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ABSTRACT

NUMERICAL STUDIES ON SUPERSONIC MIXING AND 
COMBUSTION PHENOMENA

Tarek M. Abdel-Salam 
Old Dominion University 

Director: Dr. Surendra N. Tiwari

A numerical study is conducted to investigate the mixing, combustion, and flow 

characteristics of different scramjet-combustor configurations. Three-dimensional models 

for the combustors have been used. Numerical results are obtained using a finite volume 

computational fluid dynamics (CFD) code with unstructured grids with sizes between

200,000 and 400,000 cells.

In the first part of the current study, the effects of the side angle of the fuel injectors in 

both mixing and combustion processes are investigated. Raised (compression) and 

relieved (expansion) wall-mounted ramps are used with side angles of 0 (unswept), 5, and 

10 degrees. Results are obtained for nonreacting flows as well as for reacting flows. 

Hydrogen is used as the fuel in all reacting cases. It is noted that the side angle highly 

affects the mixing process. The results show clearly that increasing the side angle of the 

ramps leads to better mixing and further increase of the angle will slightly improve the 

mixing rate.

In the second part, two dual-mode scramjet-combustor models are investigated. In the 

first model, fuel is injected through a single unswept wall-mounted ramp parallel to the 

airstream. In the second model, fuel is injected behind a rearward facing step normal to 

the airstream. The effects of the combustor length, the equivalence ratio, the number, and 

the arrangements of the fuel injectors are investigated. Also, the effect of the initial
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boundary layer thickness is studied. Results show that improved combustion efficiency is 

obtained by increasing the length of the combustor. For the same amount of injected fuel, 

increasing the number of injectors improves the combustion efficiency. Asymmetric flow 

and significant upstream interaction are seen in the isolator section of the second model 

when using initial boundary layer at the inlets. Furthermore, high degree of upstream 

interaction is obtained by increasing the number of injectors.

Co-Director of Advisory Committee: Dr. Tajeldin O. Mohieldin
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Chapter I 

INTRODUCTION

1.1 Motivation

In the past several years, there has been a great deal of research toward the 

development of airbreathing hypersonic vehicles. Airbreathers are engines that use the air 

through which the vehicle is flying both as a source of oxidizer for the fuel in the 

combustion process and as a working fluid for generating power or thrust [1]*. The ramjet 

engines are appropriate to supersonic speed flights, where the air becomes sufficiently 

compressed to overcome the need of mechanical compression. If flight speed is so high 

that fuel combustion must occur supersonically, the engine is called a scramjet, for 

supersonic combustion ramjet. Hypersonic flight utilizing airbreathing propulsion 

requires the development of scramjet technology. Scramjet propulsion differs 

substantially from lower speed concepts in that the propulsion flow path is highly 

integrated with the vehicle external aerodynamics. The flow is compressed under the 

vehicle forebody from the nose of the aircraft and though the inlet to the combustor, and 

expanded through the nozzle to provide the overall performance. In the combustor, fuel is 

injected at sonic or supersonic speeds into a shock dominated supersonic airstream where 

it mixes and bums [2], A critical element in the design of the scramjet engine is detailed 

understanding of the complex flow field present in different regions of the system over a 

range of operating conditions. Constraints on system size and weight have led to the need 

to improve technology for analyzing and designing such systems. One of the

* The AlAA Journal format is followed in this dissertation.
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characteristics of hypersonic airbreathing vehicles is that the combustor length remains 

virtually constant at 2-6 ft for most hypersonic vehicles, suggesting that the supersonic 

combustion processes are inherently mixing-limited. In order to meet these requirements, 

improved combustion systems are required. There is still serious question as to whether 

or not stable supersonic combustion is possible over the range of expected operating 

conditions. Recently, the National Aeronautics and Space Administration (NASA) 

initiated several hypersonic technology programs. One of these programs is the Hyper-X 

program. The program focus is to extend scramjet powered vehicle technology to flight, 

elevating as much as technology as possible, and validating, in flight, the design systems, 

computational fluid dynamics (CFD), analytical, and experimental methods required for 

this complex multidisciplinary problem [3], The scramjet offers a method of propulsion, 

which, in principle, is able to operate up to any flight speed and, in fact, seems likely to 

be effective for flight speeds approaching 5 km/s. A considerable amount of research has 

been done on the components of scramjets, with the inlet, the combustion chamber, and 

the thrust nozzle all receiving attention. The components have also been coupled together 

to make a complete scramjet engine. Various forms of this type of engine have been 

subjected to experimental scrutiny [4], With increasing combustor Mach number, the 

degree of fuel-air mixing that can be achieved through the natural convective and 

diffusive processes is reduced, leading to an overall decrease in combustion efficiency 

and thrust. Because of these difficulties, attention turned to the development of 

techniques for enhancing the rate of fuel-air mixing in the combustor. Numerical 

methods must also be used to improve the understanding of fuel-air mixing. Studies are 

currently underway to explore the physics of mixing. Chemical reaction has also been
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included in some of those studies, but such studies are limited by the large number of 

spatial scales that are present and must be resolved [5],

The ramjet engines were designed for flights in the Mach number range 3-5, while the 

scramjet engines are designed to be suitable for flight Mach number over 6. For these 

reasons, in order to avoid having to carry two engines for ramjet and scramjet modes in 

the same vehicle, the concept of dual-mode combustion has been introduced in the late 

1960’s [6]. The dual-mode scramjet engine should be able to operate in both subsonic 

combustion as well as supersonic combustion modes. In the dual-mode engine a constant 

area diffuser called isolator is placed upstream the combustor to isolate the inlet flowfield 

from any combustor-generated upstream interaction in order to prevent the inlet unstart. 

A constant area duct combustor follows the isolator. Fuel can be injected by different 

methods inside the combustor. The heat release due to combustion eventually expands 

the flow back to sonic conditions (thermally choked condition). An expanding duct is 

placed after the combustor in order to maintain flow expansion to supersonic conditions 

and delay the formation of thermal choke. In recent years, dual-mode combustion has 

received attention because of its application in particular flights. Dual-mode combustion, 

which is the primary motivation of this study, is a very challenging problem for 

computational fluid dynamics (CFD). This is due to the nature of the highly turbulent 

flow field associated with the extensive upstream interaction, and the downstream mixing 

and combustion at low Mach number. Moreover, the mixed supersonic and subsonic 

regions of the combustor require large sections of the flow to be solved simultaneously, 

forcing the use of efficient CFD codes, and suitable turbulence and combustion models.
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1.2 Overview of Research

The method of fuel injection highly affects the efficiency of scramject engines. One 

objective of this research is to numerically investigate both supersonic mixing and 

combustion processes in scramjet engines. A detailed investigation is performed on the 

ramp fuel injectors where fuel is injected parallel to the airstream. Different ramp 

injectors with different side angles are investigated. In addition to supersonic combustion, 

dual-mode combustion is among one of the newly investigated areas. Research in this 

area has been relatively scarce; more research is required to study the complicated flow 

field inside the dual-mode combustors. The second part of this research attempts to fill 

this void in the literature by investigating the flowfield of the dual-mode scramjet 

combustors. Two different configurations with parallel and transverse fuel injectors are 

studied.

A comprehensive review of the relevant previous work is presented in Chap. 2. The 

chapter is divided into two sections. The first section reviews the previous research done 

in the area of supersonic mixing and combustion with special focus on injection and ramp 

fuel injectors. The second section of Chap. 2 reviews the previous work in the area of 

dual-mode combustion. Chapter 3 describes the physical models selected for the current 

study, governing equations, and numerical procedures. Numerical results are presented 

and discussed in Chaps. 4 and 5. Chapter 4 includes results of the Mach 2 scramjet 

combustor. Effects of grid size and turbulence modeling and comparisons with 

experimental work are presented in this chapter followed by the effects of ramp side 

angle on mixing and combustion for raised and relieved ramps. Chapter 5 presents results 

for dual-mode combustion. Results are presented for two combustor configurations.
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Finally, some concluding remarks and recommendations for future work are presented in 

Chap. 6.
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Chapter II 

LITERATURE SURVEY

In this chapter, the relevant literature pertaining to supersonic mixing and combustion 

in scramjet engines and dual-mode combustion is reviewed. In the first section, only 

research treating supersonic mixing and combustion in pure scramjet engines is 

presented. Special attention is paid to the perpendicular fuel injectors and the wall- 

mounted ramps as they are the two types of injectors that are used in the current study. In 

the second section, relevant work done in the area of dual-mode combustion is reviewed.

2.1 Supersonic Mixing and Combustion

A significant amount of recent high-speed combustion research has been directed 

towards the optimization of the scramjet combustor, and in particular the efficiency of 

fuel-air mixing and reaction taking place in the engine. To a large extent, for a given 

condition, the net heat release achieved in a scramjet combustor is driven by the 

efficiency and effectiveness of the fuel injection [7], Various injection schemes of 

different geometrical configurations and flow conditions have been investigated in the 

past two decades. Selected methods that have been used to enhance the mixing process in 

the scramjet engines are summarized and reported in Ref. 8.

2.1.1 Transverse Fuel Injection

The earliest scramjet combustor design evolved normal injection of fuel into 

supersonic airstream. Several investigations have visualized turbulent structures in a 

transverse jet using either planar Mie scattering or planar laser-induced fluorescence.
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Lee et al. [9] experimentally investigated the normal injection. Their work showed that 

the injectant produces a detached shock wave upstream of the fuel jet giving rise to 

separated air zones both upstream and downstream of the jet. This translates to significant 

losses in total pressure and consequently scramjet cycle efficiency. However, combustion 

can be achieved within a very short length from injection since the separation zone works 

as flame holder. More experimental studies of transverse hydrogen injection in 

supersonic airflow were conducted in [10-13]. All of these studies produced 

instantaneous images that showed large-scale turbulent structures. Experiments of Segal 

et al. [10] were performed to determine the combustion efficiency and the combustor- 

inlet interactions at low temperature, lean mixture operational end of a scramjet constant- 

area combustor model. Due to the constant area of the combustor and the low initial 

temperature, upstream interaction had occurred at a very low equivalence ratios. Results 

showed that most of the fuel was burned behind the step and around the jets which is the 

high recirculation region. Hermanson and Winter [11] reported that structures develop at 

the jet/freestream interface in a periodic manner and persist far downstream of the 

injector. Gruber et al. [12] found similar large-scale structures. VanLerberghe et al. [13] 

reported that significant instantaneous mixing occurs in the region downstream the barrel 

shock region and below the jet centerline. Also, the counter-rotating streamwise vortex 

pair in the jet plume plays an important role in the scalar mixing processes. Several 

studies [14-19] have attempted to investigate the effect of injector geometry and the use 

of hydrocarbon fuels on both supersonic mixing and combustion. In the present work one 

dual-mode combustor has been investigated with transverse fuel injection behind a 

rearward-facing step.
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2.1.2 Parallel Fuel Injection

Mixing enhancement by axial vortices, either in the fuel stream or in the airstream., 

was investigated by many researchers in the past fifteen years. During this period of time, 

parallel injection techniques were studied experimentally and numerically. Parallel 

injection may be useful at high speeds to extract energy from hydrogen that has been 

used to cool the engine and the airframe of a hypersonic cruise vehicle.

Gutmark et al. [20] studied tapered slot jet experimentally in nonreacting and reacting 

flows. An axial vorticity is induced in the parallel-flow fuel jet. It includes inducing axial 

vorticity through secondary flows which arises when supersonic fuel flows through a 

converging tapered slot jet. This involves which feature an elliptic-to-conical duct 

transition just before sonic injection of the fuel into the parallel airstream.

One of the first experimental studies of wall-mounted ramps had been conducted by 

Northam et al. [21]. Experiments were conducted with swept and unswept raised ramps 

to explore the mixing enhancement in a scramjet combustor. In both configurations, 

hydrogen was injected at Mach 1.7 in the Mach 2.0 airstream. The injector ramps were 

designed to yield a deflected shock wave from the duct top wall such that it passed just 

downstream of the barrel shock of the fuel injector. Perpendicular fuel injectors were 

added downstream of the swept ramps to determine if the wake flow generated by the 

parallel injector, with no fuel injection, is effective in enhancing mixing. In addition, 

three-duct configurations of the combustor were tested. Results showed that the swept 

ramp injector provided good flame holding and enhanced mixing. Also, the calculated 

combustion efficiencies for the swept ramp injectors were found higher in comparison
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with those achieved with the unswept ramp injectors. A series of numerical studies have 

been performed and compared with the results of this work.

Supersonic combustion research related to hypersonic airbreathing propulsion has 

been actively underway at NASA Langley Research Center (LaRC) since the mid 1960’s. 

Rogers et al.[22] had reviewed the LaRC experimental supersonic combustion research 

efforts. At NASA Langley Research Center, Drummond et al. [23] studied numerically 

fuel-air mixing in a model generic supersonic combustor with the CFD code SPARK. 

Two ramp configurations were studied and were taken from Ref. 21. Only fuel-air mixing 

was considered during this study. A structured grid was used and compressed near the 

injector region. Results from this numerical study confirmed the experimental results of 

Northam et al.[21]. However, the predicted shock angle in both cases was lower than that 

measured in the experiment of Ref. 21. Riggins et al. [24] extended the preliminary non

reacting investigation of Drummond et al. [23] and investigated the reacting flow with a 

finite rate two-step combustion model for hydrogen. Comparison with the non-reacting 

solution showed that combustion has a small effect of increasing the fuel mixing which 

could be due to either high combustion induced pressure gradient or pressure-induced 

“lifting” of the fuel jet away from the wall and into the dominant shed vortex from the 

ramp.

A method for analyzing flow losses and thrust potential in supersonic combustors has 

been presented by Reggins and McClinton [25, 26]. The method used in Ref. 26 relies on 

a complete and consistent one-dimensional representation of a three-dimensional 

flowfield. All mass (including individual species mass), momentum, and energy fluxes 

were integrated from the three-dimensional solution and defined in the one-dimensional
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equivalent flow. Both swept and unswept ramp injectors taken from Ref. 21 were 

investigated based on the reacting solutions. In addition to the ramp injectors, a thirty- 

degree downstream-directed flush wall fuel injectors has been analyzed. The wall jet 

displayed slightly higher thrust potential than the swept ramp at the end of the combustor, 

although the swept ramp was markedly more effective in the early stages of the 

combustor. In an extension to this work, Riggins et al. [27] investigated the injection 

strategies for high Mach number flow. Swept ramp fuel injector was used for Mach 13.5 

and Mach 17 flights. The evolution and distribution of thrust potential were investigated 

in details in order to explain and visualize combustor performance.

Waitz et al. [28] experimentally tested the performance of countered wall fuel 

injectors. The effects of incoming boundary layer height, injector spacing, and injectant 

to freestream pressure and velocity ratios were investigated. Performance was judged in 

terms of mixing, loss generation, and jet penetration. Strong dependence on injectant to 

freestream pressure ratio was found. Also, it was found that the injector performance 

strongly depended on the displacement effect of the hypersonic boundary layer. In 

addition, the boundary layer varied with injector spacing.

Donohue et al. [29] numerically investigated the three-dimensional nonreacting 

supersonic flow field produced by three parallel fuel injection schemes. Preliminary 

experimental results were also presented. Among three configurations, the ramp 

generated vorticity was found to be considerably large.

An experimental work was conducted by Stouffer et al.[30] to study the effects of 

compression and expansion ramp fuel injector configuration on scramjet combustion and 

heat transfer. Both compression (raised) and expansion (relieved) swept wall-mounted
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ramps were tested. Results showed that auto-ignition occurred for the compression ramp 

injectors and the fuel began to bum immediately downstream of the injectors. For tests 

with expansion ramps, a pilot was required to ignite the fuel, and the fuel did not bum for 

a distance of at least gaps downstream of injectors. Another experimental study followed 

this work was conducted by Stouffer and Northam [31]. Three ramp injector designs were 

evaluated: an unswept-compression ramp, a swept-compression ramp, and a swept- 

expansion ramp. In addition, normal injectors were used in combination with the 

unswept-ramp injectors. Similar results to that of the previous work were obtained 

concerning the method of ignition. With the normal injectors, the calculated combustion 

efficiencies and pressure integrals showed that the unswept compression ramp performed 

better than the two swept configurations.

A scramjet combustor, with swept ramp injectors, has been analyzed by Cox et 

al.[32], Eklund and Stouffer[33], and Baurle et al.[34]. The flowfield has been analyzed 

using a two-equation k-co turbulence model. An assumed probability density function 

(PDF) model has been used to account for turbulence-chemistry interactions. Results 

showed that the use of the PDF did not yield any significant improvements.

Researchers at the University of Virginia have investigated the supersonic mixing and 

combustion with the wall-mounted ramp injectors. Both experimental work using the 

planar laser-induced iodine fluorescence and numerical predictions have been conducted.

McDaniel et al. [35] studied experimentally the injection and combustion of hydrogen 

behind a 10-degree-compression, unswept ramp into Mach 2 air. The data obtained was 

the first available for the validation of CFD codes. All measured wall pressure 

distribution was used for a one-dimensional, equilibrium chemistry calculation of
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combustion efficiency. This work was extended by Guba et al. [36]. Numerical results of 

both reacting and non-reacting flows were obtained with the SPARK three-dimensional 

CFD code. An eight-species, twelve-reaction model was used. A numerical solution was 

obtained with structured grids. Swept-compression ramp injector was investigated 

experimentally by Hartfield et al. [37]. The flow field has been investigated using both 

Mach 2.0 and 2.9 freestreams. The measurements illustrate the domination of the mixing 

process by stream wise vorticity generated by the ramp. The mixing rate was observed to 

be lower for Mach 2.9 freestream than that for Mach 2.0 freestream, Donohue et al. [38] 

investigated experimentally and numerically the swept-compression ramp injection into a 

supersonic flowfield. Numerical results obtained using the SPARK three-dimensional 

CFD code were compared to the experimental results. Donohue and McDaniel [39] 

extended the work o f Ref. 37 and investigated the unswept-compression ramp fuel 

injector using air injected at Mach 2.0 into a Mach 2.9 freestream. The objective o f this 

research was to make available an experimental data set with sufficient completeness and 

accuracy for future CFD validation. Both experimental and numerical results were 

obtained.

A numerical study of parallel and non parallel injection in supersonic flow was 

conducted by Sekar [40], Results were obtained with the three-dimensional CFD code 

GASP and w ere compared w ith t he experimental r esults o f  the  U niversity o f  V irginia 

Ref. 38. Further studies of the ramp injectors have been conducted by investigators in 

[42-44]. Haimovitch et al.[41] had investigated the effects o f internal nozzle geometry on 

compression ramp mixing in supersonic flow. Drummond [42] described two mixing
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enhancement techniques. One of them involves the use of swept ramps placed in the 

airstream to introduce longitudinal vorticity leading to large scale mixing enhancement.

Cox-Stouffer and Gruber [44-46] studied the effects of span wise injector spacing 

and the impact of design changes upon mixing and losses characteristics.

2.2 Dual-Mode Combustion

The flowfield of the dual mode engine is complicated due to the presence of the 

mixed characteristics of both supersonic and subsonic flows and the active transition 

between subsonic and supersonic combustion within the engine. Past research on dual

mode combustion has generally been focused on studying inlets, isolators, combustors, 

fuels, and fuel injection. Waltrup [47] reviewed extensively the past research up to 1987 

on hypersonic inlets, isolators, liquid fuels, wall fuel injection, axial fuel injection, 

combustors, and exit nozzle. Billing et al. [48-49], and Waltrup and Billing [50-51] first 

provided analysis of experiments and analytical tools allowing the prediction of upstream 

interaction, required isolator length for mid-speed scramjet combustor configurations. 

Anderson [52] studied the dual-mode combustor performance and determined that 

expansion steps upstream of the combustor yielded some degree of isolation from 

pressure wave interaction in the upstream flow.

Isolators have been studied experimentally for a number of years. In the early stages 

of the supersonic combustion research, it was surmised that the shock-train structures, 

which had been observed in tests with fuel injection and combustion, could be duplicated 

in an underexpanded or throttled nonreacting flow [53]. Moreover, Reynolds and Mach 

numbers would be the fundamental correlating parameters, not pressure and temperature.
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Stockbridge [54] experimentally investigated the compression fields in a supersonic 

flow through an annular duct. The investigated model simulates the combustor inlet 

flowfield in a dual-mode combustor. Shock wave-boundary layer interactions also had 

been investigated. From experimental measurements of more than 1250 shock trains, 

Stockbridge [54] derived a correlation that predicts the position of the leading shock 

wave in an annular duct. Carrol and Dutton[55] experimentally investigated multiple 

shock wave/turbulent boundary layer interactions in rectangular ducts. Two Mach 

numbers were considered, Mach 2.45 and Mach 1.6. They showed that the lower Mach 

number interaction is much steadier with the length of the interaction scaling directly 

with the level of flow confinement (the ratio of the undisturbed boundary-layer thickness 

to the duct half-height, 8/L). A two-dimensional numerical study of precombustion 

shock-trains in supersonic diffusers had been performed by [56]. The freestream Mach 

number range of the study was from 3 to 10. They reported that the shock trains are 

characterized by a high speed coreflow which does not adhere to the adjacent diverging 

walls. Also, they concluded that turbulence modeling is critical for accurate prediction of 

shock/boundary layer interactions in shock-train regions. Lin et al.[57] numerically 

investigated the shock wave/boundary layer interaction in a two-dimensional constant 

area diffuser at Mach 3. They examined the effects of back pressure, Mach number and 

boundary-layer momentum thickness on the shock train behavior. The shock train 

increases with the increase of the back pressure for a given Mach number, and decreases 

with the increase of Mach number at fixed back pressure. It also increases with 

momentum thickness for given Mach number and high back pressure. The isolator- 

combustor interaction in a dual-mode scramjet engine had been investigated by Pratt and
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Heiser[58]. The objective the work was to present some ideas to clarify the relationships 

between component processes in a supersonic combustion system.

Experiment to study the effect of fuel injector geometry on scramjet combustor 

performance with an entrance Mach number of 2.5 was conducted by Chinzei et al. [59]. 

The study focuses on the effects of geometry on combustion-induced peak wall pressure 

and associated upstream influence, as well as on mixing/combustion characteristics. Five 

types of injector/combustor models were tested. They concluded that the injector model 

with the shortest isolator had the lowest peak pressures while that with the longest 

isolator had the highest peak pressure. Also, there is a high sensitivity of the fuel mixing 

to the length of the isolator, which is due to pressure and Mach number changes. Their 

calculations of the combustion efficiency showed that the combustion efficiency is the 

highest with the shortest isolator. Lin[60] extended the work of Ref. 57 to investigate the 

geometric effects on precombustion shock train in a constant area isolator. Numerical 

analysis was conducted for two-dimensional planar and cylindrical ducts at Mach 2.6. 

Results of Lin [60] showed that the geometric difference in constant area isolators can 

affect the type of the shock structures and the shock train length. For the same back 

pressure and inflow condition, the shock train length in cylindrical duct is shorter than 

that in the two-dimensional planar duct. Emami et al. [61] conducted experimental 

studies to investigate inlet-isolator performance in an airframe-integrated dual-mode 

engine. Results were obtained for cold flow at Mach number of 4.0. Their results reveal 

that the performance of each isolator is dependent not only on inlet geometry and 

forebody boundary-layer thickness but also on the isolator length and isolator step area 

change. The results also showed that the combined inlet isolator maximum back pressure
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capability was increased with increasing isolator length and increasing inlet contraction 

ratio, and it was decreased by inlet distortion and rearward-facing step area increases in 

the isolator.

Different experimental and numerical studies have been conducted to study a dual

mode combustor model with aerodynamics ramp fuel injectors [62-65]. A dual-mode 

combustor with high upstream interaction was proposed and investigated at the National 

Aerospace Laboratory (NAL) in Japan. Fuel is injected normal to the airstream behind a 

backward facing step. Experimental studies have been performed in Refs. 66 and 67. This 

geometry is similar to one of the dual-mode models investigated in the current study. 

Moreover, different numerical studies have been conducted to study the same geometry 

[68-72]. The effect of the turbulence temperature fluctuation on the combustion process 

was investigated by Mizobuchi et al. [68]. The numerical results of Reggins[69] showed 

the development of substantial upstream interaction consisting of an oblique 

shock/expansion train. This shock train is generated by recirculation zones on both top 

and bottom isolator walls. Olynciw et al.[70] numerically investigated the possibility of 

scaling the computational domain to accelerate the convergence of the numerical solution 

in order to reduce the computational time. The study supports the usefulness of the 

numerical scaling in simulating dual-mode combustor flowfields. Rodriguez et al. [71] 

studied grid convergence, turbulence modeling, and wall temperature effects in terms of 

wall pressure. Several computational cases were examined; these cases include jet-to-jet 

symmetry and half duct modeling. Results showed the development of a large side-wall 

separation zone extending much further upstream than the separation zone at the duct 

centerline. Mohieldin et al. [72] studied numerically the same model. They have
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investigated both two-dimensional and three-dimensional models. Their results showed 

high upstream interaction in the isolator section. Also, it was found that the symmetric 

flow structure no longer exists in the isolator as the length of the upstream interaction 

exceeds the isolator height.
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Chapter III

PHYSICAL MODELS AND NUMERICAL PROCEDURE

In this chapter, the physical models selected for the current study are described 

followed by the governing equations used to describe the flow field and the numerical 

procedure.

3.1 Physical Models

Different configurations are considered in the present study. Two configurations of 

scramjet combustors are investigated with different wall-mounted ramps in addition to 

two dual-mode combustor configurations. All configurations are discussed in the 

following subsections.

3.1.1 Scramjet Combustor with Raised Ramps

The objective of the wall mounted ramp is to convert part of the flow energy in the air 

stream into tangential kinetic energy to create a pair of counter rotating vortices in order 

to hold the fuel jet and increase the mixing rate [6]. In the raised (compression) ramp 

configuration, shown in Fig. 3.1, an oblique shock wave stands at the base of the ramp 

where it rises from the wall. The air pressure at the top surface of the ramp becomes 

higher than that at both sides. Due to the difference in pressure, air at the top surface of 

the ramp spills over the ramp sides to the lower pressure zone creating a pair of counter- 

rotating vortices.

In the present study, three raised (compression) wall mounted ramps are considered 

with different side angles, 0 (unswept), 5 degrees, and 10 degrees. The ramps are located 

in a constant area duct combustor as shown in Figs. 3.2-3.4. The duct has a rectangular
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cross-section with an aspect ratio of 1.7. The ramps have a 10-degree compression angle. 

The fuel jet is 2.7 mm in diameter and the ramp height is 5mm. The jet is inclined at a 10- 

degree angle parallel to the ramp surface in the three ramps to keep the jet direction 

parallel to the air flow direction. The unswept compression ramp has an aspect ratio of

1.0. As reported by Nickol [73], the aspect ratio of 1.0 demonstrated the most rapid 

downstream decay of maximum injectant mole fraction and it is the most effective mixer 

among three unswept ramps with different aspect ratios. The geometry of the 10-degree 

swept ramp is selected identical to that of Donohue et al. [38] in order to be able to 

compare with the available experimental data.

3.1.2 Scramjet Combustor with Relieved Ramps

In this configuration, shown in Fig. 3.5, the wall is turned away from the flow, while 

the top surface of the ramp remains in the plane of the upstream wall. When the wall has 

relieved far enough to expose the fuel jet in the downstream end of the ramp, the wall 

turns back into the flow until it is again parallel with the plane of the upstream wall. A 

Prandtl-Meyer expansion fan is anchored at the upper edge of the inclined plane, causing 

a pressure difference between the flow on the upper ramp surface and the expanded flow 

along the side walls of the ramp [6]. The design goal is also to form counter-rotating pairs 

of axial vortices having the same sense of rotation as in the raised ramp.

In the present study, two relieved (expansion) wall-mounted ramps are considered 

with two side angles, 0 (unswept), and 5 degrees. The two configurations are shown in 

Figs. 3.6 and 3.7 respectively. The duct has a rectangular cross-section with an inlet 

aspect ratio of 1.7. The ramps have a 10-degree compression angle. The fuel jet is 2.7mm
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in diameter and the ramp height is 5mm. The jet is inclined at a 10-degree angle parallel 

to the ramp surface in the two ramps.

3.1.3 Dual-Mode Combustor with Raised Ramps

The geometry is similar but not identical to the dual-mode combustor proposed by the 

University of Virginia [74]. The model consists of three parts, isolator, combustor, and 

expanding duct as shown in Fig. 3.8. The isolator is a constant area duct with aspect ratio 

of 1.7 placed before the combustor. Two combustors are investigated in this study with 

length of 10 and 20 ramp height. The combustors have the same aspect ratio of the 

isolator. Fuel is injected through an unswept compression ramp mounted on the bottom 

wall at the combustor inlet. An expanding duct with expansion angle of 2.9° on the lower 

wall is placed after the combustor.

3.1.4 Dual-Mode Combustor w i t h  a Rearward Facing Step

The dual-mode combustor model is shown in Fig. 3.9. This model is similar to that 

investigated experimentally by Kumaro et al.[66] but with two different arrangements of 

the fuel injectors. The dual-mode combustor is a 147.3mm constant width rectangular 

duct. It consists of three parts, constant area duct isolator with aspect ratio 4.7, constant 

area duct combustor, and expanding duct. The isolator is 32 mm in height and 220 mm in 

length. There is a 3.2 mm steps on both upper and lower walls of the combustor. The 

length of combustor is 96 mm followed by a 350 mm expanding duct with expansion 

angle of 1.7° on the upper and the lower walls. Fuel is injected through wall injectors on 

the upper and lower walls. Two different arrangements of fuel injectors inside the 

combustor are investigated. The first one has 18 injectors and the second one has 10
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injectors. All injectors have the same diameter, 2.8 mm and 3.8 mm for the 18-injector 

combustor and the 10-injector combustor, respectively. Injectors are placed in two rows 

on each wall. The fuel injectors in each row are equally spaced. The injectors on both 

rows are staggered. The two rows are located at 128 mm and 192 mm downstream of the 

steps, respectively. The arrangement of the fuel injectors is intended to provide the same 

fuel flow rate on both walls in addition to increasing the surface area of the fuel in order 

to achieve good mixing and complete combustion. Figure 3.10 shows the distribution of 

the fuel injectors for both combustor configurations.

Navier-Stokes equation and the species continuity equation. According to Anderson [75], 

the main thrust o f present-day research in computational fluid dynamics and heat transfer 

in turbulent flows is through the time-averaged Navier-Stokes equations. These equations 

are r eferred to as Reynolds averaged Navier-Stokes equations. The Reynolds averaged 

equations are derived by decomposing the dependent variables in the conservation 

equation into time-mean and fluctuating components and then averaging the entire 

equation. Equations for continuity, momentum, energy, and species continuity are 

expressed, respectively, as [75]

3.2 Governing Equations

The flow field o f the combustor models is governed by the Reynolds averaged

(3-1)

+ Y , P i S i  (3.2)
/=i
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where p is the density, t is the time, x, is the coordinate axis (x, y, z), is the velocity 

component (u, v, w), p is the static pressure, gi is the external force, and H is the total 

enthalpy. The enthalpy of formation, the mass fraction, and the production rate of species 

j are presented by h ° , mj, and Rj, respectively. The symbols (I, k, and cp are the dynamic 

viscosity, the thermal conductivity, and the specific heat, respectively.

3.3 Numerical Procedure

3.3.1 Code Description

For the present study the numerical analysis is carried out using the CFD code 

FLUENT [76]. The FLUENT is a finite volume code for solving steady and unsteady 

three-dimensional Reynolds-averaged Navier-Stokes equations. The code uses first or 

second order finite volume discretization method coupled explicit or implicit solver. The 

code is capable of using structured as well as unstructured grids. The code can solve 

subsonic and supersonic flows. The program also has the ability to simulate chemical 

reactions. It has a large data base of chemical properties for many species and reactions. 

This feature is turned off in the nonreacting cases.
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3.3.2 Turbulence Modeling

Turbulence modeling is a key element in computational fluid dynamics (CFD). Aside 

from any physical consideration, turbulence is inherently three dimensional and time 

dependent. Hinze [77] has provided a sharp definition o f turbulence as “Turbulent fluid 

motion is an irregular condition o f flow in which the various quantities show a random 

variation with time and space coordinates, so that statistically distinct average values can 

be discerned.” Four main categories o f turbulence models evolved by the early 1950’s 

[78]: algebraic(zero-equation) models, one-equation models, two-equation models, and 

stress-transport models. With the coming of the age o f computers, further development of 

all four classes o f turbulence models has occurred. Unfortunately, no single turbulence 

model is universally accepted as being superior for all classes o f problems. Thus, the 

choice o f turbulence model will depend on different considerations such as the physics of 

the flowfield and the level of accuracy required. In the current study, the two-equation k- 

e t urbulence m odel i s u sed. F o r t  his m odel, the  B oussinesq approximation i s a ssumed 

valid; it assumes that the turbulent stresses are proportional to the mean velocity 

gradients. Thus, specific Reynolds-stresses tensor and the turbulence kinetic energy can 

be calculated by the following equations [78]:

where vt is the kinematic turbulent viscosity (pt/p), Sy is the mean strain-rate tensor

§ij Kronecker delta, 0 k is  the turbulent Prandtl number, a n d k  i s the  turbulent kinetic

energy.

(3.5)

d k
(3.6)
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Three different k-e turbulence models are available in the FLUENT code. All three 

models have similar forms with transport equations for k and e. The major differences in 

the models are the method of calculating turbulent viscosity, the turbulent Prandtl 

numbers governing the turbulent diffusion of k and £, and the generation and destruction 

terms in the e equation. An overview of issues related to these three turbulence models is 

given below.

The Standard k-s Model

The standard k-e model is a semi-empirical turbulent model based on model transport 

equation for the turbulent kinetic energy k and its dissipation rate e [79]. The model 

transport equation for k is derived from the exact equation, while the model transport 

equation for e is obtained using physical reasoning and bears little resemblance to its 

mathematically exact counterpart [76], The turbulence kinetic energy is calculated from 

Eq.3.6 and the dissipation rate is calculated from

dk^£ + t / . i l  = C - r - ^ L - C  — + ~
dt J dx, £l k ij dx; e2 k dx

(v + vt / a e)
dx,

(3-7)

where Cei, CS2 are constants and a E is the turbulent Prandtl numbers.

By combining k and e, the turbulent viscosity is calculated as

v,  -  C ^ k 2 / e  (3.8)

where Cq is a constant.

The model constants have the following values [79]: CEi= 1.44, CE2=1.92, oE= 1.3, 

Ok= 1.0, and C/x= 0.09. These default values have been determined from experiments. 

They have been found to work fairly well for a wide range of turbulent flows.
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In the derivation of the model, the flow is assumed fully turbulent and the effects of 

molecular viscosity are negligible. Therefore, the standard k-E model is valid only for 

fully turbulent flows.

Renormalization Group k-e Model (RNG- k-e)

The RNG k-e is a more recent version of the k-e model. The model was derived using 

a rigorous statistical technique called renormalization group theory [80]. This model is 

similar to the standard k-e model but includes some refinements. The model includes 

additional term in its e equation that significantly improves the accuracy. Also the effect 

of swirl turbulence is included which enhances the accuracy for swirling flow. These 

features make the RNG k-e model more accurate and reliable for a wider class of flows 

than the standard k-e model.

The turbulent kinetic energy k, the dissipation rate e and the eddy viscosity are still 

given by Eqs.(3.6)-(3.8). However, the model uses a modified coefficient, C£2 defined by

The closure coefficients for the RNG k-e model are[78]: Cei= 1.42, Ce2=1.68, c s= 0.72, 

ok= 0.72, Cp= 0.085, (3= 0.012, and X0=4.38.

c„;Wi-xtK)  
1 + 0 (3.9)

where
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Realizable k-e Model

The term “realizable” means that this model satisfies certain mathematical constraints on 

Reynolds stresses consistent with the physics of turbulent flows. Neither the standard k-e 

nor the RNG k-e is realizable. The realizable k-e model contains a new formulation for 

turbulent viscosity. Also, a new transport equation for the dissipation rate has been 

derived from an exact equation for the transport of the mean-square vorticity fluctuation. 

The eddy viscosity is computed from Eq.(3.8) as in other k-e. The difference between the 

realizable and the other k-e models is that is no longer constant. It is computed from

and Q y  is the rate of rotation tensor.

It can be seen that C^ is a function of the mean strain and rotation rates and turbulence 

fields (k and e). The model constants are C£i= 1.44, Ce2=1.9, oE= 1.2, c k= 1.0.

This model has been extensively validated for a wide range of flows. It more 

accurately predicts the spreading rate of both planar and round jets.

Both the realizable and the RNG k-e models have shown substantial improvements 

over the standard k-e model where the flow features include strong streamline curvature, 

vortices, and rotation. Initial studies have shown that the performance of both models 

provide good results for several validations of separated flows and flows with complex

C
1

(3.10)

where
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secondary flow features. In the current study results are obtained for one case using the 

three k-e model versions. Comparisons are presented in Sec. 4.3.

3.3.3 Chemistry Modeling

In this study a single-step chemistry model has been used for hydrogen-air combustion. 

In this global single-step mechanism, the hydrogen fuel is oxidized to water without 

taking into account the intermediate species such as OH, H, etc. The species transport 

model used for this study is the finite rate reaction model. The model solves for each 

species of the species considered in the study (H2 , 0 2, N2) and H20). The reaction rate is 

calculated with the Magnussen model to take into account the influence of turbulence. 

The nitrogen is carried as an inert species. The reaction and reaction rate are expressed as

where M is the molecular weight of hydrogen and Ch2 and C0 2  are the concentrations of 

hydrogen and oxygen respectively. The symbols Ai, 0Ci, (3j are imperical constants and 

are given in Table 3.1.

The construction of a grid is one of the first steps in computing a numerical solution 

to the equations that describe the physical process. A poorly constructed grid leads to 

poor results and a lack to convergence. In the current study three-dimensional 

unstructured grids are generated. All grids are generated outside FLUENT with the

(3.11)

(3.12)

3.4 Grid Generation
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Table 3.1 One-step model for hvdroeen/air

Constant R h2

Ai (kg/m3-s) 6.32xl05

Ei (J/kg-mol) 1.2263xl07

1.6

Pi 1.6
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preprocessor Gambit [81]. The grids generated in this study are in the range between

200.000 and 400,000 points. Grid convergence studies are performed for one geometry 

and these are presented in Sec. 4.1.

3.5 Boundary Conditions

In all modeled cases in this study, only half of the domain is computed due to the 

symmetry of the physical models. The symmetry condition is defined at y/2 for all cases. 

A uniform flow is assumed for the fuel jets. For the inlet air stream, either a uniform flow 

or a velocity profile is used at the inlet plane. A no-slip condition is used for the 

combustor walls. Walls are assumed either adiabatic, requiring the normal derivative of 

temperature to vanish, or isothermal. A non-reflective boundary condition is used at the 

outflow where the flow quantities are linearly extrapolated from the interior domain. 

Initial conditions are obtained by specifying freestream conditions throughout the 

flowfield.

3.6 Iteration Technique

3.6.1 Discretization

The FLUENT code uses a control-volume-based technique to convert the governing 

equations to algebraic equations that can be solved numerically. This control volume 

technique consists of integrating the governing equations about each control volume, 

yielding discrete equations that conserve each quantity on a control-volume basis. These 

discrete values are stored at the cell centers. Integration over the control volume requires 

calculation of the cell face values so that the convective and diffusive fluxes can be 

determined. This requires an interpolation from the values at the center to the cell face.
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Different interpolation schemes are available in the code: first-order upwind, second- 

order upwind, power law, and QUICK. Higher order schemes present a better accuracy as 

a first order scheme introduces numerical diffusion when the flowfield is oblique to the 

grid alignment. However, high order schemes show a less stable solution procedure. In 

this work, both the first-order and the second-order upwind schemes are used.

3.6.2 Solver

The coupled solver of the FLUENT code is used in this study to solve the governing 

integral equations. The governing equations of continuity, momentum, energy, and 

species transport are solved simultaneously (coupled together). Governing equations for 

turbulence and other scalars are solved sequentially (segregated from one another and 

from the coupled set). Because the governing equations are non-linear (and coupled), 

several iterations of the solution is obtained. Each iteration consists of the steps shown in 

Fig 3.11 and outlined below:

1. Fluid properties are updated based on the current solution.

2. The continuity, momentum, energy, and species equations are solved 

simultaneously.

3. Turbulence equations are solved using the previously updated values of the 

other variables.

4. A check for convergence of the equation set is made.

These steps are continued until the convergence criteria are met.
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Converged?

Update properties

Solve turbulence and other 
scalar equations

Solve Continuity, momentum, energy, 
and species equations simultaneously

Yes 

(  STOP )

Fig. 3.11 Outline of the solution procedure
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3.7 Convergence

In general, there are no universal metrics for judging convergence. In this study, the 

convergence of the solution is monitored and judged by four different criteria, namely the 

residuals of the flow properties, the mass conservation, and the profile of the mole 

fraction or the wall static pressure. The converged solution is assumed to be achieved 

after satisfying the following four conditions:

1- The residuals of the flow properties are less than 10'5 for nonreacting flows and

-a

less than 10' for reacting flows.

2- No changes in the wall static pressure profile are seen with the iterations.

3- Global mass balance at the inlets and the outlets is satisfied, i.e.,

E  (3.13)

4- Conservation of mass flow rates inside the computational domain is satisfied.

It is observed that the four conditions for convergence usually are achieved at the same 

time in all nonreacting cases. In the reacting cases, the last two conditions (3 and 4) are 

achieved after the first two conditions (1 and 2). For nonreacting cases, usually 

convergence achieved between 4,000-6,000 iterations while for reacting cases, 

convergence is achieved between 10,000- 40,000 iterations.
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Chapter IV

RESULTS FOR SUPERSONIC MIXING AND COMBUSTION

In this chapter, results for supersonic mixing and combustion are presented. Two 

types o f wall-mounted ramps, raised (compression) ramps, and relieved (expansion) 

ramps, are investigated. Results are presented for both reacting flow as well as non

reacting flow. Initially, results are obtained with different unstructured grids to examine 

the grid independence. The results for the non-reacting flow are extensively compared 

with the available experimental and numerical results for the case o f raised ramp. The 

effects o f changing the side angle o f the ramp on both mixing and combustion, for the 

two types of ramps, are presented. Table 4.1 summarizes all of the cases presented in this 

chapter.

4.1 Effect of the Grid Size

The present results are compared extensively with both numerical and experimental 

results; these are presented in Sec. 4.3. However, a grid independence test has been 

conducted using one-ramp configuration. Different unstructured grids are used with the 

10-degree raised ramp (Fig. 3.2) to investigate the effect o f the grid size on the results. 

Before obtaining the final grids, an initial grid distribution test has been conducted for 

each grid size. Three grid sizes are investigated with sizes equal to about 200,000,

300,000, and 400,000 cells. Selected results are presented in Figs. 4.1-4.3 to give a clear 

idea about the effect o f the grid. The figures demonstrate clearly the grid independence. 

Figure 4.1 shows the distribution o f the injectant mole fraction near the nozzle along the 

vertical (Z) direction. Figure 4.2 shows the axial decay o f the maximum injectant mole

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table 4.1 Sum m ary of cases with ramp fuel injectors

Case Ramp Type Ramp Side Angle Flowfield Turbulence Model Injectant Mach 
Number

Grid Size

1 Raised 10 Nonreacting RNG k-£ 1.7 300,000

2 Raised 10 Nonreacting RNG k-e 1.7 200,000

3 Raised 10 Nonreacting RNGk-e 1.7 400,000

4 Raised 10 Nonreacting RNG k-e 0 300,000

5 Raised 10 Nonreacting Standard k-e 1.7 300,000

6 Raised 10 Nonreacting Realizable k-e 1.7 300,000

7 Raised 10 Reacting RNGk-e 1.7 300,000

8 Raised 5 Nonreacting RNGk-e 1.7 300,000

9 Raised 5 Reacting RNG k-e 1.7 300,000

10 Raised 0 (unswept) Nonreacting RNG k-e 1.7 300,000

11 Raised 0 (unswept) Reacting RNGk-e 1.7 300,000

12 Relieved 5 Nonreacting RNGk-e 1.7 300,000

13 Relieved 0 (unswept) Nonreacting RNG k-e 1.7 300,000

14 Raised 10 Nonreacting Laminar 1.7 300,000
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Fig.4.1 Mole fraction profile across the test section cutting through the 

jet core at X/H=0.5 and Y=0.0
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Fig.4.2 Axial distribution of maximum injectant mole fraction
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Fig. 4.3 Centerplane static pressure contours of different grids
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fraction. The same results are obtained with the three grids with a very slight difference. 

Figure 4.3 shows the contours of the static pressure at the centerplane. The same values 

have been predicted with the three grids. The obtained results are very close, although the 

thinner shock wave is predicted with the 400,000 grid at the base of the ramp.

Unless otherwise noted, all results presented in the following sections, are obtained 

with a grid size equal to about 300,000 grid points.

4.2 Effects of Turbulence Modeling

As recommended by Donohue et al. [39] and others, a two-equation model, k-e 

model, has been selected and used in the present study. The differences among different 

k-e turbulence models have been investigated. Three k-e models are used: the RNG k-e 

model, the standard k-e model, and the realizable k-e model. In addition, laminar 

calculations are also performed and compared with the turbulent calculations. Results for 

laminar flows are presented before the comparison of the turbulence models. Contours of 

static pressure, static temperature, and stream wise velocity for both laminar and RNG k- 

£ model at the plane of symmetry are presented in Figs. 4.4 - 4.6.

Figures 4.4 and 4.5 show the contours of static pressure and temperature. At the 

combustor inlet, both the laminar and the turbulent calculations for the pressure and the 

temperature show almost the same values. The shock wave is much clearer in the 

turbulent results. At the exit section, the temperature is about 5% less in the laminar case 

than the turbulent case. The stream wise velocity is shown in Fig. 4.6. At the inlet 

section, it is about 6 %  less in the laminar case. The figures show that the resolution of the 

shock wave in the turbulent case is clearer than that in the laminar case.
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Fig. 4.4 Centerplane pressure contours of turbulent and laminar flows
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Fig. 4.5 Centerplane temperature contours ofturbulent and laminar flows
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Fig. 4.6 Centerplane stream wise velocity contours of turbulent and
laminar flows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X
7



49

Figures A.l-4.9 show the decay of the maximum mole fraction, the mass-weighted 

averaged static pressure, and the mass-weighted averaged Mach number in the axial 

direction for the three turbulence models. The mass-weighted averaged pressure and 

Mach number are computed by using the following equations:

The figures show clearly that the three models give the same results. A slight difference 

is noted in the value of the maximum injectant mole fraction near the jet exit. Although 

the three turbulence models show no difference, the calculations in the current study are 

performed with the RNG k-e model which is recommended in Ref. 76 for this type of 

flow problems.

Recently, computational fluid dynamics (CFD) has become an important tool in the 

design and the development of hypersonic propulsion systems. However, the results of 

any CFD code cannot be trusted until the code is validated with experimental results. The

(4.1)

(4.2)

4.3 Code Validation
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Fig. 4.7 Deacy of maximum injectant mole fraction along the axial direction
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Fig. 4.9 Axial distribution of mass-average Mach number
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validation of the CFD codes depends heavily on experimental data in carefully controlled 

experiment. The Fluent code has been validated for different applications. However, it is 

not completely validated for supersonic mixing before. Detailed comparisons have been 

made in the current study and will be presented in this section.

The results presented in this section represent the comparison with the available 

experimental results from the University of Virginia [37, 39]. Results of time-averaged 

measurements using the planar laser-induced fluorescence technique are presented. 

Iodine seeded air was used for optical measurement purposes. Iodine seeding has the 

advantage of accurate tracking through shock waves and other high-gradient regions. 

Furthermore, as reported by McDaniel et al. [35], the iodine seeding did not significantly 

change the thermodynamic properties of air.

In addition, the current results are compared with the numerical results of Mao [82], 

The results of Mao [82] were obtained with a CFD code called GASP. A structured grid 

has been used with about 640,000 grid points. GASP solves Reynolds-Averaged Navier- 

Stokes equations. A cell-centered, finite-volume formulation was used with upwind- 

biased spatial discretization. Turbulence model was treated in his calculations with a two- 

equation k-e model.

Comparisons are presented for the non-reacting flow. The ramp is a compression 

wall-mounted ramp with a 10-degree side angle. Calculations are performed by utilizing 

the RNG k-e turbulence model. Flow conditions at the inlets are given in Table 4.2. 

Contours of static pressure, static temperature, mole fraction, and stream wise velocity are 

presented and are shown in Figs. 4.10-4.20. Comparisons are presented at the plane of 

symmetry as well as at different crossflow planes.
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Table 4.2 Non-reacting freestream and injectant conditions

Parameter Freestream
conditions

Injectant
conditions

Po (kPa) 262 248
T0(K) 300 300

P(kPa) 33.5 50.24

T (k) 163 189

Mach Number. 2.0 1.7

Turbulence Intensity 1.6% 5%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

4.3.1 Results Near the Nozzle Exit

Profiles of streamwise velocity, injectant mole fraction, and pressure across the test 

section cutting through the jet core at X/H =0.5 and Y = 0 are given in Figs. 4.10 - 4.12. 

The figures compare the numerical results with the experimental results of Donohue et al. 

[39].

Figures 4.10 and 4.11 show the mole fraction and the stream wise velocity profiles. 

The stream wise velocity is normalized with respect to the inlet value, while the Z 

coordinate is normalized with respect to the ramp height. The agreement between the 

calculations and the experimental results is good. Small differences appear in the velocity 

profile near the location of the shock interaction. The pressure profile is shown in Fig. 

4.12. The pressure is normalized with respect to the inlet pressure. The calculations do 

not show clearly the shock interaction between the fuel jet and the freestream as in the 

experiment. The flow field in this region is highly three-dimensional. For this reason, the 

differences could be due to the resolution of the grid at this location or due to some errors 

in the measurements. However, both the calculations and the experiment show the same 

trend. The differences seen in this figure are also clear in the results of the symmetry 

plane.

One of the methods that have been used to express the mixing rate of the fuel and the 

air is the decay of the maximum mole fraction downstream of the injector. Figure 4.13 

compares the decay of the injectant mole fraction with the experimental results of 

Hartfield et al. [38] where a similar, but not identical, ramp has been used with a ramp 

side angle of 9 degrees. The figure shows excellent agreement except far downstream of 

the injector. Near the end of the combustor, approximately at X/H=7.0, the current
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Fig.4.10 Axial velocity profile across the test section cutting through the jet 

core at X/H=0.5 and Y=0.0
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Fig.4.11 Mole fraction profile across the test section cutting through the 

jet core at X/H=0.5 and Y=0.0
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Fig.4.12 Static pressure profile across the test section cutting through the jet 

core at X/H=0.5 and Y=0.0
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Fig.4.13 Decay of maximum injectant mole fraction along the axial direction
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calculations show about 6% less in the maximum mole fraction than the experimental 

results. The difference at this section could be due to the slight difference in the side 

angle as it is shown in the following section. Another reason is the distribution of the grid 

at this section.

4.3.2 Results at the Symmetry Plane

Figure 4.14 compares the pressure on the tunnel centerplane. The agreement between 

the experiment and numerical results is generally very good, with differences mostly 

confined to specific regions. Shocks are captured with varying resolution in the 

calculation. Both codes captured well the ramp compression shock and its reflection 

from the opposing wall. The pressures in the near wake region agree well though GASP 

shows higher values in the jet core before the Mach disk. Downstream, current 

calculations predict well the reflected shock off the top surface. However, GASP 

calculation shows a weakly reflected shock, probably the results of insufficient grid 

resolution in the far field. Numerical results show that the pressure levels (the magnitudes 

of the pressure) are very close to the experimental values. Although the numerical results 

do not capture the second reflection near the top wall completely, there is still good 

agreement with the experimental results.

The centerplane temperatures are compared in Fig 4.15. The agreement between the 

two numerical results is very good. However, the agreement with the experiment is only 

fair. As indicated in Ref. [39], there are discrepancies attributed to light scattering near 

the surfaces during measurement. Along the top wall, in the three cases, temperature 

contours turn parallel to the wall. The values of the temperatures predicted by the two 

codes are almost the same. Both codes predict higher temperatures in the ramp base
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recirculation region than the measured temperatures. The current calculations clearly 

predict the oblique shock wave at the ramp as well as the shock reflection. The thermal 

boundary layer of the top wall, in all cases, becomes thick at shock reflection.

Figure 4.16 presents the centerplane streamwise velocity contours. Generally, the 

agreement between the experiment and numerical results obtained by both codes is very 

good. Again, the oblique shock waves and the shock reflections are well captured by the 

current calculations. The results of GASP slightly show the reflections. In general, the 

values of the velocities in the three cases are very close. However, the velocities at the 

base of the ramp are about 4 %  higher in the calculations than in the experiment. The 

calculated and the measured velocities in the region near the jet agree very well. Near the 

exit plane, the current code shows excellent agreement with the results of GASP. 

However, both codes show poor agreement with the experiment in this region. The 

velocity is 10% less than that in the experiment.

The injectant mole fraction distributions at the centerplane are shown in Fig. 4.17. The 

present results agree well with both the GASP results and the experimental data. The 

penetration of the jet plume into the freestream and the core decay are well captured. 

Values of the mole fraction are almost the same. However, the decay in the experiment is 

faster than that predicted by the two numerical codes.

4.3.3 Results at Crossflow Planes

Experimental data are available for three crossflow planes, namely, X/H=0.5, 

X/H=2.0, and X/H=8.0. These crossflow planes results will give an idea about the 

flowfield near the fuel jet and far downstream of the fuel jet.
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The pressure contours in the three crossflow planes are shown in Fig. 4.18. The 

pressure agreement is good. The flowfield features, such as shock locations and the 

position and strength of the vortices, are apparent in the pressure field. Although both 

codes predict higher pressure gradients in the measured vortex core, the current 

calculations indicate higher pressure in the core of the jet than the experiment, specially 

at the X/H = 2 plane. As mentioned before, this could be due to the grid resolution in the 

crossflow plane.

The temperature distributions in the same crossflow planes are compared in Fig. 4.19. 

The temperature agreement is fair. The numerical results obtained from the current 

calculations and GASP codes are similar. However, both codes predict higher 

temperature than the measured temperature in the ramp base recirculation region. As 

indicated in Ref. 6, there are discrepancies attributed to light scattering near the surfaces 

during measurement.

The injectant mole fraction distribution at three crossflow planes is shown in Fig. 4.20. 

Fuel injected from the base region of the ramp is mixed into the freestream air by the 

ramp-generated vortices. The results from both codes agree well with the experimental 

data. At X/H =2, the experimental plume displays slightly more curling. The penetration, 

spreading, and locations of maximum concentrations are in very good agreement. At 

X/H= 8.0, current calculations slightly under predict the peak mole fraction. The kidney

shaped structure is still shown in the calculations, while in the experiment the lobes have 

merged.

Finally, from the above comparisons it can be concluded that the current code is 

predicting well the complex three-dimensional compressible flow field around the ramp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

Experiment
0.015

320

300
■3Qa0.01 -o

240
0.005

260

0.01-0.005 0.005

0.015

3000.01

.240-

0.005

0.01-0.005 0.005

Present study 
0.015 r---------------------

Y(m)

a. cross-section at X/H=0.5.

Fig. 4.19 Contours of constant static temperature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

Experiment
0.015

280280, 260

0.01
.240

280■280.
=3000.005

!40

0.010.005-0.005

GASP0.015 300.

0.01

250;
0.005

;30o;
250.

0.010.005-0.005
Y (m)

Present study
0.015

0.01 -

E,
N

0.005

280 280 J
300

-0.005 0 0.005 0.01
Y(nn)

b. cross-section at X/H=2.0.

Fig. 4.19 (contd.) Contours of constant static temperature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

0.015
Experiment

0.01

g
N

0.005 -

-0.005 0 0.005Y(m) 0.01

GASP0.015
300

290

0.01 2 §Q.
•270

.250 '
,22i!20,

0.005

300

-0.005 0.005 0.01

Present study
0.015

0.01

B
N

0.005

-0.005 0 0.005
Y(m)

0.01

c. cross-section at X/H=8.0.

Fig. 4.19 (contd.) Contours of constant static temperature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Experiment
0.015

180
0.01

180
160-

0.005

0.010.005-0.005

GASP0.015

180

1700.01

'160
0.005

200;0 -0.005 0.005 0.01
Y (m)

Present study
0.015

170

0.01

160

0.005
150"

170
0 -0.005 0.005 0.01

a. cross-section atX/H=0.5.

Fig. 4.18 Contours of constant static pressure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

Experiment
0.015

170 160'0.01

170
170

0.005 -
160

170,

0.005 0.01-0.005

GASP

0.015

170
/ < 6 5 ^ 6 a

/ i 6 5 ^ 5 ^ 5

0.01

190:
0.005

165.
11901

0.010.005-0.005

Present study
0.015

180

0.01
170

160 170'

180'0.005

160—1801
0.01-0.005 0.005

b. cross-section at X/H=2.0.

Fig. 4.18 (contd.) Contours of constant static pressure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Experiment
0.015

0.01
1801

170

0.005
170

0.005 0.01-0.005

GASP

0.015

170-
0.01

1900.005

0.01-0.005 0.005
Y (m)

Present study
0.015

170

0.01
180

0.005

0.005 0.01-0.005

c. cross-section at X/H=8.0.

Fig. 4.18 (contd.) Contours of constant static pressure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Experiment
0.015

0.01

0.005

0.005 0.01-0.005

.0.015

0.01

0.005.
0.005

0.010.005-0.005
Y(m)

Present study
0.015

0.01

0.005

0.010.005-0.005

a. cross-section at X/H=0.5.

Fig. 4.20 Contours of constant injectant mole fraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.015
Experiment

0.01

E
N

0.005 -

0.005 0.01-0.005

0.015 GASP

0.01

E,
N

0.005 -

-0.005 0 0.005 0.01
Y (m)

Present study
0.015

0.01 -

E,
N

0.005

Y (m)

b. cross-section at X/H=2.0.

Fig. 4.20 (contd.) Contours of constant injectant mole fraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

Experiment
0.015

0.01 0.05

0.005

I
-0.005 0.005 0.01

GASP
0.015

.050.01

0.005

...„.x—<■
0

Y(m)
I

0.010.005-0.005

Present study
0.015

0.01
0.05

0.210.005

0.005 0.01-0.005

c. cross-section at X/H=8.0.

Fig. 4.20 (contd.) Contours of constant injectant mole fraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

fuel injector. Overall, agreement with the experimental and the numerical work is 

excellent. It is to be noted that the current calculations presented above are obtained with 

an unstructured grid of about 300,000 grid points. This grid size is less than 50% of the 

structured grid used for the numerical calculations of Mao [82].

4.4 Effects of Ramp Side Angle on Mixing and Combustion

The results presented here show the effects of the side angle on the mixing process for 

both nonreacting and reacting flows. Three ramps are investigated with side angles of 0, 

5, and 10 degrees (Figs. 3.2-3.4). At the beginning, the main flow field results (without 

injection) are presented and compared with both the nonreacting flow and the reacting 

flow to give a clear idea of the flowfield structure. For nonreacting flows, inlet conditions 

are the same as in the previous section, shown in Table 4.2. Table 4.3 shows the flow 

conditions at the inlets for reacting flows. Figures 4.21- 4.22 show the contours of static 

pressure, and streamwise velocity at the plane of symmetry for the three flows. The flow 

field is the same before the fuel nozzle. The effect of the injectant is clearly seen in Fig. 

4.21 where the shock waves and the reflections become much stronger and the values of 

the pressure contours become higher. In the reacting flow a shock train is seen in the 

combstor after the ramp due to the chemical reaction and the heat release. Figure 4.23 

shows the distribution of the static temperature at the plane of symmetry for both 

nonreacting flow and reacting flow. The shape of the fuel jet is clear in the reacting flow 

along the combustor. Higher values of temperature are noticed around the fuel jet in the 

reacting zone.
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Table 4.3 Reacting freestream and injectant conditions

Parameter Freestream
conditions

Injectant
conditions

P0 (kPa) 305 750
T0(K) 1200 460

P (kPa) 37 152

T (k) 647 285

Mach Number 2.07 1.7

Turbulence Intensity 1.6% 5%
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Figure 4.24 shows the streamwise vorticity illustrated by the velocity vectors in 

different crossflow planes. The design goal of the ramp configuration is for the axial 

vortices to entrain the central fuel jet, ultimately leading to downstream mixing. The 

vortices are generated by the pressure gradient between the ramp surface and the ramp 

sides. The relative strengths can be seen clearly. As would be expected, the 10-degree 

swept ramp has the stronger vortex followed by the 5-degree swept ramp; also, the 

location of the vortex center moves outwards from the centerline and downwards to the 

side walls. In the X/H=0.5 plane, the two counter-rotating pairs of axial vortices are seen 

in the 10-degree ramp, and they slightly appear in the 5-degree ramp, while they are not 

seen in the unswept ramp which confirm the high mixing rate of the swept ramp. 

Downstream of the ramps the vortices become weaker.

The injectant mole fraction cross flow distribution for three ramp side angles is 

shown in Fig.4.25. Fuel is injected from the front base region of the ramp and is mixed 

into the freestream air by the ramp generated vortices. The figure compares the crossflow 

results of the three ramps at different axial locations from the ramp base, X/H=0.5, 2.0, 

4.0, 6.0, and 8.0. The effect of the vortices created by the ramp side angle becomes very 

clear downstream of the ramp. At X/H=4.0 the kidney-shaped plume is formed at a 

shorter distance for the 10-degree swept ramp than in the 5-degree swept ramp while it is 

still not formed in the unswept ramp. Also, the spread of the injectant is wider in the 10- 

degree swept ramp than in the other two ramps. This is due to the effect of changing the 

side angle of the ramp. Further downstream, at X/H=8.0, the same trend of increased 

spread with larger angle is also obtained in this plane.
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The hydrogen mole fraction distribution for reacting flow is shown in Fig. 4.26 on 

different cross planes downstream of the jet location for the three cases. It is noted for the 

unswept case that the fuel jet remains in contact with the combustor wall through the 

boundary layer for a longer distance than the 5-degree swept ramp which can be seen at 

X/H= 0.5, 2.0, and 4.0. In the 10-degree swept ramp case the je t is lifted from the 

combustor wall after a short distance from the fuel nozzle. Also, the effect of the ramp 

side angle is clearly seen where the ramp vortex spreads the jet producing a kidney

shaped plume cross section, while there is almost no spreading occurs in the unswept 

case. The figure shows the same trend as in the nonreacting flow (Fig. 4.24), except that 

the spreading of the jet plumes is less than that in the nonreacting flow due to the effect 

of the chemical reaction at the surface of the fuel jet. The results presented in Figs. 4.25 

and 4.26 can be explained as, with the swept ramp, the larger streamwise vortex has 

already begun to sweep the fuel across into the airstream and away from the lower wall 

while, with the unswept ramp, the smaller streamwise vortex also begins to transport 

injectant away from the jet, but not as much as does the swept ramp. As a result of the 

small vortex more fuel is transported towards the lower wall boundary layer in the 

unswept case. Clearly, the swept ramp significantly increases the overall spread and 

mixing of the fuel jet. However, some enhancement is also provided by the unswept 

ramp, but it is not as much as provided by the swept ramps.

Figure 4.27 shows the water vapor mole fraction generated from the reaction in a 

cross plane at X/H= 0.5, 20, 4.0, 6.0, and 8.0 for the three ramps. It is observed that the 

heat release dramatically reduced the mixing for the reacting case. This is due to the 

reduction in the streamwise vorticity. The reduction in streamwise vorticity as a result of
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heat release was also observed by Riggins and McClinton [28]. The figure shows much 

less warping due to vorticity for the unswept ramp than the other two swept ramps. It 

should be noted that the water forms at the boundary around the fuel plume, and that the 

maximum water production occurs for all cases near the interface of the hydrogen core 

and the outer flow. Also, the burning layer for the 10-degree swept ramp is larger than 

that for the other two ramps.

Figure 4.28 shows the temperature contours for reacting flow at the same cross planes 

for the three ramps. The temperature contours take the shape of the fuel plume for the 

three ramps. The higher temperature, as expected, exists around the reacting layer.

The mixing rate of the three ramps is illustrated in Fig. 4.29. The figure shows the 

axial decay of the maximum injectant mole fraction for the three ramp side angles. It can 

be seen that as the distance from the ramp base increases the maximum mole fraction 

decreases rapidly in the two swept ramps as compared to the unswept ramp. At X/H=6.0, 

the mole fraction reduces to about 23% of its maximum value for the 10-degree swept 

ramp while it reduces to 60 % of its maximum value in the unswept ramp case. Further 

downstream, at X/H=8.0, these values become 20% and 32%, respectively. It should be 

noted that the difference in the mixing rate between the two swept ramps is not large, i.e., 

the effect of increasing the ramp side angle from 5 degrees to 10 degrees has slight effect 

on the mixing rate while the difference between unswept and the 5-degree swept ramps is 

remarkable. It can be concluded that the highest decay rate correlates with largest side 

angle, the 10-degree swept ramp.

Figures 4.30 and 4.31 show the axial decay of the injectant concentration and the 

axial distribution of the Mach number, respectively. The figures show the same trend as
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illustrated in Fig. 4.29. The difference between the two swept ramps and the unswept 

ramp is significant while the difference between the two swept ramps is small. This leads 

to a conclusion that there should be an optimum value after which further increase in 

sweep will not affect the mixing.

The axial distribution of the mass averaged static pressure and the mass averaged 

Mach number for the three ramps are illustrated in Figs 4.32 and 4.33. The mass averaged 

values are calculated with Eqs.(4.1) and (4.2). As shown in Fig. 4.32, all ramps 

calculations show the initial expansion of the jet downstream of the ramp base near 

X/H=3.0 followed by increase in the pressure due to the compression shock waves and 

the reflections. Especially, the 10-degree swept ramp shows the large scale values of the 

pressure. However, the 10-degree swept ramp shows lower values of the Mach number. 

This is expected due to the high losses relative to the other two ramps as shown in Figs. 

4.34 - 4.36. Also, Fig.4.33 shows that the variation of spreading with the side angle 

affects the mean Mach number decay along the jet centerline.

Figure 4.34 shows the axial distribution of the mass-averaged vorticity magnitude. 

The vorticity is a measure of the rotation of a fluid element as it moves in the flowfield, 

and is defined as the curl of the velocity vector. The vorticity and the mass-averaged 

vorticity are obtained from using the following equations:

£  = V xV (4.3)

(4.4)
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The vorticity magnitude is normalized with the ramp height “H” and the inlet stream wise 

velocity “u.”

As expected, the unswept ramp has the weakest vorticity of the three cases examined. 

The axial distribution o f the mass-averaged helicity is shown in Fig. 4.35. The helicity is 

defined by the dot product of vorticity and the velocity vector. The helicity provides 

insight into the vorticity aligned with the fluid stream. The helicity and the mass- 

averaged helicity are obtained from the following equations:

The figure shows the same trend as in Fig. 4.34. The unswept ramp gives lower values 

than the other two swept ramps.

The losses associated with the mixing process are also can be shown by presenting 

the entropy increase for the three ramps. Figure 4.36 shows the increase o f the entropy 

with the increase of the distance in the direction of the flow. The 10-degree swept ramp 

shows higher increase of entropy than the other two ramps.

In a conclusion, one would expect the 5-dgree swept ramp to be an intermediate case 

between the unswept ramp and the 10-degree swept ramp. However, the difference

h = ( V x V ) - V (4.5)

(4.6)
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between the two swept ramps is not significant as the difference between the swept ramps 

and the unswept ramp. This observation is verified by Figs. 4.24 - 4.36.

4.5 Results for Relieved Ramps

Results are obtained for the relieved ramp configuration with two different side- 

angles namely, 0 and 5 degrees (Figs. 3.6 and 3.7). The mass flow rate of both air and 

fuel and all flow parameters are kept equal to that of the cases of the raised ramps. Figure 

4.37 shows the contours of the static pressure at the plane of symmetry. Figure 4.37 a 

shows the results of the unswept relieved ramp while Fig. 4.37 b shows the results of the 

unswept raised ramp in order to demonstrate the difference in the flow structure. The 

figure demonstrates clearly the difference between the two types of the wall-mounted 

ramps. The relieved ramp (Fig. 4.37 a) shows strong oblique shock wave introduced at 

the front base of the ramp due to the 10-degree turning angle of the wall and shows no 

shock reflections. The bow shock wave formed due to the fuel injection is much stronger 

than that of the raised ramp. In the second configuration, the raised ramp (Fig. 4.37 b), an 

oblique shock wave at the ramp base is captured also shock reflections are seen clearly in 

this configuration.

Figure 4.38 shows the contours of the injectant mole fraction for the unswept relieved 

ramp and the unswept raised ramp at the plane of symmetry. The decay of the mole 

fraction for the relieved ramp case occurs at a shorter distance than that for the raised 

ramp. It is to be noted that, in the relieved ramp configuration, the fuel is injected through 

an oblique shock wave as shown in Fig. 4.37. Moreover, the fuel is not injected parallel
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to the upstream air as in the raised ramp configuration but inclined with an angle of 10

degrees.

The transport of injectant into the airstream can be observed more clearly by studying 

the location of the injectant mole fraction contours in different cross sectional planes. The 

contours of the injectant mole fraction are presented in Fig. 4.39 for the 5-degree swept 

relieved ramp at different downstream planes. As shown in the figure, streamwise vortex 

of the ramp begins to transport the fuel away from the jet. Clearly relieved ramp 

configuration gives faster spread and mixing of the fuel jet. The kidney shape of the fuel 

starts near the nozzle exit compared with the 5-degree raised ramp (Fig, 4.25)

Figures 4.40 and 4.41 show the streamwise vorticity illustrated by the velocity vectors 

for both the 5-degree swept and the unswept ramps in different crossflow planes. Similar 

to the raised ramp case, the vortices are generated by the pressure gradient between the 

top surface of the ramp and the ramp sides. The relative strengths can be seen clearly. 

The swept ramp has the stronger strength than the unswept relieved ramp. In the X/H=0.5 

plane, the two counter-rotating pairs of axial vortices are seen in both configurations. The 

vortex formed by the swept ramp is considerably larger. It is to be noted that the spread 

of the vortices for the two angles is less than that in the raised ramp configurations which 

is shown in Fig. 4.24.

The mixing rates of the different ramps are illustrated in Figs. 4.42 and 4.43. Figure 

4.42 compares the axial decay of the maximum injectant mole fraction for both the 

unswept raised and relieved ramps. The X axis is normalized with respect to the ramp 

height H which is kept constant for all ramps and is equal to 5 mm. It can be seen clearly 

that as the distance from the ramp base increases the maximum mole fraction decreases
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rapidly in the relieved ramp compared to the raised ramp. This indicates the higher 

mixing rate of the unswept relieved ramp. The mixing rate near the ramp base is the same 

for the two ramps, while after X/H=1.6 the mixing rate of the unswept relieved ramp 

increases rapidly. This is due the difference in the structure of the flowfield. At X/H=4.0, 

the mole fraction reduces to about 44% of its maximum for the unswept relieved ramp 

while it reduces to about 80% of its maximum value in the unswept raised ramp case. 

Further downstream at X/H=8.0, these values become about 24% and 44% respectively. 

After this, the values become very close for the two cases. In Fig. 4.43, the mixing rate is 

presented for ramps with side sweep angle of 5 degrees. Similar to the case of unswept 

ramps, the swept 5-degree relieved ramp also gives higher mixing rate than the 5-degree 

swept raised ramp, although the difference between the two swept ramps is not 

significant as in the unswept ramps case. Further downstream, the injectant mole fraction 

decreases to about 20% of its maximum value which is relatively better than that of the 

unswept case.

The axial distributions of the vorticity magnitude and the helicity are shown in Figs. 

4.44 and 4.45. As expected, similar to the raised ramp configuration, the values of the 

vorticity and the helicity are higher in the case of the swept ramp than the unswept ramp. 

Both figures verify that better mixing had occurred with swept ramps due to the strength 

of the vortex.

The averaged entropy and the averaged Mach number for both relieved ramps are 

shown in Figs. 4.46 and 4.47. With the swept relieved ramp, the increase in the entropy 

is much higher and steeper than that for the unswept relieved ramp. This means more 

losses associated with the mixing process of the swept ramp. Also, with the swept
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relieved ramp the values of the averaged Mach number are much less than that of the 

unswept relieved ramp; however, the whole flow field for both ramps is supersonic.

From the results presented in Secs. 4.4 and 4.5, it can be concluded that better mixing 

and combustion can be achieved with the swept ramps. However, the unswept ramp also 

shows some enhancement in the mixing process for the supersonic mixing and 

combustion.
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Chapter V 

RESULTS FOR DUAL-MODE COMBUSTORS

Results for two different configurations of dual-mode combustors are presented in this 

chapter. In the first configuration fuel is injected through an unswept wall-mounted ramp 

parallel to the incoming airstream. In the second configuration, fuel is injected after a 

rearward facing step normal to the incoming airstream. Results for both reacting and 

nonreacting flows are presented.

5.1 Dual-Mode Combustor w i t h  Wall-Mounted Ramps

The geometry is similar, but not identical, to the University of Virginia’s proposed 

dual-mode combustor [74], Two combustor ducts are investigated with length of 10 and 

20 ramp heights “H.” Hydrogen fuel is injected through single unswept ramp with aspect 

ratio of 0.5 (see Fig. 3.8). Predicted results of nonreacting flow as well as for reacting 

flow are presented with two equivalence ratios (j>=0.31 and (j)=0.41. The inflow conditions 

for the two cases are given in Tables 5.1 and 5.2. Both nonreacting and reacting flow 

results are obtained with a grid size of about 400,000 cells. In this section, results are 

presented for the 20H combustor and with the two equivalence ratios (<j)=0.31 and 

<j)=0.41) followed by results of the 10H combustor.

Figure 5.1 shows the predicted duct centerline wall pressures. Agreement in peak 

pressure and the downstream trend is seen in both cases. A slight difference is seen inside 

the combustor at 4H<X<12H. Shock reflections can be seen only in the case with <))=0.31. 

The pressure remains constant inside the isolator followed by sudden increase to about
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Table 5.1 Inlet flow conditions ((j)=0.31)

Parameter Freestream Injectant

P0 [kPa] 390 1010

T0 [K] 1120 300

M 2 1.7

Turbulent Intensity 1 % 1 %

H2 mass fraction 0 1.0

H2O mass fraction 0.17315 0

O2 mass fraction 0.24335 0
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Table 5.2 Inlet flow conditions (0=0.41)

Parameter Freestream Injectant

Po [kPa] 333 1350

T0[K] 1155 460

M 2 1.7

Turbulent Intensity 1 % 1 %

H 2 mass fraction 0 1.0

H 2O mass fraction 0.17315 0

O2 mass fraction 0.24335 0
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1.4 times its initial value due to the presence of a shock wave formed by the ramp. The 

pressure reaches its maximum value (4.6 times of the initial value) at a distance of about 

4 ramp heights. This increase is due to the fuel injection and the combustion of the fuel.

The mass-averaged Mach number distribution is shown in Fig. 5.2. It can be seen that 

in both cases the flow is decelerated from supersonic to subsonic conditions within a very 

short distance near the combustor inlet due to the shock system. This subsonic region is 

characteristics of the dual-mode combustion. The averaged flow in the case with (j)=0.31 

is subsonic for 2<X/H<20. After that, the flow smoothly transitioned from subsonic to 

supersonic flow in the expanding duct due to heat release.

The mass-weighted static temperature is shown in Fig, 5.3. A high increase in the 

temperature occurs near the injector due to the flow deceleration and the released heat 

from the combustion of the fuel. The average temperature is raised from about 750K to 

1160K within 4 ramp heights. Further increase of the temperature is seen with the 

increase of the axial distance due to the continuation of the combustion process.

In Figs. 5.4 and 5.5 velocity vectors and streamlines are presented for both 

equivalence ratios at three cross-flow planes. The two vortices generated by the ramp are 

clearly visible at theX/H=3 plane. The figures show that, as the distances downstream of 

the ramp increases, the two vortices attract each other and merged together as seen at 

X/H=6. The merging rate is seen higher in the case with <J)=0.31 than the other one with 

(j)=0.41(Fig. 5.5). To further investigate the rotation of the flow in the flowfield of the 

combustor, the averaged vorticity magnitude is shown in Fig. 5.6. The vorticity is 

normalized with the ramp height “H” and the inlet streamwise velocity “U.” The 

maximum values are seen near X/H=2 in both cases. Although both cases show the same
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trend, the magnitude of the vorticity in the case with <{>=0.41 is higher than the other one 

with (j)=0.31 which is due to the difference in the pressure between the two cases at the 

inlet.

Two overall parameters depicting effectiveness of fuel combustion over duration, and 

equivalently, a length of combustor are the heat released and the amount of the reference 

element such as hydrogen that is converted to water indicating completion of combustion 

of that element. The latter may also be expressed in terms of the amount of hydrogen that 

remains in any form other than that of water at a location of interest in the combustor in 

relation to the amount of hydrogen that available initially i.e.,

amount of hydrogen converted to water
rjc = ■— ------------------- ----------------------------  (5.1)

amount of hydrogen supplied

Equation 5.1 implicitly includes the fuel to air ratio used and the effects of mixing of air 

and fuel in initially non-premixed cases. At the same time, Eq.(5.1) does not refer 

explicitly to the effects of ignition process or changes in combustion rate [7].

Figure 5.7 shows the combustion efficiency calculated with Eq.(5.1) for the two 

equivalence ratios. Combustion of hydrogen mixed is 68% complete at the end of the 

combustor duct. Further increase in the combustion efficiency is seen in the expanding 

duct. Both cases show the same values inside the combustor. However, slight difference 

is noted in the middle of the expanding duct between X/H =30 and X/H=50. Both cases 

have nearly the same combustion efficiency at the end of the expanding duct.

The benefits obtained in mixing performance must be weighted against the losses 

incurred. Averaged total pressure is presented in Fig. 5.8 as a preliminary examination of 

the losses associated with the large vertical mixing. The figure shows the total pressure
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throughout the combustor for both equivalence ratios. The figure clearly shows that loss 

due to the reaction is considerable and that the loss in the total pressure is about 48% of 

the initial value. A significant part o f the loss is seen in the combustor duct between the 

fuel injector and X/H= 4.0. The magnitude of the difference between the nonreacting 

flow and the reacting flow is almost constant with the axial location in the downstream 

combustor.

Next, the effect o f the combustor length is presented in Figs. 5.9 -5.21. Figures 5.9 and 

5.10 show the wall pressure for both the nonreaeting flows and the reacting flows 

respectively. The figures compare the normalized wall pressure along the upper wall at 

the centerline o f the duct. Figure 5.9 shows clearly that, in both cases, the pressure 

distribution is identical in the distance between the inlet o f the isolator at X/H= -7  and 

X/H=10 which is the combustor exit in the first model. It should be noted that the length 

o f the combustor has no effect on the upstream flow for the nonreacting flows. Further 

downstream the flow expands to a lower pressure in the 10H case than the 20H one. For 

the reacting flows, the length o f the combustor is affecting the pressure as seen in Fig. 

5.10. I t  is evident form Fig. 5.10 that the combustion process of the fuel and the heat 

release produces a significant pressure rise in the wall pressure. The sharp pressure rise 

just downstream of the injector seen in Fig. 5.10 is due to the formation of the 

combustion front. It is to be noted that, in this case, the isolator is said to be shock-free[6]  

since there is no shock train formed in the isolator.

Averaged Mach number distributions along the axial direction are shown in Fig. 5.11 

for nonreacting flows. The same values of the Mach number are seen in the distance 

etween X/H=-7 and X/HM 0, which confirms the results presented in Fig. 5.9. In both 

cases, Mach
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number decreases till the exit of the combustor then starts to recover again inside the 

expanding duct. Lower values are seen for the long combustor (LC=20H). Figures 5.12 

and 5.13 show Mach number contours for the two combustors at the centerplane of the 

ducts. Results are presented for nonreacting flows as well as for reacting flows. The 

figures show clearly significant subsonic portion of the flow in the two reacting cases. 

The subsonic regions are seen adjacent to the injection wall (lower wall) of the combustor 

and extend in the axial direction with the flow. The subsonic region in the short 

combustor (LC=10H) extends to a longer distance.

In order to give clear view about the mixing process inside the two combustors, 

vorticity magnitude, velocity vectors, mixing rate, and the area of the fuel plumes are 

presented in Figs. 5.14-5.18. In Fig. 5.14, the vorticity magnitude is shown. In both 

models, the same trend of the vorticity is seen. The magnitude of the vorticity increases 

inside the isolator in both models and reaches its maximum value at the injection plane 

(X/H=0). The magnitude of the vortices decreases as it progress further downstream of 

the ramps. After the combustor and inside the expanding duct, the 10H combustor shows 

higher vorticity than the 20H one. In Figs. 5.15 and 5.16, velocity vectors and streamlines 

at different crossflow planes are presented. It can be seen clearly that the vortices are still 

developing near the injector in both cases. Downstream of the injector and after about 

three ramp heights, the vortices are seen completely developed, which is a reasonable 

distance for unswept ramp. The figures show clearly that, as the distance from the 

injector exit increases, the centers of the vortices move toward the lower wall. The 

vortices become closer to the lower wall in the case of the 10 H combustor than the other 

case.
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Mixing rate is one of the most important parameters of mixing characteristics, since 

the combustion process strongly depends on the mixing process. The definition of the 

mixing rate is the decay of the maximum mass fraction of the fuel with the downstream 

distance. Figure 5.17 compares the mixing rate of the two combustors. Near the injector 

at 0<X/H<4, both models show nearly the same mixing rate. The 10H combustor shows 

higher rate than the 20H one; however, this difference is not significant. Further 

downstream, a slight difference is seen inside the expanding duct until X/H=44. After 

X/H=44, both models show the same rate again.

As a means of quantifying the differences between the two combustors, the cross- 

sectional area of the mixing and reacting plumes is determined inside the combustors and 

presented in Fig. 5.18. For this research, the boundary of the plume was defined as the 

point where the hydrogen mole fraction reaches 0.1 in each plume. The plume area is 

normalized by the cross-sectional area of the fuel injector. All cases show increase of the 

plume area with the increase of the axial distance. Both of the nonreacting cases show 

linear increase in the plume area. The influence of the combustion can be seen clearly in 

the figure. At any cross section, the plume area of the reacting flow cases is larger than 

the nonreacting flow cases. Also, more penetration in the cases of the 20H combustor can 

be seen than the 10H combustor.

Figure 5.19 shows the combustion efficiency calculated by Eq.(5.1). The combustion 

efficiency of the 20H geometry is higher than that of the 10H over the combustor and the 

expanding duct. This is expected because of the relatively large area of the fuel plume of 

the 20H model.
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In Figs. 5.20 and 5.21, integrated stream thrust Fx is shown. Thrust is calculated for 

planes perpendicular to the X-axis as[83]

Current results confirm the results obtained in Ref. 83. An initial decrease of the thrust 

can be seen between the isolator inlet section and the injector plane (-7<X/H<0). This 

decrease is due to the drag generated by the ramp. Both models show the same thrust loss 

since they have the same ramp. A small increase is noted at X/H=0 because of the force 

exerted on the fluid by the back side of the ramp. The loss in momentum, because of 

friction, is seen in the decrease in the stream thrust for the combustor. After the exit plane 

of the combustor, a gradual increase in the stream thrust is seen. The increment in the 

reacting cases is higher than the nonreacting cases due to the heat release. The level of 

the stream thrust for 10H model in both reacting and nonreacting flows is relatively 

higher than that of the 20H one since the loss due friction is less in the first model. The 

increment in the stream thrust between the two reacting flows remains relatively constant.

5.2 Dual-Mode Combustor with Rearward Facing Step

This section describes the computational results of the dual-mode scramjet combustor 

configuration discussed in Sec.3.1.4 (Fig. 3.9). Two arrangements of the fuel injectors are 

investigated, the first configuration has 18 injectors while the second one has 10 injectors 

(see Fig. 3.10).

5.2.1 Results for the 18-Injector Combustor

Only half of the physical model is computed. The symmetry boundary condition is set 

at the duct half width (Y/2). Airflow and fuel conditions are presented in Table 5.3. First,

(5.2)
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Table 5.3 Inlet flow conditions (transverse injection)

Parameter Freestream Injectant

Po [kPa] 1000 6640

T0 [K] 2000 280

M 2 1

Turbulent Intensity 1 % 1 %

H2 mass fraction 0 1.0

H2O mass fraction 0.17315 0

O2 mass fraction 0.24335 0
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analysis is earned out for reacting flow with uniform inlet boundary conditions. The 

obtained results show no upstream interaction in the isolator as expected from this 

geometry. For this reason, the boundary conditions at the inlet are redefined using 

profiles instead of uniform conditions. The study of Riggins [69] is the only available 

work that performed numerical calculations on a similar geometry with inlet profiles. The 

results showed significant upstream interaction inside the isolator. The incoming 

boundary layer thickness of Riggins [69] is about 0.01 m (confinement parameter 

=0.625), which is relatively thick. The boundary layer thickness in the current study is 

about 0.005 m (confinement parameter =0.3125).

Three cases are presented: two reacting cases (with and without profile) and a 

nonreacting case with profile boundary conditions. In Fig. 5.22, the axial distribution of 

the mass-weighted averaged static pressure for the three cases is shown. A large amount 

of upstream interaction is seen in the reacting flow case with initial boundary layer. No 

upstream interaction is seen inside the isolator in the two cases with the uniform inlet 

conditions (nonreacting flow and reacting flow). In the two reacting flow cases, the static 

pressure has its maximum value at the inlet section of the combustor. This value of the 

maximum static pressure is the same in both reacting flow cases. This is due to the effect 

of the fuel injection and the heat release from the chemical reaction. At combustor inlet 

section, the pressure of the two reacting flow cases is much higher than that for the 

nonreacting flow case and is about five times the inlet value. In both reacting flow cases, 

the pressure decreases inside the combustor while in the nonreacting flow case the 

pressure slightly increases.
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In Fig. 5.23, velocity vectors and streamlines are shown inside the isolator for the two 

reacting flow cases. The figure shows clearly the effect of the initial boundary layer 

thickness on the flow structure. A large upstream interaction is seen in the reacting flow 

case with inlet profile. The same behavior was also observed in Ref. 69. Also, 

asymmetric flow is clearly seen which confirms the results of [72]. A large circulation 

region is formed near the lower wall. No isolator bubbles are seen in the case with 

uniform conditions.

The averaged total pressure is shown in Fig. 5.24. The figure shows clearly that, in the 

cases with uniform inlet conditions, major losses in the total pressure occur near the 

combustor inlet. There is about 30% decrease in the total pressure inside the isolator 

followed by a sharp decrease at the combustor inlet to about 50% and 65 % of its initial 

value in both the reacting flow case and the nonreacting flow case, respectively. The 

pressure decreases again in the combustor and in the expanding duct until it reaches about 

36% and 50% of its initial value at the exit plane. Inside the isolator section, the 

distribution of the total pressure in the reacting flow case with initial boundary layer is 

completely different than in the other two cases. There is a rapid decrease just after the 

inlet section to about 50% of its initial value followed by a very slight decrease in the rest 

of the isolator. The pressure decreases again inside the combustor and the expanding duct 

and its value is very close to the other reacting flow cases.

The axial distribution of Mach number is shown in Fig. 5.25. In the cases with 

uniform inlet conditions, insignificant decrease is noted in the isolator section followed 

by a rapid decrease near the combustor inlet. At the combustor inlet, the flow becomes 

completely subsonic in the reacting flow case, while it is still supersonic in the
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nonreacting flow case. In  the reacting flow case with initial boundary layer, there is a 

rapid decrease in the averaged Mach number to subsonic speeds near the combustor inlet. 

After that the, Mach number recovery starts inside the combustor in both reacting flow 

cases, however; the combustion process takes place in a subsonic streams. The Mach 

number increases again in the expanding duct to supersonic speeds until it reaches about 

1.5 at the exit plane of the duct. For the nonreacting case, the Mach number recovers in 

the expanding duct to about 2.3 at the exit plane of the duct.

Figure 5.26 compares the decay of the fuel mole fraction in the axial direction for both 

reacting cases. The decay rate is the same in both cases which means that the combustion 

process is not affected by the boundary layer thickness inside the isolator. Also, it is quite 

evident that injecting the fuel normal to the oncoming airstream leads to fast mixing.

In Figs. 5.27 and 5.28, the crossflow contours of the hydrogen mass fraction for both 

reacting flow cases inside the combustor are shown. The injected hydrogen from the first 

row o f jets (four on the top wall and five on the bottom wall) is very clear at X/h=0.4. It 

is seen that among these jets there is a small fraction of hydrogen coming back from the 

second row of injectors which is seen at X/fr=0.6. After that, the fuel jets start to merge 

and combine with the increase o f the axial distance. In both cases, no symmetry is seen at 

all planes, which leads to the recommendation of running the whole geometry. Also the 

figure shows clearly the effect o f the side wall on the spread o f the fuel jet. In the reacting 

case with initial boundary layer, both jets beside the wall are lifted and the spread of the 

lower je t is much more than that o f  the upper one (due the circulation region in the lower 

part o f the isolator and the combustor).
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5.2.2 Comparison with the 10-Injector Combustor

Velocity vectors and streamlines for the two combustors are shown in Fig. 5.29. 

Results of both combustors are obtained with an inlet boundary profile. The figure shows 

clearly the asymmetric flow and the circulation region inside the isolator in both cases. In 

the 18-injector combustor the circulation region occupies nearly most of the isolator near 

the lower wall. In the other case, the circulation extends to half length of the isolator and 

adjacent to the upper wall.

Figure 5.30 shows the combustion efficiency for the two configurations, the 10- 

injector combustor and 18-injector combustor. The combustion efficiency is calculated 

with Eq.(5.1). The combustion efficiency shows higher values for the case with 18 

injectors than with 10 injectors. For the same fuel mass flow rate, increasing the number 

of injectors increases the surface area of the injected fuel, which leads to better and faster 

mixing. Also, it is seen that the combustion efficiency is slightly affected by the flow 

inside the isolator. The combustion efficiency is affected mainly by the method of fuel 

injection.

In Figs. 5.31 and 5.32, the effect of the fuel injectors on the local fuel equivalence 

ratio is shown. The figures show distributions of local values of the equivalence ratio and 

the combustion efficiency for the two configurations. The overall fuel equivalence ratio is 

the same in both cases and is equal to 1.0. The local values of the equivalence ratio and 

the combustion efficiency are calculated from the mixture composition in terms of mole 

fraction ratios [84]. These values are calculated using the following equations:

<Pi = 1  + 0.5 ■ H 2

• N  2

02

N  2

■ N  2 (5.3)
v 02 2
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Figure 5.31 presents the distribution of the local equivalence ratio at the exit plane of 

the combustor. Although the fuel is injected from uniformly distributed orifices on the 

top and the bottom walls, hydrogen is confined near the walls and around the comers in 

the 10-injector combustor. It can be seen that the distribution of the hydrogen is more 

uniform in the 18-injector geometry than that in the second case. In the 18-injector 

combustor, the hydrogen lean region ((p <0.1) covers a non significant region at the center 

of the cross section. It is to be noted that this uniform distribution and the rapid mixing of 

the 18-injector combustor is seen with overall fuel equivalence ratio of 1.0 and may be 

different with lower values. Figure 5.32 illustrates distribution of local combustion 

efficiency. Comparisons with equivalence ratio distribution (Fig. 5.31) indicates that 

location of the highest combustion efficiency coincides with the region with <p =1.5. The 

combustor exit is occupied by a region with local efficiency higher than 80%.

Figure 5.33 compares the averaged static pressure along the axial direction. In both 

cases, the pressure increases inside the isolator section then reaches its maximum value 

just after the combustor inlet and very close to the location of the injectors. The pressure 

then decreases inside the combustor and the expanding duct. It can be seen that the
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upstream interaction inside the isolator is very significant in the 18-injector case. This 

increase starts very close to the isolator inlet. However, in the 10-injector case the 

upstream interaction starts after a distance equal to about half duct length. The maximum 

value of the pressure inside the isolator in the 18-injector model is higher than that in the 

10-injector model. The pressure rise in both cases is due to the fuel injection and the heat 

release from the combustion. The difference in the pressure can be due to the 

arrangement and the number of the fuel injectors.

Figure 5.34 shows the integrated stream thrust Fx for both cases. Thrust is calculated 

for planes perpendicular to the X-axis with Eq.(5.2). Inside the isolator, the thrust force 

has the same value in both configurations. A slight decrease is seen because of friction. 

The stream thrust increases just after the combustor inlet caused by the momentum of the 

jets. It is seen that increasing the number of injectors caused an increase in the stream 

thrust inside the co m b u sto r  and the expanding duct. It can be concluded that the 

improved mixing and combustion efficiency produced the higher thrust performance in 

the 18-injector combustor. It can be seen that the thrust inside the isolator is not affected 

by the distribution of the injectors inside the combustor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



St
re

am
 

th
ru

st
 (

N
)

189

1500

1400

1300

1200

1100

— 18 injectors
-  10 injectors

1000

900

800
5
X/h

Fig. 5.34 Axial distribution of streamwise thrust for the two combustors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

Chapter VI 

CONCLUSIONS

Mixing and flow characteristics in scramjet engines combustors are numerically 

investigated. Results are obtained with a finite volume CFD code and using unstructured 

grids.

In the first part o f this study, the supersonic mixing o f fuel and air with wall-mounted 

ramps is addressed. Two types of the wall-mounted ramps have been used: raised 

(compression) ramp and relieved (expansion) ramp. The effects o f the ramp side angle in 

both mixing and combustion processes are investigated. Three side angles have been 

used, 0 (unswept), 5, and 10 degrees. The conclusions drawn from this part of the study 

could be summarized by the following points:

1. Current results confirm the turbulence nature of the flowfield inside the combustor 

model. Results of laminar flows underpredict the flow velocity and the flow 

temperature by 6% and 5%, respectively, when compared with experimental results. 

Furthermore, the magnitude o f the static pressure is seen to be highly 

underpredicted, especially in the front region o f the ramp.

2. The importance of selecting a suitable turbulence model is addressed by different 

researchers. In the current study, a two-equation turbulence model is used as 

recommended by Donohue et al. [39]. Three forms o f the k-s turbulence model are 

examined using the 10-degree swept ramp. All forms of the model show no 

significant difference and agree well with the experimental results.
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3. The mole fraction of the injectant is used to demonstrate the mixing rate. The effect 

of the side angle of the ramp is not significant near the exit plane of the injector 

(from X/H=0 to X/H=2.0).

4. Downstream of the injector, after X/H=2.0, the effect of the side angle of the ramp 

becomes significant. At X/H=6.0, the mole fraction reduces to about 23% of its 

maximum value for the 10-degree swept ramp while it reduces to about 60% of its 

maximum value in the unswept case.

5. Slight improvement in the mixing rate is seen when increasing the side angle from 5 

degrees to 10 degrees. The difference in the mixing rate between the two swept 

ramps is not significant as the difference between the unswept ramp and the swept 

ramps.

6. As expected, the losses associated with the 10-degree swept ramp, presented by the 

entropy increase, are higher than those of the other two ramps. Both the unswept 

ramp and the 5-degree ramp show the same rate of increase. This demonstrates that 

the 5-degree swept ramp gives relatively good mixing rate and low losses compared 

to the 10-degree ramp.

7. Both raised and relieved unswept ramps show the same mixing rate near the injector 

until two ramp heights (X/H=2.0). After that, fast mixing is obtained by the relieved 

ramp. This leads to important conclusion that all of the wall-mounted ramps 

investigated in this study (regardless of the side angle) give the same mixing rate in 

the region between X/H=0 and X/H=2.0. Also, the ramp injectors give poor mixing 

rate in the near field of the injector.
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8. Although fast mixing can be achieved with the relieved ramps, the losses associated 

with mixing process (presented by the entropy increase) are higher than those of the 

raised ramps.

Further study is needed with different side angles greater than 10 degrees to determine

if this increase of the angle will lead to further improvement of the mixing process.

In the second part, two different configurations of dual-mode combustors are 

investigated. In the first configuration, fuel is injected through an unswept wall-mounted 

ramp parallel to the incoming airstream. In the second configuration, fuel is injected 

behind a rear ward facing step normal to the incoming airstream. The effects of the 

equivalence ratio, the length of the combustor, the initial boundary layer thickness, and 

the arrangement of the injectors are studied. The conclusions drawn from the dual-mode 

combustor with the ramp fuel injector could be summarized by the following points:

1. The flow is decelerated from supersonic to subsonic condition within a very short 

distance of the combustor inlet. This subsonic region is a characteristic of the dual

mode combustion. Considerable total pressure loss is seen in the combustor duct 

mainly due to the chemical reaction.

2. The change in the equivalence ratio by 10% slightly affects the combustion 

efficiency near the end of the combustor duct.

3. Increasing the length of the combustor increases the plume area of the fuel. This 

can be seen in reacting as well as non reacting cases. A linear increase is seen only 

in the nonreacting cases.

4. The combustion efficiency is improved by increasing the length of the combustor 

which is a result of increasing the plume area.
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5. Both reacting and nonreacting results show that the calculated magnitude of the

axial thrust in the long combustor model is less than that of the short combustor 

model.

Finally, the results of the dual-mode combustor with rearward facing step are

summarized by the following points:

1. As a result of using incoming boundary layer thickness, a significant amount of 

upstream interaction occurs in the isolator; this finding confirms the results obtained 

by Riggins [69]. In addition, asymmetric flow is seen inside the isolator duct with a 

large circulation region formed near the lower wall of the isolator. The same 

observation is found by Mohieldin et al. [72].

2. It is noted that all flow properties inside the combustor are slightly affected by the 

initial thickness of the boundary layer. Also, the mixing rate is not affected by the 

initial boundary layer thickness. This observation confirms the ability of the isolator 

in the dual-mode combustor to isolate the inflow from the combustor and to prevent 

the engine unstart condition.

3. For the same air and fuel flow rates, increasing the number of the injectors from 10 

injectors to 18 injectors leads to faster mixing rate and higher combustion 

efficiency. Also, higher axial thrust and larger upstream interaction are obtained 

when using the 18-injector model.
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