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ABSTRACT

OPTIMIZATION-BASED ARCHITECTURE FOR MANAGING COMPLEX 

INTEGRATED PRODUCT DEVELOPMENT PROJECTS

Hisham M. E. AbdelSalam 
Old Dominion University, 2003 

Director: Dr. Han. P. Bao

By the mid-1990’s, the importance of early introduction of new products to both market 

share and profitability became fully understood. Thus, reducing product time-to-market 

became an essential requirement for continuous competition. Integrated Product 

Development (IPD) is a holistic approach that helps to overcome problems that arise in a 

complex product development project. IPD emphasis is to provide a framework for an 

effective planning and managing of engineering projects. Coupled with the fact that about 

70% of the life cycle cost of a product is committed at early design phases, the 

motivation for developing and implementing more effective methodologies for managing 

the design process of IPD projects became very strong.

The main objective of this dissertation is to develop an optimization-based architecture 

that helps guiding the project manager efforts for managing the design process of 

complex integrated product development projects. The proposed architecture consists of 

three major phases: system decomposition, process re-engineering, and project 

scheduling and time-cost trade-off analysis. The presented research contributes to five 

areas o f research:

1. Improving system performance through efficient re-engineering of its structure. 

The Dependency Structure Matrix (DSM) provides an effective tool for system 

structure understanding. An optimization algorithm called Simulated Annealing 

(SA) was implemented to find an optimal activity sequence of the DSM 

representing a design project.
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2. A simulation-based optimization framework that integrates simulated annealing 

with a commercial risk analysis software called Crystal Ball™ was developed to 

optimally re-sequence the DSM activities given stochastic activity data.

3. Since SA was originally developed to handle deterministic objective functions, a 

modified SA algorithm able to handle stochastic objective functions was 

presented.

4. A methodology for the conversion of the optimally sequenced DSM into an 

equivalent DSM, and then into a project schedule was proposed.

5. Finally, a new hybrid time-cost trade-off model based on the trade-off of 

resources for project networks was presented.

These areas of research were further implemented through a developed excel add-in 

called “optDSM”. The tool was developed by the author using Visual Basic for 

Application (VBA) programming language.
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1

CHAPTER I 

INTRODUCTION

1.1 Introduction to the Domain: Research Motivation

Manufacturing firms in the United States have almost universally recognized the need to 

reconsider traditional methods of product development and introduction [1]. In order for 

a product to be competitive, it needs to be introduced quickly without compromising 

product performance [2]. This is so because products that meet the needs of customers 

faster than competitors grow at a rapid pace, both in terms of market share and 

profitability [3]. Thus, reduction in product development cycle time has become an 

essential goal [1], The significance of time-to-market is further demonstrated by [4-6],

In a 1991 pamphlet issued by the National Research Council, [7], four requirements for 

using design as a source of competitive advantage were cited: (1) committing to 

continuous improvement both of products and of design and production processes, (2) 

establishing a corporate Product Realization Process (PRP) supported by top 

management, (3) developing and/or adopting and integrating advanced design practices 

into the PRP, and (4) creating a supportive design environment. Moreover, incorporating 

the following steps was defined as effective PRP practice: (1) defining customer needs 

and product performance requirements, (2) planning for product evolution beyond the 

current design, (3) planning concurrently for design and manufacturing, (4) designing the 

product and its manufacturing processes with full consideration of the entire product life 

cycle, and (5) producing the product and monitor product and processes. In this spirit, the 

term ‘Integrated Product Development’ (EPD) was coined to describe a process that has 

been adopted by most progressive manufacturing firms, even though firms may have 

different names for this process [8].

The format of this thesis is based on “The American Society of Mechanical Engineers Transactions
Journals”
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The basic disciplines for making progress in manufacturing belong not only to 

mechanical engineering, but also to industrial engineering, mathematics, management 

science, and computer science. These separate disciplines are individually supported by 

their research, methods, and software. There is a lack of focused attention on how to 

integrate knowledge from many disciplines into knowledge that furthers manufacturing 

goals. Moreover, at the same time that this lack of strategy is apparent, all dimensions of 

manufacturing (e.g. products, processes, markets) are becoming more complex and 

diverse. Complex new products based on massive information content and information- 

dominated design and manufacturing methods already require us to deal with an entirely 

new scale of complexity. Providing tools to facilitate and manage the complexity of this 

information and computation intensive activities plays an important role in supporting 

and even enabling the complex practice of manufacturing.

The difficulties in designing complex engineering products do not arise simply from their

technical complexity but rather from the managerial complexity necessary to manage the

interactions between the different engineering disciplines, which imposes additional

challenges on the design process [9]. As a result, a systems level solution must be

determined and deployed. Integrated product development is a holistic approach that

helps to overcome problems that arise in complex product development environments.

Integrated product development was defined by Fiksel [1] as:

“a process whereby all functional groups (e.g. engineering, manufacturing, marketing, 
etc.) that are involved in a product life cycle participate as a team in the early 
understanding and resolution o f  key product development issues including quality, 
manufacturability, reliability, maintainability, environment, and safety.”

IPD is based on Concurrent Engineering (CE), but goes beyond CE with regard to the 

level of integration. In the scope of IPD, designers, assembly planners and production 

planners, as well as persons responsible for quality or testing not only consult themselves 

while they are working simultaneously on their tasks, but exchange interconnected 

intermediate results in a continuous interplay [10,11].

The motivation for adopting IPD can be further understood when the economics of 

product development are considered; where between 60 and 80 percent of the overall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

product costs are committed between the concept and preliminary design phases of the 

program [12]. And since only a small cumulative expenditure of funding is committed 

during early phases in the classical serial approach, the cost of design change increases 

exponentially as the development process advances as shown in Fig. 1. For example, in 

the automotive and electronics industry, it has been shown that up to 80% of product life­

cycle costs are committed during the concept and preliminary design stages, and that the 

cost of design changes steeply increases as a product proceeds into full-scale 

development and prototyping [7, 8, 13]. Another study included in [14] showed that 

about 70% of the life cycle cost of a product is determined at the conceptual design stage. 

Furthermore, O’Grady et al. [15] showed that design of products determines their quality 

and 70% to 80% of the final production cost.

Thus, the motivation for current research can be summarized as follows:

1. There is a need to reduce both product time-to-market and product 

development cost.

2. Dealing with complex products adds more difficulty to the management of the 

design process within product development projects.

3. As a result, a more effective methodology -  that is IPD - has to be 

implemented.

4. Since about 80% of cost is committed at early development phases, the 

current research focuses on improving the product design process.

Figure 2 is a simple mind map of research motivation.
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1.2 Introduction to the Context: Problem Framing

Integrated product development is a general procedure for product development with 

focus on integration between market, product and production aspects when creating new 

business [16]. The concept of IPD was developed independently by two sources. From 

1984 to 1988, IPD was introduced into Danish industry (mechatronic products) in a 

country-wide campaign [17, 18], In the late 1980’s, EPD was introduced by the U.S. 

defense industry [12].

An EPD emphasis is to provide a framework for effective planning and managing of 

engineering projects. To clarify the presented problematic situation, the rich picture 

diagram1 shown in Fig.3 is used to explore the connections and interdependencies among 

the different components of the IPD approach to present its complexity, on one hand, and 

to help defining both the WSOI (wider system of interest) and NSOI (narrower system of 

interest) on the other hand.

The seven phases of the IPD approach, shown in the rich picture diagram, represent the 

WSOI. The NSOI, which is the focus of the current research, consists of the first four 

phases together or, in general, the design process. The design process itself is typically a 

complex system. The main approach to handling such a system is to build a model that 

imitates the real system (or desired system in our case). Typically, this includes: (1) 

defining the system of interest, (2) defining the system boundary, (3) decomposing the 

system into sub-systems and further into smaller components, and (4) defining the 

relationships among these components. Following these steps, the system will be 

decomposed into possibly several hundred activities (components) and thousands of 

variable interchanges among these activities. The sequence of performing these activities 

strongly affects the time (and hence the cost) needed to realize the whole project. 

Furthermore, a common characteristic of such projects is the involvement of teams from 

different disciplines, working simultaneously on different aspects of the project

1 A rich picture is “ a cartoon-like summary of everything (or almost everything!) the observer knows about 
the situation studied [19].”
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associated with their analyses tools and software. So, a tool is needed for arranging 

(sequencing) the activities of the project for efficient execution, and moreover, to 

decompose the project into sub-projects (circuits) such that each can be performed at a 

certain discipline by a certain team. Successful project management requires the effective 

control of the design teams and the exchange of information between them for successful 

design management [20].

Furthermore, project managers, in addition to scheduling projects, are frequently 

confronted with the problem of having to reduce the scheduled completion time indicated 

by the Critical Path Method (CPM) in order to meet a pre-specified deadline. Project 

duration reduction, or project crashing, can be achieved by assigning more resources 

(labor, material, equipment, etc.). However, additional resources cost money and, hence, 

increase the overall project cost. Thus, the decision to reduce the project duration, and by 

how much, must be based on an analysis of the trade-off between time desired project 

duration to be reduced and the extra cost needed.

Thus, the complexity of the presented problem arises form the following sources:

1. Large number of components.

2. Complex interactions scheme.

3. Uncertainty in components duration and cost.

4. Hard precedence constraints.

5. Resource limitations.
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1.3 Introduction to the Research: Research Objectives

Today, the highly competitive market pushes companies not just to deliver products that 

work, but also to introduce these products to market as early as possible (i.e. minimum 

time-to-market or shorter product development cycle). A great deal of effort has been 

committed to developing and deploying more powerful analysis tools but, unfortunately, 

little work has been done in creating methods and tools for analyzing and improving the 

design process itself [21],

Management tools that model the interface and dependencies among process activities 

contain the managerial complexity of the design process. Yassine et al. [9] stated that 

managing the design process includes four major steps: (1) modeling of the information 

and dependency structure of the design process, (2) providing a design plan showing the 

order of execution for the design activities, (3) reducing the risk and magnitude of 

iteration between design activities, and (4) exploring opportunities for reducing the 

project cycle time.

The main objective of the presented research is to develop an optimization-based 

architecture that helps guide the project manager efforts for managing the design 

process in complex integrated product development projects. The presented work 

contributes to five areas of research.

Improving system performance can be achieved through efficient re-reengineering of its 

structure. The Dependency Structure Matrix (DSM) provides an effective tool for system 

structure understanding. The first research contribution aims toward finding an optimal 

activity sequence of the DSM representing a design project in terms of load, time, and 

cost. To achieve this goal, a mathematical program representing the DSM structure was 

developed and a meta-heuristic optimization algorithm called Simulated Annealing (SA) 

was implemented to solve this program.

One unavoidable pitfall in the estimation of activity time and cost is uncertainty that 

arises from many different sources. Although uncertainty cannot be eliminated,
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incorporating it in the model can reduce its effect. Thus, the estimate of activity time and 

cost can be in the form of a probability distribution, not as a single point value. The 

second research area concerns handling uncertainty in activity loads, time, and/or cost 

requirements. A simulation-based optimization framework that integrates simulated 

annealing with a commercial risk analysis software called Crystal Ball™2 was developed 

to optimally re-sequence the DSM activities given stochastic activity data.

Since simulated annealing was originally developed to handle deterministic objective 

functions, the third research area involves modifying the SA algorithm to tolerate 

stochastic objective functions (multi-point estimate) rather than deterministic ones (one- 

point estimate). The goal here involves determining a robust solution rather than an 

optimum (minimum) one.

For the DSM to serve as a means of controlling the design project (continual re-planning, 

re-scheduling, and follow up), activities in the optimally re-sequenced DSM need to be 

represented against a time scale. In other words, the DSM has to be converted into a 

project schedule. The fourth contribution of this research is providing a methodology for 

the conversion of the optimally sequenced DSM into an equivalent DSM that contains no 

feedback couplings. Once an equivalent DSM is obtained, a project schedule can be 

developed and the use of scheduling methods becomes feasible.

The fifth and final area presents a new time-cost trade-off model for project networks. 

The new model is a hybrid model that joins the resource assignment problem with project 

crashing. The presented model is based on the trade-off of resources where, in some 

cases, it may be possible to transfer persons, equipment, or other resources from a non- 

critical activity to a critical one. Thus, it helps crashing a project with little, or no, 

additional cost.

These areas of research will be further implemented through a developed excel add-in 

called “optDSM”. The tool was developed by the author using Visual Basic for

2 Developed by Decisioneering, Inc.
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Application (VBA) programming language. Among its several modules, optDSM has the
TMability to interface with Crystal Ball to carry out the optimization process in cases 

where activity loads assume stochastic values. The main functions of optDSM are:

1. Modeling of the project under consideration in the form of a DSM.

2. Finding the optimum sequence of DSM activities based on a user selected 

objective function.

3. Producing a DSM equivalent to the optimized one but without feedback 

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under 

development.

1.4 Introduction to the Technology: Analytical Strategy and Solution 

Potential

The presented architecture integrates several conceptual tools. These include:

1. The Dependency Structure Matrix (DSM): the cornerstone of the presented 

architecture. DSM improves understanding of the project - or the system - being 

analyzed by providing a compact visualization of the project and a clear 

understanding of the information flow patterns among its activities.

2. Mathematical Programming (MP): a basic step in any optimization process is 

building a model that represents the system under consideration. MP was used in 

this dissertation to:

a. Translate the DSM from its visual form into a mathematical form.

b. Describe a project network by a set of equations (relationships, 

constraints, and objective function).

3. Simulated Annealing (SA): a meta-heuristic optimization algorithm with proven 

efficiency in solving hard combinatorial optimization problems. In this 

dissertation, SA was modified - to fit the architecture needs - and used in both
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optimization components of the architecture; DSM re-sequencing, and time-cost 

trade-off.

4. Monte Carlo (MC) Simulation: an important decision-support tool in for wide 

variety of disciplines. The architecture deploys MC -  through an interface with 

Crystal Ball™ -  as a risk analysis tool to tackle cases in which project activities 

assume stochastic data.

5. Critical Path Analysis (CPM): a fundamental scheduling method used in project 

management. CPM is based on a mathematical model that calculates he total 

duration of a project and identifies critical activities. CPM serves as the basis for 

the TCTO model incorporated in the architecture.

Application wise, the architecture:

1. Is a user-friendly tool for IPD project managers that provide:

a. Compact visualization of the project (activities and interfaces).

b. Clear understanding of project structure.

c. Efficient tool for time and cost reduction of design projects.

d. Improved final design quality.

e. Risk analysis tool.

2. Integrates off-shelf applications (MS Excel, Crystal Ball, and MS Project) 

with an efficient optimization algorithm (SA).

3. Provides ways to facilitate and manage the complexity of the information 

intensive activities during product design process.

4. Is implemented in a spreadsheet environment due to the familiarity of this 

software tool in the engineering and business communities.

5. Provides a promising efficient methodology for resource assignment.
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1.5 Introduction to the Dissertation: Reader’s Guide

As shown in Fig. 4, the dissertation is divided into two main parts: Introduction and 

Background (Chapters II to V), and Research Methodology and Results (Chapters VI to

X).

Following the introduction chapter, the dissertation is organized as follows.

Chapter II presents the DSM methodology and reviews five prototypes related to the tool 

developed in the presented research. Chapter III provides background on Simulated 

Annealing algorithm describing it basic principal, concepts, implementations, and 

advantages over classical optimization algorithms. In Chapter IV, a short introduction to 

simulation is provided along with a literature review of work related to interfacing 

optimization methods with simulation. Finally, the concepts of project crashing and time- 

cost trade-off analysis, and reviews different methods used to tackle this problem cited in 

literature are introduced in Chapter V.

Chapter VI discusses all aspects related to the optimization and analysis of the DSM 

contributed by this research. In Chapter VII, the proposed time-cost trade-off model is 

presented. Basic concepts, illustrative examples, mathematical model, and 

implementation details are provided. Chapter VIII presents the conceptual architecture 

proposed in the dissertation for managing Integrated Product Development projects. Case 

studies used to present the performance of the architecture are provided in Chapter IX. 

Finally, summary; discussions of the results and future research directions are provided in 

Chapter X followed by Appendix A that introduces the implementation tool; “optDSM.”
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CHAPTER II 

THE DEPENDENCY STRUCTURE MATRIX (DSM)

2.1 The DSM  Methodology

Integrated product development projects (JPDPs) are complex systems. A prerequisite to 

improvement is system understanding. Systems can be described by their structure - 

presented by a graph or a matrix showing which components affect what other 

components, and by semantics (concern how these effects occur) [22]. System structure 

(or architecture) affects its efficiency and effectiveness [23, 24]. Therefore, it can be an 

important source of competitive advantage [25]. Improved understanding of system 

architecture can be gained by using process models [23]. These models must be able to 

capture the decomposed system activities, their information interfaces (or couplings), and 

enables associated integration analysis.

A product development project (PDP) fundamentally differs from a construction (or a 

manufacturing) project in two major aspects:

1. While the later is activity-based (i.e. an activity it to be carried out only when 

its predecessors are physically done), the first is information-based (activities 

execution and results are based mainly on information exchanged with other 

coupled activities).

2. A typical PDP is characterized by its highly coupled, interdependent activities, 

which must converge iteratively to an acceptable design solution [23, 26]. 

There always exists a high possibility of many activities that need to be 

repeated before the desired specifications are met. The most common causes 

for such repetition (known as feedback loops in DSM terminology) are due to 

activities that begin work without the necessary information; the arrival of 

new information; change of information that leads to rework; or re-evaluated 

assumptions in previous activities [24, 27-29].
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A project typically consists of a number of interrelated activities. For more than fifty 

years, a number of techniques, such as Program Evaluation and Review Technique 

(PERT) and Critical Path Method (CPM), have been used to handle complex projects 

[30], Unfortunately, these methods succeed only if activities are sequential and/or 

parallel, but fail significantly if  there are iterative sub-cycles since they do not tolerate 

feedback relationships.

Although the idea of representing the system architectural components and relationships 

in the form of a matrix is not new, the term “Design Structure Matrix” (DSM) was coined 

by Steward [22, 31] to denote a generic matrix-based model for project information flow 

analysis. Since then, the DSM is becoming a popular representation and analysis tool for 

system modeling, especially for purpose of decomposition and integration [26]. Because 

it can be used in many other areas, besides design, Stephen Denker, a member of Project 

Management Institute (PMI), termed it the “Dependency Structure Matrix.”

Since its original introduction by Steward in the 1980’s, the DSM has been extended to 

cover many application areas. Browning [26] presented four main DSM applications. 

These applications are summarized in Table 1. This research interest is activity-based 

DSM.

3 In this research, the term “Dependency Structure Matrix” is used instead of “Design Structure Matrix.”
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Table 1. Summary of DSM Characteristics.

DSM
Representation Application Integration 

Analysis viaCategory Type
St

at
ic

Component- 
Based or 
Architecture

Components in a product 
architecture and their 
relationships

System architecting, 
engineering, design, 
etc.

Clustering

Team-Based 
or Organization

Individuals, groups, or 
teams in an organization 
and their relationships

Organization design, 
interface management, 
application or 
appropriate integration 
mechanisms

Activity-Based Activities in a process Project scheduling, Sequencing,
T3O or Schedule and their inputs and activity sequencing, Partitioning,
% outputs cycle time reduction, and
PQ
A risk reduction, etc. Tearing
S Parameter-Based Parameters to determine Low-level process

H a design and their sequencing and
relationships integration

Ref. [26]

2.2 DSM M odel

The basic DSM is a simple binary4 n -square matrix - where n is the number of system 

components, with m non-empty elements - where m is the number of dependencies 

(information interfaces or couplings) among different system components. A sample 

DSM is shown in Fig. 5. In this example, the system under consideration is a design 

project that consists of 14 activities. So, the DSM is a 14x14 matrix. Project activity 

names are placed on the left-hand side of the matrix as row headings and across the top 

row as column headings in the same order (order of their execution)5. Off-diagonal marks 

(X) represent coupling (information flow, or dependency) between two activities. If an 

activity i depends on (receives information from) activity j  (where i , j  e ( l,n )), then the 

matrix cell ij (row i, column j )  contains an off diagonal mark (X) otherwise the cell is 

empty. As a result, reading across a single row of the DSM reveals information provided 

to the activity corresponding to that row (i.e. off-diagonal marks on that row correspond 

to activities whose output is required to perform the activity under consideration). On the

4 A cell can hold one of only two values (0, 1), or in other cases (“X” mark, empty cell).
5 A main DSM assumption is that activities are undertaken in the order listed from top to bottom.
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other hand, reading down a specific column reveals information flow from the activity 

corresponding to that column (i.e. which activity receive information from the activity 

under consideration). For example (illustrated in Fig. 6) activity 4 provides information to 

activity 1 (a feedback coupling) and to activity 7 (a feed-forward coupling), while 

receives information from activity 9 (a feedback coupling)

Marks below the diagonal (sub-diagonal marks) are indicative of feed-forward couplings 

(i.e. from upstream activities to downstream activities), while those above the diagonal 

(super-diagonal) represent feedback couplings (i.e. from downstream tasks to upstream 

activities)6. As they imply iterations, the latter type of couplings should be eliminated if 

possible or reduced to the maximum extent. If certain feedback couplings cannot be 

eliminated, the activities are grouped into iterative sub-cycles. For example, in Fig. 5 

activities (1,2,3), and (6,7,8,9,10) are grouped into two iterative sub-cycles (blocks).

Three basic types of activity interactions can be observed in Fig. 5: (1) Activity 4 and 

Activity 5 are ‘independent’ (can be carried out concurrently since no information in 

exchanged between them), (2) Activity 11 and Activity 12 are ‘dependent’ (they must be 

carried out sequentially, i.e. Activity 12 needs information (output) from Activity 11 to 

start), and (3) Activities 13 and 14 are ‘coupled’ (each activity needs information from 

the other) in this case Activities 13 and 14 are called a ‘circuit.’

6 The convention used in this research is the one proposed by Steward [22]. Other researchers (following 
Rogers [36]) used a reversed convention by placing feedback couplings below the diagonal, and feed 
forward couplings above the diagonal.
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2.3 DSM Analysis

The activity-based DSM7 provides an effective visual format for understanding and 

analyzing information flow-based projects such as integrated product development 

projects.

Generally, the application of an activity-based DSM involves the following steps:

1. Decomposition of the system under consideration into its smallest components 

(activities)8.

2. Defining the information flow interfaces (couplings) among these activities.

3. Analyzing the sequence of executing the activities with the goal of 

minimizing the feedback flow.

4. Grouping coupled activities into circuits (blocks or iterative sub-cycles).

Thus, a primary goal in basic DSM analysis is to minimize feedback couplings and their 

scope by restructuring or re-architecting the process [26], i.e. by re-sequencing the 

execution of activities to get the DSM into as low a triangular form as possible.

Steward [22] proposed a two-phase approach to achieve this goal. Phase one is called 

partitioning and phase two is called tearing. Partitioning is based on system structure and 

involves re-sequencing the DSM activities in order to: (1) eliminate feedback couplings 

as much as possible, (2) pull the rest o f the feedbacks close to the diagonal as possible, 

and finally (3) group the activities into blocks such that each block represents an iterative 

sub-cycle. In the second phase, tearing, each block resulted from phase one being 

considered individually. Tearing is based on the semantics of the systems and aims to 

relatively order the activities within each block to achieve the same previous objectives. 

Tearing involves the following steps: (1) choosing a set of feedback couplings that can be 

ignored based on the semantics of the system, (2) tearing these arcs so that no circuit 

exists, (3) re-ordering the activities within the block by partitioning, (4) if  new smaller 

nontrivial blocks result, then the process is to be repeated, otherwise stop. For further 

details, the reader is referred to [22, 31].

7 A time-based DSM. Through out this dissertation, the term DSM will be used to indicate an activity-based 
DSM.
8 The terms ‘Task’ and ‘Activity’ are used interchangeably in this research with the same meaning.
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In addition to the partition heuristic provided by Steward [22], several methods to 

determine iterative blocks are found in literature: the Path Searching method [32], the 

Reachability Matrix method [33], the Triangularization Algorithm [34], and the Powers 

o f the Adjacency Matrix Method.

Figure 7 is an illustrative example of this DSM analysis. Figure (a) shows the DSM 

corresponding to the original activity sequence. This sequence results in 6 feedback 

couplings. The partitioned DSM, shown in Fig. b, shows the existence of two iterative 

blocks: tasks 1-7, and tasks 2-3-6-9 respectively. Notice that the number of feedback 

couplings was reduced by one as a result of activity re-sequencing. The analysis 

proceeded with tearing of the second block (Fig. c), which resulted in further reduction of 

the feedback couplings to 4. With the possibility of further improvement, another tearing 

procedure was carried out on the same block, which resulted in the final DSM (Fig. d) 

with only 3 feedbacks brought as close as possible to the diagonal. It can be noticed from 

this example that achieving the activity final order in Steward’s approach is mainly 

dependent on the tearing phase that constitutes a major drawback here since: (1) this 

required high user interaction, and (2) there is no optimal method for tearing. In other 

words, the final solution is based on user experience and knowledge.

2.4 Related Work

Although the theory of DSM has been applied in many areas, most of its research work 

has focused on deploying DSM to manage engineering design projects [26, 35]. A large 

number of DSM-related analysis models were proposed in literature. But, for the sake of 

current research interest, reviewing the body of literature will focus mainly on available 

prototype DSM tools regardless of their application area.
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2.4.1 Design Manager’s Aid for Intelligent Decomposition with a Genetic Algorithm 

(DeMAID/GA)

In 1989, a new knowledge-based tool [36-38] was released to the public. This tool, called 

the Design Manager's Aid for Intelligent Decomposition (or DeMaid), was aimed at 

aiding the design manager understanding the interactions among different components of 

a large and complex system. This original version of DeMaid included functions for 

minimizing the feedback couplings; sequencing the deign processes; grouping processes 

into iterative sub-cycles; decomposing these sub-cycles into a hierarchical, multilevel 

structure for a design project; and displaying the sequence of processes in a (DSM) 

format [39]. Since its first release, DeMaid has witnessed many enhancements. In 1992, 

two enhancement were incorporated into it, these were: (1) an enhancement for enabling 

DeMaid to order the activities of an assembly line problem, and (2) an enhancement that 

allows the design manager to see what activities must be redone if a change is made in 

some input data [40]. A following major step was taken in 1994 by incorporating a new 

feature for DeMaid that allows the design manager to use coupling strength information 

to find a proper sequence for ordering the design activities [41].

A major shortcoming of DeMaid was basing its reordering procedure on barely reducing 

the number of feedbacks. But, the rapid expansion of Genetic Algorithms (GAs) 

applications has provided the basis for the next major enhancement, which is the addition 

of the GA to optimize the sequence of processes within an iterative sub-cycle. This GA 

examines a large number of orderings of processes in each iterative sub-cycle and 

optimizes the orderings based on cost, time and iteration requirements [42], The name 

thus became DeMaid/GA. Finally, two interface functions were added to DeMaid/GA 

[39]: (1) optional displaying of the DSM in Steward’s original format, and (2) the ability 

to save a file that can be input to other management tools (namely spreadsheets, and 

project management).
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2.4.2 Problem Solving Matrix (PSM 32)

PSM32 was developed in the 1990s by ‘Problematics, LLC9’. While DeMAID/GA 

operates in Unix and Macintosh environments, PSM32 operates in a Windows™ 

environment. The DSM is built through either the direct input of activities and 

dependencies to the matrix, or by importing a data file pre-configured for this purpose. 

The software is mainly the application of Steward’s methodology and has three main 

functions: (1) Partitioning, (2) Tearing, and (3) Impact/change tracing.

2.4.3 The Analytical Design Planning Technique (ADePT)

Over the period from 1994 to 2000, the Analytical Design Planning Technique (ADePT) 

was developed to offer an approach to planning construction design projects. The use of 

the ADePT methodology constitutes an important application of DSM analysis to highly 

complex design projects.

The ADePT methodology consists of three consecutive, yet integrated stages. The first 

stage involves modeling of the detailed design activities and their associated information 

requirements. The modeling process is based on a modified version of the IDEFQ 

methodology (for more details on this methodology refer to [43]) and breaks down the 

plan of work into five main disciplines (architecture, civil engineering, structural 

engineering, mechanical engineering, and electrical engineering). The data from the first 

stage is fed to an information dependency table that, in turn, is used to build a 

dependency structure matrix that constitutes the basis for the second stage. The second 

stage identifies iterations within the design process and arranges the activities (using a 

partitioning algorithm) with the objective of optimizing the task order. The third, and last 

stage, produces a design program (network) based on the partitioned DSM. The ADePT 

methodology requires some iteration between the second and third stages. Further

9 http://www.problematics.com
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detailed descriptions of the three stages of the ADePT methodology can be found in [35, 

43-45],

A related valuable research was conducted by Baldwin et al. [46], The paper presented a 

methodology that incorporates discrete event simulation, data flow diagrams, and DSM 

to help the planning and control of building design. Activity durations and resources are 

allocated along with any other specific constraints to evaluate the project schedule.

2.4.4 A Genetic Algorithm for Decomposition of Analyses (AGENDA)

A method for structuring problem activities with optimal ordering and decomposition 

into sub-problems was described in [47], Despite of the generality of the used method, in 

principle, the paper focused on organizing computational subroutines for 

multidisciplinary design optimization (MDO) problems.

The method defined a matrix called the Dependency Matrix, DM, to evaluate various 

functions of system performance. DM is an extension of Steward’s DSM with integers in 

the off-diagonal elements. The element DM(i, j )  corresponds to the number of outputs 

from subroutine i which are inputs to subroutine j .

The method further used Genetic Algorithms - as an optimization tool - and incorporated 

it into a computer program called AGENDA -  A GENetic algorithm for Decomposition 

of Analyses. AGENDA was applied to two types of problems: reordering, and 

decomposition. For reordering problems, the objective was to reduce the extent of 

feedback, or mathematically:

Objective =
i=2 y= l

which is explicitly the “total length of feedback” of the system.
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2.4.5 DSM@MIT

Following an extensive DSM research in the MIT, Cho [48] introduced an integrated 

project management framework. The basic modules of the framework are: structuring, 

modeling, and scheduling. The structuring module is a DSM-based analysis of the 

project. Activities are sequenced to have minimum feedbacks from a structural view (by 

partitioning). The module further determines different iterative blocks and levels of 

execution. In the modeling module, dynamic iterative processes are simulated along the 

time line. Furthermore, resource allocation takes place in this module. Finally the 

scheduling module uses the outcomes from the former two modules to construct a 

network-based schedule in the form of a PERT or Gantt chart with scheduled activity 

duration.

This framework was incorporated as an Excel add-in called “DSM@ MIT”; a product 

development process modeling and analysis tool using advanced simulation.

2.4.6 Other Models

A model based upon DSM to compute the expected duration of the iterative solution 

process and to suggest an initial ordering of the coupled design activities to minimize the 

expected duration was presented in [49]. The model handles sequential iteration 

relationships in design and assumes deterministic activity duration with probabilistic 

repetition.

The work transformation matrix, which is an extension to the DSM that considers 

iteration watching, was presented in [50]. The model presented determines which 

activities may be contributing the most to the iterative development.
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A DSM framework that estimates the probability of completing a product development 

process over time was presented in [51]. The tool can be used to compare the 

development time of project for different activity sequencing and overlapping degrees.

An algorithm, based on the DSM, was presented in [52] to recognize the coupled 

activities during the design process, to figure out the order levels of activities, and to re­

arrange the DSM into a lower triangular form (minimum feedbacks). But, the execution 

of the presented algorithm is lengthy and would consume tremendous computation time. 

Thus, it is not suitable for large-scale DSMs. While the presented algorithm requires 

several matrix manipulations to reach the solution, the reachability procedure determines 

coupled activities and places them in levels in the same step.

A project scheduling and rescheduling framework based on DSM for managing new 

product development projects was presented in [53]. In [54], a model was developed to:

(1) transform the binary activity relationships in a DSM into the quantifiable activity 

coupling strengths; and (2) decompose the large interdependent activity group into 

smaller and manageable sub-groups.

2.5 Critique

Among the DSM analysis prototype tools presented here, DeMAID/GA was the 

inspirational force beyond the presented research. DeMaid/GA is characterized by its 

high functionality in re-ordering the activity to an optimal (or near optimal) solution, 

decomposing the project into several sub-circuits. Furthermore, a rather important feature 

of DeMaid/GA is the ability to trace expected changes in the output as a result of a 

change in an input or more. But it should be noticed that: (1) the GA reordering 

optimization takes place after partitioning, i.e. it optimizes the order of activities within 

each circuit rather than optimizing the order of activities with respect to the system 

(DSM) as a whole, and (2) no resource allocation or resource availability considerations 

were incorporated.
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As discussed earlier in this chapter, PSM 32 is mainly the application of Steward’s 

methodology (partitioning and tearing). The software functions do not go beyond that so 

PSM: (1) does not include any optimization procedure for re-sequencing, and furthermore

(2) lacks an interface with a network-based scheduling module.

As DeMAID/GA, ADePT is a distinguished tool for applying the DSM methodology. 

ADePT is further characterized by taking construction design project as an application 

area (construction projects). But, the DSM analysis module in ADePT merely follows 

Steward’s methodology.

The only application that considered optimizing the sequence of all the activities within 

the DSM is AGENDA. But, as in PSM32, the analysis process ends in the form of an 

optimized DSM and there is no means for transforming it to a program.

While the previous prototypes were stand alone applications, DSM@MIT took DSM 

analysis a step further by being an Excel add-in implementation; a characteristic that 

permits taking advantage of already developed Microsoft tools.

Although these five prototypes are distinguished tools, and can help project managers 

much, the following can be noticed:

1. Three of them do not optimize the sequence of project activities. They only 

deploy Steward’s methodology to reach a better sequence with reduce number 

of feedback couplings.

2. The optimization (re-sequencing) of Altus et al. [47] was merely based on the 

total length of feedbacks and didn’t not consider task time and cost.

3. DeMaid/GA favors AGENDA by optimizing the activity sequence based on 

project total time and cost, but it assumes a deterministic time and cost for 

each task.

4. None of these tools consider hard (logical) constraints, i.e. they assume that an 

activity order can be changed freely.

Table 2 compares the different features of previously discussed prototypes.
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Table 2. Comparison of Different DSM Analysis Tools.

Tool
Feature DeMAID/GA PSM32 ADePT AGENDA DSM@MIT

Opt. Re-sequencing X X / X

Multi-Objective ■/ N/A N/A X N/A

Optimization Technique GA N/A N/A GA N/A

Time Considerations ✓ X In planning X X

Cost Considerations S X N/A X X

Uncertainty Considerations X X N/A X s  (PERT)

Resource Allocation X X ✓ X S

Coupling Strength ✓ X X X X

Rework Probability X X X X ✓

Commercial X

Heuristic-

X X X

Tools Integrated based (expert 
system)

N/A Simulation N/A Simulation
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2.6 Sum m ary

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an 

effective tool for analyzing and understanding system architecture, especially in product 

development. Hence, achieving improved performance. The use of the DSM is the 

cornerstone of the architecture proposed in the current research. This chapter provided a 

background on the DSM methodology, on the DSM model, and on the DSM analysis. In 

addition to several related DSM models found in literature, the chapter further reviewed 

five DSM prototype software related to the focus of the current research. These 

prototypes were briefly described, compared, and critiqued.
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CHAPTER III 

SIMULATED ANNEALING (SA)

3.1 Optimization

Optimization is “the act o f finding the best.'" The power of optimization methods is the 

ability to determine the best solution without actually testing all possible solutions (i.e. 

without enumeration). This power comes through the use of a modest level of 

mathematics and clearly defined logical procedures (algorithms). Mathematical 

Programming is a branch of Mathematical Modeling that is concerned with finding the 

best possible solution to a problem in which there are a number of conflicting 

considerations. To apply mathematical programming techniques to any system, it is 

necessary to clearly define the following:

1. Systems’ boundaries. The first decision to be taken by the analyst is to 

determine the system boundaries; those imaginary limits that isolate, and 

define, the system under consideration.

2. The quantitative measure(s) of performance. There must be a quantitative 

performance criterion - called the objective function, which forms the basis 

upon which candidate solutions - or system configurations - will be compared 

in order to find the best. In some cases, when it is not possible to choose only 

one criterion, a multi-objective function can be formulated. In such 

circumstances, the search will be aimed towards finding a satisfactory 

solution rather than an optimum one.

3. The independent variables. These variables (called decision variables) 

characterize possible systems’ operating conditions. And, thus, define its 

output represented by the objective function value.

4. Systems’ constraints. These direct the way by which decision variables’ 

values are chosen.
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Optimization problems can be mathematically formulated as problems requiring the 

minimization10 of a real-valued objective function f (X)  of an N -  component decision

variables vector X  = {xx,x2, ,xNf  whose values are restricted, and with restrictions on

the model to satisfy a number o f real-valued equations (called constraints). The vector X  

is called a solution or a configuration. The solution space is the set of all solutions. The 

objective function has to be defined on all solutions. That is, for any solution X  there 

exists f {X) .  Thus, the general mathematical programming problem (optimization 

problem) can be formulated as in Eq. (2).

Find X  =  ( x lyx 2 ,...... x N ) r  which
minimize f  (X) Objective Function
subject to hk (X) = 0 k = 1,2,..., AT Equality Constraints ^ )

g j  ( X )  < 0 j  - 1,2,...., J  Inequality Constraints

x\U) > Xi>x\L) i = 1,2 , . . . . ,  iV

This class of problems is known as constrained optimization problems. On the other 

hand, problems in which no constraints exist, i.e. J  = K  = 0 and x f ] = - x \L) = oo, are 

known as unconstrained optimization problems.

Optimization problems can be further classified into:

1. Based on equations nature,

a. Linear Programming Problems (LP), in the objective function and all 

constraints are linear functions of the decision variables.

b. Non-linear Programming Problems (NLP), if any of the function or the 

constraints is nonlinear.

c. Quadratic, is the objective function is quadratic.

2. Based on the decision variables nature,

a. Integer (IP or discrete), if  some (mixed) or all (pure integer) of the 

decision variables are restricted to take on only integer values.

3. Based on the deterministic nature o f the decision variables,

a. Deterministic.

10 A maximization problem can be solved by minimizing the negative of its objective function.
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b. Stochastic, in which some or all of the decision variables are 

probabilistic.

4. Based on the number of objective functions,

a. Single objective.

b. Multi-objective.

For detailed discussion on optimization, the reader is referred to [55-57].

3.2 Meta-Heuristics

In the field o f Operations Research, there are numerous numbers of combinatorial

optimization problems for which finding the exact optimal solution is computationally

time consuming. This class of problems is known as NP-hard. For such problems, an

organized search through the solution space is required, since an unguided search will be

extremely inefficient. Fortunately, decision makers in practice can accept a near-optimal

solution. Hence, Metaheurisitcs, one of the most recent developments in approximate

search methods, can play an important role. “Meta-heurisitcs have dramatically

developed since their inception in the early 1980’s. They have had widespread success in

attacking a variety of practical and difficult combinatorial optimization problems[58].”

This class of search (optimization) methods includes, but is not limited to Genetic

Algorithms, Simulated Annealing, Tabu Search, and Ant-Colony Algorithm. Osman &

Kelly [58] defined a meta-heuristic as:

“an interactive generation process which guides a subordinate heuristic by combining 
intelligently different concepts for exploring and expoliting the search spaces using 
learing strategies to structure information in order to find efficiently near-optimal 
solutions.”

The most attractive features of meta-heurisitcs may be simplicity and robustness. Thus, 

these methods can be deployed even in cases where complex mathematical models of the 

problem exist.
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3.3 Metropolis Algorithm

An algorithm that uses the Monte Carlo method to simulate the annealing process was 

proposed by Metropolis et al. [59]. For a given temperature T, the Metropolis algorithm 

samples the states of the system with the Boltzman distribution. Given the current state, 

S, of the crystal solid, characterized by the position of its molecules (i.e. configuration), a 

small perturbation is applied by a small displacement of a randomly chosen molecule. 

The new, perturbed state, is accepted if  either: (1) the energy difference between the 

current state and the new state - Eq. (3) - is negative, i.e. the new perturbed state is of a 

lower energy, or (2) equation (4) holds. The second acceptance rule is known as the 

Metropolis Criterion. When the perturbation is accepted, the process continues with the 

perturbed state replacing the old one, otherwise the old state is maintained and a new 

perturbation is attempted. The process stops when thermal equilibrium is reached. The 

Metropolis procedure is presented in Fig. 8.

~  ^ n e w _ s ta te  ~~ ^ c u r r e n t_ state  0 )

(— >e T >6 (4)

where

T : the control parameter (temperature)

6 : a random number between 0 and 1

3.4 The Simulated Annealing Algorithm

3.4.1 Background

Simulated Annealing (SA) is a meta-heuristic algorithm that can provide near-optimal 

solutions to hard combinatorial optimization problems. SA has its origin in statistical 

mechanics. As its name implies, SA exploits an analogy between the annealing process of 

solids and solving combinatorial optimization problems. The interest began with the work 

of Kirkpatrick et al. [60, 61], and independently Cemy [62]. Since then, SA has been 

applied to a large number of operations research problems, such as cell formation [63],
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scheduling with resource constraints [64], scheduling with multi-level product structure 

[65], lot sizing [66, 67], and machine conditioning [68]. A good survey of SA application 

can be found in [69].

p r o c e d u r e  Metropolis Algorithm; 
S  : =  S 0 ; {initial solution} 

r e p e a t
S'= perturb(S ) ;
A = E ( S ' ) - E ( S ) ;
0  — random[ 0,1);

prob  =  e~A / r ; 

i f  A <  0 or prob > 6  
t h e n  S : = S ’ 
e l s e  retain S ; 

u n t i l  stopping criterion is met; 
end;

S The current solution. The initial solution, S0,
is a feasible solution generated either 
randomly or through using some heuristics.

perturb A function that generates a new neighboring
solution, S' e N ( S ) , through introducing 
some small perturbation to the current 
solution, S .

random A random number generator.

Figure 8. Metropolis Algorithm.

3.4.2 Physical Annealing

Annealing is a formal term for the ancient art of heating then cooling materials to forge 

pottery, tools, weapons, and works of art. The process consists of the following phases: 

(1) melting the solid material by increasing its temperature to a m axim um value at which 

all molecules of the molten material randomly arrange themselves in a liquid phase; (2)
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the liquid material is then cooled according to a precise cooling schedule: the temperature 

descends slowly through a series of intermediate temperatures, and at each temperature, 

the molten material is kept long enough to reach thermal equilibrium (meta-stable 

condition); and (3) the cooling process continues until the desired solid phase, the perfect 

lattice structure, is achieved. The material now is said to reach a frozen (a low energy 

ground) state. Rapid cooling, i.e. reaching the lowest ground state without allowing the 

liquid material to have a thermal equilibrium at the intermediate temperature values, can 

result in widespread imperfections within the crystal structure of the material. This 

process is known as ‘'quenching.'

3.4.3 The Algorithm

Simulated annealing is a stochastic optimization technique. It constructs a sequence of 

solution configurations (a walk or path) through the set of permissible solutions called the 

state space. Based on the current solution and a certain acceptance criterion, a transition 

mechanism determines which solution to step up to next. The optimal solution steps from 

the current configuration to another configuration from its neighborhood according to the 

Metropolis criterion. The simulated annealing algorithm is presented in Fig. 9.

The basic structure for SA implementation consists of the following basic elements:

1. A representation of possible solution configurations (search space).

2. A generation mechanism11.

3 . A means of evaluating the problem objective function (energy).

4. A cooling (annealing) schedule.

Figure 10 illustrates the flow chart of a standard SA algorithm.

11 A generation mechanism is a means of selecting a new solution from the neighborhood of the current 
solution.
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p r o c e d u r e  Simulated Annealing;
{Naive Simulated Annealing Algorithm}
S : = S 0 ; {initial solution}
T := T0 ; {initial temperature}

r e p e a t
r e p e a t

S'= perturb(S) ;
A = E ( S ' ) - E ( S ) ;
9  = random[0,1) ;

prob = e~AIT;
i f  A < Oor prob > 6
t h e n  S  := S'
e l s e  retain S ;

u n t i l  inner loop stopping criterion is met;
T = updatae{T);

u n t i l  outer loop stopping criterion is met;
e n d ;

T The control parameter.

update Cooling schedule function.

Figure 9. Generic Simulated Annealing Algorithm.

A. Generation Mechanism (Neighborhood Moves')

The standard implementation of the SA algorithm is one in which homogeneous Markov 

chains of finite length are generated at decreasing temperatures. In SA context, a 

homogeneous Markov chain is a series of random changes in the control variables. The 

SA algorithm consists of a sequence of iterations. At each iteration, the current solution is 

randomly perturbed to create a new solution in its neighborhood. Thus, the way in which 

new solutions are generated plays a very important role in the SA algorithm. The solution 

generating technique should (1) introduce small random changes in such a way that the 

generated solution is feasible, and (2) allow all possible solutions in the neighborhood to 

be examined. For the scope of this dissertation, the discussion of solution generation 

techniques shall not be extended. However, for problems with continuous control 

variables, suggestions can be found in [70, 71]. On the other hand, for combinatorial 

optimization problems, the solution representation and generation mechanism(s) are
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necessarily problem-specific. It is common for the move set to permute a small, randomly 

chosen, part of the solution. For example, a move set has been suggested by Lin [72] for 

the traveling salesman problem.

E s t a b l i s h  t h e  C o n t r o l

A c c e p t ?

Y eN o

N o

p d a t e
•No

A d j u s t  T e m p e r a t u r e

T e r m  in a t e  
^ S e a r c h ?

U p d a t e s t  S o l u t i o n

E v a l u a t e  t h e  P r o p o s e d  S o l u t i o n

G e n e r a t e  a  N e i g h b o r i n g  S o l u t i o n

S o l u t i o n

C u r r e n t  S o l u t i o n

Y e s

F i n a l  
S o l u t i o n

(  S t ° P  ^

Figure 10. Flowchart o f the Standard (Naive) SA Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

6. Objective Function Evaluation

One important characteristic of the SA algorithm is that it does not require or deduce 

derivative information. It merely needs to be supplied with an objective function value 

for each trial solution it generates. Thus, the evaluation of the problem functions is 

essentially a 'black box' operation as far as the optimization algorithm is concerned (See 

Fig. 11). On the other hand, it is so important that the objective function evaluations 

should be performed efficiently for the sake of the overall computational efficiency, 

especially in many applications where these functions are complex and can overwhelm 

the most computationally intensive activity.

Solution 
Configuration, S

M athem atical M odel O bjective Function,

Solution Updating / 
Stopping Criterion

Optimum Solution 
Configuration 

   ►

Generation Mechanism

Figure 11. Black Box Optimization.

C. Cooling (Annealing) Schedule

The objective of the cooling schedule is to achieve a finite-time implementation of the 

SA algorithm. It determines the degree of uphill or downhill movement permitted during 

the search and is, thus, critical to the algorithm's performance. But, "choosing an 

annealing schedule for practical purposes is still something o f  a black art." Bonds [73] In 

designing the cooling schedule, four rules have to be specified:

1. An initial temperature, T0,

2. A rule for decrementing the temperature,
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3. A final temperature, Tf , or stopping criterion, and

4. A length for the Markov chains.

While the first three rules manage a finite sequence of the control parameter (the 

temperature), the fourth rule manages a finite sequence of transitions at each value of the 

control parameter.

Initial Temperature

The selection of the initial temperature T0 is critical. On one hand, the value of T0 should 

be high enough to allow all, or most, transitions to be accepted. This, of course, would 

result in a lot of consumed time in the beginning of the process without progress towards 

the optimal solution. But, on the other hand, a low initial temperature would reduce the 

quality of the final solution.

Kirkpatrick [74] suggested that a suitable initial temperature T0 is one that results in an 

initial acceptance ratio; x(T0) , of about 0.8 (In other words, there is an 80 percent chance 

that a change which increases the objective function will be accepted). Equation (5) 

determines the acceptance ration at any level k .

x(Tt ) = [(number o f  accepted transitions)/{number o f proposed transitions)]r (5)

Since the value of T0 depends on the scaling of the objective function, E , and, hence, 

must be problem-specific, it can be estimated by conducting an initial search in which all 

increases are accepted, and calculating the average objective function increase observed. 

An approximation of T0is then given by Eq. (6).

— (+>

r0 —  (6)
ln (x (r0))
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Decrementing the Temperature

The simplest and most common temperature decrement rule is given by Eq. (7). This 

exponential cooling scheme (ECS) was first proposed with a = 0.95 [60]. In Randelman & 

Grest [75], this strategy was compared with a linear cooling scheme (LCS) in which T is 

reduced every L trials according to Eq. (8). The results suggested that reductions 

achieved using the two schemes were comparable and also noted that the final value of 

the objective function was, in general, improved with slower cooling rates, at the 

expense, of course, of greater computational effort. Finally, it was observed that the 

algorithm performance depends more on the cooling rate (AT/L) than on the individual 

values of AT and L . Obviously, care must be taken to avoid negative temperatures when 

using the LCS.

Tk+l=aTk , * = 1,2,...., (7)

where

a is a constant close to, but smaller than, one.

Tk+1=Tk -AT  . (8)

Many researchers have proposed more elaborate annealing schedules, most of which are 

in some respect adaptive, using statistical measures o f the algorithm's current 

performance to modify its control parameter. These are well reviewed by Van Laarhoven 

& Aarts [76],

Final Temperature

For simple implementations of the SA algorithm, the final temperature can be determined 

by fixing either the number of temperature values to be used or the total number of 

solutions to be generated. Alternatively, the search can be stopped when it ceases to make 

progress. One of the methods used to define lack of progress is when no improvement 

(i.e. no new best solution) is found in an entire Markov chain at one temperature.
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Length of Markov Chains

The length of the k -th Markov chain, Lk , is based on the number of transitions needed to 

achieve a quasi-equilibrium at each value Tk .  Lk depends on the size and nature of the 

problem, and is independent of k (homogeneous Markov chains). In practice, the Markov 

chain is usually bounded by either 1- some constant Z transitions, or 2- a minimum 

number of accepted transitions , whichever comes first.

3.5 SA: Pros and Cons

Simulated Annealing has been widely used for tackling different combinatorial 

optimization problems [77]. Depending on the problem to which it is applied, SA appears 

competitive with many of the best heuristics, as shown in the work of Johnson & 

McGeoch [78].

As any other optimization technique, SA has its own advantages and disadvantages. 

Among its advantages are: (1) relative ease of implementation, (2) its wide range of 

applications, (3) the ability to provide reasonably good solutions for most problems, (4) 

can be combined with other techniques, and (5) its robustness [77]. Moreover, SA 

statistically guarantees finding an optimal solution [79], However, the standard SA has 

its critics. Some of the drawbacks are: (1) being time consuming, (2) difficult to fine tune 

to specific problems, and (3) being short on mathematical rigor [79, 80],

3.5.1 Simulated Annealing vs. Local Search

Classical neighborhood (or local search) methods form a general class of approximate 

heuristics based on the concept of exploring the neighborhood of the current solution. 

Neighboring solutions are generated via a specified generation mechanism, and the 

algorithm accepts only those neighborhood moves that lead to incremental improvement 

of the objective function. As shown in Fig. 12, for a minimization problem, only moves
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that decrease the objective function value (i.e. moving down hill) are accepted. Thus, the 

inherent problems with this class of algorithms are: (1) they can be easily trapped in local 

optima, and (2) they depend entirely of the initial solution. On the other hand, by 

allowing perturbations to move to a worse solution with according to a controlled 

mechanism, SA, as shown in Fig. 13, is able to avoid local optima and potentially finds a 

more promising downhill path. Although finding the global optima with SA is not fully 

guaranteed, SA provides a near-optimal solution. Furthermore, these accepted uphill 

moves provide solutions independent of the initial solution.

«o
S3
ort
3

>
S3
u

Q  current solution

downhill
moveO

a local
minimalocal

minima

minima

Solution, S

Figure 12. Local Search.
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a©
M3

Uphill

£33 current solution

>
M3U

downhillO

a  local

local

Solution, S

Figure 13. Simulated Annealing.

3.6 Sum m ary

There are numerous numbers of combinatorial optimization problems for which finding 

the exact optimal solution is time consuming. For such problems, finding a near-optimal 

solution is satisfactory. The current research adopts a meta-heuristic algorithm -  called 

Simulated Annealing (SA) - that can be used to tackle such problems. This chapter 

provided fundamental description of simulated annealing. Its algorithmic steps were 

explained and insights into the optimization process were given. A brief description of 

SA optimization process compared to classical local search algorithms was presented. 

The ability of the SA algorithm to avoid being trapped in local optima, in addition to its 

robustness, provided the justification for using it as the optimization tool in the presented 

architecture.
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CHAPTER IV 

SIMULATION-BASED OPTIMIZATION

4.1 Simulation

sim-u-la-tion (plural sim-u-la-tions) noun12
1. reproduction of features of something: the reproduction of the essential 
features of something, for example, as an aid to study or training
2. false appearance: the imitation or feigning of something
3. fake: an artificial or imitation object
4. Computing Statistics: the construction of a mathematical model to reproduce 
the characteristics of a phenomenon, system, or process, often using a computer, 
in order to infer information or solve problems

For a long time, simulation has served as an important decision-support tool in a wide

variety of disciplines. Simulation was defined in [82] as:

“ a numerical technique for conducting experiments on a digital computer, which 
involves types of mathematical and logical models that describe the behavior of business 
or economic system (or some component thereof) over extended periods of real time.” 

This definition contains several important terms that define the main characteristics of

simulation:

1. Simulation, of our interest, is numerical.

2. It requires extensive calculation time, so a computer is needed.

3. It requires some kind of mathematical and/or logical modeling.

4. It can be applied to a broad variety of disciplines.

Simulation provides an alternative to analytical solution procedures [83]. Generally, the 

process of simulation involves modeling the system of interest in an appropriate form and 

then executing this model to obtain operational information. Figure 14 presents the flow 

chart of a typical simulation process. Computer simulation models are classified into 

several categories. The study here considers stochastic simulations, in which different 

components and variables of the model are subject to uncertainty factors. For further 

details, refer to Law & Kelton [84].

12 [81]
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Figure 14. System Experimentation with Simulation. (Reference: [83]).

4.2 Advantages and D isadvantages

Although simulation has been, and is sometimes still viewed as analyst ‘last choice’ to be 

employed when all other optimization techniques are inapplicable, recent advances in 

simulation methodologies, software development, stochastic optimization, and the great 

breakthrough in computing capabilities would make simulation “one o f the most widely
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accepted and practiced tools in systems analysis and operations research [85].” 

Motivations for using simulation includes:

1. The increase in complexity of large-scale systems, which makes the 

formulation of a mathematical model, and hence solving it, a difficult task.

2. In some cases, the degree of simplification needed would seriously affect 

quality of the obtained solution.

3. The relative simplicity of simulation models leads to a better understanding of 

the real system.

But, on the other hand, simulation has its own associated limitations, some are:

1. The output provided is an approximate solution rather than an exact one.

2. For large-scale simulations, the development of the model can be both time 

and effort consuming.

For further discussion refer to [85-87].

4.3 Uncertainty Analysis

Risk is often viewed as the probability of an undesired or harmful event. The connection 

to probability is implied by the uncertainty in the occurrence of the event. Uncertainty is 

defined, in a statistical or probabilistic context, as “the implication that uncertainty exists 

when the probability o f an event occurring is not zero or one [88].” Uncertainty analysis 

is the part of risk assessment that focuses on the uncertainties in the assessment. 

Uncertainty analysis includes both a qualitative component in which uncertainties are 

identified and quantitative component of the effects of these uncertainties [89].

From a modeling view point, uncertainty is categorized into: structural (refers to 

uncertainty due to lack of knowledge about the correct model); parameter (associated 

with the uncertainty introduced by having to use values of model parameters that are not 

surely known); and stochasticity (occurs when parameters or other quantities are not 

fixed but may vary [89]. In quantitative analysis, measuring uncertainty is based on some 

statistical measures of the distribution describing it. The most common measure is the 

variance, which describes how an estimated parameter would vary in repeated sampling.
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4.4 M onte Carlo Simulation

The theoretical basis of the Monte Carlo (MC) method has long been known, but it traces 

its modem origin and name to the work of von Neumann and Ulam in the late 1940’s 

when they coined the term during the Manhattan Project of World War II in their article 

entitled “The Monte Carlo Method13.” The method gets its name as a result of the 

similarity of probabilistic simulation to games of chance and gambling, and because of 

the famous Mediterranean resort associated with these games (the capital of Monaco). 

Sobol [91] stated the general objective of MC by the following definition:

“The Monte Carlo method is a method of approximately solving mathematical and 

physical problems by simulation of random quantities.”

In contrast to conventional numerical discretization methods, which typically applied to 

ordinary or partial differential equations that describe the system of interest, the 

application of MC requires only that the system be described by probability density 

functions. Monte Carlo simulation then proceeds by random sampling from these pdfs 

(using some random number generators) to generate an artificial history data. The 

random numbers generated are further used in calculations to duplicate the expected 

system outputs. The method is relatively simple in concept.

Figure 15 illustrates the idea of MC simulation. The process goes as follows:

1. The system of interest is being modeled, this includes defining input variables, 

and output measures. Then, a probability density function is assigned to each 

input variable.

2. MC generates random numbers uniformly distributed on the interval [0,1].

3. These random numbers are then transformed by the p d fs  to generate 

stochastic input values.

4. The values are fed to the model to determine the output measure.

5. Finally, the outputs are accumulated to produce the desired results.

13 Reference [90]
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It is worth mentioning here that the wide spread use of MC is linked directly to the 

breakthrough of computational capabilities of computers. Despite of the simplicity of its 

computational algorithm structure, MC was not widely applicable prior to the appearance 

of computers, since the simulation or random variables by hand is a very exhaustive 

process. Furthermore, one main feature of MC method is that: since the error expected 

from calculations can be defined by Eq. (9) where D  is some constant and N  is the 

number of trials. A sufficiently large number of trials is required in order to attain high 

precision in MC,.

error = p i ]  (9)

Random Numbers 
Generated on [0,1]

Probability Density 
Functions

Model Execution

Results Collection 
and Analysis

Figure 15. Monte Carlo Simulation.
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4.5 Interfacing Optimization Methods with Simulation

Suri [92] divided the field of models into two main categories: (1) generative techniques 

such as linear programming, and (2) evaluative techniques such as simulation. A 

generative technique will show the optimum solution when given the input of parameters 

and constraints. On the other hand, simulation, which is an evaluative technique, is quite 

different. It only shows the outcome of an operation given that certain variables are put 

into the model. In this case, the model is handled as a black box. While the use of 

generative techniques might require certain (sometimes unrealistic) assumptions, 

simulation models can incorporate a greater level of details and capture specific features 

of the real system, such as time dynamics and overall behavior. “But using simulation 

models only for descriptive purposes does not alone justify the effort to build them [93].” 

In real life application, a typical decision-maker would like to have answers to many

“ what-if ”  questions, i.e. what will be the effect on the model output when some

parameters are changed. The goal here is either to fine-tune the system in reality, or to 

take further chances (risks, or uncertainty) into consideration. Thus, the question arises: 

instead of using rudimentary optimization techniques, like trial and error, can a more 

effective optimization method be implemented to guide the simulation process? And, if 

the answer is yes, which method or family of methods is best suitable for this purpose? 

Why do we need to implement an efficient optimization method rather than simply trial 

and error? The answer is that simulation optimization models has the following 

unpleasant features [94-97]:

° Model behavior is very complex -  a result of its high non-linearity.

° Noisy model output -  simulation models are stochastic in nature, thus their

output is not deterministic with respect to the model parameters.

° The parameter space is not continuous -  often there is a need for discrete 

parameters such as integer, logical or linguistic.

° The search space is relatively large.

Performance measures could have many extrema or there could be multiple global 

solutions with the same value.
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4.6 Related Work

Recently, there has been considerable research devoted to finding methods to optimize a 

simulation [84]. As will be discussed later in this chapter, these methods generally 

involve guiding a sequence of simulation runs by supplying the simulation model with a 

set of system configurations, with the results from simulating earlier configurations being 

used to suggest a new promising direction in the search space. Sufficient background on 

this issue is provided in [98-100].

For many years, using optimization methods to guide a sequence of simulations or simply 

‘Simulation Optimization' has challenged researchers. Simulation is an expensive tool (in 

terms of both time and cost), thus, optimization has to be achieved with as minimal 

number of runs as possible. In literature, simulation optimization using response surface 

methods and finite differences approximation of the gradient have been reported, but still, 

“the number of computer runs needed for these method can be very large [101].” By 

reviewing the bulk of literature related to simulation optimization, the optimization 

methods used in simulation can be categorized as follows:

1. Classical methods,

a. Gradient search methods.

b. Pattern Search techniques.

c. Deterministic search techniques.

2. Stochastic Approximations.

3. Artificial Intelligent,

a. Evolutionary Techniques.

b. Meta-heuristics.

Table 3 provides a summary of publication in each of the previous categories. Additional 

surveys are found in [94, 95, 102], The table suggests that most of the research was 

devoted to using classical methods and stochastic approximation methods. But, 

recognizing the limitation of these methods, researchers started to investigate different 

techniques, which can achieve preferable results with less time. These methods (which 

align the focus of our research here) are known as meta-heuristic techniques. Compared
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to other methods, it seems that the attention of using meta-heuristics in simulation 

optimization started relatively late.

In [103], genetic search was compared to two other algorithms; the pattern search (using 

the Hooke-Jeeves algorithm) and the response surface method search. The comparison of 

these three algorithms was based on accuracy (how close the algorithm comes to the 

optimum) and stability (lower variability). The authors tested the three methods on an 

example problem common in simulation with its optimum determined by exhaustive 

search. The results showed that genetic algorithm executes a superior search compared to 

pattern and response surface search, taking into consideration that the speed of the search 

was not a critical factor in the evaluation the algorithms. An attempt to apply genetic 

algorithms (GAs) to the problem of optimizing an existing simulation model was done by 

[93]; where a simple real-coded GA was presented and used to change the simulation 

model parameters. Azzaro-Pantel et al. [104] presented a two-stage methodology for 

solving industrial-size scheduling. The first step involved the development of a discrete- 

event simulation (DES) model and the second step used GA for optimization. In a 

following research, Azadivar & Tompkins [105] developed a methodology that allows 

qualitative variables to be optimized in a manufacturing system using simulation- 

optimization. The proposed methodology used a GA coupled with an automatic object- 

oriented simulation-model generator.

One of the most famous software that employs meta-heuristics in simulation optimization 

is ‘OptQuest’ (developed by OptTec Systems, Inc.). This software uses Tabu and Scatter 

search methods linked to a famous risk analysis tool ‘Crystal Ball’ (developed by 

Decision Engineering, Inc.). The software, described in [106], effectively integrates 

Crystal Ball simulation and optimization. The ability of the system to find optimal and 

near optimal solutions in minutes for applications where an exhaustive examination of 

relevant alternatives requires days or months was also demonstrated. In Laguna [107], 

description and comparison of the functionality of three general-purpose optimizers that 

implement meta-heuristic algorithms were provided. These optimizers are: (1) Evolver: a 

commercial genetic-algorithm software that in its most simple form operates as an add-in
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function to Microsoft Excel; (2) Genocop: an experimental genetic algorithm 

implementation; and (3) OptQuest: based on the scatter search methodology, has been 

commercially implemented to add optimization capabilities to simulation software.

Regarding Simulated Annealing (SA), Bulgak & Sanders [108] integrated an extension of 

the simulated annealing algorithm with a discrete event simulation of the manufacturing 

system to find optimal buffer sizes for asynchronous assembly systems which involve 

automated inspection as well as automated assembly. The basic idea in this modified 

version of SA is to make the comparisons based on whether or not the values of the 

objective function indicate statistically significant (based the confidence intervals set for 

these values) differences at each iteration. A theoretical analysis for the SA algorithm 

when the objective function includes noise was presented in [109], SA was further 

applied to a stochastic optimization problem in [110]. This approach, however, made it 

necessary to store all feasible solutions encountered during the execution of the algorithm 

and to compare them with each newly generated solution. Thus, this approach can be 

considered not realistic for practical applications since a high computational burden is 

involved.

Haddock & Mittenthal [111] attempted to investigate the feasibility of using a simulated 

annealing algorithm in conjunction with a simulation model to optimize a non-convex, 

non-concave objective function of the input parameters. Multiple runs of the simulated 

annealing algorithm were used to find an optimal or near-optimal solution to the problem. 

The experiment considered a relatively small number of decision variables. The authors 

treated the point estimate coming from the simulation output as a deterministic value and 

used it in the simulated annealing algorithm to obtain the optimal solution point. When 

comparing two solution points, one cannot draw a conclusion and make a decision based 

on point estimate analysis only, even when steady states behavior have been reached, 

without running a large number of simulations [112], Simulated annealing was applied to 

a flow shop scheduling problem with stochastic processing time in [113]. A less accurate 

estimate based on fewer simulations was used. Thus, in order to overcome this low 

accuracy, strategies were developed for taking this into account in the
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rej ection/acceptance criteria. The paper described four variants of the basic SA algorithm 

representing these strategies and presented computational experience based on the use of 

these methods in the solution of stochastic flow shop scheduling problem. The classical 

convergence result for the SA algorithm to the case where cost function observations are 

disturbed by random noise was generalized in [114].

In Ahmed et al. [115], a simulation-optimization integrated approach to determine the 

design parameters of stochastically constrained systems was presented. A simulated 

annealing algorithm with modified rej ection/acceptance criterion (that takes into 

consideration the stochastic nature of the system) was used to solve the optimization 

model (discrete integer). In Alkhamis et al. [112], the basic convergence results for the 

Simulated Annealing (SA) algorithm was extended to a stochastic optimization problem 

where the objective function is stochastic and can be evaluated only through Monte Carlo 

simulation (hence, disturbed with random error). Ahmed & Alkhamis [116] Presented a 

new iterative method that combines the simulated annealing method and the ranking and 

selection procedures for solving discrete stochastic optimization problems. Unlike the 

original SA, the presented procedure is guaranteed to converge almost surely to a global 

optimal solution (The original SA method is only guaranteed to converge in probability). 

It should be noted that most methods for discrete case mentioned so far have been applied 

and developed for unconstrained optimization problems [115].
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Table 3. Summary of various simulation-based optimization research.

Category Methods References*

Gradient search 
Methods

98, 117-122

Pattern Search 
Techniques

Conjugate direction search—Coordinate 
search—Hooke and Jeeves—Parallel tangent 
search—Simplex-based techniques- 
Steepest Ascent (descent))

123 -125

Deterministic 
Search Techniques

Response surface method— Simple search 
techniques

126-132

Stochastic
approximation

Kiefer-Wolfowitz Type techniques— 
Robbins-Monro Type Techniques)

94, 95, 101,133 - 143

MetaHeuristics Simulated Annealing 111, 112,115, 116

Genetic Algorithms 93, 104,105

Tabu Search 
Scatter Search

106, 107

Evolutionary
Techniques

145

* The references in the table are representative of the type of solution; this table does not contain an 
exhaustive list of published works

4.7 Summary

Although uncertainty in the estimation of activity durations (and cost) cannot be 

eliminated, its effect can be reduced by incorporating it in the model. One method for 

handling uncertainty is the use of Monte Carlo (MC) simulation. This chapter briefly 

presented MC basic operation. Since the presented architecture in this research involves a 

simulation-based optimization framework, the chapter further reviewed work related to 

interfacing optimization methods with simulation.
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CHAPTER V 

TIME-COST TRADE-OFF IN PROJECT NETWORKS

5.1 Project Management

A project can be defined as “a group o f tasks performed in a definable time period in 

order to meet a specific set o f objectives [145].” Or, as defined in [146], ‘‘an endeavor to 

accomplish a specific objective through a unique set o f interrelated tasks and the 

effective utilization o f resources. ” Generally, a project exhibits most of the following 

conditions:

1. It is likely to be a unique, one-time program.

2. It has a well-defined objective stated in terms of scope, schedule, and cost.

3. It has a specific time frame, a life cycle or a finite life span. In other 

words, a project must have a start time and a date by which the objective 

must be accomplished.

4. A project is carried out through a series of independent tasks - that is, a 

number of non-repetitive tasks that need to be accomplished in a certain 

sequence in order to achieve the project objective.

5. A project utilizes various resources to carry out the tasks.

6. It has a budget.

7. A proj ect involves a degree of uncertainty.

The management of a project is quite different from the management of a continuing

operation. The generally accepted definition of management is

“the planning, organizing, directing, and controlling of company resources to meet the 
company’s financial and non-financial objectives.”

Project management, on the other hand, can be defined as:

1. “the application of knowledge, skills, tools, and techniques to project activities in order to 
meet or exceed stakeholder needs and expectations from a project [147],”

2. "the planning, organizing, directing, and controlling of resources for a specific time period 
to meet a specific set of one-time objectives [148], ” Or
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3. “the process of managing, allocating, and timing resources in order to achieve a given 
objective in an expedient manner [145], ”

From these definitions, two major differences appear between the two kinds of 

management: (1) in project management the manager is not directly responsible for 

staffing and must use and direct resources from other components or companies, and (2) 

project management concerns about “specific time period” to meet “one-time 

objectives”.

Project management involves a process of first establishing a plan and then implementing 

that plan to accomplish the project objective. Once the project starts, the project 

management process involves monitoring progress to ensure that everything is going 

according to plan. The ultimate benefit of implementing project management techniques 

is having a satisfied customer. Completing the full scope of work of the project in a 

quality manner, on time, and within budget provides a great feeling of satisfaction. Thus, 

meeting the project objective(s) involves compromising competing demands on: scope, 

time, cost, and quality.

There are three project management techniques that are commonly used:

1. Critical Path Method (CPM). A mathematical model that calculates the total 

duration of a project based on individual task durations and dependencies, and 

identifies which tasks are critical. This model is the fundamental scheduling 

method used in project management software today.

2. Program Evaluation Review Technique (PERT). Uses statistical probabilities 

to calculate expected durations.

3. Gantt chart. A way to graphically represent activities across a time scale.

5.2 Project Management in M anufacturing

“Manufacturing is the act o f making something through deliberate processing from raw 

material to the desired object, usually with the use o f machinery [149].” This act 

encompasses several functions that must be strategically planned, organized, scheduled,
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controlled, and terminated. A manufacturing cycle includes, but is not limited to, such 

functions as forecasting, decision analysis, cost analysis, inventory control, process 

planning, machine scheduling, quality control, production planning, process control, 

work and time analysis, and a host of other functions. These are all functions that fall 

within the planning, organizing, scheduling, and control functions of project 

management.

Through the years, the Critical Path Method (or CPM) has been used for many 

applications, such as effective project planning, identification of bottlenecks; 

communications improvement; and resource allocation. And despite the fact that the 

widespread use of CPM was mainly achieved by, and for, construction applications, CPM 

is equally suitable for planning any one-time project involved in the manufacturing such 

as setting up a new department, new product innovation, research and development 

projects, and most importantly the manufacturing of a large and complex product (an 

aircraft for example).

Project management is characterized by qualified collaborators and by suitable planning 

and controlling methods. The strong point of the management concept for innovation 

projects lies in the formulation of the activity and in the clear representation of the project 

situation. Heuer [150] discussed the applications of project management in mechanical 

engineering, planning and controlling of industrial intentions. The failure of some newly 

installed manufacturing systems to live up to their pre-installation expectations has been 

blamed on a number of factors. One overriding factor is poor project planning. Brown 

[151] applied Project management to the design and supply of a power station’s 

mechanical and electrical plant. Feldermann [152] described the setup and the concept of 

an effective project planning and control in the manufacturing area. There is a dramatic 

rise in the use of project management as organization shift to provide customer-driven 

results and systems solutions. Actions that upper managers can take to create an 

environment for more successful projects in their organizations were reviewed in [153].
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New product development best practice models advocate the integration of teamwork; 

simultaneous engineering tools and techniques; and process and project management. 

The design of models is relatively straightforward compared to the implementation of 

these models which is significantly more difficult. Boznak [154] discussed the role that 

project management could play in employing company strategies to reduce new product 

development time. In Churchill [155], the principles behind quality assurance as an 

effective strategy for management of large-scale capital projects were discussed. It is of 

vital importance for the manufacturing industry to respond to the requirements of the 

market in a flexible, cost favorable and above all quick way. In Beghini & Romanin 

[156], an integration among the solutions of the problems concerning project planning, 

material purchasing and information exchange in a firm working by orders was studied. 

A new discipline that faces the project evolution starting from the feasibility study up to 

the production delivery was developed. An interpretative model that explains firms’ 

dynamic behavior in multi-project management of new product development was 

proposed in [157], The model could be used as a unique and homogeneous framework 

that supports the processes of project selection, resource allocation, risk management, 

priority management and ongoing control.

In [158], the conception of an integrated product and process model was introduced 

which is particularly suitable for areas of project management, design, and assembly 

planning. A novel approach supporting administrative tasks within the lifecycle of design 

projects was presented in [159]. The approach was based upon comprehensive models of 

design environments and design activities and combined known techniques from project 

management and mechanisms for design flow control.

5.3 Project Crashing and Time-Cost Trade-Off (TCTO)

There are three main points that are most important to a successful project: (1) a project 

must meet the customer requirements, (2) it has to be within budget, and (3) it has to be 

on time. Furthermore, project managers in addition to scheduling projects, are frequently 

confronted with the problem of having to reduce the scheduled completion time
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(indicated by the CPM or PERT network analysis) to meet a pre-specified deadline.

Project duration reduction (or project crashing) can be achieved by assigning more

resources (labor, material, equipment, etc.) to some critical activities of the project.

Taylor III [160] defined project crashing as:

“a method for shortening the project duration by reducing the time of one or more of the 
critical project activities to a time that is less than the normal activity time.”

However, additional resources cost money, and, hence, increase the overall project cost. 

Thus, the decision to reduce the project duration, and by how much, must be based on an 

analysis o f the trade-off between desired project duration and the extra cost needed.

There are, basically, three methods for crashing a project: (1) to re-plan the project using 

different methods, (2) to re-plan the sequence of activities so that activities that formerly 

were in series are now done in parallel, or (3) to apply additional resources (manpower, 

equipment, money) to the project to speed it up, and this, of course, may include out­

sourcing.

The main assumptions underlying most crashing practices include the following: (1) jobs 

can be done more quickly if  more resources (men, machinery, and/ or materials) are 

allocated to them, (2) these resources can be measured and estimated, reduced to 

monetary units, and summarized as a direct cost per unit time, and (3) unlimited 

resources are available.

The importance of the time-cost trade-off problem arises from the wide range of its 

application involvement. In Batson [161], an implementation of a time-cost trade-off 

algorithm in aircraft technology development projects was discussed. Graves [162] 

presented a brief review of the key concept of a convex time-cost trade-off, which by 

assumption forms the basis for both static and dynamic models of research and 

development investment expenditure. In Haffiner & Graves [163], the time-cost trade-off 

was used to maintain the planned market entry of a product.
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5.4 Time-Cost Relationship Models

Among different CPM advantages is the ability of its basic calculations to be extended to 

incorporate cost explicitly, thus integrating the planning and control aspects of project 

management with the financial and budgeting activities. This is done by defining some 

specific cost model representing the activity time-cost relationship. Such models can be 

used to determine: (1) the cost of speeding up (accelerating, or ‘crashing’) a project to 

meet a specified dead line, and (2) the most economical (optimum) schedule for meeting 

a specified completion date. This relationship can be represented by means of a graph of 

cost versus duration, as shown in Fig.l6-a. Point A is the result of using the cheapest (and 

usually the slowest) method of completing the activity. This is called the ‘normal point’. 

The cost of completing the activity is then called the ‘normal cost’, and the associated 

completion time is called the ‘normal duration’. As the activity speeds up or ‘crashes’, its 

cost goes up, as shown by the line A-B. Finally, point B is reached, which is the shortest 

possible completion time (duration) for this activity. This is the ‘crash point’. The cost is 

then called the ‘crash cost’, and the associated completion time is called the ‘crash 

duration’. Additional manpower or other resources would increase costs but would not 

shorten the job. A-B is called the time-cost curve. In Fig. 16-a, this curve is shown as a 

straight line. Actually, it could have any shape depending on what type of resource 

associated with the activity in question. In most cases, however, a straight line drawn 

between the crash and the normal point, as shown in Fig.l6-b, can approximate the curve. 

As discussed in Chapman [164], the activity time-cost relationship may take one of 

several shapes. It may be concave, as in Fig. 17-a, or piecewise linear approximation to 

more general functions as in Fig.l7-b. In some exceptional cases, the curve can be shown 

by a series of straight lines as in Fig.l7-c. Furthermore, there are cases where the 

relationship between time and cost does not result in a continuous curve. This would 

occur when there are only two or more distinct ways of accomplishing the operation, and 

no ‘in-between’ possibilities as shown in Fig.l7-d.
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Figure 16. Linear Time-Cost relationship.

The formulation of the time-cost trade-off (TCTO) problem in project management 

networks has been handled in several ways. Kelly [165] presented a linear programming 

approach for project crashing assuming that cost varies linearly with activity completion 

time. Related work is also presented in Siemens [166] and Goyal [167]. Several 

researchers [168-171] have developed models and solution procedures to incorporate a 

non-linear relationship between cost and activity completion time.

A solution methodology for project crashing problems with convex or concave activity 

duration functions was developed in [172], The proposed procedure actually 

approximates these relationships by piece-wise linear time-cost curves. In Babu & Suresh 

[173], the concept of time cost model was extended to include the project quality that was 

assumed to be affected by project crashing. An optimization model was developed to 

consider the time-cost-quality tradeoffs in project management simultaneously. In Pulat 

& Horn [174], a multiple objective linear programming model was presented. The TCTO 

technique is extended to solve the time-resource trade-off problem with two resources or 

two groups of resources. In Demeulemeester [175], a description was given of a new 

exact procedure for the discrete TCTO problem in deterministic activity-on-the-arc
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networks where the duration of each activity was a discrete, non-increasing function of 

the amount of a single resource (money) committed to it. The objective was to construct 

the complete and efficient time-cost profile over the set of feasible project durations. In 

Abdelsalam & Bao [167], a modified TCTO model was being presented and 

implemented. The presented model extends the classical crashing model to include more 

than one crashing scenario.
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Figure 17. Different Time-Cost Models.
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5.5 Criticisms of Current Practices (Constant Cost-Slope Concept)

Although the concept of “cost-slope”, Fig. 16, is appealing in its simplicity, it must be 

pointed out that it is often extremely difficult to obtain reliable figures for the changes in 

cost resulting from changes in duration time. These difficulties are so great that, in 

practice, the cost-slope concept may be inapplicable. Moreover, the relationship between 

cost and time is not a simple one. Multiplying labor time by wage cost is obviously 

inaccurate and, on the other hand, to “extend” the resultant labor cost by a constant 

overhead factor can be equally misleading, since the reduction in time may be obtained, 

for example, by hiring special plant that has a non-linear hiring rate. These difficulties 

make it dangerous to assume that cost slopes are constant.

5.6 Project Crashing with Mathematical Programming

The TCTO problem aims towards reducing the overall completion time of a project by 

‘crashing’, i.e. reducing the time of a number of activities in the project while holding the 

total cost of the project to a minimum. As discussed in [160, 177-179], both CPM/PERT 

network and project crashing network can be formulated as a linear programming 

problem; to minimize the cost of crashing given the limits on how much individual 

activities can be crashed.

Project crashing with mathematical programming involves definition of the followings:

1. The decision variables: ‘x ’ is the time an event will occur, and ‘y’ is defined as 

the number of time units that each activity is crashed.

2. The objective is to minimize the additional cost of crashing the project.

3. Three set of constraints, in addition to non negativity, are imposed on the model:

a. Network constraints. This set of constraints describes the structure of the 

network by specifying the precedence relationships among different 

network activities. There should be one or more constraints for each event. 

This set o f constraints insures that no activity can start before the 

preceding activity(s) has been realized.
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b. Crash time constraints. This set of constraints determines the limit/extent 

to which an activity can be crashed. The maximum for each ‘y’ variable is 

equal to the difference between the normal time and the maximum 

allowable crash time.

c. Project completion constraint. This constraint insures that the project 

schedule was set in such a way that the project will be completed within 

the desired time span. This is done by specifying that the last event 

(matching the end of the last activity) must take place before the desired 

project schedule deadline date.

5.7 The TCTO Problem in Literature

The TCTO problem was the subject of a large number of research articles. Tufeki [180] 

introduced an iterative solution procedure for solving the time-cost trade-off problem that 

utilizes a labeling algorithm for locating a minimal cut in the flow network. Rosenblatt & 

Roll [181] analyzed optimal project duration for situations where project duration can be 

shortened by 'crashing' activities. The cost components considered are: regular direct 

costs, crashing costs and overhead costs. In Law & Hsing-Wei [182], two predictive 

models for estimating the computer execution time required by two network flow based 

algorithms to solve the time-cost trade-off problem were presented. Models were 

developed in [183] for two specific resource-constrained project crashing cases: (1) a 

model for resource critical crashing case, and (2) a model for the activity duration 

crashing case. A network in which each arc is associated with a time-cost trade-off 

function was considered in [184], This function was assumed to be non-increasing, piece- 

wise linear and convex and objected to enumerate all efficient chains in the context of 

two criteria, the total time and the total cost required to traverse from source node to sink 

node. An approximation algorithm for the discrete time-cost trade-off problem was 

presented in [185].

The importance of the TCTO problem arises from the wide range of its application 

involvements. Gander [186] introduced different forms of government involvement in the
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innovation process, both direct and indirect, into a standard innovation TCTO model. 

Batson [161] discussed an implementation of a TCTO algorithm in aircraft technology 

development projects. Graves [162] presented a brief review of the key concept of a 

convex TCTO, which by assumption forms the basis for both static and dynamic models 

of research and development investment expenditure. The TCTO was used in [163] to 

maintain the planned market entry of a product. A cost-minimization model to investigate 

scheduling strategies for multistage projects in a client-contractor environment was 

considered in [187]. The model is designed primarily to address the interaction between 

earliest-, intermediate-, and latest-start options and project-crashing strategies for a broad 

range of penalty costs. Reda & Carr [188] handled the problem among related activities.

A survey of project scheduling problems since 1973 limited to work done specifically in 

the project scheduling area is found in [189]. The survey includes the work done on 

several fundamental problems such as the TCTO problem. De Reyck & Herroelen [190] 

investigated the relation between the hardness of a problem instance and the topological 

structure of its underlying network, as measured by the complexity index. It also 

demonstrates that the complexity index plays an important role in predicting the 

computing effort needed to solve easy and hard instances of the multiple resource- 

constrained project scheduling problem and the discrete TCTO problem. Hajdu [191] 

dealt with some special problems concerning least cost scheduling problem in precedence 

diagramming. De et al. [192] addressed the discrete version of the well-known TCTO 

problem for project networks, and discusses the complexities of various network 

structures and validate an old conjecture that certain structures are necessarily more 

difficult to solve. The discrete TCTO problem in which the duration of project activities 

were assumed to be discrete, nonincreasing functions of the amount of a single 

nonrenewable resource was addressed in [193]. The paper described a procedure for 

scheduling project activities in order to minimize the total cost of the project while 

meeting a given deadline.

The TCTO problem has been tackled by several methods. The following sections provide 

a short literature review on related research.
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5.7.1 Mathematical Programming

A multi-objective project crashing model was introduced in [194] where the problem was 

formulated as a lexicographical optimization model. An efficient lexicographical 

maximal flow algorithm was implemented to obtain the lexicographical minimal cuts at 

each step to determine the activities to be modified. In Kanda & Rao [195], a procedure 

was developed to obtain the project-cost curve when there are linear penalty costs for 

delays of certain key events in a project in addition to crashing costs for activities. A 

linear programming formulation is given.

The model presented in [196] involved a mixed integer linear programming formulation 

to determine the optimum allocation of the project duration reduction. The main 

advantage of this model was its ability to determine the optimum allocation among 

activities for four different time/cost functions. Erenguc et al. [197] determined the 

activity durations and a schedule of activity start times so that the net present value of 

cash flows is maximized in a project scheduling problem. The problem was formulated as 

a mixed-integer nonlinear problem. An algorithm to assist construction planners in 

making TCTO decisions was presented in [198]. This approach, called the LP/IP hybrid 

method, took advantage of linear programming and the convex hull method for 

efficiency, and integer programming to find the precise solutions. This hybrid method, 

along with a spreadsheet tool, provides the construction planner with an efficient means 

to obtain resource selections that optimize time and cost of a construction project.

Two algorithms, based on dynamic programming logic, were described in [199] for 

optimally solving the discrete time-cost trade-off problem in deterministic CPM 

networks. An algorithm that employs an integer programming formulation for obtaining 

the optimal solution for the time-cost trade-off problem in large projects was presented in 

[200],
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5.7.2 Heuristic Algorithms

Barber & Boardman [201] established the definition of an easy-to-use tool for project 

crashing problems with two key features: an algorithm to generate a range of increasingly 

pragmatic solutions by the inclusion of heuristics to portray real-world objectives and an 

intelligent knowledge-based system to assist in the generation of strategies and to 

postulate the resultant time-cost trade-off function, for each activity considered. Barber 

[202] presented a prototype system which allowed a project network to be portrayed 

graphically as a CPA network and then crashed using a heuristic algorithm with the aid of 

a knowledge based system. Bowman [203] presented a heuristic using the gradient 

estimators to give close to locally optimal performance relatively quickly for PERT 

networks. In Sunde & Lichtenberg [204], a new heuristic for TCTO which balances cost, 

time, and resources was presented. The new method was called net-present-value TCTO. 

In Taeho & Erenguc [205], a combination of the TCTO problem and the resource 

constrained project scheduling problem was solved using a heuristic procedure, a multi­

pass algorithm.

5.7.3 Simulation

In Ramani [206], a computer simulation project has been outlined to achieve optimal 

crashing of a PERT network, where a probabilistic PERT model was converted into a 

deterministic CPM model for the purpose of carrying out the TCTO analysis. In Patrick 

& Topaz [207], a proj ect-scheduling simulation model of the longwall move process was 

developed to analyze and assess the economic viability of innovative transfer methods 

and equipment. Longwall face-to-face equipment transfers or moves are the largest 

source of nonproductive time in a longwall-mining system.
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5.7.4 A rtificial Intelligence

A new procedure for the TCTO problem that involved new assumptions and a fuzzy 

linear programming formulation was demonstrated in [208]. Another algorithm based on 

genetic algorithms principles for construction TCTO optimization, and a computer 

program that can execute the algorithm efficiently were presented in [209]. Li et al. [210] 

presented a computer system called Machine Learning and Genetic Algorithms based 

System (MLGAS). With MLGAS, quadratic time-cost curves are generated from 

historical data and used to formulate the objective function that can be solved by the 

genetic algorithm. The capacity of the GA was enhanced to prevent premature 

convergence. When compared with an experienced project manager, MLGAS generated 

better solutions to nonlinear time-cost trade-off problems. To provide construction 

engineers with a more realistic way of analyzing projects’ TCTO decisions, Feng et al. 

[211] presented a hybrid approach that combines simulation techniques and genetic 

algorithms to solve the TCTO problem under uncertainty.

5.8 Summary

This chapter provided a background on the role that project management techniques 

could play in a manufacturing environment especially in new product development 

projects.

In addition to planning, scheduling, and following-up activities, project managers are 

frequently confronted with the problem of having to reduce a project scheduled 

completion time (indicated CPM or PERT network analysis) to meet a pre-specified 

deadline. The chapter further presented a problem that project crashing or the time-cost 

trade-off (TCTO) problem. Different time-cost relationship models were presented and 

the classical TCTO practice was critiqued. Moreover, related research in literature 

concerning solving this problem was reviewed.
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CHAPTER VI 

DSM OPTIMIZATION AND ANALYSIS

6.1 Objective

The main objective of the DSM analysis is simply to reduce the effect of feedback loops

by:

1. Decreasing the number of feedback couplings to the maximum possible 

extent, then

2. Reducing the scope of the remaining feedback couplings by:

a. Bringing them as close to the diagonal as possible, and

b. Grouping activities in unsolved feedbacks into iterative blocks.

Figure 18 schematically shows these sequential steps of DSM analysis.

As discussed in Chapter II, to perform the former steps, most of the DSM analysis 

research work reported in literature adopted Steward’s heuristic methodology and only 

two researchers applied an optimization technique (Genetic Algorithm).

The current research employs a mathematical-based approach to optimize the DSM. 

Hence, a quantitative objective function must be defined. Since the implementation of the 

simulated annealing algorithm, the optimization tool, is independent of the objective 

function formulation, different objective functions can be evaluated according to the data 

available. In the presented architecture, either one of four different quantitative objective 

functions can be used:

1. Number of feedback couplings,

2. Total project iterative time,

3. Total project iterative time and cost, or

4. Total project iterative load.

The following sections will elaborate more regarding the application of each of these 

objectives.
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(a) Initial DSM with tasks randomly ordered 
(6 Feedback Couplings)

(b) Step 1: Re-sequenced DSM 
(3 Feedback Couplings)

(c) Step 2: Re-sequenced DSM
(3 Feedback Couplings with smaller scope)

(d) Step 3: Final DSM 
(1 Iterative Block)

Figure 18. Schematic Representations of DSM Analysis Steps.

The Concept of Load

To use an optimization technique, a quantitative objective function has to be defined. 

While ‘AGENDA’14 aimed towards minimizing the total length of feedbacks in the 

system, ‘DeMAJD/GA’15 objective was to minimize total cost and time required for 

convergence.

14 [47] -  Refer to Section 2.4.4
15 [39] - Refer to Section 2.4.1
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Since the scope of the current research proceeds beyond DSM optimization and analysis 

to project scheduling, a new measure had to be defined to serve both parts of the 

presented framework. This measure is called ‘activity load.’

The presented research assumes that two parameters can be defined for each activity: (1) 

load, and (2) resource type. The nature of these parameters is dependent on the nature of 

the activity itself. For example, if  the activity is digging a foundation for a building, then 

the load will be the number of cubic meters to be removed and the resource type needed 

would be man.

The advantages of using this concept are of two-fold: the first regarding the Time-Cost 

Trade-Off analysis, and this will be discussed in details in Chapter VIII; and the second is 

the generality for DSM optimization: if  activity durations (time) are available, time will 

be used as the load (and the same applies in case of cost availability), and if it is only 

required to reduce the extent of the feedback loops, then a load of 1 unit will be assigned 

to all activities and the optimization proceeds.

6.2 Assumptions, and Limitations

The presented architecture aims toward finding an optimum sequence of all activities in 

the project. Although the current research is concerned with IPDPs, the architecture is 

general and can be applied in any environment.

The followings assumptions and limitation apply to the DSM model:

1. A basic concept: the DSM methodology assumes sequential execution of 

activities in the order shown on the DSM.

2. System decomposition proceeds to the smallest task, for example case (b) in 

Fig. 19 is invalid, and must be replaced by something similar to case shown in 

(a).

3. An activity starts immediately after all the required input information to begin 

is available, i.e. as-early-as-possible.

4. As shown in Fig. 20-a, an activity can be started only after each of the 

predecessors has been entirely finished [22], Or, in other words, an activity
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cannot start until all required information input is available. This implies that 

no activity can start with preliminary information and also receives other 

information during its execution as in the case shown in Fig. 20-b.

5. Only planned iterations determined by the project manager or the system 

analyst at early phases are considered in this methodology. Unplanned 

iteration requirements that emerge during project execution are not 

incorporated in the presented model.

6. An activity provides its output information once it is finished (Fig.21-a), not 

during processing (Fig.21-b).

7. Start and end activities are assumed known. Thus, their order will remain 

fixed during the optimization process.

8. Each activity is assumed to be redone completely in each iteration.

9. In the case that an activity falls in more than one feedback loop, the activity is 

assumed to be redone a number of times equal to the sum of iteration factors 

of these feedback loops.

10. Kusiak et al. [212] classified dependencies in the design process into: 

information dependency, technological dependency, common-sense 

dependency, resource dependency, preferential dependency, and functional 

dependency. The proposed methodology considers only information 

dependencies. If required, other forms can be imposed as logical (hard) 

constraints.

11. To proceed with collapsing, coupling strengths are needed. If no coupling 

strengths were defined, a dummy coupling strength equals to 8 or 9 can be 

assigned to all couplings before optimization. Equal strengths will not affect 

the optimization results but will allow proceeding with collapsing.
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Al A2

>

V
k
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B1

Activity A

V
B2 Activity B

(a) Valid (b) Invalid

Figure 19. Assumption: System Decomposition.

Activity CActivity C

Activity A

Activity B

Activity A

Activity B

(a) Valid (b) Invalid

Figure 20. Assumption: Activity Start.

Activity A Activity A

(a) Valid (b) Invalid

Figure 21. Assumption: Activity Output.
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6.3 M athem atical Modeling of Feedbacks

A coupling between any two activities can be expressed as a mathematical relationship. 

For example, if  a coupling coup(A, B) exists from activity ( A  ) to activity (B) ,  as shown 

in Fig. 22, a coupling indicator is defined as,

fl if coup(A, B) is feed forward
IAB = ' ( 10)

' -1 if coup(A, B) is feedback

Figure 22. Coupling (General Form).

The value of the coupling indicator, thus, depends on the order of execution of both 

activities interfaced by this coupling. Now, to apply the concept o f coupling indicator, 

lets consider the following example, shown in Fig. 23.

Let xA, xB be the order of activities A and B respectively. In any DSM state, the 

coupling coup(A, B) can hold one of two cases:

Case 1: A feed forward coupling, Fig.23-a,

Since x A =11 and xB =14
Then activity A is realized before activity B
i.e.Xg > x A or xB —xA > 0
Then coup(A, B) is a feed forward and, hence, I A B = 1

Or, Case 2: A feedback coupling, Fig. 23-b

Since xA = 14 and x B =11
Then activity B is realized before activity A
i.e.xfi >- xA or xB —xA -< 0
Then coup(A, B) is a feedback and, hence, I AB = -1
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So, for any coupling coup{i, j) from activity i  to activity j , a coupling indicator 7(. . is 

defined as:

t r  . o  <n >[ - 1  i f  X j - X i <  0

Where x t and Xj are the order of execution of activities i and j  respectively

11 11

12 12

13 13

14 14

(a) Feed forward Coupling (b) Feedback Coupling

Figure 23. Feed forward vs. Feedback Coupling.

6.4 Logical Constraints

The current optimization model tolerates two sets of hard constraints, these are:

1. Due to the assumption that both the start and finish activities are known, their 

order is assumed fixed. Hence, the order of the start and finish activities will 

be ‘1’ and ‘m ’ respectively, where ‘ m ’ is the number of activities in the 

project.

2. In some cases it is infeasible to switch the direction of a coupling from a 

feedback to a feed forward, although this of course will reduce both time and
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cost. For example, consider the case shown schematically in Fig.24. In this 

case, there is only one input to the activity “Initial Data” and this input comes 

from activity “Revised Data.” As a result, an unconstrained optimization will 

try to assign orders for these activities in a way that guarantees that the 

coupling (Revised Data, Initial Data) is a feed forward one because this, of 

course, shall improve the objective function(s). On the other hand, it can be 

easily noticed that this solution is infeasible in the sense that it contradicts to 

logic; “Revised Data” cannot be performed before “Initial Data”). Thus, to 

avoid having such an infeasible solution, a second set of hard constraints, 

logical constraints, is to be developed and tailored according to the nature of 

the problem.

Initial Data

Revised Data

Figure 24. Hard Constraint.

6.5 Iteration Considerations

The number of iterations required for a certain feedback loop to converge differs from 

one feedback to the other depending on how good the original estimates used for 

upstream activities were on the sensitivity o f downstream activities to these estimates and 

on the required quality of the final design. The trade-off here is that while the solution 

quality can be improved by performing more iterations, extra time and cost of doing so 

will be added to the total project as a result.
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In order to incorporate such a factor in the presented model, an iteration factor is defined. 

This factor converts coupling strengths to the number of iterations required for 

convergence. To quantify coupling strengths, seven levels are used. These are: extremely 

weak, very weak, nominal, strong, very strong, and extremely strong. Although these 

strengths are supplied to the model directly, they can be determined through sensitivity 

analysis detailed in [41], Thus, for each coupling, an iteration factor is determined based 

on the coupling strength according to the default values shown in Table 4.

Table 4. Iteration Factor Values.

C o u p l i n g  S t r e n g t h I t e r a t i o n
F a c t o r

Extremely weak ew 2

Very weak vw 3

Weak w 4

Nominal n 5

Strong s 6

Very strong vs 7

Extremely strong es 8

6.6 Numerical DSM

The basic DSM is a binary matrix, where cells can hold one of two values ("one" or 

"zero") or ("X" marks or empty cells). Such matrix features a single attribute; the 

‘existence’ (or ‘absence’) of an interface between different elements. DSM was later 

modified to hold multi-attribute, such DSM is referred to as a “Numerical DSM.” 

Numerical DSMs allowed the development of more complex DSM analysis algorithms. 

For example, to guide the ‘Tearing’ process, Steward [22] suggested using a two-level 

numbers instead of the simple mark “X”; a coupling is assigned the value “0” if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

predecessor activity is insensitive and assigned the value “9” if the predecessor activity is 

sensitive. A predecessor activity is insensitive if it can be estimated with a high 

confidence level or if a bad estimation would not be of much effect on the results of the 

successor activity. More numerical DSM models are discussed in [9, 27, 50, 51]. In the 

current research, a numerical DSM is used; in which coupling marks are replaced with 

numbers (iteration factor) indicating the strength of the coupling.

6.7 Computing Load

Each activity has its associated load. And each feedback coupling has a number of 

iterations required for its convergence. In order to determine the project iterative load 

(PIL) due to feedback loops, for all activities contained within a feedback loop, load will 

be summed and multiplied by the loop’s iteration factor. Then, the loads of all feedback 

loops are summed.

To determine the iterative load for each loop, and hence for the whole project, the 

heuristic presented in Fig.25 is applied. In case of time and/or cost optimization, the same 

heuristic applies with a minor modification: PIL is replaced by PIC and PIT (project 

iterative cost and project iterative load respectively).

To illustrate the heuristic, consider the example shown in Fig. 26. This simple 

hypothetical DSM has five activities (associated loads shown) and two feedback 

couplings (corresponding iteration factors shown).

The steps for computing the Project Iterative Load go as follows:

1. Define the set of activities in the DSM and their associated loads:

A = {(1,10), (2,20), (3,30), (4,20), (5,10)}

2. Determine the set of feedback couplings in the current DSM sequence and their 

associate iteration factor:

C = {(4,1), 3), ((5,3), 5)}

3. Consider the first coupling in the set C : coup{A,l)
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a. Loads associated with activities within this loop are summed to determine 

the coupling load:

CLax =10 + 20 + 30 + 20 = 80 units

b. The coupling iterative load is determined by multiplying the previous 

quantity by the iteration factor corresponding the current feedback 

coupling:

CIL4l = 80 X  3 = 240 units

4. Step (4) is repeated for the coupling coup{5,3):

CIL53 =300 units

5. Finally, project iterative load is equal to the sum of all iterative loads of feedback 

couplings in the DSM determined previously, thus

PIL = 240 + 300 = 540 units
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p r o c e d u r e  Project Iterative Load;
{Determining Project Iterative Load}
PIL = 0 ; {initial project iterative load}
A = {(x,loadx): 1 < x < NA} ;
C = {(coup(i, j ), I F i j ) : I; j  = -1 } ; 

r e p e a t
select _ coupling(coup(i, j ) ) ;

CLjj -  0 ; {initial coupling load}

CILf j  = 0 ; {initial coupling iterative load}

k = 1; {counter initial value} 
r e p e a t

se/ect _ activity(k);

if xj < xk < Xi

t h e n  CL;j = CLtj  + loadk

k = k +1;
until k > NA ; {all activities in A are considered} 
CILj j  = C L jj  x IF jj

PIL -  PIL + CILj j  ;

u n t i l  all couplings in C are considered; 
e n d ; _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A Set of activities in the DSM and their associated loads

NA Number of activities

C Set of feedback couplings in current DSM sequence and their
associated iteration factors

coupii, j )  Coupling from activity ( i ) to activity ( j )

IFj j  Iterative factor of coupii, j )

j  Coupling indicator

select _  coupling A function that selects, in order, a coupling from the set C

select _ activity A function that selects, in order, an activity from the set A

loadk Load associated with activity k

Figure 25. Load Computations Heuristic.
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Load =10 1 - 3

L oad= 2 0 2
Load = 30 3 - 5

Load = 20 4 1it
L oad= 1 0 5

Figure 26. Load computations example.

6.8 Optimization with Simulated Annealing

The objective of DSM optimization is to determine the sequence of activities execution 

that results in minimum project iterative load. In this section, a modified simulated 

annealing algorithm is proposed and its implementation steps are explained.

6.8.1 A two-stage simulated annealing algorithm

The SA algorithm proposed in this research (called two-stage SA) is a modified version 

of the Naive SA algorithm presented in Section 3.4.3. The presented algorithm (Fig. 27) 

follows the same steps of the Naive SA but adds a second stage that keeps record of the 

value of a best solution. The objective of this modification is to assure that the final 

solution provided is the best one achieved. Thus, in cases that SA moves towards a 

locally optimal solution, the algorithm can be redirected to avoid being trapped in it.

6.8.2 Decision Variables

In DSM optimization, it is required to determine the optimal sequence of project 

activities

X = ( X j  x 2 x3 . ..  X;  . . .  x m ) T (12)
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Where x t is the order of execution of activity i ,  0 < i < N A ,  and NA is the number of

activities. A constraint is to be imposed here is: no duplication is allowed (i.e. two 

activities cannot assume the same order).

6.8.3 Generation of The Initial Solution Configuration

In most of the research cited in literature, SA has proved to be a robust optimization 

algorithm that is independent of the initial solution configuration. Hence, in the presented 

research, an initial solution configuration is generated by randomly assigning order to 

different activities, as shown in Fig. 28. Another alternative that can be considered is 

generating an initial solution using Steward’s partitioning procedure presented in Section 

3.3.

6.8.4 Generation of a Feasible Neighboring Solution Configuration

In simulated annealing, a new solution configuration is generated by perturbing the 

current one. Several perturbation methods are cited in literature. The use of any of these 

methods mainly depends on the nature of the problem being tackled. The presented 

research applies a “pair-wise exchange” perturbation strategy. As shown in Fig. 29, this is 

done by randomly selecting two activities and ‘swapping’ them. It should be noted here 

that the order of both the start and finish activities remain fixed.

Some thoughts need to be given to the generation of a feasible solution when ‘logical 

constraints’ exist. In this case, the algorithm searches only the feasible space by being 

programmed to reject any proposed solution configuration that results in a constraint 

violation. Another alternative is adding a penalty to the objective function. But since that 

technique may lead to wasting time computing infeasible solutions, the research here 

sticks to the first alternative.
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p r o c e d u r e  Simulated Annealing;
{Two-stage Simulated Annealing Algorithm} 
S:= S0 ; {initial solution}
Sopt = S ; {initial optimal solution}

T :=T0 ; {initial temperature} 
r e p e a t  

r e p e a t
S' = perturb(S) ;
A = E ( S ' ) - E ( S ) ;

9  = random[ 0,1); 

prob  = e~A/r ; 
i f  A <  Oor prob  > 9 
t h e n  S : =  5 '  

if £ ( S ')< £ (S 0/„)

then = S ' ;

e l s e  retain 5 ;  
u n t i l  inner loop stopping criterion is met;
T = updatae(T) ; 

u n t i l  outer loop stopping criterion is met; 
e n d ; _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

s The current solution. The initial solution, S0 , is a 
feasible solution generated either randomly or through 
using some heuristics.

$ opt Optimum solution

T The control parameter.

perturb A function that generates a new neighboring solution, 
S' e N ( S ) , through introducing some small 
perturbation to the current solution, S .

random A random number generator.

update Cooling schedule function.

Figure 27. Two-Stage Simulated Annealing.
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Order 1 2 3 4 5 6 7 8 9

WM i i F C E B H D G

Fixed Fixed r?
Figure 28. Solution Representation.

Order

Activity

1 2 3 4 5 8 7 8 S

i F ««1 E B D G

Order 1 2 3 4 5 6 7 8 9

Activity w m : F l i n n E B * D G 1 1 1 !

Figure 29. Generating a Neighboring Solution.

6.8.5 Object Function Evaluation

As discussed earlier, SA merely requires the value of the objective function for each 

solution configuration. The algorithm picks up the objective function value of the 

proposed solution, compares it with the one of the current optimal solution and proceeds 

to the next step.

In the presented research, either one of four objective functions can be used to evaluate 

the proposed solution configuration. These are:

1. Number of feedback couplings, f x(X )

2 X -  ( > 3 >
c o u p ( i ,j) e A
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2. Project iterative load

f z ( X)  = PIL

3. Project iterative time

f 3(X)  = PIT

4. Project iterative time and cost

f 4 (2f) = wT ■ PIT  + wc • PIC

(14)

(16)

(15)

where

wT and wc are relative weight selected by the decision-maker.

It is important to note, however, that the fourth objective function represents a multi­

objective optimization case.

One important question that arises here is: “why not minimize the project load rather than 

project iterative load!” The answer can be stated as follows:

An important goal of the DSM analysis is simplifying the nest of feedback 

couplings, which in turn leads to a better management practice. Although 

minimizing the project load would theoretically result in a shorter time and lower 

cost, the possibility of being associated with a high number of feedbacks will, in 

reality, increase the complexity for management which, as a result, increases 

project total time and cost. Thus, minimizing project iterative load would tend to 

lower the time and cost of the project while providing an easy to manage 

sequence (reduced number of feedbacks).

6.8.6 Cooling Schedule

The presented research adopts a geometric cooling schedule, which is the most 

commonly used cooling schedule in the simulated annealing literature [213]. In this 

schedule, temperature updating follows Eq. (7) The initial and final temperature values, 

referred to as J0and Tf  respectively, are specified by the user along with the cooling

factor, a .
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6.8.7 Stopping Criterion

To determine whether the system reaches a meta-stable state, two counters were 

introduced to keep track of the number of accepted and rejected solutions at each 

temperature. Iterations at each temperature halt when either counter reaches a pre-deflned 

threshold. The user specifies both thresholds. The optimization process, on the other 

hand, proceeds until it reaches the final temperature, Tf  even if no improvements are

made during many temperature decrements.

6.9 Handling Stochastic Activities Load

In cases where activity loads assume stochastic values, Monte Carlo simulation is used to 

determine the value of the objective function for each proposed solution. The objective 

function in this case will also be represented by a probability distribution curve. And 

since the simulated annealing algorithm was developed to handle deterministic 

combinatorial optimization problems (the acceptance or rejection of a new solution 

follows metropolis criterion, which is based on one point estimate of the objective 

function), a modification had to be done to SA to tolerate stochastic objective functions.

6.9.1 Uncertainty in Activity Load Estimation

One unavoidable difficulty in the preparation of activity load estimate is uncertainty. 

Uncertainties in estimates of resource requirements for future system development arise 

from different sources: (1) deviations from original system configuration as the 

development process advances, (2) variations in resource (s) performance and cost, (3) 

system analyst biases, (4) errors in system modeling, and so forth...

Thus, the estimate of an activity load can be in the form of a multi-point (probability 

distribution function) not by a single value (one-point estimate). In turn, the system 

performance (objective function) will be expressed as a probability distribution so that it 

reflects uncertainty of estimates.
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With explicit information describing each activity load, the comparison of two alternative 

system configurations can be aided by determining some quantitative statistical measure 

of the expected system performance of each alternative. According to their preferences 

and attitude toward risk, decision-makers should be able to choose the preferable 

alternative

The current research presents a modified version of the simulated annealing algorithm to 

extend its application to stochastic problems where the value of the objective function is 

represented by a probability distribution rather than a one-point estimate. The basic idea 

in the modified SA is that the acceptance or rejection of a proposed solution is based on 

the comparison of some statistical measures of its objective function distribution with 

those of the current optimal solution. Two methods for such comparison were suggested:

1. Min-Mean-Max rules, or

2. Utility Function Method.

While the first method assumes risk-averse decision-making, the second can be easily 

modified according the requirements of the decision-maker.

6.9.2 Min-Mean-Max (M3) Method

In this method, acceptance of a proposed solution is based on comparing three statistical 

measures of its objective function with those corresponding to the current optimal 

solution. These measures are:

1. The mean (expected, or average) point (//),

2. The maximum value ( max), and

3. The minimum value (min).

Let p  and c denote the proposed and current solutions respectively. Solutions p  and c are 

to be compared based on their objective function (o.f). Figures 30 and 31 shows eight 

cases in which objective function estimates are expressed as probability distributions to 

reflect the actual uncertainty associated with each solution configuration evaluated. 

Figure 30 illustrates cases in which the mean value of p  (denoted to by pp ) is less than
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the mean value of c (denoted to by pc). In case (1), the decision of acceptingp  is of no 

question since all possible objective function values are lower than those of c. the 

situation in case (2) is slightly different in that there is some probability that the actual 

value of p  will be higher than c. If this probability is not high, the decision would be, still, 

to accept p. However, as this probability increase and the overlap is significant, as shown 

in case (3) and (4), pre-defmed acceptance rules are needed. Figure 31 illustrates the flow 

chart that is used as basis for acceptance, or rejection, of the proposed solution in cases 

where pp is less than pc. Of course, these rules and the ratios included can be tailored

according to the environment of the project carried out.

Similar rules for cases in which pp equals to nc (shown in Fig.32) are defined via the

flow chart presented in Fig.33. Again, these rules are relative and can be changed 

according to the decision-maker attitude toward risk. Finally, when none of these cases 

holds, metropolis criterion is applied on the mean values of the distributions.
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mn iTsx„ rrin, max,

^  proposed current
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(a) Case 1 (b) Case 2
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Figure 30. Cases with np < nc (Schematic).
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current

rmnc min max

proposed

mm max maxmm,

(a) Case 5 (b) Case 6

current
current

proposed

maxmm max Pc

proposed

m m c mm maxmax

(c) Case 7
(d) Case 8

Figure 32. Cases with jup = n c (Schematic).
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Yes

Yes Mo Yes
Case (5)'< ̂ minp <l,3xmin

Case(8)
Case (6) No

Yes

i *
Accept Proposed 

Solution
( Reject Pr posed A 
I Sol tton )

Figure 33. Second Set of Comparison Rules.
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6.9.3 Utility Function (UF) Method

An alternative method for comparing the performance statistics (objective function) of a 

proposed solution with those of the current optimal solution is through the use of a 

‘utility function.’ The proposed utility function (UF): (1) is an additive UF, (2) consists of 

four attributes, and (3) assumes attributes independence.

Four statistical measures were chosen to be the attributes of the UF, these are: the mean 

(or expected value), the variance, the range, and the maximum value. The first measure, 

the mean, is a central tendency measure. The concept is familiar and unique to all 

decision makers. Moreover, it is based on all observations. Thus, the mean is greatly 

affected by any extreme value, a useful characteristic here because the methodology 

tends to be a risk averse. The second and third measures are variation measures. The 

variance considers how the observations distribute or cluster and measures the average 

scatter around the mean and the range measures the total spread in the data. Finally, the 

fourth measure, maximum value, helps identify to what extent the value of objective 

function might reach.

A proposed solution is accepted if  its UF is larger than the UF of the current solution. 

Otherwise, Metropolis criteria is applied. The objective here is to determine a robust 

solution rather than just an optimal one by minimizing the effect of uncertainty 

(variation) in activity loads on the objective function. As shown in Fig. 34, a robust 

solution is less sensitive to variations in activity loads (the uncontrollable parameters) 

than the traditional optimal solution where optimization is based on the mean value of the 

objective function.
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Having the components in place, the key element for SA comparison rules is the utility 

function, which combines performance attributes and allows direct comparisons of 

solutions.

UF = (wm x l m) + (wv x / v) + (wr x l r ) + (wx x l x) (16)

where

UF : utility function

wm, wv, wr, and wx : weights defined by user

Im, Iv, Ir , and Ix : index of mean, variance, range, and maximum values

respectively. Determined from Table 5.

The weights introduced in the UF serve as importance factors. Their values are adjusted 

based on the decision maker attitude towards risk

Corresponding Variation of 

the Objective Function

Robust
Solution

Optimal
Solution

M o p t ±Ax F  robust ±  A *
Configuration

Figure 34. Robust vs. Optimal solution (Reference [214]).
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Table 5. Utility Function indices.

Index of C o n d i t i o n
I n d e x  v a l u e  ( i f
the condition 

h o l d s )
mean„ < 0 .6 xmean.P c 5
0,6xmeanc <meanp < 0.8 x mean c 3
0.8 xmeanc < meanp <meanc 1

Mean, Im meanp = meanc 0
1.2 xmeanc > meanp > meanc -1

1.4 x meanc > meanp >1.2 xmeanc -3
meanp > 1,4x meanc -5
varp < 0.6 x varc 5

0.6 x varc <varp <0.8xvarc 3
0.8 x varc < var̂ , < varc 1

Variance, Iv var  ̂ = varc 0
1.2 x varc > vwp > varc -1

1.4xvarc > var̂ , > 1.2xvarc -3
var  ̂ > 1.4x varc -5
rangep < 0.6 x rangec 5

0.6 x rangec < rangep < 0.8 x rangec 3
0.8 x rangec < rangep < rangec 1

Range, Ir range p = range c 0

1.2 x rangec > rangep > rangec -1
1.4 xrangec > rangep > 1.2 x rangec -3
rangep > \ Ay. rangec -5

maxp < 0.6xmaxc 5
0.6xmaxc ĉmax ,̂ <0.8xm axc 3
0.8xmaxc <max/) <m axc 1

Maximum, Ix max ,̂ = maxc 0
1.2xmaxe >maxp >m axe -1
1.4xmaxc ^max^ > 1.2xmaxc -3
max p > 1.4xmaxc -5
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6.10 DSM Conversion into a Project Schedule

One of the main advantages of DSM over project networks is its ability to represent 

feedback relationships. This feature is what allows the DSM to be the basis for an 

efficient planning of the design project. However, DSM has two major limitations: (1) a 

single DSM shows only a single process flow; it does not show all possible flow paths 

[215], and (2) the DSM does not explicitly show overlapping activities [26].

For the DSM to serve as a means of control of the design project (continual re-planning, 

re-scheduling, and follow up), activities in the optimally re-sequenced DSM need to be 

represented against a time scale. Or, in other words, the DSM has to be converted into a 

schedule. Thus, the DSM, in fact, does not replace the Gantt chart and CPM, but rather, 

they compliment each other. In this section, a three-phase procedure is presented to 

generate a project schedule from the final optimized DSM.

6.10.1 Related Practice

Three related methods were found in literature. In this section, each of these methods will 

be summarized and all of them will be applied to a hypothetical DSM for comparison. 

Consider the 10-activity DSM shown in Fig. 35 (adopted from [216]).

Initial ordering of activities, Fig. (a), results in 6 feedbacks and 8 feed forward couplings. 

Figure (b) represents the same DSM after partitioning. Only 4 feedback couplings and 

their extent are reduced. Steward’s methodology (the methodology adopted for DSM 

analysis in all three investigations compared here) results in three iterative blocks; 

(Activity B, Activity F), (Activity J, Activity G), and (Activity E, Activity I, Activity C, 

Activity H).

Consider the largest block (Activity E, Activity I, Activity C, Activity H). Figure 6.18 

illustrates different methods of converting this block into a program:
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1. Steward [22] suggested ‘unwrapping’ each block “by laying it out end to end 

the number of times it is to be iterated.” This will result in a program with no 

blocks (i.e. no feedbacks) shown in Fig. 36-a.

2. Austin et al. [44] suggested several strategies for conversion. In the one shown 

in Fig.36-b, activity durations are allocated independently and activities are 

programmed with in the block to start simultaneously.

3. Finally, Cho [48] suggested presenting the iterative block as a ‘rolled-up’ 

activity within which its tasks are arranged without feedbacks, see Fig. 37-c. 

A dummy activity is added at the end of the block representing its duration.

B A C J E F G H I D  B F J G E 1 C H A D

A

G

F

D

H

E

B

J

C

(a) Initial DSM sequence (b) Final DSM sequence

Figure 35. DSM of a Hypothetical Project.
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j u6 i Activity 1
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8 Activity 1
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(a) Equivalent Schedule According to Steward [22].

ID NAME
wk1 wk2 w... wx

W.—,
5 Activity E

6 Activity I

7 Activity C

8 Activity H

IIt

(b) Equivalent Schedule According to Austin et al. [44].

wkl wk2
NAME

Activity E0> Activity I

Activity C

Activity H

Dummy

(c) Equivalent Schedule According to Cho [48].

Figure 36. Converting the Final DSM to a Project Schedule.

Critique o f reviewed methodologies

One main advantage of DSM is the compact presentation of the project. This feature is 

wasted by unwrapping the blocks and dealing with each iteration as an independent 

activity. Repeating the same activity on PERT chart expands the project to an extent that
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makes it hard to control and follow up. In many cases, partitioning would lead to blocks 

of large number of activities, for which unwrapping is not a wise idea.

Another form of the same problem with large blocks applies to ADePT where grouping a 

large number of tasks into one block would also result in meaningless representation. 

Furthermore, rules by which block duration is determined were not clearly mentioned.

Finally, all three methods implicitly assume that the DSM can be decomposed into totally 

independent blocks. Thus, in cases where the DSM can be only decomposed into blocks 

with inter-blocks relationships (i.e. if an activity falls into two or more feedback loops) 

these methods become inapplicable.

6.10.2 The Proposed Conversion Procedure

Following the optimization process, the resulted optimally re-sequenced DSM, then 

needs to be converted into a schedule in order to proceed with resource assignment (as 

will be discussed in Chapter VII). The sequence of the activities, associated loads, and 

precedence relationships among them are defined by the output form the DSM. However, 

a methodology is needed to de-couple un-solved feedback couplings. The current 

research introduces a methodology that involves three main phases to produce an 

equivalent DSM without feedback couplings, which can be easily represented as a project 

schedule. These stages are: patterns recognition, collapsing, and tearing.

DSM Complexity Index

In some cases, as will be illustrated later, the number of couplings involved in a DSM can 

be so large to the extent that collapsing and tearing would be meaningless, or in other 

words, the proposed conversion procedure becomes inapplicable.
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To help determine whether or not the architecture can proceed with conversion, a new 

index is introduced:

DSM Conpleitty Index -  ^  °f  (18)
No. o f  Activities

The architecture can proceed with conversion only in cases in which the 

DSM Complexity Index is less than 0.4. Of course, the index is used as a general indicator, 

and some DSMs with higher index value can be converted to a project schedule.

A. Patterns Recognition

This phase concerns identifying some patterns in the activities of the optimized DSM. 

The work is inspired by the idea of improving the management of the design process by 

identifying some patterns in the DSM presented in Kusiak et al. [212], Their basic idea 

was to classify some possible patterns in the design process structure and determine a 

critical activity for each pattern based on the expected behavior of that pattern. Relevant 

work can be found in [217-219],

Six patterns in the design process structure were defined by Kusiak et al. [212], The 

presented methodology here adopts a similar procedure of defining some patterns. But, to 

cope with the research objectives, patterns classification here is mainly based on some 

characteristics of feedback couplings. The current research defines five patterns, shown 

in Fig. 37, these are:

1. I-Pattem (Interaction'). A directed 2-cycle graph (a cycle with length 2). Two 

activities A and B are said to be of I-pattem if:

i. The couplings coup(A, B) and coup(B, A) exist, and

ii. \xA =

Where x A and x B are the order of activities A and B respectively. As shown in

figure (a), such activities are highly-coupled. Tight collaboration has to take place

between both of them to reach the desired solution (output).

2. C-Pattem (Cycle). A directed cycle with length = 3. Three activities A , B , and 

C constitute a C-pattem if:
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i. The couplings coup(A, B) , coup(B, C) , and coup(C, A) exist, and

ii. x A < x B < x c .

3. C4-Pattem. a Special case of C-Pattem; a directed cycle with length = 4

4. L-Pattem (Loop). A special case of the I-pattem. Two activities A and 

D  constitute an L-pattem if:

i. The couplings coup(A, D) and coup(D, A) exist, and

ii. 2 < \xA - x D \ <3 .

5. S-Coupling (Single Feedback).

Based on the strength of couplings involved in each of the recognized patterns, activities 

within iterative sub-cycles are either merged into one block (collapsing), or the feedback 

coupling is removed (tearing). Thus, the following two phases (collapsing and tearing) 

are carried out simultaneously for each pattern.

The methodology further involves introducing two types of buffers: block (coupling) 

buffers and a project buffer. The basic idea of adding buffers is adopted from [220]. For 

more details refer to [221]. The objectives of the introduced buffers are:

1. Compensate for uncertainty in activities estimated durations.

2. Helps controlling the project.

3. Compensate for iterative load of the coupling removed.

4. To tolerate incomplete information (change in information), such as durations 

of activities.

B. Collapsing

In some cases (patterns) where tight collaboration between two or three activities is 

required, these activities can be collapsed (merged) into one block. The presented 

procedure specifies two cases in which this collapsing must take place, these are: case (3) 

of the I-Pattem and case (4) o f the C-Pattem shown in Table 6 and Table 7 respectively. 

In both cases, couplings involved are characterized by high coupling strength. Which 

means that information flow between these activities is expected to be of high density
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until the required output is reached. And moreover, the output is expected to be sensitive 

to activities collaboration. Thus, merging these activities into one block will simplify the 

scheduling process, improve project management, enhance collaboration, and improve 

final solution quality. Since tight collaboration is forced on activities involved in both 

cases, processing time is expected to be lower than the calculated one. Thus, the block is 

assigned only half of the load originally assumed for both activities iterations. As a factor 

of safety, a percentage of the remove load is added to the ‘project buffer.’

C. Tearing

In cases where moderate collaboration is required (determined by coupling strengths) 

coupling are suspended (removed) and a ‘block buffer’ is added after the last activity in 

the block investigated. Buffer load is set equal to a portion of the suspended coupling 

load and another percent is added to the project buffer. An equivalent DSM 

representation of an I-pattem, C-Pattem, or an L-pattem can be determined according to 

the cases shown in Tables 6, 7, and 8 respectively. An equivalent DSM for a C4-pattem 

and an S-coupling are shown in Fig.38, and Fig. 39 respectively.

It should be mentioned here that the philosophy of suspending weak feedback couplings 

was also adopted by both ADePT [35] and DeMAID/GA [39], but neither methodology 

suggested mles of compensation for the suspended iteration time.
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Figure 37. Different Patterns.
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Table 6 .1-Pattem Conversion Rules.

C a s e  N o .
C o u p l i n g  S t r e n g t h

E q u i v a l e n t  D S M  R e p r e s e n t a t i o n A d d  t o  Project B u f f e r
Ci c 2

1 <3 <3 ill l j  ^ 
a

—

0.2 l o a d  o f  Ci

2 <3 >-3 0.3 l o a d  o f  Ci

3 >6

B l c

■  

c k  l o a d  =  0 2

CJoO

0.2 l o a d  o f  Ci

Table 7. C-Pattem Conversion Rules.

C a s e  N o .
C o u p l i n g  S t r e n g t h

E q u i v a l e n t  D S M  R e p r e s e n t a t i o n A d d  t o  P r o j e c t  B u f f e r

<3 < 6 <6

<3 y 6 y 6

X3 < 6 <6

C2 I B*

C3

0 . 2  l o a d  o f  C i

0 . 3  l o a d  o f  C i

0 . 4  l o a d  o f  C i

>6

B l o c k  l o a d  =  0 . 5  l o a d  o f  C i

0 . 2  l o a d  o f  C i
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c
C3

C4

Buffer Laod = 0.4 Cl Load

Cr

Add f).2 Ci Load) to project buffer

A dummy coupling added 
to maintain continuity

Figure 38. Equivalent DSM for C4-Pattem.

Table 8. L-Pattem Conversion Rules.

C a s e  N o .
Coupling S t r e n g t h

C ,
E q u i v a l e n t  D S M  R e p r e s e n t a t i o n

A d d  t o

B l o c k  B u f f e r P r o j e c t  B u f f e r

<3 <3

’SI

Ci 0.2 load of C;

>6

>6

>6

-<6

Other

&
Cr

0.4 load of C, 0.3 load of Ct

0.4 load of Ci 0.2 load of Ci

0.3 load of Ci 0.3 load of Ci
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Buffer Laod = 0.5 Cl Load

Add (0.3 Cl Load) to project bufferCr

Figure 39. Equivalent DSM for S-Coupling.

D. Rules of Conversion

The following are the steps to be followed in order to define an equivalent DSM without 

feedback couplings.

1. Determine a set of unsolved feedback couplings.

2. Arrange these couplings according to the following order:

a. I-pattem

b. C-pattem

c. C4-pattem

d. L -pattern

e. S -coupling

3. Ties are broken according to the order of activities; first comes first.

4. Consider couplings, in order, and perform the following:

a. Apply conversion rales defined previously

b. Update DSM; activities, couplings

c. If a buffer is added:
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i. A dummy feed forward coupling with nominal strength is 

added between that buffer and preceding activity.

ii. Any two (or more) consecutive buffers are merged into one 

buffer with an associated load equals to the total load of these 

buffers.

iii. Buffer load is determined based on the original couplings loads 

and the original final DSM, not on the DSM resulted from 

previous step.

5. Unsolved patterns in the set are handled according to the procedures 

regardless of any modification occurs due to a previous step (i.e. merging of 

two activities, or adding a buffer).

Following these rules, an equivalent program of the DSM (with no feedback couplings) is 

generated. Fig. 40 shows the equivalent project schedule for the comparison case (Section 

10.1) according to the presented methodology.

B le o k l

6 Activity C

7 Activity H

B u ffer

Figure 40. Equivalent Schedule for the Comparison Case According to the Proposed
Methodology.
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6.11 S um m ary

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an 

effective tool for analyzing and understanding system architecture especially in product 

development and, hence, achieving improved performance.

The use of the DSM is the comer stone of the architecture proposed in this dissertation. 

Following the modeling of the design project in the form of a DSM, this chapter provided 

in-depth discussions on there of current research contributions:

1. Determining the optimal sequence of DSM activities in either two cases:

a. Deterministic activity data

b. Stochastic activity data

2. Interfacing simulated annealing with Monte Carlo simulation to handle the second 

case. The interface required modifying the SA algorithm.

3. Conversion of the optimally re-sequenced DSM into an equivalent DSM with no 

feedback loops.
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CH APTER VII

T C T O  H Y B R ID  M O D E L

7.1 Introduction

In this chapter, a new time-cost trade-off model is presented. The presented model helps 

crashing a project with little, or no, additional cost. It is based on the trade-off of 

resources where, in some cases, it may be possible to transfer men, equipment, or other 

resources from a non-critical activity to a critical one. So, where large float times are 

available, cheaper but slower resources can be substituted for those originally planned. 

Trade-offs of this kind tend to expedite some of the activities on the critical path to save 

time, and, unfortunately, increase total cost, in addition to relaxing some non-critical 

activities to reduce total cost.

7.2 Basic Concepts

The concepts on which the model relies on are:

1. Formulation of activity duration as a function of resources assigned to it.

2. Expediting critical activities by assigning high-productivity resources, while 

relaxing non-critical activities by assigning cheaper low-productivity resource. 

Thus, savings from relaxed activities can compensate for additional costs 

required for crashing other activities.

The following simple hypothetical example clarifies the first concept:

Among resources available in a product development firm (or a design firm) is design 

engineer. Assume that the firm has three levels of design engineers based on experience. 

These are: beginner, experienced, and professional. Each of these levels has its own 

productivity and hourly cost as shown in Fig. 41. Of course, as productivity increases, 

increased hourly cost can be expected.
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Resource Type: Design Engineer

1

Level Productivity Cost
 _̂______ (load units/hr)_____ (S/hr)

Beginner 5  3

Experienced 8  5

Professional 14 10

Figure 41. Resource Levels.

Given an activity with load equals to 1120 units, where load might be a design 

assignment, any combination of the former resource levels can be assigned to this 

activity. Thus, given that three levels are available and that only two engineers are 

available from each level 129 possible combinations (both feasible and infeasible) can be 

chosen from. Figure 42 shows some of these combinations. As shown, each combination 

results in a certain activity duration and cost. The general problem, thus, is how to assign 

the proper resource combination for each activity in the project such that:

1. Project is completed on a given due date,

2. With available resources, and

3. With minimum cost.

The next example provides a more elaborated discussion on the problem.
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1120 load units 

[? fl3  3 
1 1  fi <

Case 1 Case 2 CaseS Case...

Hi
Activity Duration (hr) 112 87 80

Activity Cost (I) 672 696 800

Figure 42. Different Assignments Result in Different Activity Durations.

7.2.1 Illustration of the Basic Concept

Consider the simple hypothetical project network shown in Fig. 43 consisting of five 

activities: A, B, C, D, and E. Each activity in the network is associated with a certain load 

(shown on figure next to activity name) that needs to be done in order to realize the 

activity.

Assuming that all activities require the same resource type and that there exists three 

levels of this resource: fast, normal, and slow each associated with a certain productivity 

rate and hourly cost as shown in Table 9.

As a start, each activity is assigned one normal-level resource. Such assignment will 

result in project completion time of 30 hours and total cost of $500. Gantt chart shown in 

Fig. 44 presents project schedule for the initial assignment and corresponding cost 

calculations are shown in Table 10.

The critical path, which is the longest path, is simply B-E. Thus, to crash the project, 

activities on that path need to be expedited. To help clarify the procedure, another form 

of the Gantt chart is shown in Fig. 45 in which each of the three paths in the network is 

presented independently. In Fig. 46, the slack amounts associated with activities D and C 

are shown. For the sake of illustration, it is assumed that the project needs to be crashed 

by four hours. This can be achieved by expediting activity E through assigning the fast- 

level resource to it instead of the normal-level one. Figure 47 shows the project after
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crashing. A subsequent result of project crashing, of course, is the increase of project cost 

by $24 to be $524.

A second look to Fig. 46 suggests that activity D is not on the critical path and has a large 

slack. Or, in other words, activity D can be relaxed (to a certain extent) without affecting 

the project completion time. So, a slow-level resource can be assigned to it instead of the 

normal-level resource. The new configuration (shown in Fig. 48) now results in a crashed 

project of 26 hours with lower additional cost; $513 instead of $524 -  cost calculations 

shown in Table 11.

Thus, the concept proposed is:

“While higher-productivity (thus more expensive) resources are assigned to 

critical activities to expedite the projects, lower-productivity (and cheaper) 

resources can be assigned to non-critical activities. ”

This would serve in two directions:

1. Reducing the additional cost associated with project crashing.

2. Lowering the demand on high-productivity resources.

It should be noticed, though, that in some assigning a faster resource to an activity might 

reduce the total cost of the project and shorten its completion time too. For example, if 

the cost of the fast-level resource in the example was $ 12/hr, the cost of crashed activity 

D would have been $192 which is lower by $8 than using a normal-level resource.
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hooo

Figure 43. Project Network.

Table 9. Resource-Levels.

R e s o u r c e - L e v e l

Fast

Normal

Slow

Productivity

( u n i t s / h r )

25

20

C o s t  ( $ / h r )

14

10

3

I  A

‘ Critical Activities

10 15 20 25 30
Duration (hr)

Figure 44. Project Schedule Corresponding to Initial Assignment.
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Table 10. Cost Calculations for the Initial Configuration (Assignment).

Activity Resource-Level
Duration

(hr)
Cost (S)

A Normal 5 50

B Normal 20 200

C Normal 10 /  / 100

D Normal ( y ) 50

E Normal 10 100

Duration = -
load

total resource productivity 

100
1x20

• = 5

A
CD 1

2

y ////////////////////̂ ^ ^ ^ ^  Critical Path3

Duration (hr)

Figure 45. Gantt Chart Showing the Three Paths.
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Slack of activity D

1

2 Slack of activity C

30 hours for project 
completion3

20
Duration (hr)

Figure 46. Activities’ Slacks.

S lack  of activity D

1

2
S lack  of activity C

Pro ject sc h e d u le  is four 
ho u rs  sh o rte r3

Duration (hr)
Activity B c ra sh e d  four

d a y s

Figure 47. Crashing o f  Activity E.
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Activity D R elaxed  eight
hours

S lack  of activity D

1

2
S lack  of activity C

Pro ject sc h e d u le  is four 
h o u rs  sh o rte r3

Duration (hr)
Activity B c ra sh e d  four

hours

Figure 48. Relaxing of Activity D.

Table 11. Cost Calculations for the Final Configuration (Assignment).

Activity R e s o u r c e - L e v e l
D u r a t i o n

(hr)
C o s t  ( S )

A Normal 5 50

B Fast 16 196

C Normal 10
/  n. y' / \ /

/ ' ' i m

D Slow (13 1 \ / 39

E Normal 10 100

100
Duration = ------= 12.5 => 13

1*8
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73 The Proposed Model

The model presented here is a nonlinear-integer programming model. On one hand, the 

model is integer because the duration of an activity, a function of both its load and the 

combination of resources assigned to it is assumed to be in whole time units. And, on the 

other hand, the model is nonlinear since the duration is being calculated using a nonlinear 

function.

7.3.1 Problem Statement

In the proposed model, the project crashing or time-cost trade-off problem is being 

tackled from another point of view that tends to be more practical and suitable for design 

and manufacturing applications. The model tries to merge the known CPM calculations 

with the assignment problem. For a given project the followings apply:

1. The project is decomposed to its smallest component and each component is 

represented by an activity.

2. The specification of the project is assumed given in activity-on-arc notation 

(AoA); a set of activities to be completed according to certain precedence 

relationships.

3. Each activity has a “load”, e.g. processing/analysis time, that must be performed 

in order to realize the activity.

4. Different types of resources are available.

5. Each resource has a number of levels each associated with it’s own production 

rate and hourly cost.

6. An activity requires only one resource type (depending on the activity’s nature), 

but a combination of that resource levels can be assigned to the activity.

7. The duration of an activity is, thus, a discrete function of the number of resource 

levels assigned to it. Or, in other words, an activity shall assume a set of different 

durations according to different combinations of resource levels assigned to it. 

And once assigned, there will be no change in resource assignment.
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8. The total number of each type of resource level is assumed to be limited, in the 

sense that, once a resource unit is used (assigned), it cannot be used again in 

another activity.

So, the objective is:

“To determine the most efficient (optimized) project schedule(s), by assigning a 

suitable combination o f resources to different activities, fo r  a given project 

completion time while maintaining minimum cost. ”

7.3.2 Assumptions and Limitations

For the sake of simplification, the following assumptions apply to the formulated 

problem:

1. Looping and dangling of activities are not allowed.

2. Activities once started cannot be interrupted (activity splitting is not allowed).

3. Activity overlapping is not allowed. Thus, an activity cannot start until all its 

predecessors are completed.

4. An activity requires only one resource type.

5. The amount of load assigned to an activity is constant.

6. Number and productivity of each resource assigned to an activity remain constant

throughout its duration.

7. Resources considered her are assumed to be non-renewable.

8. Activity loads, resource productivity, and resource cost are assumed deterministic.

7.3.3 Notations

The presented research uses an activity-on-arc notation; in which each activity is 

represented by an arc in the project network. The rest of symbols used are:

S : set of activities in the network

Dy : duration of activity (i,j)

loady : load of activity (i ,j)
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m : number o f nodes in the network,

DPCT : desired project completion time

k : resource type index, k =

K : total number of resources

k, : resource level index for resource type (k),  1 = 1, ,L

bL : total number of resource levels for resource type ( k )

A : available total number o f  resource level {kt )

Ck : hourly cost o f resource level (^ )

Pk : production rate o f resource level (Aj)in units/hour

N W : number o f resource level {kt ) assigned to activity ( i , j )

7.3.4 Inputs

The initial inputs that are supplied to the model are as follows:

1. A finite set of activities (5 )  representing the project network. Each activity is 

described by:

a. Its tail and head events (nodes), denoted to as (?) and ( j )  respectively.

Thus an Activity will be described as O’, j) ■

b. An associated activity load.

c. The required resource type.

2. A Finite set of resources with which activities are performed. The set includes:

a. Resource types.

b. Resource levels for each type, each level has:

i. Productivity.

ii. Cost rate.

iii. Availability.

3. A finite set of precedence constraints to be satisfied.

4. An objective: a desired project completion time.
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7.3.5 Process

For a given desired project completion time, the proposed model tends to minimize the 

total cost of the project. In order to achieve this, the model works as follows:

1. A combination of suitable resource levels, Nk v, are assigned to each activity

in the project.

2. Based on this assignment, activities’ durations, Z>., are calculated by dividing

the “activity load” by “the total productivity rate of the resource(s) assigned to 

it” and rounding the duration to the next larger integer value.

3. Activity cost is determined by multiplying its duration by “the total cost rate 

of the resource level(s) assigned to it.”

4. Finally, total project cost is calculated and compared to the current best 

solution objective.

7.3.6 Decision Variables

xi : the earliest event time of node i , i = 1,2,........, m- 1

xj : the earliest event time of node j , j  = 2,3, , m

NkiJj : the number of resource level (£;) assigned to activity (i,j)

7.3.7 Constraints

Six sets of constraints are imposed on the model:

A. Network Constraints

This set of constraints is required to insure that an activity cannot be started until all its 

preceding activities have been realized. The set describes the structure of the network by 

specifying the precedence relationships among different network activities. Let i be the 

preceding event and j  be the following event, then the precedence relationship constraint 

can be formulated as:
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X j - X i - D i j Z O  (19)

The number of such constraints is equal to the number of activities in the network.

B. Assignment Feasibility

Since the optimization algorithm used to solve the model might tend to assign zero 

resources for activities to reach a minimum total cost, this constraint set is introduced to 

guarantee that at lease one resource unit (of any level) is assigned to each activity.

V S g e S  (20)
ki

C. Resource Availability Constraints

This set of constraints represents the available number of units available for each 

resource.

I X , A  (21)
k,

D. Project Completion Constraint

This constraint insures that the project schedule was set in such a way that the project

would be completed within the desired time span. This is done by specifying that the last

event must take place before the desired project schedule deadline date.

xm <D P C T  (22)

E. Activity Duration Constraints

To satisfy the assumption of integer durations and integer number of resource to be 

assigned/used, another set of constraints was added that forces the optimization algorithm 

to have integer values for these variables.
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Nki ij and Dy are integers (23)

F. Non-negativity Constraints

Finally, all variables, of course, cannot be assigned negative values.

*/ ,Xj,Nk/ jj, Dy >0 v  Sy e S (24)

7.3.8 Objective Function

To minimize the total cost of the project; Z

z = (Y L N̂ COdv (25)
k,

where

loady
(26)

k,

and Dy is rounded to the next higher integer number

7.4 The model: How is it different from the classical model?

Herring & Murphy [222] quoted:

When using CPM procedure, the time-cost trade-off points are assumed to lie on a 
continuously linear, or piece-wise linear, decreasing convex curve to insure an optimal 
solution. Further, all activities are assumed independent, in the sense that buying time on 
one activity does not affect in anyway the availability, cost, or need to buy time in some 
other activity.
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The presented model, thus, differs form classical CPM time-cost trade-off model in five 

major aspects:

1. As shown in Fig. 49, activity possible durations are represented by separate 

points not by a continuous straight line.

2. Activities are not independent, since assigning a resource to an activity affects 

the availability of this resource with respect to other activities.

3. The procedure itself differs from the classical crashing procedure in the sense 

that it crashes and relaxes and not just crashes activities.

4. In classical/traditional CPM calculations, time and/or cost estimates are 

assigned to each activity at the start of the analysis. In the proposed model, 

activity durations are calculated during the solution procedure and are 

changing from one trial to the other based on the assignment of different 

resources to different activities.

5. The proposed model is a hybrid model because:

a. It is an assignment problem in the sense that:

i. It involves determining the most efficient (optimum) assignment of 

resources to different activities.

ii. A resource unit can be assigned to one activity only.

iii. The objective is to minimize the total cost while maintaining a 

specified project completion time.

iv. While assignment problems are classified as linear programming 

problems, the case here is different; it is a nonlinear/ integer 

programming problem.

v. A mathematical programming problem is considered integer when 

one, or more, of the decision variables has to take on an integer 

value in the final solution. Furthermore, the proposed model is 

consider a “pure IP” since all decision variables must have integer 

solutions.

b. It is a project management problem in the sense that:

i. A project goal (manufacturing of a certain product) is specified.

ii. All project activities are defined.
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iii. A certain precedence relationships profile among these activities 

exists.

Finally, it should be noted here that the presented model is an NP-hard problem, meaning 

that for even moderate-sized problems finding an optimal solution is a difficult task due 

to the exponential size of the solution space. The non-linearity of the objective function, 

with many expected local optima further adds more complexity to the problem. 

Moreover, another complexity factor is the integer constraints.

6

O O

o

o  o  

o  o
o

A c tiv ity  D u ra tio n A c tiv ity  D u ra tio n

(a) CPM (b) Presented model

Figure 49. Models comparison.

7.5 Solution: Optimization Methods Implemented

In order to solve the presented mathematical model, an Excel sheet that costs the 

variables and equations of the model was created. Several commercial optimization add­

ins were implemented, these are:

1. What’s Best!- developed by LINDO systems Inc.

2. Evolver -  developed by Palisade.

3. optQuest -  developed by Decisioneering Inc.
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4. Premium solver platform -  developed by Front Line Systems.

None of these tools managed to reach even a feasible solution.

More investigation was performed on using “What’s Best!” by developing a VBA macro 

that provides WB! with an initial feasible solution many times in order to exhaust the 

solution space as possible, and hence, gets the global optimum. Figure 50. shows the flow 

diagram of the macro. The main goal of the macro was to automatically assign random, 

but reasonable, starting values for the decision variable. In case of non-feasible solution, 

the macro re-runs What’sBest! again and again until it reaches an optimal solution. This 

scenario is repeated until 20 local optimal solutions are to be found, and then the 

minimum one of them is chosen as the global optimum solution. But, unfortunately, 

experimentation shows that WB! was unable to move from these initial feasible solutions, 

and rather consider these solutions the optimal ones! Thus, the decision was made to 

implement simulated annealing instead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

START

Input project desired 
completion time

Set Best_objective = 0 
S e t Current__objective = 0

G enerate a random  initial Solution

Run W hat’sBest!

NoO ptim ab
Solution^

Yes

G et Current_objective

S et Best_objective=Current Objective

1
[ S e t T s  1 ]

G enerate  a  random  initial Solution j

Run W hat’sBest!

Optimal^
Solution?,

G et Current_objective

T
No

Y es

S e t Best_objective »  C urrent Objective 
S e t Best_solution »  Current_solution

No
T = 21 ?

Y es

O utput Best_so!ution 
and Best_objective

Figure 50. TCTO Optimization Macro Flowchart.
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7.5.1 Simulated Annealing

SA proved to be a powerful optimization algorithm when used in the DSM optimization 

part. In this section, the two-stage SA discussed earlier in Chapter VI will be used to 

solve the presented TCTO model. The followings are implementation details.

A. Decision Variables and Solution Representation

The solution representation, as shown in Fig. 51, is an mxnmatrix where the number of 

rows (m) equals the number of activities, and the number of columns ( n ) is the total 

number or all resources levels. The decision variables are the number of resource units of 

a certain type and level assigned to each activity.

Decision Variables

Resou ce Levels

Activities

Figure 51. Solution Representation.
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An initial solution configuration is generated by randomly assigning resource units to 

each activity. All constraint sets are examined and the initial solution has to satisfy all 

constraints, including project duration, to be considered feasible.

C. Generation of a Feasible Neighboring Solution Configuration

From a current solution configuration, a neighboring solution is generated as follows:

1. Randomly choose a decision variable in the matrix.

2. Randomly choose a perturbation value from the set {-2, -1, 1,2}.

3. Change the decision variable value by the amount determined in step 2.

It should be noted here that the model is constrained. Thus, to accept a generated solution 

configuration all constraints have to be satisfied first before pursuing the rest of SA steps.

D. Objective Function Evaluation

The objective function, which is the total project cost, is determined for each solution 

directly from Excel calculations.

F. Cooling Schedule

A  relatively fast annealing schedule is im plem ented, in w hich: r 0 =80,  7)-=10,  and 

a  -  0.95.

F. Stopping Criterion

The system is considered in a meta-stable condition when either of the number of rejected 

solutions or the number of accepted solution reaches 30. The optimization process is set 

to stop when the final temperature is reached. But, for the sake of shortening the 

optimization runs, the optimization process is terminated (assuming that the ground state 

has been reached) when the processing time at any temperature reaches a predefined 

threshold value.
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1.6 Summary

In this chapter, a new time-cost trade-off model for project networks crashing was 

presented. The new model combines a traditional assignment problem with CPM 

calculations. It avoids the shortcoming of the traditional crashing problem, concerning its 

inapplicability to real life situations. While the classical approach tries to obtain the 

minimum cost associated with a desired project completion time by reducing the time of 

some activities, this approach, in addition to this objective, minimizes the cost through 

extending/relaxing non-critical activities, as possible, by increasing the use of the slow 

type- i.e. cheaper- resource. Moreover, the objective of the classical formulation is to 

reduce additional cost due to crashing, while in the proposed model the objective is to 

reduce overall cost of the project or, in other words, to get the minimum possible project 

total cost.
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CHAPTER VIII 

ARCHITECTURE AND PRODUCT

Figure 52 illustrates the architecture proposed in this dissertation. It consists of three 

major phases:

1. System decomposition,

2. DSM optimization and analysis, and

3. Project scheduling and time-cost trade-off analysis.

While the methods related to the first phase falls beyond the scope of this research, 

elaborated discussions on the methods and tools related to the second and the third phases 

were given throughout the dissertation. The current chapter describes in detail different 

modules of the architecture and the interactions among these modules.

8.1 Architecture Overview

The structure of the proposed architecture can be further broken down into the following 

sequential modules:

1. Modeling,

2. Optimization,

3. Structuring,

4. Conversion,

5. Scheduling, and

6. Crashing (TCTO).

While modules one to four constitute the second phase (DSM optimization and analysis), 

modules five and six represent the third phase (time-cost trade-off). The following 

sections give a short description of each of these modules.
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8.1.1 Modeling

Given a list of activities, their associated loads, and information inputs and outputs from 

and to each activity (i.e. information couplings), the initial dependency structure matrix 

(DSM) which provides a compact visualization of the project and a clear understanding 

of the information flow patterns among different activities is created. The architecture 

deploys a numerical DSM; in which coupling marks are replaced by numbers (iteration 

factors). Refer to Section 6.6.

8.1.2 Optimization (Re-Sequencing)

As the order of the activities changes, the DSM structure (couplings’ directions) changes. 

Thus, incorporating an optimization technique that is capable of re-sequencing the 

activities execution order will achieve a reduction in the estimated project total load in 

addition to an improved design quality. Since the tackled problem falls in the NP-hard 

class, a conventional calculus-based optimization technique wouldn’t be an effective 

solution tool. Thus, as discussed in Section 6.8, a meta-heuristic algorithm called 

simulated annealing is implemented to rapidly evaluate many sequences and find the one 

that minimizes project total load (the objective function) while satisfying all imposed 

constraints (both precedence and logical).

Thus, the objective of this module is to find the optimum activity sequence based on one 

of the following objective functions:

1. Total number of feedbacks.

2. Project total iterative load.

3. Project total iterative time.

4. Project total iterative time and cost.

As hinted previously, the objective function calculates the total load (or time and cost) 

resulted from feedbacks loops not the total project time and cost (refer to Section 6.7). 

Furthermore, the fourth objective function option represents a multi-objective 

optimization problem.
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The module tolerates stochastic activity loads (presented by a probability distribution not 

by one-point estimate) by integrating a commercial risk analysis tool (Crystal Ball™) to 

construct a simulation-based optimization framework. Thus, the optimization module 

performs one of the following techniques:

A. In the deterministic case, simulated annealing will be deployed.

B. In the stochastic case, an integrated simulation-optimization framework - i.e. SA 

interfaced with Crystal Ball™ - will be deployed. This framework will be 

presented in Section 2 of the current chapter.

It should be noted here that while an unconstrained optimization is the default case, a 

constrained optimization problem emerges in cases where logical constraints are 

imposed. Figure 53 presents the classification of different possible optimization 

situations solved by the module.

8.1.3 Structuring

Following module 2, the optimally sequenced DSM is to be re-structured according to 

rules discussed earlier in Section 6.10.2. Typically, this includes patterns recognition, 

collapsing, and tearing. The objective of the module is to produce an equivalent DSM 

that contains no feedback couplings

8 . 1 . 4  Conversion to a Project Schedule

The equivalent DSM resulted from the structuring module is used to construct a project 

schedule - a list of activities, their loads, buffers, and precedence relationships -  without 

feedback couplings.
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Nature

Objective Function

Solution

Unconstrained

Determinsitic Stochastic

Multiple

Constrained

Optimal

Single

Robust

Constraints

Optimization

Figure 53. Optimization Cases.

8.1.5 Scheduling

The resulted project schedule is, then, transferred to a project management software (MS 

Project) where it is presented using both Gantt chart and a network diagram.

8.1.6 Crashing

Finally, as detailed in Chapter VII, resources are assigned to project activities to meet a 

specified due date.
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8.2 Product

8.2.1 DSM Optimization and Analysis

A software called optDSM has been developed as an implementation part of this 

dissertation. optDSM is an Excel add-in that aimed towards carrying out the first phase of 

the framework. To achieve its goal, the tool integrates:

1. Visual Basic for Applications (VBA).

2. Mathematical programming (modeling).

3. Simulated annealing.

4. Commercial software of risk analysis (Crystal Ball™).

The construction and different functions of optDSM are presented in Appendix A.

The research utilized VBA programming language to develop optDSM infrastructure and 

different functions. VBA (Microsoft Visual Basic® for Applications) is a powerful 

development technology. The use of VBA in this research allowed customization and 

integration of off-the shelf software (MS Excel, Crystal Ball, and MS Project) to serve 

the research objectives rather than developing the whole solution architecture from 

scratch. For more details on VBA refer to [223].

The comer stone of optDSM is MS Excel, which is characterized by: (1) its great range 

of built-in mathematical and scientific functions, (2) availability of logical statements and 

decisions, (3) its capability to communicate with other applications within MS Windows 

environment, and (4) the availability of different add-ins that seamlessly add evermore 

functionality to MS Excel. Thus, a mathematical model for the DSM calculations is 

developed through an Excel spreadsheet.

While simulated annealing (SA) was used as the optimization technique for deterministic 

cases, a simulation-based optimization framework (in which SA is interfaced with Crystal 

Ball) was needed to handle stochastic cases. The flowchart presented in Fig. 54 illustrates
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the structural operability of this framework, which constitutes a major component of 

optDSM.

The process of this framework goes as follows. Starting with some initial solution 

configuration, the following process is repeated. At each iteration, the objective function 

evaluation module receives a new solution configuration from the optimizer. The 

simulation of the model takes place with this configuration. Expected value of the 

objective function is obtained directly form Crystal Ball™. This value is fed to the 

optimizer which return a new solution configuration. A new iteration starts. The process 

proceeds until the simulated annealing stopping criterion is reached.
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8.2.2 Time-Cost Trade-Off

The mathematical model formulated in Chapter VII is implemented through an Excel 

sheet. To perform the optimization process, a VBA macro, shown in Fig. 55, that 

implements simulated annealing was created. The process starts by generating a random 

feasible starting solution. Then the following is repeated: at each iteration, the assignment 

module in the Excel sheet receives a new solution configuration from the optimization 

module', the feasibility of the proposed solution is checked; if  the solution is infeasible, it 

is rejected; if the solution is feasible, time and cost calculations of the model take place 

with this configuration; precedence and project completion constraints are checked for 

feasibility; if feasible, the value of the objective function is fed to the optimizer which 

return a new solution configuration; a new iteration starts. The process proceeds until the 

simulated annealing stopping criterion is reached.

Due to the complicated non-linearity, in addition to integer constraints, that exists in the 

model. Thus, despite of the powerful capabilities of SA, the macro was designed to:

1. Perform several optimization runs, each with a different initial feasible solution

2. Reject any non-feasible solutions generated.
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Figure 55. TCTO Module.

8.4. Summary

The main objective of the presented research is to develop an optimization-based 

architecture that helps guiding the project manager efforts for managing the design 

process in complex integrated product development projects. The current chapter 

described in details different modules of the architecture and the interactions among these 

modules. While table 12 summarizes the two main phases of the architecture, their 

functions, the conceptual tools used and the implementation software, Table 13 presents 

different options of the architecture.
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Table 12. Summary of Architecture Functions.

Phase D S M  O p tim iza tio n  a n d  A n a l y s i s T i m e - C o s t  T ra d e  - O f f

F u n c t i o n C o n c e p t u a l I m p l e m e n t a t i o n F u n c t i o n C o n c e p t u a l  I m p l e m e n t a t i o n
Tools Software Tools Software

Project DSM MS Excel Mathematical MS Excel

Representation Modeling

Mathematical MS Excel Optimization SA VBA

Modeling

CA
Optimization SA VBA Application VBA

3
CJ

Integration
a Uncertainty Monte Carlo Crystal Ball

Analysis Simulation

Stochastic Simulation- VBA

Optimization based

Optimization

Application VBA

Integration
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Table 13. Summary of Architecture Options.
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CHAPTER IX 

CASE STUDIES AND RESULTS

9.1 Project 1: Benchmarking

To test the performance of optDSM and to compare it with two other tools (AGENDA 

and DeMAID) optDSM was applied to the VTOL analysis code used by Kopra et al.

[224],

While DeMAID has no explict objective, AGENDA’S objective is to reduce the ‘total 

length of feedback’ of the system. The published DeMAID solution has a total feedabcak 

length of 275, while the solution obtained by AGENDA, shown in Fig. 56, has a total 

feedback length of 133 [47].

In optDSM terms, AGENDA’S solution has 33 feedbacks, and 167 load units - assuming 

that one load unit is assigned to each activity. When optDSM was used to solve the 

problem, it reached an equivalent solution (33 feedbacks and 167 load units) shown in 

Fig. 57. Due to the difficulty of the DSM optimization problem since many local 

optimum solutions may exist, the sequence obtained by optDSM was slightly different 

than the one obtained by AGENDA (comparison shown in Table 14).
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Figure 56. Solution Obtained by AGENDA.
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Figure 57. Solution Obtained by optDSM.
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Table 14. optDSM Sequence vs. AGENDA Sequence.

T ask O rd e r
AG EN D A optDSM

MODCOM P 1 1

STACTIP 2 4

ACCCOMP 3 2

ADVM ATE 4 3

GLIM ITS 5 5

FUSSIZE 6 6

CABSIZE 7 7

EMPTYW T 8 8

TIPSPED 9 9

RRADIUS 10 10

SOLID IT 11 11

POW ERRQ 12 12

TRBKANG 13 13

SPEED 14 14

PURCOST 15 15

VIBRATN 16 17

RANGE 17 16
FUELEFF 18 18

OPRCOST 19 19

RELIABLE 20 20

EMGNOPS 21 21

CRASHW R 22 22

Numbers in bold represent different activity order.
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9.2 Project 2: A Conceptual Design Project -  Deterministic Case

The project presented here is adopted from Rogers et al. [42]. This project (consisting of 

22 activities) was taken from a larger conceptual design project. Figure 58 represents the 

process flowchart for this project. “The main problems with this type of chart are that it is 

difficult to determine where to begin the design activity and which processes are iterative

[39].”

As a start, the sequence of the activities has been randomly ordered. Table 15 shows 

different activities, their order, and an arbitrary time and cost (units depend on the user) 

associated with each of them. The DSM for this ordering, shown in Fig. 59, reveals the

existence of 39 couplings (23 feedbacks and 16 feed forward). Coupling strengths are

defined and then used to estimate the required number of iterations for convergence as 

discussed previously. Table 16 shows all couplings and their associated strength.

In the following sections, the DSM sequence will be optimized based on three different 

objective functions:

1. Case (1): Minimum feedbacks

2. Case (2): Minimum load

3. Case (3): Minimum total time and cost

It should be noted that the optimization of the current DSM is a relatively easier task than 

optimizing the DSM of project (1) since it has a lower complexity factor (1.77 compared 

to 4.99).

Despite of SA proven robustness, three different optimization runs will be performed for 

each case. These runs have different initial solution, initial temperature, and final 

temperature. Notice, though, that these runs are considered short runs in SA practice.
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TablelS. Proiect 2: Activities List.

Order D e s c r ip t io n ID Time C o s t

1 I n i t ia l  D a ta INITDAT 40 20

2 D y n a m ic  M o d e l D Y N M O D L 30 30

3
S ta b i l i ty  & M o d e l  
C h a r a c te r i s t i c s

S T D M O C H 40 20

4 S t r u c tu r e  M o d e l S T R M O D L 10 50

5 S ta b i l i ty  Q u a l it ie s H A N D Q U L 10 50

6 S t ru c tu re  M o d e S T R M O D E 10 50

7 G e o m e tr y  D e v e lo p m e n t G E O M D E V 50 10

8 A e r o  E la s t ic  P ro p e r t ie s A R O S R V O 40 20

9 A e ro  E la s t ic  A n a ly s is S T R D Y N A 50 10

10 C o n tr o l  S y s te m A n a ly s is C S Y S A N A L 20 40

11 F le x . A e r o  C h a ra c te r is tic F A R E R O C H 20 40

12 R e v is e  In it ia l  D a ta R V S E D A T 30 30

13 M is s io n  P e r fo rm a n c e M IS P E R F 30 30

14 V e h ic le  P e r fo rm a n c e V E H E P E R F 20 40

15 R ig id  A e r o  C h a ra c te r is tic R A E R O C H 30 30

16 A e r o  A n a ly s is A E R O A N L 20 40

17 P r e s s u r e  &  D e f le c t io n P R E S D E F 30 30

18 S tru c tu re  A n a ly s is S T R A N A L 40 20

19 S tru c tu re  W  e ig h t S T R C T W T 50 10

20 W e ig h t  &  In e r t ia  A n a ly s is W IA N A L 40 20

21 A e ro  M o d e l A E R O M D L 20 40

22 F in a l D a ta F IN L D A T 20 40

Table 16. Project 2: Couplings List.

Coupling
No. From To Strength

1 INITDAT GEOMDEV es
2 RVSEDAT INITDAT n
3 MISPERF RVSEDAT vw
4 GEOMDEV AEROMDL es
5 GEOMDEV STRMODL ew
6 AEROMDL AEROANL es
7 PRESDEF AEROANL vs
8 AEROANL PRESDEF s
9 STRANAL PRESDEF es
10 PRESDEF STRANAL vs
11 STRCTWT STRANAL s
12 STRMODL STRANAL w
13 STRANAL STRCTWT es
14 WIANAL STRCTWT ew
15 GEOMDEV WIANAL w
16 STRCTWT WIANAL es
17 AEROANL RAEROCH s
18 PRESDEF FAREROCH es
19 STRANAL STRMODE s
20 WIANAL VEHEPERF w
21 RAEROCH VEHEPERF es
22 FAREROCH VEHEPERF ew
23 AROSRVO VEHEPERF vs
24 HANDQUL VEHEPERF vw
25 VEHEPERF MISPERF s
26 STRDYNA STDMOCH es
27 GEOMDEV STRDYNA s
28 RAEROCH STRDYNA w
29 FAREROCH STRDYNA es
30 STRMODE STRDYNA ew
31 WIANAL STRDYNA vs
32 CSYSANAL STRDYNA ew
33 STRDYNA AROSRVO s
34 GEOMDEV DYNMODL w
35 STDMOCH DYNMODL es
36 DYNMODL CSYSANAL es
37 STRDYNA CSYSANAL s
38 CSYSANAL HANDQUL vs
39 MISPERF FINLDAT n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

9.2.1 Case (1)

In this case:

• All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “number of feedback couplings”

The results of the three runs are shown in Table 17. As shown, the minimum number of 

feedbacks -  equals to 9 - was achieved in Run (3). The DSM corresponding to this 

solution is shown in Fig. 60.

Table 17. Case (1): Results.

R u n # 1 2 3

SA Settings
Initial Temp. 55 60 60
Final Temp. 10 10 5
Cooling Factor 0.98 0.95 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

f 1 Meta-Stable Solution
Load 689 915 698
Feedbacks 16 15 16
(Time + Cost) 41340 54900 41880

Optimal Solution 
Load

*

Feedbacks 
(Time + Cost)

769
10

46140

681
10

40860

568
9

34080
% reduction w.r.t. Initial 
Configuration

Load (16.52) (3.18) 13.94
Feedbacks 56.52 56.52 60.87
(Time + Cost) (16.52) (3.18) 13.94

% reduction w.r.t. P
meta-stable solution

Load (11.61) 25.57 18.62
Feedbacks 37.50 33.33 43.75
(Time + Cost) (11.61) 25.57 18.62

Solution Time (sec) 164.53 65.63 90.90
Evaluated Solutions

Total 4363 1797 2539
Accepted 4250 1750 2450

Objective Function
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INITDAT H H 5

GEOMDEV 8

WIANAL 4 [K M ! 8

DYNMODL 4 8
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MISPERF 8

FINLDAT i s  m i

Figure 60. Case (1): DSM with Minimum Number of Feedbacks.

The results obtained from the other two runs (1 and 2) reveal a very important 

conclusion. Notice that although the number of feedbacks was improved (10 instead of 

16), the other two measures -  load, time and cost -  did not. On the contrary, their values 

increased. Thus, minimizing the number of feedback coupling does not necessarily imply 

a lower total time and cost. Finally, Fig.61 represents the meta-stable values of the three 

measures (number of feedbacks, load, and time and cost) at different temperatures.
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9.2.2 Case (2)

In this case:

® All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “total load”

• Activity loads are deterministic.

The results of the three runs are shown in Table 18. As shown, the minimum load -  

equals to 130 units - was achieved in Run (1). The DSM corresponding to this solution is 

shown in Fig. 62. The meta-stable values of the three measures (number of feedbacks, 

load, and time and cost) at different temperatures are shown in Fig. 63.

Table 18. Case (2): Results.

Run# 1 2 3

SA Settings
Initial Temp. 55 60 60
Final Temp. 10 10 5
Cooling Factor 0.98 0.95 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

1st Meta-Stable Solution
Load 436 574 605
Feedbacks 15 14 20
(Time + Cost) 26160 34440 36300

Optimal Solution
Load 130 160 136
Feedbacks 7 9 7
(Time + Cost) 7800 9600 8160

% reduction w.r.t. Initial 
Configuration

*

Load 80.30 75.76 79.39
Feedbacks 69.57 60.87 69.57
(Time + Cost) 80.30 75.76 79.39

% reduction w.r.t. 1“
meta-stable solution

Load 70.18 72.13 77.52
Feedbacks 53.33 35.71 65.00
(Time + Cost) 70.18 72.13 77.52

Solution Time (sec) 212.14 89.18 127.08
Evaluated Solutions

Total 6273 2673 3356
Accepted 2156 1040 1027

Objective Function
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ihilTDAT H H  5
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Figure 62. Case (2): DSM with Minimum Total Load.

A closer look at the results reveal that, in contrast to Case (1), a minimum total load 

would result in a minimum number of feedbacks and minimum time and cost. The 

number of feedbacks corresponding to minimum total load is even lower than the number 

obtained in Case (1) -  7 compared to 9.
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9.2.3 Case 3

Finally, in this case:

• All activities assume equal load of one unit.

• Both SA acceptance and rejection limits are set to 50.

® The objective is to minimize: “total time + cost”

• Activity time and cost are deterministic

The results of the three runs are shown in Table 20. As shown, the minimum objective 

function -  equals to 8100 units - was achieved in Run (2). The DSM corresponding to 

this solution is shown in Fig. 64.

The meta-stable values of the three measures (number of feedbacks, load, and time and 

cost) at different temperatures are shown in Fig.65. It can be noticed that a minimum time 

and cost would result in lower load and number of feedbacks. In Fig.66, the objective 

function values corresponding to all accepted solutions are shown. The figure illustrates 

the basic concept on which SA avoids being trapped in a local minima; the acceptance of 

some solutions with objective functions higher than the current optimal one.
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Table 19. Case (3): Results.

Run # 1 2 3

SA Settings
Initial Temp. 55 55 60
Final Temp. 10 10 10
Cooling Factor 0.98 0.98 0.95

Initial Configuration
Load 660 660 660
Feedbacks 23 23 23
(Time + Cost) 39600 39600 39600

l il Meta-Stable Solution
Load 305 451 526
Feedbacks 13 14 14
(Time + Cost) 18300 27060 31560

Optimal Solution
Load 136 135 136
Feedbacks 8 7 8
(Time + Cost) 8160 8100 8160

% reduction w.r.t. Initial
Configuration

Load 79.39 79.55 79.39
Feedbacks 65.22 69.57 65.22
(Time + Cost) 79.39 79.55 79.39

% reduction w.r.t. 1
meta-stable solution

Load 55.41 70.07 74.14
Feedbacks 38.46 50.00 42.86
(Time + Cost) 55.41 70.07 74.14

Solution Time (sec) 176.14 226.90 86.63
Evaluated Solutions

Total 4397 5664 2433
Accepted 147 1438 728

Objective Function
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Figure 64. Case (3): DSM with Minimum Total Time and Cost.
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Figure 66. Case (3): Accepted Solutions.
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9.3 Project 3: A Conceptual Design Project -  Stochastic Case

This project is the same one presented in the previous section, but with a main difference, 

that is: activities assume stochastic load, shown in Table 20. Probability distributions 

used and associated parameters are shown in Fig. 67.

Other settings are:

• Both SA acceptance and rejection limits are set to 50.

• The objective is to minimize: “total load”

Both comparison rules (min-mean-max, and utility function method) presented in 

Chapter VI will be implemented in Sections 3.1 and 3.2 respectively.

Normal (mean, standard deviation)

Uniform (maximum, minimum)

x: Weibull (location, scale, shape)

Beta (alpha, beta, scale)

Lognormal (mean, standard deviation)

Exponential (rate)

Triangular (minimum, likeliest, maximum)

Figure 67. Probability Distributions’ Parameters.
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Table 20. Project 3: Activities List.

Order Description ID Load

1 Initial Data INITDAT Normal (40, 4)

2 Dynamic Model DYNM ODL Uniform (27, 33)

3 Stability & M odel Characteristics STDM OCH Weibull (40, 1 ,2 )

4 Structure M odel STRM ODL Beta (2, 3, 10)

5 Stability Qualities HANDQUL Lognormal (10, 1)

6 Structure M ode STRM ODE Normal (10, 1)

7 Geometry Development GEOM DEV Normal (50, 5)

8 Aero Elastic Properties AROSRVO Normal (40, 4)

9 Aero Elastic Analysis STRDYNA Normal (50, 5)

10 Control System  Analysis CSYSANAL Normal (20, 2)

11 Flex. Aero Characteristic FAREROCH Normal (20, 2)

12 Revise Initial Data RVSEDAT Normal (30, 3)

13 M ission Performance MISPERF Exponential (0.03)

14 Vehicle Performance VEHEPERF Beta (2, 3 ,2 0 )

15 Rigid Aero Characteristic RAEROCH Beta (2, 3, 30)

16 Aero Analysis AEROANL Beta (2 ,3 ,2 0 )

17 Pressure & Deflection PRESDEF W eibull (30, 1 ,2 )

18 Structure Analysis STRANAL Uniform  (36, 44)

19 Structure W eight STRCTW T Beta (2, 3, 50)

20 W eight & Inertia A nalysis W IANAL Uniform (36, 44)

21 Aero Model AEROM DL Beta (2, 3, 20)

22 Final Data FINLDAT Triangular (18 , 20, 22)
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9.3.1 Min-Mean-Max (M3) Results

In this section, the min-mean-max comparison rules for optimization with stochastic 

activity loads are implemented. Table 21 shows the results from two runs, each with 

different initial solution, and different cooling schedule. The DSM corresponding to the 

second run is shown in Fig.68. Figures 69 and 70 represents the probability distribution 

curves for the initial and optimal solutions respectively. Finally, Fig.71 illustrates the 

minimum, mean, and maximum values corresponding to the objective function meta­

stable values.

To study the robustness of the solution obtained, Fig.72 was created. As shown, while the 

M3 rules led to minimum mean and minimum min, the maximum values were not 

minimized. Thus, the final solution is less robust than its proceeding solution. Again, 

Fig.73 illustrates how the modified SA manages to avoid local optima.
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Table 21. M3: Results.

R un # 1 2

SA Settings
Initial Tem p. 55 60
Final Temp. 2 2
Cooling Factor 0.95 0.95

Initial Configuration
Min 14472.25 14472.25
M ean 17179.33 17179.33
Max 23044.19 23044.19
Standard Deviation 1188.11 1188.11

1 M eta-Stable Solution
Min 9172.61 17860.41
Mean 10663.56 20698.67
M ax 15708.47 24415.73
Standard Deviation 943.4 945.05

Optimal Solution
Min 3789.36 3377.17
M ean 4453.2 4181.34
Max 6260.28 6763.51
Standard Deviation 319.32 391.77

% reduction w.r.t. Initial
Configuration

Min 73.82 76.66
M ean 74.08 75.66
M ax 72.83 70.65
Standard Deviation 73.12 67.03

% reduction w.r.t. l “  meta-
stable solution

Min 58.69 81.09
M ean 58.24 79.80
M ax 60.15 72.30
Standard Deviation 77.10 82.89

Solution Time (sec) 1795.7 4018.9
Evaluated Solutions

Total 4198 4578
A ccepted 298 558
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Figure 68. M3: DSM Corresponding to the Optimal Solution.
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Figure 70. M3: Probability Distribution of the Optimal Solution.
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Figure 71. M3: Meta-stable Objective Function Values.
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9.3.2 Utility Function Method Results

An alternative method to the M3 is the Utility method. Table 22 shows the results from 

two runs, each with different initial solution, and different cooling schedule. The DSM 

corresponding to the second run is shown in Fig.74. Figure 75 illustrates the mean, range, 

and maximum values corresponding to the objective function meta-stable values.

Table 22. Utility Function Method: Results.

R un # 1 2

SA Settings
Initial Tem p. 50 60
Final Temp. 2 2
Cooling Factor 0.95 0.95

Initial Configuration
M ean 17179.33 17179.33
Variance 1411605.37 1411605.37
Range 5864.86 5864.86
M ax 23044.19 23044.19

l il M eta-Stable Solution
M ean 17468.62 11421.86
Variance 484163.07 479527.13
Range 4558.88 4333.92
M ax 20147.21 14330.93

Optim al So lution
M ean 4266.85 4109.9
Variance 32923.62 33778.41
Range 1051.01 985.68
M ax 4858.35 4673

% reduction w.r.t. Initial
Configuration

M ean 75.16 76.08
Variance 97.67 97.61
Range 82.08 83.19
M ax 78.92 79.72

% reduction w.r.t. 1st meta- 
stable solution

M ean 75.57 64.02
Variance 93.20 92.96
Range 76.95 77.26
M ax 75.89 67.39

Solution Time (sec) 7608.5 14010.9
Evaluated Solutions

Total 3991 5227
Accepted 887 1289
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Figure 74. Utility Function Method: DSM.

16000 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0
60.0 46.4 35.9 27.8 21.5 16.6 12.9 10.0 7.7 6.0 4.6 3.6 2.8 2.1

T em p era tu re

Figure 75. Utility Function Method: Meta-stable Objective Function Values.

Mean M axRange

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

To study the robustness of the solution obtained, let’s consider Fig.76. As shown, the 

implementation of the utility function methods led to an optimal and robust solution.
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Figure 76. Utility Function Method: Solution Robustness.
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9.4 Project 4: Illustrative Project

The purpose of the current and last case is to illustrate how the optimized DSM is 

converted into a program. A hypothetical project is considered. The project consists of 16 

activities (Table 23 lists these activities and their associated load), and contains 38 

couplings (shown in Table 24), and finally two logical constraints (shown in Table 25) 

are imposed on the project.

Table 23. Project 4: Activities List.

Activity
O rd er ID Load

1 K 50

2 B 40

3 C 30

4 D 20

5 E 40

6 F 30

7 G 50

8 H 60

9 I 10

10 J 20

11 A 30

12 L 40

13 M 50

14 N 20

15 P 60

16 0 30

Table 25. Project 4: Logical Constraints.

No. A c t i v i t y  P r e c e d e s
1 F L
2 B I

Table 24. Project 4: Couplings List.

No. f r o m To Strength

1 A H n
2 A P s
3 A O w
4 B D es
5 B C n
6 B M vs
7 B G s
8 C G s
9 c O w
10 D H vw
11 D P ew
12 D C n
13 E G n
14 E O s
15 F D s
16 F N vs
17 G A vs
18 G D es
19 G M n
20 H N w
21 H P n
22 H C vw
23 H M s
24 I H s
25 I G n
26 J C n
27 J M vw
28 K D n
29 L P s
30 M G s
31 N P vw
32 N M w
33 N G s
34 N O n
35 O A es
36 O D s
37 P H s
38 P N w
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9.4.1 Optimization

Figure 77 represents the DSM corresponding to an initial activity sequence. The initial 

configuration results in 15 feedbacks and a total load of 15700 units. Figure 78 represents 

the DSM resulted from minimizing the total feedbacks. This DSM has only 7 feedbacks 

and a total load of 13040 units. Figure 79 shows the DSM corresponding to the sequence 

of minimum load. This DSM has 10 feedbacks and total load of 7540. The DSM was 

obtained using Geometric cooling schedule, with T0 = 50 , Tf  = 20, a = 098, acceptance

limit = 60, and rejection limit =60.

K B C D E F G H  I J A L M N P O

K

B

C
D

E

F
G

H

J

A

L
M

N
P

0

Figure 77. Project 4: Initial DSM.
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Figure 78. Project 4: DSM with Minimum Number of Feedbacks.
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Figure 79. Project 4: DSM with Minimum Total Load.
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9.4.2 Conversion to a Project Schedule

Based on the optimal DSM with minimum load, the rules for conversion to a project 

schedule are summarized in Table 26.

Table 26. Conversion to a Project Schedule.

S t e p D e t a i l s
F i g u r e# A c t i v i t i e s P a t t e r n E q u i v a l e n t

1 H &P I
C,=6

Merge activities into ‘Block 1 ’
Block load = 0.5 x 720 = 360 units
Addition to project buffer = 0.2 x 720 = 144 units

80

2 Block 1 & N I
Ci=3, C2 >3

Suspense the feedback coupling
Addition to project buffer =  0.3 x 240 =  72 units 81

3 M & G I
Ci=5, C2 =6

Merge activities into ‘Block 2’
Block load =  0.5 x 500 =  250 units
Addition to project buffer =  0.2 x 500 = 100 units

82

4 A &  0 I
C,=8

Merge activities into ‘Block 3 ’
Block load =  0.5 x 480 =  240 units
Addition to project buffer =  0.2 x 480 =  96 units

82

5 Block 1 &  D C
Length >  3

Suspense the feedback coupling
Insert ‘Buffer 1 ’ with load =  0.4 x 780 =  312 units
Addition to project buffer =  0.2 x 780 =  156 units

83

6 Block 2 &  C C
Length =  3

Suspense the feedback coupling
Insert ‘Buffer 2’ with load =  0.5 x 600 =  300 units
Addition to project buffer =  0.2 x 600 =  120 units

84

7 Block 3 &  D S Suspense the feedback coupling
Insert ‘Buffer 3’ with load = 0.4 x 660 = 264 units
Addition to project buffer = 0.3 x 660 = 198 units

85

8 Block 3 & 
Block 1

S Suspense the feedback coupling
Insert ‘Buffer 4 ’ with load = 0.4 x 1560 = 300
units
Addition to project buffer = 0.3 x 1560 = 468 
units

85

9 Buffer 3 & 
Buffer 4

Merge as Buffer 3 with load = 264 + 300 = 564 
units 85
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Figure 80. Conversion to a Project Schedule: Step 1.

K B E 1 F J L Blockl N M G D 0 A 0

K

B

E

1

F

J

L

Blockl 8 8 6 3 3

N 7 7 4

M 7 7 3 3 6 4  I n 5

G 6 5 5 5 5 8 6 6

D 5 8 8 6 3 K 1 6

C 5 5 5 5 3 5

A 7 3

0 6 S 5 4 4  M l

Figure 81. Conversion to a Project Schedule: Step 2.
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Figure 82. Conversion to a Project Schedule: Steps 3 and 4.
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Figure 83. Conversion to a Project Schedule: Step 5.
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Figure 84. Conversion to a Project Schedule: Step 6.

K B E I F J L Block! N Block 2 D Buffer! C Buffer 2Block3Buffer 3

Blockl

Block 2

Bufferi

Buffer 2

Block 3

Buffer 3

Figure 85. Conversion to a Project Schedule: Steps 7, 8, and 9.
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9.4.3 Time-Cost Trade-Off

Now that the DSM has been converted to a program, as shown in Table 27, the analysis 

can proceed to the last phase of the architecture; time-cost trade-off.

For simplicity, it is assumed that all activities share/require the same resource type, and 

that resource has three level shown in Table 28. The TCTO module presented earlier was 

implemented. The TCTO curve for the project is shown Fig.86.

Consider the case in which required project completion is set to 56 hours, the resources 

assignments, resources usage, and corresponding schedule (Gantt chart) are shown in 

Table 20, Table 30, and Fig.87 respectively. Finally, the meta-stable values of the 

objective function (project cost) are shown in Fig.88.

Table 27. Activities List of the Equivalent Schedule.

Activity Load Precedes

K 50 D

B 40 N, Block 2, D, C

E 40 Block 2, D, C

I 10 Block 1, Block 2

F 30 N, Block 2, D, C

J 20 Block 1, Block 2, C

L 40 Block 1, Block 2, Block 3

Blockl 360 N, Block 2, C

N 20 Block 2, Block 3

Block 2 250 D, Block 3

D 20 Buffer 1

Bufferi 312 C

C 30 Buffer 2

Buffer 2 300 Block 3

Block 3 240 Buffer 3

Buffer 3 564 Project Buffer

Project Buffer 1258 -
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Table 28. Resource Data.

Resource

Level

Productivity

(units/hr)

Cost rate 

(S/hr)
Availability

Slow 20 7 40

Normal 30 10 40

Fast 40 20 40

1600

1550

1500

1450

1400

1350

1300

1250
20 25 31 36 41 46 51 56 6115 45

Project Duration 

Figure 86. TCTO Curve.
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Table 29. Resource Assignment for 56 hours.

A c t i v i t y L o a d
R e s o u r c e  A s s i g n m e n t

D u r a t i o n C o s t
Slow N o r m a l F a s t

K 50 1 0 0 3 21

B 40 1 0 0 2 14

E 40 1 1 0 1 17

I 10 1 0 0 1 7

F 30 0 1 0 1 10

J 20 1 0 0 1 7

L 40 0 1 1 1 30

Blockl 360 0 3 0 4 120

N 20 0 0 1 1 20

Block 2 250 0 3 4 1 110

D 20 0 1 0 1 10

Bufferi 312 1 5 0 2 114

C 30 2 0 0 1 14

Buffer 2 300 0 1 0 10 100

Block 3 240 5 2 2 1 95

Buffer 3 564 0 7 2 2 220

Project Buffer 1258 2 0 0 32 448

Table 30. Resource Usage.

R e s o u r c e  L e v e l U s e d A v a i l a b l e

Slow 15 40

Normal 25 40

Fast 10 40
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Figure 87. Gantt Chart (for 56 hours Project Duration).
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Figure 88. Meta-stable Objective Function; Cost (for 57 hours Project Duration).
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9.5 Summary

In order to illustrate the process of the presented architecture, four case studies (projects) 

were presented in this chapter. The objective of considering the first case study was to 

benchmark the performance of optDSM. Observing the characteristics of the optimization 

process based on different objective functions was the goal of the second case study. The 

third one illustrated the incorporation of uncertainty into the model and the application of 

the simulation-based optimization framework. Finally, the fourth case study was to 

illustrate in details different steps of the presented architecture applied to a hypothetical 

project. A summary of these cases (projects) is given in Table 31.

Table 31. Case Projects Summary.

Project
No. Description Case DetailsNo.

1

Benchmarking 
Project representing VTOL 
analysis. Consists of 22 
activities and has 119 
couplings.

Equal load of one unit assigned to all 
activities
The objective is: minimizing the 
total load

A circuit taken from a large 
conceptual design project. 
Consists of 22 activities and 
has 39 couplings

Equal load of one unit 
assigned to all activities 

* The objective is: minimizing 
the no. of feedback couplings.

2
Equal load of one unit 
assigned to all activities

2 The objective is: minimizing 
the total load

The objective is: minimizing
3 the total load

3
Same as (1), but with 
stochastic activity loads.

j M3 method implemented 

2 UF method implemented

4

A hypothetical project. 
Consists of 16 activities and 
has 38 couplings.
2 logical constraints are 
imposed.

To illustrate the complete operation 
of the proposed architecture:
a. Optimization for minimum load
b. Conversion of the optimized DSM 

to an equivalent program
c. Implementation of the TCTO 

model.
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CHAPTER X 

SUMMARY AND FUTURE WORK

A product development project (PDF) fundamentally differs from a construction (or a 

manufacturing) project in two major aspects: (1) while the later is activity-based, the first 

is information-based; and (2) a typical PDF is characterized by its highly coupled, 

interdependent activities, which must converge iteratively to an acceptable design 

solution.

A PDP is typically a complex system. The main approach to handling such system 

involves: decomposing it into sub-systems and furthermore into smaller components; and 

defining the relationships among these components. Following these steps, the system 

will be decomposed into possibly several hundreds of activities (components) and 

thousand of variable interchanges among these activities. The sequence of performing 

these activities strongly affects the time (and hence the cost) needed to realize the whole 

project.

This dissertation has presented an optimization-based architecture that helps guiding the 

project manager efforts for managing the design process in complex integrated product 

development projects.

Following a sufficient background of the tools integrated through the architecture in 

Chapters II, III, IV, and. Chapters VI and VII provide detailed discussions on the research 

methodology and on research areas of contribution. Different modules of the architecture 

and the interactions among these modules were discussed in detail in Chapter VIII. 

Finally, Chapter IX attempted to present the performance of the architecture by applying 

it to several projects, followed by conclusions and directions to future research in Chapter 

X. The presented architecture was further implemented through a developed excel add-in 

called “optDSM” presented in Appendix A.
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The presented work contributes to five areas of research:

1. Dependency Structure Matrix (DSM).

2. Optimization with the Simulated Annealing Algorithm (SA).

3. Simulation-based Optimization.

4. Time-Cost Trade-Off in Project Networks.

In the following sections, a summary of each of the contributions mentioned above is 

provided. Future research directions are also indicated.

10.1 The Dependency Structure Matrix

Improving system performance can be achieved through efficient re-reengineering of its 

structure. The Dependency Structure Matrix (DSM) provided an effective tool for system 

structure understanding. The first research contribution aimed towards finding an optimal 

activity sequence of the DSM representing a design project in terms of load, time, and 

cost. To achieve this goal, a mathematical program (model) representing the DSM 

structure was developed and a meta-heuristic optimization algorithm called Simulated 

Annealing (SA) was implemented to solve this model.

Since its original introduction by Steward in the 1980’s, the DSM has proved itself as an 

effective tool for analyzing and understanding system architecture especially in new 

product development projects and, hence, achieving improved performance. The use of 

the DSM is the comer stone of the architecture proposed in the current research. 

Following the modeling of the system (project) in a DSM format, finding its optimal 

activity sequence represented the first contribution of the research presented.

• This research implemented a numerical DSM in which coupling marks are replaced 

with numbers (iteration factors) indicating the strength of the coupling.

• The DSM was then represented by a mathematical program (model) so that it can be 

mathematically optimized. The model, further, allowed:

• Imposing logical constraints on activity sequence.

■ The choice among four objective functions.
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The use of stochastic activity data (load, time and/or cost).

• Although the optimization process considered planned iterations only, 

unplanned iterations can be compensated for in the scheduling phase through 

buffers introduced in the scheduling phase.

® The model assumed sequential execution of activities and did not allow for

activity concurrency or overlapping. Further investigation can consider cases 

in which activities can start without receiving all required input information.

• Furthermore, cases in which an activity can provide some output to other 

activities before it finishes can also be incorporated in a future model.

• The fashion by which an activity is redone when it falls in more than one 

feedback loop can be modified to reflect more applicable situations.

• The introduction of logical constraints to the model provided control means 

over the activity sequence of the DSM. Moreover, such constraints can be 

used when considering multi-DSM (or multi-project) cases. In such cases, 

theses constraints can be set to maintain some logic activity order, or to 

represent resource constraints. So, multi-DSM can be optimized through the 

same optimization module developed in the dissertation.

10.2 Simulated Annealing

To carry out the optimization process, a meta-heuristic algorithm called Simulated 

Annealing (SA) was implemented. SA is a stochastic optimization algorithm that 

provides global or near-global optimal solutions for a wide variety of hard combinatorial 

optimization problems. SA was used in this research to rapidly examine a large number 

of configurations and choose the optimal one.

• The SA proposed and implemented in this research (referred to as ‘two-stage 

SA’) was modified from the original SA by adding a stage that keeps record 

of the best solution throughout the optimization process.
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• Since SA is a robust algorithm, initial solution was chosen to be generated 

randomly in the implementation presented. Other options that can be 

considered are:

■ Allowing the user to provide the initial solution.

■ Generating the initial solution using a partitioning algorithm.

• Only one cooling schedule -  geometric - was used in this research. Other 

schedules (such as multi-stage cooling and geometric re-heating) can be used 

and have their results compared.

• In the implemented SA, the system is assumed to reach a meta-stable state 

when either of two defined counter reaches its threshold (specified by the 

user). And the optimization process was set to stop when the final temperature 

is reached. Although these settings provided adequate results, other options 

can be further implemented such as allowing the optimization process to stop 

when no improvement of the objective function for a long time is noticed.

• When generating a neighboring solution, only feasible solutions (which 

satisfies logical constraints if any) were accepted for evaluation. A future 

research may consider providing a mechanism that allows some infeasible 

moves to be considered.

10.3 Simulation-based Optimization

One unavoidable pitfall in the estimation of activity time and cost is uncertainty which 

arises from many different sources. Although uncertainty cannot be eliminated, 

incorporating it in the model can reduce its effect. Thus, the estimate of activity time and 

cost can be in the form of a probability distribution not as a single point value. The 

second research area concerned handling uncertainty in activity loads, time, and/or cost. 

A simulation-based optimization framework that integrates simulated annealing with a 

commercial risk analysis software called Crystal Ball™ was developed as a part of the 

proposed architecture to optimally re-sequence the DSM activities given stochastic 

activity data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

• Monte Carlo (MC) simulation was used to determine the statistical measures 

of the objective function at each optimization iteration. As known, MC is a 

time consuming method. A future research, thus, may consider implementing 

an analytical model to determine these measures with accepted margin of 

error for situations where an exact minimum solution is not required and a 

satisfactory estimation is accepted.

10.4 Handling Stochastic Objective Function

Since simulated annealing was originally developed to handle deterministic objective 

functions, the third research area involved modifying the SA algorithm to be able to 

handle stochastic objective functions (multi-point estimate) rather than deterministic ones 

(one-point estimate). The goal here involved determining a robust solution rather than an 

optimum minimum one. This was achieved by modifying the acceptance and rejection 

rules of the SA algorithm. Two methods (sets of rules) were proposed and tested, these 

are:

• Min-Mean-Max (M3) method:

Can be considered as a simple expert system.

It should be noted, though, that the cases presented in the dissertation 

are not exhaustive. They can be modified and other cases can be 

added.

The degree to which the decision maker accepts/tolerates risk is 

reflected through the choice of the ratios used in the acceptance rules 

(flow charts) presented. Demonstrates how project manager experience 

can be translated into a set of rules to modify an existing optimization 

algorithm and make it suitable to the area of application.

- Demonstrates how project manager experience can be translated into a 

set of rules to modify an existing optimization algorithm and make it 

suitable to the area of application.
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• Utility Function (UF) method:

Decision-making is based, mainly, on appraisal; different alternatives 

are appraised and compared against each other to choose the one with 

best expected outcome. The UF method provided a means by which 

alternative solutions can be compared based on the expected value of 

four of their attributes. These attributes, representing four statistical 

measures of the objective function distribution, are: mean, variance, 

range, and maximum.

■ By defining the weights associated with these attributes in the UF, the 

decision maker can direct the optimization process to find either a 

minimum solution or a robust one.

The method is characterized by:

1. Being simple and direct.

2. Ease of attributes management (fine-tuning).

3. Being familiar to most decision makers and analysts.

4. Easy to modify.

5. Easy to implement.

10.5 DSM Conversion to a Project Schedule

For more than fifty years, critical path methods (CPM) have provided efficient tools for 

planning, scheduling, and controlling constructions and manufacturing projects. But since 

CPM does not tolerate for feedback loops usually found in design project, another tool 

that explicitly handle these loops was developed, that is DSM. But, on the other hand, for 

the DSM to serve as a means of control of the design projects (continual re-planning, re­

scheduling, and follow-up) activities in the optimally re-sequenced DSM need to be 

represented against a time scale. In other words, the DSM has to be converted into a 

project schedule. The fourth contribution of this research was providing a methodology 

for the conversion of the optimally sequenced DSM into an equivalent DSM that contains 

no feedback couplings. Once an equivalent DSM is obtained, a project schedule can be 

developed and the use of scheduling methods becomes feasible.
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» The presented research applied a methodology in which project scheduling is 

done in isolation from DSM analysis (two successive phases). A future 

research may consider the possibility of performing the CPM -  or a modified 

CPM - calculations within the DSM paradigm.

• The presented research suggested a three-stage methodology for this 

conversion. The methodology was inspired by the work of several researchers 

and can be the basis for more generalized rules. It consists of three sequential 

yet integrated stages: patterns recognition, collapsing, and tearing.

• The basic idea of the methodology is to identify some activity patterns; each 

pattern has only one feedback coupling, from two to four activities, and at 

least on feed forward coupling, in the DSM. Based on the strength of the 

couplings involved in each pattern (block), the block is converted to and 

equivalent program that contains no feedback loops.

• The methodology further involves introducing two types of buffers to the 

generated program: block (or coupling) buffers, and a project buffer.

• Future research may include more elaborated conversion rules and can 

provide procedure for buffer generation and management.

10.6 TCTO Hybrid Model

Finally, the fifth and final area presented a new time-cost trade-off model for project 

networks. The new model is a hybrid model that joins the resource assignment problem 

with project crashing. The presented model is based on the trade-off of resources where, 

in some cases, it may be possible to transfer men, equipment, or other resources from a 

non-critical activity to a critical one. Thus, it helps crashing a project with little, or no, 

additional cost.

• The presented model differs form classical CPM time-cost trade-off model in 

six major aspects discussed in Section 6.4.

• Since the model is in its initial development phase, the pattern used for 

resource availability constraints was simplified. It was assumed that once a
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machine is assigned to an activity, it cannot be used again. In future work, an 

algorithm for resource-constrained projects algorithm could be incorporated.

• Furthermore, the model could be extended to include fixed costs.

• Also, the introduction of additional logical constraints can be further 

investigated.

10.7 optDSM

The former areas of research were applied through a developed excel add-in called 

“optDSM”. The tool was developed by the author using Visual Basic for Application 

(VBA) programming language. Among its several modules, optDSM has the ability to 

interface with Crystal Ball™ to carry out the optimization process in cases where activity 

loads assumes stochastic values. The main functions of optDSM are:

1. Modeling of the project under consideration in the form of DSM.

2. Finding the optimum sequence of DSM activities based on a user selected 

objective function.

3. Producing a DSM equivalent to the optimized one but without feedback 

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under 

development.

• Quality of solution obtained. In spite of the impossibility to benchmark in 

practice (since the true global optima is not known) the performance of 

optDSM was evaluated through the optimization of a famous example and 

comparing the results to a published one. It was found that optDSM reached 

an equivalent solution to the published one of AGENDA. Refer to Section 9.1.

• Why Excel? Excel has several benefits:

1. It is powerful modeling tool to implement mathematical programs 

(models):

a. Quick to build and easy to modify (flexibility).
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b. Has a great range of built-in mathematical and scientific functions.

c. Availability of logical statements and decisions.

d. Capability of host large, and complex models.

e. Automatically provides ‘what-if tools which makes it suitable for 

combinatorial optimization problems.

2. With VBA, it can be an integrated platform that meets different analysis 

requirements by communicating with other applications within Micro Soft 

windows environment.

3. Availability of different add-ins (for optimization, simulation, statistical 

analysis, etc.).

4. A familiar and easy to understand interface for both technical and non­

technical persons.

• Execution time. The total execution (run) time depends on several factors:

■ Number of couplings in the DSM.

Presence of logical constraints.

Optimization nature: if stochastic, another two factors are introduced:

i. The number of Monte Carlo simulation runs per optimization iteration.

ii. Sensitivity analysis requirements.

10.9 Lessons learned

1. Special-purpose optimization tools still have advantage over general-purpose 

tools.

2. Optimization models should allow the use to monitor and fine tune the 

optimization process during processing.

3. Fine-tuning of optimization algorithm parameters is a very important factor of the 

quality of solution.

4. In some cases, constraints relaxation can help the optimization process finding a 

better initial solution. For example, the solution procedure for the TCTO model 

included options for:
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a. Relaxation of the resources constraints so that the algorithm can generate a 

feasible solution in a shorter time, with the optimization process advances, 

the algorithm tends to lower the consumption of resources (to lower costs), 

as a result, resource usage will go down to below the real availability 

limits.

b. Relaxation of “desired project completion time” (DPCT) constraint by 

allowing the user to specify an upper and lower limit. For example, if 

DPCT was originally required to be 49 hours, the user can relax this 

constraint to be in the range (47-50) of (45-51) and so on. Because, in the 

proposed TCTO model, it might be difficult (or even infeasible) to achieve 

exactly 49 hours and a better solution can be achieved for 48 hours (sorter 

duration).
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APPENDIX A: optDSM

1. Overview

This appendix describes different functions of ‘optDSM’; the application tool of the 

architecture presented throughout the dissertation. The tool was developed by the author 

using Visual Basic for Application (VBA) programming language. As hinted previously, 

among it’s several modules, optDSM has the ability to interface with commercial risk 

analysis software called Crystal Ball to carry out the optimization process in cases where 

activity loads assumes stochastic values. The main functions of optDSM are:

1. Modeling of the proj ect under consideration in the form of DSM.

2. Finding the optimum sequence of DSM activities based on a user selected 

objective function,.

3. Structuring the optimized DSM into and equivalent DSM that has no feedback 

couplings.

4. Converting the structured DSM into a project schedule.

While the first two functions are fully operational, the later two are still under 

development.

Functional-wise, optDSM is a menu driven Excel add-in. The menu appears 

automatically, after proper setup, when Excel starts. As shown in Fig. 89, the menu is 

located on the standard menus tool bar just before the help menu. For operation, the user 

follows different functions on the menu in order. In the following section, these functions 

are described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 89. optDSM Main Menu.

2. Functions

optDSM has seven functions that have to be carried out sequentially, these are:

2.1 New: DSM

The first step of the process is entering the data of the DSM. This is done by choosing 

‘New’ then ‘DSM’ from the menu as shown in Fig.90 (a). This event brings the ‘New 

DSM options’ window shown in Fig. 90 (b), in which the user:

i. Enters the number of tasks.

ii. Enters the number of couplings.

iii. Choose the desired format (Steward’s or Rogers’s).

iv. Define the data type (Deterministic or Stochastic).

v. Enables coupling strength input (if desired).

vi. Enable logical constraints input -  and define their number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



206

i- :. q : ' !

~ r - , '  Tcr.i t - . . f , - <  ’

@  About

Si
S li^K dftie

S'
IIISl

V W H H I
0 iltetl

i , format [  Stew£

11

Dgt3 j Deterministi

CK iisiMli

(a) ( b )

Figure 90. New DSM.

Once the user is finished entering the previous data and clicks on the ‘OK’ button, 

optDSM prepares tables for entering activity and couplings details as shown in Fig. 91 (a) 

and (b) respectively. In case of stochastic activity data, the user is asked to define the data 

probabilistic distributions using Crystal Ball menu. Figure 92 shows the entry tables after 

entering the data for a time and cost deterministic optimization case with no logical 

constraints.
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| i  Task Task Haae Task ID Load Time Cast

* f, 1 Initial Data MTDAT 40 20
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J WIANAL VEHEPERF w
:  i RAEROCH VEHEPERF es

.2 rAREROCH VEHEPERF ew
•w . 73 AROSRVO VEHEPERF vs
U  24 HANDQUL VEHEPERF vw
Oj 1 2s VEHEPERF MISPERF s

5 STRDYNA STDMOCH es
- r GEOMDEV STRDYNA s

3 RAEROCH STRDYNA w

( a )  A c t i v i t i e s  T a b l e  ( b )  C o u p l i n g s  T a b l e

Figure 92. Data Entry Tables Filled.
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2.2 Create DSM

Once user enters data, the ‘Create DMS’ function is chosen so that optDSM:

i. Determines the iteration factor of each coupling according to its coupling 

strength.

ii. Determines the coupling initial nature (feedback or feed forward).

iii. Develops the initial DSM according to the sequence entered.

2.3 Optimization: Settings

The next step is the development of the excel sheets associated with optimization model 

calculations. When the user instantiates the ‘Optimization: Settings’ function, as shown 

in Fig. 93, a main menu titled ‘Optimization Options’ appears.

o ^D 5 M  Help A o o b a r

O ptim ization

P''C _r-t 

S ’ A to u r

Figure 93. Optimization Sub-menu.
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The ‘optimization options’ window is divided into six layers, three of which are currently 

active, as shown in Fig. 94, and the other three will be active in future work.

The three layers are:

1. Main, shown in Fig. 94 (a). Allows the user to choose:

a. The SA algorithm used (currently only one is available).

b. The annealing scheduled used (also only one is available in the 

presented version).

2. Objective Function, shown in Fig. 94 (b). Enables the user to:

a. Choose the optimization objective function.

b. Enters the weights to be used in case of (time and Cost) minimization.

c. Define the objective function factorization coefficient value.

d. Choose a strategy for the initial solution generation (currently, this 

option is disable and initial solution is generated randomly).

3. Geometric Cooling, shown in Fig. 94 (c). Since the geometric cooling is the 

default annealing schedule, this window allows the user to choose between 

using the defaults values of the annealing schedule parameters provided by 

optDSM or enterinng different values for these parameters.

Once the user clicks ‘Prepare Model’ button, optDSM prepares calculations sheets. 

Figure 8.12 shows the feedbacks calculations sheet.
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(C) Geometric Cooling Options

Figure 94. Optimization Options/Settings window.
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Figure 95. Feedback Calculations Sheet.

2.4 Optimization: Start

This function initiates the optimization process. optDSM maintains two sets of results:

1. The first for all evaluated solutions.

2. The second for the meta-stable optimal solutions.

Screen shots of optDSM while the optimization process is running for a deterministic 

case and for a stochastic case are shown in Fig. 96 and Fig. 97 respectively.
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Figure 96. Screen Shot: Deterministic Optimization.
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Figure 97. Screen Shot: Stochastic Optimization.
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2.5 Optimization: Final DSM

After the optimization process ends, this functions, shown in Fig. 98, creates the final 

DSM; the one corresponding to optimal activity sequence.

s-’rc ic-ct

f~) iibjU

BMii g i  
I ! C ojap-ed 05M

Figure 98. Post Optimization Sub-menu.

The next two functions are still under development, these are:

2.6 Post Optimization: Collapsed DSM

This function converts the optimally sequenced DSM into an equivalent DSM with no 

feedback couplings.

2.7 Project

Finally, an equivalent project schedule is developed and then transferred to MS Project 

for scheduling purposes.
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3. Future Modifications

In addition to finishing the un-working functions, the followings are some improvements 

that could be added to optDSM in following versions:

1. A function to check the correctness of input data (activities, couplings, etc.). 

The objective here is to assure that everything was entered in order.

2. Facilitation the optimization process by introducing:

a. A function that determines activities with no input nor output (i.e. 

isolated) and moves these activities to the top of the DSM.

b. A function that determines activities with no inputs and moves these 

activities to the top of the DSM.

c. A function that determines activities with no outputs and moves these 

activities to the end of the DSM.

d. Reducing the optimization models after these functions.
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