
Old Dominion University
ODU Digital Commons
Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Summer 2003

Optimization-Based Architecture for Managing
Complex Integrated Product Development
Projects
Hisham Mohamed El-Sayed AbdelSalam
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

Part of the Industrial Engineering Commons, Mechanical Engineering Commons, and the
Operational Research Commons

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been
accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For
more information, please contact digitalcommons@odu.edu.

Recommended Citation
AbdelSalam, Hisham M.. "Optimization-Based Architecture for Managing Complex Integrated Product Development Projects"
(2003). Doctor of Philosophy (PhD), dissertation, Mechanical Engineering, Old Dominion University, DOI: 10.25777/fxr5-j946
https://digitalcommons.odu.edu/mae_etds/104

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/104?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

OPTIMIZATION-BASED ARCHITECTURE FOR MANAGING

COMPLEX INTEGRATED PRODUCT DEVELOPMENT PROJECTS

by

Hisham Mohamed El-Sayed AbdelSalam
B.S. July 1996, Cairo University, Cairo, Egypt

M.S. May 2000, Old Dominion University, Norfolk, USA

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING

OLD DOMINION UNIVERSITY
August 2003

Approved

ebastian Bawab (Member)

Keith Williamson (Member)

Charles Keating (Mdmber)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

OPTIMIZATION-BASED ARCHITECTURE FOR MANAGING COMPLEX

INTEGRATED PRODUCT DEVELOPMENT PROJECTS

Hisham M. E. AbdelSalam
Old Dominion University, 2003

Director: Dr. Han. P. Bao

By the mid-1990’s, the importance of early introduction of new products to both market

share and profitability became fully understood. Thus, reducing product time-to-market

became an essential requirement for continuous competition. Integrated Product

Development (IPD) is a holistic approach that helps to overcome problems that arise in a

complex product development project. IPD emphasis is to provide a framework for an

effective planning and managing of engineering projects. Coupled with the fact that about

70% of the life cycle cost of a product is committed at early design phases, the

motivation for developing and implementing more effective methodologies for managing

the design process of IPD projects became very strong.

The main objective of this dissertation is to develop an optimization-based architecture

that helps guiding the project manager efforts for managing the design process of

complex integrated product development projects. The proposed architecture consists of

three major phases: system decomposition, process re-engineering, and project

scheduling and time-cost trade-off analysis. The presented research contributes to five

areas o f research:

1. Improving system performance through efficient re-engineering of its structure.

The Dependency Structure Matrix (DSM) provides an effective tool for system

structure understanding. An optimization algorithm called Simulated Annealing

(SA) was implemented to find an optimal activity sequence of the DSM

representing a design project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. A simulation-based optimization framework that integrates simulated annealing

with a commercial risk analysis software called Crystal Ball™ was developed to

optimally re-sequence the DSM activities given stochastic activity data.

3. Since SA was originally developed to handle deterministic objective functions, a

modified SA algorithm able to handle stochastic objective functions was

presented.

4. A methodology for the conversion of the optimally sequenced DSM into an

equivalent DSM, and then into a project schedule was proposed.

5. Finally, a new hybrid time-cost trade-off model based on the trade-off of

resources for project networks was presented.

These areas of research were further implemented through a developed excel add-in

called “optDSM”. The tool was developed by the author using Visual Basic for

Application (VBA) programming language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

And your Lord has ordained that you do not worship anyone except Him, and treat your
parents with kindness; if either of them or both reach old age in your presence, do not say
"U ff* t0 them and do not rebuff them, and speak to them with the utmost respect. And
lower your wing humbly for them, with mercy, and pray, "My Lord! Have mercy on
them both, the way they nursed me when I was young." [Holy Quran 17:23-24] (* Any
expression o f disgust.)

This dissertation is dedicated to my mother, Prof. Ragaa Osman Osman and to my father,

Prof. Mohamed El-Sayed AbdelSalam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

ACKNOWLEDGMENTS

The author owes many thanks to a number of people who contributed in a variety of ways

to the successful completion of this dissertation.

My first debt of gratitude must go to my research advisor Dr. Han P. Bao. Over the past

four years, Dr. Bao provided the vision, encouragement and advise necessary for me to

proceed through both Masters and Doctoral programs in Mechanical Engineering.

Special thanks go to my committee members: Dr. Sebastian Bawab, Dr. Keith

Williamson, and Dr. Charles Keating for their support, guidance and helpful suggestions.

I am also grateful to Dr. Sushil Chaturvedi chairman of the Department of Mechanical

Engineering for the financial assistance he made available to support the completion of

this dissertation.

This dissertation owes a great deal to my older brothers Dr. Omar and Dr. Tarek who

have encouraged and helped me for as long as I can remember.

The last thank you is saved for my dear wife Rasha. She sacrificed a career back home,

moved with me to the US one week after we got married, and stood by my side

throughout the completion of my research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES...... xi

LIST OF FIGURES xiii

Chapter

I. INTRODUCTION................ 1

1. Introduction to the Dom ain : Research M otiva tion ..1
2. Introduction to the Context: Problem Fra m in g 5
3. Introduction to the Research : Research Objectiv es 8
4. Introduction to the Technology: Analytical Strategy and Solution
Potential.. 10
5. Introduction to the D issertation: Reader’s Gu id e ..12

II. THE DEPENDENCY STRUCTURE MATRIX (DSM) 14

1. DSM M eth o d o lo g y .. 14
2. DSM M o d el ... 16
3. DSM Ana ly sis.. 19
4. Related W ork (Literature Review) ... 20

4.1 Design M anager’s Aid fo r Intelligent Decomposition with a Genetic Algorithm
(DeMAID/GA)..22
4.2 Problem Solving Matrix (PSM32)... 23
4.3 The Analytical Design Planning Technique (ADePT).. 23
4.4 A Genetic Algorithm for Decomposition o f Analyses (AGENDA)..........................24
4.5 DSM@MIT.. 25
4.6 Other M odels ..25

5. Cr it iq u e 26
6. Sum m ary ... 29

III. SIMULATED ANNEALING (SA)... 30

1. Optim ization 30
2. M eta-Heuristics...32
3. M etropolis AlLGOr it h m .. 33
4. The Simulated Annealing Alg o rith m .. 33

4.1 Background.. 33
4.2 Physical Annealing 34
4.3 The Algorithm ...35

A. Generation M echanism (Neighborhood M oves) 36
B. Objective Function Evaluation ... 38
C. Cooling (Annealing) Schedule.. 38

5. SA: Pros and Cons 41
5.1 Simulated Annealing vs. Local Search.. 41

6. Sum m ary 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

IV. SIMULATION-BASED OPTIMIZATION 44

1. Sim u la tio n 44
2. Advantages and D isadvantages 45
3. Uncertainty A nalysis 46
4. M onte Carlo S im u la tio n ... 47
5. Interfacing Optimization Methods with Sim u la tion ..49
6. Related Wo r k 50
7. Sum m ary ... 54

V. TIME-COST TRADE-OFF IN PROJECT NETWORKS............... 55

1. Project M an a gem ent 55
2. Project M anagement in M anufacturing 56
3. Project Crashing and Time-Cost Trade-Of f ... 58
4. Tim e-Cost Relationship M od els... 60
5. Criticisms of Current Practices (Constant Cost-Slope Concept)63
6. Project Crashing with M athematical Programm ing ..63
7. The TCTO Problem in L iter a tu r e 64

7.1 Mathematical Programming... 66
7.2 Heuristic Algorithms.. 67
7.3 Simulation................ 67
7.4 Artificial Intelligence... 68

8. Sum m ary .. 68

VI. DSM OPTIMIZATION AND ANALYSIS............... 69

1. Objective ... 69
The Concept o f Load...70

2. A ssum ptions, a n d L im ita t io n s ... 71
3. M athematical M odeling of Feed ba ck s ...74
4. Logical Con straints..75
5. Iteration Considerations.. 76
6. Numerical D SM ...77
7. Computing Lo a d ... 78
8. Optimization with Simulated Ann ea ling 81

8.1 A Two-Stage Simulated Annealing Algorithm.................. 81
8.2 Decision Variables ...81
8.3 Generation o f The Initial Solution Configuration...82
8.4 Generation o f a Feasible Neighboring Solution Configuration...........................82
8.5 Object Function Evaluation...84
8.6 Cooling Schedule ... 85
8.7 Stopping Criterion... 86

9. Handling Stochastic Activities Load 86
9.1 Uncertainty in Activity Load Estimation... 86
9.2 Min-Mean-Max (M3) Method... 87
9.3 Utility Function (UF) Method..93

10. DSM Conversion into a Project Sch ed u le 96
10.1 Related Practice... 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IX

10.2 The Proposed Conversion Procedure.. 99
A. Patterns Recognition 100
B. Collapsing.... 101
C. Tearing 102
D. Rules o f Conversion.. 106

11. Sum m a ry .. 108

VII. TCTO HYBRID MODEL.............................. 109

1. In tro d u ctio n ... 109
2. Basic Concepts 109

2.1 Illustration o f the Basic Concept............. I l l
3. The Proposed M od el 117

3.1 Problem Statement 117
3.2 Assumptions and Limitations.. 118
3.3 Notations...118
3.4 Inputs.. 119
3.5 Process.. 120
3.6 Decision Variables...120
3.7 Constraints..120

A. Network C onstraints..120
B. Assignment Feasibility.................................. 121
C. Resource Availability Constraints 121
D. Project Completion Constraint..................... 121
E. Activity Duration Constraints............................ 121
F. Non-negativity Constraints... 122

3.8 Objective Function.. 122
4. The m odel: H ow is it different from the calssical m odel? 122
5. Solution: Optimization M ethods Im plem en ted 124

5.1 Simulated Annealing................... 127
A. Decision Variables and Solution Representation.. 127
B. Generation o f the Initial Solution Configuration.. 128
C. Generation o f a Feasible Neighboring Solution C onfiguration.................... 128
D. Objective Function Evaluation... 128
E. Cooling Schedule.... 128
F. Stopping C riterion 128

6. Sum m ary ..129

VIII. ARCHITECTURE AND PRODUCT... 130

1. Architecture Overview ... 130
1.1 Modeling... 132
1.2 Optimization (Re-Sequencing).. 132
1.3 Structuring... 133
1.4 Conversion to a Project Schedule... 133
1.5 Scheduling...134
1.6 Crashing 134

2. P r o d u c t .. 135
2.1 DSM Optimization and Analysis... 135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

2.2 Time-Cost Trade-Off.. 138
4. Su m m a ry 139

IX. CASE STUDIES AND RESULTS 142

1. Project 1: Benchmarking 142
2. Project 2: A Conceptual D esign Project - Deterministic Case 145

2.1 Case (1).. 148
2.2 Case (2)...151
2.3 Case 3... 154

3. Project 3: A Conceptual Design Project - Stochastic Ca se159
3.1 Min-Mean-Max (M3) Results ...161
3.2 Utility Function Method Results...166

4. P r o je c t 4: I l l u s t r a t i v e P r o j e c t ... 169
4.1 Optimization.. 170
4.2 Conversion to a Project Schedule....................................... 172
4.3 Time-Cost Trade-Off..176

5. Sum m ary ... 180

X. SUMMARY AND FUTURE WORK 181

1. The Dependency Structure M atrix .. 182
2. Simulated Annealing .. 183
3. Simulation-based Optim ization .. 184
4. Handling Stochastic Objective Fu n ctio n 185
5. DSM Conversion to a Pro g ra m .. 186
6. TCTO Hybrid M odel 187
7. optD SM ..188
9. Lessons learned .. 189

REFERENCES..191

APPENDIX A: OPTDSM..204

1. Ov erview 204
2. Fu n c tio n s 205

2.1 New: DSM 205
2.2 Create DSM ... 208
2.3 Optimization: Settings... 208
2.4 Optimization: Start...211
2.5 Optimization: Final D SM ... 213
2.6 Post Optimization: Collapsed DSM..213
2.7 Project...213

3. Future M odifications.. 214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

1. Summary of DSM Characteristics.................. 16

2. Comparison of Different DSM analysis tools 28

3. Summary of various simulation-based optimization research. 54

4.1 Iteration Factor Values 77

5. Utility Function indices.. 95

6 .1-Pattem Conversion Rules................... 104

7. C-Pattem Conversion Rules..104

8. L-Pattem Conversion Rules................. 105

9. Resource-Levels...113

10. Cost Calculations for the Initial Configuration (Assignment)....................................114

11. Cost calculations for the Final Configuration (Assignment) 116

12. Summary of Architecture Functions.. 140

13. Summary of Architecture Options..................................... 141

14. optDSM Sequence vs. AGENDA Sequence..144

15. Project 2: Activities L ist 147

16. Project 2: Couplings L ist .. 147

17. Case (1): Results.. 148

18. Case (2): Results................ 151

19. Case (3); Results..155

20. Project 3: Activities List............... 160

21. M3: Results.. 162

22. Utility Function Method: Results..166

23. Project 4: Activities List.. 169

24. Project 4: Couplings L ist ... 169

25. Project 4: Logical Constraints 169

26. Conversion to a Project Schedule....................... 172

27. Activities List of the Equivalent Schedule................................. 176

28. Resource Data............................... 177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

Table Page

29. Resource Assignment for 56 hours... 178

30. Resource Usage..................... 178

31. Case Projects Summary 180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1. Cost Impact................. 4

2. Research Motivation Mind M ap .. 4

3. Rich Picture Diagram Representing the Problematic Situation 7

4. Layout o f the Dissertation at a Glance......................... 13

5. A Typical Dependency Structure Matrix (DSM) ..18

6. Feedback vs. Feed forward Couplings.................................. 18

7. DSM Analysis... 21

8. Metropolis Algorithm... 34

9. Generic Simulated Annealing Algorithm... 36

10. Flowchart of the Standard (Nai've) SA Algorithm..37

11. Black Box Optimization....................... 38

12. Local Search...42

13. Simulated Annealing 43

14. System Experimentation with Simulation... 45

15. Monte Carlo Simulation... 48

16. Linear Time-Cost relationship... 61

17. Different Time-Cost Models...62

18. Schematic Representations of DSM Analysis Steps.. 70

19. Assumption: System Decomposition...73

20. Assumption: Activity Start 73

21. Assumption: Activity Output..73

22. Coupling (General Form)................. 74

23. Feed forward vs. Feedback Coupling 75

24. Hard Constraint .. 76

25. Load Computations Heuristic ... 80

26. Load computations example......................... 81

27. Two-Stage Simulated Annealing 83

28. Solution Representation......................... 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiv

Figure Page

29. Generating a Neighboring Solution 84

30. Cases with <nc (Schematic)........................ 89

31. First Set of Comparison Rules 90

32. Cases with np =nc (Schematic)................ 91

33. Second Set of Comparison Rules 92

34. Robust vs. Optimal solution...................... 94

35. DSM of a Hypothetical Project 97

36. Converting the Final DSM to a Project Schedule.......................... 98

37. Different patterns............... 103

38. Equivalent DSM for C4-Pattem... 105

39. Equivalent DSM for S-Coupling 106

40. Equivalent Schedule for the Comparison Case According to the Proposed

Methodology.. 107

41. Resource Levels............................. 110

42. Different Assignments Result in Different Activity Durations................................. I l l

43. Project Network 113

44. Project Schedule Corresponding to Initial Assignment..113

45. Gantt Chart Showing the Three Paths........................ 114

46. Activities’ Slacks... 115

47. Crashing of Activity E .. 115

48. Relaxing of Activity D 116

49. Models comparison..124

50. TCTO Optimization Macro Flowchart 126

51. Solution Representation 127

52. The Proposed Architecture 131

53. Optimization Cases 134

54. Simulation-based Optimization Framework..137

55. TCTO Module... 139

56. Solution Obtained by AGENDA..143

57. Solution Obtained by optDSM 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

Figure Page

58. Process Flowchart....... 146

59. Initial DSM Sequence... 146

60. Case (1): DSM with Minimum Number of Feedbacks..................................... 149

61. Case (1): Meta-stabel Objective Functions at Different Temperatures150

62. Case (2): DSM with Minimum Total Load....................... 152

63. Case (2): Meta-stabel Objective Functions at Different Temperatures................... 153

64. Case (3): DSM with Minimum Total Time and Cost............. 156

65. Case (3): Meta-stabel Objective Functions at Different Temperatures 157

66. Case (3): Accepted Solutions 158

67. Probability Distributions’ Parameters....................................... 159

68. M3: DSM Corresponding to the Optimal Solution.............. 163

69. M3: Probability Distribution of the Initial Solution....................... 163

70. M3: Probability Distribution of the Optimal Solution..164

71. M3: Meta-stable Objective Function Values 164

72. M3: Solution Robustness 165

73. M3: Accepted Solutions.. 165

74. Utility Function Method: DSM 167

75. Utility Function Method: Meta-stable Objective Function Values 167

76. Utility Function Method: Solution Robustness .. 168

77. Project 4: Initial DSM... 170

78. Project 4: DSM with Minimum Number of Feedbacks 171

79. Project 4: DSM with Minimum Total Load 171

80. Conversion to a Project Schedule: Step 1 173

81. Conversion to a Project Schedule: Step 2 173

82. Conversion to a Project Schedule: Steps 3 and 4 174

83. Conversion to a Project Schedule: Step 5 174

84. Conversion to a Project Schedule: Step 6 175

85. Conversion to a Project Schedule: Steps 7, 8, and 9....... 175

86. TCTO Curve 177

87. Gantt Chart (for 56 hours Project Duration).................. 179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvi

Figure Page

88. Meta-stable Objective Function; Cost (for 57 hours Project Duration)..................... 179

89. optDSM Main Menu.. 205

90. New D SM .. 206

91. Data Entry Tables 207

92. Data Entry Tables Filled 207

93. Optimization Sub-menu..................... 208

94. Optimization Options/Settings window. 210

95. Feedback Calculations Sheet... 211

96. Screen Shot: Deterministic Optimization....................................... 212

97. Screen Shot: Stochastic Optimization...................... 212

98. Post Optimization Sub-menu.............................. 213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER I

INTRODUCTION

1.1 Introduction to the Domain: Research Motivation

Manufacturing firms in the United States have almost universally recognized the need to

reconsider traditional methods of product development and introduction [1]. In order for

a product to be competitive, it needs to be introduced quickly without compromising

product performance [2]. This is so because products that meet the needs of customers

faster than competitors grow at a rapid pace, both in terms of market share and

profitability [3]. Thus, reduction in product development cycle time has become an

essential goal [1], The significance of time-to-market is further demonstrated by [4-6],

In a 1991 pamphlet issued by the National Research Council, [7], four requirements for

using design as a source of competitive advantage were cited: (1) committing to

continuous improvement both of products and of design and production processes, (2)

establishing a corporate Product Realization Process (PRP) supported by top

management, (3) developing and/or adopting and integrating advanced design practices

into the PRP, and (4) creating a supportive design environment. Moreover, incorporating

the following steps was defined as effective PRP practice: (1) defining customer needs

and product performance requirements, (2) planning for product evolution beyond the

current design, (3) planning concurrently for design and manufacturing, (4) designing the

product and its manufacturing processes with full consideration of the entire product life

cycle, and (5) producing the product and monitor product and processes. In this spirit, the

term ‘Integrated Product Development’ (EPD) was coined to describe a process that has

been adopted by most progressive manufacturing firms, even though firms may have

different names for this process [8].

The format of this thesis is based on “The American Society of Mechanical Engineers Transactions
Journals”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The basic disciplines for making progress in manufacturing belong not only to

mechanical engineering, but also to industrial engineering, mathematics, management

science, and computer science. These separate disciplines are individually supported by

their research, methods, and software. There is a lack of focused attention on how to

integrate knowledge from many disciplines into knowledge that furthers manufacturing

goals. Moreover, at the same time that this lack of strategy is apparent, all dimensions of

manufacturing (e.g. products, processes, markets) are becoming more complex and

diverse. Complex new products based on massive information content and information-

dominated design and manufacturing methods already require us to deal with an entirely

new scale of complexity. Providing tools to facilitate and manage the complexity of this

information and computation intensive activities plays an important role in supporting

and even enabling the complex practice of manufacturing.

The difficulties in designing complex engineering products do not arise simply from their

technical complexity but rather from the managerial complexity necessary to manage the

interactions between the different engineering disciplines, which imposes additional

challenges on the design process [9]. As a result, a systems level solution must be

determined and deployed. Integrated product development is a holistic approach that

helps to overcome problems that arise in complex product development environments.

Integrated product development was defined by Fiksel [1] as:

“a process whereby all functional groups (e.g. engineering, manufacturing, marketing,
etc.) that are involved in a product life cycle participate as a team in the early
understanding and resolution o f key product development issues including quality,
manufacturability, reliability, maintainability, environment, and safety.”

IPD is based on Concurrent Engineering (CE), but goes beyond CE with regard to the

level of integration. In the scope of IPD, designers, assembly planners and production

planners, as well as persons responsible for quality or testing not only consult themselves

while they are working simultaneously on their tasks, but exchange interconnected

intermediate results in a continuous interplay [10,11].

The motivation for adopting IPD can be further understood when the economics of

product development are considered; where between 60 and 80 percent of the overall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

product costs are committed between the concept and preliminary design phases of the

program [12]. And since only a small cumulative expenditure of funding is committed

during early phases in the classical serial approach, the cost of design change increases

exponentially as the development process advances as shown in Fig. 1. For example, in

the automotive and electronics industry, it has been shown that up to 80% of product life­

cycle costs are committed during the concept and preliminary design stages, and that the

cost of design changes steeply increases as a product proceeds into full-scale

development and prototyping [7, 8, 13]. Another study included in [14] showed that

about 70% of the life cycle cost of a product is determined at the conceptual design stage.

Furthermore, O’Grady et al. [15] showed that design of products determines their quality

and 70% to 80% of the final production cost.

Thus, the motivation for current research can be summarized as follows:

1. There is a need to reduce both product time-to-market and product

development cost.

2. Dealing with complex products adds more difficulty to the management of the

design process within product development projects.

3. As a result, a more effective methodology - that is IPD - has to be

implemented.

4. Since about 80% of cost is committed at early development phases, the

current research focuses on improving the product design process.

Figure 2 is a simple mind map of research motivation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

C osts
Committed

Cost of Design
Change

Opportunity for
Cost ReductionX

Concept Product Process Design Production &
Exploration Development & Test Support

Figure 1. Cost Impact (Reference: [12]).

The need to reduce '
product time-to-market.

Adopting more effective
methodologies 4 IPD

Im p r o v e D e s ig n

p r o c e s sIncreased product
complexity

80% of Cost
committed at early

stages

Figure 2. Research Motivation Mind Map.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

1.2 Introduction to the Context: Problem Framing

Integrated product development is a general procedure for product development with

focus on integration between market, product and production aspects when creating new

business [16]. The concept of IPD was developed independently by two sources. From

1984 to 1988, IPD was introduced into Danish industry (mechatronic products) in a

country-wide campaign [17, 18], In the late 1980’s, EPD was introduced by the U.S.

defense industry [12].

An EPD emphasis is to provide a framework for effective planning and managing of

engineering projects. To clarify the presented problematic situation, the rich picture

diagram1 shown in Fig.3 is used to explore the connections and interdependencies among

the different components of the IPD approach to present its complexity, on one hand, and

to help defining both the WSOI (wider system of interest) and NSOI (narrower system of

interest) on the other hand.

The seven phases of the IPD approach, shown in the rich picture diagram, represent the

WSOI. The NSOI, which is the focus of the current research, consists of the first four

phases together or, in general, the design process. The design process itself is typically a

complex system. The main approach to handling such a system is to build a model that

imitates the real system (or desired system in our case). Typically, this includes: (1)

defining the system of interest, (2) defining the system boundary, (3) decomposing the

system into sub-systems and further into smaller components, and (4) defining the

relationships among these components. Following these steps, the system will be

decomposed into possibly several hundred activities (components) and thousands of

variable interchanges among these activities. The sequence of performing these activities

strongly affects the time (and hence the cost) needed to realize the whole project.

Furthermore, a common characteristic of such projects is the involvement of teams from

different disciplines, working simultaneously on different aspects of the project

1 A rich picture is “ a cartoon-like summary of everything (or almost everything!) the observer knows about
the situation studied [19].”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

associated with their analyses tools and software. So, a tool is needed for arranging

(sequencing) the activities of the project for efficient execution, and moreover, to

decompose the project into sub-projects (circuits) such that each can be performed at a

certain discipline by a certain team. Successful project management requires the effective

control of the design teams and the exchange of information between them for successful

design management [20].

Furthermore, project managers, in addition to scheduling projects, are frequently

confronted with the problem of having to reduce the scheduled completion time indicated

by the Critical Path Method (CPM) in order to meet a pre-specified deadline. Project

duration reduction, or project crashing, can be achieved by assigning more resources

(labor, material, equipment, etc.). However, additional resources cost money and, hence,

increase the overall project cost. Thus, the decision to reduce the project duration, and by

how much, must be based on an analysis of the trade-off between time desired project

duration to be reduced and the extra cost needed.

Thus, the complexity of the presented problem arises form the following sources:

1. Large number of components.

2. Complex interactions scheme.

3. Uncertainty in components duration and cost.

4. Hard precedence constraints.

5. Resource limitations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

• Hartj Precedence
S ' Constraints —.

V J t S O I

NSOI
System Design

ConstraintHardware & Software Design

Prototyping

Build & Test

Process Development
Out

Time Cost
Deplbymeht/LMe Cycle
 Support_______ Resources

Figure 3. Rich Picture Diagram Representing the Problematic Situation

8

1.3 Introduction to the Research: Research Objectives

Today, the highly competitive market pushes companies not just to deliver products that

work, but also to introduce these products to market as early as possible (i.e. minimum

time-to-market or shorter product development cycle). A great deal of effort has been

committed to developing and deploying more powerful analysis tools but, unfortunately,

little work has been done in creating methods and tools for analyzing and improving the

design process itself [21],

Management tools that model the interface and dependencies among process activities

contain the managerial complexity of the design process. Yassine et al. [9] stated that

managing the design process includes four major steps: (1) modeling of the information

and dependency structure of the design process, (2) providing a design plan showing the

order of execution for the design activities, (3) reducing the risk and magnitude of

iteration between design activities, and (4) exploring opportunities for reducing the

project cycle time.

The main objective of the presented research is to develop an optimization-based

architecture that helps guide the project manager efforts for managing the design

process in complex integrated product development projects. The presented work

contributes to five areas of research.

Improving system performance can be achieved through efficient re-reengineering of its

structure. The Dependency Structure Matrix (DSM) provides an effective tool for system

structure understanding. The first research contribution aims toward finding an optimal

activity sequence of the DSM representing a design project in terms of load, time, and

cost. To achieve this goal, a mathematical program representing the DSM structure was

developed and a meta-heuristic optimization algorithm called Simulated Annealing (SA)

was implemented to solve this program.

One unavoidable pitfall in the estimation of activity time and cost is uncertainty that

arises from many different sources. Although uncertainty cannot be eliminated,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

incorporating it in the model can reduce its effect. Thus, the estimate of activity time and

cost can be in the form of a probability distribution, not as a single point value. The

second research area concerns handling uncertainty in activity loads, time, and/or cost

requirements. A simulation-based optimization framework that integrates simulated

annealing with a commercial risk analysis software called Crystal Ball™2 was developed

to optimally re-sequence the DSM activities given stochastic activity data.

Since simulated annealing was originally developed to handle deterministic objective

functions, the third research area involves modifying the SA algorithm to tolerate

stochastic objective functions (multi-point estimate) rather than deterministic ones (one-

point estimate). The goal here involves determining a robust solution rather than an

optimum (minimum) one.

For the DSM to serve as a means of controlling the design project (continual re-planning,

re-scheduling, and follow up), activities in the optimally re-sequenced DSM need to be

represented against a time scale. In other words, the DSM has to be converted into a

project schedule. The fourth contribution of this research is providing a methodology for

the conversion of the optimally sequenced DSM into an equivalent DSM that contains no

feedback couplings. Once an equivalent DSM is obtained, a project schedule can be

developed and the use of scheduling methods becomes feasible.

The fifth and final area presents a new time-cost trade-off model for project networks.

The new model is a hybrid model that joins the resource assignment problem with project

crashing. The presented model is based on the trade-off of resources where, in some

cases, it may be possible to transfer persons, equipment, or other resources from a non-

critical activity to a critical one. Thus, it helps crashing a project with little, or no,

additional cost.

These areas of research will be further implemented through a developed excel add-in

called “optDSM”. The tool was developed by the author using Visual Basic for

2 Developed by Decisioneering, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Application (VBA) programming language. Among its several modules, optDSM has the
TMability to interface with Crystal Ball to carry out the optimization process in cases

where activity loads assume stochastic values. The main functions of optDSM are:

1. Modeling of the project under consideration in the form of a DSM.

2. Finding the optimum sequence of DSM activities based on a user selected

objective function.

3. Producing a DSM equivalent to the optimized one but without feedback

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under

development.

1.4 Introduction to the Technology: Analytical Strategy and Solution

Potential

The presented architecture integrates several conceptual tools. These include:

1. The Dependency Structure Matrix (DSM): the cornerstone of the presented

architecture. DSM improves understanding of the project - or the system - being

analyzed by providing a compact visualization of the project and a clear

understanding of the information flow patterns among its activities.

2. Mathematical Programming (MP): a basic step in any optimization process is

building a model that represents the system under consideration. MP was used in

this dissertation to:

a. Translate the DSM from its visual form into a mathematical form.

b. Describe a project network by a set of equations (relationships,

constraints, and objective function).

3. Simulated Annealing (SA): a meta-heuristic optimization algorithm with proven

efficiency in solving hard combinatorial optimization problems. In this

dissertation, SA was modified - to fit the architecture needs - and used in both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

optimization components of the architecture; DSM re-sequencing, and time-cost

trade-off.

4. Monte Carlo (MC) Simulation: an important decision-support tool in for wide

variety of disciplines. The architecture deploys MC - through an interface with

Crystal Ball™ - as a risk analysis tool to tackle cases in which project activities

assume stochastic data.

5. Critical Path Analysis (CPM): a fundamental scheduling method used in project

management. CPM is based on a mathematical model that calculates he total

duration of a project and identifies critical activities. CPM serves as the basis for

the TCTO model incorporated in the architecture.

Application wise, the architecture:

1. Is a user-friendly tool for IPD project managers that provide:

a. Compact visualization of the project (activities and interfaces).

b. Clear understanding of project structure.

c. Efficient tool for time and cost reduction of design projects.

d. Improved final design quality.

e. Risk analysis tool.

2. Integrates off-shelf applications (MS Excel, Crystal Ball, and MS Project)

with an efficient optimization algorithm (SA).

3. Provides ways to facilitate and manage the complexity of the information

intensive activities during product design process.

4. Is implemented in a spreadsheet environment due to the familiarity of this

software tool in the engineering and business communities.

5. Provides a promising efficient methodology for resource assignment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

1.5 Introduction to the Dissertation: Reader’s Guide

As shown in Fig. 4, the dissertation is divided into two main parts: Introduction and

Background (Chapters II to V), and Research Methodology and Results (Chapters VI to

X).

Following the introduction chapter, the dissertation is organized as follows.

Chapter II presents the DSM methodology and reviews five prototypes related to the tool

developed in the presented research. Chapter III provides background on Simulated

Annealing algorithm describing it basic principal, concepts, implementations, and

advantages over classical optimization algorithms. In Chapter IV, a short introduction to

simulation is provided along with a literature review of work related to interfacing

optimization methods with simulation. Finally, the concepts of project crashing and time-

cost trade-off analysis, and reviews different methods used to tackle this problem cited in

literature are introduced in Chapter V.

Chapter VI discusses all aspects related to the optimization and analysis of the DSM

contributed by this research. In Chapter VII, the proposed time-cost trade-off model is

presented. Basic concepts, illustrative examples, mathematical model, and

implementation details are provided. Chapter VIII presents the conceptual architecture

proposed in the dissertation for managing Integrated Product Development projects. Case

studies used to present the performance of the architecture are provided in Chapter IX.

Finally, summary; discussions of the results and future research directions are provided in

Chapter X followed by Appendix A that introduces the implementation tool; “optDSM.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

i <■ i t

Dissertation i
VI- DSM Optimization

and Analysis

VIII- Architecture and
Product

IX- Case Studies and
Results

X- Discussion and
Future Research

Figure 4. Layout of the Dissertation at a Glance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

CHAPTER II

THE DEPENDENCY STRUCTURE MATRIX (DSM)

2.1 The DSM Methodology

Integrated product development projects (JPDPs) are complex systems. A prerequisite to

improvement is system understanding. Systems can be described by their structure -

presented by a graph or a matrix showing which components affect what other

components, and by semantics (concern how these effects occur) [22]. System structure

(or architecture) affects its efficiency and effectiveness [23, 24]. Therefore, it can be an

important source of competitive advantage [25]. Improved understanding of system

architecture can be gained by using process models [23]. These models must be able to

capture the decomposed system activities, their information interfaces (or couplings), and

enables associated integration analysis.

A product development project (PDP) fundamentally differs from a construction (or a

manufacturing) project in two major aspects:

1. While the later is activity-based (i.e. an activity it to be carried out only when

its predecessors are physically done), the first is information-based (activities

execution and results are based mainly on information exchanged with other

coupled activities).

2. A typical PDP is characterized by its highly coupled, interdependent activities,

which must converge iteratively to an acceptable design solution [23, 26].

There always exists a high possibility of many activities that need to be

repeated before the desired specifications are met. The most common causes

for such repetition (known as feedback loops in DSM terminology) are due to

activities that begin work without the necessary information; the arrival of

new information; change of information that leads to rework; or re-evaluated

assumptions in previous activities [24, 27-29].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

A project typically consists of a number of interrelated activities. For more than fifty

years, a number of techniques, such as Program Evaluation and Review Technique

(PERT) and Critical Path Method (CPM), have been used to handle complex projects

[30], Unfortunately, these methods succeed only if activities are sequential and/or

parallel, but fail significantly if there are iterative sub-cycles since they do not tolerate

feedback relationships.

Although the idea of representing the system architectural components and relationships

in the form of a matrix is not new, the term “Design Structure Matrix” (DSM) was coined

by Steward [22, 31] to denote a generic matrix-based model for project information flow

analysis. Since then, the DSM is becoming a popular representation and analysis tool for

system modeling, especially for purpose of decomposition and integration [26]. Because

it can be used in many other areas, besides design, Stephen Denker, a member of Project

Management Institute (PMI), termed it the “Dependency Structure Matrix.”

Since its original introduction by Steward in the 1980’s, the DSM has been extended to

cover many application areas. Browning [26] presented four main DSM applications.

These applications are summarized in Table 1. This research interest is activity-based

DSM.

3 In this research, the term “Dependency Structure Matrix” is used instead of “Design Structure Matrix.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Table 1. Summary of DSM Characteristics.

DSM
Representation Application Integration

Analysis viaCategory Type
St

at
ic

Component-
Based or
Architecture

Components in a product
architecture and their
relationships

System architecting,
engineering, design,
etc.

Clustering

Team-Based
or Organization

Individuals, groups, or
teams in an organization
and their relationships

Organization design,
interface management,
application or
appropriate integration
mechanisms

Activity-Based Activities in a process Project scheduling, Sequencing,
T3O or Schedule and their inputs and activity sequencing, Partitioning,
% outputs cycle time reduction, and
PQ
A risk reduction, etc. Tearing
S Parameter-Based Parameters to determine Low-level process

H a design and their sequencing and
relationships integration

Ref. [26]

2.2 DSM M odel

The basic DSM is a simple binary4 n -square matrix - where n is the number of system

components, with m non-empty elements - where m is the number of dependencies

(information interfaces or couplings) among different system components. A sample

DSM is shown in Fig. 5. In this example, the system under consideration is a design

project that consists of 14 activities. So, the DSM is a 14x14 matrix. Project activity

names are placed on the left-hand side of the matrix as row headings and across the top

row as column headings in the same order (order of their execution)5. Off-diagonal marks

(X) represent coupling (information flow, or dependency) between two activities. If an

activity i depends on (receives information from) activity j (where i , j e (l,n)), then the

matrix cell ij (row i, column j) contains an off diagonal mark (X) otherwise the cell is

empty. As a result, reading across a single row of the DSM reveals information provided

to the activity corresponding to that row (i.e. off-diagonal marks on that row correspond

to activities whose output is required to perform the activity under consideration). On the

4 A cell can hold one of only two values (0, 1), or in other cases (“X” mark, empty cell).
5 A main DSM assumption is that activities are undertaken in the order listed from top to bottom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

other hand, reading down a specific column reveals information flow from the activity

corresponding to that column (i.e. which activity receive information from the activity

under consideration). For example (illustrated in Fig. 6) activity 4 provides information to

activity 1 (a feedback coupling) and to activity 7 (a feed-forward coupling), while

receives information from activity 9 (a feedback coupling)

Marks below the diagonal (sub-diagonal marks) are indicative of feed-forward couplings

(i.e. from upstream activities to downstream activities), while those above the diagonal

(super-diagonal) represent feedback couplings (i.e. from downstream tasks to upstream

activities)6. As they imply iterations, the latter type of couplings should be eliminated if

possible or reduced to the maximum extent. If certain feedback couplings cannot be

eliminated, the activities are grouped into iterative sub-cycles. For example, in Fig. 5

activities (1,2,3), and (6,7,8,9,10) are grouped into two iterative sub-cycles (blocks).

Three basic types of activity interactions can be observed in Fig. 5: (1) Activity 4 and

Activity 5 are ‘independent’ (can be carried out concurrently since no information in

exchanged between them), (2) Activity 11 and Activity 12 are ‘dependent’ (they must be

carried out sequentially, i.e. Activity 12 needs information (output) from Activity 11 to

start), and (3) Activities 13 and 14 are ‘coupled’ (each activity needs information from

the other) in this case Activities 13 and 14 are called a ‘circuit.’

6 The convention used in this research is the one proposed by Steward [22]. Other researchers (following
Rogers [36]) used a reversed convention by placing feedback couplings below the diagonal, and feed
forward couplings above the diagonal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

f f f f f f f f f f f f
I 'S v S s s '§ ? 1 ‘-g 3 1
< < < < < < < < < < < < <

Activity 1

Activity 2

Activity 3

Activity 4

Activity 5

Activity 6

Activity 7

Activity 8

Activity 9

Activity 10

Activity 11

Activity 12

Activity 13

Activity 14

Iterative Subcycles

Activity 4

Activity 5

—ŝ -j AcHvltĵ tl j Activity 12

Activity 13

Activity 14

Independen t
(Parallel)

Dependent
(Sequential)

Coupled

A Coupling

Figure 5. A Typical Dependency Structure Matrix (DSM).

f f f f f I I I I f f f f I
g g g g g g g g g g g g g g

< < < < C < < < < < < < <

Activity 1
Activity 2

Activity 3

Activity 4

Activity 5

Activity 6

Activity 7

Activity 8

Activity 9

Activity 10

Activity 11
Activity 12

Activity 13

Activity 14

Feedback Couplings

Feedforward Couplings'.

Figure 6. Feedback vs. Feed forward Couplings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

2.3 DSM Analysis

The activity-based DSM7 provides an effective visual format for understanding and

analyzing information flow-based projects such as integrated product development

projects.

Generally, the application of an activity-based DSM involves the following steps:

1. Decomposition of the system under consideration into its smallest components

(activities)8.

2. Defining the information flow interfaces (couplings) among these activities.

3. Analyzing the sequence of executing the activities with the goal of

minimizing the feedback flow.

4. Grouping coupled activities into circuits (blocks or iterative sub-cycles).

Thus, a primary goal in basic DSM analysis is to minimize feedback couplings and their

scope by restructuring or re-architecting the process [26], i.e. by re-sequencing the

execution of activities to get the DSM into as low a triangular form as possible.

Steward [22] proposed a two-phase approach to achieve this goal. Phase one is called

partitioning and phase two is called tearing. Partitioning is based on system structure and

involves re-sequencing the DSM activities in order to: (1) eliminate feedback couplings

as much as possible, (2) pull the rest o f the feedbacks close to the diagonal as possible,

and finally (3) group the activities into blocks such that each block represents an iterative

sub-cycle. In the second phase, tearing, each block resulted from phase one being

considered individually. Tearing is based on the semantics of the systems and aims to

relatively order the activities within each block to achieve the same previous objectives.

Tearing involves the following steps: (1) choosing a set of feedback couplings that can be

ignored based on the semantics of the system, (2) tearing these arcs so that no circuit

exists, (3) re-ordering the activities within the block by partitioning, (4) if new smaller

nontrivial blocks result, then the process is to be repeated, otherwise stop. For further

details, the reader is referred to [22, 31].

7 A time-based DSM. Through out this dissertation, the term DSM will be used to indicate an activity-based
DSM.
8 The terms ‘Task’ and ‘Activity’ are used interchangeably in this research with the same meaning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

In addition to the partition heuristic provided by Steward [22], several methods to

determine iterative blocks are found in literature: the Path Searching method [32], the

Reachability Matrix method [33], the Triangularization Algorithm [34], and the Powers

o f the Adjacency Matrix Method.

Figure 7 is an illustrative example of this DSM analysis. Figure (a) shows the DSM

corresponding to the original activity sequence. This sequence results in 6 feedback

couplings. The partitioned DSM, shown in Fig. b, shows the existence of two iterative

blocks: tasks 1-7, and tasks 2-3-6-9 respectively. Notice that the number of feedback

couplings was reduced by one as a result of activity re-sequencing. The analysis

proceeded with tearing of the second block (Fig. c), which resulted in further reduction of

the feedback couplings to 4. With the possibility of further improvement, another tearing

procedure was carried out on the same block, which resulted in the final DSM (Fig. d)

with only 3 feedbacks brought as close as possible to the diagonal. It can be noticed from

this example that achieving the activity final order in Steward’s approach is mainly

dependent on the tearing phase that constitutes a major drawback here since: (1) this

required high user interaction, and (2) there is no optimal method for tearing. In other

words, the final solution is based on user experience and knowledge.

2.4 Related Work

Although the theory of DSM has been applied in many areas, most of its research work

has focused on deploying DSM to manage engineering design projects [26, 35]. A large

number of DSM-related analysis models were proposed in literature. But, for the sake of

current research interest, reviewing the body of literature will focus mainly on available

prototype DSM tools regardless of their application area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Activity 1

Activity 2
Activity 3

Activity 4
Activity 5

Activity 6

Activity 7

Activity 8

Activity 9

Activity 5

Activity 7
Activity 1
Activity 6

Activity 2
Activity 3

Activity 9

Activity 4

Activity 8

os®
> > > > > > > > >
< < < < < < < < <

£* £ & =& & £ £ & *> > > > > > > > >
S 1 B ? B 1 1 I B< < < < < < < < <

Activity 5

Activity 1
Activity 7

Activity 2

Activity 3

Activity 6
Activity 9
Activity 4
Activity 8 !

(a) Original sequence (b) Partitioned DSM

f f I I f f I f f
< < < < < < < < <

Activity 5

Activity 7
Activity 1
Activity 3

Activity 9
Activity 6
Activity 2

Activity 4

Activity 8

> > > > > > > > >

< < < < < < < < <

(c) After tearing (d) Final DSM after second tearing

Figure 7. DSM Analysis (Ref. Steward [22]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

2.4.1 Design Manager’s Aid for Intelligent Decomposition with a Genetic Algorithm

(DeMAID/GA)

In 1989, a new knowledge-based tool [36-38] was released to the public. This tool, called

the Design Manager's Aid for Intelligent Decomposition (or DeMaid), was aimed at

aiding the design manager understanding the interactions among different components of

a large and complex system. This original version of DeMaid included functions for

minimizing the feedback couplings; sequencing the deign processes; grouping processes

into iterative sub-cycles; decomposing these sub-cycles into a hierarchical, multilevel

structure for a design project; and displaying the sequence of processes in a (DSM)

format [39]. Since its first release, DeMaid has witnessed many enhancements. In 1992,

two enhancement were incorporated into it, these were: (1) an enhancement for enabling

DeMaid to order the activities of an assembly line problem, and (2) an enhancement that

allows the design manager to see what activities must be redone if a change is made in

some input data [40]. A following major step was taken in 1994 by incorporating a new

feature for DeMaid that allows the design manager to use coupling strength information

to find a proper sequence for ordering the design activities [41].

A major shortcoming of DeMaid was basing its reordering procedure on barely reducing

the number of feedbacks. But, the rapid expansion of Genetic Algorithms (GAs)

applications has provided the basis for the next major enhancement, which is the addition

of the GA to optimize the sequence of processes within an iterative sub-cycle. This GA

examines a large number of orderings of processes in each iterative sub-cycle and

optimizes the orderings based on cost, time and iteration requirements [42], The name

thus became DeMaid/GA. Finally, two interface functions were added to DeMaid/GA

[39]: (1) optional displaying of the DSM in Steward’s original format, and (2) the ability

to save a file that can be input to other management tools (namely spreadsheets, and

project management).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

2.4.2 Problem Solving Matrix (PSM 32)

PSM32 was developed in the 1990s by ‘Problematics, LLC9’. While DeMAID/GA

operates in Unix and Macintosh environments, PSM32 operates in a Windows™

environment. The DSM is built through either the direct input of activities and

dependencies to the matrix, or by importing a data file pre-configured for this purpose.

The software is mainly the application of Steward’s methodology and has three main

functions: (1) Partitioning, (2) Tearing, and (3) Impact/change tracing.

2.4.3 The Analytical Design Planning Technique (ADePT)

Over the period from 1994 to 2000, the Analytical Design Planning Technique (ADePT)

was developed to offer an approach to planning construction design projects. The use of

the ADePT methodology constitutes an important application of DSM analysis to highly

complex design projects.

The ADePT methodology consists of three consecutive, yet integrated stages. The first

stage involves modeling of the detailed design activities and their associated information

requirements. The modeling process is based on a modified version of the IDEFQ

methodology (for more details on this methodology refer to [43]) and breaks down the

plan of work into five main disciplines (architecture, civil engineering, structural

engineering, mechanical engineering, and electrical engineering). The data from the first

stage is fed to an information dependency table that, in turn, is used to build a

dependency structure matrix that constitutes the basis for the second stage. The second

stage identifies iterations within the design process and arranges the activities (using a

partitioning algorithm) with the objective of optimizing the task order. The third, and last

stage, produces a design program (network) based on the partitioned DSM. The ADePT

methodology requires some iteration between the second and third stages. Further

9 http://www.problematics.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.problematics.com

24

detailed descriptions of the three stages of the ADePT methodology can be found in [35,

43-45],

A related valuable research was conducted by Baldwin et al. [46], The paper presented a

methodology that incorporates discrete event simulation, data flow diagrams, and DSM

to help the planning and control of building design. Activity durations and resources are

allocated along with any other specific constraints to evaluate the project schedule.

2.4.4 A Genetic Algorithm for Decomposition of Analyses (AGENDA)

A method for structuring problem activities with optimal ordering and decomposition

into sub-problems was described in [47], Despite of the generality of the used method, in

principle, the paper focused on organizing computational subroutines for

multidisciplinary design optimization (MDO) problems.

The method defined a matrix called the Dependency Matrix, DM, to evaluate various

functions of system performance. DM is an extension of Steward’s DSM with integers in

the off-diagonal elements. The element DM(i, j) corresponds to the number of outputs

from subroutine i which are inputs to subroutine j .

The method further used Genetic Algorithms - as an optimization tool - and incorporated

it into a computer program called AGENDA - A GENetic algorithm for Decomposition

of Analyses. AGENDA was applied to two types of problems: reordering, and

decomposition. For reordering problems, the objective was to reduce the extent of

feedback, or mathematically:

Objective =
i=2 y= l

which is explicitly the “total length of feedback” of the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

2.4.5 DSM@MIT

Following an extensive DSM research in the MIT, Cho [48] introduced an integrated

project management framework. The basic modules of the framework are: structuring,

modeling, and scheduling. The structuring module is a DSM-based analysis of the

project. Activities are sequenced to have minimum feedbacks from a structural view (by

partitioning). The module further determines different iterative blocks and levels of

execution. In the modeling module, dynamic iterative processes are simulated along the

time line. Furthermore, resource allocation takes place in this module. Finally the

scheduling module uses the outcomes from the former two modules to construct a

network-based schedule in the form of a PERT or Gantt chart with scheduled activity

duration.

This framework was incorporated as an Excel add-in called “DSM@ MIT”; a product

development process modeling and analysis tool using advanced simulation.

2.4.6 Other Models

A model based upon DSM to compute the expected duration of the iterative solution

process and to suggest an initial ordering of the coupled design activities to minimize the

expected duration was presented in [49]. The model handles sequential iteration

relationships in design and assumes deterministic activity duration with probabilistic

repetition.

The work transformation matrix, which is an extension to the DSM that considers

iteration watching, was presented in [50]. The model presented determines which

activities may be contributing the most to the iterative development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

A DSM framework that estimates the probability of completing a product development

process over time was presented in [51]. The tool can be used to compare the

development time of project for different activity sequencing and overlapping degrees.

An algorithm, based on the DSM, was presented in [52] to recognize the coupled

activities during the design process, to figure out the order levels of activities, and to re­

arrange the DSM into a lower triangular form (minimum feedbacks). But, the execution

of the presented algorithm is lengthy and would consume tremendous computation time.

Thus, it is not suitable for large-scale DSMs. While the presented algorithm requires

several matrix manipulations to reach the solution, the reachability procedure determines

coupled activities and places them in levels in the same step.

A project scheduling and rescheduling framework based on DSM for managing new

product development projects was presented in [53]. In [54], a model was developed to:

(1) transform the binary activity relationships in a DSM into the quantifiable activity

coupling strengths; and (2) decompose the large interdependent activity group into

smaller and manageable sub-groups.

2.5 Critique

Among the DSM analysis prototype tools presented here, DeMAID/GA was the

inspirational force beyond the presented research. DeMaid/GA is characterized by its

high functionality in re-ordering the activity to an optimal (or near optimal) solution,

decomposing the project into several sub-circuits. Furthermore, a rather important feature

of DeMaid/GA is the ability to trace expected changes in the output as a result of a

change in an input or more. But it should be noticed that: (1) the GA reordering

optimization takes place after partitioning, i.e. it optimizes the order of activities within

each circuit rather than optimizing the order of activities with respect to the system

(DSM) as a whole, and (2) no resource allocation or resource availability considerations

were incorporated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

As discussed earlier in this chapter, PSM 32 is mainly the application of Steward’s

methodology (partitioning and tearing). The software functions do not go beyond that so

PSM: (1) does not include any optimization procedure for re-sequencing, and furthermore

(2) lacks an interface with a network-based scheduling module.

As DeMAID/GA, ADePT is a distinguished tool for applying the DSM methodology.

ADePT is further characterized by taking construction design project as an application

area (construction projects). But, the DSM analysis module in ADePT merely follows

Steward’s methodology.

The only application that considered optimizing the sequence of all the activities within

the DSM is AGENDA. But, as in PSM32, the analysis process ends in the form of an

optimized DSM and there is no means for transforming it to a program.

While the previous prototypes were stand alone applications, DSM@MIT took DSM

analysis a step further by being an Excel add-in implementation; a characteristic that

permits taking advantage of already developed Microsoft tools.

Although these five prototypes are distinguished tools, and can help project managers

much, the following can be noticed:

1. Three of them do not optimize the sequence of project activities. They only

deploy Steward’s methodology to reach a better sequence with reduce number

of feedback couplings.

2. The optimization (re-sequencing) of Altus et al. [47] was merely based on the

total length of feedbacks and didn’t not consider task time and cost.

3. DeMaid/GA favors AGENDA by optimizing the activity sequence based on

project total time and cost, but it assumes a deterministic time and cost for

each task.

4. None of these tools consider hard (logical) constraints, i.e. they assume that an

activity order can be changed freely.

Table 2 compares the different features of previously discussed prototypes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Table 2. Comparison of Different DSM Analysis Tools.

Tool
Feature DeMAID/GA PSM32 ADePT AGENDA DSM@MIT

Opt. Re-sequencing X X / X

Multi-Objective ■/ N/A N/A X N/A

Optimization Technique GA N/A N/A GA N/A

Time Considerations ✓ X In planning X X

Cost Considerations S X N/A X X

Uncertainty Considerations X X N/A X s (PERT)

Resource Allocation X X ✓ X S

Coupling Strength ✓ X X X X

Rework Probability X X X X ✓

Commercial X

Heuristic-

X X X

Tools Integrated based (expert
system)

N/A Simulation N/A Simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

2.6 Sum m ary

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an

effective tool for analyzing and understanding system architecture, especially in product

development. Hence, achieving improved performance. The use of the DSM is the

cornerstone of the architecture proposed in the current research. This chapter provided a

background on the DSM methodology, on the DSM model, and on the DSM analysis. In

addition to several related DSM models found in literature, the chapter further reviewed

five DSM prototype software related to the focus of the current research. These

prototypes were briefly described, compared, and critiqued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

CHAPTER III

SIMULATED ANNEALING (SA)

3.1 Optimization

Optimization is “the act o f finding the best.'" The power of optimization methods is the

ability to determine the best solution without actually testing all possible solutions (i.e.

without enumeration). This power comes through the use of a modest level of

mathematics and clearly defined logical procedures (algorithms). Mathematical

Programming is a branch of Mathematical Modeling that is concerned with finding the

best possible solution to a problem in which there are a number of conflicting

considerations. To apply mathematical programming techniques to any system, it is

necessary to clearly define the following:

1. Systems’ boundaries. The first decision to be taken by the analyst is to

determine the system boundaries; those imaginary limits that isolate, and

define, the system under consideration.

2. The quantitative measure(s) of performance. There must be a quantitative

performance criterion - called the objective function, which forms the basis

upon which candidate solutions - or system configurations - will be compared

in order to find the best. In some cases, when it is not possible to choose only

one criterion, a multi-objective function can be formulated. In such

circumstances, the search will be aimed towards finding a satisfactory

solution rather than an optimum one.

3. The independent variables. These variables (called decision variables)

characterize possible systems’ operating conditions. And, thus, define its

output represented by the objective function value.

4. Systems’ constraints. These direct the way by which decision variables’

values are chosen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Optimization problems can be mathematically formulated as problems requiring the

minimization10 of a real-valued objective function f (X) of an N - component decision

variables vector X = {xx,x2, ,xNf whose values are restricted, and with restrictions on

the model to satisfy a number o f real-valued equations (called constraints). The vector X

is called a solution or a configuration. The solution space is the set of all solutions. The

objective function has to be defined on all solutions. That is, for any solution X there

exists f {X) . Thus, the general mathematical programming problem (optimization

problem) can be formulated as in Eq. (2).

Find X = (x lyx 2 ,...... x N) r which
minimize f (X) Objective Function
subject to hk (X) = 0 k = 1,2,..., AT Equality Constraints ^)

g j (X) < 0 j - 1,2,...., J Inequality Constraints

x\U) > Xi>x\L) i = 1,2 , , iV

This class of problems is known as constrained optimization problems. On the other

hand, problems in which no constraints exist, i.e. J = K = 0 and x f] = - x \L) = oo, are

known as unconstrained optimization problems.

Optimization problems can be further classified into:

1. Based on equations nature,

a. Linear Programming Problems (LP), in the objective function and all

constraints are linear functions of the decision variables.

b. Non-linear Programming Problems (NLP), if any of the function or the

constraints is nonlinear.

c. Quadratic, is the objective function is quadratic.

2. Based on the decision variables nature,

a. Integer (IP or discrete), if some (mixed) or all (pure integer) of the

decision variables are restricted to take on only integer values.

3. Based on the deterministic nature o f the decision variables,

a. Deterministic.

10 A maximization problem can be solved by minimizing the negative of its objective function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

b. Stochastic, in which some or all of the decision variables are

probabilistic.

4. Based on the number of objective functions,

a. Single objective.

b. Multi-objective.

For detailed discussion on optimization, the reader is referred to [55-57].

3.2 Meta-Heuristics

In the field o f Operations Research, there are numerous numbers of combinatorial

optimization problems for which finding the exact optimal solution is computationally

time consuming. This class of problems is known as NP-hard. For such problems, an

organized search through the solution space is required, since an unguided search will be

extremely inefficient. Fortunately, decision makers in practice can accept a near-optimal

solution. Hence, Metaheurisitcs, one of the most recent developments in approximate

search methods, can play an important role. “Meta-heurisitcs have dramatically

developed since their inception in the early 1980’s. They have had widespread success in

attacking a variety of practical and difficult combinatorial optimization problems[58].”

This class of search (optimization) methods includes, but is not limited to Genetic

Algorithms, Simulated Annealing, Tabu Search, and Ant-Colony Algorithm. Osman &

Kelly [58] defined a meta-heuristic as:

“an interactive generation process which guides a subordinate heuristic by combining
intelligently different concepts for exploring and expoliting the search spaces using
learing strategies to structure information in order to find efficiently near-optimal
solutions.”

The most attractive features of meta-heurisitcs may be simplicity and robustness. Thus,

these methods can be deployed even in cases where complex mathematical models of the

problem exist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

3.3 Metropolis Algorithm

An algorithm that uses the Monte Carlo method to simulate the annealing process was

proposed by Metropolis et al. [59]. For a given temperature T, the Metropolis algorithm

samples the states of the system with the Boltzman distribution. Given the current state,

S, of the crystal solid, characterized by the position of its molecules (i.e. configuration), a

small perturbation is applied by a small displacement of a randomly chosen molecule.

The new, perturbed state, is accepted if either: (1) the energy difference between the

current state and the new state - Eq. (3) - is negative, i.e. the new perturbed state is of a

lower energy, or (2) equation (4) holds. The second acceptance rule is known as the

Metropolis Criterion. When the perturbation is accepted, the process continues with the

perturbed state replacing the old one, otherwise the old state is maintained and a new

perturbation is attempted. The process stops when thermal equilibrium is reached. The

Metropolis procedure is presented in Fig. 8.

~ ^ n e w _ s ta te ~~ ^ c u r r e n t_ state 0)

(— >e T >6 (4)

where

T : the control parameter (temperature)

6 : a random number between 0 and 1

3.4 The Simulated Annealing Algorithm

3.4.1 Background

Simulated Annealing (SA) is a meta-heuristic algorithm that can provide near-optimal

solutions to hard combinatorial optimization problems. SA has its origin in statistical

mechanics. As its name implies, SA exploits an analogy between the annealing process of

solids and solving combinatorial optimization problems. The interest began with the work

of Kirkpatrick et al. [60, 61], and independently Cemy [62]. Since then, SA has been

applied to a large number of operations research problems, such as cell formation [63],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

scheduling with resource constraints [64], scheduling with multi-level product structure

[65], lot sizing [66, 67], and machine conditioning [68]. A good survey of SA application

can be found in [69].

p r o c e d u r e Metropolis Algorithm;
S : = S 0 ; {initial solution}

r e p e a t
S'= perturb(S) ;
A = E (S ') - E (S) ;
0 — random[0,1);

prob = e~A / r ;

i f A < 0 or prob > 6
t h e n S : = S ’
e l s e retain S ;

u n t i l stopping criterion is met;
end;

S The current solution. The initial solution, S0,
is a feasible solution generated either
randomly or through using some heuristics.

perturb A function that generates a new neighboring
solution, S' e N (S) , through introducing
some small perturbation to the current
solution, S .

random A random number generator.

Figure 8. Metropolis Algorithm.

3.4.2 Physical Annealing

Annealing is a formal term for the ancient art of heating then cooling materials to forge

pottery, tools, weapons, and works of art. The process consists of the following phases:

(1) melting the solid material by increasing its temperature to a m axim um value at which

all molecules of the molten material randomly arrange themselves in a liquid phase; (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

the liquid material is then cooled according to a precise cooling schedule: the temperature

descends slowly through a series of intermediate temperatures, and at each temperature,

the molten material is kept long enough to reach thermal equilibrium (meta-stable

condition); and (3) the cooling process continues until the desired solid phase, the perfect

lattice structure, is achieved. The material now is said to reach a frozen (a low energy

ground) state. Rapid cooling, i.e. reaching the lowest ground state without allowing the

liquid material to have a thermal equilibrium at the intermediate temperature values, can

result in widespread imperfections within the crystal structure of the material. This

process is known as ‘'quenching.'

3.4.3 The Algorithm

Simulated annealing is a stochastic optimization technique. It constructs a sequence of

solution configurations (a walk or path) through the set of permissible solutions called the

state space. Based on the current solution and a certain acceptance criterion, a transition

mechanism determines which solution to step up to next. The optimal solution steps from

the current configuration to another configuration from its neighborhood according to the

Metropolis criterion. The simulated annealing algorithm is presented in Fig. 9.

The basic structure for SA implementation consists of the following basic elements:

1. A representation of possible solution configurations (search space).

2. A generation mechanism11.

3 . A means of evaluating the problem objective function (energy).

4. A cooling (annealing) schedule.

Figure 10 illustrates the flow chart of a standard SA algorithm.

11 A generation mechanism is a means of selecting a new solution from the neighborhood of the current
solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

p r o c e d u r e Simulated Annealing;
{Naive Simulated Annealing Algorithm}
S : = S 0 ; {initial solution}
T := T0 ; {initial temperature}

r e p e a t
r e p e a t

S'= perturb(S) ;
A = E (S ') - E (S) ;
9 = random[0,1) ;

prob = e~AIT;
i f A < Oor prob > 6
t h e n S := S'
e l s e retain S ;

u n t i l inner loop stopping criterion is met;
T = updatae{T);

u n t i l outer loop stopping criterion is met;
e n d ;

T The control parameter.

update Cooling schedule function.

Figure 9. Generic Simulated Annealing Algorithm.

A. Generation Mechanism (Neighborhood Moves')

The standard implementation of the SA algorithm is one in which homogeneous Markov

chains of finite length are generated at decreasing temperatures. In SA context, a

homogeneous Markov chain is a series of random changes in the control variables. The

SA algorithm consists of a sequence of iterations. At each iteration, the current solution is

randomly perturbed to create a new solution in its neighborhood. Thus, the way in which

new solutions are generated plays a very important role in the SA algorithm. The solution

generating technique should (1) introduce small random changes in such a way that the

generated solution is feasible, and (2) allow all possible solutions in the neighborhood to

be examined. For the scope of this dissertation, the discussion of solution generation

techniques shall not be extended. However, for problems with continuous control

variables, suggestions can be found in [70, 71]. On the other hand, for combinatorial

optimization problems, the solution representation and generation mechanism(s) are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

necessarily problem-specific. It is common for the move set to permute a small, randomly

chosen, part of the solution. For example, a move set has been suggested by Lin [72] for

the traveling salesman problem.

E s t a b l i s h t h e C o n t r o l

A c c e p t ?

Y eN o

N o

p d a t e
•No

A d j u s t T e m p e r a t u r e

T e r m in a t e
^ S e a r c h ?

U p d a t e s t S o l u t i o n

E v a l u a t e t h e P r o p o s e d S o l u t i o n

G e n e r a t e a N e i g h b o r i n g S o l u t i o n

S o l u t i o n

C u r r e n t S o l u t i o n

Y e s

F i n a l
S o l u t i o n

(S t ° P ^

Figure 10. Flowchart o f the Standard (Naive) SA Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

6. Objective Function Evaluation

One important characteristic of the SA algorithm is that it does not require or deduce

derivative information. It merely needs to be supplied with an objective function value

for each trial solution it generates. Thus, the evaluation of the problem functions is

essentially a 'black box' operation as far as the optimization algorithm is concerned (See

Fig. 11). On the other hand, it is so important that the objective function evaluations

should be performed efficiently for the sake of the overall computational efficiency,

especially in many applications where these functions are complex and can overwhelm

the most computationally intensive activity.

Solution
Configuration, S

M athem atical M odel O bjective Function,

Solution Updating /
Stopping Criterion

Optimum Solution
Configuration

 ►

Generation Mechanism

Figure 11. Black Box Optimization.

C. Cooling (Annealing) Schedule

The objective of the cooling schedule is to achieve a finite-time implementation of the

SA algorithm. It determines the degree of uphill or downhill movement permitted during

the search and is, thus, critical to the algorithm's performance. But, "choosing an

annealing schedule for practical purposes is still something o f a black art." Bonds [73] In

designing the cooling schedule, four rules have to be specified:

1. An initial temperature, T0,

2. A rule for decrementing the temperature,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

3. A final temperature, Tf , or stopping criterion, and

4. A length for the Markov chains.

While the first three rules manage a finite sequence of the control parameter (the

temperature), the fourth rule manages a finite sequence of transitions at each value of the

control parameter.

Initial Temperature

The selection of the initial temperature T0 is critical. On one hand, the value of T0 should

be high enough to allow all, or most, transitions to be accepted. This, of course, would

result in a lot of consumed time in the beginning of the process without progress towards

the optimal solution. But, on the other hand, a low initial temperature would reduce the

quality of the final solution.

Kirkpatrick [74] suggested that a suitable initial temperature T0 is one that results in an

initial acceptance ratio; x(T0) , of about 0.8 (In other words, there is an 80 percent chance

that a change which increases the objective function will be accepted). Equation (5)

determines the acceptance ration at any level k .

x(Tt) = [(number o f accepted transitions)/{number o f proposed transitions)]r (5)

Since the value of T0 depends on the scaling of the objective function, E , and, hence,

must be problem-specific, it can be estimated by conducting an initial search in which all

increases are accepted, and calculating the average objective function increase observed.

An approximation of T0is then given by Eq. (6).

— (+>

r0 — (6)
ln (x (r0))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Decrementing the Temperature

The simplest and most common temperature decrement rule is given by Eq. (7). This

exponential cooling scheme (ECS) was first proposed with a = 0.95 [60]. In Randelman &

Grest [75], this strategy was compared with a linear cooling scheme (LCS) in which T is

reduced every L trials according to Eq. (8). The results suggested that reductions

achieved using the two schemes were comparable and also noted that the final value of

the objective function was, in general, improved with slower cooling rates, at the

expense, of course, of greater computational effort. Finally, it was observed that the

algorithm performance depends more on the cooling rate (AT/L) than on the individual

values of AT and L . Obviously, care must be taken to avoid negative temperatures when

using the LCS.

Tk+l=aTk , * = 1,2,...., (7)

where

a is a constant close to, but smaller than, one.

Tk+1=Tk -AT . (8)

Many researchers have proposed more elaborate annealing schedules, most of which are

in some respect adaptive, using statistical measures o f the algorithm's current

performance to modify its control parameter. These are well reviewed by Van Laarhoven

& Aarts [76],

Final Temperature

For simple implementations of the SA algorithm, the final temperature can be determined

by fixing either the number of temperature values to be used or the total number of

solutions to be generated. Alternatively, the search can be stopped when it ceases to make

progress. One of the methods used to define lack of progress is when no improvement

(i.e. no new best solution) is found in an entire Markov chain at one temperature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Length of Markov Chains

The length of the k -th Markov chain, Lk , is based on the number of transitions needed to

achieve a quasi-equilibrium at each value Tk . Lk depends on the size and nature of the

problem, and is independent of k (homogeneous Markov chains). In practice, the Markov

chain is usually bounded by either 1- some constant Z transitions, or 2- a minimum

number of accepted transitions , whichever comes first.

3.5 SA: Pros and Cons

Simulated Annealing has been widely used for tackling different combinatorial

optimization problems [77]. Depending on the problem to which it is applied, SA appears

competitive with many of the best heuristics, as shown in the work of Johnson &

McGeoch [78].

As any other optimization technique, SA has its own advantages and disadvantages.

Among its advantages are: (1) relative ease of implementation, (2) its wide range of

applications, (3) the ability to provide reasonably good solutions for most problems, (4)

can be combined with other techniques, and (5) its robustness [77]. Moreover, SA

statistically guarantees finding an optimal solution [79], However, the standard SA has

its critics. Some of the drawbacks are: (1) being time consuming, (2) difficult to fine tune

to specific problems, and (3) being short on mathematical rigor [79, 80],

3.5.1 Simulated Annealing vs. Local Search

Classical neighborhood (or local search) methods form a general class of approximate

heuristics based on the concept of exploring the neighborhood of the current solution.

Neighboring solutions are generated via a specified generation mechanism, and the

algorithm accepts only those neighborhood moves that lead to incremental improvement

of the objective function. As shown in Fig. 12, for a minimization problem, only moves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

that decrease the objective function value (i.e. moving down hill) are accepted. Thus, the

inherent problems with this class of algorithms are: (1) they can be easily trapped in local

optima, and (2) they depend entirely of the initial solution. On the other hand, by

allowing perturbations to move to a worse solution with according to a controlled

mechanism, SA, as shown in Fig. 13, is able to avoid local optima and potentially finds a

more promising downhill path. Although finding the global optima with SA is not fully

guaranteed, SA provides a near-optimal solution. Furthermore, these accepted uphill

moves provide solutions independent of the initial solution.

«o
S3
ort
3

>
S3
u

Q current solution

downhill
moveO

a local
minimalocal

minima

minima

Solution, S

Figure 12. Local Search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

a©
M3

Uphill

£33 current solution

>
M3U

downhillO

a local

local

Solution, S

Figure 13. Simulated Annealing.

3.6 Sum m ary

There are numerous numbers of combinatorial optimization problems for which finding

the exact optimal solution is time consuming. For such problems, finding a near-optimal

solution is satisfactory. The current research adopts a meta-heuristic algorithm - called

Simulated Annealing (SA) - that can be used to tackle such problems. This chapter

provided fundamental description of simulated annealing. Its algorithmic steps were

explained and insights into the optimization process were given. A brief description of

SA optimization process compared to classical local search algorithms was presented.

The ability of the SA algorithm to avoid being trapped in local optima, in addition to its

robustness, provided the justification for using it as the optimization tool in the presented

architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

CHAPTER IV

SIMULATION-BASED OPTIMIZATION

4.1 Simulation

sim-u-la-tion (plural sim-u-la-tions) noun12
1. reproduction of features of something: the reproduction of the essential
features of something, for example, as an aid to study or training
2. false appearance: the imitation or feigning of something
3. fake: an artificial or imitation object
4. Computing Statistics: the construction of a mathematical model to reproduce
the characteristics of a phenomenon, system, or process, often using a computer,
in order to infer information or solve problems

For a long time, simulation has served as an important decision-support tool in a wide

variety of disciplines. Simulation was defined in [82] as:

“ a numerical technique for conducting experiments on a digital computer, which
involves types of mathematical and logical models that describe the behavior of business
or economic system (or some component thereof) over extended periods of real time.”

This definition contains several important terms that define the main characteristics of

simulation:

1. Simulation, of our interest, is numerical.

2. It requires extensive calculation time, so a computer is needed.

3. It requires some kind of mathematical and/or logical modeling.

4. It can be applied to a broad variety of disciplines.

Simulation provides an alternative to analytical solution procedures [83]. Generally, the

process of simulation involves modeling the system of interest in an appropriate form and

then executing this model to obtain operational information. Figure 14 presents the flow

chart of a typical simulation process. Computer simulation models are classified into

several categories. The study here considers stochastic simulations, in which different

components and variables of the model are subject to uncertainty factors. For further

details, refer to Law & Kelton [84].

12 [81]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

NoAll desired
rhanges made?.

Construct model of system being
studied

Measure perofmrance of system

Generate inputs

Simulation model

Construct model of systemCompare
results of alternatives being studied

specify perofrmance criteria,
decision rules, and critical system

parameters

Simulation output in form of
operating statistics

make desired
changes in descion

rules, model
parameters, or
system design

Figure 14. System Experimentation with Simulation. (Reference: [83]).

4.2 Advantages and D isadvantages

Although simulation has been, and is sometimes still viewed as analyst ‘last choice’ to be

employed when all other optimization techniques are inapplicable, recent advances in

simulation methodologies, software development, stochastic optimization, and the great

breakthrough in computing capabilities would make simulation “one o f the most widely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

accepted and practiced tools in systems analysis and operations research [85].”

Motivations for using simulation includes:

1. The increase in complexity of large-scale systems, which makes the

formulation of a mathematical model, and hence solving it, a difficult task.

2. In some cases, the degree of simplification needed would seriously affect

quality of the obtained solution.

3. The relative simplicity of simulation models leads to a better understanding of

the real system.

But, on the other hand, simulation has its own associated limitations, some are:

1. The output provided is an approximate solution rather than an exact one.

2. For large-scale simulations, the development of the model can be both time

and effort consuming.

For further discussion refer to [85-87].

4.3 Uncertainty Analysis

Risk is often viewed as the probability of an undesired or harmful event. The connection

to probability is implied by the uncertainty in the occurrence of the event. Uncertainty is

defined, in a statistical or probabilistic context, as “the implication that uncertainty exists

when the probability o f an event occurring is not zero or one [88].” Uncertainty analysis

is the part of risk assessment that focuses on the uncertainties in the assessment.

Uncertainty analysis includes both a qualitative component in which uncertainties are

identified and quantitative component of the effects of these uncertainties [89].

From a modeling view point, uncertainty is categorized into: structural (refers to

uncertainty due to lack of knowledge about the correct model); parameter (associated

with the uncertainty introduced by having to use values of model parameters that are not

surely known); and stochasticity (occurs when parameters or other quantities are not

fixed but may vary [89]. In quantitative analysis, measuring uncertainty is based on some

statistical measures of the distribution describing it. The most common measure is the

variance, which describes how an estimated parameter would vary in repeated sampling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

4.4 M onte Carlo Simulation

The theoretical basis of the Monte Carlo (MC) method has long been known, but it traces

its modem origin and name to the work of von Neumann and Ulam in the late 1940’s

when they coined the term during the Manhattan Project of World War II in their article

entitled “The Monte Carlo Method13.” The method gets its name as a result of the

similarity of probabilistic simulation to games of chance and gambling, and because of

the famous Mediterranean resort associated with these games (the capital of Monaco).

Sobol [91] stated the general objective of MC by the following definition:

“The Monte Carlo method is a method of approximately solving mathematical and

physical problems by simulation of random quantities.”

In contrast to conventional numerical discretization methods, which typically applied to

ordinary or partial differential equations that describe the system of interest, the

application of MC requires only that the system be described by probability density

functions. Monte Carlo simulation then proceeds by random sampling from these pdfs

(using some random number generators) to generate an artificial history data. The

random numbers generated are further used in calculations to duplicate the expected

system outputs. The method is relatively simple in concept.

Figure 15 illustrates the idea of MC simulation. The process goes as follows:

1. The system of interest is being modeled, this includes defining input variables,

and output measures. Then, a probability density function is assigned to each

input variable.

2. MC generates random numbers uniformly distributed on the interval [0,1].

3. These random numbers are then transformed by the p d fs to generate

stochastic input values.

4. The values are fed to the model to determine the output measure.

5. Finally, the outputs are accumulated to produce the desired results.

13 Reference [90]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

It is worth mentioning here that the wide spread use of MC is linked directly to the

breakthrough of computational capabilities of computers. Despite of the simplicity of its

computational algorithm structure, MC was not widely applicable prior to the appearance

of computers, since the simulation or random variables by hand is a very exhaustive

process. Furthermore, one main feature of MC method is that: since the error expected

from calculations can be defined by Eq. (9) where D is some constant and N is the

number of trials. A sufficiently large number of trials is required in order to attain high

precision in MC,.

error = p i] (9)

Random Numbers
Generated on [0,1]

Probability Density
Functions

Model Execution

Results Collection
and Analysis

Figure 15. Monte Carlo Simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

4.5 Interfacing Optimization Methods with Simulation

Suri [92] divided the field of models into two main categories: (1) generative techniques

such as linear programming, and (2) evaluative techniques such as simulation. A

generative technique will show the optimum solution when given the input of parameters

and constraints. On the other hand, simulation, which is an evaluative technique, is quite

different. It only shows the outcome of an operation given that certain variables are put

into the model. In this case, the model is handled as a black box. While the use of

generative techniques might require certain (sometimes unrealistic) assumptions,

simulation models can incorporate a greater level of details and capture specific features

of the real system, such as time dynamics and overall behavior. “But using simulation

models only for descriptive purposes does not alone justify the effort to build them [93].”

In real life application, a typical decision-maker would like to have answers to many

“ what-if ” questions, i.e. what will be the effect on the model output when some

parameters are changed. The goal here is either to fine-tune the system in reality, or to

take further chances (risks, or uncertainty) into consideration. Thus, the question arises:

instead of using rudimentary optimization techniques, like trial and error, can a more

effective optimization method be implemented to guide the simulation process? And, if

the answer is yes, which method or family of methods is best suitable for this purpose?

Why do we need to implement an efficient optimization method rather than simply trial

and error? The answer is that simulation optimization models has the following

unpleasant features [94-97]:

° Model behavior is very complex - a result of its high non-linearity.

° Noisy model output - simulation models are stochastic in nature, thus their

output is not deterministic with respect to the model parameters.

° The parameter space is not continuous - often there is a need for discrete

parameters such as integer, logical or linguistic.

° The search space is relatively large.

Performance measures could have many extrema or there could be multiple global

solutions with the same value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

4.6 Related Work

Recently, there has been considerable research devoted to finding methods to optimize a

simulation [84]. As will be discussed later in this chapter, these methods generally

involve guiding a sequence of simulation runs by supplying the simulation model with a

set of system configurations, with the results from simulating earlier configurations being

used to suggest a new promising direction in the search space. Sufficient background on

this issue is provided in [98-100].

For many years, using optimization methods to guide a sequence of simulations or simply

‘Simulation Optimization' has challenged researchers. Simulation is an expensive tool (in

terms of both time and cost), thus, optimization has to be achieved with as minimal

number of runs as possible. In literature, simulation optimization using response surface

methods and finite differences approximation of the gradient have been reported, but still,

“the number of computer runs needed for these method can be very large [101].” By

reviewing the bulk of literature related to simulation optimization, the optimization

methods used in simulation can be categorized as follows:

1. Classical methods,

a. Gradient search methods.

b. Pattern Search techniques.

c. Deterministic search techniques.

2. Stochastic Approximations.

3. Artificial Intelligent,

a. Evolutionary Techniques.

b. Meta-heuristics.

Table 3 provides a summary of publication in each of the previous categories. Additional

surveys are found in [94, 95, 102], The table suggests that most of the research was

devoted to using classical methods and stochastic approximation methods. But,

recognizing the limitation of these methods, researchers started to investigate different

techniques, which can achieve preferable results with less time. These methods (which

align the focus of our research here) are known as meta-heuristic techniques. Compared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

to other methods, it seems that the attention of using meta-heuristics in simulation

optimization started relatively late.

In [103], genetic search was compared to two other algorithms; the pattern search (using

the Hooke-Jeeves algorithm) and the response surface method search. The comparison of

these three algorithms was based on accuracy (how close the algorithm comes to the

optimum) and stability (lower variability). The authors tested the three methods on an

example problem common in simulation with its optimum determined by exhaustive

search. The results showed that genetic algorithm executes a superior search compared to

pattern and response surface search, taking into consideration that the speed of the search

was not a critical factor in the evaluation the algorithms. An attempt to apply genetic

algorithms (GAs) to the problem of optimizing an existing simulation model was done by

[93]; where a simple real-coded GA was presented and used to change the simulation

model parameters. Azzaro-Pantel et al. [104] presented a two-stage methodology for

solving industrial-size scheduling. The first step involved the development of a discrete-

event simulation (DES) model and the second step used GA for optimization. In a

following research, Azadivar & Tompkins [105] developed a methodology that allows

qualitative variables to be optimized in a manufacturing system using simulation-

optimization. The proposed methodology used a GA coupled with an automatic object-

oriented simulation-model generator.

One of the most famous software that employs meta-heuristics in simulation optimization

is ‘OptQuest’ (developed by OptTec Systems, Inc.). This software uses Tabu and Scatter

search methods linked to a famous risk analysis tool ‘Crystal Ball’ (developed by

Decision Engineering, Inc.). The software, described in [106], effectively integrates

Crystal Ball simulation and optimization. The ability of the system to find optimal and

near optimal solutions in minutes for applications where an exhaustive examination of

relevant alternatives requires days or months was also demonstrated. In Laguna [107],

description and comparison of the functionality of three general-purpose optimizers that

implement meta-heuristic algorithms were provided. These optimizers are: (1) Evolver: a

commercial genetic-algorithm software that in its most simple form operates as an add-in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

function to Microsoft Excel; (2) Genocop: an experimental genetic algorithm

implementation; and (3) OptQuest: based on the scatter search methodology, has been

commercially implemented to add optimization capabilities to simulation software.

Regarding Simulated Annealing (SA), Bulgak & Sanders [108] integrated an extension of

the simulated annealing algorithm with a discrete event simulation of the manufacturing

system to find optimal buffer sizes for asynchronous assembly systems which involve

automated inspection as well as automated assembly. The basic idea in this modified

version of SA is to make the comparisons based on whether or not the values of the

objective function indicate statistically significant (based the confidence intervals set for

these values) differences at each iteration. A theoretical analysis for the SA algorithm

when the objective function includes noise was presented in [109], SA was further

applied to a stochastic optimization problem in [110]. This approach, however, made it

necessary to store all feasible solutions encountered during the execution of the algorithm

and to compare them with each newly generated solution. Thus, this approach can be

considered not realistic for practical applications since a high computational burden is

involved.

Haddock & Mittenthal [111] attempted to investigate the feasibility of using a simulated

annealing algorithm in conjunction with a simulation model to optimize a non-convex,

non-concave objective function of the input parameters. Multiple runs of the simulated

annealing algorithm were used to find an optimal or near-optimal solution to the problem.

The experiment considered a relatively small number of decision variables. The authors

treated the point estimate coming from the simulation output as a deterministic value and

used it in the simulated annealing algorithm to obtain the optimal solution point. When

comparing two solution points, one cannot draw a conclusion and make a decision based

on point estimate analysis only, even when steady states behavior have been reached,

without running a large number of simulations [112], Simulated annealing was applied to

a flow shop scheduling problem with stochastic processing time in [113]. A less accurate

estimate based on fewer simulations was used. Thus, in order to overcome this low

accuracy, strategies were developed for taking this into account in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

rej ection/acceptance criteria. The paper described four variants of the basic SA algorithm

representing these strategies and presented computational experience based on the use of

these methods in the solution of stochastic flow shop scheduling problem. The classical

convergence result for the SA algorithm to the case where cost function observations are

disturbed by random noise was generalized in [114].

In Ahmed et al. [115], a simulation-optimization integrated approach to determine the

design parameters of stochastically constrained systems was presented. A simulated

annealing algorithm with modified rej ection/acceptance criterion (that takes into

consideration the stochastic nature of the system) was used to solve the optimization

model (discrete integer). In Alkhamis et al. [112], the basic convergence results for the

Simulated Annealing (SA) algorithm was extended to a stochastic optimization problem

where the objective function is stochastic and can be evaluated only through Monte Carlo

simulation (hence, disturbed with random error). Ahmed & Alkhamis [116] Presented a

new iterative method that combines the simulated annealing method and the ranking and

selection procedures for solving discrete stochastic optimization problems. Unlike the

original SA, the presented procedure is guaranteed to converge almost surely to a global

optimal solution (The original SA method is only guaranteed to converge in probability).

It should be noted that most methods for discrete case mentioned so far have been applied

and developed for unconstrained optimization problems [115].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Table 3. Summary of various simulation-based optimization research.

Category Methods References*

Gradient search
Methods

98, 117-122

Pattern Search
Techniques

Conjugate direction search—Coordinate
search—Hooke and Jeeves—Parallel tangent
search—Simplex-based techniques-
Steepest Ascent (descent))

123 -125

Deterministic
Search Techniques

Response surface method— Simple search
techniques

126-132

Stochastic
approximation

Kiefer-Wolfowitz Type techniques—
Robbins-Monro Type Techniques)

94, 95, 101,133 - 143

MetaHeuristics Simulated Annealing 111, 112,115, 116

Genetic Algorithms 93, 104,105

Tabu Search
Scatter Search

106, 107

Evolutionary
Techniques

145

* The references in the table are representative of the type of solution; this table does not contain an
exhaustive list of published works

4.7 Summary

Although uncertainty in the estimation of activity durations (and cost) cannot be

eliminated, its effect can be reduced by incorporating it in the model. One method for

handling uncertainty is the use of Monte Carlo (MC) simulation. This chapter briefly

presented MC basic operation. Since the presented architecture in this research involves a

simulation-based optimization framework, the chapter further reviewed work related to

interfacing optimization methods with simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

CHAPTER V

TIME-COST TRADE-OFF IN PROJECT NETWORKS

5.1 Project Management

A project can be defined as “a group o f tasks performed in a definable time period in

order to meet a specific set o f objectives [145].” Or, as defined in [146], ‘‘an endeavor to

accomplish a specific objective through a unique set o f interrelated tasks and the

effective utilization o f resources. ” Generally, a project exhibits most of the following

conditions:

1. It is likely to be a unique, one-time program.

2. It has a well-defined objective stated in terms of scope, schedule, and cost.

3. It has a specific time frame, a life cycle or a finite life span. In other

words, a project must have a start time and a date by which the objective

must be accomplished.

4. A project is carried out through a series of independent tasks - that is, a

number of non-repetitive tasks that need to be accomplished in a certain

sequence in order to achieve the project objective.

5. A project utilizes various resources to carry out the tasks.

6. It has a budget.

7. A proj ect involves a degree of uncertainty.

The management of a project is quite different from the management of a continuing

operation. The generally accepted definition of management is

“the planning, organizing, directing, and controlling of company resources to meet the
company’s financial and non-financial objectives.”

Project management, on the other hand, can be defined as:

1. “the application of knowledge, skills, tools, and techniques to project activities in order to
meet or exceed stakeholder needs and expectations from a project [147],”

2. "the planning, organizing, directing, and controlling of resources for a specific time period
to meet a specific set of one-time objectives [148], ” Or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

3. “the process of managing, allocating, and timing resources in order to achieve a given
objective in an expedient manner [145], ”

From these definitions, two major differences appear between the two kinds of

management: (1) in project management the manager is not directly responsible for

staffing and must use and direct resources from other components or companies, and (2)

project management concerns about “specific time period” to meet “one-time

objectives”.

Project management involves a process of first establishing a plan and then implementing

that plan to accomplish the project objective. Once the project starts, the project

management process involves monitoring progress to ensure that everything is going

according to plan. The ultimate benefit of implementing project management techniques

is having a satisfied customer. Completing the full scope of work of the project in a

quality manner, on time, and within budget provides a great feeling of satisfaction. Thus,

meeting the project objective(s) involves compromising competing demands on: scope,

time, cost, and quality.

There are three project management techniques that are commonly used:

1. Critical Path Method (CPM). A mathematical model that calculates the total

duration of a project based on individual task durations and dependencies, and

identifies which tasks are critical. This model is the fundamental scheduling

method used in project management software today.

2. Program Evaluation Review Technique (PERT). Uses statistical probabilities

to calculate expected durations.

3. Gantt chart. A way to graphically represent activities across a time scale.

5.2 Project Management in M anufacturing

“Manufacturing is the act o f making something through deliberate processing from raw

material to the desired object, usually with the use o f machinery [149].” This act

encompasses several functions that must be strategically planned, organized, scheduled,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

controlled, and terminated. A manufacturing cycle includes, but is not limited to, such

functions as forecasting, decision analysis, cost analysis, inventory control, process

planning, machine scheduling, quality control, production planning, process control,

work and time analysis, and a host of other functions. These are all functions that fall

within the planning, organizing, scheduling, and control functions of project

management.

Through the years, the Critical Path Method (or CPM) has been used for many

applications, such as effective project planning, identification of bottlenecks;

communications improvement; and resource allocation. And despite the fact that the

widespread use of CPM was mainly achieved by, and for, construction applications, CPM

is equally suitable for planning any one-time project involved in the manufacturing such

as setting up a new department, new product innovation, research and development

projects, and most importantly the manufacturing of a large and complex product (an

aircraft for example).

Project management is characterized by qualified collaborators and by suitable planning

and controlling methods. The strong point of the management concept for innovation

projects lies in the formulation of the activity and in the clear representation of the project

situation. Heuer [150] discussed the applications of project management in mechanical

engineering, planning and controlling of industrial intentions. The failure of some newly

installed manufacturing systems to live up to their pre-installation expectations has been

blamed on a number of factors. One overriding factor is poor project planning. Brown

[151] applied Project management to the design and supply of a power station’s

mechanical and electrical plant. Feldermann [152] described the setup and the concept of

an effective project planning and control in the manufacturing area. There is a dramatic

rise in the use of project management as organization shift to provide customer-driven

results and systems solutions. Actions that upper managers can take to create an

environment for more successful projects in their organizations were reviewed in [153].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

New product development best practice models advocate the integration of teamwork;

simultaneous engineering tools and techniques; and process and project management.

The design of models is relatively straightforward compared to the implementation of

these models which is significantly more difficult. Boznak [154] discussed the role that

project management could play in employing company strategies to reduce new product

development time. In Churchill [155], the principles behind quality assurance as an

effective strategy for management of large-scale capital projects were discussed. It is of

vital importance for the manufacturing industry to respond to the requirements of the

market in a flexible, cost favorable and above all quick way. In Beghini & Romanin

[156], an integration among the solutions of the problems concerning project planning,

material purchasing and information exchange in a firm working by orders was studied.

A new discipline that faces the project evolution starting from the feasibility study up to

the production delivery was developed. An interpretative model that explains firms’

dynamic behavior in multi-project management of new product development was

proposed in [157], The model could be used as a unique and homogeneous framework

that supports the processes of project selection, resource allocation, risk management,

priority management and ongoing control.

In [158], the conception of an integrated product and process model was introduced

which is particularly suitable for areas of project management, design, and assembly

planning. A novel approach supporting administrative tasks within the lifecycle of design

projects was presented in [159]. The approach was based upon comprehensive models of

design environments and design activities and combined known techniques from project

management and mechanisms for design flow control.

5.3 Project Crashing and Time-Cost Trade-Off (TCTO)

There are three main points that are most important to a successful project: (1) a project

must meet the customer requirements, (2) it has to be within budget, and (3) it has to be

on time. Furthermore, project managers in addition to scheduling projects, are frequently

confronted with the problem of having to reduce the scheduled completion time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

(indicated by the CPM or PERT network analysis) to meet a pre-specified deadline.

Project duration reduction (or project crashing) can be achieved by assigning more

resources (labor, material, equipment, etc.) to some critical activities of the project.

Taylor III [160] defined project crashing as:

“a method for shortening the project duration by reducing the time of one or more of the
critical project activities to a time that is less than the normal activity time.”

However, additional resources cost money, and, hence, increase the overall project cost.

Thus, the decision to reduce the project duration, and by how much, must be based on an

analysis o f the trade-off between desired project duration and the extra cost needed.

There are, basically, three methods for crashing a project: (1) to re-plan the project using

different methods, (2) to re-plan the sequence of activities so that activities that formerly

were in series are now done in parallel, or (3) to apply additional resources (manpower,

equipment, money) to the project to speed it up, and this, of course, may include out­

sourcing.

The main assumptions underlying most crashing practices include the following: (1) jobs

can be done more quickly if more resources (men, machinery, and/ or materials) are

allocated to them, (2) these resources can be measured and estimated, reduced to

monetary units, and summarized as a direct cost per unit time, and (3) unlimited

resources are available.

The importance of the time-cost trade-off problem arises from the wide range of its

application involvement. In Batson [161], an implementation of a time-cost trade-off

algorithm in aircraft technology development projects was discussed. Graves [162]

presented a brief review of the key concept of a convex time-cost trade-off, which by

assumption forms the basis for both static and dynamic models of research and

development investment expenditure. In Haffiner & Graves [163], the time-cost trade-off

was used to maintain the planned market entry of a product.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

5.4 Time-Cost Relationship Models

Among different CPM advantages is the ability of its basic calculations to be extended to

incorporate cost explicitly, thus integrating the planning and control aspects of project

management with the financial and budgeting activities. This is done by defining some

specific cost model representing the activity time-cost relationship. Such models can be

used to determine: (1) the cost of speeding up (accelerating, or ‘crashing’) a project to

meet a specified dead line, and (2) the most economical (optimum) schedule for meeting

a specified completion date. This relationship can be represented by means of a graph of

cost versus duration, as shown in Fig.l6-a. Point A is the result of using the cheapest (and

usually the slowest) method of completing the activity. This is called the ‘normal point’.

The cost of completing the activity is then called the ‘normal cost’, and the associated

completion time is called the ‘normal duration’. As the activity speeds up or ‘crashes’, its

cost goes up, as shown by the line A-B. Finally, point B is reached, which is the shortest

possible completion time (duration) for this activity. This is the ‘crash point’. The cost is

then called the ‘crash cost’, and the associated completion time is called the ‘crash

duration’. Additional manpower or other resources would increase costs but would not

shorten the job. A-B is called the time-cost curve. In Fig. 16-a, this curve is shown as a

straight line. Actually, it could have any shape depending on what type of resource

associated with the activity in question. In most cases, however, a straight line drawn

between the crash and the normal point, as shown in Fig.l6-b, can approximate the curve.

As discussed in Chapman [164], the activity time-cost relationship may take one of

several shapes. It may be concave, as in Fig. 17-a, or piecewise linear approximation to

more general functions as in Fig.l7-b. In some exceptional cases, the curve can be shown

by a series of straight lines as in Fig.l7-c. Furthermore, there are cases where the

relationship between time and cost does not result in a continuous curve. This would

occur when there are only two or more distinct ways of accomplishing the operation, and

no ‘in-between’ possibilities as shown in Fig.l7-d.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

C rash

N o r m a l

N o r m a !C rash
A c tiv ity D u ra tio n

A ctual
Curve

Activity D uration

(a) Linear (b) Actual vs. approximation

Figure 16. Linear Time-Cost relationship.

The formulation of the time-cost trade-off (TCTO) problem in project management

networks has been handled in several ways. Kelly [165] presented a linear programming

approach for project crashing assuming that cost varies linearly with activity completion

time. Related work is also presented in Siemens [166] and Goyal [167]. Several

researchers [168-171] have developed models and solution procedures to incorporate a

non-linear relationship between cost and activity completion time.

A solution methodology for project crashing problems with convex or concave activity

duration functions was developed in [172], The proposed procedure actually

approximates these relationships by piece-wise linear time-cost curves. In Babu & Suresh

[173], the concept of time cost model was extended to include the project quality that was

assumed to be affected by project crashing. An optimization model was developed to

consider the time-cost-quality tradeoffs in project management simultaneously. In Pulat

& Horn [174], a multiple objective linear programming model was presented. The TCTO

technique is extended to solve the time-resource trade-off problem with two resources or

two groups of resources. In Demeulemeester [175], a description was given of a new

exact procedure for the discrete TCTO problem in deterministic activity-on-the-arc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

networks where the duration of each activity was a discrete, non-increasing function of

the amount of a single resource (money) committed to it. The objective was to construct

the complete and efficient time-cost profile over the set of feasible project durations. In

Abdelsalam & Bao [167], a modified TCTO model was being presented and

implemented. The presented model extends the classical crashing model to include more

than one crashing scenario.

■ao

A ctiv ity D uration

fa) Concave

A ctiv ity D uration

(bl Piece-wise linear approximation

6
•ao
<

A ctiv ity D uration

o

o o

A ctiv ity D uration

(c) Connected straight lines (d) Discrete

Figure 17. Different Time-Cost Models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

5.5 Criticisms of Current Practices (Constant Cost-Slope Concept)

Although the concept of “cost-slope”, Fig. 16, is appealing in its simplicity, it must be

pointed out that it is often extremely difficult to obtain reliable figures for the changes in

cost resulting from changes in duration time. These difficulties are so great that, in

practice, the cost-slope concept may be inapplicable. Moreover, the relationship between

cost and time is not a simple one. Multiplying labor time by wage cost is obviously

inaccurate and, on the other hand, to “extend” the resultant labor cost by a constant

overhead factor can be equally misleading, since the reduction in time may be obtained,

for example, by hiring special plant that has a non-linear hiring rate. These difficulties

make it dangerous to assume that cost slopes are constant.

5.6 Project Crashing with Mathematical Programming

The TCTO problem aims towards reducing the overall completion time of a project by

‘crashing’, i.e. reducing the time of a number of activities in the project while holding the

total cost of the project to a minimum. As discussed in [160, 177-179], both CPM/PERT

network and project crashing network can be formulated as a linear programming

problem; to minimize the cost of crashing given the limits on how much individual

activities can be crashed.

Project crashing with mathematical programming involves definition of the followings:

1. The decision variables: ‘x ’ is the time an event will occur, and ‘y’ is defined as

the number of time units that each activity is crashed.

2. The objective is to minimize the additional cost of crashing the project.

3. Three set of constraints, in addition to non negativity, are imposed on the model:

a. Network constraints. This set of constraints describes the structure of the

network by specifying the precedence relationships among different

network activities. There should be one or more constraints for each event.

This set o f constraints insures that no activity can start before the

preceding activity(s) has been realized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

b. Crash time constraints. This set of constraints determines the limit/extent

to which an activity can be crashed. The maximum for each ‘y’ variable is

equal to the difference between the normal time and the maximum

allowable crash time.

c. Project completion constraint. This constraint insures that the project

schedule was set in such a way that the project will be completed within

the desired time span. This is done by specifying that the last event

(matching the end of the last activity) must take place before the desired

project schedule deadline date.

5.7 The TCTO Problem in Literature

The TCTO problem was the subject of a large number of research articles. Tufeki [180]

introduced an iterative solution procedure for solving the time-cost trade-off problem that

utilizes a labeling algorithm for locating a minimal cut in the flow network. Rosenblatt &

Roll [181] analyzed optimal project duration for situations where project duration can be

shortened by 'crashing' activities. The cost components considered are: regular direct

costs, crashing costs and overhead costs. In Law & Hsing-Wei [182], two predictive

models for estimating the computer execution time required by two network flow based

algorithms to solve the time-cost trade-off problem were presented. Models were

developed in [183] for two specific resource-constrained project crashing cases: (1) a

model for resource critical crashing case, and (2) a model for the activity duration

crashing case. A network in which each arc is associated with a time-cost trade-off

function was considered in [184], This function was assumed to be non-increasing, piece-

wise linear and convex and objected to enumerate all efficient chains in the context of

two criteria, the total time and the total cost required to traverse from source node to sink

node. An approximation algorithm for the discrete time-cost trade-off problem was

presented in [185].

The importance of the TCTO problem arises from the wide range of its application

involvements. Gander [186] introduced different forms of government involvement in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

innovation process, both direct and indirect, into a standard innovation TCTO model.

Batson [161] discussed an implementation of a TCTO algorithm in aircraft technology

development projects. Graves [162] presented a brief review of the key concept of a

convex TCTO, which by assumption forms the basis for both static and dynamic models

of research and development investment expenditure. The TCTO was used in [163] to

maintain the planned market entry of a product. A cost-minimization model to investigate

scheduling strategies for multistage projects in a client-contractor environment was

considered in [187]. The model is designed primarily to address the interaction between

earliest-, intermediate-, and latest-start options and project-crashing strategies for a broad

range of penalty costs. Reda & Carr [188] handled the problem among related activities.

A survey of project scheduling problems since 1973 limited to work done specifically in

the project scheduling area is found in [189]. The survey includes the work done on

several fundamental problems such as the TCTO problem. De Reyck & Herroelen [190]

investigated the relation between the hardness of a problem instance and the topological

structure of its underlying network, as measured by the complexity index. It also

demonstrates that the complexity index plays an important role in predicting the

computing effort needed to solve easy and hard instances of the multiple resource-

constrained project scheduling problem and the discrete TCTO problem. Hajdu [191]

dealt with some special problems concerning least cost scheduling problem in precedence

diagramming. De et al. [192] addressed the discrete version of the well-known TCTO

problem for project networks, and discusses the complexities of various network

structures and validate an old conjecture that certain structures are necessarily more

difficult to solve. The discrete TCTO problem in which the duration of project activities

were assumed to be discrete, nonincreasing functions of the amount of a single

nonrenewable resource was addressed in [193]. The paper described a procedure for

scheduling project activities in order to minimize the total cost of the project while

meeting a given deadline.

The TCTO problem has been tackled by several methods. The following sections provide

a short literature review on related research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

5.7.1 Mathematical Programming

A multi-objective project crashing model was introduced in [194] where the problem was

formulated as a lexicographical optimization model. An efficient lexicographical

maximal flow algorithm was implemented to obtain the lexicographical minimal cuts at

each step to determine the activities to be modified. In Kanda & Rao [195], a procedure

was developed to obtain the project-cost curve when there are linear penalty costs for

delays of certain key events in a project in addition to crashing costs for activities. A

linear programming formulation is given.

The model presented in [196] involved a mixed integer linear programming formulation

to determine the optimum allocation of the project duration reduction. The main

advantage of this model was its ability to determine the optimum allocation among

activities for four different time/cost functions. Erenguc et al. [197] determined the

activity durations and a schedule of activity start times so that the net present value of

cash flows is maximized in a project scheduling problem. The problem was formulated as

a mixed-integer nonlinear problem. An algorithm to assist construction planners in

making TCTO decisions was presented in [198]. This approach, called the LP/IP hybrid

method, took advantage of linear programming and the convex hull method for

efficiency, and integer programming to find the precise solutions. This hybrid method,

along with a spreadsheet tool, provides the construction planner with an efficient means

to obtain resource selections that optimize time and cost of a construction project.

Two algorithms, based on dynamic programming logic, were described in [199] for

optimally solving the discrete time-cost trade-off problem in deterministic CPM

networks. An algorithm that employs an integer programming formulation for obtaining

the optimal solution for the time-cost trade-off problem in large projects was presented in

[200],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

5.7.2 Heuristic Algorithms

Barber & Boardman [201] established the definition of an easy-to-use tool for project

crashing problems with two key features: an algorithm to generate a range of increasingly

pragmatic solutions by the inclusion of heuristics to portray real-world objectives and an

intelligent knowledge-based system to assist in the generation of strategies and to

postulate the resultant time-cost trade-off function, for each activity considered. Barber

[202] presented a prototype system which allowed a project network to be portrayed

graphically as a CPA network and then crashed using a heuristic algorithm with the aid of

a knowledge based system. Bowman [203] presented a heuristic using the gradient

estimators to give close to locally optimal performance relatively quickly for PERT

networks. In Sunde & Lichtenberg [204], a new heuristic for TCTO which balances cost,

time, and resources was presented. The new method was called net-present-value TCTO.

In Taeho & Erenguc [205], a combination of the TCTO problem and the resource

constrained project scheduling problem was solved using a heuristic procedure, a multi­

pass algorithm.

5.7.3 Simulation

In Ramani [206], a computer simulation project has been outlined to achieve optimal

crashing of a PERT network, where a probabilistic PERT model was converted into a

deterministic CPM model for the purpose of carrying out the TCTO analysis. In Patrick

& Topaz [207], a proj ect-scheduling simulation model of the longwall move process was

developed to analyze and assess the economic viability of innovative transfer methods

and equipment. Longwall face-to-face equipment transfers or moves are the largest

source of nonproductive time in a longwall-mining system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

5.7.4 A rtificial Intelligence

A new procedure for the TCTO problem that involved new assumptions and a fuzzy

linear programming formulation was demonstrated in [208]. Another algorithm based on

genetic algorithms principles for construction TCTO optimization, and a computer

program that can execute the algorithm efficiently were presented in [209]. Li et al. [210]

presented a computer system called Machine Learning and Genetic Algorithms based

System (MLGAS). With MLGAS, quadratic time-cost curves are generated from

historical data and used to formulate the objective function that can be solved by the

genetic algorithm. The capacity of the GA was enhanced to prevent premature

convergence. When compared with an experienced project manager, MLGAS generated

better solutions to nonlinear time-cost trade-off problems. To provide construction

engineers with a more realistic way of analyzing projects’ TCTO decisions, Feng et al.

[211] presented a hybrid approach that combines simulation techniques and genetic

algorithms to solve the TCTO problem under uncertainty.

5.8 Summary

This chapter provided a background on the role that project management techniques

could play in a manufacturing environment especially in new product development

projects.

In addition to planning, scheduling, and following-up activities, project managers are

frequently confronted with the problem of having to reduce a project scheduled

completion time (indicated CPM or PERT network analysis) to meet a pre-specified

deadline. The chapter further presented a problem that project crashing or the time-cost

trade-off (TCTO) problem. Different time-cost relationship models were presented and

the classical TCTO practice was critiqued. Moreover, related research in literature

concerning solving this problem was reviewed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

CHAPTER VI

DSM OPTIMIZATION AND ANALYSIS

6.1 Objective

The main objective of the DSM analysis is simply to reduce the effect of feedback loops

by:

1. Decreasing the number of feedback couplings to the maximum possible

extent, then

2. Reducing the scope of the remaining feedback couplings by:

a. Bringing them as close to the diagonal as possible, and

b. Grouping activities in unsolved feedbacks into iterative blocks.

Figure 18 schematically shows these sequential steps of DSM analysis.

As discussed in Chapter II, to perform the former steps, most of the DSM analysis

research work reported in literature adopted Steward’s heuristic methodology and only

two researchers applied an optimization technique (Genetic Algorithm).

The current research employs a mathematical-based approach to optimize the DSM.

Hence, a quantitative objective function must be defined. Since the implementation of the

simulated annealing algorithm, the optimization tool, is independent of the objective

function formulation, different objective functions can be evaluated according to the data

available. In the presented architecture, either one of four different quantitative objective

functions can be used:

1. Number of feedback couplings,

2. Total project iterative time,

3. Total project iterative time and cost, or

4. Total project iterative load.

The following sections will elaborate more regarding the application of each of these

objectives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(a) Initial DSM with tasks randomly ordered
(6 Feedback Couplings)

(b) Step 1: Re-sequenced DSM
(3 Feedback Couplings)

(c) Step 2: Re-sequenced DSM
(3 Feedback Couplings with smaller scope)

(d) Step 3: Final DSM
(1 Iterative Block)

Figure 18. Schematic Representations of DSM Analysis Steps.

The Concept of Load

To use an optimization technique, a quantitative objective function has to be defined.

While ‘AGENDA’14 aimed towards minimizing the total length of feedbacks in the

system, ‘DeMAJD/GA’15 objective was to minimize total cost and time required for

convergence.

14 [47] - Refer to Section 2.4.4
15 [39] - Refer to Section 2.4.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Since the scope of the current research proceeds beyond DSM optimization and analysis

to project scheduling, a new measure had to be defined to serve both parts of the

presented framework. This measure is called ‘activity load.’

The presented research assumes that two parameters can be defined for each activity: (1)

load, and (2) resource type. The nature of these parameters is dependent on the nature of

the activity itself. For example, if the activity is digging a foundation for a building, then

the load will be the number of cubic meters to be removed and the resource type needed

would be man.

The advantages of using this concept are of two-fold: the first regarding the Time-Cost

Trade-Off analysis, and this will be discussed in details in Chapter VIII; and the second is

the generality for DSM optimization: if activity durations (time) are available, time will

be used as the load (and the same applies in case of cost availability), and if it is only

required to reduce the extent of the feedback loops, then a load of 1 unit will be assigned

to all activities and the optimization proceeds.

6.2 Assumptions, and Limitations

The presented architecture aims toward finding an optimum sequence of all activities in

the project. Although the current research is concerned with IPDPs, the architecture is

general and can be applied in any environment.

The followings assumptions and limitation apply to the DSM model:

1. A basic concept: the DSM methodology assumes sequential execution of

activities in the order shown on the DSM.

2. System decomposition proceeds to the smallest task, for example case (b) in

Fig. 19 is invalid, and must be replaced by something similar to case shown in

(a).

3. An activity starts immediately after all the required input information to begin

is available, i.e. as-early-as-possible.

4. As shown in Fig. 20-a, an activity can be started only after each of the

predecessors has been entirely finished [22], Or, in other words, an activity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

cannot start until all required information input is available. This implies that

no activity can start with preliminary information and also receives other

information during its execution as in the case shown in Fig. 20-b.

5. Only planned iterations determined by the project manager or the system

analyst at early phases are considered in this methodology. Unplanned

iteration requirements that emerge during project execution are not

incorporated in the presented model.

6. An activity provides its output information once it is finished (Fig.21-a), not

during processing (Fig.21-b).

7. Start and end activities are assumed known. Thus, their order will remain

fixed during the optimization process.

8. Each activity is assumed to be redone completely in each iteration.

9. In the case that an activity falls in more than one feedback loop, the activity is

assumed to be redone a number of times equal to the sum of iteration factors

of these feedback loops.

10. Kusiak et al. [212] classified dependencies in the design process into:

information dependency, technological dependency, common-sense

dependency, resource dependency, preferential dependency, and functional

dependency. The proposed methodology considers only information

dependencies. If required, other forms can be imposed as logical (hard)

constraints.

11. To proceed with collapsing, coupling strengths are needed. If no coupling

strengths were defined, a dummy coupling strength equals to 8 or 9 can be

assigned to all couplings before optimization. Equal strengths will not affect

the optimization results but will allow proceeding with collapsing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Al A2

>

V
k

V
B1

Activity A

V
B2 Activity B

(a) Valid (b) Invalid

Figure 19. Assumption: System Decomposition.

Activity CActivity C

Activity A

Activity B

Activity A

Activity B

(a) Valid (b) Invalid

Figure 20. Assumption: Activity Start.

Activity A Activity A

(a) Valid (b) Invalid

Figure 21. Assumption: Activity Output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

6.3 M athem atical Modeling of Feedbacks

A coupling between any two activities can be expressed as a mathematical relationship.

For example, if a coupling coup(A, B) exists from activity (A) to activity (B) , as shown

in Fig. 22, a coupling indicator is defined as,

fl if coup(A, B) is feed forward
IAB = ' (10)

' -1 if coup(A, B) is feedback

Figure 22. Coupling (General Form).

The value of the coupling indicator, thus, depends on the order of execution of both

activities interfaced by this coupling. Now, to apply the concept o f coupling indicator,

lets consider the following example, shown in Fig. 23.

Let xA, xB be the order of activities A and B respectively. In any DSM state, the

coupling coup(A, B) can hold one of two cases:

Case 1: A feed forward coupling, Fig.23-a,

Since x A =11 and xB =14
Then activity A is realized before activity B
i.e.Xg > x A or xB —xA > 0
Then coup(A, B) is a feed forward and, hence, I A B = 1

Or, Case 2: A feedback coupling, Fig. 23-b

Since xA = 14 and x B =11
Then activity B is realized before activity A
i.e.xfi >- xA or xB —xA -< 0
Then coup(A, B) is a feedback and, hence, I AB = -1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

So, for any coupling coup{i, j) from activity i to activity j , a coupling indicator 7(. . is

defined as:

t r . o <n >[- 1 i f X j - X i < 0

Where x t and Xj are the order of execution of activities i and j respectively

11 11

12 12

13 13

14 14

(a) Feed forward Coupling (b) Feedback Coupling

Figure 23. Feed forward vs. Feedback Coupling.

6.4 Logical Constraints

The current optimization model tolerates two sets of hard constraints, these are:

1. Due to the assumption that both the start and finish activities are known, their

order is assumed fixed. Hence, the order of the start and finish activities will

be ‘1’ and ‘m ’ respectively, where ‘ m ’ is the number of activities in the

project.

2. In some cases it is infeasible to switch the direction of a coupling from a

feedback to a feed forward, although this of course will reduce both time and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

cost. For example, consider the case shown schematically in Fig.24. In this

case, there is only one input to the activity “Initial Data” and this input comes

from activity “Revised Data.” As a result, an unconstrained optimization will

try to assign orders for these activities in a way that guarantees that the

coupling (Revised Data, Initial Data) is a feed forward one because this, of

course, shall improve the objective function(s). On the other hand, it can be

easily noticed that this solution is infeasible in the sense that it contradicts to

logic; “Revised Data” cannot be performed before “Initial Data”). Thus, to

avoid having such an infeasible solution, a second set of hard constraints,

logical constraints, is to be developed and tailored according to the nature of

the problem.

Initial Data

Revised Data

Figure 24. Hard Constraint.

6.5 Iteration Considerations

The number of iterations required for a certain feedback loop to converge differs from

one feedback to the other depending on how good the original estimates used for

upstream activities were on the sensitivity o f downstream activities to these estimates and

on the required quality of the final design. The trade-off here is that while the solution

quality can be improved by performing more iterations, extra time and cost of doing so

will be added to the total project as a result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

In order to incorporate such a factor in the presented model, an iteration factor is defined.

This factor converts coupling strengths to the number of iterations required for

convergence. To quantify coupling strengths, seven levels are used. These are: extremely

weak, very weak, nominal, strong, very strong, and extremely strong. Although these

strengths are supplied to the model directly, they can be determined through sensitivity

analysis detailed in [41], Thus, for each coupling, an iteration factor is determined based

on the coupling strength according to the default values shown in Table 4.

Table 4. Iteration Factor Values.

C o u p l i n g S t r e n g t h I t e r a t i o n
F a c t o r

Extremely weak ew 2

Very weak vw 3

Weak w 4

Nominal n 5

Strong s 6

Very strong vs 7

Extremely strong es 8

6.6 Numerical DSM

The basic DSM is a binary matrix, where cells can hold one of two values ("one" or

"zero") or ("X" marks or empty cells). Such matrix features a single attribute; the

‘existence’ (or ‘absence’) of an interface between different elements. DSM was later

modified to hold multi-attribute, such DSM is referred to as a “Numerical DSM.”

Numerical DSMs allowed the development of more complex DSM analysis algorithms.

For example, to guide the ‘Tearing’ process, Steward [22] suggested using a two-level

numbers instead of the simple mark “X”; a coupling is assigned the value “0” if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

predecessor activity is insensitive and assigned the value “9” if the predecessor activity is

sensitive. A predecessor activity is insensitive if it can be estimated with a high

confidence level or if a bad estimation would not be of much effect on the results of the

successor activity. More numerical DSM models are discussed in [9, 27, 50, 51]. In the

current research, a numerical DSM is used; in which coupling marks are replaced with

numbers (iteration factor) indicating the strength of the coupling.

6.7 Computing Load

Each activity has its associated load. And each feedback coupling has a number of

iterations required for its convergence. In order to determine the project iterative load

(PIL) due to feedback loops, for all activities contained within a feedback loop, load will

be summed and multiplied by the loop’s iteration factor. Then, the loads of all feedback

loops are summed.

To determine the iterative load for each loop, and hence for the whole project, the

heuristic presented in Fig.25 is applied. In case of time and/or cost optimization, the same

heuristic applies with a minor modification: PIL is replaced by PIC and PIT (project

iterative cost and project iterative load respectively).

To illustrate the heuristic, consider the example shown in Fig. 26. This simple

hypothetical DSM has five activities (associated loads shown) and two feedback

couplings (corresponding iteration factors shown).

The steps for computing the Project Iterative Load go as follows:

1. Define the set of activities in the DSM and their associated loads:

A = {(1,10), (2,20), (3,30), (4,20), (5,10)}

2. Determine the set of feedback couplings in the current DSM sequence and their

associate iteration factor:

C = {(4,1), 3), ((5,3), 5)}

3. Consider the first coupling in the set C : coup{A,l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

a. Loads associated with activities within this loop are summed to determine

the coupling load:

CLax =10 + 20 + 30 + 20 = 80 units

b. The coupling iterative load is determined by multiplying the previous

quantity by the iteration factor corresponding the current feedback

coupling:

CIL4l = 80 X 3 = 240 units

4. Step (4) is repeated for the coupling coup{5,3):

CIL53 =300 units

5. Finally, project iterative load is equal to the sum of all iterative loads of feedback

couplings in the DSM determined previously, thus

PIL = 240 + 300 = 540 units

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p r o c e d u r e Project Iterative Load;
{Determining Project Iterative Load}
PIL = 0 ; {initial project iterative load}
A = {(x,loadx): 1 < x < NA} ;
C = {(coup(i, j), I F i j) : I; j = -1 } ;

r e p e a t
select _ coupling(coup(i, j)) ;

CLjj - 0 ; {initial coupling load}

CILf j = 0 ; {initial coupling iterative load}

k = 1; {counter initial value}
r e p e a t

se/ect _ activity(k);

if xj < xk < Xi

t h e n CL;j = CLtj + loadk

k = k +1;
until k > NA ; {all activities in A are considered}
CILj j = C L jj x IF jj

PIL - PIL + CILj j ;

u n t i l all couplings in C are considered;
e n d ; _

A Set of activities in the DSM and their associated loads

NA Number of activities

C Set of feedback couplings in current DSM sequence and their
associated iteration factors

coupii, j) Coupling from activity (i) to activity (j)

IFj j Iterative factor of coupii, j)

j Coupling indicator

select _ coupling A function that selects, in order, a coupling from the set C

select _ activity A function that selects, in order, an activity from the set A

loadk Load associated with activity k

Figure 25. Load Computations Heuristic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Load =10 1 - 3

L oad= 2 0 2
Load = 30 3 - 5

Load = 20 4 1it
L oad= 1 0 5

Figure 26. Load computations example.

6.8 Optimization with Simulated Annealing

The objective of DSM optimization is to determine the sequence of activities execution

that results in minimum project iterative load. In this section, a modified simulated

annealing algorithm is proposed and its implementation steps are explained.

6.8.1 A two-stage simulated annealing algorithm

The SA algorithm proposed in this research (called two-stage SA) is a modified version

of the Naive SA algorithm presented in Section 3.4.3. The presented algorithm (Fig. 27)

follows the same steps of the Naive SA but adds a second stage that keeps record of the

value of a best solution. The objective of this modification is to assure that the final

solution provided is the best one achieved. Thus, in cases that SA moves towards a

locally optimal solution, the algorithm can be redirected to avoid being trapped in it.

6.8.2 Decision Variables

In DSM optimization, it is required to determine the optimal sequence of project

activities

X = (X j x 2 x3 . .. X; . . . x m) T (12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Where x t is the order of execution of activity i , 0 < i < N A , and NA is the number of

activities. A constraint is to be imposed here is: no duplication is allowed (i.e. two

activities cannot assume the same order).

6.8.3 Generation of The Initial Solution Configuration

In most of the research cited in literature, SA has proved to be a robust optimization

algorithm that is independent of the initial solution configuration. Hence, in the presented

research, an initial solution configuration is generated by randomly assigning order to

different activities, as shown in Fig. 28. Another alternative that can be considered is

generating an initial solution using Steward’s partitioning procedure presented in Section

3.3.

6.8.4 Generation of a Feasible Neighboring Solution Configuration

In simulated annealing, a new solution configuration is generated by perturbing the

current one. Several perturbation methods are cited in literature. The use of any of these

methods mainly depends on the nature of the problem being tackled. The presented

research applies a “pair-wise exchange” perturbation strategy. As shown in Fig. 29, this is

done by randomly selecting two activities and ‘swapping’ them. It should be noted here

that the order of both the start and finish activities remain fixed.

Some thoughts need to be given to the generation of a feasible solution when ‘logical

constraints’ exist. In this case, the algorithm searches only the feasible space by being

programmed to reject any proposed solution configuration that results in a constraint

violation. Another alternative is adding a penalty to the objective function. But since that

technique may lead to wasting time computing infeasible solutions, the research here

sticks to the first alternative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

p r o c e d u r e Simulated Annealing;
{Two-stage Simulated Annealing Algorithm}
S:= S0 ; {initial solution}
Sopt = S ; {initial optimal solution}

T :=T0 ; {initial temperature}
r e p e a t

r e p e a t
S' = perturb(S) ;
A = E (S ') - E (S) ;

9 = random[0,1);

prob = e~A/r ;
i f A < Oor prob > 9
t h e n S : = 5 '

if £ (S ')< £ (S 0/„)

then = S ' ;

e l s e retain 5 ;
u n t i l inner loop stopping criterion is met;
T = updatae(T) ;

u n t i l outer loop stopping criterion is met;
e n d ; _

s The current solution. The initial solution, S0 , is a
feasible solution generated either randomly or through
using some heuristics.

$ opt Optimum solution

T The control parameter.

perturb A function that generates a new neighboring solution,
S' e N (S) , through introducing some small
perturbation to the current solution, S .

random A random number generator.

update Cooling schedule function.

Figure 27. Two-Stage Simulated Annealing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Order 1 2 3 4 5 6 7 8 9

WM i i F C E B H D G

Fixed Fixed r?
Figure 28. Solution Representation.

Order

Activity

1 2 3 4 5 8 7 8 S

i F ««1 E B D G

Order 1 2 3 4 5 6 7 8 9

Activity w m : F l i n n E B * D G 1 1 1 !

Figure 29. Generating a Neighboring Solution.

6.8.5 Object Function Evaluation

As discussed earlier, SA merely requires the value of the objective function for each

solution configuration. The algorithm picks up the objective function value of the

proposed solution, compares it with the one of the current optimal solution and proceeds

to the next step.

In the presented research, either one of four objective functions can be used to evaluate

the proposed solution configuration. These are:

1. Number of feedback couplings, f x(X)

2 X - (> 3 >
c o u p (i ,j) e A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

2. Project iterative load

f z (X) = PIL

3. Project iterative time

f 3(X) = PIT

4. Project iterative time and cost

f 4 (2f) = wT ■ PIT + wc • PIC

(14)

(16)

(15)

where

wT and wc are relative weight selected by the decision-maker.

It is important to note, however, that the fourth objective function represents a multi­

objective optimization case.

One important question that arises here is: “why not minimize the project load rather than

project iterative load!” The answer can be stated as follows:

An important goal of the DSM analysis is simplifying the nest of feedback

couplings, which in turn leads to a better management practice. Although

minimizing the project load would theoretically result in a shorter time and lower

cost, the possibility of being associated with a high number of feedbacks will, in

reality, increase the complexity for management which, as a result, increases

project total time and cost. Thus, minimizing project iterative load would tend to

lower the time and cost of the project while providing an easy to manage

sequence (reduced number of feedbacks).

6.8.6 Cooling Schedule

The presented research adopts a geometric cooling schedule, which is the most

commonly used cooling schedule in the simulated annealing literature [213]. In this

schedule, temperature updating follows Eq. (7) The initial and final temperature values,

referred to as J0and Tf respectively, are specified by the user along with the cooling

factor, a .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

6.8.7 Stopping Criterion

To determine whether the system reaches a meta-stable state, two counters were

introduced to keep track of the number of accepted and rejected solutions at each

temperature. Iterations at each temperature halt when either counter reaches a pre-deflned

threshold. The user specifies both thresholds. The optimization process, on the other

hand, proceeds until it reaches the final temperature, Tf even if no improvements are

made during many temperature decrements.

6.9 Handling Stochastic Activities Load

In cases where activity loads assume stochastic values, Monte Carlo simulation is used to

determine the value of the objective function for each proposed solution. The objective

function in this case will also be represented by a probability distribution curve. And

since the simulated annealing algorithm was developed to handle deterministic

combinatorial optimization problems (the acceptance or rejection of a new solution

follows metropolis criterion, which is based on one point estimate of the objective

function), a modification had to be done to SA to tolerate stochastic objective functions.

6.9.1 Uncertainty in Activity Load Estimation

One unavoidable difficulty in the preparation of activity load estimate is uncertainty.

Uncertainties in estimates of resource requirements for future system development arise

from different sources: (1) deviations from original system configuration as the

development process advances, (2) variations in resource (s) performance and cost, (3)

system analyst biases, (4) errors in system modeling, and so forth...

Thus, the estimate of an activity load can be in the form of a multi-point (probability

distribution function) not by a single value (one-point estimate). In turn, the system

performance (objective function) will be expressed as a probability distribution so that it

reflects uncertainty of estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

With explicit information describing each activity load, the comparison of two alternative

system configurations can be aided by determining some quantitative statistical measure

of the expected system performance of each alternative. According to their preferences

and attitude toward risk, decision-makers should be able to choose the preferable

alternative

The current research presents a modified version of the simulated annealing algorithm to

extend its application to stochastic problems where the value of the objective function is

represented by a probability distribution rather than a one-point estimate. The basic idea

in the modified SA is that the acceptance or rejection of a proposed solution is based on

the comparison of some statistical measures of its objective function distribution with

those of the current optimal solution. Two methods for such comparison were suggested:

1. Min-Mean-Max rules, or

2. Utility Function Method.

While the first method assumes risk-averse decision-making, the second can be easily

modified according the requirements of the decision-maker.

6.9.2 Min-Mean-Max (M3) Method

In this method, acceptance of a proposed solution is based on comparing three statistical

measures of its objective function with those corresponding to the current optimal

solution. These measures are:

1. The mean (expected, or average) point (//),

2. The maximum value (max), and

3. The minimum value (min).

Let p and c denote the proposed and current solutions respectively. Solutions p and c are

to be compared based on their objective function (o.f). Figures 30 and 31 shows eight

cases in which objective function estimates are expressed as probability distributions to

reflect the actual uncertainty associated with each solution configuration evaluated.

Figure 30 illustrates cases in which the mean value of p (denoted to by pp) is less than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

the mean value of c (denoted to by pc). In case (1), the decision of acceptingp is of no

question since all possible objective function values are lower than those of c. the

situation in case (2) is slightly different in that there is some probability that the actual

value of p will be higher than c. If this probability is not high, the decision would be, still,

to accept p. However, as this probability increase and the overlap is significant, as shown

in case (3) and (4), pre-defmed acceptance rules are needed. Figure 31 illustrates the flow

chart that is used as basis for acceptance, or rejection, of the proposed solution in cases

where pp is less than pc. Of course, these rules and the ratios included can be tailored

according to the environment of the project carried out.

Similar rules for cases in which pp equals to nc (shown in Fig.32) are defined via the

flow chart presented in Fig.33. Again, these rules are relative and can be changed

according to the decision-maker attitude toward risk. Finally, when none of these cases

holds, metropolis criterion is applied on the mean values of the distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

mn iTsx„ rrin, max,

^ proposed current

maxp n crmn max,mm

(a) Case 1 (b) Case 2

current

mm max max,

proposed
current

mm

(c) Case 3 (d) Case 4

Figure 30. Cases with np < nc (Schematic).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mp
<

M
c

90

a 2

a .,3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

31
. F

irs
t

Se
t

of
Co

m
pa

ris
on

R

ul
es

.

91

current

rmnc min max

proposed

mm max maxmm,

(a) Case 5 (b) Case 6

current
current

proposed

maxmm max Pc

proposed

m m c mm maxmax

(c) Case 7
(d) Case 8

Figure 32. Cases with jup = n c (Schematic).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Yes

Yes Mo Yes
Case (5)'< ̂ minp <l,3xmin

Case(8)
Case (6) No

Yes

i *
Accept Proposed

Solution
(Reject Pr posed A
I Sol tton)

Figure 33. Second Set of Comparison Rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

6.9.3 Utility Function (UF) Method

An alternative method for comparing the performance statistics (objective function) of a

proposed solution with those of the current optimal solution is through the use of a

‘utility function.’ The proposed utility function (UF): (1) is an additive UF, (2) consists of

four attributes, and (3) assumes attributes independence.

Four statistical measures were chosen to be the attributes of the UF, these are: the mean

(or expected value), the variance, the range, and the maximum value. The first measure,

the mean, is a central tendency measure. The concept is familiar and unique to all

decision makers. Moreover, it is based on all observations. Thus, the mean is greatly

affected by any extreme value, a useful characteristic here because the methodology

tends to be a risk averse. The second and third measures are variation measures. The

variance considers how the observations distribute or cluster and measures the average

scatter around the mean and the range measures the total spread in the data. Finally, the

fourth measure, maximum value, helps identify to what extent the value of objective

function might reach.

A proposed solution is accepted if its UF is larger than the UF of the current solution.

Otherwise, Metropolis criteria is applied. The objective here is to determine a robust

solution rather than just an optimal one by minimizing the effect of uncertainty

(variation) in activity loads on the objective function. As shown in Fig. 34, a robust

solution is less sensitive to variations in activity loads (the uncontrollable parameters)

than the traditional optimal solution where optimization is based on the mean value of the

objective function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Having the components in place, the key element for SA comparison rules is the utility

function, which combines performance attributes and allows direct comparisons of

solutions.

UF = (wm x l m) + (wv x / v) + (wr x l r) + (wx x l x) (16)

where

UF : utility function

wm, wv, wr, and wx : weights defined by user

Im, Iv, Ir , and Ix : index of mean, variance, range, and maximum values

respectively. Determined from Table 5.

The weights introduced in the UF serve as importance factors. Their values are adjusted

based on the decision maker attitude towards risk

Corresponding Variation of

the Objective Function

Robust
Solution

Optimal
Solution

M o p t ±Ax F robust ± A *
Configuration

Figure 34. Robust vs. Optimal solution (Reference [214]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5. Utility Function indices.

Index of C o n d i t i o n
I n d e x v a l u e (i f
the condition

h o l d s)
mean„ < 0 .6 xmean.P c 5
0,6xmeanc <meanp < 0.8 x mean c 3
0.8 xmeanc < meanp <meanc 1

Mean, Im meanp = meanc 0
1.2 xmeanc > meanp > meanc -1

1.4 x meanc > meanp >1.2 xmeanc -3
meanp > 1,4x meanc -5
varp < 0.6 x varc 5

0.6 x varc <varp <0.8xvarc 3
0.8 x varc < var̂ , < varc 1

Variance, Iv var ̂ = varc 0
1.2 x varc > vwp > varc -1

1.4xvarc > var̂ , > 1.2xvarc -3
var ̂ > 1.4x varc -5
rangep < 0.6 x rangec 5

0.6 x rangec < rangep < 0.8 x rangec 3
0.8 x rangec < rangep < rangec 1

Range, Ir range p = range c 0

1.2 x rangec > rangep > rangec -1
1.4 xrangec > rangep > 1.2 x rangec -3
rangep > \ Ay. rangec -5

maxp < 0.6xmaxc 5
0.6xmaxc ĉmax ,̂ <0.8xm axc 3
0.8xmaxc <max/) <m axc 1

Maximum, Ix max ,̂ = maxc 0
1.2xmaxe >maxp >m axe -1
1.4xmaxc ^max^ > 1.2xmaxc -3
max p > 1.4xmaxc -5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

6.10 DSM Conversion into a Project Schedule

One of the main advantages of DSM over project networks is its ability to represent

feedback relationships. This feature is what allows the DSM to be the basis for an

efficient planning of the design project. However, DSM has two major limitations: (1) a

single DSM shows only a single process flow; it does not show all possible flow paths

[215], and (2) the DSM does not explicitly show overlapping activities [26].

For the DSM to serve as a means of control of the design project (continual re-planning,

re-scheduling, and follow up), activities in the optimally re-sequenced DSM need to be

represented against a time scale. Or, in other words, the DSM has to be converted into a

schedule. Thus, the DSM, in fact, does not replace the Gantt chart and CPM, but rather,

they compliment each other. In this section, a three-phase procedure is presented to

generate a project schedule from the final optimized DSM.

6.10.1 Related Practice

Three related methods were found in literature. In this section, each of these methods will

be summarized and all of them will be applied to a hypothetical DSM for comparison.

Consider the 10-activity DSM shown in Fig. 35 (adopted from [216]).

Initial ordering of activities, Fig. (a), results in 6 feedbacks and 8 feed forward couplings.

Figure (b) represents the same DSM after partitioning. Only 4 feedback couplings and

their extent are reduced. Steward’s methodology (the methodology adopted for DSM

analysis in all three investigations compared here) results in three iterative blocks;

(Activity B, Activity F), (Activity J, Activity G), and (Activity E, Activity I, Activity C,

Activity H).

Consider the largest block (Activity E, Activity I, Activity C, Activity H). Figure 6.18

illustrates different methods of converting this block into a program:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

1. Steward [22] suggested ‘unwrapping’ each block “by laying it out end to end

the number of times it is to be iterated.” This will result in a program with no

blocks (i.e. no feedbacks) shown in Fig. 36-a.

2. Austin et al. [44] suggested several strategies for conversion. In the one shown

in Fig.36-b, activity durations are allocated independently and activities are

programmed with in the block to start simultaneously.

3. Finally, Cho [48] suggested presenting the iterative block as a ‘rolled-up’

activity within which its tasks are arranged without feedbacks, see Fig. 37-c.

A dummy activity is added at the end of the block representing its duration.

B A C J E F G H I D B F J G E 1 C H A D

A

G

F

D

H

E

B

J

C

(a) Initial DSM sequence (b) Final DSM sequence

Figure 35. DSM of a Hypothetical Project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

ID
J

NAME :wk11 wk21 | | I I I M I I I I I I I I I "

5 j Activity E ' ■
j u6 i Activity 1

q — J
S i i®SMs

5 Activity E __ r e M S L_ I
8 Activity 1

j
I ~ ~ i I__ H R m

7 Activity C 1 __ i r j ' A
e Activity H - A r —
6 Activity 1 s r ;

7 Activity C j
8 Activity H 1 !

__ I m mm
V

(a) Equivalent Schedule According to Steward [22].

ID NAME
wk1 wk2 w... wx

W.—,
5 Activity E

6 Activity I

7 Activity C

8 Activity H

IIt

(b) Equivalent Schedule According to Austin et al. [44].

wkl wk2
NAME

Activity E0> Activity I

Activity C

Activity H

Dummy

(c) Equivalent Schedule According to Cho [48].

Figure 36. Converting the Final DSM to a Project Schedule.

Critique o f reviewed methodologies

One main advantage of DSM is the compact presentation of the project. This feature is

wasted by unwrapping the blocks and dealing with each iteration as an independent

activity. Repeating the same activity on PERT chart expands the project to an extent that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

makes it hard to control and follow up. In many cases, partitioning would lead to blocks

of large number of activities, for which unwrapping is not a wise idea.

Another form of the same problem with large blocks applies to ADePT where grouping a

large number of tasks into one block would also result in meaningless representation.

Furthermore, rules by which block duration is determined were not clearly mentioned.

Finally, all three methods implicitly assume that the DSM can be decomposed into totally

independent blocks. Thus, in cases where the DSM can be only decomposed into blocks

with inter-blocks relationships (i.e. if an activity falls into two or more feedback loops)

these methods become inapplicable.

6.10.2 The Proposed Conversion Procedure

Following the optimization process, the resulted optimally re-sequenced DSM, then

needs to be converted into a schedule in order to proceed with resource assignment (as

will be discussed in Chapter VII). The sequence of the activities, associated loads, and

precedence relationships among them are defined by the output form the DSM. However,

a methodology is needed to de-couple un-solved feedback couplings. The current

research introduces a methodology that involves three main phases to produce an

equivalent DSM without feedback couplings, which can be easily represented as a project

schedule. These stages are: patterns recognition, collapsing, and tearing.

DSM Complexity Index

In some cases, as will be illustrated later, the number of couplings involved in a DSM can

be so large to the extent that collapsing and tearing would be meaningless, or in other

words, the proposed conversion procedure becomes inapplicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

To help determine whether or not the architecture can proceed with conversion, a new

index is introduced:

DSM Conpleitty Index - ^ °f (18)
No. o f Activities

The architecture can proceed with conversion only in cases in which the

DSM Complexity Index is less than 0.4. Of course, the index is used as a general indicator,

and some DSMs with higher index value can be converted to a project schedule.

A. Patterns Recognition

This phase concerns identifying some patterns in the activities of the optimized DSM.

The work is inspired by the idea of improving the management of the design process by

identifying some patterns in the DSM presented in Kusiak et al. [212], Their basic idea

was to classify some possible patterns in the design process structure and determine a

critical activity for each pattern based on the expected behavior of that pattern. Relevant

work can be found in [217-219],

Six patterns in the design process structure were defined by Kusiak et al. [212], The

presented methodology here adopts a similar procedure of defining some patterns. But, to

cope with the research objectives, patterns classification here is mainly based on some

characteristics of feedback couplings. The current research defines five patterns, shown

in Fig. 37, these are:

1. I-Pattem (Interaction'). A directed 2-cycle graph (a cycle with length 2). Two

activities A and B are said to be of I-pattem if:

i. The couplings coup(A, B) and coup(B, A) exist, and

ii. \xA =

Where x A and x B are the order of activities A and B respectively. As shown in

figure (a), such activities are highly-coupled. Tight collaboration has to take place

between both of them to reach the desired solution (output).

2. C-Pattem (Cycle). A directed cycle with length = 3. Three activities A , B , and

C constitute a C-pattem if:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

i. The couplings coup(A, B) , coup(B, C) , and coup(C, A) exist, and

ii. x A < x B < x c .

3. C4-Pattem. a Special case of C-Pattem; a directed cycle with length = 4

4. L-Pattem (Loop). A special case of the I-pattem. Two activities A and

D constitute an L-pattem if:

i. The couplings coup(A, D) and coup(D, A) exist, and

ii. 2 < \xA - x D \ <3 .

5. S-Coupling (Single Feedback).

Based on the strength of couplings involved in each of the recognized patterns, activities

within iterative sub-cycles are either merged into one block (collapsing), or the feedback

coupling is removed (tearing). Thus, the following two phases (collapsing and tearing)

are carried out simultaneously for each pattern.

The methodology further involves introducing two types of buffers: block (coupling)

buffers and a project buffer. The basic idea of adding buffers is adopted from [220]. For

more details refer to [221]. The objectives of the introduced buffers are:

1. Compensate for uncertainty in activities estimated durations.

2. Helps controlling the project.

3. Compensate for iterative load of the coupling removed.

4. To tolerate incomplete information (change in information), such as durations

of activities.

B. Collapsing

In some cases (patterns) where tight collaboration between two or three activities is

required, these activities can be collapsed (merged) into one block. The presented

procedure specifies two cases in which this collapsing must take place, these are: case (3)

of the I-Pattem and case (4) o f the C-Pattem shown in Table 6 and Table 7 respectively.

In both cases, couplings involved are characterized by high coupling strength. Which

means that information flow between these activities is expected to be of high density

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

until the required output is reached. And moreover, the output is expected to be sensitive

to activities collaboration. Thus, merging these activities into one block will simplify the

scheduling process, improve project management, enhance collaboration, and improve

final solution quality. Since tight collaboration is forced on activities involved in both

cases, processing time is expected to be lower than the calculated one. Thus, the block is

assigned only half of the load originally assumed for both activities iterations. As a factor

of safety, a percentage of the remove load is added to the ‘project buffer.’

C. Tearing

In cases where moderate collaboration is required (determined by coupling strengths)

coupling are suspended (removed) and a ‘block buffer’ is added after the last activity in

the block investigated. Buffer load is set equal to a portion of the suspended coupling

load and another percent is added to the project buffer. An equivalent DSM

representation of an I-pattem, C-Pattem, or an L-pattem can be determined according to

the cases shown in Tables 6, 7, and 8 respectively. An equivalent DSM for a C4-pattem

and an S-coupling are shown in Fig.38, and Fig. 39 respectively.

It should be mentioned here that the philosophy of suspending weak feedback couplings

was also adopted by both ADePT [35] and DeMAID/GA [39], but neither methodology

suggested mles of compensation for the suspended iteration time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(al I-Pattem (M C-Pattem

181 ■ii*.m
c ?

“ i
-5 i 0

C4 ■
l - - i

-C i

Cz

(c) C4-Pattem (d) L-Pattern

C

(e) S-Coupling

Figure 37. Different Patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Table 6 .1-Pattem Conversion Rules.

C a s e N o .
C o u p l i n g S t r e n g t h

E q u i v a l e n t D S M R e p r e s e n t a t i o n A d d t o Project B u f f e r
Ci c 2

1 <3 <3 ill l j ^
a

—

0.2 l o a d o f Ci

2 <3 >-3 0.3 l o a d o f Ci

3 >6

B l c

■

c k l o a d = 0 2

CJoO

0.2 l o a d o f Ci

Table 7. C-Pattem Conversion Rules.

C a s e N o .
C o u p l i n g S t r e n g t h

E q u i v a l e n t D S M R e p r e s e n t a t i o n A d d t o P r o j e c t B u f f e r

<3 < 6 <6

<3 y 6 y 6

X3 < 6 <6

C2 I B*

C3

0 . 2 l o a d o f C i

0 . 3 l o a d o f C i

0 . 4 l o a d o f C i

>6

B l o c k l o a d = 0 . 5 l o a d o f C i

0 . 2 l o a d o f C i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

c
C3

C4

Buffer Laod = 0.4 Cl Load

Cr

Add f).2 Ci Load) to project buffer

A dummy coupling added
to maintain continuity

Figure 38. Equivalent DSM for C4-Pattem.

Table 8. L-Pattem Conversion Rules.

C a s e N o .
Coupling S t r e n g t h

C ,
E q u i v a l e n t D S M R e p r e s e n t a t i o n

A d d t o

B l o c k B u f f e r P r o j e c t B u f f e r

<3 <3

’SI

Ci 0.2 load of C;

>6

>6

>6

-<6

Other

&
Cr

0.4 load of C, 0.3 load of Ct

0.4 load of Ci 0.2 load of Ci

0.3 load of Ci 0.3 load of Ci

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Buffer Laod = 0.5 Cl Load

Add (0.3 Cl Load) to project bufferCr

Figure 39. Equivalent DSM for S-Coupling.

D. Rules of Conversion

The following are the steps to be followed in order to define an equivalent DSM without

feedback couplings.

1. Determine a set of unsolved feedback couplings.

2. Arrange these couplings according to the following order:

a. I-pattem

b. C-pattem

c. C4-pattem

d. L -pattern

e. S -coupling

3. Ties are broken according to the order of activities; first comes first.

4. Consider couplings, in order, and perform the following:

a. Apply conversion rales defined previously

b. Update DSM; activities, couplings

c. If a buffer is added:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

i. A dummy feed forward coupling with nominal strength is

added between that buffer and preceding activity.

ii. Any two (or more) consecutive buffers are merged into one

buffer with an associated load equals to the total load of these

buffers.

iii. Buffer load is determined based on the original couplings loads

and the original final DSM, not on the DSM resulted from

previous step.

5. Unsolved patterns in the set are handled according to the procedures

regardless of any modification occurs due to a previous step (i.e. merging of

two activities, or adding a buffer).

Following these rules, an equivalent program of the DSM (with no feedback couplings) is

generated. Fig. 40 shows the equivalent project schedule for the comparison case (Section

10.1) according to the presented methodology.

B le o k l

6 Activity C

7 Activity H

B u ffer

Figure 40. Equivalent Schedule for the Comparison Case According to the Proposed
Methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

6.11 S um m ary

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an

effective tool for analyzing and understanding system architecture especially in product

development and, hence, achieving improved performance.

The use of the DSM is the comer stone of the architecture proposed in this dissertation.

Following the modeling of the design project in the form of a DSM, this chapter provided

in-depth discussions on there of current research contributions:

1. Determining the optimal sequence of DSM activities in either two cases:

a. Deterministic activity data

b. Stochastic activity data

2. Interfacing simulated annealing with Monte Carlo simulation to handle the second

case. The interface required modifying the SA algorithm.

3. Conversion of the optimally re-sequenced DSM into an equivalent DSM with no

feedback loops.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

CH APTER VII

T C T O H Y B R ID M O D E L

7.1 Introduction

In this chapter, a new time-cost trade-off model is presented. The presented model helps

crashing a project with little, or no, additional cost. It is based on the trade-off of

resources where, in some cases, it may be possible to transfer men, equipment, or other

resources from a non-critical activity to a critical one. So, where large float times are

available, cheaper but slower resources can be substituted for those originally planned.

Trade-offs of this kind tend to expedite some of the activities on the critical path to save

time, and, unfortunately, increase total cost, in addition to relaxing some non-critical

activities to reduce total cost.

7.2 Basic Concepts

The concepts on which the model relies on are:

1. Formulation of activity duration as a function of resources assigned to it.

2. Expediting critical activities by assigning high-productivity resources, while

relaxing non-critical activities by assigning cheaper low-productivity resource.

Thus, savings from relaxed activities can compensate for additional costs

required for crashing other activities.

The following simple hypothetical example clarifies the first concept:

Among resources available in a product development firm (or a design firm) is design

engineer. Assume that the firm has three levels of design engineers based on experience.

These are: beginner, experienced, and professional. Each of these levels has its own

productivity and hourly cost as shown in Fig. 41. Of course, as productivity increases,

increased hourly cost can be expected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Resource Type: Design Engineer

1

Level Productivity Cost
 _̂______ (load units/hr)_____ (S/hr)

Beginner 5 3

Experienced 8 5

Professional 14 10

Figure 41. Resource Levels.

Given an activity with load equals to 1120 units, where load might be a design

assignment, any combination of the former resource levels can be assigned to this

activity. Thus, given that three levels are available and that only two engineers are

available from each level 129 possible combinations (both feasible and infeasible) can be

chosen from. Figure 42 shows some of these combinations. As shown, each combination

results in a certain activity duration and cost. The general problem, thus, is how to assign

the proper resource combination for each activity in the project such that:

1. Project is completed on a given due date,

2. With available resources, and

3. With minimum cost.

The next example provides a more elaborated discussion on the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Il l

1120 load units

[? fl3 3
1 1 fi <

Case 1 Case 2 CaseS Case...

Hi
Activity Duration (hr) 112 87 80

Activity Cost (I) 672 696 800

Figure 42. Different Assignments Result in Different Activity Durations.

7.2.1 Illustration of the Basic Concept

Consider the simple hypothetical project network shown in Fig. 43 consisting of five

activities: A, B, C, D, and E. Each activity in the network is associated with a certain load

(shown on figure next to activity name) that needs to be done in order to realize the

activity.

Assuming that all activities require the same resource type and that there exists three

levels of this resource: fast, normal, and slow each associated with a certain productivity

rate and hourly cost as shown in Table 9.

As a start, each activity is assigned one normal-level resource. Such assignment will

result in project completion time of 30 hours and total cost of $500. Gantt chart shown in

Fig. 44 presents project schedule for the initial assignment and corresponding cost

calculations are shown in Table 10.

The critical path, which is the longest path, is simply B-E. Thus, to crash the project,

activities on that path need to be expedited. To help clarify the procedure, another form

of the Gantt chart is shown in Fig. 45 in which each of the three paths in the network is

presented independently. In Fig. 46, the slack amounts associated with activities D and C

are shown. For the sake of illustration, it is assumed that the project needs to be crashed

by four hours. This can be achieved by expediting activity E through assigning the fast-

level resource to it instead of the normal-level one. Figure 47 shows the project after

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

crashing. A subsequent result of project crashing, of course, is the increase of project cost

by $24 to be $524.

A second look to Fig. 46 suggests that activity D is not on the critical path and has a large

slack. Or, in other words, activity D can be relaxed (to a certain extent) without affecting

the project completion time. So, a slow-level resource can be assigned to it instead of the

normal-level resource. The new configuration (shown in Fig. 48) now results in a crashed

project of 26 hours with lower additional cost; $513 instead of $524 - cost calculations

shown in Table 11.

Thus, the concept proposed is:

“While higher-productivity (thus more expensive) resources are assigned to

critical activities to expedite the projects, lower-productivity (and cheaper)

resources can be assigned to non-critical activities. ”

This would serve in two directions:

1. Reducing the additional cost associated with project crashing.

2. Lowering the demand on high-productivity resources.

It should be noticed, though, that in some assigning a faster resource to an activity might

reduce the total cost of the project and shorten its completion time too. For example, if

the cost of the fast-level resource in the example was $ 12/hr, the cost of crashed activity

D would have been $192 which is lower by $8 than using a normal-level resource.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

hooo

Figure 43. Project Network.

Table 9. Resource-Levels.

R e s o u r c e - L e v e l

Fast

Normal

Slow

Productivity

(u n i t s / h r)

25

20

C o s t ($ / h r)

14

10

3

I A

‘ Critical Activities

10 15 20 25 30
Duration (hr)

Figure 44. Project Schedule Corresponding to Initial Assignment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Table 10. Cost Calculations for the Initial Configuration (Assignment).

Activity Resource-Level
Duration

(hr)
Cost (S)

A Normal 5 50

B Normal 20 200

C Normal 10 / / 100

D Normal (y) 50

E Normal 10 100

Duration = -
load

total resource productivity

100
1x20

• = 5

A
CD 1

2

y ////////////////////̂ ^ ^ ^ ^ Critical Path3

Duration (hr)

Figure 45. Gantt Chart Showing the Three Paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pa
th

Pa
th

115

Slack of activity D

1

2 Slack of activity C

30 hours for project
completion3

20
Duration (hr)

Figure 46. Activities’ Slacks.

S lack of activity D

1

2
S lack of activity C

Pro ject sc h e d u le is four
ho u rs sh o rte r3

Duration (hr)
Activity B c ra sh e d four

d a y s

Figure 47. Crashing o f Activity E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P
at

h

116

Activity D R elaxed eight
hours

S lack of activity D

1

2
S lack of activity C

Pro ject sc h e d u le is four
h o u rs sh o rte r3

Duration (hr)
Activity B c ra sh e d four

hours

Figure 48. Relaxing of Activity D.

Table 11. Cost Calculations for the Final Configuration (Assignment).

Activity R e s o u r c e - L e v e l
D u r a t i o n

(hr)
C o s t (S)

A Normal 5 50

B Fast 16 196

C Normal 10
/ n. y' / \ /

/ ' ' i m

D Slow (13 1 \ / 39

E Normal 10 100

100
Duration = ------= 12.5 => 13

1*8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

73 The Proposed Model

The model presented here is a nonlinear-integer programming model. On one hand, the

model is integer because the duration of an activity, a function of both its load and the

combination of resources assigned to it is assumed to be in whole time units. And, on the

other hand, the model is nonlinear since the duration is being calculated using a nonlinear

function.

7.3.1 Problem Statement

In the proposed model, the project crashing or time-cost trade-off problem is being

tackled from another point of view that tends to be more practical and suitable for design

and manufacturing applications. The model tries to merge the known CPM calculations

with the assignment problem. For a given project the followings apply:

1. The project is decomposed to its smallest component and each component is

represented by an activity.

2. The specification of the project is assumed given in activity-on-arc notation

(AoA); a set of activities to be completed according to certain precedence

relationships.

3. Each activity has a “load”, e.g. processing/analysis time, that must be performed

in order to realize the activity.

4. Different types of resources are available.

5. Each resource has a number of levels each associated with it’s own production

rate and hourly cost.

6. An activity requires only one resource type (depending on the activity’s nature),

but a combination of that resource levels can be assigned to the activity.

7. The duration of an activity is, thus, a discrete function of the number of resource

levels assigned to it. Or, in other words, an activity shall assume a set of different

durations according to different combinations of resource levels assigned to it.

And once assigned, there will be no change in resource assignment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

8. The total number of each type of resource level is assumed to be limited, in the

sense that, once a resource unit is used (assigned), it cannot be used again in

another activity.

So, the objective is:

“To determine the most efficient (optimized) project schedule(s), by assigning a

suitable combination o f resources to different activities, fo r a given project

completion time while maintaining minimum cost. ”

7.3.2 Assumptions and Limitations

For the sake of simplification, the following assumptions apply to the formulated

problem:

1. Looping and dangling of activities are not allowed.

2. Activities once started cannot be interrupted (activity splitting is not allowed).

3. Activity overlapping is not allowed. Thus, an activity cannot start until all its

predecessors are completed.

4. An activity requires only one resource type.

5. The amount of load assigned to an activity is constant.

6. Number and productivity of each resource assigned to an activity remain constant

throughout its duration.

7. Resources considered her are assumed to be non-renewable.

8. Activity loads, resource productivity, and resource cost are assumed deterministic.

7.3.3 Notations

The presented research uses an activity-on-arc notation; in which each activity is

represented by an arc in the project network. The rest of symbols used are:

S : set of activities in the network

Dy : duration of activity (i,j)

loady : load of activity (i ,j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

m : number o f nodes in the network,

DPCT : desired project completion time

k : resource type index, k =

K : total number of resources

k, : resource level index for resource type (k), 1 = 1, ,L

bL : total number of resource levels for resource type (k)

A : available total number o f resource level {kt)

Ck : hourly cost o f resource level (^)

Pk : production rate o f resource level (Aj)in units/hour

N W : number o f resource level {kt) assigned to activity (i , j)

7.3.4 Inputs

The initial inputs that are supplied to the model are as follows:

1. A finite set of activities (5) representing the project network. Each activity is

described by:

a. Its tail and head events (nodes), denoted to as (?) and (j) respectively.

Thus an Activity will be described as O’, j) ■

b. An associated activity load.

c. The required resource type.

2. A Finite set of resources with which activities are performed. The set includes:

a. Resource types.

b. Resource levels for each type, each level has:

i. Productivity.

ii. Cost rate.

iii. Availability.

3. A finite set of precedence constraints to be satisfied.

4. An objective: a desired project completion time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

7.3.5 Process

For a given desired project completion time, the proposed model tends to minimize the

total cost of the project. In order to achieve this, the model works as follows:

1. A combination of suitable resource levels, Nk v, are assigned to each activity

in the project.

2. Based on this assignment, activities’ durations, Z>., are calculated by dividing

the “activity load” by “the total productivity rate of the resource(s) assigned to

it” and rounding the duration to the next larger integer value.

3. Activity cost is determined by multiplying its duration by “the total cost rate

of the resource level(s) assigned to it.”

4. Finally, total project cost is calculated and compared to the current best

solution objective.

7.3.6 Decision Variables

xi : the earliest event time of node i , i = 1,2,........, m- 1

xj : the earliest event time of node j , j = 2,3, , m

NkiJj : the number of resource level (£;) assigned to activity (i,j)

7.3.7 Constraints

Six sets of constraints are imposed on the model:

A. Network Constraints

This set of constraints is required to insure that an activity cannot be started until all its

preceding activities have been realized. The set describes the structure of the network by

specifying the precedence relationships among different network activities. Let i be the

preceding event and j be the following event, then the precedence relationship constraint

can be formulated as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

X j - X i - D i j Z O (19)

The number of such constraints is equal to the number of activities in the network.

B. Assignment Feasibility

Since the optimization algorithm used to solve the model might tend to assign zero

resources for activities to reach a minimum total cost, this constraint set is introduced to

guarantee that at lease one resource unit (of any level) is assigned to each activity.

V S g e S (20)
ki

C. Resource Availability Constraints

This set of constraints represents the available number of units available for each

resource.

I X , A (21)
k,

D. Project Completion Constraint

This constraint insures that the project schedule was set in such a way that the project

would be completed within the desired time span. This is done by specifying that the last

event must take place before the desired project schedule deadline date.

xm <D P C T (22)

E. Activity Duration Constraints

To satisfy the assumption of integer durations and integer number of resource to be

assigned/used, another set of constraints was added that forces the optimization algorithm

to have integer values for these variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

Nki ij and Dy are integers (23)

F. Non-negativity Constraints

Finally, all variables, of course, cannot be assigned negative values.

*/ ,Xj,Nk/ jj, Dy >0 v Sy e S (24)

7.3.8 Objective Function

To minimize the total cost of the project; Z

z = (Y L N̂ COdv (25)
k,

where

loady
(26)

k,

and Dy is rounded to the next higher integer number

7.4 The model: How is it different from the classical model?

Herring & Murphy [222] quoted:

When using CPM procedure, the time-cost trade-off points are assumed to lie on a
continuously linear, or piece-wise linear, decreasing convex curve to insure an optimal
solution. Further, all activities are assumed independent, in the sense that buying time on
one activity does not affect in anyway the availability, cost, or need to buy time in some
other activity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

The presented model, thus, differs form classical CPM time-cost trade-off model in five

major aspects:

1. As shown in Fig. 49, activity possible durations are represented by separate

points not by a continuous straight line.

2. Activities are not independent, since assigning a resource to an activity affects

the availability of this resource with respect to other activities.

3. The procedure itself differs from the classical crashing procedure in the sense

that it crashes and relaxes and not just crashes activities.

4. In classical/traditional CPM calculations, time and/or cost estimates are

assigned to each activity at the start of the analysis. In the proposed model,

activity durations are calculated during the solution procedure and are

changing from one trial to the other based on the assignment of different

resources to different activities.

5. The proposed model is a hybrid model because:

a. It is an assignment problem in the sense that:

i. It involves determining the most efficient (optimum) assignment of

resources to different activities.

ii. A resource unit can be assigned to one activity only.

iii. The objective is to minimize the total cost while maintaining a

specified project completion time.

iv. While assignment problems are classified as linear programming

problems, the case here is different; it is a nonlinear/ integer

programming problem.

v. A mathematical programming problem is considered integer when

one, or more, of the decision variables has to take on an integer

value in the final solution. Furthermore, the proposed model is

consider a “pure IP” since all decision variables must have integer

solutions.

b. It is a project management problem in the sense that:

i. A project goal (manufacturing of a certain product) is specified.

ii. All project activities are defined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

iii. A certain precedence relationships profile among these activities

exists.

Finally, it should be noted here that the presented model is an NP-hard problem, meaning

that for even moderate-sized problems finding an optimal solution is a difficult task due

to the exponential size of the solution space. The non-linearity of the objective function,

with many expected local optima further adds more complexity to the problem.

Moreover, another complexity factor is the integer constraints.

6

O O

o

o o

o o
o

A c tiv ity D u ra tio n A c tiv ity D u ra tio n

(a) CPM (b) Presented model

Figure 49. Models comparison.

7.5 Solution: Optimization Methods Implemented

In order to solve the presented mathematical model, an Excel sheet that costs the

variables and equations of the model was created. Several commercial optimization add­

ins were implemented, these are:

1. What’s Best!- developed by LINDO systems Inc.

2. Evolver - developed by Palisade.

3. optQuest - developed by Decisioneering Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

4. Premium solver platform - developed by Front Line Systems.

None of these tools managed to reach even a feasible solution.

More investigation was performed on using “What’s Best!” by developing a VBA macro

that provides WB! with an initial feasible solution many times in order to exhaust the

solution space as possible, and hence, gets the global optimum. Figure 50. shows the flow

diagram of the macro. The main goal of the macro was to automatically assign random,

but reasonable, starting values for the decision variable. In case of non-feasible solution,

the macro re-runs What’sBest! again and again until it reaches an optimal solution. This

scenario is repeated until 20 local optimal solutions are to be found, and then the

minimum one of them is chosen as the global optimum solution. But, unfortunately,

experimentation shows that WB! was unable to move from these initial feasible solutions,

and rather consider these solutions the optimal ones! Thus, the decision was made to

implement simulated annealing instead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

START

Input project desired
completion time

Set Best_objective = 0
S e t Current__objective = 0

G enerate a random initial Solution

Run W hat’sBest!

NoO ptim ab
Solution^

Yes

G et Current_objective

S et Best_objective=Current Objective

1
[S e t T s 1]

G enerate a random initial Solution j

Run W hat’sBest!

Optimal^
Solution?,

G et Current_objective

T
No

Y es

S e t Best_objective » C urrent Objective
S e t Best_solution » Current_solution

No
T = 21 ?

Y es

O utput Best_so!ution
and Best_objective

Figure 50. TCTO Optimization Macro Flowchart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

7.5.1 Simulated Annealing

SA proved to be a powerful optimization algorithm when used in the DSM optimization

part. In this section, the two-stage SA discussed earlier in Chapter VI will be used to

solve the presented TCTO model. The followings are implementation details.

A. Decision Variables and Solution Representation

The solution representation, as shown in Fig. 51, is an mxnmatrix where the number of

rows (m) equals the number of activities, and the number of columns (n) is the total

number or all resources levels. The decision variables are the number of resource units of

a certain type and level assigned to each activity.

Decision Variables

Resou ce Levels

Activities

Figure 51. Solution Representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. Generation of the Initial Solution Configuration

128

An initial solution configuration is generated by randomly assigning resource units to

each activity. All constraint sets are examined and the initial solution has to satisfy all

constraints, including project duration, to be considered feasible.

C. Generation of a Feasible Neighboring Solution Configuration

From a current solution configuration, a neighboring solution is generated as follows:

1. Randomly choose a decision variable in the matrix.

2. Randomly choose a perturbation value from the set {-2, -1, 1,2}.

3. Change the decision variable value by the amount determined in step 2.

It should be noted here that the model is constrained. Thus, to accept a generated solution

configuration all constraints have to be satisfied first before pursuing the rest of SA steps.

D. Objective Function Evaluation

The objective function, which is the total project cost, is determined for each solution

directly from Excel calculations.

F. Cooling Schedule

A relatively fast annealing schedule is im plem ented, in w hich: r 0 =80, 7)-=10, and

a - 0.95.

F. Stopping Criterion

The system is considered in a meta-stable condition when either of the number of rejected

solutions or the number of accepted solution reaches 30. The optimization process is set

to stop when the final temperature is reached. But, for the sake of shortening the

optimization runs, the optimization process is terminated (assuming that the ground state

has been reached) when the processing time at any temperature reaches a predefined

threshold value.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

1.6 Summary

In this chapter, a new time-cost trade-off model for project networks crashing was

presented. The new model combines a traditional assignment problem with CPM

calculations. It avoids the shortcoming of the traditional crashing problem, concerning its

inapplicability to real life situations. While the classical approach tries to obtain the

minimum cost associated with a desired project completion time by reducing the time of

some activities, this approach, in addition to this objective, minimizes the cost through

extending/relaxing non-critical activities, as possible, by increasing the use of the slow

type- i.e. cheaper- resource. Moreover, the objective of the classical formulation is to

reduce additional cost due to crashing, while in the proposed model the objective is to

reduce overall cost of the project or, in other words, to get the minimum possible project

total cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

CHAPTER VIII

ARCHITECTURE AND PRODUCT

Figure 52 illustrates the architecture proposed in this dissertation. It consists of three

major phases:

1. System decomposition,

2. DSM optimization and analysis, and

3. Project scheduling and time-cost trade-off analysis.

While the methods related to the first phase falls beyond the scope of this research,

elaborated discussions on the methods and tools related to the second and the third phases

were given throughout the dissertation. The current chapter describes in detail different

modules of the architecture and the interactions among these modules.

8.1 Architecture Overview

The structure of the proposed architecture can be further broken down into the following

sequential modules:

1. Modeling,

2. Optimization,

3. Structuring,

4. Conversion,

5. Scheduling, and

6. Crashing (TCTO).

While modules one to four constitute the second phase (DSM optimization and analysis),

modules five and six represent the third phase (time-cost trade-off). The following

sections give a short description of each of these modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

System D e c o m p o s itio n

Activities
T able

Couplings
Table

D ecom position .Complex System
(PfoducUProcess^

Design)

Modeling

DSM O p tim iz a tio n a n d A n a ly s is

C onversionOptimization Structuring

Initial DSM O ptim ized DSM Structured DSM

i * j
1 f *

P ro jec t S ch ed u le

Scheduling

P ro je c t S c h e d u lin g a n d TCTO A n a ly s is

C rashing

5SSSSMS : j

r* ■

C ra sh e d S ch ed u le

¥
-J v;

S ch ed u le

Figure 52. The Proposed Architecture.

132

8.1.1 Modeling

Given a list of activities, their associated loads, and information inputs and outputs from

and to each activity (i.e. information couplings), the initial dependency structure matrix

(DSM) which provides a compact visualization of the project and a clear understanding

of the information flow patterns among different activities is created. The architecture

deploys a numerical DSM; in which coupling marks are replaced by numbers (iteration

factors). Refer to Section 6.6.

8.1.2 Optimization (Re-Sequencing)

As the order of the activities changes, the DSM structure (couplings’ directions) changes.

Thus, incorporating an optimization technique that is capable of re-sequencing the

activities execution order will achieve a reduction in the estimated project total load in

addition to an improved design quality. Since the tackled problem falls in the NP-hard

class, a conventional calculus-based optimization technique wouldn’t be an effective

solution tool. Thus, as discussed in Section 6.8, a meta-heuristic algorithm called

simulated annealing is implemented to rapidly evaluate many sequences and find the one

that minimizes project total load (the objective function) while satisfying all imposed

constraints (both precedence and logical).

Thus, the objective of this module is to find the optimum activity sequence based on one

of the following objective functions:

1. Total number of feedbacks.

2. Project total iterative load.

3. Project total iterative time.

4. Project total iterative time and cost.

As hinted previously, the objective function calculates the total load (or time and cost)

resulted from feedbacks loops not the total project time and cost (refer to Section 6.7).

Furthermore, the fourth objective function option represents a multi-objective

optimization problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

The module tolerates stochastic activity loads (presented by a probability distribution not

by one-point estimate) by integrating a commercial risk analysis tool (Crystal Ball™) to

construct a simulation-based optimization framework. Thus, the optimization module

performs one of the following techniques:

A. In the deterministic case, simulated annealing will be deployed.

B. In the stochastic case, an integrated simulation-optimization framework - i.e. SA

interfaced with Crystal Ball™ - will be deployed. This framework will be

presented in Section 2 of the current chapter.

It should be noted here that while an unconstrained optimization is the default case, a

constrained optimization problem emerges in cases where logical constraints are

imposed. Figure 53 presents the classification of different possible optimization

situations solved by the module.

8.1.3 Structuring

Following module 2, the optimally sequenced DSM is to be re-structured according to

rules discussed earlier in Section 6.10.2. Typically, this includes patterns recognition,

collapsing, and tearing. The objective of the module is to produce an equivalent DSM

that contains no feedback couplings

8 . 1 . 4 Conversion to a Project Schedule

The equivalent DSM resulted from the structuring module is used to construct a project

schedule - a list of activities, their loads, buffers, and precedence relationships - without

feedback couplings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

Nature

Objective Function

Solution

Unconstrained

Determinsitic Stochastic

Multiple

Constrained

Optimal

Single

Robust

Constraints

Optimization

Figure 53. Optimization Cases.

8.1.5 Scheduling

The resulted project schedule is, then, transferred to a project management software (MS

Project) where it is presented using both Gantt chart and a network diagram.

8.1.6 Crashing

Finally, as detailed in Chapter VII, resources are assigned to project activities to meet a

specified due date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

8.2 Product

8.2.1 DSM Optimization and Analysis

A software called optDSM has been developed as an implementation part of this

dissertation. optDSM is an Excel add-in that aimed towards carrying out the first phase of

the framework. To achieve its goal, the tool integrates:

1. Visual Basic for Applications (VBA).

2. Mathematical programming (modeling).

3. Simulated annealing.

4. Commercial software of risk analysis (Crystal Ball™).

The construction and different functions of optDSM are presented in Appendix A.

The research utilized VBA programming language to develop optDSM infrastructure and

different functions. VBA (Microsoft Visual Basic® for Applications) is a powerful

development technology. The use of VBA in this research allowed customization and

integration of off-the shelf software (MS Excel, Crystal Ball, and MS Project) to serve

the research objectives rather than developing the whole solution architecture from

scratch. For more details on VBA refer to [223].

The comer stone of optDSM is MS Excel, which is characterized by: (1) its great range

of built-in mathematical and scientific functions, (2) availability of logical statements and

decisions, (3) its capability to communicate with other applications within MS Windows

environment, and (4) the availability of different add-ins that seamlessly add evermore

functionality to MS Excel. Thus, a mathematical model for the DSM calculations is

developed through an Excel spreadsheet.

While simulated annealing (SA) was used as the optimization technique for deterministic

cases, a simulation-based optimization framework (in which SA is interfaced with Crystal

Ball) was needed to handle stochastic cases. The flowchart presented in Fig. 54 illustrates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

the structural operability of this framework, which constitutes a major component of

optDSM.

The process of this framework goes as follows. Starting with some initial solution

configuration, the following process is repeated. At each iteration, the objective function

evaluation module receives a new solution configuration from the optimizer. The

simulation of the model takes place with this configuration. Expected value of the

objective function is obtained directly form Crystal Ball™. This value is fed to the

optimizer which return a new solution configuration. A new iteration starts. The process

proceeds until the simulated annealing stopping criterion is reached.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Initial S eq u en ce ,

Mathematical Program
(Model)

Variables

D ecision V ariab les

C o n stra in ts

O bjective Function (s)

cF

S?
I

Optimizer (Simulated
Annealing)

Solution R ep resen ta tio n

Solution G enera tion

Cooling S ch ed u le

Monte Carlo Simulation

.Objective (s).

V ariab les a n d F o re c a s ts

R un P re fe re n c es

A nalysis

o f f

Qptim al S e q u e n c e

o

Figure 54. Simulation-based Optimization Framework.

138

8.2.2 Time-Cost Trade-Off

The mathematical model formulated in Chapter VII is implemented through an Excel

sheet. To perform the optimization process, a VBA macro, shown in Fig. 55, that

implements simulated annealing was created. The process starts by generating a random

feasible starting solution. Then the following is repeated: at each iteration, the assignment

module in the Excel sheet receives a new solution configuration from the optimization

module', the feasibility of the proposed solution is checked; if the solution is infeasible, it

is rejected; if the solution is feasible, time and cost calculations of the model take place

with this configuration; precedence and project completion constraints are checked for

feasibility; if feasible, the value of the objective function is fed to the optimizer which

return a new solution configuration; a new iteration starts. The process proceeds until the

simulated annealing stopping criterion is reached.

Due to the complicated non-linearity, in addition to integer constraints, that exists in the

model. Thus, despite of the powerful capabilities of SA, the macro was designed to:

1. Perform several optimization runs, each with a different initial feasible solution

2. Reject any non-feasible solutions generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

O ptim ization
M odule %

Output

Simulated
Annealing

Non-linear,

H* C ost
C alcuala tions

R e so u rc e
D ata

A ssignm en t
M odule /S'

Integer

Activities
D ata

Integers
Non-negative’ iS Tim e

C alculations

C onstra in ts

Resources

Assignment Feasibility

Precedence

Project Completion

Figure 55. TCTO Module.

8.4. Summary

The main objective of the presented research is to develop an optimization-based

architecture that helps guiding the project manager efforts for managing the design

process in complex integrated product development projects. The current chapter

described in details different modules of the architecture and the interactions among these

modules. While table 12 summarizes the two main phases of the architecture, their

functions, the conceptual tools used and the implementation software, Table 13 presents

different options of the architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Table 12. Summary of Architecture Functions.

Phase D S M O p tim iza tio n a n d A n a l y s i s T i m e - C o s t T ra d e - O f f

F u n c t i o n C o n c e p t u a l I m p l e m e n t a t i o n F u n c t i o n C o n c e p t u a l I m p l e m e n t a t i o n
Tools Software Tools Software

Project DSM MS Excel Mathematical MS Excel

Representation Modeling

Mathematical MS Excel Optimization SA VBA

Modeling

CA
Optimization SA VBA Application VBA

3
CJ

Integration
a Uncertainty Monte Carlo Crystal Ball

Analysis Simulation

Stochastic Simulation- VBA

Optimization based

Optimization

Application VBA

Integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 13. Summary of Architecture Options.
Optio n # ; 1. •:2-; 3: 4 5 6: 7

I
€
:§■43W
.ai:
t :

o'

m

Tasks Toad
(S)

Load
CD)

Time
m

Time
(D)

Time & Cost.
(S)

Time'. & Cost
CD)

Resource types,
’levels, productivities*
cost rates, and
■ayaileMlity

JMormationFlow
Couplings

Couplings Strength (Optional)
Db^al:i0bhsl¥»ht'k’(Qptio'nal)

"M■m
W
'O
■G
WPh

Quantify co up liKgs: s tre ngth
Optimization
(Minimize)

Load;
GR;Fee dbacks

Time.
Qr Teedbacks:

Time
Or Time .& Cost
Or Feedbacks

Feedbacks

Simulation-based Yes No Yes No Yes No No
DSM Structuring
CoriyTp Program Yes (for, proceeding) Optional

©
t-f
u

Resource
Assignment, Yes No

EH

1

Project S c fee dule;
(’crashed at
minimum cost)

Optimum DSM
(minimum Tepdbacks,,
timei, and/br ,cost)
Analyzed DSM
(concurrency,

■sequence)
■Gantt ichart'(Froje ct
schedule)

D: Deterministic
S: Stochastic

142

CHAPTER IX

CASE STUDIES AND RESULTS

9.1 Project 1: Benchmarking

To test the performance of optDSM and to compare it with two other tools (AGENDA

and DeMAID) optDSM was applied to the VTOL analysis code used by Kopra et al.

[224],

While DeMAID has no explict objective, AGENDA’S objective is to reduce the ‘total

length of feedback’ of the system. The published DeMAID solution has a total feedabcak

length of 275, while the solution obtained by AGENDA, shown in Fig. 56, has a total

feedback length of 133 [47].

In optDSM terms, AGENDA’S solution has 33 feedbacks, and 167 load units - assuming

that one load unit is assigned to each activity. When optDSM was used to solve the

problem, it reached an equivalent solution (33 feedbacks and 167 load units) shown in

Fig. 57. Due to the difficulty of the DSM optimization problem since many local

optimum solutions may exist, the sequence obtained by optDSM was slightly different

than the one obtained by AGENDA (comparison shown in Table 14).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

ft I I |
C5 £

8 t
I I

CRASHVR

Figure 56. Solution Obtained by AGENDA.

MODCOMP

ACCCOMP

AOVMATE

STACTSP 1

Gimrs
FUSS12E

CABSIZE i l a

EMPTYVT i i m

TIPSPED 1 m m
RRADJUS i I l | i

SOLIDiT i m i !

POVERRQ i i t HI 1 i

TRBKANG i 1 i £ j |j | i i i

SPEED 1 i i i 1 i i m 1 i

PURCOST 1 1 1 i 1 i i i t e i i 1 i i i i

RANGE i i i 1 i i B 1 i

ViBRATN 1 1 i t t i

FUEIEPF i i 1 i i i MffH 1

QPRCOST 1 1 1 1 i i 1 f i 1 i Hfsl 1

RELIABLE 1 1 i i

EMGNOPS f 1 1

CRASHVR ! 1

Figure 57. Solution Obtained by optDSM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

Table 14. optDSM Sequence vs. AGENDA Sequence.

T ask O rd e r
AG EN D A optDSM

MODCOM P 1 1

STACTIP 2 4

ACCCOMP 3 2

ADVM ATE 4 3

GLIM ITS 5 5

FUSSIZE 6 6

CABSIZE 7 7

EMPTYW T 8 8

TIPSPED 9 9

RRADIUS 10 10

SOLID IT 11 11

POW ERRQ 12 12

TRBKANG 13 13

SPEED 14 14

PURCOST 15 15

VIBRATN 16 17

RANGE 17 16
FUELEFF 18 18

OPRCOST 19 19

RELIABLE 20 20

EMGNOPS 21 21

CRASHW R 22 22

Numbers in bold represent different activity order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

9.2 Project 2: A Conceptual Design Project - Deterministic Case

The project presented here is adopted from Rogers et al. [42]. This project (consisting of

22 activities) was taken from a larger conceptual design project. Figure 58 represents the

process flowchart for this project. “The main problems with this type of chart are that it is

difficult to determine where to begin the design activity and which processes are iterative

[39].”

As a start, the sequence of the activities has been randomly ordered. Table 15 shows

different activities, their order, and an arbitrary time and cost (units depend on the user)

associated with each of them. The DSM for this ordering, shown in Fig. 59, reveals the

existence of 39 couplings (23 feedbacks and 16 feed forward). Coupling strengths are

defined and then used to estimate the required number of iterations for convergence as

discussed previously. Table 16 shows all couplings and their associated strength.

In the following sections, the DSM sequence will be optimized based on three different

objective functions:

1. Case (1): Minimum feedbacks

2. Case (2): Minimum load

3. Case (3): Minimum total time and cost

It should be noted that the optimization of the current DSM is a relatively easier task than

optimizing the DSM of project (1) since it has a lower complexity factor (1.77 compared

to 4.99).

Despite of SA proven robustness, three different optimization runs will be performed for

each case. These runs have different initial solution, initial temperature, and final

temperature. Notice, though, that these runs are considered short runs in SA practice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

Aero Model Aero Analysis Rigid Aero

Stability &
Model

Characteristics

Pressure &
Deflection

Dynamic
Model

Flexible Aero

Control
System

Analysis

Structural
Model

Structural
Analysis

Structural
Mode

Geom etry
Develop

Aero-Elastic
Analysis

Structural
Weight

Aero-Elastic
PropertiesInitial Data

W eight &
Inertia Analysis

Vehicle Stability
QualitiesPerform ance

1

Revised Initial Mission Final Data
Data Perform ance

Figure 58. Process Flowchart.

HAKJDQUL

Figure 59. Initial DSM Sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

TablelS. Proiect 2: Activities List.

Order D e s c r ip t io n ID Time C o s t

1 I n i t ia l D a ta INITDAT 40 20

2 D y n a m ic M o d e l D Y N M O D L 30 30

3
S ta b i l i ty & M o d e l
C h a r a c te r i s t i c s

S T D M O C H 40 20

4 S t r u c tu r e M o d e l S T R M O D L 10 50

5 S ta b i l i ty Q u a l it ie s H A N D Q U L 10 50

6 S t ru c tu re M o d e S T R M O D E 10 50

7 G e o m e tr y D e v e lo p m e n t G E O M D E V 50 10

8 A e r o E la s t ic P ro p e r t ie s A R O S R V O 40 20

9 A e ro E la s t ic A n a ly s is S T R D Y N A 50 10

10 C o n tr o l S y s te m A n a ly s is C S Y S A N A L 20 40

11 F le x . A e r o C h a ra c te r is tic F A R E R O C H 20 40

12 R e v is e In it ia l D a ta R V S E D A T 30 30

13 M is s io n P e r fo rm a n c e M IS P E R F 30 30

14 V e h ic le P e r fo rm a n c e V E H E P E R F 20 40

15 R ig id A e r o C h a ra c te r is tic R A E R O C H 30 30

16 A e r o A n a ly s is A E R O A N L 20 40

17 P r e s s u r e & D e f le c t io n P R E S D E F 30 30

18 S tru c tu re A n a ly s is S T R A N A L 40 20

19 S tru c tu re W e ig h t S T R C T W T 50 10

20 W e ig h t & In e r t ia A n a ly s is W IA N A L 40 20

21 A e ro M o d e l A E R O M D L 20 40

22 F in a l D a ta F IN L D A T 20 40

Table 16. Project 2: Couplings List.

Coupling
No. From To Strength

1 INITDAT GEOMDEV es
2 RVSEDAT INITDAT n
3 MISPERF RVSEDAT vw
4 GEOMDEV AEROMDL es
5 GEOMDEV STRMODL ew
6 AEROMDL AEROANL es
7 PRESDEF AEROANL vs
8 AEROANL PRESDEF s
9 STRANAL PRESDEF es
10 PRESDEF STRANAL vs
11 STRCTWT STRANAL s
12 STRMODL STRANAL w
13 STRANAL STRCTWT es
14 WIANAL STRCTWT ew
15 GEOMDEV WIANAL w
16 STRCTWT WIANAL es
17 AEROANL RAEROCH s
18 PRESDEF FAREROCH es
19 STRANAL STRMODE s
20 WIANAL VEHEPERF w
21 RAEROCH VEHEPERF es
22 FAREROCH VEHEPERF ew
23 AROSRVO VEHEPERF vs
24 HANDQUL VEHEPERF vw
25 VEHEPERF MISPERF s
26 STRDYNA STDMOCH es
27 GEOMDEV STRDYNA s
28 RAEROCH STRDYNA w
29 FAREROCH STRDYNA es
30 STRMODE STRDYNA ew
31 WIANAL STRDYNA vs
32 CSYSANAL STRDYNA ew
33 STRDYNA AROSRVO s
34 GEOMDEV DYNMODL w
35 STDMOCH DYNMODL es
36 DYNMODL CSYSANAL es
37 STRDYNA CSYSANAL s
38 CSYSANAL HANDQUL vs
39 MISPERF FINLDAT n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

9.2.1 Case (1)

In this case:

• All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “number of feedback couplings”

The results of the three runs are shown in Table 17. As shown, the minimum number of

feedbacks - equals to 9 - was achieved in Run (3). The DSM corresponding to this

solution is shown in Fig. 60.

Table 17. Case (1): Results.

R u n # 1 2 3

SA Settings
Initial Temp. 55 60 60
Final Temp. 10 10 5
Cooling Factor 0.98 0.95 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

f 1 Meta-Stable Solution
Load 689 915 698
Feedbacks 16 15 16
(Time + Cost) 41340 54900 41880

Optimal Solution
Load

*

Feedbacks
(Time + Cost)

769
10

46140

681
10

40860

568
9

34080
% reduction w.r.t. Initial
Configuration

Load (16.52) (3.18) 13.94
Feedbacks 56.52 56.52 60.87
(Time + Cost) (16.52) (3.18) 13.94

% reduction w.r.t. P
meta-stable solution

Load (11.61) 25.57 18.62
Feedbacks 37.50 33.33 43.75
(Time + Cost) (11.61) 25.57 18.62

Solution Time (sec) 164.53 65.63 90.90
Evaluated Solutions

Total 4363 1797 2539
Accepted 4250 1750 2450

Objective Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

INITDAT H H 5

GEOMDEV 8

WIANAL 4 [K M ! 8

DYNMODL 4 8

RAEROCH 8

PRESDEF 8 6

STRCTWT 2 8

STRMODL 2

CSYSANAL 8 6

AEROMDL 8

STRANAL 7 S 4

FAREROCH 8

RVSEDAT 3

STRMODE 6

STRDYNA 6 7 4 2 8 2 m u

AROSRVO 6

HANDQUL 7

STDMOCH 8

VEHEPERF 4 8 2 7 3

AEROANL 7 8

MISPERF 8

FINLDAT i s m i

Figure 60. Case (1): DSM with Minimum Number of Feedbacks.

The results obtained from the other two runs (1 and 2) reveal a very important

conclusion. Notice that although the number of feedbacks was improved (10 instead of

16), the other two measures - load, time and cost - did not. On the contrary, their values

increased. Thus, minimizing the number of feedback coupling does not necessarily imply

a lower total time and cost. Finally, Fig.61 represents the meta-stable values of the three

measures (number of feedbacks, load, and time and cost) at different temperatures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

61
.

Ca
se

(1

):
M

et
a-

sta
bl

e
O

bj
ec

tiv
e

Fu
nc

tio
ns

at

D
iff

er
en

t
Te

m
pe

ra
tu

re
s.

151

9.2.2 Case (2)

In this case:

® All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “total load”

• Activity loads are deterministic.

The results of the three runs are shown in Table 18. As shown, the minimum load -

equals to 130 units - was achieved in Run (1). The DSM corresponding to this solution is

shown in Fig. 62. The meta-stable values of the three measures (number of feedbacks,

load, and time and cost) at different temperatures are shown in Fig. 63.

Table 18. Case (2): Results.

Run# 1 2 3

SA Settings
Initial Temp. 55 60 60
Final Temp. 10 10 5
Cooling Factor 0.98 0.95 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

1st Meta-Stable Solution
Load 436 574 605
Feedbacks 15 14 20
(Time + Cost) 26160 34440 36300

Optimal Solution
Load 130 160 136
Feedbacks 7 9 7
(Time + Cost) 7800 9600 8160

% reduction w.r.t. Initial
Configuration

*

Load 80.30 75.76 79.39
Feedbacks 69.57 60.87 69.57
(Time + Cost) 80.30 75.76 79.39

% reduction w.r.t. 1“
meta-stable solution

Load 70.18 72.13 77.52
Feedbacks 53.33 35.71 65.00
(Time + Cost) 70.18 72.13 77.52

Solution Time (sec) 212.14 89.18 127.08
Evaluated Solutions

Total 6273 2673 3356
Accepted 2156 1040 1027

Objective Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

ihilTDAT H H 5

RVSEDAT 3

GEOMDEV 8

STRMODL 2 i B

AEROMDL 8
STRCTWT 8 2

STRANAL 4 e m u 7

PRESDEF 8 K | S

AEROANL 8 7

WIANAL 4 8

STRMODE 6

RAEROCH 6

FAREROCH 8

STRDYNA 6 1 2 4 a B 3 2
STDMOCH s mm
DYNMODL 4 8 M i
CSYSANAL 6 8 M l
HANDQUL 7

AROSRVO S

VEHEPERF 4 8 2 3 7

MISPERF 8 H I
FINLDAT 1 5 H I

Figure 62. Case (2): DSM with Minimum Total Load.

A closer look at the results reveal that, in contrast to Case (1), a minimum total load

would result in a minimum number of feedbacks and minimum time and cost. The

number of feedbacks corresponding to minimum total load is even lower than the number

obtained in Case (1) - 7 compared to 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

8 8 8 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

63
.

Ca
se

(2

):
M

et
a-

sta
bl

e
O

bj
ec

tiv
e

Fu
nc

tio
ns

at

D
iff

er
en

t
Te

m
pe

ra
tu

re
s.

154

9.2.3 Case 3

Finally, in this case:

• All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

® The objective is to minimize: “total time + cost”

• Activity time and cost are deterministic

The results of the three runs are shown in Table 20. As shown, the minimum objective

function - equals to 8100 units - was achieved in Run (2). The DSM corresponding to

this solution is shown in Fig. 64.

The meta-stable values of the three measures (number of feedbacks, load, and time and

cost) at different temperatures are shown in Fig.65. It can be noticed that a minimum time

and cost would result in lower load and number of feedbacks. In Fig.66, the objective

function values corresponding to all accepted solutions are shown. The figure illustrates

the basic concept on which SA avoids being trapped in a local minima; the acceptance of

some solutions with objective functions higher than the current optimal one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 19. Case (3): Results.

Run # 1 2 3

SA Settings
Initial Temp. 55 55 60
Final Temp. 10 10 10
Cooling Factor 0.98 0.98 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

l il Meta-Stable Solution
Load 305 451 526
Feedbacks 13 14 14
(Time + Cost) 18300 27060 31560

Optimal Solution
Load 136 135 136
Feedbacks 8 7 8
(Time + Cost) 8160 8100 8160

% reduction w.r.t. Initial
Configuration

Load 79.39 79.55 79.39
Feedbacks 65.22 69.57 65.22
(Time + Cost) 79.39 79.55 79.39

% reduction w.r.t. 1
meta-stable solution

Load 55.41 70.07 74.14
Feedbacks 38.46 50.00 42.86
(Time + Cost) 55.41 70.07 74.14

Solution Time (sec) 176.14 226.90 86.63
Evaluated Solutions

Total 4397 5664 2433
Accepted 147 1438 728

Objective Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

iNITDAT

RVSEDAT

GEOMDEV

STRMODL

AEROMDL

STRCTWT

STRANAL

WIANAL

PRESDEF

AEROANL

RAEROCH

FAREROCH

STRMODE

STRDYNA

AROSRVO

STDMOCH

DYNMODL

CSYSANAL

HANDQUL

VEHEPERF

MISPERF

FINLDAT

Figure 64. Case (3): DSM with Minimum Total Time and Cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FI
N

LD
A

T

157

S 8 § 8

>(53eqp®3j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

65
.

Ca
se

(3

):
M

et
a-

sta
bl

e
O

bj
ec

tiv
e

Fu
nc

tio
ns

at

D
iff

er
en

t
Te

m
pe

ra
tu

re
s.

O
bj

ec
tiv

e
Fu

nc
tio

n

158

60000

50000

40000 -

30000 -

20000 -

10000 -

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Accepted Solutions

Figure 66. Case (3): Accepted Solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

9.3 Project 3: A Conceptual Design Project - Stochastic Case

This project is the same one presented in the previous section, but with a main difference,

that is: activities assume stochastic load, shown in Table 20. Probability distributions

used and associated parameters are shown in Fig. 67.

Other settings are:

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “total load”

Both comparison rules (min-mean-max, and utility function method) presented in

Chapter VI will be implemented in Sections 3.1 and 3.2 respectively.

Normal (mean, standard deviation)

Uniform (maximum, minimum)

x: Weibull (location, scale, shape)

Beta (alpha, beta, scale)

Lognormal (mean, standard deviation)

Exponential (rate)

Triangular (minimum, likeliest, maximum)

Figure 67. Probability Distributions’ Parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Table 20. Project 3: Activities List.

Order Description ID Load

1 Initial Data INITDAT Normal (40, 4)

2 Dynamic Model DYNM ODL Uniform (27, 33)

3 Stability & M odel Characteristics STDM OCH Weibull (40, 1 ,2)

4 Structure M odel STRM ODL Beta (2, 3, 10)

5 Stability Qualities HANDQUL Lognormal (10, 1)

6 Structure M ode STRM ODE Normal (10, 1)

7 Geometry Development GEOM DEV Normal (50, 5)

8 Aero Elastic Properties AROSRVO Normal (40, 4)

9 Aero Elastic Analysis STRDYNA Normal (50, 5)

10 Control System Analysis CSYSANAL Normal (20, 2)

11 Flex. Aero Characteristic FAREROCH Normal (20, 2)

12 Revise Initial Data RVSEDAT Normal (30, 3)

13 M ission Performance MISPERF Exponential (0.03)

14 Vehicle Performance VEHEPERF Beta (2, 3 ,2 0)

15 Rigid Aero Characteristic RAEROCH Beta (2, 3, 30)

16 Aero Analysis AEROANL Beta (2 ,3 ,2 0)

17 Pressure & Deflection PRESDEF W eibull (30, 1 ,2)

18 Structure Analysis STRANAL Uniform (36, 44)

19 Structure W eight STRCTW T Beta (2, 3, 50)

20 W eight & Inertia A nalysis W IANAL Uniform (36, 44)

21 Aero Model AEROM DL Beta (2, 3, 20)

22 Final Data FINLDAT Triangular (18 , 20, 22)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

9.3.1 Min-Mean-Max (M3) Results

In this section, the min-mean-max comparison rules for optimization with stochastic

activity loads are implemented. Table 21 shows the results from two runs, each with

different initial solution, and different cooling schedule. The DSM corresponding to the

second run is shown in Fig.68. Figures 69 and 70 represents the probability distribution

curves for the initial and optimal solutions respectively. Finally, Fig.71 illustrates the

minimum, mean, and maximum values corresponding to the objective function meta­

stable values.

To study the robustness of the solution obtained, Fig.72 was created. As shown, while the

M3 rules led to minimum mean and minimum min, the maximum values were not

minimized. Thus, the final solution is less robust than its proceeding solution. Again,

Fig.73 illustrates how the modified SA manages to avoid local optima.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 21. M3: Results.

R un # 1 2

SA Settings
Initial Tem p. 55 60
Final Temp. 2 2
Cooling Factor 0.95 0.95

Initial Configuration
Min 14472.25 14472.25
M ean 17179.33 17179.33
Max 23044.19 23044.19
Standard Deviation 1188.11 1188.11

1 M eta-Stable Solution
Min 9172.61 17860.41
Mean 10663.56 20698.67
M ax 15708.47 24415.73
Standard Deviation 943.4 945.05

Optimal Solution
Min 3789.36 3377.17
M ean 4453.2 4181.34
Max 6260.28 6763.51
Standard Deviation 319.32 391.77

% reduction w.r.t. Initial
Configuration

Min 73.82 76.66
M ean 74.08 75.66
M ax 72.83 70.65
Standard Deviation 73.12 67.03

% reduction w.r.t. l “ meta-
stable solution

Min 58.69 81.09
M ean 58.24 79.80
M ax 60.15 72.30
Standard Deviation 77.10 82.89

Solution Time (sec) 1795.7 4018.9
Evaluated Solutions

Total 4198 4578
A ccepted 298 558

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

1NITDAT

RVSEDAT

STRMODL

GEOMDEV

AEROMDl

STRAMAL

STRCTVT

PRESDEF

AEROANL

VJAWAL

FAREROCH

STRMODE

RAEROCH

STRDYNA

MSPERF

AROSRVO

VEHEPERF

STDMOCH

DYNMODL

CSYSANAL

HAWDQUL

FJNLDAT

Figure 68. M3: DSM Corresponding to the Optimal Solution.

Forecast: TotalEnergy

800Tnais FreqL©ncy Chart 10 (Misers

r 33

- 24.75

m
3

- 16.5 - O

rs3
- 8 .25 - Q

- 0
14,000.00 15,750.00 17,500.00 19,250.00 21,000.00

Figure 69. M3: Probability Distribution of the Initial Solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
bj

ec
tiv

e
Fu

nc
tio

n

164

800 Trials

forecast Ida! Energy

FhscfiDncy Chart
.033 -f

.024 - •

.016 - •

.008

.000

3,250.00 3,750.00 4,250.00 4,750.00 5,250.00

15 Outliers

ere

Figure 70. M3: Probability Distribution of the Optimal Solution.

25000

min max - - - mean

20000

15000

10000

5000

60.00 46.43 35.92 27.80 21.51 16.64 12.88 9.97 7.71 5.97 4.62 3.57 2.76 2.14
Temperature

Figure 71. M3: Meta-stable Objective Function Values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^

Ob
jec

tiv
e

F
un

ct
io

n

25000

20000

15000

10000

5000

x min - m ea n • m ax

_!__________I__________L_

60.00 46.43 35.92 27.80 21.51 16.64 12.88 9.97 7.71 5.97 4.62 3.57 2.76 2.14

Temperature

Figure 72. M3: Solution Robustness.

25000

20000 -

cCti0)
E
g 15000 -

LL
10000 -

o

£
o

5000 -

0 100 200 300 400 500 600

Accepted Solutions

Figure 73. M3: Accepted Solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

9.3.2 Utility Function Method Results

An alternative method to the M3 is the Utility method. Table 22 shows the results from

two runs, each with different initial solution, and different cooling schedule. The DSM

corresponding to the second run is shown in Fig.74. Figure 75 illustrates the mean, range,

and maximum values corresponding to the objective function meta-stable values.

Table 22. Utility Function Method: Results.

R un # 1 2

SA Settings
Initial Tem p. 50 60
Final Temp. 2 2
Cooling Factor 0.95 0.95

Initial Configuration
M ean 17179.33 17179.33
Variance 1411605.37 1411605.37
Range 5864.86 5864.86
M ax 23044.19 23044.19

l il M eta-Stable Solution
M ean 17468.62 11421.86
Variance 484163.07 479527.13
Range 4558.88 4333.92
M ax 20147.21 14330.93

Optim al So lution
M ean 4266.85 4109.9
Variance 32923.62 33778.41
Range 1051.01 985.68
M ax 4858.35 4673

% reduction w.r.t. Initial
Configuration

M ean 75.16 76.08
Variance 97.67 97.61
Range 82.08 83.19
M ax 78.92 79.72

% reduction w.r.t. 1st meta-
stable solution

M ean 75.57 64.02
Variance 93.20 92.96
Range 76.95 77.26
M ax 75.89 67.39

Solution Time (sec) 7608.5 14010.9
Evaluated Solutions

Total 3991 5227
Accepted 887 1289

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
bj

ec
tiv

e
F

un
ct

io
n

167

1—
<
Q

>
UJ
a
£

a
o
5

Q
£
o

z
<
o

u.llJ
Q
to

<z<
H
>
u

*z
x
o
o
cc

X
o
o
EC

UJ
8
£

<z
>
D

<
aUJ

X
o
o
s §

<
<

u.
cc
UJ
CL

o
>
Xto

li­
arUJ
CL

Z oUJ cc cc
UJ

tEUJ
UJ
EC ccj— cc

J— 5 cc UJ
< £C CC CO

> D $ 2- CO o
c 50 to < < a . CO CO u. c CO CO £E to Q U £ < >

SNJTOAT

6E0MDEV

STRMGDL

AEROMOL

AERQANL

PRESOEF

STRAWAL

STRCTVT

VIAWAL

FAREROCH

RAEROCH

STRMODE

STRDYNA

RVSEDAT

STDMOCH

DYWMODL

CSYSAWAl

MISPERF

AROSRVO

VEHEPERF

HAWDQUL

FIMLDAT

Figure 74. Utility Function Method: DSM.

16000

14000

12000

10000

8000

6000

4000

2000

0
60.0 46.4 35.9 27.8 21.5 16.6 12.9 10.0 7.7 6.0 4.6 3.6 2.8 2.1

T em p era tu re

Figure 75. Utility Function Method: Meta-stable Objective Function Values.

Mean M axRange

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

To study the robustness of the solution obtained, let’s consider Fig.76. As shown, the

implementation of the utility function methods led to an optimal and robust solution.

16000
- maxx min - mean

14000

12000

10000

•-g 8000

o 6000

4000

2000
60.0 46.4 35.9 27.8 21.5 16.6 12.9 10.0 7.7 6.0 4.6 3.6 2.8 2.1

Temperature

Figure 76. Utility Function Method: Solution Robustness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

9.4 Project 4: Illustrative Project

The purpose of the current and last case is to illustrate how the optimized DSM is

converted into a program. A hypothetical project is considered. The project consists of 16

activities (Table 23 lists these activities and their associated load), and contains 38

couplings (shown in Table 24), and finally two logical constraints (shown in Table 25)

are imposed on the project.

Table 23. Project 4: Activities List.

Activity
O rd er ID Load

1 K 50

2 B 40

3 C 30

4 D 20

5 E 40

6 F 30

7 G 50

8 H 60

9 I 10

10 J 20

11 A 30

12 L 40

13 M 50

14 N 20

15 P 60

16 0 30

Table 25. Project 4: Logical Constraints.

No. A c t i v i t y P r e c e d e s
1 F L
2 B I

Table 24. Project 4: Couplings List.

No. f r o m To Strength

1 A H n
2 A P s
3 A O w
4 B D es
5 B C n
6 B M vs
7 B G s
8 C G s
9 c O w
10 D H vw
11 D P ew
12 D C n
13 E G n
14 E O s
15 F D s
16 F N vs
17 G A vs
18 G D es
19 G M n
20 H N w
21 H P n
22 H C vw
23 H M s
24 I H s
25 I G n
26 J C n
27 J M vw
28 K D n
29 L P s
30 M G s
31 N P vw
32 N M w
33 N G s
34 N O n
35 O A es
36 O D s
37 P H s
38 P N w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

9.4.1 Optimization

Figure 77 represents the DSM corresponding to an initial activity sequence. The initial

configuration results in 15 feedbacks and a total load of 15700 units. Figure 78 represents

the DSM resulted from minimizing the total feedbacks. This DSM has only 7 feedbacks

and a total load of 13040 units. Figure 79 shows the DSM corresponding to the sequence

of minimum load. This DSM has 10 feedbacks and total load of 7540. The DSM was

obtained using Geometric cooling schedule, with T0 = 50 , Tf = 20, a = 098, acceptance

limit = 60, and rejection limit =60.

K B C D E F G H I J A L M N P O

K

B

C
D

E

F
G

H

J

A

L
M

N
P

0

Figure 77. Project 4: Initial DSM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

K B A F J i E L D H N P C M G 0

K

B

A 7 8

F

J

I

E

L

D 5 8 8 8 8

H 6 6 3 6

N 7 4 4

P 6 6 2 5 3

C 5 5 5 3

M 7 3 6 4 5

G 6 5 s 8 6 6

0 4 e S 4

Figure 78. Project 4: DSM with Minimum Number of Feedbacks.

K B E 1 F J L H P N M G D c A 0

K

B

E

1

F

J

L

H 6 & 6 3 5

P 6 6 s H 3 2 6

N 7 7 4 4

M 7 7 3 3 8 4 HR 5

G 6 5 S 5 5 6 S $

D 5 8 8 $ 8 6

C S 5 5 5 3 5 Jjjjgj

A 7 8

0 6 8 S 4 4 HSK

Figure 79. Project 4: DSM with Minimum Total Load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

9.4.2 Conversion to a Project Schedule

Based on the optimal DSM with minimum load, the rules for conversion to a project

schedule are summarized in Table 26.

Table 26. Conversion to a Project Schedule.

S t e p D e t a i l s
F i g u r e# A c t i v i t i e s P a t t e r n E q u i v a l e n t

1 H &P I
C,=6

Merge activities into ‘Block 1 ’
Block load = 0.5 x 720 = 360 units
Addition to project buffer = 0.2 x 720 = 144 units

80

2 Block 1 & N I
Ci=3, C2 >3

Suspense the feedback coupling
Addition to project buffer = 0.3 x 240 = 72 units 81

3 M & G I
Ci=5, C2 =6

Merge activities into ‘Block 2’
Block load = 0.5 x 500 = 250 units
Addition to project buffer = 0.2 x 500 = 100 units

82

4 A & 0 I
C,=8

Merge activities into ‘Block 3 ’
Block load = 0.5 x 480 = 240 units
Addition to project buffer = 0.2 x 480 = 96 units

82

5 Block 1 & D C
Length > 3

Suspense the feedback coupling
Insert ‘Buffer 1 ’ with load = 0.4 x 780 = 312 units
Addition to project buffer = 0.2 x 780 = 156 units

83

6 Block 2 & C C
Length = 3

Suspense the feedback coupling
Insert ‘Buffer 2’ with load = 0.5 x 600 = 300 units
Addition to project buffer = 0.2 x 600 = 120 units

84

7 Block 3 & D S Suspense the feedback coupling
Insert ‘Buffer 3’ with load = 0.4 x 660 = 264 units
Addition to project buffer = 0.3 x 660 = 198 units

85

8 Block 3 &
Block 1

S Suspense the feedback coupling
Insert ‘Buffer 4 ’ with load = 0.4 x 1560 = 300
units
Addition to project buffer = 0.3 x 1560 = 468
units

85

9 Buffer 3 &
Buffer 4

Merge as Buffer 3 with load = 264 + 300 = 564
units 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

K B E I F J L Blockl N M G D C A 0

K

B
E

F

J

L

B l o c k l

N

M
G

D

C

A

0

Figure 80. Conversion to a Project Schedule: Step 1.

K B E 1 F J L Blockl N M G D 0 A 0

K

B

E

1

F

J

L

Blockl 8 8 6 3 3

N 7 7 4

M 7 7 3 3 6 4 I n 5

G 6 5 5 5 5 8 6 6

D 5 8 8 6 3 K 1 6

C 5 5 5 5 3 5

A 7 3

0 6 S 5 4 4 M l

Figure 81. Conversion to a Project Schedule: Step 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

K B E i F J L Block! N Block 2 D C Block3

K

B

E

1
F

J

L

Blockl

N

Block 2

D

C

Block 3

■ a 1ara
a

B s s M 3 i1

7 ? 4

T 7 S 3 s 5 £ s m S .

5 S B £ 8 8

5 $ S 5 3 r lB S 5 7 4

Figure 82. Conversion to a Project Schedule: Steps 3 and 4.

K B E I F J L Blockl N Block 2 D Suffer! C Block 3

K

B

E

I
F

J

L

B lock l

N

B lock 2

D

BufFerl

C

Block 3

■ 7 ti nil

5 1 8 S i Km 6

S 5

S

S 3

S 5 1

i

Figure 83. Conversion to a Project Schedule: Step 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

K B E ! F J L B lo ck l N B lo ck Z D B uffer! C B uffer 2 B lo ck 3

Blockl

Block 2

Bufferi

Buffer 2

Block 3

Figure 84. Conversion to a Project Schedule: Step 6.

K B E I F J L Block! N Block 2 D Buffer! C Buffer 2Block3Buffer 3

Blockl

Block 2

Bufferi

Buffer 2

Block 3

Buffer 3

Figure 85. Conversion to a Project Schedule: Steps 7, 8, and 9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

9.4.3 Time-Cost Trade-Off

Now that the DSM has been converted to a program, as shown in Table 27, the analysis

can proceed to the last phase of the architecture; time-cost trade-off.

For simplicity, it is assumed that all activities share/require the same resource type, and

that resource has three level shown in Table 28. The TCTO module presented earlier was

implemented. The TCTO curve for the project is shown Fig.86.

Consider the case in which required project completion is set to 56 hours, the resources

assignments, resources usage, and corresponding schedule (Gantt chart) are shown in

Table 20, Table 30, and Fig.87 respectively. Finally, the meta-stable values of the

objective function (project cost) are shown in Fig.88.

Table 27. Activities List of the Equivalent Schedule.

Activity Load Precedes

K 50 D

B 40 N, Block 2, D, C

E 40 Block 2, D, C

I 10 Block 1, Block 2

F 30 N, Block 2, D, C

J 20 Block 1, Block 2, C

L 40 Block 1, Block 2, Block 3

Blockl 360 N, Block 2, C

N 20 Block 2, Block 3

Block 2 250 D, Block 3

D 20 Buffer 1

Bufferi 312 C

C 30 Buffer 2

Buffer 2 300 Block 3

Block 3 240 Buffer 3

Buffer 3 564 Project Buffer

Project Buffer 1258 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To
tal

 C
os

t

177

Table 28. Resource Data.

Resource

Level

Productivity

(units/hr)

Cost rate

(S/hr)
Availability

Slow 20 7 40

Normal 30 10 40

Fast 40 20 40

1600

1550

1500

1450

1400

1350

1300

1250
20 25 31 36 41 46 51 56 6115 45

Project Duration

Figure 86. TCTO Curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

Table 29. Resource Assignment for 56 hours.

A c t i v i t y L o a d
R e s o u r c e A s s i g n m e n t

D u r a t i o n C o s t
Slow N o r m a l F a s t

K 50 1 0 0 3 21

B 40 1 0 0 2 14

E 40 1 1 0 1 17

I 10 1 0 0 1 7

F 30 0 1 0 1 10

J 20 1 0 0 1 7

L 40 0 1 1 1 30

Blockl 360 0 3 0 4 120

N 20 0 0 1 1 20

Block 2 250 0 3 4 1 110

D 20 0 1 0 1 10

Bufferi 312 1 5 0 2 114

C 30 2 0 0 1 14

Buffer 2 300 0 1 0 10 100

Block 3 240 5 2 2 1 95

Buffer 3 564 0 7 2 2 220

Project Buffer 1258 2 0 0 32 448

Table 30. Resource Usage.

R e s o u r c e L e v e l U s e d A v a i l a b l e

Slow 15 40

Normal 25 40

Fast 10 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
et

a-
sta

bl
e

Ob
jec

tiv
e

Fu
nc

tio
r

179

Blockl

Block 2

Bufferi

Buffer 2

Block 3

Buffer 3

PRO JECT BUFFER

Figure 87. Gantt Chart (for 56 hours Project Duration).

2600

2400

2200

2000

1800

1600

1400

1200
76 7280 69 65 62 59 56 53 50

Temperature

Figure 88. Meta-stable Objective Function; Cost (for 57 hours Project Duration).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

9.5 Summary

In order to illustrate the process of the presented architecture, four case studies (projects)

were presented in this chapter. The objective of considering the first case study was to

benchmark the performance of optDSM. Observing the characteristics of the optimization

process based on different objective functions was the goal of the second case study. The

third one illustrated the incorporation of uncertainty into the model and the application of

the simulation-based optimization framework. Finally, the fourth case study was to

illustrate in details different steps of the presented architecture applied to a hypothetical

project. A summary of these cases (projects) is given in Table 31.

Table 31. Case Projects Summary.

Project
No. Description Case DetailsNo.

1

Benchmarking
Project representing VTOL
analysis. Consists of 22
activities and has 119
couplings.

Equal load of one unit assigned to all
activities
The objective is: minimizing the
total load

A circuit taken from a large
conceptual design project.
Consists of 22 activities and
has 39 couplings

Equal load of one unit
assigned to all activities

* The objective is: minimizing
the no. of feedback couplings.

2
Equal load of one unit
assigned to all activities

2 The objective is: minimizing
the total load

The objective is: minimizing
3 the total load

3
Same as (1), but with
stochastic activity loads.

j M3 method implemented

2 UF method implemented

4

A hypothetical project.
Consists of 16 activities and
has 38 couplings.
2 logical constraints are
imposed.

To illustrate the complete operation
of the proposed architecture:
a. Optimization for minimum load
b. Conversion of the optimized DSM

to an equivalent program
c. Implementation of the TCTO

model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

CHAPTER X

SUMMARY AND FUTURE WORK

A product development project (PDF) fundamentally differs from a construction (or a

manufacturing) project in two major aspects: (1) while the later is activity-based, the first

is information-based; and (2) a typical PDF is characterized by its highly coupled,

interdependent activities, which must converge iteratively to an acceptable design

solution.

A PDP is typically a complex system. The main approach to handling such system

involves: decomposing it into sub-systems and furthermore into smaller components; and

defining the relationships among these components. Following these steps, the system

will be decomposed into possibly several hundreds of activities (components) and

thousand of variable interchanges among these activities. The sequence of performing

these activities strongly affects the time (and hence the cost) needed to realize the whole

project.

This dissertation has presented an optimization-based architecture that helps guiding the

project manager efforts for managing the design process in complex integrated product

development projects.

Following a sufficient background of the tools integrated through the architecture in

Chapters II, III, IV, and. Chapters VI and VII provide detailed discussions on the research

methodology and on research areas of contribution. Different modules of the architecture

and the interactions among these modules were discussed in detail in Chapter VIII.

Finally, Chapter IX attempted to present the performance of the architecture by applying

it to several projects, followed by conclusions and directions to future research in Chapter

X. The presented architecture was further implemented through a developed excel add-in

called “optDSM” presented in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

The presented work contributes to five areas of research:

1. Dependency Structure Matrix (DSM).

2. Optimization with the Simulated Annealing Algorithm (SA).

3. Simulation-based Optimization.

4. Time-Cost Trade-Off in Project Networks.

In the following sections, a summary of each of the contributions mentioned above is

provided. Future research directions are also indicated.

10.1 The Dependency Structure Matrix

Improving system performance can be achieved through efficient re-reengineering of its

structure. The Dependency Structure Matrix (DSM) provided an effective tool for system

structure understanding. The first research contribution aimed towards finding an optimal

activity sequence of the DSM representing a design project in terms of load, time, and

cost. To achieve this goal, a mathematical program (model) representing the DSM

structure was developed and a meta-heuristic optimization algorithm called Simulated

Annealing (SA) was implemented to solve this model.

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an

effective tool for analyzing and understanding system architecture especially in new

product development projects and, hence, achieving improved performance. The use of

the DSM is the comer stone of the architecture proposed in the current research.

Following the modeling of the system (project) in a DSM format, finding its optimal

activity sequence represented the first contribution of the research presented.

• This research implemented a numerical DSM in which coupling marks are replaced

with numbers (iteration factors) indicating the strength of the coupling.

• The DSM was then represented by a mathematical program (model) so that it can be

mathematically optimized. The model, further, allowed:

• Imposing logical constraints on activity sequence.

■ The choice among four objective functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

The use of stochastic activity data (load, time and/or cost).

• Although the optimization process considered planned iterations only,

unplanned iterations can be compensated for in the scheduling phase through

buffers introduced in the scheduling phase.

® The model assumed sequential execution of activities and did not allow for

activity concurrency or overlapping. Further investigation can consider cases

in which activities can start without receiving all required input information.

• Furthermore, cases in which an activity can provide some output to other

activities before it finishes can also be incorporated in a future model.

• The fashion by which an activity is redone when it falls in more than one

feedback loop can be modified to reflect more applicable situations.

• The introduction of logical constraints to the model provided control means

over the activity sequence of the DSM. Moreover, such constraints can be

used when considering multi-DSM (or multi-project) cases. In such cases,

theses constraints can be set to maintain some logic activity order, or to

represent resource constraints. So, multi-DSM can be optimized through the

same optimization module developed in the dissertation.

10.2 Simulated Annealing

To carry out the optimization process, a meta-heuristic algorithm called Simulated

Annealing (SA) was implemented. SA is a stochastic optimization algorithm that

provides global or near-global optimal solutions for a wide variety of hard combinatorial

optimization problems. SA was used in this research to rapidly examine a large number

of configurations and choose the optimal one.

• The SA proposed and implemented in this research (referred to as ‘two-stage

SA’) was modified from the original SA by adding a stage that keeps record

of the best solution throughout the optimization process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

• Since SA is a robust algorithm, initial solution was chosen to be generated

randomly in the implementation presented. Other options that can be

considered are:

■ Allowing the user to provide the initial solution.

■ Generating the initial solution using a partitioning algorithm.

• Only one cooling schedule - geometric - was used in this research. Other

schedules (such as multi-stage cooling and geometric re-heating) can be used

and have their results compared.

• In the implemented SA, the system is assumed to reach a meta-stable state

when either of two defined counter reaches its threshold (specified by the

user). And the optimization process was set to stop when the final temperature

is reached. Although these settings provided adequate results, other options

can be further implemented such as allowing the optimization process to stop

when no improvement of the objective function for a long time is noticed.

• When generating a neighboring solution, only feasible solutions (which

satisfies logical constraints if any) were accepted for evaluation. A future

research may consider providing a mechanism that allows some infeasible

moves to be considered.

10.3 Simulation-based Optimization

One unavoidable pitfall in the estimation of activity time and cost is uncertainty which

arises from many different sources. Although uncertainty cannot be eliminated,

incorporating it in the model can reduce its effect. Thus, the estimate of activity time and

cost can be in the form of a probability distribution not as a single point value. The

second research area concerned handling uncertainty in activity loads, time, and/or cost.

A simulation-based optimization framework that integrates simulated annealing with a

commercial risk analysis software called Crystal Ball™ was developed as a part of the

proposed architecture to optimally re-sequence the DSM activities given stochastic

activity data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

• Monte Carlo (MC) simulation was used to determine the statistical measures

of the objective function at each optimization iteration. As known, MC is a

time consuming method. A future research, thus, may consider implementing

an analytical model to determine these measures with accepted margin of

error for situations where an exact minimum solution is not required and a

satisfactory estimation is accepted.

10.4 Handling Stochastic Objective Function

Since simulated annealing was originally developed to handle deterministic objective

functions, the third research area involved modifying the SA algorithm to be able to

handle stochastic objective functions (multi-point estimate) rather than deterministic ones

(one-point estimate). The goal here involved determining a robust solution rather than an

optimum minimum one. This was achieved by modifying the acceptance and rejection

rules of the SA algorithm. Two methods (sets of rules) were proposed and tested, these

are:

• Min-Mean-Max (M3) method:

Can be considered as a simple expert system.

It should be noted, though, that the cases presented in the dissertation

are not exhaustive. They can be modified and other cases can be

added.

The degree to which the decision maker accepts/tolerates risk is

reflected through the choice of the ratios used in the acceptance rules

(flow charts) presented. Demonstrates how project manager experience

can be translated into a set of rules to modify an existing optimization

algorithm and make it suitable to the area of application.

- Demonstrates how project manager experience can be translated into a

set of rules to modify an existing optimization algorithm and make it

suitable to the area of application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

• Utility Function (UF) method:

Decision-making is based, mainly, on appraisal; different alternatives

are appraised and compared against each other to choose the one with

best expected outcome. The UF method provided a means by which

alternative solutions can be compared based on the expected value of

four of their attributes. These attributes, representing four statistical

measures of the objective function distribution, are: mean, variance,

range, and maximum.

■ By defining the weights associated with these attributes in the UF, the

decision maker can direct the optimization process to find either a

minimum solution or a robust one.

The method is characterized by:

1. Being simple and direct.

2. Ease of attributes management (fine-tuning).

3. Being familiar to most decision makers and analysts.

4. Easy to modify.

5. Easy to implement.

10.5 DSM Conversion to a Project Schedule

For more than fifty years, critical path methods (CPM) have provided efficient tools for

planning, scheduling, and controlling constructions and manufacturing projects. But since

CPM does not tolerate for feedback loops usually found in design project, another tool

that explicitly handle these loops was developed, that is DSM. But, on the other hand, for

the DSM to serve as a means of control of the design projects (continual re-planning, re­

scheduling, and follow-up) activities in the optimally re-sequenced DSM need to be

represented against a time scale. In other words, the DSM has to be converted into a

project schedule. The fourth contribution of this research was providing a methodology

for the conversion of the optimally sequenced DSM into an equivalent DSM that contains

no feedback couplings. Once an equivalent DSM is obtained, a project schedule can be

developed and the use of scheduling methods becomes feasible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

» The presented research applied a methodology in which project scheduling is

done in isolation from DSM analysis (two successive phases). A future

research may consider the possibility of performing the CPM - or a modified

CPM - calculations within the DSM paradigm.

• The presented research suggested a three-stage methodology for this

conversion. The methodology was inspired by the work of several researchers

and can be the basis for more generalized rules. It consists of three sequential

yet integrated stages: patterns recognition, collapsing, and tearing.

• The basic idea of the methodology is to identify some activity patterns; each

pattern has only one feedback coupling, from two to four activities, and at

least on feed forward coupling, in the DSM. Based on the strength of the

couplings involved in each pattern (block), the block is converted to and

equivalent program that contains no feedback loops.

• The methodology further involves introducing two types of buffers to the

generated program: block (or coupling) buffers, and a project buffer.

• Future research may include more elaborated conversion rules and can

provide procedure for buffer generation and management.

10.6 TCTO Hybrid Model

Finally, the fifth and final area presented a new time-cost trade-off model for project

networks. The new model is a hybrid model that joins the resource assignment problem

with project crashing. The presented model is based on the trade-off of resources where,

in some cases, it may be possible to transfer men, equipment, or other resources from a

non-critical activity to a critical one. Thus, it helps crashing a project with little, or no,

additional cost.

• The presented model differs form classical CPM time-cost trade-off model in

six major aspects discussed in Section 6.4.

• Since the model is in its initial development phase, the pattern used for

resource availability constraints was simplified. It was assumed that once a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

machine is assigned to an activity, it cannot be used again. In future work, an

algorithm for resource-constrained projects algorithm could be incorporated.

• Furthermore, the model could be extended to include fixed costs.

• Also, the introduction of additional logical constraints can be further

investigated.

10.7 optDSM

The former areas of research were applied through a developed excel add-in called

“optDSM”. The tool was developed by the author using Visual Basic for Application

(VBA) programming language. Among its several modules, optDSM has the ability to

interface with Crystal Ball™ to carry out the optimization process in cases where activity

loads assumes stochastic values. The main functions of optDSM are:

1. Modeling of the project under consideration in the form of DSM.

2. Finding the optimum sequence of DSM activities based on a user selected

objective function.

3. Producing a DSM equivalent to the optimized one but without feedback

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under

development.

• Quality of solution obtained. In spite of the impossibility to benchmark in

practice (since the true global optima is not known) the performance of

optDSM was evaluated through the optimization of a famous example and

comparing the results to a published one. It was found that optDSM reached

an equivalent solution to the published one of AGENDA. Refer to Section 9.1.

• Why Excel? Excel has several benefits:

1. It is powerful modeling tool to implement mathematical programs

(models):

a. Quick to build and easy to modify (flexibility).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

b. Has a great range of built-in mathematical and scientific functions.

c. Availability of logical statements and decisions.

d. Capability of host large, and complex models.

e. Automatically provides ‘what-if tools which makes it suitable for

combinatorial optimization problems.

2. With VBA, it can be an integrated platform that meets different analysis

requirements by communicating with other applications within Micro Soft

windows environment.

3. Availability of different add-ins (for optimization, simulation, statistical

analysis, etc.).

4. A familiar and easy to understand interface for both technical and non­

technical persons.

• Execution time. The total execution (run) time depends on several factors:

■ Number of couplings in the DSM.

Presence of logical constraints.

Optimization nature: if stochastic, another two factors are introduced:

i. The number of Monte Carlo simulation runs per optimization iteration.

ii. Sensitivity analysis requirements.

10.9 Lessons learned

1. Special-purpose optimization tools still have advantage over general-purpose

tools.

2. Optimization models should allow the use to monitor and fine tune the

optimization process during processing.

3. Fine-tuning of optimization algorithm parameters is a very important factor of the

quality of solution.

4. In some cases, constraints relaxation can help the optimization process finding a

better initial solution. For example, the solution procedure for the TCTO model

included options for:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

a. Relaxation of the resources constraints so that the algorithm can generate a

feasible solution in a shorter time, with the optimization process advances,

the algorithm tends to lower the consumption of resources (to lower costs),

as a result, resource usage will go down to below the real availability

limits.

b. Relaxation of “desired project completion time” (DPCT) constraint by

allowing the user to specify an upper and lower limit. For example, if

DPCT was originally required to be 49 hours, the user can relax this

constraint to be in the range (47-50) of (45-51) and so on. Because, in the

proposed TCTO model, it might be difficult (or even infeasible) to achieve

exactly 49 hours and a better solution can be achieved for 48 hours (sorter

duration).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

REFERENCES

[1] Fiksel, J„, 1991, Design for Environment: Creating Eco-Efficient Products &
Processes, McGraw-Hill, N.Y.
[2] Chakravarty, A. K., 2001, “Overlapping Design and Build Cycles in Product
Development,” European Journal of Operational Research, 134, pp. 392-424.
[3] Kotler, P., 7th ed. 1991, Marketing Management: Analysis, Planning, Implementation
and Control, Prentice-Hall, Englewood Cliffs, NJ.
[4] Stalk, G., 1988, “Time: The Next Source of Competitive Advantage,” Harvard
Business Review, 66 , July-August 41-51.
[5] Blackburn, J. D., 1991, “New Product Development: The New Time Wars,” In:
Blackburn, J.D., (Ed.), Time-Based Competition. Business One Irwin Publishers,
Homewood, IL.
[6] House, C.H., and Price, R. L., 1991, “The Return Map: Tracking Product Teams,”
Harvard Business Review, January-February, 92-101.
[7] National Research Council, 1991, “Improving Engineering Design: Designing for
Competitive Advantage,” National Academy Press, Washington, DC.
[8] Peet, W. J., and Hladik, K. J., 1989, “Organizing for global product development,”
Electronic Business, 15 (5), pp. 62-64.
[9] Yassine, A., Chelst, K., and Falkenburg, D., 1999, “Engineering Design Management:
An Information Structure Approach”, International Journal of Production Research,
37(13), pp. 2957-2975.
[10] Lindemann, U., Bichlmaier, C, Stetter, R., Viertlbock, M., 1999, “Enhancing the
Transfer of Integrated Product Development in Industry,” In: Lindemann, U.; Birkhofer,
H.; Meerkamm, H.; Vajna, S. (Eds.): Proc. of the 12th Intern. Conference on Engineering
Design ICED 1999, Vol. 1, Miinchen, 24.-26.08.1999. Miinchen: TU 1999, S. 373-376.
(Schriftenreihe WDK 26)
[11] Lindemann, U., Stetter, R., and Viertlbock, M., 2001, “A Pragmatic Approach for
Supporting Integrated Product Development,” Transactions of the Society for Deign and
Process Science, 5(2), pp. 39-51.
[12] Armstrong, S. C., 2001, Engineering and Product Development Management: The
Holistic Approach, Cambridge University Press.
[13] Port, O., 1990, “A smarter way to manufacture,” Business Week, April 30, 1990,
pp.110-117.
[14] Nevins, J. L., and Whitney, D. E. (eds), 1989, Concurrent Design o f Products and
Processes: A Strategy fo r the Next Generation in Manufacturing, McGraw-Hill, New
York.
[15] O'Grady P., Rainers D. and Bowen J., 1988, “Artificial Intelligence Constraint Nets
Applied to Design for Economic Manufacture and Assembly,” Computer Integrated
Manufacturing Systems, 1(4), 204-210.
[16] Olesen, J. and Keldmann, T., 1993, “Design for Environment - A Framework,” 9th
International Conference on Engineering Design, The Hague, Netherlands, HEURISTA,
pp. 747-754.
[17] Andreasen, M. M., and Hein, L., 1987, Integrated Product Development, IFS
Publications Ltd, Bedford.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

[18] Andreasen, M. M., and Hein, L.,1998, “Innovating the Product Development
Organisation,” in Frankenberger, E., Badke-Schaub, P., and Birkhofer, H. (Eds.):
Designers: the Key to Successful Product Development, Springer, pp. 183-195.
[19] Daellenbach, H. G., 1994. Systems and Decision Making: A Management Science
Approach. John Wiley and Sons, New York.
[20] Baldwin, A. N., Austin, S. A., Hassan, T. M., and Thorpe, A., 1998, “Planning
Building Design by Simulating Information Flow,” Automation in Construction, 8, pp.
149-163
[21] Johnson, E. W., Castillo, L. A., and Brockman, J. B., 1996, “Application of a
Markov Model to the Measurement, Simulation, and Diagnosis of an Iterative Design
Process,” Proceedings of the 33rd annual conference on Design Automation Conference,
Las Vegas, Nevada, United States, pp. 185 - 188. ACM Press, New York, NY, USA
[22] Steward, D. V., 1981, Systems Analysis and Management: Structure, Strategy, and
Design, PBI, NEW York.
[23] Browning, T. R., 2001, “Modeling the Customer Value of Product Development
Processes,” Proceedings of the 11th Annual International Symposium of DSTCOSE,
Melbourne, Australia, July 1-5
[24] Browning, T. R., and Eppinger, S. D., 2002, “Modeling Impacts of Process
Architecture on Cost and Schedule Risk in Product Development,” IEEE Transaction on
Engineering Management, 49(4), pp.443-458.
[25] Von Hippel, E., 1990, “Task Partitioning: An Innovation Process Variable,”
Research Policy, 19, pp. 407-418.
[26] Browning, T. R., 2001, “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions,” IEEE
Transactions on Engineering Management, 48 (3), pp.292-306.
[27] Browning, T. R., 1998, “ Modeling and Analyzing Cost, Schedule, and Performance
in Complex System Product Development,” Ph.D. dissertation, MIT, Cambridge, MA.
[28] Browning, T. R., 1999, “The Design Structure Matrix,” in Technology Management
Handbook, R. C., Dorf. Ed., Boca Raton, FI: Chapman & Hall/CR CnetBASE, pp. 103-
111.

[29] Denker, S., Steward, D. V., and Browning, T. R., 1999, “Planning Concurrency and
Managing Iteration in Projects,” Project Management Journal, 32 (3): 31-38,2001.
[30] Kerzner, H., 1989, Project Management, Van Nostrand Reinhold, New York.
[31] Steward, D. V., 1981, “The Design Structure System: A Method for Managing the
Design of Complex Systems,” IEEE Transactions on Engineering Management, 28, pp.
71-74.
[32] Gebala, David A. and Eppinger, Steven D., 1991, "Methods for Analyzing Design
Procedures", Proceedings of the ASME Third International Conference on Design Theory
and Methodology, pp. 227-233.
[33] Warfield, John N., 1973, "Binary Matrices in System Modeling," IEEE Transactions
on Systems, Man, and Cybernetics, 3, pp. 441-449.
[34] Kusiak , N. Larson, and J. Wang, 1994, “Reengineering of Design and
Manufacturing Processes,” Computers and Industrial Engineering, 26 (3), pp. 521-536.
[35] Austin, S., Baldwin, A., Li, B., and Waskett, P., 2000, “Application of the Analytical
Design Planning Technique to Construction Project Management,” Project Management
Journal, 31 (2), pp. 48-59.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

[36] Rogers, J. L., 1989, “Knowledge-Based Tool for Multilevel Decomposition of a
Complex Design Problem," NASA TP-2903.
[37] Rogers, J. L., 1989, “DeMaid - A Design Manager's Aid for Intelligent
Decomposition User’s Guide,” NASA TM-101575.
[38] Rogers, J. L. and Padula S. L., 1989, “An Intelligent Advisor for the Design
Manager,” Proceeding, the First International Conference on Computer Aided Optimum
Design of Structures, Southampton, UK, pp. 169-177.
[39] Rogers, J. L., 1996, “DeMaid/GA - An Enhanced Design Manager’s Aid for
Intelligent Decomposition,” 6th AIAA/USAF/NASA/OSSMO Symposium on
Multidisciplinary Analysis and Optimization, Seattle, WA, September 4-6, 1996. AIAA
Paper No. 96-4157.
[40] Rogers, J. L., and Barthelemy, J-F, 1992, “Enhancements to the Design Managers
Aid for Intelligent Decomposition (DeMAED),” Proceedings, 4th AIAA/Air
Force/NAS A/OAI Symposium on Multidisciplinary Analysis & Optimization. Cleveland,
Ohio.
[41] Rogers, J. L., and Bloebaum, C. L., 1994, “Ordering Design Tasks Based on
Coupling Strengths,” Proceeding, the 5th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama City, Florida. AIAA paper No. 94-
4326. Also NASA TM 109137.
[42] Rogers, J. L., McCulley, C. M., and Bloebaum, C. L., 1996, “Integrating a Genetic
Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes,”
Proceedings, the 96 Artificial Intelligence on Design Conference, Stanford University,
CA. Also NASA TM - 110247.
[43] Austin, S., Baldwin, A., Li, B., & Waskett, P., 2000, “Analytical design planning
technique (ADePT): A Dependency Structure Matrix Tool to Schedule the Building
Design Process,” Construction Management and Economics, 8, 173-182.
[44] Austin, S., Baldwin, A., Li, B., & Waskett, P., 1999, “Analytical Design Planning
Technique: A Model of the Detailed Building Design Process,” Design Studies, 20 (3),
279-296.
[45] Austin, S., Baldwin, A., Li, B., & Waskett, P., 1999, “Analytical Design Planning
Technique for Programming the Building Design Process” Proceedings of the Institution
of Civil Engineers, Structures and Building, 134 (2), 111-118.
[46] Baldwin, A. N., Austin, S. A., Hassan, T. M., and Thorpe, A., 1998, “Planning
Building Design by Simulating Information Flow,” Automation in Construction, 8, pp.
149-163
[47] Altus, S. S., Kroo, I. M., and Gage, P. J. 1996, “A Genetic Algorithm for Scheduling
and Decomposition of Multidisciplinary Design Problems,” Transactions of the ASME,
118 (4), pp. 486-489.
[48] Cho, S-H, 2001, “An Integrated Method For Managing Complex Engineering
Projects Using the Design Structure Matrix and Advanced Simulation,” M.S. Thesis,
MIT.
[49] Eppinger, S. D., and Smith, R. P., 1997, “A Predictive Model of Sequential Iteration
in Engineering Design,” Management Science, 43 (8), pp. 1104-1120.
[50] Smith, R. P., and Eppinger, S. D., 1997, “Identifying Controlling Features of
Engineering Design Iteration,” Management Science, 43 (3), pp. 276-293.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

[51] Carrascosa, M., Eppinger, S.D., and Whitney, D.E., 1998, “Using the Design
Structure Matrix to Estimate Product Development Time,” Proceedings of DETC’98,
1998 AS ME Design Engineering Technical Conferences, Sept. 13-16, 1998, Atlanta,
Georgia, USA.
[52] Tang, D., Zheng, L., Li, Z., Li, D., and Zhang, S., 2000, “Re-engineering of the
Design Process for Concurrent Engineering,” Computers & Industrial engineering, 38,
pp. 479-491.
[53] Chun-Hsien Chen, Shih Fu Ling, Wei Chen, 2003, “Project Scheduling for
Collaborative Product Development Using DSM,” International Journal of Project
Management, 21 (4), pp. 291-299.
[54] Shi-Jie (Gary) Chena, Li Lin, 2003, “Decomposition of Interdependent Task Group
for Concurrent Engineering,” Computers & Industrial Engineering, 44 (3), pp. 435—459.
[55] Rao, S. S., 3rd edition 1996, Engineering Optimization: Theory and Practice, John
Wiley & Sons, Inc, New York.
[56] Pike, R. W., 1986, Optimization fo r Engineering Systems, Von Nostrand Reinhold
Company, New York.
[57] Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., 1983, Engineering
Optimization: Methods and Applications, John Wiley & Sons, Inc, New York.
[58] Osman, I. H., & Kelly, J. P., 1996, Meta-heuristics: an Overview,O hr: I. H. Osman,
& J. P. Kelly, Meta-heuristics: theory and application. Boston: Kluwer Academic
Publishers.
[59] Metropolis, W., Roenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., 1953,
“Equation of the State Calculations by Fast Computing Machines,” Journal of Chemical
Physics, 21,1087-1092.
[60] Kirkpatrick, S., Gerlatt, C. D. Jr., and Vecchi, M. P., 1982, “Optimization by
Simulated Annealing,” IBM Research Report, RC 9355
[61] Kirkatrick, S., Gelatt, C.D., and Vecchi, P.M., 1983, “Optimization by Simulated
Annealing,” Science, 220 (4598), PP.671-680.
[62] Cemy, V., 1985, ‘‘Thermodynamical Approach to the Traveling Salesman Problem:
an Efficient Simulation Algorithm,” Journal of Optimization Theory and Applications, 45
(1), PP.41-51.
[63] Adil, G. K , D. Rajamni, and Strong, D., 1997, “Assignment Allocation and
Simulated Annealing Algorithms for Cell Formulation,” HE Transactions, 29 (1), 53-67.
[64] Gemmill, D. D., and Tsai, Y. W., 1997, “Using a Simulated Annealing Algorithm to
Schedule Activities of Resource-Constrained Projects,” Project Management Journal, 28
(4), PP.8-20.
[65] Kim, J. U., and Kim, Y. D., 1996, “Simulated Annealing and Genetic Algorithms for
Scheduling Products with Multi-level Product Structure,” Computers and Operations
Research, 23 (9), pp. 857-868.
[66] Kuik, R., and Salomon, M., 1990, “Multi-level Lot Sizing Problems: Evaluation of
a Simulated Annealing Heuristic,” European Journal of Operational Research, 45 (1),
pp.25-37.
[67] Kuik, R., Salomon, M., van Wassenhove, L. N., and Maes, J., 1993, “Linear
Programming, Simulated Annealing and Tabu Search Heuristics for Lot Sizing in
Bottleneck Assembly Systems,” IIE Transactions, 25 (1), pp.62-72.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

[68] Khan, Z., Prasad, B., and Singh, T., 1997, “Machining Condition Optimization by
Genetic Algorithms and Simulated Annealing,” Computers and Operations Research, 24
(7), pp. 647-657.
[69] Koulamas, C., Antony, S. R., and Jean, R., 1994, “A survey of Simulated Annealing
Applications to Operations Research Problems,” Omega, 22 (1), pp.41-56.
[70] Vanderbilt, D., & Louie, S. G., 1984, “A Monte Carlo Simulated Annealing
Approach to Optimization Over Continuous Variables,” Journal of Computational
Physics, 56, pp.259- 271.
[71] Parks, G. T., 1990, “An intelligent Stochastic Optimization Routine for Nuclear Fuel
Cycle Design,” Nuclear Technology, 89, pp.233-246.
[72] Lin, S., 1965, “Computer solutions of the traveling salesman problem,” Bell System
Technical Journal, 44, pp.2245-2269.
[73] Bounds, D. G., 1987, “New Optimization Methods From Physics and Biology,”
Nature, 329, pp.215-218.
[74] Kirkpatrick, S., 1984, “Optimization by Simulated Annealing - Quantitative
Studies,” Journal of Statistical Physics, 34 (5/6), pp.975-986.
[75] Randelman, R. E., and Grest, G.S., 1986, “N-City Traveling Salesman Problem-
Optimization by Simulated Annealing,” Journal of Statistical Physics, 45, pp.885-890.
[76] Van Laarhoven, P. J. M., and Aarts, E. H. L., 1987, Simulated Annealing: Theory
and Applications, D. Reidel publishing Company, Holland.
[77] Elmohamed, M.A. S., Fox, G., and Coddington, P., 1998, “A Comparison of
Annealing Techniques for Academic Course Scheduling,” NPAC Technical Report
SCCS-777.
[78] Johnson, D., and L. McGeoch, 1997,“The Traveling Salesman Problem: A Case
Study in Local Optimization,” in Local Search in Combinatorial Optimization, E. H.
Aarts and J. K. Lenstra (eds.), Wiley and Sons.
[79] Ingber, L., 1993, “ Simulated Annealing: Practice versus Theory,” Computer
Mathematical Modeling, 18 (11), pp.29-57.
[80] A. Chames and M. Wolfe, 1989, “ Extended Pincus Theorems and Convergence of
Simulated Annealing,” International Journal of Systems Science, 20 (8), pp.1521-1533.
[81] Encarta® World English Dictionary [North American Edition] © & (P) 2001
Microsoft Corporation. All rights
[82] Naylor, T. J., Balintfy, J. 1., Burdick, D. S., and Chu, K., 1966, “Computer
Simulation Techniques,” Wiley, New York.
[83] Moore, L. J., and Clayton, E. R., 1st ed. 1976, “GERT Modeling and Simulation:
Fundamentals and Applications,” Petrocelli/Harter, New York.
[84] Law, A. M., and Kelton, W. D., 3rd ed. 2000, Simulation Modeling and Analysis,
McGraw-Hill, Boston.
[85] Rubinstein, R. Y., and Melamed, B., 1998, Modem Simulation and Modeling, John
Wiley & Sons, Inc, New York.
[86] Chase, R. B., and Aquilano, J. J., 7th ed.1995, Production and Operations
Management: Manufacturing and Services, Irwin, Chicago.
[87] Stevenson, W. J., 6th ed.1999, Production/Operations Management, Irwin/McGraw-
Hill, New York
[88] Good, I.J. (1994). Reliability always depends on probability of course, Journal o f
Statistical Computation and Simulation 52, pp. 192-193.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

[89] Smith, E.P., 2002, “Uncertainty Analysis,” in A.H. El-Shaarawi and W.W.
Piegorsch, eds, Enclcyopedia of Environmentrics,. John Wiley & Sons, Ltd, Chichester,
pp. 2283-2297.
[90] Metropolis, N., and Ulam, S., 1949, “The Monte Carlo Method,” Journal of the
American Statistical Association, 44 (247), pp. 335-41.
[91] Sobol, I. M., 1974, The Monte Carlo Method, The University of Chicago Press,
Chicago.
[92] Suri, R., 1985, “An Overview of Evaluative Models for Flexible Manufacturing
Systems,” Annals of Operations Research, 3, pp. 13-21.
[93] Paul, R. J., and Chanev, T. S., 1998, “Simulation Optimization Using a Genetic
Algorithm,” Simulation Practice and Theory, 6 (6), pp. 601-611.
[94] Andradottir, S., 1992, “A Stochastic Approximation Algorithm with Varying
Bounded,” Technical Report 92-5, Department of Industrial Engineering, University of
Wisconsin-Madison, Madison, WI.
[95] Andradottir, S., 1992, “Discrete Optimization in Simulation: A Method and
Application,” In Proc. 1992 Winter Simulation Conf. (Edited by J. J. Swain, D.
Goldsman, R. C. Crain and J. R. Wilson), pp. 483-486.
[96] Evans, G.W., Stuckman, B., and Mollaghasemi, M., 1991, “Multicriteria
Optimization of Simulation Models,” Proceedings of the 23rd conference on Winter
simulation 1991 , Phoenix, Arizona, United States B.L. Nelson, W.D. Kelton, G.M. Clark
(Eds.), pp.894-900.
[97] Stuckman, B., Evans, G., and Mollaghasemi, M., 1991, “Comparison of Global
Search Methods for Design Optimization Using Simulation,” Proceedings of the 23rd
conference on Winter Simulation, Phoenix, Arizona, United States B.L. Nelson, W.D.
Kelton, G.M. Clark (Eds.), pp.937-944.
[98] Azadivar, F., 1992, “A Tutorial on Simulation Optimization,” Proceedings of the
24th Conference on Winter Simulation Arlington, Virginia, United States (Edited by J. J.
Swain, D Goldsman, R. C. Crain and J. R. Wilson), pp. 198-204.
[99] Akbay, K. S., 1996, “Using Simulation Optimization to Find the Best Solution,” HE
Solutions, 28 (5), pp.24-29.
[100] Greenwood, A.G., Rees, L.P., Crouch, I.W.M., 1993, “Separating the Art and
Science of Simulation Optimization: A Knowledge-based Architecture Providing
Machine Learning,” IIE Transactions, 25 (6), pp. 70-84
[101] Arsham, H., 1996, “Stochastic Optimization of Discrete Event Systems
Simulation,” Microelectronics and Reliability, 36 (10), pp. 1357-1368.
[102] Meketon, M. S., 1987, “Optimization in Simulation: A Survey of Recent Results,”
Proceedings of the 1987 Winter Simulation Conference (Edited by A. Thesen, H. Grant
and W. David Kelton), pp. 58-67.
[103] Yunker, J. M., and Tew, J. D., 1994, “Simulation Optimization by Genetic Search,”
Mathematics and Computers in Simulation, 37 (1), pp. 17-28.
[104] Azzaro-Pantel, C., Bemel-Haro, L., Baudet, P., Domenech, S., and Pibouleau, L.,
1998, “A Two-Stage Methodology for Short-Term Batch Plant Scheduling: Discrete-
Event Simulation and Genetic Algorithm,” Computers Chem. Engng, 22 (10), pp. 1461-
1481.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

[105] Azadivar, F., and Tompkins, G., 1999, “ Simulation Optimization with Qualitative
Variables and Structural Model Changes: A Genetic Algorithm Approach,” European
Journal o f Operational Research, 113 (1), pp. 169-182.
[106] Glover, F., Kelly, J. P., and Laguna, M., 1996, “New Advances and Applications of
Combining Simulation and Optimization,” Proceedings of the 1996 Winter Simulation
Conference J. M. Chames, D. J. Morrice, D. T. Brunner, and J. J. Swain (Eds.), pp. 144-
152
[107] Laguna, M., 1997, “Metaheuristic Optimization with Evolver, Genocop and
OptQuest,” EURO/INFORMS Joint International Meeting 1997 Plenaries and Tutorials,
J. Barcelo (Ed.), pp. 141-150
[108] Bulgak, A. A., and Sanders, J. L., 1988, “Integrating a Modified Simulated
Annealing Algorithm with the Simulation of a Manufacturing System to Optimize Buffer
Sizes in Automatic Assembly Systems,” Proceedings of the 20th conference on Winter
simulation, San Diego, California, United States, pp. 684 - 690
[109] Gelfand, S.B., and Mitter, S.K., 1989, “Simulated Annealing with Noisy or
Imprecise Energy Measurements,” Journal of Optimization Theory and Applications 62 ,
pp. 49-62.
[110] Roenko, N., 1990, “Simulated Annealing under Uncertainty,” Technical Report,
Inst. F. Operations Research, Univ. Zurich, 1990.
[111] Haddock, J, and Mittenthal, J., 1992, “Simulation Optimization Using Simulated
Annealing,” Computers & Industrial Engineering, 22 (4), pp. 387-395
[112] Alkhamis, T. M., Ahmed, M. A., and Tuan, V. K., 1999, “Simulated Annealing for
Discrete Optimization with Estimation,” European Journal of Operational Research 116
(3), p p . 530-544.
[113] So, D.G., and Dowsland, K.A., 1993, “Simulated Annealing: An Application to
Simulation Optimization,” Presented at OR35 Conference, University of York,
September 1993.
[114] Gutjahr, W.J., and Pflug, G.C., 1996, “Simulated Annealing for Noisy Cost
Functions,” Journal of Global Optimization, 8 (1), pp. 1-13.
[115] Ahmed, M. A., Alkhamis, T.M., and Hasan, M., 1997, “Optimizing Discrete
Stochastic Systems Using Simulated Annealing and Simulation,” Computers & industrial
Engineering, 32 (4), pp. 823-836.
[116] Ahmed, M. A., and Alkhamis, T. M., 2002, “Simulation-based optimization using
simulated annealing with ranking and selection,” Computers & Operations Research, 29,
pp.3 87-402.
[117] Ho, Y. C., 1984, “Perturbation Analysis Methods for Discrete Event Dynamically
Systems and Simulations,” Proceedings of the 1984 Winter Simulation Conference, pp.
171-173.
[118] Ho, Y. C. and Cao, X. R., 1991, Perturbation Analysis o f Discrete Event Dynamic
Systems, Kluwer Academic, Dordrecht.
[119] Jacobson, S. H. and Schruben, L. W., 1989, “Techniques for simulation response
optimization,” Operations Research Letters, 8, pp.1-9.
[120] Schruben, L. W., 1986, “ Simulation Optimization Using Frequency Domain
Methods,” Proceedings of the 1986 Winter Simulation Conference (Edited by J. R.
Wilson, J. O. Henriksen and S. D. Roberts), pp. 366-369.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

[121] Rubinstein, R. Y., 1989, “Sensitivity analysis and performance extrapolation for
computer simulation methods,” Operations Research, 37, pp.72-81.
[122] Barton, R. R., and Ivey, J. S. Jr, 1996, “Nelder-Mead Simplex Modifications for
Simulation Optimization,” Management Science, 42 (7), pp.954-973.
[123] Glynn, P. W., 1987, “Likelihood Ratio Gradient Estimation: An Overview,” Proc.
1987 Winter Simulation Conference (Edited by A. Thesen, H. Grant and W. David
Kelton), pp. 366-375.
[124] Pukkala, T., and Miina, J., 1997, “A Method for Stochastic Multiobjective
Optimization Of Stand Management,” Forest Ecology and Management, 98, pp. 189-203
[125] Guariso, G., Hitz, M., and Werthner, H., 1996, “An Integrated Simulation and
Optimization Modeling Environment for Decision Support,” Decision Support Systems,
16, pp. 103-117.
[126] Biles, W. E., 1975, “A Response Surface Method for Experimental Optimization of
Multiresponse Processes,” Industrial Engineering Chemistry: Process Design and
Development, 14, pp.152-158.
[127] Smith, D. E., 1976, “Automatic Optimum-Seeking Program for Digital
Simulation,” Simulation, 27, pp.27-32.
[128] Wilson, J. R., 1987, “Future direction in response surface methodology for
simulation,” Proceedings of the 1987 Winter Simulation Conference (Edited by A.
Thesen, H. Grant and W. David Kelton), pp. 378-381.
[129] Boyle, C. R., and Shin, W. S., 1996, “An Interactive Multiple-Response Simulation
Optimization Method,” IIE Transactions, 28 (6), pp. 453-463.
[130] Lee, Y-H, Shin, H-M, and Yang, B-H, 1996, “An Approach For Multiple Criteria
Simulation Optimization with Application to Turning Operations,” Journal of Computers
and Industrial Engineering, 30 (3), pp.375-386.
[131] Greenwood, A. G., Rees, L. P., and Siochi, F. C., 1998, “An Investigation of the
Behavior of Simulation Response Surfaces,” European Journal of Operational Research,
110 (2), pp. 282-313.
[132] Rees, L. P., Greenwood, A. G., and Siochi, F. C., 2002, “A Best-First Search
Approach for Determining Starting Regions in Simulations Optimization,” IIE
Transactions, 34 (3), pp. 283-295.
[133] Robbins, H. and Monroe, S., 1951, “On a Stochastic Approximation Technique,”
Annals of Mathematical Statistics, 22, pp.400-407.
[134] Kiefer, J. and Wolfowitz, J., 1952, “Stochastic Estimation of the Maximum Of A
Regression Function,” Annals of Mathematical Statistics, 23, pp.462-466.
[135] Ruppert, D., 1985, “Newton-Raphson Version of the Multivariate Robbins-Monro
Procedure,” Annals of Statistics 13, pp.236-245.
[136] Arsham, H., Feuerverger, A., McLeish, D. L., Rreimer, J., and Rubinstein, R. Y.,
1989, “Sensitivity Analysis and the "What If ' Problem in Simulation Analysis,”
Mathematical and Computer Modeling, 1 (2), pp. 193-219.
[137] Andradottir, S., 1991, “A Stochastic Approximation Algorithm with Bounded
Iterates,” Technical Report 91-2, Department of Industrial Engineering, University of
Wisconsin-Madison, Madison, WI.
[138] Yan, D. and Mukai, FL, 1992, “Stochastic Discrete Optimization,” Journal on
Control and Optimization, 30 (3), pp.594-612,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

[139] Gong, W., Ho, W. and Zhai, W., 1992, “Stochastic Comparison Algorithm for
Discrete Optimization with Estimation,” Proceedings of the 31st Conference on Decision
and Control, Tucson, AZ.
[140] Rossetti, M. D., Clark, G., 1998, Evaluating a Queuing Approximation for the
Machine Interference Problem with Two Types of Stoppages via Simulation
Optimization,” Computers & Industrial Engineering, 34 (3), pp. 655-668
[141] Michael, C. F., and Stacy, D. H., 1997, “Optimization of Discrete Event Systems
via Simultaneous Perturbation Stochastic Approximation,” IIE Transactions, 29 (3), pp.
233-243.
[142] Kleinman, N. L., Spall, J. C., and Naiman, D. Q., 1999, “Simulation-based
Optimization with Stochastic Approximation Using Common Random Numbers,”
Management Science, 45 (11), pp. 1570-1578.
[143] Subramanian, D., Pekny, J.F., and Reklaitis, G. V., 2000, “A Simulation-
Optimization Framework for Addressing Combinatorial and Stochastic Aspects of an
R&D Pipeline Management Problem,” Computers and Chemical Engineering, 24, pp.
1005-1011
[144] Alberto, I , Azcarate, C., Mallor, F., and Mateo, P.M., 2002, “Optimization with
Simulation and Multiobjective Analysis in Industrial Decision-Making: A Case Study,”
European Journal of Operational Research, 140 (2), pp. 373 -383.
[145] Badiru, A. B., and Whitehouse, G. E., 1989, “Computer Tools, Models and
Techniques for Project Management,” TAB Professional and Reference Books, PA.
[146] Gido, J., and Clements, J. P., 1999, “Successful Project Management: A Practical
Guide for Managers,” South-Western College Publishing, Canada.
[147] PMI Standards Committee, 1996, “A Guide to the Project Management Body of
Knowledge”, Project Management Institute, PA, USA.
[148] Rabun, A., and Sommers, J., 1998, “Microsoft Project 98 Support Course,”
Microsoft Corporation, Redmond, WA.
[149] Badiru, A. B., 2nd ed. 1996, “Project Management in Manufacturing and High
Technology Operations,” John Wiley & Sons, INC., New York.
[150] Heuer, G., 1976, “Project Management in Mechanical Engineering: Planning and
Controlling of Industrial Intentions,” Vdi-Z, 118 (7), pp.304-8.
[151] Brown, A.M., 1984, “Project Management for the Design and Supply of Power
Station Mechanical and Electrical Plant,” IEE Proceedings-C Generation Transmission &
Distribution, 131 (6), pp.236-9.
[152] Feldermann, J., 1993, “Project Management in Production Scheduling Experience
of a Large Scale Company in Starting Series Type Production of New Products,” Vdi-Z,
135 (8), pp.40-42.
[153] Englund, R. L., and Graham, R. J., 1999, “From Experience: Linking Projects to
Strategy,” Journal of Production Innovation Management, 16, pp. 52-64
[154] Boznak, R., 1988, “Achieving a Competitive Manufacturing Advantage Through
Effective Multi-Project Management,” Proceedings, International Industrial Engineering
Conference, pp. 285-290.
[155] Churchill, G.F., 1988, “Quality Assurance - An Effective Project Management
Technique,” International Journal of Project Management, 6 (4), pp. 241-244.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

[156] Beghini, G.,and Romanin J. G., 1991, “Project Management and Production
Planning: Study for an Integrated Solution,” Proceedings, Engineering Systems with
Intelligence: Concepts, Tools and Applications, Kluwer Academic Publishers, pp.549-54.
[157] Maio, A. D., Verganti, R., and Corso, M., 1994, “ A Multi-Project Management
Framework for New Product Development,” European Journal of Operational Research,
78 (2), pp. 178-191.
[158] Ambrosy, S., Assmann, G., Bindbeutel, K., Cuiper, R., Feldmann, C., and
Schmalzl, B., 1996, “Integrated Product and Process Model for Planning and Design,”
Zwf Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 91 (12), pp.607-11.
[159] Ryba, M., and Baitinger, U. G., 1996, “ An Integrated Concept for Design Project
Planning and Design Flow Control,” Proceedings of the Conference with EURO-
VHDL'96 and Exhibition on European Design Automation, pp. 98 - 103.
[160] Taylor III, B. W., 5th ed. 1996, Introduction to Management Science, Prentice Hall,
New Jersey.
[161] Batson, R. G., 1987, “Critical Path Acceleration and Simulation in Aircraft
Technology Planning,” IEEE Transactions on Engineering Management, Vol. EM-34
(4), pp. 244-251.
[162] Graves, S.B., 1987, “Optimal R and D Expenditure Streams: An Empirical View,”
IEEE Transactions on Engineering Management, Vol.EM-34 (1), pp.42-48.
[163] Haffner, E.W., Graves, R.J., 1988, “Managing New Product Time to Market Using
Time-Cost Trade-Off Methods,” Omega, 16 (2), pp.117-124.
[164] Chapman, C. B., Cooper, D. F. and Page, M. J., 1987, Management fo r Engineers.
John Wiley & Sons, New York.
[165] Kelly Jr, J. E., 1961 “Critical Path Planning and Scheduling: Mathematical Basis,”
Operations Research, 9 (3), pp. 296-320.
[166] Siemens, N., 1971 “ A Simple CPM Time-Cost Trade-Off Algorithm,”
Management Science, 17 (6), pp. 354-363.
[167] Goyal, S. K., 1975, “A Note On a Simple Cpm Time-Cost Trade-Off Algorithm,”
Management Science, 21 (6), pp. 718-722.
[168] Berman, E. B., 1964, “Resource Allocation in a PERT Network Under Continuous
Activity Time-Cost Functions,” Management Science, 10 (4), 734-745,
[169] Falk, J. E., and Horowitz, J. L., 1974, “ Critical Path Problems with Concave Cost-
Time Curves,” Management Science, 19 (4), pp. 446-455.
[170] Fulkerson, D., 1961, “A Network Flow Computation for Project Cost Curves,”
Management Science, 7 (2), pp. 167-178.
[171] Meyer, W. L. and Shaffer, L. R. , 1963, “Extensions of the Critical Path Method
Through the Application of Integer Programming,” Department o f Civil Engineering,
University of Illinois.
[172] Kuyumcu, A., and Garcia-Diaz, A., 1994, “A Decomposition Approach To Project
Compression with Concave Activity Cost Functions,” IIE Transactions, 26 (6), pp. 63-73.
[173] Babu, A.J.G., and Suresh, N. , 1996, “Project Management With Time, Cost, and
Quality Considerations,” Journal of operational Research, 88, pp. 320-327.
[174] Pulat, P. S., and Horn, S. J., 1996, “Time-Resource Tradeoff Problem,” IEEE
Transactions on Engineering Management, 43 (4), pp. 411-417.
[175] Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., and Vanhoucke,
M., 1998, “ New Computational Results on the Discrete Time/Cost Trade-Off Problem in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

Project Networks,” The Journal of the Operational Research Society, Oxford, 49 (11), pp
1153-1163.
[176] AbdelSalam, H. M., and Bao, H. P., 2001, “A Modified Time-Cost Trade-Off
Model for Manufacturing Applications,” Virginia Journal of Science, 52 (2), pp.91 .
(Abstract)
[177] Phillips, D. T., Ravindran, A., and Solberg, J. J., 1976, Operations Research:
Principles and Practice, John Wiley & Sons, Inc., New York.
[178] Render, B., and Stair, R. M., 1991, Introduction to Management Science, Allyn &
Bacon, Massachusetts.
[179] Williams, H. P., 4th ed.1999, Model Building in Mathematical Programming, John
Wiley & Sons, LTD, New York.
[180] Tufekci, S., 1982, “A Flow-Preserving Algorithm for the Time-Cost Trade-Off
Problem,” IIE Transactions, 14 (2), pp. 109-113.
[181] Rosenblatt, M.J., and Roll Y., 1985, “A Future Value Approach to Determining
Project Duration,” IIE Transactions, 17 (2), pp.164-167.
[182] Law, J.S., Hsing-Wei, C., 1987, “Models to Predict Efficiency of Two Network
Flow Based Algorithms on the Time-Cost Trade-Off Problem,” Computers & Industrial
Engineering, 12 (2), pp.91-97.
[183] Deckro, R.F., and Hebert, J.E., 1989, “Resource Constrained Project Crashing,”
Omega, 17 (1), pp.69-79.
[184] Nair, K.P.K., Prasad, V.R., and Aneja, Y.P., 1993, “Efficient Chains in a Network
with Time-Cost Trade-Off Function on Each Arc,” European Journal of Operational
Research, 66 (3), pp.392-402.
[185] Skutella, M., 1998, “Approximation of Algorithms for the Discrete Time-Cost
Trade Off Problem,” Mathematics of Operations Research, 23 (4), pp. 909-929.
[186] Gander, J.P., 1985, “Cooperative Research, Government Involvement, and Timing
of Innovations,” Technological Forecasting & Social Change, 28 (2), pp.159-72.
[187] Levy, J.B., and Tayi, G.K., 1989, “Analysis of Project Scheduling Strategies in a
Client-Contractor Environment,” Naval Research Logistics, 36 (1), pp.69-87.
[188] Reda, R., and Carr, R. I., 1989, “Time-Cost Trade-Off Among Related Activities,”
Journal of Construction Engineering and Management, 115, pp. 475-486.
[189] Icmeli, O., Erenguc, S.S., and Zappe, C.J., 1993, “Project Scheduling Problems: A
Survey,” International Journal of Operations & Production Management, 13 (11), pp.80-
91.
[190] De Reyck, B., and Herroelen, W., 1996, “On the Use Of The Complexity Index As
a Measure of Complexity in Activity Networks,” European Journal of Operational
Research, 91 (2), pp.347-366.
[191] Hajdu, M., 1996, “PDM Time Cost Trade-Off: Activities Are Splittable or Non-
Splittable,” Mathematische Operationsforschung und Statistik, Series Optimization,
Vol.38, No.2, pp.155-71.
[192] De, P., Dune, E.J., Ghosh, J.B., and Wells, C.E., 1997, “Complexity of the Discrete
Time-Cost Tradeoff Problem for Project Networks,” Operations Research, 45 (2),
pp.302-306.
[193] Vanhoucke, M., Demeulemeester, E., and Herroelen, W., 2002, “Discrete
Time/Cost Trade-Offs in Project Scheduling with Time-Switch Constraints,” The Journal
of Operational Research Society, 53 (7), pp. 741-751.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

[194] Hamacher, H., and Tufekci, S., 1983, “A lexicographical time-cost tradeoff
problem,” Proceedings, Operations Research Verfahren, No.45, pp.257-68.
[195] Kanda, A., and Rao, U.R.K., 1984, “A Network Flow Procedure for Project
Crashing with Penalty Nodes,” European Journal of Operational Research, 16 (2),
pp. 174-82.
[196] Shouman, M.A., El-nour, A., Ebrahim, S., and El-mahalawy M., 1991, “A Mixed
Integer Linear Programming Model for a Time Cost Trade-Off,” Advances in Modeling
& Simulation, 22 (4), pp.53-63.
[197] Erenguc, S.S., Tufekci, S., and Zappe, C.J., 1993, “Solving Time/Cost Trade-Off
Problems with Discounted Cash Flows Using Generalized Benders Decomposition,”
Naval Research Logistics, 40 (1), pp.25-50.
[198] Liu, L.; Bums, S. A., and Feng, C.-W. , 1995, “Construction Time-Cost Trade-Off
Analysis Using LP/TP Hybrid Method,” Journal of Construction Engineering and
Management, 121, pp. 446-454.
[199] Demeulemeester, E.L., Herroelen, W.S., and Elmaghraby S.E., 1996, “Optimal
Procedures for the Discrete Time/Cost Trade-Off Problem in Project Networks,”
European Journal of Operational Research, 88 (1), pp.50-68.
[200] Chassiakos, A.P., Samaras C.I., and Theodorakopoulos D.D., 1998, “An Algorithm
for Determining the Optimal Duration of Large Projects,” Proceedings, Advances in Civil
and Structural Engineering Computing for Practice, pp.449-54.
[201] Barber, T.J., and Boardman, J.T., 1986, “A pragmatic approach to the optimisation
of project control using heuristic techniques,” Proceedings, IEE Colloquium on The
Application of Optimisation Techniques to Real Engineering Processes, pp.5/1-4.
[202] Barber, T.J., 1989, “Heuristics for project expedition,” Proceedings, IEE
Colloquium on Advances in Optimisation, pp.7/1-6.
[203] Bowman, R.A., 1994, “Stochastic Gradient-Based Time-Cost Tradeoffs in PERT
Networks Using Simulation,” Annals of Operations Research, 53, pp.533-51.
[204] Sunde, L., and Lichtenberg, S., 1995, “Net-Present-Value Cost/Time Tradeoff,”
International Journal of Project Management, 13 (1), pp.45-49.
[205] Taeho, A., and Erenguc, S.S., 1998, “The Resource Constrained Project Scheduling
Problem with Multiple Crashable Modes: A Heuristic Procedure” European Journal of
Operational Research, 107 (2), pp.250-259.
[206] Ramani, S., 1986, “A Simulation Approach to Time-Cost Trade-Off in Project
Network,” Proceedings, Modeling and Simulation on Microcomputers (SCS), pp. 115-20.
[207] Patrick, C., and Topuz, E., 1995, “Time-Cost, Trade-Off Analyses Of Longwall
Face Transfers,” Mining Engineering, 47 (4), pp. 281-286.
[208] Chishaki, T., and Tatish, M., 1992, “New model for project planning by time-cost
trade-off procedure using fuzzy durations for project activities,” Memoirs of the Faculty
of Engineering Kyushu University, 52 (4), pp. 339-360.
[209] Feng, C-W, Liu, L., and Bums, S.A., 1997, “Using Genetic Algorithms to Solve
Construction Time-Cost Trade-Off Problems,” Journal of Computing in Civil
Engineering, 11 (3), pp. 184-189.
[210] Li, H., Cao, J.-N., Love, P. E. D., 1999, “Using Machine Learning and GA to Solve
Time-Cost Trade-Off Problems,” Journal of Construction Engineering and Management,
125 (5), pp. 347-353.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

[211] Feng, C-W., Liu, L., and Bums, S.A., 2000, “Stochastic Construction Time-Cost
Trade-Off Analysis,” Journal of Computing in Civil Engineering, 14 (2), pp.117-126.
[212] Kusiak, A., Wang, J., He, D. W., and Feng, C-X, 1995, “A Structured Approach for
Analysis of Design Processes,” IEEE Transactions on Components, Packing, and
Manufacturing Technology - Parti, 18 (3), pp. 664-673.
[213] Abramson, D., Krishnamoorthy, M, and Dang, H., 1999, “ Simulated Annealing
Cooling Schedules for the School Timetabling Problem,” Asia-Pacific Journal of
Operational Research, Singapore.
[214] Kalsi, M., Hacker, K., and Lewis, K., 2001, “A Comprehensive Robust Design
Approach for Decision Trade-Off in Complex System Design,” Journal of Mechanical
Design, 123 (1), pp. 1-10.
[215] Larson, N., and Kusiak, A., 1996, “Managing Design Processes: A Risk
Assessment Approach,” IEEE Transactions on System, Man, Cybernetics, 26, pp 749-
749.
[216] Hammond, J., Choo, H. J., Austin, S., Tommelein, I. D., and Ballard, G., 2000,
“Integrating Design Planning, Scheduling, and Control with DePlan,” Proceedings of the
8th Annual Conference of the International Group for Lean Construction (IGLC-8), 17-19
July, Brighton, UK.
[217] Taijan, R. 1972, “ Depth-First Search and Linear Graph Algorithms,” SIAM J.
Comput., 1 (2), pp. 146-160.
[218] Bond, A. H., and Ricci, R., 1992, “Cooperation in Aircraft Design,” Res. Eng.
Design, 4 (2), pp. 115-130.
[210] Kim, J. S., Ritzman, L. P., Benton, W. C., and Synder, D. L., 1992, “Linking
Product Planning and Process Design Decisions,” Design Sciences, 23 (1), pp. 44-60.
[220] Goldratt, E. M., 1997, Critical Chain, North River Pres, Great Barrington, MA.
[221] Leach, L.P., 2000, Critical Chain Project Management, Artech House, London.
[222] Herring, B. E., and Murphy, L. C., 1987, “ Recursive Relation Using The Critical
Path to Perform Time-Cost Trade-Offs,” Project Management, 5 (3), pp. 177-179.
[223] http://msdn.microsoft.com/vba/default.asp
[224] Kopra, T., Mavris, D., Gomez, P., and Schrage, D., 1994, “Application of
Concurrent Engineering Methodology to the Design of a Dual Use VTOL Aircraft,”
AIAA-94-4329, 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Panama City, FL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://msdn.microsoft.com/vba/default.asp

204

APPENDIX A: optDSM

1. Overview

This appendix describes different functions of ‘optDSM’; the application tool of the

architecture presented throughout the dissertation. The tool was developed by the author

using Visual Basic for Application (VBA) programming language. As hinted previously,

among it’s several modules, optDSM has the ability to interface with commercial risk

analysis software called Crystal Ball to carry out the optimization process in cases where

activity loads assumes stochastic values. The main functions of optDSM are:

1. Modeling of the proj ect under consideration in the form of DSM.

2. Finding the optimum sequence of DSM activities based on a user selected

objective function,.

3. Structuring the optimized DSM into and equivalent DSM that has no feedback

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under

development.

Functional-wise, optDSM is a menu driven Excel add-in. The menu appears

automatically, after proper setup, when Excel starts. As shown in Fig. 89, the menu is

located on the standard menus tool bar just before the help menu. For operation, the user

follows different functions on the menu in order. In the following section, these functions

are described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 89. optDSM Main Menu.

2. Functions

optDSM has seven functions that have to be carried out sequentially, these are:

2.1 New: DSM

The first step of the process is entering the data of the DSM. This is done by choosing

‘New’ then ‘DSM’ from the menu as shown in Fig.90 (a). This event brings the ‘New

DSM options’ window shown in Fig. 90 (b), in which the user:

i. Enters the number of tasks.

ii. Enters the number of couplings.

iii. Choose the desired format (Steward’s or Rogers’s).

iv. Define the data type (Deterministic or Stochastic).

v. Enables coupling strength input (if desired).

vi. Enable logical constraints input - and define their number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

i- :. q : ' !

~ r - , ' Tcr.i t - . . f , - < ’

@ About

Si
S li^K dftie

S'
IIISl

V W H H I
0 iltetl

i , format [Stew£

11

Dgt3 j Deterministi

CK iisiMli

(a) (b)

Figure 90. New DSM.

Once the user is finished entering the previous data and clicks on the ‘OK’ button,

optDSM prepares tables for entering activity and couplings details as shown in Fig. 91 (a)

and (b) respectively. In case of stochastic activity data, the user is asked to define the data

probabilistic distributions using Crystal Ball menu. Figure 92 shows the entry tables after

entering the data for a time and cost deterministic optimization case with no logical

constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

s
m . Tasks shoul

awarding tc
numbering t
insert the S
task here. I
not be chan

be entered

#
it-

Task
Or** £.

die
o the left Time Cost

1
& 2 ged
i 3
IS 4

5
6
7

.9 a

n 10
k

4'
11
12

23s 13
11 14

asa 15
km. 15

Si 17
R 18

19
20

m 21
3* 22 ■>ere. Its or

changed
ter will riot be

33;
i
i

.........-................

es), where

initial Coupling
Type

mt

(a) A c t i v i t i e s T a b l e (b) C o u p l i n g s T a b l e

Figure 91. Data Entry Tables.

m 22

| i Task Task Haae Task ID Load Time Cast

* f, 1 Initial Data MTDAT 40 20
2 Dynamic Model DYNMODL 30 30

B 3 Stability & Model Cher ad STDMOCH 40 20
14 4 Structure Model STW40DL 10 50

i! 5 Stabfflv G uiles HANDQU. 10 50
i f i 6 Structure Mode STRMODE 10 50
* £ 7 Geometry DeveloDmeri GEOhOEV 50 10
151 8 Aero Elastic Properties AROSRVO 40 20

8 9 Aero 0ssite Analysis STRDYNA 50 10
M 10 Control System Analysis CSYSANAL 20 40

11 Flex. Aero Characteristic FAREROCH 20 40
12 Revise Initial Dais RVSEDAT 30 30

& 13 Mss ion Performance ftSSPERF 30 30
$ 14 Vehicle Performance VEHEPERF 20 40
1 15 Rigid Aero Characteristic RAB?OCH 30 30

m 16 Aero Analysis AEROANL 20 40
W *. 17 Pressure S Deflection PRESDEF 30 30
‘m . i s Structure Analysis STRANAL 40 20
25 '. 15 Structure Weight STRCTWI 50 10

1 20 yitefcibt 8 Inertia Analysis VAtANAL 40 20
3 * 1 21 Aero Model AEROMDL 20 40

M s 22 rina!Deta FMDAT 20 40

rfs j Jy i '. : none '

to "»■
From To S trength

ite ra tio n
Facto r

In it ia l C o u p lin g
Type

1158 1 IN1TDAT GEOMDEV es
■a-. 7 RVSEDAT INITDAT n
1 J | 3 MISPERF RVSEDAT vw

i 4 GEOMDEV AEROMDL es
■ J 5 GEOMDEV STRMODL ew

!@ i 6 AEROMDL AEROANL es
‘ 8 7 PRESDEF AEROANL vs
" S B AEROANL PRESDEF s

' 1 9 STRANAL PRESDEF es
. S 10 PRESDEF STRANAL vs

i 11 STRCTWT STRANAL s _
i 12 STRMODl STRANAL w

'2 » j 13 STRANAL STRCTWT es
si 14 W1ANAL STRCTWT ew

1 15 GEOMDEV WIANAL w
S 16 STRCTWT WIANAL es

, ’ i 17 AEROANL RAEROCH s2a il 18 PRESDEF :AREROCF es
. ■} STRANAL STRMODE

J WIANAL VEHEPERF w
: i RAEROCH VEHEPERF es

.2 rAREROCH VEHEPERF ew
•w . 73 AROSRVO VEHEPERF vs
U 24 HANDQUL VEHEPERF vw
Oj 1 2s VEHEPERF MISPERF s

5 STRDYNA STDMOCH es
- r GEOMDEV STRDYNA s

3 RAEROCH STRDYNA w

(a) A c t i v i t i e s T a b l e (b) C o u p l i n g s T a b l e

Figure 92. Data Entry Tables Filled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

2.2 Create DSM

Once user enters data, the ‘Create DMS’ function is chosen so that optDSM:

i. Determines the iteration factor of each coupling according to its coupling

strength.

ii. Determines the coupling initial nature (feedback or feed forward).

iii. Develops the initial DSM according to the sequence entered.

2.3 Optimization: Settings

The next step is the development of the excel sheets associated with optimization model

calculations. When the user instantiates the ‘Optimization: Settings’ function, as shown

in Fig. 93, a main menu titled ‘Optimization Options’ appears.

o ^D 5 M Help A o o b a r

O ptim ization

P''C _r-t

S ’ A to u r

Figure 93. Optimization Sub-menu.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

The ‘optimization options’ window is divided into six layers, three of which are currently

active, as shown in Fig. 94, and the other three will be active in future work.

The three layers are:

1. Main, shown in Fig. 94 (a). Allows the user to choose:

a. The SA algorithm used (currently only one is available).

b. The annealing scheduled used (also only one is available in the

presented version).

2. Objective Function, shown in Fig. 94 (b). Enables the user to:

a. Choose the optimization objective function.

b. Enters the weights to be used in case of (time and Cost) minimization.

c. Define the objective function factorization coefficient value.

d. Choose a strategy for the initial solution generation (currently, this

option is disable and initial solution is generated randomly).

3. Geometric Cooling, shown in Fig. 94 (c). Since the geometric cooling is the

default annealing schedule, this window allows the user to choose between

using the defaults values of the annealing schedule parameters provided by

optDSM or enterinng different values for these parameters.

Once the user clicks ‘Prepare Model’ button, optDSM prepares calculations sheets.

Figure 8.12 shows the feedbacks calculations sheet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

I W w i

(a) Main window

linn.Mt i«m ii|»l (i ii is

MS(0Mi£M̂Bwh§
mMmmmmiPsb

r £oad ^ Tim e Factor'

C Time Co^t Fatter'

’ Apply

y.j:-! ' = ■■!

1M8®I?

(b) Objective Function Options

l l (i l 11111/ i l l III l l p l l l l i IM isiiiss
'= ■■ ‘ i , -

1 ~**

S S ^ I

_ _

«
Sill

~

»'*| .li ~'rr-'l I

s ..!• £

"MB

(C) Geometric Cooling Options

Figure 94. Optimization Options/Settings window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 95. Feedback Calculations Sheet.

2.4 Optimization: Start

This function initiates the optimization process. optDSM maintains two sets of results:

1. The first for all evaluated solutions.

2. The second for the meta-stable optimal solutions.

Screen shots of optDSM while the optimization process is running for a deterministic

case and for a stochastic case are shown in Fig. 96 and Fig. 97 respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

Data

C o o lin g
Schedule

initial Temp

Final Temp

1 Cooling Rate

j Temp
| 85........ .
4 807 5

1 76.7125...
! 72.876875
I 6973303125”
1 65.77137969’

liiilMliilfill 17iP

Deterministic Factorization
Coeff.

1

i :
Gemoetric i

j

85 | Acceptance
Lim it

70 I Solution ;
Time]

1 R e je c tio n
Limit 70

0.95

12 0 1970 2050 i 1970
0 0 1 0

Feedbacks L o a n ~ sm e Cost ! O p tE n e^ g y Accepted R e je c te d

1890 1 7 7 0 | 1890 41 i 70
1690 1670 j 1690 19] 70
1480 1460 i 1480 27 i 70
1480 1460 j 1480 31 j 70
1330 1310 1 1^ n 13 : 70
1330 1310 I 1330 10 70

......m m mmmesm

1330

Ttnperatu« j 62 482810703

26 r --

Results

Figure 96. Screen Shot: Deterministic Optimization.

îAfii ll.
:-Ja»s

:

dBMKAHflB
1 tdc Prtsnrf«fccr **w Run

,Mh fr .,t
> < sĵ f

"v?
r i (jut'iii > • i »

JLU,

T„I,17 " -. 111,1. J l X J " < 1 .Imi.r

is

Solution
Time 1273.69375 14110

7

¥
i 9 } 7750 7750 7010

... ’”1777.7 7.?.’. ~.i...r .xn.. 1 1 7 70 .7.7.1.
Temp Best Min - Best Max Best StDe* ! Best Mean : Accepted Rejected

...."551.......... j 9172 607857 "15708.46919 943.4KB^8 t i'0B63'.®39S'T" 29“" "60.....

§! 52.25 1
49.6375 F

........ T’8497.'8^0O3
r 8497,'83^03'

*1392373765''
13923^766

794;76g0424
794.7^0424

1 9993.968351"; ..19........24 50...
'60..

47.155625 ? : 8497.83^63 *13923.73766' 794.7680424 ” 9993 968351 • 19 so'
A 44.73^34375 1 8073.131657 * 1439*4.90114 816.4844215 :9529'.447148 "7 ie 60

S i ■12557951© (..... 10073.131657 *14394*90114 816.4844215 ; 9529.447148 » ** "13“...... 60""'"
i f ■'1143005396 1 * " ' 1 8073.131657 14394.90114 815.4844215 ! 9529.447148 I 14 60
B8 .:€ 40855129 T [‘̂ 73131657 14394.90114 816.4844215 T9529!447i48 7""13..... . '60 ""
H I 5.48812372 ;1 7687.191078 55' '7ELSOOQ7CB 19113.0125^1 ..20..... _ 60
m I4.K371753 i .. . i 7687.191073 1^19.61255 7^.60007® ! 9113.01235 i60.....
M .i2.93K3taB'r" 1 S216.313717* ' 11133.63634' 592.6868819 ; 7249.49^5 1 " 14...... ' 60...
m 1 .^ 0 3 5 0 8 [i 6B2.G8S578 11039.76985 .490701 i 7234.439932 • 15 S3" '

'.''9.71906482 I’ I 5448.846^31 961 iT470152 43213080732 *....10"...... 60
mi 28.23381458 f 1 5262£S i3 ii 8795.222416 418.74402© : ^12.800578 • "' ’ 7 60....
m 25.82212385 | ''?5262^T 3il "8796.222416' 4187440259 \ 6212.8X1578 1 “9........... ' 60~"'

m 25.48101766 [i 5262.681311' 07^.222416 41b 7443259 i K12.Ki0578 T""""2 60
Ml 24.20^6678'-;...... -i 5182 257808 '6374.679525. 418^268329 60S7 918Q185 6Qjfft j J j C . .

;>* ' - '~
ssmm
S S I

Figure 97. Screen Shot: Stochastic Optimization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

2.5 Optimization: Final DSM

After the optimization process ends, this functions, shown in Fig. 98, creates the final

DSM; the one corresponding to optimal activity sequence.

s-’rc ic-ct

f~) iibjU

BMii g i
I ! C ojap-ed 05M

Figure 98. Post Optimization Sub-menu.

The next two functions are still under development, these are:

2.6 Post Optimization: Collapsed DSM

This function converts the optimally sequenced DSM into an equivalent DSM with no

feedback couplings.

2.7 Project

Finally, an equivalent project schedule is developed and then transferred to MS Project

for scheduling purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

3. Future Modifications

In addition to finishing the un-working functions, the followings are some improvements

that could be added to optDSM in following versions:

1. A function to check the correctness of input data (activities, couplings, etc.).

The objective here is to assure that everything was entered in order.

2. Facilitation the optimization process by introducing:

a. A function that determines activities with no input nor output (i.e.

isolated) and moves these activities to the top of the DSM.

b. A function that determines activities with no inputs and moves these

activities to the top of the DSM.

c. A function that determines activities with no outputs and moves these

activities to the end of the DSM.

d. Reducing the optimization models after these functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

CURRICULUM VITA
for

Hisham Abdelsalam

DEGREES:
• Doctor of Philosophy (Mechanical Engineering), Old Dominion University, Norfolk,

Virginia August 2003
• Master of Science (Mechanical Engineering), Old Dominion University, Norfolk,

Virginia May 2000
• Bachelor of Science (Mechanical Engineering), Cairo University, Cairo, Egypt

July 1996

PROFESSIONAL CHRONOLOGY:
• Graduate Teaching/Research Assistant, August 1999 - Present

Department of Mechanical Engineering, Old Dominion University, Norfolk, Virginia
• Graduate Teaching/Research Assistant, November 1997 - July 1999

Operations Research & Decision Support Department, Cairo University, Cairo, Egypt
• Environmental Project Engineer, July 1997 - October 1997

Development Research & Technological Planning Center, Cairo University, Cairo,
Egypt.

HONORS AND AWARDS:
• Mechanical Engineering 2001 Outstanding Graduate Student, Old Dominion

University.
• Member, Phi Kappa Phi Honor Society, 2001.
• Graduate Assistantship, Old Dominion University, Fall 1999- August 2003.
• Honors Degree, B.Sc., Cairo University, 1996.
• Academic Achievement Scholarship, B.Sc., Cairo University, 1991 and 1993-96.

SELECTED PUBLICATIONS:
• Abdelsalam, H. M., and Bao, H. P., “The Use of Design Structure Matrix and

Simulated Annealing to Reduce Product Development Cycle Time,” accepted for
publication in the proceedings of the 13 th International Flexible Automation and
Intelligent Manufacturing (FAJM) conference, June 9-11,2003.

• Abdelsalam, H. M., and Bao, H. P., 2000, “Towards a Collaborative Engineering-
Computation Environment: An Application Of An Object-Oriented Database To
Project Management,” Proceedings o f DETC’00, ASME 2000 Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
September 10-13, 2000, Baltimore, Maryland.

• Abdelsalam, H. M., and Bao, H. P., 2000, “Solving the Project Time-Cost Trade-Off
Problem Through an Integrated Engineering-Computation Environment,”
Proceedings, The 11th Annual Conference of the Production and Operations
Management Society, POM-2000, April 1-4,2000, San Antonio, TX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Summer 2003

	Optimization-Based Architecture for Managing Complex Integrated Product Development Projects
	Hisham Mohamed El-Sayed AbdelSalam
	Recommended Citation

	tmp.1551965432.pdf.KrFFQ

