
Old Dominion University
ODU Digital Commons
Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Winter 2003

Optimal Feedback Control for Ship Roll Motion
Under Sea States
Anusit Anmanatarkul
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

Part of the Ocean Engineering Commons

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been
accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For
more information, please contact digitalcommons@odu.edu.

Recommended Citation
Anmanatarkul, Anusit. "Optimal Feedback Control for Ship Roll Motion Under Sea States" (2003). Doctor of Philosophy (PhD),
dissertation, Mechanical Engineering, Old Dominion University, DOI: 10.25777/wpxq-gy61
https://digitalcommons.odu.edu/mae_etds/115

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/302?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/115?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


OPTIMAL FEEDBACK CONTROL FOR SHIP ROLL MOTION UNDER

SEA STATES

by

Anusit Anmanatarkul 
M.E. August 1999, Old Dominion University 

B.S. March 1995, King’s Mongkut Institute o f Technology Thonburi, Thailand

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment o f the 

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING

OLD DOMINION UNIVERSITY 
December 2003

Approved by:

Jen-Kuang Huang (Director)

Sfibastian Bawao (Member)

Gene J.-W. FIou (Member)

Due T. Nguyen (Member)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



ABSTRACT

OPTIMAL FEEDBACK CONTROL FOR SHIP ROLL MOTION UNDER

SEA STATES

Anusit Anmanatarkul 
Old Dominion University, 2003 
Director: Dr. Jen-Kuang Huang

The primary influences o f ship motion are roll motion. The purpose of this 

dissertation is to discuss a means to reduce the roll amplitude of ship motion in the case 

of zero forward speed using the roll mitigation device known as the flume tank, or U- 

tube, tank. Passive control and active control are studied. Optimal feedback control is the 

designated algorithm for activated roll mitigation device. The assumed model in this 

study is a submarine chaser. The linear coupled equation of swaying, rolling, and yawing 

motion o f this assumed model is studied. The roll motion of this vessel is investigated 

under Sea State 3. The irregular wave, which attacked the ship hull, is studied with 

different encounter angles. The large roll amplitude is found when the wave encounters 

ship hull at Beam Sea (/? = 90°)- The simulation results of passive control demonstrate 

that the flume tank creates high damping system under various wave angle’s attacks. 

This mitigation device can cancel the roll amplitudes over 50%. For an activated anti- 

rolling tank, the optimal feedback control (LQR) shows that the full-state-variables 

method results in a high-damped system as well as the suboptimal feedback control. 

Technically, the linear coupled equation of motion should improve to the nonlinear range 

in order to obtain higher accuracy of the ship’s motion and online control algorithms 

should be developed.
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N o m e n c la tu re

P Density

(D The frequency

T Sway displacement

<}> Roll angle

e Pitch angle

w Yaw angle

C Wave elevation

f  swavwave Swaying force generated by sea wave

Mro|| wave Rolling moment generated by sea wave

Myaw_wave Yawing moment generated by sea wave

Mpump Generated moment due to the pressure difference between two sides o f the 
pump

Mgrav Generated moment due to the gravitational force acting on the fluid

Mace Generated moment due to the acceleration o f fluid in the flume tank

S(m) Wave spectrum

Aiank Area o f tank

Apjpc Area of pipe

Htank Nominal height o f the water in each tank from the center of the cross pipe

Lstimu Distance between the centerlines o f the tanks

Rx CMJank Distance o f the center o f the cross pipe to the center of gravity o f the ship in 
Xo-direction

Lz CM_ tank Distance of the center o f the cross pipe to the center o f gravity o f the ship in
Zo-direction
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V

^ t a n  k
Change of water head from its nominal height of the water in the tank

A P Pressure difference between two sides o f the pump

©

0 First derivative with respect to time

© a

( ) Second derivative with respect to time

•L. Variable of tank

^  p i p e Variable o f pipe

.)
f s t i m u Variable o f stimulator
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CHAPTER I 

INTRODUCTION

Marine vehicles have been dramatically researched for over a decade. Currently, 

many types o f ships have been operating on the seas or rivers such as cargo ships, 

container ships, fishing ships, and tanker ships. Most marine vehicles not only support 

business issues, but military issues are also concerned in ship stability. Motion stability 

and stationary stability are to be considered1. The former stabilizes the ship’s direction. 

The latter is to stabilize the ship while being anchored for any matter’s operation. For 

instance, we anchor merchant ships during the cargo loading. Stationary stability is the 

topic discussed in this dissertation.

The motivation of research is to control the stability o f the ship and prevent the 

ship’s capsizing. Undesirable motion could cause the ship’s capsizing, as well as an 

uncomfortable sensation while onboard. M.A.S. Neves, et.al. investigated the dynamic 

stability o f fishing vessels in longitudinal regular wave. The shape of the ship has 

influence on the amplification of the motions. They studied both analytically and 

experimentally when specific parameters, which are wave amplitude, frequency, 

metacentric height and roll damping moment, are changed. Additionally, M. Taylan3 

studied both static and dynamic aspects o f a capsize phenomenon. Stability margin is 

considered to analyze ship hydrodynamics.

The journal mode adapted for this Dissertation is JGCD
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2

In order to reduce the undesirable motions o f marine vehicles under various Sea 

States, the reducing forces and moments are significant issues to be considered. An 

engineer can reduce the forces and moments by increasing the damping coefficient, 

reducing natural frequency, or even directly reducing the excitation forces and moments4.

In order to counteract undesirable motions, several roll stabilization devices have 

recently become available. These include bilge keels, gyroscopic stabilizers, movement 

o f weight, rudder action, jet flaps, fins, or passive and active roll tanks4. To achieve roll 

cancellation, the control algorithm is considered. Ching-Yaw Tzeng, et.al,5 proposed a 

control algorithm for rudder roll stabilization, which is called a sensitivity function. 

Ching-Yaw Tzeng, et.al, used this method to achieve good disturbance rejection and 

considered the wave disturbance as output noise. Satoru Yamaguchi6 proposed an 

adaptive control algorithm for activated anti-rolling tank. The results showed that the 

activated anti-rolling tank could reduce the roll motion of the ship in the regular sea.

The anti-rolling tank is represented in this dissertation. In order to reduce the 

rolling moment amplitude, the water transfer in the tank will generate the anti-rolling 

moment. The anti-rolling tanks can be categorized by using passive and active 

controllability. This anti-rolling tank is known as the U-tube or the flume tank. The anti

rolling tanks are called passive tank stabilizers when fluid in the flume tank is allowed to 

move freely from one tank to another tank. The primary disadvantage of using a passive 

tank is that the response o f the system could be too slow.

The controlled active tank has resolved the problem of using a pump to transfer 

the water in the U-tube tank, as well as to accelerate the system response. The natural 

frequency o f U-tube tank should be very close to the ship’s natural frequency for proper

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3

damping of the ship motion. The following parameters could have an effect on the 

amplitude as well as the phase of the U-tube tank: frequency encountered, amplitude of 

ship rolling motion, length o f the tank, breadth of the tank, water height in the tank, and 

position o f the tank7'8. In this dissertation, the roll stabilization using controlled active 

anti-roll tanks has been presented. In order to stabilize the ship roll motion under the Sea 

States, the pump controller must be effective. The control algorithm used for a controlled 

water pump is called the optimal feedback control algorithm.

The optimal control theory has been established since the 1960s. The objective of 

optimal control theory is to determine the control input signals that will drive the system 

(plant) to properly physical constraint with minimum (or maximum) performance 

criterion. The optimal control theory has been developed for over a decade while most 

researchers apply the algorithms to various applications. Y.M. Ram9 studied the optimal 

control problem for structural vibration within the second-order differential equation. 

Transforming the system into the state-space form is not required. Likewise, the Ricatti 

equation is not required to be solved. R. S. Burns10 proposed the optimal control 

algorithm for pitch, heave and roll stabilization o f surface vessels. The controller device 

is a fin. He tested the effective controller at forward speed.

1.1 Objective

In general, a seaway, ship motion is the name given to the oscillations performed by 

a vessel, treated as a perfectly rigid body, as it floats on the surface of still water or 

disturbed water. Ship motions, generally, are surging, swaying, heaving, rolling, 

pitching, and yawing motions. We can treat ship motion as uncoupled motions or
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coupled motions. In this dissertation, the coupled swaying, rolling, and yawing motions 

are investigated.

As we know, unfavorable ship motions influence the seaworthiness o f a vessel, and 

may occasionally lead to the following consequences: capsizing o f the ship, damage to 

the hull or to the individual structure on the vessel, flooding o f the deck, disturbing the 

operation on a vessel, decreasing the speed o f a vessel, seasickness, and a decrease in the 

accuracy of gunnery in war-ships. Faltinsen O.M ." expressed examples o f important 

seakeeping and wave load problems for ships. This is illustrated in Figure 1.1. A 

stabilization device, which is the flume tank in this dissertation, is considered in order to 

eliminate or minimize roll amplitude as much as possible.

The objective of the dissertation is to apply the optimal feedback control theory to 

control the flume tank. The control algorithm will be designed for the proper water head 

transferred in the tank to generate the counteractive excitation. As expected, the roll 

angle will be reduced.

1.2 Dissertation Outline

Chapter II introduces the general equations of ship motion. The coupling of 

swaying, rolling, and yawing motion is represented and the state-space model is stated.

Chapter III briefly represents the theory of wave disturbance caused by seaways. 

The kinds o f wave spectrum are expressed. Force and the moments caused by waves are 

discussed.
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Chapter IV designs the flume tank. The details o f the flume tank such as the 

dynamic equations o f the fluid motion in the flume tank, and the limitations o f flume tank 

are discussed in this chapter.

As explanation o f the optimal control theory is presented in chapter V. The linear 

quadratic regulator (LQR) is illustrated. Then, theory is applied to the controlled water’s 

motion in the flume tank.

In Chapter VI, the numerical simulation, the effective passive and active control is 

presented.

In Chapter VII, the discussions o f the conclusion as well as the suggestions for 

future works are explained.
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■ &

Local motions Accelerations

Slamming Water on deck

Effect of breaking waves Liquid sloshing in tanks

Wave bending moments and shear forces

Figure 1.1 Example problems for the marine vehicles
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CHAPTER II 

DYNAMICS OF SHIP MOTION UNDER SEAWAY

The significance o f control design is to realize the dynamic characteristics o f the 

physical system to be controlled. Therefore, the equation of marine vehicle motion is the

initiation o f controller design. Mathematical models o f the dynamic equation imply the

1
modeling stability, control and motion response to the environmental disturbances .

Recently, many researchers have been approached as for the prediction o f ship 

motion under Sea States. Analytical and experimental methods have been explored for 

over a decade. For the most important, the analysis o f ship motions can be separated into 

the horizontal plane and vertical plane13. The motions in the horizontal plane include: 

surge, sway, roll, and yaw. The heaving, and pitching motions are in the vertical plane. 

Fukuzo Tasai14 presents the equations o f ship motion in the Beam sea that are derived 

from the Strip Theory as well as the experimental results that verified the theory. The 

ship's responses with coupling motions are represented in his research. Part of his 

research is the coupled equation o f heaving and pitching motions. In the horizontal 

plane, the coupling motions of swaying and yawing motions as well as the coupling 

motions o f swaying, rolling, and yawing motions are his derivatives14. In this 

dissertation, the most interesting is the linear coupling motions o f swaying, rolling, and 

yawing motions. In recent years, the coupled equations of motion have been concerned 

because it might affect performance o f ship stability control14"16.

Generally, most engineers analyze ship’s motion using the classical theory called 

the “Strip Theory”. The Strip Theory is briefly stated in this dissertation. Recently, the
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methodology used to determine ship’s motion has been continuously developed. The

* * 1 7neural network is a modem technique to identify the ship’s motion . Haddra and 

J insong17 proposed this method to define coupled heaving, and pitching motion in the 

random seas. Aryanpour M. and Ghorashi M.18 investigate various ship’s motion in the 

sea such as heaving and pitching motion. The analytical coupled equations o f motion 

have predicted the heaving and pitching motion by applying the Strip Theory. A ship’s 

behavior is subject to various moving forces and moments and is o f great technical 

importance in the realistic sea because this circumstance is possible at any moment 

during a ship’s operation. Not only is the prediction of ship motion determined in a 

frequency domain, but also in a time domain prediction19'20. Green’s function and 

Bernoulli’s equations have been applied for this circumstance. The more degrees of 

freedom there are, the more accurately the ship’s predicted motion can be represented.

2.1 Ship Dynamic Modeling

Inertial Frame

Roll
p , K Surge

xq, u , X

Pitch
q,M

Sway
Vo,v,Y

Body-fixed frame
Heave
zo,w,Z

Figure 2.1 The Standard Ship Motions Coordinate System
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9

The six degrees o f freedom coordinates are necessary to determine the position 

and orientation of a rigid body

the position and translational motions along the x-, y- and z- axes, and 

- the orientation and rotational motions about the x-, y-, and z- axes,

The following are definitions o f all motions for marine vehicle: surge, sway, 

heave, roll, pitch, and yaw. The notations used for marine vehicles are shown in Table 

2 . 1 .

Table 2.1: The notations used for marine vehicles.

DOF
Forces and 

Moments

Linear and 

Angular vel.

Positions and 

Euler angles

1 Motions in the x-direction (surge) X u X

2 Motions in the y-direction (sway) Y V y

3 Motions in the z-direction (heave) Z w Z

4 Rotation about the x-axis (roll) K p <P

5 Rotation about the y-axis(pitch) M <I 0

6 Rotation about the z-axis (yaw) N r ¥

Generally, the six degrees o f freedom must be investigated in order to understand

T i
all responses of marine vehicles in regular waves . The general form of the basic 

linearized equations in six degrees of freedom is based on Newton’s second law.

( 0 = ^ ( 0  (2.i)
*=i
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When j  is equal to the mode of motion (j = 1,2...6), Ajk are the generalized inertia matrix 

6®
for the ship, rjk are the accelerations in mode of motion (k), and Ff are the total forces or 

moments acting on the ship in/-direction.

For a ship with lateral symmetry, Equation (2.1) can be written as the following 

six degrees o f freedom:

A ^ , + Zc?/5 j  = r, (Surge),

06   6®   66 \
t]2-Z cJ i4 + Xcrjb 

V 2
= r 2 (Sway),

68___ _ 8® A
A| ^ 5  J = r 3 (Heave),

(2 .2)

86 66   ®»
7 44 ^ 4 - 7 46 T]6 - A Z c  j] 2 =  r 4 ( R o l l ) ,

86 [ _ 6®   8® J
155 tj5 + a \ Z c :  ?7l-X cT ]A  = r 5 (Pitch),

7 , +  A i , i / , = r s ( Y a w ) ,

where F j are the forces, which consist o f two components. One is the component of the 

gravitational force acting on the ship in the j th -  direction. Another is the component of

fhthe fluid force acting in the ship in the j -  direction. Once the hydrodynamic restoring 

forces, the added mass, and damping terms are determined, they are all brought to the 

left-hand side. Hence, Equation (2.1) yields the following governing equation.

X M A / a  + AJk)+ia>BJk +C jk\ck = Fj,  j  = 1,2,... ,6 (2.3)
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where co = wave frequency,

Ajk = the mass/inertia matrix for the ship,

Ajk -  the added mass matrix,

Bjk = the damping matrix,

Cjk = the stiffness matrix,

Fj = the exciting force due to waves,

= the unknown complex motion amplitude.

2.2 Strip Theory

The purpose of using the Strip Theory is to determine the coefficients o f added 

mass, damping, restoring force, and restoring moment. The three dimensional 

hydrodynamic problem can then be reduced into a series o f the two-dimensional 

hydrodynamic problem.

Two-Dimensional Strip

Figure 2.2 Two-dimensional diagram
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There are some limiting assumptions associated with Strip Theory. They are 

briefly stated as follows:

- The vessel model is a slender body,

- Zero forward speed and high frequency,

- The ship’s hull is the rigid body,

- The draft is much greater than the wavelength,

- The motions are small (i.e. sin (<()) s  <j>).

To apply Strip Theory to the ship motion problem, the ship is divided into several 

even sections o f the ship’s submerged hull. For a two-dimensional problem, each section 

has been calculated for the hydrodynamic properties such as added mass, damping, and 

stiffness. Once the two-dimensional problem has been solved for each section, the 

summation o f the coefficients for each section are summed up over the length of the ship. 

The coefficients in the equation of motion using Strip Theory are shown in Appendix A. 

The following section states the derivatives o f coupled equations o f motions, which are 

swaying, rolling and yawing.
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2.3 Coupled Equations of Swaying, Yawing, and Rolling Motion

Rolling moment and swaying forces are generated when the ship moves in sway’s 

direction. In Figure 2.3, the explanation o f the generated force and moment has been 

illustrated.

Wave

Figure 2.3 Free body of sway and roll motion

Hydrodynamic force and moment generate the swaying displacement (y) and the 

rolling moment ((j)) about G0. Letting F'y and FJ be forces due to swaying motion (yi)

and rolling motion (§) about O, respectively, 

we obtain

F ^ - m ' y - N / y ,  (2.4)
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where m" -  added mass o f swaying motion for the two-dimensional body 

/ '  = added mass moment o f inertia of rolling about O

N  -  coefficient o f damping force o f swaying motion

N  ̂ -  coefficient o f damping force o f rolling motion

Letting m , and F'v be the mass and the external force for the two-dimensional

body, the equation of sway motion, according to Equation (2.4), can be represented as the

following equation:

•

•® ® j f fh /V (h
my+ m " y {+ N  — f-------f — ^ K

¥  K

The following steps can determine the equation o f roll motion. Let the Myi, and 

M<j, is the rolling moment about G0, due to the swaying displacement (yi) and the rolling 

motion (<)») about O, respectively. Mk is the linear restoring moment and M'^is  the

exciting moment. All moments (Myi; Mr, and M'^)  are shown as the following 

equations.

M yt = - m '  y,  \pG0 -  ly ) -  N y y $ G a -  K ) (2-7)

Z l
</>+ <t> (2.8)
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(2.9)

(2 .10)

Finally, the equation o f roll motion can be written by substituting the mass 

moment of inertia o f rolling motion about G0. We obtain

I x (j>+ W G aM(j) +
/ '

/ '  — -O G Hi.
K

■OG„ <t>yx

+ m"(0G0 - ly)+ ^ ( g G „  - / J j ,  = (0G„ - / , )  (2.11)

According to a two-dimensional body, the relationship between the hydrodynamic 

moments generated by swaying motion and the forces generated by rolling motion are

n s n v r
—-  = —- ,  and —  = m"lv . 
I l ll w l w l <f>

(2 .12)

Using the relation of Equation (2.12), Equations (2.6) and (2.11) becomes

9 9  ®e ® ®® ®

m y + m ”y y + N v y t- m ”ly (f>~ N ylw $ ~ (2.13 a)

(/, + / ;  -  m T I , O G $ +  N J .  ( / , - O G $ +  W G M *

+ m

Simply, eliminate y , in Equations (2.13 a) and (2.13 b) using y } = y  + OGn , 

then Equations (2.13 a) and (2.13 b) become
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(m + m")y+ N y y+ m'(pcT0 - / , , ) }+ N y$ G 0 - l w)i> = K  (2.14)

®» /  Xt ®   /- \®®
{l,  + I M  )*+ ( ,  -  OG.,) *>+ + m'(0G„ -  / .  )y

+ N r $ G . - I , ) ' y  - K & G . - 1 . )  (2.15)

where I iM = / '  - 2 m " lyOG0 +m"OG0

The Equations (2.14) and (2.15) are only the coupled equations o f sway and roll 

motion, respectively. Finally, the derivation of coupled swaying, rolling and yawing 

motion can be determined. The swaying oscillation (y), yawing (\\/), and rolling (<f>) are 

about G (, - X |  axis.

y, = y  + O G J  + x i / / . (2.16)

Similarly, substituting Equation (2.16) into Equations (2.13 a) and (2.13 b) in 

order to eliminate y {, the hydrodynamic swaying force acting on a section distance x 

from G0 becomes

^  - l , ) h  N ,  ( p O . - ! . ) * +  K  • (2.17)

The hydrodynamic force due to the generated force as Equation (2.17) will lead to is

d M ,
dx

d fv 
dx

(2.18)

According to Equations (2.13 b) and equation (2.16), the hydrodynamic rolling 

moment about G0-X| axis will become
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d M 4

dx

¥

(2.19)

Using the Strip Theory method, we obtain the following equation of motions

-- V  dF„ '
m„y = 1

/, V &
dx

h ¥
h{ d F \ ( .

= I ~ i r  W * (2.20)

I x ' i+WG0M</>= |
d M A

v dx ,
,£& .

After Equation (2.20) is integrated along the ship’s length, the coupled equations 

o f swaying, rolling, and yawing motion become

\®«_______ ___ __ »®_______ ___ __ a® ___ «___ ___ __ ®     »

1 + K y )^+ m0 K  yx 4 <p+ m()K yx i y/+ N y y +  N yxs (f>+ N y xi  y/ = F  , (2.21)

    ____  ___^           2  9

m0K yX4 y+ ( lx + / '  )</>+ m0KyXh y /+ N yxs y+ N $ <f>+ N  yxi  y/+WGflM.0 = M ,  (2.22)

    »®    2 ®® ••     9    2 •   ®
m0K y X i y +  m()K y Xb (j>+ (F + / ' )y/+ N  y x i  y +  N y x 7 </>+ N v y/ = M  . (2.23)

For more details o f the derivation, see Reference 14.
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2.4 State-Space Models

Equations (2.21), (2.22), and (2.23) are second-order differential equations; thus, 

those equations can be expressed in the following matrix form:

[M j jw j  + j | w| + M M  = [ /M O ] (2.24)

90 0

where w, w,  and w are vectors o f generalized acceleration, velocity, and displacement, 

respectively. is the force or input function over the period at the specific location.

Generally, the first-order matrix differential equation, which is known as the 

state-space model, has been applied in the modem control theory. In this dissertation, the 

discrete-time state-space model is represented. Recently, digital computer technology 

has had a profound effect; therefore, with digital control, an engineer is able to change a 

control strategy by writing a different program rather than constructing the analog control 

system. In this section, the continuous-time state-space model and discrete-time state- 

space model are briefly presented.

2.4.1 Continuous-Time State-Space Model

According to the second-order equation o f motion in the matrix form [Equation

(2.24)], we assume that the matrix M is invertible. Then, we can solve for w as follows: 

w  = -[M  ]"' [£ ]jw j -  [M  ]"' [/f ]{w} + [ M Y  f ( w ,  t ). (2.25)

Hence, we can express the original second-order equations into the first-order form as

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



19

d 0 I

dt w(t\ - M ~ ' K

[1 +
0

m a b
u (>)

where f ( w , t

Rewriting Equation (2.26), we can obtain the compact form as

x  = Acx + Bcu

where

A,. =
0 1

M~lK  - M ~ ]C
x =

w(l)
B, =

0

M ' B

(2 .26)

(2.27)

where x is represents the state variables. Additionally, The vector denotes another 

equation describing the output or measured quantities in a function of state variables

as y .

y  = C.x (2.28)

Generally, matrix C  is called the output influence matrix. Therefore, Equations (2.27) 

and (2.28) are called the continuous-time state-space model o f the system.

2.4.2 Discrete-Time State-Space Model

In structural testing, the analog and digital signals are related via digital to analog 

(D/A) or analog to digital (A/D) converters. Most o f the sensors continuously generate 

an analog signal within a period o f time. Thus, the analog signal must be sampled for a 

digital computer to interpret it. This section will explain how a continuous-time state- 

space model can be converted into a discrete-time state-space model for digital control. 

In order to convert from continuous-time to discrete-time, a zero-order hold (or sample
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and hold) is required. A zero-order hold takes a continuous signal and turns it into a 

stepwise signal in which the signal is sampled and held for a certain interval o f time (a /). 

Given the initial condition x(/fl)at some t = t0, Equation (2.27) can be solved for

x(t).

,v(/) = e4('~'o)x(/0)+  $eAA‘~T]Bcu(x)dx . (2.29)

Then, consider the discrete sampling interval 0, A /, 2 A/ ,...,(&  + \ )A t . The x(t) 

is changed from one time step to the next step. Substitution o f t = (k + l)A/ and tQ -  kAt

into Equation 2.29, as well as, the input u(kAt) is held constant over the period o f time 

with a zero-order hold yield

x[(k + l)Af] = e 4lV x{kAt)+

where x'= (k + l)A/ -  x .

Using a simplified notification A: for the time argument (kAt), a discrete-time 

state-space model can be represented in following compact form.

x(k + 1) = Ax(k)+ Bu(k),  

y(k) = Cx(k)+Du(k),  (2.31)

M
where A = e A‘M , B -  Je4r dx'Bc.

o

For more details o f state-space model, see reference 26-27.

A/
Ar  r*dx'B,, u(kAt) , (2.30)
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CHAPTER III 

WAVE DISTURBANCE

Waves can be defined on transition with their energy being carried away from its 

origin22. Wind is the most common wave system energy source. Moreover, geological 

events cause the tidal waves due to seismic action. Current is one example o f a wave 

energy source. The interaction o f ocean currents can create a very large wave system as 

well.

Marine vehicles usually encounter waves in the sea. Therefore, the motion of a 

marine vehicle can be investigated due to wave action. However, the sea wave excites 

the ship, and thus, the ship’s response can be measured with the surging, swaying, 

heaving, rolling, pitching, and yawing amplitudes.

3.1 Regular Wave Motion

The regular wave motion must be introduced in this section. Generally, the water 

wave is the phenomenon o f a moving shape distortion of the water surface22. The reader 

may find more details for characteristics o f waves in the reference sections. Usually, the 

sinusoidal wave is a wave that has been used to investigate a ship’s behaviors under way. 

The shape of the sinusoidal wave is symmetric to both the crest and trough. The 

definitions o f crest and trough are illustrated in Figure 3.1.
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Direction of wave propagationCrest

T roug

Figure 3.1 A regular wave diagram
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• Similarly, a sine function o f (/) can be represented by a fixed

displacement.

• The function can repeat itself each time but the x is increased with the

wavelength (A,). It can be represented by the equality equations as 

rj(xj)  = r]{x + J L j ) -  rj(x + nA,t), where n = ...-1 ,0 ,1 ,....

• Similarly, the wave function can repeat itself each x but the time (t) is

increased with the time period (T). rj(x,t) -  rj(x, t + T) = rj{x, t + nT),

where n = ...-1 ,0 ,1 ,__

3.2 Irregular Wave Motion

A ship motion can be disturbed by the wave under various Sea States. The sea 

state is the condition o f the surface o f the seas generated by prevailing wind. The simple 

pattern of the wave acting on the ship can be considered as the simple harmonic motion 

such as sinusoidal wave. Usually, it is called a regular wave. It does mean that the 

properties o f wave, such as amplitude and period, remain the same. However, in the 

realistic sea, the properties o f wave constantly change from time to time and place to 

place. This pattern is called the irregu lar wave.

Recently, researchers have paid attention to the realistic sea or irregular wave. 

The wave, which acts to the ship, in fact generates the forces and moments in the realistic 

sea. The ship’s behaviors such as rolling, swaying, and yawing motions are more 

accurate if  the irregular wave can be determined. Jianbo Hua and Wei-Hui Wang23 

studied roll motion under the irregular sea wave using a RoRo-ship for model testing. 

The JONSWAP spectrum was used as the irregular wave in their cases in order to
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investigate the roll behavior with various meta-centric height (GM). For this dissertation, 

the Pierson-Moskowitz spectrum has been proposed. The following section explains the 

determination o f the wave function for irregular waves.

3.3 Wave Spectrum

As mentioned previously, wind is one source to generate waves. Generally, the 

process o f wave generation is due to wind starts with small wavelets appearing over the 

water surface. The best representation o f the wave’s behavior under the irregular wave is 

the wave spectrum. Different sea states have different spectrums as shown in Figure 3.3.

—  Sea State 5
 Sea State 6

- Sea State 7

0.70.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
Frequency (rad/sec)

Figure 3.3 Wave spectrum under various sea states

The determination of wave spectrum amplitude is based on the standard wave 

spectra. The following section shows the current standard wave spectra.
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3.4 Standard Wave Spectra

The primary wave spectrum used in this dissertation is based on the Pierson- 

Moskowitz spectrum. Other mathematical models briefly explain the wave spectrum, 

and are listed as follows.

3.4.1 Neumann Spectrum

This wave spectrum is the earliest formulation. Neumann had created in 1950. 

Neumann proposed the spectrum as follows:

where C is an empirical constant, U represents the wind speed, and g is the acceleration 

o f gravity.

3.4.2 Bretschneider Spectrum

Bretschneider proposed this spectrum in 1959. He expressed the wave spectrum 

in term of significant wave height. The spectrum is written as:

where co0 is the modal frequency and Hs is the significant wave height.

3.4.3 Pierson-Moskowitz Spectrum

We concentrate on this particular spectrum in dissertation. This spectrum 

represents the Sea State conditions so called the Pierson and Moskowitz (PM -  

spectrum). The spectrum was proposed in 1963. The Pierson-Moskowitz Spectrum is 

written as:

(3.2)
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S(a>) -  A c o 5 exp(- Bco 4) (m2 - s ) . (3.4)

where

A = 8.3x10"-'. g 2,

B = 0.74
f  \ 4 ! 8  '
\ V ;

Also, the Pierson-Moskowitz spectrum can be written as the significant wave 

height. Hence, only the parameter B has been changed, and the equation thus becomes:

r  \ 1

B = 0.0323
3.11
h :

3.4.4 JONSWAP Spectrum

The Joint North Sea Wave Project (JONSWAP), known as the measurement 

program, was created in 1968-1969. The wave spectrum function is written:

12 (
S(o)) = 1 5 5 - ^ - exp

i ,  CO

944 
VJ > 4, (r)r - (3-5)

Note that all standard wave spectra are obtained from different experiments as 

well as different locations in the sea.
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3.5 Determination of Wave Function and Wave Slope

An irregular wave is assumed to be a combination of regular wave components. 

All components of regular waves can be identified by the wave spectrum shown in Figure 

3.4. The determination of wave function and wave slope can be explained in the 

following steps.

• Divide the wave spectrum in Figure 3.4 into N intervals with equal lengths 

do).

• Select a random frequency Wj. in each of the frequency intervals and 

determine S(o>0.

• Determine the wave amplitude ( At ) and the wave number (&,) as the 

following equation (i -  1 ...N).

• Calculate the wave elevation ( gt) and the wave slope ( )  by the 

following equations.

g,(0,t) = 4  cos(®,/ + ^ .)

A',(0,r) = 4 4  sin(&>,/ + ^ )

4  = ■yj2S(eoi \da> ,
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£0 .

Figure 3.4 A Spectral Density of Sea Wave.

3.6 Connection between the Frequency Domain and Time Domain

In irregular waves, the configuration o f the sea states is quite complicated due to 

the interaction o f different wave systems. Therefore, a realistic sea cannot be represented 

by one wave pattern. The overall complicated wave system can be determined by 

considering many sinusoidal wave components as shown in Figure 3.5. Each wave 

component has its own spectral density, S  (co j). The relationship between the time and 

frequency domain can also be illustrated in Figure 3.6.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3 0

0.05 j----------------- 1--------- 1----------------1----------------1------------ 1------------ 1----------------I------------ !-------------1------------»M/WWWWWW^
n  n s l _______ _____ I_ L-_________I---------------------1---------------1---------------1-------------------1---------------1---------------1__ — ___-0.05I
0.05

10 20 30 40 50 60 70 80 90  100

• W V W W W W W W W V
'o  10 20 30 40 50 60 70 80 90 1( 

0 .0 5 1 1 —|— 1 1 1 1 1 1 1  1
10 20 30 40 50 60 70 80 90 100

0 .0 5 1------------- 1-------------—I—--------------1--------------1-------------- 1-------------- 1---------- 1-------------- 1-------------- 1---- -----1-K/vwwwvvvwwwvwww^
o 051___ ______ I__ I______I---------1---------1______I____ I---------1---------1___I

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100
0 . 2 1------------------ 1---------------- 1------------------- 1----------------- 1------------------1----------------- 1----------------- 1------------- — I----------------- 1--------- ------

.0,2 L-  I ___L.  I  I______I_____ I_____ I______I_____ i
0 10 20 30 40 50 60 70 80 90 100

TIME

Figure 3.5 A time domain with various frequencies (a)-(d) and combination of all 
frequencies (e).

,S(w)

Time

Figure 3.6 Relationship between time domain and frequency domain

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



31

3.7 Wave Induced Force and Moments

The 1st order wave disturbances generate the swaying force (Ymnv), rolling 

moment {Kwuw ) , and yawing moment (Nware) as the following formulas24:

F vvra, ^ ( 0  = Z _ P S B L T -sin(p]s,(t) (3.6)

M roii_,a,cW = £ : p r PSB3 s in (^ > ,(/)
m '12

M y~ - 5 2)s in (2 ^ K (0

(3.7)

(3.8)

where B is the vessel’s breadth, L is the length of the ship, and T is the draft. The wave 

direction (P) can be described as following Figure 3.7.

p = 120

p = 150p = 30

p = 180

Figure 3.7 The W ave Direction Acting on the Ship

The wave direction between /? = 0° and f5 = 30° is called “the Following Sea”; 

between (5 = 30° and f t  = 60° “the Quartering Sea”; between p  = 60° and P  = 120° “the 

Beam Sea”; between P = 120° and f i  = 150° “the Bow Sea”; and between f i  =150° and 

P  = 180° “the Head Sea”.
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CHAPTER IV

THE FLUME TANK DESIGN

Canceling o f ship roll motion is done to comfort people onboard and prevent the 

ship from capsizing. Without a stabilizer device, the large roll amplitude may hamper the 

crew’s ability to do their jobs. Motion stabilization devices are required in this 

circumstance. Recently, there have been many ship roll cancellation technologies 

introduced; most have successfully increased the stability o f various marine vehicles. 

The following are some examples.

4.1 The Ship Roll Motion Stabilization’s Technology

4.1.1 Bilge keels

Bilge Keels are the fixed fins attached to the exterior of the ship’s hull almost 

perpendicular to the hull’s surface. See Figure 4.1.

Figure 4.1 Mid-ship section with the bilge keels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

I'he lengths of bilge keels are usually from 25 to 50% of the ship’s length. Also, the 

width o f the bilge keels varies from 1 to 3 feet. With the bilge keels, the damping 

moment is generated by a component supplied by the pressure resistance of the bilge keel 

itself due to the change in the pressure distribution on the hull.

4.1.2 Gyroscopic Stabilizer

The Gyroscopic stabilizer consists of a heavy wheel free to rotate about an axis, 

which itself is confined within a framework and free to rotate about a perpendicular axis 

(see Figure 4.2).

A gyroscopic stabilizer is very effective. It helps reduce roll from 60 to 80%. 

However, the gyroscopic device is very expensive, very heavy, and requires a large area 

to be properly installed.

Figure 4.2 A gyroscopic stabilizer system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 4

4.1.3 Movement of Weight

This concept involves moving a large weight transversely across a ship to help 

balance the ship during excessive roll moment. For effective roll damping, the 

movement o f the weight should be 90° behind the rolling motion of the ship in order to 

provide a moment to counteract the rolling moment. The more weights moving 

simultaneously in the proper direction there are, the greater the ship’s stability.

4.1.4 Jet Flaps

Another development o f stabilizer technology is jet flap (see Figure 4.3), which is 

similar to Bilge Keels. Jet flaps are suited for either low-speed or high-speed operation. 

In the jet flap system, a jet of fluid is ejected from or near the trailing edge o f an aerofoil 

at an angle to the mainstream. The presence o f the jet produces a much greater lift force 

than the vertical component of the resultant thrust.

Je t

Flush Intake

Water flow

Figure 4.3 A Jet Flap Steam System
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4.1.5 Rudder Stabilization

The roll moment usually generated by a rudder is small in magnitude unless its 

frequency is near the natural roll frequency o f the ship. The rolling motion stabilized by 

rudder and a passive tank is more effective than by rudder alone.

4.1.6 Tank stabilizers

A tank stabilizer system consists o f two tanks filled with water, which flows from 

one tank to another tank. The water’s motion from one side to the other side is able to 

generate the required momentum to counteract the ship’s roll motion. Hence, motion 

damping due to the U-tube tank is possible because there is a phase difference between 

the motion of the ship and the water in the tank. There are passive tank and active tank 

systems. The passive tank has the disadvantage of having a slower response than the 

active tank.

The active flume tank is the mitigation device represented in this dissertation. 

The dynamics mathematical model o f the flume tank has been introduced prior to the 

control algorithm.

4.2 Dynamics Model of Flume Tank

The water’s motion in the flume tank is the most influential component in the 

dynamic model of the flume tank. First, the water motion in the flume tank is analyzed. 

Either the ship’s motion or the water pump usually forces the water motion in the flume 

tank. The forces and moments generated by the water motion in the tank certainly act
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Figure 4.4 Diagram of Flume Tank
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on the ship as well. The fluid motion can be determined by the Navier-Stokes equation 

and continuity equation.

+ (w.v).w = ——Vp + + f ,  (4 ,1 )

and V/w = 0 . (4.2)

Equation (4.1) and (4.2) are considered to represent three-dimensional motion. 

After these equations have been simplified to represent one-dimensional motion, the 

Navier-Stokes equation can be rewritten as the following equation:

du du 1 „  „
~ -  + u — — =  Vp + f .  (4.3)

dxm p

Equation (4.3) can be simplified by using two assumptions. The velocity either in 

the tank or in the pipe is equal, and the effect o f fluid flow between the tank and the pipe 

can be ignored. Then, the simplified equation can be

du 1 dp
~~77 ~  -T— + / •  (4.4)dt p  d x ^

The force ( / )  acting on the fluid element consists of the gravitation force, the 

acceleration force, and the frictional force.

f  =  fg r a v  +  fa c e  +  f  Jric ’

Each force can be expressed by the following equations.

(4.5)
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f  =J  acc

a® ® «

R+ 2co x r + 0) x (co x r ) + cox r

f i n e  =  ~ V  ’

where Vs is the unit vector in the fixed ship axis,

a®

R is the linear acceleration,

2co x r  is the colioris acceleration, 

co x (<y x r )  is the centrifugal force,

0

coy. r  is the tangential force, 

and bf is the linear damping coefficient. 

Substituting all forces into Equation (4.4), results in

du _ 1 dp

dt p  dx

—>  ® e

+ g.Vs- R+ 2cox r+  cox (coxr)+a>xr  - b f u (4.6)

The details o f derivation o f Equation (4-6) are in Reference 25. Finally, the general 

dynamic o f the flume tank can be written as follows:

f  A A
2 H  + ^ f L L sllmu

Pipe J

• •  1 /  ,
h = ----- (f>, - P J -  Lstmugsm c j) -2ghcoscj>

P

+  L s , im u  y+ 2 h z - 2
( .2 . 2

0 - e Hh
v /

+ 2 </>y/Lx CM twkH  + 9y /L s t im u  ^

+  L ^ r  ( t a n  k  ^  s t im u + 9 y / L z CM (ankLst

$  ^ s t im u  H  2 9  Lx CM (an kH  <f> Lz CM t a n  k As/
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After linearization, Equation (4.7) becomes

2 H  + t a n  k

Apipe

2 H  + ^ t a n  k

p i p e  J

os J ®*
h = —A P - Lslimug(/>- 2 gh + Lslimu y

P

(4.7)

' 0  cm ,ankLS:

+  I f /  L x  c m  t a n  k  ^ s t i m u  ^

A
9  f f  4 -  J

^  s t im u

A pipe

h. (4.8)

For further simplification, multiply Equation (4.8) by p on both sides and define some 

terms using the following variables.

m.. =
'  A '  

2H  + - ~ - L stimu
p i p e  J

™ s H  C M  t a n  4  ^ . s / i m u

AP = P4 ~ P3 •

The equation of motion o f fluid in the flume tank becomes

»®  s e  ®® ®@ ®

pmx h -  pLsllmu y+ p m sH <j>- pLx CM ^ kLstmm y/+ pbms h+ 2pgh + pgLstmJ  = AP . (4.9)

The combination of ship motion and fluid motion in the flume tank can be expressed in 

the following matrix form:
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r / — \ — _ ____  _ 9S
m a \ l  + K y j  m 0 K y X 4 maKyX  i 0 y
[ m ^ K v X i )  ( j x  -+ h )

—  — 2 
m n K y X 6 0

99 
,  (/>

m 0 K y x \  m Q K

— 2
yX6 ( w . )

0
99
¥

~ P^ stimu P ^ i H  “ P^X _('M tan k ^ stimu pm„_ 99
h

'  Ny NyXi NyX  4 0

9
y

N  yX5 Nfr N yX 7 0
1 >

N  y X 2 N  y X 7  N  y/ 0
9
¥

0 0  0 p b m s _ *

+

> +

" 0 0 0 0  " y r f  isway wave
0 W.GM 0 0 $ M

r o l l  wave
0 0 0 0 ¥ ^ytrw wave

_ 0 P Q ^ *  s t im u 0 2  pg_ h AP

(4.10)

where F  , M  „ , and M  are the sea wave disturbances.r i l V i V  * s w a y  _  w a v e *  r o l l  _ w a v e  9  ^  y a w  _  w a v e  u w ^ x i / w u v v ^ .

The roll moment, generated by the fluid motion in the flume tank, acts on the 

ship. Therefore, the excitation of ship roll motion in Equation (4.10) is generated not 

only from the sea ( M mjl wave) but also the flume tank ( M slimu). The general moments,

which are generated by the fluid motion in the flume tank, consist o f moments due to 

acceleration, gravitation, and the water pump.

(4.11)M —M  + M  + Ms l tm u  a c c  g r a v  * *  p u m p

where

“€C P^J^ îsn k L s t im u  ^ s t i m u  ^ t a n  k ̂ Z  _  ('M  _  t a n  k  )  ^

2 P ^ s t i m u ^ i m k

/ f .2 ,2> \9 9 ® ®
2 <j> - 0 Hh - 2 (/>¥LX CM tmkH - 0 y / L sHmuh

V I ) )
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f  (S « ® «
+ pLz (_%j t a n k - A  p i p e  ^ “X  ( M  t a n  k  ^  s t im u  C M  _  t a n  k  ^  s t im u

\

/«» ®a

2

1

'  P A  t a n  k  L  s t im u  $  ^ s l i m u  ^  2 . 0  L x - j ' M  _  t a n  k  ^

\  /

P A  p i p e  C M  t a n / t  $  C M  t a n  k  ^  s t im u  V  ^  X  __C M  _  I a n  k  A ts t im u
J

P ^ s t i m u  ^ p i p e ^ Z  C M  t a n k  T ^ ~  P ^ ^  p i p e  ^  s t im u  ^

^ p r u v  ~  ~  P ^ s t i m u  C M  t a n k  ^ p i p e  ~~ P ? f a  C O s ( ^ ) ■ £  v / / m H  ^ t a n k P

^ p u m p  ~~ ^ p i p c ^ - ' X .  C M  t a n / f ^ ^

Then, linearize them. First, each term o f M slimu becomes

^  t tc c  —  p{HAiw J Lsnmu + L s t im u  -̂ tan & ^ Z  C X I  _  tan <r

_  P ^ t a n  k  L s t i m u  ^  $  P ^ p i p e  C 'M  t a n  k  ^ s t i m u  $

P ^ p i p e  ^ Z  _ C M  t a n k ^ X  C M  i a n k ^ s t i m u  W  

»&

+  p L y  (  X I  _  t a n  k  ^ s t i m u  ^ p i p e  T  

^ g r a v  —  ~ ~  P L  s t im u  8 ^  p ip e  ^ Z  C M  t a n  k  $  P S ^ ^ s l i m u  ^ t a n  k

^  p u m p  p ip e  L z  C M  t a n  h  ‘

Then, define some parameters for simplification,

S |  H A i?m /£ L s t i m u  L s t i m u  ^ t w k ^ Z  C m  t a n  k

^ 2  - ^ t a n  k  ^  s t im u  ^

C  —  J  I 2  J
3  p i p e  Z  C M  t a n  k  si
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^ p i p e ^ I  CM  t a n k ^ X  _ C M  ta n k ^  stimu

v  -  I  T A
5 Z i  'M  tan k  sit mu pipe  

^ 6  ~~ L s t im u  ^ p i p e  __ ( 'M  tan k

<% -  A T
7  ~  tm  k stimu 

S  g ^  pipe ^  Z  _ C M  tank

Then, substitute M occ, M grm, , and M pump into Equation (4.11). The Equation (4.11) 

becomes

«• 1 ®@ ®e «® a®

= -  A^i h~ 2 pSl  ^  pSi y ~ ~ pgS'lh ~ S&AP • 4̂ -12)

The equation of motion, which is combined between the ship motion and the fluid motion 

from Equation (4.10), can be rewritten in the following matrix form:

I^\+Ifi

m0K yx 4 m0K yXi 0 ’

s®

y
{m^KyXij-pS5 Mn m0KyX6 - f S A A

asM
m0K yX] m0K yx 6 (/, + x ) 0

©®

w
stimu pmsH P^X C 'M  tan it ̂ stimu pms a®

A
9

N  y N y X  5 N  y X t t 0 y

N y X S l t 2
N  y X l 0 i

N y X i N  y X l N v 0

9

¥
0 0 0 pbm s 9

h

+

' 0 0 0 0  ■ y
F 1s w a y  w a v e

0 W.GM +  pgS6 0 0 0 ^  r o l l  w a v e  A P

0 0 0 0 ¥ ^ y a w  w a v e

0 s t im u 0 2 pg_ h
v  ^

AP

(4.13)
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where M 22 is equal to l ( l x + J X)+ — p (S 2 + 2 (S,3)

4.3 Designing the Anti-Roll U-Tube Tank

Mass is still a vital factor in designing tank stabilizers. For more details, see

Reference 8 . If we choose a light tank, it may not affect the roll’s amplitude. However, 

the hull space may be restricted if  we select a very heavy tank. Likewise, a heavy tank 

reduces the ship’s stability. The recommended ratio o f tank mass to ship mass should 

range from 2.0 to 6.0 %. If hull space is provided, we should design a tank mass ratio of 

3.5 %. Another important consideration is the location o f the pipe, which is connected to 

both tanks, with respect to the ship’s center of gravity (C.G). In order to obtain an 

optimum roll response, the pipe should be placed below the center o f gravity.

The important feature o f flume tank design is the natural frequency o f the tank. 

The natural frequency o f the tank should be equal to the ship’s roll natural frequency. 

Thus, water height is important for the “tuning” o f the tank because the natural frequency 

is dependent on the water depth inside the tank.

Simply stated, the natural frequency of the flume tank is dependent on the natural 

frequency o f the ship. The relationship o f the natural frequency o f the ship and flume 

tank can be expressed in the following equation13.

(4.14)
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In conclusion, there are several factors that may affect roll’s amplitude using this 

mitigation device. Engineers should be aware of the following when they will design a 

flume tank.

•  Frequency o f encounter

• Amplitude of rolling motion

• Length o f tank

•  Breadth of tank

• Water height in the tank

• Vertical position of tank
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CHAPTER V 

OPTIMAL FEEDBACK CONTROL ALGORITHM

Optimal Control is a type o f Modem Control Theory having been developed over 

the last decade. The result o f optimal design is not only to stabilize the system but also to 

provide the best performance. Generally, the control problems involve a system, which 

can be categorized into the regulator problem and the tracking problem. The regulator 

problem is to apply a control to drive the system from a nonzero state to the zero state. 

This problem typically occurs when unwanted disturbances perturb the system. In 

addition, the tracking problem is how to provide a control in order to track the output of 

system. Only the regulator problem is discussed in this dissertation.

Linear optimal control is the special case of this dissertation. The concept of 

linear optimal control involves finding the constant gains subject to minimizing the 

performance index. This control methodology is also called Linear Quadratic28 (LQ). 

Generally, the characteristic o f an optimal control law based upon a quadratic 

performance index is a linear equation o f state variables. Therefore, all state variables are 

required in this circumstance.

5.1 The Linear Quadratic Regulator Problem

Consider the linear system and the quadratic objective function (cost function, or 

performance index) as follows. Plant, or system, is given as the state-space model
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x -  Ax + Bu ^  j ^
y  = Cx.

A quadratic objective function or the performance index is

1 7
J  -  — |( x ? Qx + u 1 Ru)dt. (5.2)

^ o

The problem is to minimize the performance index (J) with respect to the control

input u (t). A simple interpretation of the cost function can be written in the scalar

system as follows.

1 1
J  = - \ { q x 2 + r u 2)d t. (5.3)

2  o

The cost function (J) as Equation (5.3) represents the weighted sum of energy of 

the state and control. If r is very large relative to q, it means that the control energy is 

penalized very heavily. On the other hand, the state is penalized heavily if q is much 

larger than r. In the general case, Q and R represent respective weights on different states 

and control channels. The Q must be symmetric positive semi definite (Q > 0) and R is 

symmetric positive definite (R > 0 ) in order to optimize the problem.

5.2 LQR Solution Using the Minimum Principle

An optimal control problem can be solved using a variety o f techniques. There 

are Euler-Lagrange equations, Hamilton-Jacobi-Bellman theory, and Pontragin’s
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minimum principle. First of all, the form named as the Hamiltonian form is represented

as:

1 U .H(x,A,t )  = — (x7 Qx + u 1 Ru)+ X  (Ax  + Bn). (5.4)

The rules of the minimum principle must satisfy the following three equations.

• 8H / x
x = x(0 ) = x0 state equations

- A -  —  A(T )=  0 costate or adjoint equations
8x

dH
8u

=  0

(5.5)

(5.6)

(5.7)

Using the rules for differentiation o f matrices and vectors, the preceding equations 

for the LQR case become:

x  -  Ax + Bu,  x(o) = x0

- A  = Qx + A rA ,  a (t ) = 0

u = - R  'B 1 A, u is the optimal control

Note that R must be positive definite for its inverse to exist.

Substituting optimal control into the state equation, then, one obtains

A - B R lB r 

- Q  - A r

with H being the so-called Hamiltonian matrix.

e>

X

A

X X
= / /

lA A_
(5.8)
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Letting X = Sx and differentiating both sides with respect to the time, we then obtain

dX dS a dx—  = — x + S —
dt dt dt

j o

-  —  x  +  SAx - S B R T ' B tSx
dt

= - Q x - A rSx.  (5.9)

Equation (5.9) must hold for any x, therefore, a sufficient condition for optimal 

control is that S must be satisfied.

- ~  = A 1 S  + SA + Q -  SBR~lB rS , (5.10)

Note that

The Equation (5.10) is usually called the Riccati differential equation. It is a 

nonlinear first order differential equation that has to be solved backward in time. The 

optimal control problem usually is solved from the Riccati equation. According to the 

control law,

u*(t)=-K(t)x( t) ,

where K(t)= R~l B rS(t). It is found that the optimal control can be determined once 

S(t) has been solved.

Even if the optimal control exists , it does not necessarily result in a stable closed

c$S
loop system. S(t) approaches a constant matrix, S , o n c e  » 0 . Moreover, the

dt
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positive definite solution of the algebraic Riccati equation (ARE) turns the result in an 

asymptotically stable closed loop system. The algebraic Riccati equation (ARE) is 

written in the following form:

A rS  + SA + Q -  S B R ' B rS  = 0 , (5.11)

where the control law is

u = - K x ,

and

K  = RTxB t S

Equation (5.11) holds for the following conditions:

The pair (A, B) are stable,

The matrix R must be positive definite ( R > 0), and

The matrix Q can be factored as Q = C ! C , where C is any matrix such that 

(C, A) is detectable.

These conditions are necessary and sufficient for existence and uniqueness o f an optimal 

controller that will asymptotically stabilize the system.

5.3 Discrete-Time Linear Quadratic Regulator

Similarly, the solution of optimal control for discrete time domain follows the 

steps as same as we discussed as previous section. However, the optimal control will be 

solved as a sequence. The State and Costate equations are also derived30. Letting the 

linear plant can be described as follows:

* * +i = A * k + B kuk ( 5 . 1 2 )
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The performance index is the following quadratic function

AM

j ,  = - x 'nS nx n + - ' £ ( x [ g i x i + u [ R kuk) (5.13)
l  I  k=j

The time interval is [i, N]. Letting matrix Qk, Rk and Sn are then symmetric 

positives as well as the absolute Rk must be not equal to zeros for all k. Equation (5.13) 

intends to determine the control input Uk in order to minimize the performance index J,. 

Solving the linear quadratic regulator problem can be described as following steps.

The Hamiltonian function is given by

H k = ̂ { X k Q k X k + R k U k )+ ̂ k + \  ( ^ k X k U k )■ (5.14)

Letting the state and costate equation are expressed as follows:

_ m k A
Xk+ 1 ~  ~ ^kXk +  BkUk ’

dH .. {5A5)
^ k  ~  ~  ~  Q k X k + A A i+1dxk

Set the stationary condition to be

dH,
Q =  - ~ L =  Rkuk + B k Zk+v ( 5 . 1 6 )

Finally, the control sequence can be determined as:

uk = - R k lB'[Ak+]. ( 5 . 1 7 )
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5.4 Determination of CIosed-Loop Control

The restriction on the final state value (xN) has not been given in the time. To 

derive the optimal control (w*), the state and costate equations with the input Uk has been 

applied at the first time.

X k+1 =  ^ k X k ~  B k  ^ k + \ ,

(5.18)
k =  Q k X k + A k h k+x.

Given the initial state value is x t and the final state value x n  is free., the x,v can be varied 

upon the constrained minimum even though it is given as free value. The linear relation 

o f the Costate can be holds for all time k < N  as shown as

*k = S kx k. (5.19)

Thus, if  Sk can be determined, the proof o f linear relation can be existed. Finally, 

the determination o f Sk can be determined by Equation (5.20). The equation is called the 

Riccati equation.

S. = Ar|s,„ +*,)' s ,X ,k  +a -  (5-20)

This Riccati equation can be determined as off-line. Note that if  |Sk| is not equal 

to zeros for all time k, the Sk in Equation (5.20) can be rewritten as shown below:

s . = 4 ( s ; : l + » , « ; , 8 f l A  + & •  <5 .2 i )
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The optimal control (wj) is

uk = —K kxk. (5.22)

Note that K/, is called the Kalman gain sequence. It is given as

0 . 2 3 )

In the free-final state linear quadratic regulator called LQR, it obviously shows 

that the closed-loop control law gives the optimal control. The conclusion of 

computational feedback gain can be shown in Table 5.1 and Figure 5.1.

Table 5.1 Discrete Linear Quadratic Regulator

Plant:  ̂  ̂ ' “  “

x k +i =  A x k + B k u k , k  >  i

Performance index (PI):

J i  — N X M +  ~ ^ ^ L j { X k Q k X k + U k ^ k U k )

Assumptions:

S N > 0, Qk > 0 , Rk > 0, and all three are symmetric 

Optimal feedback control:

s .  = 4 ( 4 + 4 Y |4 , + a ■ k < N ,  S„ given

je4 = f o X , * l + * T ' * , X , 4 .  k < N

uk = - K kxk, k < N

j "  = \ x [ S , x ,
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•S *  =  ' Q ' l  Sk^ , W ^ lBk+Rkr B krSM \Ak+Ql
** = <«/S*+,«A*A'VS*+A

- line

O n - line

Figure 5.1 Diagram of LQR optimal control algorithm.

In order to determine the control action using LQR, many component devices are 

required to meet the performance index. Unfortunately, the availability o f all state 

vectors is sometimes not possible. In this circumstance, the suboptimal feedback control 

can be selected rather than using the full state feedback control. We will discuss the LQ 

algorithm using suboptimal feedback in the following section.

5.5 Suboptimal Feedback Control

A suboptimal feedback controller is easily implemented. The configuration and 

parameters have been pre-calculated with an off-line computation. The optimal feedback 

gains K k are time varying from the previous algorithm. However, suboptimal feedback 

gains can be treated as a constant ( K) .
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According to the LQ optimal control problem, the feedback control is given as

form:

uk = - K k.xk , (5.24)

with gain K k given in the solution o f S k to the Riccati equation as Equation (5.20). In the

case o f fixed-gain suboptimal feedback control, the Riccati equation reduces to the well- 

known form, called the algebraic Riccati equation (ARE):

S = /I 7 [ s - Sb (b 1 SB + r ) '  B rS  14 + Q.  (5.25)

Thus, all solutions to this algebraic Riccati equation (ARE) are not time-varying. 

If the solution to ARE exits, then the corresponding steady-state Kalman gain is

K  = (BrSB + R)A B 'S A .  (5.26)

For the feedback control law, the time-invariant is used in this circumstance 

instead of Equation (5.24). The feedback control law in the case o f suboptimal control is

uk = - K . x k. (5.27)
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CHAPTER VI 

NUMERICAL SIMULATIONS

This chapter will present numerical results that show the performance o f the 

flume tank, particularly the output response, roll angle. The assumed model, which is a 

submarine chaser, is based on the Fukuzo Tasai model. The specification of this vessel is 

shown in Table 6.1.

Table 6.1: Specification o f submarine chaser

Length of submarine chaser 59.0 m.

Beam 7.1 m.

Draft 2.33 m.

Volume 480,000 m

KGn 2.707 m.

OG„ -0.377 m.

G .M 0.736 m.

According to the equation o f motion [Equation (4.10)], the coefficients mass, 

mass o f inertia, and damping, are investigated from the experimental data. These 

coefficients are also based on the Fukuzo Tasai model and they are shown in the 

following Table 6.2.
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Table 6.2: Coefficients on the left side o f the equation o f motion
...

...
. 

j
_3 *j

|

= 9 9  ton - s e c 2/  
/  m N y

-  c ton -  s e c /  
/  m

m0K yx  i = 254 ton - s e c 2
N y X  2 = 19 ton -  sec

_ „
m„K y X 4 = 2 1  t o n - s e c 2

N  y  X  5 = 4.7 ton -  sec

C + - 0 = 21,593 t o n - m - s e c 1
N v =  1209 t o n - m - sec

mnK  y X b
=  -433 t o n - m - s e c 2 —  — 2 

Ny Xl =  -43 ton — m — sec

( • ' , + ' , ) -  437 t o n - m - s e c 2
N * =  80 t o n - m - sec

For the specifications o f the flume tank, with general assumptions, the motion of 

fluid from one tank to another tank will generate the moment in order to counteract the 

ship roll motion. Therefore, these two tanks should be located as far out on the beam of 

the vessel as possible to give the most effective control. For a submarine chaser, the 

specification of flume tank, which is given as following Table 6.3, is designed to be the 

best counteraction when the passive tank is trial simulation

Table 6.3: Specification o f Flume-Tank

H ,an k  ( » l ) A pipe ( m 2) tfjpipe (™ ) A tank  ( m 2) L tank  ( m ) L z c m t a n k  (l® )

2.3070 1.2272 1.2500 0.6173 6.0350 2.2070

The discrete-time state-space model for dynamic of flume tank with coupled 

swaying, rolling, and yawing motion o f sub-marine chaser is derived in following form:

x ( t  +  l )  =  [ ^ } x ( t ) +  [2? j.w (f)

j ( / )= [c } x ( /)+ [D W )
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where

A=

B=

C=

D=

0 0 0 0 0.0045 0 0.0004 0.1984 0 . 0 0 0 2 - 0 . 0 0 1 2 -0.0014

0 0.9837 0 -0.0015 - 0 . 0 0 0 1 0.1954 0.0009 0.0050

0 -  0.0004 1 . 0 0 0 0 - 0 . 0 0 0 0 -  0 . 0 0 0 0 - 0 . 0 0 0 1 0.1989 0 . 0 0 0 1

0 - 0 . 0 1 1 0 0 0.9938 - 0 . 0 0 0 1 0.0003 -  0.0004 0.523

0 0.0448 0 0.0043 0.9843 0.0032 -0.00123 -0.0088

0 -0.01627 0 -0.0156 -0.0014 0.9491 0.0088 0.0391

0 -0.0038 0 -0 .0004 - 0 . 0 0 0 0 -0.0007 0.9892 0.0007

0 -  0.0728 0 -0.0411 -0.0006 -0.0032 -  0.0027 0.0223

" 0 . 0 2 1 0 - 0 . 0 0 1 2 -0 .0003 0.0009 '
- 0 . 0 0 1 2 0.0045 0 . 0 0 0 1 -  0.0032

-  0.0003 0 . 0 0 0 1 0 . 0 0 0 1 - 0 . 0 0 0 1

0 . 0 0 2 2 -0.0016 - 0 . 0 0 0 1 0.0357
1 0  5

0.2098 - 0 . 0 1 2 2 -0 .0027 0.0075

-0 .0116 0.0445 0 . 0 0 1 0 -0 .0272

-0 .0027 0 . 0 0 1 0 0 . 0 0 1 0 -  0.0006

0.0146 -0.0108 -0 .0004 0.2355

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 o'
0 0 0 0
0 0 0 0
0 0 0 0

From Figure 6.1 to Figure 6.3, they show the ship roll response with single input, 

swaying force generated by random wave. Various encounter angles o f wave: 45° 

(Quartering Sea), 90° (Beam Sea), and 150° (Bow Sea), are illustrated.
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Figure 6.1 Roll amplitude (^°), swaying force generated by random wave 
at Quartering Sea [fi = 45°).
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Figure 6.2 Roll amplitude (^°), swaying force generated by random wave 
encounters at Beam Sea (/? = 90°).
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Figure 6.3 Roll amplitude (^°), swaying force generated by random wave 
encounters at Bow Sea {/3 = 150°).

Figures 6.4 through Figures 6 . 6  illustrate the ship roll response with two inputs, 

swaying force, and rolling moment generated by random wave. Various encounter angles 

o f wave: 45° (Quartering Sea), 90° (Beam Sea), and 150° (Bow Sea), are illustrated.
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Figure 6.4 Roll amplitude (^°), swaying force and rolling moment generated by 
random wave encounters at Quartering Sea = 45°).
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Figure 6.5 Roll amplitude (^°), swaying force and rolling moment generated by 
random wave encounters at Beam Sea (/? = 90°).
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Figure 6.6 Roll amplitude (^°), swaying force and rolling moment generated by 
random wave encounters at Bow Sea (/? = 150°).

Figures 6.7 through Figures 6.9 illustrate the ship roll response with three inputs, 

swaying force, rolling moment, and yawing moment generated by irregular wave under 

Sea State 3. Various encounter angles o f wave: 45° (Quartering Sea), 90° (Beam Sea), 

and 150° (Bow Sea), are illustrated.
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Figure 6.7 Roll amplitude (^°), swaying force, rolling moment, yawing moment
generated by irregular wave under Sea State 3 encounters at quartering
sea {p = 45°).
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Figure 6.8 Roll amplitude (^°), swaying force, rolling moment, yawing moment 
generated by irregular wave under Sea State 3 encounters at beam
sea {p  = 90°).
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Figure 6.9 Roll amplitude (^°), swaying force, rolling moment, yawing moment
generated by irregular wave under Sea State 3 encounters at bow 
sea {/3 - 150°).

6.1 Results for The Passive Controller

The water in the flume tank moves to generate the moment without pump, 

and it also creates a high damped system. The roll amplitude of the vessel should be 

reduced. Figures 6.10 through Figures 6.12 illustrate the output response, which is the 

ship’s roll angle. Passive controller is simulated when wave attacks to the ship hull at 

Beam Sea (/? = 90°).
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Figure 6.10 Swaying force generated by random wave encounters at Beam Sea
{/3 = 90°). Without control (dash line) and passive control (solid line)
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Figure 6.11 Swaying force, rolling moment generated by random wave at Beam Sea 
{j3 = 90°). Without control (dash line) and passive control (solid line).
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Figure 6.12 Swaying force, rolling moment, yawing moment generated by irregular 
wave encounters at Beam Sea (/? = 90°). Without control (dash line) 
and passive control (solid line).

6.2 Results for Linear Quadratic Regulator (LQR)

The linear quadratic regulator (LQR) is a kind o f full-state feedback controller 

that will minimize the cost function. The theory o f this linear quadratic control is 

described in Chapter V. If we consider the minimum energy control case, the varying 

weighing matrix [R] should be considered. Likewise, the least expensive control case is 

considered when we vary weighing matrix [Q]. In this dissertation, we want to drive the 

system state x(t) to zero in a short time. Therefore, a larger weighing matrix [Q] should 

be used.

Figures 6.13 through Figures 6.15 compare roll angle with passive controller to 

roll angle with active controller. Various encountering waves are shown. The weighing 

matrix [Q] is used as Q = diag ([1, 1E+10, 1, 1, 1, 1,1, 1]).
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Figure 6.13 Swaying force generated by random wave encounters at Beam Sea
[ p  = 90°). Without control (gray line), passive control (plus line), and 
control (solid line).
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Figure 6.14 Swaying force, rolling moment generated by random wave encounters 
at Beam Sea (/? = 90°). Without control (gray line), passive control 
(puls line), and active control (solid line).
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Figure 6.15 Swaying force, rolling moment, yawing moment generated by irregular 
wave under Sea State 3 encounters at Beam Sea [fi -  90°). Without 
control (gray line), passive control (plus line), and active control (solid- 
-line).

6.3 Results for Suboptimal Feedback Control

In practice, full state feedback control may not be implemented because of 

availability o f sensors. In this dissertation, the sub-optimal feedback control will be 

accomplished because a few sensors are required. The state variables, which are

significant variables, are roll angle (^), water head(/i), and roll rate $  . Figures 6.16
V
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through Figures 6.18 illustrate that the sub-optimal feedback control is also effective. 

Comparing full state feedback system to suboptimal feedback system is shown. By 

examining Figure 6.19, we see that the extra control energy is required for using 

suboptimal feedback control.
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Figure 6.16 Swaying force generated by random wave under encounters at 
Beam Sea (/? = 90°). Full state feedback control (dot line) and 
suboptimal feedback control (solid line).

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



70

s 10
5

-5
80 9040 50 60 70 10020 300 10

1 10

“ 1 

s
fij ft
s 0 
0

-  1
0

* - 2
9010 20 30 40 60 70 1000

Time (sec)

5
— - Full State
—  Suboptimal

&
0Sw

-5
8010 20 30 40 60 70 900 100

Figure 6.17 Swaying force, rolling moment generated by random wave encounters 
at Beam Sea (/? = 90°). Full state feedback control (dot line) and 
suboptimal feedback control (solid line).
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Figure 6.18 Swaying force, rolling moment, yawing moment generated by irregular 
wave under Sea State 3 encounters at Beam Sea (/? = 90°). Full state 
feedback control (dot line) and suboptimal feedback control (solid line).
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Figure 6.19: Comparing pressure input for full state feedback control (solid line) to 
pressure input for suboptimal feedback control (gray line).

6.4 Conclusion

This section illustrates the results o f ship motion with the various excitations: 

swaying force, rolling moment, and yawing moment, which are generated by the irregular 

wave under sea. The large roll amplitude obviously appears when the wave encounters 

the ship at Beam Sea (/? = 90°). The results imply that the swaying force has a great 

influence upon the roll amplitude. For the passive system, the results show that the flume 

tank is very effective. The roll amplitude can be reduced for over 50% with this 

mitigation device. A water pump is needed to move the fluid from one tank to another
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tank much faster. For the faster response, the activated-anti rolling tank has been used. 

According to the large weighing matrix [Q], the control input, in general, is larger; 

however, the active system results is more effective than the passive system.

The alternative active control, which represent in this dissertation, is suboptimal 

feedback control. It helps engineers to decide the economical controller because a few 

sensors are utilized. In practice, some sensor devices: the sway displacement, yaw angle, 

sway rate, and even the yaw rate, are not implemented. However, with suboptimal 

feedback control, the excessive control input is required.
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CHAPTER VII 

CONCLUSION AND FUTURE WORK

7.1 Conclusion

A ship in the sea will rotate and displace under the influence o f waves. In the sea, 

waves can be categorized by Sea State level. Each level has its own wave strength. In 

order to counteract roll motion, stabilization is important. There are several ways to 

reduce roll motion such as using fins, and moving weight. However, the fins will not be 

effective when the ship is at zero forward speed. Stabilization via moving weight also 

requires more space. Therefore, the flume tank is presented as stabilizer in this 

dissertation. The motion of fluid in the tank will generate the counteractive moment in 

order to reduce roll amplitude. In reality, ship motion can be considered as a rigid body 

with coupled sway, roll, and yaw motion. In this dissertation, the interaction o f ship 

motion due to the waves, and motion o f fluid in the flume tank has been demonstrated. 

In a passive system, the flume tank is very effective. In order to have a quick response, 

the optimal feedback control is proposed for active systems. According to the results, roll 

amplitude using an active system is decreased more than when using only a passive 

system. In practice, the full state feedback control algorithm may not be implemented. 

Some sensors may not be available. In this circumstance, the suboptimal feedback 

control algorithm is feasible.
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7.2 Further Extension of the Research

In this dissertation, the dynamics o f a flume tank with the coupled sway, roll, and 

yaw motion are studied. However, in a realistic sea, the ship can possibly encounter six 

degrees of freedom rather than three. This issue would be an interesting subject for 

future research. Furthermore, less is better: using as few as possible sensors is one goal 

for practical reasons so that the results o f using output feedback will be studied in order 

to increase controller performance. The experimental results should also be investigated 

to prove the simulations’ results for extension o f this work.
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Appendix A

The coefficients in equation of motion are divided into two modes, vertical mode 

and horizontal mode. The motions in the vertical mode are surging, heaving, and 

pitching motion. Likewise, the motions in the horizontal mode are swaying, rolling, and 

yawing motion.

Vertical Mode

An — J audx

A 13 = \a ndx

A31 - A 13

B,, = \b ndx

Bn = ^budx

B31 = B13

A 15 = -  [ x .a „ d x - ^ jB l 
3

B,5 = -  | xJbnd x - U 0Ay1

A51 = -  \x.and x -^ rB ^  
3 G>e

B51 = -  ^xbMd x ~ U QAn

A33
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B33 = \b ^ d x

A35 = -  \xM33d x - ~ B „
<oe

B35 = -  Jxi^cfo + U0A33

r U
A 53 = - J  xxi33dx + - ± B n

®e

B53 = -  jxJj33d x - U 0A33

f u 2A 55 = x M-i3dx + - ~ A 33
a>; ' 

r u 2B55 = x .a^dx-i— yB „
J ' me

C33 = Jc33<fc

-  pg jB (x)dx  

C3s -  ~ Jx.c33<A

= jCg- |x.B(x)c&

C53 — C35

C55 = pg. V. GM a + LCF2Cn

» Jx 2 .c33fi6c

= Jx 2 jB(x)£&
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Horizontal Mode

A22 = ja 22dx

A24 = ja 24dx

A42 = A24

A26 = fjc.a22<i)c' + ~ - - 8 21

A44 =  | « 44^

f ( /
A46 = fx a 24A  + - y 5 24

®c-

B22 = |^22^

B24 = \h 1Adx

B42 =  B24

B26 = |x .6 22£ fe -f /0 J 22

B44 =  J & 4 4  <& +  #,.

B46 = JxiJ24c f t-£ /0 J 24

f  u
A 62 = x.a22fi&c j-522

Bs2 = jxJ}22dx + U0A22
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A64 = Jx.a24d x ------\ B U
J a>e

B54 ^0^24

f/ 2
“  g-T .@22(&C H "r~ ̂ 2 2

ft»e

j j l
B66 “  f-*- -h22^x  ̂ y ^ 22

< ° e

C44 *  pgVG M r 

Note that all integrals as above are taken over the length of ship.
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