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ABSTRACT

HYPERSONIC BOUNDARY-LAYER STABILITY 
ACROSS A COMPRESSION CORNER

Hongwu Zhao 
Old Dominion University, 2003 
Director: Dr. Osama A. Kandil 

Co-Director: Dr. Ponnampalam Balakumar

Stability of a hypersonic boundary-layer over a compression comer was investigated 

numerically. The three-dimensional compressible Navier-Stokes equations were solved 

using a fifth-order weighted essentially non-oscillating (WENO) shock capturing scheme 

to study the shock wave and boundary-layer interactions. The boundary-layer stability 

was studied in three distinct regions: upstream of the separation region, inside the 

separation region and downstream of the separation region. After the mean flow field was 

computed, linear stability theory was employed to predict the unstable disturbance modes 

in different flow regions and also to find the most amplified disturbance frequency across 

the compression comer. Gortler instability computations were performed to study the 

influence of the streamline curvatures on boundary-layer stability, and PSE(parabolized 

stability equation) method was employed to obtain the initial disturbances for direct 

numerical simulation.

To study the boundary-layer stability by direct numerical simulation, two- or three- 

dimensional initial disturbances were introduced at the initial streamwise location of the 

computational domain. Two-dimensional disturbance evolution simulation shows that 

two-dimensional high frequency linear disturbances grow exponentially upstream and 

downstream of the separation region and remain neutral in the separation region, but 

two-dimensional low frequency linear disturbances only grow in a narrow area inside the 

separation region and remain neutral upstream and downstream of the separation region.
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Two-dimensional nonlinear disturbances will saturate downstream of the separation 

region when their amplitudes reach quit large amplitude.

The three-dimensional disturbance evolution simulations show that three- 

dimensional linear mono-frequency disturbances are less amplified than its 

two-dimensional counterpart across the compression comer. The three-dimensional 

nonlinear mono-frequency disturbance evolution indicates that mode (0,2) is responsible 

for the oblique breakdown. Three-dimensional disturbances are much more amplified 

with the presence of two-dimensional primary disturbance due to the secondary instability. 

Finally, the simulations of three-dimensional random frequency disturbance evolution 

with the presence of a two-dimensional primary disturbance show that the secondary 

instability first occurs downstream of the separation region and a fundamental or K-type 

breakdown will be triggered by this secondary instability.
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NOMENCLATURE

English Symbols

Ao Coefficient matrix of linear stability theory

A,B,C,D Coefficient matrices of PSE

A2 ,B2 ,C2 Coefficient matrices of Gortler instability

c Phase velocity

Cv Specific heat at constant volume

E,F,G In viscid fluxes

Ev,Fv,Gv Viscous fluxes

et Total energy

f Disturbance frequency

Fo Non-dimensional disturbance frequency

Gr Gortler number

J Jacobian matrix

kx Heat conductivity coefficient

L Reference length

M Mach number

N N factor

p Pressure

pr Prandtl number

Q Conservative variable vector

R Gas constant

Re Reynolds number

r, 0 Cylindrical coordinates

T Temperature

t Time
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ui U2 ,U3 Velocity in streamwise, wall normal, and spanwise directions

u,v,w Velocity in streamwise, wall normal, and spanwise directions

W Complex potential

x,y,z Cartesian coordinates

Xi,X2, X3 Cartesian coordinates

Z Complex variable

Greek Symbols

a Streamwise wave number

P Spanwise wave number

e Initial disturbance amplitude

P Density

n Stress tensor

11 Viscosity coefficient

V Kinematic viscosity

Y Specific heat constant

8 Boundary-layer thickness

5d Displacement thickness

§0 Boundary-layer thickness at the initial streamwise location

Curvilinear coordinates

© Disturbance frequency

<P Disturbance velocity potential

X Second viscosity coefficient

xx Wave length in streamwise direction

Xz Wave length in spanwise direction

K Curvature radius

0 0 The comer angle

0W The oblique shock deflection angle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Subscripts

OQ

inf

ref

dis

max

Superscripts

*

f

Upstream infinity flow variables 

Upstream infinity flow variables 

Reference variables 

Disturbance quantities 

Maximal value

Dimensional variables

Mean flow variables

Disturbance variables

Normal mode variables

The variables in curvilinear coordinate system
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1

CHAPTER I 

INTRODUCTION*

1.1 The background of current research

The transition of boundary-layers from a laminar to a turbulent state play an 

important role in many fluid mechanics problems since it ultimately affects basic 

quantities such as heat transfer and skin friction. In general, the transition can have either 

positive or negative effects. In some situations it is harmful, but it is desirable in other 

situations. For example, the low skin-friction coefficient of laminar boundary-layer flow 

is very attractive to those who design engines or pay the fuel for high-speed vehicles such 

as airplanes. However, the low mixing of fluid quantities such as chemical species, heat 

or momentum may be problematic for others who design these engines or cope with the 

danger of separation in adverse pressure gradients. They may clearly prefer a turbulent 

state of flow. This summarizes the situation at the inlet of the NASA Hyper-X propulsion 

system.

Figure 1.1 The hyper-X flight vehicle.

* The reference model of this work is IEEE Journals and Transactions
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Estimated length to natural transition onset based on 
Rbq/Mq -  305: over 9-ft for Mach 7 and 25-ft for Mach 10

Figure 1.2 The geometry configuration of the Hyper-X model.

Figure 1.1 shows a Hyper-X vehicle and associated operation conditions. In order to 

provide the most robust scramjet propulsion system, a turbulent boundary-layer at the 

inlet interface is required. Ingestion of a turbulent boundary-layer into the inlet enhances 

the performance and operability of the engine through improved fuel air mixing and 

reduced susceptibility to drag-enhancing internal flow separations. However, based on the 

current knowledge of boundary-layer transition at hypersonic flight conditions, an 

estimation of the location of natural transition on the Hyper-X forebody suggests that 

boundary-layer trip devices are necessary to ensure a turbulent boundary at the inlet. An 

experimental investigation of boundary-layer trip effectiveness and the effect of the trips 

on the aeroheating characteristics for a 33% scale Hyper-X forebody model has been 

conducted in the LaRC 20-inch Mach 6 air tunnel by Berry, DiFulvio, and 

Kowalkowski[l], and Berry, Auslender and Dilley[2]. They investigated the effects of 

discrete roughness elements on forebody boundary-layer transition, which included 

variations in trip configuration and height. But for a more effective and economical study 

of hypersonic boundary-layer transition tripping, numerical simulation of transition at the 

inlet of the engine is a good solution. By numerical simulation, the most effective 

configuration for the boundary-layer trip can be determined. In addition, the hypersonic
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transition mechanism across a compression comer can also be disclosed by numerical 

simulation.

1.2 The phenomena of shock wave/boundary-layer interaction

It is observed from the geometric configuration of the Hyper-X model shown in 

Figure 1.2 that two compression comers exist on its forebody. Under hypersonic flight 

conditions, the shocks will form and a large adverse pressure gradient will be produced 

across the compression comers. It is well known that when a large adverse pressure 

gradient exists in the inviscid pressure distribution, viscous effects become important. 

The interaction of the boundary-layer with the adverse pressure gradient modifies the 

pressure distribution and the flow field is drastically modified, including the appearance 

of multiple shocks, flow separation, transition to turbulence, unsteadiness and 

three-dimensionality. This phenomenon is observed in transonic flow over airfoils, 

supersonic flows over compression comers, curved surfaces and steps etc.

Figure 1.3a The shock formation and pressure distribution on an airfoil with laminar flow M=1.191.
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Figure 1.3b The shock formation and pressure distribution on the same airfoil with laminar flow

M=1.225.

I x*»w
4—I «r-« 

j t - a

Figure 1.3c The shock formation and pressure distribution on the same airfoil with turbulent flow
M=1.280.

Ackert, Feldmann and Rott[3] investigated experimentally the mutual influences of 

compression shocks and boundary-layers in transonic and at low supersonic Mach 

numbers in laminar and turbulent flow regimes. The results are shown in Figures 

1.3a-1.3c. The measurements and the observations showed the formation of A,-shock for 

laminar boundary-layers at Mach numbers close to 1.2 and multiple shocks were 

observed with decreasing Mach numbers. The X shocks consist of a main shock with a 

preceding oblique compression wave. The flow in front of the main shock is separated 

and there is a gradual increase of pressure starting upstream of the separation point. This 

gradual increase in pressure ends with a sharp increase near the main shock and the flow 

becomes turbulent behind the shock. For turbulent flows only normal shocks are observed.
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In both cases the boundary-layer thickness increases considerably by a factor of ten in 

laminar flow and by a factor of four in turbulent flows.

f»ni5<wr
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Figure 1.4 The three flow regimes for a supersonic flow going through a compression corner.

Chapman, Kuehn and Larson[4] conducted an extensive investigation on flow 

separation for steps, bases, compression comers, and curved surfaces at different Mach 

numbers ranging from 0.4 to 3.6 and at different Reynolds numbers. Figure 1.4 shows 

the three flow regimes for the supersonic flow with Mach number 2.7 going through a 

compression comer. It was observed that the pressure distribution in separated flow 

depends on the location of the transition point relative to the reattachment and separation 

points. In laminar separation, the pressure rises smoothly and reaches a plateau. 

Depending on the downstream condition, the pressure rises smoothly to the final pressure. 

In transitional separation where the flow starts to become turbulent between the 

separation and reattachment points, the pressure initially rises smoothly, as in laminar 

flows, and then increases sharply near the transition region and the pressure distribution 

becomes unsteady. In turbulent separated flows, the pressure increases rapidly from start 

to finish. It is also observed that the mixing layer above the separation bubble is stable in
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supersonic flows and the stability increases with increasing Mach numbers. Therefore 

laminar separated flows become very important in hypersonic boundary-layers.

From these two experiments we see that the most spectacular feature of the 

phenomena is that the boundary-layer separates some distance ahead of the incident 

shock, generating compression waves in the main stream which can coalesce to form a 

secondary shock. The upstream influence observed in these experiments was perplexing 

at that time since: 1) the boundary-layer equations are parabolic and, therefore, do not 

permit upstream propagation of disturbances; 2) The supersonic external flow can only 

transmit disturbances downstream.

The mechanism for upstream disturbance propagation was first explained by 

Lighthill[5][6] using self-induced separation theory and later using asymptotic triple-deck 

theory by Stewartson and Williams[7], Brown, Stewartson and Williams[8], Rizzetta, 

Burggraf and Jenson[9], and Brown, Cheng and Lee[10]. In fact, from the physical point 

of view, this separation is due to the interaction between the shock wave and 

boundary-layer. Figures 1.5a-d give a graphic representation of how the shock induced 

separation occurs. We know when an inviscid supersonic flow goes through a 

compression comer, an oblique shock will form at the vertex and an inviscid pressure 

discontinuity will appear across the shock. But if this supersonic flow is viscous, a 

boundary-layer exists along the wall of the compression comer. When this 

boundary-layer interacts with the oblique shock, due to the adverse pressure gradient, the 

boundary-layer thickness close to the vertex increases. This part of the boundary-layer 

whose thickness is increased will alter the pressure distribution at the outer part of the 

boundary-layer. This altered pressure distribution induces further growth of the 

boundary-layer thickness upstream of the original discontinuity. This process continues 

until the flow reaches a kind of equilibrium at one specific location some distance 

upstream of the shock impingement point. Then a steady separation bubble is formed in 

the area close to the comer vertex point. The boundary-layer thickness increases
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significantly in the separation bubble region. Some compression waves appear along the 

edge of the boundary-layer. These compression waves merge together far away to form an 

oblique shock.

The shock wave/boundary-layer interaction attracted a lot of research interests in the 

last few decades[ll]-[22]. But most experimental and numerical work mainly focused on 

the steady flow boundary-layer, including both laminar and turbulent boundary-layers. 

The main objectives of these research were to 1) predict the separation, including the 

separation area length, the location of the separation and reattachment points; 2) predict 

the pressure distribution and drag force along the surface; 3) study the influences of Mach 

number and Reynolds number as well as wall temperature on the separation. As to the 

boundary-layer instability and transition with the existence of shock wave/boundary-layer 

interaction, little work had been previously done.

Inviscid shock

■ V
Pressure discontinuity

Figure 1.5a The shock produced by inviscid supersonic flow.

Inviscid shock

Boundary-layer edge

Figure 1.5b The boundary-layer encountering the inviscid shock.
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Inviscid discontinuity

Boundary-layer edge

Separation bubble
Viscous discontinuity

Figure 1.5c Alteration of the boundary-layer thickness under the adverse pressure gradient.

Compression >Vave

Boundary-layer edge

Separation bubble

Figure 1.5d Representation of shock induced flow separation.

1.3 The stability and transition problems with the existence of shock 

wave and boundary-layer interaction

Compared with the boundary-layer transition along a flat plate, the transition with the 

existence of a shock wave and boundary-layer interaction will be more complex. The 

boundary-layer of hypersonic flow across a compression comer exhibits four distinct 

regions, as shown in Figure 1.6: (I) the boundary-layer prior to separation; (II) the mixing 

layer above the separation bubble in the comer; (III) the separation bubble in the comer
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and (IV) the boundary-layer downstream of the separation bubble. Hence, the transition 

to turbulence can occur due to different instabilities which may exist in these regions. In 

hypersonic boundary-layers the transition is dominated by the high frequency 

two-dimensional second mode type disturbances[23]. Hence, upstream and downstream 

of the separation region, transition might occur due to this instability. But in the 

separation region and the mixing layer region above separation bubble, the transition 

mechanism is unknown. So the main objective of the current research is to investigate the 

boundary-layer instability and transition across these four regions by direct numerical 

simulations.

Boundary-layer edge

Disturbance

IV

Separation bubble
I III

Figure 1.6 The partitions of flow regions across the compression comer.

1.4 The physical mechanism of the boundary-layer transition

The physical mechanism of transition has long been a mystery since Reynolds’ 

milestone transition experiment in 1883. But the mechanism is becoming more and more 

clear, due to a large amount of experimental, theoretical and numerical work in the last 

few decades. A systematic description had been given by Kachanov[24] [25] about the 

physical mechanism of laminar boundary-layer transition. In general, the transition is a 

result of the nonlinear response of the laminar boundary-layers to forcing disturbances. 

The transition process is illustrated in Figure 1.7 and follows the following five stages:

1) Receptivity.

2) Linear instability.
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3) Nonlinear stability and saturation.

4) Secondary instability.

5) Breakdown to turbulence.

Figure 1.7 Illustration of the transition process[24].

The receptivity of boundary-layers to external disturbances is the process of 

converting environmental disturbances into unstable waves called Tollmien-Schlicting 

waves in the boundary-layers. In quiescent environments, the initial amplitudes of these 

unstable waves are small compared to any characteristic velocity and length scale in the 

flow. The receptivity mechanism provides important initial conditions in terms of 

amplitude, frequency and phase for these unstable waves in the boundary-layers. 

Goldstein[26][27] used asymptotic methods to explain theoretically how Tollmien- 

Schlicting waves were generated near the leading edge of a flat plate by long wavelength 

acoustic disturbances and he also showed the development of these waves in the 

boundary-layer at their initial stage. In the second stage, the amplitudes of these 

instability waves grow exponentially downstream and this process is governed by the 

linearized Navier-Stokes equations. Further downstream, the amplitude of the 

disturbances become so large that nonlinear effects inhibit the exponential growth and the 

amplitudes of the disturbance eventually saturate or attain singular values. Induced by 

these finite amplitude saturated disturbances, the three-dimensional disturbances begin to
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grow rapidly. This is called secondary instability and can be analyzed using Floquet 

theory[28]. When the amplitudes of the three-dimensional disturbances reach the same 

order as that of the two-dimensional disturbances, the spectrum broadens due to complex 

nonlinear interactions and further instabilities, and the flow becomes turbulent in a short 

distance downstream.

Figure 1.8 Sketch of the vibrating-ribbon transition experiment[29].

In general, transition under natural conditions is influenced by a variety of factors. 

Different routes to turbulence have been discovered. The classical experiment of 

Klebanoff et al[29] on forced transition in incompressible flow over a flat plat were the 

focal points of theoretical attempts to describe the transition process. The experiment 

utilized the vibrating-ribbon technique as illustrated in Figure 1.8 to force artificially 

finite-amplitude, monochromatic Tollmien-Schlichting(T-S) waves under carefully 

controlled conditions. The ribbon induces a predominantly two-dimensional disturbance, 

in which the least stable linear mode rapidly dominates the flow downstream of the 

ribbon. The resulting T-S wave evolves linearly for several wavelengths downstream. 

When the two-dimensional wave amplitude exceeds some critical threshold, 

three-dimensional disturbances are amplified as a result of the secondary instability. The 

fluctuations grow rapidly at the spanwise “peak” positions whereas, in between at the 

“valley” positions, this growth occurs only further downstream. After the 

three-dimensional disturbance amplitudes have attained the order of magnitude of the 

two-dimensional wave, the A-structure (lambda vortex) appears, with the tip at the peak
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position. On top of the lambda vortex is induced a detached high-shear layer of the 

streamwise velocity, which intensifies, elongates, and eventually rolls up. An increasing 

number of sharp low-velocity pulses, the so-called “spikes”, are then observed during 

each cycle in the instantaneous-velocity signals at the peak position. Later in the process, 

the high-shear layer breaks down, forming new smaller structures. Then, local regions of 

turbulence appear periodically in the streamwise and spanwise directions, and they spread 

as they travel downstream until a fully turbulent flow is attained.

With much credit to Mack[23], the instability and transition of compressible flow had 

also been well understood. He first predicted that multiple instability modes coexist in 

high speed flow, where the first instability mode is similar to the T-S wave in 

incompressible flow, and all other modes are higher acoustic modes. The first of all these 

acoustic modes is called the second mode. It is the second mode that is the most 

dangerous mode in high speed flow. It attains its peak amplification rate at a Mach 

number of about 4.5. It is characterized by high frequencies, is predominantly inviscid in 

nature, travels with a phase velocity nearly that of the mean streamwise velocity at the 

boundary-layer edge, and is most unstable when two-dimensional. So for the study of 

hypersonic flow instability and transition, the second mode instability should be a main 

concern.

1.5 The theories for studying the boundary-layer transition

For studying boundary-layer transition phenomena, a variety of theoretical and 

computational tools have been developed in the last few decades. These tools include the 

following: linear stability theory[23], secondary instability theory(SIT)[28], parabolized 

stability equations(PSE)[30], large eddy simulation(LES)[31][32], and direct numerical 

simulation(DNS)[33]-[46]. They are listed in order of increasing computational 

requirements, and the fourth and the fifth of these methods are still in the early stages of 

development. For an economical and revealing study of each stage in a comprehensive 

investigation of a complete transition process from laminar to turbulence, we see the
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appropriate role for these approaches to be as follows: LST should be used to select the 

most important primary instability waves and, thereby, to determine the relevant 

streamwise scales of the instability waves. SIT disclosed the most important secondary 

instabilities and serves largely to determine the relevant scales in the spanwise direction. 

The PSE approach uses LST and SIT as a guide and provides a tool for conducting 

relatively inexpensive spatial simulations of the primary, secondary, and early nonlinear 

stages of transition. DNS builds upon the results of SIT and the PSE approach and is most 

appropriate for simulations of the strongly nonlinear stages of transition.

In the last few decades, linear stability theory and PSE methods have been used 

extensively to analyze the transition process in incompressible and compressible flat-plate 

and axis-symmetric boundary-layers[47]-[58]. The transition onset point can be predicted 

using the N-factor method. However, linear theory is applicable only to some specific 

transition problems, and even then it describes just the first stage of transition; that is, the 

slow growth of the primary instability. Subsequent stages are due to nonlinear 

interactions. Due to the existence of interactions between the shock wave and instability 

wave, the evolution of disturbance in the boundary-layer become more complex 

especially for boundary-layer flows with discontinuities. The linear stability theory and 

the PSE method cease to be valid. Direct numerical simulation is necessary for the 

present investigation of boundary-layer transition with the existence of shock wave and 

boundary-layer interaction.

1.6 Direct numerical simulation of boundary-layer transition

By direct numerical simulation, we refer to the numerical simulation of the full 

nonlinear, time-dependent Navier-Stokes equations without any empirical closure 

assumptions. This approach can provide a complete space-time history of the flow field 

and permit precise parametric study. It is the most accurate and appropriate method for 

transition and turbulence study. But the DNS are, in practice, still strongly constrained by 

computer resources and algorithmic limitations. Most current DNS studies are only
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conducted for very simple geometries, such as the flat plates and the axisymmetric bodies. 

Even so, most transition investigations can only reach the early nonlinear stage. Only in a 

few highly idealized instances can they be conducted reliably all the way to a fully 

turbulent stage. Despite these limitations, direct numerical simulations of transition have 

played an active role in theoretical transition research since the 1980s and have formed an 

increasingly important complement to traditional experimental and theoretical 

investigations.

Direct numerical simulation includes spatial simulation and temporal simulation. 

From most of the transition experiments, we know that in spatial evolution of the 

transition, the primary and secondary instability processes take between 5 and 20 

wavelengths. The laminar breakdown stage occurs roughly over two wavelengths, and the 

final transition to turbulence takes perhaps four more. The breakdown process involves 

length scales between one and two orders of magnitude smaller than the T-S scale. As a 

result, significantly more grid points are necessary to simulate the breakdown process. It 

is a daunting task to provide enough grid points to simulate the full transition process for 

most currently available super computers. In addition, sometimes it is difficult to provide 

the proper outflow boundary conditions in spatial simulations. Due to these two reasons, 

much current numerical simulation work has been performed in the temporal rather than 

the spatial setting. Here, the spatial evolution of the disturbances, resulting from 

time-dependent, periodic forcing, is replaced by the temporal evolution resulting from a 

spatially periodic initial condition. The spatial evolution of the disturbances can be 

appropriately obtained from the temporal evolution by the Gaster[59] transformation. 

Owing to the assumption of streamwise periodicity, only one wavelength need be 

resolved in the temporal approximation. This provides a big advantage, which saves 

computation time. In addition, the outflow boundary condition dilemma is circumvented.

Even though temporal simulation is more economical in computation time, it 

involves an intrinsic parallel flow assumption. That is, the mean flow is taken to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

constant in the streamwise direction, and the unperturbed velocity normal to the wall is 

neglected. The effects of boundary-layer growth can only be partially included by 

permitting the boundary-layer to thicken with time. So the temporal simulation is only 

suitable for the flat plate boundary-layer transition. For the present hypersonic 

boundary-layer transition across a compression comer, the mean flow will show a 

significant change in the streamwise direction due to the existence of the pressure 

discontinuity. So the temporal simulation ceased to be valid in the present study. In 

addition, as transition in the boundary-layer flow evolves in the streamwise direction, it is 

natural to simulate this process with a spatial approach.

1.7 Literatures review

As discussed above, due to a large amount of computation, accurate direct numerical 

simulation(DNS) are a major challenge for the complete laminar-turbulent transition 

process. This was a daunting task until the late 1980s, particularly for high-speed 

boundary-layer flow. The first tentative steps were taken by Bayliss et al{60] in the use of 

DNS to investigate transition to turbulence in supersonic, wall-bounded flows. They 

presented the first DNS result for supersonic boundary-layer flow along a flat plate. 

These results were for spatially evolving, but two-dimensional flow. The first 

three-dimensional DNS of a perturbed high-speed(Mach 4.5) flat-plate boundary-layer 

flow was accomplished by Erlebacher and Hussaini[61]. This numerical experiment used 

temporal DNS to examine boundary-layer stability, but stopped far short of attaining a 

transitional state.

Due partly to increased supercomputer capacity, there have been many recent 

noteworthy three-dimensional simulations of compressible wall-bounded flows. Among 

these are temporal simulation by Normand and Lesieur[32], Pruett and Zang[36], Adams 

and Kleiser[38]; and spatial simulations by Maestrello et al.[62], Normand and 

Lesieur[32], Eissler and Bestek[63], Ng and Zang[64], and Pruett and Chang[33][35].

From this literature we note that most DNS of boundary-layer transition are
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performed for the flat plate and axisymmetric boundary-layers. As to the DNS of 

boundary-layer transition with the existence of an adverse pressure gradient and flow 

separation, little work has thus for been done. However, transition arising from a 

separated region of flow is quite common and plays an important role in engineering. It is 

difficult to predict using conventional models and the transition mechanism is still not 

fully understood. The transition mechanism in the separation bubble was studied by 

Spalart & Strelets[65] using large-eddy simulation, and also by Yang and Voke[6 6 ] using 

direct numerical simulation in incompressible flow. Their results show that the instability 

mechanism in the separation bubble for incompressible flow is dominated by 

Kelvin-Helmholtz instability. However, for the high-speed flow going through a 

compression comer, the flow separates due to shock wave/boundary-layer interaction. 

The boundary-layer transition mechanism will be different from that of the 

incompressible flow in the separation bubble. And so far, no literature has been found that 

deals with boundary-layer instability and transition including shock wave/boundary-layer 

interactions.

1.8 Outline of the present research

The main objective of present research is to study the boundary-layer instability and 

transition across a compression comer under hypersonic flow conditions by direct 

numerical simulation. But the linear stability theory, PSE method, as well as Gortler 

instability theory will also be used in the present investigation. According to the content 

of the present research, the thesis will include the following chapters.

In chapter 2, the governing equations and the solution algorithm for LST, PSE, 

Gortler instability and DNS will be presented.

In chapter 3, the two-dimensional mean flow across the compression comer will be 

obtained by two-dimensional steady computation.

In chapter 4, the LST will be used to perform the parametric study for two- and 

three-dimensional disturbance evolution across the compression comer. The Gortler
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instability computation will also be performed in this chapter.

In chapter 5, the DNS is used to study the two-dimensional linear and nonlinear 

disturbance evolution across the compression comer.

In chapter 6, the DNS is used to study the three-dimensional linear and nonlinear 

disturbance evolution across the compression comer. Random frequency disturbances 

evolution will also be simulated in this chapter.

In chapter 7, conclusions of the present research and the recommendations for future 

research will be presented.
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CHAPTER II

GOVERNING EQUATIONS AND

SOLUTION ALGORITHM

In the present investigation, the main objective is to use DNS to simulate the 

two-dimensional and oblique disturbance evolution across the compression comer, we 

will focus on the numerical scheme required to solve two- and three-dimensional 

compressible Navier-Stokes equation. On the other hand, in order to perform the 

parametric study and validate the DNS codes, as well as provide the initial disturbance 

for DNS, we need to solve linearized Navier-Stokes equations such as LST and PSE. In 

addition, Gortler instability computations should also be performed to study the influence 

of streamline curvature. In this chapter, we will first present the full three-dimensional 

compressible Navier-Stokes equations. Then we will give a derivation for LST, PSE and 

Gortler instability theory, as well as the numerical schemes to solve these linearized 

Navier-Stokes equations. Finally, we will focus on the numerical schemes of DNS.

2.1 Three-dimensional compressible Navier-Stokes equations

The vector forms of the three-dimensional compressible Navier-Stokes equations in a 

Cartesion coordinate system can be expressed as equations (2.1)-(2.4). Where the 

superscript ‘ * ’ stands for the dimensional variables.

Continuity equation

(2.1)

Momentum equations

3V*/&-+v*-vv*) = v-n
at

(2.2)

Energy equation
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rlT *
p * C y  ( ^ V  +  v *  • v r * ) =  V  • k . ; v r  +  <b (2.3)

at

Equation of state

p* = Rp*T* (2.4)

The gas is assumed to be thermally and calorically perfect. Et represents the stress

tensor, which consists of normal and shearing stresses. Its components T*- can be

expressed as equation (2.5), where the Stokes hypothesis X*=-2/3p* is enforced.

*  *  ^  *  

T y = - p S ij+ P
du* duj 2 dul
dx* dx* 3 ij dxt

; i, j , k  =  1,2 or 3 (2.5)

And #  is the dissipation term in the energy equation. It can be expressed as

#  = T-jel; i, j  =  1,2,3 (2.6)

where

* 1 du*
^  = 2 (4 + a ? } (Z7)

The viscousity coefficient p* and thermal conductivity, k*T, are calculated using 

Sutherland’s law together with a constant Prandtl number p r .

3
C T * 2

M (2 .8)
i  + c2

where ci=7.30246xl0'7, c2=198.7°R

_y L
r - 1 P r

k* — - / /*  (2.9)

where y  is the specific heat coefficient, 7 = 1.4 and p r =  0 .7 .

2.2 Non-dimensionalization of the governing equations

As is customary and convenient, the governing equations must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

non-dimensionalized using some characteristic quantities. The density, p *, temperature,

T *, velocity, u*, and viscousity coefficient, p  , are non-dimensionalized by their

corresponding upstream reference values, /?* , T j, £/* and p *x , respectively. The

pressure is non-dimensionalized by the quantity p it/* 2. The reference value for length 

is computed by

where x*0 is the location of the beginning of computational domain in the streamwise 

direction.

So using the above characteristic quantities, we can get the non-dimensional 

variables as follows:
* ;

X— ‘ f =
L'/U *  ’

*
h,U: = —V-;
u l

*

p

T*
T  = —  •

r y

* T T *  t *

r  e = P - u : Lp  p

P~ p  Uy  co 00

The non-dimensionalized Navier-Stokes equations are given in equations (2.11)- 

(2.16). Where xx,x 2 , x3 stand for the coordinates in the streamwise direction, the wall

normal direction, and the spanwise direction respectively, and u},u 2 , « 3 stand for the

corresponding velocity components in these three directions.

Continuity equation

C/t oXj C/X2

Momentum equations
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9m, 9m, 9m, 9m, n
+  M ,  h U
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9? 1 9x, 2 9x2 3 9x3

_ 9p + 1 [2  9 
9x3 Re I 3 9x3

f  _ 9m, 9m, 9m, ^
H  2 — 1 ------ 1 ------ 1

9x3 9x2 9x,
(2.14)

+ •
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ji
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State equation

2.3 Linearization of the governing equations

The principle of classical stability theory evolves around the concept of determining 

whether a small disturbance introduced into a laminar boundary-layer will amplify or 

decay. If the disturbance decays, the boundary-layer is stable and if the disturbance grows, 

the boundary-layer is unstable. In stability theory, the first step in the methodology of 

analyzing the evolution of small disturbance is to assume the total flow as composed of 

mean quantities and small disturbance quantities. That is

Mj = U l + u [  (2.17)

u2 =U2 +u2 (2.18)

u3 = U 3 +  u3 (2.19)

p  = p + p '  (2 .2 0 )

P = P + P (2.21)

T = T  +  T' (2.22)

p  = j l  + p '  (2.23)

where the symbol stands for the mean flow quantities and the symbol “ ' ” stands for
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the disturbance quantities.

Now we substitute the above total quantities into the dimensionless Navier-Stokes 

equations which are given in equations (2.11)-(2.16). Compared with the mean quantities, 

the disturbance quantities are very small. So the higher order nonlinear terms can be 

neglected. In addition, the present research analyzes the instability of two-dimensional 

boundary-layers. The mean flow is two-dimensional. And the mean flow velocity in the

spanwise direction is zero, that is U 3 = 0. So we can neglect the linear terms concerned

with U3. Finally, because the viscosity is a function only of temperature, we have the 

following equations

Then after some manipulations of the equations, we can write the linearized 

Navier-Stokes equation as 

Continuity equation

(2.24)

dfi' _  d 2j l  dT  ; dju dT'
dxt d T 2 dxi dT dxt

(2.25)

dfJ. _  3ft dT  
dXj dT dX[

(2.26)

(2.27)

Momentum equations

w2 + i
\  r

7 V
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dp' ^  1

3x, Re
2 dp dT ( du[ du2 du3
3 dT dx, dx, dx, dx.

f  \
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^4 9 2Mj 3 2w( d 2u[ ^

3 3x, dx, dx,v 1 2 3 y

+ 3/i 37
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1 _  + -  "^ 32u2 + 3 2m3
3xj3x2 3x,3x1 .3

+
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^ du, du'A
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3xj 3x2
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3

(  - \ 2  ta u.
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2.4 Linear stability theory(LST)

Despite its limitations, the linear stability theory is still of great interest as a tool for 

the semi-empirical prediction of transition to turbulence. Currently, the preferred linear 

stability predictive method in industry for transition in incompressible flow over complex 

geometries rests on the Orr-Sommerfeld equation given as equation (2.33).

(tf, -  c){(p' -  a 2sp) -  Ufa  = -----—  (cpw-  2 « V  + a 4) (2.33)
or Re

The compressible analogue of the Orr-Sommerfeld equation is a coupled set of five 

ordinary differential equations. These include three second-order momentum equations, 

one second-order energy equation, and one first-order continuity equation. So the 

derivation and numerical solution of LST in compressible flow is much more 

complicated.

2.4.1 The derivation of LST

Following the formulation of the stability theory given by Mack[23] in 1969, the 

linear stability theory for a three-dimensional compressible boundary-layer is derived in 

this section. To derive the linear stability theory, the flow is assumed to be locally parallel. 

Since variations of the mean flow in the streamwise directions are much slower than in 

the normal direction, one assumes that the mean flow quantities only depend on the 

wall-normal coordinate and the normal mean flow component is zero. That is

£72= 0 ; ^  = 0 (2.34)

A normal mode formulation is employed for the disturbance quantities. The 

disturbance quantities as written in equation (2.35) consist of a complex amplitude vector 

that depends only on the wall-normal coordinate, and a complex phase that allows for 

periodic variations in the wall-parallel directions and in time.
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u ' ( x x, x 2, x 3, t ) u x( x 2)
u 2( x x, x 2, x 3, t ) u 2( x 2)

u 3( x x, x 2 , x 3, t ) u 3( x 2)
p ' ( x x, x 2, x 3, t ) p ( x 2)

p \ x x, x 2, x 3, t ) p ( x 2)
_ T ' ( x x, x 2, x 3, t ) _ T ( x 2) _

, /(<**,+  f i x ^ - a t t ) (2.35)

where ux,u2,u3, p , p , f  are the complex amplitude functions of the flow variables 

ux,u2,u3,p ' ,p f,T '  respectively, a  and /? are the dimensionless wave numbers 

2 n £  /  Xx and 2 7t£ j  Xz , where Xx and Xz are the wavelengths in streamwise and

spanwise directions respectively; and ca is the dimensionless frequency (0*£ /U ^  .

Now we substitute the above disturbance quantities into the linearized Navier-Stoke 

equations given in equations (2.27-2.32) and rearrange. After collecting the coefficients, 

we can get eight first order differential equations written in matrix form as following 

dq
dx. ■ = AA (2.36)

where Ao is an 8 x 8  coefficient matrix and the elements aXj of this matrix are given in 

Appendix I.

Au Au a  AT _

(237)~ dux „ du2 ~ dT „ rq = [ux, - ^ , u 2,—^ , T , —- , u 3,p] 
dx2 dx2 dx2

and

The boundary conditions are

ux = u2 = u3 = f  = 0, at x2 =0

ux,u2,u3, f  —» 0 , as x2 —>°°

(2.38)

(2.39)

2.4.2 The temporal and spatial amplification theory

The first order differential equations derived above along with the homogenous
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boundary conditions are actually an eigenvalue problem that can be simply written as:

F (a, P, co, Re) = 0 (2.40)

For a given Reynolds number, if any pair of the three variables a ,  J3, m are known,

we can obtain the third variable from the above equation. If a  or p  are complex, the

disturbance amplitude will change in either the streamwise or spanwise direction. If co 

is complex, then the disturbance amplitude will change in time. The former case is 

referred to as spatial amplification theory, the latter as the temporal amplification theory. 

If all three quantities are complex, the disturbance amplitude will change in both space 

and time. In temporal theory, we can express co as co = a c ,  where c = cr +  ici , cr is

the phase velocity and ci is the temporal amplification rate.

For temporal amplification theory, there are three possible cases: 

c, < 0 , damped disturbance

c, = 0 , neutral disturbance 

c, > 0 , amplified disturbance 

And for spatial amplification theory, there are also three possible cases: 

a { > 0 , damped disturbance

a t = 0 , neutral disturbance 

a { < 0 , amplified disturbance

2.4.3 The numerical scheme to solve LST

The numerical methods for solving the relevant eigenvalue problem can be broadly 

classified into initial value methods and boundary value methods. The initial value 

methods(IVM) consist of constructing independent initial value problems whose 

solutions satisfy the eighth-order set of differential equations and conditions at the
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free-stream boundary. The solution is integrated towards the solid boundary by using 

Runge-Kutta integration and it is required that a linear combination of the solutions 

satisfies the boundary conditions at the wall. In other words, the relevant characteristic 

determinant is made to vanish, thus yielding the eigenvalue of the differential system. The 

main advantage of IVM is the minimal computer memory requirement and their capacity 

to adjust the integration to local conditions. The disadvantage is that they require a good 

guess of the eigenvalue. For spatial stability of high Mach number flows, this may require 

that the eigenvalue be known to be accurate to three or four decimal places for the 

method to converge. This also means that there is always a risk of missing some modes.

In the boundary value methods(BVM), the differential equations are reduced to linear 

algebraic equations using either a finite-difference discretization or a spectral 

representation. The global eigenvalues can be obtained by solving the characteristic 

determinant of a generalized eigenvlue problem. The number of eigenvalues thus 

obtained is proportional to the number of grid points used. If a guess of the eigenvalue is 

available, then the eigenvalue may be purified by a local eigenvalue search procedure 

involving matrix inversion and Newton iteration. The main advantage of BVM is its 

ability to yield eigenvalues when no prior knowledge of the instability is available for the 

problem of interest.

Based on BVM, a fourth order accurate two-point compact scheme was derived by 

Malik, Chuang and Hussaini[51] using the Euler-Maclaurin formula:

vpfc _  vp*-i _  Ih .
2

d V k (F¥k~l 1 K
12

rd lx¥k d 2Wk~l ^
dx0 dx:2 +  0 ( h 5k) (2.41)

dx2 dx2 

where hk = x2(k) -  x2(k  - 1 ) , k =

In order to apply this scheme to the first order equations (2.36), we set

* - « . > =  S = { ? > 4  a 4 2 >

where
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(2.43)

Substituting the above equations into equation (2.41), we get,

(2.44)

This equation along with the boundary conditions given in equations (2.38) and 

(2.39), can be written in block tridiagonal form as

where Ak, Bk, and Ck are 8 x8  matrices and H is an 8x1 null matrix.

To avoid a trivial solution, nonhomogenous boundary conditions are imposed at the 

wall. Specifically, the boundary condition q\ = 0 is replaced by q \ = l  ■ This is

equivalent to normalizing the eigenfunction by the value of the pressure perturbations at 

the wall. Now equation (2.45) is nonhomogenous and a nontrivial solution can be 

obtained for the guessed eigenvalue, for example, co = co0 if a  and fi are given. 

Newton’s method is used to iterate on co such that the missing boundary condition 

q\ = 0  is satisfied. Thus, when a solution, q , is obtained for co0, the correction, Aeo , 

is determined from the equation

Akq k~l + Bkq k + Ckq k+l = H , * = 1,2,—IV (2.45)

(2.46)

where q\ is known from the solution q just obtained; dq\ /dco is obtained from the 

forward Euler formulas

6H-Sa) (2-47)
dco dco
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and we can use the same program to obtain q\
a>+S<a

We can also obtain a  or P based on the same method described above if the other two 

variables are known.

2.5 Parabolized stability equation(PSE)

In spite of the qualitative success of the parallel flow assumption in linear stability 

theory, the linear stability computation does not explain some important phenomena, and 

experiments have shown systematic differences with the theory. Apart from exhibiting a 

minimum critical Reynolds number that is lower than that given by the linear stability 

theory, evidence from experiments shows that the growth rate of the disturbance is not 

only a function of the coordinate normal to the wall, but also varies for different flow 

quantities. These phenomena occur due to the increase in the boundary-layer thickness. In 

cases where the mean boundary-layer thickness and flow changes rapidly due to localized 

adjustments, the parallel flow assumption is expected to fail, and the stability 

characteristics may not be accurately predicted. Also at the early stages of the nonlinear 

interactions, El-Haddy[67] has shown that nonparallel flow effects may control the initial 

development of the triad components in a triad resonant interaction model.

The problem of disturbances in a nonparallel boundary-layer is difficult to model and 

has attracted much attention. Various nonparallel stability theories have been developed. 

A multiple scales method was employed by Gaster[68] and Saric & Nayfeh[69] to 

account for the non-parallel effect for 2D waves in Blasius flow. From their numerical 

results, this method yields results which are much closer to experimental results than the 

LST method. More recently, the concept of the parabolized stability equation was 

introduced by Herbert and Bertolotti[30] in 1987 and has now been well developed and 

applied to a variety of linear and nonlinear stability problems for two and 

three-dimensional, incompressible and compressible boundary-layer flows. In order to 

evaluate these nonparallel theories, Fasel and Konzelmann[70] studied the nonparallel
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stability over a flat-plate by solving the complete Navier-Stokes equations and compared 

the results with those of various non-parallel theories. Good agreement was obtained 

between these nonparallel theories and the direct numerical simulations.

2.5.1 The derivation of PSE

In general, if the boundary-layers are not parallel, the mean flow velocity 

components Ul exhibit small variations in the streamwise direction, and the component

U2 normal to the wall surface is non-zero to provide the mass balance as the 

displacement thickness changes. That is

U  2* 0 ;
dU ,
dx.

(2.48)

Now the eigenfunction will change in both the streamwise and wall normal directions. 

And the streamwise wave number is not constant any more, changing in the streamwise 

direction. So the disturbances are assumed to have the following form:

n 1/ (x 1 , x 2 , x 3 , 0

1

to
 

__
__

1

u 2( x l , x 2, x 3, t ) u 2{ x  J , X 2 )

u 3( x l , x 2, x 3, t ) m 3 ( x , , x 2 )

p ' ( x u  x 2 , x3, t ) p ( x , , x 2)

p \  X, ,X2 , X3, 0 p ( x x, x 2)

_ r ' ( x 1 , x 2 , x 3 , o _ T  (Xj, x 2) _

i  [j a  ( ) d x  j + / i x }  -  c a t  ]
(2.49)

Substituting these disturbance forms into the linearized Navier-Stokes equations 

(2.27)-(2.32) and collecting the coefficients, we get the second order differential 

equations written in matrix form as

o q . d 2q
+  A2 T T + B 1

dq 3q
dx22

-V 3 + C i ^  +  C2 —  + D lq - 0
axtdx2 dXj ox.

(2.50)
| %ja2 kî 2

With very slow changes of the disturbance along the streamwise direction compared 

with the relatively faster change in the wall normal direction, the second derivative of the

eigenfunction with respective to x, can be neglected. Then we can obtain a parabolized
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stability equation in the streamwise direction as following

A| _ |  + 5 | i  + c | i  + Dq = °  (2.51)
ox2 ox j ox2

where q = [ul ,u2,u3, p , f f

and A ,  B, C ,  D  are 5x5 coefficient matrices; their elements are given in Appendix II.

The boundary conditions are expressed as

Mj = u2 = u3 = f  = 0, at x2 = 0 (2.52)

and

ux,u2,u2, f  —» 0, as x2 —» oo (2.53)

2.5.2 The numerical scheme to solve PSE

The PSE derived above can be discretized using a fourth-order central finite 

difference scheme in the wall normal direction. That is

dq _  ~ q j+2 + 8 q';+i - 8 q;._, + q ' _ 2

dx2 1 2 Ajc2
■ + 0(A x2) (2.54)

- q ‘«  + 1 6 ^ , -30q ;+  16q;-, -t?„ 
dxl 12(Ax2)!

Because the PSE is parabolic in the streamwise direction, it can be discretized using a 

first order backward differencing scheme in this direction. That is

| i = i h i r + 0 (A X i )  (2.56)
ox j Axx

Using the above differencing schemes, the PSE can be discretized and written in 

block penta-diagonal matrix form as:

A l i q ' ^ + A l i q ^ + A D ’q) + A U ‘q!„ +A U >q‘Jtl (2.57)

where j  =  1,2,•• -N  and AL,, AL,, A D ,  AC/,, A U Z refer to the lower subdiag- onal, 

subdiagonal, diagonal, superdiagonal and upper superdiagonal matrices of size 5x5,
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respectively.

The major advantage of the PSE is that despite a small elliptic remainder consisting 

of the streamwise pressure gradient, the system of PDE is parabolic and its solution can 

be obtained by a marching-type method. But since both the shape functions and the phase 

of the disturbance quantities depend on the streamwise coordinate, it is more difficult to 

determine the complex streamwise wave number. In a non-parallel mean flow, the 

different physical quantities grow at different rates, and, thus, one can only determine the 

growth rate from the computed wave number, a , based on some quantities (e.g., velocity, 

pressure, or energy). Usually, the wave number, a , is computed at the location in the 

boundary-layer where the disturbance quantities, or the disturbance energy become 

maximal. This location varies slowly in the marching direction.

The procedure to compute a  at a streamwise station is described as follows. 

Starting with an initial solution found from solving the local eigenvalue problem at 

x, = x0 , one marches to the next station x, = x0 + Ax, and solves for the shape functions

q assuming that a(x, = x0 + Ax,) = a(x0) . Approximating the change in the shape 

functions with a Taylor series at x, = x0 + Ax,, one can derive an equation to update a  

at x, = x0 + Ax,, where p max represents for the normal maximal value of the density 

shape function.

i ( w .
n̂ew ôld 1 max (2.58)

\PmJ{ 9X,
Updating the shape functions and iterating until the change in a  is less than some 

defined tolerance, the solution at this station is obtained and the procedure repeated at the 

next streamwise station. The PSE method is very efficient since it takes only a few 

iterations on a  to obtain an accurate solution, provided that the gradients in the flow 

field are moderate.
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2.6 Gortler instability theory

Counter rotating vortices whose rotating axes are in the streamwise direction appear 

in boundary-layer flows along concave surfaces due to the imbalance between pressure 

forces and centrifugal forces. These vortices are called Gortler vortices and they play an 

important role in stability problems along concave walls. The existence of this stationary 

vortex instability in a boundary-layer over a concave wall was first predicted theoretically 

by Gortler. Since this pioneering work, Gortler vortices have been the subject of 

numerous theoretical and experimental studies. Spall and Malik[71] studied the Gortler 

vortices in supersonic and hypersonic boundary-layers. They found that compressibility 

has a stabilizing effect on the Gortler instability, while the effect of an adverse pressure 

gradient is found to be destabilizing. Winoto and Low [72] conducted an experimental 

investigation on the transition of boundary-layer flows in the presence of Gortler vortices 

and found the relation between the onset of transition and the Gortler number with the 

flow conditions under investigation. Benmalek and Saric[73] investigated the effects of 

curvature variation on the nonlinear evolution of Gortler vortices. Whang and 

Zhong[74][75] conducted a direct numerical simulation of Gortler instability in an 

hypersonic boundary-layer and studied the interactions of the Gortler vortex with a 

second shear mode. Other studies are performed by Gouplie, Klingmann and Bottaro[76], 

and Cunff and Zebib[77].

The theory of the Gortler instability has been discussed in detail by Saric[78]. In this 

section, we will give a brief description of the governing equations of this instability and 

the solution algorithm. Consider the linearized Navier-Stokes equations (2.27)-(2.32). 

Coordinate transformations are applied to transform the Cartesian coordinates (xi, X2 , X3 ) 

into a curvilinear system (£, rj, Q, as shown geometrically in Figure 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Figure 2.1 Schematic of the curvilinear coordinate system.

According to the geometry shown in Figure 2.1, we get the following relations

d% = Kd0 (2.59)

rj = K - r  (2.60)

£ = jc3 (2.61)

where K is the radius of curvature of the wall, xic, X2C are the center of the curvature.

r  = V(*i ~ xlc)2 + (x2 -  x2c)2 (2.62)

tan 8 = (x2 -  x2c) / ( x, -  xlc) (2.63)

For normal mode analysis, the disturbance form is

~ (7j ) "

u 2( £ , 7 ] , g , t ) u 2 ( t j )

u 2( £ , 7 ] , g , t )

p \ % , T ] , g , t ) p i n )
p ' ( %, 7 1 , g , t ) Pin)

J i n ) .

,<(o£ +/k (2.64)

Because the Gortler vortices are stationary, we have on — 0 . Now if we use equations 

(2.59)-(2.63) to perform the coordinate transformation and substitute the disturbance 

equations (2.64), we can get the following homogenous system of ordinary differential 

equations
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d 2q p dq
d i f  2 dr]

A2 -T T  +  B2 ^ + C 2 = 0 (2.65)

where

q  = [uv u2, p , f , u 3f  (2 .6 6 )

and A2, ^ 2, C2  are 5x5 matrices 

The boundary conditions are

u, = m2 = u3 = T = 0 at 1] = 0 (2.67)

and

«j, u2, u3, f  —>Q as  77 —» ( 2 .6 8 )

In equation (2.65), the Gortler number is implicitly included in the coordinate 

transformation procedure. The Gortler number can be expressed in the following form:

Gr = ^ L (SdK y  (2.69)

where 8d is the displacement thickness of the boundary-layer.

Equations (2.65) together with the boundary conditions (2.67) and (2.68) form the 

following eigenvalue problem

F (a , (3, Gt , Re) = 0 (2.70)

By this equation, we can study the instability of the Gortler vortices at the specific 

Gortler number. The numerical scheme to solve this eigenvalue problem is the same as 

used for linear stability theory.

2.7 The algorithm for direct numerical simulation

For direct numerical simulation of instability and transition of boundary-layers, two

methods have been used extensively for spatial discretization of the Navier-Stokes

equations: finite difference and spectral methods. In general, the spectral methods run 

much faster than the finite difference methods. But there are many problems of interest
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for which spectral methods are difficult to apply. Among these are the compressible flows 

in which discontinuities are expected and also flows with complex geometries. In contrast, 

finite-difference methods can treat discontinuities and complex geometries easily. 

Sometimes a combination of these two methods is used for three-dimensional simulation 

of transition. That is, finite difference methods are applied in the wall normal direction 

and spectral methods are applied in all other two directions using a periodic flow 

assumption in these two directions. This method was used by Pruett & Zang[36] and 

Pruett & Chang[34] to simulate the transition in a high speed axisymmetric 

boundary-layer. For our present study of transition over a compression comer under 

hypersonic conditions, due to the existence of a discontinuity, finite difference methods 

must be applied in all three directions.

Due to its nature, transition simulations must be far more accurate over a broad range 

of frequencies and amplitudes than is customary in conventional steady-state 

computational fluid dynamics. The fundamental physics of a flow may be sensitive to a 

small amount of energy in some specific portion of the spectrum. Indeed, truncation 

errors of less than one percent(and often less than even 0.1%) are sought. For this reason 

most practitioners have preferred schemes with at least fourth-order accuracy in space. 

Most of the present high-order schemes are linear schemes, such as fourth-order 

MacCormack[79] and compact schemes of Lele[80]. Owing to their linear nature, these 

schemes lack a robust shock-capturing capability. However, some nonlinear schemes, 

such as essentially non-oscillatory(ENO) scheme, allow for the formal high-order 

accuracy for smooth flows while providing a shock capturing capability. In the present 

study, we will adopt a fifth order accurate weighted essentially non-oscillatory(WENO) 

scheme for spatial discretization.

For time discretization, transition simulations traditionally have used second, third, or 

fourth order accurate methods. Computer-memory constraints have inhibited the use of 

higher-order methods. In the present study, a third order total variation diminishing(TVD)
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Runge-Kutta scheme for time integration has been used. We will explain these schemes in 

detail.

2.7.1 The conservative form of the Navier-Stokes equations

For the convenience of programming, the following non-dimensional quantities are 

used for the direct numerical simulation in the present study. The reference length is still

* IV Xthe similarity variable L = J ~ r -  , but the reference velocity is now written as

*
xi .

*
tt - ; =L* ’ L * w ; ef

*
£ L -* 5

t-,|iIIF
h

P~ 1-

u;ef = -^RTl . So we obtain the following non-dimensional quantities:

* * * *
U: H

x , = ~ ;  t  =  — -------— ; U; =  — j— ; p  =  —
U ref / C

P = -=V; />=JV ;  T = ^ ; Rt  =  p - U ' f L
M-

After non-dimensionalization using the above reference quantities, the 

three-dimensional compressible Navier-Stokes equations (2.1)-(2.4) can be written in 

conservative form as equation (2.71). For convenience, we now use (x, y, z) to represent 

the coordinates in the streamwise, wall normal and spanwise direction, and (u, v, w) to 

represent the corresponding velocity components.

dQ dE dF dG dEv dFv dGv—  + —  + —  + ---- = — -  + ----— *-
dt dx dy dz dx dy dz

(2.71)

Q = [p, pu, pv, pw, p e j (2.72)

E  = \pu, pu2 + p , puv, puw, (p e t + p)u]T (2.73)

F  = [pv, pvu, pv2 + p, pvw, (pet + p ) v f (2.74)

G = \pw, pwu, pwv, pw2 + p, (p e t +  p ) w f (2-75)
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E„ =

0

xy

U T  +  V T  + W T  — a,xx v xy r r  v xz

(2.76)

F ,  =

yx

yy

yz

LUTy x + V T y y + W t y z - q 2yy

(2.77)

where

G =

0

zy

U ^ z x + V t z y + W T z z - ^  3

<lj =
- y  j i  dT  

( / -  l)Pr Re dx~

(2.78)

(2.79)

t . . = J L  
11 Re

dUj dUj 2  c duk
— L  _j-L  — L

dxj dxi 3 11 dxk
(2 .80)

e, =e + -u 2 + v 2 + w 2
, e - c T (2 .81 )

For the convenience of computation, the equations are transformed from physical 

coordinates ( x ,y ,z )  to the computational coordinate system (%,7J,g) in a 

conservative manner such that the general form of the equations is unchanged.
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dQ dE dF dG dEv dFv 3GV 
■ +  —  + —  + —  = — *- + — v-  + - v

dt 3£ d7] dg  3£ 3 7 / dg
(2.82)

where

£  = £ ( x ,y ,z ) ;  rj = tj(x , y , z ) ; g =  g ( x ,y ,z ) ;  

The metrics can be expressed as following

& = \J \ < y ^ ? -  y?zn̂>

Z y = - \ j \ - { XnZg - X ?Z71)

v x = - \ J \ - ( y ^ - y ?z ^

7]y =  \ j \ - { x 4Zg ~ X gZ4 )

Vz = - \J \< x ^ y ? - x gy ^

= \ A < y ^ - y ^ )

gy = - \J H x$ Z r,-x J1z?) 

gt = \ j \ - ( x sz „ - x nz4) 

where J  is the Jacobian, given by:

d (£ ,n ,g )J =
3 ( x ,y ,z )

£  ty  £
vx %■ nz 
s* c*

(2.83)

(2.84)

(2.85)

(2 .86)

(2.87)

(2 .88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

The components of the flux in the computational domain are related to the flux 

in the Cartesian domain by

(2.94)

E

F

G
(2.95)
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/ (2.96)

The governing equations are solved using a 5th order accurate weighted essentially 

non-oscillatory(WENO) scheme for spatial discretization and a 3rd order total variation 

diminishing(TVD) Runge-Kutta scheme for time integration. The WENO scheme and 

TVD methods are described in Shu[81] and application of the ENO method to the N-S 

equations is given in Atkins[82].

ENO schemes are the finite difference schemes designed for problems with 

piecewise smooth solutions containing discontinuities. The key idea lies at the 

approximation level, where a nonlinear adaptive procedure is used to automatically 

choose the locally smoothest stencil, hence avoiding crossing discontinuities in the 

interpolation procedure as much as possible. The WENO scheme has been developed to 

improve the ENO scheme. The ENO and WENO schemes have been quite successful in 

applications, especially for problems containing both shocks and complicated smooth 

solution structures, such as compressible turbulence simulations and aeroacoustics. We 

will give a brief discussion for these two kinds of schemes in the following sections.

2.7.2 ENO scheme

In the ENO approach, the spatial derivatives are approximated to high order at the 

nodes allowing the equations at each point to be integrated in time and the spatial 

derivatives with respect to a given direction are approximated by expansions in that 

direction only. Hence, a one-dimensional description is trivially extended to any number 

of spatial dimensions. Consider the one-dimensional equation

(2.97)dt dg
The spatial derivative at a point is approximated by a difference of numerical fluxes, 

much like the approach of traditional finite-volume methods. The numerical flux is
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defined in terms of nearby point values of the physical flux such that 1 ) the difference of 

the numerical flux values approximates the derivative of the physical flux to the desired 

order of accuracy, and 2 ) the consistency condition required for flux-conservation is 

satisfied. That is

= f t  - ^ 6 -1/2 ) + 0 ( A £ k) ,  i = 0 ,l ,. . . ,N  (2.98)

where stands for the coordinate at the i th grid point. N  stands for the total number of 

grid points, and k represents the order of the differencing accuracy.

Here E  can be defined by either a Lagrangian or Newton interpolation polynomial 

with the physical flux in some neighborhood of . The neighborhood is allowed to shift 

left or right to form different interpolation stencils. That is

■EW(#i,,,2) = X<Vg (6 -~ i >’ '■ = 0 ,1 ,...,* -1  (2.99)
j=0

where crj is the interpolation coefficient for the rth interpolation stencil.

Among all these interpolation stencils, the ENO scheme uses an adaptive procedure 

which is essentially a searching algorithm to find the smoothest stencil relative to the 

specified reference point so that a good resolution at the discontinuity can be achieved. 

The basic idea is to avoid including the discontinuous cell in the stencil. For example, if 

we want to construct a third order interpolation function at point £;+1/2, three candidate

stencils can be used: { £ , £ + 1 , £ +2 }, {£ _ ,,£  4 m  } and {£_2,£M ,£• }• Among these

stencils, some may include the discontinuous cell. So these stencils are not good for 

primitive value reconstruction. They should be discarded. The selection of the 

interpolation stencil has been described as the following a few steps in Shu[81].

1) Compute the divided differences of the primitive function E{g ) , for degrees 1 to

k, according to the equation
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(2.100)

2) Start with a two-point stencil S2(i) = {£,- ,^!+1} to reconstruct £(£) at £,-+1/2.

3) For /=2, ..., k, assuming the stencil S,(?) = {£I+1, is known, add one of

the two neighboring points or £;+/ to the stencil, following the ENO 

procedure:

]|, then add ^  to stencil 5,0') to obtain

the new stencil

Sw (i> =  (2-101)

otherwise add £i+l to the stencil 5 , ( i )  to obtain the new stencil

•Vi(0 = {f„-, 4,} (2-102)
By this procedure, we can get an interpolation stencil of ]£h order, which is the 

smoothest one among all other stencils at the interpolation point. Figure 2.2 shows the 

comparison of two interpolation results for the step function, one with fixed central 

stencil cubic interpolation and another with ENO cubic interpolation. It can be seen that 

ENO interpolation gets a much smoother result than the central interpolation.

.0,5

&7S -0,25- fi 0.25 C.S 0.76 1,
h 1 1 1 8 » i t  T.a..n -•> i t i i

Figure 2.2 Fixed central stencil cubic interpolation(left) and ENO cubic interpolation(right) for the 

step function. Solid: exact function; Dashed: interpolant piecewise cubic polynomials(Shu[81 ]).
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2.7.3 WENO scheme

In the stencil selection process of the ENO scheme, k candidate stencils are 

considered, covering 2k-1 cells, but only one of the stencils is actually used in forming 

the flux, resulting in k th order accuracy. If all of the 2k-l cells in the potential stencils are 

used, one could get (2k-l)th order accuracy in smooth regions. Based on this idea, the 

WENO scheme is developed to attempt to improve upon the ENO scheme. The basic idea 

of the WENO scheme is that instead of using only one of the candidate stencils to form 

the reconstruction, one uses a convex combination of all of them. Suppose the k candidate 

stencils

■S.(0 = fe-r. - . f , (2. 103) 

produce k  different reconstructions to the value £i+m according to the equation

£ W(fw = r = 0 ,l,...,* -l (2.104)
j=0

WENO reconstruction would take a convex combination of all E (r)(^i+in) as 

a new approximation to the cell boundary value E(^MI2) . That is

) = X  <6..« ) = > + 0( A f W > (2.105)
r==0

Apparently, the key to the success of WENO is the choice of weights 0)r . We 

require

*-i
£Or > 0 2 ® r =1 (2.106)

r=0

for stability and consistency.

When the function E(%) has a discontinuity in one or more of the stencils, we

desire that the corresponding weights, COr , be essentially zero, to emulate the successful 

ENO ideas. Another consideration is that the weights should be smooth functions of the
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cell averages involved. Finally, we would like to have weights which are computationally 

efficient. All these considerations lead to the following form of weights:

r = 0 , . . . , k - l  (2.107)

with

a r =  (2.108)

Here ex > 0 is introduced to prevent the denominator from becoming zero. We take

e l = 1 0 ~ 6 in our numerical computation. dr is the weight coefficient for rth interpolation

stencil when E(%) is smooth in all of the candidate stencils. We can see dr is always 

positive and must satisfy

2 X = 1  (2.109)
r=0

For the 5th order WENO scheme, k=3, we have

d 0 = —  , d x = - ,  d 2 = —  (2 .1 1 0 )
0 10 1 5 2 10

And p r is the smooth indicator for the rth interpolation stencil. It was determined 

by the following equation

l=\ '

\ 2
dE, (2 .1 1 1 )

9 *

where p r{E,) represents the reconstruction polynomial on the stencil Sr(i) and can be

expressed in density variables. For k=3, the above equation gives the following

smoothness measurement.

A  = T r ( A  ~ 2 p m +  P M f  +  \ o p ,  -4 /> m + A « ) 2 (2.112)
12 4

A  = ^ f ( P H - 2 a  +  A . , ) 2 (2.113)
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A  = “ ( P m  - 2 p H + p , ) 2 + i ( P „ - 4 p H  +  3 p , f  (2 .114)

2.7.4 Flux splitting approach

When we apply the WENO algorithm to the Navier-Stokes equations, the inviscid 

and viscous terms require different numerical treatments to reflect their fundamentally 

different properties. The inviscid terms characteristically describe wave phenomena. The 

ideal approach would be to decompose the inviscid flux vector into characteristic 

components and treat each wave with an appropriate scalar operator. However, within the 

ENO framework, such an approach requires the creation of a characteristic subset at each 

grid point, which greatly increases the computational effort and storage requirements. A 

computationally-efficient alternative is a local flux-splitting approach. For each 

coordinate direction k, the inviscid flux is split into two components: one with all positive 

eigenvalues, and the other with all negative eigenvalues.

Ek = Ek + E ; (2.115)

Ek — Ek + a kQ (2.116)

(2-117)

here \  -  maximum eigenvalue of dEk
dQ

More elaborate means of flux splitting exist, but this simple approach is inexpensive 

and works well. The only formal restriction on the splitting is that split fluxes must be

smooth functions of Q . This is necessary to ensure that higher derivatives exist when

evaluating the numerical flux, in addition to the usual need to prohibit expansion shocks. 

For the present splitting technique, the splitting flux will be smooth if the function <T is 

smooth. In the present implementation, we select

a (X ) = ^ [ s [ + ¥  (2.118)

where e 2 is a small number taken as 0.05.
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After the inviscid flux splitting, we simply divide the viscous flux into two parts 

equally and add each part to the positive and negative component of the inviscid flux 

respectively. The WENO scheme is then applied to each component of the combined flux 

according to the wave propagating direction.

2.7.5 TVD Runge-Kutta integration

Using total variation diminishing(TVD) Runge-Kutta method for time integration 

can eliminate numerical oscillation. Figure 2.3 shows a comparison of two numerical 

results, one with TVD time discretization and the other with non-TVD time discretization. 

It can be seen that the non-TVD result is oscillatory.

w ---------
IS axact

we nê tVtJ

Figure 2.3 Comparison of second order TVD and non-TVD spatial discretization results(Shu[81]). 

A three stage TVD Runge-Kutta method was adopted in present simulation, given by: 

Q m —Q n + A lL (Q n) (2.119)

q ( 2 )  = ^Q "  + - Q w + - A  tL(Qw )3 1 a) 1 ;<i>>
4

Q n+1 = I g »  + | a / l « 2 <2))

(2 .120) 

(2 .121)

where L{Q) is the WENO approximation to the spatial derivative of flux vectors. And 

the time step is determined on the basis of an inviscid CFL number,

CFL = ~ Y j |4 | (2.122)
k=\
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2.7.6 Parallel computation algorithm

With the development of computational fluid dynamics, the requirement of 

high-speed computers with large memories has become more and more urgent, especially 

for the direct numerical simulation of turbulence. It still remains a daunting task for even 

the fastest single processor computers, even though new processors are manufactured 

with double or even triple the computational speed each year. As the best solution to this 

problem, parallel computation now attracts more and more interest among researchers in 

the area of CFD. The so-called parallel computation means to run the same job on 

multi-processors simultaneously using algorithms that allow each processor to run 

different parts of the job. Then a big job can be divided into several small jobs which can 

run on different processors simultaneously. As a result, the clock time to run big jobs will 

be significantly decreased.

In general, two kinds of algorithms have been widely used for parallel computation 

that depend on the structure of the parallel machine: a shared-memory algorithm for 

vector machines and a message passing interface (MPI) algorithm for cluster machines. 

For the shared-memory parallel algorithm, all of the CPUs of the parallel machine must 

share the same memory. So each CPU can manipulate the same variables. This kind of 

algorithm is easy for parallel programming. The shared-memory parallel codes can be 

developed only by adding some parallel directives into the ordinary codes which usually 

run on single-CPU computers. Because no data exchange exists between the different 

CPUs, the computation efficiency of this algorithm can reach very high levels. But this 

kind of vector parallel machine is too expensive and is not easy to access. On the other 

hand, for the MPI parallel algorithm, each CPU of the parallel machine possesses its own 

memory, and each CPU can only manipulate its own memory. So the same variables will 

stand for the different values for different CPUs. Then for those codes in which the 

variables at the different parts running on different CPUs are related to each other, data 

exchanges of these variables between different CPUs are necessary. The code
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development for this kind of parallel machine is much more complicated than the 

shared-memory machines. Some communicating codes should be developed for data 

exchange. In addition, data exchange among CPUs takes up part of each CPU’s time, so 

the parallel computation efficiency cannot reach very high levels, but the big advantage is 

that this kind of cluster parallel machine is relatively cheap compared with vector 

machines. Any number and any type of independent computers can be assembled into a 

cluster parallel machine by the network. There are no limitations to the number of 

machines and the memory of the CPUs. It is very economical especially for small 

companies. In present numerical simulation, we developed a parallel code based on an 

MPI parallel computation algorithm. The code runs on a 64-CPU cluster machine. First, 

we will give a brief introduction to MPI.

The MPI is a library of functions and macros that can be used in C, FORTRAN, and 

C++ programs. A detailed description of all these functions and macros are given in 

William[83][84]. As its name implies, MPI is intended for use in programs that exploit 

the existence of multiple processors by message-passing. It was developed in 1993-1994 

by a group of researchers from industry, government, and academia. As such, it is one of 

the first standards for programming parallel processors, and it is the first that is based on 

message-passing.

MPI includes point-to-point message passing and collective (global) operations, all 

scoped to a user-specified group of processes. Furthermore, MPI provides abstractions for 

processes at two levels. First, processes are named according to the rank of the group in 

which the communication is being performed. Second, virtual topologies allow for graph 

or Cartesian naming of processes that help relate the application semantics to the message 

passing semantics in a convenient, efficient way. Communicators, which house groups 

and communication context (scoping) information, provide an important measure of 

safety that is necessary and useful for building up library-oriented parallel code.

MPI provides a set of send and receive functions that allow the communication of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

typed data with an associated tag. Typing of the message contents is necessary for 

heterogeneous support - the type information is needed so that correct data representation 

conversions can be performed as data are sent from one architecture to another. The tag 

allows selectivity of messages at the receiving end: one can receive on a particular tag, or 

one can wild-card this quantity, allowing reception of messages with any tag. Message 

selectivity on the source process of the message is also provided. A fragment of code 

appears in the following and shows an example of process 0  sending a message to process 

1 .

program greetings 
include ’mpif.h’ 
integer myjrank 
integer source 
integer dest 
integer tag
character* 100 message 
integer status(MPI_STATUS_SIZE) 
integer ierr 
call MPI_Init(ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierr) 
if  (myjrank.eq.O) then 
message= ’Greetings from process 0 ’ 

dest= l
tag=0
call MPI_Send(message, 25,

& MPIjCHAR, dest, tag, MPI_COMM_WORLD, ierr) 
else
source=0

tag=0
call MPIJRecv(message, 100, MPIjCHAR,

& source, tag, MPI_COMM_WORLD, status, ierr) 
write(6,*) message 
endif
call MPl_Finalize( ierr) 
end

This code executes on both process 0 and process 1. The example sends a character 

string. MPI_COMM_WORLD is a default communicator provided upon start-up. Among
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other things, a communicator serves to define the allowed set of processes involved in a 

communication operation. Process ranks are integers, serve to label processes, and are 

discovered by inquiry to a communicator (see the call to MPI_Comm_rank()). The typing 

of the communication is evident by the specification of MPI_CHAR. The sending and 

receiving process specified that the sending and incoming data were to be placed in 

‘message’ and that it had a maximum size of 100 elements, of type MPI_CHAR. The 

variable status, set by MPI_Send() and MPI_Recv(), gives information on the destination, 

source as well as tag of the message and how many elements were actually sent and 

received. For example, the receiver can examine this variable to find out the actual length 

of the character string received. This example program shows the basic idea how 

message-passing algorithm works.

02 01

Figure 2.4 The streamwise partition of the grid for MPI.

Now we turn our attention to the parallel algorithm of our present computational case. 

The computation was performed in a three-dimensional space which was discretized by a 

three-dimensional grid. The basic idea for parallel computation is to divide this 

three-dimensional space into a number of small spaces. Then the computation was 

performed in each of these smaller spaces simultaneously with one CPU for each. For 

convenience of programming, the space was divided in only one direction. Figure 2.4 

illustrates the spatial partition in the streamwise direction.

In this figure, the grid was divided into four smaller domains, and the computations 

were performed in each of these domains simultaneously. From the WENO scheme, we
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know that in order to perform the streamwise differencing at each grid point, its four 

streamwise neighboring grid points is required, including two points to the left and two 

point to the right. If a point is located in the middle of its own grid domain, there should 

not be any problem, but if the point is a boundary point or a point adjacent to the 

boundary points of the domain, the problem appears when we perform the differencing 

operation at this point. The differencing at this point needs the values from the one or two 

other points which belong to the other computational domains manipulated by other 

CPUs. For example, at the interface of domain “0” and domain “1”, four streamwise 

boundary sections exist, where sections “0 2 ” and “0 1 ” are the last two sections in domain 

“0”, and the sections “11” and “12” are the first two sections in domain “1”. Streamwise 

differencing at the points on section “0 2 ” requires the values of the points on section “1 1 ”, 

and the streamwise difference at the points on section “0 1 ” requires the values of points 

on both sections “11” and “12”. The converse is true for streamwise differencing at the 

points on sections “12” and “11”. So if the computations in domain “0” and domain “1” 

are performed on two different CPUs with rank “0” and rank “1” respectively, the CPU 

with rank “0” needs to send the data on the sections “01” and “02” to the CPU with rank 

“1” and receive the data on the sections “11” and “12”, which is sent by the CPU with 

rank “1”. At the same time, the CPU with rank “1” needs to send the data on sections 

“11” and “12” to the CPU with rank “0” and receive the data on sections “01” and “02”, 

which is sent by the CPU with rank “0”. The following fragment of code shows how 

these sending and receiving procedures are realized by message-passing programming.

if (myjrank. ge. 1. and. myjrank. le. numcpus-2 ) then 
call MPI_SEND( usl, ndat, MPI_REAL8,

1 m yj-ank-1,1, MPI_COMM_WORLD, ierr) 
call MPI_SEND(us2,ndat,MPI_REAL8,

1 myj-ank-1,2,MPI_COMM_WORLD, ierr) 
call MPI_SEND( us3,ndat,MPI_REAL8,

1 my_rank+1,3,MPI_C OMM_WORLD, ierr) 
call MPI_SEND( us4, ndat,MPI_REAL8,

1 my_rank+l,4,MPI_COMM_WORLD, ierr) 
call MP1_SEND( tsl,ndatl,MPIJREAL8,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 my_rank-l, 5,MPI_C0MM_W0RLD, ierr) 
call MPI_SEND(ts2,ndatl,MPIJREAL8,

1 m yjrank-1,6,MPIjCOMMJWORLD, ierr) 
call MPI_SEND(ts3,ndatl,MPI_REAL8,

1 my_rank+l, 7,MPljCOMM_WORLD, ierr) 
call MPI_SEND(ts4,ndatl,MPIJREAL8,

1 my_rank+l,8,M PI_C0M M _W 0RLD, ierr) 
call MPI_RECV( url, ndat, MPI_REAL8,

1 m y_rank-l,3,MPIjCOMM_WORLD,status,ierr) 
call MPI_RECV( url, ndat,MPIJREAL8,

I my_rank-l,4,MPI_COMM_WORLD,status, ierr) 
call MPI_RECV( ur3, ndat, MPI_REAL8,

1 my ja n k + 1 ,1,MPIjCOMMJWORLD,status,ierr) 
call MPI_RECV( ur4, ndat, MPIJREAL8,

1 my_rank+1,2,MPI_C0M M _W 0RLD, status, ierr) 
call MPI_RECV(trl,ndatl,MPI_REAL8,

1 my_rank-l, 7,MPIjCOMMJWORLD, status, ierr) 
call MPI_RECV( tr2, ndat 1,MPI_REAL8,

1 m yjrank-1,8, MPIjCOMMJWORLD, status, ierr) 
call MPI_RECV(tr3,ndatl,MPI_REAL8,

1 m y jan k+ 1 ,5 , MPI_COMM_WORLD, status, ierr) 
call MPI_RECV(tr4, ndat 1,MPIJREAL8,

1 m y ja n k + 1 ,6, MPI_COMM_WORLD, status, ierr) 
end if

if(my_rank.eq.O) then
call MPI_SEND( us3,ndat,MPI_REAL8,

1 m y j a n M , 3,MPIJCOMMJWORLD, ierr) 
call MPI_SEND(us4,ndat,MPI_REAL8,

1 m y j a n M ,4,MPIJCOMMJWORLD, ierr) 
call MPI_SEND( ts3,ndatl,MPI_REAL8,

1 m yjank+1,7,M Pl_C 0M M JW 0R LD ,ierr) 
call MPI_SEND( ts4, ndatl,MPI_REAL8,

1 m y ja n k + 1 ,8,MPIjCOMMJWORLD, ierr) 
call MPI_RECV( ur3, ndat,MPIJLEAL8,

1 m y ja n k + 1 ,1,MPIjCOMMJWORLD,status, ierr) 
call MPIJtECV(ur4,ndat,MPIJREAL8,

1 m y ja n k + 1 ,2,MPIjCOMMJWORLD,status,ierr) 
call MPI_RECV(tr3,ndatl,MPI_REAL8,

1 my ja n k + 1 ,5,MPIjCOM MJWORLD,status,ierr) 
call MPI_RECV(tr4,ndatl,MPI_REAL8,
1 m y ja n k + 1 ,6,MPIJCOMMJWORLD,status, ierr)
end if
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if(my_rank.eq.numcpus-l) then 
call MPI_SEND(usl,ndat,MPLREAL8,

1 my_rank-l, 1 MPIJCOMMJWORLD, ierr) 
call MPI_SEND(us2,ndatMPLREAL8,

1 my_ra.nk.-l ,2 MPIJCOMMJWORLD, ierr) 
call MPI_SEND(tsl,ndatl,MPI_REAL8,

1 myjrank-l, 5M PIjCOM M JW ORLD, ierr) 
call MPI_SEND(ts2,ndatl,MPI_REAL8,

1 m y_rank-l,6,M PIjC0M M JW 0RLD, ierr) 
call MPI_RECV(url, ndat,MPI_REAL8,

1 my_rank-l, 3 M PIjCOM M JW ORLD, status, ierr) 
call MPI_RECV(ur2,ndat,MPI_REAL8,

1 my_rank-l,4,M Pl_C0M M JW 0RLD, status, ierr) 
call MPI_RECV(trl,ndatl,MPI_REAL8,

1 my_rank-l, 7MPIJCOMMJWORLD, status, ierr) 
call MPI_RECV(tr2,ndatl,MPI_REAL8,

1 my_rank-l,8,M PI_C0M M _W 0RLD,status,ierr) 
end if

These sending and receiving functions are executed at each Runge-Kutta time 

iteration. In order to make sure that all CPUs run synchronously, the following barrier 

function should be called by each CPU after each sending and receiving operation. 

call MPI_BARRIER(MPI_COMM_WORLD, status, ierr)

This function keeps each CPU in a waiting status after it has finished the sending and 

receiving operations until all of the other CPUs are also finished with the same operation. 

This makes sure that no CPU can run faster than any other CPUs, and all CPUs send or 

receive the data which is computed at the same time iteration step. Of course, this 

function wastes a lot of CPU time, but it is good for computational safety.

In order to estimate the effectiveness of the MPI parallel algorithm in improving the 

computational speed, we define the parallel computation efficiency as the ratio of the 

CPU time used for computation to the total CPU time which includes the computation 

time, data exchange time and waiting time. In general, the larger the number of CPUs 

used, the lower the parallel computation efficiency. Because more CPUs means more data 

exchange interfaces, as a result, more CPU time will be spent in data exchange. It is
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important to choose a reasonable CPU number so that a high computational speed can be 

achieved with high computation efficiency. In addition, the amount of data for exchange 

also influences the computation efficiency. The computational domain should be divided 

using the principle that the amount of data for exchange at the interface sections should 

be as small as possible. In the present parallel computation, the computational domain 

was divided in the streamwise direction because there are fewer grid points in the 

streamwise sections than in the normal and spanwise sections.

2.8 Summary

In this chapter, we have discussed the governing equations and numerical algorithms 

for linear stability theory, parabolized stability equation, Gortler instability theory and 

direct numerical simulation. In the next a few chapters, we will apply these theories and 

numerical methods to analyze hypersonic boundary-layer stability and transition over a 

compression comer. First, a two-dimensional steady mean flow was computed by 

performing unsteady computations at a variable time step until the residual achieved 

small value ~10'5. Then the LST method was used in an approximate study of two- and 

three-dimensional disturbance evolution across a compression comer based on the mean 

flow. Next, Gortler instability theory was used to study the instability of the Grotler 

vortices in the presence of streamline curvature. Finally, a DNS was performed to study 

two- and three-dimensional linear and nonlinear disturbance evolution across a 

compression comer. The LST and PSE methods were used to check the validation of the 

DNS codes and also to provide the initial disturbances for DNS. Both the 

single-frequency and multiple-frequency disturbance evolutions were simulated.
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CHAPTER III 

STEADY MEAN FLOW COMPUTATIONS

To study the hypersonic instability and transition across a compression comer, the 

steady mean flow across the comer must first be obtained. As we have discussed in 

Chapter 1, when a large adverse pressure gradient exists in the inviscid pressure 

distribution, viscous effects become important. The interaction between the adverse 

pressure gradient and the boundary-layer induces flow separation at the comer. The 

physical mechanism of shock induced separation has been explained in Chapter 1. 

Because comer flow occur widely on hypersonic lifting re-entry vehicles, such as body 

flaps, elevons and rudders, to fully understand the phenomena associated with the shock 

wave/boundary-layer interaction is very important in order to improve control 

effectiveness of these vehicles and reduce surface heating.

A great deal of experimental and numerical work has been done to study the 

hypersonic flow going through a compression comer. Lewis, Kubota, and Lees[ll] had 

conducted an experimental investigation of supersonic laminar, two-dimensional 

boundary-layer separation in a compression comer with and without cooling. In that 

experiment, the influences of cooling of the wall on the separation had been investigated. 

Luca and Cardone[22] investigated the viscous interaction phenomena experimentally in 

a hypersonic wedge flow at a Mach number of 7.14. The Influence of the leading-edge 

shape, flat plate length, and ramp angle on the separation region, average heat transfer at 

reattachment, and wavelength of the heat transfer oscillations was analyzed. A combined 

experimental and computational study of hypersonic shock wave/boundary-layer 

interactions was reported by Simeonides, Haase & Manna[17] and Simeonides & 

Haase[18], They found that the phenomenon of shock wave/boundary-layer interaction at 

hypersonic Mach numbers was accompanied by the interaction between the separation 

and reattachment shocks, which can have a profound effect on the ramp pressure
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distribution and ramp heating. Other numerical simulations have been performed by Rudy, 

Thomas, Kumar and Gnoffo[14], and Grasso, Leone and Delery[16]. A comparison of the 

numerical simulations by different codes such as CFL3D, USA-PG2, LAURA, 

NASCRLN had been made by Rudy et al.

In this chapter, we will perform the steady computation of hypersonic flow going 

through a compression comer using the WENO scheme which is good for shock 

capturing. The basic theory was introduced in Chapter 2. We will first present the 

computational model, grid and computational parameters. Then we will show the steady 

mean flow results followed by a discussion of the results. Finally, the conclusions on the 

steady computation will be given.

3.1 Computational model

The computations are performed on a 5.5°compression comer with hypersonic

incoming flow. The geometry of the computational model is illustrated in Figure 3.1, and 

is a Hyper-X forebody model with two comers. The first comer is 5.5° and the second 

comer is 8.5°. The hypersonic flow goes through the comer from left to right as indicated 

in the figure. The current numerical simulations are performed in a domain which only 

includes the first comer.

19.445"Computational domain
>  !

i
j
j 8.445"

17.4451

12.445' 5.5°

Figure 3.1 The geometry of the computational model.
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3.2 Flow parameters

The flow parameters are given in Table 1. These parameters are selected to simulate 

the Hyper-X wind tunnel model and the experimental conditions.

Table 1: Flow parameters 

Freestream Mach number M „ =5.373

Freestream Reynolds number Re« =5.464xl06/ft

Freestream density p* =6.0891 x l 0'3lbm/ft3

Freestream pressure p* =43.3841bf/ft2

Freestream velocity U*x =3043.86ft/s

Reference velocity U*ref =478.79ft/s

Freestream Temperture T* =133.55°R

Freestream kinematic viscosity v* =5.5707xl0'4ft2/s

Wall temperature T*all =540°R

Prandtl number Pr  =0.70

Ratio of specific heats J  =1.4

Non-dimensional frequency Fo= 1 .Ox 1 O' 4  =264.7kHz

where the non-dimensional frequency Fo is expressed as F0 = tw/Re = 2 x f  *v* /f/*e2

3.3 The grid generation and metric computations

The grid for a compression comer can be generated using conformal mapping 

method. The idea is based on the potential and stream function methods. The complex 

potential for a steady, irrotational flow going through a compression comer with an angle 

0o can be expressed as following.

W (Z ) = (j){x, y ) + iy /(x , y )  = e~ineaZ n = r ne in(8-8a) (3.1)

with

K
n = ---------; x  = rcosO ; y  = rsinO  (3.2)

7C -6 q

where (x,y) are the Cartesion coordinates and (r, 0 )  are the polar coordinates.
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So the potential and stream functions can be written as 

<p(x, y )  = r n c o s ( 0 - 9 o) (3-3)

W(x> y) = r" sin($ -  0O) (3.4)

The complex coordinate Z can be expressed by potential and stream functions as

follows

Z = x +  iy = e ,e°(<p + iy/) * (3.5)

From this relation it can be seen that the physical domain can be mapped from a 

domain constructed by the equal potential lines and the stream lines as shown in Figure 

3.2. In this way, a complicated flow domain can be mapped into a simple domain.

y j

Ymax

Yc
0

_-r'\ • 
r 1 "\ \ \ , \
L__ i- —\~~\ \}«

¥
¥m ax

¥c

0

W
7— T T TT|
1—I—i_j.il
I I I III

- 4 —i-iii 
 i  i_iii
" 4 4 - 4 i  

i i iii

Figure 3.2 Illustration of the conformal mapping method.

For the convenience of discretization of the governing equations, the physical 

domain (x,y) needs to be mapped into a computational domain ( £ 77) with unit grid steps 

in both the £ and 77 directions. In addition, in order to handle the computations with large 

gradients in the boundary-layer, the grid lines need to be stretched in the y-direction at the 

location of critical layer yc. The following stretching function was used.

¥  =  ¥c
, sinh[f((77 - 1 ) / (TVy -1 )  -  B )]\ 

I sinh(TB) I
(3.6)

where

B = —  In 
2-r

l + (eT- l  XWc/Wr^) 
l  + (e~r - I

0 <  T< 0 0 (3.7)
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and y/c is the location corresponding to yc where the grid is stretched, while T is a 

parameter used to control the grid density in the stretching region.

The same stretching function was also used to stretch the grid lines in the x direction 

at the end of the computational domain where the nonlinear harmonic interaction occurs 

for unsteady computation. Then the metrics can be obtained via chain rule differentiation:

=  a £ 3 £ .  £  = d l d l
d(j) dx ’ y d(j> dy

and

(3.8)

From Cauchy theory we have

d</> d(j> dy / dy/ im
—  = u; -rL = v ;  -zrL =  u; - r - = -v  (3.10)
dx dy dy dx

-  Jo- -ieâ ±
u -  rv =  —-  = e ^  (3.11)

d z  j t - e 0

Every 2 0 th grid line show n in X 
Every 501 grid line show n in Y

X(in.)

Figure 3.3 The computational grid.
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According to this transformation, we can obtain the metrics by analytical methods. 

The physical grid which was generated by conformal mapping methods is shown as 

Figure 3.3. The grid size is 1701x301 in streamwise and normal directions, respectively.

3.4 The Euler computations for code validation

Before we begin to perform the steady computation, a code validation check is 

necessary. This was done by comparing the Euler results obtained by this code with 

inviscid theoretical results. Figure 3.5 shows the density contours for inviscid hypersonic 

flow at a Mach number of 5.373, going through a 5.5° compression comer. Figure 3.6 

shows the pressure distribution. The density contour in Figure 3.5 shows that the 

deflection angle of oblique shock is about 14.8°. And in Figure 3.6, the pressure increase 

across the shock is p 2j  p x = \  .98.

According to the compressible flow theory, for the supersonic flow along a wedge 

with a wedge angle 0O as shown in Figure 3.4, if we know the flow Mach number, we can 

obtain the deflection angle 0W of the oblique shock and the pressure increase across the 

shock according to following equations

Oblique shock

Figure 3.4 The oblique shock across the compression corner.

tan#0 = 2cot#w M 2 sin2 6w - 1
(3.123)

M ? (y + c o s  20w) +  2

(3.124)
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For the given Mach number and wedge angle, we find that ^,=14.7° and pt/ p i- 2.00. 

It is observed from the comparisons that the numerical Euler results agree very well with 

the inviscid theoretical results. The code is validated with further computations.

0.7

0.6

0.5

E
>

0.3

0.2

0.1

11 12 13 14
X(in.)

Figure 3.5 The density contour across the compression corner obtained by Euler computation.

2.2

2.1

  Numerical solution

 Exact solution
1.8

0.9

0.8

X(in.)

Figure 3.6 The pressure comparison between the numerical result and the exact solution.
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3.5 The initial and boundary conditions for the viscous mean flow 

com putation

In the present study, we are mostly concerned with the separation bubble region for 

both steady and unsteady hypersonic flow. So we begin our computation at a streamwise 

location which is approximately 3 inches upstream of the separation point. At this 

streamwise location, similarity boundary-layer results are applied as the inflow boundary 

conditions. These results are obtained by a similarity transformation of the 

two-dimensional compressible boundary-layer equation. Consider the following 

boundary-layer equations

■^-(pu) + ^ - ( p v )  = 0 
OX ox

/ du d u } d
u ----- l-v—  = —

dx dy dy P
du
dy

d T dT d7\  
dy

du

v dy .\  J j

p t  = a x

We can choose the similarity variables as following 

s = p ^p J J„ x

n =
V n Z

(3-12)

(3-13)

(3.14)

(3.15)

(3-16)

(3.17)
( 2 s f 2 Jo T

where the subscript stands for the upstream flow parameters.

The stream function, y/ , and temperature, T, can be written as functions of the above 

similarity variables as follows:

y/ = (2sf2f(7]) (3.18)

T — T„ g(Jj) (3.19)
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1 dy/  dy/  dr] Tr , .
« = — t -  = t ~ ~  =  Umf  (rf)

p  dy di] dy
(3 .2 0 )

1 dy /

P

d y / ds d y / drj  1----------
ds dx df] dx

(3.21)
1 1 ,dr]
p  ( 2 s ) ' dx

The continuity equation is automatically satisfied by the stream function. If we 

substitute the stream function into the momentum equation, after simplification and 

rearrangement, we get the following similarity equation for the boundary layer 

momentum equation.

d_
dr]

PP
P~P~

r +  j T  =  o (3.22)

If we substitute the stream function and temperature into the energy equation and 

rearrange, we get the following similarity equation for the energy equation.

d_
dr]

r  i \
PP 8 

P -P -  K
+ f g + ( r - \ ) M l p p

p~p~
f

»2 0 (3.23)

The boundary conditions for these similarity equations can be written as following

T„
f  (0) = 0, /  (0) = 0, g(0) • wait a t 7] =  0 (3.24)

A fourth-order Runge-Kutta method was used to solve the above ordinary differential 

equations with the given boundary condition. The velocity and temperature distributions 

are shown in Figure 3.7 and Figure 3.8. All other variables such as p , p , v, et can be

obtained using the state equation and continuity equation. These similarity results can 

also be used as the initial conditions for time iteration to get the steady mean flow across 

the compression comer. Because the flow is supersonic in the whole computational 

domain except in the boundary-layer close to the wall, the extrapolation method can be 

applied at the outflow boundary condition. At the wall, the non-slip condition and the
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Figure 3.7 The streamwise velocity distribution for the similarity boundary-layer.
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Figure 3.8 The temperature distribution for the similarity boundary-layer.
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3.6 Mean flow results

In this section, the mean flow results and discussion will be presented. The results are 

obtained by unsteady time iteration using local time step in the whole computational 

domain until the maximal residual is less than ~10"5. Figures 3.9-3.14 show the results for 

the steady mean flow field. Figure 3.9a and 3.9b show the density contours. Figure 3.10 

and Figure 3.11 show Mach contours and normal velocity contours respectively. Figures 

3.12a and 3.12b show the streamline patterns. Figures 3.9b and 3.12b depict the expanded 

view near the comer region. Figure 3.13 shows the streamwise pressure distribution at 

different distances from the wall with Y=0, 0.08, 0.120, 0.237 inches respectively. Figure 

3.14 shows the variation of the boundary-layer thickness and the displacement thickness 

in the streamwise direction.

As we discussed earlier, due to the interaction of the oblique shock and the 

boundary-layer, the boundary-layer separates near the comer and a separation bubble is 

formed. In this case the separation point is located at about 10.8 inches and reattaches at 

about 14.1 inches (the comer is located at 12.445 inches). The boundary-layer thickness 

at X=10 inches is about 0.08 inches. Hence the separation and reattachment points are 

located at about 20 boundary-layer thicknesses from the comer point and the separated 

region is about 40 boundary-layer thicknesses long. Figure 3.12 show that a separation 

bubble is formed in the comer region and there is a circulation flow in the separation 

bubble. The streamlines are concave outside of the separation bubble. Figure 3.12b also 

shows that the boundary of the separated region is almost a straight line and is inclined at 

about 3.1° while the main ramp is inclined at 5.5°. Due to this new inclined surface, two 

compression waves, one close to the separation point and another near the reattachment 

point, are created as shown in the density contours of Figure 3.9b. From the Mach 

contours shown in Figure 3.10, we notice that a very thin subsonic layer exists close to 

the wall. The normal velocity shown in Figure 3.11 exhibits significant changes across 

the compression waves.
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Figure 3.9a Density contour distribution.

0.4
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Figure 3.9b Expanded view of the density contours.
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Figure 3.10 The Mach contour distribution.
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Figure 3.11 Normal velocity contours near the compression corner.
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Figure 3.12a The streamline distribution.
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Figure 3.12b Expanded view of streamlines close to the corner.
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Figure 3.13 The pressure distribution in the streamwise at different normal locations.
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Figure 3.14 The boundary-layer thickness distribution.
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Figure 3.15a The streamwise velocity distributions at different streamwise locations.
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Figure 3.15b Expanded view of the streamwise velocity distributions in the boundary-layer.
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Figure 3.16a Density distributions at different streamwise locations.
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Figure 3.16b Expanded view of the density distributions in the boundary-layer.
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Figure 3.13 shows the pressure distributions in the streamwise direction at different 

normal locations. Where “S” stands for the separation point and “R” stands for the 

reattachment point. The pressure distribution at the wall surface shows that the pressure 

starts to increase at X=10 inches which is 0.8 inch upstream of the separation point. This 

is the free interaction region analyzed by Lighthill[5][6] and Stewartson and Williams[7]. 

The initial pressure increase saturates in the middle region and then increases again. This 

shows that near the comer region the flow field is approximately uniform. It is seen that 

the pressure distributions at Y=0 and Y=0.08 inches which are on the wall and along the 

edge of the boundary-layer are almost equal. This implies that the compression waves 

originate from outside of the boundary-layer and do not penetrate inside the 

boundary-layer. Another important observation is the growth of the boundary-layer which 

is depicted in the Figure 3.14. Initially, the boundary-layer grows according to the 

similarity laws along a flat plate and from about X=9.6 inches the boundary-layer 

thickness remains constant up to the separation point X=10.8 inches. From the separation 

point, the boundary-layer thickness grows steeply as a wedge and reaches a peak 

thickness at about 12.8 inches and again decreases very steeply near the reattachment 

point. It is interesting to note that the boundary-layer thickness reaches a minimum value 

of 0.068 inches at X=15 inches and this value is smaller than the boundary-layer 

thickness upstream of separation. Therefore, when the hypersonic flow passes over a 

compression comer the boundary-layer becomes smaller downstream of the separation 

region due to compression.

Figures 3.15a and 3.15b show the streamwise velocity profiles at streamwise 

locations X=8.445, 9.929, 11.264, 12.499, 13.590 14.544, 15.415and 16.233 inches 

respectively. The locations X=11.264, 12.499 and 13.590 are in the separated region and 

the others are outside of it. Similarly, Figures 3.16a and 3.16b show the density profiles at 

these streamwise locations. We clearly see the growth and shrinking of the 

boundary-layer thickness as discussed earlier. We can also see that the flow reverses in
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the separation region. The velocity in the recirculation region is on the order of 200ft/s 

compared to 3000ft/s at the edge of the boundary-layer. The density is almost constant in 

the separation bubble and the density gradient inside the boundary-layer is much larger in 

the downstream region compared to upstream of the comer.

3.7 Summary

In this chapter, we computed the two-dimensional steady mean flow for hypersonic 

flow (M«^=5.373) going through a 5.5° compression comer using a fifth-order WENO 

scheme and a three-stage Runge-Kutta method. The mean flow results show details of the 

interactions between the shock wave and the boundary-layer. Due to this interaction, the 

flow separates about 1.6 inches upstream of the comer and reattaches about 1.6 inches 

downstream of the comer. A circulation flow is created in the separation bubble. Some 

compression waves appear along the edge of the separation bubble. This mean flow will 

provide the base flow for the numerical simulation of the hypersonic boundary-layer 

instability and transition across a 5.5° compression comer, performed in next a few 

chapters.
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CHAPTER IV 

LINEAR COMPUTATIONS OF THE 

DISTURBANCE EVOLUTIONS

The linear eigenvalue computations have been widely used for boundary-layer 

instability and transition predictions for decades because linear computations are much 

less costly than DNS. In the present study, before a direct numerical simulation is 

performed to study the boundary-layer instability and transition across the compression 

comer, several issues need to be addressed. These issues include how to choose the 

disturbance frequency and how to introduce the initial disturbances, as well as how to 

validate the computational results obtained by direct numerical simulation. In order to 

answer these questions, we first perform some linear computations of both two- and 

three-dimensional disturbance evolution across the compression comer. The LST analysis 

will be applied at selected streamwise locations using the local parallel assumption. The 

linear computation results will give an approximate picture of the linear evolution of 

disturbances across the compression comer. In addition, due to the existence of the 

curvature of the streamlines along the edge of the boundary-layer, a Gortler instability 

will occur at locations with large streamline curvature. In this chapter, the Gortler 

instability will also be investigated.

4.1 Linear stability analysis

The linear stability theory and its numerical scheme have been discussed in §2.3. In 

this section, the linear stability theory will be used to compute the spatial amplification 

rate of both two- and three-dimensional disturbances at selected streamwise locations 

across the compression comer, using different disturbance frequencies, based on the mean 

flow profiles obtained in chapter 3.
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Figure 4.4 The variation of the spatial amplification rate with the disturbance frequency.
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Figure 4.9 The eigenfunctions of the density disturbance at high frequency.
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Figure 4.10 The eigenfunctions of the density disturbance at low frequency.
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4.1.1 Linear computation of the evolution of two-dimensional disturbances across 

the compression corner

Figure 4.1 and Figure 4.2 show the neutral stability curves for both the first mode and 

the second mode disturbances with the mean flow at the initial streamwise location 

X=8.445 inches. Figure 4.1 shows the neutral stability curves in (Or, Re) plane and Figure

4.2 shows the neutral stability curves in (Fo, Re) plane. The neutral stability curves 

demonstrate that the first mode instability only exists in low frequency regions. No 

unstable first mode disturbance exists at frequencies above F o= 0 .4 0 x 10 ‘4. The second 

mode instability exists in the high frequency regions at low Reynolds numbers and in the 

low frequency regions at high Reynolds numbers. The second mode disturbance has a 

much smaller critical Reynold number than the first mode disturbance.

Figures 4.S-4.8 show the computed linear stability results of the streamwise wave 

number and the spatial amplification rate at different streamwise locations for 

two-dimensional disturbances. Figure 4.3 and Figure 4.4 show the variations of the 

streamwise wave number, a r , and spatial amplification rate, etr,, with frequency 

respectively at four streamwise locations, X=8.445, 9.210, 9.936, 10.487 inches, 

upstream of the separation bubble. Figure 4.5 and Figure 4.6 show the variations of a r

and a { with the frequency at four streamwise locations, X=11.270, 11.890, 12.625,

13.073 inches, in the separation bubble region, while Figure 4.7 and Figure 4.8 show the

variation of a r and a t with the frequency at four streamwise locations, X=14.548,

15.420, 16.237, 17.027 inches, downstream of the separation bubble. It is observed from 

these figures that the streamwise wave number almost keeps a linear variation with the 

disturbance frequency at all streamwise locations. This gives a constant phase velocity of 

about 0.9. For the same disturbance frequency, the streamwise wave number remains 

approximately the same at the different streamwise locations. This demonstrates that the 

streamwise wave number of the disturbance remains approximately constant with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

two-dimensional disturbance propagating downstream in the boundary-layer at a fixed 

frequency.

One interesting observation from the spatial amplification rate plots is that the spatial 

amplification rate shows several peaks at different frequencies. From the neutral stability 

curves, we know that these peaks correspond to the unstable regions for different modes. 

At the locations upstream of the separation bubble, as shown in Figure 4.4, we obtain the 

typical high Mach number two-dimensional first and second mode growth rate curves and 

two peaks for a t appear. One is located in the low frequency region between

Fo=0 .2~0 .4 x 10'4, which corresponds to the first mode unstable region. The other peak is 

located in the high frequency region between Fo=0.7~1.0xl0'4, which corresponds to the 

second mode unstable region. We notice that the two-dimensional first mode is almost 

neutral and the second mode is very unstable and has a maximal growth rate at a 

frequency close to Fo=0.8xlO'4. The most amplified frequency for the second mode 

disturbance will move toward the smaller value with the streamwise location moving 

downstream.

At the locations in the separation region shown in Figure 4.6, the unstable regions for 

different modes also appear at different frequencies. But now we notice that more peaks 

have appeared with each unstable region becoming much narrower in frequency band. 

This demonstrates that the third or higher modes have appeared in the separation region. 

We also notice that the most unstable region has shifted to the low frequency region 

between Fo= 0 .2 ~ 0 .4 x 10'4. We will show later that the second peak corresponds to the 

third mode which is the second acoustic mode. At the locations downstream of the 

separation region, shown in Figure 4.8, the spatial amplification rate again shows the 

typical high Mach number two-dimensional first and second mode unstable regions. The 

first mode unstable region is in the low frequency region between Fo=0.2~0.4x10'4 and 

the second mode unstable region is in the high frequency region between Fq=0.7~ 1.0x1 O'4. 

The first mode is approximately neutral and the second mode is very unstable. The most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

amplified frequency for the second mode disturbance moves toward much larger values 

with the streamwise location moving downstream. Further downstream, the most 

amplified frequency remains close to Fo=0.80x!0‘4 and changes little. It is apparent that 

the disturbance with the frequency Fo=0.80x10'4 will show the greatest amplification 

when it evolves downstream across the compression comer.

In Figures 4.9 and 4.10, we plot the eigenfunction distributions for the density 

disturbance with the maximum growth rates at streamwise locations X=8.445, 13.073 and 

17.027 inches respectively. Figure 4.9 shows the results at the high frequency 

Fo=0.80x10‘4 while Figure 4.10 shows the results at low frequency Fo=0.25xlO'4. At 

X=8.445 and 17.027 inches, we obtain the eigenfunction distribution for the second mode 

and the first mode at the high and low frequencies, respectively. The high frequency 

second mode has a peak near the critical layer and has another peak near the wall. At the 

streamwise locations X= 13.073 inches, at low frequencies we see the same eigenfunction 

distribution with the peak near the critical layer and another peak near the wall. But at 

high frequencies, we see that the layer near the wall exhibits two maximums in the 

distribution. To investigate this further, in Figures 4.11 and 4.12 we plot the distribution

of two important boundary-layer functions p d U / d y  and the local Mach number

relative to the phase velocity at the critical point M local -  (U — Ccr)/-y]}RT respectively.

The results are presented for the two stations at X=8.445 and 13.073 inches. As we

expected the p d U / d y  peaks near the edge of the boundary-layer and the phase speed of

the disturbances are about 0.9. The interesting observation is the relative supersonic 

region near the wall, which is the cause for the appearance of the higher acoustic modes 

in the hypersonic boundary-layers. Since the relative supersonic region is very thick for 

the boundary-layer in the separation region, multiple high frequency acoustic 

modes(second, third, ...) are generated. Because the relative supersonic region is thick, 

the wavelength of these modes are long and hence the frequency of the first high mode or
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the second mode will be lower in the separation region than in the region away from the 

separation region. Hence, in the separation region, the low frequency higher modes that 

we discussed earlier in FcfO.2~0.4x10"4 are the classical second modes and the higher 

frequency higher modes in Fo=0.7~1.0xlO'4 are the third or higher modes. This also 

explains the reason for the appearance of the multiple oscillations in the eigenfunction 

distribution near the wall in the separation region. Since away from the comer, the 

relative supersonic region narrows and the frequencies of the higher modes shift to higher 

values.

Since transition is caused by the cumulative growth of disturbances, we compute the 

variation of the growth rate for a fixed frequency in the streamwise direction. Figures 

4.13-4.15 show the variation of the local spatial amplification rate and the cumulative 

growth rate in the streamwise direction for the two-dimensional second mode 

disturbances in high frequency regions with frequencies Fo=0.85-, 0.70-, and 0.65xl0‘4 

respectively. It is observed from these figures that the local spatial amplification rate 

increases or decreases monotonously upstream and downstream of the separation bubble. 

However, in the separation bubble region, the local spatial amplification rate keeps 

oscillating between negative and positive values. The corresponding cumulative growth 

rates in the streamwise direction at these frequencies can be obtained by the following 

integral relation.

- f  tXj(x)dx

eN = e  3x0 (4.1)

The cumulative growth rates are plotted using a Log scale so that we can see the 

disturbance growth characteristics in the separation bubble region more clearly. It is 

observed that at frequency Fo= 0 .8 5 x 10"4, the disturbance grows monotonously upstream 

and downstream of the separation region. In the separation region, the disturbance is 

approximately neutral. For disturbances with frequencies Fq=0.70~ and 0.65xl0"4, the 

isolated stable regions have begun to appear upstream and downstream of the separation 

region. And in the separation region, the disturbances are approximately neutral. The
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neutral status o f the two-dimensional disturbances in the separation region is due to the 

oscillation of local spatial amplification rate in this region.
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Figure 4.13 Local a; and cumulative growth rate in the streamwise direction, F0=0.85x10'4.
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Figures 4.16-4.18 show the variation of the local spatial amplification rate and the 

cumulative growth rate in the streamwise direction for two-dimensional disturbances in 

the low frequency regions, with the frequencies of Fo=0.3G-, 0.25-, and 0.20xl(X4 

respectively. It is observed from these figures that the low frequency two-dimensional 

disturbances are neutral upstream and downstream of the separation region, but in the 

separation region, the disturbances show very strong growth tendencies in a very narrow 

isolated region close to the comer. We have known that the low frequency disturbance 

growth in the separation region is due to the second mode instability. But because the 

growing region is very narrow, compared with the high frequency disturbance growth 

upstream and downstream of the separation region, the cumulative low frequency 

disturbance growth in the separation region is negligible. So it is the high frequency 

disturbances that will dominate the boundary-layer instability and transition across the 

compression comer.
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Figure 4.20 The variation of the spatial amplification rate with 
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Figure 4.21 The variation of the streamwise wave number with the frequency, (3=0.05.
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Figure 4.26 The cumulative growth rate in the streamwise direction, F0=0.85x10'4, p=0.1.

4.1.2 Linear computation of the evolution of three-dimensional disturbances across 

the compression corner

Now we will present the linear stability computational results for three-dimensional 

disturbance evolution across the compression comer. Figure 4.19 and Figure 4.20 show 

the variation of the streamwise wave number and spatial amplification rate with the 

spanwise wave number for an oblique disturbance with a fixed disturbance frequency 

Fo=0.85xlO'4 at different streamwise locations X=8.445, 9.936, 12.441 and 15.420 inches 

respectively. The spanwise wave number p=0 corresponds to a two-dimensional 

disturbance. It can be observed in Figure 4.19 that the streamwise wave numbers of 

three-dimensional disturbances are almost the same as those of the two-dimensional 

disturbances with the same frequency. We can also see from Figure 4.20 that the spatial 

amplification rate decreases with increasing spanwise wave number at the locations 

upstream of the separation bubble (X=8.445, 9.936 inches) and downstream of the 

separation bubble X=15.420 inches. At these locations, the spatial amplification rate
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reaches the maximal value at 0  = 0 which corresponds to a two-dimensional

disturbance. These results agree well with the theory given by Mack[23] that the second 

mode disturbance is most unstable in its two-dimensional form. But at the location 

X=12.441 inches in the separation region, increasing the spanwise wave number from 0, 

the spatial amplification rate first shows a small increase then begins to decrease. The 

spatial amplification rate reaches a maximal value at about 0  = 0.075. As we have

known from the above analysis, in the separation region, the instability for 

two-dimensional disturbances in the high frequency region is due to the higher acoustic 

modesfthird, fourth, ...). The second mode unstable region has shifted to the low 

frequency region. We will show that the same is true for three-dimensional disturbances. 

It is reasonable that the three-dimensional disturbance shows much larger amplification 

rates than two-dimensional disturbances in the separation region, at the disturbance 

frequency Fo^-SSxlO-4.

Figure 4.21-4.24 show the variation of the streamwise wave number and the spatial 

amplification rates of three-dimensional disturbances with frequency at different 

streamwise locations X=8.445, 9.936, 12.441 and 15.420 inches with two different 

spanwise wave numbers ((3=0.05 and (3=0.1) respectively. Just like that of the 

two-dimensional disturbance, the streamwise wave number of the three-dimensional 

disturbance also varies with frequency in an approximately linear manner and is almost 

constant at the different streamwise locations at a fixed frequency. At the locations 

X=8.445, 9.936 inches upstream and X=15.420 inches downstream of the separation 

region, the three-dimensional disturbances also show two unstable modes, the first mode 

in the low frequency region between Fo=0.20~0.4xlO'4 and the second mode in the high 

frequency region between Fo=0.70~ 1.0x1 O'4. But unlike the first mode of the 

two-dimensional disturbance, the first mode of the three-dimensional disturbance 

achieved quite large spatial amplification rates, comparable to those of the second mode. 

With increasing spanwise wave number, from 0.05 to 0.1, the spatial amplification rate of
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the first mode increases and the spatial amplification rate of the second mode decreases. 

In the separation region, due to the increased thickness of the boundary-layer, the third or 

higher acoustic modes will appear, and the second mode unstable region will transfer to 

the low frequency region between Fo=Q.20~0.4x 1 O'4. We also notice that the third 

acoustic mode has become the most unstable mode at (3=0.1 in the separation region.

We need to understand the cumulative growth characteristics of three-dimensional 

disturbances at a fixed frequency. Figure 4.25 shows the variation of the local spatial 

amplification rate in streamwise direction for the oblique disturbances at a fixed

frequency Fo=0.85xlO'4 with spanwise wave number /? = 0.1. It is observed that a i

oscillates between negative and positive values in the separation region and exhibits 

relatively small changes upstream and downstream of the separation region. Figure 4.26 

shows the variation of the cumulative growth rate in the streamwise direction, which is 

obtained by equation (4.1) with the or( given in Figure 4.25. It is observed that the

three-dimensional disturbance grows monotonically in upstream and downstream of the 

separation region and decays slowly in the separation region. This characteristic of 

three-dimensional disturbances in the separation region shows some differences from that 

of the two-dimensional disturbances which maintain an approximately neutral status in 

the separation region.

4.2 Gortler instability computations

As we can see from the mean flow results shown in chapter 3, the streamlines are 

curved along the edge of the boundary-layer for hypersonic flow passing through the 

compression comer. Then the Gortler instability will occur in regions where the large 

streamline curvature exists. When we simulate the boundary-layer instability and 

transition across the compression comer, the Gortler instability must also be taken into 

account.
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Figure 4.28 The Gortler number distribution along the streamline at Y=0.054 inch.
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Figure 4.29 The spatial amplification rate of the Gortler vortex at X=10.284in.(ic=50.4in.).

-0.0036

-0.0032

-0.0028

.0024

- 0.002

-0.0016

0.1 0.2 0.3 0.4 0.5 0.6
P

Figure 4.30 The spatial amplification rate of the Gortler vortex at X=10.753in.(ic=25in.).
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Figure 4.31 The spatial amplification rate of the Gortler vortex at X=11.27in.(K=66in.).
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Figure 4.32 The spatial amplification rate of the Gortler vortex at X=13.595in.(ic=27.72in.).
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Figure 4.27 shows the curvature distribution of streamlines at the normal location 

Y=0.054 inch. Figure 4.28 shows the Gortler number distribution along this streamline.
II /? —

The Gortler number is computed using equation Gr = ------- (SdK)z . It is shown that the

Gortler number is large at locations where streamline curvatures are large, which 

occurred at the reattachment point. We will choose several locations with large values of 

streamline curvature to perform the Gortler instability computations. Figures 4.29 -4.32 

show the Gortler instability computation results at four different locations, X=10.284, 

10.753, 11.27 and 13.595 inches respectively. These results show the variation of the 

spatial amplification rate of the Gortler vortices with spanwise wave number.

Figure 4.29 shows the results at the location X=10.284 inches in front of the 

separation point, where the streamline curvature begins to increase and the radius of 

curvature is k=50.4 inches. Because the curvature is relatively small at this location, the 

spatial amplification rate of Gortler vortices is small. Figure 4.30 shows the spatial 

amplification rate of Gortler vortices at X=10.753 inches which is close to the separation 

point. At this location, the streamline curvature is most severe. The radius of curvature is 

about k=25 inches. So the Gortler vortices are mostly amplified at this location and show 

the first large amplification region around this location. Figure 4.31 shows the spatial 

amplification rate of Gortler vortices at X= 11.27 inches which is located in the middle of 

the separation region. As shown in chapter 3, the boundary-layer edge is almost flat 

above the separation bubble, so the curvature of the streamlines at these points is very 

small and the curvature radius is about K =  6 6  inches. As a result, the Gortler vortices 

show only very small amplification at this location. Figure 4.32 shows the spatial 

amplification rate of Gortler vortices at X=13.595 inches which is close to the 

reattachment point. At this location, the streamline curvature is the second largest, so the 

spatial amplification rate of the Gortler vortices becomes big again. The Gortler vortices 

will show another high amplification region around this location. After this location, the 

streamline begins to become straight. The Gortler vortices will not be amplified any
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further, traveling downstream. In addition, another important observation is that at all 

these streamwise locations the Gortler vortices show most significant spatial 

amplification rates at spanwise wave numbers between (3=0.3 and 0.4. When we perform 

the DNS to simulate the boundary-layer instability across the compression comer, the 

Gortler instability with spanwise wave numbers given in this region should be 

considered.

4.3 Summary

In this chapter, we performed linear computations for two- and three-dimensional 

second mode disturbances as well as Gortler vortex evolutions across the compression 

comer. Two linearized theories have been used for computation: linear stability theory 

and Gortler instability theory. By LST computations we found that both two- and 

three-dimensional disturbances are mostly amplified across the compression comer at 

frequencies close to Fo=0.80xl0'4. The two-dimensional high frequency disturbances 

keep an approximately neutral status in the separation bubble region and the 

three-dimensional high frequency disturbances decay in this region. The low frequency 

disturbances show the second mode instability characteristics in the separation region and 

grow rapidly in a narrow band in this region. The three-dimensional second mode 

disturbances are less amplified than their two-dimensional counterparts upstream and 

downstream of the separation region. The Gortler vortex will be mostly amplified at two 

locations: one is close to the separation point and the other is close to the reattachment 

point. The Gortler vortex will have a large spatial amplification rate at spanwise wave 

numbers between (3=0.3 and 0.4. All these linear computations provide an approximate 

picture of the linear two- or three-disturbance evolutions across the compression comer, 

which will be verified by direct numerical simulations in the next a few chapters. On the 

other hand, these linear computation results also provide some important information on 

the selections of the disturbance frequencies and spanwise wave numbers for DNS.
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CHAPTER V 

DIRECT NUMERICAL SIMULATION OF 

TWO-DIMENSIONAL DISTURBANCE EVOLUTIONS

Direct numerical simulations of two-dimensional disturbance evolution across the 

compression comer will be performed in this chapter. Both linear and nonlinear 

two-dimensional disturbance evolutions will be simulated. We will study the influences 

of disturbance frequency and initial disturbance amplitude on disturbance evolution. The 

behavior of different modes during nonlinear interaction will be studied by nonlinear 

simulation. In this chapter, we will first present computation results for parallel and 

non-parallel flow along a flat plate and compare these results with those of LST and PSE 

methods to validate the code for two-dimensional unsteady computation. Next we will 

show the results for the linear and nonlinear evolution of two-dimensional disturbances 

across a compression comer. The computational grid for two-dimensional unsteady 

computation across the compression comer is the same as that employed for of 

two-dimensional mean flow computations, which was shown in Figure 3.3.

Computational domain \
Initial disturbance

Figure 5.1 Introduction of two-dimensional initial disturbances.
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5.1 Introduction of the initial disturbances

The two-dimensional initial disturbances were obtained using two-dimensional PSE 

computations. They are superposed on the mean flow profile at the beginning of the 

computational domain, in the streamwise direction according to the following equation.

q(x0, y, t) =  Q0 (x0, y)  + e  R ea l (q (y )e~ia') (5.1)

q = [p ,e t ,u ,v}T \ Q0 = \po>Et0,U 0,VQ] T \ q  = \ p , e t ,u ,v ]T (5.2)

where CO is the disturbance frequency, e  is the initial disturbance amplitude, q is the

eigenfunction which is obtained by the PSE method and is normalized with the maximum 

amplitude of the density disturbance so that the maximum amplitude of the density 

disturbance is unity. Qo are the steady mean flow profiles at the initial streamwise 

location, and xo is the streamwise coordinate at the beginning of the computational 

domain. Figure 5.1 illustrates how the initial disturbances are superimposed on the mean 

flow.

0 .3

0.2

.£
>

0.1

5 E -0 5
eigenfunction

0.0001 0 .0 0 0 1 5

Figure 5.2 The eigenfunctions of the initial disturbance.

Figure 5.2 shows the eigenfunctions of the initial disturbances of density, total energy, 

streamwise velocity, and normal velocity respectively at the frequency Fo=0.85x 10'4 and 

initial disturbance amplitude £=0.0001. All these disturbances are normalized by their
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corresponding upstream mean flow quantities in upstream infinity. It can be seen that all 

disturbances concentrate within the boundary-layer. The density disturbance shows the 

largest relative amplitude among all the disturbance quantities. The density disturbance 

will dominate the instability and transition of the boundary-layer. In the present study, all 

numerical analysis of instability and transition will be based on the density disturbance.

5.2 The two-dimensional disturbance evolution across a flat plate

Before we perform the DNS for the evolution of two-dimensional disturbances across 

the compression comer, we first perform some computations for two-dimensional 

disturbance evolution across a flat plate using the same code. Both parallel and 

nonparallel flow computations will be performed. Then the parallel results will be 

compared with those obtained by linear stability theory computations, and the nonparallel 

results will be compared with those obtained by PSE computations. The validation of the 

code for two-dimensional unsteady computation can be checked by these comparisons.

5.2.1 Parallel flow computations

Figures 5.3 and 5.4 show the parallel flow computation results for hypersonic flow 

over a flat plate with the same incoming flow parameters as those of the compression 

comer. The dimensionless disturbance frequency is Fo=0.85xlO'4. The initial disturbance 

amplitude is £=0.0001. Figure 5.3 shows the density disturbance contour and Figure 5.4 

shows the streamwise velocity disturbance contours. It can be observed clearly from these 

contours that the disturbances are constrained in the boundary-layer and maximum 

disturbances appear in the critical layer. The normal locations of the maximal disturbance 

in the boundary-layer are constant in the streamwise direction due to the parallel flow 

assumption.

Figure 5.5 shows the density disturbance evolution in the streamwise direction at the 

location y=0.0526 inch. The density disturbance amplitude is maximal at this normal 

location. This figure also shows the comparison between the results in parallel flow and 

the results for LST computation. It can be seen that the amplitude of the density
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disturbance grows exponentially downstream. The results of the parallel flow 

computation agree very well with the results from the LST computation until about 

X=10.5 inches. A small difference between these two results begins to appear beyond this 

location and this difference becomes larger and larger moving downstream. This occurs

mean flow quantity, nonlinear influences begin to take effect in parallel flow 

computation. But the LST computation cannot take into account the nonlinear effects, so 

the difference between these two results will become large with increasing disturbance 

amplitude. In addition, the outflow boundary conditions used in DNS may also be 

responsible for this difference. Figure 5.6 shows a comparison of streamwise velocity 

disturbance evolutions at y=0.0526 between LST and parallel flow computations. Figure 

5.7 shows a comparison of the density disturbance evolution at the wall. From all these 

comparisons, it can be observed that the parallel flow computation results agree very well 

with the LST computation results in the linear disturbance evolution region.

when the disturbance amplitude becomes large enough relative to the corresponding

0.3

£
>

0.2

0.00620897
0.00520116
0.00419335
0.00318553
0.00217772
0.00116991
0.000162096

-0.000645717
-0.00185353
-0.00286134
-0.00386915
-0.00467697
-0.00588478

0.

X(in.)

Figure 5.3 Density disturbance contours, Fo=0.85*1Q'4, e=0.0001.
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Figure 5.4 Streamwise velocity disturbance contours, F0=0.85>«10'4, e=0.0001.
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Figure 5.5 Comparison of LST and parallel disturbance density results at y=0.0526 inch.
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Figure 5.6 Comparison of LST and parallel disturbance velocity results at y=0.0526 inch.
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Figure 5.7 Comparison of LST and parallel disturbance density results at the wall.

Next we will make some comparisons for the eigenfunctions of the disturbances at 

different streamwise locations between LST and parallel flow computations. Figure 5.8(a)
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and Figure 5.8(b) show the eigenfunction comparisons for the density disturbance and 

streamwise velocity disturbance at X=8.837 inches. At this location, nonlinear effects are 

very small, so the eigenfunctions obtained by these two methods agree with each other 

very well. Figure 5.9(a) and Figure 5.9(b) show comparisons of the eigenfunctions at 

X=10.873 inches. At this location, the differences between the eigenfunctions obtained by 

LST and those obtained by parallel flow computation become large due to nonlinear 

effects and outflow boundary conditions used in DNS.
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LST0.2

i
>
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Figure 5.8 Com parisons of eigenfunctions at x -8 .837  inches.
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Figure 5.9 Comparisons of eigenfunctions at X=10.837 inches.
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5.2.2 Non-parallel flow computations

Due to boundary-layer thickness increases in the streamwise direction, non-parallel 

effects should be taken into account when we perform the numerical simulations for 

disturbance evolution along a flat plate. Figure 5.10(a) and Figure 5.10(b) show the 

non-parallel flow computation results and the comparisons of the results obtained by 

non-parallel flow computation and PSE computation. Figure 5.10(a) shows the 

comparison of the maximal density disturbance and Figure 5.10(b) shows the comparison 

of the maximal streamwise velocity disturbance. It is observed that the results obtained by 

these two methods agree with each other quite well. Only small differences exist at the 

end of the streamwise domain. This is due to the nonlinear influence which was neglected 

in the linear PSE computation and the outflow boundary conditions used in DNS. We also 

noticed that for non-parallel growth, the spatial amplification rate is no longer constant in 

the streamwise direction. The disturbances only grow in the second mode unstable region, 

shown in Figures 4.1' and 4.2, and the growth rate will also be different for different 

disturbance quantities.
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0.006
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0.001
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-0.0005
- 0 .002

- 0.001
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-0.0015
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Figure 5.10 Comparisons of the results for non-parallel and PSE disturbance computations.

5.3 The two-dimensional disturbance evolutions across the compression 

corner

In this section, we will present the DNS results for two-dimensional disturbance
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evolution across the compression comer. The simulations are performed with different 

disturbance frequencies and different initial disturbance amplitudes. According to the 

linear stability computation results in chapter 4, we know that upstream and downstream 

of the separation region, the second mode unstable region is in high frequency region 

between Fo=0.70- and 1.0x1 O'4 and the first mode unstable region is in the low frequency 

region between Fo=0.20- and 0.40x10‘4. But in the separation region, the second mode 

unstable region transfers to the low frequency region between Fo=0.20- and 0.40x1 O'4. So 

in the present computations, we will first ran several cases with disturbance frequency 

values chosen within the high frequency region. Then we will ran several other cases with 

disturbance frequency values chosen from the low frequency region. By these 

computations, the evolution characteristics of the disturbance with different frequencies 

in different flow regions will be fully disclosed. Both linear and nonlinear evolution of 

the disturbances across the compression comer will be simulated.

5.3.1 The linear evolutions of the disturbances

To simulate the linear evolution of the disturbance across the compression comer, the 

initial disturbance amplitude is required to be small enough to make sure that the primary 

disturbance amplitude remains below about 5 percent of its corresponding mean flow 

value in all flow regions. Figure 5.11a shows the density disturbance contour across the 

compression comer with dimensionless disturbance frequency Fq=0.85x 10'4, and initial 

disturbance amplitude £=0.0001. With this small initial disturbance amplitude, the linear 

disturbance evolution across all regions of the compression comer can be guaranteed. 

Figure 5.11b is an expanded view of the density disturbance contour upstream of the 

separation bubble. Figure 5.11c is an expanded view of the density disturbance contour in 

the separation bubble region. Figure 5.lid  shows the expanded view of the density 

disturbance contour downstream of the separation bubble. It can be seen from these 

contours that the disturbances concentrate in the boundary-layer and propagate 

downstream along the outer edge of the boundary-layer, and the negative and positive
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disturbance zones appear alternatively in the streamwise direction. In the upstream region 

of the separation bubble, the disturbance evolution is similar to the non-parallel flow 

result which had been discussed previously. The disturbance evolution in this region 

conforms to nonparallel theory and can be dealt with by the PSE method. In the 

separation bubble region, the maximal disturbances reside above the separation bubble 

and never penetrate into the separation bubble. The disturbances in the separation bubble 

are very small. Due to the streamline curvature in this region, some outgoing weak 

compression waves have been produced along the outer edge of the boundary-layer. 

Downstream of the separation bubble region, due to the reattachment of the boundary- 

layer and the negligible influence of the shock on the boundary-layer, the boundary-layer 

in this region can be regarded as the flat plate boundary-layer, so the disturbance 

evolutions will again approximately conform to the nonparallel theory. Figure 5.12 shows 

the pressure disturbance contours across the compression comer at disturbance frequency 

F q = 0 . 8 5 x 10 ' 4  and initial disturbance amplitude £=0.0001. It is observed that pressure 

disturbance reaches the maximum at the wall surface.
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Figure 5.11a Density disturbance contours, F0=O.85*1O‘4, £=0.0001.
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Figure 5.11b Density disturbance contours upstream of the separation region,

F0=0.85x10'4, £=0.0001.
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Figure 5.11c Density disturbance contours in the separation region, Fj^O.SSxIO-4, £=0.0001.
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Figure 5.11d Density disturbance contours downstream of the separation region,

F0=0.85*1 O'4, £=0.0001.

0 .0 1 5 8 5 3
0 .0 1 2 6 3 1 8
0 .0 0 9 4 1 0 5 5
0 .0 0 6 1 8 9 3 3
0 .0 0 2 9 6 8 1 1
0 .0 0 0 2 5 3 1 0 8

-0 .0 0 3 4 7 4 3 3
- 0 .0 0 6 6 9 5 5 5
0 .0 0 9 9 1 6 7 7

- 0 .0 1 3 1 3 8

WWMUi
12 14

X(in.)

Figure 5.12 Pressure disturbance contours, FqO .SS x ICT1, e=0.0001.
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Figures 5.13-5.18 show the normal maximal density disturbance distributions and the 

density disturbance distributions at the wall, along the streamwise direction, with 

different disturbance frequencies Fq=0.85-, 0.80- and 0.75xl0'4 respectively at a given 

time step after the disturbances reach a steady periodic status. It is observed from these 

figures that the normal maximal disturbances oscillate between positive and negative 

values in the streamwise direction. The maximal disturbance amplitudes show a slow 

increase upstream of the separation bubble, remaining approximately neutral in the 

separation region. But downstream of the separation bubble, the maximal disturbance 

amplitudes begin to show very rapid and continuous growth with the disturbances 

evolving downstream. At the wall, the disturbance amplitudes are very small in upstream 

of the separation region and are almost zero inside the separation region. But downstream 

of the separation region, the disturbance amplitudes at the wall begin to grow sharply and 

reach a quite large value at the end of the computation domain.

Figures 5.19-5.22 show the normal maximal density disturbance distribution and the 

density disturbance distribution at the wall in the streamwise direction with the 

frequencies Fo=0.70- and 0.65X10"4 respectively. We know from Figure 4.2 that these two 

frequency values are located between the first and the second unstable mode region at the 

initial streamwise location. The disturbances with these two frequencies will decay first 

from the initial streamwise location, but with increases in Reynolds number downstream, 

they can again pass through the second mode unstable region and begin to grow again at 

some specific location. This can be seen from the maximal disturbance amplitude 

distributions shown in Figure 5.19 and Figure 5.21. Inside the separation region, these 

two disturbances show very a weak growth tendency. Downstream of the separation 

region, unlike the higher frequency disturbances, the disturbances with these two 

frequencies do not continuously grow. Some isolated stable regions have appeared.

Other computations with much lower disturbance frequencies were also performed. 

Figures 5.23-5.28 show the normal maximal density disturbance distributions and the
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density disturbance distributions at the wall in the streamwise direction with the 

frequencies Fq=0.30-, 0.25- and 0.20x1 O'4 respectively. From the normal maximal 

disturbance amplitude distributions shown in Figures 5.23, 5.25 and 5.27, we see that 

disturbances with low frequencies grow in the separation region, but they exhibit neutral 

growth both upstream and downstream from the separation regions. As we know from 

chapter 4, in the separation region, the low frequency disturbances show the second mode 

unstable characteristics, so they will grow in this region. But the growth of the lower 

frequency disturbances in the separation region is limited to a very short distance in the 

streamwise direction, and they do not grow much. The low frequency disturbance growth 

has little influence on the boundary-layer transition in this region.

Figure 5.29 shows the envelope lines of the normal maximal density disturbance 

wave packet with frequencies F0=0.85-, 0.80-, 0.75-, 0.70-, and 0.65X10-4. The figures are 

plotted using a Log scale in the y coordinate so that we can see the disturbance evolution 

in all three flow regions more clearly. As just discussed, the disturbances with frequencies 

Fo=0.85-, 0.80- and 0.75xl0‘4 grow monotonously upstream and downstream of the 

separation region and are neutral in the separation region, but for disturbances with 

frequencies Fo=0.70- and 0.65xl0‘4, some isolated stable regions have appeared upstream 

and downstream of the separation region, so these disturbances show much slower 

growth tendencies in these two regions compared with the higher frequency disturbances. 

Comparing the maximal disturbance amplitude distributions for all these frequencies, we 

observe that the disturbance with the frequency Fo=0.80xl0-4 is mostly amplified 

downstream of the separation region. This result agrees well with the linear stability 

theory computation result given in chapter 4. At this frequency, the disturbance is 

amplified approximately 800 times when it reaches the end of the streamwise domain, 

which corresponds to an N factor of 7. The growth of the disturbance at this frequency is 

believed to be important to boundary-layer transition across the compression comer. We 

will pay more attention to the disturbances close to this frequency in our following
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computations, including the two-dimensional nonlinear and three-dimensional 

simulations.

Figure 5.30 show the amplitude envelope lines of the normal maximal density 

fluctuations with the low frequencies Fo=0.30-, 0.25-, and 0.20xl0'4 respectively. The 

plots show that the disturbances are almost neutral upstream and downstream of the 

separation region and grow exponentially only in the separation region. The total 

amplification upstream of the separation region to the downstream of the separation 

region is about 20 times for the most amplified frequency Fo=0.25xlfX4. Compared with 

the amplification of the high frequency disturbance across the compression comer, the 

amplification of the low frequency disturbance is very small. The low frequency 

disturbances play a negligible role in hypersonic boundary-layer transition across the 

compression comer.
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Figure 5.13 The maximal density disturbance distribution in the streamwise direction,

F0=0.85x1 O'4, £=0.0001.
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Figure 5.14 Density disturbance distribution at the wail, F0=0.85x10'4, 8=0.0001.
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Figure 5.15 The maximal density disturbance distribution in the streamwise direction,

Fo=0.80x1 O'4, 8=0.0001.
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Figure 5.16 Density disturbance distribution at the wall, F0=0.80x10'4, e=0.0001.

Figure 5.17 The maximal density disturbance distribution in the streamwise direction,

Fo=0.75x10 4, £=0.0001.
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Figure 5.18 Density disturbance distribution at the wall, F0=0.75x1 O'4, e=0.0001.
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Figure 5.19 The maximal density disturbance distribution in the streamwise direction,

F0=0.70x10 , £=0.0001.
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Figure 5.20 Density disturbance distribution at the wall, F0=0.70x10'4, e=0.0001.

0.002

- 0.002

10 12 14 16
X(in.)

Figure 5.21 The maximal density disturbance distribution in the streamwise direction,

F0=0.65x10'4, e=0.0001.
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Figure 5.22 Density disturbance distribution at the wall, F0=0.65x10'4, £=0.0001.
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Figure 5.23 The maximal density disturbance distribution in the streamwise direction,

Fq=0.30x10’4, e=0.001.
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Figure 5.24 Density disturbance distribution at the wall, F0=0.30x1 O'4, e=0.001.
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Figure 5.25 The maximal density disturbance distribution in the streamwise direction,

F0=0.25x10'4, e=0.001.
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Figure 5.26 Density disturbance distribution at the wall, F0=0.25x10'4, e=0.001.
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Figure 5.27 The maximal density disturbance distribution in streamwise direction,

F0=0.20x10'4, e=0.001.
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Figure 5.28 Density disturbance distribution at the wall, F0=0.20x1 O'4, e=0.001.
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Figure 5.29 Envelope lines of the maximal density disturbance wave packet £=0.0001.
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Figure 5.30 Envelope lines of the maximal density disturbance wave packet e=0.001.

Figures 5.3la-5.3le show the eigenfunctions of the density disturbance at different 

streamwise locations with the dimensionless frequency Fo=0.85xlO"4 and the initial 

disturbance amplitude 8=0.0001. At the locations upstream of the separation region, the 

eigenfunctions show the typical characteristics of the second mode disturbance 

eigenfunction. Two peaks appear within the boundary-layer: one near the wall and the 

other near the critical layer, but at locations in the separation region, more peaks appear 

near the wall. This is due to the third or higher acoustic modes existing in the separation 

regions, which had been discussed in the linear stability computations in chapter 4. At the 

locations downstream of the separation regions, due to the reattachment of the 

boundary-layer, the boundary-layer thickness becomes thin again. So the third and higher 

modes disappear and the eigenfunctions again show the characteristics of the second 

mode disturbance. The small oscillations of the eigenfunctions outside of the 

boundary-layer at the locations inside the separation region and downstream of the 

separation regions are due to the Mach waves produced along the curved boundary-layer 

edge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

0.30.30.3

X s 8 .4 S 1  In . X = 8 .8 9 9  In. X - 9 .3 4 4 in .

0.20.20.2

'' i '' '' i i 
0 . 00 01  0 . 0 0 0 2

I
0 .0 0 0 25 E - 0 5  0 .0 0 0 1  

e i g e n f u n c t l o n ( p )

0.3

X = 9 .780  In.

0.2

0 0 .0 0 0 3
e l g e n f u n c t i o n ( p )

Figure 5.31a Eigenfunctions of the density disturbance, Fo=0.85x10'4, e=0.0001.
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Figure 5.31b Eigenfunctions of the density disturbance, F0=0.85x10'4, £=0.0001.
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Figure 5.31c Eigenfunctions of the density disturbance, F0=0.85x1 O'4, e=0.0001.
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Figure 5.31d Eigenfunctions of the density disturbance, F0=O.85x1 O'4, 8=0.0001.
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Figure 5.31 e Eigenfunctions of the density disturbance, F0=0.85x1 O'4, e=0.0001.

Figure 5.32a and Figure 5.32b show the eigenfunctions of the density disturbance at 

the low disturbance frequency Fo=0.25xlO'4 at the different streamwise locations. As we 

have discussed in chapter 4, upstream and downstream of the separation region, the low 

frequency disturbance shows the first mode unstable characteristics, but in the separation 

region, the low frequency disturbance shows the second mode unstable characteristics. 

From the density disturbance eigenfunction distributions shown in Figure 5.32a and 

Figure 5.32b we can observe that at the streamwise locations X=8.649, and 10.372 inches 

in upstreamwise of the separation region and X=15.542, and 16.882 inches downstream 

of the separation region, the eigenfunctions don’t show the second mode eigenfunction 

characteristics anymore, and an additional peak appear within the boundary-layer due to 

the first mode instability. But at the locations X=11.817, 12.700, 13.159 and 13.680 

inches in the separation region, the second mode is the most unstable mode, so the 

eigenfunctions at these locations show the characteristics of the second mode 

eigenfunction.
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Figure 5.32a Eigenfunctions of the density disturbance, F0=0.25x1 O'4, e=0.001.

0.3 0.30.30.3

X=1 3.1 59  in . in . X = 1 5 .5 2 4 in .

0.2 0.20.20.2

0.1

ji 1 i i ■ ' ' i i i i
I 0 .01  0 .0 2
e l g e n f u n c t i o n ( p )

i 0 . 0 1  0 . 0 2
e i g e n f u n c t l o n ( p )

I 0 .01  0 .0 2
e i g e n f u n c t i o n ( p )

0 0.005 0.01
e i g e n f u n c t i o n ( p )

Figure 5.32b Eigenfunctions of the density disturbance, F0=0.25x10'4, e=0.001.
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5.3.2 The nonlinear evolutions of the disturbances

If a much larger initial disturbance amplitude is specified at the initial streamwise 

location, the nonlinear interactions of the disturbances will be observed at downstream 

locations across the compression comer. Figure 5.33a shows the density disturbance 

contours across the compression comer with disturbance frequency Fo=0.80xl0'4 and 

initial disturbance amplitude £=0.01. Figure 5.33b shows an expanded view of the density 

disturbance contour downstream of the separation region. It is observed that, compared 

with the density disturbance contours of the linear evolution shown in Figure 5.12d, the 

density disturbance contours for the non-linear evolution show some distortion 

downstream of the separation region due to nonlinear interactions. This distortion 

becomes larger and larger when the disturbances evolve further downstream until 

nonlinear saturation occurs.

Figure 5.34 shows the normal maximal density disturbance amplitude distribution 

along the streamwise direction at a given time step, when the disturbance reaches a steady 

periodic condition. Figure 5.35 shows the density disturbance distribution at the wall. The 

normal maximal disturbance amplitude plot shows that the disturbances evolve linearly 

upstream of the separation region. When the maximal density disturbance amplitude 

exceeds 0.05, which is about 5% of its mean flow value, the weak nonlinearity begins to 

appear. Downstream of the separation region, nonlinear effects become much stronger 

with the disturbance evolving downstream. When the density disturbance amplitude 

exceeds about 0.45, the disturbance begins to saturate. It cannot grow further downstream 

even though the linear disturbance may grow in this region. We can also observe the 

nonlinear effect according to the density disturbance distribution at the wall. For linear 

evolution, the disturbance should be symmetric at the wall as shown in Figure 5.16. But 

when the disturbance evolution becomes nonlinear, the super-harmonics will appear due 

to the nonlinear interactions of the primary harmonics. These super-harmonics will also 

grow or decay in the boundary-layer. The superposition of all these harmonics will make the
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disturbance at the wall become asymmetric.
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Figure 5.33a The density disturbance contour, F0=0.80><10'4, e=0.01.
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Figure 5.33b The downstream density disturbance contour, F0=0.80>«10'4, e=0.01.
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Figure 5.34 The normal maximal density disturbance distribution, F0=0.80x10'4, e=0.01.
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Figure 5.35 The density disturbance distribution at the wall, F0=0.80x10'4, e=0.01.
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Figure 5.36a The density profiles with distortion.
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Figure 5.36b The density profiles with distortion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

0.003 X « 1 1 .1 Q 4  in.

100 300 300

X * 1 4 .2 2 1  in .,X « 1 3 .3 0 7  in.

100 300 100 300

X = 15 .8 2 9  in . X = 16 .5 7 1  i a

100 300

X s 1 7 .2 9 7  i a

too 300

Figure 5.37 The time response of density disturbances at the wall.

Figure 5.36a and Figure 5.36b show the steady density profiles at different 

streamwise locations. It is observed that the density profiles show little difference from 

the mean flow profiles at the locations upstream of the separation region and inside the 

separation region. However, at locations downstream of the separation region, the density 

profiles begin to show some distortions, and the distortions become much larger in further 

downstream. This distorted mean flow forms the base flow for the secondary instability. 

Figure 5.37 shows the time history of the density disturbance on the wall at different 

streamwise locations. The figures show that upstream of the separation region and inside 

the separation region, the time response of the density disturbance is pure harmonic. 

However, the time response begins to show some distortions the locations downstream of 

the separation region, and the distortions increase in the further downstream.

From the above discussions we know that nonlinear interactions will occur when the 

disturbances amplitude reaches some specific value and the super-harmonics then appear 

due to the nonlinear interactions. In addition, some questions need to be addressed such 

as: Which harmonics will appear? How does each of these harmonics evolve in the 

boundary-layer? Which harmonic will dominate the instability of the boundary-layer? In 

order to answer these questions, we need to decompose the total disturbance into different
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harmonic components. This can be done by discrete Fourier transformation(DFT) shown 

as equation (5.3). If we take the data in one temporal cycle at each grid point and perform 

DFT analysis in time, then we can get the amplitude of each harmonic mode.

X ( k ) =  -^ ~ y .x (n )  expj- 2in{k  -  l)(n -1) / W0 ], 1 < k < N 0 (5.3)
N 0 t f

0.012
0.06

X=14.221 in.X=11.104 in. X=13.307 in.0.080.008

0.040.004 0.020.02

15 M ode n u m b er nu m b ernum ber lo d e  num ber
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Figure 5.38 The amplitudes of the Fourier modes for the maximal density disturbance.

Figure 5.38 shows the amplitude distributions of each Fourier harmonic component 

of the normal maximal density disturbance at different streamwise locations. It is 

observed that very few harmonics appeared at locations upstream of the separation region 

and inside the separation region, but more and more harmonics appeared at the locations 

downstream of the separation region. Figure 5.39 shows the normal maximal amplitude 

distributions of the first five harmonics for density disturbance in the streamwise 

direction. Figure 5.40 shows the amplitude distributions of the first five harmonics of 

density disturbance at the wall. It can be seen from these two figures that the nonlinear 

interactions begin to happen when the amplitude of the primary mode exceeds 0.05 and 

the super-harmonics begin to appear. The primary mode still keeps an approximately 

neutral status in the separation region, but grows rapidly after the separation region. It 

begins to saturate when its amplitude exceeds 0.45. Among all the other harmonic modes,
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the 0® mode, which shows the mean flow distortions decays or grows following the 

primary mode. Just like the primary mode, all super-harmonics also are nominally neutral 

in the separation region and grow downstream of the separation region. When the primary 

mode reaches saturation, these super-harmonic modes also saturate despite their current 

amplitude. We can also see that only the first three super-harmonics can reach amplitudes 

which are comparable to those of the primary mode. The influence of the much higher 

harmonics will be negligible. Figures 5.41-5.45 show the normal distributions of the 

mean flow distortions and the eigenfunctions of the primary mode as well as the first 

three super-harmonic modes at different streamwise locations. It is observed that the 

mean flow show large distortions in the critical layer and all super-harmonics also grow 

along the outer edge of the boundary-layer. The eigenfunctions of the 1® mode show the 

same characteristics as those in linear evolutions in all three flow regions, and we also 

notice that more peaks appear for the eigenfunctions of the super-harmonic modes 2®, 3® 

and 4® in all regions. This means that these modes represent the much higher acoustic 

modes.
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Figure 5.39 DFT analysis results for maximal density disturbance, F0=0.80x10'4, e=0.01.
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Figure 5.40 DFT analysis results for density disturbance at the wall, F0=0.80x10'4, e=0.01.
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Figure 5.41 Normal distributions for the mean flow distortion.
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Figure 5.42 The density disturbance eigenfunction for mode 1m.
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Figure 5.43 The density disturbance eigenfunction for mode 2m.
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Figure 5.44 The density disturbance eigenfunction for mode 3ox
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Figure 5.45 The density disturbance eigenfunction for mode 4ca
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§5.4 Summary

In this chapter, we performed the DNS for linear and nonlinear two-dimensional 

second mode disturbance evolution across the compression comer. The two-dimensional 

unsteady computational code was validated by the parallel and nonparallel flow 

computations across a flat plate. The evolution of the second mode disturbance across the 

compression comer shows that the high frequency disturbances grow exponentially 

upstream and downstream of the separation region and remains neutral across the 

separation region; The low frequency disturbances remain neutral upstream and 

downstream of the separation region, and grow in the separation region. The maximum 

N-factor up to the second comer region of the Hyper-X wind tunnel model is about 7 and 

this occurs for a disturbance with a non-dimensional frequency of Fo=0.8QxlO'4. With 

larger initial disturbance amplitudes, the disturbance evolution will become non-linear in 

the downstream of the separation region and the super-harmonics will appear due to the 

nonlinear interaction. These harmonics will show the same stability characteristics as 

those of the primary mode in all three regions. The primary mode always dominates all 

other modes in amplitude. When the amplitude of the primary mode reaches above 45% 

of its upstream infinity mean flow value, the primary mode and all other harmonic modes 

will begin nonlinear saturation, and the disturbances do not grow any further. This 

saturated disturbance along with the distorted mean flow forms the base flow for 

secondary instability.
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CHAPTER VI 

DIRECT NUMERICAL SIMULATION OF 

THREE-DIMENSIONAL DISTURBANCE EVOLUTIONS

In the previous chapter, we performed DNS for two-dimensional second mode 

disturbance evolution across a compression comer and demonstrated the mechanisms of 

linear and nonlinear evolutions of the two-dimensional disturbances across the three flow 

regions of the compression comer. However, considerable quantity of experimental and 

numerical work have actually demonstrated the three-dimensional nature of transition. 

The classical experiment conducted by Klebanoff, Tidstrom and Sargent[29] 

demonstrated that the actual breakdown of the wave motion into turbulence is a 

consequence of a new instability which arises in the aforementioned three-dimensional 

wave motion. This instability involves the generation of staggered “A” vortices and the 

transition begins at the peak planes. In order to fully understand the transition mechanism 

for hypersonic flow going through the compression comer, the three-dimensional 

disturbance evolution across the compression comer should be investigated. In this 

chapter, we will study both linear and nonlinear evolution of the three-dimensional 

second mode disturbance with the mono- and random-frequencies across the compression 

comer. The transition mechanism for hypersonic flow going through the compression 

comer will be identified in this chapter.

6.1 Computational model, grid and flow parameters

The computations are performed for the hypersonic flow passing a 5.5° compression 

comer. The geometry of the computational model is illustrated in Figure 6.1. It is a 

Hyper-X model with two comers, the computation in the present study only focuses on 

the disturbance evolution across the first comer. The flow parameters are the same a s
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those of the two-dimensional computation and are given in Table 3.1. These parameters 

are selected to simulate the Hyper-X wind tunnel model and the experimental conditions.

19.445'

8.5"

17.445'

5.5°
8.445" 12.445"

Figure 6.1 The geometry of the computational model.

Figure 6.2 The three-dimensional computational grid.

Figure 6.2(a) shows the three-dimensional computational grid. The three-dimensional 

grid is generated by expanding the two-dimensional grid given in Figure 3.2 evenly, 

spaced in the spanwise direction. Figure 6.2(b) shows the grid in YZ plane for one wave 

length in spanwise direction. Because in present computation the symmetric boundary 

conditions are enforced in spanwise direction, only one half wave length computation 

domain in spanwise direction needs to be considered. The actual computational domain in 

spanwise direction locates between Z=0 and Z=A,z/2. The grid size is 1701x301x30 in the 

X, Y and Z directions respectively. The mean flow for hypersonic uniform flow going
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through the three-dimensional compression comer is still two-dimensional steady mean 

flow which was obtained in chapter 3. No mean flow variation exists in the spanwise 

direction. This two-dimensional mean flow will be used as the basic flow for 

three-dimensional disturbance evolution simulation.

6.2 The introduction of the initial three-dimensional mono-frequency 

and random disturbances

The three-dimensional mono-frequency initial disturbances are obtained by 

three-dimensional PSE computation. The three-dimensional initial random disturbances 

are introduced as random noise together with a two-dimensional mono-frequency primary 

disturbance. They are superimposed on the mean flow profiles at the beginning of the 

computational domain, and in the streamwise direction according to the following 

equations.

q(x0,y ,z , t )  = Q 0(x0, y ) + s  R e a Z [q ( y ) (^ ^  (6.1)

q(x0,y , z , t )  = Q 0(x0,y )  + e 2DReal[q(y)e-ia>‘]
(6.2)

+£3D E Z Re«/bnm(y)( '̂A ^  '+e-^ Z-Ua"')] 
n m

q = [ p ,e „ u ,v ,w \T \ Q0 = [p 0,Et0,U 0,V0,W0]T; q  = [p ,e , ,u ,v ,  w]T (6.3)

where 0) is the disturbance frequency; e  is the initial disturbance amplitude for 

mono-frequency, three-dimensional disturbances; £ 2 0  and Esd are the initial disturbance 

amplitudes for two-dimensional primary disturbances and three-dimensional random

disturbances respectively; q  is the eigenfunction which is obtained by the PSE method;

•Sumcan be simply represented by some random numbers. Qo are the steady mean flow

profiles at the initial streamwise location; xo is the coordinate at the initial streamwise 

location. Figure 6.3 illustrates how to superimpose the initial three-dimensional 

disturbances on the mean flow.
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Figure 6.3 The introduction of the initial three-dimensional disturbance.

In the simulation of the three-dimensional disturbance evolutions in this chapter, we 

chose a dimensionless primary disturbance frequency Fo=0.85xlO'4 because both 

two-dimensional and three-dimensional disturbances are amplified greatly at this 

frequency based on the linear stability computation results given in chapter 4. The initial 

three-dimensional mono-frequency disturbances are purely harmonic both in time and in 

the spanwise direction. Figure 6.4(a) shows the eigenfunctions of the initial 

three-dimensional mono-frequency disturbances at the spanwise location Z=2A,z/15 with 

the spanwise wave number P=0.1. Figure 6.4(b) shows the initial disturbance variations 

in the spanwise direction at the location y=0.0418 inch.
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Figure 6.4 The initial three-dimensional disturbance profiles.
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6.3 Validation of the code for three-dimensional unsteady computation
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Figure 6.5 Comparison of the LST and parallel result.
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Figure 6.6 Comparison of the PSE and non-parallel result.
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To check the validation of the code for unsteady computation, first we perform both 

parallel and non-parallel flow computations to simulate the three-dimensional disturbance 

evolutions along a flat plate. Then we compare the parallel results with those obtained by 

three-dimensional linear stability theory and compare the non-parallel results with those 

obtained by three-dimensional PSE method. The flow parameters for the flat plate 

computation are the same as those for the compression comer computation. The mean 

flow is obtained by solving the similarity equations for a Blasius boundary-layer. The 

dimensionless disturbance frequency is Fo=0.85xlO'4 and the spanwise wave number is 

P=0.1. The initial disturbance amplitude was set at £=0.0001. Figure 6.5 shows the 

comparison between the results of linear stability theory and those of parallel flow 

computation for the density disturbances along one streamwise grid line. Figure 6.6 

shows a comparison between the results of the PSE method and non-parallel flow 

computation for the normal maximal density disturbance amplitude along the streamwise 

direction. The comparisons demonstrate that the direct numerical simulation results of 

both parallel and non-parallel flow instability agree very well with their corresponding 

linear computation results. The three-dimensional code is considered to be valid for 

further computations.

6.4 The linear evolutions of the three-dimensional mono-frequency 

disturbances across the compression corner

To simulate the linear evolution of the three-dimensional mono-frequency 

disturbance across the compression comer, we take the disturbance frequency to be 

Fo=0.85xlO'4, the spanwise wave number as J3=0.1 and initial disturbance amplitude 

£=0.0001. The spanwise wave length is about 0.232 inches. With this small initial 

disturbance amplitude, the nonlinear influence can be neglected in the whole flow region 

across the compression comer. Figure 6.7 shows the density disturbance contours in the 

X-Y plane at the spanwise location Z=2A,z/15. Figure 6.8, Figure 6.9 and Figure 6.10 are 

the expanded views of these disturbance contour upstream of the separation bubble,
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within the separation bubble and downstream of the separation bubble respectively. It is 

observed that just like the two-dimensional disturbance, the three-dimensional 

disturbance also evolves downstream along the outer edge of the boundary-layer and the 

disturbance amplitude reaches a maximum in the critical layer. The maximal disturbance 

will never penetrate into the separation bubble.

Figures 6.11-6.14 show the density, streamwise velocity, normal velocity and 

spanwise velocity disturbance contours in the Y-Z plane at three streamwise locations, 

x=8.445, 12.984 and 17.445 inches respectively. The disturbance contours are shown for 

one cycle in the spanwise direction. It can be seen from these contours that two peaks 

appear in the normal direction upstream and downstream of the separation region, and 

one is in the critical layer, while one is close to the wall. In the separation region, the 

maximal disturbances reside above the separation bubble. The disturbances are very small 

in the separation bubble.

Figure 6.15 shows the density disturbance contours in the X-Z plane at three normal 

locations, y=0.0, 0.0418 and 0.0703 inch respectively. The locations of these three planes 

are shown for Figure 6.7 as three streamwise grid lines. The disturbance contours are 

shown in one cycle in the spanwise direction. The contours demonstrate that in all three 

normal planes, disturbances retain purely harmonic variation in the spanwise direction in 

all the flow regions. Because these three normal planes pass through the separation 

bubble and the disturbances are very small in the separation bubble, the contour 

distributions in these three planes show some blank areas in the separation regions.

Figure 6.16 shows the contour of the normal maximal density disturbance in the X-Z 

plane which passes through the critical layer across the compression comer. The contour 

is shown for one cycle in the spanwise direction. It is observed that the normal maximal 

density disturbance also retains a purely harmonic variation in the spanwise direction and 

changes sign alternatively in the streamwise direction. No nonlinear influences can be 

observed from the normal maximal density disturbance contour in all the flow regions.
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Figure 6.7 Density disturbance contours at the plane Z=2Xz/15.
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Figure 6.8 Expanded density disturbance contours at the plane Z=2X^15.
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Figure 6.14 Spanwise velocity disturbance contours in Y-Z plane.
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Figure 6.15 Density disturbance contours in the X-Z plane at different heights.
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Figure 6.16 Normal maximal density disturbance contours.

Figure 6.17 and Figure 6.18 show the normal maximal density disturbance amplitude 

distributions in the streamwise direction at two different spanwise sections Z=0.0 and 

0.108 inch respectively. It is shown from these two figures that the oblique second mode 

disturbances keep growing exponentially upstream and downstream of the separation 

bubble just like the performance of the two-dimensional disturbance in these two regions. 

Conversely, the oblique disturbance shows a weak decaying tendency in the separation 

region, and compared with the two dimensional disturbances, the oblique disturbances 

are much less amplified across the compression comer. The normal maximal density
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disturbance at frequency Fo=0.85xlO'4 is only amplified about 20 times at the end of the 

computation domain, whereas the two-dimensional disturbance at the same frequency 

was amplified almost 400 times. This result agrees well with Mack’s conclusion that for 

supersonic flow, the second mode disturbance is most amplified when it remains 

two-dimensional. In addition, we also note that the normal maximal density disturbance is 

symmetric for positive and negative values. This demonstrates that no nonlinear 

interactions exist across the whole flow region of the compression comer. Figure 6.19 and 

Figure 6.20 show the density disturbance distributions in the streamwise direction at the 

wall for two different spanwise planes, Z=0.0 and 7A./30, respectively. It is observed that 

the disturbance is very small in the separation region. We can also see that for linear 

evolution of the three-dimensional disturbance, at the different spanwise planes, the 

disturbance distributions in the streamwise direction have the same shape at the same 

normal location and only differ in magnitudes.
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Figure 6.17 Normal maximal density disturbance distribution in the plane Z=0.0.
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Figure 6.19 Density disturbance distribution at the wall in the plane Z=0.0.
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Figure 6.20 Density disturbance distribution at the wall in the plane Z=7Xz/30.

Figures 6.21-6.22 show the normal distributions of density disturbance at four 

different streamwise locations in the spanwise planes Z=0.0 and Z=7?tz/30 inch 

respectively. As we know from the linear computation of the three-dimensional 

disturbance evolutions, this disturbance frequency still resides in the second mode 

unstable region upstream and downstream of the separation region, so it is observed that 

at the location X=8.840 inches and X=16.955 inches, the normal distributions show the 

second mode characteristics with two peaks, one in the critical layer and another close to 

the wall. In the separation region, additional peaks appear in the separation bubble due to 

the existence of the third or higher acoustic modes in this region. In addition, we also 

noticed that in the different spanwise planes, the normal distributions of the disturbance 

possess the same shape at the same streamwise location and only differ in their magnitude. 

This is one of the characteristics of the linear evolution of the three-dimensional 

disturbance. Figure 6.23 and Figure 6.24 show the spanwise variations of the density 

disturbance on the wall and in the normal plane Y=0.0418 inch at different streamwise 

locations. It is seen that at all streamwise locations, the spanwise distributions of the
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density disturbance always retain the fundamental pure harmonic forms. This 

demonstrates again that the disturbance evolutions are linear in all flow regions across the 

compression comer. The nonlinear interactions are very small and can be neglected.
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Figure 6.21 Normal distributions of density disturbance in plane Z-0.0.
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Figure 6.22 Normal distributions of density disturbance in plane Z=7A.z/30.
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Figure 6.23 Spanwise distribution of the density disturbance at the wall.
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Figure 6.24 Spanwise distribution of the density disturbance in the plane Y=0.0418 inch.

6.5 The nonlinear evolutions of the three-dimensional mono-frequency 

disturbances across the compression corner

In the simulation of the nonlinear evolution of the three-dimensional mono- 

frequency disturbance across the compression comer, three computational cases will be 

investigated. The first two cases will study the oblique breakdown process at different 

spanwise wave number without the presence of the two-dimensional primary disturbance. 

The third case will study the secondary instability breakdown process with the presence 

of the two-dimensional primary disturbance.

Case 1: Fo=0 .85x l0‘4, 0=0 .1, e=0.01

In this case, with the initial disturbance amplitude £=0.01, the nonlinear interactions 

will be observed across the compression comer. Figure 6.25 shows the density
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disturbance contours in the X-Y plane at the spanwise location Z=0.0. Figure 6.26 shows 

the density disturbance contours in the X-Y plane at the spanwise location Z=7lz/30. It is 

observed that unlike the three-dimensional linear disturbance evolution, the 

three-dimensional nonlinear disturbance evolution exhibits different contour distributions 

in the X-Y planes at the different spanwise locations due to the nonlinear interactions. 

The nonlinear interactions begin to appear in the separation region.

Figures 6.27-6.30 show the disturbance contours in the Y-Z plane for density, 

streamwise velocity, normal velocity, and spanwise velocity at three different streamwise 

locations X=8.445, 12.984 and 16.545 inches respectively. These three locations are 

upstream, inside and downstream of the separation region respectively. The contours are 

shown for one cycle in the spanwise direction. Upstream of separation, the primary 

disturbance amplitudes are still small and nonlinear interactions can be neglected, so the 

disturbance contours show the pure fundamental harmonic patterns in the spanwise 

direction. In the separation region, weak nonlinear interactions begin to appear. 

Compared with the contours at X=8.445, the contours at X=12.984 show some distortion 

from the pure harmonic contour patterns which are formed only by the primary 

disturbances. The maximal contour distortion occurs in the critical layer. Downstream of 

the separation region, the nonlinear interaction becomes stronger and stronger. With more 

and more harmonic disturbances added into the primary disturbance, the contours show 

much more complicated patterns. We can also see that the maximal disturbances evolve 

closer to the wall downstream of the separation region.

Figure 6.31 shows the streamwise vortex distributions in the X-Z plane at three 

different normal locations Y=0.0, Y=0.0476 and Y=0.0740 inches respectively. The 

locations of these three planes are shown in Figure 6.25 as three streamwise grid lines. 

The contours show the streamwise vortex distributions in one periodic cycle in the 

spanwise direction. It is observed that at the wall Y=0.0 the nonlinear influence is very small, 

and the streamwise vortex contours always retain the fundamental pure harmonic pattern in the
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spanwise direction for all flow regions. But at the normal plane Y=0.0476 inches, which 

is close to the critical layer, nonlinear influences become significant. The nonlinear 

interactions begin to appear in the separation region and become stronger and stronger 

with the disturbances evolving downstream of the separation region. With more 

harmonics appeared, the streamwise vortex contours downstream of the separation region 

begin to deform and show a very different pattern from the pure harmonic disturbance. 

The steady longitudinal vortex pattern has appeared and becomes more apparent when it 

evolves downstream. At the plane Y=0.074 inch, which is close to the boundary-layer 

edge, the nonlinear interaction becomes weak again. The streamwise vortex contours 

begin to recover to the pure harmonic pattern downstream of the separation region. 

Because this plane goes through the separation bubble, we can still see some nonlinear 

influence in critical layer of the separation region.
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Figure 6.25 Density disturbance contour in plane Z=0.0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y
(in

.)

161

0.6

0.4

=
>

0.2

10 12 14 16
X(in.)

Figure 6.26 Density disturbance contour in the plane Z=7X*/30.
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Figure 6.27 Density disturbance contour in the Y-Z plane.
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Figure 6.28 Streamwise velocity disturbance contour in the Y-Z plane.
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Figure 6.29 Normal velocity disturbance contour in the Y-Z plane.
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Figure 6.31 Streamwise vortex distributions in the X-Z plane.

Figures 6.32-6.37 show the density disturbance variations along the streamwise 

direction at three normal locations Y=0.0, 0.0476, 0.074 inch in two spanwise planes 

Z=0.0, 1XJ3Q respectively. The plane Z=0.0 corresponds to the maximal value of the 

primary disturbance amplitude and the plane Z-11J3Q  corresponds to the minimal value
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of the primary disturbance amplitude. Figure 6.32 and Figure 6.33 show the density 

disturbance variations along the wall in these two spanwise planes respectively. It can be 

seen that the disturbance amplitudes are symmetric for both negative and positive 

disturbances in both planes. This demonstrates that the nonlinear influences are weak at 

the wall. Figure 6.34 and Figure 6.35 show the density disturbance variations along the 

streamwise direction in the critical layer in these two spanwise planes respectively. At this 

normal location, the nonlinear interactions are very strong, so the density disturbances in 

downstream of the separation region show significant deviation from the primary 

disturbance. In the plane Z=0.0, the primary disturbance still dominates over all other 

harmonic disturbances, but in the plane Z=7Xz/30, the higher harmonic disturbance has 

become dominant. We will show this dominant harmonic disturbance more clearly by 

discrete Fourier transformation(DFT) later. Figure 6.36 and Figure 6.37 show the density 

disturbance variations close to the boundary-layer edge. The nonlinear interaction is weak 

again at this normal location, so the disturbances in both spanwise planes again show the 

symmetric characteristics upstream and downstream of the separation region.
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Figure 6.32 Density disturbance distribution at Y=0.0, Z=0.0.
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Figure 6.33 Density disturbance distribution at Y=0.0, Z=TXJ30.
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Figure 6.34 Density disturbance distribution at Y=0.0476, Z=0.0.
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Figure 6.35 Density disturbance distribution at Y=0.0476, Z = 7V 30 .

0.02

0.01

CL

- 0.01

- 0.02

-0.03

10 12 14 16
X (in.)

Figure 6.36 Density disturbance distribution at Y=0.074, Z=0.0.
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Figure 6.37 Density disturbance distribution at Y=0.074, Z=7Xz/30.
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Figure 6.38 Normal distributions of the density disturbance at Z=0.0.
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Figure 6.39 Normal distributions of the density disturbance at Z = 7 V 3 0 .
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Figure 6.40 Spanwise distributions of the density disturbance at the wall.
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Figure 6.41 Spanw ise distributions of the density disturbance at Y=0.0476.

Figure 6.38 and Figure 6.39 show the normal distributions of the density disturbance 

at different streamwise locations in spanwise planes Z=0.0 and Z=7A,z/30 respectively. It 

is observed that the shapes of the normal disturbances in both planes are the same at the 

same streamwise locations upstream of the separation region. However, they show large 

differences in the separation region and downstream of the separation region due to 

nonlinear interactions. At plane Z=0.0, we can clearly see the appearance of the higher 

harmonic downstream of the separation region and it grows to an amplitude which is 

large enough to be comparable to the primary disturbance amplitude at the end of the 

downstream region. In the plane Z=7A,z/30, the primary disturbance amplitude is very 

small. We can see the primary mode dominates at X=8.445 inches and X= 12.993 inches. 

But with the disturbance evolving further downstream, the higher harmonic mode 

becomes dominant. This can be seen clearly at the locations X=15.680 inches and 

X=17.445 inches. Figure 6.40 and Figure 6.41 show the spanwise variation of the density 

disturbance at different streamwise location in two normal planes Y=0.0 and Y=0.0476 

inch respectively. It is observed again that the disturbances always retain the fundamental 

pure harmonic in the spanwise direction at the wall and change their spanwise shapes in
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the critical layer. This again demonstrates that the nonlinear interaction appears mainly in 

critical layer.
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Figure 6.42 The illustration of the harmonic mode distribution.

X=13.842 in. X=17.378 in.

Figure 6.43 The spectral distributions of the disturbances at different streamwise locations.
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In order to show which harmonics have appeared during the nonlinear interactions, 

we take the data in one cycle of both time and in the spanwise direction and perform a 

two-dimensional DFT given in equation (6.4) to decompose the total disturbance into 

harmonic modes {mos, nft), where m, n stand for the mode number for frequency and 

spanwise wave number respectively.

4 Mo v0
X{m, f i )  = —— — V T x ( m 0 , nQ) exp[-2iK{m- l)(m0 -1) / M 0 ]

(6.4)

• exp[- 2in:(n -  l)(n0 - l ) / N 0] l < m < M 0, l < n < N 0 

Figure 6.42 illustrates all harmonic mode distribution in (a) p) plane. Where the four 

solid black dots stand for the initial fundamental harmonic mode (1,1) and its complex 

conjugates, and all circles stand for the super-harmonics which will be produced by the 

nonlinear interactions. It is observed that with the initial harmonic mode (1,1) and its 

complex conjugates, only an isolate harmonic mode distribution can be obtained by the 

nonlinear interactions.

Figure 6.43 shows the Fourier mode distributions of density disturbances at different 

streamwise locations. Each mode is shown in its maximal amplitude in normal direction. 

It can be seen that at X=8.643, nonlinear influences are very small, so only the primary 

mode (1,1) is present at this location. At X=11.047, which is located at the beginning of 

the separation region, the nonlinear interactions begin to appear at this location, and the 

super-harmonics begin to appear. At the location X=13.842, which is close to the end of 

the separation region, the nonlinear interactions become strong and more harmonics 

appear, and at the location X=17.378, which is located downstream of the separation 

region, the nonlinear interactions become even stronger and other harmonics such as the 

(0,2) and (1,3) modes have reached amplitudes which are large enough to be comparable 

to that of the primary disturbance.
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Figure 6.44 Streamwise amplitude distributions for different Fourier modes.

Figure 6.44 shows the maximal amplitude distributions in the streamwise direction 

for those Fourier modes whose amplitudes can exceed 0.001. It can be seen that the 

primary mode (1,1) dominates in most parts of the streamwise region. Among all 

super-harmonic modes produced by nonlinear interactions, the mode (0,2) shows a very 

distinct characteristic. It grows in the separation region and reaches a very large 

amplitude in both the separation region and downstream of the separation region. It even 

surpasses the primary mode in the region close to the reattachment point. This mode is 

believed to be responsible for the oblique breakdown.

Figures 6.45 and 6.46 show the density disturbance contours of the (1,1) and (0,2) 

modes in the Y-Z plane at the X=17.378 inches streamwise location. Due to the nature of 

the DFT analysis, the contours show the maximal value of the disturbance with respect to 

time for each mode. It is observed that the density disturbance of the (1,1) mode shows an 

oblique propagation characteristic. And the contours of the (0,2) mode just show the 

longitudinal stationary vortex pattern.
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Figure 6.45 Density contours for the (1,1) mode in the Y-Z plane at X=17.378 inches.
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Figure 6.46 Density contours for the (0,2) mode in the Y-Z plane at X=17.378 inches.
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Case 2s F0=O.85xl§-4, (3=0.2, £=0.05

In chapter 4, we determined by the Gortler instability computation that the Gortler 

vortices have a large amplification rate at spanwise wave numbers between P=0.3~0.4. So 

we will conduct a computational case for oblique mode evolution with the spanwise wave 

number P=0.2 to show the influence of Gortler instability on the evolution of its 

super-harmonic mode (0,2) across the separation region.

X=8.463 in. X=11.951 in.

Figure 6.47 The spectral distributions of the disturbances at different streamwise locations.

Figure 6.47 shows the spectral distributions of all Fourier modes which are produced 

by nonlinear interactions at the different streamwise locations X=8.643, 11.951, 14.664 

and 17.378 inches respectively. It is observed that the harmonics begin to appear in the 

separation region. Further downstream of the separation region, the (0,2) mode dominates 

all other modes in amplitude. The streamwise distributions of amplitudes for those modes 

which have relatively large amplitudes downstream of the separation region are plotted in 

Figure 6.48. It is observed that the fundamental mode (1,1) shows a weak decaying 

tendency in the streamwise direction at this given spanwise wave number. However, all
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other harmonic modes which have appeared due to the nonlinear interactions still keep 

growing in the streamwise direction. Among them, the stationary mode (0,2) shows the 

most significant growth rates. At the end of the streamwise domain, mode (0,2) has 

already reached very large amplitudes. From the growth of the (0,2) mode at this 

spanwise wave number in the separation region, it can be observed that the Gortler 

instability can be negligible compared with the instability due to the modal interactions. 

In this figure, we also noticed that harmonic mode (0,1) has appeared and reached quite 

big amplitude downstream of the separation region. However, from the harmonic mode 

distribution shown in Figure 6.42, we find that this mode will never appear by the 

nonlinear interactions. The only explanation for the appearance of this mode is that this 

mode was introduced at the initial streamwise location by numerical error. Then it grows 

downstream of the separation region to reach such large amplitude.

0.2 

0.18 

0.16 

0.14
O
3  0.12
S
t  0.1
o
® 0.08

S  0.06 

0.04 

0.02

0

Figure 6.48 The streamwise amplitude distributions for different Fourier modes.

Case 3: Fo=0.85xl0’4, p=0.1, £2d=0.005, £ 3 d = 0 . 0 0 1

As we know, most transitions are due to the growth of three-dimensional waves by 

secondary instabilities, in the present study, another computational case was performed to
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study the three-dimensional instability across the compression comer in the presence of 

the two-dimensional instability wave. In order to perform this simulation, a 

two-dimensional second mode and an oblique mode were introduced at the initial 

streamwise location. Both the two-dimensional and oblique modes possess the same 

frequency Fo=0.85xlO'4. The spanwise wave number for the oblique mode was (3=0.1. 

The initial amplitude of the two-dimensional mode is £2D=0.005 and the initial amplitude 

of the oblique mode was £ 3d = 0 . 0 0 1 .

Figure 6.49 illustrates all harmonic mode distributions in (ox ft) plane, where the six 

solid black dots stand for the initial three-dimensional fundamental mode (1,1), the 

two-dimensional primary mode (1,0) and their complex conjugates. All circles stand for 

the super-harmonics which will be produced by the nonlinear interactions. It is observed 

that with the initial harmonic mode (1,1), (1,0) and its complex conjugates, a continuous 

harmonic mode distributions can be obtained by the nonlinear interactions.

Figure 6.50 shows the spectral distributions of the disturbance at the different 

streamwise locations. It is observed that at the streamwise location X=8.463 inches 

upstream of the separation region, only the fundamental two-dimensional mode (1,0) and 

oblique mode (1,1) are present. At the locations X=11.951 inches, in the separation region, 

the two-dimensional mode has grown to a quite large amplitude. But the oblique mode 

shows very little growth and no other harmonics appear in this region. The 

super-harmonics begin to appear downstream of the separation region. At the location 

X=17.378 inches, close to the end of the computational domain, many of harmonic modes 

have already been observed to form a continuous spectrum distribution of disturbances. 

Figure 6.51 and Figure 6.52 show the spanwise vortex distributions on the wall. It is 

observed that upstream of and inside the separation region, the instability vortices possess 

two-dimensional characteristics, but downstream of the separation region, the instability 

vortices begin to exhibit three-dimensional characteristics. The three-dimensional 

instability vortices grow continuously further downstream. We also noticed that the
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three-dimensional vortices showed an alignment pattern in the spanwise direction. So the 

growth of the three-dimensional instability vortices will lead to the fundamental laminar 

breakdown.

Figure 6.49 The illustration of the harmonic mode distributions.

X=8.463 in. X=11.951 in.

Figure 6.50 The spectral distributions of the disturbances at different streamwise locations.
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Figure 6.51 Spanwise vortex distributions on the wail.
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Figure 6.52 Expanded view of spanwise vortex distributions downstream of separation.

Figure 6.53 and Figure 6.54 show the amplitude distributions for each significant 

Fourier mode downstream of the separation region. It is observed that the two- 

dimensional fundamental mode (1,0) shows the same nonlinear growth characteristics as 

those computed in chapter 5, when no oblique mode was present. It grows upstream and 

downstream of the separation region and is neutral in the separation region. The (1,0) 

mode begins to saturate near the end of the computational domain, but for the three- 

dimensional fundamental oblique mode, little growth can be observed either upstream of 

or inside the separation region. However, it shows significant growth rate downstream of 

the separation region due to the secondary instability after the saturation of the two- 

dimensional primary mode. In order to show the influence of the secondary instability 

more clearly, in Figure 6.55 we compared the growth rate o f the mode (1,1) in this case 

with the growth rate of mode (1,1) in the first case where the two-dimensional primary 

mode is not present. The growth rate o f mode (1,1) in the case 1 is only a factor of 

20, but for the growth rate in this case with the presence of the two-dimensional 

primary mode, an amplification o f almost 200 times is observed. This indicates that
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three-dimensional disturbances are much more unstable under the secondary instability 

mechanism. This three-dimensional mode (1,1) continues to grow after the saturation of 

the two-dimensional primary mode, until it reaches the same amplitude as that of the 

two-dimensional primary mode.
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Figure 6.53 The streamwise amplitude distributions for different Fourier modes.

It can also be observed in Figure 6.53 and Figure 6.54 that the harmonics due to the 

nonlinear interactions begin to appear in the separation region. However, only 

downstream of the separation region do these harmonics show significant growth rated. 

Among them, the (0,0) mode which shows the distortion of the mean flow just follows 

the growth of the fundamental modes (1,0) and (1,1). All other harmonics grow 

independently. An interesting observation is that all three-dimensional harmonics will 

grow continuously when the two-dimensional fundamental mode begins to saturate. All 

two-dimensional harmonics will also saturate with the saturation of the two-dimensional 

fundamental mode. We also notice that the (0,1) mode which is basically the stationary 

longitudinal vortex mode shows a remarkable growth characteristic. It grows in the 

separation region due to the Gortler instability and surpasses all other harmonics in
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amplitude at the end of the separation region. Downstream of the separation region, it 

again shows significant growth rate due to the secondary instability. This mode also plays 

a very important role in laminar breakdown.
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Figure 6.54 The streamwise amplitude distributions for different Fourier modes.
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Figure 6.55 Growth rate comparison of (1,1) mode due to different instability mechanism.
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6.6 The evolutions of the three-dimensional random frequency 

disturbances across the compression corner

In this thesis, we also have studied the three-dimensional random frequency 

disturbance evolutions across the compression comer in the presence of the 

two-dimensional primary disturbance. The primary disturbance frequency is Fq=0.85x 1G‘4. 

The initial disturbance amplitude for the two-dimensional primary disturbance is 

£ 2 0 = 0 . 0 0 5  and for three-dimensional random disturbances is £ 3d = 0 .0001 .

Figure 6.56 show the random disturbance distribution with time and Figure 6.57 

show the spectral distribution of the random disturbance by DFT analysis. It is observed 

that a continuous spectral distribution is obtained by the random disturbance. Due to the 

three-dimensional random disturbances which are added at the initial streamwise location, 

the secondary instability will select the most unstable three-dimensional disturbance 

frequency automatically. Figure 6.58 shows the spectral distributions of all 

two-dimensional and three-dimensional disturbances at four different streamwise 

locations. It is observed that at the location X=8.5 inches which is close to the initial 

location, a two-dimensional primary mode with high amplitude and many 

three-dimensional random disturbances with very low amplitudes are present. At the 

location X=11.355 and X=14.359 inches, the three-dimensional disturbances still are with 

low amplitudes. But at the location X=17.363 which is close to the end of the 

computation domain, the three-dimensional disturbances have reached quite large 

amplitudes, and are comparable to the two-dimensional primary disturbance.

Figure 6.59 and Figure 6.60 show the spanwise vortex distributions on the wall. It is 

observed that the spanwise vortices always show the two-dimensional characteristics 

upstream of and inside the separation region. But a three-dimensional pattern begins to 

appear downstream of the separation region, and this three-dimensional pattern become 

more and more apparent further downstream. This indicates that the three-dimensional 

disturbances begin to grow rapidly.
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Figure 6.57 The spectral distribution of the random disturbance.

Figure 6.61 shows the streamwise amplitude distributions for two-dimensional 

primary disturbances and the other two-dimensional harmonics which are produced by 

nonlinear interactions. It is observed that the two-dimensional primary disturbance and its 

harmonics show the same growth characteristics as those given in chapter 5 for nonlinear 

evolution of the two-dimensional disturbances alone. They saturate at the end of the
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streamwise computational domain. Figure 6.62 shows the three-dimensional disturbance 

evolution in the streamwise direction. It is observed that the three-dimensional 

disturbances are very small and almost neutral upstream of and inside the separation 

region where the two-dimensional primary disturbance amplitude is still small. However, 

when the three-dimensional disturbances are downstream of the separation region, with 

the associated rapid increase of the two-dimensional primary amplitude, they also begin 

to grow. When the two-dimensional primary disturbance reaches saturation, the 

three-dimensional disturbances show a very significant growth rate due to the secondary 

instability. Among all the three-dimensional harmonics, the (1,1) mode shows the largest 

growth rate and surpasses all other three-dimensional harmonics in amplitude. It will 

grow continuously further downstream until its amplitude is the same as that of the 

two-dimensional primary disturbance. Then the A vortices will appear and the flow 

begins to breakdown. So the fundamental or K-type breakdown mechanism will dominate 

the transition process across the compression comer.

Figure 6.58 The spectral distributions of the disturbances at different streamwise locations.
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Figure 6.59 Spanwise vortex distributions on the wall.
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Figure 6.60 Expanded view of spanwise vortex distributions downstream of the separation.
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Figure 6.61 Streamwise amplitude distributions of the two-dimensional Fourier modes.
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Figure 6.62 Streamwise amplitude distributions of the three-dimensional Fourier modes.

6.7 Summary

In this chapter, the direct numerical simulations were performed to study the linear 

and nonlinear evolution of the three-dimensional mono-frequency and random-frequency 

disturbances in a two-dimensional boundary-layer across a compression comer. For the 

linear evolutions, the three-dimensional mono-frequency disturbances grow 

monotonically upstream and downstream of the separation region and decay slowly in the 

separation region. However, the growth rates of the three-dimensional disturbances 

upstream and downstream of the separation region are much smaller than those of the 

two-dimensional disturbances with the same frequencies. For the nonlinear evolutions, 

the super-harmonics begin to appear in the separation region, but most of these harmonics 

show an apparent growth tendency only downstream of the separation region. Among all 

these modes, mode (0,2) shows the characteristics of a stationary longitudinal vortex and 

has its biggest growth rate downstream of the separation region. This mode is responsible 

for the oblique breakdown. With the presence of the two-dimensional primary mode, the
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three-dimensional modes show much greater growth rates due to the secondary instability 

when the two-dimensional fundamental mode saturates. More and more harmonics begin 

to appear due to the secondary instability. Among these harmonics, all three-dimensional 

harmonics grow continuously and all two-dimensional harmonics saturate along with the 

saturation of the two-dimensional primary mode. The simulations of the 

three-dimensional random frequency disturbance evolutions in the presence of the 

two-dimensional primary disturbance show that the secondary instability begins 

downstream of the separation region. The three-dimensional disturbances will grow 

rapidly due to the secondary instability. Among all three-dimensional harmonics, the (1,1) 

mode shows the largest growth rate and finally leads to the fundamental or K-type 

breakdown.
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the boundary-layer instability across a compression comer under the 

hypersonic flow conditions was studied extensively including direct numerical 

simulations. The linear and nonlinear evolution of both two-dimensional and 

three-dimensional second mode disturbances have been simulated. In order to perform 

these simulations, the two-dimensional mean flow was first obtained by solving the 

two-dimensional compressible Navier-Stokes equations using the WENO scheme. Then 

the linear stability theory and PSE method were used to validate the code for two- and 

three-dimensional unsteady computation, and to find the most amplified primary 

disturbance frequencies. Gortler instability computations were performed to study the 

influence of the streamline curvature on the Gortler instability. Finally, the direct 

numerical simulations using the WENO scheme were employed to study the linear and 

nonlinear evolution of two- and three-dimensional disturbances across the compression 

comer. Based on all these numerical simulations, several conclusions as well as 

recommendations for future investigations have been made.

7.1 Conclusions

1. The mean flow results show the detailed pictures of the interaction between the shock 

wave and the boundary-layers. Due to this interaction, the flow separates at about 1.6 

inches upstream of the comer point and reattaches at about 1.6 inches downstream the 

comer point. A circulation flow is formed within the separation bubble, and 

compression waves appear along the edge of the separation bubble.

2. By linear stability computation, we found that both two- and three-dimensional 

disturbances are most amplified across the compression comer at a non-dimensional 

frequency close to Fo=0.80x10'4. The three-dimensional second mode disturbances
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were less amplified than their two-dimensional counterparts upstream and 

downstream of the separation region. The Gortler instability computations predicted 

Gortler vortex evolution across the compression comer. The Gortler vortex was most 

amplified at two locations: close to the separation point and close to the reattachment 

point. Furthermore, the Gortler vortex experienced significant spatial amplification 

rates at spanwise wave numbers between (3=0.3 and 0.4.

3. By the direct numerical simulation, the evolution of the two-dimensional second 

mode disturbance across the compression comer shows that the high frequency 

disturbances grow exponentially upstream and downstream of the separation region, 

but are neutrally amplified across the separation region. The low frequency 

disturbances remain neutral upstream and downstream of the separation region, and 

grow across the separation region. The maximum N-factor up to the second comer 

region of the Hyper-X wind tunnel model was about 7 and this occured for a 

disturbance with a non-dimensional frequency of Fo=0.80x10~4. With larger initial 

disturbance amplitudes, the disturbance evolution became non-linear downstream of 

the separation region and the super-harmonics appeared due to nonlinear interactions. 

These harmonics showed the same stability characteristics as those of the primary 

mode in all three regions. But the primary mode always dominated all other modes in 

amplitude. When the amplitude of the primary mode reached about 45% of its 

upstream infinity mean flow quantity, the primary mode and all other harmonic 

modes began nonlinear saturation.

4. By the direction numerical simulations of the linear evolutions, the three-dimensional 

mono-frequency disturbances grew monotonically in upstream and downstream of the 

separation region and decayed slowly in the separation region. But the growth rates of 

the three-dimensional disturbances upstream and downstream of the separation region 

are much smaller than those of the two-dimensional disturbances with the same 

frequencies. For the nonlinear evolutions, the super-harmonics begin to appear in the
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separation region, but most of these harmonics show an apparent growth tendency 

only downstream of the separation region. Among all these modes, mode (0,2) which 

shows the characteristics of a stationary longitudinal vortex has its largest growth rate 

downstream of the separation region. This mode is responsible for the oblique break 

down. In the presence of the two-dimensional primary mode, the three-dimensional 

modes show much greater growth rates due to the secondary instability when the 

two-dimensional fundamental mode reaches saturation. More and more harmonics 

begin to appear due to the secondary instability. Among these harmonics, all 

three-dimensional harmonics grow continuously and all two-dimensional harmonics 

will also saturate with the saturation of the two-dimensional primary mode. The 

simulations of the three-dimensional random frequency disturbance evolutions in the 

presence of the two-dimensional primary disturbance show that the secondary 

instability first happens downstream of the separation region. The three-dimensional 

disturbances will grow sharply due to the secondary instability. Among all 

three-dimensional harmonics, the (1,1) mode shows the biggest growth rate and 

finally leads to the fundamental or K-type breakdown.

5. According to the numerical simulations of three-dimensional nonlinear disturbance 

evolution, we know that an oblique breakdown can be achieved by the growth of (0,2) 

mode and a fundamental breakdown can be achieved by the growth of (1,1) mode. So 

for the transition tripping of the boundary-layer at the inlet of Hyper-X vehicle 

propulsion system, the roughness should be distributed on the forebody surface in 

such a way that these fast growing modes can be produced easily.

7.2 Recommendations for future researches

1. Due to the limitation of the computational resources, all transition simulations could 

only reach the nonlinear stage. As a result of all the simulations we have performed, 

we know that transition will first happen downstream of the separation region. In 

order to simulate the breakdown process in this region, many more grid points should
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be put in this region to capture the additional harmonics that appeared due to the 

secondary instability. For the spatial simulations, this means that a much more 

powerful super-computer is needed to perform those simulations.

2. The instability across the compression comer is simulated at a fixed comer angle in 

this thesis. In order to fully understand the instability mechanism in the separation 

region, the influence of the comer angle should be considered.

3. The influence of wall roughness at the initial streamwise location should be simulated 

in order to find the most effective tripping device for boundary-layer transition at the 

inlet of the Hyper-X propulsion system.

4. The two-comer system should be considered in order to simulate the boundary-layer 

transition at the inlet of the Hyper-X propulsion system.
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APPENDIX II

THE ELEMENTS OF THE COEFFICIENT MATRICES 

FOR THE PARABOLIZED STABILITY EQUATIONS
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