
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mechanical & Aerospace Engineering Theses & 
Dissertations Mechanical & Aerospace Engineering 

Spring 2014 

State Variable Model for Unsteady Two Dimensional Axial Vortex State Variable Model for Unsteady Two Dimensional Axial Vortex 

Flow with Pressure Relaxation Flow with Pressure Relaxation 

Mazin Mohammed Elbakri Abuharaz 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds 

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Abuharaz, Mazin M.. "State Variable Model for Unsteady Two Dimensional Axial Vortex Flow with 
Pressure Relaxation" (2014). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace 
Engineering, Old Dominion University, DOI: 10.25777/pt9d-zj59 
https://digitalcommons.odu.edu/mae_etds/103 

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & 
Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/103?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


STATE VARIABLE MODEL FOR UNSTEADY TWO DIMENSIONAL AXIAL 

VORTEX FLOW WITH PRESSURE RELAXATION

by

Mazin Mohammed Elbakri Abuharaz 
B.S. May 2001, University o f Khartoum, Sudan 

M.S. January 2009, University o f Khartoum, Sudan

A Dissertation Submitted to the Faculty of 
Engineering and Technology Old Dominion University in Partial Fulfillment o f the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY 
February 2014

Approved by:

Robert L. Ash (Director)



ABSTRACT

STATE VARIABLE MODEL FOR UNSTEADY TWO DIMENSIONAL AXIAL 
VORTEX FLOW WITH PRESSURE RELAXATION

Mazin Mohammed Elbakri Abuharaz 
Old Dominion University, 2014 

Director: Robert L. Ash

This research has utilized a state variable model for unsteady two dimensional 

axial vortex flows experiencing non-equilibrium pressure gradient forces. The model 

was developed successfully using perturbed radial and azimuthal momentum equations 

and a pressure Poisson’s equations. Three main regions o f the axial vortex flow were 

highlighted in this study including: a laminar core region, a non-equilibrium pressure 

envelope, and an outer potential vortex.

Linear stability theory was utilized to formulate the model and the perturbation 

functions were assumed to be o f the Fourier type. The flow parameters considered were 

the Reynolds numbers, ranging between 6,000 and 14,000, and a new non-equilibrium 

swirl parameter, Np determining the area of significant non-equilibrium pressure forces. 

Two other state variable parameters were imposed-complex frequency and associated 

azimuthal mode number. Perturbation outputs included primary Reynolds stress, radial 

and azimuthal velocity amplitudes, and radial pressure gradient amplitudes.

Maximum perturbation growth occurred inside the non-equilibrium pressure zone 

between one and five core radii from the rotational axis, while the inner core remained 

laminar. The maximum amplitudes and critical radii depended on the four physical and 

state variable parameters. Increases in Np resulted in lower perturbation pressure 

gradient amplitudes, moving the critical radius closer to the vortex core, and expanding



the non-equilibrium pressure zone. Increasing the frequency resulted in steady increases 

in the perturbation amplitudes until a particular dimensionless frequency was reached. 

Beyond that frequency, additional perturbation growth was insignificant or the amplitude 

decayed because of a high damping factor. Two types o f azimuthal modes were unstable, 

the ± V2 modes inside the non-equilibrium pressure zone, causing the pressure gradient 

amplitudes to peak even though the azimuthal velocity profile remained stable, and ± 1 

helical modes associated with growing pressure gradient amplitudes in the outer potential 

region. The symmetrical azimuthal modes were globally stable.

The state variable model was stable numerically inside the non-equilibrium 

pressure zone, even though the perturbation amplitudes exhibited instability. Inside that 

region, unstable pressure eigenmodes were detected in the form o f relaxation Reynolds 

stresses in response to perturbations in the flow. The width of the non-equilibrium 

pressure zone was again determined using eigenmode plots for different Np. The positive 

real parts of the unstable modes were slightly larger in the outer potential region causing 

slow growth profiles.

The current vortex state variable model can be utilized to explore the development 

of small perturbations in the non-equilibrium zone as the flow becomes turbulent, via a 

bifurcation cycle study where coherent structures can be identified. Experimental 

verification using hot-wire probes is needed to validate the theory and adjust the state 

variable model parameters. A side effect o f the non-equilibrium pressure model for this 

vortical flow is the likely sound propagation causing small density perturbations that are 

balanced by the contracted pressure gradient-velocity tensor terms in the pressure 

relaxation equations. This non-equilibrium balance process appears to vanish in the outer 

potential vortex region.
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VI

NOMENCLATURE

P  pressure Pa

r,6, z cylindrical coordinates m

rc Core radius M

Re Reynolds number 1

Rh Relative humidity %

vr ’ Radial perturbation velocity component m/s

vg’ Azimuthal perturbation velocity component m/s

vz ’ Axial perturbation velocity component m/s

Vg Mean azimuthal velocity m/s

Greek Symbols

a> Frequency rad/s

rjp Pressure relaxation coefficient s

p Density Kg/m3

v Kinematic viscosity m2/s

p  Dynamic viscosity Pa.s

Trg Primary Reynolds stress Pa

r  Circulation m2/s
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CHAPTER 1 

INTRODUCTION

Vortex flow stability has been the topic of research for many decades due to its 

importance in aeronautics, combustion and in turbulence modeling. Axial, trailing-line 

vortices extending from airplanes are a major factor considered in the safety o f air traffic 

and swirl flows inside combustion chambers which requires additional study in order to 

enhance the performance of internal combustion engine.

Axial vortices present unusual modeling challenges because they incorporate 

typically: (1) a laminar flow region encompassing the rotational axis, (2) an unsteady, 

fluctuating region near the radius of maximum azimuthal velocity that is considered here to 

be a non-equilibrium pressure inner region and (3) an outer, potential-vortex region. The 

outer radius of the laminar region involves significant viscous shear forces, with an almost 

rigid central rotational zone. Moving outwards from the vortex centerline, the mean flow 

structure transitions smoothly from a radially-increasing velocity to a radially-decreasing 

potential flow vortex profile outside the core region. Because of large pressure gradients in 

the core region, non-equilibrium pressure forces must be considered. These forces 

enveloping the core region enable the smooth change from rigid rotation to an outer 

potential vortex flow. Therefore, without the inclusion of non-equilibrium pressure, the 

conventional form of the Navier-Stokes equations is incapable of modeling this type of 

axial vortex velocity profile continuously.



1.1 Definition of equilibrium and non-equilibrium pressures of fluid

In incompressible flows, the mechanical pressure of the fluid is applied to keep the 

conservation of mass flow, in that sense the pressure is said to be an equilibrium pressure. 

Ash, Zardadkhan, and Zuckerwar (2006) showed that fluid can deviate from the state of 

equilibrium through relaxation processes. The non-equilibrium pressure is the mechanism 

that helps the fluid return to equilibrium. The stress exerted in the flow because of non­

equilibrium pressure is dependent on the material derivative of the pressure gradient. 

When this quantity is diminished the flow is said to return to equilibrium.

1.2 Steady axial vortex flow

Modeling axial vortex flows has progressed through many stages, from the very 

simple potential vortex of Rankine (1882) to multi-parameter models by Vatistas (1991) 

and Wood and White (2011). Exact solutions have been developed by Burgers (1948) and 

Rott (1958) and recently Ash, Zardadkhan, and Zuckerwar (2011) incorporated non­

equilibrium pressure gradient forces in a modified version of the Navier-Stokes equations.

The Rankine (1882) vortex model, neglected viscous effects altogether and spliced 

a potential vortex velocity profile for the outer region with a rigidly rotating central core 

region. The resulting velocity profile was continuous but the radial velocity gradient was 

not, resulting in an erroneous shear stress, where the azimuthal velocity was a maximum.

More than 50 years later, Burgers (1948) and Rott (1958) developed a one- 

parameter model that was an exact, three-dimensional solution for an axial vortex, given



where (K) is a constant. The circulation distribution represented by that velocity profile is 

not consistent with experimentally-measured circulation variations (Saffman and 

Govindaraju, 1971).

Vatistas (1991) developed another one-parameter model that fit experimentally- 

measured velocity profiles. The dimensionless general form was:

where q could be used to vary the shape o f the profile. That equation can model a Rankine 

vortex when q —> oo and approximates a Burgers-Rott vortex by employing q — 2.

Wood and White (2010) suggested that a more useful empirical dimensionless 

vortex model was:

where a, m and X were three adjustable coefficients with constraints 0 < k < n , X > 0 .  Their

model was also capable o f reproducing the previous vortex velocity profiles. Focusing on 

large-scale geophysical applications like tornadoes and water spouts, they showed that their 

model could be adjusted to more-accurately approximate experimental observations than 

could the previous one-parameter models.

Ash, Zardadkhan and Zuckerwar (2011) utilized a non-equilibrium pressure Navier- 

Stokes model for an axial vortex, to develop an exact, steady state solution for the 

tangential velocity and pressure deficit, represented in normalized form as

V  T-
r

( 1.2)

a

(1.3)
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The new solution illuminated all three regions o f the vortex and could be validated 

experimentally for tornadoes and dust devil velocity profiles.

The normalized tangential velocity profiles using the different models outlined in 

this section are displayed in Figure 1.1. In the Rankine (1882) model, as mentioned 

previously, the radial azimuthal velocity gradient is not continuous at the core radius, but it 

is considered a useful approximation. The Burger-Rott model (denoted Burgers in Figure 

1.1) was based on the assumption of isotropic turbulence, employing velocity correlation 

and turbulence scaling parameters to produce an exact three-dimensional solution. 

However, the model fails to represent the axial vortex flow outside the core region. The 

Vatistas (1991) model (denoted Vat in Figure 1.1) has a maximum core velocity that is less 

than the other models. Recently, The Wood-White (2010) model (denoted by WW in 

Figure 1.1) was developed to correlate large-scale vortex flows using three parameters 

which makes the numerical estimation of the model parameters a complicated process.



5

1.2
■—«* Rankine (1882) 

■ — Burgers (1948) 

— Vat. (1991)

* • WW (2010) 

 AZZ (2011)0.8

0.6

0.4

0.2

0
0 21 3 4 5

r/rc

Figure 1.1 Normalized axial vortex profiles for different models

Finally, the Ash, Zardadkhan and Zuckerwar (2011) velocity profile is an exact 

solution to a one component azimuthal velocity axial vortex when pressure relaxation 

forces are incorporated. Inside the core, the three models (AZZ, WW and BR) are quite 

similar with the observation that the AZZ model envelops the other two models. In the 

outer region the AZZ profile is also above the other two models and it approaches the 

potential boundary conditions (zero velocity) at a somewhat slower rate than either the 

WW or the BR models.

1.3 Non-equilibrium pressure relaxation

Pressure relaxation was introduced in the Navier-Stokes equations to account for 

the non-equilibrium pressure effects; Zuckerwar and Ash (2006, 2009) derived the 

governing equations for simple incompressible fluids with pressure relaxation. Starting
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from Hamilton’s Principle outlined by Serrin (1959) and Witham (1968); a variational 

approach was developed to incorporate non-equilibrium thermodynamic effects in the 

equations of motion for a simple fluid.

The variational approach for deriving the non-equilibrium pressure equation first 

defines the variation in the total energy of the fluid filament as the change in the 

mechanical energy (kinematic and potential) and the change in the internal energy as 

functions of three independent variables o f temperature, pressure, and a non-equilibrium 

progress variable. A non-equilibrium fluid state is thus incorporated by assuming the 

conservation of equilibrium and non-equilibrium species based on molecular degrees of 

freedom, along with the conservation of mass and entropy minimization. Then the 

Hamiltonian principle of least action is applied by utilizing Lagrange multipliers for each 

of the conservation constraints, i.e. mass, entropy, and chemical reaction (Zardadkhan, 

2012).

The variation of total energy with respect to the independent variables o f space, 

time, density, velocity, entropy, and progress variables, was formed and then a volumetric 

integration of the resulting variational functions followed.

The variational approach resulted in two extra terms that could be incorporated in 

the conservation of momentum equations, one of which is the relaxation stress in terms of 

the gradient o f the material derivative of the thermodynamic pressure, scaled with a 

relaxation time constant called the pressure relaxation coefficient rjP characterizing the time 

dimension of the relaxation process. The other term is the dilatational stresses o f the fluid 

resulting from small density fluctuations; the term is expressed in terms of the deviation of 

the second viscosity coefficient from the Stokes hypothesis, assuming that the second



coefficient of viscosity was equal to — / / .  This deviation is the volume viscosity

coefficient, rjY. Both of these non-equilibrium stresses could be added to the original

average normal stresses o f the flow, hence the vector form of the conservation of linear 

momentum is,

Dvp —  = uVPD 
Dt

vLlJ TJPV D P
D t

□ jlN  v (1.5)

Acoustically-based values of the pressure relaxation coefficient tjp (in seconds)in air at

different humidity levels are plotted in Figure 1.2.

too

10

l

o.i

o.oi
10 200

Tem perature (°C)

Rh = 0% ..........20% ---------40% ---------80% ----------100%

Figure 1.2 Influence o f  temperature and relative humidity on predicted non-equilibrium pressure coefficients
in air (Ash and Zuckerwar, 2006)
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Figure 1.2 shows that rjP varies significantly with the humidity level in air. On the 

basis of these large variations, it is logical to assert that the non-equilibrium behavior o f the 

core regions of trailing line axial vortices, generated by aircraft in terminal flight will vary 

significantly depending on local weather conditions. This study should therefore be an 

important contribution to safe commercial aircraft operations.

The newly-identified quasi-reversible relaxation process can be considered as a 

mechanism to store mechanical energy while responding to non-equilibrium pressure in 

otherwise incompressible fluids. As the material rates o f change of the thermodynamic 

variables become small, the non-equilibrium fluid mechanical processes can revert to 

equilibrium processes which return the fluid to an equilibrium state. Chemical affinity is 

the non-equilibrium driving force, drawing the fluid molecules back toward equilibrium. 

Between the excitation of fluid particles by non-equilibrium pressure for constant-density 

fluids and the response to those disturbances, the non-equilibrium pressure gradient forces 

can balance the viscous shear forces responsible for the dissipation part o f overall fluid 

behavior. Thus the relaxation normal stresses can be an essential element in the Navier- 

Stokes equations required to balance the viscous forces acting on the fluid particles.

The Zuckerwar and Ash (2006) theory has been simplified for unsteady, constant- 

property, Newtonian fluid flows by first recognizing that non-equilibrium acoustic 

fluctuations can only be accommodated through the variable density form of the 

conservation of mass equation:

—^  □ p V  ■ v = 0 (1.6)
D t

In the absence of significant local temperature variations, the transport properties 

for a fluid can be treated as constants. The incompressible form of the conservation of
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linear momentum Equation (1.5) is desired in the context that otherwise incompressible 

fluid flows are accompanied by near-negligible acoustic density and associated non­

equilibrium acoustic pressure fluctuations if sound is being produced. Utilizing index 

notation, along with conservation of mass as in Equation (1.6), Equation (1.5) can be 

written:

with two terms isolated in square brackets; the first term within the bracket is the 

contraction of the velocity gradient tensor with the pressure gradient, resulting from writing 

the pressure relaxation term as the material derivative of the pressure gradient instead o f the 

gradient o f the material derivative of pressure. The second term derives from small 

dilatational disturbances in fluid density due to the non-equilibrium pressure. Assuming 

that these two terms cancel each other, or become negligibly small, leaves the following 

form for the modified conservation of momentum equation for incompressible flows 

incorporating non-equilibrium pressure gradient forces:

The resulting N-S equations in three-dimensional (cylindrical) curvilinear 

coordinates are developed in Appendix A. The resulting cylindrical coordinate expressions 

for the three components of the conservation of momentum equation and continuity are: 

Conservation o f  radial momentum equation (A.30):

 1_ _ /  _ _ \   ̂ __ n.. — tt . /  \

p

V P  □ r/p —  V P  /jV 2\
D t

( 1.8)



Conservation o f  azimuthal momentum equation (A.31):
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Conservation o f  axial momentum equation (A.32):
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Conservation o f mass (continuity) equation (A.33)

j _ _ a

r dr
r v \ 1 8va _ dv,

r  aP  dz
=  0

The current research has examined the stability of a steady, axial vortex represented

by Equation. 1-4, incorporating these non-equilibrium pressure gradient effects. The 

growth (or decay) o f these instabilities is important both in terms of identifying 

complimentary steady vortex flows, and in understanding the evolution of the localized 

turbulent regions that are observed around the axial vortex core. In addition, development 

of possible strategies to either stabilize or destabilize these axial vortices will be sought.
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1.4 Instability of axial vortex flow

The factors leading to turbulence in vortical flows include firstly the axial injection 

of perturbations from the surrounding flow; an example o f the point o f injection is the wing 

tip of an airplane. Secondly, the vortex itself is susceptible to instabilities resulting from 

naturally-occurring ambient fluctuations. Thirdly, small-scale streak-like structures are 

accommodated naturally by the non-linear features of the governing equations. To model 

unsteady and turbulent evolution numerically, Marshall (2000) has described three different 

regions for the vortex flow: a viscous core region with large centrifugal forces, an overlap 

region, and an outer mixing region.

Ash and Khorrami (1995) and Drazin and Reid (2004) outlined two ways to 

numerically model the inviscid vortical flows due to the kinetic features of perturbations in 

vortex flows. One method is to start with an initial guess for the growth rate and then 

iterate until the numerical scheme converges. This method requires special treatment for 

the integration over the centerline and core region of the vortex. The other numerical 

method is global, where the governing equations are written in matrix form, and the 

resulting eigenvalue problem is formulated; for every step the numerical scheme computes 

multiple eigenvalues according to the number of dependent variables and uses that solution 

as an initial guess for the next step and so on. The global method doesn’t require an initial 

guess. In order to model viscous vortex flows, the equations must be linearized and then 

the matrix form of the resulting equations, after substituting the assumed perturbations, are 

integrated assuming an asymptotic solution at the limiting “infinite” radius.

Lacaze, Ryan, and Dizes (2007) studied different combinations o f azimuthal modes 

for a pair of batchelor vortices, when applying constant strain, and generated stability
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envelopes for different cases. The helical modes were the most unstable modes. 

Combinations of the n, and n+2 modes, where n= -2 and -3 become unstable when the axial 

flow is increased while the helical (odd) modes were damped. That study utilized Direct 

Numerical Simulation (DNS) to represent the instantaneous flow and the results were 

compared to theory with good agreement.

Hussain, Pradeep and Stout (2011) studied the transient growth of small 

perturbation amplitudes inside vortex flows, also using DNS for axial vortex flows up to a 

circulation-based Reynolds number of 10,000. The velocity field was assumed to have a 

rotational component due to vorticity and a potential flow component, in addition to the 

steady state velocity field. An initial vorticity field was prescribed and then the equation 

for vorticity was forward-integrated until the solution converged. The perturbations were 

injected inside the flow at a critical radius outside of the core radius where the waves 

experienced the largest growth. Average perturbation amplitudes, on the order o f 5%, 

could alter the core, and secondary structures (finer scales) called coherent structures were 

generated accordingly. At that perturbation level, the non-linear effects carried the 

secondary structures radially outward and part o f the perturbation energy was transferred 

from the critical radius region outward. Concurrently, the flow became turbulent, 

completing a cycle of bifurcation inside the basic vortex flow. The first azimuthal mode of 

instability grew faster than the axisymmetric mode and observed at smaller radii. As the 

Reynolds number increased, the turbulence tended to persist in the flow for longer 

durations. The turbulence at a Reynolds number of 106 distorted the vortex column. 

Hussain, Pradeep and Stout (2011) concluded that this effect of turbulence growth inside 

the vortex column was the cause of an airplane crash under the influence o f another large
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leading airplane, therefore air traffic bottle necks are imposed at major airports to avoid 

such incidents.

1.5 Experimental representation of vortex behavior

To understand the unsteady behavior of actual vortices, wind tunnel experiments 

can be conducted using vortex generators (Roy ,2011) and (Beninati and Marshall, 2000, 

2005). Vortex generators are devices used to create laboratory-scale vortices, avoiding the 

tilting of the axial rotational centerline due to lift-induced downwash forces. Usually 

vortex generators are pairs of wings (one or more pairs) with equal, but opposite angles-of- 

attack. The axial vortex that evolves extends downstream behind the generator without 

experiencing the downwash effect.

Bandyopadhyay, Stead and Ash (1991) studied the turbulent nature o f a trailing line 

vortex extending behind a bi-wing mounted in a low speed wind tunnel. The Reynolds 

number ranged between 15,000 and 25,000 based on maximum swirl velocity and core 

radius. The mean flow was characterized using a seven-hole vortex probe and a hotwire 

anemometer was employed to measure turbulence intensities. The axial core region was 

observed to be intermittent rather than approximating a solid-body-like rotating column, 

due to turbulence ingestion and associated viscous re-laminarization as the flow advanced 

in the axial direction. That flow effect was followed by the ejection of turbulent structures 

radially outwards. The turbulence intensities changed with the axial variation of the mean 

flow in terms of Rossby number more than with respect to changes in Reynolds number.

Jaarsveld et. al. (2011) performed a similar study utilizing Particle Image 

Velocimtry (PIV) technology to study the influence of external turbulence on single and
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paired trailing line vortices in a wind tunnel. Their conclusion for the single vortex 

included a movement of the vortex center when the turbulence intensity was changed. The 

core was found to be laminar with inner Lamb-Oseen velocity profiles and outer power law 

profiles.

Flow visualization and velocity measurements can be acquired utilizing PIV, 

which utilizes a laser to illuminate a flow plane containing smoke particles within a wind 

tunnel flow; then particle image pairs are captured in closely-spaced (in time) high 

resolution, stereoscopic camera images. The resulting PIV data are supplied to a 

microcomputer utilizing special software to identify and track specific smoke particles in 

successive image frames, converting that data into a collection of particle velocity vectors. 

Multiple sets of these particle velocity frames can be processed subsequently to yield mean 

velocity profiles along with the associated turbulent intensities. The limitation to this 

technique is the camera image sampling rate and accordingly the range o f turbulent 

intensities that can be measured is limited by that frequency.

Hotwire anemometers have been used for some time for precise temporal 

measurement of unsteady velocity components at specific spatial locations in a flow. 

Hotwires cannot measure fine-scale turbulent structure due to the overall size of the sensing 

elements and the diameter of the sensing filament (either a hot film or a hot wire). They 

can capture higher-frequency velocity fluctuations than can PIV systems, meaning they can 

resolve frequencies that are high enough to capture most instability modes. Dual-wire 

sensing probes can resolve three-dimensional, unsteady velocities through the inclination 

adjustment and angle between crossed wires. The disadvantages o f hotwire anemometer
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systems are their limitation of measuring velocities at a single, fixed point, along with 

limitations resulting from sensor materials and fabrication, as well as their fragility.

1.6 Wind tunnel experiments at ODU

A bi-wing vortex generator apparatus was employed to produce axial vortices in the 

Old Dominion University Low Speed Wind Tunnel (ODU LSWT). The vortex generator 

was positioned at the front end of the high-speed test section in order to allow the largest 

possible range of flow speeds. Near-steady axial vortices were generated along the 

centerline of the high-speed test section, and wind speeds ranging from 15 to 35 m/s could 

be utilized. The velocity surveys were produced at interrogation planes located at 

distances between 35 and 80 cm behind the trailing edges o f the bi-wing vortex-generator.

A smoke particle generator was used to seed the wind tunnel flow and particle 

velocities within wind tunnel cross sections illuminated using a laser sheet were obtained 

utilizing a dual-camera stereoscopic particle imaging velocimetry (PIV) system. The PIV 

software was able to process the particle velocity data and generate two- and three- 

dimensional velocity fields characterizing the particular wind tunnel flow cross section. 

PIV also calculated intensities of physical quantities like the turbulent kinetic energy, shear 

stresses, and shear rates. The nominal turbulence level in the tunnel is estimated 0.2 % and 

the velocity of the fluid is captured using Particle Image Velocimetry (PIV) or hot-wire 

manometers.

The limitation on PIV technology is the frequency of capturing images; hopefully 

further breakthrough of camera resolution will advance the technology to higher frequency 

ranges, where the modes of instability can be found.
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Five experimental data sets were generated by Jeff Ely (2013) and are characterized 

in Table 1.1. The maximum measured azimuthal velocity and its associated radial 

measurement location with respect to the vortex center of rotation were used to characterize 

the basic vortex. The far-field vortex circulation, T (m2/s ) was assumed to be twice the 

circulation measured at the core o f the vortex, based on theory, i.e.

r  =  2  \5m -cv em a il  ( 1 .9 )

However, this assumption may not be accurate, due both to differences between the 

actual vortex velocity field and the theoretical velocity profile and to possible flow 

modifications produced by interactions with the wind tunnel walls. The characteristic

r VReynolds number is defined as c 0'rmx .

Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

t/„ m/s 15 17 19 21 23 25 27 29 31 33

Tdb i 21.7 21.8 22.0 22.2 22.5 22.8 24.7 25.0 24.7 24.2

R h , % 61 61 60 60 60 60 53 47 54 54

I p , ftsec. 0.38 0.38 0.39 0.39 0.39 0 3 9 0.42 0.45 0.42 0.42

Tq i mm 18.6 12.7 14.7 16.2 16.5 15.6 11.7 15.0 14.7 18.4

t (f.mav . m/s 4.1 4.6 4.9 5.7 6.1 6.9 7.5 7.5 7.8 8.8

r, m 2/s 1.0 0.7 0.9 1.2 13 13 1.1 1.4 1.4 2.0

/» , Hz 70.7 116.5 106.1 112.6 118.2 141.0 203.7 158.6 169.6 152.1

R e , 1 5,104 3,932 4,819 6,193 6,745 7,153 5,516 6,997 7,649 10,762

Table 1.1. Reference data from ODU low speed wind tunnel

The other vortex parameter given in Table 1.1, is the natural frequency f„ (Hz) 

defined as the maximum azimuthal velocity of the vortex divided by the core radius. The



17

wind tunnel conditions for the particular test (tunnel air temperature Tm , relative humidity 

Rh, and theoretical value for the pressure relaxation coefficient tjP) are also listed.

1.7 Summary

The first chapter pointed out the importance of the axial vortex behavior study. It 

brings insight into the efforts made to model the steady axial vortex behavior with focus in 

the pressure relaxation model. The instability o f the vortex flow was reviewed with a 

general understanding of the problem. Finally, experimental support work at ODU was 

listed as the ongoing research to extend the current work.
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CHAPTER 2 

STATE SPACE MODELING -BACKGROUND

2.1 Definitions

State-variable models have been used to describe state-control of electrical 

engineering systems for a very long time and have proven to be very stable even when 

dealing with non-linear equations according to Blais (1988). Bourles and Kwan (2013) 

described the state-variable approach as representing systems of higher order differential 

equations by a set of first-order equations. The ^-dimensional mathematical domain in 

which this mapping representation takes place is called the state-space. The state 

variables, defining the system at any point, are the internal variables for the n-dimensional 

coordinate system. The state-variable method produces combinations o f state variables that 

have physical meaning, generated in the form of output vectors.

The number of state variables varies from one dynamic system to another, but in all 

cases there must be at least a minimum number o f state variables that can be identified, and 

that completely define the system at any point. The system will be defined according to the 

final number of state variables. In addition, it should be possible to determine the output 

vector from the state variables without requiring additional information or definitions. 

Thus, the state space representation incorporates a complete set of equations that represent 

input and output vectors, defined in terms of the state variables representing the system. It 

is very important to point out that while the minimum number o f state variables required to 

define the system is unique, the state variable approach allows additional combinations of
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these defined state variables, as long as the system has more than the minimum number o f 

state variables.

The state variable model is expressed mathematically as a set o f first-order, partial 

or ordinary differential equations known as state-equations. Rowell (2002) defined the 

state equation to be written for each derivative of each state variable, in terms of the state 

variables, along with the initial inputs to the system. The output vector can be any 

combination of state variables, as desired, for the physical problem.

For the analysis of complex systems with nonlinear elements, it is often appropriate 

to use matrix and vector methods. Rowell (2002) and Bourles and Kwan (2013) 

demonstrated that cases when multiple inputs are involved in developing solutions with 

multiple outputs, the state space numerical methods are ideal and self-consistent. The 

method employed in this research is called a state variable representation. The method is 

applicable to linear systems as well as non-linear systems with multiple input and output 

variables.

Meyer and Mathies (2004) utilized a state space representation to investigate the 

stability and sensitivity of wind turbine numerical schemes after including non-stationary 

aerodynamic loads. An important point raised in the study was that the state space 

representation produced meaningful results since it was based on flow physics.

Brunton and Rowley (2013) constructed a state space model and the corresponding 

transfer function of the generalized Theodorsen lift function, an unsteady behavior model 

for studying the aerodynamics of aircrafts and associated control loops. The proposed 

model retained the basic attributes of the theoretical Theodersen’s model. An empirically 

based DNS version of Theodersen’s model for a flat plate data pitching at low Reynolds
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number was used to adjust the coefficients of the state variable model. Thus the model 

utilized both empirical and numerical simulations to define the system. A low order state 

variable model was also developed and demonstrated good agreement with empirical data. 

Their model implied the possibility of studying unsteady boundary layer physics at low 

Reynolds number and other unsteady phenomena using state variable modeling.

Taha, Hajj, and Beran (2014) developed a state variable model for studying the 

unsteady aerodynamics of flapping flight. The model was validated using direct numerical 

simulation data and produced good agreement at a lower computational cost than the 

classical unsteady models. The model had included one hundred state variables o f the 

system. A reduced order model employing only the four main state variables was also 

proposed with an acceptable fit to the reference data.

2.2 Current Application

In classical mechanics, rotational flows have been described using the Navier- 

Stokes equations. Usually, the highest derivatives contained in the differential equations 

governing velocity are second order, while the highest order pressure derivatives are first 

order. The conventional conservation of momentum equations don’t contain any velocity- 

pressure contracted terms; thus, the pressure gradient terms can be isolated from the 

governing equations by utilizing the curl of the vector form of the conservation of 

momentum equation.

This study has incorporated the pressure relaxation modification o f the N-S 

equations, and, as a consequence, unsteady and convective pressure gradient terms in three 

dimensions are introduced. Conventional mathematical and numerical approaches fail to
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solve these modified N-S equations for many reasons. One reason is the velocity-pressure 

contracted terms in the modified N-S equations (Equations A-30 to A-32 in Appendix A) 

make it difficult to isolate pressure. In addition, the sensitivity o f most mathematical 

models to characteristic propagation speeds presents severe challenges to space-wise grid 

size/time step specifications because the appropriate “pressure relaxation time steps” are 

expected to be on the order o f micro seconds whereas characteristic vortex velocity and 

characteristic length-based time steps can be many orders o f magnitude larger. For these 

reasons, a more physics-based numerical model was required for the modified N-S 

equations.

Presently, the primary challenge is to develop a state variable model to solve the 

modified Navier-Stokes equations for this type o f vortical flow. The flow incorporates a 

significant pressure deficit in the vicinity o f the centerline which allows the non­

equilibrium pressure forces to be present in the flow analysis. The state variable model 

development for this particular application follows.

2.3 Theory and assumptions

Blais (1988) showed that state variables for a large number o f real physical 

processes have Gaussian noise distributions. It is not only practical to assume Gaussian 

state variables but also simpler to carry out the mathematical calculations.

In cases where repetitive estimations o f the state vector amplitudes are required 

throughout the computational domain, it is also important to assume that the state vectors 

are Markovian. In addition to possessing the Gaussian noise property the Markovian 

property means that, in order to estimate the state vector at different locations in space and
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time, it is only necessary to possess knowledge o f the value of the state vector from the 

previous step, along with the transitional functions which determine the value of the state 

vector at the current location or instant.

In axial vortex flow, the parameters that determine the characteristics o f the flow at 

some location and/or time are assumed to satisfy the Markovian property requirement. For 

instance, the parameters could be designated

X G i ,  Z ,  U x & , , z 2 C x & 5 , z 3 £ . . ,  X & v , Z N  L

where x could be a scalar (e.g. pressure perturbation) or a vector (e.g. velocity 

perturbation), while the subscripted (r,z) independent variables are the selected radial and 

axial coordinate locations, and the subscript integer , N, is the total number of specified 

points in the computational domain. These variables are assumed to be Markovian and the 

probability density distribution function for different state vectors (x) at specific locations 

lrk~x,z k -,L, as represented by/^x.r* ,,z A , ], depending only on the previous value

x-.tk,z kL and not onxU:k I ,z k l Q 1 = 1,2,..., in the sense that the Markovian property

isolates the present “event” or “location” from past and future events or locations. Bryson 

(1975) and Blais (1988) commented that this generalized concept of the Markovian 

property enables representation of a great variety o f physical phenomena.

The state variable model is applied to this axial vortex flow, exploiting the 

capabilities just outlined. The system is assumed to be fully represented by a set o f state 

variables containing velocity and pressure amplitudes and their first derivatives. The radial 

coordinate locations where the state variables are estimated are measured from the 

centerline outwards. At each radial location, the perturbations in the flow are governed by
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the perturbation equations (developed in the next chapter). Each state variable derivative 

must have a distinct governing equation.

2.4 Formulation of the model

Formulation of the state variable representation of the vortex flow system being 

investigated here is initiated by defining precisely the state variables in terms of continuous 

differential equations. Here, the state variables are the amplitudes o f the velocity and 

pressure perturbations, along with their first partial derivatives with respect to the radial 

and axial coordinates. Palm (2010) represented the general form o f the state equations 

symbolically as follows:

[fi] = [A Jx] □ [bJu] (2.1)

where [x] is the state variable vector, [A] and [B] are coefficient matrices, and [u] is the 

external input vector (a small disturbance to the initially-steady vortex flow being 

examined). The role of the external input vector is to initialize the stability problem. The 

matrix [A] for the vortex flow under study contains the coefficients o f the conservation of 

momentum and Poisson’s pressure equations, those coefficients are functions o f r and the 

parameters characterizing the flow. The coefficient matrix [B] will have diagonal elements 

equal to unity and, depending on the state variables initialized, it could be a rectangular 

matrix.

As the solution to the state-variable differential equation progresses, the small 

perturbations introduced via [u] will either decay or grow, resulting either in a more 

complicated flow or, most-likely becoming turbulent. The physical basis for the external
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input is the small pressure disturbances that can be generated inside the flow. The solution 

progresses utilizing the integration step

to proceed through successive locations in the spatial domain. This solution is used as an 

initial solution for the next space-wise step. The integration is continued in the radial 

direction out to the specified maximum number of points (N), assuming that numerical 

integration is done at a fixed axial coordinate value (z-location). Numerical data produced 

in this study has shown that the state-space approach can proceed successfully out to 

negligible disturbance values by the time the limiting radial far field boundary was reached, 

meaning that it was not necessary to enforce a far-field amplitude specification. Thus, the 

double integration could be effected at the next axial cross section location. The output of 

the state variable representation of vortex flow is represented:

A block diagram of the state variable model employed here is shown in Figure 2.1. 

In that figure, the random noise is scaled by a factor, B, and added to the system as an 

external input, and an integrated feedback state variable vector is employed at the starting 

node.

(2 .2)

[ y H c M (2.3)

1 ... 0

where (y) is the output vector, and C= ® ® is the identity matrix.
0 ... 1
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u(t)

Figure 2.1 Vector block diagram for the state variable model

The resulting inputs are used to initialize the derivatives of the state-variables, 

denoted by £. A summation element (integral operator) is needed after the derivative 

calculation, in order to produce the step solution x . This solution is utilized as feedback to 

the next step with a scaling parameter which is the matrix o f coefficients A. This feedback 

solution is added via the summation point to yield the new input values for the derivatives 

of the state variable vector, E. Finally, the output o f the state variable model y(t) is 

computed via a scaling parameter C (equal to unity in this study).

The state variable model will now be considered specifically for the reference axial 

vortex flow, perturbed from its steady-state solution by small amplitude perturbations. A 

modified set of Navier-Stokes equations incorporating the pressure relaxation terms will be 

developed in two dimensions and a pressure equation of Poisson type will be used to close 

the system of equations.
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CHAPTER 3

GOVERNING PERTURBATION EQUATIONS FOR AN UNSTEADY AXIAL VORTEX FLOW

A three-dimensional unsteady set of governing perturbation equations for this 

incompressible vortex flow in cylindrical coordinates (neglecting gravity) will be 

developed, in preparation for the subsequent state variable-based analysis.

3.1 Formulation of the problem

Utilizing the exact non-equilibrium pressure solution by Ash, Zardadkhan and 

Zuckerwar (2011), the problem under consideration is the behavior o f this type of vortex 

when it is subjected to small, unsteady departures from steady-state behavior. The 

conditions under which the steady, axial vortex becomes unstable and tends toward chaotic 

or turbulent behavior will be studied incorporating non-equilibrium pressure gradient 

forces. The relatively large pressure gradient forces within the non-equilibrium pressure 

zone represent a new avenue of research since those forces can alter the relaxation behavior 

of induced perturbations.

The perturbation solution is assumed to evolve, starting from an axial location 

where changes in the axial direction are so gradual that they can be ignored in the current 

investigation. Consequently, the primary focus o f this investigation will be on the radial 

evolution of random perturbations introduced within the flow. In the meantime, these 

radial growing instability modes occur at different azimuthal orientations forming two or 

three modes with the same radial growth trend. Hence, the problem under consideration in 

this study represents an unsteady two-dimensional (radial and azimuthal) evolution o f the 

basic vortical flow incorporating pressure relaxation.
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3.1.1 The velocity and pressure fields

The azimuthal and radial velocity components and pressure are assumed to be 

decomposed in terms of the basic, steady-state solutions in the following manner:

v6(r,e, t)  = Ve(r) L ve’(r,6 , t) = 2V&mx L.vg'(r,0,t)
-r!r«,re-  -1

vr(r,0 ,t) = vr'(r,0 ,t)

and (3.1)

P(r, 0, t) -P(r)U  p' (r, 0, t) = P„r 4  JL  ---------  r  p ' (r , 0 , t)
% { /  ) ul 

\ / rcoreJ

I—where r . r  I'Ll and -if The primed variables represent the perturbation
" "  An4 l  l v  »

contributions, whose magnitudes are assumed to be very small compared with the steady- 

state velocity and pressure distributions. This system of equations is amenable to a “small 

departures from steady-state” approach that will be developed in the next sections.

3.1.2 Assumptions

Before normalizing the governing equations, the perturbed velocity and pressure 

field representations, equations 3-1, were substituted into the governing equations, and the 

terms that constituted the original steady-state governing equations, and the associated 

steady-state solution, were removed. Subsequently, quadratic terms in the perturbation 

variables were assumed to be negligibly small.

3.2 Non-Dimensionalization

The modified Navier-Stokes equations have been normalized using the core radius 

(irc = rcore) as the characteristic length and the maximum swirl velocity ( V0 msx) as the
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velocity scale. The characteristic time and pressure magnitudes have been formulated 

using the basic length and velocity scales. Table 3.1, summarizes the different scaling 

parameters.

Length rc
Velocity Vf), max

Pressure P  ^6, max

Time F</Vg,max

Table 3.1. Non-dimensional Scaling Parameters

The resulting dimensionless steady-state velocity and pressure solutions can be written:

V. (r ) = ~T~T , and P ( r )  = P„ □ (3.2)
r  G 1 r  U l

3.2.1 Conservation of mass in dimensionless form

Since the steady-state solution satisfies the continuity equation trivially, and that 

equation is linear, the continuity equation will be written in terms o f the perturbation 

variables,

3 — t v , '  C c iG » !  = o (3.3)
r d r  ’ r 30  '  ’

3.2.2. Conservation of linear Momentum in dimensionless form

From Equations A-30 and A-31 in Appendix A, the normalized conservation of 

momentum equations in cylindrical coordinates, considering only two independent spatial
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variables (r and 6 ) can be written incorporating a non-equilibrium swirl parameter,

N _ tlpVOmax 5 as:

Conservation o f  radial momentum

dt
dvr _  v„ dvr _  v2 1
dr r 36 r Re \dr

1 3  r-.
 rv
r dr

1 d 2vr _  2 dva
' 2 dd 1 ■2 36

Np
3 2p  _ a 2p a 2p  _ v,
o/dr dr2 r d 6 6 r r

f  dP^f 
y d d j

3P
dr

Conservation o f  azimuthal momentum

dv dva y e dve v y a
dt dr r 39

± ( J L
Re [3r

DNp
1 d 2P □

1 3 r-
 LTV,
r  dr

e 2p

r
r 2 S5>2

v„ a 2p v, a p
\ d r  j

□ -

_ 2 avr 
ap

r dP^v
□ -j_ ap

r a p

(3.4)

(3.5)
rdtdO

Substituting the perturbation variables, defined in Equation (3.1), removing the steady-state 

solution, and then neglecting the quadratic terms, yields the following non-dimensional 

perturbation governing equations:

Perturbation conservation o f  radial momentum equation

i a Vd v : ^ v e d v ; ^ 2 veye' 
dt r dd r - I -Re [ar

i a -
 jrv
rd r

□
r 2 d d 2

; 1  foe 
V  dd

Np
~d2 p \

...................... L~v ’d2pr V‘ a v r r .

1

dtdr dr2 r dddr r 2 \ d d  )J
dpi
dr (3.6)
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Perturbation conservation o f azimuthal momentum

< v
dt

dVa „  Vn d v ' _ v'V ,
dr r dd

— j —
Re dr

1 d r,
 r v 0r dr e

1 d2ve' _ 2 dv/l
r 2 dd 2 r dd

N p
1 dp' u Ve d 2p ' u Ve d p ' ^ d P v f  
rdOdt r 2 d d 2 r dr dr r

□ ]_dp[ 
r d d (3.7)

where Re = is the Reynolds number based on the maximum azimuthal speed.

Since the Non-equilibrium swirl parameter, Np, is a new dimensionless parameter, it 

warrants further discussion.

3.3 Non-equilibrium swirl parameter, (Np)

The non-equilibrium swirl parameter evolves logically from the dimensionless 

formulation of the perturbation equations. It has been defined as:

Np = H f^ssL  = J J p ( 0  (3.8)
rc

where the quantities rc,rjp, and vg,max depend on the properties and characteristics o f the 

underlying axial vortex. The non-equilibrium swirl parameter represents the ratio o f the 

characteristic non-equilibrium relaxation time of fluid particles to the convective time 

characterizing particle movement in the vicinity of the vortex core, where the swirl 

velocities are largest.

As was mentioned in the introduction, when non-equilibrium pressure gradient 

forces are introduced into the Navier-Stokes equations governing an incompressible axial 

vortex, the resulting vector form of the modified Navier-Stokes equation no longer permits 

the utilization of the curl of the (classical) Navier-Stokes equation to eliminate pressure. A
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new type of Poisson equation was required to model the perturbation pressure and that 

equation will be developed next.

3.4 The Pressure Poisson equation

A common numerical problem in computer codes employed to model sets of partial 

differential equations with varying differential orders is that Computational Fluid 

Dynamics (CFD) codes must handle the second-order velocity difference equations 

(momentum) with first-order pressure gradients, along with the first order continuity 

equation for incompressible flows. The solution in these classical cases require more 

computing time because the program must solve for the velocity field first, then close the 

solution by estimating the pressure field required to keep the incompressible flow 

solenoidal. In this study, the divergence of the perturbation momentum equations, 

incorporating the continuity equation, enables the development of a second order equation 

for the pressure perturbations and facilitates exploring the stability o f the resulting 

numerical scheme. The Poisson-like equation governing the pressure perturbations is new 

and has been employed for the first time in the present study. That derivation starts by 

taking the divergence of the conservation of momentum equation, after first recognizing 

from the continuity equation (Appendix B is used as a reference for the equations in this 

C dv  ̂  dsection) that V- —  = — B 7 ■ vLj=  0 , so that,
dtv dt

Dv
V ~  = V - p - V v 3 =  HI d N p —  V 2P jA /? V -[jv -V 3 tp ] ,

v dt,

Employing the curvilinear coordinate derivation of this equation described in Appendix B, 

the equation term-by-term development yields:
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Gradient o f  the unsteady particle acceleration expression

V-[_y-Vv3=
a O 2
dr

dvf^
\ d 0  j

K Sv0  

V  dd r dr
; 2 ^  — f ^

dd dry r
Z 2 Vg ----

6 dr V r  j
- 2 VJ L ^ - _ 2 'JL 

r 2 dd  r 2

Divergence o f the relaxation stress term 

□ V2P C  NpV  •r  d  ^ / d ^— = CID Np —
D t V dtJ

1 N p ~  
dt

LJL
r dr

/  dP ^  
v dry

□ 1 d 2P
-2 d 0 2

Np 8

□

r dr 

Np d

v d 2P  ^ ve d 2P
dr2 r drdO r 2

' dP
,d d

r 39
v d 2P  va d 2P v ( 8 P \ v J 3 P ^

■C-
r 3rd6  r 2 3 9 2 r 2 \ 3 9  j v dr j

Then, from the perturbation assumption equation (3-1) the resulting perturbation expression 

for the gradient o f the unsteady particle acceleration expression after excluding the steady- 

state solution and quadratic terms is,

V • [v • V v ]:
2 dVa d v f  c 2V„ d v f  _ 2  dVa
r  dr 3 0  r  dr r  dr 

and the divergence o f  the relaxation stress term is,

V 2/ J NpV D_
Dt

L¥ P . — Np d 2P 3vr' 
dr2 dr

Np
r d 3P  _ \ d 2P ^
v dr3 r dr2 y

(  d \1 N p - -
\  d t)

I i L
r dr

3p ' ) r -  1
dr J 1 r 2 dO2

Np
\f d v ^ n K

r dr r 2 j
d 2 p' Vs d 3p' 

r dr239drdO

] N p Vq & P '
r 3 dO 3

! N p □ I dVe ^ Ve ^ dp' N p  dP  dve'
.2 I 3 - -r  d r  r 3 0  r l d r  3 6

The complete pressure equation becomes,
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2 dVe d v /  r  2V0  d v /  2 dVe
d r3 r d r2 Jr dr d d  r  dr r dr

C

V

3.5 Linear stability formulation

The perturbations imposed on the basic flow (with no pre-existing evidence of 

instability in the flow) utilize specified amplitude and frequency. In that way, they initiate 

instability in the flow by combining the most unstable modes of instability, travelling with 

a group velocity (dependent on the wave propagation speed o f the source), and exhibiting 

an exponential amplification in the spatial domain as the group of modes progress. Drazin 

and Reid (2004) described the decay of these perturbations beyond some radial location, as 

resulting from modal interactions travelling with the group velocity, followed by a 

subsequent repeating instability mode and so on. Thus the instability modes grow only 

within a frame moving with the same velocity as the traveling modes.

For the vortex flow considered in this study, the perturbations extract mechanical 

energy from the mean flow and grow in the radial direction, carrying the most unstable 

vortical modes. The perturbations are assumed to be composed of periodic elements 

representing the initially-imposed, time-dependent functions. Roy et. al. (2011) discussed 

the mode of instability (characterized by a specific magnitude and frequency) that emerges 

in the flow and collectively travel in the spatial domain and grow exponentially causing the



flow to deviate from steady-state, those modes do not all persist in the flow and it is the 

amount of energy the mode carries that determines the dominant modes. Liang et al. 

(2002) explained that the dominant modes can be identified either using fast Fourier 

transform (FFT), power spectral density (PSD), or proper orthogonal decomposition (POD) 

methods

The perturbation variables have been represented as complex periodic functions in 

the following form:

v f= B 'r e ,M "* (3.10)

p '=d W m ”a

where amplitude functions A,B, and D, are non-dimensional complex functions of (r ). In 

the following derivations, the real parts o f these functions have subscripts (R) and the 

imaginary parts have subscripts (I), e.g. A -  AR UiA, . The radial complex amplitude

function, A(r), is pre-multiplied by the complex root (/), in order to enforce

perpendicularity of that component with respect to the azimuthal component.

The complex frequency (co) is defined:

co = coR U i(oI (3.11)

where c o r  is the circular frequency o f  the perturbation and © /is  the damping factor.

The perturbation conservation o f momentum and the Poisson equation governing 

the pressure perturbations will now be rewritten in terms o f these functions. For the 

purpose of facilitating the derivation, the following differential operators have been 

employed,



where the derivatives of perturbation amplitudes with respect to r become total derivatives 

since we are assuming diffusion of disturbances in the radial direction only in this study.

Conservation o f  mass

The conservation of mass equation 3.3 becomes the following after substituting the 

perturbation assumption,

e
d A„ iA,\ iAe CA, n

i  *------ — □ —  L C i -C /-C S P U iB .L  = 0
dr r

Separating real and imaginary parts and factoring out the exponential,

The real part is,

dr r r
(3.12)

And the imaginary part is,

p  A r w
dr r r

C B r — 0 (3.13)

Conservation o f  radial perturbation momentum

Substituting the perturbations into the equations (3-6), the radial perturbation of momentum 

equation becomes:
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( VI coA _ i2 —  A 
V r

in —  A |e' = ei coRr-ia )[t ~nQ

i o)Rt icoji 0n6 Np d D  d 2P . „  . V„ dD _  . r g -ico  i i — r— A in — -----_ in-ArDVa
dr dr r dr

Factoring out the exponential function, the resulting radial equation is:

.  V9 V9. 6) _ /2— ^in —  
r r

. dD __.d2P A_ . V,dD _ Ve nico—  J /— —A....: in —  —  L in-A-D 
dr dr r dr r

^dD
dr

In complex form,

coR ico, i2~~ in —  ' V2 iNp — (
r r Re dr

AR iA,

' HRe r
■n n . pd Vd d  ^  V0
jo„ Oico, I — A n  Ljfl-v

' dr r dr r 2
UDr □  D j  LD —  Dr u  iDj [ 

dr

The real part o f this equation is:

Re
-v 2a

r r
d 2 P^

CO; 0 2 —  —  a  Np
dr j

1 2  nAr i_i coR Aj J  Br 
Re r

V r
on- N p - j-D R ONp 

r
r V9 '\dD R coB On — 1 Np ■ co, - D‘ (3.14) 

r j dr dr

Incorporating the steady-state solution yields,

1 «"7 2

Re
VlAB = A 2n 4Np I 3r; .co, 0 —  ' '

N  I I j ”2 n i3
1 2  n

Ar A (Or A, T  R
Re r

2nNp 
r r 2 I I

N )R ONp 2  n dDcoB 1* ^ -.2r l I I- v
— 0 AO Np ■ co, r-dD,

dr
(3-15)

The corresponding imaginary part of the radial perturbation equation is:



Incorporating the steady-state solution (2-2), the imaginary part o f the radial perturbation 

conservation of momentum equation is:

_1_

Re
V A, — (orAr CO,

2 2  n ANpi 3r2
r 2 :ji S-2 Ci3

A,
1 2 n 

Re r 2*1

yjJp-COj l̂ r-dDR „  2n-Np
dr r r  1

D , Z N p
2  ncoR ^

\ r _,ij
dD,
dr

(3.17)

Conservation o f  azimuthal perturbation momentum 

The azimuthal perturbation momentum Equation (3.8) becomes: 

r d va j ;
icoBZ e -  f e

 Lj -------

dr r
A Zin —  B = —  

r Re
- A r _ f A)

V r r

Np O -o lD n Z X i D\
dr J r  dr

i - D

and the complex form of the perturbation azimuthal momentum equation can be written as:

f dV0 . V0 ^
dr r

1 2  n 
ReT7

Ar l j  iA, \co, ZNp —
V dr j

—  I V 2 
Re'

-Br IB, =

V A[_6

r j
B r Z iB ,JlN p —  —  JDR Z iD /JZ N p-  

r dr r
nVa

COR ^ ICO, Dr Z iD, JL~ — JDr I  D, 
r

Therefore, the real part of the perturbation azimuthal momentum equation is:



and, after incorporating the steady-state solution,

Re v 2s*=- ~2
1 2 n t _

.  t A.
Re r

4Ap
r_r

(Or B,

, . r n ( _  2 n  2 Np d D R —n h j,—, ,,, _
\N p -\ a R \Dr 2 , . - I Np-to, A

r \  r  j l i  r  J \  d r  r

The imaginary part of the azimuthal perturbation momentum equation is:

1 1 2 nV 2 B, = ~ ^ A r □ 
Re Re r 2

dVe  F /
 U---

d r  r
Bc a>, HNp i W n i

\ d r  j  r~ B,

n r j ^ . .  r-w , r n f  - ^ n K ) ^  .... _r Va dD, — LI □ Np  • co, D h □ Np — coK — -  D, Np — — L
r  d rr  j

After introducing the steady-state solution,

1 ~2n 1 2 n 4 : 4 4 ( .... 2n
Re ‘ ~ V .tr 1 ' \ W*

B noR _ 0) 4Np  _ 1

’/L-‘r_r CL

-  I Np co, Dr N p n _  2«
coR u —-—  

V r  □! A
- 1 /

_ 2Np_dDj_ 
r 2 □ ! d r

(3-19)

(3.20)

(3.21)

Perturbation Pressure equation

The pressure Equation (3.9) after substituting the perturbation expressions, 

factoring the exponential expression, and utilizing the differential operators, can be written:
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^ 2 n d V L A [12 V ^ d B c 2dVL B  = 
r dr r dr r dr

... d 1 P d A ^iNp —  — LNp  
dr dr

f  d 2P  _ 1 d 2P  ̂
y d r3 r dr 2 y

iA II [□ 1 □ NplcoR L co, lJv2£) □

nVa n dVa dDC i N p ^ V AD C i N p - ^ - ^ — rinNp  
r r dr dr v r 2 dr r 3 y

C-
 ̂ n dPD  r  iNp —r —— B  (3.22)

r dr

Writing the complex form of Equation (3.22) after re-arranging in term of the second 

derivatives of pressure amplitudes,

1 i^Npco, ^iiNp Va
coR un- V 2 -Dr ~iD, D= Np

d 2P d  L4r A, . 2« dVe
d r2 dr r dr

J4r _ iA, _□

Npr d 2P  1 d 2P \ . .  . . 2V0 d  Br iB,
yd r  r dr j

L4r A, i
dr

iNp ■ n-
r dr r dr

d3Rr iB,

, . r ndV g ddDR Cf); 0 .  Ar INp  ------------ — \Zn-Np
r dr dr

1 dVg ^  V9
r 2 dr

\JDr D, (3.23)

The real part of Equation (3.23) is,

3 I  Npco, V 2 Dr □ Np V 2 D, =

. . .  d 2P dA,}Np r L
dr dr

In  dVg _ Ar
 ^  J  Np
r dr

d 'P  _ 1 d 2P2 HA

dr r dr
2E, dBR 

r dr

D-
2 dVe 
r dr

Br Np n dP 
r 2 dr

B, UNp
n dV0  dD, 
r dr dr

\ n ■ Np C-
1 dVa __ V,e r- §_

3v r 2 dr r
D, (3.24)

and the imaginary part is,
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Np Va V 2Dr 1 Npco, V-D,

d 2P dARN p —  ----- 5.
dr dr

2n dVg 
r dr

Np r d 3P  _ 1 d 2P
dr r dr A r  n P y ; B r dr

n dP o   2Ve dBi
dr

2 dV,
r dr

B t ~ N p
n dVa dD
r dr dr

- ~ n  - Np
1 dVe _  v p

r dr r
D r (3.25)

Utilizing the following functions,

c, = Np coR ^.n In dVg 
r dr

INpr d 2P 1 d 2 P ^
dr r dr

Np
1 dVe ^  Ve

r 2 dr

and the constant c4 = 1 □ Npco, , to re-write equations (3-24) and (3-25), yields,

c4V 2D k D c 1V 2D ,  = U N p ^ - ^ d - D c 3A I □
dr d r

2 V9  dBR 2 d V d n
— e- — — D Br Np

r dr r dr
! L d L B, C N p n- ^ p ^ a c inD, (3.26)
r dr r dr dr

c lV ?DR c 4 V 2 D ,  -  Np
d 2P  dA
dr dr

R ;~V AJ 3 R

2Ve dB, 2 dVt
□ —

r dr r dr
B ,U N p n dP  

r 2 dr
B r □ Np

n dVe dDR
r dr dr

U c2 nDR (3.27)

We can write a separate equation for each of the real and imaginary pressure functions DR

and Dj by solving equations (3-26) and (3-27) simultaneously, which results in the real and 

imaginary parts of pressure equation as follows:
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V 2D r =

2  —  2

\ t d 2P dA,  ̂ -  2 c/Fg _ « dP _ %T n dVe dD, „
Ap— -̂---- - - M ,  —- — -------- “ 5 * - NP~r  —  B ,- N p ----- 0- — - _c 2nD,dr~ dr r dr r dr r dr r dr dr

d 'P  dAR _ _ 2Vg dB, _ 2 dVe — « dP _ n dVe dDR _
NP ~ T T ~ T  c>A« - '-NP —  - r B* NP -  . , c2nDRdr dr r or r dr r dr r dr dr

(3.28)

V 2D r

A d 2P dA
2  —  2

„ , — , _ _ 2 F  <3®„ _ 2 _ n dP n rn « <iF, dD, ^M?— r — - □ ------5 „  JAfo— ------B, Z N p ------e- — L Dc7nD,
v dr dr r dr r dr r dr r dr dr j

2 r 2 c4 _J Cj V,

;  Z Np ”- * Z ^
dr dr r dr r dr r dr r dr dr

\c2nDR

(3.29)

And this is the end of the derivation of the linear perturbation equations in two dimensions, 

to summarize they are listed here again,

The conservation o f  radial momentum

1 *“7 2
Re

V, V , ^ „  d 2 P '
a , U l-a-nn-S-U N p

r r dr
. r , 1 InA b -Jd)RA, l_ B z 

Re r

n ■ Np “  D r Np e)R IZn-
Va dT)R z: , —d D ( ,* , ..1 Np-co, -— (3.14)

dr dr

Re
V A, coR Ar — ~Ve d 2 pco, _Z2  _ N p — —

r dr
A, Z ± % B ,  

1 Re r 2 '

J Vp co, Z L ^ ^ - Z n - N p ^ - D ,  ZNp  
dr r

coR _ n-
dD,
dr

(3.16)

The conservation o f  azimuthal momentum
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—  V2BR 
Re * dr r

A
* Re r 2 '
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Va
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r r

—  V lB, = —  ̂ A r 
Re Re r 2

dVa _ Va
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n Yi
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r r
nVQ

co,. _ _ , T Vg SD,
• ~ p ~ 7 ~ d T  <3-20)

The pressure equations 

V 2 D d =
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n dP n dVa dD,

O c3A, □— — *-□------- e-B R TNp2N —  B, CNp—“-~- - —■■■ Uc2nD,
37 r dr r dr R F r 2 dr ‘ r dr dr 2 7

f  -j2
'M2 2 i
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Np ^ L ^ J L n cA
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~B,U  Np -N- Br □ Np 

r dr
n dP n dVe dD 
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(3.28)

V 2 D,

2 |—  2 c4 Cc, V
r r A Nn —  — R ^  Nn  ” dV° dD> r  nDmP ,2 . ~ 3 / -- : ■ , Br Np B, ,Np c2nO,dr dr r or r dr r dr r dr dr

f  , j2  o

'  2  r . 2 
c ,  L c ,'4 “jl'l v

d P dAR „  2F0 dB, 2 JF . „ n dP n xr n <afF̂  dDR „
— 5------- - i c 34 ,  - j— ^ --------^-5, ~N p—r —  5„ J A f e --------^ — S-LJc2nDR
dr dr r dr r dr r dr r dr dr

(3.29)

These are six equations in the dependent variables of the vortical flow system which are the 

real and imaginary parts o f the functions (A, B, D) for the radial velocity perturbation, 

azimuthal velocity perturbation and pressure perturbations respectively. In the next section
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the non-linear problem will be developed, before proceeding to the state-variable model for

the linear part of this study.

3.6 Non-linear consideration

In the previous formulation, the non-linear terms (or quadratic terms) were 

neglected; those terms are considered here in order to evaluate the degree to which the 

linear system solution approaches an exact, finite amplitude solution for a two-dimensional 

flow representation of this type of axial vortex.

The state-variable model continues to serve as a powerful tool and has been utilized 

to develop a non-linear system model. Utilizing useful functions in Matlab® to define 

complex variables like “complex, real, imag, abs”, it was possible to separate the 

representation into real and imaginary parts for the stability analysis without requiring 

excessive algebraic manipulations.

The derivation of the non-lineSir problem starts from the basic governing equations 

for the flow which becomes (excluding steady terms),

Conservation of radial momentum Equation (3.4)

(3.30)
or

The perturbation conservation of azimuthal momentum equation becomes:



(3.31)

and the non-linear form of the pressure equation can be derived as follows,

V —  = V - p - V v 3  = f U \U N p —  1v2P J A ^ V - [ j v - V W ] .  
Dt y d t)

Term-by-term expansions are as follows:
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r dO r dr

dvr d
dd  dr V r )

2v,,
dr

□ 2 ve f o r  
r 2 d9

□  2 -

and,

1 Np
dt

V 2P  V
y

1 Np
dt

T 1 d  I' r 8 p '
^ 1 d 2P~

\ _ r d P < d r , ~ r 2 dO2 r dr [
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Substitution into the pressure Equation (3.28) yields,



Utilizing the perturbation expressions from Equation (3.1), and removing the steady-state 

solution,

(dvr^ ' n  1 2 n v/  5ve' _ vr ' 5 v / ..^dvr' 5 (Ve Uv0"
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(3.33)

Using the same perturbation functional form as Equation (3.10) and the differential 

operators, we can write the equations in terms of the perturbation functions A,B and D.

The radial momentum of perturbation 

From Equation (3.30)



Here the higher derivative of the radial velocity perturbation amplitude is the second

d 2 a
derivative ( — r ) which is the same order as the linear system Equations (3.14 and 3.16). 

dr

cf2 D
Next, the quadratic terms involving the second pressure derivative A — r  and the like are

dr

considered to be negligibly small in comparison with other non-linear terms. Dropping that 

term from the radial momentum equation leaves,

V 2V
icoA Bn — A □ — e- B  

r r
i \ d 2 A 1 dA _ « 2 2n _1

—  \ — r - C ------L —  AD —  B \ u
Re rfr r dr r r

iNp d D , Ve dD 
co—  C n —  —  

dr r dr
ve — Ad 2P  n - ~ D  A-

dr 2
c ^ o

dr

J.cut n6

dr r  r
2 iNp B dD _ ni--------n —

r dr r 2
DB (3.34)

The azimuthal momentum o f  perturbations
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The highest derivative of the azimuthal velocity perturbation amplitude is the second

d 2 Bderivative ( — - )  which is consistent with the linear system Equations (3.18 and 3.20). 
dr

The pressure equation (3.33),

2» dVg A r 2Vg dB  2 d V e R =  Np ( d 2P  d  _  d l P  _  1 d 2P ^
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ie’ “  "e Np
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(3.36)

After dropping the quadratic term with the second pressure derivative and higher 

derivatives,

( d 2P d d 'P  1 d 2P ^
r dr r  d r  r  d r v dr2 dr dr3 r dr 2 j

iA □ [i l 1 □ iNpoj\d2 D !
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Ve ~ 2 ^  1 dVg d  ^  1 dVg Vd

  V L J ---------------------------U  I ---------------- u —-
r r dr dr r dr r
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(3.37)
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3.7 Summary

In this chapter the perturbation governing equations have been derived in two 

dimensions, along with the linear and non-linear stability equations assuming periodic 

perturbations. Next, the state-variable model will be developed for both the linear and non­

linear problems.
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CHAPTER 4 

STATE-VARIABLE NUMERICAL MODEL

The next steps in developing the state variable model is to assume the number of 

state variables needed to define the linear system equations (3.14), (3.16), (3.18), (3.20), 

(3.28), and (3.29) as well as the non-linear system equations (3.34), (3.35), and (3.37). 

Each state variable should appear at least once in the set o f equations and should have a 

separate equation defining its derivative.

4.1 Linear system state-variable model

The state variables of the linear system for perturbed axial vortex flow equations 

[(3.14), (3.16), (3.18), (3.20), (3.28), and (3.29)] contains 12 state variables representing the 

velocity and pressure fields and their respective first derivatives with respect to the radial 

direction (r). The state variables are listed in the table below:

dAR
dr Ar - * X  2

dA,
dr A, -> Z 4

dBR
,  - > ^ 5dr BR X  6

dB,
' - > * 7dr B I Xs

dDR
dr D r X\o

dD,
, ~+Zu dr Dj “  ̂Xn

Table 4.1 State variables o f  the linear system for axial vortex flow



4.1.1 State equations for linear system

The state equations for the linear system are the same governing equations (3.14), 

(3.16), (3.18), (3.20), (3.28), and (3.29) after replacing the derivatives and functions with 

their state variable names. The following system of equations resulted:

The conservation o f  radial momentum 

Equations (3.14) and (316) become,

dXi
dr ■Zi Re- _ r -„ _  ~Vg _ Ar d 2P  CO, 2 n N p  -

r dr >X 2 □ Re-0**4

In  V (
\ —  X 6 LlRe-A^? coR Dn
r r \

\
_e_ 
r j

dXi
dr Xx (4.2)

dx  3
dr

= Re-coRx 2 T - Z i
n Re-

_  ~V d 2 P
co, □ [2 [I n —  □ N p  —

r dr
2 n

>x* ° — x 8

Re- N p ■ co, 1 z 9 nn -R e- N p - j X \ 2 Rc- Np
Va

coR u  n- Xxx (4.3)

dr
(4.4)

The conservation o f  azimuthal momentum becomes,
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dr r dr r Xa 1 Re‘ o>R Un 9
V \  1y a — i * _ .

Ze - ^ -X i  11 
J r

n
jRe-

. .  1 'd P ' _  1 "

& LJ § 1 "—’ 0r \ d r  ) r
\X% Re "  1 Np-co, Zw  

r

Re- Np
n

coR L Z u ^ R e - N p ^ Z M  (4.7)

d% s 
dr = X i (4.8)

The pressure equation becomes,

=
dr

r d 2P 2V„ _ 2 dV, n dP n dVa
UNP - T T X i  <\Z4 □ --------------------------□ --------------Z  6 - 'Np —  —  x  g  O N p -------------------------- ~ - Z t l ^ c 2n z l2r dr r 1 dr r dr

□ C‘
c4 Cc,2!

d LP  „  „  2Va „ 2  dVn _  n dP
Np— pXx nc3i 2 □— - ^ 7 □ ,ar  r r dr Z h NP 2 l~Zf, r dr

□

-kt n c, dVa 1N p - U  ‘■- . I , 0  □ -
r  lc4 Dcx L d r  r Z9 □

n ^  n -c 2 cx
~~2 II 2 „  71 |r ic4 Cc, LJ

*,o (4-9)

4ar,10
2T9 (4.10)

dZu = 
dr J

2K, _ 2 ^ n dP
^ p - j r Z i  - C 3 X 4  □ — ^5  - — -f - ^ 6  L i i Vp— — ^r8 dr r r dr r dr

<r/> 2F„ 2 o'FJ.
^  -T l"  Xx -  C3Z2 L------- ^7dr r r dr

n dP n dVa
Z s ' ^ N p - j  —  Xi r N p ------------ —  z 9 c2nZ \0

r dr r dr

-KT n c, dV„ _ 1N p ------j—- 1..    *■ _J-
r :Js4 L. cx A dr r Z\ 1 L

n _ n -c 2 cx
j4 _.C,

* , 2  (4 - 1 1 )
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(4.12)

The state equations (41) to (4.12) are first order differential equations in the state 

variables, a property o f the state variable model that allows representing the axial vortex 

system with easily integrated equations. Also, the independent variables o f integration will 

be the 12- state variables and the radial coordinate is of course used as a stepping variable.

4.1.2 Fundamental Interpretation of State Variable Model Parameters

The state variable input parameters are characteristic Reynolds number (Re) and the 

new non-equilibrium swirl parameter (Np) employed to fully-characterize the unperturbed 

axial vortex state. Additional unsteady input parameters are the circular frequency of the 

imposed perturbations, and a mode number, n, specifying the azimuthal modes. 

Finally, a damping parameter, coj, is employed to describe the transient growth of the 

perturbations. The state variable model will use coi to find the converged solution 

according to the prescribed magnitude of the perturbations in the flow. It also determines 

whether the perturbation mode is going to grow in the flow or not.

For the present axial vortex case, it is important to recognize that the two flow 

parameters Re and Np can be related theoretically through their definitions:

From Equation (3.1), the theoretically-based maximum azimuthal velocity is

Re- Np c <9, max 9,  max (4.13)

Tjp . Consequently,

Re- Np = 2 (4.14)
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Since the relationship between the Reynolds number and the non-equilibrium swirl 

parameter assumes that the experimentally-generated axial vortex is identical with the 

theoretical vortex, it is necessary to examine the actual experimentally-measured product 

against equation (4.14) Based on theoretical predictions (Ash and Zuckerwar, 2006) the 

pressure relaxation coefficient for air varies with temperature and relative humidity, but 

pressure relaxation coefficients for air have not yet been validated experimentally. 

Furthermore, the accuracy of the measured wind tunnel air temperature and relative 

humidity during each experimental run is uncertain. The calculated value of the Reynolds 

number-non-equilibrium swirl parameter product for the ten reference cases summarized in 

Table 1.1, along with additional measurements from Ely (2013) have been plotted in Figure

5.1. Virtually all o f the experimental values are scattered below the theoretical value of 

two.

2.5

2 ♦

0.5 -
♦

♦

♦

0
0 2000 4000 6000 8000 10000 12000 14000

Re

♦ Ely (2013) Data •  Selected Ref Data

Figure 4.1 The values o f  Re-Np at different levels o f  Re (Ely, 2013)
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Finally, the parameters, n, c o r ,  and g>/, can be related utilizing an important stability 

theorem from Schlichting (1968), stating that the speed of propagation of neutral 

perturbations (coj =0) for boundary layer flows must be smaller than the maximum velocity 

of the mean flow, i.e.

V
ojr < n ^ ~  . (4.15)

rc

If inequality (4-14) is written in dimensionless form, it translates to the requirement that:

COR < n  . (4.16)

Thus, the five paramters of the state variable model will be ( Re, Np, coR, co, and n . ). 

Figure (4.2) represents the five parameters and the related processes used to evaluate them. 

The state variable model utilizes the parameters Re and Np obtained from the steady state 

runs employing the wind tunnel.

Initial
Guess

State
variable
model

Wind
Tunnel
Exp.

O utput

Re

Figure 4.2 Schematic o f  state variable model input and output parameters
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4.1.3 Numerical integration of state-vector

The next step in developing the state-variable model was to integrate the state 

vector containing all the state variables. An initial guess was supplied to the state vector in 

the form of an external disturbance, and then the Runge-Kutta method was employed to 

carry out the integration from the first point. All the state equations were integrated 

simultaneously in order to proceed to the next spatial step.

4.2 The non-linear state-variable model

The non-linear system of equations derived in Chapter 3 [equations (3.34),(3.35), 

and (3.37)] require the same set o f state variables used for the linear system (listed in Table

4.2.1 State equations for non-linear system

The state equations for each of these state variables are derived as follows: 

First writing the definition of the perturbation amplitudes in terms of the new state- 

variables as:

4.1).

A = Z 2 UiXA> B  = X*1-'>8 and D = Z u ,'-iz l 2 ■

Now, Equation (3.36) can be re-written as follows,

1 d 2A 
Re dr2

_  . _  . Vg 2Vg _  1l_ 03A _  in —  A —i — -  b  —
r  r  ReRe
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The real part o f this equation is the governing equation for the state variable X\ > as follow,

d x L =
dr

Re-real( L^caA. în —  A ^ i ^ - B  - A - ^ - B \  - N p
r r Rs \ r  dr r 2 r 2 1

dD -  V0 dD _  E. _  d 2P
- ------- w —f - D  - A — r

2 d r2
c d  _j n

dr r dr r
-.dE> —  □ 

dr

n& A '  «'
dr  r  r

'-iNp n ^ - S L DB
r  d r  r

(4.17)

Accordingly, the imaginary part is the governing equation for Xi >

dx  3
<*•

1 1 dA - n  , - 2 nV 2V
Re-imaglOwADin — A U i— - B ... .

r r Re \ r  dr r
A Z - T B \ n N p dD V„ t d 2P

c d  □ « —  i _ n - f - D G / i — r-
dr r dr r dr

.dDi--- .
dr

le ' a “ u± a b ~ b "
dr r

(4.18)

Equation (3.37) can be re-written as,

1 d 2B . n r . . AdV9 ^ .  Ve n - V 9 A, 1 f l  dB, n2 nr 2 A[, - xr
 t  =  icdB l i A — - l i b - S l - T — < L —  B L n — A > - N p
Re dr2 dr r r  Re \ r  dr r 2 r 2

■ r, -  Ve dD  _ B dPin—D  L — ~ D  L-^-— ! -------
r r  r  dr r dr

i — D Np
. A d D  _ n 2 B d D  -  An --------- __ —  BD  _ --------- _  n —  D

r  dr  r r  dr
'  r . AdB    B 2 _ . A B '

iA —  __ in —  _  i -----
dr  r  r

The real part of this equation is governing equation for Xs

dX
dr

.dVg_
dr

5 =R e real( icoB’- i A ' ^ - - i n ~ B -  —  A Z ^ - \ —̂ ~ - ’- ^ B - n - ^ A \ - N p^ a z —  k ^ - z -
r Re [r  dr r 2

. co n _V e d D - B d Pin—D  -  — D — — 
r r~ r dr r dr

i D  e' 
r

Np
A dD  -  n 
r  d r  r

, B D  -  
2 r  dr

B dD  _  A nn—jD  
r

. Ad B _  . B 2 
iA —  _  in —  

dr r
AB (4.19)

And the imaginary is for Xi >
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dXi
dr

dr r  Re \ r  dr r
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Np n --------- 1 —  B D
r dr r

2 1 0)
n — A \ _ N p in —r J r

A ^ / dB
n —̂ D A —

r 1 ) dr

r dr  r  dr

j
(4.20)

Now the pressure equation (3.52) is re-written after combining similar terms and writing 

the equation in term of the highest pressure function derivative,

1 iNp to. nK
V 2D  =

,Ar d 2P dAiNp ;----- □
dr dr

2 n dV0  

r dr
j iNpr d 3P  1 d 2P ^
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r dr
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r dr r dr
B

:np
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Writing the Equation (4.20) in terms of the second derivative o f pressure,

1 iNp coU-,nVa
dr2
d 2D d 2P dA = iNp—  ------L

dr2 dr

2Ve dB r

2n dVe 
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Arranging the coefficients from the right hand side,
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(4.23)

And the imaginary part of Equation (4.21) is the governing equation for X\ \ >



The next steps in solving the state variable model for this non-linear system follow the 

same procedure employed for the previous linear system.

4.3 Summary

In this chapter (4) the state variable governing equations model was developed for 

both the linear and the non-linear systems of an unsteady axial vortex flow. A discussion 

of the model parameters and their evaluation process were outlined.
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CHAPTER 5 

FINDINGS AND DISCUSSION

The state variable model for a perturbed vortical flow is a new method to study its 

stability. The twelve state variables in Table 4.1 are employed to model the flow at each 

spatial location, at a given instant o f time, then the state equations were integrated using a 

fourth order Runge-Kutta method to advance the solution radially to the next spatial 

location. The four control parameters were the non-equilibrium swirl parameter, Np, 

Reynolds number, Re, the perturbation frequency, cor , and the azimuthal orientation mode 

number, n, with values guided by the physical range investigated in the low speed wind 

tunnel at Old Dominion University. The parametric value range also revealed different 

kinds of modes of instability. In this chapter, different levels of each of these parameters 

will be investigated to draw conclusions about their effects on the instability growth in the 

flow. The stability analysis will follow the discussion of results in order to validate the 

existence of the instabilities revealed in this study and determine the stability status o f the 

flow.

Matlab® was employed to produce the state-variable simulations. Program scripts 

were written to examine perturbation behavior for Reynolds numbers between 6,000 and 

14,000 (Appendix C), utilizing maximum azimuthal velocity and core radius as the velocity 

and length scales. The steady-state velocity profiles and pressure distributions employed in 

this study were based on the axial vortex solution-Equation (3.1) by Ash, Zardadkhan, and 

Zuckerwar (2011) and the fundamental interpretation of the state variable model discussed 

in Section 4.1.2. Wind tunnel experiments performed in the low speed wind tunnel at Old 

Dominion University helped in defining the physical range of Reynolds numbers
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investigated so that the results presented here can be verified employing hotwire 

anemometer measurements in the low speed wind tunnel.

Four perturbation amplitude variables were utilized to describe the evolution of 

perturbations in the flow, the radial velocity amplitude, vr', the azimuthal velocity 

amplitude v0' , the perturbation Reynolds stress (vr've'), and the radial perturbation

pressure gradient amplitude j •

The amplitude of radial perturbation pressure gradient was included in this 

discussion instead of pressure amplitude because the pressure gradient is the mechanism by 

which non-equilibrium forces are sustained. On the other hand, the pressure differential 

equations are many orders higher than the velocity ones, since the pressure equations were 

firstly composed by taking the divergence of the conservation of the momentum, taking the 

equations to a higher differential order. Solving the pressure equation for the pressure 

function requires two integration steps, which necessitates a numerical solution at mid­

points before marching to the next step, hence the pressure gradient is the first integration 

output and is considered to have a stable numerical solution. Stability analysis o f the state 

variable model is discussed in chapter six of this study and detailed description of the 

pressure solution is outlined.

The state variable filter used in this study provides a useful integration 

representation of the perturbation amplitudes since any instantaneous distribution will 

contain noise. The Matlab® butter function was utilized to plot the output perturbation 

amplitudes. These functions generate a low-pass digital filter with a specific order and 

cutoff frequency. The filter can cutoff up to half the maximum sample rate. The order of 

the filter determines how extreme the high frequencies will be removed from the sample
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and affects the phase shift of the waves only when it is too high (5th order and more), the 

filter order used here was third order. Please refer to Butterworth filter design page 

http://www.mathworks.com/help/signal/ref/butter.html.

5.1 Influence of Np on velocity, pressure and Reynolds stresses

The non-equilibrium swirl parameter (Np) is a ratio o f the time during which the 

non-equilibrium pressure gradient forces act on fluid particles, with respect to the 

characteristic swirl convective time. As Np increases, the time during which non­

equilibrium pressure gradient forces can be exerted by external perturbations increases. 

During that time, the viscous stresses required to balance the non-equilibrium pressure 

gradient forces interact with the externally imposed perturbations. Those viscous stresses 

may suppress the perturbations, or in some cases, enhance the instability caused by the 

presence of the disturbances within the vortex flow.

The physical range of Np for the vortex flow under investigation was determined 

using the basic flow properties from wind tunnel experiment (Ely, 2013) that is, in those 

experiments the pressure relaxation coefficients for air varied between (0.2 and 0.5) 

microseconds, the angular rotation rate varied between (500 and 1500) rad/sec, and using

equation (3-8) the resulting range for swirl parameter was 10 4 < < 10 3.

http://www.mathworks.com/help/signal/ref/butter.html
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Figure 5.1 The radial pressure gradient amplitude variation with radius at different Np {mR = 0.4, n = 1/2 Re =
8, 000)

The influence of the non-equilibrium swirl parameter on the amplitude of the radial 

pressure gradient perturbation is displayed in Figure 5.1. Near the core radius, the radial 

pressure gradient oscillation amplitudes are very large at the smallest values o f the non­

equilibrium swirl parameter, but that maximum amplitude “bulge” vanishes by the time Np 

is equal to 0.3. Interestingly, the large-amplitude bulge does not occur inside the core, and 

the overall radial pressure gradient oscillation amplitudes remain below 0.1 dimensionless 

pressure units over the core region of the vortex. Within the non-equilibrium pressure 

zone, the amplitude profile reached a maximum value that was dependent on Np. This 

location of maximum amplitude growth is referred to as the critical radius. Then the
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pressure gradient amplitude decreased rapidly back to a value between 0.1 and 0.15. 

However, as can be seen in Figure 5.1, the amplitude o f the perturbation pressure gradient 

does not go to zero, even for very large radii, raising a question of how to interpret it.

There are two main reasons why the pressure gradient did not go to zero before the 

outer boundaries of the flow were reached. The first reason would be the interaction 

between the vortex trying to rotate the fluid particles around the center and the surrounding 

environment which kept the particles at rest for ambient conditions. The other important 

reason would be the possibility of a sound source associated with this kind o f vortex flow 

as mentioned in the introduction section 1.2. That sound propagation from inside to 

outside the vortex flow would be due to the residual pressure perturbations exhibited in 

Figure 5.1. The theory behind this assertion could be extracted from equation 1.7 of 

section 1.2,

Dt
dP _ 
dx

D
^ D t Kdx,y

dvk dP 
dx, dx.

1 Dp
rjp dxt \yp Dt -P

d 2v, 
dx?

As noted in Chapter 1, the first terms in the square bracket represent the contracted 

velocity-tensor-pressure gradient term that resulted when considering the material 

derivative of the pressure gradient instead of the gradient o f the material derivative of 

pressure in forming the non-equilibrium pressure term in the momentum equation; it was 

postulated that this contracted velocity-pressure gradient term balanced the fluctuation in 

the density of the fluid due to the generated sound within the non-equilibrium pressure 

zone. This assumption of cancelling the square bracketed term is going to be reflected as a 

change in the gradient of the pressure o f the flow within the non-equilibrium pressure zone 

(the core region just prior to the potential flow zone), and that is the “bulges” seen in Figure
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5.1. Thus, sound is generated in the vortical flow inside the non-equilibrium pressure zone 

and the gradient of pressure will increase to balance the sound disturbance.

The variation in the amplitude o f the azimuthal velocity perturbation with radius is 

shown in Figure 5.2, for values of Np between 0.0001 and 0.3. For small values of Np, the 

perturbation amplitudes are rather large out to 10 or 15 core radii, but in all cases the 

amplitude peaks within the non-equilibrium pressure zone and decreases to negligibly 

small amplitudes at large radii. For Np = 0.3, the large perturbation amplitude band was 

much narrower. It should also be noted that as Np increased, the maximum amplitude of 

the azimuthal velocity perturbation decreased and the critical radius migrated toward the 

core radius within the non-equilibrium pressure zone.
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Figure 5.2 The azimuthal velocity perturbation amplitude variation with radius at different Np (o>R = 0.4, n =
1/2 Re = 8,000)
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Figure 5.3 shows how different values o f  Np (between 0.0001 and 0.3) influence 

the growth and decay of the radial velocity perturbations at Re = 8,000. For all values of 

Np, the radial velocity perturbation was necessarily zero at the centerline, and the figure 

shows that the magnitude of the radial perturbation velocity amplitude increased with 

radius until a maximum instability magnitude was reached, before decaying back to zero at 

the outer radial limit. Note that the magnitude of the radial velocity perturbation reaches a 

maximum value at distances greater than one core radius. The figure also shows that as the 

non-equilibrium swirl parameter was increased from an extremely small value of 0.0001 to 

0.3, the radial perturbation velocity magnitude at the critical radius was hardly affected. In 

this case, it was noted that inclusion of the relaxation stresses didn’t influence the 

maximum growth of perturbations but the critical radius moved slightly closer to the core 

radius with increasing Np. More discussion o f the maximum growth along with the 

migration of the critical radius will follow.
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Figure 5.3 The radial velocity perturbation amplitude variation with radius at different Np (o)H -  0.4, n = 1/2
Re = 8,000)

The D ( W )  perturbation Reynolds stress variation with radius is shown in Figure

5.4. The distribution follows the same trend as the velocity perturbations with a peak in the 

non-equilibrium pressure zone and equal to zero at the center of the vortex and at the far- 

field boundary. This “turbulent zone” is located in the non-equilibrium pressure region, 

where the relaxation stresses exerted by the perturbations in the flow work to grow 

instabilities to varying degrees, depending on the value of Np. Significant levels of this 

component of Reynolds stress were produced over a wide interval within the non­

equilibrium pressure zone, especially for the lower values o f Np (0.0001, 0.005 and 0.01);
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as Np increased further, the Reynolds stresses were concentrated in a narrower band 

located closer to the core radius.
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Figure 5.4 Variation o f r ( v r 'v0 '̂  Reynolds Stress with radius for different Np (coK = 0.4, n = 1/2 Re =

8,000)

It was concluded that the relaxation process enhanced the growth of perturbed 

radial pressure gradient inside the non-equilibrium pressure zone over the range of values 

of Np.
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5.2 Effect of Np on maximum perturbation growth and critical radii

To study the effect of Np on maximum perturbation growth, a simple max function 

in Matlab® was used to extract both maximum amplitude and critical radius. Perturbations 

in velocity, radial pressure gradient, and Reynolds stresses are the parameters used here to 

describe the growth quantitatively. Figure 5.5 shows the influence o f the swirl parameter 

Np on the maximum perturbation amplitudes. There were general trends o f decreasing 

amplitudes as the swirl parameter was increased to higher levels, indicating that the 

relaxation stresses, when allowed more time on a relative basis, tended to break down the 

instability, diminishing its magnitude and thus helping stabilize the vortex.
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Figure 5.5 Influence of Np on the maximum perturbation amplitudes (ojR = 0.4, n — 1/2 Re = 8,000)



70

Effects like this can be significant when considering actual variations in the 

environmental humidity levels. Since the pressure relaxation coefficient increases with 

decreasing humidity (Figure 1.2), the swirl parameter increases as well (Equation 3-8), as a 

result, the perturbations in the flow are damped (Figure 5.5). The perturbations pressure 

gradient is significantly damped in this process.

2.5

-=r^r*-

0.5

1000 10000

vr< vq< — a  — dp'/dr

Figure 5.6 Influence of Np on the critical radius o f perturbations (coR = 0.4, n = 1/2 Re = 8,000)

Figure 5.6 shows how variation in the non-equilibrium swirl parameter influences 

the critical radius location of maximum perturbation growth (based on the maximum radial 

perturbations obtained in Figure 5.5). The figure shows that the critical radius resides in
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the outer portion of the non-equilibrium pressure zone, but migrates gradually toward the 

core radius.

In concluding this section, the non-equilibrium swirl parameter, Np, has a 

significant influence on the maximum amplitude growth and location for the perturbation 

velocity, pressure and Reynolds stress fields. For the most part, perturbation amplitudes 

decreased with increasing Np. The effect of Np on the radial pressure gradient was more 

significant than for the other perturbations. These general trends of decreasing amplitudes 

as the swirl parameter was increased to higher levels, elevates the importance o f relative 

humidity in considering the unsteady behavior o f axial vortices since higher relative 

humidity corresponds with smaller values o f the non-equilibrium swirl parameter and 

relatively dry air results in increased levels.

5.3 Effect of Reynolds number on perturbation behavior

The Reynolds number affects the velocity perturbation growth, and generally, the 

velocity perturbations grow with increasing Reynolds number (see Figures 5.7-10). It 

should be noted that a number o f numerical simulations were run for different Reynolds 

numbers, employing different values o f Np and the results exhibited the same trends as 

those exhibited for Re = 8,000, with no noticeable effects on the pressure perturbations (by 

varying the Reynolds number at fixed Np).

Figure 5.7. shows how the radial velocity perturbation amplitude is affected by 

Reynolds number in the range of 6,000 to 14,000. This is the typical range of the 

experimental data summarized in Table 1.1. It is very important here to state that at the 

lower Reynolds numbers, the perturbations were found to be damped and the perturbed
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flow was thus more stable. The perturbation amplitudes are completely damped by inertial 

forces in the vicinity of the rotational axis, and the amplitude profiles have maxima in the 

the non-equilibrium pressure region. The growth of perturbations was mostly in the non­

equilibrium pressure region.

 Re = 6,000
Re = 8,000 

-■ » -  Re = 10,000 - 
*— Re = 12,000 

Re = 14,000
• *'•. * * 1

r/r

Figure 5.7 The radial velocity perturbation amplitude variation with radius at different Re (coR = 0.4, n = 1/2
Np= 2x1 O'4)

The azimuthal velocity amplitude profiles were distinctly different below 

Re=8,000. As shown in Figure 5.8, at Re = 6,000, the amplitude peaked at 0.1, at a 

location approximately five core radii from the axis, and measurable, low-intensity 

perturbations spanned the entire radial region. At Re = 8,000, the maximum azimuthal
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velocity amplitude was larger than any other Reynolds number and detectable amplitudes 

were observed over nearly the entire region. The simulations at higher Reynolds numbers 

(Re of 10,000, 12,000, and 14,000) exhibited peak maximum amplitudes o f 0.35 and 

detectable perturbations only occupied a narrow part of the non-equilibrium pressure zone.

Re = 6,000
0.45 •

■■»••• Re = 10,000 
— R e =  12 ,000  - 

Re = 14,000

*  0.25 •

r/r

Figure 5.8 The azimuthal velocity perturbation amplitude variation with radius at different Re (coR = 0.4, n =
1/2 Np= 2x10 4)

The influence of Reynolds number on the amplitude of the radial perturbation 

pressure gradient is displayed in Figure 5.9. At Reynolds numbers above 6,000, there is a 

pronounced amplitude bulge in the primary non-equilibrium pressure gradient zone. The
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perturbation pressure gradient bulge became narrower and steeper as the Reynolds was 

increased. Outside of the primary non-equilibrium pressure gradient region, the 

perturbation pressure gradient amplitudes coalesced into a single smooth curve that 

increased monotonically with radius out to the integration limit. As can be seen in the 

figure, the amplitude profiles for the different Reynolds number are “universal” from the 

rotational axis out to just beyond one-half the core radius and the curves coalesce again 

beyond five core radii. The amplitude bulge could be a driving mechanism linking these 

small fluid mechanical pressure perturbations being generated in the primary non­

equilibrium pressure zone with sound radiation, a possible theory behind this sound wave 

propagation was outlined in section 1.2 and revisited in section 5.1.

 Re = 6,000
-  Re = 8,000 

Re = 10,000 
-R e =  12,000 

Re = 14,000

r/r

Figure 5.9 The radial pressure gradient amplitude variation with radius at different Re (coR = 0.4, n = 1/2 Np=
2x1 a 4)
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The influence of Reynolds number on the radial variation of perturbation Reynolds 

stresses (v ,^ )  is shown in Figure 5.10. Clearly, that component of the Reynolds stress is

highly-damped at Re = 6,000, and at higher Reynolds numbers, that Reynolds stress 

reaches its maximum within the primary non-equilibrium pressure zone, then decreases 

rapidly to zero at larger radii. The plot shows that the large-amplitude Reynolds stress 

band narrowed, while the peak amplitude diminished gradually and moved toward the core 

radius as the Reynolds number was increased.

0.35:
 Re =6,000
- — Re =8,000 - 

• Re= 10,000 
—•— Re = 12,000 -  

Re= 14,000

/- \
0.25 ■

0.05 -

Figure 5.10 Reynolds stresses radial distribution at different Re (coR = 0.4, n = 1/2 Np= 2 x lff4)
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When the flow becomes unstable; the small turbulent structures travel at high 

relative speeds and cause the flow region to become chaotic at the same pressure 

perturbation levels.

5.4 Effect of Reynolds number on maximum perturbation growth and critical radii

The maximum growth of different perturbations as functions o f Reynolds number is 

plotted in Figure 5.11, suggesting a linear increase in maximum radial pressure gradient 

amplitude with Reynolds number. The azimuthal velocity component and the Reynolds 

stresses had amplitude peaks at Re = 8,000 and then exhibited virtually no change for the 

higher Re, whereas the amplitudes at 6,000 had very low intensity compared to other cases. 

The radial velocity component was hardly affected by Re.

1.2

0.6

 «

0.2

0
6,000 8,000 10,000 12,000 14,000

Re

♦ — vr' ••••*••• vd' —* — dp'/dr —X— -rrd

Figure 5.11 Influence o f  Re on the maximum amplitudes o f  perturbations (coR = 0.4, n = 1/2 Np = 2xl0'4)
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The critical radius for the different perturbation variables is plotted in Figure 5.12, 

showing that as the Re increased, the critical radius moved farther inside the non­

equilibrium pressure zone, approaching the core radius at the highest Reynolds number.
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Figure 5.12 Influence o f  Re on critical radius o f  perturbations (ojr = 0.4, n — 1/2 N p= 2x1 O'4)

5.5 Effect of perturbation frequency on velocity, pressure and Reynolds stresses

The dimensionless frequency o f the imposed perturbations affected the evolution of 

the perturbation disturbances as demonstrated in Figures 5.13 to 5.16. The frequency of the 

imposed perturbations was varied between 0.01 and 0.4 at a fixed Reynolds number of 

8,000, and an azimuthal mode number o f 1/2. Imposed perturbation frequencies above this 

value are not expected to grow in the flow based on the theory of instability in fluid flows 

(Schlichting, 1968) the dimensionless form of which requires that,

& R < n ,  (415)
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for instabilities to grow.

Figure 5.13 shows the amplitude variation of the radial velocity perturbations at 

various frequencies. As can be seen in the figure, the maximum amplitudes occurred in the 

non-equilibrium pressure zone, while diminishing to zero at both radial extremes. The 

perturbations in this case occupied a larger radial region as the frequency was increased.
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Figure 5.13 The radial velocity perturbation amplitude variation with radius at various frequencies (n = 1/2 Re = 8,000)

Figure 5.14 shows that the azimuthal velocity perturbation amplitude was more 

sensitive to perturbation frequency, increasing from a maximum amplitude slightly under 

0.3 at cor = 0.01, to just above 0.45 at o jr  = 0.4. The width of the large amplitude zone 

increased as the frequency was increased.
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Figure 5.14 The azimuthal velocity perturbation amplitude variation with radius at various frequencies (n = 1/2 Re =
8, 000)

The amplitude of the perturbed radial pressure gradient is plotted for selected 

frequencies in Figure 5.15, exhibiting amplitude growth out to the largest radius. Between

one and two core radii, there is a jump in the pressure gradient amplitude; this local bulge 

departed from an otherwise simple curve, then reverted to the monotonically increasing

amplitude profile. The local maxima were dependent on the imposed frequency, and the 

maxima increased with increasing frequency. An explanation of why the overall pressure 

gradient amplitude curve appears to trend toward a monotonically increasing function will

follow in section 6.2 .
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Figure 5.15 Variation of the amplitude of the radial pressure perturbation gradient with radius at various
frequencies (« = 1/2 Re = 8,000)

The distribution of the □ Reynolds stresses at various frequencies is shown

in Figure 5.16, where the stress distributions follow the same trends as the individual 

velocity components in figures 5.13 and 5.14.
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Figure 5.16 The Reynolds stresses variation with radius at various frequencies (n = 1/2 Re = 8,000)

5.6 Effect of perturbation frequency on maximum growth and critical radius of 

perturbations

Figures 5.17 and 5.18 represent the amplitude and location of maximum growth of

velocity components, radial pressure gradient perturbation, and □ ( v /v / )  Reynolds stress

profiles just discussed. In Figure 5.17, the azimuthal velocity component and the Reynolds 

stress component increased with frequency, while the maximum growth amplitude o f the 

radial velocity component and pressure gradient remained almost unchanged over the range 

of imposed frequencies, up to a dimensionless frequency of 0.4. At frequencies above 0.4, 

the perturbed azimuthal velocity amplitude did not diminish, while the perturbations in 

radial velocity, radial gradient o f pressure, and Reynolds stresses decayed rapidly. This 

decreasing trend indicated that the perturbations at frequencies above 0.4 were over-
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damped and showed no growth for this type of flow, confirming to the Schlichting (1968) 

theory. An exception of this rule appeared to be the azimuthal velocity amplitude.
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Figure 5.17 The maximum perturbation amplitudes at different frequencies (n = 1/2 Re = 8,000)

Figure 5.18 shows the influence o f frequency on the critical radius o f the various 

perturbations. The critical radii were in the non-equilibrium pressure zone, but the critical 

radius for the azimuthal velocity component migrated toward the outer portion of the non­

equilibrium pressure zone for frequencies o f 0.4 and above. The migration of the 

maximum azimuthal velocity amplitude to the outer non-equilibrium region is not 

necessarily from the physics of the flow. Rather, the instability of the state variable model,
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due to the unstable modes associated with the azimuthal velocity component, could be the 

source. More discussion of this point follows in the stability analysis section 6.2.

d p ' / d r  ••••*••• - r r d

Figure 5.18 The critical radius o f  perturbation amplitudes at different frequencies (n = 1/2 Re = 8,000)

It was observed that perturbation frequencies between 0.01 and 0.4 had the

strongest influence on the azimuthal perturbation velocity component and the □(v/v^')

Reynolds stress. Increasing perturbation frequencies shifted the critical radii of 

perturbations outward from the core region.
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5.7 Effect of imposing different perturbation modes on velocity, pressure and 

Reynolds stresses

Five azimuthal mode numbers were investigated in this study, the L+ lL modes, 

which represented helical perturbations waves in the flow; the half mode numbers of 

L± l/2Land the symmetric waves resulting from a zero mode number. The mode numbers 

altered the amplitude profiles, the maximum growth amplitudes and critical radii. In Figure 

5.19, the radial velocity amplitude profiles are shown for the different mode numbers. In 

general, the positive mode number waves had larger amplitudes than the negative modes. 

The positive mode numbers, Vi, and 1, in addition to the symmetric mode, exhibit profiles 

with singular maxima. The negative mode number profiles had different shapes compared 

to the positive mode number profiles; there is an inflection point for the -1 mode number, 

then the profile grew in the outer non-equilibrium pressure zone with an amplitude 

maximum followed by a decrease in perturbation amplitudes out to five core radii. Unlike 

other mode numbers, the - Vi and -1 had two amplitude peaks before decaying with 

increasing radius.
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Figure 5.19 The radial velocity amplitude variation with radius at different mode numbers (Re = 8,000 and ojr
=  0 .01)

The amplitude variation of the azimuthal velocity for the selected mode numbers 

are displayed in Figure 5.20. Here, the perturbations for the negative mode numbers had 

higher amplitudes than the positive ones, in contrast with the radial velocity amplitudes. 

There is one inflection point for each of the negative mode number profiles (-1 and -1/2). 

The inflection in the azimuthal velocity profile for the -1 mode number indicated the shift 

in the amplitude to the outer non-equilibrium pressure zone while the other inflection point 

for the -14 mode number exhibited slower velocity amplitude decay rates in the outer non­

equilibrium pressure zone.
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Figure 5.20 The azimuthal velocity profile at different mode numbers (Re = 8,000 and ojr = 0.01)

The influence of mode number on the radial pressure gradient variation is shown in 

Figure 5.21. Interestingly, the pressure gradient fell below a value of 0.1 as the outer 

region was approached for mode numbers -A  , 0, and 1/2. Figure 5.21 showed also that 

the values of ± 1 could be near a singularity in the numerical formulation, causing the state 

variable solution to grow unboundedly and it could also be sensitive to the numerical 

solution technique for those values. Away from the ± 1 mode numbers, the pressure 

gradient profile exhibited maximum growth inside the non-equilibrium pressure zone 

followed by rapid decay toward the outer radius. The pressure gradient didn’t approach
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zero, after five core radii and that could be the surrounding environment effect or a residual 

solution from the state variable model.
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- - - -  n = -0.5 
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Figure 5.21 The radial pressure gradient at different mode numbers (Re = 8,000 and ojr = 0.01)

The i Reynolds stresses profiles at different mode numbers is shown in

Figure 5.22. The profiles of mode numbers 0, 'A, and 1, had maximum Reynolds stresses at 

radial locations between one and two core radii. The profile at mode number o f -  XA had 

two peaks and at -1 had one peak outside the non-equilibrium pressure zone.
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Figure 5.22 The Reynolds stresses variation with radius at different azimuthal modes (Re = 8,000 and coR =
0 .01 )

Hence, the azimuthal mode number of the perturbation changed the shape of the 

profiles, and three distinct profiles were identified: ( 1) a simple profile with one maximum 

within in the non-equilibrium pressure zone and this was the most common profile;(2) a 

double-peaked profile associated with the -1/2 mode of the radial velocity amplitude and 

the Reynolds stress component; and (3) a monotonic growth trend for the radial pressure 

gradient perturbations at ± 1 mode numbers.

5.8 Effect of changing azimuthal number on maximum growth and critical radius of 

perturbations

The maximum amplitudes and critical radii of the velocity components, radial 

pressure and Reynolds stress are tabulated for different mode numbers in Table 5.1. The
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negative mode numbers in Table 5.1 had azimuthal velocity components and pressure 

gradient amplitudes that were higher than the corresponding positive modes, while the 

verse happened for the radial velocity component. The Reynolds stresses didn’t follow a 

specific trend, depending on the radial and azimuthal velocity components, the Reynolds 

stresses of the negative modes could be higher or lower than the corresponding positive 

modes. The symmetric (0) mode had maximum amplitudes in the range between the 

higher and lower values o f both the negative and positive modes.

rt v / V d p ’/d r -*r0

-1 0.49 (3.2) 0.90 (3) 1.77 too) 0.27 (3.1)

-1/2 0.80(1.3) 0.89(1.4) 1.39(1.2) 0.67(1.37)

0 0.89(1.7) 0.51 (1.6) 0.68(1.3) 0.42(1.7)

1/2 0.89(1.7) 0.43(1 .5) 0.66(1.3) 0.36(1.6)

1 0.90 (1.5) 0.53 (1.5) 1.76 (oo) 0.47(1.5)

Table 5.1 Maximum perturbation amplitudes at different azimuthal modes (associated critical radius between
brackets

The velocity components and the main Reynolds stresses summarized in Table 5.1 

had the same critical radii (noted in brackets) within ± 0.1 accuracy for each mode number. 

When the pressure gradient had a critical radius, the radii were closer to the core radius. 

zzThe perturbation pressure gradient did not converge for mode numbers of ± 1.
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5.9 Summary

The evolution of perturbations in unsteady two-dimensional vortical flow was 

studied employing the state variable model parameters, varying Np, Re, coR and n. The 

maximum growth amplitude and location o f the associated critical radius were identified 

for each of the velocity components, the radial pressure gradient and the main Reynolds 

stress.

In concluding this chapter, the non-equilibrium swirl parameter, Np, has a 

significant influence on the instability of vertical flow. Perturbation amplitudes mostly 

decreased with increasing Np, highlighting the importance of relative humidity in 

considering the unsteady behavior o f axial. The maximum growth of different 

perturbations as functions of Reynolds number resulted in linear increases in maximum 

radial pressure amplitude gradient, and movement of critical radii towards the core radius. 

Also, there is a bulge in the pressure gradient amplitude inside non equilibrium pressure 

zone. The imposed frequency increases local perturbation maxima at a rate lower than 

Reynolds number effect. Frequencies above 0.4 were suppressed in the flow. The 

frequency shifted the critical radius outwards very slightly from the core region. Finally, 

changing the azimuthal orientation of the perturbations in the flow results three different 

types o f profiles: a common single maximum, a double maximum for ± 14 modes, and a 

growing profile for the helical modes ± 1.
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CHAPTER 6 

STABILITY ANALYSIS OF THE STATE VARIABLE MODEL

The state variable model, like other numerical approaches for modeling dynamical 

systems, can be stable within certain limits, based on the parameters used to characterize 

this vortical flow. A stability analysis o f the model based both on the flow physics and the 

numerics will be discussed in this chapter. At least five factors must be considered in order 

to assess the stability of the state variable model approach.

Firstly, the present state-variable model simulations have employed a fourth-order 

Runge-Kutta numerical integration method (RK4), which is the most stable o f the 

integrators. Hence, using RK4 minimizes the possibility o f instabilities resulting from 

numerical integration, but the cost of the numerical computations becomes higher since 

RK4 uses an intermediate iteration step to control the error coming from the lower order 

derivative terms in the integration.

Secondly, the highest differential order o f the model occurs in the equations 

governing pressure, since the pressure equations were developed employing the divergence 

of the conservation of linear momentum, thus making derivatives in those equations higher 

order than the velocity equations. Solving for the pressure function requires two 

integration steps, each one with distinct accuracy limitations. In the absence of the non­

equilibrium terms, pressure can be isolated from the governing velocity equations; then 

utilizing a separate state variable scheme to solve for the pressure and enforce constant 

density. That is not possible for the non-equilibrium pressure equations due to the 

existence of the coupled velocity-pressure gradient terms.
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Thirdly, the pressure function computed using the state variable model exhibited 

monotonically growing profiles in the large-radius, potential vortex region for some o f the 

cases. Ash and Khorrami (1995) addressed such phenomenon and found a singularity in 

the unsteady vortex solution because of the unstable modes embedded in the system of 

equations at the infinite radius limit. The unstable modes can be removed from the solution 

at the infinite radius limit and an asymptotically stable function results. Then the far field 

solution can be matched with the inner solution at some radius. This phenomenon was 

encountered when solving the state variable model for the perturbation pressure outside the 

non-equilibrium pressure zone, unstable modes of the pressure caused growing profiles. At 

that region the non-equilibrium pressure forces are small and the associated terms in the 

governing set of equations are not balanced.

Fourthly, the contracted velocity-pressure terms in the governing equations cannot 

be totally neglected in the potential vortex region since non-equilibrium pressure gradients 

are lower order and might not balance the sound production, represented by the model:

1 D p '
r/P -

dvt dP (  1 "1 d r
dxt dxk

1
'h - V

v -> J 5x; [ p  Dt

The physics of the flow in that region could be reconsidered by separating the 

acoustical and non-acoustical features of the flow, writing a closed form state variable for 

each of the acoustical and non-acoustical systems and then solving the two state variable 

models for the velocity and pressure fields. Alternatively, for spatial locations beyond five 

core radii, departures from a potential vortex velocity profile are negligibly small, possibly 

justifying the complete neglect of non-equilibrium contributions.

Finally, the non-linear characteristics o f the original non-equilibrium pressure 

equations were removed by assuming that the governing equations could be linearized in
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the vicinity of the steady-state solution, i.e. linear stability. The elimination of those terms 

promotes the stability o f the state variable model. At the same time, excluding the 

nonlinear terms washes out part o f the physical behavior of the perturbations in the flow. A 

good future research topic would be to consider the structure of the vortex flow in terms of 

streaks, rolls, and non-linear secondary structures, if they are present in the flow, and 

examine how a bifurcation cycle might be described.

6.1 Linear systems stability

The stability of linear systems when disturbed from equilibrium, due to inherent 

internal or external perturbation sources, can yield conclusions about the behavior o f the 

system without the need to actually solve the system of governing equations. For this 

vortex system, the time variable is frozen and the state variable model has been advanced in 

the radial coordinate direction. Stability has been analyzed at each radial step until the 

assumed boundaries o f the flow are reached. It was assumed that detectable vortex flow 

contributions were not present beyond 15 core radii. At that location the non-equilibrium 

velocity profile and the potential vortex velocity profile differ by less than 0.5%.

According to stability theory, the system can exhibit one o f three possible 

behaviors: stable, asymptotically stable, or unstable. The stable system starts at the 

equilibrium point and remains within acceptable tolerances o f the equilibrium point, as the 

integration radius is advanced; the asymptotically stable system departs initially from the 

equilibrium point but approaches stability at infinite time, and the unstable system never 

returns to equilibrium once it is disturbed.
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There are two types of linear systems: autonomous and non-autonomous. While 

the coefficients of an autonomous system are not explicitly dependent on the independent 

integration variable (the radius), the non-autonomous system coefficients are explicitly 

dependent on radius. From these definitions, the base vortical flow is a non-autonomous 

system with coefficient matrix [A] defined as a function o f radius.

6.2 Eigenvalues stability

Mircea Ivanescu (2001) has described an eigenvalue stability test for linear systems 

based on the position of the eigenvalues of matrix [A] in the complex domain. Linear 

systems are considered to be stable if all the eigenvalues are to the left o f the imaginary 

axis, i.e. the real parts o f the eigenvalues are negative. Otherwise, the systems are unstable. 

If the eigenvalues fall on the horizontal axis (real axis) then the system is asymptotically 

stable.

6.2.1 Eigenvalue stability results

An eigenvalue stability analysis o f the present state variable model was applied to 

the state equations for different values o f the state variable control parameters (Re, Np, cor, 

and n). The eigenvalues were plotted in the complex domain to determine the stability of 

the system for each parametric case.

The system behaved in different ways as the four vortex parameters were varied. 

In this section, different levels o f the state parameters were chosen based on the results 

from Chapter 5, and the influence of each parameter on stability was studied separately. At
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the end of the section the most important trends have been highlighted. Figures 6.1 through 

6.12 permit a stability assessment utilizing the eigenvalue criterion.

6.2.1.1 Reynolds number cases

Reynolds numbers of 8000, 10000, and 12000 have been investigated. For 

convenience of graph layouts, the eigenvalues were plotted at intervals o f one core radius 

moving outward from the center o f the vortex, out to fifteen core radii. Finer radial steps 

were employed to demonstrate that no fine-scale eigenvalue fluctuations could be detected.

Figure 6.1 shows how the eigenvalues vary with radial location for the radial 

perturbation velocity amplitude at different Re. The plot shows that the real parts o f the 

eigenvalues at each radial location had the same values for all three Re. At each Re, these 

positive real parts decreased moving outward from the center, indicating decreased 

damping of perturbations in the flow, hence the tendency to become unstable. The 

imaginary part of the eigenvalues increased with increasing Reynolds number at the 

prescribed locations, increasing the possibility of higher frequency perturbations.
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Figure 6.1 Representation o f  radial velocity eigenvalues in the complex domain at different Reynolds
numbers

The azimuthal velocity eigenmode migration, shown in Figure 6.2, has stable 

modes within three radii of the core since the non-equilibrium and viscous forces are in 

balance. The stable eigenvalues have migrated toward the complex axis for increasing r, 

resulting in less damping at lower frequencies. Beyond three radii, unstable eigenmodes 

with positive real-parts are observed since the non-equilibrium forces are weak and the 

region is assumed to be a potential flow. The magnified view of those modes in Figure 6.2 

shows migration of the eigenmodes towards the horizontal axis and being very close to that 

axis demonstrates that they are asymptotically stable.
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Figure 6.2 Representation o f azimuthal velocity eigenvalues in the complex domain at different Re

Figure 6.3 indicates that the radial pressure gradient amplitudes have unstable 

modes at the first three radial locations. The pressure relaxation and viscous stresses are in 

balance within this region, but imposing perturbations in the flow will cause unstable 

pressure modes and bulges as seen in Figures 5.1, 5.9, and 5.15, in order to restore the 

stability of the vortex flow. For the outer region ( rc >3) ,  the pressure eigenmodes had

negative real-parts, hence they are stable. The Reynolds number hardly affects the 

eigenvalues for the azimuthal velocity amplitude (Figure 6.2) and the radial pressure 

gradient amplitude (Figure 6.3).
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Figure 6.3 Representation of radial pressure gradient eigenvalues in the complex domain at
different Reynolds numbers

6 .2.1.2 Swirl parameter cases

Figure 6.4 through 6.6 represents the eigenmodes of the perturbations at four values 

of non-equilibrium swirl parameter (1, 2.5, 5, 10)xl0'4 selected based on the experimental 

range of the swirl parameter 10 4 < Np < \0  3 (see section 5.1). Figure 6.4 shows the 

eigenmodes of the radial velocity amplitude for the four values of Np. The eigenvalues at 

each radial location have the same real-parts, while their imaginary parts change only by a 

small amount. Hence, the expected perturbation outputs were expected to be nominally at 

the same frequencies. The swirl parameter hardly influenced the eigenmodes for the 

experimentally verified range.
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Figure 6.4 Representation o f radial velocity eigenvalues in the complex domain fort different non-equilibrium
swirl parameter Np

The number o f stable modes in the azimuthal velocity amplitude in Figure 6.5 

increased as Np increased, indicating stable behavior over a wider radial range. This 

indicates that the non-equilibrium pressure envelope becomes wider as Np increases. The 

width of the non-equilibrium envelope ranges between three and five core radii from the 

vortex centerline. Conversely, the number of stable modes of radial pressure gradient 

decreased as Np increased (Figure 6.6).



100

In creasin g

r /r  — 1

- 1.0 -0. - 0.6 -0.4
Real

- 0.2 0.2 0.4

X Np = le -4  O  Np = 2.5e-4  □  Np = 5e-4 A  Np = iOe-4

0.040

0.030

q . . . .  Increasing0.020 4

0.010

0.000
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Figure 6.6 also shows that for higher Np, more unstable modes of radial pressure 

gradient amplitudes are created in the inner region of the flow so as to stabilize the velocity 

profiles. All the eigenmodes are stable for Np = lxlO"4 indicating the stability o f the flow. 

As Np increases, unstable modes are revealed within the inner region of the vortex flow, 

and at Np = 1 x 10'3 the unstable modes span most o f the flow region.



101

■0.9-

■0.7-

0 .6 -
>>

•0.5-
In creasin g  i 0.4-

x o l .....
 ■ > & & ■

-0.4
Real

- 0.6 - 0.2 0.0 0.4

X Np = Ie-4  O Np = 2.5e-4  □  Np = 5e-4 A  Np = 10e-4

0 .0 7 -t -
Increasing

r /r  =  1Increasing

0 .01 -

- 0 .2- - 0.1 -0.01-0.0- ■0.2

Figure 6 .6  Representation o f radial pressure gradient eigenvalues in the complex domain at different non­
equilibrium swirl param eter Np

6.2.1.3 Perturbation frequency cases

State variable stability was investigated at five non-dimensional perturbation frequencies 

(0.1, 0.3, 0.5, 0.7, and 0.9). The eigenvalues characterizing the radial velocity are shown in 

Figure 6.7, where the real parts o f these eigenvalues were globally the same, while the 

imaginary parts increased with frequency until a dimensionless frequency of 0.7 was 

reached, remaining constant thereafter.
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The azimuthal eigenmodes for the selected dimensionless frequencies are displayed 

in Figure 6.8. The azimuthal velocity had the same eigenmodes for all o f the dimensionless 

frequencies. There are three stable modes in the inner region o f the flow ( rc < 3 ) due to the

non-equilibrium pressure envelope suppression o f the instabilities, thereby causing the 

velocity profiles to be stable. Moving radially outward, the non-equilibrium pressure 

gradient forces diminish and unstable numerical modes are exposed because o f the very 

small values of the determinant o f matrix [A].
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Figure 6.9 shows that the pressure gradient amplitude has three unstable modes 

located in the inner region between one and three core radii, jumping to stable modes for 

larger r. The eigenmodes were not affected by the frequency. The unstable modes resulted 

in the local peaks in the pressure gradient amplitude profiles plotted in Figures 5.1, 5.9, and 

5.15, in order to restore the stability of the vortex flow. The induced pressure gradient due 

to perturbations in the flow stabilized the velocity profile inside the non-equilibrium
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pressure zone. Outside the non-equilibrium pressure zone, stable pressure gradient 

eigenmodes are dominant ,but their real parts decreased moving outward, indicating 

decreased damping in that region which produced the slowly-growing pressure amplitude 

profiles shown in Figures 5.1, 5.9, and 5.15.
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Figure 6.9 Representation of radial pressure gradient eigenvalues in the complex domain at
different coR

6 .2.1.4 Azimuthal mode cases

Five azimuthal mode numbers (-1, - 'A, 0, +’A, and +1) were investigated. The 

eigenvalues for the radial velocity are displayed in Figure 6.10, exhibiting the same real 

parts at each radial location. The imaginary parts varied depending on the mode number; 

the highest frequencies were found for the ± 1 modes, the lowest occurred for the
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symmetric case n = 0, and the half modes were between the integer modes and the 

symmetry modes. Also, the positive azimuthal orientation of the perturbations in the flow 

resulted in higher frequencies than for the negative mode numbers.
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Figure 6.10 Representation of radial velocity eigenvalues in the complex domain at different mode
numbers

Figure 6.11 represents the eigenvalues o f the azimuthal velocity component at 

different mode numbers. The ± 1 modes were unstable throughout the whole flow field; 

those are helical modes causing instability in the vortical flow. The symmetrical modes ( n 

= 0) had asymptotically stable modes with the least damped modes in the outer flow region. 

The 1/2 modes have stable eigenmodes in the inner region o f the vortex, due to the non­

equilibrium pressure gradient forces suppressing the instabilities. The unstable modes
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appear outside the non-equilibrium region ( rc > 3), and had relatively small positive real

parts, exhibiting virtually no growth (Figure 5.20). The unstable modes become 

asymptotically stable as the outer potential flow region is approached.
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Figure 6.11 Representation of azimuthal velocity eigenvalues in the complex domain at different
mode numbers
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Figure 6.12 represents the radial pressure gradient amplitude eigenvalues for the 

different mode numbers. Unlike the azimuthal eigenvalues, the ± 1 modes were stable 

throughout the flow field, and the pressure profiles have no local bulges inside the non­

equilibrium zone (Figure 5.15), suggesting that the unstable helical mode structures might 

be different from the structures characterizing the other modes, and evolution of those 

helical modes in the flow require further study employing different time and spatial scales. 

The symmetrical case, n = 0, has asymptotically stable modes with the least-damped modes 

in the outer flow region. The eigenmodes for n = ± '/> were unstable in the inner core 

region, balancing the perturbation stresses in that region. Stable eigenmodes were observed 

in the outer region, with asymptotic stability at n = —lA.
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Figure 6 .12 Representation o f radial pressure gradient eigenvalues in the complex domain at different mode
numbers



In conclusion, instabilities created by the imposed perturbations in the flow region 

for rc < 5 , appear to interact with the non-equilibrium pressure gradient forces, resulting in

significant Reynolds stress components in the flow (Figure 5.4), which could be a new type 

of turbulent structure. The eigenvalue stability analysis predicted unstable eigenmodes 

associated with the pressure, within the non-equilibrium pressure zone, suppressing the 

perturbations and keeping the velocity profiles stable. Further investigation of non­

equilibrium pressure-turbulent stress interactions at higher Re is strongly recommended.

6.3 Equilibrium points

An important linear system stability parameter is the equilibrium point, defined as 

the solution to state equations when the right hand side o f its general form is zero. 

Recalling the general form of the state equations:

^  =  A / C B «  =  / J , M , r .  (6.1)
dr

where % is the state variable vector, [A] is the Jacobian matrix, [B] =/, and u is the 

initialization input for the system. Setting the left hand side o f this equation equal to zero,

where X * is the equilibrium state variable vector and u* is a constant initial input.

-y *
The equilibrium points *  remain unchanged as radius is advanced for stable systems. 

The vortical flow system can have one-, multiple-, or no-equilibrium points.
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6.4 Lyapunov stability

According to Lyapunov stability theory (Vidyasagar, 2002), the stability of linear 

systems around their equilibrium states can be assessed directly from the matrix of 

coefficients, [A], Based on its properties, the system could be stable, asymptotically stable, 

or unstable. The linear system is stable around its equilibrium points if the following 

integration is bounded,

r

JfA r ~\jr < p
ra

where p is some constant and |~ "| is a suitable matrix measure.

The equilibrium state becomes asymptotically stable if the integration,

r

J|"A .r  "]• dr -> x. as / —> x
rQ

and the equilibrium state is unstable if the integration is unbounded, i.e.

r
L a ;  r i \ -d r  —>oo as f —> oo
rQ

The value of the constant, p, depends on the system domain o f influence. For this vortical 

flow an integration limit o f 15 core radii was chosen, since detectable traces o f the non­

equilibrium velocity contributions cease to exist beyond this limit.

6.4.1 Matrix measures

While the norms of matrices must be non-negative, the matrix measures can have 

negative as well as positive values. Table 6.1 (Vidyasagar, 2002) shows examples of three 

main types o f vector norms and the corresponding matrix norms.
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Norm Vector (x) norm Matrix (A) norm Matrix (A) measure
1 Norm oo llxll = max, Ixl11 Hoc * 1 * I

n

II All = m a x V  LII H=c ■ jL—i\ IJ1
M

[a !  -  max/
(  » ^

°n - Z k |
V J * 1 /

2 Norm 1
imi, = £ w/=!

n

IN . =maxS K Ij 1=1
[" A"], = max

>
ajj Z K i

3 Norm 2 ||A|2 = vMmax A  X AL_ rAi2= ^ ^ DA:

* X is the eigenvalue

Table 6.1 Vector and matrix norms

The relation between the matrix norm and the matrix measure is,

n||A|<rAl<|A|| (6.2)

The upper and lower values o f the real-parts o f the eigenvalues can be estimated using 

matrix measures rather than norms, since eigenvalues have both negative and positive

signs. The following property of matrix measures can be used for such estimation

(Vidyasagar, 2002),

T n A " |< R e ,< r A l  (6.3)

r

6.4.2 The integration ^\A:j?i\-dr
r0

For the Lyapunov stability assesment of the present vortex state, the second matrix 

measure (Table 6.1) was computed at each radial step. The resulting matrix measure was a 

function of radius, and was integrated numerically out to 15 core radii using an RK4 solver.
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6.4.3 Lyapunov stability results

The Lyapunov stability criterion was applied for different values o f the flow 

parameters {Re, Np, cor, n). The second matrix measure [ a ~|2 (Table 6.1) was used in the

r

integration of the Lyapunov function J fAJ* !j| • d r . The second matrix measure was
ra

evaluated at integer radius steps, starting at rc = 0.01 (because of the potential singularity of 

the flow at rc = 0), out to rc = 15. Random intermediate points (between the incremental 

radius steps) were also evaluated to ensure that the functional behavior was continuous. 

The derivative o f the second measure was always negative, over the flow range studied. 

The second matrix measure at “infinite radius” (15 core radii), approached a constant value 

for each parameterized flow case, and that value was chosen as a zero reference, in order 

to interpret the matrix measure values in the inner region.
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Figure 6.13 the second measure of matrix [A] variation with Re
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Figure 6.13 shows the variation of the second measure of matrix [A] with Reynolds 

numbers of 8000, 10000, and 12000. The matrix measure decreases, moving outward 

radially, and approaches a constant value asymptotically, beyond approximately six core 

radii. The stability measure increased with increasing Reynolds number indicating that the 

flow moved toward instability.
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Figure 6.14 the second measure of matrix [A] variation with Np

Figure 6.14 shows that the swirl parameter, Np, hardly affects the stability of the flow over 

the range lxl0'4<Np<lxl03. The results shown in this figure were generated using the same 

Reynolds number, and with the stability measure been unchanged through Np; suggesting that
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varying Np at the same Re would not affect the stability of the flow, only the width of the non­

equilibrium pressure region will be affected as the eigenvalue criterion showed (Section 6.2.1.2).
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Figure 6.15 the second measure of matrix [A] variation with frequency

Figure 6.15 shows the variation of the stability measure with the frequency of the imposed 

perturbations. Increasing the frequency resulted in higher matrix measures for the flow. The higher 

frequencies therefore cause more instability in the flow.
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Figure 6.16 the second measure of matrix [A] at different mode numbers

Figure 6.16 shows the stability measure for the different mode numbers. The 

helical modes ( ± 1), had higher stability measures than the half modes ± Vi. The physical 

reason for this can also be seen in the results Table 5.1, where the maximum growth of 

perturbations is always associated with the helical modes.

In Figure 6.17, a single stability measure is generated by integrating the second 

measure of coefficient matrix [A] along the radial coordinates and takes the limit at r = oo . 

The second measure as function of radius is estimated at a fine step of 0.01, and then the

r

integration J[~ALrU|-<7r is evaluated using a simple trapezoidal integration method. The
r„

levels of the state variable model parameters are: Re (8000, 10000, and 12,000); Np (1, 2.5, 

5, and 10) xlO-4; cor (0.1, 0.3, 0.5, and 0.7).
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r

Integration of the Lyapunov function J[A[rU|-c/r was always bounded. Positive
rC)

definite values for both the matrix measure and the integration resulted, with a negative 

derivative of the second measure, supporting the conclusion that the flow is stable. The 

value of both stability parameters varied significantly with the Reynolds number and the 

mode number, with only slight changes associated with perturbation frequency, and no 

change in the stability of the system when varying the swirl parameter up to Np -  lxlO '3. 

Also, there was no solid proof o f an existing asymptotically stable region since the 

integration was always bounded.
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6.5 Summary

The stability analysis produced the following trends:

• Since non-equilibrium pressure and viscous forces are in balance inside the region of 

significant relaxation effects (within five core radii from the centerline), any 

instabilities observed beyond five core radii are coming from the numerical scheme 

due to the very small determinant o f coefficient matrix [A], This region of effective 

non-equilibrium forces was determined by plotting the radial variation of the effective 

pressure gradient term in the steady azimuthal conservation of momentum equation

(3-5), showing that pressure relaxation effects were insignificant beyond five core radii 

and the flow could be assumed to be a potential flow only.

• The radial pressure amplitudes have unstable eigenmodes with significant positive 

real-parts in the region rc < 5. The relaxation and viscous stresses are in balance in

this region. The presence of perturbations in the flow causes the pressure profiles to 

increase locally in order to stabilize the flow via non-equilibrium pressure gradient 

forces.

• Increasing Np increases the width of the non-equilibrium pressure stability envelope, 

ranging between one and five core radii from the centerline,

• Radial perturbation velocity amplitudes were universally stable; all eigenvalues had 

negative real parts, and their imaginary parts (frequency) ranged between 50 and 250.

• The azimuthal perturbation velocity and radial perturbation pressure gradient 

amplitudes exhibited opposing instability behavior, i.e. if the azimuthal velocity 

amplitude was stable then the pressure gradient amplitude was not and vice versa, this 

is true inside the non-equilibrium pressure envelope,
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• The eigenvalues migrated toward the complex axis as the radial distance increased, 

corresponding with increased phase angles and hence the system was more likely to 

become unstable,

• The unstable eigenmodes migrated toward the complex axis as the radial distance 

increased, hence their positive real parts were decreased,

• Helical perturbation waves L« = ±1L were the most unstable azimuthal velocity 

perturbation modes; the coefficient matrix measures are also the highest.

• The symmetric mode Ui = OLis stable for all values of the control parameters, deriving 

from the continuity constraint of zero perturbations for that mode,

• The stability analysis suggests future work to investigate the interaction between the 

non-equilibrium pressure and turbulent stresses of the flow inside the non-equilibrium 

pressure envelope rc < 5 at higher Re.

• Lyapunov stability analysis showed that the state variable is stable for the range o f Re 

selected between 8,000 and 12,000, since the integration of the matrix measure was 

always bounded and the derivative o f the Lyapunov function was negative. The 

influence of Re and frequency of the perturbation is noticeable while Np doesn’t affect 

the stability of the system. The helical modes have stability measures that were 

higher than the one half modes, suggesting that the unsteady structures o f the helical 

modes are different from the half modes.
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusion

This study has utilized state-variable modeling methods in the scientific study of 

fluid dynamics, by utilizing small-amplitude velocity and pressure fluctuations and their 

respective derivatives as independent states in an unsteady two-dimensional vortical 

flow. The state-space representation not only made easier the numerical solution of the 

Navier-Stokes equations, but demonstrated the stability and consistency of the output 

fields for velocity and pressure when non-equilibrium pressure gradient forces were 

considered. Multiple inputs were enabled in the formulation and also a variety o f outputs 

were allowed including: turbulence intensity, maximum amplitudes o f velocity and 

pressure perturbations and critical radii marking the location of maximum growth of 

perturbations.

The axial vortex model of Ash, Zardadkhan and Zuckerwar (2011) was perturbed 

and the state variable simulations illuminated the following zones: ( 1) a laminar flow 

region encompassing the rotational axis, (2) an unsteady, fluctuating region near the 

radius of maximum steady-state azimuthal velocity that is considered here to be a non­

equilibrium pressure inner region and (3) an outer, potential-vortex-like region.

The state-variable model utilized two dimensionless parameters to characterize 

the baseline reference flow fields; one of the parameters is a new non-equilibrium swirl 

parameter, Np, which related the non-equilibrium relaxation time to the axial vortex 

rotational time and hence the time allowed for the non-equilibrium pressure to contribute
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to the evolution of the perturbations in the flow. The other parameter was the Reynolds 

number, Re, based on the maximum swirl velocity and core radius.

The interaction between the non-equilibrium pressure and the initiation of 

instabilities in the flow was investigated in this study. The non-equilibrium pressure 

forces, while acting on the fluid particles, affect the perturbation growth in the vortex 

non-equilibrium pressure zone. The relaxation process associated with non-equilibrium 

pressure returned the fluid particles to their equilibrium states; this process also affected 

the perturbations. It was found that the non-equilibrium pressure gradient forces could 

either suppress or enhance the fluctuations, depending on the value o f the non­

equilibrium swirl parameter, Np, acting as the controlling factor for this new 

phenomenon.

The maximum amplitudes of the radial pressure gradient were very large at the 

smallest values of the non-equilibrium swirl parameter, but that maximum amplitude 

“bulge” vanished by the time Np was equal to 0.3. As Np increased, the amplitude of the 

azimuthal velocity decreased but the critical radius moved farther inside the non­

equilibrium pressure zone towards the core of the vortex. It was noted that inclusion of the 

relaxation stresses didn’t influence the maximum growth of the radial perturbation velocity 

component but moved the (critical radius) location slightly closer to the core. As Np 

increased from 0.001 to 0.3, discernible perturbation Reynolds stresses became 

concentrated in a narrowing band located closer to the vortex core. There were general 

trends o f decreasing amplitudes as the swirl parameter was increased to higher levels, 

elevating the importance of relative humidity in considering the unsteady behavior of axial
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vortices since higher relative humidity corresponds with smaller values of the non­

equilibrium swirl parameter and relatively dry air results in increased values.

Increasing the characteristic vortex Reynolds number increased the perturbation 

growth. At lower Reynolds numbers, the perturbations were found to be damped and the 

flow was thus more stable. The perturbation amplitudes were suppressed by inertial forces 

in the vicinity o f the rotational axis, and the perturbation amplitude profiles have maxima 

within the non-equilibrium pressure region.

At Re = 8,000, the maximum azimuthal velocity amplitude was larger than any 

other Re, occupying the entire non-equilibrium pressure region, and at higher Reynolds 

numbers (Re of 10,000, 12,000, and 14,000) it exhibited smaller amplitude peaks that only 

occupied a narrow region. For the radial pressure gradient, the amplitude profile for 

different Reynolds numbers were “universal” in the inner rotational region and outer non­

equilibrium portion o f the flow, and it exhibited a bulge in the non-equilibrium pressure 

zone due to the mechanical pressure, and was likely needed to balance the propagation of 

sound in that region. The effect of Reynolds numbers above 8,000 on the radial perturbed 

velocity component was insignificant.

The critical radius of all perturbations in the flow, as the Re increased, remained 

inside the non-equilibrium pressure zone and became very close to the core radius at 

14,000, for the enhancement of instability with existing relaxation stresses

The imposed perturbation frequencies ranged between 0.01 and 1, and the specific 

values were found to affect the evolution of the velocity and pressure profiles. The 

azimuthal velocity and pressure gradient perturbations were found to increase steadily as 

the frequency increased, up to a frequency of 0.4; thereafter, no change was noticed in
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their amplitude growth. Concurrently, the radial velocity perturbations were unchanged 

as frequency increased up to 0.4, and then decreased linearly as the frequency was 

increased to 1. Higher damping factors for frequencies above 0.4 were found to be the 

reason for suppression of velocity and pressure perturbations in the range from 0.4 to 1, 

thus confirming with Schlichting (1968) theory o f instability. Perturbation frequencies 

between 0.01 and 0.4 had the strongest influence on the azimuthal perturbation velocity

component and the □(v/v^'} Reynolds stresses. Increasing perturbation frequencies

shifted the critical radii of perturbations outward from the core region.

The variation of the velocity and pressure perturbations was investigated with 

respect to the pitch prescribed by the non-zero azimuthal modes. Three types o f profiles 

were identified: (1) a simple profile with a maximum located in the non-equilibrium 

pressure zone, which was the most common perturbation profile, (2) a double-peaked 

profile observed for the radial perturbation velocity amplitude and the Reynolds stress 

component with a mode number of -1/2, and (3) a growing trend for the radial pressure 

gradient perturbations at ± 1 mode numbers. The -1/2 mode showed the maximum 

growth for most of the perturbations except the radial velocity amplitude. At the mode 

number o f - 1/2, the critical radii of perturbations were closer to the core region than for 

the other modes. The radial gradient o f the perturbation pressure was growing beyond 

the limit of 15 core radii due to the numerical scheme sensitivity.

The stability of the state variable model was discussed using two stability 

approaches: the eigenmodes and Lyapunov integration of a second matrix measure. The 

first approach of eigenmodes revealed unstable modes for the pressure function inside the 

non-equilibrium pressure zone (1 <rc. < 5). The non-equilibrium swirl parameter
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determined the width of the non-equilibrium pressure zone. The azimuthal velocity is 

kept stable through interaction of non-equilibrium forces with perturbation stresses while 

the radial velocity had globally stable modes. The expected frequencies o f perturbation 

evolution in the vortex flow varied significantly with Re and coR. Investigation of the 

effect of azimuthal orientation of perturbations in the flow showed the symmetrical 

waves to be universally stable, the ± 'A modes exhibited non-equilibrium pressure- 

perturbation stress interactions inside the effective zone, and the helical ± 1 modes 

yielded different perturbation structures that deserve future investigation.

Lyapunov stability functions o f the vortex flow have bounded integrations 

between the near-centerline and approximate infinite radius, along with negative 

derivatives o f the function, demonstrating that the state variable model and hence the 

flow was stable. The level of stability proved significant difference with Re and cor , but 

there was almost no change with Np. For the azimuthal orientation of the perturbations in 

the flow, the helical modes produced higher stability measures than the half-modes.

7.2 Recommendations

The successful implementation o f state variable models for slightly perturbed two 

dimensional vortex flows suggests future work to consider the perturbation evolution to a 

fully developed turbulent flow. A bifurcation cycle can be described in which different 

flow structures can be identified. In this study, short waves were recognized at the one half 

azimuthal modes which interacted with non-equilibrium pressure and caused bulges in the 

pressure gradient profile. Also, larger-scale helical waves caused higher stability measures 

of the flow, along with exponentially growing profiles outside the non-equilibrium pressure
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zone. Future hotwire anemometer experiments can help identify different aspects o f the 

state variable outputs through precise measurement o f the velocity perturbations 

(amplitudes and frequencies). The state variable parameters can also be adjusted using data 

from hotwires, the 2/Re relation for Np can be experimentally verified. This relation could 

also be a method of calculating the pressure relaxation coefficient experimentally,

The profiles showing the radial pressure gradient growing monotonically outside 

the non-equilibrium pressure zone indicate a possible source of sound generation that needs 

to either be corrected or validated. It is recommended from this point that sound 

propagation be studied and a model can be developed to predict this side effect o f the 

vortical flows using separate state variable models for the inner and outer flow regions.

It is suggested to extend the useful new state variable for other Markovian property 

flows. The selected flows should have regions of high pressure gradient so that non­

equilibrium pressure forces are significant. The non-equilibrium phenomenon has been 

studied for rotating flows and wakes behind spheres and cylinders (Ash and Zuckerwar, 

2009, 2011).

Finally, the non-linear scheme outlined in this study is a new field o f research, a 

step forward is recommended to numerically implement the developed model.
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APPENDIX A 

GOVERNING EQUATIONS DERIVATION IN CYLINDRICAL 

COORDINATES

The Navier-Stokes equations with pressure relaxation are written in cylindrical coordinates 

(r,6 ,z). The coordinate system is defined in Table 1.1 below.

Cartesian to Cylindrical Cylindrical to Cartesian

— r  — -Jx2 + y 2 x — r cos 9

f 2 =  d =  tan" 1 0 y  = r sin 6

fa = z z — z

Table 1.1 The cylindrical coordinate definition

A.l The covariant and contra-variant tangent vectors

In curvilinear coordinates, we can define tangent components associated with the Cartesian 

unit vectors as the covariant tangent vectors, given by:

dxi
S i = ^ ei’

(AT)

and the vector components normal to it as the contravariant tangent vectors,

i d(i
2 = 3 7 jej

(A-2)

It is worth noting that both the covariant and contravariant tangent vectors are associated 

with the curvilinear coordinates but they related to the Cartesian unit vectors which always 

possess the same direction.

For cylindrical coordinates:
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gi = i J [ ei =  co s  9  ei + s in  0 e2 ; k l  = 1 gi =
7

cos 0 ex 4- s i n  0 e2 ; g 1 =  1

g 2 = JTej = ~rsind ei +rcos6 e2; |g 2 | =  r  „ 2  ~ ^ 5 les2 r) v. JdXj
sin 9 _  c o s 0 _ _  i— i 

— —  ei + - 7 ~ e2: |g2| 
1
r

— ax; _  __ dfi I—*1
g 3 =  J f 3 e i  =  e 3 ; t e l  =  1 g 3 =  J p - e ,  =  g 3 =  1dxj

(A-3)

Using the covariant and contravariant equations above we can write the displacement for 

both the curvilinear and Cartesian coordinates with respect to each other as :

</£,. =  g 1 d x i  (A-4)

dx  =  g. d$i (A-5)

The unit vectors of the covariant tangent vectors are also unit vectors for the curvilinear 

coordinates. For the cylindrical coordinates these unit vectors are:

g    ̂ ^
er = rr^r = cos B e1 + sin 6  e2  

| g i l
g7 sin# —. , cos© —.

= ]=f = =  -  — ' +  —  *2 (A-6)

-  -  ^  _ s -  
■ e 3

IS:

A.2 The velocity vector

Using the displacement equations A-4 and A-5 above, we can similarly write the velocity 

vector in terms of the covariant and contravariant components as:

V = Vigl = V i g i = Uiei = vrer + vee0 + vzez (A-7)
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The covariant and contravariant velocity expressions:

_  — x /  sin 9 cos 0 _ \
v = vr(cos 9 ex + sin 9 e2 ) + vg I  —  ex H  — e2 1 + vze3

= v 1 (cos 9 + sin 9 e£) + v 2(—r sin 9 ej* + r  cos 9 e2) + v 3

The covariant and contravariant velocity components are given by:

vt = v . gt. 

v j — \  . gi

The covariant and contravariant velocity components in cylindrical coordinates are 

therefore,

(A -8 )

(A -9)

r / sin# _  cosG _ a _,
Vi = v . gt — Ivr(cos 9 ex + sin 9 e2 ) + v 0  y----  — ex H —  e2J + vze3

+ sin 9 e2)

. (cos 9 ex

=  Vr-

p 1 =  V . g 1

= Vr

— _  /  sin# _  cos 6  a
vr(cos 9 ex + sin 9 e2 ) + vgy -----—  ex H —  e2J + vze3

+ sin 9 ej)

/ sin# _  cos0 _ a  _ j  
v 2 — vr (cos 9 ex + sin 9 e2 ) + ve ^---- —  ex H  — e2J +  vze3 . (—r  sin 9 ex

+ r  cos 9 ejT)

= r v e

The resulting velocity components in cylindrical coordinates are summarized in Table 1.2 

below.

. (cos 9 ex

Direction Covariant velocity components Contravariant velocity components

r Vr Vr

6 r v e Ve/ r

z Vz v .

Table 1-2 Velocity covariant and Contravariant components
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A.3 The covariant and contravariant metric tensors

The dot products of the covariant or contravariant tangent vectors form the corresponding 

metric tensor.

1 aJgit = gt-gy >g J = g g (A-10)

For cylindrical coordinates if we estimate the metric tensors,

go =

1 0  0
0 r 2 0
0 0 1
1 0 0

1
0 - ^ 0r z
0 0 1

Each one of the metric tensors is the inverse of the other.

A.4 The gradients of the covariant and contravariant tangent vectors -the  

Christopher symbols

The gradient of the covariant or the contravariant vectors in the curvilinear domains 

involves mixing derivatives with respect to curvilinear and Cartesian coordinates which is 

not desirable; instead the so-called Christoffel symbols are utilized to avoid this 

inconsistency. Using the Christoffel symbol, the gradient of the covariant tangent vector is:

— d f dxm — \  _  d 2x m S d fn  \  _  d2x m d f n _  p n  /  * 1 n
d( j  d^j  \  d t i  m )  d t j d f t  \ d x m * n )  d t j d t i  d x m g n  V V I

Where the Christoffel symbol of the second kind is then defined by:

  d2xm dfn / a i
-  dfidfjdXn ( A ' U )

Proceeding to the determination o f the derivative o f the contravariant tangent vector, 

utilizing these Christoffel symbols :
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d , . s d g j  . dg .  d S jk
^ r ( g J -gk) = gk.-T7- + gJ.—  =  0 =  ——  d$i kJ K dti 3 ^  d$i

Then

d g J . dg.
a  =  —a )   £  =  —qJ r ” p =  —S  FU- =  — P

k dt; d £  n }
n    rJ

ki

Then the contravariant tangent vector gradient is

ffr  =  — r ii • (A-13)

Alternatively we can define the covariant tangent gradient as:

agi _  d fdxm = d2xm dxm k _  k
dfj dSj I dft •e™J dfjdfi  ■ dSk 8 lJkg  (A 14)

Here we have used the contravariant tangent vector to write the Cartesian unit vector, and 

the Christoffel symbol of the first kind is defined:

r  -  92x™ dx™ rA -is ' )
1 l>k ~  dtidSj affc  ̂ 13}

Christoffel symbols of the first and second kind are related as follows:

r?; = r £;mgmk (AT 6)

In order to develop the expressions needed in the cylindrical coordinate representation of 

the modified Navier-Stokes equations, it is necessary to exploit the following properties o f 

the Christoffel symbols, extracted from the derivatives of the covariant metric tensors with 

respect to generalized curvilinear coordinates:

= = gkW j  + =  gk-r ^ mgTn +  8<-r * 'n §n

— &km T'ijm T r kjn — Vijk +  Fkji

Similarly

d %ik . d g j k  d g i j  _  r  r
+  -  1 i j k  +  1 k j i  +  1 j i k  +  1 k i j  ~  1 i k j  ~  * j k i

-  ZTijk



Then using the relation between the Christoffel symbol types (Equation. A. 13) we can 

write:

A.5 The gradient operator

The gradient operator in curvilinear coordinates is defined as:

-  , d
V = oft

A.6 Divergence of the velocity vector

Using the definition of the gradient operator, the divergence o f the velocity vector can be 

written.

r*  =  T emk1 ij 1 i jm  &

(A-18)

In cylindrical coordinates, the only non-zero Christoffel symbols are

T i22 — r 2i 2 — r > r 22i — r a n d T ^ — r  — ^ 1 2 — ~

= Sij —  +  v j Tjl8ik

(A-19)

In cylindrical coordinates :



since this is the only non-zero Christoffel symbol.
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A. 7 The Laplacian operator

In the same manner the Laplacian operator in curvilinear coordinates can be written.

. .  d2p‘j --------+
8 d fM j V dti) Hj

But glkgfe =  g ‘. g kgfc =  g*

Then substituting back in the previous equation

v>=g« —  + ( g‘^ ) . ±  =g dftdfj [g d(, J dfj
d2 ( . kdg. de;fc\  d

d2 ( . dg dgjk\ d
= gUa | ^ ; + (g V  'd ^  + Sik~ d ^)-W j

I'2 = s y ^  + ( ^ «  + f ) ' i  <A ’21)

In the cylindrical coordinates, this relationship becomes :

* = ; £ ( r & ) + ; 3 &  + &  <A'22>

A.8 Conservation of mass

The conservation of mass equation in vector form is:

dp
^  + F.(pv) = 0 

In cylindrical coordinates (using equation 1.28):
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dp_ dpvr 
dt dr

1 dp v0 dpvx Vr _  q
r dO dx P r (A-23)

A.9 Conservation of linear momentum for an incompressible fluid

The conservation of linear momentum in vector form:

d(pv) / -* D -
——  +  (v.Vjpv =  - V P  +  rlp-j^VP +  pV v

To write this equation in curvilinear coordinates, taking term by term; the first term on each 

side is obvious, then the convective term is:

(v. V)v =  ( V g . . gfc g - )  v %  = (vJ g - )  v igi =  ( v i  g j -  +  gn (A-24)

In cylindrical coordinates the components in three directions are

d v 1 d v 1 d v 1 d v 2 d v 2 d v 2
+ p2T t-  +  y 3 + v 2v 2r£2 g  + v 1 —— + v 2 —— + v J —— + v 1v 2r122 16dfi af3 2v Sl V df i  d f 3 I*2

+  v
d v 3

+ v 2
, d v 3

■ + v
, d v 3

aiy ve aiy aiy v | \  / ai70 ve ai70 aiy, tyiy,\
"a ' aTT vx “3------------ J e r +  I vr “3 I 37T “1“ vx “3-----1---------- )dr  r  dd dx r J V dr  r  dd dx r  )

df3 

a tv v  2 d v e vr v e\
eg

(’
dvx v e dvx dvx\

+  vr “3 1------- 37T vx "3— )dr  r  dd d x )

Next

V2v =
dftdfj + U 7M i +

dg,J
dSiJ'dtj

d2(vn8 n)

V n g&n

=  gtj  *“(»”*,») +  (  jk f i  +  d^ n )
8  a w f j  + \ g  Jkl +  d^) -  a(j

Now

d 2( v ngn) a r( d v n:J = ^_Wdv1  x 1
dStdtj 3fylva&+ " / g"J

/  a2vn . ar;" avl \  /avn \ dg

d 2v n . d P 7) d v 1

~ 8n {d^dTj + v lW i + d ^ rp 1 +

w  i ( d v n \1 —11 > f”1 ' ■ I h 12' /”> | r ”?e
v a^ « j ^ g"

(A-25)
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d 2v n d v 1 d v m . 3/1?
 1- r ”  h r m--------- h v l — — +  v lr ™ r m
dhdSj  11 dZ} mj dfi dZj lJ mj Sn

And the second term in Equation. (A-25) is:

g Jkl i i  +
d g ll \  d ( v ng n)

dZi g ikt i  +
d g ij

dZi

d v n

^ 7 + Vlri j )g n

The final expression for the Laplacian

v 2\  = g li g  ( +  r " —  +  r m- — - +  v l ^  + 17*r mr m )  +  ( g Jkrj- + — )  ( —g  g n {dfidfj  ^  l> dfj *  m> d(i +  dfj  l> m>)  +  \ g  kl +  afi J { d t j +

In cylindrical coordinates, the components o f the viscous terms are

iiL
r  dr

■'-TV.
- , 1 o v  d-v, 2 dv,

r 2 d d 2 dx2 r 2 d d dr
1 d p Lrv.
r dr 1

J ., 1 d 2ve 
~ d ¥

, d vg .., 2 dvr
Ibd v  30

1 d  n
 Lirv U
r  dr r

1 8 2vr d 2
r dd2 a

A.10 The pressure relaxation expressions

s ( 9p) = [ s + ( ‘' v^ p

Convective time derivative o f  the gradient o f  pressure:

jv • VlVP  = v'g, ■ g g
j  v  k j

dP

^ k
= vJ dg

k*Sj j
g

Now:

)«„ (A-26)

(A-27)

(A-28)

k _ & P _  
d t jd tk
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g
d 2P

r /„g”
f  8 P ^

V ^4y
g Z v T k

PZ>
(A-29)

2 2
Also, r2'2 = I>, r21 = -  = r i2,are the only non-zero Christoffel symbols o f the second 

kind, in cylindrical coordinates.

Consequently,

[ y - V W P  =  g "

= g
d2P  

di^dr
/ r f , r aP x

yiV^*y
/  a P A

a£y.a0 v54 y a^az k ^ * y

Now:

a2p _ ,w f qp A □vyrf,
aa.ar "

y

= g‘
a2p r 

a a . a r L
v 2r 2

r 8 P^
yddj

□ v3 d2P n v2 (d P '
dr2 a66r 3zar r ySOj

e2p  v- a2p _ a2,p m Vn
V  r -  □  —  L V .  ---------- □ - ?

r a66r ‘ dzdr r
rdP^
,d&)

g
 ̂a p ^

aa.a# va ^ y
= g‘

d2P
dg 'de

2t~,1 
22vT. ap

ar
- v 'r , 2/ —

l2U o

a2p , 
a ^ a a

:v2r 2̂ ap
ar

- v ' r , 22
ap
a#

, a P - 2
V ---------- _  V

a2p ^  3 a2p „ 2fapV_ v'fap'
a^aa a a 2 dzdO

rv
dr )   r \ dQ,

vr a2p _ ve b 2p  _ v, a2p _ v„
r drdd r 2 dd 2 r dzdO r

r dP^ 
\ d r  j

v. (  dP
r 2 l a p

and
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g
d2P

dVdz
r dP ^

94,k y
= e. d2P

drdz
d 2P
dOdz

8 2P  
d z 2

= e.
d 2P ve V P d 2P

r drdz r d 6 dz z dz

Now the convective part of the pressure relaxation equation (A-26) is:

y-V57P =

(v. V)VP =
d v g d d

V r  1---------------- (- V r ------
dr  r  dd dx e r  "5— I" ee — t z  +  e x  T ~  dr r  d0 dx

=  V r dr
_ dP _ l d P   ̂ dP
e r  -----1" e 9 ~  +  e xdr r  dd dx

= vr
_ d 2P _ ( 1  d 2P
6r d r 2 + G 9 { r d r d d

1 dP 
V'dd

_ dP 
3r ~dr 

Ve_d_ 
r dd

+ ex

1 dP dP

dP 1 dP dP
&r  ̂ "t" eg "i" &x 3dr  r dd dx

d 2P

+  Vy
dx

dP _ 1 dP
e|-a7 + <!»

+  —
r

+ v r

d 2P dP
dr

drdx

_ l d 2P 
Vdd2'r dddr  + e° +  e e V-a«2 

. d 2P

 ̂ 1 dP _ 
er ~ —  +  e

d 2P
r r  dd x dddx

r dxdr  

(v.V)VP =  er

+  eg
d 2P \  _ d 2P 

d x 2d d d x ,
I +  e r

d 2P V g  d 2P 
V r  ~ —T  H---------— — . +  V.r d r 2 

+  eg

r  dddr  

d 2P v g d 2P

d 2P 
x dxdr

ve dP 
r 2 dd

■ +
Vy d 2P

r  drdd r 2 d d 2 r  dddx r 2 dd
V r  dP V g  dP

2* [p

r dr  

3 2P l

r dd
+ ex

dP
dx.

+

d 2 P , Vg d 2P  ,

r  dd dx  Vx d x 2r  d rdx
(A-30)

A .ll Conservation of mass and momentum for an incompressible fluid in cylindrical 

coordinates

Conservation o f  mass (continuity):

1 d  -  -  , 1 dvg _  dv.
 _ jT v  l C  _ -----------—  0  /  a . t  i  \
r  dr  r  5 9  dz  (A  3 1)
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Conservation o f radial momentum:

'  dv, _ dv va dv, _ vl  _ dv, N
ot dr

ve ___
r dd

v 8

r dz dr
]_d_ 
r dr

■-Tv, -

1 d 2vr _ d 2v, _  2 dva
r dG2 dz2 '2 dG

TJp d P  _  va d 2P
dr r dddr

- v.
d 2P
dzdr

SP_
dG

dP
dr

Conservation o f  azimuthal momentum:

dVg_
8t

dva y e v v a
dr r dd

dvy
dz dr

1 d . j
r dr

1 d2v„ _ d 2va _  2 dv.
“2 dO1 dz2

it} p d 2P   vg d 2P t
r drdO r 2 dG2

, v. 6 :P 
r dzdG

( dP\ vv f ^ Y n 1 dP
I dr J ' V  [dGJ ^ rdG

Conservation o f  axial momentum:

dv 'dv, _ dv, 
P\ — ~ u K  —± 1 dt r dr

VffdV;
r dG

U v
dz dr

rv_
r dr  ‘

1 d 2v, _  d v.

7}P

r 2 dG2 

d2P

□ -
dz2

dP
dz

r drdz
vg d P  _  d 2Pj _ £ . ------- ■ !Z v

dQdz dz1

(A .32)

(A .33)

(A.34)
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APPENDIX B 

PRESSURE POISSON’S EQUATION WITH PRESSURE RELXATION

The Poisson-like equation governing the pressure perturbations is new and has been 

employed for the first time in the present study. That derivation starts by taking the 

divergence of the conservation of momentum equation, after first recognizing from the 

continuity equation that

Employing the curvilinear coordinate methods described in Appendix A, equation (B.2) 

requires a term-by-term development:

( B l )

so that

v —
Dt

(B-2)

Divergence o f  the convective term V ■ [_y • VLv]

From (A.24),

Taking the gradient of this term,
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v 1̂ - Vv4=esl -i K ^ S K - —"J 84 J

= i  g
'34.

v T ,
dv'

v " r ,
8 v ‘

'd4j
,* °%L
’ '34,

dv‘
84s

v T '-_  —  
84j

5v'r l; 5r i . , -  8 1

84 nj~d4, ~ 84,84,
v T % r: —

J 84,-
r;g ’ -g„

8 v J

Ws
r ,  - < ¥ _

l"J 34,
3 v \r  - 3 K d 2 v s

34, J 84  84,84,
f v T '  < V '  

' d4j
ri1 Is

or,

v . p . w g = ^ ^ z n
.  d v 1 j d v - ' 'v  L vJ — c V  _f ; „ ^ r ;  /r,t--------jv-'v — -L_v/n d v 1

D [> u  L l  C G L n V  C U C ^ U CJ □□  L LE-' □□ □ t£V 
2 > 4 5

16."

(B-3)

In the two-dimensional cylindrical coordinate representation, the velocity derivatives are

dv1 _ 8vr  ̂ dv' _ dvr dv2 _  d^f Vg3  ̂an(j dv2 _ 1 dv0 _
84, ~ dr ’ 84  ~ ~d(j' 84l ~ d r { r )  l>4~~r~de

The only non-zero Christoffel symbols in cylindrical coordinates are = O  and

r  = -  = ri \-> L 7

Expanding the numbered terms in equations (B.3), 

term number (1) becomes,

d v s d v 2

W jW ,
f  d v '  ^  (  d v 2 "1 „  „  d v 2 d v '  (  d v .

\^4] j 

term number (2)

\34*j d 4 \ d 4 i  V d r

' 1  d v ^ Y -  2 — :

r dG ) 6 r \ r  J 80

n , .

8vJ _ , d v n \  /  ^ - 2 = - 2
* 22V --------  V  -------

, 34, 84S /

2 d v  _  2 d v  ,v —  _ v —  I _ r.
3 4 , 8 4

2~ 1 12r >^L = v2^ - |  = r 2 
34  ̂ 342

d v '  _  | d v  
v ------_ v -----

3 4 x 8 4 2

2 \

= J2v,
8  (  v,
d r [  r

vr dve _  v9 dvr 
r  d d  r  8 0
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term number (3),

d 2v 5 , <32v ‘ i d 2 v 2 ,  d 2 v [ _  ,  6 2 v 2
_ v

a^as, 3535 a&a*, a^ 2 ' 0 5 5 5

=  V.
d \  _ a 2 r  V

V r JSr2
jv„

560r
v$ d vr .- v9 8  v6

r drdO r 8 6

term number (4),

/ - dr»j 2 2 e r lI2
v ’ v   -  =  V V — —

5£ 5 ,̂

term number (5),

v; r , ; ^  = v % \ * L  = v.r = ^ ^ ^
/5 0 <F. 12 35,. 12 5 5  1 2 5 5 2 r  d r  r 2 8 9

Finally, term number (6) becomes,

vV r^r,: = v V r ^ r 2 = l) — •

Substituting these expressions into equation (B.3)

V-[ v-Vv ] 'dv  '
8r

5Vg V rl 2 8Vr 8  
d d ) '  dO dr

vo 1 ~ 8
1 2 v , —

* dr
- V g  f o r  :

r 2 d d  ” 2

1 d v g  ^  1 d v  d 2v  _  v e  3 2v  8 2 f  v e  ^  v e  d 2 v 0  _  v r 8 v „  1 3 vv _ »  r _ v _ x - v — f  L!- -̂ ^-Dv  n-f- f  L:-t —J- u - v —^
r 2 d d  r 2 6 d d  r d r 2 r  8 r d d  d d d r  I r  )  r 2 d d 2 r 2 d d  r  r dr

(B-4)

The terms in the second line of this equation are similar to the continuity equation, and can

be combined as follows:



The three terms in parentheses are equal to zero from the continuity equation in two 

dimensions, leaving,

z { Vr T  ̂Vr dv° r  Vr dVr
r 2 dO r dr I r J I r  J r 2 dO r dr

Substituting into equation (B.4),

V ■[ii'VvQ= dv,
dr

_Lf ̂ JL
r 2 { dO

v_r_dvg_r vr dvr
r 2 dO r dr

, dvr d (  v.
dO dr

-2- K 2 v a
dr

n ve for 
r 2 dO

~ 2  -4

(B-5)

The terms in square brackets in equation (B.5) are quadratic and hence can be neglected 

from the perturbation assumptions. As a consequence, the resulting perturbation 

expression for the gradient of the steady-state particle acceleration expression is,

V • [v • Vv] = 2 —Ld v ' 6

dO dr
V0 l v ' .p3~ 2 V„ v

\  r J dr
K> V 1 2 ^ ^ r 2 2 k ^ i £  (B.6)

r  d& r

Excluding the steady-state solution and quadratic terms,

V • [v-Vv]= 2
dr

d v '
50

-2Va
5 ( v
dr dr

v 'Z 2
VQ d v ' 4 V a
r 2 50  r 2 (B.7)

Further simplifying, that equation can be written,
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V.[v .Vv] = ̂ ^ L ^ ^ r ^
r dr d 9  r dr r dr

The divergence o f the relaxation stress

Starting with the curvilinear formulation o f the term,

c-P..............  vJT. dP

\ d$k.

= g ' <%L
94,

V J"
r dP ^

94P4,
-g

94,

d 2P

Then,

5T
94,

= C g'T and gs • ~ ~  = □ C g5 • gr = TgsrT"sr, so that, 
5 4s

V - . r o -
d 2P

94 P4* \ 9 4 k J
g

94s
d 2P

94p4„
jvyr i r 8 P ^

In cylindrical coordinates the only non-zero terms in the contravariant metric tensor are;

1 = 1 and g 22 = —5-, so that
1

V - [ v - V V p ] -  s ' T > d2P _ r t  
d $ M n ' g

94,
—  : v ^
94jd4, y

In cylindrical coordinates, then 

v | r w ] =

V 2r > ;
d 2P

94j94x
dP

\ d4kj
g

94x
d 2P

34 f4
r dP

P4*j
g

342
i 3 2P  _  v  ---------- v T ‘.
34j94:> n

(B.8)

r d P '
94k,

(B-9)

(B.10)

(B.l 1)
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The first term can be represented

V 2r ' d2P .v% dP
94•k J

- e 22r ] & 1 22
, d2P 

^ , 2
; d2P
9494

v2rI
2 r 8rd6

The second term simplifies to,
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9 4 j d 4 W ) 94
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9 4  9 4 8 4

d  | d 2P ^ v a d 2P
dr \ r d r 2 r  d r d d  r 2 - ) !d d ) }

and the last term is,

g
94

r dP^
94-94 \ 84  j

= g
94

d 2P 2 d P _  12
V f n

dP

94
]v2r '2/  dP''

2 J 94

j__e_
r 2 d d

d 2P  - v g d 2P  . v j d P '
- — —  -iv,

d r d d  r d d  r  I d d ,

Combining the three terms,

V - | j r . v ! y / > ] = [  -
dr

d 2P v e d 2PV  i i-2------
r dr2 r drdd r 2

I J L
r dd

v, d 2P  d 2P  r  Yr_
r 2

■ L _

r  drdd  ~ r2 d d 2
■2k

r

Or

] _ d _

r  dr
d 2P
dr1

d2P
r  drdd r 2

~vr d2P  V(> d 2P  
r  drdd ~ r2 d d 2

(B.12)
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Hence, in the Poisson equation for non-equilibrium pressure (Equation. B.2) becomes,

' v  P : N p V ■
Dt

VP :i = A | V zPZV-[_y-V^p]  =

1 N p  —  
dt

l A f  1 92p
r dr I dr J r 2 d d 2

_ Np d 
r dr

8 2P  __ va d2P
dr2 r  drdd r 2

dP
dd

Np d 
r d d

vr 8 2P  v^c^P v f c P Y  
r  drdd r 2 d d 2 r 2 { d d )  r \ d r

(B-13)

Removing the steady-state solution and linearizing,

:v2p riNpv —  v p [  
Dt

. .  , d 3P ^ . . ( v r 'Npvr'-— ^Np\ 
dr \ r

Sv ' 1 d  P
dr ) dr

\CNp
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I ± f r P̂!
r dr I dr

1 d 2p' 
r 2 d d 2
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ve d 2P' ^ v e (dP '
r drdd r 2 [ d d
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r dd

Ve 8 2P' ^ V,
d d 2 r I dr
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D t

x t  d 2P d v ;  . .
NP  , 2 a ljNP dr or

d 2P  1 d 2P  
dr3 r dr 2

□ 1 UNp
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r dr v dr / r 2 d e 2
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r 3 6 6 3
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8 0  ' r 2 d r  8 6

(B.14)

The complete pressure equation (B.2) becomes, after incorporating the relationships 

in equations (B.8) and (B.14),
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2 dVn dv / 2Vd d v /  _5 2 </F,
r dr dd dr r dr6 v /  =

iV/7 d 2P dv/  
dr1 dr

( j *
:np

2 D Ad / J f ^ f d / P
dr3 r dr 2

l~ N p
dt

NTl d y _f_ __ 1 d 2p'~

X r dr y dr j r 2 d d 2 _

Np \d V e ^ V A d 2 p' Ve d2p'
Kr dr r 1 J drdd r dr2dd  * r 3 3#
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r 2 dr
' d p ' ^ d P d v , '

dd dr dd

This is the linearized pressure Poisson equation fo r  pressure.
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Appendix C 

MATLAB® CODES

'■ state variable model lor 2D unsteady vortex flow with pressure
relaxation
clc;
clear;
small = le-6;
convergence=0.9; ■ of max asinathai velocity
fscate variable parameters 
Re=8 000;
Np=2/Re;
n = 0 .5;
w R = 0 .4 ;
wl=l;dwl=0.1;
i variable definitions
r0=0.01; '/initial radius
dr=le-3; iradius step for RK4 solver
deltar=15.02; tradial domain size
rf = rO+deltar; 1 max radius
x=zeros(12,1); /define state variable vector size 
Y=ones(deltar/dr,13); iOutput state variable 
1 Integration Loop
while (max(Y(: , 7) )>convergence || m a x ( Y (:,3))>convergence) 

f=zeros(12,1);y=f;z=f;
Y=zeros (deltar/dr, 13) ; ire-initialize Output state variable
x (1 : 2 : 7,1)=0 ; iinitial velocity perturbations gradient
x (2 : 2 : 8,1)=le-3; Iinitial velocity perturbations amplitudes
x (9:2:11,1)=0; iinitial perturbations pressure gradient
x (10 :2:12,1)=-le-3; Iinitial perturbations pressure amplitudes
r = rO;
j=l; Icounter
% Initialize output state variable vector 
Y(j, : ) = [ r x']; 
i Runge-Kutta integrator 
while ((r + small) < rf)

f = eqvxprfx, r,wR,Re,n,wl,N p ) ; y = X + f*dr/6; z = x +
r = r + dr/2;
f = eqvxpr(z, r,wR,Re,n,wl,N p ) ; y = y + f*dr/3; z = x +
f = eqvxpr(z, r,wR,Re,n,wl,N p ) ; y = y + f*dr/3; z = x +
r = r + dr/2;
f = eqvxpr(z, r,wR,Re,n,wl,N p ) ; X  = y + f*dr/6;
Y(j , : ) = [ r x ' ] ; : Stores the Outputs
j= j+ l;

e n d
wl=wltdwl; 1 iterate at higher wl if solution doen't converge

e n d

’loan perturbations Amplitudes
[Y1 II]=max(Y(:,3));[Y2 12]= m i n ( Y (:,3));
if Yl>abs(Y2),YY=Y1;11=11; e l s e  YY=Y2;I1=12; e n d
d i s p ( ' M a x  v r  i s ;');disp(YY);d i s p ('at r= ');disp(II*dr);
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[Y1 II]=max(Y(:,7)); [Y2 12]= m i n (Y ( : , 7) ) ;
if Yl>abs(Y 2 ),YY=Y1;I1=11; else YY=Y2;I1=12;end
disp('Max v_the*a is: ');d i s p (Y Y ) ;d i s p (1 at r= ');d i s p (II*dr);

[Y1 11]= m a x (Y (:,10)); [Y2 12]=min(Y ( :,10));
if Yl>abs(Y2),YY=Y1;11=11;else YY=Y2;11=12;end
d i s p ('Max dp/dr is : ');d i s p (YY) ;d i s p ('at r= ') ;disp(II*dr);

[Y1 11]=max(Y ( :,3) .* Y ( 9 ) + Y (:,7) .* Y (:,5) );
[Y2 12]= m i n (Y (:,3) .* Y (:,9)+ Y (:,7).* Y (:,5));
if Yl>abs(Y2),YY=Y1;11 = 11; else YY=Y2;11 = 12;end
d i s p (’Max tat rtheta is:');d i s p (YY ) ;d i s p ('at r= ');disp(II*dr);

v Butworth filter 
/ radial velocity
[B,A]=butter(3,0.01);SVR=filter(B,A,abs(Y (:,3) )) ; 
figure (1);p l o t ( Y (:,1),S V R , 1k ');hold on;

[B,A]=butter(3,0.01);SVR=filter(B,A,abs(Y (:,7) )) ; 
figure (2);p l o t (Y (:,1),S V R , 1r ');hold on;

radial pressure gradient 
[B,A]=butter(3,0.01);SVR=filter(B,A,abs(Y (:,10))); 
figure (3);p l o t (Y (:,1),S V R , 'b ');hold on;

[B,A]=butter(3,0.01);SVR=filter(B,A,abs(Y (:,3) .*Y ( :,9)+ Y (:,5) .*Y(:,7) ))
t
figure (4);p l o t (Y (:,1),S V R , 'k ');hold on;

function f = eqvxpr(x_v,r,wR, Re,n,wl,Np)
X=x_v;
1 define equation coeficients
cl=2/ (r* (rA2+l) ) ;
c2=4/ (rA2+l)A2 ;
c3=4 * (l-rA2)/ (r*(rA2+l)A2 ) ;
c4=4*(l-3*rA2)/ (rA2+l)A3;
c5=4 * (9*rA4-14*rA2 + l)/ (r*(rA2 + l)A4);
c 6 = (1+Np*wl)/( (1+Np*wl)A2+NpA2 * (wR+2*n/(rA2 + l))A2) ;
c7=(Np*(wR+2*n/(rA2 + l) ))/((1+Np*wl)A2+NpA2*(wR+2*n/ (rA2 + l))A2);
cl0=sqrt(c2);
cll=cl*sqrt(c2) ;
1 Radial momentum equations
ddAr=-(1/r)*X(1) + ( (nA2 + l) /rA2) * X (2)-Re*(wl+(2-n)*cl0-Np*c4)*X (2)- . . . 

Re*wR*X(4)+(2*n/rA2 ) * X (6)-Re*Np*(wR+n*cl0)*X(9)+... 
n*Np*Re*cl*X(10)+Re*(Np*wl+1)*X(11); 

dAr=-X(2)/r-n * X (6) /r;
ddAi=-(1/r)*X(3) + ( (nA2 + l)/rA2)*X(4)+Re*wR*X(2)-Re* (wI+(2-n)*cl0-. . . 

Np*c4)*X(4) + (2*n/rA2) * X (8) -Re*(Np*wl + 1 ) * X (9)-. ..
Re*Np*(wR+n*cl0)* X (11)+n*Np*Re*cl*X(12); 

dAi=-X(4)/r-n*X(8)/r;
Atimutnal Kcmentum equations 

ddBr=-(1/r)*X(5) + ( (nA2 + l)/rA2) * X (6)+Re*c2*X(2)-(2*n/rA2)*X(4)-. . .
Re*(wI+Np*cll)*X(6)+Re*(wR+n*cl0)*X(8) . . .
-Re*Np*cl0*X(9)+Re*Np*(n/r)* (wR+n*cl0)*X(10)...
-Re*(n/r)* (Np*wl+1)*X(12);
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d B r = X (5);

ddBi=-(l/r)*X(7)+((nA2+l)/rA2)*X(8)+(2*n/rA2)*X(2)+Re*c2*X(4)+...
Re*(wR+n*clO)*X(6)-Re*(wI+Np*cll)*X(8)...
+Re*(n/r)* (Np*wl+1)*X(10)-Re*Np*cl0* X (11)...
+Re*Np*(n/r)* (wR+n*clO)*X(12); 

d B i = X (7);

ddDr=-(l/r)*X(9)+((nA2+l)/rA2)*X(10)-Np*c7*c4*X(1)
(n*c6*c3+Np*c7*c5)*X(2)-Np*c6*c4*X(3)-(Np*c6*c5+n*c7*c3)*X(4)... 
-2*c6*clO*X(5)+(-c6*(cl+2*clO)-n*Np*c7*cll)*X(6)-2*c7*clO*X(7)... 
+ (-n*Np*c6*cll-c7*(cl + 2*cl0) )* X (8)-0.5*n*Np*c7*c3*X(9) . . . 
-n*Np*c7*c2*X(10)-0.5*c3*Np*n*c6*X(11)-n*Np*c6*c2*X(12); 

d D r = X (9) ;
ddDi=-(1/r)*X(11)+((nA2+l) / r A2 ) * X (12)+Np*c6*c4*X(1)-(n*c7*c3-. . . 

Np*c6*c5)* X (2)-Np *c7*c4*X(3)-(Np*c7*c5-n*c6*c3)*X(4) ... 
-2*c7*clO*X(5) + (-c7*(cl+2*cl0)+n*Np* c6*cl1)*X(6)+2*c6*clO*X(7) . . . 
+ (-n*Np*c7*cll+c6*(cl + 2*cl0))* X (8)+0.5*n*Np*c6*c3*X(9) .. . 
+n*Np*c6*c2*X(10)-0.5*c3*Np*n*c7*X(11)-n*Np*c7*c2*X(12); 

d D i = X (11);

f = [ddAr dAr ddAi dAi ddBr dBr ddBi dBi ddDr dDr ddDi d D i ] . 
end
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