particle radial location, which increased with particle size. In fact, 

for the largest size , most of the particles have exited into the free stream and are no 

longer within the jet. Whereas for the smallest size, they are still within the jet core. 

Therefore, if a cyclone separator was used to separate discrete phase particles from a 

carrier fluid phase, the larger-sized particles would be more easily removed whereas 

small-size particles may remain dispersed within the fluid phase. 
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Figure 102: Midplane (z=0) view of particles distribution at t=2sec. Re= 24x10 ; S=0, 0.5. 
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Figure 103: Midpiane (z=0) contours of instantaneous axial velocity (m/s) and 
particles distribution at t=2sec. Re= 24xl03; S=0, 0.5. 
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Figure 104: Contours of instantaneous axial velocity (m/s) and particle 
distribution at x/D=l, t=2sec. Re= 24xl03; S=0,0.5. 
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Figure 105: Contours of instantaneous axial velocity (m/s) and particle 
distribution at x/D=5, t=2sec. Re= 24xl03; S=0,0.5. 

To examine the effect of the vorticity field in possibly promoting preferential 

particle agglomeration, instantaneous spanwise vorticity contours are superimposed onto 

the particle distribution at the rnidplane(z=0) in Figure 106. Similarly, instantaneous axial 

vorticity contours are superimposed on particle distribution at cross-sections x/D=l and 

5, in Figure 107 and 108, respectively. There is strong evidence of agglomeration at 

regions with high axial vorticity shown in Figure 107. This is not apparent further 

downstream at x/D=5, shown in Figure 108. For jet flow without rotation, Figure 106 

does appear to suggest there might be areas of preferential accumulation towards the 

center of the jet for 100 fim particles at around x/R=T0. Preferential accumulation of 

100 nm particles corresponding to a Stokes number of St=6 would agree with previous 

findings [Longmire and Eaton(1992), Uthupan, et al.(1994), Luo, et al.(2006)] that have 

shown that particles with a Stokes number in the order of St ~ O(l) tend to show 

preferential accumulation behavior in areas of low vorticity. 
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Figure 106: Midpiane (z=0) contours of instantaneous spanwise vorticity (1/s) 
and particle distribution. Re= 24xl03; S=0, 0.5. 
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Figure 107: Contours of instantaneous axial vorticity (1/s) and particle 
distribution at x/D=l, t=2sec. Re= 24xl03; S=0,0.5. 
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Figure 10S: Contours of instantaneous axial vorticity (1/s) and particle 
distribution at x/D=5, t=2sec. Re= 24xl03; S=0,0.5. 

Particle behavior, observed and described qualitatively in Figure 103 through 108 

thus far, is now quantitatively examined by considering averaged particle quantities at 

various axial locations. The average particle axial (U ), tangential (Vp) and radial (Wp) 

velocities are presented in Figure 109. The averages presented were calculated by 

sampling all particles passing through an axial plane of width Ax = 0.1 D (where 

x = x; ±0.1 R) at ten axial locations, x=(l,2,3...10)D. Sampling was done every time step 

with a total of 200 and 400 samples for jet flow at S=0 and S=0.5 respectively. 

As expected, Figure 109 shows that the average downstream particle axial 

velocity, Up, for jet flow without rotation increases with increasing particle size due to 

corresponding increase in initial particle axial momentum. For the largest 500 p.m 

particles the axial velocity remains nearly constant throughout the domain length. With 

added rotation the average axial velocity appears to be only slightly larger for both 

500 nm particles and 10/urn particles. For the midsize 100 fj,m particles however the 

overall average particle axial velocity with S=0.5 rotation is considerably lower than 

without rotation. The tangential velocity, V p, also shows that it is significantly lower for 
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the 100/i/w particles upstream from x/D=lto4 than both 10 f i m  and 500 j j . m  particles 

which have nearly equal tangential velocity throughout. Both of these significant drops 

in average axial and tangential velocity observed for the 100 pirn particles is due to their 

initial migration outside the jet core into a low-speed stagnant zone where the particles 

quickly lose their initial momentum. A significant particle average radial velocity WP is 

only observed for the largest (500 jj.m) particles throughout the jet, which decreases 

linearly till the domain exit. 

Particle Jet Flow: Re=2.4E04 

x/D (Sample Ax=0.1D) 

Figure 109: Average particle axial (U p ), tangential ( V p )  and radial ( W p )  

velocities (m/s) at various downstream axial locations. Re= 24xl03; S=0, 0.5. 
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Particle Jet Flow: Re=2.4E04, S=0.5 
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Figure 110: Particle count fraction, average residence time and average radial 
distance at various downstream axial locations. Re= 24xl03; S=0, 0.5. 

Figure 110 shows the particle fraction number, NP(Xj%, average particle residence 

time, tp, and average radial distance, rp, of all particles found at each sampled axial 

location. The particle fraction number, Np(X)o/o, is the percentage of total number of 

particles found at each sampled axial plane, Np(x) divided by the total number of particles 

in the entire domain Np. 

Eqn. 8-3 
P 

The particle fraction percent varies only slightly with axial location with and 

without rotation. In general, it appears to increase gradually downstream for all particle 

sizes, with the exception of 500 fj.m with rotation, for which it decreases throughout the 

domain. The decrease in this case is attributed to the particles' radial velocity component 

that causes them to continually move out of the domain. In Figure 110, rP, is the 

average radial distance for all particles sampled at each axial plane. Without rotation, it is 

larger for smaller particles, whereas the trend is opposite with rotation. 
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In Figure 110, t p ,  is the total time, on average, that particles have remained 

within the domain for all the particles present within the sampled axial location. It 

appears to be unaffected by rotation for the 10 fim particles. It decreases slightly for the 

larger 500 /urn particles. For the mid-sized 100 /um particles,m however, the change in 

particle residence time is markedly different with and without rotation, increasing by 

about 25%, in the former. The increase is again attributed to the particles initially 

migrating outside the jet core into a low velocity stagnant zone where their average axial 

velocity decreases significantly thereby causing the particles to move slower 

downstream. 

To quantify the observed particle concentration shift away from the jet core of 

the 100 fim particles, a particle concentration in the radial direction at each axial location, 

is calculated as follows, 

N _  p ( x M t )  
p(x,r) _ 

v  Eqn. 8-4 
V(&r,) 

where N p ( x A r )  is the total number of particles found at each sampled axial location 

within a given radial interval Art as shown in Figure 111. V(r) = 7u(Ar^)Ax is the total 

sample volume. The sampled radial interval is set to Ar = i?/15, where r goes from 

(0 —> 5i?) and axial sample plane width of Ax = 0. ID. 

A r 

• « 

Figure 111: Depiction of particle concentration radial count sampling interval. 
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Figure 112 and 113 show the particle concentration profiles normalized with the 

particle concentration at the inlet, Co, at x/D-(l,2,3) and x/D=(5,7,10), respectively. 

With rotation the shift in the peak of the profiles to higher values of r/R is greatest for the 

mid-sized (100 jum ) particles. In general, the peak is lower and the profiles are broader. 

Particle Jet Flow: Re=2.4E4 
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Figure 112: Particle concentration at x/D=(l,2,3). 
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Figure 113: Particle concentration at x/D=(5,7,10). 
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Figure 114 and 115 compare time-averaged velocity profiles of the particles and 

the fluid phase. The particle velocity averages were calculated by summing the 

instantaneous particle axial velocities of all particles sampled and found to pass through a 

given axial location and radial interval and dividing by the total number of particles 

within that interval as follows: 

UpM = ~ Z  Z • E(*n-8"5 

P ( x , r )  M  

Figure 114 shows that for S=0, particle and fluid velocities have the same 

centerline peak up to x/D=4. Beyond that, the particles move faster because they retain 

more of their initial momentum, whereas the flow velocity is reduced by entrainment of 

ambient fluid and mixing. The scatter observed in the particle axial velocity for r/R>l at 

x=lD-4D occurs because the particles are in the free-stream, outside the jet. Starting at a 

downstream distance of x=4D the mean axial velocity for the larger 500 /j.m particle is 

noticeably larger away from the jet center. The maximum centerline axial velocity 

between the particles and the fluid flow seems to start diverging starting at around x=5D. 

By the downstream distance of x=7D, the mean axial velocity for the larger 500 /um 

particle is noticeably larger than that of the fluid flow across the entire jet width. 

Figure 115 shows that, with the addition of rotation, the largest particles move 

much faster than the fluid at nearly all cross-sections, but the smaller-sized particles have 

velocity profiles which are virtually the same as for the fluid phase. 
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Particle Jet Flow: Re=2.4E04, S=0 
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Figure 114: Average axial particle velocity (m/s), Re=24xl03; S=0.5. 
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Figure 115: Average axial particle velocity (m/s), Re=24xl03; S=0.5. 

In Figure 116, the tangential component of the average velocity for the jet and the 

various particles are compared. The smaller particles (10 jj.m and 100/um) have similar 

profiles to the jet fluid phase, except for downstream (x>5D) where the smallest particles 
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show some drift. On the other hand, the largest particles (500j u m )  have tangential 

velocities which are much higher than jet fluid phase ones. For the most part, most of this 

particle motion is outside the jet core. 

Particle Jet Flow: Re=2.4E4, S=0.5 
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Figure 116: Average tangential velocity, Re=24xl03; S=0.5 

The global rate of particle dispersion in the streamwise direction DT
r (x), is 

defined as 

o)2 

D T
r  ( X )  =  Eqn. 8-6 

N l y  p { x )  

where Np(x) is the total number of particles passing through a cross-sectional plane x 

during the entire sampling time, rt(x) is the radial displacement of the zlh particle that is 

passing through the plane, and is the initial radial displacement of the z'th particle when 

it was first injected into the jet domain. Figure 117 shows the total dispersion function 

along the streamwise position calculated for each case. It is seen that, without rotation, 

the values for DT
r (x) are inversely related to particle size, with larger particles showing 

lower dispersion. With particle rotation, the dispersion for the largest particle increases 

considerably. Mid-sized particles showed significant increase in dispersion, relative to 
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non-rotating jet, only in the near filed x/D<3. The smallest particles were largely 

unaffected by rotation. 
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Figure 117: Particle Dispersion 

Figure 118 shows trajectories of particles injected at six different radial locations 
•5 

for the jet flow at Re=24xl0 and S=0.5. The jet edge, where the jet axial velocity is 

equal to U=0.98UC is also shown as a reference. A total of lOOOtime steps are shown for 

the 10 /im and 100 /im particles and 500 time steps for 500 jum particles. The travel path 

of smaller particles is more dependent on flow structvires while the largest (500 /um) 

particles appear to be unaffected. All particles injected close to the center of the jet at 

rmj=0 appear to show an initial trajectory that moves them gradually away from the jet 

center. This is probably due to centrifugal forces. For particles injected near the edge of 

the jet, the largest ones continue to move outward while the smallest ones return towards 

the center of the jet. The trajectory of the midsize 100 /j,m particles injected near the edge 

of the jet inlet shows that they initially moved out of the jet into the ambient 

surroundings, before they are re-entrained into the jet further downstream. 
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Figure 118: Particle trajectories 
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9 SUMMARY AND CONCLUSIONS 

Large-Eddy Simulations have been carried out to study the near-field flow of 

particle-laden swirling turbulent round jet generated from a fully-developed axially 

rotating pipe. The standard subgrid-scale Smagorinsky-Lilly model with a constant 

Smagorinsky constant was used for all simulations performed. Lagrangian tracking with 

one way coupling was used to analyze fluid-particle dispersion in the near field. 

Various pipe and jet meshes were tested for grid sensitivity. For pipe flow 

simulations it appears that all meshes tested had acceptable grid refinement, and there 

was minimal difference among the meshes tested at all Reynolds numbers. At the lowest 

Reynolds number of Re=5.3xl0 , turbulent intensity profiles near the wall results of the 

coarser pipe mesh (M100L) did, however, verify the trend observed by Wu and Moin 

(2008) that for a coarse mesh, the streamwise component of turbulence intensity is 

amplified while the radial and tangential components decrease. The grid sensitivity test 

for the five meshes tested for jet flow also showed this trend. With the addition of 

rotation there was no significant difference among the pipe meshes tested except at the 

highest rotation rate of S=2. For the jet meshes tested, the mean axial center-line velocity 

was the only other indicator of the jet meshes grid refinement quality. With increased 

mesh refinement, results showed a trend of increasing centerline velocity and slower 

velocity decay. 

Overall, both pipe and jet flow results agreed well with available data at all 

Reynolds numbers and rotation rates tested. Rotating pipe flow results confirm some 

previous findings, such as the deformation of the mean axial velocity profile towards the 

laminar Poiseuille-profile, a reduction in the turbulence near the wall region and an 

increase in the outer region of the pipe with increased pipe swirl. At a constant pressure 

gradient, an increase in bulk velocity was observed with addition of pipe rotation. The 

decrease in pressure loss from S=0 to S=0.5 was approximately 9% at Re=5.3xl0 and 

approximately 20% for the two higher Reynolds number of Re= 12x10 and 24x10 . 

Calculation of the anisotropy tensor components of the Reynolds stresses shows a 

redistribution of anisotropy due to pipe rotation. Suppression of the axial component of 

Reynolds stress near the wall and amplification of the tangential component of Reynolds 
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stress occurred as rotation is increased. Anisotropy invariant mapping showed that 

increasing pipe rotation results in movement away from the one-component limit in the 

buffer layer. 

The instantaneous velocity profiles at the exit of the pipe flow simulation were 

utilized as inlet conditions for the jet flow simulation. Turbulent jet flow was analyzed at 

the Reynolds numbers of Re=12xl03 and 24xl03 and swirl rates of S=0 and S=0.5. Jet 

swirl is observed to change the characteristics of the jet flow field with an increase in jet 

spread, velocity decay and a decrease in the jet potential core. The axial turbulent 

intensity component was shown to increase with the addition of swirl. Invariant mapping 

analysis of the Reynolds stress anisotropy tensor, performed downstream of the jet 

potential core showed that there is a slight Reynolds number effect between Re= 12x10 

and 24xl03, with and without rotation. Across the jet, the invariants map closely to the 

axi-symmetric limit. Differences are seen mainly for large values or r/D, which are 

probably at the edge of the jet in the intermittent turbulent region. 

Validated jet flow results at Re=24xl03 were used to study particle dispersion of 

10,100, and 500 (am diameter corresponding to a Stokes number of 0.06, 6, and 150, 

respectively. Lagrangian tracking with one way coupling was used to analyze particle 

statistics and dispersion in the near field. Particles were introduced intermittently with a 

low mass loading (<1%) at the jet inlet with an initial velocity equal to the local 

instantaneous fluid velocity. Without jet rotation particle dispersion is inversely related 

to particle size with larger particles showing lower dispersion. Addition of jet swirl was 

found to cause the heavier particles to continuously travel outward and escape out the 

side of the domain. Particle dispersion was unaffected by jet rotation, for the smallest 

10(j.m particles. However, for mid-sized ones (100|im), particle concentration was 

observed to be shifted outward, relative to the non-rotating case. The migration of 

particles near the inlet towards outside the jet core results in these particles residing in a 

stagnant zone where their velocity decreases prior to being entrained back into the jet 

flow and traveling downfield. 

This research has shown the viability of LES for the analysis of rotating pipe and 

swirling jet flows. This work could be beneficial to several applications such as cyclone 

separators that are used to separate discrete phase particles of various sizes from a carrier 
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fluid phase. The current work has shown particle dispersion of three different size 

particles with the addition of rotation that could be used to design cyclone separators. 

This work can also be beneficial to the oil and gas industry, where rotational phase 

separators are important for separation of oil/water or liquid/gas mixtures. This research 

could also be applied to combustion. A crucial parameter in combustion/fuel injection is 

the degree of inter-phase mixing. Particle concentration analysis performed in this study 

could be applied to optimizing fuel droplets and air mixture to improve combustion 

efficiency. Analysis of particle dispersion behavior of known contaminants that can arise 

from chemical and biological warfare attacks can be vital to saving lives. Results of 

particle dispersion of various diameters investigated in this work can be used to aid to 

develop devices and strategies that can effectively contain and remove these 

contaminants. This work has established a methodology to aid in future analysis of these 

and other practical applications and has provided an initial set of data for the effect of jet 

swirl on dispersion of particles at three Stokes numbers. 

Recommendations for advancing the understanding of rotating pipe/jet flow 

would include performing simulation of higher pipe/jet swirl rates at various Reynolds 

numbers to further aid in characterizing Reynolds shear stress anisotropic effects due to 

rotation and Reynolds number. Increased particle mass loading to determine 

instantaneous particle preferential accumulation and interaction and two-way coupling to 

characterize turbulence modulation due to particle-fluid interaction should also be 

considered. 
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