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ABSTRACT

FLIGHT DYNAMICS NONLINEARITY ASSESSMENT 
ACROSS A NEW AERODYNAMIC ATTITUDE FLIGHT ENVELOPE

Ayman Muhammad Abdallah 
Old Dominion University, 2015 

Director: Dr. Brett Newman

A new asymmetric level aerodynamic attitude flight envelope is introduced in this 

dissertation. The aerodynamic attitude envelope is an angle of attack vs. sideslip angle 

region which describes the extent of where an aircraft can sustain a steady slipping 

horizontal flight condition. The new envelope is thus an extension of the more common 

speed-altitude symmetric level flight envelope. This new envelope can be used for design 

requirements, dynamic analysis, control synthesis, or performance comparison. 

Moreover, this envelope provides enhanced insight into trimability-controllability 

limitations within the aircraft design model. The aerodynamic attitude flight envelope is 

constructed for a six degree of freedom nonlinear simulation model of a high- 

performance aircraft. The constructed envelope is found to be asymmetric with respect to 

positive vs. negative sideslip values, due to the inherent asymmetry in the aerodynamic 

model database. Asymmetry and offset in the force and moment coefficient data could 

originate from experimental error, from model fabrication imperfections, from vortex- 

dominated flow, from data reduction flaws, or from other sources. The literature shows 

that vortex-dominated flow can cause significant side force, rolling moment, and yawing 

moment coefficient asymmetries. Details concerning the removal of asymmetry and 

offset in the aerodynamic data are given. The purpose behind removing the asymmetry 

and offset is to facilitate analysis of the new aerodynamic attitude flight envelope with an



ideal aircraft model so that fundamental relationships can be more easily observed, and to 

provide a comparison with the non-ideal case previously computed. Based on the adapted 

and symmetrized aerodynamic data, a new aerodynamic attitude asymmetric level flight 

envelope is constructed and introduced.

Further, the six degree of freedom aircraft simulation model is analyzed with 

nonlinear index theory across this nontraditional flight envelope. Aircraft dynamic 

properties often change in a nonlinear way across operating conditions. Nonlinear index 

theory provides a new concept for measuring the strength of these changes for a given set 

of coordinates and is applied to the asymmetric aerodynamic attitude envelope with the 

original and the adapted and symmetrized aerodynamic data. This analysis provides new 

methodology and new insights into aircraft dynamics and control. The index analysis 

exposes certain flight condition regions in which nonlinearity strength is high. These 

regions are further investigated with both linear and nonlinear simulations. Because the 

nonlinearity index is based on the matrix two-norm, the index can sometimes 

overestimate the nonlinear strength. To circumvent this behavior, indices based on 

system matrix partitions and normalized state formulations are explored. Nonlinearity is a 

function of the coordinates used to express the dynamic system. Therefore, the 

nonlinearity index is also applied to the aircraft model, expressed with three different 

frame of reference sets for kinetics and kinematics, in order to determine the best, or most 

linear, coordinates among the three investigated sets.
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NOMENCLATURE

A, B, C, D State, input, output, and feedforward matrices

C„T Total aerodynamic force and moments coefficients, where " denotes j c * ,  y>b, 2b, I,

m, and n

Ca/b Transformation matrix (directional cosine) from frame of reference b to frame of

reference a

c, b Wing mean aerodynamic chord and wing span

eg Center of gravity

Da Center of gravity location cross-product matrix

f  Generic function vector

F„ Force component, including aerodynamic, propulsive, and gravitational, where "

denotes arbitrary, body-, stability-, or wind-frame of references 

F„ Total external force vector, including aerodynamic, propulsive, and gravitational,

where " denotes arbitrary, body-, stability-, or wind-frame of references 

g  Acceleration due to gravity

g Acceleration due to gravity vector, generic function vector

H Altitude

H, H Angular momentum and rate of change of angular momentum vectors

Ixx, Iyy, Izz Aircraft mass moments of inertia in x, y, and z axes

lxy, lyz, lxz Aircraft product of inertia about x, y, and z axes

i Aircraft mass moments of inertia matrix

L, M, N Total aerodynamic rolling, pitching and yawing moments

M Mach number
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S

t

T
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VT

V„

x0
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x,y,u

X . Y . Z

X . Y . Z
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X.Y'Z,

a,P

Total external moment vector, including aerodynamic, propulsive, and 

gravitational, where " denotes arbitrary, body-, stability-, or wind-frame of 

references 

Airplane mass

Airplane roll, pitch, and yaw rates 

Free-stream dynamic pressure 

Reference area 

Time

Total instantaneous engine thrust 

Velocity components in x, y, and z axes 

Aircraft velocity vector 

Aircraft total velocity

Translational velocity cross-product matrix 

Reference state vector

Bounded deviation vector about reference state

State, output, and input vectors

Inertial position components

Inertial velocity components

Arbitraiy-frame of reference

Body-frame of reference

Stability-frame of reference

Wind-frame of reference

Inertial-frame of reference

Attack and sideslip angles



X

x ,y ,o Heading, flight-path, and aerodynamic bank angles

8h>$a>8r Horizontal stabilizer, aileron, and rudder control surface deflections

filef' $sb Leading-edge-flap and speed-brake control surface deflections

$th Throttle deflection

V Nonlinearity index

X Varying parameter vector

p Center of gravity location vector in the body axis

<0 Angular velocity vector

a Angular velocity cross-product matrix

Roll, pitch, and yaw Euler angles

<D Transition matrix

Ax> &y> Center of gravity location vector in x, y , and z  body axes
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1

CHAPTER 1 

RESEARCH DESCRIPTION

1.1 Motivation

The operational range or “flight envelope” for an aircraft is a locus of speed- 

altitude pairs in which the aircraft is designed in order to sustain symmetric level steady 

flight. Figure 1.1 shows the typical flight envelope for a fighter aircraft in terms of Mach 

number vs. altitude. This envelope depicts all of the possible bounding elements of many 

classes of aircraft. The inner boundary of the envelope is determined by several factors or 

limits. At the low-speed region, the envelope is bounded by the maximum lift coefficient, 

which is limited by stall. The highest altitude, or absolute ceiling, is determined by the 

aircraft’s maximum operating thrust. At this flight condition, the aircraft encounters high- 

drag, due to either a high lift coefficient or a high flight velocity. At the service ceiling, 

Federal Aviation Regulations, or FARs, require a small rate of climb capability for 

propeller and jet aircrafts. The usable ceiling, as shown in Figure 1.1, is limited by the 

pilot ejection survivability. The engine limit presents a safe engine operation, wherein 

enough air is available to restart the engine, for example, at low-speed and high-altitude. 

Several structural limits bound the envelope at high-speeds, such as dynamic pressure, 

duct pressure, and temperature. The external flow dynamic pressure (q) limit is a design 

requirement for stress analysis that specifies the structural loads or flutter. The q limit 

varies from 1800 to 2200 psf for fighter aircrafts. The maximum airload pressure inside 

the inlet duct is accounted for, since it may easily triple the outside dynamic pressure, 

while the skin aerodynamic heating for structural materials determines the temperature
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limit. This envelope is used for design requirement specification and satisfaction, for 

dynamic analysis over differing flight phases, for control synthesis using scheduling 

principles, or for comparison of capabilities of different airframes. However, the speed- 

altitude flight envelope is limited to rectilinear symmetric level flight conditions and does 

not account for asymmetric flight conditions or provide details on the aircraft control 

limits in asymmetric flight [1],[2].

The aerodynamic and propulsion characteristics of actual aircraft or of 

sophisticated theoretical models of aircraft change with altitude and speed across the 

flight envelope. Principally, the aerodynamic and propulsion characteristics change with 

the angle of attack and the sideslip angle. The dynamic interaction between the aircraft’s 

inherent design characteristics such as aerodynamics and propulsion, and the externally 

encountered effects such as pilot input and atmospheric influence may identify a number 

of nonlinear behavior responses [3]. Many of the unforeseen nonlinear phenomena during 

the early flight history in the last century caused critical incidents and were even fatal, in 

some situations. Airframe design and the maneuvering nature play an important role in 

establishing various dynamic behaviors. This importance comes from the longitudinal- 

lateral dynamics cross coupling that results from the inertial asymmetry and 

nonlinearities in the aerodynamics.

Stall dynamics play a critical role in aircraft motion and establish many 

performance and safety elements. Stalling is a body configuration dependent effect that 

occurs when the aircraft is flying near the maximum lift coefficient CL and the air flow is 

on the verge of detachment from the upper (leeward) surface of the wing. In most cases, 

stall corresponds to a minimum flight speed and a high angle of attack (a) flight
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condition, since most fighter maneuvers occur at high a. Due to the complex air flow 

patterns at high a, Unsteady aerodynamic effects can occur as a  increases and enters the 

prestall, stall, poststall, and superstall regions (see Table 1.1). Such variational effects 

include unsteady buffeting forces, wing drop, a pitch-up moment effect due to 

downwash, loss of directional stability, and adverse yaw response to control. Further, 

variations in the angle of attack strongly affect aerodynamic damping, for instance, as a  

increases, the pitch and yaw damping effects increase, whereas the roll damping 

decreases and changes sign in the stall region. Nonlinear aerodynamics at stall complicate 

the control surface behavior in which their effects diminish or become adverse. At high 

a, it is possible to lose the aileron effectiveness and produce significant adverse yaw 

departure motion, leading to the roll-reversal phenomenon. Situations such as a high 

angle of attack and/or a high sideslip angle (/?) complicate the prediction and increase the 

nonlinearities of the aerodynamics.

Pitch-up is a phenomenon that increases the angle of attack due to an inertially 

induced pitch-up moment that is caused by stability-axis roll. This phenomenon is 

sometimes defined as the dumbbell effect. In heavy fuselage aircraft such as modem 

fighters where Izz > Ixx, the inertial effect produces positive pitching acceleration and, 

hence, an increase in a. In this situation, aerodynamic controls could be used to 

counteract the angle of attack increase. Pitch-up to high a  is required in the poststall 

maneuver; however, control surface effectiveness is also reduced, due to the immersion 

in the low-energy stalled air flow. Steady-state spin can develop from the inherent 

autorotation tendency of both unswept wings at a > a stali and the fuselage depending on 

its cross-sectional shape. This type of aircraft, usually propeller-driven, experiences an
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asymmetric stall due to the autorotation tendency, in which one wing stalls before the 

other. In general, asymmetric stall, rapid maneuvering, external disturbances, failure of 

control system, or pilot fault can produce a nose departure. This departure involves pitch, 

yaw, or roll divergence, probably leading to a fully developed spin, due to high- 

acceleration. Different aircraft or even the same aircraft spin differently as the nonlinear 

aerodynamics of the spinning aircraft behave unexpectedly when the flow separates from 

the wing and tail. Also, the balance between the inertial and the aerodynamic moments is 

fundamental to the establishment of spin mode behavior. An important point to indicate is 

that departure and spin are related topics, but they are totally different phenomena. 

Departure is considered to be a transient occurrence, whereas spin is a quasi-steady 

condition.

The aerodynamic wing rock mode describes the aircraft dynamic response at high 

a  as self-sustained oscillation about the longitudinal roll-axis. This phenomenon is 

observed when the aircraft is operating near stall or stall-departure and is explained as the 

influence of different factors, such as sideslip angle /?, roll motion, and vortex shedding 

on the aircraft nonlinear aerodynamics. However, this occurrence can be suppressed and 

properly stabilized. The nonlinear oscillatory wing rock motion can be viewed as a limit 

cycle with constant motion amplitude. In a high-performance aircraft, if  the aircraft is 

harshly roll induced at high-speed flight, the inertia of the asymmetric concentrated 

fuselage mass distribution overpowers the aerodynamic stabilizing forces, resulting in 

intense pitch and yaw motion and control loss, dominated by three-dimensional rotation. 

This longitudinal-lateral coupling is called inertial cross coupling in which the roll mass 

moment of inertia Ixx is significantly smaller than pitch inertia Iyy and yaw inertia Izz.
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Most of the prescribed nonlinear phenomena are comprehended by extensive 

experimental research, in-flight test, and/or fortuitous discovery. However, it is 

demanding to attempt to systematically detect hidden or unknown conditions that are 

difficult to quantify where the system can experience extreme nonlinear phenomena [4]-

m .

The previous discussion underscores the need for 1) new envelope approaches to 

address design and analysis focus associated with asymmetric flight conditions, and 2) 

new identification approaches to expose and quantify aircraft nonlinear behavior across 

its operational regime. This dissertation investigates flight dynamics nonlinearity 

assessment across a new aerodynamic attitude flight envelope.

A bso lu te  ceiling60+
Pilot e jec tion  
a ltitu d e  limit

{=15,240 m}

40- Engine 
relight limit

rr>O

-a 30 •

Mach n u m b er

Figure 1.1 Flight envelope [2]
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Table 1.1 Typical flight regimes for various aircraft* [4]

Aerodynamic Region Angle-of-Attack Possible Flight Attributes
Range (deg)

Low Angle o f Attack 0 -1 5  {GA, F) Conventional flight
0 -1 0  (JT)

Prcstall 1 5 -20  (GA) Unsteady effects
10-15  (JT) (buffet, wing drop, w ing rock)
1 5 - 2 5 (F)
2 0 -3 0  (GA) First lift peak, loss o f lift,
15-25  (JT) porpoising, loss o f  longitudinal and
2 5 -3 5  (F) directional stability, adverse yaw
3 0 -4 0  (GA) Departure, post-stall gyrations,
2 5 -4 0  (JT) incipient spin
3 5 - 5 0 (F)
4 0 -9 0  (GA, JT) Second lift peak, deep stall,
5 0 -9 0  (F) spin, supermaneuverability

Stall, Stall Break

Poststall

Superstall

♦General Aviation (GA), Jet Transport (JT) and Fighter (F)

1.2 Literature Review

The operational range of the aircraft and the various nonlinear aircraft behaviors 

have been reviewed in the previous section. In this dissertation, the literature review will 

focus on the speed-altitude flight envelope, selected nonlinear aircraft behavior, and 

system nonlinearity quantification.

1.2.1 Speed-Altitude Flight Envelope

Several available standard textbooks serve the purpose of estimating the extent of 

the speed-altitude flight envelope. However, Filippone [1] and Raymer [2] explored the 

envelope concept in depth. These references elaborately covered all of the physical and 

mathematical aspects that help in the development of the full-envelope; further, they 

extensively discussed details concerning envelope limiting boundaries. Departure from 

the designated flight envelope compromises aircraft safety and causes loss of control. In



the event of anomalous situations, the authors in Reference [8] reported their qualitative 

and quantitative investigations of flight damage effect on the flight envelope. Moreover, a 

real-time flight envelope was estimated for a general aerodynamic model that accounts 

for control and stability surface damages. Richardson et al. [9] presented the probability 

of an aircraft departure from its flight envelope under the influence of gusts, damage risk, 

or control loss. Assured techniques were developed to maintain a steady-state flight 

condition under the action of stochastic wind gusts. The flight envelope for an air- 

breathing hypersonic vehicle was developed in which requirements of complex coupled 

balancing is satisfied [10]. Fialho et al. [11] presented a smooth fractional a  gain- 

scheduled controller for the lateral-directional axes of the F-14 aircraft. The linear 

controller was designed for a powered approach flight phase that accounts for varying a  

and airspeed. A state-space Youla parameterization interpolation procedure was 

presented in Reference [12] to develop a locally stabilizing gain-scheduled controller for 

each operating point of a nonlinear plant. This interpolation method was used to design a 

gain-scheduled autopilot and was successfully implemented on a pitch-axis missile.

1.2.2 Nonlinear Aircraft Behavior

Examples of various aircraft nonlinear behaviors are mentioned in Section 1.1; 

those nonlinear behaviors are considered thoroughly in some leading aerospace 

engineering books and in technical reports published by governmental, academic, and 

professional organizations [4]-[7]. A few examples, but not all, of nonlinear phenomena 

are stall, spin, pitch-up, nose slice/departure, shock waves, vortex shedding, engine 

unstart, fan stall, wing rock, falling leaf, control reversal, and inertial coupling. Kwatny et



al. [13] investigated the nonlinear influences of stall and aircraft dynamics that lead to a 

loss of control. Various methods of analysis [14], aerodynamic models [15],[16], and 

nonlinear simulations [17] for investigating the dynamic stall motion are available in the 

literature. Experimental research [18] has shown that poststall spin has evolved toward 

partial chaotic motion under an increased high Reynolds number. The development of 

self-induced oscillations with steady-state roll amplitude “wing rock” and vortex 

breakdown was experimentally observed by Arena and Nelson [19]. Roll coupling, or the 

so-called inertial coupling [20], between the lateral and longitudinal-directional motion 

may cause a jump phenomenon [20] which is an abrupt change from a stability state to a 

large roll rate and large sideslip state. The jump can be prevented [21] by the proper 

aileron-rudder interconnect relationship.

1.2.3 System Nonlinearity Quantification

Yana et al. [22] introduced a scale measure and an estimate for the nonlinearity 

degree of the system between 0 and 1. This scale was based on the input and output time- 

series signals with included additive observational noise. However, in order to represent 

different classes of nonlinear functions, a parametrized function “multiplier perceptron” 

was introduced into the estimation. The degree of nonlinearity of the system approaches 

1 when the system cannot be represented by linear representation. Another nonlinearity 

measuring scale referred as a “nonlinearity index” was discussed by Junkins and 

Singla [23]. Static/algebraic forms of the nonlinearity index were initially proposed. The 

nonlinearity index of a linear system is zero, which forms the lowest reference point of 

the scale. The nonlinearity index is applied to numerous orbital mechanics test cases in
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order to provide a rigorous standard for measuring the system’s nonlinearity. In the same 

reference, the nonlinearity index across four different attitude kinematic representations 

was investigated, and the results indicated that an Euler angle representation has the 

highest nonlinearity. The four attitude kinematic representations are the Euler angle 

representation, the classical Rodrigues parameter representation, the modified Rodrigues 

parameter representation, and the quaternion representation. The degree of nonlinearity of 

the modified Rodrigues parameter and the quaternion formulations was the same, but it 

was less than the classical Rodrigues parameter representation. The nonlinearity index 

showed its usefulness in coordinate selection [24], where it was able to detect the less- 

nonlinear or near-linear representation. Only coordinate systems resulting in singular 

nonlinear ordinary differential equations, and coordinates leading to regularized state- 

space dynamics over very large domains, were reviewed. Results showed it is more 

advantageous when angular velocity is represented by orthogonal components along axes 

fixed on a moving N-dimensional rigid body, to realize rigid body classical dynamics 

cases for general Lagrangian dynamics. Transforming into a quasi-coordinate 

representation for the velocity along rotating axes of the same rigid body via the Cayley 

transformation improved the linearity of the dynamical system. The nonlinearity index 

provides an accurate indication of system nonlinearity strength, since the simulation error 

between the linear and nonlinear models correlates well with the index results.

The dynamical system nonlinearity index of the Cayley form [25] for an elastic 

spherical pendulum and a planar satellite example were investigated, based on evaluating 

the initial condition sensitivity of the state-transition matrix. The Cayley form is a 

representation for physical systems, in which the dynamical systems were described



using the kinematics and dynamic equations of iV-dimensional rotations. Results showed 

that the Cayley form exhibited lower nonlinearity when compared to traditional 

representations, particularly those representations with kinematic singularities. Again, the 

nonlinearity strength of dynamical systems is extended to estimation systems to both a 

measurement model and a dynamical model in Reference [26]. The nonlinearity measure 

result showed its practicality in the development of estimation applications for various 

physical systems.

The abstract development and practical implementation of the nonlinearity index 

in References [23],[24] has been restricted to initial value problems only, which are well- 

suited for orbital mechanics and for space vehicle attitude dynamics natural motion. 

Following Reference [23], the nonlinearity index theory was generalized by Omran and 

Newman [27] to aircraft flight mechanics analysis, which is the source for the work 

presented herein. The nonlinearity index theory was generalized by developing four 

expressions that account for input excitation and parameterized models. Four additional 

dynamic indices were also developed. The index was applied to a low-order pitch-plunge 

motion model and showed that it can detect conditions where the system can experience 

extreme nonlinear phenomena such as limit cycles. The study also investigated the 

nonlinearity strength of F-16 and T-38 model dynamics over the entire flight envelope, 

and showed that the F-16 model exhibits double the nonlinearity of the T-38 model. 

Further, the results indicated that the indices are higher near the low-speed side of the 

flight envelope. The nonlinearity strength of the T-2C naval trainer aircraft model 

undergoing stall was investigated in [28]. The results of nonlinearity index theory when 

applied to the nonlinear pitch-plunge model exposed behavior, such as limit cycling,
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which was unobserved by traditional approaches. Further, the nonlinear strength using 

the F-18 HARV aircraft model was analyzed [29]. Due to a highly nonlinear aerodynamic 

model of that aircraft, hidden nonlinear phenomena such as chaos and non-repeating 

quasi-periodic motion were discovered. The theory was able to detect the source of the 

nonlinearity as the rolling moment derivative with respect to roll rate, C;p. This 

coefficient was found to cause an instability in the system.

1.3 Statement and Objectives

The concept of the asymmetric level aerodynamic attitude envelope was initially 

proposed as a project by Professor Brett Newman at Old Dominion University in his 

“Atmospheric Flight Dynamics and Control” graduate level course. The goal was to 

produce an asymmetric level rectilinear flight envelope at different altitudes for the high- 

performance aircraft model presented in Reference [30]. The nonlinearity index 

theory [23], which was introduced in 2004, is considered to be a fairly new research 

subject in the nonlinear dynamical system field. Moreover, this subject has not been 

investigated extensively by various engineering applications. From that point, along with 

the non-existence literature on the asymmetric angle of attack vs. sideslip angle flight 

envelope and the very limited work found on the nonlinearity index theory in the 

literature, the idea of investigating the nonlinearity index across this flight envelope 

potentially grew as a dissertation subject.

The dissertation focuses on three main problems concerning 1) extension to a new 

asymmetric aerodynamic flight envelope, 2) application of the nonlinearity index theory 

to this new envelope, and 3) linear-nonlinear simulation comparisons. First pertaining to
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extension to a new asymmetric aerodynamic flight envelope, the contribution of the study 

will focus on establishing a methodology to develop the angle of attack vs. sideslip angle 

envelope using the original aerodynamic model in Reference [30]. This envelope 

describes the extent of where the airplane can sustain a slipping horizontal flight 

condition. Fundamentally, this envelope can describe the asymmetric trimability, control 

power authority, and poststall domain of an aircraft, and thus it can be utilized in similar 

ways to the traditional flight envelope. Asymmetry and offset issues in the force and 

moment aerodynamic coefficients will be analyzed and solutions will be provided, in 

terms of an idealized aerodynamic model. Finally, the envelope will be redeveloped with 

the ideal aerodynamic model. Second pertaining to the application of the nonlinearity 

index theory, the primary goal is to investigate the nonlinearity strength of the aircraft 

model across both the original and the idealized aerodynamic attitude envelopes. 

Additionally, the nonlinearity index will be also applied to the aircraft kinetics and 

kinematics model expressed by three different coordinate sets in order to determine the 

most linear set. Last, indices based on system matrix partitions and normalized state 

formulations will be explored. The nonlinearity index analysis exposes certain flight 

condition regions in the envelope, where nonlinearity strength is high. Therefore, the 

main goal of the third problem pertaining to linear-nonlinear simulation comparisons is to 

explore regions with high nonlinear index values. The linear-nonlinear simulation will 

consist of initial condition excitation and control input excitation.
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1.4 Dissertation Outline

The dissertation is outlined as follows. Chapter 2 presents a review of topics on 

the dynamics of atmospheric flight. In this chapter, all mathematical models for the 

aircraft dynamics are developed. Chapter 3 provides the mathematical foundation of 

static and dynamic nonlinearity index theory and extends the theory to generalized input 

excitation and parameterized aerodynamic attitude flight envelope settings. In Chapter 4, 

the development of the nontraditional angle of attack vs. sideslip angle flight envelope is 

discussed thoroughly. Numerical results with the high-fidelity F-16 aircraft model used in 

the study are also presented here. This chapter addresses and provides a solution to the 

asymmetries in the aircraft aerodynamic model. Chapter 5 implements nonlinearity 

indices on the aerodynamic attitude flight envelopes and compares the indices for 

different frames of reference representations. The linear system sub-blocks, sub-indices, 

and matrix-index are introduced here. In Chapter 6, linear and nonlinear simulation cases 

are performed in the regions of high nonlinearity index and the results are examined. 

Finally, overall conclusions and recommendations for future work are drawn in Chapter 

7.
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CHAPTER 2 

DYNAMICS OF AIRCRAFT MOTION

2.1 Introduction

A rigid aircraft body experiences motion in three dimensions. These motions are 

described as six degrees of freedom (6-DOF) motions; three translational degrees 

describes the trajectory and three rotational degrees describes the orientation of the 

aircraft. The motion of the aircraft can be well described by Newton’s laws of motion 

derived in a body referenced frame or coordinate system. In flight dynamics, there are 

basically three categories of reference frames that must be considered: inertial, aircraft- 

fixed, and aircraft-carried frames. In this dissertation, all three categories of reference 

frames are discussed. The choice of frame of reference depends on the classes of the 

problems or on the assumptions made. Further, it is important to establish a systematic 

means of transforming the motion components from one frame of reference to another.

In deriving the equations of motion of an aircraft, several assumption are made, 

such as non-rotating flat Earth, rigid body airframe, no actuator dynamics, and constant 

mass vehicle. The flat Earth assumption is equivalent to assuming that the Earth is an 

inertial-frame. The derivation of the equations of motion starts with Newton’s laws of 

motion being applied to a system of particles bounding the rigid body aircraft. Six 

governing kinetic equations exist for three translational velocities (u,v,w ) and three 

angular velocities (p,q,r). Six governing kinematic equations also exist for three 

translational positions (X,Y,Z) and three Euler angles (0,0,0).



2.2 Frames of Reference

The aerodynamic forces and moments acting on the aircraft are a function of the 

aircraft orientation relative to the air flow instantaneous velocity vector (v). Therefore, 

two aerodynamic orientation angles are necessary to specify these forces and moments 

with respect to v. Furthermore, these two angles are the baseline in defining two 

important special aircraft-carried frames of reference, namely, the stability-frame and the 

wind-frame. The aerodynamic angles are the angle of attack (a) and the sideslip angle 

(/?) and they are shown in Figure 2.1. The two angles can be defined in terms of the body 

translational velocities ub, v b, wb as

a  =  tan-1 —  (2.1)
ub

and

■. v b
/? =  sin-  — (2.2)

where VT =  y/ub + vb +  wb.

2.2.1 Inertial-Frame of Reference

An inertial-frame of reference is a frame that describes both time and space and 

could be moving in a constant rectilinear motion with respect to another inertial-frame. In 

other words, a frame of reference is inertial if it is experiencing neither rectilinear 

acceleration nor rotation. This frame of reference is particularly important when dealing 

with Newton’s laws of motion. Aircraft motions are only observed and derived in the 

inertial-frame. Depending on the flight dynamics problems addressed and the validity of 

the assumptions made, there are different frames that are assumed to be inertial. For



example, in the analysis of atmospheric flight dynamics vehicles, the accelerations 

associated with the Earth’s rotation around its axis, in addition to the Earth’s orbital 

motion in the solar system, are comparatively small to those resulting on the aircraft. 

Then, an Earth fixed point can be sufficiently considered to be an accurate inertial-frame 

of reference. The axes of this frame of reference, as well as the rest of the other frames 

discussed later, are mutually orthogonal. In general, the axes of the inertial-frame are 

oriented north, east, and downward to the geometric or mass center of the Earth [31]- 

[34]. The frame XiYIZl in Figure 2.1 is an inertial-frame of reference and is used to track 

the motion of the aircraft.

2.2.2 Body-Frame of Reference

This type of frame is a noninertial-frame; it is an aircraft-fixed frame and it moves 

and rotates with the aircraft in a well-defined manner. This frame can be fixed arbitrarily 

on the aircraft or, as in most of the flight dynamics analysis, it is attached at the center of 

gravity (eg) of the aircraft. Figure 2.1 shows the body-frame of reference x by bzb located 

at the aircraft’s center of gravity. The body-frame xb-axis is aligned with the aircraft 

fuselage reference line. The y b-axis is directed along the right wing and the z^-axis is 

directed downwards. This frame serves the purpose of defining an aircraft’s positions and 

velocities and is commonly used in aircraft nonlinear simulations. Another example of a 

body-frame at an arbitrary point a  that is not necessarily referenced at the eg of the 

aircraft is shown in Figure 2.2 and is denoted by xayaza.



2.2.3 Stability-Frame of Reference

This frame is a special noninertial-frame that is aircraft-carried; it moves with the 

aircraft but can rotate relative to the aircraft. Usually, this frame is selected for 

perturbation analysis, in order to simplify the expressions for the aerodynamic forces and 

moments [33],[34], This frame is commonly associated with a specific reference flight 

condition. For example, in steady level flight as a reference flight condition, the stability 

axes are associated with the reference free-stream velocity vector. The stability-frame of 

reference xsyszs is shown in Figure 2.1. The origin of this frame is fixed at the aircraft 

eg. The stability-frame is established when the body-frame x by bz b is rotated by the 

aerodynamic angle of attack a  through the negative body yb-axis. The stability xs-axis, 

zs-axis and the angle of attack a  lie in the body xbzb plane. The ys-axis is directed along 

the right wing.

2.2.4 Wind-Frame of Reference

The wind-frame of reference is also designated as a special aircraft-carried frame, 

rather than aircraft-fixed, like the body-frame of reference. If the stability-frame of 

reference is rotated by the aerodynamic sideslip angle /? through the stability zs-axis, a 

new frame of reference is formed. This frame is called the wind-frame of reference 

xwywzw and is shown in Figure 2.1. The wind xw-axis and the sideslip angle /? lie in the 

stability xsys plane. Further, the wind xw-axis is always aligned with the aircraft 

instantaneous velocity vector v. The velocity vector v is always defined by the 

aerodynamic angles a  and /? relative to the body x b-ax\s. The yw-axis is directed along 

the right wing and the zw-axis lies in the x bzb or xszs plane. The equations of motion



which are derived in the wind-frame are particularly suitable in trajectory or performance 

analysis and optimization. The wind-frame set of equations is sometimes referred to as 

the point-mass equations of motion because they govern the three translational, but not 

the three rotational, degrees of freedom.

Figure 2.1 Definitions of axes and aerodynamic angles
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2.3 Frames of Reference Transformation

2.3.1 Body-Stability-Wind Frame Relationships

Based on the frames of reference described earlier and Figure 2.1, the 

transformation matrix from body- to stability-frame is

Cs/b
cos a  0 sin a

0 1 0  
-  sin a  0 cos a.

(2.3)

Similarly, the transformation matrix from stability- to wind-frame is

C\v/s
' cos /? sin )? 0

• sin /? cos /? 0
0 0 1J

(2.4)

Therefore, the transformation matrix from body- to wind-frame becomes

jw/b ^w/s^s/b
cos cl cos /? sin/? sin a  cos/? 

-c o s  a  sin)? cos)? - s i n  a  sin)? 
— sin a  0 cos a

(2.5)

These transformation matrices are orthogonal, and hence, the wind- to body-frame 

transformation matrix is simply the transpose of the body- to wind-frame matrix in 

Equation (2.5).

' b/w -  rT'w/b
cos a  cos /? — cos a  sin /? — sin a

sin)? cos)? 0
sin a  cos/? —sin a  sin)? cos a  .

(2.6)

2.3.2 Inertial-Body Frame Relationships

The relationship between an inertial-frame of reference fixed on the Earth’s 

surface and a body-frame of reference fixed on an aircraft body is established by a 

sequence of planar rotations. The common Euler 3-2-1 rotations describe vehicle 

orientation by the z b, y b, xb rotation sequence, respectively, which transforms the 

inertial-frame into the body-frame. The rotation sequence is indicated below.
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1. Positive yaw (xpb), that is right-hand rotation about the zb-axis.

2. Positive pitch (9b), that is right-hand rotation about the y b-axis.

3. Positive roll (<fib), that is right-hand rotation about the xb-axis.

Following the established rules, the transformation matrix from inertial- to body-frame is

1 0 o ■ cos 9b 0 — sin 9b " cosxpb sin xj)b 0
Cb/I ~ 0 COS <f)b sin(f>b 0 1 0 — sin xf>b cos xpb 0

.0 — sin(pb cos <f)b. .sin 9b 0 cos 9b . 0 0 1.

Carrying out the multiplications, the final result is 

Cb/i ~

cos 9bcosxpb cos 8b sin ifjb -s inG b (2.8)
-  cos <(>b sin xpb +  sin <f>b sin 6b cos ipb cos (f>b cos ifjb +  sin <f>b sin 8b sin rpb sin <pb cos 6b 
. sin (pb sin ipb + cos <pb sin 9b cos xpb -  sin (f>„ cos ipb + cos $ b sin Qb sin ipb cos (f>b cos 9b.

This transformation matrix is orthogonal, hence, the body- to inertial-frame

transformation matrix is simply the transpose o f  the inertial- to body-frame matrix.

C l /b  =  C l / ,  =

cos 8b cos ipb -  cos 4>b sin ipb +  sin <j)b sin 8b cos ipb sin <j)b sin ipb +  cos 4>b sin 9b cos xpb 1 (2-9)
cos 8b sin ipb cos (pb cos ipb + sin 4>b sin 8b sin ipb -  sin (pb cos ipb +  cos <pb sin 9b sin ifjb

-  sin 8b sin <pb cos 9b cos <pb cos 9b

2.3.3 Inertial-Stability Frame Relationships

Similar to the common body-frame Euler 3-2-1 rotations, three additional 

rotations are defined when transforming from the inertial- to stability-frame. The three 

rotation sequences are given below.

1. Positive yaw (xps), that is right-hand rotation about the zs-axis.

2. Positive pitch (6S), that is right-hand rotation about the ys-axis.

3. Positive roll ((f)s), that is right-hand rotation about the xs-axis.
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By following the established rules, the transformation matrix from inertial- to stability- 

frame is constructed directly as

Cs/, ~

COS 9S COS 4>s cos 9S sin xjjs sin 0,
-  cos <f)s sin \ps +  sin (j>s sin 9S cos xps cos <j>s cos rps +  sin <j>s sin 9S sin x/js sin <ps cos 6S
sin (ps sin xps +  cos (ps sin Qs cos xps -  sin <ps cos ips +  cos <f>s sin 9S sin xps cos ij)s cos 9S

(2 .10)

By taking advantage of previous results, the transformation from the inertial- to stability- 

frame can be indirectly constructed without angles (ps, 0S, xps using Equations (2.3) and

(2.8) as follows.

Cg/i C^/hCjs /b^b /I

Cs//( 1,1) Cs//(1,2) Cs//(1,3>
Cs //( 2,1) Cs/I{ 2,2) Cs/I{ 2,3)
A / / (3,1) Cs//(3,2) Cs//(  3,3)

(2.11)

Now, equating Equations (2.10) and (2.11), the stability-frame Euler angles are easily 

found as

^  ̂ (Cs/I(2,3)\
f c  =  tan 1 w ) j

0S = — sin 1 (c s/,( l ,3 ) )  

, „ (C ,„ (  1 ,2)\
^  =  ta" f e t t i ) ]

(2.12)

2.3.4 Inertial-Wind Frame Relationships

Again, similar to the common body-frame Euler 3-2-1 rotations, three additional 

rotations are defined when transforming from the inertial- to wind-frame. The three 

rotation sequences are given below.

1. Positive yaw (tfjw), that is right-hand rotation about the zw-axis.

2. Positive pitch (9W), that is right-hand rotation about the yw-axis.
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3. Positive roll ($>w), that is right-hand rotation about the xw-axis.

Following the established rules, the transformation matrix from the inertial- to wind- 

frame is generated directly as

-  cos 4>w sin \pw +  sin (pw sin 0W cos ipw cos <pw cos \pw +  sin <pw sin 6W sin xjjw sin 4>w cos 8W
. sin (f>w sin ipw +  cos <j>w sin 9W cos if)w — sin 0 W cos ipw + cos <f)w sin 0W sin ipw cos <t>w cos 0W.

By taking advantage of previous results, the transformation from the inertial- to wind- 

frame can be indirectly generated without angles <pw, 6W, xpw using Equations (2.5) and

(2.8) as follows.

Equating Equations (2.13) and (2.14), the wind-frame Euler angles are found as

cos 0W COS 1pw cos sintl)w

^w//(f<f) Cw//(1>2) Cw//(1,3)
Cw / (2,1) Cw/I( 2,2) Cw/l (2,3)
Cw//(3 ,1) Cw/i(3,2 ) Cw/ f(3,3)

(2.14)

(2.15)
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2.4 Arbitrary-Frame Equations of Motion

In this section, rigid body aircraft equations of motion are derived with respect to

an arbitrary referenced point a (see Figure 2.2), that is not necessarily the aircraft’s center 

of gravity. These equations of motion are developed based on several assumptions such 

as non-rotating flat Earth, rigid body airframe, no actuator dynamics, and constant mass 

vehicle. To fully describe the motion of an aircraft, two sets of equations are required. 

The first set consists of six kinetic equations to describe three translational velocities and 

three angular velocities. The other set consists of six kinematic equations to describe 

three translational positions and three Euler angles. To promote simplicity of notation, 

physical vector quantities as well as algebraic vector quantities will be denoted by bold 

letter face, and they are used interchangeably in a mixed fashion in some expressions.

r,

Figure 2.2 Arbitrary referenced rigid aircraft
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2.4.1 Kinetic Equations

The aircraft shown in Figure 2.2 has an instantaneous velocity vector va with 

respect to the arbitrary body-frame xayaza located at point a, and an instantaneous 

angular velocity wa with respect to inertial-frame X ^ Z / .  If the location of point a with 

respect to the inertial-frame and the location of a mass particle m* with respect to point a 

are denoted by ra and p;, respectively, then the location of m* in the inertial-frame is

The location of the aircraft center of gravity (eg) from the arbitrary-frame at point a is p 

and r from the inertial-frame.

The translational motion of the aircraft is derived from Newton’s second law in 

the inertial-frame of reference, mathematically speaking

propulsion, and gravity terms and (r)7 is the eg acceleration as observed in the inertial- 

frame of reference. Further, the relations m = 'Zm i (total aircraft mass), mp = £ m iPi 

and m r = Y.m iri are satisfied. It is more convenient to write components of Equation

(2.17) in a body-fixed frame of reference, such as the arbitrary-frame xayaza referenced 

at a. In order to accomplish this, Equation (2.18), the equation of Coriolis, is used. This 

equation relates vector derivatives in two different frames through an angular velocity 

vector <oa that describes the angular rotation between the two frames.

=  ra +  Pi (2.16)

(2.17)

where £F  is the sum of all external forces acting on the aircraft including aerodynamic,

d [vector] \  ( d [vector]
+ oia x [vector] (2.18)
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To find the acceleration term in Equation (2.17) in the arbitrary body-frame at a, 

the first derivative of Equation (2.16) is taken and Equation (2.18) is then applied as 

follows.

to ) /  =  t o ) /  +  (Pi)/

or

t o ) /  =  (Va) / +  (P i)a +  <Oa X Pi 

If the body derivative notation is dropped, the previous equation becomes

to /)/ =  (va)/ +  Pi +  « a x  pi (2.19)

Taking the derivative of Equation (2.19) again, the final result is

t o ) /  =  v a +  w a x  va +  p ( +  cba x  p £ +  2 (w a x  p j)  +  « 0 x  (o>a x  p i)  (2.20) 

The relative velocities and accelerations of the mass particles are ignored for a rigid 

aircraft body, p* = P/ =  0. Therefore, from Equation (2.17), the force equation at a 

representing the translational motion of the aircraft in physical vector form is

£F a =  m (va +  o>a x  va) +  w f l x m p  +  w a x  (w a x  m p) (2.21)

Before expanding this equation, vector and matrix components at an arbitrary 

reference point a that are used to derive the scalar equations of motion are listed in 

Table 2.1. The angular velocity cross product can be replaced with the cross-product 

matrix (see Table 2.1). Hence, Equation (2.21) is rewritten in algebraic vector form as

£F a = m (va -1- Hava + fiap  + n 2ap)  (2.22)

Expanding the left-hand side (LHS) and the right-hand side (RHS) of this equation and 

using the proper transformation yields
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rF  )rx,a
ply,a
Fl z,a

- g  s in  Oa 
+  m \ g  sin(pa cos Qa 

i ,g cos (j)a cos da

= m l
Ua ) ■ 0 ~ r a qa '
Va + ra 0 “ Pa

- q a Pa 0 .

u a
Va
w„

' 0 - r a qa ■ Ax' ' o - r a qa ' 2 (A x
+ Va 0 - p a A y + ra 0 - p a Ay

- q a Pa 0 . A  z. - q a Pa 0 - vA z.

or

( F  )l x,a f

Fy,a ■ +  m
F\ r z ,a ) s

- g  sin  6a 
incf)a cos6^  
js (pa cos 6a)

m l  <va
■ra Va  +  QaW a]

+  \+ r aua -  pawa \ 
QaMa. "I" PaVa•)

( ~ ( qI  + r £ )A x  + (paqa -  ra)A y  + (p ara + <7a)AzV 
+ j H P aQ a  + ra)A x  -  { p i  + T a)A y  +  (qara -  p a)A z  > 

l+CPa^a -  qa)A x  + (qara + P a)A y -  { p i  +  q l ) A z ) ,

Equating the LHS and RHS, the scalar force equations of motion for the arbitrary body-

frame fixed at point a are

FXia = m {ua -  rava +  qawa +  g sin  6a -  {ql +  ra2)Ax + {paqa -  ra)Ay

+ {PaTa +  qa)Az)

Fy,a =  m {va +  raua -  pawa -  g sin  <pa cos 6a + {paqa +  ra)Ax

~  {Pi +  ra2)Ay + {qara -  pa)Az)

Fz,a =  m{wa -  qaua + pava -  g  cos (pa cos 6a + {para -  qa)Ax 

+  {qara +  Pa)&y -  {pi + q i)A z)

(2.23)
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Table 2.1 Vector and matrix definitions for arbitrary-frame

Force, Moment and Gravity:

r x,a ( L a

IIu? F yA + ™ g a, £ M a = \Ma + p X m g a
F\ J z , a ) U J

(°t
mga = Ca/im g= C a/Im 0

where Ca/i denotes the transformation matrix from the inertial- to arbitrary-frame based 

on Euler angles (j)a, 6a, rpa 

Linear Velocity. Angular Velocity and ca Location:
(Un Pa 7Ax [Xa]

Qa > p = U y > ra = Ya
ra lAzJ .Za .

Cross-Product Matrix:

<*>a x  (■) =  f ia ( 0  =
-Qa

0
Pa

Qa
~ P a

0
(0

J a

Jfl1 = Ta

fa)a X (■))= ftS(-)

0

= D a (■) = A z
—Ay

l? x —lxy - I a‘xz
_ /alx y Ial y y _ / al y z
~Ial xz -F 1l yz Ial zz  .

0

-A z 
0

Ax

a 0 
Qa Pa 

Ay 
—Ax 

0

Qa
~ P a

0
(0

(•), va x (■) = Va(0 = wa
- V n

~ w a
0

Ua

Va

1
Aa

7a /a‘y y ‘zz - t e ) 2
ra ra 
‘y z ‘xz +

ra ra 
i x y ‘zz Ia‘xy

ra
‘yz + ra ra 

‘x z ‘y y 1 r  k i /c? k i ]
ra ra 
l y z ‘xz + ra ra 

1x y ‘zz
ra ra 
‘z z ‘xx — { ( x z ) 2 Ia‘xy Ia‘xz + ra ra 

‘y z ‘xx
1

~ ~  a  a k ? k% k i
ia  ra 

U x y ‘yz + ra ra 
l x z l y y

ra ra 
l x y ‘xz + W x ra

‘ X X
ra
l y y - f e ) Z -

ZA

f c f k i k i

(0

Aa =  / a  Ia Ia -  2 I a I a I a -  I a ( l a 'I2 -  / a ( l a ~)2 -  I a ( I a I 2 u  — .  iXx ly y lz z  ^ lx y ly z lxz  l x x \ ly z J  l y y \ lx z )  l z z \ lx y )

where l£x, lyy, 7“z denote moments of inertia and / “y, Iyz, / “z denote products of inertia 

for the arbitrary-frame
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The rotational motion of the aircraft about an arbitrary point is described by the 

moment equations about a. The sum of external moments about point a is equal to the 

rate of change of the angular momentum about a as observed in the inertial-frame of 

reference. Therefore, the absolute angular momentum about a is defined as

Ha = £ (P i x m£v£) (2.24)

where (r£) £ =  (v;)/. The rate of change of the angular momentum about a as observed in 

XjY,Z, is

(H a); =  Z ( (p i)i x rriiVi) +  £ ( p £ x m £(v£);) (2.25)

Here, (p£)£ = (r£ -  fa) /? (v£), =  (rf); and since (f£)£ x v£ = 0, then,

(H a); = ~ (ra)/ x I > £v£ + £ ( p £ x m M ) ,)  (2.26)

The sum of all external moments about the arbitrary body-fixed frame at point a is 

defined as

ZM„ =  I (P i  x  miCv,),) (2.27)

Using Equation (2.26), Equation (2.27) is rewritten as

ZMa =  (H a); +  (ta)i x  E»ntvt (2.28)

or, since £miV£ =  mv and v =  va +  (p)/5 then Equation (2.28) is written as

EM a = (H a); + va x m (p)| (2.29)

Now using Equation (2.19) and noting that for a rigid body p£ =  0, Equation 

(2.24) is expressed in the arbitrary body-fixed frame at a as

Ha =  £ (p £ X m £(va +  p £ +  a >aXp£))  (2.30)
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or

Ha = EmiPi x va + EPi x mi(wa x Pi) (2-31)

The second term on right in the previous equation is equal to the algebraic vector 

]a(tia [35]. The mass moment of inertia matrix of the rigid body aircraft )a as well as all 

of the vectors in the previous equation are expressed in the body-fixed arbitrary-frame at 

a. Now, Equation (2.31) has the form

Hf l= m p x v a + Ja« a (2.32)

The derivative of this equation can be expressed in the inertial-frame by using the vector 

derivative relationship from Equation (2.18), so

(Ha); =  (Ha)a <*>a  X Ha (2.33)

or, in an expanded form,

(HU); =  Jaft>a + wfl x Jawa + m p x v 8 +  wa x ( m px  va) (2.34)

Noting that (p)/ = wa x p and substituting Equation (2.34) in Equation (2.29) yields 

£M a = Jaci>a 4- toa x Jawa + mp x va + m<oa x ( p x  va) + mva x (wa x p) (2.35) 

Finally referring to Table 2.1, the right-hand side of this equation can be 

expressed in cross-product matrix form as

XMfl = Jau>a +  fiaJawa + mDavA +  -  mVaDaa»a (2.36)

Equation (2.36) is expanded into three scalar moment equations as
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La ^xxPa ^xyQa ^xz^a  4 "  ^xyVaXa ^xzPaQa  4 "  (}zz  ^yy^Qa^a

+ (Xa ~  RaVyz + m (pava -  qaua + wa -  gcos9acos(f>a)Ay 

+  m (pawa -  raua +  va + gcos9asin(pa)Az 

^xyPa  4 "  lyyQ a  ~  ^yz^a  4 "  lyzPaQa IxyQaTa  4 "  O xx  ~  ^zz)Pa^a

+  (Pa -  raVxz +  m (qaua -  pava -  wa +  gcos9acos(pa)Ax 

+  m (qawa -  rava +  ua +  gsin9a)Az

~  IxzPa lyzQa  4 '  ^zz^a  4 ” IxzQaTa ~  ^yzPa^a  4 "  i j y y  ~  Ixx )P aQ a

+  (q l -  PlVxy +  m(raua -  pawa +  va -  gcos9asin(f)a)Ax 

+ m (rava -  qawa ~ u a ~ gsin9a)Ay

(2.37)

2.4.2 Kinematic Equations

The inertial translational positions (Xa, Ya, Za) of an aircraft referenced at point a 

are obtained by relating the body-fixed translational velocities to the inertial velocities by 

the appropriate transformation matrix. Using the form of Equation (2.9), the inertial 

velocities are easily obtained as follows

or

Xa — ( C O S  9a COS 1pa)ua + (~  cos  0 a  s n̂ 0 a  +  s tn  0 a  s*n #a cos 0 a ) va 

+ (sin 0 a sin tpa + cos (pa sin 9a cos 0 a)wa 

Ya = (cos 9a sin 0 a)ua + (cos 0 a cos t/>a -I- sin  0 a sin 9a Sin 0 a)tfa (2.39)

+ (— sin (pa cos ipa + cos 0 a sin 9a sin 0 a)wa 

Za = (— sin 9a)ua + (sin <pa cos 9a)va + (cos (pa cos 9a)wa
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The orientation of the arbitrary body-fixed frame at a can be described relative to 

an inertial-frame by a sequence of Euler rotations similar to the discussion in 

Section 2.3.2. The Euler angle rates (0a, 9a, rpa) can be resolved into components 

relative to the body-fixed angular velocities as shown in Reference [33].

{Qa
•1 0 -  sin  6a '<i>a)

= 0 COS (pg sin <pa cos 0a 9a
/ .0 —sin<pa cos <f>g cos 6a.

(2.40) i

or

1 tan 9a sin  <pa tan 9a cos <pa ' (Pa
0 COS (f)a -  sin (pa {qa
.0 sin (pa/co s  9a cos (pg/cos 9a. \ra .

(2.41)
I <

The three Euler body rotation relationships in individual form are

<Pa = pa + (tan Qa sin  (pa)qa +  (tan  Qa cos <pa)ra 

9a =  (cos <pa)qa ~  (sin  0 a)ra (2.42)

\pa = (sin(pa/co s9 g )q a + (cos (p jc o s  9a)ra 

In general, the complete motion of an aircraft is described by the three body linear 

translational velocities (uA, vA, wA) and the three body angular velocities (pa, qa, ra). 

However, to track the path and orientation of the aircraft, three inertial linear positions 

(Xa, Ya, Za) and three angular attitudes (<pa, 6a, ipa) are used. Therefore, the complete 

state vector of a nonlinear aircraft model for the arbitrary body-fixed frame at point a is 

x a =  \ua va wa <pa 9a xjja pa qa ra Xa Ya
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2.5 Body-Frame Equations of Motion

The body-fixed frame is referenced at the center of gravity (eg) of an aircraft, as 

shown in Figure 2.2. This frame can be interpreted as a special case of the arbitrary-frame 

when point a is exactly located at the aircraft eg, and the position vector of the eg 

relative to a is zero. Throughout this dissertation, the body-frame is used to indicate a 

frame of reference that is centered at the eg of the aircraft. Table 2.2 lists the vector and 

matrix components that are used in the derivation of equations of motion in this frame of 

reference. Further simplifications to the body-frame equations of motion can be made by 

assuming inertial symmetry about the xbzb plane; however, these simplifications are 

carried out in a later section, but not here.

2.5.1 Kinetic Equations

The general equations of motion derived in Section 2.4 are revisited here; 

however, the subscript a is replaced by b to indicate the body-frame at the aircraft eg

position and the terms involving vector p are deleted from the expressions. With these

simplifications in mind, the force equation, Equation (2.22), is rewritten here as

£Fb = m (vb + Hbvb) (2.43)

The linear acceleration vector can now be expressed explicitly as

vb =  - f t bvb +  — £Fb (2.44)
m

After substituting and expanding, three scalar linear accelerations equations are obtained.
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1
ub =  rbv„ -  qbwb -  g  sin Gb +  — FXib

1
vb =  - r bu b + pbwb + g  sin <f)b cos 6b +  — Fy b (2.45)

m  J

1
wt> = % ub -  pbvb + g  cos (j)b cos Gb +  — Fzb

m

Similarly, the moment equation represented by Equation (2.36) is rewritten here

as

=  J b6ib 4- f lb]btab (2.46)

This relation can be expressed in terms of the angular acceleration vector.

6)b = ]b1( ~ ^ b]biob + (2.47)

Substituting and expanding yields three scalar angular accelerations equations.

Pb = [^l {Oyy ~  ^zz)qbrb "t" lyziflb ~  rb )  T OxzQb ~  Ixyrb)Pb 4 ^b}

+ *2 {(izz ~  Ixx)Pbrb + Ixz{rb ~  Pb) + Oxy rb ~ lyzPb)<ib + Mb)

+ k z { ( lx x  -  !yy)PbQb + !xy{Pb ~  Qb) + OyzPb ~  I ^ b ) ^  + Nb}]

Qb ~  Izz )Q brb 4 "  l y z i f l b  r b )  4  {jxzRb  ^xyrb)Pb  4  ^ b }

+ **{(& -  Ixx)pbrb + Ixz(rb -  Pb) + O x y n  -  ly z P b h b  + Mb} 

+ kg{{ lXx ~  Iyy)PbRb + lxy{Pb ~  <lb) + OyzPb ~  Ix z^b Y b  + ty,}]

^  [ f e 3  { Q y y  ~  l L ) q b r b +  lyz{<lb ~  r f )  +  OxzQb ~  ^ y rb )Pb  +  h }

+ kg { ( 4  -  ljcx)Pbrb +  U r l  ~  p i )  4  ( j x y rb ~  i g z P b ^ b  +  M b)  

+  kg{( l% x  -  I y y ) p b q b +  lgy{Pb -  Qb) +  O yzP b  -  l%z<lb)rb +  N b)]

(2.48)
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Table 2.2 Vector and matrix definitions for body-frame

Force. Moment and Gravity:

irFl
m

x,b j ( L b
Fy.b f  +  Cb/ {m g ,  =  1 M b

IN,f z . b  J  u v b

Linear Velocity and Angular Velocity:

i P b )
X b )

V  =  V b  = v b \ O )  =  ( t i b  =  W b f , II II Y b

{ w b ) \ r b ) . Z b .

Cross-Product Matrix:

*  ( ' )  —  —

0
rb

-Rb

o>6 x  (o )b x  ( •) )  =  n ^ (-) =
,1

Inertia Matrix:

~rb
0

Pb

0
rb

~Rb

Rb
~Pb

0
0)

0
Pb

Rb
- P b

0
(•)

)b =

lblxx

- I b*xy
- I b‘xz

— jb lxy

Ibyy
—lblyz

—Iblxz

- I blyz
Iblzz

l b 1 =

CM

1 r b  r b  
l y z l x z E  l x y l z z I x y l y z  +  I x z ^ y y

1
r f c f k b

f c | |

r b  r b  .  r b  r b  
l y z ‘ x z  “  l x y l z z

j b  j b  
l z z l x x ~  ( & ) 2 l x y l x z  +  l y z ^ x

X

=  ¥
4 k b

i b  r b  i  r b  r b  
L l x y l y z  ~  l x z l y y l b  I b  4 -  I b  I bl x y l x z  ”  l y z i x x

J b  ] b  —  ( J b  ) 2  
‘ x x ‘ y y  \ ‘ x y )  J - f c f k l

A b

a b ,b rb rb _  2 jb  l b Jb — jb  ( j b  \  — I b ( I b ) 2 — I b ( I b }u  ‘x:x‘y y ‘zz £d‘x y ‘y z ‘xz ‘x x \ ‘y z )  ly y \ ‘xzJ ‘z z \ ‘x y j

where IbX) Iyy, lzz denote m om ents o f  inertia and Iby , Iyz, l bz denote products o f  inertia for

the body-frame

2.5.2 Kinematic Equations

The inertial translational positions (Xb, Yb, Zb) of an aircraft referenced at the eg 

are obtained by relating the body-frame translation velocities to the inertial velocities by 

the appropriate transformation matrix. The inertial velocities are similar to Equation 

(2.39) and are repeated here with the appropriate Euler angles.
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Xb = (cos Bb cos \l)b)ub + ( -  cos <pb sin ipb + sin sin 6b cos ijjb)vb 

+ (sin (j)b sin xpb + cos sin 6b cos ipb)wb 

Yb = (cos 9b sin t +  (cos (pb cos xpb + sin (f)b sin 9b sin ipb)vb (2.49) 

+ ( -  sin (j)b cos xj)b +  cos sin 9b sin xjjb)wb 

Zb = ( -  sin 9b)ub + (sin cos 9b)vb + (cos cos 9b)wb

The orientation of a body-fixed frame at the eg can be described relative to an 

inertial-frame by a sequence of Euler rotations, as discussed in Section 2.3.2. The Euler 

angle rates ((pb, 9b, ijjb) can be resolved into components relative to the body-frame 

angular velocities. Hence, the three Euler body rotation relationships are

4>b = Pb + (tan 9b sin <pb)qb +  (tan 9b cos 4>b)rb 

db =  (cos (pb)qb -  (sin 0 b)rb (2.50)

xpb =  (sin(f)b/cos 9b)qb +  (cos<pb/c o s9 b)rb 

Here, the complete motion of an aircraft is described by the three body linear 

translational velocities (ub, vb, wb) and the three body angular velocities (pb, qb, rb). 

However, to track the path and orientation of the aircraft, three inertial linear positions 

(Xb, Yb, Zb) and three angular attitudes (0 b, 9b, xpb) are used. Therefore, the complete 

state vector of a nonlinear aircraft model for the body-fixed frame at the eg is 

x b =  [ub vb wb (f)b 9b xjjb pb qb rb Xb Yb Zb]T
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2.6 Stability-Frame Equations of Motion

The stability-frame is a special aircraft-carrried frame that is referenced at the 

aircraft center of gravity and undergoes a left-handed rotation a  about the body y b-axis, 

as shown in Figure 2.1. The stability-frame experiences an angular velocity of —a  with 

respect to the body-frame xby bz b. The angle of attack derivative a  can be obtained by 

direct differentiation of Equation (2.1).

. u bwb -  wbu b
a = ----- ------- r—  (2.51)

u \ + w$

More discussion of this frame was provided in Section 2.2.3. Table 2.3 lists the vector 

and matrix components that are used in the derivation of equations of motion in the 

stability-frame of reference. Note that the velocity vector now lies in the xsys plane, and 

hence, the zs velocity component is zero (ws =  0).

2.6.1 Kinetic Equations

From Equation (2.21), the force vector equation in the body-frame xby bzb 

referenced at the eg is

~ ^ Fb =  vb + <*)fe x vb (2.52)

The acceleration term vb can be expressed in the stability-frame by utilizing the vector 

derivative rule (Equation (2.18)) and the body-stability transformation matrix (Equation 

(2.3)). Equation (2.52) can be written in the stability-frame xsyszs as 

1 d
~ C s / b Y J !b =  Cs /b  ( ^ s /b v s )  "b ( C s / b M b )  X ( Cs / b Vb)

or
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1
~ I j F s  =  ( Q / b Q / b Y s  "h ^ s / b ^ s / b ^ s )  4" *  v s

or

1
“ J]FS — Vs +  Fls/ b\ s 4" (**s ^  Vs

Therefore, the linear acceleration vector in the stability-frame xsyszs can now be 

expressed explicitly as

1
Vs =  - f ts /b V s  - w s x v s +  —  £ F s  (2 .53)

or

vs =  - n s/cvs - n svs + i z F s (2.54)

The acceleration vector term -  £ls/bvs =  [0 0 —aus]T is an additional term due to the

rotary motion of the stability-frame, when Equation (2.54) is compared to Equation

(2.44). This vector represents tangential acceleration components arising from the mutual 

interaction of the linear components of velocity vs with the components of angular 

velocity uis/b. Substitute and expand to get three scalar linear accelerations equations.

s 1us =  rsvs — g  (cos a  sin 8b — sin a  cos cos 6b) +  — Fx s
m  '

1
vs =  - r sus +  g (sin (f)b cos 6b) +  — FyiS (2.55)

P s v s 9  1a = qs  1 (s in a s in 0 & + cosacoscf)b co sQb) H Fzs
TTilts

If the transformation Cs/, is used instead of Cs/ bCb/i for the gravity term, then Equation 

(2.54) becomes



vs = —rsus 4- g sin 0S cos 8S H— Fy s (2.56)
m

Psvs 9  a = qs  H — cos (j)s cos ds +us us mus

Similarly, the moment equation represented by Equation (2.35) is rewritten here 

in the body-frame xby bzb and is expressed in terms of the angular acceleration vector as

= JfcH-Wb x Jfca)* + £M&) (2 .57)

Equation (2.57) can be replaced by an equation in the stability-frame as

<*>s + *&s/b x (*>s =  Js 1(—ois x }su)s + 5]MS) (2.58)

or, in terms of cross-product matrices

(«)5 =  —f^s/b^s 4" Js1( f^sJs^s 4" (2-59)

Substitute and expand to get three scalar angular accelerations equations.

1
Ps ~  O s d )  +  —  [ ^ l { ( / y y  ^z z )Q s "̂s  4 "  ( y z  (,8 s ~  ?S )  4 "  ( j Xz 8 s  ~  ^Xy^s)Ps  4 "  f - s }

4 -  k s2{ 0 L  -  I x x )P s rs  4 -  lxz(Ts -  P s )  4 -  ( / | y r s  -  I$zps) q s +  M s}

4- k s3{(l*x -  I§y )p sqs + I sxy ( p l  -  q 2s ) + f e p s -  l sxzqs)rs + JVS}]

8 s  ~  [ ^ 2  { ( ( y y  —  ^ z z ) 8 s rs  4 "  ( y z ( f l s  —  Vs )  4 "  { jXz 8 s  ~  ^xy^s)Ps  4 "  Ls }

4 -  k l { { I szz -  l sxx)psrs + /*z(rs2 -  p2) + (/i y rs - I syzps)q s + Ms} (2‘60)

4 -  f c | { t e  -  Iy y ) P s 8 s  +  Ixy(.Ps ~  8 s )  +  O y zP s  ~  ^ x z 8 s ) rs +  N s }]

1
f s  —  ( — Ps& )  4 "  [ ^ 3 ~  ^ z z ) 8 s rs  4 "  Iyz(.8s ~  rs  )  4 "  Q x z 8 s  ~  ^xy^s )P s  4 "  L s }

4 -  k l { ( / J z  -  lxx)psrs +  Ixz fc2 -  p 2) 4 -  f e r s  -  I$zps)q s +  Ms}

4 ”  k ( , [ ( l xx  ~  t y y ) P s 8 s  4 ”  IXy ( P s  ~  8 s )  4 "  { jy z P s  ~  ^ x z 8 s ) rs  4 "  W s } ]
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Force. Moment and Gravity:

(F 'r X , S

ZT, = { F>y*
?z,s J

+ Cs/lmg, £MS

Linear Velocity and Angular Velocity:

Ms/b  =  '(l)c
Ps)
Rs

I s
Ms

1 1 V S

-a r = rs =  Ts

Cross-Product Matrix:

ws x (■) = fts(0 =
0
rs

L~Qs

~rs
0

Ps

Rs
~ P s

0
(0

Ws X (tOs X ( 0 )  fly ( ')  —

& s/b(0o>s/b X (0 

Inertia Matrix:

0 - r  

rs 0  

-Rs Ps

0 - a  
0 0 
0 0 J

Rs
~Ps
0

(0

(0

I s‘xx - I s‘xy —I s‘xz
Is — Cy/bJfcCy/f, — - I s‘xy I sIyy - I s‘yz

—I s 1xz - I S‘yz I s‘zz

- ls
1

I*

F/s IS ‘yy ‘zz -  f e ) 2 IS IS . IS IS
lyz lxz “  lx y lzz

IS IS i IS IS
lx y ‘yz “  lxz lyy l \ k l k § Ml

I s I s ‘y z ‘xz
1 IS jrs“  lx y lzz

is rs „  ( i s  \2 
izzIxx \ lxz) I l y l l z  +  i y Z x As M k% M

I s I s‘x y ‘yz -f I s Is* Ixz1yy IS IS . IS ISix y Ixz ■ ly z lxx i l l  -  { l i y f .

IX
M k i k i .

/IS _  rs rs IS 
u  ‘x x ‘y y ‘zz 2Is Is Is^ ‘x y ‘y z ‘xz

is ( i s  y  _  is ( is  
l x x \ l y z )  l y y \ l x z )

I x x  — ( I x x  c° s 2 a  +  I z z  s i n 2  a  ~  l x z  sin  2 a )

Is ( I s I 2lz z \ lxy )

I S  _  i b  Iyy lyy

/£ , =  Ixr sin 2 a + Iy7 cos2 a  + l£y sin  2 a

Ixy = I™ cos a + 1.yz sin a

lxz  =  \ 0 x x  -  Izz) sin  2a + /j?z cos 2a

lyz = lyz cos a Ixy sin  a

where / | x , Iyy , / | z denote m oments o f  inertia and / | y , IyZ, / | z denote products o f  inertia for 

the stability-frame
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2.6.2 Kinematic Equations

The inertial translational positions (Xs, Ys, Zs) of an aircraft referenced at the eg 

are obtained by relating the stability-frame translational velocities to the inertial 

velocities by the appropriate transformation matrix. This calculation is accomplished by 

the Euler angle (0S, 9S, ips) transformation as

/IV
l = Cl / s \ v s \ (2.61)

or

Xs =  (cos 9S cos ips)us +  ( -  cos (f)s sin ips +  sin 0 s sin 9S cos ips)vs 

Ys = (cos 9S sin ips)us + (cos $ s cos xps +  sin 0 S sin 9S sin ips)vs (2.62)

Zs =  ( -  sin 9s)us + (sin 4>s cos 9s)vs 

Alternatively, the same task is accomplished by applying an intermediate transformation 

between stability-body frames (aerodynamic angles a) and then body-inertial frames 

(Euler angles (pb, 9b and tpb) as

(XS)
rUsi

Ys ' ~  Cl/b^b/s \VS (2.63)

3s;

or, in an expanded form 

Xs = (cos a cos 9b cos tf)b + sin a (sin <j!>b sin ipb + cos sin 9b cos ̂ b ))us 

+ (— cos (})b sin ipb + sin <f)b sin 9b cos rpb)vs 

Ys = (cos a cos 9b sin x})b + sin a (— sin (f>b cos ipb + cos <f)b sin 9b sin ̂ b ))u s 

-I- (cos (f>b cos tj)b + sin (f>b sin 9b sin ipb)vs 

Zs = ( -  cos a sin 9b + sin a  cos (f)b cos 9b)us + (sin (f)b cos 9b)vs

(2.64)
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The orientation of the stability-frame can be described relative to an inertial-frame 

by a sequence of Euler rotations, as discussed in Section 2.3.3. The Euler angle rates (0S, 

4 )  can be resolved into components relative to the body-fixed angular velocities. 

Hence, the three Euler body rotation relationships are

(ps = ps + (tan 9S sin $ s ) q s + (tan 9S cos <ps )rs 

9S = (cos <\)s )q s -  (sin (ps )rs (2.65)

ips =  (sin <ps /cos 9S ) q s + (cos (ps /cos 9S )rs 

Here, the complete motion of an aircraft is described by the two body linear 

translational velocities and one aerodynamic angle (us, vs, a) and the three body angular 

velocities (ps, qs , rs). However, to track the path and orientation of the aircraft, three 

inertial linear positions (Xs, Ys, Zs) and three angular attitudes (0S, 9S, xps) are used. 

Therefore, the complete state vector of a nonlinear aircraft model for the stability-frame 

at the eg is

xs =  [us vs a (ps 9S ips ps qs rs Xs Ys ZS]T
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2.7 Wind-Frame Equations of Motion

The wind-frame also is a special aircraft-carried frame that is referenced at the 

aircraft center of gravity, as shown in Figure 2.1. The wind-frame undergoes a two 

rotation sequence: a left-handed rotation a  about the body yfc-axis, followed by a right- 

handed rotation /? about the stability zs-axis. Further, the wind-frame experiences an 

angular velocity of —a  with respect to the body-frame xby bzb, and an angular velocity of 

/? with respect to stability-frame xsyszs. The sideslip angle derivative /? can be obtained 

by direct differentiation and manipulation of Equation (2.2).

. _  (u l  +  w l)v b -  vbubu b -  vbwbwb
r 7 ? ?\ I—?-----? (2.66)(u§ + v£ + w § y u £  +  wb 

More discussion of this frame was provided in Section 2.2.4. Table 2.4 lists vector and

matrix components that are used in the derivation of equations of motion in the wind-

frame of reference. Note the velocity vector lies on the xw-axis, thus the yw and zw 

velocity components are zero (vw =  0, ww — 0) and the xw component is the aircraft 

total velocity (uw = VT).

2.7.1 Kinetic Equations

The derivation here is exactly similar to that found in Section 2.6. Therefore, the 

linear acceleration vector in the wind-frame xwywzw can now be expressed explicitly as

1
Vw = -&w/bvw -  ftwVw + — EFW (2.67)

The angular velocity of the wind-frame with respect to the body-frame is

M w/b =  “ w /s  +  Ms/b  ( 2 .6 8 )

where both 0 )w/ s  and Ois/b must be described in the wind-frame. Thus
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(°1
0

<*>w/b =  }0 "h C\v/s —a
Ip) . 0 .

(2.69)

or

'- a s in /T  
Ww/b =  ‘ ~ ^ C0SP '

P

Substitute and expand to get three scalar linear accelerations equations.

“ w =  0 ( - c o s a c o s / ? s i n 0b +  sin /?  sin</>b c o s 0 b +  sin  a  c o s /? co s  4>b co s  0 b) H— Fxwm ’

(2.70)

a ;Rw +cos/?  uw COS/?
(s in  a  sin  9b + cos a  cos <f>b cos 0b)  +

muvv cos/? 1 z , w

(2.71)
/? =  - r w +  —  (c o s  a  sin  /? sin  9b + cos /? sin  <pb c o s  0 b -  sin  a  sin  /? cos (pb cos 9b)

u,

m u u 1 y , w

If the transformation Cw// is used instead of Cw/sCs/ bCb/j for the gravity terms, then 

Equation (2.71) becomes

— ^  (sin 0W) + ^  Et,w

1 0
“ = + „ (cos cos ^  + cos p uw cos p

S' iP = - r w +  —  (sin 4>w cos 0W) +  E

m uw cos /? 1 Z,W (2.72)

y,w

Similarly, the moment equation represented by Equation (2.36) is rewritten here 

in the wind-frame xwywzw using a similar derivation as in Section 2.6.

<*>w = ~ n w/ bttiw +  ]w1(—n wJw(*)w +  ]£MW) (2.73)

Substitute and expand to get three scalar angular accelerations equations.
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Pw = (rwdcos P + qwP)

+  - £ * [ kT{Oyy ~  lzz)(lwrw + lyZ( q i  ~  r*) + ( l ” qw -  I?yrw)pw + Lw]

+ ^{Ozz -  lxx)Pwrw + IxzOw -  p i)  + Oxyrw ~ lyzPw)qW + Mw]

+ k%{(l?x -  lyy)pwqw + I?y(pl -  q i)  + (lyZpw -  I£qw)rw + Nw}\

qw = ( - rwa sin p - p wp)

+ -J w ik2 {{lyy ~  lzz)qwrw + ly z iq i  ~  »£) + Oxzqw -  Ixyrw)Pw +  M  

+ -  lxx)pwrw + -  p i )  +  {jxyrw -  lyzPw)qw +  Mw)

+ k z iO x x  -  Iyy )p wqw + Ixy(.Pi ~  qD  + OyzPw ~  I?zQw)rw + Ww}]

Av = Cqw<* sin p -  pwa cos p)

+ -^w [k3{(lyy -  lzz)qWrw +  lyz(.qi ~  ri )  +  OxzPw ~ !xyrw)Pw + kw) 

+ ks{(I?z -  lxx)Pwrw + I£(r* -  p i)  + (lxyrw -  lyZpw)qw + Mw)

+ K {(l?x -  lyy)pwqw + lxy(pl ~ q i)  + (ly2PW ~ IxzRw)^ + Nw}}

(2.74)
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Table 2.4 Vector and matrix definitions for wind-frame

Force. Moment and Gravity:

(Fx ,w Lw O'
Z^w = j Fy.w ' L Cw//tng, Z^w Mw ■. 8 = 0

\Fz,w, u v j g.

Linear Velocity and Angular Velocity:

fu w ( =  F r)l (Pwj 7- a  sin /? ' (Xw)
vw = I 0 - a  cos/? , r  = rw =  j Yw

1 0 lr w J I ft ,

Cross-Product Matrix:

<*V x  ( 0  — Q w O ) —

0
rw

—Qw

x (<*)w x (■)) — Q w (■) —

Ww/i x (') = &w/b(') ~

Inertia Matrix:

J w — Cv/bJfcCv/b — Cw /s Cs/b Jft Cs jY, Cw js —

rw Qw '
0 --Vw ( 0

Vw 0

0 rw
= rw 0

■—Rw Vw
0 -1S
0 0

COS0 - a  sin /?

Qw ' 2

~Vw 0 )
0 .

—a cos/?

a s  in /?
B 0

I?x rwlxy
~I?y JW

lyy
~ I& —l w 1yz

(0

- f l  lxz 
 rw

TW
lzz

J w * w
( f t )

rw rw 
ly y lzz
JW TW I /W  rW f W  f W
ly z lxz ~r  lx y lzz lz z lxx \ lxz

TW r w  i JW TW
‘y z ‘xz  > lx y lzz

rw t w  » rw rw 
lx y lyz  ~  lx z lyy
t w  r w  I rw rw 
lx y lxz  ■ ly z lxx

1 k ?
k? k% fe5w
k% k%rw rw I /w /W jw jw t jw jw jw jW _  f  jw V

U x y iyz  “r  lx z lyy  lx y lxz  “  ly z lxx lx x ly y  V x y J
j ?\ w —  jw ]W  IW  __ 9 rw rw jw _  jw ( tw \  _  jw fjW'S 2 __ rw/'rw V

u  lx x ly y lzz Clx y ly z lxz lx x \ ly z )  ly y \ lx z ) lz z \ lxy )

Ixx =  Oxx co s2 a  +  /zz sin 2 a  -  /®z sin 2 a )  co s2 /? +  Iyy sin2 0  -  (/*y cos a  +  /yz sin a )  sin  2/?

^yy =  (l*x c ° s 2 a  +  7ZZ sin 2 a  -  /*z sin 2 a )  sin 2 0 + Iyy co s2 0  +  ( /zy cos a  +  7yz sin a )  sin  20

lzz =  Ixx sin2 a  +  tjz co s2 a  +  lxz sin 2 a  

^  = cos2 a + sin2 a -  Izz s*n -  sin ̂  + cos a + ŷz s*n a ) cos ̂
=  Q(7*z -  Izz) s 'n 2a +  lxz cos 2a j  cos /? +  ( /yz cos a -  7zy sin a) sin 0

1 yz =  ( /yz cos a -  Ixy sin  a) cos /? -  QC/** -  Izz) sin  2a +  7ZZ cos 2a j  sin  /?

where 7^ , 7^,, denote moments o f  inertia and 7£J,, /^ ,  /)£ denote products o f  inertia for the

wind-frame
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2.7.2 Kinematic Equations

The inertial translational positions (Xw, Yw, Zw) of an aircraft referenced at the eg 

are obtained by relating the wind-frame translational velocities to the inertial velocities 

by the appropriate transformation matrix. This is accomplished by the Euler angle (</>w, 

6W, xpw) transformation as

Alternatively, the same task is accomplished by using an intermediate transformation 

between wind-body frames (aerodynamic angles a  and /?) and then body-inertial frames 

(Euler angles (pb, Qb and xpb) as

(2.75)

or

Xw =  (cos dw cos xpw)uw 

Yw =  (cos 6W sin xpw)uw (2.76)

— (  s in  0 W)

(2.77)

or in an expanded form 

Xw = (cos a cos /? cos Qb cos xpb + sin /3 ( -  cos sin + sin 4>b sin Bb cos xpb)

+ sin a cos p (sin <pb sin xl)b + cos (f>b sin db cos xjjb))uw

Yw = (cos a cos P cos Qb sin xpb + sin p  (cos (pb cos xpb + sin 4>b sin Qb sin xpb) (2.78)

+ sin a cos p ( -  sin <pb cos xpb + cos (f)b sin 6b sin xpb))uw

Zw = (— cos a cos p sin 6b + sin /? sin <pb cos 9b 4- sin a cos /? cos <pb cos db)uw
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The orientation of the wind-frame can be described relative to an inertial-frame by 

a sequence of Euler rotations, as discussed in Section 2.3.4. The Euler angle rates (<pw, 

8W, xpw) can be resolved into components relative to the body-fixed angular velocities. 

Hence, the three Euler body rotation relationships are

=  Pw +  (tan Qw sin <pw )qw + (tan dw cos 0 W )rw 

9W =  (cos 0 W )qw -  (sin 0 W )rw (2.79)

xjjw =  (sin (f)w /cos 6W )qw +  (cos cf)w /cos 9W )rw 

Here, the complete motion of an aircraft is described by the single body linear 

translational velocity and two aerodynamic angles (uw, a, /?), and the three body angular 

velocities (pw, qw, rw). However, to track the path and the orientation of the aircraft, 

three inertial linear positions (Xw, Yw, Zw) and three angular attitudes (0W, 9W, ipw) are 

used. Therefore, the complete state vector of a nonlinear aircraft model for the wind- 

frame at the eg is

xw =  [uw a (3 (pw 9W xpw pw qw rw Xw Yw ZW]T
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CHAPTER 3 

THEORY OF NONLINEARITY INDEX

3.1 Introduction

One way to systematically assess an aircraft’s nonlinearity is to apply nonlinear 

index theory [27]. Consider a general time-varying nonlinear state-space system with 

input and initial condition excitation as [36]

x =  f ( t,x ,u )

y =  g (t,x ,u ) (3.1)

x(t0) = x 0

where x e  31” , u 6 31p, y € 91m denote the state vector, the input vector, and the output 

vector, respectively. The system nonlinearities are denoted by f e 91” and g e  3tm. Note 

that the nonlinear aircraft dynamic model considered previously in Chapter 2 lies within 

this general class of systems.

A time-varying linear state-space model can be obtained by applying the Taylor 

series expansion to Equation (3.1), yielding

8x = A(t)Sx  +  B(t)Su

Sy = C(t)Sx  +  D(t)Su  (3.2)

Sx(t0) =  8x0

where A (t) 6 91nxn, B(t)  £ 91nxp, C(t) 6 9lmx”, D(t) E 5Rmxp denote the state 

dynamic, input distribution, output distribution, and direct input-output matrices, 

respectively. Matrices A(t), B(t), C(t), and D(t) are the Jacobians or first partial 

derivatives of functions f and g with respect to the variables x and u, and are evaluated at
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the equilibrium reference state x0. Another linear state-space model is obtained at the full 

or deviated reference state x 0, where x0 = x 0 +  8 x0 and 8 x0 is a bounded deviation 

about the equilibrium reference with ||<Sx0|| <  5xmax.

8x = A(t)8x  + B(t)8u

8y = C(t)8x + D(t)8u  (3.3)

8x(t0) = 8x0

3.2 Static Nonlinearity Index

The generalized static nonlinearity indices used to measure the strength of the 

system nonlinearity are

V f(t,t0) =  SUP

||5xo||<5xmax 11^4(011

1 1 5 ( 0 - 5 ( 0 1 1
||5xfl||<5xmax 115(011

(3.4)
c , .  . N | | C ( 0 - C ( 0 I I

vs ( T t0) =  sup<5xol|sSxmax 115(011

115(0-5(011
v f ( t , t 0) =  sup ------= — -----

H5*oll<5xmax 115(011

where v / ,  v®, v f , y f  are the static state, static input, static output, and static direct 

nonlinearity indices. These four indices capture the deviation of matrices A, B, C, and D 

across the subregion of equilibrium condition variation relative to the nominal matrices 

A, B, C, and D associated with the center point of this subregion [23], These deviations 

give a measure of the nonlinearity strength of the dynamic model, and also indicate the 

source of the nonlinearity. The static indices v /  and v f address the nonlinearities 

associated with initial condition excitation, whereas the static indices v f and v f  address
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the nonlinearities associated with input excitation. Note that, since the linear model is 

time-varying, the indices are also time-varying.

3.3 Dynamic Nonlinearity Index

In order to account for the dynamic deviation of the system, the state transition 

matrix of the linear system is utilized. Define the generalized dynamic nonlinearity 

indices as

X f . .  | | < D ( t , T ) - $ ( t , T ) | |
v d ( t , T )  =  SUp -------- j .= 7 I .... V.i---------

||5xo||s5xmax T )||

| |d > ( t ,T ) f i(T )  -  d > ( t ,t ) B ( t ) | |

V d ^ ' T  ̂ I , j ! max ||4 > (t , t ) B ( t ) | |

v ? ( t ,  t )  =  s u p

(3.5)
y ( t  ,  _  H c c q o c ^ t )  -  C ( t ) d > ( t .T ) l

d ( , T )  iJS x n ,.. l|C(t)®(t.r)ll

y / u  _  l l £ ( t ) d > ( t , -  C ( t ) d > ( t ,T ) g ( r ) l l

V“ ( , X >  | | C ( t ) $ ( t , T ) S ( T ) | |

where v%, v£, v^, v yJ u are the dynamic state, dynamic input, dynamic output, and 

dynamic input-output nonlinearity indices, respectively. Matrices r)  and t )  are 

the transition matrices for A(t)  and A(t)  evaluated at x0 = x 0 +  <5x0 and x0, 

respectively. The four dynamic indices capture the deviation of the four main system 

transmission paths across the local subregion of the operating point (the term operating 

point is considered here rather than initial condition). The four main system transmission 

paths are state-to-state, input-to-state, state-to-output, and input-to-output. Similar to the 

static indices, the dynamic indices are used to measure the strength and indicate the 

source of the nonlinearity.



3.4 Parametrized Nonlinearity Index

The previous development is for a single point index analysis at x0. To perform 

index analysis across multiple points, for example within the traditional speed-altitude 

flight envelope [27] or within the new aerodynamic attitude flight envelope in Chapters 4 

and 5, the indices must be parameterized. Parameter vector A(t) is introduced to extend 

the concept of the generalized nonlinearity index to a parameterized full-envelope aircraft 

model. The parameter vector, which is measurable and bounded but may be unknown, is 

defined to capture the system nonlinearity and can incorporate time-varying 

characteristics indirectly. Depending on the linearization point x0 or x0, the nonlinear 

governing equations of the aircraft model can be approximated by a time invariant but 

linear parameter-varying (LPV) system as

<5x(t)' ~ i ( m )  B ( x ( o y 'tfx(t)'
Xy(t). c ( x ( t ) j  S ( x ( o y

Sx(t„) =  6x0

or

<5x(t)l _ A ( m ) r 5x(t)
.<5y(t)J c ( m ) D ( m ) . U u(t).

8x(to) =  8x0

The advantages and disadvantages of different LPV  methods are discussed in [37]. 

The most common linearization technique, which is the Jacobian linearization, is 

implemented in this work to generate the linear approximation model of a high-fidelity 

aircraft model. The Jacobian method uses the first-dimensional derivatives of the 

nonlinear state-space model to generate the LPV model at different equilibrium points. 

Depending on the nature of the motion and the LPV envelope size, scheduling parameters



such as the angle of attack, sideslip angle, altitude, and/or Mach number are selected. 

Then the variation of the Jacobians is modeled as functions of one or more scheduling 

parameters. This process gives a set of linear systems over these equilibrium points 

approximating the nonlinear dynamics model.

Following Reference [27], in this dissertation, the varying parameter vector 

^  =  K  PoY is considered to represent the asymmetric level rectilinear attack-sideslip 

angle flight envelope. The linear system matrices C and D are not considered here. Four 

parameterized indices in terms of the varying parameter vector A are utilized to measure 

the nonlinearity strength: two static and two dynamic indices. Using nominal points 

denoted by A, and perturbed points denoted by A*, the relevant nonlinearity indices from 

Equations (3.4) and (3.5) are

where v /, v f , v£, are the static state, static input, dynamic state, and dynamic input 

nonlinearity indices at operating condition Ay = [«oy PajY, respectively, and N is the 

total number of points in the perturbation subregion.

(3.8)

| | < J > * ( t , A * ) - < J > y ( t , A y ) | |

(3.9)

v £ ( t , A y )  =  S U p
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These proposed nonlinearity indices capture the maximum deviation between the 

nominal linear model {Aj(Xj), Bj(A,)} and any generated linear model {^4j(Aj), B;(A()} at 

point Ai =  [a0£ PoiY within the perturbation subregion. The static state nonlinearity 

index v /  measures the variation of the state dynamics matrix within the subregion, 

whereas v% measures the variation of the time propagation of the state signal. Over the 

subregion, both nonlinearity indices v f and measure similar effects associated with 

the input signal.
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CHAPTER 4 

AERODYNAMIC ATTITUDE FLIGHT ENVELOPE

4.1 Introduction

The traditional symmetric level speed-altitude envelope is commonly used to 

describe the operational range of an aircraft. A new nontraditional envelope is developed 

to assist, in conjunction with the traditional envelope, efforts regarding design 

requirement specification and satisfication, dynamic analysis over differing flight phases, 

control synthesis using scheduling principles, or comparison of capabilities of different 

airframes. An extension of the speed-altitude envelope concept is the asymmetric level 

aerodynamic attitude envelope, which describes the extent of where the airplane can 

sustain a slipping horizontal flight condition. This envelope is presented as the angle of 

attack vs. sideslip angle region where the indicated condition is possible. Fundamentally, 

this region describes the asymmetric trimability, control power authority, and poststall 

domain of an aircraft, and thus it can be utilized in similar ways to the traditional flight 

envelope. The angle of attack vs. sideslip angle flight envelope, which shall be referred to 

as the a  — P flight envelope, can be constructed for any altitude, but is restricted to sea 

level altitude in this dissertation. The main factors which determine the size of the a — (3 

flight envelope are aerodynamics, propulsion, structural dynamics, atmospheric 

conditions, and control surface deflections.



4.2 Envelope Development Methodology

The a -  (3 flight envelope can be developed by searching for an equilibrium 

solution vector to the nonlinear equations of motion of an aircraft. The derivation of the 

twelve equations of motion of an aircraft was covered thoroughly in Chapter 2. Equations 

(2.45) and (2.48)-(2.50) are the common 6-DOF nonlinear equations of motion for a body 

referenced at the center of gravity. Additionally, inertial symmetry about the x bz b plane 

is assumed, so I%y = lyz =  0. These equations are repeated here and numbered 

individually.

1
ub = rbvb -  qbwb -  g  sin 9b +  — Fx b (4.1)

vb -  —rbub +  pbwb -  g  sin (f)b cos 6b + — Fy b
m  '

1
wb = Rbub ~  pbvb -  g  cos<pb cosQb + — Fzb

(4.2)

(4.3)

Pb ~  (  b b f  b \ 2 )  ^ z z ) clb rb T  ^xzPbRb  T  ^ b ]
v x a t ^ z z  —  \ J x z )  /

T  I x z { Q x x  ~  l y y ' j P b Q b  ~  I x z R b r b  +  ^ i > } ]

(4.4)

(4.5)

[^xz{Q yy  ^ z z j ^ b ^  +  IxzPbQb  +  ^ b ]
(4.6)

+  I x x iO x x  -  Iyy)PbQ b ~  +  A lb } ]

sin 9b cos (pb
cos 6b

(4.7)

6b =  (cos <pb )qb -  (sin (f)b )rb (4.8)
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Xb =  (cos 9b cos ipb)ub + ( -  cos <f)b sin 0 ft + sin 0 6 sin 0b cos xpb)v b
(4.10)

+ (sin (f)b sin ifjb +  cos 0 b sin db cos ipb)wb 

Yb =  (cos 9b sin ipb)u b +  (cos 0 b cos ipb +  sin <f>b sin 9b sin xp)vb
(4.11)

+ ( -  sin (f)b cos ipb +  cos 0 b sin 9b sin ipb)wb 

%b =  (~  sin Qb)ub +  (sin 0b cos db)vb +  (cos 0b cos 0b)wb (4-12)

These equations of motion are in a derivative decoupled form, since each derivative state 

is expressed explicitly in terms of only the state variables and inputs. Therefore, these 

motion equations are representable as

x b =  f(x b,u)

= [ub vb wb pb qb rb 0 b 9b 0 b Xb Yb Zb]T (4.13)

u  = [S1 S2 -  Svf

where x b denotes the 12-dimensional state vector, u denotes the p-dimensional input

vector, and f(x b, u) denotes the nonlinear coupled function representing the 12-

dimensional state vector derivative.

Equations (4.10)-(4.12) are called the inertial position equations or navigation 

equations, and their solution depends on the solution of Equations (4.1)-(4.9), but not 

vice versa, assuming constant gravity and ignoring the weak coupling path of air density 

on altitude. Thus, Equations (4.10)-(4.12) are not retained for flight envelope 

calculations. All nine state variables in Equations (4.1)-(4.9) are necessary in order to 

describe the aircraft motion; however, neither these equations nor the forces and 

moments depend explicitly on the yaw angle xpb. Hence, the first eight equations are
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sufficient to completely describe the aircraft motion and thus Equation (4.9) is also 

discarded from further envelope considerations. For the purpose of this work, it is 

convenient to replace the translational velocities ub, vb, wb by the total velocity and 

angle of attack and sideslip angle: VT, a, p. The relationship between the rectangular 

coordinates ub, v b, wb and the spherical coordinates VT, a, ft is defined as 

ub = VT cos a  cos/? a  =  ta n -1 (w,b/iq,)

vb = VT sinp  P = sin^iVh/V-r)  (4.14)

wb = VT sin a  cos p VT = (uj + v b + wb) 1/2

To achieve equilibrium, the motion should involve no translational and rotational 

accelerations. Mathematically speaking, all state derivatives appearing in Equations (4.1)-

(4.8) should be identically zero or iib = vb =  wb =  pb =  qb = rb = (j)b =  Qb =  0. The 

motion type considered when developing the a  -  p  flight envelope is asymmetric level 

rectilinear flight, where the body angular rates are also identically zero or pb =  qb = 

rb =  0. Consequently, Equations (4.7) and (4.8) are trivially satisfied leaving only (4.1)-

(4.6) in algebraic form. Because the aircraft orientation described with angles <pb, 9b, xpb 

and with angles x-> Y? P are not independent, where x  denotes heading angle, y  

denotes flight-path angle, and a  denotes aerodynamic bank angle, constraints between 

angles (f)b, Qb, a, P must be properly accounted for. The extra required constraint 

equation is

sin y  =  (cos a cos /?) sin 6b -  (sin sin /? + cos (f)b sin a  cos /?) cos 9b (4.15) 

This equation is sometimes called the rate-of-climb constraint equation [33] where y =  0 

for the a — p  envelope consideration. Therefore, the 7 algebraic equations (6 motion 

equations and 1 constraint equation) relevant to the a  — P envelope consideration are



(cos a  cos /?) sin 9b -  (sin (f)b sin p  +  cos 0 b sin a  cos ft) cos 0b = 0 (4.22)

Note the nongravitational applied loads have been expanded in terms of aerodynamic 

force and moment coefficients and a propulsion thrust force along the xb-axis. These 

equations are representable as

g(z) =  0
(4.23)

z = [VT a p  (f>b 9b 8t S2 -  5PY  

The high-performance aircraft (F-16) model studied here was developed in low- 

speed wind-tunnel facilities by the NASA Langley Research Center in 1979 [30]. The 

model data covers structural, aerodynamic, and propulsive characteristics. The study 

focuses on constant mass and inertia, however, the location of the center of mass is 

variable allowing different configurations to be investigated. The model represents 

aerodynamic and propulsive data in the form of approximately 50 look-up tables 

corresponding to a wide range of angle of attack a, sideslip angle p, throttle deflection 

Sth, and control surface deflections (8h, 8a, and 8r). Aerodynamic data includes stall and
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poststall conditions and propulsive data covers a wide range of altitude H and Mach 

number M conditions. A static engine is considered here. These data sets represent 

embedded nonlinearities inside the aerodynamic and propulsive coefficients. Although 

this model has 6 control inputs (p = 6): 8h, 8a, 8r , 8th, 8tef ,  8sb; the leading-edge-flap 

and speed-brake inputs are set to zero (8ief  =  0, 8sb = 0).

With this, Equation (4.23) represents 7 equations in 9 variables. Trim solutions 

are computed by specifying 2 excess variables and solving for the remaining 7 unknowns. 

Two formulations are used and include

g(z) =  0 (4,24)

where

z = [a p  db 8h 8a 8r 8th]T, Specified VT, (pb (4.25)

or

z =  [VT <pb 0b 8h 8a Sr 8th]T, Specified a, p  (4.26)

A trim point on the a — P envelope boundary occurs when an explicit or implicit limit is 

reached. Explicit limits correspond to control input saturation or dynamic pressure 

restrictions, and for the F-16 model, these limits correspond to

-25° < 8 h < +25°

-21.5° < 8 a < +21.5°

-30° < 8 r < +30° (4.27)

0 <  8th <  1 

q <  2750 lb/ft2

Implicit limits correspond to stall and correlate to an inability o f the iteration solver to 

converge.
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4.3 Full-Envelope Results

The a  -  (S flight envelope of the high-fidelity F-16 aircraft model is shown in 

Figure 4.1. This aircraft is very versatile and can sustain equilibrium conditions at both a 

high angle of attack and sideslip, as shown. Initial expectation was that the a  -  /? flight 

envelope should be symmetric due to the symmetry of the aircraft, but the envelope 

shows distinct behavior at positive and negative /?. At positive angles of attack, the F-16 

(or its model) has enhanced ability to maintain equilibrium flight with large negative 

sideslip angles and a much lesser ability for positive sideslip, whereas the aircraft can 

maintain large positive sideslip angles with negative angles of attack but no 

corresponding region for negative sideslip. Another unusual and unanticipated 

characteristic of the a — (S envelope in Figure 4.1 is the jagged, non-smooth nature of the 

boundary curve in certain regions. For attack angles above +20° and below —10°, the 

boundary curve can be quite erratic. The asymmetry trait can be traced to the fact that 

some of the F-16 model aerodynamic look-up tables are nonsymmetric, possibly 

originating from an imperfect wind-tunnel test model or measurement error during test. 

The non-smooth trait can be traced to the fact that although some of the F-16 model 

aerodynamic look-up tables are relatively flat in the poststall regions, they also feature 

highly wrinkled curves or surfaces.

Control surfaces, indicated for positive fS in Figure 4.1, are the dominant factors 

limiting the aircraft from trimming beyond the boundary. For example, at a =  — 5° and 

positive IS, the limiting factor is the rudder, i.e., the rudder has reached its maximum 

deflection capability Sr =  30°. As a  increases, the boundary curve rides the Sr limit until 

the transition point (a, /?)=(20.63°, 20.60°) is reached, at which the rudder and aileron



limits (6a =  21.5°, 8r = 30°) are simultaneously active. For further increases in a, the 

boundary curve rides the 8a limit until another transition point is reached. An 

unexpectedly large number of transitions between the various limiting control surfaces is 

noted in Figure 4.1. This behavior is also likely due to the flat but wrinkled look-up data 

in the poststall regions. Stall as a limiting factor is reached at very high angles of attack 

where a > 53°, and the variation of withstanding /? is minimum, as indicated in 

Figure 4.2. An interesting phenomenon is happening between a  =  54° and 55° , where 

there exists a very narrow passage where the airplane almost cannot fly in a straight 

horizontal equilibrium path with a non-zero sideslip angle. The plot of the narrow 

passage is shown in the right lower comer of Figure 4.2.

In the speed-altitude flight envelope and near sea level altitude [27], the 

maximum dynamic pressure an aircraft can tolerate is reached at high supersonic speed. 

The analogy of this dynamic pressure limitation in the a  — (3 flight envelope is shown as 

a hole in the middle of Figure 4.1, which is better seen in Figure 4.3. The hole boundary 

represents an ellipse-shaped curve with constant velocity since all calculations are 

performed at sea level. The interior region of this hole represents trimmed flight that is to 

be intentionally avoided. It is expected that the F-16 might suffer structural damage if 

flown for extended periods inside the hole. To maintain equilibrium flight at any location 

on the dynamic pressure limited boundary, the velocity is unique, but the (a, /?) pairs are 

distinct.
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4.4 Aerodynamic Coefficient Asymmetry

Initial expectation was that the angle of attack vs. the sideslip angle flight 

envelope would be symmetric due to the symmetry of the aircraft, but the envelope 

showed distinct behavior at both positive and negative sideslip. The original or non-ideal 

aircraft aerodynamic model from [30] resulted in a strong irregular a — /? envelope shape 

and unusual characteristics such as jagged and non-smooth boundary curves in certain 

regions. The resulting envelope is shown in Figures 4.1-4.3. This aerodynamic model 

data exhibits asymmetric and offset behavior in the force and moment coefficients with 

larger variations for side force, roll moment, and yaw moment coefficients. This behavior 

is likely due to a combination of factors including experimental measurement error,
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model fabrication imperfection, and vortex-dominated flow. The existence and 

interaction of the vortex-dominated flow with various aircraft surfaces affects all 

aerodynamic force and moment coefficients and causes asymmetry and offset. At a low 

angle of attack and a zero sideslip angle, the vortices emanating from the aircraft nose tip 

are symmetric. As a  is increased, one vortex dominates the other and a vortex pattern or 

vortex-dominated flow is established. This pattern creates different pressures on both 

sides of the nose, and hence significant lateral net force and moment are produced. 

Combinations of high a  and /? complicate numerical and experimental prediction of the 

aerodynamics coefficients, where the same wind-tunnel aircraft model could produce 

different results at each run under the exact same conditions [4].

To explain and locate the sources that cause asymmetry in the a  — (3 flight 

envelope, two test points at the same angle of attack but different in sign for sideslip 

angle, (a1 = +21°, f$x = —18°) and (a 2 =  +21°, /?2 = +18°), are examined to provide 

insight into the asymmetry sources. In the vicinity of these points, there is a distinct 

asymmetry in the envelope boundary (see Figure 4.4). The trimming solutions for both 

points, as well as the total aerodynamic force and moment coefficients, are shown in 

Tables 4.1 and 4.2. It is expected, based on aircraft symmetry, that the aircraft will have 

similar trimming solution magnitudes for both points, in addition to similar total 

aerodynamic force and moment coefficients. Trim values for the two points in Table 4.1 

are approximately equal but are not exact in magnitude with two significant anomalies. 

The aircraft requires 30% more aileron control surface deflection for =  +18° 

compared to /?x =  —18° and 60% more rudder control surface deflection. Also, the total 

coefficient values for the two points in Table 4.2 are approximately equal in magnitude
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but not exact. Although the aileron and rudder related terms appear in the total side force, 

total rolling moment, and total yawing moment coefficients, only the yawing moment 

term is considered further.

The total aerodynamic force or moment coefficient is the sum of various 

aerodynamic contributions. Equation (4.28) shows the total yawing moment coefficient 

CnT and each contributing low-level aerodynamic look-up derivative term. The majority 

of the aerodynamic model data in Reference [30] is represented similarly in look-up 

tables and are functions of the independent variables a  and /?. The numerical values for 

the derivative terms are presented in Table 4.3 at a = +21°. This table indicates 

variations in the aerodynamic yawing moment coefficient derivatives depending on the 

sign of /?. Further, the variations are larger in the derivative terms due to rudder and 

aileron control surfaces (see Table 4.3). At fix =  -18°, the aerodynamic derivative due to 

rudder is twice the magnitude at /?2 =  +18°, which explains why less rudder deflection is 

needed for /Sj =  —18°, as seen in Table 4.1. A similar observation can be made regarding 

the aerodynamic derivative due to the aileron. These variations in the aerodynamic 

derivative data tables explain the origin of the strong asymmetrical a  — /? flight envelope 

shape. Similar asymmetry in the aerodynamic axial force, side force, normal force, 

rolling moment, and pitching moment derivative data tables is also observed. Overall, the 

aerodynamic axial force, normal force, and pitching moment derivative data tables show 

lesser degree of variations.
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Table 4.1 Trimmed solution at a = +21°, original data

p -1 8 °  +18°
VT 205.91 f t / s  202.44 f t / s
4>b -10.9660 10.1808
0b 23.8962 23.7177
Sh -8 .2649 -7 .8641
8a 14.2629 -18.4458
Sr -14 .6759 24.3861
8th 0.4655 0.4603

Table 4.2 Total aerodynamic force and moment coefficients at a  =  +21°, original data

P
O

-1 8 +18°
r xbT 0.0247 0.0269
r
uy&r 0.2359 -0 .2271
r

ZbT -1 .2172 -1.2643
ClT -5 .9821  x 10~9 2.3710 x  10~8

CmT 1.4918 x 10- 7 3.2448 x 10~7

CnT -1 .0005  x 10“ 7 1.7503 x 10“ 8

Table 4.3 Aerodynamic derivatives at a = +21°, original data

-1 8 +18

C ^ \ a , p ,  5 „)

AC, ■ 4 - t )

{■

ACn,r(a,/?) (3Q)

+ ^ n SaSlef{a'P)

25 J ) \20J

CybT{xcmR ~ Xcm)

Total aerodynam ic y a w in g  m om ent, CnT

-0 .0 2 7 7

0.0133

-2 .7925  X 10"6(/?) 

(Sr
-0 .0539

-0 .0107

0.0468

(£ )

©
(bPb\
\ 2 V r J

brb
-°-6584\ 2Kr> 

0.2359(xcmR —

-1.0005 x 10~7

0.0262

- 0 .0 0 8 3

-2 .7925  x  10"60?) 

'Sr
-0 .0259

0.0012

0 .0468

- 0 .6 5 8 4

( I )

( I )

bpb
2 I/’t-

0.2270(xctnR Xcm) ^ j

1.7503 X 10" 8
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4.5 Aerodynamic Coefficient Symmetrization

In an ideal world, the aerodynamic force and moment coefficient magnitudes of 

an ideal model at positive sideslip angles are expected to be identically symmetric with 

their counterparts at negative sideslip angles. Hence, the a — /? flight envelope is 

expected to be symmetric. However, the aerodynamic model in Reference [30] produces 

asymmetric relationships, as seen in Figure 4.1 and Tables 4.1-4.3. To simplify the 

analysis and to provide a clearer understanding and a deeper insight into the fundamental 

relationships, the aerodynamic model from Reference [30] is revisited and modified. The 

asymmetry and offset in the aerodynamic coefficients that are functions of the 

independent variables a  and /? are intentionally removed by data manipulation. This 

adaptation allows the aircraft to have identical slipping to the right and slipping to the left 

flight conditions providing an ideal model that is more suitable for analysis.

The data manipulation involves two steps: step 1 and step 2 symmetrization for 

the aerodynamic force and moment coefficient derivatives. The step 1 symmetrization is 

carried out using the mathematical arithmetic mean or averaging technique. The 

aerodynamic data are represented as two-dimensional look-up tables where the rows 

correspond to angles of attack and the columns correspond to sideslip angles. The 

asymmetric data in Reference [30] along the sideslip angle range are pre-categorized 

according to their symmetry resemblance into three types: 1) even symmetry 

resemblance, 2) odd symmetry resemblance, and 3) neither even nor odd symmetric 

resemblance. Then, averaging for the even symmetry resemblance data is found using the 

following expression:
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[C „T ( - / ? ) ]  avergge =  -  { [C //TC—/? ) ] 0riginal +  original]

(4.29)

[C„T(+ ^ )]average = -  {[C,,r ( - / ?)]original +  [C" r ( + /?)J original}

On the other hand, averaging for the odd symmetry resemblance data is found using the 

following expressions:

[C„ T( - / ? ) ] average =  2 ( “ ^ o r i g i n a l  “  1C" t ^+ ^ \ original}

(4.30)

[C ,,r ( + / ? ) ] average =  “ ^ { ^ " ^ “" ^ o r ig in a l  ”  1C" t ( + P ) ] original}

In Equations (4.29)-(4.30), [c»T( - ^ \ average and [C„r (+/?)]average represent the new

averaged columns of data corresponding to negative and positive /?, whereas, 

[c„r (—/?)]orjginaj and [C„7,(+/?)]origjna1 represent the original columns of data from

Reference [30] corresponding to negative and positive /?. Step 1 data manipulation is a 

standalone process and, using either Equation (4.29) or Equation (4.30), depending on the 

symmetry resemblance, a new set of symmetrized data is introduced and recorded for 

future analysis.

Figure 4.5 shows the original asymmetric and the new symmetrized surface plots 

for the aerodynamic axial force derivative coefficient due to attack angle, sideslip angle,

and horizontal tail, C ^ '6h(a ,p l Sh = 0). For better visualization, section plots at 

different angles of attack are shown in Figure 4.6. The relative change for this derivative 

between the original and new data sets is 2.2% at most. This percentage is small and 

indicates relatively small asymmetry in the original data. However, for other derivatives, 

the percentage approaches 20%, indicating relatively large asymmetry. Figures 4.5 and

4.6 are examples of even symmetry resemblance. Odd symmetry resemblances are shown
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in Figures 4.7 and 4.8 for the aerodynamic rolling moment derivative coefficient due to 

attack angle, sideslip angle, and leading-edge-flap, C *f (a, /?).
°lef

As a further analysis, two test points are used to investigate data asymmetry 

before and after symmetrization. These points are at the same angle of attack but are 

opposite in sign sideslip angles. The second test point (a2 =  +20°, /?2 =  +15°) is an 

equilibrium point whereas the first point (at =  +20°, /?x =  -15°) is not an equilibrium 

point. However, in order to have a symmetric flight attitude, the first test point is forced 

to have exactly the same trimming settings of the second point with different sign for 

aileron and rudder control inputs. The leading-edge-flap control surface deflection, 

speed-brake control surface deflection, and body angular rates are assumed to be zero. 

The flight conditions and control settings for the first test point are: a r =  +20°, (3X = 

-15°, VT1 =  202.732 ft/s, Shl =  -6.8849°, Sai = +10.5393°, <Sr i  =  -29.6584°. The 

second test point has the following settings: a 2 =  +20°, /?2 =  +15°, VT2 =  202.732 ft/s, 

Sh2 =  —6.8849°, Sa2 =  —10.5393°, ST2 =  +29.6584°. These test point values are 

consistent. Table 4.4 compares the total aerodynamic coefficients for the original and the 

step 1 symmetrized data. The original total coefficients are clearly asymmetric in 

magnitude for /? =  +15°, whereas the step 1 symmetrized data show symmetries in 

magnitude for the longitudinal total coefficients only: the axial force, normal force, and 

pitching moment total coefficients. The lateral total coefficients (the side force, rolling 

moment, and yawing moment total coefficients) still exhibit asymmetry. Further 

investigation for the derivative contributions to the total yawing moment coefficient in 

Equation (4.28) is shown in Table 4.5 and only the first two terms are found to be 

symmetric. The step 1 manipulation fixes asymmetry only in the longitudinal



coefficients, and asymmetry in the lateral coefficients that are not related to either the 

rudder or the aileron. Hence, a second step (step 2) manipulation is required to address 

the asymmetry issues in the data related to these control surfaces.

The aileron and rudder surfaces related aerodynamic derivative coefficients 

appear only in the lateral total coefficients. Within these derivatives, in addition to the 

asymmetry, there is an offset in the data. This type of data neither have even nor odd 

symmetric resemblance. Hence, a step 2 symmetrization is introduced to resolve this 

issue. This step is performed instantaneously when needed in the analysis. To clarify, this 

step balances the lateral aerodynamic derivative coefficients related only to aileron and 

rudder control surface deflections between the positive and its opposite negative sideslip 

angle. Further, it is implemented corresponding only to a single pair o f angle of attack 

and sideslip angle values. For instance, if an investigation requires calculating 

coefficients at p% =  (a,/?) where a  and /? are positive, a second hypothetical point 

Vz =  (#. —/?) is assumed. Then, the derivative terms related to aileron and rudder 

surfaces in the total aerodynamic yawing moment coefficient in Equation (4.31), for 

example, are replaced by averaged terms between px and p2, as indicated in Equation
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CnT(y T ’ P> Pb’ b̂> ^h> $ le f’ ^a> (-*r)

= + ACnS|>/( a W  1 - ^ )  + CSt (a-)QS)

+ ACns, (a 'fl)avg ( jp )

nSaSief
° le f
25 , I (I )'avg

C n P b ( « )  +  CnPbSlef(oc) ( l  ^ ) }  ( 2 ^ . )

( l  - ^ Y l  ( ^ ±V 25 V2Kr

CybT^cmR ~ *cm) (g)

+ c „ v « > + c W a)

where

P)avg ~  2 \^ ^ n s r ^a ' ngr (a > "MO j

{ « :„ . .(« , /! )  +  iC ^ J a .0 )  ( l  ) j

= i{ACnSa(a,-/?) + ACn6a(a,+/?)}

(4.31)

(4-32)

+ j  K v f‘  - « + “ W 1' +« )  ̂  -  l r )

Table 4.6 compares the total aerodynamic coefficients for the step 1 and step 1- 

step 2 symmetrized data. As discussed earlier, the total coefficients using the step 1 

symmetrized data are clearly symmetric in magnitude only for the longitudinal 

coefficients for /? =  ±15°, whereas the second step symmetrization produces exact 

symmetry in magnitude for the lateral coefficients (see Table 4.6). Further, the derivative 

contributions to the total yawing moment coefficient in Equation (4.28) are shown in 

Table 4.7, and all the terms are symmetric.
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Table 4.4 Total aerodynamic coefficients at a  = +20 , original vs. step 1

p
Original Data Step 1 Symmetrized Data

0
-1 5

o
+15

0
-15

o
+15

Cx„T 0.0253 0.0277 0.0265 0.0265

CybT 0.1469 -0.1856 0.1435 -0.1669
-1.2334 -1.2851 -1.2593 -1.2593

ClT -0.0054 -5.2 x 10“8 -0.0077 0.0065
CmT -0.0050 1.6 x 10~7 -0.0026 -0.0026
CnT 0.0198 -2.5 x 10~8 0.0255 - 0.0112

Table 4.5 Aerodynamic derivatives at a = +20°, original vs. step 1

P
Original Data Step 1 Symmetrized Data

-15°
o

+15
o

-1 5
o

+15
C^{a,p,Sh) -0 .0309 0.0286 -0 .0297 0.0297

0.0091 -0 .0017 0.0054 -0 .0 0 5 4

- ° -0515( l ) - 0 0 2 9 7 ( l ) —0,0584 ( j g ) - 0 .0 3 6 6 ( 1 )

+a (> -  l r ) l  ( ! ) -o .Q izsd) 00020 ( 1 ) - ° . 0 M 8 ( | ) 00047 ( 1 )
CybT(*cmR ~ *cm) 0.0028 -0 .0035 0.0027 -0 .0031

Total Aerodynamic Rolling Moment, CnT 0.0198 -2 .5  x IQ”8 0.0255 -0 .0112

Table 4.6 Total aerodynamic coefficients at a = +20 , step 1 vs. step 1-2

P
Step 1 Symmetrized Data Step 1-Step 2 Symmetrized Data
-15°

o
+15

o
-15

o
+ 15

^xbT 0.0265 0.0265 0.0265 0.0265

CybT 0.1435 -0.1669 0.1581 -0.1581

CzbT -1.2593 -1.2593 -1.2593 -1.2593

Clr -0.0077 0.0065 -0.0043 0.0043
CmT -0.0026 -0.0026 -0.0026 -0.0026
CnT 0.0255 - 0.0112 0.0123 -0.0123
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Table 4.7 Aerodynamic derivatives at a = +20°, step 1 vs. step 1-2

p
Step 1 Symmetrized Data Step 1-Step 2 Symmetrized Data

-15° +15° -1 5 ° +15°

c f Sh(a,p,Sh) -0 .0297 0.0297 -0 .0297 0.0297

0.0054 -0 .0 0 5 4 0.0054 -0 .0 0 5 4

—0.0584 (4 ) - 0 . 0 3 6 6 ( | ) - 0 . 0 4 1 2 ( | - 0 .0 4 1 2 ( 4 )

- 0 .0 0 9 8 ( 1 ) 00047 (1 ) -0 .0 0 2 1  ( | - 00021( l )
CybT{xmR -  Xcm) 0.0027 -0 .0031 0.0030 -0 .0 0 3 0

Total Aerodynamic Rolling Moment, C„T 0.0255 -0 .0112 0.0123 -0 .0123

4.6 Full-Envelope Results -Ideal Model

The a — /? flight envelope of the high-fidelity F-16 aircraft model is reproduced 

using the ideal aerodynamic model introduced earlier, and is shown in Figure 4.9. This 

aircraft is very versatile and can sustain equilibrium conditions at both high angle of 

attack and sideslip, as shown. As expected from the ideal aerodynamic model, the a — /? 

flight envelope indicates symmetrical slipping in equilibrium flight due to symmetry of 

this model data. The envelope shows similar behavior at positive and negative /?. At a 

positive angle of attack, the F-16 has an enhanced ability to maintain equilibrium flight 

with large sideslip angle at a positive angle of attack and a lesser ability for a negative 

angle of attack. An unusual characteristic of the a  — f$ envelope in Figure 4.9 is the 

jagged, non-smooth nature of the boundary curve in certain regions. For attack angles 

above +20° and below -10°, the boundary curve again can be quite erratic. The non

smooth trait can be traced to the fact that some of the ideal F-16 model aerodynamic 

look-up tables are still relatively flat in the poststall regions but also show highly 

wrinkled curves or surfaces.



Control surfaces, indicated for positive /? in Figure 4.9, are the dominant factors 

limiting the aircraft from trimming beyond the boundary. For example, at a -  -5 °  and 

positive /?, the limiting factor is the rudder, i.e., the rudder has reached its maximum 

deflection capability 8r =  30°. As a  increases, the boundary curve rides the 8r limit until 

the transition point (a, /?)=(20.9071°, 28°) is reached, where the rudder and aileron 

limits (8a =  21.5°, Sr =  30°) are simultaneously active. For further increases in a, the 

boundary curve rides the 8a limit until another transition point is reached. An 

unexpectedly large number of transitions between the various limiting control surfaces is 

noted in Figure 4.9. This behavior is also likely due to the flat but wrinkled look-up data 

in the poststall regions. Stall as a limiting factor is reached at very high angles of attack 

where a > 54.5° and the variation of withstanding /? is minimum, as indicated in 

Figure 4.10. An interesting phenomenon occurs between a = 54° and 55° where there 

exists a very narrow passage where the airplane almost cannot fly in equilibrium with 

non-zero sideslip angle. The plot of the narrow passage is shown in the right lower comer 

of Figure 4.10.

In the speed-altitude flight envelope and near sea level altitude [27], the 

maximum dynamic pressure that an aircraft can tolerate is reached at high supersonic 

speed. The analogy of this dynamic pressure limitation in the a  — /? flight envelope is 

again shown as a hole in the middle of Figure 4.9, which is better seen in Figure 4.11. 

The hole boundary represents an ellipse-shaped curve with constant velocity since all 

calculations are performed at sea level. The interior region of this hole represents 

trimmed flight that is to be intentionally avoided. It is expected that the F-16 might suffer 

structural damage if flown for extended periods inside the hole. To maintain equilibrium
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flight at any location on the dynamic pressure limited boundary, the velocity is unique 

but the (a, /?) pairs are distinct.

S ta ir
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a

-10

-20

- 3 0
■V

-40

- 4 0 - 3 0 -20 -10
0 [deg]

Figure 4.9 Ideal a-fi flight envelope -  complete
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Figure 4.10 Ideal a-fi flight envelope - enlarged upper region
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Figure 4.11 Ideal a-fi flight envelope - enlarged middle region
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CHAPTER 5 

NONLINEARITY INDEX ASSESSMENT

5.1 Introduction

Across the a  — /? flight envelope in Figure 5.1, a nominal linear model 

[Aj(Xj),Bj(7ij')} is generated at each prescribed operating condition parameter vector 

Xj = [ttoj Poj]T. At this operating condition, equilibrium states and inputs are obtained 

by solving a set of nonlinear simultaneous equations (Equation (4.24)). Around each 

nominal point j ,  the perturbation subregion is seeded with a set of N = 1 6  points to cover 

this subregion. At each one of these points, another linear model {Ai(Xi),Bi(Xi)} is 

generated at Xt = [aoi /?0l]r . The subregion around the operating condition j  where the 

linear model is applicable is chosen as an ellipse with semi-major axis as 10% of the 

difference between maximum and minimum angle of attack (0 .1a band), and semi-minor 

axis as 10% of the difference between maximum and minimum angle of sideslip 

( 0 . 1 / ? b a n d ) -  Each linear 8 t h  order model for the body-frame coordinate description has the 

form shown in Equation (5.1). Because of flight asymmetry, the lateral-directional 

variables are not zero in the linear model. The propulsive input effect has not been 

considered in the linear model here. The matrices A and B are not defined symbolically 

here, since there are no explicit expressions for the low-level aerodynamic look-up data 

to conclude a general linear model for the purpose of analysis. Instead, A and B are 

developed by numerical finite difference linearization for different operating 

conditions [33]. Since the maximum singular value or matrix two-norm used in the index 

expression is unit dependent and thus potentially susceptible to overestimating



nonlinearity strength, Equation (5.1) is normalized with the diagonal matrix T in 

Equation (5.2) to obtain a normalized linear Equation (5.4) for improved numerical 

conditioning.

x b = Abx b + Bb u

x b =  [A u b Avb A wb A (j)b A6b A pb A qb Arb] (5.1)

u =  [Sh 8a Sr]

The diagonal matrices T and T~x are



The normalized or transformed linear system is

x b = A'bx'b + Bbu 

x'b =  [Au^ Av'b Awb A(pb A B'b Ap'b A q'b Ar^\ 

u =  [5h Sa 5r] 

where x b = T xb, A'b =  TAbT~x, B'b =  TBb.

Stall Limit-

Control Surface Limit

Subregion Around 
Nominal Point

8

Dynamic Pressure Limit-
P e r t u r b e d  P o i n t  i :  

(A^), B^)}
Nominal Point j 
{A ,(U  B I X ) )

P

Figure 5.1 a-fi flight envelope



5.2 Nonlinearity Sub-Index Using Matrix Partitions

Another way to lessen the overestimation of nonlinearity strength based on a 

matrix norm measure is to consider matrix partitions. The nonlinearity index assesses the 

overall variation of linear system matrices Ab and Bb. However, an investigation into Ab 

and Bb components reveals that these matrices can be partitioned into blocks, according 

to the system dynamics. In order to assess the contributed weight of each component in 

the state matrices towards the overall index, matrix Ab is divided into sub-matrix blocks

as

Ah —

X v b * w b

Y ub Y vb yWb
% ub Z » b Z \v b

0 9 cobo
9 c<t>boceb o dS4>b0S9b0
9̂ <t>bô eb0 9̂ <pbô Qbo

0 0 0
0 0 0

0 0
0 0

L Ub L v b L \v b

M u b M v b M Wb

N Ub N v b N Wb

0 0
0 0
0 0

and the transformed matrix A'b is divided as

4  =

* u b X v b * W b
0

9 c e b o

YUb Y v b Y w b
1

v T
9 C<t>b0Ceba d^<t>b0^ s bo

Z Ub Z v b Z W b 9 S<t>b0Ceb0 9 C < t> b o S e b o

0 0 0 
0 0 0

0 0
0 0

bLWb
c M U f)  c M v  b  c M W b  

SNUb bNVb bNWb

0 0
0 0
0 0

4 , X«b Xrb
Vpb n* yrb
^Pb z«b Zrb

1 S*obTo0b C*oJ*ob
o 0 >o6 ~ S<l>Ob

h b L<ib Lrb
Mpb M«b Mrb
Npb N<b " r b

1Y 
b Pb

1Y
b rb

- Yb Pb b Irb

- Z  b Pb
iy
<r<tb - Zb r b

*o b 0f4

Lpb -Lc Qb Ln

I MPb M qb X

Npb l N «b N r>

(5.5)

(5.6)
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where s <Pb0 = s in ^ o ’ C*b0 =  cos^ 0’ s eb0 = s in 06O’ ceb0 = cosdb0, T0bo = ta n 0bQ. 

Matrix A'b can thus be represented as

■4 * a '*g 4 * .

II 0 0
a '*b

. V 0
* *

where F denotes force coefficients, M denotes moment coefficients, v denotes 

translational velocity, 00 denotes rotational velocity, G denotes gravity, and E denotes 

Euler. Matrices Bb and B'b are also divided into sub-matrix blocks as

Bb =

Xsh 0 0
0 y*a y*r

Z*K 0 0

0 0 0 
0 0 0

Lsh Lsa Lsr
MSh 0 0

N&r

(5.8)

and

BL =

1

v y

0 0
0 y*a y*r

Zsh 0 0

0 0 0 
0 0 0

bNgh bNga bNg

(5.9)

Therefore, B'b can be represented as

BL 0

BbMsj
(5.10)



where 8 denotes control input.

Each block embeds a specific dynamic characteristic to the linear system. For 

example, the lower left block of matrix Ab or A'b contains aerodynamic moment 

coefficients due to translational velocities {A'bM ). These coefficients are referred to as

stability derivatives. Blocks Ab p , A'bp and A'bM embed stability derivatives, as well. 

The top middle block provides gravity rotation components (A'b ), whereas A'bp provides 

Euler rotation components. Matrix Bb or Bb contains blocks related to aerodynamic force 

and moment coefficients due to 8h, 8a, and 8r : B'bp  ̂ and B'bMs- The influence of

different state and input system parameters on the index can now be systematically 

approached.

Block-wise index evaluation further pinpoints the exact dynamics that contribute 

to increased nonlinearity index values. The partial index, which shall be referred to as 

sub-index, evaluates the variation of a subset of the system dynamics within the overall 

linear model at a nominal point to that of a perturbed linear model. For example, the sub

index of block A'bM measures the nonlinearity of the system specifically regarding the

aerodynamic moment coefficients due to translational velocities, and the sub-index for 

Abc reflects the nonlinearity associated with the gravity rotation terms. These sub-indices

are denoted as and v f '\  , respectively, and Equations (5.11) and (5.12) provide
M y U

the precise definitions. Similarly, the sub-indices for blocks Bbps and BbMs measure the 

nonlinearity of the system for the aerodynamic force and moment coefficients due to 

inputs 8h, 8a, 8r and are denoted as v f \  and v f 'L  , respectively. Finally, the matrix-Mg

index is simply defined as the matrix of sub-index values representing the various subsets



86

of system dynamics. Therefore, Equations (5.13) and (5.14) represent the matrix-indices 

for the linear system described by Ab and B'b.

vi
Mv

sup-
\AbMv ^ bMv

a ;
(5.11)

bMv

vsA \ = s u p -
\A'hb G

(5.12)

vs m atrix -in d ex

Vi

0

vi Mv

Vi

0

0

vi

v i

v i

(5.13)

V,s  'm a trix - in d e x

v i

Vi

FS
(5.14)

5.3 Index for Full-Envelope Using Body-Frame

The linear system in Equation (5.4) is based on the nonlinear aircraft model 

derived in the body-frame of reference. Applying the four index expressions in Equations 

(3.8) and (3.9) produces four contour plots (Figures 5.2-5.5) and four surface plots 

(Figures 5.6-5.9) for visualization of the envelope nonlinearity variations. In general, the 

nonlinearity strength is largest near the internal envelope boundary corresponding to the

q limit, particularly for the a  <  0 region. The figures show that for indices v f  and v% 

associated with the states, a single maximum occurs. For indices v®' and v% associated 

with the inputs, three strong maximums occur. At the points (a,{?) = (—6°, ±2°), two 

closely spaced maximums occur with the global maximum occurring at /? = —2°. The
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third maximum occurs near the upper region of the envelope boundary in the stall region 

at a = 58°. Maximum values are found to be = 2.73, v f  * „ = 2.93, v%' =
5  m a x  ? s  m a x  ’  a  m a x

1.62, and Vdmax = 4.30. In these regions, use of linear models to examine dynamic 

behavior or design control systems is not feasible. Note that the nonlinearity is also 

sensitive to both a  and /? variation in these regions. In the other regions of the a -  (3 

envelope, the nonlinearity strength is difficult to assess with the displayed data, due to 

washout from the noted maximum values. The expected index surface behavior was to 

have been larger values near the envelope edge where the aerodynamic angles are 

extreme with smaller values at interior regions, which is the opposite of that displayed in 

Figures 5.2-5.5. To understand the internal region nonlinearity sources, further 

investigation is needed.

The index v f '  attains its maximum value at the nominal point (an, /?n) =  

(-6°,0°) where the perturbed point (ap,Pp) = (-1.6648°, 0°) is found to cause the 

largest deviation around («„,/?„). Eigenvalue analysis at both points shows instability in 

the linear models. However, instability is not a measure or indication of the nonlinearity 

strength, as an unstable but exactly linear model would produce a zero index value. In 

Table 5.1, differences between the trimming solutions for both points are insignificant, 

except for velocity and throttle which reveals large flight condition change for small a  

and /? variations. To assess the contributed weight of each component in the state matrix 

towards the overall index, A’b is divided into sub-matrix blocks, as seen in Equation (5.6). 

The influence of VT on the index can now be systematically approached. Sub-index 

evaluation shows that v f  |M =  5.69 and V*'\M = 3.36 exhibit the highest nonlinearity 

sub-index values, as shown in Equation (5.15). Preliminary investigation indicates that
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the large jump in the trimming VT value associated with the slight variation in a  enlarges 

the moment stability derivative deviation related to the A'My and A'Ma> blocks as seen in 

Equation (5.6). Note the explicit dependence on VT in A'b due to the normalized state 

formulation in Equation (5.6) is not that significant here.

The static input nonlinearity index v f  in this study indicates the system is also 

equally sensitive to input excitation near the q limit, however, it is further sensitive near 

the stall region at high a, which explains the large value of v f  at the spike shown in 

Figure 5.7. The largest spike occurs at (a n,/?n) =  ( - 6°,-2°) and is caused by the 

deviation at (ap, /?p) = (-1.3346°, -2 °). In Table 5.1, at both points, the only significant 

difference in the trim solution is the velocity, bank angle, and throttle. Matrix B'b embeds 

two blocks related to aerodynamic force and moment coefficients due to Sh, Sa, and Sr : 

B'Fs and B'Mg. The bank angle does not play any role in B'b, and only VT determines how 

large the deviation is. It can be seen in Equation (5.9) that the normalized matrix B'b is 

directly multiplied by 1/VT. Moreover, the jump in the velocity introduces more drag and 

lift, such that the trim drag force increases by 104% and the trim lift force increase by 

89%. These forces are present in B'b through the resolved axial, side, and normal force 

components. Consequently, these forces induce moments as well, and the matrix-index 

for B'b shows that sub-indices izf'l and vf ' l  contribute equally toward the overalllFg

index (Equation (5.15)).

The dynamic nonlinearity indices v%' and v%, which are now functions of both 

operating conditions and time, are displayed as contour and surface plots in Figures 5.4-

5.5 and Figures 5.8-5.9 at time t  =  0.01 s. Similar to the static indices, dynamic indices
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are sensitive at high-speed flight near the q limit for indices v%' and and is sensitive at 

high a near the stall limit for index and are expected to propagate with time. At very 

low time, v£ tends to be much smaller than when comparing Figure 5.2 to 5.4 or 

Figure 5.6 to 5.8. On the contrary, the dynamic input index which measures the 

propagation of input nonlinearity with time is far more sensitive than static input index 

v® \  The transition matrix <f> captures and amplifies the nonlinearities associated with B'b. 

Around the high dynamic index region, the aircraft model is unstable and the linear 

model tends to deviate faster if input excited rather than state excited, but again 

instability is not a true measure of nonlinearity.

Since the index variation with respect to /? appears small except around high 

index value regions, slices from the surface plots of the four indices at /? =  0° are shown 

in Figure 5.10. Furthermore, the corresponding trimming solutions are presented in 

Figure 5.11. A discontinuity exists between a  =  -1.6647° and -0.9409° in each plot 

due to the q limit. Note the trimming roll angle (pb exhibits an interesting feature around 

the unattainable trimmed flight region. For a > -0.9409°, (pb =  0° while for a < 

—1.6647°, =  180° or —180°. In both cases, the aircraft assumes a wing-level

orientation, but in the second case, the aircraft is flying inverted or upside down.

,s ‘m a trix -in d ex

1.68 0.74 2.70
0 0 2.76

15.69 0 3.36J

v B' I
s 'm a trix -in d e x

(5 .15)
2.921 

0
L2.93
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Table 5.1 Trim solutions at nominal and perturbed points

VorA'b For B'b

(&rt' fin) {ftp, fip) (®n> fin) (Up, f ip)

= ( -6  ,0 ) = (-1.6648 ,0 ) = ( -6  , - 2  ) = ( -1 .3 3 4 6 ° ,-2 ° )

u 404.1 f t / s ,  (M = 1520.9 f t / s ,  (M = 402.69 f t / s ,  (M = 1520.98 f t / s ,
v T 0.36) 1.36) 0.36) (M = 1.36)

180 180 -176.0855 -97.4596°

d h 6 1.6648 6.1219 2.1567°

h -0.8503 -1.0903° -0.8352° -1.1151°

Sa 0 0 -0.6026° 0.0766°

Sr
0

0 0 -4.3163 -4.4087

$th 0.1983 0.9107 0.1998 0.9087
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Figure 5.2 Static state nonlinearity index v f  - contour (body-frame)

P [deg]

Figure 5.3 Static input nonlinearity index v f  - contour (body-frame)
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Figure 5.4 Dynamic state nonlinearity index v%' - contour (body-frame)
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Figure 5.5 Dynamic input nonlinearity index - contour (body-frame)



Figure 5.6 Static state nonlinearity index v f  - surface (body-frame)

Figure 5.7 Static input nonlinearity index v f  - surface (body-frame)
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Figure 5.8 Dynamic state nonlinearity index - surface (body-frame)
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Figure 5.9 Dynamic input nonlinearity index v% - surface (body-frame)
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Figure 5.10 Nonlinearity indices at /? =  0° (body-frame)
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Figure 5.11 Trimming values at /? =  0° (body-frame)
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5.4 Index for Full-Envelope Using Body-Frame -  Ideal Model

In Chapter 4, the aerodynamic model is idealized and, in Figure 4.9, an ideal 

asymmetric flight envelope is developed. Applying the four index expressions in 

Equations (3.8) and (3.9), on top of this ideal envelope, produces four symmetric contour 

plots (Figures 5.12-5.15) and four symmetric surface plots (Figures 5.16-5.19) for 

visualization of the envelope nonlinearity variations. The behavior of the indices on the 

envelope here is similar, but the values are specifically different, when compared to the 

results of the non-ideal case in Section 5.3. In general, the nonlinearity strength is largest 

near the internal envelope boundary corresponding to the q limit, particularly for the

a  <  0 region. The figures show that for indices v f '  and v%' associated with the states, a

single maximum occurs. For indices v f  and v% associated with the inputs, three strong 

maximums occur. At the points (a, /?) = (-6°, ±2°), two closely spaced identical global 

maximums occur. The third maximum occurs near the upper region of the envelope

boundary in the stall region at a  *  61°. Maximum values are found to be v f  max = 2.73, 

v f ' „ =  2.91, v%' =  1.62, and = 4.27. In these regions, use of linear models
s  m a x  ’  o  m a x  ’  “ m a x  e  ’

to examine dynamic behavior or design control systems is not feasible. Note that the 

nonlinearity is also sensitive to both a  and /? variation in these regions. In the other 

regions of the a  -  /? envelope, the nonlinearity strength is difficult to assess with the 

displayed data, due to washout from the noted maximum values.

The index v f '  attains its maximum value at the nominal point (an, /?„) = 

(—6°, 0°) where the perturbed point (ap,(3p) =  (—1.6648°, 0°) is found to cause the 

largest deviation around (an,/?n). Eigenvalue analysis is also utilized here, and at both 

points, it shows instability in the linear models. In Table 5.2, differences between the



trimming solutions for both points are insignificant except for velocity and throttle which 

show large differences. To assess the contributed weight of each component in the state 

matrix towards the overall index, the matrix-index evaluation shows that A'My, then A'Mm 

exhibit the highest nonlinearity sub-index values, as shown in Equation (5.16). 

Preliminary investigation indicates that the large jump in the trimming VT value 

associated with the slight variation in a  enlarges the moment stability derivative 

deviation related to the A'My and A'Mfo blocks, as seen in Equation (5.6). Again note the 

explicit dependence on VT in Equation (5.6) is not the important factor here.

The static input nonlinearity index v f  in this study indicates the system is equally 

sensitive to input excitation, which explains the large values of v f  at the two identical 

and third spikes shown in Figure 5.17. One of the largest spikes occurs at (a n,/?n) =  

(-6°,+ 2°) and is caused by the deviation at (a p,/?p) =  (-1.3923°,+2°). At this 

nominal point, the aircraft is trimmed to an almost inverted position at (j)b =  176.2° but 

at the maximum deviated point the aircraft is nearly in a knife edge position of <f)b =  

104.6°. The only other significant difference in the trim solution is the velocity (and 

throttle) which is 403 ft/s compared to 1521 ft/s. The slight variation in the 8h, 8a and 8r 

trimming solutions changes the forces and moments acting on the aircraft, and thus 

contributes towards the overall index. The bank angle does not play any role in Bb and 

only VT and the control surface trimming deflections determine how large the deviation 

is. Moreover, the jump in the trim velocity introduces more forces and moments. These 

forces are present in Bb through the resolved axial, side, and normal force components.
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Matrix B'b embeds two blocks, B'Fg and B'Mg, and the matrix-index shows that the sub

indices v f  | and v f  | contribute equally toward the overall index (Equation (5.16)).

The dynamic nonlinearity indices and v£, which are now functions of both 

operating conditions and time, are displayed as contour and surface plots in Figures 5.14- 

5.15 and Figures 5.18-5.19 at time t  =  0.01s. Similar to the static indices, dynamic

indices are sensitive at high-speed flight near the q limit for indices v£ and v% and are 

sensitive also at high a  near the stall limit for index and are expected to propagate

with time. At very low time, v t e n d s  to be much smaller than v / \  when comparing 

Figure 5.12 to 5.14 or Figure 5.16 to 5.18. On the contrary, the dynamic input index , 

which measures the propagation of input nonlinearity with time, is far more sensitive than 

the static input index v f \  The transition matrix d> captures and amplifies the 

nonlinearities associated with B'b. Around the high dynamic index region, the aircraft 

model is unstable, and the linear model tends to deviate faster if input excited rather than 

state excited.

Similar to the previous case with non-ideal aerodynamic model, the index 

variation with respect to /? using the ideal model appears small except around high index 

value regions. Slices from the surface plots of the four indices at (3 — 0° are shown in 

Figure 5.20. Furthermore, the corresponding trimming solutions are presented in 

Figure 5.21. A discontinuity exists between a  =  -1.6648° and -0.9410° in each plot 

due to the q limit. Note that the trimming roll angle (pb exhibits an interesting feature 

around the unattainable trimmed flight region. For a > —0.9410°, (f)b = 0° while for
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a  <  -1.6648°, (f)b =  180° or -180°. In both cases, the aircraft assumes a wing-level 

orientation, but in the second case the aircraft is flying inverted or upside down.

vi
s 'm a trix -in d e x

1.68 0.74 2.70
0 0 2.76

L5.72 0 3.36J

v,b '
5 'm a trix -in d e x

3.06
0

2.91

(5.16)

Table 5.2 Trim solutions at nominal and perturbed points (ideal)

For A ’b For B'b

(d-n< Pn) (ftp/ Pp) (j%n> Pn) ( apiPp)

=  ( - 6  ,0  ) =  ( -1 .6 6 4 8  ,0  ) =  ( - 6 ° , + 2 ° ) =  ( -1 .3 9 2 3  ,+ 2  )

1/ 404.1 f t / s ,  (M = 1520.9 f t / s ,  (M = 403.01 f t / s ,  (M = 1520.9 f t / s , (M  =
VT 0.36) 1.36) 0.36) 1.36)

<Pb 180 180 176.1981° 104.5954°
6 1.6648 6.1188 2.2865

8 h -0 .8503 -1.0903° -0.8544° -1.1047°

8„ 0 0 0.6059° -0.0255°

Sr 0° 0° 4.3818° 4.5209°

8th 0.1983 0.9107 0.1996 0.9092
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p [deg]

Figure 5.12 Static state nonlinearity index v f  - contour (body-frame, ideal)

P [deg]

Figure 5.13 Static input nonlinearity index v f  - contour (body-frame, ideal)
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Figure 5.14 Dynamic state nonlinearity index v%' - contour (body-frame, ideal)
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Figure 5.15 Dynamic input nonlinearity index - contour (body-frame, ideal)
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Figure 5.16 Static state nonlinearity index v f  - surface (body-frame, ideal)

Figure 5.17 Static input nonlinearity index v f  - surface (body-frame, ideal)



Figure 5.18 Dynamic state nonlinearity index v%' - surface (body-frame, ideal)
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Figure 5.19 Dynamic input nonlinearity index - surface (body-frame, ideal)



104

2.5

0.5

-20

m to

4

3

2

1

0
-20 0 20 40 60

2.5

0.5

-20
a [deg]

3  13

4

3

2

1

0
-20 0 20 40  60

a [deg]

Figure 5.20 Nonlinearity indices at /? = 0° (body-frame, ideal)
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Figure 5.21 Trimming values at /? =  0° (body-frame, ideal)
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5.5 Index for Full-Envelope Using Stability-Frame -  Ideal Model

In this section, the ideal envelope in Figure 4.9 produced in Chapter 4 is 

investigated. A linear model system is developed using the nonlinear equations of motion 

in the stability-frame of reference discussed in Section 2.6. Hence, the components of the 

linear system are now described in stability-frame coordinates rather than body-frame 

coordinates (see Equations (5.17) - (5.19)). Note the transformation matrix T is modified 

accordingly, where the first three diagonal elements are replaced by [1/VT 1/VT 1],

x's = ^ x '  + 5S'u  

x's = [Ai4 Avs' A a' A 0s k6's A p's A q's Ars']

A's =  TAST~X

B's = TBS,

(5.17)

where

Y»s &
VT%US vTZVs Z a

0 0 0
0 0 0

BLus bLVs b I

1 _
2

cMUs Mvs vT“ a

™ u s — NVt «

0 0
0 0

0 0
0 0
0 0

VT9CeS0 lx vb Vs K \*r.
^gS<pSoSeSo 2 • -Yb Vs f t
9 c<t>Soses o Ylzb Vs c Qs

(5.18)

tStO ^ SG Pu>
0 0 a se

AL SMv,a 0 AsMa

and
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B's

1
v~

1
2V^

0 0
0 Y*a Ytr

VT%&h 0 0

0 0 0
0 0 0

BLsh BLSa blsr

*m *h 0 0
bNSh BNSa BNSr

0

L B s m s .

(5.19)

Applying the four index expressions in Equations (3.8) and (3.9) on top of this 

ideal envelope, produces four symmetric contour plots (Figures 5.22-5.25) and four 

symmetric surface plots (Figures 5.26-5.29) for visualization of the envelope nonlinearity 

variations. The behavior of the indices on the envelope here is quite similar, but the 

values are not exactly the same, when compared to the results that are based on body- 

frame equations with non-ideal/ideal cases in Section 5.3 and 5.3. In general, the 

nonlinearity strength is largest near the internal envelope boundary corresponding to the

q limit, particularly for the a  <  0 region. The figures show that for indices v f '  and v$' 

associated with the states, a single maximum occurs. For indices v f '  and v% associated 

with the inputs, three large maximums occur. At the points (a, ft) = (—6°,+2°), two 

closely spaced identical global maximums occur. The third maximum occurs near the 

upper region of the envelope boundary in the stall region at a  «  61°. Maximum values 

are found to be v f ' av =  2.73, v f '  =  2.90, v$ =  1.62, and =  4.26. In* max 9 5 max ’ a max 5 a  max

these regions, use of linear models to examine dynamic behavior or design control 

systems is not feasible. Note that the nonlinearity is also sensitive to both a  and /? 

variation in these regions. In the other regions of the a — /? envelope, the nonlinearity
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strength is difficult to assess with the displayed data, due to washout from the noted 

maximum values.

The index v f '  attains its maximum value at the nominal point (<*„,/?„) =  

(—6°, 0°) where the perturbed point (a p,/?p) = (—1.6648°, 0°) is found to cause the 

largest deviation around (a n,/?n). Eigenvalue analysis is also utilized here at both points 

and shows instability in the linear models. The trimming results in Table 5.2 are 

applicable here, and the table shows differences between the trimming solutions for both 

points are insignificant except for velocity and throttle which show large differences. To 

assess the contributed weight of each component in the state matrix towards the overall 

index, the matrix-index evaluation shows that A'Sm , and then A’$M , exhibit the highest

nonlinearity sub-index values, as shown in Equation (5.20). Preliminary investigation 

indicates that the large jump in the trimming VT value associated with the slight variation 

in a  enlarges the moment stability derivative deviation related to the A'SMva anc  ̂A'Sm

blocks, as seen in Equation (5.18).

The static input nonlinearity index v f '  in this study indicates the system is equally 

sensitive to input excitation, which explains the large values of v f '  at the two identical 

and third spikes shown in Figure 5.27. One of the largest spikes occurs at (an,/?n) = 

(—6°,+2°) and is caused by the deviation at (a p,/?p) =  (—1.3923°, +2°). At this 

nominal point, the aircraft is trimmed to an almost inverted position at <j)b =  176.2° but 

at the maximum deviated point the aircraft is nearly in a knife edge position of (pb = 

104.6°. The only other significant difference in the trim solution is the velocity (and 

throttle) which is 403 fit/s compared to 1521 ft/s. The slight variation in the Sh, 8a and 8r



108

trimming solutions changes the forces and moments acting on the aircraft, and thus 

contributes towards the overall index. The bank angle does not play any role in 5S' and 

only VT and the control surface trimming deflections determine how large the deviation 

is. Moreover, the jump in the velocity introduces more forces and moments. These forces 

are present in B's through the resolved axial, side, and normal force components. Matrix 

B's embeds two blocks BsFg and B'SMs and the matrix-index shows that sub-indices v f ' \ p

and vs '\Ms contribute equally toward the overall index (Equation (5.20)).

The dynamic nonlinearity indices v# and v£, which are now functions of both 

operating conditions and time, are displayed as contour and surface plots in Figures 5.24- 

5.25 and Figures 5.28-5.29 at time t  =  0.01 s. Similar to the static indices, dynamic 

indices are sensitive at high-speed flight near the q limit for indices v ff  and and are 

sensitive also at high a  near the stall limit for index v% and are expected to propagate 

with time. At very low time, v£ tends to be much smaller than v f ' , when comparing 

Figure 5.22 to 5.24 or Figure 5.26 to 5.28. On the contrary, the dynamic input index v£, 

which measures the propagation of input nonlinearity with time, is far more sensitive than 

the static input index v f '.  The transition matrix captures and amplifies the 

nonlinearities associated with B's. Around the high dynamic index region, the aircraft 

model is unstable and the linear model tends to deviate faster if input excited rather than 

state excited.

Similar to the previous cases, the index variation with respect to /? using the ideal 

model appears small except around high index value regions. Slices from the surface 

plots of the four indices at (3 =  0° are shown in Figure 5.30. Furthermore, a discontinuity
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exists between a  =  -1.6648° and -0.9410° in each plot, due to the q limit. As in the 

previous section from Figure 5.21, the trimming roll angle (pb for a > -0.9410° is 0°, 

while for a  <  -1.6648° the angle is (pb =  180° or -180°. However, in both cases, the 

aircraft assumes a wing-level orientation, but in the second case, the aircraft is flying 

inverted or upside down.

v,
5 'm a trix -in d e x

1.68 0.73 2.69
0 0 2.76

.5.68 0

3.06

3.38.

index 0
.2.90.

(5.20)
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P [cleg]

Figure 5.22 Static state nonlinearity index v f  - contour (stability-frame, ideal)

P [cleg]

Figure 5.23 Static input nonlinearity index v f  - contour (stability-frame, ideal)



I l l

P [deg]

Figure 5.24 Dynamic state nonlinearity index v%' - contour (stability-frame, ideal)
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Figure 5.25 Dynamic input nonlinearity index - contour (stability-frame, ideal)
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Figure 5.26 Static state nonlinearity index v^ ' - surface (stability-frame, ideal)

00 <0 2

P [deg]a [deg]

Figure 5.27 Static input nonlinearity index v!?' - surface (stability-frame, ideal)
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Figure 5.28 Dynamic state nonlinearity index v% - surface (stability-frame, ideal)

Figure 5.29 Dynamic input nonlinearity index v% - surface (stability-frame, ideal)
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Figure 5.30 Nonlinearity indices at /? = 0° (stability-frame, ideal)
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5.6 Index for Full-Envelope Using Wind-Frame -  Ideal Model

In this section, the ideal envelope Figure 4.9 produced in Chapter 4 is again 

investigated. A linear model system is developed using the nonlinear equations of motion 

in the wind-frame of reference discussed in Section 2.7. The components of the linear 

system are now described in the wind-frame rather than the body-frame (see Equations

(5.21) - (5.23)). The transformation matrix T is modified accordingly, where the first 

three diagonal elements are replaced by [1/VT 1 1],

A' x' + B 'uNV

x'w =  [Ai4 Aa' A/?' A(p'w A0^ A p'w Aq„ A r„]

My, =  TAWT - '

Bw = TBW,

(5.21)

where
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Applying the four index expressions in Equations (3.8) and (3.9) on top of this 

ideal envelope, produces four symmetric contour plots (Figures 5.31-5.34) and four 

symmetric surface plots (Figures 5.35-5.38) for visualization of the envelope nonlinearity 

variations. The behavior of the indices on the envelope here is quite similar when 

compared to the results investigated in body- and stability-frame equations in 

Sections 5.3 and 5.5. Again, the nonlinearity strength is largest near the internal envelope 

boundary corresponding to the q limit, particularly for the a < 0 region. The figures 

show that for indices v f  and v% associated with the states, a single maximum occurs. 

For indices v f  and v% associated with the inputs, three large maximums occur. At the 

points (a, (3) =  (—6°, ±2°), two closely spaced identical global maximums occur. The 

third maximum occurs near the upper region of the envelope boundary in the stall region

at a  *  61°. Maximum values are found to be = 2.73, =  2.90, —* max 5 6 m ax ? a max

1.62, and Vdmax =  4.26. In these regions, use of linear models to examine dynamic 

behavior or design control systems is not feasible. Note that the nonlinearity is also 

sensitive to both a  and (3 variation in these regions. In the other regions of the a — (3
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envelope, the nonlinearity strength is difficult to assess with the displayed data, due to 

washout from the noted maximum values.

The index v f  attains its maximum value at the nominal point {an, (3n) =  

(-6°,0°) where the perturbed point (ap,/?p) =  (-1.6648°, 0°) is found to cause the 

largest deviation around (a n,/?n). Eigenvalue analysis is also utilized here at both points 

and it shows instability in the linear models. Again the results in Table 5.2 are applicable 

here and show the differences between the trimming solutions for both points are 

insignificant except for velocity and throttle which show large differences. To assess the 

contributed weight of each component in the state matrix towards the overall index, the 

matrix-index evaluation shows that A'Wm largely, and then A'Wm , exhibit the highest

nonlinearity sub-index values, as shown in Equation (5.24). Preliminary investigation 

indicates that the large jump in the trimming VT value associated with the slight variation 

in a  enlarges the moment stability derivative deviation related to the A'Wm ^  and A'Wm

blocks.

The static input nonlinearity index v f  in this study is equally sensitive to input 

excitation, which explains the large values of v f '  at the two identical and third spikes 

shown in Figure 5.36. One of the largest spikes occurs at (a n, /?n) =  (—6°,+2°) and is 

caused by the deviation at (ap,/?p) = (—1.3923°, +2°). At this nominal point, the aircraft 

is trimmed to an almost inverted position at (pb =  176.2° but at the maximum deviated 

point the aircraft is nearly in a knife edge position of (pb =  104.6°. The only other 

significant difference in the trim solution is the velocity (and throttle) which is 403 ft/s 

compared to 1521 ft/s (see Table 5.2). The slight variation in the Sh, 6a and 8r trimming
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solutions changes the forces and moments acting on the aircraft and thus contributes 

towards the overall index. The bank angle does not play any role in B^, and only VT and 

control surface trimming deflections determine how large the deviation is. Moreover, the 

jump in the velocity introduces more forces and moments. These forces are present in 

through the resolved axial, side, and normal force components. Matrix B^ embeds two 

blocks BwFs and ®wM(S and the matrix-index shows that sub-indices and v f  '\M

contribute equally toward the overall (Equation (5.24)).

The dynamic nonlinearity indices v% and v$, which are now functions of both 

operating conditions and time, are displayed as contour and surface plots in Figures 5.33- 

5.34 and Figures 5.37-5.38 at time t = 0.01 s. Similar to the static indices, dynamic 

indices are sensitive at high-speed flight near the q limit for indices and and are 

sensitive also at high a  near the stall limit for index v% and are expected to propagate 

with time. At very low time, v%' tends to be much smaller than v f , when comparing 

Figure 5.31 to 5.33 or Figure 5.35 to 5.37. On the contrary, the dynamic input index v£, 

which measures the propagation of input nonlinearity with time, is far more sensitive than 

the static input index v f \  The transition matrix <t> captures and amplifies the 

nonlinearities associated with B^. Around the high dynamic index region, the aircraft 

model is unstable and the linear model tends to deviate faster if input excited rather than 

state excited.

Slices from the surface plots of the four indices at [3 = 0° are shown in 

Figure 5.39, and a discontinuity exists between a = —1.6648° and —0.9410° in each 

plot, due to the q limit. Again, the trimming roll angle <f)b for a > -0.9410° is 0°, while
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for a  <  -1.6648° the angle is (j)b =  180° or -180°. However, in both cases, the aircraft 

assumes a wing-level orientation, but in the second case, the aircraft is flying inverted or 

upside down (Figure 5.21).

v,A '
s  ' m a t r i x - i n d e x

1.68 0.73 2.69
0 0 2.76

13.40 0 3.38J

v,B
s  ‘m a trix -in d ex
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0

2.90J

(5.24)
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p [deg]

Figure 5.31 Static state nonlinearity index v f  - contour (wind-frame, ideal)

P [deg]

Figure 5.32 Static input nonlinearity index v f  - contour (wind-frame, ideal)
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Figure 5.33 Dynamic state nonlinearity index v%' - contour (wind-frame, ideal)

P [deg]

Figure 5.34 Dynamic input nonlinearity index v% - contour (wind-frame, ideal)
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Figure 5.35 Static state nonlinearity index v f '  - surface (wind-frame, ideal)

l 2

Figure 5.36 Static input nonlinearity index v f  - surface (wind-frame, ideal)



Figure 5.37 Dynamic state nonlinearity index v%' - surface (wind-frame, ideal)

Figure 5.38 Dynamic input nonlinearity index - surface (wind-frame, ideal)
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Figure 5.39 Nonlinearity indices at f3 =  0° (wind-frame, ideal)

5.7 Frame of Reference Influence on Index

The nonlinearity index variations with respect to /? show small discrepancies, 

except around high index value regions. Therefore, slices from the surface plots of the 

four indices v f , v f ' ,  v% and v% are presented and compared in Figures 5.40-5.44, at 

P =  0°, 2°, 4°, 6°, 8°. These figures compare indices results over the same ideal envelope 

developed in Figure 4.9 for different mathematical representations of the nonlinear 

equations of motion. The compared representations are body-, stability-, and wind-frame 

coordinates. In all of these frames, the maximum nonlinearities occur around the same 

neighborhood of a = -6°. A comparison of the maximum indices of v f ' ,  v f , v%’ and
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v% over the entire ideal a — (3 envelope among the different frames is offered in 

Table 5.3. The maximum indices over the entire envelope show highly comparable values 

among all three representations.

The static state v f , static input v f ,  dynamic state v f , and dynamic input v% 

nonlinearity index comparisons for all reference frames in Figure 5.40 at /? =  0° show no 

preference of any frame over another. Over the large angle of attack range, all index 

values are roughly constant except for the a  band of -10° <  a  <  10°. In this band, the 

indices experience the largest values, which is near the inner boundary of the dynamic 

pressure limit. A notable exception to this rule is for indices v f  and v% at a > 50° where 

the index again becomes large.

With a sideslip angle of (3 =  2°, the indices v f  and v% for the stability- and 

wind-frame tend to exhibit more nonlinearity in the lower negative angle of attack region

as shown in Figure 5.41. However, the indices v f  and v f  show no variation in the index 

values in this same region. These results suggest there is a slight preference for using the 

body-frame description in specific areas of the flight envelope. In Figure 5.42, for (3 = 

4°, the index comparison shows similarities among all the frame of reference 

representations similar to results in Figure 5.40 for /? =  0°.

Figure 5.43 shows that the behavior of the indices v f , v f , v% and v% for all 

frames at (3 =  6° are similar to the behavior at (3 =  2°. Only the indices v f  and v% for 

the stability- and wind-frame coordinates tend to exhibit more nonlinearity than the body- 

frame coordinates in the lower negative angle of attack region, whereas indices v f  and
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v% show no variation in the index values across the various mathematical descriptions of 

the vehicle dynamics.

At a large sideslip angle of /? =  8°, the different frame comparison in Figure 5.44

shows that the indices v f  and v% for the stability- and wind-frame coordinates tend to 

exhibit more nonlinearity than the body-frame description in the lower negative angle of 

attack region; whereas for the same indices, the body-frame description tends to exhibit

more nonlinearity in the upper angle of attack region. As for the indices v f  and v f , no 

variation is observed among the different frames.

Finally, the nonlinearity indices related to matrix A', the static state v f  and the

dynamic state v% , show no difference in the index values as sideslip angle is increased 

for different frames comparison. However, the nonlinearity indices related to matrix B ’, 

the static input v f  and the dynamic input v%, show differences in the index values as 

sideslip angle is increased for different frames comparison. Here, the body-frame shows 

less nonlinearity than the stability- and wind-frame for negative angles of attack but more 

nonlinearity for positive angles of attack.

Although not shown in the dissertation, selected results were generated and 

investigated using the dimensional state formulations without the transformation matrix 

T. Two important observations were noted. First, index values were much higher than for 

the normalized state formulations presented here. In other words, the use of a normalized 

state formulation was very effective in reducing the sensitivity of the index on the units 

of the linear model. Second, a much wider difference between the index values for 

various coordinate formulations was observed. Although not universal, the results 

suggested a strong preference for the body-frame description over the other two frames.
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Table 5.3 Maximum index comparison for different frames

Body-frame Stability-frame Wind-frame

v f 2.73 2.73 2.73

v f 2.91 2.90 2.90
xr

n 1.62 1.62 1.62

*2 4.27 4.26 4.26

s r
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Figure 5.40 Index comparison at /? = 0°
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CHAPTER 6 

SIMULATION CASES AROUND HIGH INDEX

6.1 Introduction

Flight simulations, depending on the mathematical model of the dynamics, are 

both linear and nonlinear. In flight analysis, linear simulation is typically explored first. 

The linear model is usually expressed in state variable format, as discussed in 

Section 3.1, and is derived by numerical methods from the nonlinear model. The linear 

model is developed around a trimmed operating condition for the aircraft, which prompts 

the question of whether the trimmed condition is stable when a small perturbation 

displaces the aircraft from its equilibrium condition. Nonlinear simulation is performed to 

address the linear model suitability as well as the stability of the trimming condition in a 

particular domain around a reference operating point. It is important to characterize to 

what extent nonlinearity is included in the system and whether the system can be 

regarded as approximately linear. For aircraft dynamic analysis, nonlinear simulation is 

used to assess the strength of the system’s nonlinearity. Further, nonlinear phenomena 

such as chaos and limit cycling may be predicted or identified by comparing linear and 

nonlinear simulations.

The linear and nonlinear simulations in this dissertation are carried out at an 

initial altitude of Hb = 20,000 ft instead of the sea level altitude Hb =  0 ft. This starting 

altitude is suggested based on the similarity of the nonlinearity index behavior for this 

altitude, as can be seen in Table 6.1 (different altitude indices are investigated outside of 

this dissertation). Further, aircraft response is better observed at a higher altitude,
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allowing sufficient time for the aircraft to respond to excitations, where the response may 

present itself as a large altitude change.

The aircraft model in this dissertation is simulated at the (a, /?) pairs exhibiting 

the most nonlinearity over the flight envelope. These pairs are (a = —6°, /? =  +2°) and 

(a = — 6°, /? = —2°). These two pairs correspond to untypical and unstable trimming 

conditions, since the aircraft is trimmed at an inverted position; moreover, they represent 

common high nonlinearity locations with any of the different frame choices. Since the 

idealized aerodynamic model is used as the source for the force and moment coefficients 

here, either one of these pairs reflects exactly the other pair’s characteristics. Hence, the 

pair (a = -6°, /? =  +2°) is investigated only, and is designated as pair 1, or (ai,/?i). The 

aircraft is excited and perturbed from equilibrium at (a1,pi ), where index results show 

the largest nonlinearity exists in all the frames. Comparisons of linear and nonlinear 

models which are subjected to initial condition angular rates are presented here. Linear 

and nonlinear simulations for flight dynamic systems are carried out using the tools 

available in the MATLAB® software suite. All simulations are implemented using the 

dimensional body-frame of reference formulations.

It is adequate, for comparison purposes, to study the response of the aircraft at a 

relatively similar flight condition, wherein the aircraft is at a typical and stable trimmed 

operating condition. Such a condition is satisfied at (a 2 = +6°, /?2 =  +2°), or pair 2. The 

trim solutions and index values for {ax and (a2,/?2) for Hb =  20,000 ft are listed in 

Tables 6.1 and 6.2. Finally, it should be noted the simulation is performed for an aircraft 

with fixed control settings; in other words, the control surface deflections are the trimmed 

angles for that specific operating condition.
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6.2 Simulation Results

First, the longitudinal and lateral linear-nonlinear responses to 5, 7 and 10 deg/s 

perturbations (excitations) on pitch rate at pair 2 (a 2 =  +6°, /?2 =  +2°) are presented in 

Figure 6.1 out to t  =  60 s. Nonlinear simulations and flight-path trajectories for the same 

perturbations are shown in Figures 6.2 and 6.3 for t  =  120 s. Comparing the linear 

results to those for the nonlinear model for AqbQ = 5 and 7 deg/s, it can be seen that the 

differences are quite insignificant for all state variables, although the yaw rate, bank and 

pitch angles start to deviate slightly after t  = 30 s. In the case of AqbQ =  10 deg/s, the 

results show many variations between the linear and nonlinear simulation, for example, 

settling time, peak time, damping rate, and oscillation amplitude. Therefore, it can be 

concluded that the linear model is adequate, at small pitch rate excitations, Aqbo <  10 

deg/s, to capture the system behavior at this operating condition. It is found that, for the 

linear model, increasing the pitch rate AqbQ > 10 deg/s triggers a divergent transient 

response from the nonlinear model (see Figure 6.1). In Figure 6.2, the nonlinear response 

pattern to different initial pitch rates AqbQ =  5, 7 and 10 deg/s basically follows similar 

trends. However, increasing the pitch rate excitation enlarges the overshooting amplitude 

of the response, as seen clearly in the vertical velocity, pitch angle, and angle of attack. 

Overall, the pitch rate transient response is well damped.

Figure 6.4 compares the total aerodynamic moments (left) and compares the 

normalized vertical lift component vs. normalized weight (right) during the complete 

flight range. The positive AqbQ excitation produces a nose-up pitching motion, which is 

countered by a negative restoring pitching moment (see Figure 6.4), and it excites mainly 

the longitudinal phugoid mode. As a consequence of the pitching moment, there is a
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decrease in axial velocity and an increase in altitude and pitch angle, all occurring in the 

first 30 s (see Figures 6.2 and 6.3). However, the large increase in the angle of attack 

induces an incremental jump in the lift force, as seen in Figure 6.4, causing the aircraft to 

accumulate altitude where the initial kinetic energy is transformed into potential energy at 

t  = 18.3 s. The conservation of energy law states that kinetic and potential energy 

continuously exchange over a very long period of time with decaying amplitude rate and 

at the same period. The vertical velocity, roll rate, and yaw rate perturbed responses are 

oscillatory in the first 15 s with similar frequency and period. The yaw rate magnitude is 

steadily offset causing a yaw angle increase, and hence, an increase in the crossrange 

trajectory. The angle of attack after disturbance remains substantially constant, whereas 

the total speed, pitch angle, and altitude slowly oscillate around their equilibriums in the 

long run, thereby indicating a stable long-period low-frequency oscillation mode. It is 

evident that pitch rate excitation induces larger pitching moment smaller fluctuations in 

the rolling and yawing moments (Figure 6.4), and hence, the lateral mode is excited only 

slightly.

The three-dimensional (3-D) aircraft attitude is better visualized in Figure 6.5, 

with top and side views included, where the aircraft position and orientation is 

snapshotted every 11.99 s. The aircraft wings are colored differently for better attitude 

visualization: green for left wing and blue for right wing. The phugoid mode can be better 

explained by referring to Figures 6.2-6.5. When the aircraft is initially at the trimmed 

condition at t  =  0 s, the vertical lift force is balanced by the weight. The moment the 

aircraft is perturbed by AqbQ the angle of attack jump results in a spike in the lift and a 

similar spike of induced drag due to lift; hence, the aircraft is no longer in a vertical or
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longitudinal equilibrium. It is important to note that the angle of attack settles down 

quickly and remains constant throughout the simulation time period. The rapid build-up 

in lift, inertia, and momentum causes the aircraft to pitch-up steadily and climb-up; 

meanwhile, it starts losing lift and speed. As the aircraft decelerates, it pitches down 

steadily until the vertical lift is significantly less than the weight at t  =  18 s at which the 

descending acceleration begins. The vertical lift and speed continue to build-up as the 

aircraft passes through equilibrium altitude at t  = 35 s, and during the descent, the 

aircraft starts to pitch-up steadily at t  =  38 s, around which the vertical lift and speed are 

equal to their trimmed values. At t  =  56 s, the aircraft gains its local maximum build-up 

of lift and speed, and thus an excess of kinetic energy, inertia, and momentum, causing it 

to climb-up. The cycle repeats itself again, such that the aircraft decelerates and loses lift 

and speed, and pitches down, reaching to a local minimum lift and speed. During the 

motion progress, the maximum and minimum peak magnitudes reduce slowly until the 

oscillations eventually damps out. To conclude, it is evident from the response that pair 

(cc2,P2) is a stable equilibrium operating point and does not exhibit any strong nonlinear 

behavior for the perturbation excitations considered.

Now, the longitudinal and lateral linear-nonlinear responses to - 5  deg/s 

perturbation on pitch rate for (ax =  —6°, = +2°), whereby the nonlinearity index is at

the largest value, are compared in Figure 6.6. The time scale is restricted to t  =  15 s due 

to nonlinear amplitudes being washed out by the quickly deviated linear amplitudes. 

Comparing the linear to the nonlinear results, it can be seen that the differences are 

significantly large for all state variables. Hence, at this operating point, the linear model 

is not suitable to represent the aircraft motion. Nonlinear simulations for the perturbed



response for a longer period of time out to t  =  68 s are shown in Figures 6.7 and 6.8. The 

initial pitch rate introduces asymmetry in the response since the aircraft is initially 

trimmed asymmetrically. The aircraft is trimmed at (pbQ =  176.3°; that is an inverted 

aircraft orientation, and the negative pitch perturbation produces nose-down pitching 

from an aircraft-fixed perspective, or nose-up from an inertial perspective. Note that, in 

Figure 6.7, in the first 15 s, the pitch rate is moderately damped and the side velocity and 

sideslip angle experience a moderate decaying oscillatory transient response from their 

equilibriums; however, the sideslip angle response shows insignificant variation. There is 

no evidence of the phugoid long-period mode. Also, the pitch rate jump induces a sudden 

positive jump in the roll rate and then undergoes a steadily increasing rate with negative 

slope; meanwhile, it induces a yaw rate that alternates slope. The yaw rate causes a 

quadratic yaw angle increase for t <  40 s, leading to an increase in the crossrange 

trajectory. As a consequence of the pitching moment, the total velocity decreases due to 

gravity effect, whereas altitude, pitch angle, and angle of attack increase.

There is a notable increase in the lift component that counteracts the aircraft 

weight, which explains the altitude gain (Figure 6.9 on the right). The left side of 

Figure 6.9 indicates that lateral rolling and yawing moments are induced as well, due to 

lift and drag asymmetry on both wings and due to side force developed by the vertical 

tail. The yawing moment exhibits a damped oscillatory behavior and a sudden continuous 

increase at the moment the aircraft pitches down with negative pitch angle into a 

descending position. The aircraft reaches maximum perturbed altitude at around t  =  16 s. 

Afterwards, the aircraft represents a diving attitude, with increasing bank and pitch 

attitude angles and increasing total speed into the supersonic regime. By this time, the
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aircraft begins to lose altitude and descends at a rapid rate starting at 403 ft/s and 

increasing until sea level. It is apparent that the aircraft is entering a high-speed steeply 

banked turn and it is entering a spiral dive due to its increasing roll rate, yaw rate, and 

speed. The initial and propagated aircraft attitude is visualized better in the top and side 

views in Figure 6.10, and in 3-D in Figure 6.11, where the aircraft position and 

orientation is snapshotted every 6.79 s. The spiral dive motion can be easily recognized 

in these plots.

Unlike level flight, in which the lift produced by the wings is cancelled by the 

downwards gravity force, the aircraft requires more lift to support its weight when 

banking, since lift is divided between pulling the aircraft towards the turn and balancing 

the weight. In order to compensate for the lift required, assuming no piloting interference, 

the aircraft speeds up until the vertical component of the lift is balancing the weight (see 

Figures 6.7 and 6.9). If the vertical lift curve is above the weight line, the aircraft is 

gaining altitude; otherwise, it is descending. The speed-up is related to the combined 

effect of directional damping and angle of attack stability. Additionally, the aircraft’s 

overbanking tendency increases the bank angle further, and accordingly, speed, descent 

rate, and load factor increase dramatically. To conclude, responses at pair (a^Px) indicate 

strong nonlinear behavior as predicted by the nonlinear index results from Chapter 5.

Now consider a roll axis excitation at pair 1. An initial roll rate of 5 deg/s applied 

to pair 1 (ai,/?i) is rapidly damped out, but it triggers a moderately damped oscillation 

that is seen in the side velocity, sideslip angle, and yaw rate, as presented in Figure 6.12, 

which compares linear and nonlinear simulation to dpfco =  5 deg/s for a 30 s window. 

The linear results cannot accurately duplicate the nonlinear dynamics at the trimming
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equilibrium of (a^ =  -6 ° , /?x =  +2°) after approximately 10 s. The nonlinear responses 

over a much larger time window are given in Figures 6.13-6.14. From Figure 6.15 (left), 

the initial roll perturbation produces a well damped rolling moment, due to large roll 

damping of the aircraft. On the other side, the roll coupling effect introduces high 

frequency fluctuations in the yaw moment with a decaying rate of amplitude in the 

transient period, and its effect is clearly seen in the yaw rate and the heading angle (see 

Figures 6.13 and 6.15). The initial roll rate induces a wing spanwise asymmetric local 

angle of attack variation that produces asymmetric lift force. This asymmetry reduces lift 

on one wing (the right wing in this case), and initiates the rolling moment. In the same 

time, the positive ApbQ increases the linearly varying angle of attack, and that in turn

increases the profile drag on the left wing and the drag difference induces a yawing 

moment. The transient responses of the remaining state variables, translational velocities, 

angle of attack, pitch rate, bank angle, and pitch angle, are almost flat and maintain close 

to equilibrium position. Around t  = 50 s, where the aircraft has slightly elevated to a 

maximum altitude, the yaw rate changes sign and induces linearly increasing roll and 

pitch rates, causing the aircraft to bank and pitch simultaneously. The combined roll and 

yaw rates position the aircraft nose to level with the horizon, and the pitch rate jump 

develops a pitching moment causing a nose-up orientation from the pilot’s perspective 

(Figure 6.15). Consequently, the aircraft loses altitude and enters a high-speed 

descending flight starting at 367 ft/s on average until it approaches sea level at t  = 

103 s. This descending flight motion can be seen clearly in Figures 6.16 and 6.17 where 

the aircraft attitude is depicted every 9.35 s. A longer time simulation would reveal that
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the aircraft is entering a spiral dive, but it does not add any useful contribution. It is noted 

that the sideslip angle variation during the total nonlinear simulation time remains small.

Now consider a yaw axis excitation at pair 1. For an initial yaw rate of 5 deg/s 

perturbation at pair 1, linear vs. nonlinear results are compared in Figure 6.18 out to 

t  =  30 s, and nonlinear simulations are presented in Figures 6.19 and 6.20 for t  =  93 s. 

Moments and normalized forces are given in Figure 6.21. Figures 6.22 and 6.23 show 

views for the aircraft attitude at a 9.29 s period. The linear model again shows invalid 

results when compared to the nonlinear model (Figure 6.18). The oscillatory transient 

response to the yaw perturbation is moderately damped, and it induces equal frequency 

oscillations in the side velocity, roll rate, bank angle, and yaw angle. However, the bank 

and yaw angles show smaller amplitudes. Perturbation in the yaw rate does not induce 

any pitching moment, but it introduces a noticeable yawing moment and ten times 

smaller-in-magnitude rolling moments in the first 10 s, and then dies out and has 

minimum effect in the transient period on vertical velocity, pitch rate, and pitch angle; 

however, the yaw angle and crossrange increase (see Figures 6.19 and 6.20). The 

aircraft’s axial velocity slightly decreases and it gains some altitude until 35 s, 

around which the yaw rate changes direction and induces linearly increasing roll and 

pitch rates that cause the aircraft to bank and pitch simultaneously. Due to gravity’s effect 

and the increased pitching moment (Figure 6.21), the aircraft loses altitude and enters a 

high-speed descending flight motion starting at 356 ft/s on average until it approaches 

sea level at t = 93 s. Strong nonlinear behavior is again observed.

It can be observed from the previous results for an aircraft initially perturbed from 

equilibrium at pair 1 with an angular rate, that the resulting motion response is a



nonlinear coupled interaction between the other two angular rates. The trimming solution 

at (<?!,/?!), without doubt, is highly nonlinear, due to its sensitivity to initial condition 

excitation. The sideslip angle variation due to ApbQ, AqbQ or ArbQ is minimum; hence, 

note that the large response in the body roll, pitch, or yaw rates are not primarily caused 

by large aerodynamic variation, but rather by the so-called nonlinear inertial coupling. 

However, the aircraft in all of the cases enters a gradual high-speed diverging spiraling 

descending motion, due to the high increased roll rate with increasing bank and changing 

heading angles. In all of the cases, the gradual negative increase of the pitch angle points 

the aircraft nose toward the ground, and hence diverts more of the gravity component into 

the aircraft body xb-axis and reduces the lift force tremendously in the second-half phase 

of the flight. The non-oscillatory divergence leads to the nonlinear high-speed spiral dive 

phenomenon as time proceeds. Usually this path divergence occurs for aircraft with large 

directional stability and small lateral stability.

The aircraft model in the study is a high-performance category aircraft, and the 

nonlinear inertial coupling cannot be ignored in the analysis. The mass of such an aircraft 

is concentrated in its fuselage; therefore, the roll mass moment of inertia /£* is much 

smaller than the pitch and yaw mass moment of inertias, Iyy and / |z. Numerical values 

show that Iyy and 7ZZ are 5.88 and 6.64 times larger than /**, respectively. The inertia 

coupling can be best understood by looking at the moment equations of motion. Equation 

(2.37) is repeated here with the necessary assumptions of l%y = lyZ = Ax — Ay — Az =
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Lb =  IxxPb ~~ (tb  4" PbQb)^xz 4" ( j z z  ~  Iyy^Q brb

M b = lyy(\b  +  (Pb ~  rjjVUz + Oxx ~  Izz)P b rb (6.1)

^ b  ~  Izz^b ~  (Pb ~  Q b ^b ^xz  4” ( j y y  ~  ^xx)PbQb  

Looking at the last terms of the second and third equations, one notes that the inertia 

difference is large, such that, for example, a rapid rolling may result in uncontrollable 

pitching and yawing motions. This significant roll coupling can lead to divergence from 

the trimmed trajectory, as seen earlier.

Nonlinear simulation results to an initial 10 fit/s side velocity perturbation and a 

- 5  deg rudder deflection impulse are shown in Figures 6.24-6.27. The perturbations 

AvbQ and ASro produce a similar overall response when compared to ArbQ (see Figures 

6.19 and 6.20). The same analysis as before applies here and is not repeated.
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Table 6.1 Index comparison for selected pairs at different altitudes*

Hb = Oft II 20,000 ft

= (-6°, +2°)
(<*2.02)
=(+6 ,+2 ) = ( -6°,+2°)

(«2> Pz)
=(+6 ,+2 )

Vs 3.29 0.99 3.30 0.99
v f 56.80 7.82 56.80 7.82

v xd 3.24 0.98 3.26 0.98

vd 114.17 10.63 129.43 11.33
* Computation performed with a dimensional state formulation using the body-frame

Table 6.2 Trim solutions for selected pairs at Hb =  20,000 ft

(a i .0 i)  =  ( ~ 6 .+ 2 ) i a 2>Pz) -  (+6  ,+2  )
Kt 551.96ft/s, (M =  0.53; 472.75 ft/s, M =  0.46

<Pb 176.2742° 2.8893°
e b 6.1167° 6.0927°
s h -0 .8544° -1.5533°

s a 0.57° -1.0717°
5r 4.4176° 4.6608°

0.3823 0.2465
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this dissertation, a new generalized asymmetric nontraditional angle of attack 

vs. sideslip angle flight envelope for asymmetric flight conditions has been developed. 

Some of the results have been published [38],[39]. The asymmetry and offset in the 

aerodynamic model in Reference [30] has been idealized by data manipulation. A new 

ideal symmetric aerodynamic model was produced, in which the symmetrization 

procedure involves step 1 and step 2 averaging steps. This ideal aerodynamic model 

assists analysis so that fundamental relationships can be more easily observed. Using this 

model, a new generalized and symmetric angle of attack vs. sideslip angle flight envelope 

for a symmetric flight conditions has been developed.

Parameterized nonlinearity index theory has also been presented. Four index 

expressions have been implemented to evaluate the nonlinearity strength embedded in the 

F-16 nonlinear aircraft dynamics over the new nontraditional angle of attack vs. sideslip 

angle flight envelope. The concepts of sub-index and matrix-index are introduced. These 

concepts provided a systematic means to link specific dynamics of the aircraft that 

contribute towards increasing the overall nonlinearity index.

Application to the angle of attack vs. sideslip angle flight envelope showed that 

the nonlinearity strength is high at a high-speed flight regime, where the aircraft is near 

the structural flight boundary. The maximum nonlinearity occurred at negative angles of 

attack, where the aircraft is at an inverted equilibrium flight orientation. Nonlinearity of
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different mathematical descriptions of the aircraft model has been investigated. Body-, 

stability-, and wind-frame descriptions, when formulated with normalized states, 

exhibited essentially the same nonlinearity for static and dynamic state indices across a 

wide range of attack angles. Further, the body-frame description exhibited the least 

nonlinearity for lower negative angles of attack whereas stability- and wind-frame 

descriptions dominated the upper region due to static input excitation. Fundamentally, 

high nonlinearity appears to be caused by vastly different but closely spaced equilibrium 

points lying within the envelope. Also, these high index values may be exaggerated due 

to the singular value norm used in the index computation. Additional investigation is 

required to assess this effect, using structured singular value concepts.

The new angle of attack vs. sideslip angle envelope provides enhanced insight to 

trimability-controllability regions. The envelope may be useful for parameterized 

dynamic analysis and for scheduled control design. The new nonlinearity index theory is 

a promising tool, since it not only quantifies the dynamic’s nonlinearity strength but it 

also identifies the source of that nonlinearity. The index may also detect hidden nonlinear 

phenomena, such as limit cycles, which ordinary linear analysis fails to detect. Further, 

the index assesses the suitability of linear analysis.

Linear and nonlinear simulations are carried out on the common angle of attack 

and sideslip angle pair that exhibited the most nonlinearity over the flight envelope with 

different frame choices. The linear results correlated well to the index results; the linear 

model at a high index showed inconsistency with the nonlinear results, in addition to 

instability and divergent behavior to perturbation. For even moderate perturbations in the 

state variables or the control input, the nonlinear simulation reveals the tendency of the
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aircraft model toward a high body angular rate with increasing speed accompanied by 

fast altitude loss, all leading into divergent steep spiral mode motion. The simulation 

showed a significant nonlinear inertial coupling interaction between the longitudinal and 

lateral dynamics. In other words, the nonlinear simulation results also correlated well to 

the index results.

7.2 Recommendations

The current research provides a solid base to extend the new generalized 

nontraditional angle of attack vs. sideslip angle flight envelope for asymmetric flight 

conditions. A few recommendations could be considered in future work. For example, a 

third dimension, i.e., altitude, could be added to the envelope; this would provide 

insightful details on a specific aircraft model. Additional boundaries may be discovered 

limiting this aircraft model’s trimability. Utilizing a simpler aircraft model with an 

analytically well expressed aerodynamic model may facilitate predicting the asymmetric 

flight envelope. Further, application of the nonlinearity index theory on the simplified 

model may provide a clearer picture of nonlinearity sources.
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