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ABSTRACT
MODELING THE DECISION PROCESS OF 

A JOINT TASK FORCE COMMANDER

John Anthony Sokolowski
Old Dominion University, 2003 
Director: Dr. Mikel D. Petty

The U.S. military uses modeling and simulation as a tool to help meet its warfight- 

ing needs. A key element within military simulations is the ability to accurately 

represent human behavior. This is especially true in a simulation’s ability to emu­

late realistic military decisions. However, current decision models fail to provide the 

variability and flexibility that human decision makers exhibit. Further, most decision 

models are focused on tactical decisions and ignore the decision process of senior mil­

itary commanders at the operational level of warfare. In an effort to develop a better 

decision model that would mimic the decision process of a senior military commander, 

this research sought to identify an underlying cognitive process and computational 

techniques that could adequately implement it. Recognition-Primed Decision making 

(RPD) was identified as one such model that characterized this process. Multiagent 

system simulation was identified as a computational system that could mimic the cog­

nitive process identified by RPD. The result was a model of RPD called RPD Agent. 

Using an operational military decision scenario, decisions produced by RPDAgent 

were compared against decisions made by military officers. It was found that RPDA­

gent produced decisions that were equivalent to its human counterparts. RPDAgent’s 

decisions were not optimum decisions, but decisions that reflected the variability in­

herent in those made by humans in an operational military environment.
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1 INTRODUCTION

1.1 T hesis  S ta te m e n t

Multiagent system simulation technology can be used to implement the cognitive 

decision-making process described by the Recognition-Primed Decision model. Fur­

ther, one can employ this implementation to model the decisions made by a Joint 

Task Force Commander at the operational level of warfare.

1.2 P ro b lem  S ta tem en t

To maintain its warfighting capability, the United States Department of Defense 

(DoD) must train its personnel; it must continue to analyze and refine its war plans 

and operating strategy; it must design, procure, and test new weapons systems; and 

it must experiment with new warfare concepts to maintain its military advantage in 

a rapidly changing world. The cost to accomplish these tasks on a recurring basis, in 

terms of using actual combat personnel and equipment, has become prohibitive [1]. 

To reduce personnel and operational costs, DoD has sought to replace many of these 

tests and exercises involving live equipment and personnel with computer simulation. 

To ensure effective results in the above areas, these simulation systems must accu­

rately portray the battlespace. Included in the simulated battlespace are not only 

the physical equipment such as tanks and airplanes, but also the humans who must 

make many decisions in the course of carrying out their warfare responsibilities.

Human behavior representation (HER) in military simulations has received much 

attention ever since the National Research Council published its comprehensive re­

view of HER modeling in military simulation systems [2].1 This review covered many 

aspects of HER including individual and group behavior, human decision-making,

memory and learning, situational awareness, and planning. Germane to this research

1 Citation and reference list format for this manuscript are taken from the journal SIMULATION: 
Transactions of the Society fo r Modeling and Simulation International.
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were their findings in the area of decision modeling. Specifically, they found that deci­

sion models within military simulations were too stereotypical and too homogeneous. 

In their words:

“First, the decision process is too stereotypical, predictable, rigid, and 

doctrine limited, so it fails to provide realistic characterization of the 

variability, flexibility, and adaptability exhibited by a single entity across 

many episodes. Variability, flexibility, and adaptability are essential for ef­

fective decision making in a military environment . . .  Second, the decision 

process in previous models is too uniform, homogeneous, and invariable, 

so it fails to incorporate the role of such factors as stress, fatigue, experi­

ence, aggressiveness, impulsiveness, and attitudes toward risk, which vary 

widely across entities.”

The shortfall in military decision modeling is especially evident at the operational 

level of warfare.2 While many decision models exist for the tactical level of warfare, 

very few military simulations model any type of decision-making at the operational 

level. Most obvious is the lack of a model for the decision-making of senior military 

commanders such as the commander of a Joint Task Force (CJTF).3 In simulation ex­

ercises, human role players make CJTF decisions and then manipulate the simulation 

system to carry out orders generated by the decisions. In a large military exercise 

where simulation is the primary representation of military forces in the field, several 

hundred role players are required to produce and to carry out these decisions. This 

manpower requirement significantly adds to the cost of an exercise [5].

2There are three levels of warfare within the U.S. military. The strategic level of warfare refers 
to national military objectives and theater war plans. The operational level of warfare is concerned 
with planning, conducting, and sustaining campaigns and major operations to achieve strategic 
objectives. The level at which battles and engagements are planned and executed is called the 
tactical level of warfare [3].

3A Joint Task Force Commander is typically a two or three star admiral or general from one 
of the military services who commands military forces from two or more services that are jointly 
working to achieve military objectives [4].
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One reason that an adequate decision model for a senior military commander is 

not available is the lack of a complete understanding of how people make decisions. 

Michael Bauman, Director of the Army Training and Doctrine Command Analysis 

Center put it this way: “We cannot represent how humans make decisions. If we 

understood how people make decisions, we could tailor simulations and training to 

enhance people’s abilities [6].”

To solve this decision modeling problem, much research has been conducted not 

only on how humans make decisions, but also on how to represent the decision-making 

process in a computational form. A survey of this research is presented in Section 2 of 

this manuscript. This dissertation furthers decision modeling research by developing 

a computational model of the decision process of a CJTF based on cognitive decision 

theory and multiagent system simulation techniques. It is important to note that this 

model is not intended to produce optimum decisions for a given situation (although it 

may). Instead, it is meant to mimic a human’s cognitive decision process and thereby 

produce realistic and possibly suboptimum decisions.

1.3 M otivation

This portion of the dissertation serves two purposes. First, it describes the role of a 

CJTF in modern warfare so the reader has a clear understanding of why CJTF deci­

sions are important. Second, it draws on the C JT F’s role to explain the motivation 

behind developing a computational model of his4 decision process.

1.3.1 Joint doctrine and the CJTF

The Goldwater/Nichols Act of 1986 [7] mandated that U.S. warfare at all levels no 

longer be fought along separate Service (Army, Navy, Air Force, and Marine Corps) 

lines. Instead, U.S. military operations would be “joint” , combining forces from

4Throughout this paper “he” and “his” are not gender specific but refer to both sexes.
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different services to suit the situation. This was a significant shift in the way U.S. 

forces would carry out their wartime missions. Before Goldwater/Nichols, a military 

commander had no operational forces directly assigned to him. He had to request 

support and permission to carry out his wartime tasks from each Service. After this 

congressional act, a CJTF was given direct command authority over those forces.

To illustrate this dramatic shift, consider the command structure for the invasion 

of Panama, which was the first significant U.S. military action to employ the new 

Joint Task Force (JTF) organization. General Maxwell Thurman, Commander of the 

U.S. Southern Command, took advantage of his power under the Goldwater/Nichols 

act to select Lieutenant General Carl W. Stiner, U.S. Army, and the Commander of 

the XVIIIth Airborne Corps, to command a JTF of 22,000 Soldiers, 3,400 Airmen, 

900 Marines, and 700 Sailors. The result was a force with unity of command and good 

interoperability, which would rapidly achieve its operational objectives of protecting 

U.S. citizens in Panama and maintaining the Panama Canal free of Noriega’s control 

[8].

To further joint concepts, U.S. Joint Forces Command, which evolved from the 

U.S. Atlantic Command, was assigned the mission of developing joint doctrine for the 

Chairman of the Joint Chiefs of Staff and was tasked to train CJTFs and their staffs 

in the area of joint warfare [4, 9].

JTFs, made up of forces from two or more services, are now formed to handle 

most types of military operations, from peacekeeping to major theater war. A JTF 

exists long enough to accomplish its assigned mission and to transition control back 

to civil or political authorities. Its size varies depending on the assigned mission.

At the head of a JTF is the CJTF. He is charged by the National Command 

Authority (President, Secretary of Defense, and theater commander) to translate 

strategic guidance into operational level warfighting decisions. He is supported in his 

planning and decision-making by a JTF staff composed of hundreds of officers and
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enlisted personnel who are drawn from each Service. A CJTF can come from any 

of the Services but he will have been specifically trained in joint warfare policy and 

doctrine. The JTF staff provides the operational planning support and situational 

assessment necessary to enable the CJTF to make military decisions that tip the scale 

of victory in his favor.

A CJTF makes hundreds of decisions in the course of his assignment as the leader 

of a JTF. These decisions span a large domain from those of a strategic nature to those 

of an operational type. At times, they even venture into the tactical area although 

tactical decisions are not usually the norm. He is assisted with his decision-making by 

the JTF staff. One of the staff’s jobs is to develop multiple courses of action (COAs) 

for the CJTF to consider before choosing the most appropriate one. For example, 

suppose a CJTF is faced with the decision of when to conduct an amphibious assault. 

His staff may propose the following COAs:

• COA 1: Attack immediately to gain the element of surprise even though only 

85% of the required troops are in place to support the assault. The staff judges 

this as an acceptable risk.

® COA 2: Wait 96 hours until 95% of the troops arrive. Intelligence estimates 

that there is a 50% chance the enemy will be alerted to the assault by that 

point.

• COA 3: Build up additional forces over the next week to 100% strength and 

keep the enemy guessing as to when the assault will occur.

This decision is typical of those that a CJTF faces. Joint doctrine specifies a 

methodical approach to developing these COAs [4]. COA development generates 

and examines two or more solutions to a problem, establishes the pros and cons of 

each solution, and makes a recommendation to the CJTF on which COA to choose. 

However, there is no doctrine or training for the CJTF on how to choose the best
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COA. How he makes the decision is left up to his years of military experience and his 

personal assessment of the situation. Modeling this personal decision process is the 

subject of this dissertation.

1.3.2 M o tiv a tio n  for m odeling  th e  C JT F

The U.S. military relies heavily on constructive simulations5 to train its JTF staffs and 

their supporting Service components. Unfortunately, they only receive training about 

once every two years. These staffs and the CJTF are drawn from the Services. The 

commander that would normally act as the CJTF has many other duties that must 

be carried out, which precludes him from being available to conduct JTF training on 

a regular basis. If a computer model of a CJTF existed, then the staffs would be able 

to conduct JTF training more frequently because the computer could play the role 

of the CJTF when he was not available.

Besides training, military simulations are used for COA analysis and for experi­

menting with new warfighting doctrine.6 To achieve realistic analysis and to validate 

new doctrinal concepts, a CJTF decision model must produce decisions that are typ­

ical of an experienced CJTF as opposed to generating non-doctrinal or artificially 

optimized decisions. As noted earlier, military simulations have not measured up to 

this demand. Because of this, the quality of simulation-based training, analysis, and 

experimentation has suffered [6, 11, 12], The military community would greatly ben­

efit from improved models of CJTF decision-making within constructive simulations.

5A constructive simulation can be thought of as one or more computer-generated forces acting 
against other computer-generated forces as opposed to a virtual simulation where a human interacts 
with computer entities. For example, a flight simulator, where a real pilot flies a simulated aircraft, 
is a virtual simulation. A computer war game where one set of computer-generated entities fights 
against another set is considered a constructive simulation [10].

6Training simulations take the place of live military forces so that a commander can train a 
CJTF and his staff at a reduced cost and with more robustness than if live forces were used. 
Analytical simulations are used to help refine war plan scenarios, to predict the outcome of specific 
military maneuvers, and to conduct mission rehearsals for pending operations. Simulation supports 
experimentation by providing a venue for testing new warfighting concepts.
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1.4 A p p ro ach

This research formally sets forth an architecture for a multiagent system (MAS) 

simulation that implements the cognitive decision process described by Recognition- 

Primed Decision (RPD) Making as used by a CJTF. RPD was evaluated as the 

cognitive decision model closest to representing the CJTF decision process. RPD has 

as its base the premise that a decision maker, who is an expert in his area, relies 

heavily on his past experience to interpret a current decision situation, to recognize, 

in an intuitive manner, what decision must be made, and then to assess that decision 

to ensure it fits the context of the current situation.

RPD attem pts to capture the intuitive interactions that go on inside the human 

brain as decision situations are being evaluated. The RPD process was captured 

with a MAS design, hereafter known as RPDAgent, by using agents to simulate the 

various steps involved in RPD. The agents within the simulation interact to assess 

the situation, draw on past experience to produce potential decisions, and evaluate 

those decisions against competing goals that must be satisfied.

Capturing an expert’s past experience was a crucial part of implementing RPD 

in a computational form. A data structure was developed to represent the key con­

cepts of the decision recognition process, to capture a human’s internalization and 

interpretation of his environment, and to represent a personal evaluation process of 

potential decisions against the goals that he is trying to achieve.

For a model to produce credible results, it must be validated. RPDAgent was 

validated using a decision scenario typical of the types of decisions facing a CJTF. 

The scenario was provided to a group of senior military officers, each playing the role 

of a CJTF. The same decision scenario was provided to RPDAgent. The set of role 

player decisions was then statistically compared to the model decision set to evaluate 

validity. As a final measure of validity, a set of role player decisions and a set of model 

decisions were presented to senior military officers who had previously commanded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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a JTF. They were asked to distinguish between the model results and the human 

results.

The approach described above was intended to produce a model capable of mim­

icking the decision process of a senior military commander. The model was not meant 

to produce optimized decisions, but rather to follow, as closely as possible, the some­

times imperfect decisions produced by humans who are the experts in their field.

1.5 C ontributions

This dissertation provides a new approach to modeling the cognitive decision process 

of a decision maker experienced in his particular decision domain. The following are 

the specific contributions of this research:

• A computational model of the RPD process capable of mimicking decisions 

made by experts in their field. It is not limited to the military domain.

• A data structure capable of modeling a person’s past situational experience, 

of capturing a human’s internalization and interpretation of his environment, 

and of capturing personal preferences for evaluating potential decisions against 

possibly conflicting goals.

•  A model capable of explaining its reasoning process rather than produce a “black 

box-type” decision with no explanation of how the decision was made.

• An experimentally validated implementation of a model of CJTF decision­

making for a class of operational decisions.

1.6 D issertation Organization

The remainder of this dissertation is organized as follows:
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• Section 2. Background. This section surveys research on decision theory, 

military decision-making, and computational methods available to implement 

cognitive decision model. Work that is most relevant is described in detail.

•  Section 3. Research. Project. This section provides an in depth description 

of the research including project design, validation methodology, data analysis, 

and research results.

• Section 4. Conclusions and Future Work. This dissertation concludes 

with a summary of the research results and a description of follow on work that 

could be undertaken to expand upon the basis of this effort.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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2 BACKGROUND

This section provides a survey of past research relevant to this dissertation. It begins 

with a review of pertinent decision theory research and is followed by a description 

of the decision process currently employed by the military. It ends with a compre­

hensive evaluation of techniques available to implement cognitive decision models in 

a computational form.

2.1 D ecision theory

This part describes the research that has taken place to model decision-making. It 

begins with a review of classical decision theory and its associated concepts. It is 

followed by discussion of a competing theory called Naturalistic Decision Theory. 

These two theories are the leading models of the human decision process.

2.1.1 Classical decision theory

People in all walks of life have realized the importance of the decisions they make. This 

is especially true where high stakes decisions are prevalent such as in the military, law 

enforcement, and the medical field. Much research has been devoted to understanding 

the human decision process. Classical decision theory is the result of many efforts.

Classical decision theory is the collection of axiom-based models of uncertainty, 

risk, and utility that provides a method to make an optimal decision from among an 

array of choices. The underlying model and its explicit rule that maximizes a deci­

sion maker’s payoff defines optimality. Two mathematical models have characterized 

classical decision theory, one of uncertainty and risk called expected value theory, and 

one of utility, which includes subjective expected utility and multi-attribute utility 

theory [13]. Both models had their origins in the economical and statistical method- 

s that von Neumann and Morgenstern used to describe optimal decision making in 

these fields [14], These models do not concentrate on the outcome of the decision but
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$5000
Success (0.8)Stock market

Failure (0.2)

Savings $2200
(1.0)

F ig u re  1. Decision under risk

rather on the logical process used to derive the decision. These models assume that 

a decision maker always acts in a logical or rational manner. Therefore, the formulas 

associated with these theories will always produce mathematically optimal decisions 

with respect to the available information.

Decisions under risk strictly use probability to calculate the optimal decision. 

They are most often described using monetary decision examples [15]. Figure 1 shows 

a classic decision tree used to represent a decision under risk. The decision is whether 

to invest a certain amount of money in the stock market or place the money into a 

savings account. The example shows that if the decision is made to place the money 

in a savings account, there is a sure payoff of $2200. If the money is invested in the 

stock market, there is a certain probability of either receiving $5000 or completely 

losing the investment. To calculate the payoff of this decision, one uses the expected 

value method.

Expected value — (0.8) (5000) + (0.2) (0) =  $4000

Therefore, the logical decision would be to invest the money in the stock market with 

an expected payoff of $4000.

The above example is purely a probabilistic calculation. It does not take into
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account a decision maker’s personal risk tolerance. Even with a probability of 0.8, 

an individual may not be willing to take the chance of loosing all his investment. 

However, expected value calculations do not account for personal risk tolerance.

Von Neumann and Morgenstern [14] saw this shortcoming in expected value theo­

ry. To account for personal risk, they transformed decision outcomes or consequences 

into utilities. A utility is a personal assessment of how much a particular payoff is 

worth to an individual, not in terms of money, but in terms of a numerical scale 

from 0 to 1. Thus, Subjective Expected Utility (SEU) Theory came to include both 

subjective probabilities about the uncertainty of an outcome and a decision maker’s 

propensity for risk for that outcome. Each decision maker has a unique function that 

assigns a utility to each possible outcome of the decision for every decision he faces. 

Combining this function with a subjective probability of an outcome yields an SEU 

value:

SEU[Ai] = Y , pikU(Ck) (1)
k

where [AJ is a particular alternative and Pn~ is the subjective probability of encoun­

tering consequence Ck given alternative A*. Using the example of Figure 1, stock 

market and savings are the two alternatives. If the stock market alternative A\ is 

chosen, then there are two possible consequences: getting $5000 (Cu), or losing all 

money (C2). The probability of receiving $5000 given that the stock market was 

chosen (Pn) is 0.8. A similar statement can be made for the failure event. The 

SEU function is very similar to the one used in calculating expected value. They are 

equivalent if the utility function and the value function are identical.

The shape of an individual’s utility function describes his propensity for risk for 

a given decision. For any point on the function, a person’s attitude toward risk is 

formally defined by the coefficient of risk aversion [16]:

r = kM m
“  u'(ct) ( ’
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U(x)

Risk averse

F ig u re  2. Utility function

T able 1. Example utility values

Choices Probability (Fife) Payoff(Cfc) Utility (F(Cfc))
Stock Market 0.8 $5000 0.90
Savings 1.0 $2200 0.75

where U' (Ck) and U"(Ck) are the first and second derivatives of the utility function. 

If Cra < 0 then a person is risk averse; if Cra >  0, a person is said to be risk seeking. 

Figure 2 depicts a risk averse utility function. To illustrate the effect of personal risk 

bias, the monetary outcomes from the above example will be replaced by the decision 

maker’s utility value for each of those outcomes.

Table 1 contains these values for this decision. Using equation (1) to calculate 

SEU for the stock market choice verses the savings choice yields:

SE U  (stock market) =  (0.8)(0.9) +  (0.2)(0) =  0.72

SEU (savings) = (1.0)(0.75) =  0.75

with the decision maker being risk averse, even though the expected value indicates 

the stock market is the appropriate choice, he is not willing to risk the loss of a sure 

$2200. Other decision makers may have different utility functions and thus can arrive 

at different conclusions. Under utility theory, the payoffs or consequences need not 

be monetary. One can just as easily map qualitative results to utility values and
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calculate an SEU.

M ultiattribute Utility Theory (MAUT) is an extension of SEU that takes into 

account multiple objectives of a decision maker [17]. In the above stock market 

example, the decision maker was only concerned with one payoff or consequence 

value. The utility function had only one independent variable to map to a utility. 

W ith MAUT, the utility function can accept multiple variables to calculate a utility 

value. For example, a decision maker may be concerned with soldier safety, mission 

accomplishment, and equipment losses. In the simplest case, the utility function 

would be a weighted addition of individual utility values given by:

u(x  1 . . . Xn) = Yl knUn(xn) (3)
71

where each constant kn is a weighting factor for each un. More complex utility 

functions can be readily constructed. They are useful when two or more utility 

variables are interdependent.

Classical decision theory assumes that decisions are made in a prescriptive manner. 

By prescriptive it is meant that a decision maker always makes decisions in a rational 

way. Assumed in this concept is that classical decision theory is descriptive of how 

humans actually make decisions. However, as shown by Kahneman and Tver sky [18], 

decision makers rarely behave in a prescriptive manner. They conducted a controlled 

set of experiments where subjects were given several problems requiring them to make 

a decision between two payoffs. For example:

In the first problem, the majority of the subjects chose option B (82%). From 

SEU, this choice implies the following inequality:

w(2400) > .33u(2500) +  .66^(2400) or .34u(2400) > ,33u(2500)
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Table 2. Kahneman decision experiment 

Problem 1
Choice A Choice B

$2500 with probability .33 
$2400 with probability .66 

$0 with probability .01 
[18%]

$2400 with certainty

[82%]

Problem 2
Choice C Choice D

$2500 with probability .33 
$0 with probability .67

[83%]

$2400 with probability .34 
$0 with probability .66 

[17%]

In the second problem, the utility calculation is as follows:

,33«(2500) >  .34^(2400)

Behaving prescriptively, a decision maker would have made a decision consistent 

with the utility of the given payoff. However, as shown by this example and several 

others in Kahneman and Tversky’s study, decisions made by humans do not usually 

match the decisions calculated by the formulas. Klein reported similar results in his 

study of decision makers who were experts in their fields [19]. If this is the case, then 

classical decision theory does not completely describe how humans make the majority 

of their decisions.

Subjective probabilities play a significant role in SEU and MAUT calculations. 

Each decision maker assigns his or her own estimated probabilities to the outcomes 

of a decision problem in a manner similar to the way they assign their own utilities 

to those outcomes. These probabilities are based on the person’s belief of the like­

lihood of the outcome relative to the other outcomes. Tver sky and Kahneman [20] 

showed that people employ a small set of heuristics, which help reduce the complex 

task of assessing probabilities to simpler judgmental processes. Unfortunately, these
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heuristics often reflect biases that subconsciously enter into the estimates and render 

them less than optimal.

The first heuristic they described is called representativeness, which helps estimate 

the probability that an event or object A belongs to group B. Here, people have a 

tendency to estimate membership based on a comparison to a stereotype representa­

tion of a group. They ignore prior probabilities of outcomes, disregard the effect of 

sample size, do not take into account the underlying random processes, base results 

on irrelevant favorable of unfavorable descriptions, rely on illusions of validity rather 

than on verifiable facts, and do not understand the concept of regression to the mean.

The second heuristic employed to simplify probability estimation is availability, 

which Tversky and Kahneman defined as “. . .  the ease with which instances or occur­

rences can be brought to mind.” The easier it is for a person to imagine representative 

cases, the easier it is for him to estimate a probability of occurrence. But, this heuris­

tic can also lead to biases. The biases may be due to how easily an instance my be 

retrieved, the effectiveness of a search set, the decision maker’s ability to imagine solu­

tion sets, and illusionary correlation or overestimation of the frequency of occurrence 

of naturally associated objects or processes.

The final heuristic is adjustment from the anchor or estimating an outcome based 

on its deviation from an initial state called the anchor. Biases here include insufficient 

adjustment and biases in the evaluation of conjunctive and disjunctive events. Studies 

have shown that people have a tendency to overestimate the probability of conjunctive 

events and underestimate the probability of disjunctive events.

So while decision makers employ heuristics to help generate subjective probabili­

ties associated with decision outcomes, the rules they follow have unsuspected biases 

that could lead to less than optimal decisions.

This section has reviewed the tenets of classical decision theory including expected 

value theory, SEU, and MAUT. These theories provided a normative and a prescrip­
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tive model for human decision-making. This theory assumed that all people made 

decisions in a logical and rational manner. However, decision makers more often than 

not behaved non-rationally. That is, they did not make decisions in the manner pre­

scribed by this theory. There must be other underlying decision behaviors that affect 

the human decision process. Additionally, when estimating subjective probabilities 

associated with classical decision theory, one uses heuristics. Various factors can bias 

the probability estimates of these heuristics, leading to less than optimal decisions.

2.1.2 N aturalistic decision making

This section will introduce Naturalistic Decision Making (NDM) as a theory that 

describes the process used by experienced decision makers to arrive at satisfactory 

decisions. Unlike classical decision theory, it is not based on a mathematical process 

for computing optimal outcomes but on a psychological model of the intuitive steps 

a person follows in reaching a decision.

As was shown in the previous section, classical decision theory is centered on the 

decision event. The decision event included two or more courses of action (COAs) 

or choices and their associated subjective probabilities and utilities. It does not 

account for the decision maker’s past experiences or how proficient he is at analyzing 

situations. In scenarios requiring rapid decisions, a person may not have time to 

evaluated multiple COAs, let alone generate them.

Indeed, evidence strongly suggests that experienced decision makers do not employ 

classical decision methods for the majority of their decisions [19, 21, 22, 23]. Instead, 

their approach to decision making differs from the classical method in at least three 

ways:

• Experienced decision makers expend a significant effort in assessing the situation 

presented.

•  They evaluate only a single option but look at different aspects of that option

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

through mental simulation.

• A choice or option is accepted if it is satisfactory but not necessarily optimal.

The idea of satisficing vice optimizing decisions was first studied by Herbert Simon, a 

Nobel Prize winner in economics who observed how those in business made decisions 

[24, 25]. His work showed that most experienced business people chose alternatives 

that produced satisfactory, rather than optimal, outcomes because exact solutions to 

complex problems were most likely not attainable. He called the concept of simplifying 

problems to a level where one could obtain a solution bounded rationality. In addition, 

most decisions made by experienced decision makers are embedded in a series of tasks 

working towards a larger goal that is heavily dependent on the situation context. 

These tasks help define the situation and provide a framework in which a decision is 

made. The features of these tasks and a decision maker’s knowledge and experience 

relative to the tasks govern decision performance [26].

As described above, decisions take place in naturalistic settings, i.e. situations that 

people face in daily life that cannot and should not be separated from the context 

that defines them. NDM is a theory that models a person’s mental decision process 

in his natural environment. NDM has been formally defined as the way people use 

their experience to make decisions in field settings [27].

Researchers have identified eight factors that most often appear in naturalistic 

decision settings [26]. A decision maker is likely to employ the naturalistic process to 

arrive at a decision when one or more of these factors are present. These factors are:

• Ill-structured problems.

• Uncertain dynamic environments.

• Shifting, ill-defined, or competing goals.

® Action/ feedback loops.
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• Time stress.

•  High stakes.

•  Multiply players.

•  Organizational goals and norms.

These factors help characterize a naturalistic decision situation and bear further 

explanation. The first three factors describe the ambiguity a person may face when 

confronted with a decision. A person may expend considerable thought just trying to 

understand the nature of the problem and gain insight into the context in which the 

problem exists. This is known as developing situational awareness7 of the problem 

at hand. Understanding the decision situation may be complicated by an environ­

ment that is changing or one where the decision maker has incomplete or imperfect 

information. An end state or goal that is unclear or that is dynamically shifting may 

further complicate the decision problem.

The fourth factor attests to the idea that a decision is rarely just one event. 

There may be several decisions that are needed to reach a specific goal. Each one 

may influence the subsequent ones. Also, as a person gains situational awareness of a 

problem, the knowledge gained acts as feedback to help the decision maker to realize 

a satisfactory choice.

Time stress and high stakes are significant characteristics of naturalistic decision 

situations. Time pressure, in particular, forces a person to take what is known about 

a problem, match it with similar situations encountered in the past, and make a 

decision based on the outcome of a previous experience. This sequence is the heart 

of NDM.

7 Situational awareness and situational assessment are sometimes used interchangeably. Howev­
er, in this manuscript, situational awareness is defined as a state of knowledge while situational 
assessment is the process by which that knowledge is achieved [2].
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The last two factors indicate the NDM encompasses group decision processes 

where organizational rather than personal goals influence the decision outcome. In­

dividual team members may bring unique insight to a problem, which adds to the 

group situational awareness. The collective experience of the group can then lead to 

a decision that satisfies the situation.

The NDM theory can be characterized as a decision cycle where the decision 

maker assesses the situation, formulates a single COA, and tests the COA through 

a mental simulation process to check its outcome. If modifications to the COA are 

necessary, he makes them and rechecks the outcome. The cycle continues until the 

decision maker is satisfied that his chosen COA will solve the problem at hand. This 

decision cycle relies on the decision maker’s ability to use his past experiences to 

recognize what action to take.

2.1.3 R ecognition-Prim ed D ecision M odel

A naturalistic decision model that encapsulates this recognition principle is the Recog­

nition-Primed Decision Model (RPD) put forth by Klein [21]. RPD elaborates on 

the naturalistic decision cycle to describe the cognitive process decision makers go 

through to arrive at a COA. There are seven features that set the RPD model apart 

from classical decision models [22]. They are:

• RPD focuses on situational assessment rather than comparing several decision 

options.

• RPD describes how people use their experience8 to arrive at a decision.

• RPD asserts that an experienced decision maker can identify a satisfactory COA 

as the first one he considers rather than treating option generation as a random 

process.

8Experience includes the periodic situational encounters that reinforce a person’s knowledge and 
any training that he may receive to improve his expertise.
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• RPD relies on satisficing rather than optimizing—finding the first COA that 

works rather than the optimal one.

• RPD focuses on sequential evaluation of COAs rather than on the simultaneous 

comparison of several options.

•  RPD asserts that experienced decision makers use mental simulation to assess 

a COA rather than comparing the strengths and weaknesses of several COAs.

•  RPD allows the decision maker to be more quickly prepared to initiate action 

by committing to a COA being evaluated rather than waiting until all COAs 

are compared.

Decision makers tend to employ RPD in the following situations [19]:

• When time pressure for a decision is great, because only one COA is analyzed 

at a time and an optimum solution is not necessarily sought.

• When the decision maker is experienced in the decision domain. He has more 

life experiences to match against to recognize the situation and to choose a 

satisfactory COA.

• When the decision situation is more dynamic and changes before an analytical 

decision analysis can be performed.

• When goals are ill-defined, which makes it difficult for the decision maker to 

determine solution evaluation criteria.

These four situations have a direct relationship to the eight factors that characterize 

NDM, indicating that the RPD process is a valid example of NDM.

Figure 3 depicts Klein’s model [19] of the RPD process. The process begins with 

the decision maker experiencing the situation and determining if it is familiar. If the 

situation is not familiar, he seeks clarification of the situation (improved situational
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awareness) until he is able to match it with a similar experience. Once he recognizes 

the situation, he will be aware of four byproducts of this recognition: goals, cues, ex­

pectancies, and actions. He will be able to visualize an end state. If events contradict 

expectancies, the decision maker may reexamine his understanding of the situation. 

Once expectancies are consistent with the unfolding events, he will examine possible 

actions one by one. This is another key point of RPD. These options are not com­

pared against one another but are evaluated on their own merits. Klein observed 

that experienced decision makers handled approximately 50 to 80 percent of all de­

cisions in this manner [21]. As each action is examined, the decision maker mentally 

imagines (mentally simulates) how the action will achieve the goal. If he decides that 

the action will work, he accepts it as his decision and implements it. If, during his 

mental simulation, he decides that the action will work with modification, he men­

tally makes the modification, mentally simulates the modified action, and continues 

until the action is either accepted or rejected. If rejected, the decision maker must 

then choose another action and repeat this process. Since he is examining each action 

one by one rather than comparing actions against each other, he may not achieve an 

optimal decision, but will select one that he believes provides at least a satisfactory 

solution.

There are three key decision maker attributes that influence the use of the RPD 

model. The first is experience or expertise with the decision situation. The more 

experienced or familiar a decision maker is with the problem domain, the more likely 

he is to employ RPD to arrive at a decision [19, 21, 22]. An Army general CJTF 

is likely to have significant experience with land warfare and thus would have the 

background to formulate a decision in this domain using RPD. Conversely, a Navy 

admiral CJTF would feel less comfortable making a decision about land warfare 

without first gathering as much background information as feasible before deciding 

on a certain COA since he does not have the career experience in this area. He would
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be more likely to compare COAs using an analytical method to arrive at a decision 

than to recognize an appropriate COA based on his past experience. Or he would 

at least use the analytical method to gain insight into the problem before employing 

RPD to arrive at a decision [19].

The second key attribute is situational awareness (SA). In simple terms, SA is 

the decision maker’s understanding of the context of the decision situation. A more 

complete definition was given by Endsley [28] as “. . .  the perception of the elements 

in the environment within a volume of time and space, the comprehension of their 

meaning and the projection of their status in the near future.” SA is directly coupled 

with experience9 in that experienced decision makers expend more effort trying to 

understand the situation (gain SA) so that they can match the decision situation to 

previous experience as closely as possible [29]. Because they broader experience, the 

ability to  pattern match between previous situations and the current situation sets 

experienced decision makers apart from novices [30].

Endsley [28] proposed a model of SA consisting of three levels:

•  Level 1 SA—Perception of the elements in the environment.

•  Level 2 SA—Comprehension of the current situation.

• Level 3 SA—Projection of future status.

These three levels bear further explanation. Level 1 is the first step in achieving 

SA. A decision maker must become aware of the status, attributes, and dynamics 

of key elements making up the decision situation. Once he understands these key 

elements, the decision maker is then able to synthesize disjoint elements into a holistic 

picture and relate it to his goals. This process constitutes Level 2. Level 3 SA occurs 

when a decision maker is able to take the current holistic picture and project the 

future actions of the elements based on the dynamics among the elements. Novice

9Experience includes both direct personal experience and indirect vicarious experience.
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decision makers may be able to identify the key elements of a situation but it is 

usually only the experienced decision maker that can relate them to one another and 

to project a future outcome.

Endsley’s view of SA is consistent with RPD. Level 1 SA directly relates to the 

first step in RPD, experiencing the situation in a changing context. It is through 

this experiencing of the situation that the decision maker begins to understand its 

context and its relation to past experiences. Level 2 SA is represented in RPD as 

the moment recognition occurs, i.e., the decision maker recognizes the situation and 

he becomes aware of the four byproducts of recognition mentioned earlier. Level 3 

SA relates directly to RPD ’s expectancies and how the decision maker projects the 

situation will play out over the span of its relevancy.

SA can also be thought of as a bridge between perception and cognition [31]. 

Once a decision maker gains SA via the above three levels, he must translate it into 

reasoning, planning, and decision making (cognition), which reflect the action parts 

of the RPD model of Figure 3.

The recognition byproduct, cues, is an important part of experience and SA [30]. 

Cues are derived from both a decision maker’s past experience and the context of the 

current decision situation gained through SA. Cues are the important factors of the 

current decision on which the decision maker is focusing. Cues act as a filter on the 

potentially vast amounts of data that may be reaching the decision maker and allow 

him to focus on only information that is critical to the decision. The use of cues 

by decision makers was noted many years earlier by Brunswick in his lens model of 

decision making [32] and extended by Brehmer and Hagafors in their study of staff 

decision-making [33] and Hollenbeck et al. in their study of team decision-making 

[34].

The third decision maker attribute, mental simulation, plays a significant role 

in RPD. Decision makers use mental simulation to help diagnose a situation. They
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imagine different aspects of a problem and form an explanation or mental picture of 

the problem. It also helps them decide whether the situation is familiar or not (pattern 

matching against previous experience) by mentally examining various aspects of the 

situation’s elements. The end result of this portion of mental simulation is SA over 

the problem.

Mental simulation also helps generate and evaluate expectancies. It allows the 

decision maker to mentally examine events as they might occur so as to understand 

the end result of a particular option. He can also determine the accuracy of his 

mental simulation by checking how well his expectancies were satisfied. The fewer 

the number of expectancies satisfied, the less confident a decision maker would be 

about his mental simulation and diagnosis.

Once a decision maker has diagnosed the problem and generated expectancies, 

he uses mental simulation to sequentially evaluate solution options. Each option is 

mentally played out until one is found that satisfies the situation.

In summary, the RPD model is a naturalistic decision making model tha t explains 

how a decision maker uses his past experience and mental simulation to recognize a 

situation, develop expectancies about the situation, sequentially analyze COAs, and 

choose one that provides a satisfactory outcome.

2.2 M ilitary decision making

The types of decisions that a CJTF makes can be summed up in two general cate­

gories. The first are decisions for selecting and executing military actions to achieve 

joint force objectives. The second are decisions regarding the allocation of resources 

to those actions [4], To aid him in making these decisions, the Department of De­

fense (DoD) has adopted a set of steps known as the estimate process to help guide 

military commanders in COA analysis and selection [4], The estimate process steps 

are as follows:
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• Determination of the mission. This includes mission analysis where the National 

Command Authority’s (NCA) guidance and objectives are taken into account 

and the generation of a mission statement that describes the essential tasks to 

be accomplished and the purpose to be achieved.

•  Situational assessment and COA generation. COAs should outline an ordered 

set of operational tasks to be accomplished, the forces required, a logistics 

concept, a deployment concept, an estimate of time to achieve the objectives, 

and a concept for reserve contingencies.

•  Analysis of opposing COAs. Determine the possible impact of enemy COAs on 

the success of each friendly COA. Develop a list of advantages and disadvantages 

for each friendly COA.

• Comparison of friendly COAs. Evaluate the advantages and disadvantages of 

each. Refine COAs as necessary.

• Decision. The CJTF chooses the best COA and implements it.

The estimate process provides a framework upon which more detailed planning 

steps are built. Specifically, the Deliberate Planning process and the Crisis Action 

Planning (CAP) process follow the outline of the estimate process. They are the 

formal processes the CJTF uses in his planning [35].

Deliberate planning is, as its name implies, a methodical procedure to assess 

and prepare for probable warfare contingencies that a CJTF faces in his theater of 

responsibility. Steps include initiation, concept development, plan development, plan 

review, and supporting plans. This type of planning takes place over several months 

and results in a general operational plan for the relevant contingencies.

CAP, on the other hand, spans a much shorter time, usually over hours or days, 

and addresses a specific problem that requires a military solution almost immedi-
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Figure 4. The decision-making cycle in the OODA model [36].

ately. It has 6 steps that include: situation development, crisis assessment, COA 

development, COA selection, execution planning, and execution.

While deliberate planning involves the CJTF, most of the operational decisions 

that he encounters occur under the CAP process. CAP requires the CJTF and his 

staff to gain SA on the mission, to develop and analyze COAs, and for the commander 

to decide on the best COA to follow. This process is the essence of joint operational 

planning. It provides the necessary information for a CJTF to make operational 

decisions.

Rather than CAP being a finite process with a specific beginning and end, one can 

think of it as a continuous process following the pattern of observe, orient, decide, act 

or “OODA loop.” The OODA loop is depicted in Figure 4. The OODA model was 

introduced in 1987 [37] as a way to describe military decision-making and has been 

accepted by the Joint Chiefs of Staff (JCS) as a valid representation of the military
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decision process [36].

The CJTF observes the results of his decision and these results are fed back into 

the loop for analysis, more decisions, and further actions. The cycle continues until 

the crisis is resolved.

Figure 5 represents a more detailed depiction of the OODA model. There are 

several parallels between it and the RPD model. They both begin with observing the 

situation at hand. Once observed, both models have the decision maker going through 

an orient phase where he tries to relate the situation to past experiences. The RPD 

model goes one step further at this point. It includes mental simulation; a process 

that an experienced decision maker uses to refine a COA that he intuitively feels is 

the best. The OODA model is not clear on how a decision maker examines COAs, 

only that an analysis is done (a weakness in thoroughly explaining the human decision 

process). Also, the OODA model does not limit the decision maker to examining one
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COA only, which is what most experienced decision makers do [19]. Following this 

step, both models indicate a decision is made and action is taken to implement that 

decision.

Both models rely heavily on feedback. In the OODA model, a decision maker 

uses feedback from his decision and resulting action to modify experience and thus 

influence future decisions. Decision maker actions in the RPD model are much the 

same, using feedback to refine an intuitive COA choice, observing the results of a 

decision, and using those results as input to future decisions.

While the estimate process, deliberate planning, and CAP describe methods a 

military decision maker should follow to make decisions, they do not account for 

the psychological aspects of how an expert, in this case a CJTF, cognitively makes 

decisions. They follow along the path of how decisions are described in classical 

decision theory. The RPD model, on the other hand, was derived from observation of 

expert decision makers [19] and depicts the cognitive processes they use to arrive at 

decisions. This model has been shown to be valid in the military domain [21, 23, 39, 

40, 41] where military decision makers employed RPD in at least 60% of the decision 

situations presented to them. This fact is not surprising since most CAP decisions 

are made under time pressure by experienced decision makers in dynamic situations 

with often ill-defined goals.

As an illustration, Kaempf et al. [40] observed how naval officers aboard an 

AEGIS cruiser made decisions in the complex, time-pressured environment of the 

ship’s Combat Information Center. They found that the officers employed RPD in 

about 95% of their decision situations.

This section has described the doctrine guiding joint service military decision­

making. As shown, a structured process of COA development and analysis officially 

characterize it. However, generating multiple COAs for selection is not the method 

employed by most experienced military commanders when arriving at a decision.
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They may use the COAs to gain insight into the problem at hand. But, when it 

comes to making a decision, a CJTF will rely on his assessment of the situation, his 

past experiences that have made him a military expert, and his ability to intuitive­

ly recognize a satisfactory COA that will ultimately lead him to a decision. This 

decision-making procedure is captured in the RPD model.

2.3 C om putational techniques for im plem enting the C JTF decision pro­

cess

“The modeling of cognition and action by individuals and groups is quite 

possibly the most difficult task humans have yet undertaken [2], ”

It is one thing to develop a conceptual or mathematical model of how experienced 

individuals make decisions. It is quite another to implement that model on a comput­

er through a set of algorithms. In essence, one must attem pt to emulate the human 

brain’s intricate processes of gathering, storing, and assessing information, setting 

goals, developing expectancies, performing mental simulation, and arriving at a deci­

sion. This section will review the techniques that have been developed and applied to 

implement computational models of human decision-making. It will compare them 

to the human decision processes described in RPD to determine how well they model 

decision-making. It will look at past methods used to implement a CJTF decision 

process and it will also look at ways in which others have attempted to implement 

the RPD model.

2.3.1 Finite sta te  m achines and Markov Chains

Finite state machines (FSMs) are computational models that can be used to simulate 

human decision-making.10 They consist of a set of states linked together by transition

10In this context, FSMs are a specific implementation of the more generalized system called finite 
state automata (FSA). FSAs are studied in the context of formal computing systems.
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functions. Each state represents a condition of a FSM’s environment. States can 

have associated with them one or more actions to be accomplished once that state 

is reached. The transition functions govern what state is visited next based on the 

occurrence of a particular event within the previous state [42].

In the context of decision models, finite state machines can be thought of as 

a means of abstracting a decision into a set of states with each state representing 

one element leading to a decision. Figure 6 depicts a simple FSM where the circles 

represent the states and the arrows connecting the circles represent the events that 

cause a transition from one state to another. In this example, the FSM represents a 

C JT F’s decision on when to order an attack. Planning occurs first. Once the planning 

event is complete, forces are assigned. If the forces are ready, then they are ordered 

to attack. If not properly trained, they transition to a training state until they are 

trained and then they are ordered to attack. This simple example illustrates the 

concept of how a FSM is used to model a set of elements leading up to the decision 

to attack.

A Markov chain is an adaptation of a FSM where the transitions among states are
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probabilistic in nature. Instead of transitioning from one specific state to another in a 

deterministic manner, variability is added through a stochastic method of determining 

the next state.

Modular Semi-Automated Forces (ModSAF) is one military simulation that uses 

FSMs to simulate human behavior and decision-making [2, 43]. ModSAF’s design is 

centered on the concept of tasks. In general, one can break complex military oper­

ations up into a series of individual or group tasks. These tasks represent behaviors 

and decisions of the simulated forces. Each task within ModSAF is implemented 

using a FSM. The actions necessary to accomplish the task correspond to the states 

within the FSM.

To date, no researchers have produced a model of the human decision process 

using FSMs. One disadvantage that hampers using FSMs to simulate complex human 

decisions is that the number of states can grow exponentially with every new event 

that is considered. This may hamper FSM’s ability to scale to a size where realistic 

behavior modeling is possible [44].

2.3.2 R ule-based M odels (Expert System s)

Rule-based models replicate intelligent behavior by executing a base of knowledge 

containing If-Then logical constructs. These rules represent the sum total of con­

ditions and actions to which the model can respond. Expert systems are the most 

common form of a rule-based model. Figure 7 depicts a typical expert system struc­

ture. The heart of the system is the knowledge base. The If-Then rules reside there. 

The inference engine is software that searches the knowledge base and locates the 

appropriate rules to follow for the decision at hand based on the data that is input to 

the model. It also provides a means of tracing the logic so that one can see exactly 

how the system arrived at the decision.

One of the difficulties in using a rule-based system to model human decision-
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making is in the ability to generate the knowledge base. It is difficult to get human 

experts to express their expertise in a series of If- Then rules. Once the rules are 

extracted, it is likely that they will be incomplete and inconsistent [45].

Another difficulty is the inflexibility of the system to adapt to a changing context. 

If the model encounters a decision situation that does not exactly match what has 

been captured by the If-Then rules, no rule will “fire” i.e. be chosen. This may lead 

to no decision or a default decision that is inappropriate for the situation [2].

SOAR is a rule-based model that attem pts to overcome a rule-based system’s 

inability to account for a changing situation by adding a learning capability [46]. 

SOAR is goal-oriented much like human decision makers. When presented with a 

decision situation, SOAR identifies a goal and searches through its knowledge base 

of If-Then rules for a set of rules to achieve that goal. If it is unable to find a 

sequence of existing rules to achieve that goal, it will set up subgoals that generate 

actions that can be executed to see if the ultimate goal can be reached. In this 

manner, SOAR overcomes the limitation of having all its knowledge captured before 

the start of the decision process. The subgoal logic that leads to achieving the final
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goal is added to the knowledge base as another set of If-Then rules, thus achieving 

a learning capability. The technique used to combine existing rules into new ones is 

called chunking.

SOAR has the ability to model a type of erroneous human decision-making. When 

a decision maker misperceives the decision environment, it often leads him to make 

the correct decision about the wrong problem. That is, if his SA of the situation is 

not consistent with reality, he may make a decision that is correct for the perceived 

situation but incorrect for the real situation. This type of error has been termed 

sensation error [47].

To recognize the decision situation, SOAR has a module that attempts to perceive 

and assess its environment [2]. It then uses this perceived state as the starting point 

for its decision search. A misperceived state could propagate through the model, thus 

providing a realistic representation of sensation error.

SOAR has been used in many instances to implement decision-making in military 

simulations. One example is TacAir-SOAR, which uses the SOAR decision-making 

scheme to model tactical military pilot decisions in various combat situations [48].

2.3.3 Case based reasoning

Case based reasoning (CBR) is a technique in which knowledge is represented as 

a compilation of individual cases. One can think of this library as a storehouse of 

solutions to previous problems that can be used as a starting point to solve new 

problems.

A case is a set of features containing three major parts: the problem-situation 

description that describes the state of the situation at the time of the case, the 

solution that specifies what was decided and in some cases how it was decided, and the 

outcome, which contains the state of the situation after the solution was implemented 

[49, 50].
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Proper indexing is critical to retrieving the right set of cases to help solve a new 

decision problem. In her work on CBR, Kolodner [49] proposed four characteristics 

for choosing indexes:

1. Indexes should be predictive.

2. Indexes should be abstract enough to make a case useful in a variety of future 

situations.

3. Indexes should be concrete enough to be recognizable in future cases.

4. Predictions that can be made should be useful.

To be predictive, an index should contain problem descriptors that are responsible 

for part of the outcome of a case. For example, if having a particular weapon for a 

battle helped ensure a victory, then that weapon should be a predictive index for 

success in similar battles.

Achieving the proper level of abstraction is critical to having a useful index. In the 

above example, having a particular class of weapon may have been just as successful 

in achieving victory thus broadening the number of cases for which it could provide 

a satisfactory solution. One must be careful, however, to ensure that the index is not 

too abstract, which could lead to false selection of cases.

It is unlikely that the closest-matching retrieved case will perfectly match the 

target case. At this point, the CBR model applies built-in rules to try and adapt the 

retrieved case to its target. These rules are generally domain specific. CBR models 

can only tailor themselves to the domain space bounded by these rules.

CBR models have two appealing properties. They contain explicit references to 

past decision maker experiences which, as pointed out earlier, is a key aspect of 

human decision-making [19]. CBR models can also be used when no valid domain 

model exists, i.e., when the only information about a decision domain rests in the
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known cases. Since CBR essentially constructs its domain space dynamically through 

its adaption rules, CBR can be used to model complex systems where it is extremely 

difficult to generate a valid domain model beforehand.

While there haven’t  been any implementations of decision models in military sim­

ulations using CBR, other domains have employed it to develop decision models. One 

example is the construction industry. They used CBR to predict the outcome of con­

struction litigation based on features of previous litigation cases. Their prediction 

rate reached 83%, which led to better construction planning before the fact, thus 

saving significant money for the construction companies [51].

Gilboa and Schmeidler [52] have proposed a new decision theory based on the 

CBR technique called Case-Based Decision Theory (CBT). Their theory takes the 

concepts of CBR and expands them to cover all aspects of human decision-making. 

CBT is similar to RPD in that it relies on past experience as the basis of decisions 

and it argues that most human decisions are not optimal but most likely satisficing 

in nature since a person may not possess the experience to recognize the optimal 

decision but can recognize one that will work.

2.3.4 Neural networks

Neural networks (NNs) are algorithmic models of the human brain that are based on 

fundamental neuroscience principles of how the brain functions. They are composed 

of elements called neurons, which take as input the summed signals from other inter­

connected neurons. Once the summed signals reach a specific threshold, the neuron 

“fires” and passes its output on to other neurons connected to it. Connection weights 

are numbers that represent the connection strength between neurons and serve as the 

collective memory of the network [53].

The network consists of multiple layers of neurons with one input layer that accepts 

data from the environment, zero or more hidden layers, and an output layer (Figure 8).
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The number and the configuration of these layers determine the processing capability 

of the network.

Each neuron receives input values that are either continuous, falling in the interval 

[0,1] or [-1,1], or discrete, taking on values {0,1} or {-1,0,1}. An activation function 

associated with each neuron acts on these inputs to produce a single output value for 

that neuron. Typical activation functions are:

f ( x )  = ——-—
w  l  + e~x

or

f i x ) — tanh (x)

Each connection has a numerical weight Wij that specifies the influence of neuron 

Uj on neuron n,. If the weight is positive, there is a positive influence and vice versa. 

Each neuron computes its activation value a* by taking as input to its activation
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function the weighted sum of all other neurons that are inputs to it:

n

Si =  2̂ wi,juj
j=0

di  =  f {S i )

Once a neural network is constructed, it must be trained to make proper deci­

sions (provide proper output) for a given set of inputs. This training is typically 

accomplished through training data consisting of inputs and their associated output- 

s. Inputs are supplied to the network. They are propagated through the network 

resulting in an output. That output is compared to the expected output and an 

error is calculated based on their difference. This error is propagated back through 

the network via a gradient descent algorithm and the interconnection weights are 

adjusted to minimize the error. The input is once again applied. The output is again 

compared to the expected output and the minimization cycle continues until the error 

is reduced to some acceptable value. This error correction process is known as back 

propagation.

Once the network is trained with sufficient data to cover the plausible set of 

expected inputs, it should theoretically provide a proper output (decision) when input 

data is presented to it. A significant advantage to a neural network is its ability to 

take incomplete or distorted (noisy) data and still produce an output that is similar 

to one that would have resulted from perfect input data. In this manner, it can 

provide satisfactory decisions based on the uncertain and highly dynamic conditions 

that exist in a complex warfare scenario [40].

A NN is very good at recognizing underlying patterns in data [53]. Therefore, it 

could be a useful tool to implement the recognition part of RPD. However, a signif­

icant amount of training data would be required to properly prepare the network to 

recognize situations over the entire domain of joint warfare. NNs would also have to
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be enhanced with other techniques to allow them to learn new situations. Addition­

ally, after the NN recognized the situation, further processing would be required to 

determine a satisfactory COA. This step could be accomplished through another NN 

or through other logical techniques such as rule-based reasoning discussed earlier, or 

by using a fuzzy inference system [40] to be discussed in the next section.

One effort attempted to implement RPD using a NN approach [54]. Here, the 

NN performed the RPD tasks of situational awareness and COA selection. To train 

the network, 12 military experts were each shown 12 different scenarios and were 

asked to devise plans to achieve the goals of each scenario. The scenario starting 

data and the resulting plans generated by the experts were then digitized to form the 

training data. Once the network was trained, the researchers input new scenarios to 

it and had the military experts analyze the network’s solutions. Results from these 

tests showed that the NN was a viable tool to implement RPD. However, it had 

certain shortcomings. Mental simulation, a key factor in RPD, was not implemented 

in this work. Therefore, there was no mechanism to take a marginal solution and 

refine it to one tha t was more acceptable. Also, perfect scenario data was used as 

an input to the NN. In reality, a military commander would rarely have perfect data 

on which to recognize the situation. The NN did not take into account individual 

commander personalities and preferences. These factors must be addressed to have a 

more accurate and complete model of a commander’s decision-making process.

2.3.5 Fuzzy logic and fuzzy inference system s

Fuzzy logic is a revision to classical set theory. It is based on the thought that 

humans don’t necessarily categorize information in a crisp manner. Rather, they 

describe conditions in terms of fuzzy conditions [55]. For example, if you asked a 

person how he decides when to turn up the thermostat on the heater, he most likely 

will say, “When I feel cold.” He probably will not say, “Oh, I do it when I think it is
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68°F.” If asked the same question, a second person would give a similar answer but 

his idea of what cold is will probably differ from the first person. In this case, cold 

is a fuzzy value that has some degree of membership in a set, unlike in classical set 

theory where an object is either in or not in the set. The degree of membership is 

based on a defined membership function on the interval [0,1] with zero representing 

fully not in the set and one representing fully in the set. A value in between would 

specify the degree of membership, e.g. 68°F is 40% cold.

Once fuzzy variables have been designed, one can set up fuzzy inference rules that 

can be used as a logic structure for decision-making. This technique is similar to a 

rule-based system except that different rules may fire based on how a fuzzy variable 

value is chosen. The following is an example of a possible fuzzy rule that may be 

modeled for an operational decision by a CJTF:

I f  the weather is acceptable and troop strength is high and supplies are

adequate,

then authorize the attack,

else wait to satisfy the conditions.

Because of the fuzziness in the variables(weather, troop strength, supplies), multiple 

rules may fire for a given decision. In that case, a method to combine rule outputs 

must be devised so that the simulation can choose a single action representing the 

commander’s decision.

One other concept, defuzzification, must be explained. At times, discrete values 

may be required to control some action. While humans understand vague terms such 

as “Turn the handle to the right a little,” a computer must have a discrete value to 

execute that action. Defuzzification employs an algorithm to convert a fuzzy value 

to a discrete value to be executed by the computer. This algorithm can significantly 

affect how actions are carried out and must be chosen carefully to achieve the desired 

decision-making realism.
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Clearly, fuzzy inference can be used as an enhancement to a rule-based decision 

model to provide more human-like characteristics. It could also be used to help gen­

erate a human perception of a decision situation. Instead of dealing with discrete, 

digitized data, fuzzy variables could be used to describe the situation (situational 

awareness) in terms of how a human perceives it. This perception could then form 

the basis of an input to a NN to generate a COA. Robichaud [56] did just that by ex­

tending the NN with fuzzy inference rules in [54] with favorable results. However, his 

decision model still did not account for mental simulation or commander personality.

While not a specific implementation of RPD, Vakas et al. [57] used fuzzy rule sets 

to implement decision-making in the Commander Model (CM) and the Commander 

Behavior Model (CBM) of the Joint Warfare System (JWARS). These rule sets were 

used in CM to assess situations, to determine doctrinal reactions to situations, and 

to determine the likelihood of achieving an objective in a given situation. The CBM 

added four other fuzzy rule sets concerned with commander personality and the rating 

of intermediate actions used to achieve a goal. Their decision-making model essential­

ly accounts for all parts of RPD with one exception. It considers multiple COAs all 

at once and tries to optimize the selected action rather than using mental simulation 

on a single COA to achieve a satisfactory set of actions to achieve the stated goal. 

Also, all portions of the fuzzy rule sets mentioned above have not been completely 

implemented so complete performance results of their model are not available.

Combining fuzzy logic with neural networks shows promise as a decision-modeling 

tool. It uses the strengths of these two concepts to form a nemo-fuzzy system for 

decision-making. George and Cardullo [58] used this technique to model the decisions 

pilots made to position their aircraft to track other aircraft. NNs were used to learn 

the responses pilots made to various tracking situations. The NN then categorized 

these responses into seven fuzzy responses that were used to decide how the control 

model would respond. They achieved results comparable to the human decision re­
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sponses except when only small error adjustments needed to be made. They surmised 

that using smaller fuzzy sets near the zero point as well as more fuzzy inference rules

would correct the problem.

2.3.6 M u lti-ag en t sy stem  sim u la tion

I ’ll call “Society of Mind” this scheme in which each mind is made of 

many smaller processes. These we ’11 call agents. Each mental agent by 

itself can only do some simple thing that needs no mind or thought at 

all. Yet when we join these agents in societies— in certain very special 

ways—this leads to true intelligence [59].

The above quote is from Marvin Minsky, a mathematician and computer scientist 

who developed a theory about how the human mind actually works. His research lends 

credibility to the hypothesis that human decision-making can be modeled using multi­

agent system technology. He theorized that the human mind is made of many thought 

processes or agents. When combined together, these agents form an intelligent being. 

Modeling the human decision process using MAS is based on this premise.

To ensure a common understanding of MAS, the following definitions are provided:

A gen t. An autonomous, computational entity that perceives its environment through 

sensors and acts upon that environment through effectors to achieve goals.

M u lti-ag en t system . A system in which several interacting, intelligent agents pur­

sue some set of goals or perform some set of tasks [60].

M A S sim ulation . A bottom-up modeling technique that uses diverse, multiple a- 

gents to imitate selected aspects of the real world system’s active components 

[61].

MAS is a relatively new field that has its origin in several disciplines, the two most 

important ones being distributed artificial intelligence (DAI) and artificial life (A-
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Life) [62]. DAI is a sub-field of artificial intelligence (AI) dealing with defining and 

constructing multiple intelligent systems that interact. A-Life can best be described 

as “abstracting the underlying principles of the organization of living things and 

implementing them in a computer so as to be able to study and test them [63].”

MAS simulations can be used as a bottom-up approach to modeling complex and 

ill-defined problems. The appeal of MAS simulations for modeling the human decision 

process lies in their ability to leverage the emergent behavior11 of several individual 

agents to discover a new path to a solution not previously envisioned by the simulation 

designer. This is possible due to the many interactions that can take place among 

multiple agents. The result of these interactions are not explicitly defined at the 

start of the simulation but evolve as the agents encounter one another and their 

environment. Human decisions are based on past experiences and understanding of 

the current decision situation, i.e. they are unique to the person and could be as 

numerous as the number of people faced with the decision. A MAS simulation can 

enhance the ability to produce a human decision model because it can generate many 

unique options that rival the ones humans are capable of generating. MAS simulations 

promote adaptive behavior in a rapidly changing world much the way humans adapt 

their decisions based on the context of the situation they are experiencing.

In keeping with Minsky’s concept of many agents acting together to define the 

human mind, researchers at Naval Postgraduate School have developed the concept 

of a Composite Agent (CA) [64], A CA is composed of a combination of cognitive 

Symbolic Constructor Agents (SCA) and Reactive Agents (RA) that work together to 

define a complex agent entity. A CA can be programmed to simulate an individual 

decision maker with specific goals to achieve, actions to take, and a personality to 

influence decisions.

A description of the CA architecture is in order. As depicted in Figure 9, a CA

11 One can think of emergent behavior as a complex pattern of actions that are generated at run 
time from the simple behaviors possessed by the individual agents.
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SCA 14

F ig u re  9. Composite Agent [64],

has one or more SCAs and RAs. SCAs perform the role of sensing and interpreting 

the CA’s environment. They gather sensory input from the CA’s environment, Eouter, 

and build a symbolic inner environment, E inner, that represents how the CA perceives 

its surroundings much the same way humans use their senses to experience their 

surroundings and form a perception of them. The SCAs also act as a filter so as 

not to overload the CA in a sensory-rich environment. Einner can be controlled to 

represent only the information normally available to a decision maker through his 

information gathering process. It is most likely not a one-for-one mapping of Eouter 

to Einner. This realistically portrays how decisions are made based on the perceived 

environment. This internalization can lead, as in reality, to incorrect decisions when 

the perceived situation does not closely match the actual situation. This perceived 

environment is a key attribute to have in a model of human decision-making [47].

RAs use Einner generated by the SCAs to select actions for the CA to perform. 

CAs include multiple RAs, each one responsible for a particular CA behavior. RAs 

have one or more goals that drive the selection of a particular action. W ith multiple
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RAs, CAs can have many goals vying for attention just as human decision makers 

must contend with competing goals. These goals constantly shift in priority based on 

the dynamic nature of the perceived situation. The CA contains a variable goal man­

agement process contained within the RAs that closely mimics a human’s flexibility 

and adaptability in dealing with changing situations [64]. This structure allows a CA 

to rapidly adjust its selected COA based upon how quickly a given decision situation 

is changing.

Goals consist of four components: state, measurement method, weight, and actions 

for achieving the goal. The goal’s state indicates if it is active, dormant, or in some 

other domain-specific state. The measurement method uses the sensory input from 

the SCAs to calculate the strength of a goal and how well it is being satisfied. This 

is the mechanism that allows the agent to prioritize its goals and adjust them to the 

situational context. Goal weight is a measure of priority and importance. It can 

be updated based on agent experience to replicate reinforced learning. The action 

set are those steps the agent must accomplish to attain the goal. CA goals directly 

relate to RPD goals. In the RPD model, a decision maker has specific goals that are 

byproducts of the recognition process. The goals are what he is trying to achieve and 

govern the actions he selects to achieve them. CAs perform the same way. Goals 

guide the CA by influencing its choice of actions to achieve the desired end state.

The action steps necessary to achieve a goal must be related to the context of the 

situation that the agent is experiencing. To accomplish this, a data structure called 

tickets was developed. It encodes the procedural knowledge necessary to accomplish 

the actions associated with each goal. It ensures that these procedures have some 

doctrinal structure to prevent agents from adapting so radically that they take actions 

not consistent with plausible military operations.

For any given goal, there may be several COAs to follow to achieve it. Selecting 

the most appropriate COA to fit the particular context of the situation is the job
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of devices called connectors. As Hiles et al. state [64]: “Connectors are a way to 

associate impressions, ideas, and actions with a given context and achieve a logical 

sequence of behavior.” Their main function is to ensure the most appropriate action 

is chosen to satisfy a goal given the specific context of the decision situation. In RPD, 

this replicates how an experienced decision maker distinguishes among subtle nuances 

of similar situations and “knows” which set of actions to take that are appropriate to 

those subtle differences.

CAs also have a built in learning process. By associating a weight value with 

actions used to achieve a goal, they can ignore actions that do not further their goals 

and more frequently employ those actions that do. This simple reactive learning 

process is similar to a human using his experience about what works and what does 

not work in a situation to know what to do when a similar problem presents itself.

The CA’s design closely matches components of the RPD model and appears to be 

a viable tool with which to implement RPD. The following paragraphs compare the 

previously defined characteristics of the RPD model to those of a CA. The numbers in 

parenthesis after the paragraph headings refer to the seven RPD features mentioned 

in Section 2.1.3.

A dapts to  changing situation  (1,7). The RPD model is context sensitive. It has 

feedback mechanisms that continually monitor the situation and refine a deci­

sion maker’s response based on the changes. CAs do the same by constantly 

evaluating the inner environment sensed by the SCAs and shifting their goal 

priorities to respond to the perceived situational changes.

Based on experiences (2). The foundation of RPD is that human decisions are 

greatly influenced by their direct and vicarious experiences, which provide a 

knowledge base for recalling or recognizing past decisions and their contexts. In 

a similar manner, CAs contain data structures that encode individual experi­

ences along with representation of the doctrinal procedures that help to balance
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an agent’s actions.

Accounts for personality (2). Because RPD is based on a decision maker’s per­

sonal experience, it incorporates his tolerance for risk, his mental state, and 

possibly his physical state. CAs are able, through data structures, to encode 

these individual personality traits and have them influence the outcome of a 

decision.

Sensory data filte red  by cues (2). A realization of relevant cues is a byproduct 

of situational recognition in the RPD model. These queues help focus the 

decision maker on the important information necessary to monitor the situation. 

Similarly, one can program SCAs to focus on specific aspects of the sensed 

environment to prevent sensory overload of the RAs.

Satisfies vice optim izes decisions (3,4,5,7). Another key tenet of RPD is that 

experienced decision makers look for satisfactory vice optimal decisions. They 

tend to use the first set of actions that adequately solve a problem without 

conducting an exhaustive search for better alternatives. CAs act the same way 

because their goal management process does not perform a complete search for 

an optimal solution, but will choose one based on some base set of criteria.

Em ploys m ental sim ulation (6). RPD regards mental simulation as the process 

used by decision makers to modify previous experiences into a COA to meet 

the particular requirements of an existing situation. While CAs don’t perform 

mental simulation explicitly, they do have data structures that allow them to 

recall past experience, and through their inherent capability to discover unique 

sequences of action, they could be thought of as performing mental simulation. 

Further modification of RA behavior would more fully implement this concept.
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2.3.7 Other R P D  im plem entations

The above sections have reviewed the computational techniques that can be used 

to model the human decision process. This section specifically addresses how these 

techniques have been used to implement the RPD model.

Researchers from Micro Analysis and Design and Klein Associates have imple­

mented parts of RPD using a data structure to encode a decision-maker’s long-term 

memory (LTM). LTM holds the person’s experience and is the basis for situation­

al recognition in the model [65]. Their approach to simulating LTM is based on 

Hintzman’s multiple-trace memory model [66]. As an agent experiences its environ­

ment, it leaves behind a trace of the experience. These traces are stored in the LTM 

database and represent the sum total of the agent’s experience. As a new situation 

is encountered, it is compared with each experience in LTM. A similarity value is 

computed and is used to “recognize” a closely related experience and its associated 

COA. This modeling approach has been implemented in a test bed environment, and 

while not a complete model of the RPD process, it shows promise in forming part of 

a computational representation of RPD.

Researchers at NASA Ames Research Center developed MOCOGl [56]. This 

simulation implemented RPD using heuristic rules written in the declarative logic 

programming language Prolog. While their effort appears to have successfully im­

plemented RPD in an algorithmic form, since it was rule-based, it was limited in 

its decisions by the explicit rule set programmed into the model. It was employed 

in a static environment and therefore not suitable to simulate the complex dynamic 

environment of operational level warfare.

Scientists from the University of Melbourne [67] have begun an implementation of 

RPD using a form of MAS simulation called a Belief-Desire-Intent (BDI) agent. BDI 

agents evolved from the theory of practical reasoning developed by Michael Bratman 

[68]. His theory focuses on how human intentions influence reasoning and action. One
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can describe the BDI model as follows. Belief is analogous to situational awareness 

and represents the agent’s interpretation of its environment. Desire can be thought of 

as an agent’s goal structure. Finally, intent is the plan currently in place to achieve the 

active goal. Similar to this author’s contention, Norling et al. believe BDI agents have 

characteristics of the RPD model (goal driven, action oriented). Their current work 

revolves around an agent’s ability to recognize subtle differences between situations 

so that the first step in the RPD model (proper diagnosis of the situation) can be 

realized. Their model has not yet successfully implemented this process.

As noted above, the BDI implementation of the RPD model is focused on accurate 

modeling of situational awareness and goal achievement. It does not include other 

aspects of RPD such as personality and mental simulation as will the CA implemen­

tation. Additionally, CAs handle the cue and expectancy parts of the RPD model. 

These parts of the model are not addressed by BDI.

2.4 Summ ary o f the state-of-the-art

This section presented an overview of the relevant theories that have emerged to de­

scribe human decision-making. Until the late 1980’s, human decision characterization 

was dominated by classical decision theory, a theory that stated humans always made 

decisions in a logical manner that maximized the decision outcome value. It provided 

a means to calculate decision outcomes in terms of probabilities of risk and uncertain­

ty. It focused on the decision outcome itself rather than on the context that described 

the decision situation. Utility theory was incorporated to account for tolerances of 

individual risk preferences since each person has a unique threshold for accepting a 

particular decision outcome.

Classical decision theory came into question when research showed that humans 

do not necessarily make decisions in a logical manner. Few people spend time per­

forming decision optimization calculations and many decisions can not be formulated
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in mathematical terms. Personal biases also influence decisions and tend to drive hu­

mans away from the purely optimal choice because of many competing factors. This 

led researchers to investigate more thoroughly how humans actually make decisions. 

As a result, the theory of Naturalistic Decision Making was developed.

NDM is based on the intuitive steps a person follows in reaching a decision rather 

than on a mathematical process for computing optimal outcomes. Decision makers 

tend to make decisions under the NDM paradigm rather than using analytical means 

when problems are ill-structured; the decision environment is rapidly changing; and 

when decisions must be made under time stress and involve high stakes. The more 

experience a decision maker has in a particular decision domain, the more likely he is 

to employ NDM since his experience provides for a significant intuitive feel of which 

COA should be chosen. The RPD model was formulated to instantiate NDM in a 

formal manner and represents the decision process of an experienced decision maker. 

Since senior military commanders, e.g., CJTFs, are considered expert in the art and 

science of warfare, RPD is a valid model for describing their decision process. RPD 

has been validated in the military domain.

Several computational methods exist for implementing the human decision pro­

cess. Rule-based models have been used in the past for the majority of military 

simulation decision modeling. Since it is very difficult to define a set of rules that ac­

count for all decisions that s simulated military commander must make, models based 

on this approach tended to be too predictable and inflexible. Neural networks, fuzzy 

logic, and case based reasoning are techniques that have been employed to increase 

the robustness of military simulation decision models and have succeeded in varying 

degrees.

Multi-agent system simulation has just begun to be used to implement decision­

making in the military simulation domain. The concept of a composite agent was 

derived from MAS and has characteristics that closely match the RPD model. It
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3 RESEARCH PROJECT

From review of the background material in Section 2, RPD was chosen as the most 

appropriate cognitive model to represent a senior military commander’s decision pro­

cess. MAS simulation, including composite agents, was chosen to implement RPD 

because of the close match between MAS simulation characteristics and the concepts 

of RPD. RPD Agent is the MAS simulation that resulted from this implementation.

This section describes RPDAgent from its design process through its implemen­

tation. It also details the validation approach taken to ensure an accurate model. It 

concludes with an analysis of the research data and the associated statistical results.

3.1 R P D A gent design and im plem entation

RPDAgent design was focused on implementing the various portions of RPD in a 

computational form. These parts included modeling human experience, capturing 

the recognition process including its byproducts of goals, cues, expectancies, and 

actions, and implementing the action evaluation and selection process. Model design 

started with a formal MAS simulation engineering process to develop the architecture 

needed to describe the RPD model. This architecture formed the basis for writing 

the software code necessary to implement the cognitive behavior described by RPD. 

A decision scenario was also developed to provide for a limited scope experience base 

on which to test the model.

3.1.1 R PD A gent Architecture D esign

When designing a complex software system, it is important to follow a formal design 

process to ensure that system design goals are met. This is especially true when 

designing MAS simulations with their complex interactions and their numerous agent 

states. One such process, and the one used for RPDAgent, is that of DeLoach [69, 

70]. DeLoach’s MAS engineering approach consists of a project analysis phase and a 

project design phase. The analysis phase includes: identifying system goals, applying
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use cases, and refining roles. The design phase maps the analysis products to agents by 

creating agent classes, constructing agent communication, assembling agent classes, 

and defining system deployment.

The first step under the analysis phase, capturing goals, takes the system speci­

fication (RPD model) and maps it into a set of goals, which the MAS must achieve. 

This step is crucial to ensuring that the overall system design goals are met. For 

RPDAgent, system goals consisted of:

•  Controlling system initialization and execution.

• Recognizing the decision situation facing the model.

•  Constructing an internal representation of an external environment.

•  Constructing a representation of the current decision and coordinating a deci­

sion action.

•  Evaluating potential decisions against agent goals.

Once system goals were identified, use cases12 were developed. They define how 

the system should behave in a given situation and help define the role agents must 

play to produce the desired model performance13. RPDAgent’s use cases consisted 

of:

•  Producing a decision from a given set of inputs.

•  Reevaluating a decision when the initial inputs change or when new inputs are 

presented.

Use cases also represent a sequence of events between roles. This event representation 

defines the minimum set of communications tha t must take place among the agents.

12Use cases are a sequence of events that define desired system behavior.
13A role is an abstraction of an entity’s function. The concept of a role is similar to that of an 

actor in a play.
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Table 3. Roles and associated agent classes
Role A gent Class
System management MainAgent
Recognition functions RecognitionAgent
Internalization of Environment SymbolicConstructorAgent
Decision coordination DecisionAgent
Decision evaluation ReactiveAgent

Roles for RPDAgent include: system management, recognition functions, inter­

nalization of the external environment in a way that mimics human internalization, 

decision coordination, and decision evaluation.

Role refinement consisted of developing tasks that defined role behavior. These 

tasks represent high level agent behavior that will be transformed into detailed agent 

functionality once specific agents are defined. Tasks for RPDAgent included:

• Providing an interface with the RPDAgent program.

• Initializing RPDAgent experience.

•  Performing situation recognition and matching it to previous experience.

• Generating a sequence of preferred actions.

•  Evaluating an action against agent goals.

•  Selecting a satisfactory decision.

• Handling interagent communication.

W ith the project analysis phase complete, the above results were used as the basis 

for the design phase. Agent classes were defined based on the identified roles with 

one agent class representing each specified role. Table 3 shows the relationship of the 

identified roles to the agent classes.

Since an agent is an autonomous entity, it must have a means of communicating 

and interacting with other agents and its environment. These functions are handled
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via an agent communication mechanism, which was defined next. Message type and 

content were developed to allow the agents to carry out their assigned tasks in support 

of the use cases that they were required to execute.

Agent assembly and system deployment were combined into one step. Here, agent 

methods and variables were developed to give each agent its required functionality. 

This functionality will be explained in detail below. RPDAgent was implemented 

using the Java programming language [71] because of its object oriented nature and 

its powerful interface and data base capabilities.

In addition to the main agent classes, several other software classes were developed 

to help with various tasks that the agents must perform and to act as custom data 

structures for RPDAgent’s long term memory (experience) and internalization of 

its environment. The functionality of these classes will be included in the detailed 

RPDAgent description to follow.

3.1.2 R P D A gent Experience R epresentation

To understand RPDAgent’s architecture, one must first comprehend how RPDAgent 

represents human experience. This section will provide a detailed discussion on the 

methodology used to represent experience.

RPDAgent’s experience structure consists of a set of frames and a negotiation 

function. The model’s experience in a specific situation is defined by the following 

structure:

E = (F,n) (4)

where E  is a single situation experience with E  € E* the total model experience, F  

is a frame, and 77 is a negotiation function.

The first of these variables is a data structure called a frame, which is a framework 

for representing knowledge. Minsky [72], who conceptualized the idea of frames, 

describes them as follows.
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“When one encounters a new situation (or makes a substantial change in 

one’s view of the present problem), one selects from memory a structure 

called a frame. This is a remembered framework to be adapted to fit 

reality by changing details as necessary. A frame is a data structure for 

representing a stereotyped situation... Attached to each frame are several 

kinds of information. Some of this information is about how to use the 

frame. Some is about what one can expect to happen next. Some is about 

what to do if these expectations are not confirmed.”

Frames embody many RPD concepts. A frame is a convenient structure for capturing 

discrete pieces of information about a situation. For this architecture, each frame 

will hold the set of all cues, goals, and actions associated with a decision experience. 

Formally:

F  — (SN , C*, G*, A*) (5)

where S N  is the situation name, C* is the set of all cues for an experience and C  is a 

single cue with C  € C*, G* is the set of all goals for an experience and G is a single 

goal with G 6 G*, and A* is the set of all actions for an experience and A is a single 

action with A £ A*.

Frames are indexed by their situation name. These indices represent the sum 

total of all experiences contained within RPDAgent. When RPDAgent is started, 

the experience database situation indices are loaded into computer memory for easy 

lookup. The actual frame data is not loaded until its associated situation is matched 

with the situation currently being experienced. The following describes each element 

that makes up a frame.

A cue is a data structure represented by an object class. Cues are defined as 

follows:

C  =  (CN, C V *, C F *, E*,rn, cw) (6)
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where C N  is the cue name, CV* is the set of cue values for each action A, CF* is 

the set of cue fuzzy values for each action A, E* is the set of environmental variable 

values associated with each cue, rn  is a saved random number, and cw is the cue 

weighting factor.

CV* is a set of integer values. Each cv of CV* represents a cue value derived from 

the set of associated environmental variable values E*, corresponding to a specified 

action A. Since this model architecture is focused around decisions made by opera­

tional military commanders, the cues represent higher level abstractions of data that 

a senior commander would use rather than lower level environmental variables that 

one can physically measure. Two or more environmental variables that embody a cue 

are aggregated to form the cue value. For example, in deciding the location for an 

amphibious landing, a military commander may consider landing zone hydrography 

as a cue. The commander would want to know if the hydrography of each potential 

landing zone (each landing zone corresponds to a potential action or decision) satis­

factorily supports the amphibious landing. Making up the evaluation of hydrography 

may be many environmental factors such as water depth, tides, and currents. Howev­

er, a commander would tend to aggregate and internalize these lower level variables 

into the higher level abstraction of hydrography. The model architecture takes this 

aspect into account by providing a function that calculates cue values from their as­

sociated environmental variable values for a given action. This function is defined 

as:
n

(7 )
i=1

where eitj is the ith  environmental variable value associated with the j th  cue value 

cvj, ajj is a cue value, cvj G CV*, and n  is the number of environmental variables 

associated with the cue. Environmental variable values are integers tha t represent 

qualitative descriptions of these variables. For RPDAgent, the minimum value for cvj 

is zero if all environmental variable values are zero. This situation could occur if all
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e y  were unfavorable. Its max value is £ ”=1(m axey) ^  associated environmental 

variable values are at their maximum value, i.e., if all were favorable.

Once the appropriate environmental variable values have been mapped to their 

respective cues, the discrete cue values generated from the environmental variables 

must be converted to a value more representative of how humans perceive cues. Hu­

mans tend to think of physical parameters in terms of imprecise values rather than 

discrete numbers. When asked to comment on the temperature, a person will most 

likely say that it is cold or warm or hot rather than give a discrete temperature such 

as 78.4 degrees F. This human representation of physical values is captured in a form 

of mathematics called fuzzy logic. Fuzzy logic provides a means of determining the 

degree of membership a discrete value has to a fuzzy set tha t represents the human 

interpretation of the physical value. See Section 2.3.5 for a further discussion of fuzzy 

logic. RPDAgent places cue values in one of three fuzzy categories (fuzzy sets): unsat, 

marginal, or sat, based on how past experience interpreted the influence of this cue on 

the situation. Most military personnel tend to evaluate conditions in this three part 

manner [5, 73] where unsat is military shorthand for unsatisfactory and sat represents 

satisfactory. The function, cuefuzzyvalue, maps cue values to fuzzy interpretations of 

the cues.

cuefuzzyvalue : CV* —■» CF* (8)

The cuefuzzyvalue function plays an essential role in quantifying the model’s expe­

rience. The shape of the fuzzy sets will determine how the model interprets a specific 

cue. For example, the model could evaluate the hydrography cue for a given action 

as either unsat, marginal, or sat. This evaluation will depend on the specific fuzzy 

sets that are picked to represent the cue categories. The specific fuzzy sets are picked 

based on how a decision maker intuitively views the value of this cue. The intuitive 

view is based on his past experience.

For RPDAgent, triangular fuzzy sets were used to represent the fuzzy values as-
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T able 4. Hydrography cue structure
C ue E n v iro n m en ta l variables D escrip tio n V alue
Hydrography Reef none 2

partial 1
full 0

Water Depth shallow 2
moderate 1
deep 0

Anchorage none 0
yes 2

Tides small 2
moderate 1
large 0

Currents light 2
moderate 1
severe 0

sociated with each cue. Triangles capture a maximum fuzzy set value corresponding 

to a human’s ideal value for the fuzzy parameter and the tailing off of that value 

as one moves further away from it on an absolute scale. RPDAgent’s cuefuzzyvalue 

algorithm, used to calculate fuzzy values from triangular fuzzy sets, was adapted from 

Rao and Rao [74].

The following example illustrates how RPDAgent calculates cv and its correspond­

ing fuzzy value (c f ). It is based on the hydrography cue of the amphibious landing 

location decision mentioned earlier. Table 4 depicts one possible structure of the 

hydrography cue. Hydrography has five environmental variables associated with it. 

Each environmental variable has two or three descriptive values and corresponding 

numeric values (E *). The descriptive values represent how the decision maker per­

ceives these environmental variables based on past experience. The numeric values 

are assigned to facilitate computation of cv.

When presented with a decision situation involving an amphibious landing loca­

tion, some or all of the environmental variable values will be available. RPDAgent 

will then compute cv for the hydrography cue using Equation 7. In this example, the
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Unsat fuzzy set

m

0.6

’Sat fuzzy setMarginal fuzzy set
0.4

Cue Value (cv)20 5 10

Figure 10. Hydrography fuzzy sets

hydrography cue will have an integer value between zero and ten depending on the 

value of each environmental variable for the given situation. Missing information is 

assigned a default value chosen by the user.

RPDAgent then computes the hydrography fuzzy value (cf),  which represents 

the decision maker’s evaluation of this cue based on his past experience and the 

current situation data. This evaluation is performed via the fuzzy sets that describe 

the decision maker’s “intuitive assessment” of hydrography from his past experience. 

Figure 10 depicts the fuzzy sets associated with hydrography. The vertical axis (m) 

represents the percentage probability of membership. Because there is more than 

one fuzzy set, there is a finite probability that the cue fuzzy value (cf)  will belong 

to more than one set. To calculate the cue fuzzy value for a given cv, one must 

compute the percentage probability of membership of that cv to the fuzzy sets. This is 

accomplished through the cuefuzzyvalue function derived from the fuzzifier algorithm 

of Rao and Rao [74]. To illustrate this algorithm using Figure 10, suppose cv = 2. At 

2, the unsat fuzzy set height is 0.6 and the marginal set height is 0.4. The sum of these 

two heights provides a normalized value on which to base the percentage probability
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of membership. The subjective probability of being unsat is therefore 0.6/1.0 and the 

subjective probability of being marginal is 0.4/1.0. A random number, rn , is then

generated to make the selection. For this example, any rn < 0.6 would produce a c f

of unsat. Any rn > 0.6 would indicate a c f  of marginal. The value, rn, is saved for 

future reference in case RPDAgent must reevaluate this cue based on new or updated 

information. Saving rn  ensures that this cue’s evaluation is consistent across the 

current decision context.

The next set that makes up a frame is G*. Each goal in the set is an object class 

data structure that stores RPDAgent’s goal information for a given experience. This 

goal structure is defined as follows:

G =  (GN, GV, GF, C*g) (9)

where G N  is goal name, G V  is goal value, G F  is goal fuzzy value, and C* is the set 

of cues that influence the goal. The computation of G V  and G F  will be discussed 

below with the DecisionAgent description.

The final set making up a frame is the set of all actions, A*. Each A  E A* is also 

an object class data structure with the following definition:

A  = (AN, A*, AV, AF) (10)

where A N  is the action name, A* is the set of environmental variable values associated 

with this action, A V  is the computed action value, and A F  is the computed action 

fuzzy value.

Actions can represent both past decisions for a given type of situation and the 

available actions that may be taken in a constrained decision environment. Associated 

with each action is a set of environmental variables that influence it and provide its 

context when given specific values. The action evaluation and selection process of
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RPDAgent will be discussed in the DecisionAgent section below.

The final factor associated with defining experience in RPDAgent is the negotia­

tion function, rj. A decision maker may have many goals that he is trying to achieve. 

Some of these goals may conflict with one another. For example, a military comman­

der may have goals of achieving the mission and minimizing casualties. These goals 

could be in direct conflict. The commander must evaluate a given action and decide 

if all goals can be satisfied to some threshold level for which he is willing to accept the 

risk. If all goals can be satisfied, the decision is relatively easy. If not, the decision 

maker must weigh the relative value of each goal and decide if he can compromise on 

one or more goals to achieve the overall goal. The negotiation function r] allows the 

model to assess competing goals, similar to how a human uses mental simulation to 

weigh one goal against another. It does this by mapping goal fuzzy values, GF, to 

revised goal fuzzy values, based on RPDAgent’s characterization of a decision maker’s 

personality traits. RPDAgent encodes personality through a risk value that repre­

sents a decision maker’s risk tolerance. Risk tolerance is the primary personality trait 

influencing a senior military commander’s decisions [5]. The negotiation function is 

defined as follows:

9 f l  =  ViP,  g f i )  ( n )

where g f i  is the revised goal fuzzy value for the ith goal, g fi is the goal fuzzy value 

for the ith goal, and p is a real value, 1 <  p < 2, that quantifies risk tolerance with 1.0 

being risk averse, 1.5 being risk neutral, and 2.0 being risk tolerant. The negotiation 

function algorithm will be examined in the ReactiveAgent material presented below.

3.1.3 R PD A gent Im plem entation

The Concept of MAS simulation discussed in Section 2 will now be extended to pro­

vide a formal definition of the RPDAgent architecture. This section describes the 

functionality of the various classes th a t make up RPDAgent including the interac-
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RPDAgent

MainAgent RecognitionAgent

SymbolicConstructor
Agent DecisionAgent ReactiveAgent

F ig u re  11. RPDAgent UML class diagram

tions that must take place between the classes. Figure 11 depicts RPDAgent’s class 

structure in the unified modeling language (UML) format [75] and represents the 

basic agent classes that will be discussed.

RPDAgent builds on the composite agent concept of Symbolic Constructor A- 

gents and Reactive Agents working together to model the human cognitive process. 

However, a composite agent as defined by Hiles et al. [64] is not sufficient to capture 

all the processes necessary to model RPD. Additional agent types were added (Fig­

ure 11) to achieve the required role functionality. In addition to the UML definition, 

RPDAgent can also be defined in mathematical terms as:

R P D A gent — (Arna,A rec0g,A sca,A da,A ra) (12)

where Ama is MainAgent, A recog is RecognitionAgent, A sca is SymbolicConstructorA- 

gent, A*da is the set of Decision Agents, and A*a is the set of ReactiveAgents.

The MainAgent class performs the system management and user interface role. It
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is here th a t the user interface is created and model commands are input. However, 

MainAgent’s most crucial role is the establishment and population of the experience 

database. For RPDAgent, experience data was gathered through a Cognitive Task 

Analysis process. This process is discussed in Section 3.1.4. When RPD Agent starts, 

the experience database is initialized by reading in all situation names ( SN)  repre­

senting all situational experiences of which RPDAgent is aware. The remaining data 

such as cues, actions, and goals are not input until a request for a particular decision 

is made. When such a request arrives, only the data pertinent to that situation is 

input to RPDAgent’s frame structure. This procedure prevents unneeded data from 

being unnecessarily loaded.

W ith initialization of the experience database complete, MainAgent transitions 

to a wait state, waiting for a decision to be requested of it through its user interface. 

This emulates a C JT F’s staff approaching a CJTF with a decision request. Once 

MainAgent receives a decision request, it informs Recognition Agent of a pending de­

cision through an agent communication protocol. RPDAgent implemented a subset 

of the Knowledge Query and Manipulation Language (KQML) [76] as its agent com­

munication protocol. Message transmission between agents was accomplished by Java 

event handlers [77], with each message handled as an event.

When Recognition Agent receives a decision request from MainAgent, it performs 

a lookup of the requested decision type in the experience data base. This lookup is in 

the form of a keyword search on the type of decision requested. If no match is found, 

RPDAgent notifies the user that it does not have the experience necessary to render 

this type of decision.

If a match is found, Recognition Agent reads in to computer memory the experience 

data associated with this type of decision. It is here that the frame data structure is 

populated with the basic cues, goals, and actions pertinent to this decision. Recogni- 

tionAgent then informs SymbolicConstructorAgent of the decision request.
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Recall from the discussion of composite agents in Section 2.3.6 that Symbolic 

Constructor Agents convert external environmental variables into an internal repre­

sentation of the environment. This process represents how a human internalizes his 

external environment. SymbolicConstructorAgent accomplishes the same objective 

for this model architecture. It is here that each c f  G CF* is calculated as described 

in Section 3.1.2. Once these calculations are complete, the elements of CF* represent 

the personal internalization of the external decision environment.

After the internal environment is generated, SymbolicConstructor Agent instanti­

ates a Decision Agent. One DecisionAgent is instantiated for every unique decision 

presented to RPDAgent. Each DecisionAgent is then responsible for coordinating its 

respective decision situation.

DecisionAgent performs several tasks. First, it surveys the available actions for 

the given situation and ranks those actions from most to least desirable. This process 

is analogous to the RPD notion of a human decision maker identifying the most 

intuitively desirable action and evaluating it first.

n

(13)
3= 1

Action value is computed by summing all cue values associated with that action. This 

computation is shown in Equation 13 where AVi is the action value for the ith  action 

and ]T cvj,i is the sum of all cvj associated with the ith  action. The action with the 

largest AVi is considered the most favorable since it has the most positive cue values. 

If two or more actions have the same action value, they are sorted in the order they 

were evaluated. Cue values (cv) are used for this computation rather than cue fuzzy 

values (cf) because this calculation is meant only as an intuitive indicator of the most 

favorable action. Further evaluation must be carried out by RPDAgent before this 

action is chosen as the most suitable for the situation.
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Decision Agent’s second task is to instantiate ReactiveAgents. One ReactiveAgent 

is instantiated for every goal associated with the current decision situation. Once the 

ReactiveAgents are activated, DecisionAgent informs them of the decision situation 

and requests that they evaluate the most favorable action against how well that action 

satisfies the goals for which they are responsible.

As noted in Section 2.3.6, Reactive Agents’ role is to act on the symbolic repre­

sentation of the environment generated by SC As to select an action consistent with 

their assigned goals. In RPDAgent, ReactiveAgents perform the same function. They 

evaluate how well their assigned goal can be achieved for the given action under 

consideration.

goal f u z z y  value : CF* —*■ GF* (14)

This evaluation is performed by the goalfuzzyvalue  function, which maps cue fuzzy 

values to goal fuzzy values as noted in Equation 14. A goal fuzzy value is an evaluation 

of the potential for a specific action to achieve a specific goal. The potential is based 

on how well the cues associated with a specific action favor accomplishing the goal. 

Each decision situation has a set of goals associated with it that RPDAgent must try 

to satisfy. RPDAgent will use cues and their associated cue fuzzy values as a measure 

of how well a specific proposed action will satisfy the goals of the situation.

Just as with cuefuzzyvalue, goalfuzzyvalue has a direct link to quantifying the 

model’s experience. Based on past experience, a decision maker associates specific 

cues with the evaluation of one or more goals. One can assess the degree to which 

a proposed action will achieve a goal by assessing the qualitative influence of that 

action’s cues on a goal. That qualitative influence is described by goal fuzzy sets, 

which are derived from experience.

RPDAgent’s goalfuzzyvalue method is described as follows. Recall from Equation 

9 that each goal, G , has a set of cues, C*, that influence or govern the achievement
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T able 5. Goal evaluation example
G oal | Cues cf GVj.
Accomplish Mission | Beach Topography marginal 1

Beach Hydrography sat 2
Beach Obstructions sat 2
Beach Staging Area marginal 1
Route to Objective sat 2

Goal Value 8

of it. This set of cues is used to calculate G V  as follows.

n
G V  =  £(G V „‘ * cwi) (15)

i= 1

where GV* is the integer value that represents c f  for this cue with GV* =  2 if c f  =  

sat, GV* — 1 if c f  — marginal, and GV* =  0 if c f  — unsat, cw  ̂ is its respective cue 

weight, and n  is the number of cues associated with this goal. The cue weighting 

factor is applied here because humans often perceive that some cues influence goals 

more than others.

Once the goal value is computed, RPDAgent converts it to a fuzzy value represent­

ing more closely how a military commander perceives his goal evaluation. Goal fuzzy 

values (G F) are derived from triangular fuzzy sets representing an evaluation of sat, 

marginal, or unsat. The computation is similar to that described for cuefuzzyvalue.

The following example serves to illustrate the goalfuzzyvalue function. It is again 

based on the amphibious assault landing location decision. Suppose that one goal a 

CJTF has for this decision is to accomplish the mission. Associated with this goal 

are five cues that directly influence it. Table 5 lists the goal, its associated cues, 

their corresponding cue fuzzy values, and the assigned integer value for the cue fuzzy 

variables. For the computation of goal value in this example, all cue weights are 

assumed to equal one. G V  could range anywhere from zero if all cue fuzzy values 

were unsat to X)r=i((max * cwd  if all cue fuzzy values were sat.
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Unsat fuzzy set

m

0.6

Sat fuzzy setMarginal fuzzy set
0.4

Goal Value (GV) 8 1050

F ig u re  12. Goal: Accomplish Mission fuzzy sets

Once G V  is computed, the goalfuzzyvalue function is used to compute GF. The 

function goalfuzzyvalue uses the same method to compute its fuzzy value as that 

described earlier for cuefuzzyvalue. As an example, suppose G V — 8. From Figure 

12, the height of the marginal fuzzy set is 0.4 and the height of the sat fuzzy set 

is 0.6. The subjective probability of membership is 0.4/1.0 for the marginal set and 

0.6/1.0 for the sat fuzzy set. A random number is then generated to determine the 

specific fuzzy membership result. This process is repeated by each ReactiveAgent for 

its respective goal. When ReactiveAgents complete their assigned goal evaluation, 

they inform the DecisionAgent of their evaluation of the action under consideration.

Once DecisionAgent receives all of its ReactiveAgents ’ goal assessments, it checks 

to see if all goals were fully satisfied.14 If they were, RPDAgent accepts the current 

action as its decision and renders it to the user. If all goals were not fully satisfied, 

DecisionAgent requests that the ReactiveAgents negotiate to see if each is willing to 

compromise on its goal evaluation to achieve a satisfactory evaluation for all goals.

14Fully satisfied implies all goal fuzzy values were evaluated as sat.
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Since agents are autonomous entities, they do not take orders from other agents. 

Instead, they communicate requests and information among one another. When 

they differ in their goal evaluations, they must have a means of resolving those dif­

ferences. Many schemes have been devised including auctions and negotiations for 

resolving those differences [76]. Negotiation [78] was chosen as the resolution method 

for RPDAgent because it best represents how a human decision maker uses mental 

simulation to arrive at a compromise on multiple conflicting goals within his mind 

[59].

In the case of RPDAgent, compromise is handled within the ReactiveAgents by a 

multiplication factor applied to GV. This multiplication factor is based on a decision 

maker’s risk tolerance. For RPDAgent, it is represented as a real value from 1.0 to 2.0 

with 1.0 being risk averse, 1.5 being risk neutral, and 2.0 representing risk tolerant. 

Section 3.2.1 discusses the method for evaluating a decision maker’s risk tolerance. 

Multiplication values from 1.0 to 2.0 were selected to provide reasonable compromise 

results based on the chosen goal fuzzy sets. This computation is represented in 

Equation 16:

G Vn — G V  * p (16)

where GVn is the compromise goal value and p is the risk factor from Equation 

11. A new G F  is then calculated as above, based on G Vn. The result is then 

fuzzified in the same manner as the original goal value. This process represents the 

negotiation function, rj that was defined in Equation 11. The result is reported back 

to DecisionAgent. Multiplying G V  by p has the effect of increasing G V  by some 

percentage. The larger p, the greater the increase. This indicates that a person with 

a higher risk tolerance will compromise to a larger extent on a particular goal up 

to some threshold set by the risk factor. Within RPDAgent, this calculation has 

the possible effect of moving the goal fuzzy value into the next higher fuzzy set, i.e., 

from unsat to marginal or marginal to sat, thus allowing for a more favorable goal
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evaluation by its associated ReactiveAgent.

At this point, if all goals are fully satisfied, DecisionAgent renders a decision based 

on the current proposed action. If all goals are not fully satisfied, no compromise could 

be reached. This situation is similar to a person having a certain goal threshold below 

which he will not go. The proposed action is discarded and the next best action is 

selected for evaluation. The goal evaluation process is repeated until a satisfactory 

action is found or until no satisfactory action is discovered. In this case, a default 

decision, supplied with the current decision situation, is rendered.

W hat was described above is the sequence of events RPDAgent follows to satisfy 

its first use case, producing a decision from a given set of inputs. The second use case 

is concerned with reevaluating a decision when the initial inputs change or when new 

inputs are presented. RPDAgent handles this use case in a similar manner except 

that the decision situation has already been identified and SymbolicConstructor Agent 

has already generated RPDAgent’s initial interpretation of the external environment. 

When reevaluating a decision, RPDAgent starts from this point and recalculates cv 

and c f  for each cue, reevaluates the available actions to determine if the order of 

most to least favorable actions has changed, and then evaluates the actions against 

the goals in the same manner as in the first use case.

In addition to the primary agent object classes discussed above, there are ten other 

object classes that support RPD Agent’s functionality. They are shown in Figure 13. 

The Agent class is a superclass on which all other agents are based. It provides for 

basic agent data storage and for abstract methods to handle agent communication 

events.

AgentEvent and AgentEventListener supplement the Agent class by defining a 

general event structure for agents and by implementing the necessary event listeners 

that allow the agents to communicate with one another.

The Frames class provides the necessary data structures and methods to define
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part of the agent’s experience. It is supplemented by the Action, Cue, and Goal 

classes, which populate the Frames’ data structures with their respective information. 

The EOuter class is closely aligned with Frames and provides data structures to hold 

the various environmental variables that define RPDAgent’s outer environment.

FuzzySet and FuzzyVariable classes provide the ability to define their respective 

data structures and to provide the necessary methods to calculate fuzzy values giv­

en the fuzzy set definitions. They form the major input to the cuefuzzyvalue and 

goalfuzzyvalue functions that help complete the mechanism for defining RPDAgent’s 

experience.

Of note, RPDAgent executes single decision requests on the order of milliseconds 

so model execution speed can support faster than real time simulation requirements.

3.1.4 D ecision scenario design

Per the RPD model, cognitive decision-making relies on a person’s past experience to 

recognize and to interpret a decision situation. Once recognition occurs, experience 

provides for the cues, goals, actions, and expectancies that guide the decision maker’s 

response to the situation. For RPDAgent to respond in the same manner, it must 

have an experience base from which to draw. A decision scenario was devised to 

provide a limited scope experience base on which to test the model. This decision 

scenario was not meant to represent all decision situations that a CJTF could possibly 

face. Instead, it was developed to allow for testing of the model against an operational 

military decision that a CJTF could likely face. Further research is required to identify 

and populate an experience base that would allow RPDAgent to make all plausible 

decisions facing a CJTF.

Given the above, an amphibious assault was chosen as the decision scenario on 

which to test RPDAgent. The amphibious assault scenario provided for a wide variety 

of operational decisions that a CJTF could likely face. It allowed for both qualitative
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and quantitative environmental variables and cues on which to base the decisions. 

Having both types of these factors was required to ensure physical characteristics 

and mental assessments could be accounted for in the decision process. Aspects of 

an amphibious assault included skills from all warfare communities such as land, air, 

and sea components. This helped ensure that RPDAgent could represent military 

commanders from all Services since a CJTF is likely to come from any one of them.

To facilitate the scenario design, a cognitive task analysis (CTA) of amphibious 

assaults was performed. CTA encompasses formal methods to identify the steps a 

person uses to perform both physical and mental tasks [79, 80]. Most importantly, 

it attempts to discover a person’s thought processes while he completes a task. Gott 

[81] suggested that CTA should be used when faced with gathering knowledge of a 

complex task that goes on in the head of the performer, that is not presequenced, 

and tha t is dynamic, unstable, and ill-structured. These are all characteristic of the 

thought process facing a CJTF when he makes an operational decision.

The CTA consisted of two portions. First, an historical review of amphibious 

assaults was conducted. Historical assaults have been well documented and analyzed 

[82, 83, 84] and provided the majority of information necessary for the CTA. The 

assaults that were analyzed occurred from World War II through the Persian Gulf 

War. As a result of this analysis, two major operational decisions and their associated 

cues and goals were identified. These decisions were: assault location (referred to 

as location) and assault timing (referred to as timing). To ensure current doctrine, 

tactics, techniques, and procedures were accounted for, the CTA results were reviewed 

by an amphibious subject m atter expert. The CTA results were found to be consistent 

with current amphibious assault planning and decision-making [85].

The second portion of the CTA consisted of questionnaires provided to thirty 

military officers with joint operational military experience. The questionnaire was 

structured around the knowledge solicitation techniques found in Hoffman, Crandall,
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and Shadbolt [86]. This questionnaire can be found in Appendix B. These officers 

were part of the model validation process described in Section 3.2. Their CTA infor­

mation was used to confirm the results of the historical review and to add additional 

cues that were not previously identified.

Location and timing provided two decision points for the scenario. Each decision 

point represents a single past experience. These two decision points were influenced 

mainly by physical cues. To ensure that decisions based on mental cues were also 

accounted for, two other decision points were added to the decision scenario. The 

third point was a decision on whether a change in assault timing was necessary based 

on unexpected enemy troop movement (referred to as change). The fourth point oc­

curred after the amphibious landing was completed. It required a decision on whether 

to continue to fight or to retreat based on unexpectedly heavy enemy opposition and 

significant casualties once ashore (referred to as continue). CTA for the third and 

fourth decision points came from past history, the CTA questionnaires, and from 

the author’s own operational military experience [5]. The fourth decision point was 

the only one that required extensive modification to the original cues based on the 

information provided in the questionnaires. Once the four decision points were de­

termined, they were woven into a notional operational military scenario that a CJTF 

could typically face. That scenario is contained in Appendix B.

The CTA identified a portion of the data necessary to form RPDAgent’s experience 

data base. This portion included the cues and goals associated with each decision 

point. The experience associated with the location decision consisted of the nine cues 

listed in Table 6 and the two goals listed in Table 7. Table 6 also lists each cue’s 

associated environmental variables and their possible descriptive values.15 RPDAgent 

represented these descriptive values with integers. Generally, the value 2 was used to 

encode the most favorable descriptive value, 1 was used to encode the mid descriptive

15The abbreviation CAS in Table 6 stands for Close Air Support
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Table 6. Location cues and associated environmental variables
Cues Environm ental

Variables
Variable Values

Beach Topography Steepness shallow, moderate, steep
Sand type coarse, fine
Obstacles none, walls, jungle, rocks

Beach Hydrography Reefs none, partial, full
Water depth shallow, moderate, deep
Suitable anchorage yes, none
Tides small, moderate, large
Current small, moderate, severe

Water obstructions Mines no, yes
Barriers no, yes

Staging Area Staging area adequate, marginal, none
Route to Objective Route to objective adequate, marginal, 

inadequate
Enemy Defenses Level company, battalion, brigade

Equipment light, moderate, heavy
Enemy experience novice, experienced, 

professional
Experience change decreasing, constant, 

increasing
Enemy CAS none, yes
Enemy Naval Support none, yes

Enemy Perception 
of Location

Perception unimportant, important, 
vital

Quality of Intelligence Quality excellent, good, poor
Location of Landing Site Location near objective, 

away from objective
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T able 7. Location goals and associated cues
G oals A ssociated  C ues
Achieve Mission beach topography, beach hydrography, water obstructions, 

staging area, route to objective, location of landing site
Minimize Casualties enemy defenses, enemy perception of location, 

quality of intelligence

value if it existed, and 0 represented the least favorable descriptive value relative to 

the environmental variable being described.

Two goals were identified by the CTA process for this decision scenario. These 

goals were: accomplish mission and minimize own casualties. These goals are typical 

of high level goals that an operational military commander takes into consideration 

when making a decision. In RPDAgent, cues are used to assess how well a specific 

proposed action will satisfy a particular goal. Table 7 identifies the cues that are 

associated with the goals for the location decision. Section 3.1.3 explains how these 

cues are used in the goal evaluation process.

Actions within RPDAgent can be a combination of previous actions learned from 

experience and current actions available to the decision maker. For the location 

decision, the decision scenario of Appendix B identified four possible landing locations 

frow which to choose. The location decision was restricted to these four sites because 

they were the only sites that could support an assault. The experience necessary 

for action selection was encoded within the fuzzy evaluation of goals as explained 

in Section 3.1.3. Table 8 characterizes each landing site identified in the scenario 

based on its associated environmental variables. Variable values for each location 

were selected at random from among the allowable values. Section 3.1.3 discusses the 

encoding of this information within RPDAgent.

CTA for the timing decision identified five cues used by military commanders 

for this decision. Table 9 lists these cues along with their associated environmental 

variables.
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Table 8. Location actions and associated environmental variable values

Variables
A ctions

Alpha Bravo Charlie D elta
Steepness shallow moderate moderate shallow
Sand type coarse fine coarse fine
Obstacles walls jungle jungle rocks
Reef none none none full
Water depth shallow moderate deep moderate
Anchorage none yes yes yes
Tides moderate small large large
Current severe moderate severe moderate
Mines yes no no no
Water barriers yes no no no
Staging area adequate adequate adequate adequate
Route to objective adequate adequate adequate inadequate
Enemy strength brigade company company company
Enemy equipment heavy moderate moderate moderate
Enemy change constant increasing constant constant
Enemy experience pro experienced experienced novice
Experience change constant constant increasing decreasing
Enemy CAS yes no no no
Enemy naval none yes none none
Enemy perception important important important unimportant
Intel quality excellent excellent poor good
Location away near near near

D efault decision: No suitable location exists. Do not conduct the assault.
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Table 9. Timing cues and associated environmental variables
Cues Environm ental

Variables
Variable Values

Resource
Availability

Troop level insufficient, marginal, sufficient
Troop buildup rate low, moderate, high
Ship level insufficient, marginal, sufficient
Ship buildup rate low, moderate, high
Air support insufficient, marginal, sufficient
Supply level insufficient, marginal, sufficient
Resupply rate low, moderate, high

Weather Cloud cover overcast, partly, clear
Cloud cover change increasing, constant, clearing
Precipitation type rain, snow, sleet, hail
Precipitation rate light, moderate, heavy
Precipitation rate change slowing, constant, increasing
Visibility clear, haze, fog, reduced
Visibility change clearing, constant, decreasing
Wind level light, moderate, strong
Wind level change decreasing, constant, increasing
Wave height low, moderate, rough
Wave height change decreasing, constant, increasing
Forecast quality poor, good, excellent

Troop training Training low, moderate, high
Enemy status Enemy status unaware, suspicious, alerted
Staff
Recommendation

Recommendation recommended, not recommended
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Table 10. Timing goals and associated cues
Goals A ssociated  cues
Achieve mission resources, weather, troop training, 

enemy status, staff recommendation
Minimize casualties troop training, enemy status, staff recommendation

CTA identified the same goals for the timing decision as the ones for the location 

decision. The associated cues for these goals are listed in Table 10.

The decision scenario provided for four possible timing choices based on required 

coordination with other military forces. These choices were linked to other factors 

within the scenario and were the only ones available. Table 11 lists the four timing 

choices and their associated environmental variables.

CTA results for the third and fourth decision points are presented below in Tables 

12 through 17. For these decision points, the environmental variables that make up 

the cues rely less on physical parameters that are easily measured or assessed and more 

on qualitative parameters that require human interpretation. Both of these types of 

parameters influence decision-making and were included in the model to ensure the 

cognitive decision process could be adequately represented within RPDAgent.

The information in these tables forms part of the experience data base necessary 

for RPDAgent to mimic the cognitive decision process represented by the RPD model. 

Section 3.1.3 discusses other elements needed to represent human experience.

3.2 Validation m ethodology

Balci defined modeling and simulation validation as comparing the model to the 

real world system to determine if the model matched the real world system to an 

acceptable level [87]. To determine if RPDAgent adequately mimicked the decision 

process of a CJTF, it also had to undergo validation. This section describes the 

validation plan and the tools used to measure the model’s validity.
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Table 11. Timing actions and associated environmental variable values

V ariab les
A ctions

36 H ours 48 H ours 72 H ours 96 H ours
Troop level marginal sufficient sufficient sufficient
Troop buildup rate high low low low
Ship level insufficient insufficient sufficient sufficient
Ship buildup rate moderate moderate low low
Air support marginal marginal marginal high
Supply level marginal sufficient sufficient insufficient
Resupply rate high high high high
Cloud cover overcast partly clear overcast
Cloud cover change constant clearing constant constant
Precipitation type rain none none rain
Precipitation rate heavy none none moderate
Precipitation rate change constant clearing clearing constant
Visibility fog clear clear reduced
Visibility change constant constant constant constant
Wind level moderate strong moderate light
Wind level change constant constant increasing increasing
Wave height moderate low moderate moderate
Wave height change constant constant increasing increasing
Forecast quality excellent good poor poor
Troop training moderate moderate high high
Enemy status unaware unaware suspicious alerted
Staff recommendation no yes possible no

D efau lt D ecision: Available timing can not be supported. Assault will not be 
conducted.

Table 12. Change cues and associated environmental variables
C ues E n v iro n m en ta l

V ariab les
V ariab le
V alues

Risk Enemy force size small, moderate, large
Change of plan low, moderate, high

Readiness Reposition high, moderate, low
Earlier time high, moderate, low

Recommendation Recommendation recommended, not, possible

Table 13. Change goals and associated cues
G oals A sso c ia ted  C ues
Achieve mission risk, readiness, recommendation
Minimize casualties risk
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Table 14. Change actions

Variables
A ctions

Go Earlier Change Location Go On Tim e
Enemy force size small moderate moderate
Change of plan moderate low low
Reposition high moderate high
Earlier time high high high
Recommendation recommended possible possible

D efault Decision: Assault can not be supported under the new conditions.

Table 15. Continue cues and associated environmental variables
Cues Environm ental Variable

Variables Values
Opposition Enemy forces low, medium, high

Casualties low, medium, high
Withdrawal risk low, medium, high
Threat to Terrier low, medium, high
Probability of success low, medium, high
Recommendation recommended, possible, not

Force Effectiveness Withdrawal ability high, medium, low
Air support likely, possible, unlikely
Force ration high, medium, low
Reenforcements likely, possible, unlikely

Table 16. Continue goals and associated cues
Goals A ssociated  Cues
Achieve mission opposition, force effectiveness
Minimize casualties opposition
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Table 17. Continue actions

Variables
A ction

Continue on
Enemy forces high
Casualties high
Withdrawal risk moderate
Threat to Terrier low
Probability of success medium
Recommendation not
Withdrawal ability high
Air support likely
Force ratio high
Reenforcements likely

D efault Decision: Casualty risk is too great. Withdraw troops from landing zone.

3.2.1 Validation plan

There are several methods that one could employ to validate a model. RPDAgent 

was intended to improve upon the decision algorithms in military simulations so that 

they better replicated the decisions a human would make. One way to measure this 

improvement would be to compare the decisions made by RPDAgent against existing 

model decisions. However, this method posed problems. Incorporating RPDAgent 

into an existing model, so that the model decisions with and without RPDAgent could 

be compared, was technically problematic and beyond the scope of this research. Also, 

how to determine if the model with RPDAgent produced more human-like decisions 

is not easily done and could produce inconclusive results.

Instead, RPDAgent decisions would be compared against the decisions made by 

real human decision makers. This approach proved to be a better test of model 

validity. As noted in Section 1.2, a CJTF makes decisions at the operational level of 

warfare. Existing military simulations generally rely on expert role players to make 

these decisions and to input them into the model, rather than the model making 

them. So, a better test of RPDAgent would be to compare its decisions against the 

role players’ decisions.
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A C JTF role player is typically a mid to senior level military officer with joint 

operational experience who is taking the place of the CJTF for the purpose of mod­

el control and decision-making. For model validation, thirty such role players were 

solicited. They represented a population of surrogate CJTFs against which RPDA­

gent’s decisions would be compared. The thirty role players ranged in military pay 

grade from 0-4 to 0-6. Twenty-one were U.S. military officers from all four Services. 

Nine were coalition officers from NATO-affiliated countries. This mixture of role play­

ers provided a cross section of military experience that represents the population of 

military officers from which a CJTF would come.

All role players were volunteers who were solicited from U.S. Joint Forces Com­

mand Joint Warfighting Center and Headquarters, Supreme Allied Commander At­

lantic. These commands employ military officers with joint and coalition military 

experience. In addition, these officers typically participate in Joint Task Force exer­

cises as role players. Since these role players are human subjects, they were solicited 

under the guidelines of Old Dominion University’s Institutional Review Board (IRB). 

IRB approval was obtained prior to obtaining any information from the role players. 

Appendix C contains the IRB-approved informed consent document used to solicit 

role player data.

To collect the data necessary to compare the role players’ decisions against RPD­

Agent, a decision scenario was devised. As noted in Section 3.1.4, this scenario (see 

Appendix B) represented four operational decisions that a CJTF would likely face 

when conducting an amphibious assault in support of a larger campaign. Each role 

player was asked to render four decisions, one for each decision point. Their decisions 

were only constrained by the scenario. They were also asked to complete the CTA 

questionnaire (Appendix B) for each decision to capture any task information not 

previously obtained from historical analysis. This provided 120 decisions (30 role 

players times 4 decisions) against which to compare RPDAgent.
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In addition to the decision scenario, each role player was asked to complete a per­

sonality measurement questionnaire (Appendix D). This questionnaire was based on 

Goldberg’s International Personality Item Pool (IPIP) [88], which measures person­

ality traits identified by the Five Factor model [89]. This model has been shown to 

be an indicator of a person’s risk tolerance [90]. As noted in Section 3.1.3, a person’s 

risk tolerance was used as a factor in determining a decision. Risk tolerance is the 

personality factor that most influences a C JT F’s decision-making [5, 73].

Results of this questionnaire showed that twenty-nine role players tended towards 

risk tolerant. One role player was assessed as risk neutral. However, he made deci­

sions that were similar to those role players who were risk tolerant. Because of this, 

RPDAgent was run with its risk tra it set at the risk tolerant level (2.0) for all data 

runs.

Once all role player data was collected, RPDAgent was provided with the same 

decision scenario, and the model was run to collect its decisions for comparison a- 

gainst those of the role players. Since RPDAgent is a stochastic model, two hundred 

replications were performed to obtain a distribution of RPDAgent’s decisions. Each 

replication consisted of thirty decision sets representative of the thirty role player 

decision sets. Each RPDAgent decision set contained a distribution of model deci­

sions for each decision point. It was this distribution of decisions for each point that 

was compared to the role player decision distribution for each point. Specifically, the 

mean for each decision from the two hundred replications was compared against the 

number of role players that made that decision. Comparison results are presented in 

Section 3.3.

3.2.2 Statistical analysis m ethod

Standard statistical tests exist to compare a sample mean with a known population 

mean with unknown population variance [91]. These tests allow one to determine
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whether the absolute difference between the sample mean and the population mean

is greater than zero. The statistical test would have the following hypotheses:

h0 : \X  -  fi[ = 0 

ha : \X  — fj,\ > 0

where h0 is the null hypothesis, ha is the alternate hypothesis, X  is the sample 

mean, and jj, is the population mean. However, when performing statistical analysis 

involving the complexity and uncertainty of human decision-making, determining if 

the difference between model and human decisions is precisely zero is overly restrictive 

and unrealistic. Instead, psychologists have developed significance tests to measure 

if some pre-selected meaningful difference exits between a population mean and a 

sample mean [92].

Unlike the hypothesis noted above, the purpose of significance testing is to de­

termine whether two values are sufficiently close to one another to be considered 

equivalent. Equivalency testing is appropriate if an investigator is able to specify 

some small, non-zero difference between two values that would define an “equivalence 

interval” around a difference of zero. Any difference that falls within this interval 

would be considered insignificant or acceptable.

Significance testing consists of two one-sided hypothesis tests. W ith the first test, 

one seeks to reject the null hypothesis that the difference between two values is less 

than or equal to some value cq. W ith the second test, one seeks to reject the null 

hypothesis that the difference between the two values is greater than or equal to 

some value <52. For these tests, Si — —S2 and 5 represents the pre-selected allowable 

equivalence difference.

If it can be shown that the difference between the two values comes from a distri­

bution that is simultaneously to the right of <5i and to the left of <52, one can conclude
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Test 1 Test 2

critcrit

ha \ 8\ < X  — fx < 8-,

Figure 14. One-sided hypothesis tests for significance testing [92]

that the distribution it came from is somewhere in the middle with a true difference 

less than the minimum difference of importance that was pre-selected. Figure 14 de­

picts the two one-sided hypothesis tests. Table 18 lists the hypotheses for each test 

and its associated test statistic. X  represents the sample mean, jx represents the 

population mean. The value, is the standard error. The test statistic is the

student t  test with the critical test statistic given as ta.

Table 18. Hypothesis and test statistics for significance testing
H ypothesis Test statistic

Test 1 < ho
^ ha

X
X

-  j x < 8 x 
- f x > 8 i t\ —

( X - fx ) - 8 1
SX- p ,

Test 2 < ho
ha

X
X

-  li > 82
-  jX < 8 2 £2 =

(.X - f x ) - S 2
s X - u
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To establish equivalency, one must reject the null hypothesis from both one-sided 

tests. However, to accomplish this, one need only perform the calculations for one test, 

provided that the investigator chooses the test with the smallest difference between 

X —ji and <5i or S2. Choosing the smaller difference will yield the smallest test statistic 

and consequently the larger p value of the two possible tests. If the test with the larger 

p  value is rejected, the second test with the smaller p  value will always be rejected.

To perform the one-sided significance test, one must also choose the acceptable 

probability of a Type I error (a).16 In some instances, when more than one statistical 

test is required, a  must be adjusted to account for test independence. However, for 

significance testing, both tests are dependent. One test perfectly predicts the other so 

no adjustment to a  is required. The a  selected for one test will accurately represent 

the Type I error.

For the purpose of RPDAgent validation, equivalency between RPDAgent deci­

sions and role player decisions was defined as having model results within twenty 

percent of role player results. For example, if ten role players chose location Bravo as 

the amphibious assault landing location, then the mean value of the number of times 

RPDAgent selected location Bravo for its two hundred replications, must fall within 

twenty percent of ten (8-12). Twenty percent was chosen because it is not too wide a 

band to be unreasonable and not too narrow a band to account for human variability. 

This was the criteria used to assess model validity and to determine if RPDAgen- 

t  adequately mimicked the human decision process. Results of this assessment are 

presented in Section 3.3.

3.3 D ata analysis and results

This section presents the decision data obtained from the role players and RPDAgent. 

It also presents the results of the significance tests between the two sets of data.

16In statistics, a Type I error is the probability of rejecting the null hypothesis when it is actually 
true. This probability is symbolized by a  and is usually set to either 0.05 or 0.01.
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Table 19. Role player location decision results
Location decision N um ber of players who chose
Alpha 0
Bravo 21
Charlie 4
Delta 5

Table 20. Role player timing decision results
Tim ing decision N um ber o f players w ho chose
36 hours 2
48 hours 27
72 hours 1
96 hours 0

3.3.1 R ole player decision results

Thirty military officers, playing the role of a CJTF, participated in this research. They 

were provided the decision scenario from Appendix B. Their decisions were recorded 

on decision data sheets. The first decision point of the scenario asked them to select a 

landing location for the amphibious assault based on the information provided. Table 

19 shows the results of their decisions. One can see from the decision results that 

humans make different decisions given the same scenario information. The variability 

is a result of their past experience and how they interpret the information. RPDAgent 

must be able to mimic this variability to successfully replicate the human decision 

process.

The second decision point required the CJTF role players to decide on the timing 

of the amphibious assault. Table 20 presents the results of their timing decisions.

After making the timing decision, the CJTF role players were presented with 

unexpected troop movements that could affect the location and timing decisions. 

They were asked to render a new decision based on this updated information. From 

the thirty role players, three decisions emerged. Some decided to move the timing 

up and execute the landing earlier, some decided to change the landing location, and
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Table 21. Roie player change decision results
Change decision N um ber of players who chose
On time 7
Go early 21
Change location 2

Table 22. Role player continue decision results
Continue decision N um ber o f players who chose
Continue
Withdraw

21
9

some decided to go as scheduled at the previously selected location. Their decision 

distribution is presented in Table 21.

Once the amphibious landing was completed, the scenario presented a situation 

where the landing force encountered unexpected enemy opposition and larger than 

expected casualty rates. Role players were asked for a decision on whether to continue 

the assault or to abort it. Table 22 presents the results of this decision.

3.3.2 M odel decision results an d  analysis

This section will present the results of RPDAgent’s mean decision values over the two 

hundred replications that were run. Equivalency was tested per the twenty percent 

equivalency level mentioned above. Additionally, results of ten percent equivalency 

tests will also be presented to help judge model performance. For all statistical tests, 

the a  Type I error level chosen was 0.05 giving a critical test statistic ta =  1.645.

Table 23 provides basic statistical data for each location decision. This data is 

based on the two hundred replications. Table 24 provides the results of the model lo­

cation decisions and the test statistic (t) for each decision. For all decisions, |i| >  ta. 

These tests support the rejection of all null hypotheses, indicating that the model 

decisions are equivalent with the role player decisions within the twenty percent e- 

quivalency band. Test results from ten percent equivalency testing are also included.
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Table 23. Location decision descriptive statistics
A ction M inimum MaLximum M ean Std . D eviation
Alpha 0 0 0 0
Bravo 13 27 21.745 2.4185
Charlie 0 12 3.955 1.8976
Delta 0 11 4.3 1.9257

T able 24. Model location decision results and analysis
20% eq uivalence 10% eq uivalence

A ction H um an M odel s 20% S t 10% S t
Alpha 0 0 0 0 na 0 na
Bravo 21 21.745 0.1710 4.2 -20.2047 2.1 -7.924
Charlie 4 3.955 0.1341 0.8 5.6301 0.4 2.6473
Delta 5 4.3 0.1361 1.0 2.2043 0.5 -1.4695

These results show that the Bravo and Charlie decisions fall within this equivalency 

band. Decision Delta is not equivalent at the ten percent difference level.

Presented next, in Tables 25 and 26, are the model results from the timing decision 

with its corresponding statistical analysis. Once again model results are equivalent 

with the role player results at the twenty percent equivalency level. The ^5 hour 

decision was equivalent at the ten percent level.

Results from the change decision are shown in Tables 27 and 28. Statistical tests 

again show that the model results are equivalent to the CJTF role player’s decisions 

at the selected twenty percent level. Here, only the change location decision is not 

equivalent at the ten percent level.

The fourth and final decision point concerned the decision to withdraw from the 

landing zone because of unexpected enemy opposition and greater than expected 

friendly casualties. Tables 29 and 30 shows that all decisions are again equivalent at 

the twenty percent level. The continue decision was not equivalent at the narrower 

equivalency level.

Summarizing the above results, all model decisions were determined to be equiv­

alent to the role player decision results when calculated using the twenty percent
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Table 25. Timing decision descriptive statistics
A ction M inimum M aximum M ean Std. D eviation
36 hours 0 6 1.87 1.4981
48 hours 22 30 27.04 1.7532
72 hours 0 4 1.09 0.9033
96 hours 0 0 0 0

Table 26. Model timing decision results and analysis
20% eq uivalence 10% ec[uivalence

A ction H um an M odel s 20% 8 t 10% 5 t
36 hours 2 1.87 0.1059 0.4 2.5496 0.2 0.6610
48 hours 27 27.04 0.1239 5.4 -43.2607 2.7 -21.4689
72 hours 1 1.09 0.0638 0.2 -1.7241 0.1 -0.1567
96 hours 0 0 0 0 na 0 na

Table 27. Change decision descriptive statist ics
A ction M inim um M axim um M ean Std. D eviation
On time 3 14 7.2 2.0529
Go early 16 26 20.755 2.1395
Change location 0 6 1.825 1.2777

Table 28. Model change decision resul' ;s and analysis
20% eq uivalence 10% eq uivalence

A ction H um an M odel s 20% 5 t 10% 5 t
On time 7 7.42 0.1451 1.4 -6.7540 0.7 -1.9297
Go early 21 20.755 0.1512 4.2 26.1574 2.1 -12.2685
Change
location

2 1.825 0.0903 0.4 2.4917 0.2 0.2769

Table 29. Continue decision descriptive statistics
A ction M inim um M axim um M ean Std. D eviation
Continue 12 28 22.09 2.3917
Withdraw 2 18 7.91 2.3917

Table 30. Model continue decision and analysis
20% eq uivalence 10% eq[uivalence

A ction H um an M odel s 20% 5 t 10% 8 t
Continue 21 22.09 0.1691 4.2 -18.3915 2.1 -5.9728
Withdraw 9 7.91 0.1691 1.8 4.1987 0.9 -1.1236
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T able 31. Equivalency test summary
D ecision A ction E quivalen t a t

20% level 10% level
L o ca tio n Alpha na na

Bravo yes yes
Charlie yes yes
Delta yes no

T im in g 36 hours yes no
48 hours yes yes
72 hours yes no
96 hours na na

C hange On time yes yes
Go early yes yes
Change location yes no

C o n tin u e Continue yes yes
Withdraw yes no

equivalency difference that was specified during validation design. Six of the eleven 

model decisions were shown to be equivalent to the surrogate CJTF decisions when 

examined using the ten percent equivalency test. Table 31 summarizes these results.

3.3.3 A T uring  te s t  analysis o f m odel re su lts

The section above described the model results in terms of a statistical comparison 

between its decisions and human decisions. In a purely mathematical comparison, one 

could argue that there are subtleties between the model decisions and the decisions 

made by humans that statistics may not identify. To ensure that these subtleties are 

not overlooked, an additional test, patterned after the Turing test proposed by Alan 

Turing, was conducted.

Turing’s original concept of the Turing test was a method to determine if a com­

puter had achieved intelligence [93]. The test consisted of a human interrogator who 

could pose questions and receive answers from two hidden respondents; the respon­

dents could be either human or a computer system. The questions and answers were
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transm itted in an impersonal manner such as a computer terminal. The interrogator’s 

goal was to determine which of the respondents was a man and which was a woman. 

The computer system would pass the Turing Test if the interrogator was no more like­

ly to identify the man from the woman if one of the respondents was a computer vice 

when both were humans. Since Turing originally posed this test, another form of the 

test has evolved. This test specifies that the goal of the interrogator is to determine 

if a single responder is a computer or a human. It is this form of the test that was 

used to measure RPDAgent’s decision-mimicking ability. This test would determine 

whether human experts were able to identify a set of computer decisions from a set of 

human decisions through some pattern not identified by statistical equivalency test­

ing. The Turing test has been previously used to assess computer generated behavior 

at the tactical level [94, 95]. The utility of the Turing test for such assessments has 

been widely asserted [96].

The test consisted of twenty sets of decisions. Each set represented the four 

decision points from the amphibious assault scenario. The twenty sets were selected 

at random from among the thirty human decision sets obtained from the role players 

and thirty computer decision sets generated by one replication run of RPDAgent. 

Selecting twenty decision sets from the sixty available sets allowed for a possible 

4.19xl015 combinations of sets. Two such groups of twenty sets of decisions were 

generated and used in the test. The two groups are listed in Appendix E along 

with the test instructions provided to the subject m atter experts. Test one contained 

eleven human decision sets and nine computer decision sets. Test two contained seven 

human and thirteen computer. Four subject m atter experts responded to test number 

one and one responded to test number two. These assignments were made by one of 

the general officers. All responses were independent of one another.

The subject m atter experts consisted of a total of five general officers from the U.

S. Army and Air Force. Three of the five general officers were of the rank of General
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T able 32, Turing test results
SM E N u m b er of

“c an ’t  te ll” 
responses

N u m b er o f 
“h u m an ” or 
“c o m p u te r” 
responses

N u m b er of 
co rrec t “h u m an ” 
or “co m p u te r” 
responses

P ercen tag e
co rrec t

GEN. A 20 0 0 0
GEN. B 6 14 8 40%
GEN. C 13 7 3 15%
GEN. D 18 2 2 10%
GEN. E 17 3 2 10%

(four star). Two were of the rank of Lieutenant General (three star). All were retired 

officers with significant joint task force experience including command of a JTF or 

its equivalent. Per the test instructions, they were asked to attem pt to identify the 

source of each decision set. They had three choices: “human” , “computer” , or “can’t 

tell” . Their selection results are presented in Table 32. Column one identifies each 

subject m atter expert (SME). Column two lists the number of sets (out of twenty) 

that each SME said they could identify a computer decision from a human decision. 

The third column lists the number of correct assessments from the ones they could 

identify. The fourth column lists the percentage correct out of twenty sets.

To analyze the Turing test results of Table 32, one can compare the number of 

correct assessments to the expected number of successes by purely guessing the results. 

The expected number of successes (S)17 from purely guessing can be represented by 

a Bernoulli calculation [97].

S  = np (17)

Equation 17 represents this calculation where S  is the expected number of successes, 

n  is the number of trials (20), and p  is the probability of success. For all trials, 

it is assumed that each SME had a fifty percent probability of guessing correctly. 

Therefore, the expected number of successes from purely guessing is (20) * (0.5) =

17Success is defined as correctly identifying the source of the decision set.
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10. The number of correct identifications produced by the SMEs is fewer than the 

number to  be expected from random guessing. Even if the seventy-four SME “can’t 

tell” responses are assumed to be replaced with guesses with p  =  0.5, this produces

15 +  (0.5)74 =  52 assumed successes, a number not statistically greater than pure 

guessing. These results indicate that it is unlikely that a pattern of decisions exist 

that would allow human observers to distinguish the computer decisions from the 

human decisions.
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4 CONCLUSION

The motivation for this research stemmed from the lack of adequate decision mod­

els within military simulations. Most of the existing simulations modeled decision­

making in a very homogeneous and rigid manner. When provided with the same 

input, models produced the same output time after time. Human decision models 

also did not account for personality traits that influenced decisions.

The above shortcomings were especially true when looking at decision modeling at 

the operational level of warfare. Most decision models were centered around tactical 

decisions. Capturing the decision process of a senior military commander was almost 

non-existent.

Previous attempts at producing a computational model that mimicked the human 

decision process were centered around rule-based models with classical decision theory 

as the underlying cognitive process. In most decision situations facing operational mil­

itary commanders, the decision process they employ is not characterized by classical 

concepts. Their decision process was centered more on Naturalistic Decision Theory 

of which RPD is the primary model. To adequately mimic their decision-making, a 

computational model of RPD was required.

Multiagent system simulation was evaluated as the best computational method 

with which to implement the RPD process. The autonomous, goal orientated nature 

of MAS, closely resembled the cognitive process described by RPD. MAS supported 

the use of an experience data base and mental simulation to closely capture how 

decision makers, experienced in their domain of expertise, drew on this experience to 

arrive at a decision that would satisfy the situation.

As a result, this research developed a computational model of RPD using mul­

tiagent system simulation techniques that was able to produce decisions equivalent 

to those made by CJTF role players. In doing so, the concepts of situational aware­
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ness, the recognition process, and the action selection process were captured in a 

mathematical form that accurately modeled RPD and CJTF decision-making at the 

operational level of warfare.

4.1 Future work

This research is significant in that it produced the contributions noted in Section 

1.5. Additionally, it has opened the door and formed the basis for further research in 

many areas. These areas include:

1. Incorporating R PD A gent into an existing sim ulation. To assess the 

effectiveness of RPDAgent against existing decision methodologies, RPDAgent 

could be incorporated into an existing military simulation and its performance 

could be measured against the simulation without RPDAgent incorporated.

2. Incorporating the influence o f Joint Task Force S taff decisions into  

th e C JTF decision m odel. In some situations, a CJTF may not possess the 

domain expertise to render a satisfactory decision for a given situation. He must 

rely on his staff to provide him with recommendations on how to proceed. Yet, 

he has the experience to recognize what staff recommendations will produce 

satisfactory results. Capturing this group synergy could form the basis for 

modeling the entire JTF staff decision process.

3. Creating an experience base that would allow the m odel to  make 

all types o f C JTF decisions. This research was limited by a single deci­

sion scenario that represented the type of operational decision facing a CJTF. 

Expanding the experience base to allow for generalized CJTF decision-making 

would be necessary for employing this model in a broad military environment.

4. Researching fuzzy set shape and its influence on experience represen­

tation. The fuzzy sets chosen for RPDAgent were triangular in nature. Other
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fuzzy set shapes, and the extent of those sets, may influence the embodiment 

of experience in different ways. Research is required to determine the nature of 

this influence and its effect on decisions.

5. B e t te r  defining m easu res o f risk  to le ran ce  an d  its  re la tio n sh ip  to  m il­

itary decisions. While research exists that link specific personality traits to 

risk tolerance, no studies have been conducted that precisely measure one’s tol­

erance for risk and its direct influence on the decisions they have made or are 

likely to make. Also, one could explore the sensitivity of decisions to the risk 

tolerance factor encoded in the model.

6. B etter  defining the personality traits affecting senior m ilitary com ­

m ander decisions. Risk was a readily identifiable personality trait that influ­

enced an operational military commander’s decision process. Further research 

is required to determine if other traits have a significant influence in this type 

of decision-making.

7. Incorporation of dynam ic action generation. RPDAgent currently has 

a fixed set of actions from which it may choose for a given decision experi­

ence. Providing the capability to dynamically generate potential actions would 

increase the sophistication of the model.

8. Incorporation o f learning. RPDAgent has the potential to learn based on 

its decisions. Incorporating learning would help improve its decision quality. 

Learning could be incorporated through its goal satisfaction mechanism. Re­

search is required to devise a methodology that could adequately perform this 

function.
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B DECISION SCENARIO AND ASSOCIATED DATA

Road to  War

The country of Cain has had a border dispute with the country of Abel for the past 50 
years. Cain leaders believed that the Abel leaders deceived their forefathers when the 
borders were drawn. The deception consisted of not telling the Cains about the vast 
oil reserves that existed near the border region. The Cains have tried to peacefully 
renegotiate the border with little success.

Two years ago, a militant faction of the Cains came into power. They immediately 
began planning an invasion of Abel to claim an area of the disputed border region, 
which Cain felt was an equitable division of the oil reserves. Coincidentally, the 
disputed region also contained Abel’s main port for oil distribution to other countries. 
Three months ago, Cain launched a military campaign. The Cain army forcibly 
invaded Abel and took possession of the disputed territory, including the port of 
Willing.

Cain’s military strength exceeded Abel’s by a factor of 5:1. Despite courageous 
fighting by Abel’s military, they could not force the Cains from their occupied land. 
Abel appealed to the international community for military assistance. The interna­
tional community agreed to assist Abel and has formed a coalition joint task force to 
provide military assistance to them. In addition to the illegal seizure of Abel land, 
the international community also felt tha t the disruption of oil production and dis­
tribution, caused by the invasion, would adversely affect the world’s oil supply, and 
thus would not be tolerated.

As Commander Joint Task Force (CJTF) Echo, your mission is to regain control 
of the illegally seized territory and to restore the use of the port of Willing. To 
accomplish this mission, you have divided your assigned forces into two separate task 
forces. The main force, Task Force Terrier (Corps size ground element), will conduct 
a land campaign to drive the Cains from the occupied land. They will be staged in 
Abel and approach the occupied territory from the south and west. The other task 
force, Task Force Gator, (Marine Expeditionary Brigade size Marine unit with two 
supporting Amphibious Ready Groups) will conduct a supporting amphibious assault 
as a diversion and to cut off the Cain’s lines of communication and resupply. The 
focus of this experiment will be on the decisions related to operational command of 
the amphibious assault.
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Task Force Gator Com m ander’s Intent

M ission  Conduct an amphibious assault along the southern border of Cain or eastern 
border of Abel to interdict their lines of communication and to prevent resupply 
of their ground forces.

In te n t We will use the surprise and mobility of our amphibious assault capability 
to overwhelm the enemy’s shore defenses, seize control of the landing area, 
and deploy forces inland to sever communications and interdict resupply of 
Cain forces in the occupied territory while minimizing damage to the country’s 
infrastructure. Air Force assets will augment the organic amphibious air combat 
element in a close air support role. The landing will be synchronized with Task 
Force Terrier to ensure proper support of that effort.

End sta te  Complete disruption of communication, all land-based resupply efforts 
stopped, enemy resistance neutralized.
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D ecision Points

D ecision s itu a tio n  no. 1— The first decision facing you as the coalition CJTF is 
approving the choice of the amphibious assault landing area. There are 4 possible 
landing sites that exist along the coasts of Abel and Cain. All are approachable from 
the Bay of Willing (see Figure 15).

Location Alpha is situated along the coast of Abel within the territory occupied 
by the Cains. It has a shallow beach slope with a 3 ft. wall tha t separates the beach 
from the adjoining road. The water adjacent to the beach is shallow with moderate 
tides and a severe rip current. There is no suitable anchorage near the beach. The 
beach has reportedly been mined; concrete barriers have been placed in the surf near 
the beach. The beach has adequate staging area for landing troops and supplies and 
adequate routes to access the Cains’ lines of communication (5 miles to the main land 
supply route and communication lines, 7 miles to the main supply staging area, 113 
miles to the supply depot and communication center.) A brigade-size force consisting 
of infantry, artillery, and tanks defends the landing zone. These troops are some of 
the most skilled in the Cain military and are backed up by close air support (CAS). 
No significant naval threat exists in this area. Coalition intelligence believes the Cains 
consider this area a likely assault site. They rate the above landing zone assessment 
as excellent.

Location Bravo is situated along the coast of Cain and is the closest landing zone 
outside the occupied territory. It has a moderate beach slope, fine-grained sand, and 
jungle growth on the shore side of the beach. The water adjacent to the beach is 
of moderate depth with a small tide range and a moderate rip current. A suitable 
anchorage is available near the beach. There are no known mines or barriers either on 
the beach or in its adjacent water. The beach has adequate staging area for landing 
troops and supplies and adequate routes to access the Cains’ lines of communication 
(8 miles to the main land supply route and communication lines, 20 miles to the 
main supply staging area, 100 miles to the supply depot and communication center.) 
A company-sized force of experienced soldiers defends the beach with infantry and 
artillery. Troop strength is expected to increase in this area. CAS does not support 
them. A small naval force consisting of 4 patrol boats is operating in the area. 
Coalition intelligence believes the Cains consider this area a likely assault site. They 
rate the above landing zone assessment as excellent.

Location Charlie is situated along the coast of Cain. It has a moderate beach 
slope, coarse-grained sand, and jungle growth on the shore side of the beach. The 
water adjacent to the beach is deep with a large tide range and a severe undertow. A 
suitable anchorage is available near the beach. The beach and surf are not believed 
to be mined but there are concrete barriers in the surf near the beach. The beach 
has adequate staging area for landing troops and supplies and adequate routes to 
access the Cains’ lines of communication (10 miles to the main land supply route 
and communication lines, 60 miles to the main supply staging area, 60 miles to 
the supply depot and communication center.) A company-sized force of experienced 
soldiers defends the beach with infantry and artillery. They are not expected to be 
numerically reinforced but their experience level is assessed as increasing due to one-
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for-one replacement with more experienced soldiers. CAS does not support them. 
There are no known naval forces in the area. Coalition intelligence believes the Cains 
consider this area a likely assault site. They rate the above landing zone assessment 
as poor because of the inability to directly observe the area.

Location Delta is situated along the coast of Cain. It has a shallow beach slope, 
fine-grained sand, and rocks on the shore side of the beach. The water adjacent to the 
beach is of moderate depth with a large tide range and a moderate undertow. A coral 
reef extends the length of the surf zone. There are no known mines or obstructions 
on the beach or in the water. The beach has adequate staging area for landing troops 
and supplies. However, there are no adequate routes to access the Cains’ lines of 
communication. Routes would have to be forged through the jungle area. (12 miles 
to the main land supply route and communication lines, 100 miles to the main supply 
staging area, 20 miles to the supply depot and communication center.) A company­
sized force of novice soldiers defends the beach with infantry and artillery. They 
are not expected to be reinforced and their experience level is assessed as decreasing 
due to one-for-one replacement with less experienced soldiers. CAS does not support 
them. There are no known naval forces in the area. Coalition intelligence believes the 
Cains consider this area an unlikely assault site. They rate the above landing zone 
assessment as good.

Based on the above assessments, your staff has recommended location Delta be­
cause it is lightly defended, it has an adequate landing zone, and it has an element 
of surprise. These outweigh the task of having to forge a path to the lines of commu­
nication. You must either concur or order another course of action (COA).
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D ecision  situation no. 2— The second decision facing you as the coalition 
CJTF is approving the timing of the amphibious assault. There are four choices 
that will support the efforts of the land campaign, which will be ready to start in 36 
hours and must commence within 96 hours to remain on their timetable. They are 
summarized below.

36 Hours—The following is the expected level of readiness at this point. Troop 
level will be at a marginal level with the minimum number of troops available for 
a successful assault. Landing ship support is insufficient and will require twice the 
number of reloads to land the required number of troops, equipment, and supplies. 
Air support is sufficient. There are enough supplies to sustain the force for 30 days. 
Weather forecast is for an overcast sky with light rain and fog. Wind and wave 
height in the bay are moderate. The forces will have rehearsed the assault once and 
are considered at a moderate state of training. There are no significant enemy troop 
movements in the area. Coalition intelligence has no indication that Cain is alerted 
to the assault. You have both air and maritime superiority.

48 Hours—At this point, troop level will be at a sufficient level to easily assure 
mission success. Landing ship support is still insufficient and will require about one 
and a half times the number of reloads to land the required troops, equipment, and 
supplies. Air support is sufficient. There are enough supplies to sustain the force 
for 30 days. Weather forecast is for partly cloudy conditions with no precipitation 
and good visibility. Wind and wave height are low. The forces will have rehearsed 
the assault once and will be at a moderate state of training. There are no significant 
enemy troop movements in the area. Coalition intelligence does not predict that Cain 
will be alerted to the assault. You have both air and maritime superiority.

72 Hours—At this point, troops remain at a sufficient level. Landing ship support 
will be sufficient to land troops, equipment, and supplies in the desired time frame. 
Supply levels are still rated as marginal with enough to sustain the force for 45 days. 
Weather forecast is for clear skies with moderate wind and wave height but with 
conditions expected to worsen over the course of the landing. This forecast is rated 
poor because of a complex weather pattern tha t may affect the area. The forces will 
have rehearsed the assault twice and will be at a high state of training. There are no 
significant enemy troop movements in the area. Coalition intelligence estimates that 
the Cains will have a 25% probability of detecting the assault before it commences. 
You have both air and maritime superiority.

96 Hours—At this point, troops, ships, and supplies will be at sufficient levels to 
provide adequate support for the assault. Weather is expected to be overcast with 
moderate rain, reduced visibility, strong winds, and moderate but increasing waves. 
This forecast is rated poor because of a complex weather pattern that may affect the 
area. The forces will have rehearsed the assault three times and will be at a high state 
of training. There are no significant enemy troop movements in the area. Coalition 
intelligence estimates that the Cains will have a 50% probability of detecting the 
assault at this point. You have both air and maritime superiority.

Based on the above assessments, your staff recommends conducting the assault 
48 hours from now based on maintaining the element of surprise, which is a sufficient 
advantage to offset the insufficient ship level and marginal supply level. You must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



either concur or order a different COA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

D ecision situation no. 3—-You have decided on the timing of the amphibious 
assault and are within 24 hours of execution when your intelligence staff informs you 
that they have picked up indications of large Cain troop movements into the area 
of the landing zone you have chosen. They estimate that Cain troop strength will 
reach a brigade plus level within 48 hours. The intelligence staff is unable to tell 
if the Cains have been alerted to the assault or are moving the troops for further 
staging elsewhere. All subordinate commanders indicate they can support an earlier 
execution. A location change can also be supported with some risk of enemy alertment 
and not completing the relocation in the allotted time. Your staff recommends moving 
the start of the assault up by 12 hours and to continue on with the chosen landing 
site. There is urgency in this decision because it must be coordinated with the land 
campaign force plans and with air force air support for the landing. You must either 
concur with your staff’s recommendation or order a different COA.

D ecision situation  no. 4— Your troops have successfully landed on the beach 
with only minor personnel and equipment casualties. As Task Force Gator begins to 
move towards its objective, it comes under intense fire. It appears that intelligence 
underestimated the enemy troop strength, which now is at least two brigades. The 
enemy seems to have waited until you were ashore to fully engage. The task force’s 
forward progress is stopped and they begin taking heavy casualties with the casualty 
rate increasing. Air strikes have not improved the situation. For the moment, the 
task force is holding its position, but it is unclear if it will be able to overcome the 
opposition. Enemy casualties have also been high. Naval forces are still in place to 
affect a rapid withdrawal of personnel with no estimated increase in casualty rate. 
Your staff recommends abandoning the assault and withdrawing the troops back to 
their ships. You must either concur with your staff’s recommendation or order a 
different COA.
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Decision Situation D ata  Sheet

D e c is io n :________________________

1. W hat information (scenario variables or conditions) did you use in making this 
decision?

2. Based on this information, what were your expectations?

3. W hat were your specific goals and objectives for this decision?

4. Did you consider any other COAs than were provided by your staff? If so, what 
were they and why did you consider them?

5. How was this decision selected/other options rejected? Did you follow a rule 
for selection?

6. Did you imagine the possible consequences of this action? If so, what were those 
consequences? Did you imagine the events that would unfold? If so, what were 
those events?

7. W hat knowledge or information might have helped make this decision easier?

8. Were you reminded of any previous experience? If so, please describe how it 
was similar to this scenario.

9. Does this case fit a standard or typical scenario? Does it fit a scenario you were 
trained to deal with?
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C ODU IRB INFORMED CONSENT DOCUMENT

IN F O R M E D  C O N S E N T  D O C U M E N T  
OLD D O M IN IO N  U N IV E R S IT Y

P R O J E C T  T IT L E : Modeling the Decision Process of a Joint Taskforce Com­
mander

IN T R O D U C T IO N  The purposes of this form are to give you information that 
may affect your decision whether to say YES or NO to participation in this research, 
and to record the consent of those who say YES. This project is concerned with 
modeling the decision process of a Joint Taskforce Commander. To validate the 
model’s performance, we must compare the model’s results against decisions made 
by human role players. Because of your military background, you have been asked 
to make a series of decisions that will be used for comparison against the model’s 
output.

R E S E A R C H E R S  This research is being conducted by John Sokolowski, a PhD 
candidate in the Modeling and Simulation program of Old Dominion University’s 
College of Engineering and Technology.

D E S C R IP T IO N  O F R E S E A R C H  ST U D Y  Many military simulations ex­
ist. However, they are lacking in their ability to accurately model human decision­
making. This is especially true for the operational level of warfare. This research 
hopes to produce an accurate model of the decision process that experienced decision 
makers employ to arrive at decisions in time constrained and volatile environments.

If you decide to participate, then you will join a study involving research into 
modeling military decisions at the operational level of warfare made by senior military 
commanders. If you say YES, then your participation will last for approximately 
2 hours at the location designated by your command. Approximately 30 military 
officers in the ranks of 0 4  to 06  will be participating in this study. You will be given 
a decision scenario, which will ask you to make 4 decisions based on the information 
presented in the scenario. You will also be asked to explain your reasoning behind 
the decisions you chose and the factors that influenced that decision. In addition to 
the decision scenario, you will also be given a personality questionnaire that will help 
measure your risk tolerance. This measurement will be used as an input to the model 
to help capture your risk personality trait.

E X C L U SIO N A R Y  C R IT E R IA  Only those military officers in the ranks of 
0 4  to 0 6  with operational military experience have been asked to participate in this 
study.

R ISK S A N D  B E N E F IT S  RISKS: There are no known risks involved with par­
ticipation in this study. However, as with any research, there may be risks that have 
not yet been identified.

BENEFITS: There are no direct benefits to you, however your participation in 
this study will help provide for a more accurate model of decision-making that may 
be incorporated into military simulations to improve training, analysis, and experi­
mentation at all levels of warfare.
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C O ST S A N D  PAYM ENTS The researchers are unable to give you any pay­
ment for participating in this study.

N E W  INFO RM ATIO N If the researchers find new information during this 
study th a t would reasonably change your decision about participating, then they will 
give it to you.

C O N FID E N TIA LITY  The researchers will take reasonable steps to keep pri­
vate information, such as personality traits confidential. No personal identifying data 
will be linked to any results of this study. Only a tracking number will be used to 
correlate data. The results of this study may be used in reports, presentations, and 
publications but the researcher will not identify you.

W ITH DRAW AL PRIVILEG E It is OK for you to say NO. Even if you say 
YES now, you are free to say NO later, and walk away or withdraw from the study 

at any time. Your decision will not affect your relationship with Old Dominion 
University or your parent command.

C O M PEN SA TIO N  FOR ILLNESS A N D  IN JU R Y  If you say YES, then 
your consent in this document does not waive any of your legal rights. However, in 
the event of problems arising from this study, neither Old Dominion University nor 
the researchers are able to give you any money, insurance coverage, free medical care, 
or any other compensation for such injury. In the event that you suffer injury as a 
result of participation in any research project, you may contact John Sokolowski at 
686-6215 or Dr. David Swain the current IRB chair at 683-6028 at Old Dominion 
University, who will be glad to review the m atter with you.

V O LU NTARY C O N SEN T By signing this form, you are saying several things. 
You are saying that you have read this form or have had it read to you, that you are 
satisfied that you understand this form, the research study, and its risks and benefits. 
The researchers should have answered any questions you may have had about the 
research. If you have any questions later on, then the researchers should be able to 
answer them: John Sokolowski at 757-686-6215

If at any time you feel pressured to participate, or if you have any questions about 
your rights or this form, then you should call Dr. David Swain, the current IRB chair, 
at 757-683-6028, or the Old Dominion University Office of Research and Graduate 
Studies, at 757-683-3460.

And importantly, by signing below, you are telling the researcher YES, tha t you 
agree to participate in this study. The researcher should give you a copy of this form 
for your records.

Subject’s Printed N am e & Signature D ate

IN V ESTIG A TO R ’S STATEM ENT I certify that I have explained to this 
subject the nature and purpose of this research, including benefits, risks, costs, and 
any experimental procedures. I have described the rights and protections afforded 
to human subjects and have done nothing to pressure, coerce, or falsely entice this 
subject into participating. I am aware of my obligations under state and federal laws, 
and promise compliance. I have answered the subject’s questions and have encouraged
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him /her to ask additional questions at any time during the course of this study. I 
have witnessed the above signature (s) on this consent form.

Investigator’s Printed N am e & Sig­
nature

D ate
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D PERSONALITY MEASUREMENT QUESTIONNAIRE

In s tru c tio n s  for C om ple ting  th e  EPIP-N EO  S h o rt Form

On the following pages, there are phrases describing people’s behaviors. Please use 
the rating scale below to describe how accurately each statement describes you. 
Describe yourself as you generally are now, not as you wish to be in the future. 
Describe yourself as you honestly see yourself, in relation to other people you know of 
the same sex as you are, and roughly your same age. So that you can describe yourself 
in an honest manner, your responses will be kept in absolute confidence. Please read 
each statement carefully, and then circle the number that corresponds to the number 
on the scale below.

R esponse  O p tions Very Inaccurate Moderately Inaccurate Neither Inaccurate 
nor Accurate Moderately Accurate Very Accurate

Am the life of the party. 1 2 3 4 5
Feel little concern for others. 1 2 3 4 5
Am always prepared. 1 2 3 4 5
Get stressed out easily. 1 2 3 4 5
Have a rich vocabulary. 1 2 3 4 5
Don’t  talk a lot. 1 2 3 4 5
Am interested in people. 1 2 3 4 5
Leave my belongings around. 1 2 3 4 5
Am relaxed most of the time. 1 2 3 4 5
Have difficulty understanding abstract ideas. 1 2 3 4 5
Feel comfortable around people. 1 2 3 4 5
Insult people. 1 2 3 4 5
Pay attention to details. 1 2 3 4 5
Worry about things. 1 2 3 4 5
Have a vivid imagination. 1 2 3 4 5
Keep in the background. 1 2 3 4 5
Sympathize with others’ feelings. 1 2 3 4 5
Make a mess of things. 1 2 3 4 5
Seldom feel blue. 1 2 3 4 5
Am not interested in abstract ideas. 1 2 3 4 5
Start conversations. 1 2 3 4 5
Am not interested in other people’s problems. 1 2 3 4 5
Get chores done right away. 1 2 3 4 5
Am easily disturbed. 1 2 3 4 5
Have excellent ideas. 1 2 3 4 5
Have little to say. 1 2 3 4 5
Have a soft heart. 1 2 3 4 5
Often forget to put things back in their proper place. 1 2 3 4 5
Get upset easily. 1 2 3 4 5
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Do not have a good imagination. 1 2 3 4 5
Talk to  a lot of different people at parties. 1 2 3 4 5
Am not really interested in others. 1 2 3 4 5
Like order. 1 2 3 4 5
Change my mood a lot. 1 2 3 4 5
Am quick to understand things. 1 2 3 4 5
Don’t like to draw attention to myself. 1 2 3 4 5
Take time out for others. 1 2 3 4 5
Shirk my duties. 1 2 3 4 5
Have frequent mood swings. 1 2 3 4 5
Use difficult words. 1 2 3 4 5
Don’t mind being the center of attention. 1 2 3 4 5
Feel others’ emotions. 1 2 3 4 5
Follow a schedule. 1 2 3 4 5
Get irritated easily. 1 2 3 4 5
Spend time reflecting on things. 1 2 3 4 5
Am quiet around strangers. 1 2 3 4 5
Make people feel at ease. 1 2 3 4 5
Am exacting in my work. 1 2 3 4 5
Often feel blue. 1 2 3 4 5
Am full of ideas. 1 2 3 4 5
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E TURING TEST INSTRUCTIONS

M odeling the D ecision Process o f a Joint Task Force Commander

The U.S. military is relying more and more on large scale simulation systems as 
a tool to  provide for force training, war plan analysis, and new concept experimenta­
tion. An important element within these systems is their ability to simulate military 
decision-making. Legacy simulations have modeled decisions at the tactical level of 
warfare bu t very little decision-making has been modeled at the operational level.

To improve on operational decision modeling, a research effort was undertaken to 
develop a  computer model that would mimic the cognitive decision process of senior 
military commanders in an operational setting. Specifically, a system was created to 
model the decision process of a Joint Task Force Commander (CJTF). The model 
was tested by comparing decisions it produced against decisions produced by military 
officers playing the role of a CJTF using a typical operational decision scenario.

As a final step in the validation process, you are being asked to further evaluate 
if one can tell the difference between a set of decisions made by human role players 
and a set of decisions made by a computer simulation. The following pages contain 
an operational decision scenario consisting of four decision points. This scenario 
was provided to thirty military officers in the grades of 0-4  to 0-6, each with joint 
operational experience. They were asked to make a decision on each decision point 
as if they were the CJTF. Their decisions had to be based only on the information 
provided in the scenario and their past experience as military officers.

The computer model was provided with the same decision scenario and was asked 
to generate its decisions as if it were these thirty role players. Note, the model was not 
programmed to produce optimal decisions but to mimic the human decision process 
that is influenced by a person’s experience and the unclear and incomplete data that 
is often present in real world military operations.

The last page of this document contains a scoring sheet with twenty sets of deci­
sions. This set of decisions was chosen from among the thirty role player decision sets 
and thirty model decision sets. Each decision set represents the sequence of decisions 
required by the enclosed scenario. Next to each decision set is a block to indicate your 
evaluation of that decision set. Clicking on the block next to your choice will place 
an x in it, indicating your evaluation. Please ensure that only one block is checked 
for each decision set.

Following the decision table is a block for comments. If you felt you were able to 
identify human vs. computer decisions, please explain in the comment block what 
indicators you used to make this differentiation. Once complete, please save this 
document back to its original file. This will save your responses. Thank you for your 
time in completing this evaluation. Your effort will help improve joint force training, 
analysis, and experimentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

D ecision set number one

L o c a tio n T im ing C hange W ith d ra w E valua tion
Bravo 48 hours go early withdraw human computer can’t tell
Bravo 48 hours on time withdraw human computer can’t  tell
Bravo 48 hours go early continue human computer can’t tell
Delta 48 hours go early continue human computer can’t  tell
Bravo 48 hours go early continue human computer can’t tell
Charlie 48 hours on time withdraw human computer can’t  tell
Bravo 48 hours go early continue human computer can’t  tell
Charlie 48 hours go early continue human computer can’t tell
Charlie 48 hours go early continue human computer can’t tell
Bravo 48 hours on time continue human computer can’t  tell
Delta 48 hours go early continue human computer can’t  tell
Delta 48 hours go early continue human computer can’t tell
Bravo 48 hours go early continue human computer can’t tell
Bravo 48 hours go early withdraw human computer can’t tell
Bravo 48 hours go early withdraw human computer can’t tell
Bravo 48 hours go early withdraw human computer can’t tell
Bravo 48 hours on time continue human computer can’t tell
Delta 36 hours another site withdraw human computer can’t tell
Bravo 48 hours on time continue human computer can’t tell
Bravo 48 hours go early continue human computer can’t tell

Comments:
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D ecision set number two

L ocation T im ing C hange W ith d ra w E valua tion
Bravo 48 hours go early withdraw human computer can’t  tell
Bravo 48 hours on time withdraw human computer can’t  tell
Bravo 48 hours go early continue human computer can’t tell
Delta 48 hours go early continue human computer can’t tell
Bravo 48 hours go early continue human computer can’t tell
Charlie 48 hours on time withdraw human computer can’t tell
Bravo 48 hours go early continue human computer can’t  tell
Charlie 48 hours go early continue human computer can’t tell
Charlie 48 hours go early continue human computer can’t  tell
Bravo 48 hours on time continue human computer can’t  tell
Delta 48 hours go early continue human computer can’t  tell
Delta 48 hours go early continue human computer can’t tell
Bravo 48 hours go early continue human computer can’t tell
Bravo 48 hours go early withdraw human computer can’t  tell
Bravo 48 hours go early withdraw human computer can’t  tell
Bravo 48 hours go early withdraw human computer can’t tell
Bravo 48 hours on time continue human computer can’t tell
Delta 36 hours another site withdraw human computer can’t  tell
Bravo 48 hours on time continue human computer can’t  tell
Bravo 48 hours go early continue human computer can’t tell

Comments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

CURRICULUM VITA 
for 

JOHN ANTHONY SOKOLOWSKI

DEGREES:
Doctor of Philosophy (Engineering with a Concentration in Modeling and Simu­

lation), Old Dominion University, Norfolk, VA, May 2003
Master (Engineering Management), Old Dominion University, Norfolk, VA, May 

1998
Bachelor of Science (Computer Science), Purdue University, West Lafayette, IN, 

December 1974

PR O FESSIO NAL CHRONOLOGY:
Virginia Modeling, Analysis and Simulation Center, Old Dominion University, Nor­
folk, VA

Project Scientist, December 2001-Present

Joint Warfighting Center, U. S. Joint Forces Command, Norfolk, VA
Head, Modeling and Simulation Division, March 1999-November 2001

Naval Safety Center, Norfolk, VA
Head, Afloat Safety Directorate, October 1995-February 1999

Commander, Submarine Squadron Eight, Norfolk, VA
Deputy Commander, January 1994-September 1995

USS Benjamin Franklin (SSBN 640), Charleston, SC 
Commanding Officer, July 1991-December 1993

SCIENTIFIC A N D  PR O FESSIO N A L SOCIETIES M EM BERSH IP:
Society for Modeling and Simulation International, American Association for Artifi­
cial Intelligence, Association for Computing Machinery, Phi Beta Kappa

G R A N TS A N D  C O N TR A C TS AW ARDED:
Decision Modeling, Sponsor: Joint Warfighting Center/Defense Modeling and Simu­
lation Office, $146,000

SCHOLARLY A C TIV ITIES COM PLETED:
Sokolowski, J. A. Enhanced Military Decision Modeling Using a MultiAgent System 
Approach. In P roceedings o f  the 12th  C onference on  B eh a v io r  R ep re se n ta tio n  in  
M odeling an d  S im u la tio n  (B R IM S ). May 12-15, 2003, Scottsdale, AZ, (accepted for 
publication).

Sokolowski, J. A. Representing Knowledge and Experience in RPDAgent. In P roceed­
ings o f  the 12th  C onferen ce on  B eh a v io r  R ep re se n ta tio n  in  M odelin g  an d  S im u la tio n  
(B R IM S ). May 12-15, 2003, Scottsdale, AZ, (accepted for publication).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

Sokolowski, J. A. Can a Composite Agent be Used to Implement a Recognition- 
Primed Decision Model? In P roceedings o f  the E leven th  C onference on C o m p u ter  
G en era ted  F orces an d  B eh aviora l R ep resen ta tio n . May 7-9, 2002, Orlando, FL, pp. 
473-478.

Sokolowski, J. A. Using Neural Networks to Model Decision Making. In Proceedings  
o f  the A d va n ced  S im u la tio n  Technology C onference. April 16-20, 2000, Washington
D. C., pp. 131-135.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Modeling the Decision Process of a Joint Task Force Commander
	Recommended Citation

	tmp.1551891255.pdf.EUi9s

