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ABSTRACT 

THE EFFECT OF SYSTEMATIC ERROR IN FORCED OSCILLATION WIND 
TUNNEL TEST APPARATUSES ON DETERMINING NONLINEAR UNSTEADY 

AERODYNAMIC STABILITY DERIVATIVES 

Brianne Y. Williams 
Old Dominion University, 2010 

Director: Dr. Drew Landman 

One of the basic problems of flight dynamics is the formulation of aerodynamic 

forces and moments acting on an aircraft in arbitrary motion. Classically conventional 

stability derivatives are used for the representation of aerodynamic loads in the aircraft 

equations of motion. However, for modern aircraft with highly nonlinear and unsteady 

aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular 

rates the conventional stability derivative model is no longer valid. Attempts to 

formulate aerodynamic model equations with unsteady terms are based on several 

different wind tunnel techniques: for example, captive, wind tunnel single degree-of-

freedom, and wind tunnel free-flying techniques. One of the most common techniques is 

forced oscillation testing. However, the forced oscillation testing method does not 

address the systematic and systematic correlation errors from the test apparatus that cause 

inconsistencies in the measured oscillatory stability derivatives. The primary objective of 

this study is to identify the possible sources and magnitude of systematic error in 

representative dynamic test apparatuses. Using a high fidelity simulation of a forced 

oscillation test rig modeled after the NASA LaRC 12-ft tunnel machine, Design of 

Experiments and Monte Carlo methods, the sensitivities of the longitudinal stability 

derivatives to systematic errors are computed. Finally, recommendations are made for 



iii 

improving the fidelity of wind tunnel test techniques for nonlinear unsteady aerodynamic 

modeling for longitudinal motion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

In classical flight mechanics theory an aircraft is represented as a rigid body with 

six degrees of freedom. The flight mechanics equations of motion are founded on the 

conventional stability derivative approach, developed by Bryan in 1911, which estimated 

the change in a force or moment acting on a vehicle due to a change in perturbation 

variables [1]. Nelson described perturbation variables as the instantaneous changes from 

the reference conditions of the airflow angles (i.e. angle of attack and sideslip), 

translational velocities, angular velocities, control deflection, and their derivatives [2], 

With this assumption, the aerodynamic forces and moments can be expressed by a first 

order Taylor series expansion of the perturbation variables about the reference 

equilibrium condition. 

However, with the increasing need for high maneuverability capabilities in 

modern combat aircraft there are significant shortcomings in using the conventional 

stability derivative modeling approach. Figure 1 illustrates the current difficulties in 

predicting flight dynamics over certain flight regimes. Current prediction methods work 

adequately over low to moderate angles of attack for a given angular rate (see the green 

region of Figure 1). On the other hand, at high angles of attack and/or high angular rates, 

nonlinear unsteady aerodynamic phenomena are more pronounced (see the red region of 

Figure 1). In this region the aerodynamic characteristics are based on shock waves, 
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separated flows, vortical flows, movement of separation points, and variation of vortex 

breakdown locations over the surface [3]. Because of these complex nonlinear 

aerodynamic phenomena, conventional modeling is limited in prediction capability. 

These models do not admit time-dependent effects, no 'memory' of past states, and there 

are strong frequency effects. 

Researchers have devoted significant effort to formulating nonlinear aerodynamic 

modeling techniques that include the time history. Two primary approaches are taken -

analytical techniques and experimental techniques. Current analytical approaches to 

modeling the unsteady aerodynamic characteristics of an aircraft vary greatly, and there 

is no standard methodology. The various analytical techniques used have been reviewed 

extensively by Kyle et al. and Greenwell [3, 5], Dynamic test techniques range from 

captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. 

Additional wind tunnel dynamic test techniques have been reviewed by Owens et al. and 

• 
Figure 1: Demonstration of the range of unknown phenomena in flight dynamics [4] 
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Tomek et al. [6, 7]. The most commonly used method is captive testing, of which two 

methods dominate - forced oscillation and rotary balance testing. 

Forced oscillation tests involve a rigidly mounted model on a support system. 

The support system is then actuated to impart motion to the model. Forces and moments 

acting on the model are measured. Motion shapes are typically sinusoidal at a single 

frequency and prescribed amplitude. Other motion shapes include frequency sweeps, 

ramps, and others designed to optimize model identification. An example of forced 

oscillation testing is illustrated in Figure 2. 

Figure 2: Example of forced oscillation testing - blended wing body at NASA Langley 14 x 22 Wind 
Tunnel [8] 

There are several limitations in forced oscillation testing. The apparatus used for 

forced oscillation normally takes up more space in the vicinity of the model, causing 

support interference concerns. Other issues lie in accuracy of the force and moment 

measurements caused by bias and random errors from instrumentation, calibrations and 

tare interpolation, structural dynamics, vortex shedding, and wind tunnel fan beat 

frequencies. Heim examined the effects of error in data acquisition systems and 
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developed a gradient-based method to determine the number of required oscillation 

cycles to effectively reduce the error from acquisition systems [9]. 

Kim, on the other hand, attempted to indicate levels of uncertainty in output 

measurements that can arise from experimental setup and calibration procedures [10]. 

That study looked at single-frequency, forced-oscillation tests of an F16-XL 10% scale 

model aircraft tested at NASA Langley Research Center's 12-ft Wind Tunnel in 1996 and 

2000. The study did not examine effects of wind tunnel turbulence, scale effects, 

structural responses, or the dynamics of the test rig. One issue identified by Kim was the 

presence of timing signal effects. Since experimental tests are often run using real-time 

software, there appear to be delays (from multitasking) in the duty cycle leading to 

uneven sample time intervals. The duty cycle appears to affect the input (i.e. angle of 

attack), as shown in Figure 3. It was discovered that duty cycle is not a dominant feature 

affecting the sensitivity of the output measurements. The solution is to simply use more 

cycles to average out this error, as was suggested. 

Example duty cycle 

45 

30 0 1 2 3 4 
Time (s) 

5 6 7 8 

Figure 3: Dynamic test data with the slippage of duty cycles [10] 



5 

Kim compared the commanded input to the measured input without including the 

dynamic test rig effects. It is, of course, desirable that the commanded and measured 

input is the same; however, the study discovered significant bias amplitudes that vary 

from peak to peak oscillation (see Figure 4 for example). The method used to improve 

the calibration was to fit a third-order polynomial that describes the relationship between 

degrees and voltage and vice-versa on the digital/analog converter and analog/digital 

converter. Adjusting the bias error and scaling the amplitude input corrected the 

problem. 

Despite resolution of these issues, input measurement errors still existed. The 

next concern was whether the dynamic test rig was introducing errors. Random jump 

distortion and input saturation were discovered; examples are illustrated in Figures 5 and 

6, respectively. However, the sources of these errors were unknown at the time of the 

study. 
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Figure 4: Measured and commanded angle of attack [10] 
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05-
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Figure 5: Jump distortion in angle of attack in time history [10] 

Figure 6: Saturated input in angle of attack time history [10] 

Although the Kim and Heim studies clearly demonstrated the need for proper 

calibration techniques and the need for adequate data sampling; both studies assumed that 
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systematic errors could be removed by calibration alone. Neither study looked at the 

dynamic effects of test apparatuses interfering with the aerodynamic measurements. 

Understanding the dynamics of a test rig is important because of the design 

process used and its possible effects. Typically, dynamic test rigs are designed using a 

sequential approach. For example, the mechanical and structural components are 

designed first, followed by electrical and electronic components development of selection 

subsequent interconnection of mechanical and electrical components next, and then 

selection of a computer to be interfaced with the system. Consequently, when the various 

elements are not designed as a system several problems arise [11]: 

1. When two independently designed components are interconnected, the original 

characteristics and operating conditions of the two will change due to loading or 

dynamic interactions. 

2. Perfect matching of two independently designed and developed components is 

practically impossible. As a result, a component can be considerably underutilized 

or overloaded in the interconnected system, and both conditions are inefficient 

and undesirable. 

3. Some of the external variables in the components will become internal and 

"hidden" due to interconnection, which can result in potential problems that 

cannot be explicitly monitored through sensing nor can they be directly 

controlled. 

The interactions between the mechanical components, transmission components, 

electrical components, and component interconnections introduce systematic errors that 

can affect the aerodynamic measurement. Common mechanical components are: load 



9 

bearing and structural components, fasteners, dynamic isolation components, mechanical 

actuators, and mechanical controllers. The most common transmission component is the 

gearbox, which can exhibit backlash. Electronic and electrical components include pulse 

width modulation inverter, motor controllers, AC motors, digital data acquisition cards, 

computer hardware and software, etc. Component interconnections may exhibit behavior 

significantly different from individual performance. Variations result from (electrical) 

loading effects caused by improper impedance matching between sensors, transducers, 

control boards, process (plant) equipment, and signal-conditioning hardware [11]. 

Studying the dynamics of test rigs is important due to nonlinear behavior 

exhibited by the components. Nonlinearities appear in two forms - static manifestation 

and dynamic manifestation. Examples of static manifestation are saturation, hysteresis, 

and offset. Examples of dynamic manifestation are jump phenomenon, limit cycles, and 

frequency creation. Nonlinearities are present in any physical device to varying levels. If 

the level of nonlinearities in a system can be neglected without exceeding the error 

tolerance then the system can be assumed linear. However, this assumption is not valid if 

system nonlinearities are seen to interact with the aerodynamic loads, which pose a 

problem for accurately obtaining the nonlinear unsteady stability derivatives that are used 

to develop aircraft control laws and flight dynamics studies. 

1.2 Statement of the Problem 

When conducting forced oscillation experiments at small amplitudes (i.e. <5°) 

and single frequencies ranging from 0.1 to 10 Hz, concerns arise as to the overall 

accuracy of the measurement. The precision errors of forced oscillation systems have 

been researched extensively by Heim [9]. Accuracy is determined by the sum of bias and 
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precision errors. As previously discussed, the accuracy can be affected by dynamics of 

the test apparatuses interacting with the aerodynamic loads. This study examines the 

systematic error on nonlinear unsteady stability derivatives caused by mechanical and 

transmission components in forced oscillation test apparatuses using a high fidelity 

computer simulation of a dynamic test rig. The goals of the study are to: 

1. Identify any possible sources of systematic errors. 

2. Identify the magnitude of the systematic errors. 

3. Determine the sensitivities of the computed stability derivatives to the systematic 

errors. 

4. Finally, to make recommendations for improving the fidelity of forced oscillation 

wind tunnel testing. 

The study is limited to longitudinal motion only. The study also assumes that mechanical 

vibrations are minimal and aeroelastic effects are not important. 

1.3 Organization of the Dissertation 

Chapter 2 

Chapter 2 surveys past and current forced oscillation testing techniques. The 

chapter outlines the several limitations in using the testing, such as experimental 

limitations and dynamic test rig limitations. A review of current techniques used to 

determine dynamic stability derivatives from experimental data is provided. Finally, the 

chapter concludes with a survey of design of experiment studies used in aerodynamic 

testing. 
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Chapter 3 

Chapter 3 details the mathematical modeling required for development of a high 

fidelity computer simulation. A representative wind tunnel was used for building the 

simulation. An aerodynamic model based on experimental F16-XL results was 

developed. The chapter describes the overall operation of a NASA Langley 12-ft Wind 

Tunnel forced oscillation facility. The specific components used in forced oscillation, 

such as a three-phase AC induction motor, are then described mathematically. The 

dynamic model that describes the three-phase AC induction motor is an open-loop 

system. To build a closed-loop system the control system model (i.e. field oriented 

control) is developed and additional components needed in the system, such as PID 

controllers and a pulse-width modulation inverter, are described. The chapter concludes 

with a discussion of characteristic behavior of mechanical resonance and compliance. 

The equations of motion for the compliantly-coupled drivetrain system are then 

developed, and a description of geared drives and their behavior in a system is presented. 

Chapter 4 

The chapter details the construction of the computer simulation. The computer 

model is then validated and verified. Chapter 4 outlines the methodology used for the 

designed experiments and Monte Carlo simulation in conjunction with the computer 

simulation. 
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Chapter 5 

Chapter 5 features a discussion of the results from the computer experiment, 

design experiment, and Monte Carlo simulation. The chapter also details the failure and 

success in using computer experimentation techniques. It will note statistical limitations 

in using designed experiments with a computer. 

Chapter 6 

Chapter 6 concludes the study and makes recommendations for improvement in 

the fidelity of forced oscillation wind tunnel testing. Recommendations for future work 

are itemized. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The need for forced oscillation wind tunnel testing is evident by the call for 

control algorithms at high angle of attack and/or angular rates. Current computational 

methods are limited at high angles of attack due to flow separation and other complex 

unsteady aerodynamic phenomena. Researchers around the world have used forced 

oscillation wind tunnel testing for performance damping characteristic studies and 

analyses and prediction of stability characteristics. 

This chapter serves as a literature survey of past and current forced oscillation 

wind tunnel test capabilities. It begins with a discussion of the most popular testing 

method - single degree-of-freedom (DOF) forced oscillation. Limitations in single-DOF 

testing have caused some researchers to develop multi-DOF forced oscillation testing in 

order to attempt improved estimates of full flight envelope stability parameters. 

Experimental limitations in testing are discussed. Several experimental issues such as 

interference, dynamic similitude, and flow quality continue to plague dynamic wind 

tunnel testing. The most popular current methods for determining stability parameters 

from wind tunnel test data are discussed. The chapter concludes with a survey of 

designed experiments being implemented and used for efficient wind tunnel testing. To 

date the author has found no designed experiments used in forced oscillation testing. 
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2.2 Forced Oscillation Dynamic Wind Tunnel Testing 

2.2.1 Single Degree-of-Freedom Forced Oscillation 

Single degree-of-freedom forced oscillation wind tunnel testing dates back to the 

1960s and 1970s. NASA Langley Full Scale Tunnel was one of the first facilities used 

[12]. At the time, the wind tunnel operated at Mach numbers below 0.1 [13]. Force and 

moment coefficients due to pitching, yawing, or rolling about a fixed axis were measured 

at angles of attack up to 110° [14]. The system operated at a range of 0.5 to 1.5 Hz for 

frequency oscillation with oscillation amplitudes ranging from ±30°. Tests included jet 

transports [15, 16] and variable sweep fighter configurations [17, 18]. The French 

Aerospace Lab (ONERA) at Chalais-Meudon developed a similar test rig of the NASA 

Langley Full Scale Tunnel. However, derivatives were measured using their rig at angles 

of attack up to 30°, angles of sideslip up to 12°, and in the frequency range of 1 to 2 Hz 

[19]. 

A few high speed tunnels at NASA Langley have also been used for forced 

oscillation testing. Boyden describes the test rig apparatus (for roll) in both the 7 x 10 

Foot High Speed Wind Tunnel (0.2 < M < 0.85) and the 8 Foot Transonic Pressure 

Tunnel (0.2 < M < 1.2) [20]. At the time, the apparatus was operated at angles of attack 

(or angles of sideslip) up to 22°. 

Arnold Engineering Development Center (AEDC) has developed forced 

oscillation test rigs for low speed and high speed testing. The von Karman Gas 

Dynamics Facility (VKF) implemented a forced oscillation system using a cross-flexure 

pivot. Their system operated at small amplitudes, ±3°, and over an oscillation frequency 

range of 2 to 56 Hz for either pitch or yaw oscillation. For roll oscillation the system 
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operated at the same small amplitude, but the oscillation frequency ranged from 2 to 20 

Hz. See Burt for more details [21]. For high speed testing, the AEDC used their 4 Foot, 

and 16 Foot Transonic Tunnels as well as their 16 Foot Supersonic Tunnel [22], That 

device was mainly used for cross and cross-coupling derivative measurements operating 

at angles of attack up to 50°. The systems were updated in the 1980s to include high 

balance force tolerance [23]. 

The German Research and Development Institute for Air & Space Travel 

(DFVLR) developed a model mounted on a moving head supported by a vertical strut 

with oscillatory motion in pitch, yaw, roll or heave induced by a mobile oscillatory 

balance [24]. The maximum amplitude for all angular motions is 5°. Plunging motion 

ranges over 30 mm. The frequency range is 0.2 to 3 Hz with angles of attack up to 15°. 

The National Aeronautical Establishment (NAE) is given credit for developing 

the first fully direct measurement of damping and cross and cross-coupling moment 

derivatives due to pitching or yawing in 1973 [25]. However, it should be noted that the 

research group assumed that any secondary motion was negligible. 

Other single DOF forced oscillation testing capabilities include work done at 

universities and overseas: University of Bristol [26], Cambridge University [27], the 

Middle East Technical University [28], German-Dutch Wind Tunnel (DNW) [29], and 

National Aerospace Laboratories in India [30]. 

Over time several wind tunnels have been updated to improve measurement 

fidelity, resuming testing after long periods of hibernation, or implemented a new system 

design altogether. When the NASA Langley Full Scale Tunnel was discontinued, the 

forced oscillation test rig was modified for use in the 14 by 22 Foot Subsonic Wind 
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Tunnel [6]. Recent research has examined a blended wing body (BWB) under forced 

oscillation testing at the 14 x 22 Foot Subsonic Wind Tunnel although no results have 

been published to date [8]. The 12 Foot Low Speed Tunnel was used extensively for 

dynamic testing in 1996 and 2000 [31, 10], Several upgrades have been made to the test 

equipment and are still on-going [32], 

NASA Langley high speed tunnels have also been updated due to the increased 

need for accurate modeling of dynamic derivatives. A mobile system has been used in 

the Transonic Dynamics Tunnel (TDT), National Transonic Facility (NTF), and Unitary 

Plan Wind Tunnel (UPWT). That system uses a special oscillating balance where the 

model is oscillated in a single DOF at the natural frequency of the model/balance system 

during testing [7], 

At DNW-NWB the mobile oscillatory balance has been resurrected from DFLVR 

research after being stored for two decades [29]. The system was upgraded with modern 

equipment and brought online primarily for civil transport aircraft studies. The test 

model is mounted on a belly sting which is attached to a movable hexapod platform. 

Although the system allows for 6-DOF, to the author's knowledge it has only been used 

for single DOF tests, due to challenges in stiffness and precision. The system currently is 

operating at a maximum of: 10° for pitch, 6° for roll, 5° for yaw, 80 mm of travel for 

heave, and 80 mm of travel for lateral oscillations. 

The TsAGI T-38 wind tunnel in Russia has been outfitted with a simple single 

DOF forced oscillation test rig [33]. That rig was developed for missile testing. It 

operates over angle of attack ranging from -5° to 45° and Mach numbers ranging from 

0.2 to 0.6. 
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There are a few limitations to using single DOF forced oscillation testing. One 

particular stand out limitation is, between all the wind tunnels discussed, the lack of 

agreement between the actual amplitude measured on the model and the generated 

amplitude from the test rig. Differences ranging from 1% to 5% were found depending 

on the wind tunnel. This value may seem small; however, it can have significant impact 

when trying to quantify measurements that are small themselves. Researchers at the 

University of Bristol have demonstrated interesting nonlinearities in the form of limit 

cycles in amplitude and stability and bifurcations in a single DOF test rig[34]. Other 

studies have shown limited motion capabilities [35, 36, 37, 30, 38, and 39]. These 

limitations alone justify further examination of the test rig dynamics for forced oscillation 

systems. 

High mechanical complexities [40, 41, 42, and 43] and extensive setup and/or 

running costs [44] are other limitations. The use of active feedback control is a limitation 

particularly when an unassisted response motion would be ideal [45]. Probably the most 

inhibitive of these limitations is cost. Consequently, researchers have been developing 

multi DOF forced oscillation dynamic test rigs with the goal of developing a single 

system that is efficient, cost-effective, and capable of obtaining the majority of stability 

derivatives over a flight envelope. However, it is argued that designed experiment 

approaches can alleviate this problem. 

2.2.2 Multi Degree-of-Freedom Forced Oscillation 

The concept of multi DOF dynamic testing is not new. It also has its roots in 

developments dating back to the 60s and 70s. During this time, a model was often 

suspended elastically in such a way that it could oscillate with several degrees-of-
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freedom. One such model was used at the Royal Aircraft Establishment (RAE) at 

Bedford, England but is no longer operational [46, 47]. Another method used during that 

time was to elastically suspend the model from cables. The model was allowed to 

translate laterally and vertically as well as rotate about all three axes. This method 

allowed up to 5-DOF in oscillation and was implemented at the NASA Langley 

Transonic Dynamics Tunnel [48], 

Contemporary new multi- DOF test rigs include an interesting system called the 

Pendulum Support Rig (PSR) [49], In that system, the model is suspended on a gimbaled 

pendulum support strut. The forced oscillation motion is initiated from the control 

surfaces on the model rather than through the support mechanism. There are several 

advantages of using this type of system: 

1. Multiple degrees-of-freedom, 

2. Reduced interference effects, 

3. Incorporation of suitable sensors can allow real-time feedback control systems 

both to develop and evaluate control laws, 

4. Reduced mass models which reduce fabrication costs. 

There are several difficulties with using this type of rig. The motion is not totally 

arbitrary. The only practical solution to all the limitations of existing dynamic test rigs is 

to account for all 6-DOF. The biggest issue is that it is evident that the dynamics of the 

aircraft model and of the pendulum strut can couple to create behaviors that are not 

purely aerodynamic in nature. Again, the fidelity of the aerodynamic measurement 

comes under question because the rig dynamics may have a significant impact on the 

aerodynamics. As always, strut interference remains an issue. Lowenberg and Kyle also 



19 

pointed out that the sensors in their system are adding friction and the actuators, which 

rely on cables passing through the gimbals, exacerbate these effects. Finally, their 

control system also introduced dead bands, lags, and severe stability and control issues. 

The PSR system was independently tested by Gatto at Brunei University [50]. He 

asserted that technique predicted well for longitudinal stability and control derivatives but 

was fraught with difficulties. The results were sensitive from variations in upstream flow 

conditions, mechanical vibrations, and asymmetric nonlinear aerodynamic/structural 

coupling. 

A different type of test rig, using the same principle as the PSR, was set up at the 

University of Bristol. The rig was 3-DOF gimbal mounted on a vertical support strut 

fixed to the wind tunnel floor [51]. The model was actuated using its control surfaces. 

The work showed divergent behavior in the coefficients for dynamic testing in the form 

of bifurcations and limit cycles. Difficulties were also present in attaining sufficient 

rotation. 

Following the work at University of Bristol, researchers at ITT Kanpur in India 

developed a 5-DOF dynamic rig called the H-model [52], The group pointed out that the 

PSR test rig could generate unwanted model velocity oscillations, especially under 

longitudinal maneuvers. Although the study improved tracking, compared to the original 

PSR, by employing a PID controller, it still exhibited test rig dynamics affecting their 

results. There are future plans for developing arbitrary motion paths with multi- DOF 

test rigs for the NASA Langley 14 x 22 Foot Subsonic Wind Tunnel [6]. 
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2.3 Experimental Limitations in Dynamic Wind Tunnel Testing 

Limitations in the dynamics of test rigs affecting the fidelity of stability 

parameters has been demonstrated and discussed. It is, however, worth mentioning the 

experimental limitations discovered in all types of dynamic testing. Wind tunnel 

experiments are not without sources of error, and the challenge increases for high angle 

of attack experiments where the flowfield is unsteady [53]. Examples of errors that 

influence the aerodynamic data include: dynamic support interference [54, 55], unsteady 

wall interference [56], test facility interference [57, 58], Reynolds number effects [59], 

freestream turbulence [60], and dynamic scaling issues [3]. For forced oscillation 

dynamic testing in particular, support interference and dynamic scaling errors are the 

most problematic. 

Support interference is present for any dynamic test; however, proper corrections 

can alleviate the problem [61]. Interference can be minimized by not using asymmetric 

sting or sting strut supports or by using a half-model [62]. Slender symmetric stings have 

been shown to cause little support interference at moderate to high angle of attack tests 

[54 and 64], 

Full-scale predictions rely on satisfying similitude requirements. Besides the 

usual requirements of Reynolds number and Mach number, other important parameters 

unique to dynamic testing are: reduced angular velocity, Strouhal number, and Froude 

number. Reduced angular velocity is a measure of the angular rate of the aircraft. 

Meeting the similitude requirements ensures that distributions of flow angles across the 

test model are the same [6]. Strouhal number, also called reduced oscillatory frequency, 

accounts for the unsteady aerodynamic effects caused by flow oscillation [6]. Froude 
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number maintains the ratio of inertia and gravitational effects between the test model and 

the full-scale vehicle [6]. 

2.4 Determination of Dynamic Stability Derivatives from Wind Tunnel Data 

There appear to be no standard methods for determining dynamic stability 

derivatives from wind tunnel data. A brief review of the most popular techniques will be 

summarized here. Significant contributions for estimating aerodynamic parameters 

theoretically have been made by Tobak, Tobak and Schiff, and Goman [64-68 and 69], 

However, limited attempts have been made to estimate aerodynamic parameters from 

experimental data. 

The traditional method is to split the response of the forced oscillation test into in-

phase and out-of-phase components [70]. The out-of-phase component provides the 

damping derivatives while the in-phase component provides the stiffness derivatives. 

The small amplitude method measures the response to a small amplitude 

oscillation about a given axis and integrates the output to obtain the in-phase and out-of-

phase components [71]. This method is most popular and has been used a great deal at 

NASA Langley [31] and by other researchers internationally [72], 

Klein and Noderer have implemented the indicial response function as a method 

for determining unsteady aerodynamic parameters from experimental data [73, 74], Their 

method assumes a generic lst-order form of an indicial response. For example, 

CLa(t) = a{l-e-b")+c . (2.1) 

The parameters a, bj, and c are identified from the experimental data. An extensive body 

of work detailing this method has been provided by Klein and colleagues [31, 75, 76, and 

77], 
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2.5 Designed Experiments in Wind Tunnel Testing 

Experimental design has been particularly beneficial in wind tunnel testing to 

identify interactions, bias errors, and random errors among many other things. Formal 

statistical experimental design has its origins in agriculture and life sciences, dating back 

to the 1920s and 1930s. Other design techniques have been used extensively in industrial 

settings [78] and for quality improvements during the 1970s [79-81]. The approach has 

been used by engineers in the manufacturing, chemical processing, and semiconductor 

industries for decades. More recently engineers have been using designed experiments in 

aerodynamic wind tunnel testing. It has become popular because the approach is nearly 

insensitive to the type of test, type of model being used, and is independent of 

complexities in the wind tunnel. It is arguably more efficient to use designed 

experiments over one-factor-at-time (OFAT) testing because of reduced cost [82, 83], 

avoiding wasteful data collection. Using designed experiments is beneficial because of 

the increased productivity with minimal resources. 

Several studies have used designed experiments in various applications of 

aerodynamic wind tunnel testing. DeLoach was one of the first to use design of 

experiments (DOE) in a wind tunnel, performing stability configuration testing at the 

ViGYAN Low Speed Wind Tunnel [84], Obviously, configuration studies implement 

several aircraft configuration changes. The end result is a very large test matrix. The 

study showed substantial systematic errors that would not be present during OF AT 

testing. Similarly, other configuration studies have used fractional factorial design in 

order to reduce the amount of data taken [85, 86]. The studies showed that using 
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blocking, randomization, and replication were particularly beneficial in cryogenic wind 

tunnels where temperature effects vary greatly. 

Several bodies of work have focused on internal and external balance calibration 

using designed experiments [87, 88]. With the ever increasing demands on high 

performance aircraft, detailed studies are needed over the entire flight regime. Again, 

designed experiments are beneficial in studies of high performance aircraft because the 

entire flight regime can be investigated with minimal resources. For example, Landman 

et al. studied the X-31 aircraft and performed a characterization study of the blended 

wing body (BWB) demonstrating the benefits of the approach [88, 89]. 

2.6 Summary 

In conclusion, the literature review surveyed past and current forced oscillation 

wind tunnel techniques. The chapter discussed single DOF forced oscillation used to 

capture the unsteady aerodynamic phenomena at high angle of attack. Due to difficulties 

in obtaining the stability derivatives for the full flight spectrum some researchers have 

developed multi-DOF forced oscillation. When either testing technique was used, all 

researchers have shown differences between commanded amplitude and actual motion 

generated by the test rig. It will be shown that the difference does affect the dynamic 

stability parameters computed from experimental data. Those differences can either 

over-predict or under-predict the final result. Besides difficulties in performing forced 

oscillation testing due to test rig dynamics and aerodynamic/structure interactions other 

experimental limitations have been discussed. The limitations affect virtually all wind 

tunnel experiments including, for example, dynamic scaling issues and support 

interference effects. The chapter also provided a brief overview of popular techniques for 
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determining stability derivatives from wind tunnel data and concluded with a brief 

discussion of design experiments being used in wind tunnel experiments. This section 

supports the use of designed experiments as being of great benefit for aerodynamic test 

engineers. 
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CHAPTER 3 

THEORETICAL DEVELOPMENT 

3.1 Introduction 

This chapter details the theoretical development necessary for understanding the 

pitch forced oscillation simulation. The NASA Langley 12-ft Wind Tunnel dynamic test 

rig has been chosen as a representative system. A basic dynamic model and test rig is 

described for this system in order to establish realistic performance data. The test rig is 

characterized by an AC motor that powers the system and the compliantly-coupled 

drivetrain. In addition to the motor and drivetrain dynamics, there are several important 

components such as, PID controllers, current and velocity limiters, gearboxes, pulse-

width modulation, filters, and feedback devices. The dynamic behaviors of these 

components are also discussed, as well as possible problems with their implementation. 

The dynamic derivatives are determined from experimental data for an F16-XL aircraft 

that has been used to represent the aerodynamics. 

3.2 Forced Oscillation Wind Tunnel Testing 

3.2.1 NASA Langley 12-ft Wind Tunnel Dynamic Test Rig (Representative Model) 

• 12-foot Low Speed Wind Tunnel 

As a representative wind tunnel, this study examines the forced oscillation 

dynamic test rig developed at the NASA Langley 12-ft Low-Speed Wind Tunnel. A new 

forced oscillation system (FOS) was designed to improve operational efficiencies. The 

new FOS design goals included the ability and flexibility to oscillate a model in 
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sinusoidal as well as non-sinusoidal motion profiles [32], There are two baseline fighter 

model configuration characteristics used at NASA Langley; they are characterized in 

Table 2 [32], 

Table 1: Model Characteristics [32] 
Model Class "90-lb" "200-lb" 

Length, L 1.83 m 3.05 m 
Wing Span, b 1.22 m 2.83 m 

Mass, M 40.8 kg 90.7 kg 
Roll Inertia, Ix 1.36 kg m2 5.69 kg m2 

Pitch Inertia, Iv 10.71 kg m2 40.00 kg m2 

Yaw Inertia, Iz 11.39 kg m2 42.44 kg m2 

For a selected constant reduced frequency and model class the dynamic freestream 

velocity is usually limited to low speed dynamic pressures [94], Consequently, the 12-ft 

wind tunnel was selected as the primary facility for the FOS. The tunnel can operate at 

dynamic pressures up to 7 psf (LL = 77 ft/sec at sea-level conditions) which corresponds 

to a unit Reynolds number of approximately 492,000 per foot. The test section has a 

turbulence level of about 0.6 percent [32]. The test section airflow is produced by a 15.8-

ft diameter, 6 blade drive fan powered by a 280 HP, 600 V, 600 rpm DC motor controlled 

by a 500 Hp AC motor [32], 

• System Description 

Figure 7 shows the FOS installation in the 12-ft wind tunnel. The figure shows a 

high performance aircraft in the rolled position. The system is capable of both static and 

dynamic testing. It is also capable of independent a and P combinations. For pitch 

oscillation testing, the system has an angle of attack range from -5° to 85°. The 
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maximum pitch capability of the test rig is 260 °/sec pitch rate and 2290 °/sec2 pitch 

acceleration. For roll oscillation testing, the system has a range of displacements from 

±170 degrees with a maximum capability of 190 °/sec roll rate and 12,750 °/sec2 roll 

acceleration. 

Figure 7: FOS installed in the 12-Ft Wind Tunnel (roll configuration) [95] 

Figure 8 shows a schematic of the overall system implemented in the tunnel. The 

system can be controlled from either the test section or from the control room. Custom 

software using a LabVIEW-based PXI real-time controller (RTC) was developed to 

manage the system. Management includes system safety, communication, operations, 

position motion control, and system feedback. Additional information about the design 

process and analysis used for the FOS system is contained in [32], 
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Figure 8: Schematic of the overall FOS in 12-ft wind tunnel [32] 

• Forced Oscillation System Mechanical Subsystem 

Figure 9 illustrates the overall FOS mechanical subsystem. The user prescribes 

the position motion, and the control algorithm executes a positional, closed-loop 

algorithm for tracking. The velocity control loop is managed internally using a BDS4 

amplifier. The amplifier powers the motor which imparts the desired test article motion 

via the drive system components. 
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Electronics and Control Hardware 
(Located outside test section) 

FOS Tunnel Hardware 
(Located in test section) 

Figure 9: Overall FOS block diagram [95] 

Figure 10 shows a cross-section of the FOS mechanical system. This particular 

configuration is setup for roll dynamic testing. The sting is replaced with a bent sting, as 

shown in Figure 11, for the pitch dynamic testing configuration. The Kollmorgen B-204-

B motor has a maximum speed of 3600 rpm with a peak torque of 13.8 N-m and a 

continuous stall torque of 4.7 N-m. 

0.6" Ce3'OncD 

Sting < 

Servo motor 

Right angle spiral bevel gearbox 

16-bit encoder feedback 

Angular contact bearing set 

-M.OC 

Servo-match torque multiplier 

Titanium housing M o u n t i n g 

adaptor 

Existing model support system 

Figure 10: Cross-section o f FOS assembly (in roll configuration) [32] 
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A F T S T A T ! C B E N T ST I NO-

Figure 11: Bent FOS sting assembly [96] 

The drive train consists of a Tandler right angle gearbox, Sumitomo servo-match 

gearbox, sting, and FF-10 balance. The right angle drive is a spiral bevel, which is a 

bevel gear with helical teeth. It provides a 1:1 gear ratio with low backlash. The right 

angle gearbox drives the low Sumitomo precision cycloid torque multiplier gearbox. 

That gearbox provides an 89:1 gearing ratio. The Sumitomo gearbox is attached to the 

machine drive shaft. The sting shaft, depicted on Figure 14, is used for rolling motion. 

As mentioned previously, the shaft is replaced with a bent sting for pitching motions -

the focus of this study. The shaft is supported by a pair of matched angular contact ball 

bearings [32], The ball bearings are used to reduce rotational friction and support radial 

and axial loads. A 16-bit encoder is attached to the drive shaft to measure the sting 

angular position and is used for closed-loop motion control. Finally, the FF-10 balance is 
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used to measure forces and moments during testing. Table 3 lists the balance loading 

limits. 

Table 2: FF-10 Balance Loading Limits 
FF-10 Balance 

Normal Force 1780 N (400 lbf) 
Axial Force 890 N (200 lbf) 
Side Force 890 N (200 lbf) 

Roll Moment 141 N-m (1248 in-lbf) 
Pitch Moment 226 N-m (2000 in-lbf) 
Yaw Moment 226 N-m (2000 in-lbf) 

3.2.2 Determining Stability Derivatives from Experimental Data 

During a forced oscillation wind tunnel test, the model is constrained to follow a 

specified position time history. For the longitudinal case, the pitch angle is the same as 

the angle of attack. Pitch angle and angle of attack are physically the same in the wind 

tunnel. However, in flight the aircraft is not constrained so that the pitch angle and angle 

of attack can change independently. This means that in flight the pitch angle, 6, and its 

rate of change, q, can be very different than the angle of attack, a , and its rate of 

change a . Consequently, because the angle of attack and pitch rate are physically the 

same during a forced oscillation test it is not possible to separate the components 

associated with pitch rate and a . Therefore, the stability derivatives, discussed earlier, 

cannot be measured directly. The stability derivatives will take the form of a 

combination; for example, Cm +Cm . 
m.j, ma 
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The aerodynamic coefficients are assumed to be linear functions of the angle of 

attack, pitching velocity, and their associated rates. The increment in the lift coefficient 

with respect to its mean value is formulated as: 

/ / ( i V A Q = C L A a + y C L a + y C L q q + ^ j CLqq. (3>1) 

For harmonic motion, 

A a = aA sin cot 

A = q = GXXA COS ax 

a = q = -co2aA sin ox 
(3.2) 

After substituting Equation 3.2 into 3.1, 

ACL = aA [cLa - k2CL_ )sin cot + aAk[cL + CL/ )cos i 
= aA(cL sin cot + kCL cos cot) (-3'3') 

cot 

where the in-phase and out-of-phase components of lift coefficient have been identified 

as CLa and C,̂  , respectively. Using the same approach for pitching moment, the in-phase 

and out-of-phase pitching moment coefficients are, respectively, 

C =C -k2C ma ma m4 

c =c +c (3-4) 
mq mq ma 

The in-phase and out-of-phase components of lift coefficient are found by integrating the 

time histories of ACL over a given number of cycles as: 

CL = \&CL{t)sw.ax dt a aAncT 0
J 

° r (3.5) 
2 

CL = \&CL(t)cosax dt i ry 17 JrT J aAnckT 0 
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where T = 27t/co is the period. The same approach is used to compute the in-phase and 

out-of-phase components for pitching moment, so that: 

Equations 3.5 and 3.6 have assumed that the sine waveform is of high fidelity. 

3.3 Three-Phase AC Induction Motor Model 

The induction motor is one of the most common types of motors in existence. It 

is widely used because of its good self-starting capability, simple and rugged structure, 

low cost, and reliability [97], A Kollmorgen B-204-B, three-phase induction motor is 

currently being used by the NASA LaRC 12-ft wind tunnel to actuate the forced 

oscillation motion. An idealized model of that motor is illustrated in Figure 12. 

The primary working principle of an induction motor is quite simple. The 

revolving magnetic fields in the stator cause the rotor to turn, providing the necessary 

torque. The rotating fields create out-of-phase voltages in the stator windings. The three 

applied voltages are 120-degrees out-of-phase with each other; this produces the three 

phases, typically called a, b, and c phases. Also, the number of poles determines how 

many times the magnetic field in the stator revolves for any given generated frequency. 

For example, a general induction motor, with 4-poles and 60 Hz supplied frequency, will 

typically have a stator rotating field speed of 1,800 rpm, where the synchronous speed of 

the motor is computed in terms of supplied frequency, f [Hz], and the number of poles as, 

C - Z f 
a nT * A c 0 

j " A C m ( / ) s i n < s # dt 
(3.6) 

jACm(f)cos6tf dt 

1 2 0 / 
P 

(3.7) 
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as 

Figure 12: Idealized circuit model of a 2-pole 3-phase induction machine [99] 

The following assumptions were made about the FOS motor [98]: 

1. Squirrel cage type - The cage winding always reacts by producing the rotor field 

having the same number of poles as the inducing stator field. It also assumes the 

rotor voltages are zero. 

2. Symmetrical - The stator windings are identical, sinusoidally distributed, and 

displaced 120°, with ns equivalent turns and stator resistance rs. Similarly, the 

rotor windings or bars are considered as three identical, sinusoidally distributed, 

displaced 120°, with nr equivalent turns and rotor resistance rr. 

3. Wye-connected - Assumes that the motor has the following circuitry illustrated in 

Figure 13. 
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Rotation 

o- ar axis 

o-

o 

V, 

V . 

a s axis 

Stator Rotor 
Figure 13: Three-phase coupled circuit representation of an induction motor [99] 

4. Balanced - Assumes that a balanced 3-phase set is generally defined as a set of 

equal-amplitude sinusoidal quantities which are displaced by 120°. In 

mathematical terms fas + fbs + fcs = 0; therefore, f0s = 0 where f is an arbitrary 

variable that can represent either voltage or current depending on the type of 

inverter used for the motor. 

5. Uniform air gap - Assumes that the air gap between the rotor and stator is 

uniform. 

6. Stationary stator frame - Assumes that the stator is fixed (C0s = 0). 

These assumptions represent an oversimplification which cannot describe the behavior of 

induction machines in all modes of operation. However, for this application its behavior 

can be adequately predicted using this simplified representation. 

3.3.1 Reference Frame 

The goal of the reference frame theory is related primarily to a change of 

variables used in the analysis of AC machines to eliminate time-varying variables. This 

method was introduced by R.H. Park in the late 1920s [100], He formulated a change of 
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variables which, in effect, replaced the variables (voltages, currents, and flux linkages) 

associated with the stator windings of synchronous machines with variables associated 

with fictitious windings rotating with the rotor. In other words, the stator variables are 

transformed to a frame of reference fixed in the rotor; this is called Park's transformation. 

The transformation has the unique property of eliminating all time-varying inductances 

from the voltage equations of the synchronous machine which occur due to: 

1. Electric circuits in relative motion and 

2. Electric circuits with varying magnetic reluctance. 

Additional transformations have been developed by Stanley, Kron, Brereton, and Clark 

for specific applications such as an induction machine with a fixed stator [100]. 

However, each transformation is based on Park's transformation. Other types of 

transformations are illustrated in Figure 14. 

SYNCRONOUS 
COMMON 
FRAME 

ROTOR 
FRAME 

STATOR 
FRAME 

Figure 14: Reference frames in AC machine analysis [99] 
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After the transformation(s), the reference frame is typically called the arbitrary reference 

frame or d-q reference frame. Table 3 provides a list of commonly used reference frames 

in the analysis of AC machines; namely, the arbitrary, stationary, rotor, and synchronous 

reference frames and their associated notation. 

Table 3: Notation of commonly used reference frames [100] 
Notation 

Reference 
Frame of Speed 

Interpretation Variables Transformation 

to (unspecified) Stationary circuit variables referred to the arbitrary 
reference frame. fqdOs X 

0 Stationary circuit variables referred to the 
stationary reference frame. fqdOs K 

•Br Stationary circuit variables referred to a reference 
frame fixed in the rotor. fqdOs K 

ffle Stationary circuit variables referred to the 
synchronously rotating reference frame. J qdOs K 

The transformation of the 3-phase stator variables into the arbitrary frame is: 

where 

and 

fdqOs ~ K s f a b c s 
(3.8) 

ifqdOs )r ~~ \jqs f d s f o s ] 

( 7 - r = i / . a / J . 

(3.9) 

(3.10) 

K - -s 3 

COS0 COS 0 -

sin# sin 

J_ 
2 

e-

2 

2k 

2 ^ 

COS 

sin 

0 + 

0 + 

J_ 
2 

2 7t 

2k 
(3.11) 
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I 

9 = \ai£)d£ + Q{ o) (3.12) 

where ^ is a dummy variable of integration. In the above equations, / can represent 

voltage, current, flux linkage, or electric charge. The superscript, T, denotes the transpose 

of a matrix. The s subscript indicates the variables, parameters, and transformation 

associated with stationary circuits. The angular displacement, 0, must be continuous in 

time. However, the angular velocity associated with the change of variables is 

unspecified. The frame of reference may rotate at any constant or varying angular 

velocity or it may remain stationary. The arbitrary connotation stems from the fact that 

the angular velocity of the transformation is unspecified and can be selected arbitrarily in 

order to expedite the solution of system equations or to satisfy the system constraints. 

The change of variables may be applied to variables for any waveform and time 

sequence; however, the transformation is typically appropriate for an abc sequence [100], 

For completeness the other transformations in Table 4 are provided. 

= 2 

* > 3 

' 1 - 1 / 2 - 1 / 2 ' 

0 a/3/2 - V 3 / 2 
1/2 1/2 1/2 

(3.13) 

This equation assumes that (0 — 0 (0 — 0). Since the motor is assumed to be balanced 

(i.e. fas + fbs + f = 0, so f0s = 0), it reduces to the Clark transformation, 

k: 
1 - 1 / 2 - 1 / 2 

0 V3/2 -V3/2 
(3.14) 

If (0 = (0e (0 = 0e), the transformation becomes: 
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= 9 
cos 0e cos{0e - Ix/i) cos(6»e + 2^/3)" 

- sin 0e - sin(0e - 2^/3) - sin(0e + 2^/3) 
1/2 1/2 1/2 

Again, when the motor is balanced that equation becomes, 

= 2 cos 0e cos(<9e-2;r/3) cos(<9e+2;r/3) 
- sin - sin(0e - 2^/3) - sin(0e + 2^/3) 

(3.15) 

(3.16) 

The matrix Kr
s is similar to Equations 3.66 and 3.67; however, co = (Or (0 = 0r) instead. 

3.3.2 Induction Machine Dynamic Model 

Traditionally, the equations of motion for an AC motor have been defined in the 

abc reference frame. The voltage equations are expressed in machine variables (i.e. 

current, voltage, and flux linkage). In the following equations, the s subscript denotes 

variables and parameters associated with the stator circuits, and the r-subscript denotes 

variables and parameters associated with the rotor circuits. Both rs and rr are diagonal 

matrices, each with equal nonzero elements [100]. 

V — y i abcs s abcs 

V — i* I + abcr r abcr 

ca 
dt 

dX 
dt 

(3.17) 

(3.18) 

For a magnetically linear system, the flux linkages are expressed as 

\bcs Ls 

( l srj 
Lsr ^abcs 

abcr _ 

Ls 

( l srj Lr J'abcr _ 
(3.19) 

Then, the winding inductances are defined as follows: 
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Ls = 

L ls+Lms 

2 

2 

-U 

L ls+Lms 

2 ^mi 

~ 2 l m s (3.20) 

Lsr — Z/n 

L, +L --L --L lr mr ^ mr ^ mr 

Lr = - — Z L, + L --L ' 2 """ lr mr ^ mr 

~ ^ Lmr — — Lmr Llr + Lmr 

cos0r cos(ffr +2^/3) cos(^ - 2 ^ / 3 J 
cos(0 r-2fl/3) cos cos(#r+2;r/3) 
cos(<9r+2^/3) cos(<9r-2^/3) cos6>r 

(3.21) 

(3.22) 

Here, Lis and Lms are the leakage and magnetizing inductance of the stator and windings, 

respectively. Also, Lir and Lmr are for the rotor windings. The inductance Lsr is the 

amplitude of the mutual inductances between the stator and rotor windings. It is more 

convenient to refer all rotor variables to the stator windings by appropriate turn ratios 

[100], 

r , 
^abcr jy ^abcr (3.23) 

—/ v abcr abcr (3.24) 

N -y _ I y s jf abcr jy abcr (3.25) 

The magnetizing and mutual inductances are set as 

N. 
N. 

(3.26) 
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T - ^ Z -L sr — L-isr — L„, N. 

cos0r cos(0 r+2;r/3) cos((9r-2^/3)" 
cos(^ - 2^/3) cos 9r cos{0r + 2x/3) 
cos(0 r+2;r/3) cos(0 r-2;r/3) cos0r 

(3.27) 

Finally we let 

Then, 

KNr J 

(3.28) 

(3.29) 

L' = 

L, +L --L --L lr ms 2 ms 2 s 

--L L, +L --L 

--L --L L, +L 
^ ms ^ ms " ms 

(3.30) 

where 

K 

The flux linkages can be expressed as 

r — n 

^abcs 

X' _ abcr _ 

Ls 

m 
c 
L: 

abcs 

abcr . 

(3.31) 

(3.32) 

Finally, the voltage equations are expressed in terms of machine variables referred to the 

stator windings as, 

abcs 

abcr. 

^ dLs 
r + — 

_dt dt 

ML 
dt dt 

(3.33) 
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where 

r. = K • (3.34) 

Following the steps outlined by Krause [100], the torque equation, in terms of machine 

variables, is written: 

rp\-r V a T = 
2 do 

Li 'I abcr ' (3.35) 

Also note that the torque and rotor speed are related by 

/"tA 
T=J 

da 

K1 dt 
+TL. (3.36) 

The previous section has outlined the use of the so-called arbitrary reference 

frame transformation and its application to stationary circuits. The equivalent circuit for 

an AC motor in the dq frame is shown schematically in Figure 15. Note that in Figure 15, 

Fy is the same as 

R 

-vwv-
jTSTTiT̂  

\ 

R 

-WW 
co y/ 

JTTTT|_ 
r 

- Q — m — 
(<y - a V 

V . = F / (O 

c* 
R 

-WW-
(co - CO V 

Figure 15: Equivalent circuit dq frame 
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Applying the same approach and rewriting the equations of motion for an AC motor in 

terms of reactances rather than inductances, the equations of motion become Equations 

3.37 to 3.42. It should be noted that the zero phase terms have been dropped since the 

motor is assumed to be balanced. 

dX. qs 

dt 
= a\ qs (0h 

v X mq qs * 
A l s 

(3.37) 

dX. 'ds 

dt 
= 0),, 

A Is 

(3.38) 

dX. qr 
dt 

= a), qr Adr + — \ A
m q ~ Aqr ) Wh A , 

(3.39) 

dX. 'dr 

dt vdr + (°>e-a>r), ^ K (3.40) 

^mq ~ X m , 
V + A' 
X , s X , 

(3.41) 

Kd - x i s 
^ds + ^dr 
x , x „ 

(3.42) 

Then, the current and torque equations can be written: 

A l s 

(3.43) 

ds Uds _ Kd ) X 

X, 

(3.44) 

(3.45) 
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ldr X 
(3.46) 

T=~ e 2 
3 ^ 

v - y G)b 
—UdsL ~Aslds) (3.47) 

Te-TL=J f -
da 
dt 

(3.48) 

The flux linkage rate equations have been derived in detail by Krause [100], 

Assuming the motor is a squirrel cage induction machine, the rotor voltages, vqr and Vdr, 

in Equations (3.39) and (3.40) are set to zero. Next, these equations have been recast into 

state-space form. 

State-space form is obtained by substituting Equations (3.41) and (3.42) into (3.37 

- 3.42) and collecting similar terms. The state vector is x = \Xqs Ads Xqr Xdr (Dr ]r. 

Also note that Aif = y/^ • cob, where A,jj is the flux linkage (where i = q or d and j = s or r), 

and \|/jj is the flux. Then, the model equations are as follows: 

dXm 9£ 
dt 

= 0), v 1 + 
IT * A l r 

X, \ A 
ml 

X 
- 1 qs 

y-ir y 
X. (3.49) 

dX. •ds 

dt 
= co, v + a< F X ml 

X,. xdr + 
r Y* \ ^ 

A ml _ | 
"ds 

/ y 
(3.50) 

dX. qr 

dt 
= cok Adr + ' CO, x „ 

ml 2 4 . 

I T * A l s 

f x* A ml _ J 

V ^ 

a 

K 
y y 

(3.51) 

dX. 
dt 

- = co, k - ^ ) , , K X, 
Xds + 

r X* ml | xA 'dr 

y J 
(3.52) 
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^ = (3.53) 
at \2J J 

3.3.3 Field Oriented Control of Induction Machines 

The main objective of vector control, also called field orientation control, is to 

independently control the generated torque and flux like a direct-current (DC) motor 

using separately excited states [101]. The transformation matrix, discussed previously, is 

used mainly to transform the physical abc variables into the dq variables. In the dq 

frame, all balanced sinusoidal variables can be viewed as DC quantities. Also, in vector 

control schemes the synchronous rotation rotor flux angle is a required instantaneous 

variable because it is used to transform the abc frame into the synchronously rotating dq 

frame. There are two main approaches to obtain this angle: direct and indirect schemes. 

In the direct scheme, a flux sensor (i.e. Hall sensor) is employed directly to 

compute the rotating rotor flux angle. However, it may not be practical to implement this 

scheme due to the difficult installation of the flux sensor in the air gap inside the 

induction machine [102]. In the indirect scheme, slip must be computed by the controller 

and a speed sensor is required. With this information, the rotating rotor flux angle can be 

computed indirectly. In other words, the slip relation must appear in the indirect scheme 

[102], For this study, the simulation uses the indirect scheme for vector control. Figure 

16 is a schematic showing this implementation of indirect vector control. 
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DC Supply Voltage 

Figure 16: Indirect vector control schematic 

The slip is estimated by 
co - (o L C 

03si = s ~ — = (3.54) 
<°e Tr Kr 

where, tr - Ljrr is called the rotor time constant. 

The benefit of using vector control over frequency or phase control techniques is 

that those techniques are primarily steady-state. Steady-state solutions are not 

appropriate for predicting dynamic performance of the motor. The vector control 

technique allows one to model transients. 

Figure 20 includes additional components that have not yet been discussed. One 

element is a pulse width modulation inverter (PWM). The others are cascaded PID 

controllers and velocity and current limiter components. The limiters are represented as 

saturation components. Each component will be discussed to conclude the chapter. 

Smaller components, not shown in Figure 16, include filters, encoders, and tachometers 

which will also be discussed. 
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3.3.4 Additional Components 

• Pulse Width Modulation 

AC motors are often powered by inverters. The inverter converts DC power to AC 

power at the required frequency and amplitude. A typical 3-phase inverter is illustrated in 

Figure 17. 

+ DC-Bus 

Figure 17: Typical 3-phase inverter 

The inverter consists of three half-bridge units where the upper and lower 

switches are linked to operate as polar opposites, meaning that when the upper switch is 

turned on, the lower switch must be turned off and vice versa. Since the power device off 

time is longer than its on time, some dead time must be utilized between the time one 

transistor of the half-bridge is deactivated and its complementary device is activated. The 

output voltage is created primarily by a pulse width modulation technique, where an 

isosceles triangle carrier wave is compared with a fundamental-frequency sine 

modulating wave. The natural points of intersection determine the switching points of the 
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power devices of a half-bridge inverter. This technique is shown in Figure 18. The 3-

phase voltage waves are shifted 120° with respect to one another; thus, a 3-phase motor 

can be powered. 

1 -
PWM Carrier 

Wave 

- 1 -

PWM Output T 
(Upper Switch) L2. 

PWM Output T 
(Lower Switch; o n n n n 

H 
0)t r 
cot 

Figure 18: Pulse width modulation (PWM) operation 

PWM has a significant problem associated with generating harmonics. The harmonics 

look like a sine wave with harmonic content. Generally, for a three-phase AC induction 

motor neither the 3rd-order harmonic components nor multiples of 3 are produced. 

Traditionally, these "triplen" harmonics cause distortion and heating effects. This causes 

motor losses and affects overall performance [103]. 

• Three-term Controllers and Multi-loop Feedback Control 

Proportional, Integral, Derivative (PID) controllers were first developed by Callender et 

al. in 1936 [104]. The technology was based primarily on experimental work and simple 

linearized approximations of systems [105]. Over time, PID controllers have become one 

of the most popular controllers for three reasons: (1) their past record of success, (2) their 

wide availability, and (3) their simplicity in use [106], 
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The proportional term, also called the gain, adjusts the output proportional with 

the error value. That gain is denoted with the constant, Kp. The representation of 

proportional control is given in the time and Laplace domains. 

Time Domain : u(t) = KPe(t) 
) \ \ (3-55) 

Laplace Domain : Uc{s)—KpE{s) 

Time Domain Laplace Domain 

e(t) ^ 
K P 

"c( t) E(s) 
Kp 

U„(s) 
K P Kp 

Figure 19: Block diagrams for proportional control term 

The integral term, sometimes called reset, is used to correct for any steady-state offset 

from a constant reference signal value. The time and Laplace domains representations 

for integral control are given as: 

/ 

Time Domain : uc(t) = Kr Je(r)dr 

Laplace Domain : Uc(s) = K, 
(3.56) 

E(s) 

Time Domain Laplace Domain 

e(t) 

M 
uc(t) E(s) _ AL 

Uc(s 

M s 

Figure 20: Block diagrams for integral control term 

Finally, the derivative term, sometimes called the rate, is used to control the rate of 

change of the error signal. The time and Laplace domains for derivative control are given 

as: 
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Time Domain: de 
dt 

Laplace Domain : Uc(s) = [A^sJe^s) 
(3.57) 

Time Domain Laplace Domain 

e(t) 
^ d 

uc(t) E(s) 

KdS 

Uc(s) 

k°Jt KdS 

Figure 21: Block diagrams for derivative control term 

The basic Laplace domain representation for a parallel PID controller, also known 

as a decoupled PID, is given in Equation 3.109. This form is the classical textbook case 

because it lacks any modifications that can be present in a real system. For example, the 

derivative term is usually not implemented due to adverse noise amplification properties 

[106]. The general architecture for the parallel PID controller is represented in Figure 22. 

Ue(*) = Kp+K,- + KDs 
s 

E{s) (3.58) 

Figure 22: Parallel PID architecture 
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• PID Controller Tuning 

Tuning a single PID controller is quite simple. Several methods exist such as 

manual method, Ziegler-Nichols method, and loop optimization software [106]. For this 

study the manual method was used for simplicity and because the system could not be 

tuned using a standard step response input. 

The manual process for tuning a PID controller is to first set all the gains to zero, 

adjusting subsequently the proportional gain until the system is responsive to input 

changes without overshoot or divergence. Next, the integral gain is increased until the 

errors disappear. Finally, the differential gain is increased in order to accelerate the 

system response. 

Re-examining Figure 22, it is clear that the PID controllers have been 

implemented in different loops for cascaded control. There are two reasons for this type 

of control system [106]: 

1. To use the inner measure to attenuate the effect of supply disturbances or any 

internal process disturbance on the outer process in the sequence. 

2. To use the outer process measurement to control the process final output quality. 

Tuning cascaded PID controllers becomes more complex when the system is sensitive to 

instabilities as is the present case. The inner loop is tuned first by adjusting the 

proportional gain for speed of response or, if that is inadequate, tuned for proportional 

and integral gains to remove low-frequency supply disturbance signals [106], After the 

inner loop is tuned, it functions like a low-pass filter within the outer loop [107]. Note 

that each loop operates over a different frequency range, so once the inner loop is tuned 

there is little need to return to it. Finally, the outer loop is tuned. Each loop needs to be 
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as responsive as possible because it becomes a barrier to the next higher outer loop [107], 

Typically, cascade control structures often take the form of PI/P or PI/PI [106], 

Derivative gain is usually avoided due to the presence of a significant measurement of 

noise. 

• PID Control Issues 

There are several common problems in the implementation of a PID controller. 

Table 5 summarizes the common process control problems and the appropriate PID 

implementation [106]. It should be noted that some of these problems are not applicable 

to a simulation study; however, they can possibly occur in real applications. As a result, 

it is useful to discuss these aspects for improving the fidelity of actual forced oscillation 

wind tunnel test techniques. Since modification is required for the parallel PID controller 

to operate effectively consideration is given to some common modifications: bandwidth-

limited derivative control, proportional and derivative kick modifications, anti-windup 

circuit design, and reverse acting control [106], Each modification will be discussed in a 

qualitative sense. The mathematical development of the modifications can be reviewed 

in [106] and are summarized in Table 4. 

Table 4: Summary of process control problems and implementing the PID controller 
[Taken from 106] 

Process Control Problem PID Controller Solution 
Measurement Noise 

• Significant measurement noise on process • Replace the pure derivative term by a 
variable in the feedback loop bandwidth limited derivative term 

• Noise amplified by the pure derivative term • This prevents measurement noise 
• Noise signals look like high frequency signals amplification 

Proportional and Derivative Kick 
• P- and D-terms used in the forward path • Move the proportional and derivative terms 
• Step references causing rapid changes and into feedback path 

spikes in the control signal • This leads to the different forms of PID 
• Control signals are causing problems or outages controllers 

with actuator unit. 
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Nonlinear Effects 
• Saturation characteristics present in actuators 
• Leads to integral windup and causes excessive 

overshoot 

• Use anti-windup circuits in the integral term of 
the PID controller 

• These circuits are often present and used 
without the installer being aware of their use 

Negative Process Gain 
• A positive step change produces a negative 

response 
• Negative feedback with such a process gives a 

closed-loop unstable process 

• Use the option of a reverse acting PID 
controller structure 

When a measured process contains excessive noise, the noise is modeled as a high 

frequency phenomenon. The noise is then amplified through the derivative term in the 

controller. Since this is highly undesirable, a low-pass filter is often placed in the 

derivative term to remedy the problem. 

Another problem is proportional kick which occurs because of rapid changes in 

the reference signal when the PID controller is in a parallel structure format. The 

solution is simply to restructure the controller by placing the proportional term into the 

feedback path. The derivative kick is similar to the proportional kick problem. 

There are many sources of nonlinearity that can affect the performance of the PID 

controller. One common source is that the process plant is nonlinear. Consequently, 

there are different operating conditions with different dynamics. The typical remedy is 

gain or controller scheduling. Another issue is actuator saturation and windup. All 

actuators have physical limitations; for example, a motor has limited velocity, which can 

have severe consequences. The integral term goes into windup, an unstable mode [109], 

The feedback loop cannot function, and the actuator saturates; the process will revert to 

open-loop control. Open-loop control can be dangerous if the system is unstable. The 

process can also exhibit excessive overshoot in the process output. Also, the integrator 
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windup will delay the control action until the controller returns to an unsaturated state. 

The solution to the problem is to effectively switch off the integral module when the 

system saturates. The integral term is then recovered when the controller reenters its 

linear operating region. Anti-windup circuitry is used to achieve this goal [109]. 

Some processes have very complex dynamics and can produce inverse responses. 

This occurs when a positive step change at the input causes the output response to go 

negative and then recover to finish positive [106]. That process behavior usually has a 

physical origin where two competing effects, a fast dynamic effect and a slow dynamic 

effect, conspire to produce the negative start [109], The remedy is quite simple. An 

additional gain of [-1] is placed at the output of the controller to maintain a negative 

feedback loop. 

• Controller Saturation 

As mentioned previously, all actuators have physical limitations. Consequently, 

engineers who design controllers for motors have included position limiters, velocity 

limiters and current limiters within the control loops. Position controllers are designed to 

hold the position commanded from an external source at the desired position. Velocity 

limiters avoid reaching excessive motor speeds. The velocity limiter is placed after the 

output of the velocity PID controller. If the motor stalls, the generated current can 

become dangerously high. Current limiters are added to the output of the current PID 

controllers in order to stay within the current rating for the motor and drive system. 

Current controllers are also used to eliminate the effects of induced voltage from the 

motor armatures that complicate velocity control and torque control [110, 111]. The 

velocity and current limiters are represented as saturation elements in Figure 16. 
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• Filters 

The overall system simulation neglects filters for practical reasons that will be 

discussed in Chapter 4. However, filters have a practical use in a control system and are 

present in the actual FOS. Typically, they are found throughout the controller system, the 

feedback devices, and the power converter [107]. Filters are used for three primary 

reasons: (1) to reduce noise, (2) to eliminate aliasing, and (3) to attenuate resonance. 

The most common filter is the low-pass filter. Low-pass filters are used to 

remove high-frequency noise from a variety of sources, including electrical 

interconnections, resolution limitations, and noise sources in feedback devices. Filters 

can also be used to remove resonance. Ellis [107] states that "electrical resonance 

commonly occurs in current and voltage controllers; inductances and capacitances, either 

from components or from parasitic effects, combine to form L-C circuits that have little 

resistive damping." A resonant circuit exhibits ringing and can generate higher voltages 

and currents than its input. Low-pass filters are also applied to the command or feedback 

signals or to elements of the control law (for example, the derivative term in a PID 

controller). One primary issue with using low-pass filters is that they can cause 

instability by causing phase lag at the gain crossover frequency. 

• Feedback Devices 

Feedback devices are typically sensors that sense position and/or velocity. 

Encoders, resolvers, and tachometers are a few commonly used sensors. The position 

feedback sensor is usually either an encoder or a resolver coupled with a resolver-to-

digital converter. Encoders are generally more accurate than resolvers. However, 

resolvers are more reliable. Encoders often generate more electrical noise when the cable 



56 

between motor and encoder is long [107], Resolvers, on the other hand, contain more 

position error. 

One major error with encoders and resolvers is cyclic error. Cyclic error is a low 

frequency error that repeats with each revolution of the feedback device [107]. It causes 

low frequency torque ripple on the motor shaft. Unlike high frequency perturbations, 

cyclic errors cannot be filtered out when they are low enough to be at or below the 

velocity loop bandwidth. Ellis provided an example of a motor operating at 60 rpm with 

a 2/rev cyclic error which generated a 2 Hz ripple [107], Cyclic error is believed to result 

from imperfections in the feedback device and from mounting issues. Ellis pointed out 

that the total cyclic error from a feedback device can be in excess of 40 min"1, 15-20 min" 

1 for resolvers and 1-10 min"1 for encoders [107]. The values may sound small but can 

generate a surprisingly large amount of torque ripple. 

Velocity ripple is a type of error produced directly from position error. Its 

presence is evident when the motor speed is held constant. One way to remove velocity 

ripple is to add torque ripple that induces ripple in the actual speed. The feedback signal 

is improved, but the actual velocity performance is worse. If the bandwidth is high 

enough compared to the ripple frequency, it can induce severe torque ripple while only 

canceling an error that exists in the feedback signal. On the other hand, if the ripple 

frequency is higher than the bandwidth, the motor speed is relatively smooth, but the 

feedback signal indicated has ripple. 

A tachometer is a sensor that measures the rotation speed of a shaft. Typically, it 

is encased within the motor. The biggest problem with tachometers is misalignment. If 

the tachometer is not aligned with the motor shaft, it can cause a cyclic false-speed 
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signal. The output then consists of a DC voltage proportional to the average speed over a 

revolution plus a superimposed high frequency, low amplitude cyclic voltage. 

3.4 Mechanical Resonance and Compliance 

Motor drives are used in a wide range of applications. Typically, command 

response and dynamic stiffness are the two key rating factors for high performance 

applications. In order to achieve high performance, designers often use closed loop 

controllers such as proportional-integral (PI) velocity loops in servo systems [107]. As 

such, the controllers must have high gains in order for the system to obtain high 

performance. 

The down side of high performance is mechanical resonance. Mechanical 

resonance is caused by compliance between two or more components in the mechanical 

transmission chain. The resonance is typically the compliance between the motor and 

load. Another example of resonance is from the motor and feedback. Compliance is 

defined as a "manifestation of elasticity in solid, flexible bodies" [112]. Compliance can 

come from within the load, where the load can be thought of as multiple inertias 

connected together by compliant couplings [106], Also, resonance can be caused by a 

compliant motor mount. In other words, the motor frame oscillates within the machine 

frame. 

3.4.1 Characteristics of Resonance and an Example 

To demonstrate the characteristics of resonance, a simple example is provided of 

a compliant coupling between a motor and a load and is depicted in Figure 23. Further 

examples have been discussed by Craig [113]. Figure 23 contains the following 

parameters: the rotor inertia of a motor, JM, the driven-load inertia, JL, the elasticity of 
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coupling, Ks, the viscous damping of coupling, BML, the viscous damping between 

ground and motor rotor, BM, the viscous damping between ground and load inertia, BL, 

and the electromagnetic torque applied to the motor rotor, T. The elasticity of the 

coupling, Ks, can be neglected in low-power systems; however, modeling it in high-

power systems is critical. 

The following assumptions were made before the equations of motion were 

derived for Figure 23. First, the viscous damping of the coupling, BML, is small since 

transmission materials provide little damping. Second, BM and BL are neglected in the 

following analysis because they exert small influences on resonance. They are, however, 

included for completeness. Finally, Coulomb friction ("stiction") has been neglected. 

Coulomb friction has little effect on stability when the motor is moving. On the other 

hand, when the motor is at rest, the impact of stiction on resonance is more complex. 

Stiction can be thought of as increasing the load inertia when the motor is at rest. The 

resonance equations of motion are: 

MOTOR LOAD 

Figure 23: Simple compliantly-coupled motor and load 

(3.59) 



59 

- B,d, + Bm (eM - 0L)+ Ks {aM -eL)=jL0L- (3.60) 

Applying Laplace transforms and writing Equations 3.60 and 3.61 in matrix form results 

in the following: 

Jm*2 +(Bml+Bm)S + Ks - (BmlS + Ks) 

-{B^S + Ks) J,S2+{Bml+Bl)S + Ks_ 

-T(sJ 

0 
(3.61) 

Assuming that B l = Bm = 0, the following transfer functions are obtained: 

0 M (s) = 
[Jm+JLY 

J^+B^+K s 

JLJM S2 +BMLS + KS 
JL+J 5 

(JU+JLV 

M 

Bmls + Ks 

(3.62) 

J f J M „2 s'+B^s + Ks 
M 

(3.63) 

Values used for the examples that follow are: Jl = 0.002 kg-m2, Jm = 0.002 kg-m2, 

Ks = 200 N-m/rad and Bml = 0.01 N-m-s/rad. The resulting compliantly coupled motor 

and load has the characteristics depicted in Figure 24 and Figure 25. The frequency 

where the gain is at the bottom of the trough is called the antiresonant frequency, (Oar. 

Mathematically that is where the numerator has its minimum value. The antiresonant 

frequency is the natural frequency of oscillation of the load and the spring. Note that the 

motor inertia is not a factor. For this example, the antiresonant frequency is 316 rad/s 

(50.3 Hz). The antiresonant frequency can be calculated by [107], 

®AR=. (3.64) 
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The resonant frequency, (OR, is the frequency where the gain reaches a peak. 

Mathematically, at this frequency the denominator is minimized. Also for this example, 

the resonant frequency is 447 rad/s (71.2 Hz). That resonant frequency can be calculated 

It should be noted that the antiresonance frequency is always less than the 

resonance frequency, but that is if and only if the motor inertia is greater than zero. 

When the motor and load frequencies are less than the antiresonance frequency, a rigidly-

coupled motor and load are observed. When the motor and load frequencies are greater 

than the resonance frequency a compliantly-coupled motor and load are observed. 

by [107] 

a) ks{Jm+JL) (3.65) 

Bode Diagram 

. 1 ;>.;i 
0 

4) 
V} 

J L 
. I ! u' 

Frequency (Hi) 
Figure 24: Motor/Torque transfer function 

i i 
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The load transfer function exhibits similar behavior to the motor transfer function except 

there is no antiresonant frequency. There is 90° more phase lag at high frequency due to 

the loss of the s term in the numerator. When comparing transfer functions of the motor 

and load, the system will be in-phase if the system frequency is below the antiresonant 

frequency, and the system will be out-of-phase if the system frequency is above the 

antiresonant frequency. 

Bode Diagram 

Frequency (Hz) 

Figure 25: Load/Torque transfer function 

Mechanical resonance can cause instability in two ways: tuned resonance and 

inertial-reduction instability [114]. Although there are important distinctions between the 

two, both problems can be understood as resulting from the variation of effective inertia 

with frequency [107]. At the resonant frequency, the system becomes unstable causing 

the motor and load to oscillate at that frequency, moving in opposite directions as energy 
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is exchanged between the motor and load [107], At this frequency, the system is easily 

excited behaving as if the inertia were very small [107]. This is called tuned resonance. 

If the system exhibits inertial-reduction instability it becomes unstable above the 

motor-load resonant frequency. Systems with instability due to inertial reduction behave 

much as if the load inertia were removed, at least near the frequency of instability [107]. 

According to Ellis, inertial-reduction instability is most commonly experienced in actual 

applications. Also, Ellis cautions that some resonance problems are combinations of the 

two phenomena [107]. In such cases, the frequency of oscillation will be above, but still 

near, the natural frequency of the motor and load [107]. 

There are several mechanical and electrical cures for resonances; the reader can 

refer to [114]. The most common methods are: (1) to increase the motor inertia/load 

inertia ratio (JL/JM), (2) stiffen the transmission, (3) increase damping, and (4) apply 

filters. At a low JL/JM ratio, the resonance and antiresonance frequencies are close 

together at a high frequency. As Jl/Jm increases, both the antiresonance and resonance 

frequencies decrease, with the antiresonance frequency decreasing more rapidly. 

Increasing the damping between the motor and load coupling increases both the 

antiresonance and resonance frequencies. This method is used primarily for tuned 

resonance. Finally, adding low-pass filters to the system is the primary electrical 

approach. A filter is placed in the control loop to compensate for the change in gain 

represented by the compliant load [107]. By reducing the gain in the vicinity of the 

resonant frequency, the resonance can be reduced or eliminated. The disadvantage of 

using filters is their inherent phase lag. As a general guideline, to avoid instability 
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problems the desired closed-loop bandwidth should be kept well below the system 

resonance frequency. Also, the J l / Jm ratio should be less than 5 . 

3.4.2 Equations of Motion for Compliantly-Coupled Drivetrain 

For the oscillation system in the 12-Ft wind tunnel, the nominal compliance 

model is depicted in Figure 26. Table 5 describes the inertia constants and torsional 

damping and spring constants used in Figure 26. 

Tmotor\(1) 

Figure 26: Coinpliantly-Couple Drive Train 

Table 5: Description of constants 
Inertia Constants 

Name Description [kg*mA2] 
J motor Motor rotor inertia 
Jrtangle 1:1 right angle reducer inertia 
Jsumitomo 89:1 torque reducer inertia 
Jos Output shaft inertia 
Jsmf Sting mount flange inertia 
Jsting Sting roll inertia 
Jbal Balance roll inertia 
Jbal (metric) Metric side balance roll inertia 
J model Model inertia 

Torsional Damping Constants 
Bsting Sting viscous damping 
Bbal Balance viscous damping 

Torsional Spring Constants 
Ksting Sting spring constant 
Kbal Balance spring constant 
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Assuming that the transmission sections that are connected with solid lines are rigid, the 

inertias simply add. This allows the compliantly-coupled drivetrain model to be reduced 

to Figure 27. 

Gearing would be located here. 

Figure 27: Reduced compliantly-coupled drive train 

The following summed inertias are employed: 

^motor ^rt angle ^gearbox 

JEQ2=Jos+Jsmf 

J = / + / 
u EQi J sling ' u bal 

J EQ4 ~ J bal (metric) "Anod el 

The gearbox is located between the equivalent inertias, Jeqi and Jeq2, thus producing the 

equivalent inertia and torque given by: 
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T motor JEQ\ 
' V 2 

J EQ2 3 + (3.67) 

JEQ ~ JEQ\ 
' V 2 

J 

J EQ2 (3.68) 

T = 1EQ •T. (3.69) 

Referring to Figure 29, the equations of motion for an equivalent reduced compliantly-

coupled drive train can be written as follows, 

JEQ0\ = TEQ + Bsting fe - )+ K sting (02 ~ 6\) ^ ^ 
JEQ3 = Bbal fe _ 4 )+ Kbal (#3 ~ Bsting (A ~ Ksting (&2 ~ 3 ) 
JEQ4 = Tload ~ BbaI ify ~ Kbal (#3 ~ ) 

The resonant and anti-resonant frequencies were estimated between the motor 

and the load and then between the load and model (i.e. aerodynamic torque). The load 

inertia depends on the type of oscillation test and the type of sting being employed. 

During pitch oscillation testing, the 'bent' sting is employed; it has a higher inertia than 

the 'straight' sting which is typically used for roll oscillation testing. The antiresonant 
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and resonant frequencies for both a straight sting and bent sting are listed in the table 

below. The frequencies are also provided between the motor and the load and the load 

and the model. 

Table 6: Antiresonant and resonant frequency for a given sting type 
Straight Sting Bent Sting 

Motor + Load Load + Model Motor + Load Load + Model 
F A R [Hz] 523 282 76.6 41.6 

F R [ H Z ] 2293 286 2234 51.9 

The resonant frequencies are about the same for the straight and the bent sting. 

However, for the bent sting the antiresonant frequency is much smaller than the straight 

sting case. This is because of the increased inertia that causes the antiresonance and 

resonance frequencies to decrease. As mentioned previously, the antiresonance 

frequency decreases more rapidly than the resonance frequency. On the other hand, 

when examining the antiresonance and resonance frequencies between the load and 

model, the inertia ratio of the load and model is smaller. The smaller inertia ratio causes 

the resonance and antiresonance frequencies to be close to each other at a high frequency. 

These resonant frequencies are important because instability can occur if the 

oscillation test is operating near resonant frequencies. However, for this study the 

oscillation test frequencies are between 0.1 and 10 Hz. Therefore, instability issues from 

the compliance model are not expected. Also, since the spring constants between the 

motor and load and the load and model are very large (~104 Hz), both the antiresonance 

and resonance will increase. Consequently, the rigid body assumption can be applied to 

the model, and the motor torque equation becomes 
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f -KT \ 
T motor 

2 

(Bbal +Bsting) + •Tload. (3.71) 

The simplified model does not include spring constants. Also, Tioad represents the 

aerodynamic load from the test article. 

3.4.3 Geared Drives 

Electrical motors produce their maximum power at maximum speed (power = 

torque x angular velocity). Consequently, it becomes necessary to use gearing in order 

for these systems to drive large loads (requiring large torques) at low speeds [115]. 

Geared drives are beneficial because of their ability to produce rotational motion 

in heavy loads. However, gears introduce significant nonlinear characteristics that affect 

the performance of the driven mechanical system. Undesired effects are: 

1. Torsional vibrations, 

2. Cyclic rotational disturbances, and 

3. Backlash. 

These effects cannot be studied independently because they amplify each other and 

interact. Torsional vibration is a high frequency, very lightly damped oscillation. It is 

not sensitive to frequency changes in the drive systems. It is primarily generated from 

three main causes: (1) roll moment of inertia mismatches (of the motor's shaft) which is 

usually large compared to the combined motor, tachometer, and gearbox moment inertia 

[116]; (2) the jackshaft is usually long compared to the other shafts, and its couplings 

create a "springiness" effect in the system; (3) the tachometer is typically coupled to the 

motor or to the gear high-speed shaft. 
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Load disturbances are generally caused by a bent or misaligned motor shaft and 

mechanical misalignments [116]. The misalignments can cause either continuous or 

random error. Continuous error is caused by cyclic torque disturbances while random 

error is a type of "one-shot" error. 

Backlash is the most complex effect to analyze. Backlash is essentially "a lost 

motion in a gear train and the system reaction when such parts come back into contact" 

[112]. It is present in all mechanical systems that employ geared drives. It is a highly 

nonlinear phenomenon. Figure 30 illustrates the common backlash models. The right 

sketch represents the classical model, where backlash produces no torque output over a 

range of rotation angles and is represented as a piecewise-linear stiffness. The left sketch 

represents the hysteric effect of backlash. 

There are several challenges resulting from backlash. Backlash causes decoupling of all 

inertial elements from the drive system. Consequently, the system is only under control 

on the motor side of the gear drive. On the load side of the gear drive, the system is not 

being driven. The decoupling effect causes rapid torque transients and can excite 
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nonlinear torsional vibration [117]. Backlash can generate chaotic vibration depending 

on the system parameters and initial conditions [117]. Backlash can also interfere with 

speed regulators. It ruins the effectiveness of the controller and is recognized by torque 

changes in sign [116]. Backlash is multiplied by multiple gear reduction units. 

3.5 Summary 

In conclusion, this chapter was devoted to the theoretical developments required 

for understanding and modeling a forced oscillation wind tunnel testing system. The 

chapter developed the mathematical equations of motion for an aircraft under 

longitudinal motion. The classical stability derivatives were derived, and a few specific 

stability derivatives in pitch were discussed in detail. The important stability derivatives 

for forced oscillation are the in-phase and out-of-phase lift and pitching moment 

coefficients. The NASA Langley 12-fit Low Speed Wind Tunnel and its dynamic test rig 

were used as a representative wind tunnel for forced oscillation testing. The chapter 

detailed the system description and outlined how stability derivatives are determined 

from a wind tunnel experiment. The chapter concludes with an examination of the 

electrical components of the system. The equations of motion for a three-phase AC 

induction machine were developed. The motor's controller, field oriented control, and 

mathematical equations were defined and discussed. Specific details were given related 

to pulse width modulation, PID controllers and controller issues, filters, feedback 

devices, and controller actuator saturation. Finally, the chapter concludes with the 

discussion of mechanical resonance and compliance. Equations of motion are derived for 

the mechanical compliance model. A discussion of geared drives and their impact on 

dynamic systems was also provided. 
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CHAPTER 4 

METHODOLOGY 

4.1 Introduction 

This chapter describes how the data were generated using a Simulink computer 

model and how it was analyzed. The first phase of the chapter details the modular 

approach used to develop the computer model. The computer model was constructed in 

sections: aerodynamic model, motor model, control system, and the compliantly-coupled 

drivetrain system. The second phase of the chapter discusses how the computer 

simulation was verified and validated. Finally, the chapter concludes with a discussion of 

the design of experiments approach to analyzing the computer results. 

A flowchart of the methodology used for the overall approach is shown in Figure 

31. The conception phase consisted of defining the research objectives and constructing 

a conceptual model of the overall system. The conceptual model was validated by input 

from knowledgeable experts. The implementation section consisted of constructing a 

Simulink computer model based on the conceptual model, and an iterative process was 

then used to verify and validate the computer model. Finally, statistical testing was 

performed using the computer model along with design of experiments and Monte Carlo 

simulation. 



71 

Figure 31: Flowchart of overall approach 
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Five factors were used in the design of experiments study: equivalent inertia, 

equivalent damping, reduced frequency, backlash, and input saturation. Equivalent 

inertia was determined to be the total inertia between the motor and the load. The low 

factor limit represents the straight sting, and the high factor limit represents the bent 

sting. The equivalent damping factor limits were determined to be zero damping for the 

low factor limit. At the high factor limit, equivalent damping was determined to be the 

sum of the damping for bent sting and the balance. Reduced frequency factor limits were 

set by the operational limitations of the simulation. The backlash factor limits were 

reported by the manufacturer (Sumitomo). Finally, input saturation factor limits were 

estimated from NASA experimental data by examining angle of attack time histories for 

saturation levels. The low limit assumes no saturation was present. The high limit 

assumes saturation was present. Values are provided later in the chapter. 

4.2 Computer Simulation - A Modular Approach 

A modular Simulink implementation of a forced pitch oscillation system is 

described in a step-by-step approach based on the detailed conceptual block diagram 

(shown in Figure 32, and the mathematical development in Chapter 3). 

Simulink was chosen over other modeling packages because of the ease in 

modeling transients of electrical machines, implementing other components (i.e. 

aerodynamics), modeling mechanical drives, and developing drive controls. 

There are three specific pitfalls for using a computer simulation with electrical 

motor models [118]. The first tip is not to use derivative blocks, since some signals have 

discontinuities and/or ripple that result in infinite solutions when differentiated. Integral 

and basic arithmetic elements should be used instead. The second pitfall is algebraic 
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loops. Algebraic loops typically appear in a system that has feedback loops. Simulink 

attempts to solve the algebraic loop, and if it cannot find a solution, the simulation 

terminates. Adding a memory block can break up the algebraic loop. It delays the input 

signal by one sampling time step; however, this can affect the operation of the system, so 

algebraic loops should be avoided. The final pitfall is to avoid large sampling times. A 

rule of thumb is that the sampling time should be no larger than 1/10 of the smallest time 

constant in the model. For a system with an induction motor and drive, the smallest time 

constant is typically selected based on the switching frequency of the associated pulse 

width modulation. 

Plant 
PXI: RTC 

Figure 32: Detailed forced oscillation system conceptual block diagram 

4.2.1 Experimental Aerodynamic Model 

Initially, two aerodynamic models were developed following the work of Katz 

[119]; however, neither model had the required fidelity needed to represent the 
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experimental data because of incomplete physics such as separation effects [119]. An 

unsteady vortex lattice code and a simplified slender pitching delta wing were tried but 

were found inadequate. 

Due to the lack of viable CFD codes for predicting high angle of attack and 

unsteady aerodynamic effects for an entire aircraft, this study implemented an 

experimental model data set. Experimental data were obtained from NASA LaRC 12-ft 

Low Speed Wind Tunnel experiments during the 1990s [76]. The model, depicted in 

Figure 33, was a 10% scale model of an F16-XL aircraft. Data were collected for 

longitudinal static tests, oscillatory tests, and ramp tests and was provided by Murphy [4], 

A regression based computer model was developed using the experimental data. 

.31 

1 

5 = 0.557 m2 

b = 0.988 w 

c = 0.753w 

1.45 

Figure 33: Three-view sketch of 10% scaled F16-XL aircraft model (units in metric system) 
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The total lift and pitching moment coefficients are based on the sum of the 

contributions from the static and dynamic parts of lift and pitching moment coefficients 

such that 

Cr =CL +CL Hota! ^static udvn 

c = c + c • (4-1} 
mlotal msta:ic md)'n 

The static contributions were obtained from the tabulated data, represented 

graphically in Figures 34 and 35. The tabulated static coefficient data is contained in 

Appendix A. The figures were generated using the computational code in Appendix B. 

If necessary, linear interpolation could be used to obtain values for the coefficients for 

angles of attack not listed in the table. The static data were implemented in Simulink 

using a "look-up table" block. The block performs a 1-D, linear interpolation of input 

values using a specified table. The block was limited so that it could not perform 

extrapolations outside the boundaries of the table. 
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Noting that the incremental lift coefficient is the dynamic lift coefficient contribution, 

Equation 3.3 can be rewritten: 

CLa = aA (cLa sin OX + kCL^ cos ox). (4.2) 

Similarly, Equation 4.2 can be written: 

= CL„aA sin 01 + CL,aA 
fcco^ 
y2Vy 

COS OX (4.3) 

Assuming the forcing function is based on harmonic motion where 

0 = aA sin cot 

0 - a „co cos cot 

Substituting these relations into equation 4.3 results in 

(4.4) 

c, =c,o+ 
^dm La 

f c ^ 
\2Vj 

c, e (4.5) 

Following the same procedure, the dynamic contribution for pitching moment coefficient 

is 

cm =cme+ mdyn ma 

' c ^ 

Y2VY 
c e yyi

 v 
9 (4.6) 

The dynamic stability derivatives are obtained from experimental data. Those data are 

also tabulated in Appendix A. For this study, the dynamic stability derivatives were 

obtained at an angle of attack of 30.8°, using a linear regression model fit, as represented 

in Figures 36-39. The linear regression model fits utilized the method of least squares. 

Linear in this case means that the regression coefficients are constant. The coefficient of 

determination, R , was used to determine the 'goodness' of the fit [140], The in-phase 

and out-of-phase lift and pitching moment coefficient regression models are: 
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and 

C, = 82.2A:3 - 15Ak2 + 23.3k - 0.387 

CL = —1128A:3 + 1005&2 — 298& + 31.6 

C_ =6.82r-8.17it2+3.19ifc-0.0191 

(4.7) 

(4.8) 

(4.9) 

C_ = -274&3 + 228k2 - 62.9k + 5.48 . (4.10) 

2.4 r 

2 . 2 L 

1.8 

O C u (bar) 

cubic fit 

1.4 

1.2 

0.6 

0.4 L 

y = 82.18'x3 - 75.359*x2 + 23.299*x - 0.38713 

R2 = 0.9999 

0.05 0.1 0.15 0.2 0.25 
Reduced Frequency, k 

0.3 0.35 0.4 

Figure 36: Variation of in-phase lift coefficient with reduced frequency 
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cubic fit 

R2 = 0.9999 
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Figure 37: Variation of out-of-phase lift coefficient with reduced frequency 

0.45 

O C ^ t b a r ) 

cubic fit 

0 . 1 — 
0.05 

R2 = 0.9988 

0.2 0.25 0.3 
Reduced Frequency, k 

0.35 0.4 

Figure 38: Variation of in-phase pitching moment coefficient with reduced frequency 



80 

3 

2.5 

2 

1.5 

0.5 

0 

-0.5 

- 1 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Reduced Frequency, k 

Figure 39: Variation of out-of-phase pitching moment coefficient with reduced frequency 

Finally, the total lift and pitching moment coefficients are determined by 

summing the static and dynamic contributions of the coefficients. Next, the static 

contributions of lift and pitching moment coefficients are subtracted from the total lift 

and pitching moment coefficient. This results in the dynamic contribution of the 

coefficients. The dynamic part is then integrated using the procedure outlined in the 

previous section to obtain the in-phase and out-of-phase lift and pitching moment 

coefficients. 

The implementation of the Simulink model is represented in Figure 40. The 

inputs are the static angle of attack, reduced frequency, angular position, and angular 

velocity. The outputs of the aerodynamic model are the total lift coefficient and total 

data 1 
cubic 

y = - 273.5*x3 + 227.79*x2 - 62.931 *x + 5.4773 

J L p2 _ 0 gggg 
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pitching moment coefficient. The block in Figure 40, titled Dynamic Part, is a user-

defined function. It simply contains Equations 4.7-4.10 that represent the dynamic 

contribution of the coefficients. 

Constant 1 

Figure 40: The complete aerodynamic Simulink model 

4.2.2 Three-Phase AC Motor Model 

The mathematical theory for this section was developed in the previous chapter. 

The equations of motion for a squirrel cage induction motor in state-space were 
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developed for the d-q reference frame. This section of the implementation follows the 

work of Ozpineci and Tolbert [118]. 

The motor model is an open-loop system. The inputs are: three-phase voltages, 

their fundamental frequency, and the load torque. The outputs are: three-phase currents, 

the electrical torque, and the rotor speed. 

Current Feedbacks 

Van (V] 

Vbn [V] 
Vqs [V] 

Vcn [V] 

cos(theta _e) 
Vds [V) 

sin(theta_ e) 

e [rad/s] theta_e frad] 

ABC-SYN 
Conversion 

Rotor Angular 
Posit ion Estimation 

sin(theta_e) -

Unil Veclors 

Tload 
(N*m) 
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Induction Motor 
Equations of Motion 

-K_5J 
wr [ rad / ^ 

G o t o l 

• 
iqs [A] ia [A] 
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ib [A] 

cos(theta_e) 

sin(theta_e) ic [A] 

ia [AJ 

K 2 ) 
ib [A] 

ic [A] 

SYN-ABC 
Conwreion 

Figure 41: The complete induction machine Simulink model 

The line to the neutral conversion block is required for an isolated neutral system; 

otherwise, it can be bypassed [118]. The transformation is given by Equation 4.11 and is 

represented by the Simulink matrix gain block, shown in Figure 42. 

Van 
\+2/ 

/ 3 - 1/ 
/ 3 

- V / 3 
Vb„ - - V 73 + 2 / / 3 - 1/ 

/ 3 Vbo (4.11) 
Vc»_ - V 

/ 3 
- 1/ 

/ 3 
+ 2 / 

/3_ -Vco_ 
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Vao [V] 

Vcn [V] 

NOTE : 
This section is required for an isolated 
neutral system , otherwise it can be bypassed . 

Figure 42: Line-to-Neutral Conversion Simulink model 

The next block is the Rotor Angular Position Estimation. The rotor angular 

position is computed directly by integrating the frequency of the three-phase voltages 

input, CGe- Subsequently, the unit vectors are computed by simply taking the sine and 

cosine of 0e. 

6e = \(Oedt (4.12) 

Constant 

Estimates the rotor angular 
position . The estimation is 
required to calculate the unit 
vectors. If necessary the initial 
rotor position can be inserted 
in the "integrator" block. 

***Note that the result of the integration 
is reset to zero each time it reaches 2*pi 
radians so that the angle always varies 
between 0 and 2*pi. 

Figure 43: Rotor Angular Position Estimation Simulink model 



84 

( 1 h 
theta-e 

— • sin — 

Trigonometric 
Function 

- • d 1 ) 
s i n ( t h e t a e ) 

Trigonometric 
Function 1 

- X 1 ) 
cos(theta_e) 

Computes the unit vectors . I 

Figure 44: Unit Vector Simulink model 

The ABC-SYN conversion block converts the three-phase voltages to the two-

phase synchronously rotating frame. Using subscript s to refer to the stationary frame, 

the three-phase voltages are converted to the two-phase stationary frame using: 

qs 

ds 

1 0 0 
1 

0 y/3 a/3 
"bn (4.13) 

= v^ cos v i s i n g 
(4.14) 

The equations are implemented into Simulink using a simple matrix gain and sum and 

product blocks. 
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Column 1 
Park Transformation 

Figure 45: ABC-SYN Conversion Simulink model 

The SYN-ABC Conversion block is similar to the ABC-SYN Conversion block. 

The block converts the current in the synchronous rotating frame to the stationary frame. 

C =iqscos0e + idlsmee 

4 =-itpsia0e + itbcos0e 
(4.15) 

1 0 
-1 S c 
T 2 J* 
- l s 
2 2 

(4.16) 

Then the currents are converted from the stationary frame to the three-phase current using 

Equation 4.16. The Simulink model is similar to Figure 45 (see Figure 46). 
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Figure 46: SYN-ABC Conversion Simulink model 

The state-space equations derived in the previous chapter are implemented using 

discrete blocks as represented in Figure 47. The flux linkages in the Simulink model are 

represented by Equations 3.100-3.103 under column 1 in the figure. Column 2 

implements the magnetizing flux linkages using Equations 3.92 and 3.93. Column 3 

implements Equations 3.94-3.97 to compute the currents. Finally, column 4 and column 

5 implement the electrical torque and rotor angular velocity computations using 

Equations 3.98 and 3.99. 
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Column 4 

Torque 

Figure 47: Three-phase AC Induction Machine Dynamic model implementation in Simulink 

Xml 7Xlr 

Figure 48: Implementation of Fqs, see Equation 3.49 
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4.2.3 Control System Model 

The control system for the motor and drive is based on an indirect vector control 

scheme. The overall implementation is depicted in Figure 49. The inputs are the 

commanded rotor angular velocity and the load torque. The outputs are the three-phase 

currents, electrical torque output, and the feedback rotor angular velocity. 

The main objective of vector control is to independently control the developed 

torque and flux, like a DC motor with separately excited states; see Figure 50. The 

current is fed back from the induction machine motor block. Slip is computed in an 

indirect manner via Equation 3.105. The inputs to the controller are the commanded and 

feedback rotor velocity. The system then controls the velocity with a PI controller, and 

saturation limits constrain the motor's maximum speed - 377 rad/sec. Thereafter, it is 

controlled independently with two PI controllers, and saturation limits were set to ±1 A. 

It should be noted that a PID controller is later added to the overall system to control the 

position. 

Figure 49: Overall indirect vector control Simulink model 
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CD-
Sum Velocity 

PI Controller 

velocity 

Current Feedback 

stator voltage 
q-axis output 

Current 
PI Controller 

Saturation 1 
Vqs* [V] 

current iqs 

fluxr |u| 
1 1 

fluxr |u| I u 
Absolute Peak 

Rotor Flux 
Reciprocal 

Figure 50: Vector control block in Simulink 

wsl [rad/s] 

The command voltage generator block generates the necessary three-phase 

voltages to power the motor after it passes through the pulse width modulator. Figure 51 

is the Simulink model necessary for that implementation. 

R o t o r A n g u l a r 

P o s i t i o n E s t i m a t i o n S Y N - A B C 

C o n v e r s i o n 

Figure 51: Command voltage generator block in Simulink 
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The pulse width modulation (PWM) inverter is modeled as a series of switches. 

The PWM assumes a sine-triangle which works by switching both upper and lower 

switches on each leg of the inverter as shown in section 3.3.4. The switch frequency was 

assumed to be 10 kHz with a duty cycle of 50%. For example, Vao is controlled based on 

the following rules: 

If C>vref, 
then TaX on & Ta2 off 

otherwise 
Tai off&Ta2 on 

The steps are the same for the other voltages. 

1 r -

DC Voltage 1 

Vdc/2 

DC Voltage 2 

LAJ-
Vbo*[V] Relational 

Operator 1 

-X_2_) 
Vbo [V] 

-Vdc/2 

DC Voltage 3 

Vdc/2 

DC Voltage 4 

(_ 4 )— 
Vco*[VI 

Vco [V] 

-Vdc/2 

DC Voltage 5 

Figure 52: Pulse-width modulation block in Simulink 
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4.2.4 Compliantly-Coupled Drivetrain Model 

The compliantly-coupled drivetrain model was simplified based on a rigid body 

assumption. Equation 3.122 was used with simple "add" and "multiplication" blocks to 

compute the torque load. The torque load is determined by the pitching moment from the 

aerodynamic model. 

4.2.5 Sources of Instability in Simulation 

There are several sources of instability that can either prevent the simulation from 

running or produce erroneous results. An obvious source is incorrect wiring which in 

turn creates positive feedback. The second source is due to an excessive phase lag 

around the loop. It typically occurs at one frequency and will have a phase lag of 180° 

which will cause a sign reversal and create positive feedback. However, this alone will 

not cause instability. The loop gain must also be equal to unity. Loop gain is the sum of 

the gains of individual blocks. Consequently, no models of the system encoder or the 

tachometer are represented in the overall simulation because that prevents the loop gain 

from achieving unity. The third source of instability is caused by phase lag. Typical 

components such as an integrator will have a -90° phase lag, low-pass filters have -45° 

phase lag, and a PI controller will have a phase lag between 0° and 90°. The final source 

of instability is due to margins of stability in a closed loop system. The system becomes 

unstable when the loop gain is 0 dB and the phase is -180°. 

A closer look at the behavior of an integrator will show that the gain decreases as 

frequency increases, and ultimately the integrator will have a constant phase lag of -90°. 

See Figure 53 for an example. 
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Bode Diagram 
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m 
S -5 0) •o 
'1 "10 
CD 

-15 

- 2 0 

-89 

-89.5 
3 0) • 
5T -90 

Q. 
-90.5 

-91 
1 2 3 4 5 6 7 8 9 10 

Frequency (rad/sec) 

Figure 53: Bode plot of a generic integrator 

The PI controller characteristics are shown using a simple Bode plot made for a 

generic PI controller. The controller was assumed to be a first-order system with a gain 

of K = 1 and a time constant of x = 2 [106]. 

G { s ) = K f a ± 1 ) (4.17) 
© 

When the system is operating below its break frequency the phase is -90°; the integral 

term is dominating, and the gain will fall with frequency, as shown in Figure 54. Above 

the break frequency, the phase lag is 0°, and the proportional gain term is dominating. 

The gain of the controller is flat with frequency. In transition the phase climbs. 
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Figure 54: Bode plot of a generic PI controller 

Low-pass filters are used primarily to remove noise and resonance from a variety of 

sources. However, they can cause instability via phase lag at the gain crossover 

frequency. The low-pass filter is represented by a simple RC circuit, as shown in Figure 

55, where R is the resistance and C is the capacitance. 

Figure 55: RC circuit 

An example response diagram for a generic 45 Hz low-pass filter is shown in Figure 56 

where the filter is a first-order transfer function given as: 
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This filter allows content to pass below 45 Hz and excludes frequencies higher than 45 

Hz. The major issue with using filters is the phase change associated with frequency. It 

is clear to see that even at low frequency the phase is not 0°, and it changes significantly 

over the full frequency range. This change in frequency is problematic because it 

introduces instability into the system. This type of low-pass filter based on an RC circuit 

design is not very efficient. Also, the filter circuitry is buried within the motor's 

electronics; therefore, the simple RC circuitry may not accurately represent the true 

filtering process used. The true representation of the filter is unknown to the author 

because the manufacturer is not forthcoming with detailed information. 

Bode Diagram 

0 
-5 - 3 d B -

- 1 0 

1 5 Cutoff Frequency slope: 
" -20 dB/decade 

- 2 0 1 

-25 

-30 

Passband Stopband 
-35 0 

-90 
10' 

Frequency (rad/sec) 

Figure 56: Generic 45 Hz low-pass filter Bode plot 
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In the actual representative model of the dynamic rig there are two low-pass 

filters present - 11 Hz low-pass and 5192 Hz low-pass filter. See Figures 57 and 58, 

respectively. The filters caused instability in the overall system by introducing positive 

feedback. Consequently, the filters were removed from the full system model. 

- 1 0 

-40 0 

-90 0 1 2 3 4 
10 10 10 10 10 

Frequency (rad/sec) 

Figure 57: 11 Hz low-pass filter Bode plot 

o • 

m 
v 

" § - 2 0 

2 -30 

-40 0 

-90 2 3 4 5 
10 10 10 10 

Frequency (rad/sec) 

Figure 58: 5192 Hz low-pass filter Bode plot 
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4.2.6 Overall Computer Model 

The overall computer model block diagram is illustrated in Figure 59 showing a 

small number of components added to the system. Starting from the left side of the 

figure, an input saturation block is placed after the commanded angular position block to 

cause saturation on the input, consistent with experimental data for forced oscillation 

tests. The gear drive was added to amplify the command that the motor would "see." In 

the physical system the motor "sees" a torque amplification through the gear drive. The 

PID controller was added for the position control loop. Encoders and tachometers were 

assumed to have unity gain. The aerodynamic model is located in the "if action 

subsystem" block. Introduction of aerodynamic forces and moments is delayed by 0.15 

sec to allow motor start-up transients and to avoid discontinuities. Backlash is 

proportional to the angular velocity and is placed ahead of the aerodynamic model. The 

aerodynamic model is subjected to commanded position and velocity on the other side of 

the gearbox. Finally, the compliance model uses the total pitching moment and the 

equivalent damping in order to compute the torque load. The torque load is fed back to 

the motor. The input reference voltage was assumed to be a triangular waveform 

operating at 10 kHz - the VCOntroi block [120], Finally, the data were saved to the 

workspace as matrices, CLdata and CMdata, and "scopes" were added for visual 

diagnostics. 
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4.3 Computer Simulation Model Verification and Validation 

When using any computer model, the primary issue is credibility of the simulation 

model. Every computer simulation must be verified and validated (V&V). There are 

various definitions for the terminology of verification and validation [121-126]. This 

study follows the definitions provided by Sargent [126]. Model verification is defined as 

"ensuring that the computer program of the computerized model and its implementation 

are correct" [126], Model validation is defined as "substantiation that a computerized 

model within its domain of applicability possesses a satisfactory range of accuracy 

consistent with the intended application of the model" [126]. 

Figure 60 describes graphically the verification and validation process related to 

model development. The "problem entity" block is the real system (i.e. forced oscillation 

dynamic test rig). The "conceptual model" block is the block diagram representation of 

the real system. The "computerized model" block is the mathematical representation of 

the real system. 

Problem Entity 
(System) 

Computerized 
Model 

Computer Programming Conceptual 
Model and Implementation 

Computerized 
Mode) 

Verification 

Figure 60: Simplified verification and validation process [126] 
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The task of conceptual model validation determines if the theories and assumptions of the 

conceptual model are correct. A complete list of all the theories and assumptions used in 

the computerized simulation model of the pitch oscillation system is provided in 

Appendix C. It also includes determining if the model representation of the real system is 

"reasonable." The computerized model is verified by assuring that the implementation of 

the conceptual model is correct. The task of operational validity is to determine if the 

model's output behavior is sufficient. Finally, data validity is defined as "ensuring that 

the data necessary for model-building, model-evaluation and testing, and conducting the 

model experiments to solve the problem are adequate and correct" [126]. 

There are no standard methodologies for V&V. A survey of V&V methodologies 

varied greatly from application to procedure used, to a combination of techniques; a few 

detailed examples are provided by [124, 126, and 127], Verification typically relies on 

good programming practices, checking intermediate simulation outputs, statistical testing, 

and animation [124]. Examples of the various validation techniques range from: 

animation, comparison to other models, degenerate tests, event validity, extreme 

condition tests, face validity, historical data validation [128-130], rationalism, 

empiricism, internal validity (i.e. replication of stochastic models), multistage validation 

[131], operational graphics, sensitivity analysis, predictive validation, traces, and Turing 

tests [123]. 

This study uses a combination of techniques for V&V drawn primarily from the 

work of Kleijnen 1995, Sargent 2007, and Oberkamf et al. 2004 [124, 126, and 127], The 

V&V process used in this study is an iterative approach. Some steps require validation 

before verification; then the computerized model can be validated. For example, the 



conceptual model needs to be validated, and then the simulation model can be verified 

and validated. The verification techniques used to determine if the simulation program 

performs as intended follow these steps: 

1. Proper validation of conceptual model. Validity is determined by: 

a. The theories and assumptions underlying the conceptual model are correct, 

and 

b. The model representation of the physical system is mathematically correct and 

"reasonable" for the purposes of the model. 

2. Certify that the computerized model reflects the physical system based on the 

conceptual model. For example, if the actual system is nonlinear, then those 

nonlinear characteristics must be reflected in the equations of motion underlying 

the model. 

3. Ensure that the simulation is error free and the model has been programmed 

correctly in the simulation language. 

4. Verification of object-oriented software (i.e. Simulink and Lab VIEW) systems by 

determining that the simulation functions and the computer model have been 

programmed and implemented correctly. 

The validation technique used to determine whether the computerized model was an 

accurate representation of the system consisted of using benchmark cases at the 

component level and then at the whole-system level. The validity of the operational 

system was determined by exploring the model behavior. 
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4.3.1 Simulink Model Verification and Validation 

The Simulink model of the forced oscillation test rig was verified by ensuring the 

subsystem models (i.e. AC motor, control system, aerodynamic model, etc.) were 

programmed correctly and implemented properly. The model was also verified by 

comparing the conceptual block model and the real representative system with the 

Simulink model in order to ensure that mistakes have not been made in implementing the 

model. An input saturation block was added to the overall system to represent the noted 

position saturation identified in experiments by Kim et al. [10]. The aerodynamic 

subsystem model was time delayed by a specified amount because of a very large start-up 

torque transient at the beginning of the simulation which causes the overall system to fail. 

Various validation techniques are available and found throughout literature; an 

excellent survey of popular techniques is available from Sargent [126]. It can also be 

used in a subjective (i.e. observation) or objective (i.e. some mathematical procedure) 

evaluation. Typically, a combination of techniques is used. The techniques can be 

applied to either a submodel and/or an overall model. This study employed a multistage 

validation approach where the following were carried out: face validity, historical data 

validity, operational validity, process validity (black- and white-box testing), graphical 

validity, and comparison to other models validity (with benchmark cases). 

Face validity consisted of asking knowledgeable individuals about the system 

whether the model and/or its behavior are reasonable. For example, Murphy identified 

mistakes in the aerodynamic coefficient trends and inappropriate magnitudes [4], The 

errors were traced back to the original aerodynamic model from Katz and Plotkin, 
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determined to be an unrealistic representation. The aerodynamic submodel was updated 

using experimental data for an F-16XL and then verified and validated. 

Historical data validation employs available experimental data to build the model, 

and the data is used to determine whether the model behaves as the physical system does. 

Experimental data was used to validate the aerodynamic submodel; see Figures 61-64. 

The experimental NASA data are represented by the lines in the figure, and the 

aerodynamic submodel predicted result cases are represented by the symbols. Since this 

data serves as the baseline and measurements will be made as increments from the 

baseline, the procedure was deemed adequate. Numerical trapezoidal integration was 

used to determine the coefficients. The procedure can either overestimate or 

underestimate the true value of the experimental data depending on the sign of the error 

[132]. The computational code used for validation of the responses is provided in 

Appendix B. 
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Figure 61: In-phase lift coefficient validation 
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Figure 62: Out-of-phase lift coefficient validation 
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Figure 63: In-phase pitching moment coefficient validation 
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The AC motor submodel was validated by comparing the submodel to a 

benchmark case. This type of validation uses various output results of the simulation 

model and compares it to other validated models. The benchmark case was a 10 Hp 

motor with results provided by Ozpineci and Tolbert [118]. The current model 

reproduced the results provided by the benchmark case, as shown in Figure 65. 
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Figure 65: Characteristic behavior of 10 Hp AC motor with specified commanded velocity and load torque 
(reproduction of article results [118]) 

The performance of the compliantly-coupled drive train cannot be validated 

independently because its parameters are dependent on other parameters such as the load 

torque. The computerized model of the drive train is validated during operational and 

process validation of the overall system. 
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Operational and process validation goes hand in hand in this study. Operational 

validation uses either a subjective or objective approach. The dynamical behavior of the 

system is displayed visually as the simulation model proceeds through time to ensure 

dynamic similarity [126], This study explored the model behavior for various reduced 

frequencies. It was determined that the model was accurate and operational for a reduced 

frequency range of 0.081 to 0.1. At higher reduced frequencies, there were problems due 

to controller gains. An example is provided in Figure 66. It is possible, even likely, that 

the real system is scheduling gains depending on frequencies. Queries to NASA users of 

the FOS led to discovery that the microprocessor controller was performing scheduling 

gains. 

Figure 66: Commanded and feedback position for different reduced frequencies (k = 0.081 left side and k = 
0.135 for right side) 

Validating the overall computer model is a black-box approach because all of the 

internal relationships cannot be measured directly. Consequently, validation is based on 
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prediction and not explanation. This final step was completed by using a design of 

experiments approach. 

4.4 Design of Experiments Approach 

4.4.1 Statistical Principles 

The foundation of design of experiments is based on the use of statistical 

principles and regression modeling. The terminology of experimental design is not 

uniform across disciplines. Factors are defined as controllable experimental variables 

that are thought to influence the response(s). The response(s) are defined as the outcome 

or result of an experiment. Responses can be quantitative or qualitative. Statistically 

designed experiments are efficient in the sense that they are economical in terms of the 

number of test runs that must be conducted, testing, efficiency. Moreover, individual 

interaction as well as interaction between factor effects can be evaluated. They allow one 

to measure the influence of one or several factors on a response. They allow the 

estimation of the magnitude of experimental error. When experiments are designed 

without adhering to statistical principles, they usually violate one or more design goals. 

The statistical principles are based on a few classical assumptions, residuals are 

normally and independently distributed (NID(0,o )): (1) normality, (2) independence, and 

(3) constant variance [133]. The normality assumption assumes that the residuals have a 

normal distribution centered at zero using a normal probability plot (NPP). If the residual 

distribution is a normal distribution, then the NPP will resemble a straight line. A 

moderate departure from the norm does not imply the assumption is no longer valid. 

However, gross departures can be potentially serious. The independence assumption 

checks for correlation between the residuals. Independence is determined by plotting the 
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residuals in time order to detect correlation. Proper randomization of the experiment is 

necessary to avoid violating the independence assumption. The constant variance 

assumption assumes that the residuals are structure-less and bounded and not related to 

any other variable including the predicted response [133]. A simple check is to plot the 

residuals against the predicted response. 

4.4.2 Common Design Problems 

When the statistical methodology is not used to design engineering experiments, 

several common problems occur. Experimental variation can mask factor effects. 

Questions arise if the factor effect is measuring a true difference in the population. A 

second problem that occurs is the effect of uncontrolled factors on the response which 

could compromise the experimental conclusions. Erroneous principles of efficiency lead 

to unnecessary waste of resources or inconclusive results. Finally, scientific objectives 

for many-factor experiments may not be achieved with one-factor-at-a-time designs. 

4.4.3 2k Factorial Designs 

Factorial designs are the most efficient for experiments with two or more factors. 

The general model for a two-factor design is 

y - Po+ P\X\ + PlX2 + P\2X\2 +••• + £ • (4.19) 

A 2k factorial design is a design with k factors, each at two-levels. The statistical model 

for a 2k design would include k main effects, two-factor interactions, three-factor 

interactions, and so forth up to a single k-factor interaction. The general approach to 

analyzing a factorial design is given by Table 7. 
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Table 7: Analysis Procedure for a 2k design [133] 
1. Estimate factor effects 
2. Form initial model 

a. If the design is replicated, fit the full model 
h. If there is no replication, form the model using a normal probability plot of the 
effects 

3. Perform statistical hypothesis testing to identify significant terms in model n 
4. Refine model - use summary statistics, such as R 
5. Analyze residuals 
6. Interpret results 

Estimating the factor effects and examining their signs and magnitudes gives 

preliminary information regarding which factors and interactions are significant. The 

analysis of variance (ANOVA) is used to formally test for significance of main effects 

and interactions; see Table 8. An F-test is used to judge the degree of change in the 

response due to changing a factor level. The F-test can be thought of as a signal/noise 

ratio. A factor effect change is compared to random errors. Montgomery has given a 

detailed analysis of computing the sum of squares, mean square, and F-value [133]. The 

model is refined generally by removing any non-significant factors from the full model. 

Finally, the analysis is completed by analyzing the residuals for model adequacy and 

checking the assumptions. Interpreting the results usually consists of reviewing response 

surface plots or the resulting regression models. 
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Table 8: Symbolic Analysis of Variance for a 2k Design [133] 
Source of Variation Sum of Degrees of Mean F-Value 

Squares Freedom Square 
k main effects 

A SSA 1 MS a F a = MSa /MSe 
B SSB 1 MSb F b = MSB/MSE 

K SSk 1 MSk F k = MSK/MSE 
two-factor interactions 

A B SSAB 1 MSAB FAB=MSab/MSe 
A C SSAC 1 MSAC FAC=MSac/MSe 

J K SSJK 1 MSJK FJK= M S J K / M S E 

three-factor interactions 
A B C SSABC 1 MSABC FABC = MSABC /MS E 

A B D SSABD 1 MSABD F A B D = M S A B D / M S E 

I J K SSIJK 1 MS i j k FIJK= MSUK /MSE 

k-factor interaction 
A B C . . . K SSABC...K 1 MSABC..K FABC...K = 

MSABC.. .K /MS e 

Error SSE 2 V D MSe 
Total SST n2k-l 

Center points are usually added to a factorial design that will "provide protection 

against curvature from second-order effects as well as to provide an independent estimate 

of error" [133], Replicated runs for an experimental design are often chosen at the center 

of the design space because they do not affect estimates in a 2k design. However, it 

should be pointed out that replication is not necessary when an experiment under 

consideration is deterministic (i.e. computational). 

4.4.4 2k"p Fractional Factorial Design 

As the number of factors increases in an experiment, the number of test runs 

becomes resource intensive. If it can be assumed that high-order interactions are 

negligible, then a fractional factorial design can be used to model the main effects and 



I l l 

low-order interactions. The primary use of fractional factorials is for screening 

experiments. The goal is to identify the significant factors that have large effects out of 

many potential factors. The use of fractional factorials is based on three key principles 

[133]: (1) the sparsity of effects principle, (2) the projection property, and (3) sequential 

experimentation. The sparsity of effects principle is based on the idea that a system is 

likely to be driven primarily by main effects and low-order interactions [133], If 

necessary, the fractional factorial design can be projected into a more robust design in a 

subset of significant factors [134], It is also possible to combine subsets of runs of two 

(or more) fractional factorials to assemble sequentially a larger design to estimate the 

factor effects and interactions of interest [133]. 

When using a particular fractional factorial design the effects can be aliased; 

aliasing refers to correlation of factors in model estimates. Therefore, design resolution 

becomes important. For resolution III designs, no main effects are aliased with any other 

main effect, but main effects are aliased with two-factor interactions and some two-factor 

interactions are aliased with each other [133], An example is the 2^'design - a 23"1 

fractional factorial with a resolution III design. For resolution IV designs, no main 

effects are aliased with any other main effect or with any other two-factor interactions. 

However, the two-factor interactions are aliased with each other. An example of a 

resolution IV design is . The resolution V design has no main effects or two-factor 

interactions aliased with any other main effect or two-factor interactions, but two-factor 

interactions are aliased with three-factor interactions [133]. An example of a resolution 

V design is 25~l. The size of the fractional factorial is determined by the highest possible 
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resolution. The analysis procedure is the same as described in the factorial design 

section. 

4.4.5 Central Composite Designs 

Classical central composite designs (CCD) represent the most popular class of 

second-order designs used in response surface methodology (RSM). It was introduced by 

Box and Wilson (1951). A graphical representation of a CCD is shown in Figure 67. 

The CCD design involves F factorial points, 2k axial points, and nc center runs. The 

distance of the axial points varies from 1.0 to 4k [134], 

(V2,o) 

(-U) t 0.1) 

(0-V2) 
0,0 

(0, V2) 

(-1-1) ^ (1,-0 

(-V2,o) 

Figure 67: General example of central composite design for k = 2 and or = V 2 [134] 

Central composite designs allow for a second-order model to be fitted to the experimental 

data; see Equation 4.20. 

y = Po + Z / U +X/W +YLPvxixi + f (4-20) 
i=l i=l i* j 

The central composite design is popular because of three properties. A CCD can 

be run sequentially. This is particularly desirable when curvature is present. For 
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example, a data set can be partitioned into two subsets. The first subset estimates linear 

and two-factor interaction effects while the second subset estimates curvature effects. 

CCDs are very efficient. They provide information on the variable effects and overall 

experimental error in a minimum number of required runs. CCDs are very flexible in that 

axial points distances can be varied. The flexibility is useful when different experimental 

regions of interest and regions of operability are being studied. 

Generally, CCDs have the desirable property of rotatability. It is important for a 

second-order design to possess reasonably stable distribution of the scaled prediction 

variance, ./Vvar[y(jc)]/cr2 [134], This is a critical property because one will not be sure 

where in the design space accurate predictions are required. However, there are 

situations where design variable ranges are restricted. Consequently, examples of a few 

other types of CCD designs that have been used are: face-centered (FCD), circumscribed, 

and inscribed [134], 

4.4.6 Hybrid Designs 

The final design chosen for the study is called an embedded central composite 

face centered design with a 25"1 fractional factorial with resolution V. The principle of an 

embedded FCD is illustrated graphically in Figure 68. With more factors, the embedded 

FCD geometry becomes hypercubes with higher-dimensionality. The extremes of the 

factor levels are set on the perimeter of the outer box. The nested factor levels are set on 

the perimeter of the inner box. The design is augmented to include axial points and a 

center point. This design allows for pure cubic terms to be modeled in addition to the full 

quadratic model of Equation 4.1. The variance inflation factor (VIF) is used to quantify 

the degree of correlation between variables in the model [135], Generally, a VIF less 
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than 10 is desirable. For this study, the VIF ranged from 1 to 9 depending on whether the 

term was a first-order, quadratic, or cubic. 

B+ 

B-

outer axial point 

inner axial point 

inner factorial point 

outer factorial point 

Figure 68: Nested face centered design in two factors [135] 

It should be stated that face centered designs are not rotatable. However, it is generally 

not a priority when the region of interested is cubical [134]. Adding one or two center 

run points is sufficient to produce reasonable stability in predicted variance. 
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Table 9: Factor limits 

Factor Units 
RSM low 

(outer) 
RSM low 

(inner) 
RSM 
center 

RSM high 
(inner) 

RSM high 
(outer) 

A 
B 
C 
D 
E 

kg*m 
N-m-s/rad 

arcmin 
rad 

0.0001729 
0.0000000 
0.0810000 
2.0000000 
0.0809000 

0.0002944 
0.0020140 
0.0857500 
4.0000000 
0.0856775 

0.0004159 
0.0040280 
0.0905000 
6.0000000 
0.0840850 

0.0005374 
0.0060420 
0.0952500 
8.0000000 
0.0856775 

0.0006589 
0.0080560 
0.1000000 
10.0000000 
0.0872700 

Factor Labeling Key: 
Label 

A 
B 
C 
D 
E 

Factor 
Jeq (equivalent inertia) 

Beq (equivalent damping) 
k (reduced frequency) 

BL (backlash) 
IS (input saturation) 

The five factors investigated in this study were: equivalent inertia, equivalent 

damping, reduced frequency, backlash, and input saturation. The output responses were: 

in-phase lift coefficient, out-of-phase lift coefficient, in-phase pitching moment 

coefficient, and out-of-phase pitching moment coefficient. The factor limits for the 

design are specified in Table 9. Equivalent inertia is based on the compliance of the 

system, assuming a straight sting (for RSM low outer) or a bent sting (for RSM high 

outer). Equivalent damping is similar; however, it assumes no damping (for RSM low 

outer) and the compliance damping (for RSM high outer). The reduced frequency range 

is based on experimental data. The backlash range is based on tabulated information 

from Winsmith [136], Finally, the input saturation range is based on observations from 

experimental data. The inner face center design points were determined by XA of the 

distance to the outer face center design points. 

The nested face centered design test matrix was analyzed using Design Expert©, 

commercial software; see Table 10. The simulation was run for each test case. Care 
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must be taken when analyzing results when using response surface methodology with a 

deterministic computer simulation. 

Table 10: 25"1 nested face centered design test matrix (center run is shown as bold) 
Run Jeq Beq k B L IS Run Jeq Beq k B L IS 

1 0.0006589 0 0.081 10 0.08727 30 0.0002944 0.006042 0.08575 4 0.0824925 

2 0.0004159 0.004028 0.0905 6 0.084085 31 0.0005374 0.006042 0.08575 4 0.0856775 

3 0.0004159 0.004028 0.0905 10 0.084085 32 0.0002944 0.002014 0.09525 4 0.0824925 

4 0.0006589 0.008056 0.1 2 0.0809 33 0.0005374 0.002014 0.09525 4 0.0856775 

5 0.0004159 0.004028 0.1 6 0.084085 34 0.0002944 0.006042 0.09525 4 0.0856775 

6 0.0004159 0.004028 0.0905 2 0.084085 35 0.0005374 0.006042 0.09525 4 0.0824925 

7 0.0006589 0.008056 0.081 10 0.0809 36 0.0002944 0.002014 0.08575 8 0.0824925 

8 0.0001729 0 0.1 10 0.08727 37 0.0005374 0.002014 0.08575 8 0.0856775 

9 0.0006589 0 0.081 2 0.0809 38 0.0002944 0.006042 0.08575 8 0.0856775 

10 0.0006589 0.004028 0.0905 6 0.084085 39 0.0005374 0.006042 0.08575 8 0.0824925 

11 0.0001729 0.008056 0.1 10 0.0809 40 0.0002944 0.002014 0.09525 8 0.0856775 

12 0.0004159 0 0.0905 6 0.084085 41 0.0005374 0.002014 0.09525 8 0.0824925 

13 0.0004159 0.004028 0.081 6 0.084085 42 0.0002944 0.006042 0.09525 8 0.0824925 

14 0.0006589 0.008056 0.1 10 0.08727 43 0.0005374 0.006042 0.09525 8 0.0856775 

15 0.0006589 0 0.1 10 0.0809 44 0.0002944 0.004028 0.0905 6 0.084085 

16 0.0001729 0 0.081 2 0.08727 45 0.0005374 0.004028 0.0905 6 0.084085 

17 0.0001729 0.008056 0.081 10 0.08727 46 0.0004159 0.002014 0.0905 6 0.084085 

18 0.0001729 0.004028 0.0905 6 0.084085 47 0.0004159 0.006042 0.0905 6 0.084085 

19 0.0001729 0 0.081 10 0.0809 48 0.0004159 0.004028 0.08575 6 0.084085 

20 0.0001729 0 0.1 2 0.0809 49 0.0004159 0.004028 0.09525 6 0.084085 

21 0.0004159 0.004028 0.0905 6 0.08727 50 0.0004159 0.004028 0.0905 4 0.084085 

22 0.0006589 0 0.1 2 0.08727 51 0.0004159 0.004028 0.0905 8 0.084085 

23 0.0001729 0.008056 0.081 2 0.0809 52 0.0004159 0.004028 0.0905 6 0.0824925 

24 0.0004159 0.004028 0.0905 6 0.0809 53 0.0004159 0.004028 0.0905 6 0.0856775 
25 0.0006589 0.008056 0.081 2 0.08727 

26 0.0001729 0.008056 0.1 2 0.08727 

27 0.0004159 0.008056 0.0905 6 0.084085 

28 0.0002944 0.002014 0.08575 4 0.0856775 

29 0.0005374 0.002014 0.08575 4 0.0824925 

4.4.7 Statistics and Deterministic Computer Models 

RSM has been used successfully with computer simulation models of physical 

systems. A few examples are Barton (1992, 1994) [137, 138] and Simpson et al. (1997) 

[139]. The goal of RSM is to build a regression model of the system being modeled by 

the computer simulation - a regression metamodel. Although RSM is primarily intended 

for applications with random error, deterministic applications are appropriate and the 
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analysis is simplified. Care must be taken when using statistics to develop the regression 

metamodel. 

The nature of the computer simulation is represented as an input-output relation, 

y = f { x ) . (4.21) 

Then a metamodel is represented as 

y = g{x)+£bias+£random (4.23) 

where g(x) is the metamodel, £bias is the error of approximation, and £random is the random 

error. However, for deterministic models, random error has zero mean and zero variance, 

so the fitting relationship is 

y = g{x)+£bias . (4.24) 

The relationship conflicts with methods of least squares regression [140]. Unless the 

error of approximation follows the assumptions of NID{0,<X2) then statistical inference 

from least squares regression are violated. Consequently, Sacks et al. (1989) and 

Kleijnen (1990) have pointed out that since deterministic computer simulations lack 

random error [141, 142]: 

1. The response surface model adequacy is determined solely by systematic bias. 

2. The usual measures of uncertainty derived from least squares residuals have no 

obvious statistical meaning; deterministic measures of uncertainty exist. 

3. The notions of experimental blocking, replication, and randomization are 

irrelevant. 

Several statistical measures such as pure error, F-statistics, and mean squared 

error for verification of model adequacy have no statistical meaning because they are all 
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based on random error. Care should be taken when using commercial software because 

manufacturers employ these types of statistical measures for developing a model. These 

measures have no statistical meaning since they assume that observations include an error 

term, which has a mean of zero and a non-zero standard deviation. The ANOVA tables 

for the responses are provided in Appendix E; although their results have no statistical 

meaning, the relative size of the coded model terms and sum of squares (SS) 

contributions may be compared. 

4.4.8 Fitting and Validating of Regression Metamodel 

For this study, terms in the model were added manually and removed while 

applied V&V techniques were used to validate the metamodel. The only true way to 

verify and validate the metamodels is by using coefficients of determination, cross-

validation and point prediction methods [143, 140], 

The classic coefficient of determination measure is 

R2 = ssJL = l_ssJL (425) 

SS J SS rp 

where SSR is the regression sum of squares, SST is the total sum of squares, and SSE is 

the error sum of squares. It follows thatO < R2 <1. Values of that are close to 1 

imply that the variability in the response is explained by the regression model [143]. 

However, caution should be exercised when using R2 . Increasing the number of 

regression variables always increases R2 regardless of the value of the contribution of the 

variable. This does not necessarily mean that the model is an accurate predictor and the 

model becomes over-fitted. There are several other misconceptions about/?2. The 

coefficient of determination does not measure the magnitude of the slope of the 
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regression line. R2 does not measure the appropriateness of the linear model. For 

example, R2 will often be large even though the system is nonlinear. 

Consequently, R2
adj is used as an indicator of model adequacy; see Equation 4.6. 

The adjusted/?2penalizes the model for adding terms that are not helpful, so it is most 

useful in evaluating and comparing candidate regression models, particularly when 

working with deterministic simulations. 

Cross validation is useful when collecting new data for validation purposes, but it 

is not possible. A reasonable procedure is to split the available data into two parts called 

the estimation data and the prediction data [144], The estimation data are used to build 

the regression model, and the prediction data are then used to study the predictive ability 

of the model [140]. The technique of data splitting is called cross validation. One useful 

statistic that performs cross validation is the prediction error sum of squares (PRESS). 

The PRESS residuals are defined as = yi -j>(i) where y(lj is the predicted value of the 

z'th observed response based on a model fit to the remaining n-1 sample points [140], 

Thus, the PRESS statistic is defined as a measure of model quality; see Equation 4.7. 

PRESS ^ ^ - y j 

1=1 

n 
= 1 

"V v (4-27) 
e. 

1=1 J - K j 

Generally, when using the PRESS statistic, small values of PRESS are desired. Using the 

PRESS statistic, the predicted/?2 is described as 
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This statistic gives an indication of the predictive capability of the regression model and a 

sense of how much variability in new observations the model might be expected to 

explain [140], 

Using the statistics of this section, the regression metamodels, developed from the 

commercial software package Design Expert, were validated. Results are shown in Table 

11 along with the model fit summary statistics in Table 12. It should be noted that the 

standard deviations and means listed in Table 12 are computed based on the factor limits 

and not due to variability. 
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Table 11: Regression Metamodels 

In-phase lift coefficient Out-of-phase lift coefficient 
In-phase pitching moment 

coefficient 
Out-of-phase pitching 

moment coefficient 

cL a -
cL - - Cm<i -

1.524E+01 -2.006E+02 1.827E+00 -3.473E+01 

-1.815E+02 * Jeq 5.947E+03 * Jeq -5.969E+01 * Jeq 6.942E+02 * Jeq 

-4.905E+01 * Beq 4.812E+02 * Beq -5.504E+00 * Beq 9.434E+01 * Beq 

-1.645E+03 * k 1.630E+04 * k -1.900E+02 * k 3.112E+03 * k 

-1.445E-02 * BL 6.625E-02 * BL -1.083E-03 * BL 1.696E-02 * BL 

8.496E+02 * IS -6.697E+03 * IS 9.779E+01 * IS -1.376E+03 * I S 

5.978E+03 * Jeq * Beq -7.649E+04 * Jeq * Beq 8.131E+02 * Jeq * Beq -1.338E+04 * Jeq * Beq 

-1.509E+04 * Jeq * IS 1.283E+05 * Jeq * IS -1.564E+03 * Jeq * IS 2.614E+04 * Jeq * IS 

3.621 E+02 * Beq * k -3.589E+03 * Beq * k 4.071 E+01 * Beq * k -6.955E+02 * Beq * k 

-5.075E-01 * Beq * BL 4.999E+00 * Beq * BL -5.719E-02 * Beq * BL 9.160E-01 * Beq * BL 

2.204E-01 * k * BL -2.052E+00 * k * BL 2.355E-02 * k * BL -3.993E-01 * k * BL 

-6.385E-01 * BL * IS 7.299E+00 * B L * IS -8.078E-02 * BL * IS 1.327E+00 * BL * IS 

3.472E+06 * JeqA2 -4.065E+07 * JeqA2 4.605E+05 * JeqA2 -6.976E+06 * JeqA2 

5.191 E+03 * BeqA2 -5.067E+04 * BeqA2 5.637E+02 * BeqA2 -1.002E+04 * BeqA2 

1.781E+04 * kA2 -1.766E+05 * kA2 2.057E+03 * kA2 -3.379E+04 kA2 

1.172E-02 * BLA2 -1.235E-01 * BLA2 1 396E-03 * BLA2 -2.284E-02 * BLA2 

-4.951 E+03 * ISA2 3.922E+04 * ISA2 -5.688E+02 * ISA2 8.053E+03 * ISA2 

-2.618E+09 * JeqA3 3.107E+10 * JeqA3 -3.481 E+08 * JeqA3 5.310E+09 * JeqA3 

-3.886E+05 * BeqA3 4.003E+06 * BeqA3 -4.263E+04 * BeqA3 7.766E+05 * BeqA3 

-6.387E+04 * kA3 6.315E+05 * kA3 -7.360E+03 * kA3 1.211E+05 * kA3 

-7.236E-04 * BLA3 7.763E-03 * BLA3 -8.639E-05 * BLA3 1.427E-03 * BLA3 

Table 12: Regression metamodel fit summary statistics 
In-Phase Lift Coefficient 

Std. Dev. 0.0235 R-Squared 0.8957 
Mean 1.1047 Adj R-Squared 0.8305 

C.V. % 2.1261 Pred R-Squared 0.7670 
PRESS 0.0394 Adeq Precision 14.4567 

Out-of-phase Lift Coefficient 
Std. Dev. 0.2294 R-Squared 0.9574 

Mean 12.6622 Adj R-Squared 0.9307 
C.V. % 1.8119 Pred R-Squared 0.9110 
PRESS 3.5140 Adeq Precision 20.9072 

In-phase Pitching Moment Coefficient 
Std. Dev. 0.00273 R-Squared 0.9452 

Mean 0.20025 Adj R-Squared 0.9109 
C.V. % 1.36576 Pred R-Squared 0.8762 
PRESS 0.0005407 Adeq Precision 20.2269 

Out-of-phase Pitching Moment Coefficient 
Std. Dev. 0.0436 R-Squared 0.9575 

Mean 1.5613 Adj R-Squared 0.9310 
C.V. % 2.7944 Pred R-Squared 0.9089 
PRESS 0.1307 Adeq Precision 20.9245 
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The final validation procedure is to apply a few confirmation runs using point 

prediction to test the regression metamodels [140], A few points within the design space 

were selected that were not used to build the regression model. The results of the 

regression metamodel were compared with the simulation results. The percent difference 

was calculated to provide a measure of prediction for the regression metamodel, 

compared to the simulation. 

The percent difference between the metamodel and simulation ranged from 0.1% 

to 7%. The difference is due to the system being highly nonlinear. Also, a test case has a 

factor that is near the edge of the design space; see test case 1 of Table 13. 



Table 13: Point prediction results 
Test Case # 1 

Factor Name Level Low Level High Level 
A Jeq 0.0005 0.0001729 0.0006589 
B Beq 0.006 0 0.008056 
C k 0.09 0.081 0.1 
D BL 3 2 10 
E IS 0.085 0.0809 0.08727 

Response Prediction Simulation Result % difference 
c L ̂ a 1.0998 1.1498 4.35 

c L 12.8375 12.2544 4.76 

c ma 0.2000 0.2059 2.88 

c m 1.6043 1.4874 7.86 

Test Case # 2 
Factor Name Level Low Level High Level 

A Jeq 0.0002 0.0001729 0.0006589 
B Beq 0.003 0 0.008056 
C k 0.09 0.081 0.1 
D BL 9.5 2 10 
E IS 0.081 0.0809 0.08727 

Response Prediction Simulation Result % difference 
1.0382 1.0852 4.34 

13.0937 12.5065 4.70 

0.1919 0.1968 2.50 

"̂>q 1.6067 1.5461 3.92 

Test Case # 3 
Factor Name Level Low Level High Level 

A Jeq 0.00055 0.0001729 0.0006589 
B Beq 0.007 0 0.008056 
C k 0.084 0.081 0.1 
D BL 4 2 10 
E IS 0.085 0.0809 0.08727 

Response Prediction Simulation Result % difference 
1.0700 0.9977 7.25 

13.4651 14.1205 4.64 

^ma 0.1940 0.1850 4.86 

1.7378 1.8441 5.76 
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Test Case # 4 
Factor Name Level Low Level High Level 

A Jeq 0.000251711 0.0001729 0.0006589 
B Beq 0.000326595 0 0.008056 
C k 0.086648649 0.081 0.1 
D BL 8.486486486 2 10 
E IS 0.08649527 0.0809 0.08727 

Response Prediction Simulation Result % difference 

c L 1.0893 1.0775 1.09 

c L 13.2030 13.3731 1.27 

0.1974 0.1954 0.98 

^ mq 1.6498 1.6856 2.12 

Test Case # 5 
Factor Name Level Low Level High Level 

A Jeq 0.0002517 0.0001729 0.0006589 
B Beq 0.0003266 0 0.008056 
C k 0.0982 0.081 0.1 
D backlash 6.757 2 10 
E input sat. 0.08348 0.0809 0.08727 

Response Prediction Simulation Result % difference 

c L a 1.2006 1.1998 0.06 

c L 11.2306 11.2094 0.19 

0.2146 0.2141 0.23 

1.3245 1.2850 3.07 

4.5 Monte Carlo Simulation 

One use for Monte Carlo simulation is studying the propagation of uncertainty in 

a system. The basic procedure is outlined as follows [145]: 

1. Determine the pseudo-population or model that represents the true population of 

interest. 

2. Use a sampling procedure to sample from the pseudo-population or distribution. 

3. Calculate a value for the statistic of interest and store it. 
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4. Repeat steps 2 and 3 for M trials, where M is large 

5. Use the M values found in step 4 to study the distribution of the statistic. 

Two methods were used for the uncertainty analysis - 'indirect' and 'direct' 

Monte Carlo; see Appendix F. The 'indirect' Monte Carlo simulation procedure is 

detailed on the flowchart of Figure 69. This method uses Taylor series based sensitivity 

analysis in conjunction with a Monte Carlo simulation to determine the uncertainty. The 

sensitivities are computed at a given nominal setting of the factors. The sensitivity 

matrix is determined analytically using the MATLAB symbolic solver. 

dC, dC, 

dJrn dB EQ EQ 

dc, ̂ a 
dIS 

dC, 

dJ EQ 

dC„ 

dJ EQ 

dC % 
BIS 

(4.29) 

JeQq 'BeQQ JS0 

The procedure then follows by sampling from a pseudo-population with M = 100,000 

trials. Uniform distributions were used for 5JEQ and 8BEQ, as shown in Figures 70 and 71 

respectively. Normal distributions were used for 8BL and 8IS, as shown in Figures 72 

and 73. The distributions have a standard deviation of a. The standard deviation was 

computed using the factor limits from Design Expert. No distribution was used for 5k 

since the study assumed it does not have any distribution. Finally, the procedure 

computes the in-phase and out-of-phase lift and pitching moment coefficients (see 

Equations 4.10 and 4.11) and concludes with summary statistics, confidence intervals, 

and histograms as the results. The results are presented in Chapter 5. 
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SBeo dBEQ
 EQ 

f dC, 
+ ••• + 

dIS 
— SIS 

(4.30) 

CL =CL l-cc Q 
CL 

Cm =••• mu 

+ SC, 

(4.31) 

The 'direct' Monte Carlo method is similar in procedure to the 'indirect' Monte 

Carlo method. Figure 74 provides a flowchart of the procedure. The 'direct' Monte 

Carlo method applies a pseudo-population of the factors (Jeq, Beq, BL, and IS). The 

populations are sampled, and the result is applied to the metamodel regression models. 

The pseudo-population is provided in Figures 75-78. Again, the distributions have a 

standard deviation of o. Also, no distribution was used for the reduced frequency factor. 

Similarly, the uncertainty analysis concludes with summary statistics, confidence 

intervals, and histograms as the results. The results are presented in Chapter 5. 
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Figure 69: 'Indirect' Monte Carlo Simulation Procedure 
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Figure 70: Uniform distribution for incremental equivalent inertia 
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Figure 71: Uniform distribution for incremental equivalent damping 
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Figure 72: Normal distribution for incremental backlash 
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Figure 73: Normal distribution for incremental input saturation 
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Figure 74: 'Direct' Monte Carlo Simulation Procedure 
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Figure 75: Uniform distribution for equivalent inertia 
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Figure 76: Uniform distribution for equivalent damping 
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Figure 77: Normal distribution for backlash 
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Figure 78: Normal distribution for input saturation 
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4.6 Summary 

This chapter has detailed a modular approach to building a pitch oscillation 

simulation. Specific details were given about the experimental aerodynamic model used 

for the simulation. The control system for the three-phase AC motor was developed. 

The Simulink implementation of the AC motor and drivetrain were described. Various 

sources of instability prevented the simulation from running properly. The sources and 

solutions were discussed. The chapter also outlined the procedure used for verifying and 

validating the Simulink model. Finally, the design of experiments approach used for 

experimental design and the Monte Carlo methods used for uncertainty analysis were 

discussed. 
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CHAPTER 5 

RESULTS 

5.1 Results 

This chapter presents the uncertainty analysis results. Two uncertainty methods 

were used: (1) indirect (i.e. usage of sensitivities) Monte Carlo method and (2) direct (i.e. 

use of regression metamodels) Monte Carlo method. Standard summary statistics such as 

sample mean, sample standard deviation, maximum, minimum, skewness, and coverage 

intervals are provided. Histograms of the responses are also provided. 

Since the distribution of the Monte Carlo results are asymmetric, due to high 

nonlinearity in the system, calculating the standard deviation and assuming that the 

central limit theorem applies to obtain the uncertainty will not be appropriate. The 

coverage interval that provides a 95% level of confidence is shown in Figure 79. 

The procedure used is given by [146]: 

1. Sort the MMonte Carlo simulation results from lowest value to the highest value. 

2. For a 95% coverage interval: 

rlow — result number(0.025M) (5.1) 

rMgh ~ result number(0.915M) . (5.2) 

If the numbers 0.025M and 0.975M are not integers, then add '/i and take the 

integer part as the result number. The lower limit of the coverage interval is riow, 

and the higher limit of the coverage interval is rhigh. 

3. For 95% expanded uncertainty limits: 
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U;=r{XxtX1,...,XJ)-rlm (5.3) 

U ^ r ^ - r i X ^ X ^ X j ) . (5.4) 

4. The interval that contains r t r U e at a 95% level of confidence is then: 

r-U;<rlne<r + U; . (5.5) 

Figure 79: Example probabilistically symmetric coverage interval for 95% level of confidence [146] 

Skewness present in a probability distribution results from a nonlinear system. In 

statistics, skewness is a measure of the asymmetry in a probability distribution; it is also 

called the third central moment [145]. If a distribution is highly normal, then skewness 

is zero; see Figure 80 for example. When the extreme values are elongated on the 

positive side the distribution is said to be positively skewed. On the other hand, if the 

extreme values are elongated on the negative side the distribution is said to be negatively 
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skewed. Examples of positively and negatively skewed distributions are shown in 

Figures 81 and 82, respectively. 

Figure 80: Example of normal distribution 

Figure 81: Example of positive skewed distribution 



137 

0.4 

0.35 

0.3 

0.25 
o 
§ 0.2 
cr 
8? 
u_ 

0.15 

0.1 

0.05 

0 -7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 
r(X1,)^,...Xj) Result 

Figure 82: Example of negatively skewed distribution 

5.1.1 Indirect Monte Carlo Simulation Results 

Five test cases were run using the indirect Monte Carlo method developed in 

Chapter 4. The first test case represents the ideal factor settings for a test rig operating at 

a low reduced frequency, summarized in Table 14. The ideal settings were based on 

reported information from NASA Langley. The equivalent inertia and damping are set at 

their maximum limit. Backlash is set at its minimum, and input saturation is not present. 

This test case has factors near the limits of the factor ranges. The summary statistics are 

provided in Table 15. Figures 83-86 show the histogram of the responses. 
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Table 14: Factor settings test case #1 
Test Case #1 

Factor Setting Name 
Jeq 0.0006589 Equivalent inertia [kg*m ] 
Beq 0.008056 Equivalent damping [N-m-s/rad] 

k 0.081 Reduced frequency [—] 
BL 2 Backlash [arcmin] 
IS 0.08727 Input saturation [rad] 

Table 15: Summary statistics for test case #1 

Response Mean Standard 
Deviation Variance Min Max Skewness I " l o W I"high 

c L 1.1303 0.0293 0.0009 1.0555 1.31 0.6324 1.0816 1.1967 

CL 14.7505 0.2836 0.0805 13.9672 16.4241 0.4476 14.2512 15.3687 

0.1998 0.0032 0 0.1912 0.2178 0.5061 0.1942 0.207 

1.9552 0.0549 0.003 1.8084 2.2962 0.5702 1.8614 2.0782 

Figure 83: Histogram for in-phase lift coefficient (test case #1) 
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CLq(bar) 

Figure 84: Histogram for out-of-phase lift coefficient (test case #1) 

Figure 101: Histogram of in-phase pitching moment coefficient (test case #5) 
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The next test case uses the factors set at the center of the design space; see Table 

16. Histograms for test case 2 are shown in Figures 87-90. The summary statistics are 

provided in Table 17. 

Table 16: Factor settings (test case #2) 
Test Case #2 

Factor Setting Name 
Jeq 0.0004159 Equivalent inertia [kg*m2] 
Beq 0.004028 Equivalent damping [N-m-s/rad] 

k 0.0905 Reduced frequency [—] 
BL 6 Backlash [arcmin] 
IS 0.08409 Input saturation [rad] 
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Table 23: Summary statistics for test case #5 

Response Mean Standard 
Deviation Variance Min Max Skewness l*high 

c L 1.1455 0.0156 0.0002 1.1105 1.253 1.0978 1.1225 1.1842 

c L 13.0091 0.1697 0.0288 12.6561 14.1552 1.0998 12.7585 13.4310 

Cma 0.2051 0.0019 0 0.2008 0.2177 0.9755 0.2023 0.2096 

1.6223 0.0312 0.001 1.5583 1.8347 1.1429 1.5772 1.7004 

5000 

Figure 87: Histogram for in-phase lift coefficient (test case #2) 



Figure 89: Histogram for in-phase pitching moment coefficient (test case #2) 
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Figure 90: Histogram for out-of-phase pitching moment coefficient (test case #2) 

The third test case had factor settings at low levels within the design space; see 

Table 18. The histogram results of the responses are shown in Figures 91-94. Again, the 

histogram results are highly skewed due to the nonlinearity of the system. Unlike test 

case #1, test case #3 assumes that input saturation is significant. Backlash is at a 

minimum. The equivalent inertia is at the low level of the design space, and the 

equivalent damping is not present. Also, reduced frequency is at its minimum as well. 

Table 18: Factor settings (test case #3) 
Test Case #3 

Factor Setting Name 
Jeq 0.0001729 Equivalent inertia [kg*m ] 
Beq 0 Equivalent damping [N-m-s/rad] 

k 0.081 Reduced frequency [—] 
BL 2 Backlash [arcmin] 
IS 0.0809 Input saturation [rad] 
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Table 23: Summary statistics for test case #5 

Response Mean Standard 
Deviation Variance Min Max Skewness l*low Thigh 

CL La 1 . 1 4 3 4 0.0451 0.002 1.0361 1.4654 0.9452 1 . 0 7 1 4 1 . 2 5 2 8 

cL 1 4 . 7 0 8 8 0.3482 0.1212 13.734 16.8006 0.3025 1 4 . 0 6 9 2 1 5 . 4 3 2 6 

Cma 0 . 2 0 0 8 0.0055 0 0.1877 0.2389 0.8515 0 . 1 9 1 9 0 . 2 1 3 8 

1 . 9 6 5 4 0.0685 0.0047 1.7789 2.4205 0.5433 1 . 8 4 3 6 2 . 1 1 8 1 

Figure 91: Histogram for in-phase lift coefficient (test case #3) 
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Figure 101: Histogram of in-phase pitching moment coefficient (test case #5) 
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Figure 94: Histogram for out-of-phase pitching moment coefficient (test case #3) 

The fourth test case was randomly selected; see Table 20. The equivalent inertia 

and damping were chosen at the center of the design space. The reduced frequency and 

backlash were set at their minimum factor settings. The input saturation was set to its 

significant level (i.e. the low factor level in DOE). The summary statistics are given in 

Table 21, and histogram results are provided in Figures 95-98. 

Table 20: Factor settings (test case #4) 
Test Case #4 

Factor Setting Name 
Jeq 0.0001729 Equivalent inertia [kg*m ] 
Beq 0 Equivalent damping [N-m-s/rad] 

k 0.081 Reduced frequency [—] 
BL 2 Backlash [arcmin] 
IS 0.0809 Input saturation [rad] 



Table 21: Summary statistics for test case #4 

Response Mean Standard 
Deviation Variance Min Max Skewness l"low l"high 

1.0780 0.0457 0.0021 0.9983 1.3844 1.1433 1.0185 1.191 
c L 14.6621 0.3046 0.0928 14.0535 16.7184 1.0665 14.2323 15.4076 

0.1925 0.0055 0 0.1829 0.2297 1.1502 0.1853 0.2062 

1.9617 0.0649 0.0042 1.8383 2.3998 1.1034 1.8731 2.1218 

4500 

0.9 0.95 1.35 1.4 

Figure 95: Histogram of in-phase lift coefficient (test case #4) 



148 

C, „ (bar) 

Figure 96: Histogram of out-of-phase lift coefficient (test case #4) 

Figure 101: Histogram of in-phase pitching moment coefficient (test case #5) 
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<Wbar) 

Figure 98: Histogram of out-of-phase pitching moment coefficient (test case #4) 

For the final test case, the factor settings were again chosen randomly. The 

reduced frequency was set to its high factor settings. The equivalent inertia and damping 

were set high, while the backlash was set to a minimum and input saturation was set at its 

significant level. Table 22 summarizes the factor settings. Table 23 contains the 

summary statistics for test case 5. Also, the histogram results of the responses are given 

in Figures 99-102. 

Table 22: Factor settings (test case #5) 
Test Case #5 

Factor Setting Name 
Jeq 0.0006589 Equivalent inertia [kg*m ] 
Beq 0.008056 Equivalent damping [N-m-s/rad] 

k 0.1 Reduced frequency [--] 
BL 2 Backlash [arcmin] 
IS 0.0809 Input saturation [rad] 
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Table 23: Summary statistics for test case #5 

Response Mean Standard 
Deviation Variance Min Max Skewness l"low Thigh 

CL 1 . 2 1 9 4 0.041 0.0017 1.1478 1.4905 1.1479 1 . 1 6 4 3 1 . 3 2 1 1 

cL 1 2 . 1 5 0 5 0.2648 0.0701 11.5547 13.897 0.8361 1 1 . 7 2 7 1 2 . 7 7 9 6 

0 . 2 1 8 0.005 0 0.209 0.2511 1.1423 0 . 2 1 1 1 0 . 2 3 0 3 

1 . 4 7 3 4 0.0562 0.0032 1.3588 1.8482 1.0338 1 . 3 8 9 9 1 . 6 1 1 1 

Figure 99: Histogram of in-phase lift coefficient (test case #5) 
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Figure 100: Histogram of out-of-phase lift coefficient (test case #5) 

Wbar> 

Figure 101: Histogram of in-phase pitching moment coefficient (test case #5) 
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4500 
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Figure 102: Histogram of out-of-phase pitching moment coefficient (test case #5) 

5.1.2 Direct Monte Carlo Simulation Results 

The same test cases were used for the direct Monte Carlo method. Factor settings 

for test cases 1, 2, 3, 4, and 5 are given in Tables 14, 16, 18, 20, and 22 respectively. The 

direct Monte Carlo method was described in Chapter 4. Test case 1 predicted a larger 

coverage interval when compared to the indirect Monte Carlo method. The difference 

may lie in the severity of the skewness in the histogram results. The summary statistics 

are provided in Table 24. Histograms are shown in Figures 103-106. 

Response Mean 
Standard 

Deviation Variance Min Max Skewness Flow Thigh 

1.0236 0.1489 0.0222 0.3206 2.9021 1.4913 0.7641 1.3765 

14.2235 1.5691 2.4621 -5.523 20.912 -1.4288 10.5543 16.9851 

Cma 0.1872 0.0176 0.0003 0.1057 0.4104 1.5251 0.1567 0.2291 

1.854 0.2905 0.0844 -1.8044 3.1365 -1.4458 1.1725 2.3632 



CLq(bar) 

Figure 106: Histograms for out-of-phase pitching moment coefficient (test case #1) 
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Figure 105: Histograms for in-phase pitching moment coefficient (test case #1) 

W a r ) 

Figure 106: Histograms for out-of-phase pitching moment coefficient (test case #1) 
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Summary statistics for test case 2 are provided in Table 25. Histograms of the 

response are shown in Figures 107-110. The difference between the results of 'indirect' 

and 'direct' Monte Carlo methods is negligible for this case. 

Table 25: Summary statistics for test case #2 

Response Mean Standard 
Deviation Variance Min Max Skewness I"low Thigh 

1.0848 0.0486 0.0024 0.0169 2.3266 -2.1662 0.9644 1.1387 

12.8742 0.4545 0.2066 -0.0239 24.7466 2.7709 12.3624 13.9079 

Cma 0.1978 0.0059 0 0.07 0.3459 -2.1667 0.1832 0.2042 

1.5993 0.0862 0.0074 -0.7977 3.76 2.5609 1.5027 1.8014 

Figure 107: Histogram for in-phase lift coefficient (test case #2) 
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Figure 110: Histogram for out-of-phase pitching moment coefficient (test case #2) 

Summary statistics for test case 3 are provided in Table 26. Similarly, the 

histogram results of the responses are shown in Figures 111-114. Similar to test case 1, 

the 'direct' Monte Carlo method has a wider confidence interval when compared to the 

'indirect' Monte Carlo method, as show in Figures 111-114. 

Table 26: Summary statistics for test case 3 

Response Mean Standard 
Deviation Variance Min Max Skewness I°low Thigh 

1 . 1 2 8 1 0.1743 0.0304 0.1743 3.1974 0.9177 0 . 8 2 3 8 1 . 5 0 7 7 

1 2 . 5 7 2 3 1.6908 2.8589 -9.4857 20.0001 -1.334 8 . 7 2 9 8 1 5 . 1 4 8 9 

Cma 0 . 1 9 9 0.0211 0.0004 0.0873 0.4463 0.911 0 . 1 6 2 4 0 . 2 4 5 2 

1 . 5 6 9 0.3172 0.1006 -2.4906 3.0897 -1.2312 0 . 8 5 6 4 2 . 0 7 5 6 
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Figure 111: Histogram of in-phase lift coefficient (test case #3) 
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Figure 112: Histogram of out-of-phase lift coefficient (test case #3) 
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Figure 106: Histograms for out-of-phase pitching moment coefficient (test case #1) 
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Summary statistics for test case 4 are provided in Table 27. Again, the histograms 

of the responses are shown in Figures 115-118. The results have a greater confidence 

interval than the previous results. 

Table 27: Summary statistics for test case #4 

Response Mean Standard 
Deviation Variance Min Max Skewness Flow Thigh 

c L ̂a 
1.0316 0.1386 0.0192 0.2509 3.156 1.5625 0.7786 1.3573 

c L 13.6275 1.2527 1.5693 -8.2334 19.6584 -2.6923 10.419 15.5613 

^rn a 0.187 0.0165 0.0003 0.095 0.4399 1.5433 0.1568 0.2257 

cm<! 1.7617 0.2415 0.0583 -2.3077 2.9971 -2.354 1.1576 2.1568 

15000 r 

1 0 0 0 0 -

5000 -

CLa(bar) 

Figure 115: Histogram of in-phase lift coefficient (test case #4) 
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Figure 116: Histograms of out-of-phase lift coefficient (test case #4) 
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Figure 118: Histogram of out-of-phase pitching moment coefficient (test case #4) 

The final test case summary statistics are provided in Table 28. Histograms of the 

responses are given in Figures 119-122. Again, the confidence intervals are larger than 

predicted from the 'indirect' Monte Carlo method. This is possibly due to the high 

skewness. 

Table 28: Summary statistics for test case #5 

Response Mean Standard 
Deviation Variance Min Max Skewness How Thigh 

CL La 1.1171 0.1424 0.0203 0.336 3.4103 1.359 0.8593 1.4391 
cL 11.8193 1.3883 1.9275 -12.0816 17.5705 -1.8002 8.5762 14.1788 
c ma 0.2051 0.0174 0.0003 0.1125 0.4789 1.2442 0.1734 0.2438 

1.4054 0.259 0.0671 -3.0225 2.6017 -1.7618 0.8004 1.8465 
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Figure 106: Histograms for out-of-phase pitching moment coefficient (test case #1) 
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Figure 121: Histogram of in-phase pitching moment coefficient (test case #5) 
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Figure 122: Histogram of out-of-phase pitching moment coefficient (test case #5) 
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5.2 Discussion 

Tables 29 and 30 have summarized the 95% probability confidence intervals for 

all test cases. Table 29 contains the results from using the 'indirect' Monte Carlo 

method, and Table 30 contains the results from using the 'direct' Monte Carlo method. 

Generally, the 'direct' method provided a larger coverage interval compared to the 

'indirect' method. 

The 'indirect' method used a sensitivity analysis via a Taylor series expansion to 

determine the uncertainty in a response. Although the method is simple, its use has 

several drawbacks. Since the sensitivity analysis is based on computing derivatives, 

numerical differentiation can be difficult for complex functions, or, worse, it can be 

incorrectly computed. The Taylor series expansion assumes the response is nearly linear 

over a small range. It will not always be easy to determine whether the approximations 

involved using this method are acceptable. The 'direct' Monte Carlo method does not 

suffer from this problem because it can reach an arbitrary level of accuracy. In addition, 

the method is strictly based on the statistical moments of each parameter and does not 

directly incorporate the parameter probability distribution(s). One of the major 

drawbacks is that the method lacks coupled variable effects. The interactions between 

the distributions are not modeled adequately by changing only one of the model 

parameters. If an input variable is statistically correlated, one-at-a-time sensitivity 

analysis does not address such correlations. Attempting to evaluate all the potential 

combinations of input parameters can be unmanageable. Also, high order estimates may 

be necessary to adequately address highly skewed distributions. 
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The 'direct' Monte Carlo method obtains high accuracy by using a sufficiently 

large number of runs. Sometimes Latin hypercube sampling can be used when the 

method becomes extremely time consuming. The 'direct' Monte Carlo method can suffer 

from improper selection of probability distributions either from inadequate data or lack of 

understanding of the underlying physical process. 

The sensitivity analysis base method (i.e. 'indirect' Monte Carlo method) may be 

used to obtain preliminary answers. However, the 'direct' Monte Carlo method is 

preferred when error propagation with a complex system is being studied because the 

method is easily implemented and generally applicable. 

The 'indirect' Monte Carlo method predicts that the response variability ranges 

from approximately 3% to 6% of the mean responses over all test cases. On the other 

hand, the 'direct' Monte Carlo method predicts that the response variability ranges from 

approximately 3% to 40% of the mean responses over all test cases. 
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Table 29: Summary of 95% confidence intervals for all test cases using the 'indirect' Monte Carlo method 
Test Case 95% Confidence Interval 

#1 

1.0816 <C, <1.1967 
'-'a 

14.2512 <C, <15.3689 

0.1942 <Cm <0.2070 ma 

1.8614 <Cm <2.0782 
i 

#2 

1.1225 <C, <1.1842 
^a 

12.7585 <C, <13.4310 

0.2023 <Cm <0.2096 ma 

1.5772 <Cm <1.7004 

#3 

1.0714 < C, <1.2526 

12.7585 < C, <15.4326 

0.1919<Cm <0.2138 ma 

1.8436<Cm <2.1181 
i 

#4 

1.0185 < C, <1.1910 ua 

14.2323 <C, <15.4076 

0.1853 <Cm <0.2062 
ma 

1.8731 < C % <2.1218 

#5 

I.1643 < C, <1.3211 

II .7270<C, <12.7796 

0.2111 <Cm <0.2303 ma 

1.3899 <Cm? <1.6111 
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Table 30: Summary of 95% confidence intervals for all test cases using the 'direct' Monte Carlo method 
Test Case 95% Confidence Interval 

#1 

0.7664 < C, <1.3756 

10.5639 <C, <16.9628 

0.2290 <Cm <0.3538 ma 

1.1743 <Cm <2.3590 mq 

#2 

0.9644<C, <1.1387 
'-a 

12.3625 <C, <13.9079 
L<! 

0.1832 <Cm <0.2042 ma 

1.5027 <Cm <1.8014 

#3 

0.8238 < C, <1.5077 La 

8.7298 < C, <15.1489 

0.1624 <Cm <0.2452 ma 

0.8564 < C < 2.0756 

#4 

0.7786<C, <1.3573 

10.4190 <C, <15.5613 

0.1568 < Cm <0.2257 ma 

1.1576<Cm <2.1568 

#5 

0.8593 <C, <1.4391 

8.5762 <C, <14.1788 

0.1734 <Cm <0.2438 ma 

0.8004 <Cm <1.8465 
q 
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The most significant finding of the study is that researchers using different test 

rigs can have, even with the same aircraft model, significantly varied results due only to 

the differences in system dynamic parameters. Many researchers often assume that bias 

errors can simply be averaged out or that they are negligible. However, the parameters 

play a larger role in that the systematic errors interact with the aerodynamics, even with 

proper calibration of the forced oscillation test rig. 

Such large variability shows the bias effects are interacting with the 

aerodynamics. For example, input saturation causes the dynamic contributions of lift 

coefficient and pitching moment coefficient to have missing data at the peaks and troughs 

of the sine wave; an example is shown in Figure 123. This result has also been shown in 

experimental results; refer to the work of [10]. The poor prediction of the stability 

derivatives is problematic because the analysis used to compute the in-phase and out-of-

phase coefficients assumes that the sine fidelity is high, when in actuality it is not. The 

analysis used simply solves for the area under the curve to determine the in-phase and 

out-of-phase coefficients. Therefore, one cause of the poor prediction is due to poor sine 

fidelity caused by input saturation. 
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Figure 123: Incomplete sinusoidal waveform of dynamic contribution of lift coefficient 

The bias effect of backlash is also highly problematic. Although some backlash is 

necessary in all geared systems to allow a certain amount of clearance between the 

components transmitting the motion under the load to avoid interference, wear, and 

excessive heat generation, it can be particularly challenging if the backlash is large (i.e. 8 

arcmin or higher). Backlash is also not important in applications where there is no load 

reversal or the position after a reversal is not critical. However, forced oscillation wind 

tunnel testing requires precision positioning with frequent load reversal. Backlash can 

directly influence the positioning. When the gears are separated the load is no longer 

under control. Control is only retained on the motor side. When the gears reconnect 

backlash can introduce a nonlinear vibration that may be on the same order as the 

aerodynamics one is trying to measure. 
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Even worse, the coupling effects between the systematic errors make it very 

difficult to decouple them from the aerodynamic measurement. Referring to Table 31, 

the coded (i.e. nondimensional) regression metamodels can be used to examine the 

magnitude of the effects. In Table 31, factors are represented as: 

1. A - equivalent inertia, 

2. B - equivalent damping, 

3. C - reduced frequency, 

4. D - backlash, and 

5. E - input saturation. 

Reduced frequency is the most dominant contributor to the in-phase and out-of-phase 

components; it is shown in bold in Table 31. This result is expected since the 

aerodynamic model developed was based on reduced frequency. Interestingly, the 

coupling effects are about the same order of magnitude. The coupling makes it difficult 

to determine which systematic error is dominating and should be eliminated. For 

example, looking at the in-phase pitching moment coefficient the interaction between 

backlash and input saturation (i.e. D*E) has a larger effect compared to an interaction 

between equivalent damping and backlash (i.e. B*D). On the other hand, the backlash 

and input saturation interaction can also have the same order effect as the interaction 

between equivalent damping and reduced frequency (i.e. B*C). Therefore, no one effect 

is dominating; however, its overall contributions together are affecting the final result 

making it difficult to decouple the coupled systematic errors from the aerodynamics. 
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Table 31: Coded Regression Metamodels 

In-Phase Lift Coefficient Out-of-Phase Lift Coefficient 
In-Phase Pitching Moment 

Coefficient 
Out-of-Phase Pitching 

Moment Coefficient 

cL ̂a _ cL _ _ 
1.108E+00 1.264E+01 2.005E-01 1.555E+00 

2.525E-02 * A -3.061 E-01 * A 3.524E-03 ' A -5.061 E-02 * A 

2.443E-02 •B -2.369E-01 * B 2.585E-03 * B -4.668E-02 * B 

1.140E-01 *C -1.688E+00 *c 1.761 E-02 *c -3.224E-01 *C 
4.892E-02 * D -5.170E-01 * D 5.765E-03 * D -9.549E-02 * D 

2.172E-02 * E -1.208E-02 * E 3.197E-03 * E -9.387E-03 * E 

5.852E-03 * A * B -7.487E-02 * A * B 7.959E-04 * A * B -1.309E-02 * A * B 

-1.168E-02 * A * E 9.933E-02 * A* E -1.210E-03 * A * E 2.023E-02 * A * E 

1.386E-02 * B * C -1.373E-01 *B*C 1.558E-03 *B*C -2.661 E-02 *B*C 

-8.176E-03 * B* D 8.054E-02 * B * D -9.214E-04 * B * D 1.476E-02 * B * D 

8.376E-03 * C * D -7.797E-02 * C * D 8.947E-04 * C * D -1.517E-02 *C*D 

-8.135E-03 * D * E 9.299E-02 * D * E -1.029E-03 * D * E 1.690E-02 * D * E 

1.215E-02 * AA2 -1.112E-01 * AA2 1.544E-03 * AA2 -2.066E-02 * AA2 

8.037E-Q3 *BA2 -3.725E-02 * BA2 7.871 E-04 * BA2 -1.030E-02 * BA2 

4.221 E-02 *CA2 -4.648E-01 *CA2 5.321 E-03 *CA2 -8.230E-02 * CA2 

-2.091 E-02 * DA2 2.596E-01 * DA2 -2.553E-03 * DA2 4.557E-02 * DA2 

-5.023E-02 * EA2 3.979E-01 * EA2 -5.770E-03 * EA2 8.170E-02 * EA2 

-3.757E-02 * AA3 4.459E-01 * AA3 -4.995E-03 * AA3 7.620E-02 * AA3 

-2.540E-02 * BA3 2.616E-01 *BA3 -2.786E-03 * BA3 5.075E-02 * BA3 

-5.476E-02 *CA3 5.415E-01 * CA3 -6.311 E-03 * CA3 1.038E-01 * CA3 

-4.631 E-02 * DA3 4.968E-01 * DA3 -5.529E-03 * DA3 9.133E-02 * DA3 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Summary 

Poor prediction of aircraft stability derivatives is caused by unsteady, nonlinear 

aerodynamics brought on by high angle-of-attack and/or high angular rate maneuvers. 

Consequently, researchers have begun to use unsteady nonlinear modeling methodologies 

and forced oscillation wind tunnel testing in attempts to estimate unsteady, nonlinear 

stability derivatives. There is no standard methodology for computational modeling 

currently. The most popular method is, by far, forced oscillation wind tunnel testing. 

However, wind tunnel testing is not without its problems. 

There have been measurement data inconsistencies noted by researchers. The 

inconsistencies are possibly from low accuracy and non-physical values of parameter 

estimation. Other sources of error are due to model structure error in the form of 

measurement bias. Bias errors are a particular concern because the aerodynamic 

phenomena are occurring below 10 Hz, which can interact with the test rig dynamics. 

Other sources of error, classical to all wind tunnels, are Reynolds number scaling issues, 

dynamic scaling issues, and turbulence intensity (transition) effects. 

This study used a high fidelity simulation model of a forced oscillation testing 

apparatus. The NASA Langley 12-ft Wind Tunnel was used as a representative model 

for developing the simulation model. The simulation was verified and validated. Factors 



174 

were chosen based on either experimental data (i.e. input saturation), straight or bent 

sting characteristics (i.e. inertia and damping), or from the manufacturer's data sheet (i.e. 

backlash). 

After validation, a design of experiments methodology was used to experiment 

with the model. An embedded fractional factorial 2 5yX, face-centered design was used. 

The design was chosen based on the flexibility of the face centered design for building 

higher order regression metamodels. Third order polynomial regression metamodels 

were built for the responses: in-phase lift coefficient, out-of-phase lift coefficient, in-

phase pitching moment coefficient, and out-of-phase pitching moment coefficient. The 

metamodel adequacy was judged using R-squared, adjusted R-squared, predicted R-

squared, and PRESS statistics. Notions of experimental blocking, replication, and 

randomization are irrelevant in this study because the simulation is deterministic. Also, 

usual measures of uncertainty have no obvious statistical meaning (i.e. with an F-

statistic). Since no random error was present, the error associated with uncertainty was 

based on only systematic error. 

Finally, the study concluded with an uncertainty analysis using 'indirect' and 

'direct' Monte Carlo simulations. The 'indirect' method was based on the classical 

sensitivity analysis using Taylor series expansion. The method provided results which 

showed a variability range of 3% to 6% of the responses from their mean. On the other 

hand, a 'direct' Monte Carlo simulation was based on the method outlined by Coleman & 

Steele [146], The 'direct' method predicts larger variability in the responses, 

approximately 3% to 40%. The 'direct' Monte Carlo method was determined to have the 

superior results because of several issues with the 'indirect' method. The 'indirect' 
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Monte Carlo method lacks coupled variable changes which doesn't account for coupling 

between parameter probability distributions. Higher order estimates may be necessary to 

adequately address highly skewed distributions. 

This study showed variability in the responses in keeping with a system that is 

highly nonlinear. Responses were highly sensitive to the factors (i.e. Jeq, Beq, k, IS, BL). 

In addition, unfortunately, the nonlinear behavior of the dynamic system and its 

systematic biases has a coupling effect with the aerodynamics of an aircraft (in this case 

the F-16XL). While factors may not change over the ranges chosen within one system, it 

is highly likely that factors differ for different facilities. 

6.2 Recommendations 

There are a few recommendations that can be made to improve the fidelity of 

forced oscillation wind tunnel testing based on the simulation results. Although the 

damping of a system cannot be changed readily or easily, the inertia of the system should 

be kept as low as possible. For example, the results of this study show that a straight 

sting will have less of an impact on the dynamics of the system than the bent sting. 

Backlash is very problematic for the system. Although the specific gear drive used in the 

representative model uses a low backlash of 2 arcmin, the gear drive should be measured 

over time because it will not remain the same as that reported by the manufacturer. 

Backlash is a major issue because it decouples the motor from the drive. When 

decoupling of the gears occurs the system on the drive side is no longer under control. 

When the gears are meshed together again it generates a nonlinear vibration. This 

nonlinear vibration may be on the same order of the aerodynamic measurement. The 

total amount of coulomb and viscous friction in the system should be measured or 
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computed as well. The total amount of friction in the system can affect the control 

system and possibly be one of the sources of input saturation. Input saturation can also be 

due to manufacturer limitations set within the motor or due to poor control schemes on 

the position controller. The manufacturer sets actuator limits to prevent the motor from 

overheating. Even minor amounts of input saturation reduce the magnitude of the 

response. The position controller scheme should be evaluated and improved if necessary. 

6.3 Future Work 

As with any study there is always future work identified. The simulation should 

be updated to include other body axes for roll forced oscillation and yaw forced 

oscillation testing. Testing of the physical forced oscillation dynamic test rig should be 

conducted with particular attention paid to investigating the measurable effects of 

changing sting inertia, gear train backlash and motor control algorithms. This may help 

further validate or disprove the simulation results. To fully understand the role that a 

forced oscillation rig plays in the error of stability derivative parameter estimation, a 

matched simulation and experimental rig, for which all the parameters are known 

including the motor control method and gains, is essential. 
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APPENDIX A 
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Table 33: In-phase and out-of-phase components of lift coefficient [4] 

Component alpha 
[degl 

k = 0.081 k = 0.135 k = 0.190 k = 0.237 k = 0.397 

20.8 2.7173 2.7262 2.7169 2.6812 2.7182 
25.9 2.0605 2.3022 2.4510 2.4699 2.6217 
30.8 1.0483 1.5909 1.8777 1.9985 2.1274 
35.8 0.4157 1.0925 1.2745 1.4028 1.6543 

Q . 40.8 0.3572 0.7653 0.9657 1.0359 1.2423 
45.9 -0.1074 0.3471 0.4584 0.6013 0.9278 
50.8 -0.2827 0.0172 0.2680 0.2907 0.4220 
55.9 -0.5163 -0.3175 -0.1771 -0.0864 0.0863 
61.1 -0.7259 -0.6200 -0.4795 -0.4348 -0.2624 
20.8 0.6274 -0.6749 -0.4411 -0.4391 0.1617 
25.9 6.8878 2.8420 1.3282 0.5986 0.4959 
30.8 13.4790 6.8415 3.5802 2.3319 1.0400 
35.8 17.0380 7.8742 4.5156 3.2101 1.4278 
40.8 18.0300 7.8265 4.2304 2.9332 1.4082 
45.9 10.8080 5.3759 3.5004 2.2017 1.2853 
50.8 7.3799 3.6589 2.0937 1.2329 0.6319 
55.9 4.0848 2.6166 1.5641 1.0655 0.2893 
61.1 3.5036 1.7856 1.3260 1.0968 0.2086 

Table 34: In-phase and out-of-phase pitching moment coefficient [4] 

Component alpha 
[degl 

k = 0.081 k = 0.135 k = 0.190 k = 0.237 k = 0.397 

20.8 0.5183 0.5096 0.5076 0.5013 0.4656 
25.9 0.4529 0.4775 0.4937 0.4941 0.5023 
30.8 0.1901 0.2764 0.3429 0.3668 0.3865 
35.8 0.1090 0.2378 0.2325 0.2419 0.2278 
40.8 0.1509 0.1682 0.1318 0.1336 0.0124 
45.9 0.0323 0.0706 0.0253 0.0458 -0.0816 
50.8 -0.0921 -0.0733 0.0041 0.0489 0.0633 
55.9 -0.1755 -0.1386 -0.1546 -0.6012 0.1958 
61.1 -0.2081 -0.1714 -0.1520 -0.1195 0.1636 
20.8 -0.8553 -1.1161 -1.0749 -1.0589 -1.0527 
25.9 -0.1240 -0.7076 -0.8825 -0.9685 -1.0761 
30.8 1.7197 0.4942 -0.1789 -0.2611 -0.7195 
35.8 2.3630 0.5519 -0.3245 -0.4752 -0.7640 

c m q 40.8 1.3537 -0.3968 -0.7955 -0.7878 -0.6640 
45.9 -0.1715 -0.5400 -0.4869 -0.6901 -0.6076 
50.8 0.3532 -0.0418 0.0527 -0.1078 -0.4099 
55.9 0.0235 0.1021 0.1407 0.1023 -0.2927 
61.1 -0.0310 0.0538 0.0567 0.2266 0.0463 
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APPENDIX B 

STATIC AND DYNAMIC COEFFICIENT RESPONSES 

MATLAB CODE 



STATIC COEFFICIENT RESPONSES 

FILENAME: NASAdata^sta t i c .m 

AUTHOR: Br ianne W i l l i a m s 

PURPOSE: P l o t s s t a t i c e x p e r i m e n t a l r e s p o n s e s from NASA d a t a ( s e e r e f e r e n c e ) . 

REFERENCES: NASA/TM-97-206276 

NOTES: none. %} 

c l c ; 

c l o s e a l l ; 

a l p h a = [ - 4 0 5 10 15 20 22 24 26 28 30 32 34 36 38 40 45 50 60 70 8 0 ] ; 

% S t a t i c e f f e c t o f a n g l e o f a t t a c k on l i f t c o e f f i c i e n t CL = [ - 0 . 1 0 . 0 5 3 5 0 . 2 5 9 0 . 4 9 7 7 0 . 7 4 7 0 . 9 7 7 4 1 . 0 5 4 3 1 . 1 4 6 8 1 . 2 0 7 . . . 
1 . 2 5 2 9 1 . 2 7 2 6 1 . 2 7 8 1 . 2 6 5 1 . 2 3 8 8 1 . 2 1 4 3 1 . 1 3 4 7 0 . 9 2 5 5 0 . 8 3 7 7 . . . 
0 . 7 2 0 2 0 . 5 4 0 3 0 . 2 9 5 0 ] ; 

f i g u r e ( l ) , p l o t ( a l p h a , C L , ' - b ' , ' L i n e w i d t h ' , 2 ) , g r i d o n , . . . 
x l a b e l ( ' \ a l p h a [ d e g ] ' ) . y l a b e l ( ' L i f t c o e f f i c i e n t ' ) , . . . 
a x i s a u t o ; 

% s t a t i c e f f e c t o f a n g l e o f a t t a c k on n o r m a l - f o r c e c o e f f i c i e n t 
CN = [ - 0 . 1 0 2 2 0 . 0 5 3 5 0 . 2 6 1 2 0 . 5 0 5 8 0 . 7 7 1 4 1 . 0 3 3 5 1 . 1 2 6 9 1 . 2 4 1 6 . . . 

1 . 3 2 5 6 1 . 3 9 9 3 1 . 4 4 8 0 1 . 4 8 3 9 1 . 5 0 1 2 1 . 5 0 4 6 1 . 5 1 1 5 1 . 4 5 4 6 . . . 
1 . 2 8 4 1 . 2 6 7 4 1 . 3 6 4 2 1 . 4 4 1 1 1 . 4 6 4 3 ] ; 

f i gu r e ( 2 ) , p i o t ( a l p h a , C N , ' - b ' , ' L i n e w i d t h ' , 2 ) , g r i d o n , . . . 
x l a b e l C \ a l p h a [ d e g ] • ) , y l a b e l ( ' Normal Force C o e f f i c i e n t ' ) , . . . 
a x i s a u t o ; 

% s t a t i c e f f e c t o f a n g l e o f a t t a c k on p i t c h i n g moment c o e f f i c i e n t 
CM = [ 0 . 0 2 0 1 0 . 0 2 4 2 0 . 0 4 4 1 0 . 0 7 3 3 0 . 1 1 0 7 0 . 1 5 3 0 0 . 1 6 8 5 0 . 1 8 5 8 . . . 

0 . 2 0 0 9 0 . 2 1 6 1 0 . 2 2 4 4 0 . 2 2 5 6 0 . 2 2 1 4 0 . 2 1 8 3 0 . 2 1 8 6 0 . 1 9 9 5 . . . 
0 . 1 8 6 7 0 . 1 7 9 3 0 . 1 5 7 8 0 . 1 2 0 8 0 . 0 5 9 4 ] ; 

f i g u r e ( 3 ) . p l o t ( a l p h a , C M , ' - b ' , ' L i n e w i d t h ' , 2 ) , g r i d o n , . . . 
x l a b e l ( ' \ a l p h a [ d e g ] ' ) , y l a b e l ( ' P i t c h i n g Moment C o e f f i c i e n t ' ) , . . . 
a x i s a u t o ; 
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DYNAMIC COEFFICIENT RESPONSES 

FILENAME: NASAdata_dynamic.m 

AUTHOR: Br ianne W i l l i a m s 

PURPOSE: v a l i d a t i o n o f s i m u l a t i o n r e s p o n s e s . Comparison o f e x p e r i m e n t a l 
r e s u l t s w i t h s i m u l a t i o n r e s p o n s e r e s u l t s . 

REFERENCES: NASA/TM-97-206276 

NOTES: none. %} 

c l c ; 
c l e a r a l l ; 
c l o s e a l l ; 
f ormat l o n g ; 

% F16XL A i r c r a f t Geometry 
S = 0 . 5 5 7 ; % Wing Area [mA2] 
b = 0 . 9 8 8 ; % Wing Span [m] 
cbar = 0 . 7 5 3 ; % Mean Aerodynamic Chord [m] 
x c g = 0 . 5 5 8 * c b a r ; % R e f e r e n c e c e n t e r o f G r a v i t y L o c a t i o n [m] 
alphaA = 5 * p i / 1 8 0 ; % o s c i l l a t i n g Ampl i tude [ r a d ] 

X T e s t c o n d i t i o n s 
q = 192; % Dynamic P r e s s u r e [Pa] 
rho = 1 . 2 2 5 ; % D e n s i t y [kg/mA3] 
u = s q r t ( 2 * q / r h o ) ; % F r e e s t r e a m v e l o c i t y [ m / s ] 

% Dynamic R e s u l t s from NASA/TM-97-206276 T a b l e s 5 - 7 ( p g . 2 2 - 2 4 ) 
a l p h a = [ 2 0 . 8 2 5 . 9 3 0 . 8 3 5 . 8 4 0 . 8 4 5 . 9 5 0 . 8 5 5 . 9 6 1 . 1 ] ; % a n g l e o f 
a t t a c k [ d e g ] 

CLalpha_barl = [ 2 . 7 1 7 3 2 . 0 6 0 5 1 . 0 4 8 3 0 . 4 1 5 7 0 . 3 5 7 2 - 0 . 1 0 7 4 - 0 . 2 8 2 7 - 0 . 5 1 6 3 -
0 . 7 2 5 9 ] ; % k = 0 . 0 8 1 
CLalpha_bar2 = [ 2 . 7 2 6 2 2 . 3 0 2 2 1 . 5 9 0 9 1 . 0 9 2 5 0 . 7 6 5 3 0 . 3 4 7 1 0 . 0 1 7 2 - 0 . 3 1 7 5 - 0 . 6 2 0 0 ] ; 
% k = 0 . 1 3 5 
CLalpha_bar3 = [ 2 . 7 1 6 9 2 . 4 5 1 0 1 . 8 7 7 7 1 . 2 7 4 5 0 . 9 6 5 7 0 . 4 5 8 4 0 . 2 6 8 0 - 0 . 1 7 7 1 - 0 . 4 7 9 5 ] ; 
% k = 0 . 1 9 0 
f i g u r e d ) , p l o t ( a l p h a , CLal p h a _ b a r l , ' * — 

1 il pha, CLal p h a _ b a r 2 , 1 +: r ' , a l pha, CLal, 
x l a b e l ( ' \ a l pha [deg ] ' ) , y l a b e l ( ' C j _ \ a l pha ( b a r ) ' ) ; . . . 
t i t l e C ' l n - p n a s e component o f L i f t C o e f f i c i e n t ' ) , . . . 
l e g e n d C ' k = 0 . 0 8 1 " , 7 k = 0 . 1 3 5 ' , ' k = 0 . 1 9 0 " ) , g r i d on; 

b " , a l p h a , C L a l p h a _ b a r 2 , 1 + : r ' , a l p h a , C L a l p h a _ b a r 3 , 1 x - k * ) , 
<1 a b e l ( ' \ a l p h a [ d e g ] ' ) , y l a b e l - ' " 

CLq_barl = [ 0 . 6 2 7 4 6 . 8 8 7 8 1 3 . 4 7 9 0 1 7 . 0 3 8 0 1 8 . 0 3 0 0 1 0 . 8 0 8 0 7 . 3 7 9 9 4 . 0 8 4 8 3 . 5 0 3 6 ] ; 
% k = 0 . 0 8 1 
CLq_bar2 = [ - 0 . 6 7 4 9 2 . 8 4 2 0 6 . 8 4 1 5 7 . 8 7 4 2 7 . 8 2 6 5 5 . 3 7 5 9 3 . 6 5 8 9 2 . 6 1 6 6 1 . 7 8 5 6 ] ; 
% k = 0 135 
CLq_bar3 = [ - 0 . 4 4 1 1 1 . 3 2 8 2 3 . 5 8 0 2 4 . 5 1 5 6 4 . 2 3 0 4 3 . 5 0 0 4 2 . 0 9 3 7 1 . 5 6 4 1 1 . 3 2 6 0 ] ; 
% k = 0 . 1 9 0 
f i g u r e ( 2 ) . p l o t ( a l p h a , C L g _ b a r l I ' * — b ' , a l p h a . C L q _ b a r 2 , ' + : r ' , a l p h a , C L q _ b a r 3 , ' x - k ' ) , . . . 

x l a b e i ( ' \ a l p h a [ d e g J ^ . y l a b e l C C ^ U - q ( t a r ) ' ) , . . . 
t i t l e C ' O u t - o f - p h a s e Component o f L i f t C o e f f i c i e n t ' ) , . . . 
l e g e n d C ' k = 0 . 0 8 1 ' , ' k = 0 . 1 3 5 ' , ' k = 0 . 1 9 0 ' ) , g r i d on; 

CMalpha_barl = [ 0 . 5 1 8 3 0 . 4 5 2 9 0 . 1 9 0 1 0 . 1 0 9 0 0 . 1 5 0 9 0 . 0 3 2 3 - 0 . 0 9 2 1 - 0 . 1 7 5 5 - 0 . 2 0 8 1 ] ; 
% k = 0 0 8 1 
CMalphalbar2 = [ 0 . 5 0 9 6 0 . 4 7 7 5 0 . 2 7 6 4 0 . 2 3 7 8 0 . 1 6 8 2 0 . 0 7 0 6 - 0 . 0 7 3 3 - 0 . 1 3 8 6 - 0 . 1 7 1 4 ] ; 
% k = 0 . 1 3 5 
CMalpha_bar3 = [ 0 . 5 0 7 6 0 . 4 9 3 7 0 . 3 4 2 9 0 . 2 3 2 5 0 . 1 3 1 8 0 . 0 2 5 3 0 . 0 0 4 1 - 0 . 1 5 4 6 - 0 . 1 5 2 0 ] ; 
% k = 0 . 1 9 0 
f i g u r e ( 3 ) , p l o t ( a l p h a , C M a l p h a _ b a r l , ' * — 

_ba 
. . , i a 

t i t l e C ' l n - p h a s e Component o f P i t c h i n g -
l e g e n d f ' k = 0 . 0 8 1 ' , 7 k = 0 . 1 3 5 ' , ' k = 0 . 1 9 0 ' ) , g r i d on; 

CMq_barl = [ - 0 . 8 5 5 3 - 0 . 1 2 4 0 1 . 7 1 9 7 2 . 3 6 3 0 1 . 3 5 3 7 - 0 . 1 7 1 5 0 . 3 5 3 2 0 . 0 2 3 5 - 0 . 0 3 1 0 ] ; 
% k = 0 . 0 8 1 
CMq_bar2 = [ - 1 . 1 1 6 1 - 0 . 7 0 7 6 0 . 4 9 4 2 0 . 5 5 1 9 - 0 . 3 9 6 8 - 0 . 5 4 0 0 - 0 . 0 4 1 8 0 . 1 0 2 1 0 . 0 5 3 8 ] ; 
% k = 0 . 1 3 5 

b ' , a l p h a , C M a l p h a _ b a r 2 , ' + : r ' , a l p h a , C M a l p h a _ b a r 3 , ' x - k ' ) , . . . 
<1 a b e l ( ' \ a l pha [ d e g ] ' ) , y l a b e l ( 'C_m_\a lpha ( b a r ) ' ) , . . . 

i - p h a s e Component o f P i tch ing-Moment C o e f f i c i e n t ' ) , , 
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CMq_bar3 = [ - 1 . 0 7 4 9 - 0 . 8 8 2 5 - 0 . 1 7 8 9 - 0 . 3 2 4 5 - 0 . 7 9 5 5 - 0 . 4 8 6 9 0 . 0 5 2 7 0 . 1 4 0 7 0 . 0 5 6 7 ] ; 
% k = 0 . 1 9 0 
f i g u r e ( 4 ) , p l o t ( a l p h a , C M q _ b a r l , ' * — b " , a 1 p h a , C M q _ b a r 2 , ' + : r ' , a l p h a , C M q _ b a r 3 , ' x - k ' ) , . . . 

x l a b e l C \ a l p h a [ d e g J ' ) . y l a b e l ( ' C _ m _ q ( b a r ) ' ) , . . . 
t i t l e ( ' O u t - o f - p h a s e Component o f P i t ch ing-Moment C o e f f i c i e n t ' ) , . . . 
l e g e n d C ' k = 0 . 0 8 1 V k = 0 . 1 3 5 ' , ' k = 0 . 1 9 0 ' ) , g r i d on; 

alphaO = [ 2 0 . 8 2 5 . 9 3 0 . 8 ] ; 

c l = l o a d ( ' M 0 6 5 R 5 7 7 . m a t ' ) ; 
k = 0 . 0 8 1 ; 
w = 2 * p i * 0 . 6 ; 
T = ( 2 * p i ) / w ; 
t = c l . D A T A ( 1 3 1 : 6 3 1 , 1 ) - c l . D A T A ( 1 3 1 , l ) ; 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 
CLdynl = c l . D A T A ( 1 3 1 : 6 3 1 , 1 0 ) - m e a n C c l . D A T A ( 1 3 1 : 6 3 1 , 1 0 ) ) ; 
CMdynl = c l . D A T A ( 1 3 1 : 6 3 1 , 6 ) - m e a n ( c l . D A T A ( 1 3 1 : 6 3 1 , 6 ) ) ; 
CLalpha_bar l = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n l . * s i n ( w * t ) ) ; 
CLq_barl = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n l . * c o s ( w * t ) ) ; 
CMalpha_barl = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n l . * s i n ( w * t ) ) ; 
CMq_barl = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n l . * c o s ( w * t ) ) ; 
c l e a r c l ; 

c2 = l o a d ( ' M 0 6 5 R 6 0 2 . m a t ' ) ; 
k = 0 . 0 8 1 ; 
w = 2 * p i * 0 . 6 ; 
T = ( 2 * p i ) / w ; 
t = c 2 . D A T A ( 1 3 1 : 6 3 1 , 1 ) - c 2 . D A T A ( 1 3 1 , l ) ; 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 

CLdyn2 = C2.DATAC131:631,10) - m e a n ( c 2 . D A T A ( 1 3 1 : 6 3 1 , 1 0 ) ) ; 
CMdyn2 = c 2 . D A T A ( 1 3 1 : 6 3 1 , 6 ) - m e a n ( c 2 . D A T A ( 1 3 1 : 6 3 1 , 6 ) ) ; 

CLalpha_bar2 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 2 . * s i n ( w * t ) ) ; 
CLq_bar2 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 2 . * c o s ( w * t ) ) ; 

CMalpha_bar2 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 2 . « s i n ( w * t ) ) ; 
CMq_bar2 = ( 2 / ( a l p h a A * k * n c » T ) ) * t r a p z ( t , C M d y n 2 . * c o s ( w * t ) ) ; 
c l e a r c 2 ; 

c 3 = l o a d ( ' M 0 6 5 R 6 2 7 . m a t ' ) ; 
k = 0 . 0 8 1 ; 
w = 2 * p i * 0 . 6 ; 
T = ( 2 * p i ) / w ; 
t = c 3 . D A T A ( 1 3 1 : 6 3 1 , 1 ) - c 3 . D A T A ( 1 3 1 , l ) ; 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 
CLdyn3 = c 3 . D A T A ( 1 3 1 : 6 3 1 , 1 0 ) - m e a n ( c 3 . D A T A ( 1 3 1 : 6 3 1 , 1 0 ) ) ; 
CMdyn3 = c 3 . D A T A ( 1 3 1 : 6 3 1 , 6 ) - m e a n ( c 3 . D A T A ( 1 3 1 : 6 3 1 , 6 ) ) ; 
CLalpha_bar3 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 3 . * s i n ( w * t ) ) ; 
CLq_bar3 = ( 2 / ( a l p h a A » k * n c * T ) ) * t r a p z ( t , C L d y n 3 . * c o s ( w * t ) ) ; 
CMalpha_bar3 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 3 . * s i n ( w * t ) ) ; 
CMq_bar3 = ( 2 / ( a l p h a A * k » n c * T ) ) * t r a p z ( t , C M d y n 3 . * c o s ( w * t ) ) ; 
c l e a r c 3 ; 

c 4 = l o a d ( ' M 0 6 5 R 5 8 2 . m a f ) ; 
k = 0 . 1 3 5 ; 
w = 2 * p i * l ; 
T = ( 2 * p i ) / w ; 
t = c 4 . D A T A ( 5 8 : 3 5 8 , 1 ) - c 4 . D A T A ( 5 8 , l ) ; 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 
CLdyn4 = C 4 . D A T A ( 5 8 : 3 5 8 , 1 0 ) - m e a n ( c 4 . D A T A ( 5 8 : 3 5 8 , 1 0 ) ) ; 
CMdyn4 = C4.DATA(58:358 ,6) - m e a n ( c 4 .DATA(58:358 , 6 ) ) ; 
CLalpha_bar4 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 4 . * s i n ( w * t ) ) ; 
CLq_bar4 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 4 . * c o s ( w * t ) ) ; 
CMalpha_bar4 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 4 . * s i n ( w * t ) ) ; 
CMq_bar4 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n 4 . * c o s ( w * t ) ) ; 
c l e a r c 4 ; 

c5 = l o a d ( ' M 0 6 5 R 6 0 7 . m a f ) ; 
k = 0 . 1 3 5 ; 
w = 2 * p i * 1 . 0 0 ; 
T = ( 2 * p i ) / w ; 
t = c 5 . D A T A ( 6 3 : 3 6 3 , 1 ) - c 5 . D A T A ( 6 3 , l ) ; 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 



mu = mean(c5.DATA(63:363,6)) 
CLdyn5 = c5.DATA(63:363,10) - mean(c5 .DATA(63:363 ,10) ) ; 
CMdyn5 = c5.DATA(63:363,6) - mean(c5 .DATA(63:363,6) ) ; 
f i g u r e , p i o t ( t , C M d y n 5 ) 
CLalpha_bar5 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 5 . * s i n ( w * t ) ) ; 
CLq_bar5 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 5 . * c o s ( w * t ) ) ; 
CMalpha_bar5 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z C t , C M d y n 5 . * s i n ( w * t ) ) ; 
CMq_bar5 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n 5 . * c o s ( w * t ) ) 
c l e a r c5; 

c6 = load( 'M065R632 .mat ' ) ; 
k = 0 . 1 3 5 ; 
w = 2 * p i * l ; 
T = ( 2 * p i ) / w ; 
t = c6 .DATA(58:358,1) - c6 .DATA(58 , l ) ; 
tend = m a x ( t ) ; 
nc = tend/T; 
CLdyn6 = C6.DATA(58:358 ,10) - mean(c6 .DATAC58:358 ,10)); 
CMdyn6 = c6 .DATA(58:358 ,6) - mean(c6.DATAF58:358 ,6)); 
CLalpha_bar6 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 6 . * s i n ( w * t ) ) ; 
CLq_bar6 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 6 . * c o s ( w * t ) ) ; 
CMalpha_bar6 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 6 . * s i n ( w * t ) ) ; 
CMq_bar6 = (2 / (a lphaA*k*nc*T) )* trapz( t ,CMdyn6 .*cosCw*t ) ) ; 
c l e a r c6; 

c7 = loadC'M065R587.mat'); 
k = 0 . 1 9 0 ; 
w = 2 * p i * 1 . 4 1 ; 
T = ( 2 * p i ) / w ; 
t = c7.DATA(100:313,1) - c7 .DATA(100 , l ) ; 
tend = m a x ( t ) ; 
nc = t end /T; 
CLdyn7 = C7.DATA(100:313,10) - tnean(c7 .DATA (100:313,10)); 
CMdyn7 = C7.DATA(100:313 ,6) - mean(c7 .DATA (100:313 ,6) ) ; 
CLalpha_bar7 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 7 . * s i n ( w * t ) ) ; 
CLq_bar7 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 7 . * c o s ( w * t ) ) ; 
CMalpha_bar7 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 7 . * s i n ( w * t ) ) ; 
CMq_bar7 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n 7 . * c o s ( w * t ) ) ; 
c l e a r c7; 

c8 = 1oad('M065R612.mat' ) ; 
k = 0 . 1 9 0 ; 
w = 2 * p i * 1 . 4 1 ; 
T = ( 2 * p i ) / w ; 
t = c8.DATA(100:313,1) - c8.DATA(100,1); 
tend = m a x ( t ) ; 
nc = t end /T; 
CLdyn8 = c8.DATA(100:313,10) - mean(c8 .DATA(100:313,10)) ; 
CMdyn8 = c8.DATA(100:313,6) - mean(c8 .DATA(100:313,6) ) ; 
CLaIpha_bar8 = ( 2 / ( a l p h a A « n c * T ) ) * t r a p z ( t , C L d y n 8 . * s i n ( w * t ) ) ; 
CLq_bar8 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 8 . * c o s ( w * t ) ) ; 
CMalpha_bar8 = C2/ (a lphaA*nc*T))*trapzCt ,CMdyn8.*s in(w*t ) ) ; 
CMq_bar8 = (2 / (a lphaA*k*nc*T) )* t rapz ( t ,CMdyn8 .*cos (w*t ) ) ; 
c l e a r c8; 

c9 = load( 'M065R637.mat ' ) ; 
k = 0 . 1 9 0 ; 
w = 2 * p i * 1 . 4 1 ; 
T = ( 2 * p i ) / w ; 
t = c9.DATA(100:313,1) - c9.DATA(100,1); 
tend = m a x ( t ) ; 
nc = t end /T; 
CLdyn9 = c9.DATA (100:313,10) - mean(c9.DATA (100:313 ,10) ) ; 
CMdyn9 = C9 .DATA (100:313 ,6 ) - mean(c9.DATA (100:313 ,6) ) ; 
CLalpha_bar9 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n 9 . * s i n ( w * t ) ) ; 
CLq_bar9 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n 9 . * c o s ( w * t ) ) ; 
CMalpha_bar9 = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C M d y n 9 . * s i n ( w * t ) ) ; 
CMq_bar9 = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n 9 . * c o s ( w * t ) ) ; 
c l e a r c9; 

f i g u r e ( l ) . h o l d o n , . . . 
p 1 o t ( a l p h a 0 ( l ) , C L a l p h a _ b a r l , " o b " , ' M a r k e r F a c e C o l o r ' , ' b ' ) . • . 
p l o t ( a l p h a 0 ( 2 ) , C L a l p h a _ b a r 2 , ' o b ' , ' M a r k e r F a c e C o l o r ' , ' b ' ) , . . 
p l o t ( a l p h a 0 ( 3 ) , C L a l p h a _ b a r 3 , ' o b ' , ' M a r k e r F a c e C o l o r ' , ' b ' ) , . . 
p l o t ( a l p h a 0 ( l ) , C L a l p h a _ b a r 4 , ' s r ' , ' M a r k e r F a c e C o l o r ' , ' r ' ) , . . 
p l o t ( a l p h a 0 ( 2 ) , C L a l p h a _ b a r 5 , ' s r ' , ' M a r k e r F a c e C o l o r ' , ' r ' ) , . . 
p l o t ( a l p h a 0 ( 3 ) , C L a l p h a _ b a r 6 , ' s r ' , ' M a r k e r F a c e C o l o r ' , ' r ' ) , . . 
p i o t ( a l p h a 0 ( l ) , C L a l p h a _ b a r 7 , ' d k ' , ' M a r k e r F a c e C o l o r ' , ' k ' ) , . . 
p i o t ( a l p h a 0 ( 2 ) , C L a l p h a _ b a r 8 , ' d k ' , ' M a r k e r F a c e C o l o r ' , ' k ' ) , . . 
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J3lot(a1|j>ha0(3) ,CLalpha_bar9, ' d k ' , "MarkerFacecol o r ' . ' k ' ) , . 

f i g u r e ( 2 ) . h o l d on, 
pi o t ( a l p h a O ( l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
p l o t ( a l p h a O C l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
p l o t ( a l p h a O f l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
ho ld o f f ; 

f i g u r e ( 3 ) . h o l d on , 
p l o t ( a l p h a O ( l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
p l o t ( a l p h a O ( l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
p l o t ( a l p h a O C l ) 
p l o t ( a l p h a 0 ( 2 ) 
p l o t ( a l p h a 0 ( 3 ) 
hold o f f ; 

, C L q _ b a r l , ' o b ' 
,CLq_bar2, 'ob' 
,CLq_bar3, 'ob' 
, C L q _ b a r 4 , ' s r ' 
, C L q _ b a r 5 , ' s r ' 
, C L q _ b a r 6 , ' s r ' 
,CLq_bar7, 'dk' 
,CLq_bar8, 'dk' 
,CLq_bar9, 'dk' 

,CMalpha_barl, 
,CMalpha_bar2, 
,CMalpha_bar3, 
,CMalpha_bar4, 
,CMalpha_bar5, 
,CMalpha_bar6, 
,CMalpha_bar7, 
,CMalpha_bar8, 
,CMalpha_bar9, 

, 'MarkerFaceColor 
,"MarkerFaceColor 
,"MarkerFaceColor 
,"MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 

, ' b ' ) 
, ' b " ) 
, ' b ' ) 
, ' r " ) 
, ' r ' ) 
, ' r ' ) 
,"k") 
. "k ) 
, ' k " ) 

' ob ' , 'MarkerFaceCo lor 
' ob ' , 'MarkerFaceCo lor 
' ob ' , 'MarkerFaceColor 
"sr","MarkerFaceColor 
"sr", 'MarkerFaceColor 
"sr ' , 'MarkerFaceColor 
'dk ' , 'MarkerFaceColor 
'dk ' , 'MarkerFaceColor 
'dk ' , 'MarkerFaceColor 

, ' b ' ) 
, ' b ' ) 
, ' b ' ) 
, ' r ' ) 
, ' r " ) 
, ' r ' ) 
, ' k ' ) 
, ' k ' ) 
, ' k ' ) 

f i g u r e ( 4 ) . h o l d on, 
p l o t ( a l p h a O ( l ) , 
p l o t ( a l p h a 0 ( 2 ) , 
p l o t ( a l p h a 0 ( 3 ) , 
p l o t C a l p h a O ( l ) , 
p l o t ( a l p h a 0 ( 2 ) , 
p l o t ( a l p h a 0 ( 3 ) , 
p l o t C a l p h a O ( l ) , 
p l o t ( a l p h a 0 ( 2 ) , 
p l o t ( a l p h a 0 ( 3 ) 
hold o f f ; 

CMq_barl , 'ob' 
CMq_bar2,'ob' 
CMq_bar3,'ob' 
CMq_bar4, 'sr ' 
CMq_bar5, 'sr ' 
CMq_bar6,'sr" 

,CMq_bar7,"dk' 
CMq_bar8,'dk' 
CMq_bar9,'dk' 

, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 
, 'MarkerFaceColor 

, ' b ' ) 
, ' b ' ) 
, ' b ' ) 
, ' r ' ) 
, ' r ' ) 
, ' r ' ) 
, ' k ' ) 
, ' k ' ) 
, ' k ' ) 



APPENDIX C 

LIST OF SIMULATION MODELING ASSUMPTIONS 



199 

1. Aerodynamic modeling assumptions: 
a. F-16XL aircraft (10% scale) 
b. Longitudinal motion only (pitch axis) 
c. Freestream velocity is fixed at 17 m/s 
d. Dynamic pressure is fixed at 192 Pa 
e. Reduced frequency ranged from 0.081 to 0.1 
f. Mean angle of attack is fixed at 30° 
g. Oscillation angle of attack is fixed at 5° 
h. Model is based on Taylor series approximation 

i. Makes use of empirical model from F-16XL data 
2. Induction machine modeling assumptions: 

a. 3-phase AC motor 
b. Symmetrical machine 
c. Uniform air gap 
d. Balanced 
e. Wye-connected circuitry 
f. Indirect vector control 
g. Fixed stator 

3. Motor encoder, tachometer, and filter assumptions: 
a. Unity gain 
b. Adds unnecessary noise 
c. Adds unnecessary phase changes 
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APPENDIX D 

PITCH OSCILLATION SIMULATION BLOCK DIAGRAM 
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APPENDXE 

PITCH OSCILLATION SIMULATION MATLAB CODE 
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PROGRAM INFORMATION 
PART 1 INITIALIZATION FOR PITCH OSCILLATION SIMULATION 203 
DESIGN OF EXPERIMENTS PARAMETERS (TO BE SET BY THE USER) 203 
PARAMETERS 204 
AERODYNAMIC PARAMETERS 204 
MOTOR PARAMETERS 204 
MISCELLANEOUS PARAMETERS 205 
COMPLIANTLY-COUPLED DRIVE TRAIN PARAMETERS 205 
PART 2 RUN SIMULATION AND GET RESULTS 207 
PART 3 DATA REDUCTION FOR ONE COMPLETE CYCLE (PRE-
PROCESSING) 207 
PART 4 COMPUTE DYNAMIC COEFFICIENTS (POST-PROCESSING) 207 

FILENAME: PITCH_PARAMETERS_AND_RESULTSv2.m 

AUTHOR(S): Br ianne W i l l i a m s & Drew Landman 

PURPOSE: P a r t 1 - s e t DOE parameters 
Par t 2 - i n i t i a l i z a t i o n f o r ROS s i m u l a t i o n (PITCH ONLY) 
P a r t 3 - run and s a v e d a t a r e s u l t from s i m u l a t i o n 
Par t 4 - t a k e d a t a one c y c l e from d a t a 
Par t 5 - compute t h e dynamic c o e f f i c i e n t s 

REFERENCES: N/A 

NOTES: - P l e a s e s e t s i m u l a t i o n c o n f i g u r a t i o n parameters i n t h e 
s i m u l i n k model and a l s o s e t t h e D.O.E parameters 
b e f o r e running t h i s m - f i l e . 

*** A l l u n i t s need t o be i n s i - u n i t s y s t e m . *** 

- u n i t C o n v e r s i o n s : 
1 m = 3 . 2 8 0 8 f t 
1 N = 0 . 2 2 4 8 m 
1 kg*mA2 = 0 . 7 3 7 6 s l u g * f t A 2 

COMMENTS: N/A 

DATE: 7 / 2 9 / 0 9 - s i m p l i f y l o a d a s r i g i d , b a l a n c e , and s t i n g 
o n l y damping 

8 / 1 1 / 0 9 - updated f i l e t o i n c l u d e p a r t s 2 , 3 , & 4 

%} 
c l c ; 

c l e a r a l l ; 
c l o s e a l l ; 
f ormat l o n g ; 

% c l e a r command window s c r e e n 
% c l e a r a l l v a r i a b l e s from workspace 
% c l o s e s a l l open f i g u r e s 
% s e t o u t p u t format (15 s i g n i f i c a n t d i g i t s ) 

PART 1 INITIALIZATION FOR PITCH OSCILLATION SIMULATION 

DESIGN OF EXPERIMENTS PARAMETERS (TO BE SET BY THE USER) 

% t o t a l i n e r t i a s e e n a t motor [kg*mA2] 
3_param = 1; 

% e q u i v a l e n t damping [ N * m / ( r a d / s ) ] 
Beq_param = 1; 

% reduced f r e q u e n c y [ — ] 
k_param = - 1 ; 



% back lash [arcmin] 
back lash = - 1 ; 

% l o s t motion [ rad] 
l o s t _ m o t i o n = 1; 

PARAMETERS 

AERODYNAMIC PARAMETERS 

wing Geometry (F-16XL 10% Model scale [Murphy]) 

s 
b 
cbar 
c 
xcg 
alphaO = 
thetaO = 
% 

rho 
u 

0 . 5 5 7 ; % wing area [mA2] 
0 . 9 8 8 ; % wing span [m] 
0 . 7 5 3 ; % mean aerodynamic chord [m] 
1 . 3 2 6 ; X r o o t (max) chord [m] 
0 . 5 5 8 * c b a r ; % c e n t e r o f g r a v i t y l o c a t i o n [m] 
3 0 . 8 * p i / 1 8 0 ; % a n g l e o f a t t a c k [rad] 
5 * p i / 1 8 0 ; % o s c i l l a t i o n a n g l e o f a t t a c k [rad] 

T e s t c o n d i t i o n s 
192; 
1 . 2 2 5 ; 
s q r t ( 2 * q / r h o ) ; 

% dynamic p r e s s u r e [Pal 
X f r e e s t r e a m d e n s i t y [kg/mA3] 
X f r e e s t r e a m v e l o c i t y [m/s ] 

% low t e s t c a s e 

X high t e s t c a s e 

% c e n t e r t e s t c a s e 

i f k_param == - 1 
k = 0 . 0 8 1 ; 

e l s e i f k_param == 1 
k = 0 . 1 ; 

e l s e i f k_param == 0 
k = ( 0 . 0 8 1 + 0 . D / 2 ; 

e l s e i f k_param = = 0 . 5 
k = 0 . 0 9 5 2 5 ; 

e l s e i f k_param = - 0 . 5 
k = 0 . 0 8 5 7 5 ; 

e l s e i f k_param == 2 
k = 0 . 0 9 8 2 0 ; 

e l s e i f k_param == 100 
k = 0 . 1 3 5 

e l s e 
errorC'wrong s e l e c t i o n f o r reduced f r e q u e n c y , k . ' ) ; 

end 

% p o i n t p r e d i c t i o n 

w 
f r e q 
T 
nc 
t F i n a l 
* { 

% 
sweep 
b 
cbar 
c 
s 
xcg 
alphaO %} 

2*U*k/cbar; 
w / ( 2 * p i ) ; 
( 2 * p i 5 / w ; 
1; 
round(nc*T); 

% o s c i l l a t i o n f r e q u e n c y [ r a d / s ] 
% f r e q u e n c y [Hz] 
% p e r i o d [ s e c ] 
% number o f c y c l e s [ — ] 
% s i m u l a t i o n s t o p t ime [ s e c ] 

wing Geometry ( 7 0 deg sweep d e l t a wing [ K l e i n ] ) 
% l e a d i n g edge sweep [rad] 7 0 * p i / 1 8 0 ; 

0 . 9 0 ; 
0 . 8 2 4 ; 
( b / 2 ) * t a n ( s w e e p ) ; 
0 . 5 * b * c ; 
0 . 2 5 * c b a r ; 
0 * p i / 1 8 0 ; 

% t r a i l i n g edge span o f d e l t a wing [m] 
% mean aerodynamic chord [m] 
% r o o t (max) chord [m] 
% wing a r e a [mA2] 
% c e n t e r o f g r a v i t y l o c a t i o n [m] 
% i n i t i a l a n g l e o f a t t a c k [ r a a ] ( n o t used) 

MOTOR PARAMETERS 

vdc 
f s w 
f l u x r 
Rr 
RS 
L i s 
Llr 
Lm 
f b 
P 
NS 

230; 
10e3; 
0 . 1 0 9 8 2 ; 
4 . 8 9 ; 
5 . 1 6 ; 
1 1 . 8 8 3 e - 0 3 ; 
1 7 . 1 6 3 e - 0 3 ; 
38e -03 ; 
60; 
4; 
1 2 0 * f b / p ; 

% DC s u p p l i e d v o l t a g e [V] 
% s w i t c h i n g f r e q u e n c y [HZ] 
% a b s o l u t e peak ro tor f l u x [wb] 
% r o t o r r e s i s t a n c e [ohms] 
% s t a t o r r e s i s t a n c e [Ohms] 
% s t a t o r i n d u c t a n c e [H] 
X r o t o r i n d u c t a n c e [H] 
% magnet i z ing i n d u c t a n c e [H] 
% base f r e q u e n c y [Hz] 
% number o f p o l e s [ — ] 
X base synchronous speed [rpm] 



Ls L i s + L lr ; % t o t a l l e a k a g e i n d u c t a n c e [H] 
Lr = Llr + Lm; % t o t a l r o t o r i n d u c t a n c e [H" 
Tr = Lr/Rr; % r o t o r t i m e c o n s t a n c e [ s e c 
wb = 2 * p i * f b ; % base a n g u l a r speed [ r a d / s 
x l s = wb*Lls; % s t a t o r impedance [Ohms] 
x l r = wb*Llr; % r o t o r impedance [ohms] 
xm = wb*Lm; % m a g n e t i z i n g impedance [Ohms] 

X e q u i v a l e n t m a g n e t i z i n g impedance [ohms] 
xmstar = 1 / C l / x l s + 1/xm + 1 / x l r ) ; 

MISCELLANEOUS PARAMETERS 

c l = p i*rho*bA2/4; % c o n s t a n t f o r aerodynamic model ( l i f t ) [ — ] 
c2 = p i * r h o / 4 * ( b A 2 / c A 2 ) ; % c o n s t a n t f o r aerodynamic model (moment) [— 
r a t i o = 1 / 8 9 ; % gear r a t i o [ - - ] 

i f back lash == - 1 
back_width = 0 . 0 3 3 * p i / 1 8 0 ; 

e l s e i f back lash == 1 
back_width = 0 . 1 6 7 * p i / 1 8 0 ; 

e l s e i f back lash == 0 
back_width = ( 0 . 0 3 3 + 0 . 1 6 7 ) * p i / 1 8 0 ; 

e l s e i f back lash = = 0 . 5 
back_width = 0 . 1 3 3 * p i / 1 8 0 ; 

e l s e i f back lash == - 0 . 5 
back_width = 0 . 0 6 7 * p i / 1 8 0 ; 

e l s e i f back lash = = 2 % p o i n t p r e d i c t i o n 
back_width = 6 . 7 5 7 / 6 0 * p i / 1 8 0 

end 

i f l o s t _ m o t i o n == - 1 X v a l u e determined from NASA F16XL t e s t c a s e 
M065R627 

u p p e r _ l i m i t = 4 . 6 3 4 * p i / 1 8 0 ; 
l o w e r j l i m i t = - 4 . 8 1 7 * p i / 1 8 0 ; 

e l s e i f l o s t _ m o t i o n == 1 % no motion l o s t 
u p p e r _ l i m i t = i n f ; 
l o w e r _ l i m i t = - i n f ; 

e l s e i f l o s t _ m o t i o n == 0 
u p p e r _ l i m i t = (5 - ( ( 5 - 4 . 6 3 4 ) / 2 ) ) * p i / 1 8 0 ; 
l o w e r _ l i m i t = ( - 5 - ( ( - 5 + 4 . 8 1 7 ) / 2 ) 5 * p i / 1 8 0 ; 

e l s e i f l o s t _ m o t i o n = = 0 . 5 
u p p e r _ l i m i t = 0 . 0 8 5 6 8 ; 
l o w e r _ l i m i t = - 0 . 0 8 5 6 8 ; 

e l s e i f l o s t _ m o t i o n == - 0 . 5 
u p p e r _ l w i t = 0 . 0 8 2 4 9 ; 
l o w e r _ l i m i t = - 0 . 0 8 2 4 9 ; 

e l s e i f l o s t _ m o t i o n = = 2 % p o i n t p r e d i c t i o n 
u p p e r _ l i m i t = 0 . 0 8 3 4 8 
l o w e r _ l i m i t = - 0 . 0 8 3 4 8 

end 

COMPLIANTLY-COUPLED DRIVE TRAIN PARAMETERS 

Moment of I n e r t i a Constants 

Jmotor = 1 . 2 7 5 e - 0 4 ; % motor r o t o r i n e r t i a [ s l u g * f t A 2 1 
J r t a n g l e = 1 . 4 7 4 e - 0 4 ; % r i g h t a n g l e reducer i n e r t i a [ s l u g * f t A 2 ] 
Jsumitomo = 0 . 9 8 1 e - 0 4 ; % t o r q u e reducer i n e r t i a [ s l u g * f t A 2 ] 
Jos = 2 6 . 8 5 5 e - 0 4 ; % output s h a f t i n e r t i a [ s l u g * r t A 2 ] 
3smf = 3 6 . 4 3 2 e - 0 4 ; % s t i n g mount f l a n g e i n e r t i a [ s l u g * f t A 2 ] 
J s t i n g = 3160e -04 ; % bent s t i n g i n e r t i a [ s l u g * f t A 2 ] 
% J s t i n g = 5 5 . 8 9 1 e - 0 4 ; % s t r a i g h t s t i n g i n e r t i a [ s l u g * f t A 2 ] 

% *** NEEDS TO BE PITCH (DOUBLE CHECK!) * • * 
Jbal = 1 2 . 1 6 4 e - 0 4 ; % b a l a n c e r o l l i n e r t i a [ s l u g * f t A 2 ] 
% m e t r i c s i d e o f ba lance r o l l i n e r t i a [ s l u g * f t A 2 ] 
3 bal m e t r i c = l e - 0 4 ; 
Dmodel = 5724e-04; % model i n e r t i a [ s l u g * f t A 2 ] 

% E q u i v a l e n t i n e r t i a s required f o r compl iance model 
% a l l i n e r t i a s on t h e motor s i d e [ s l u g * f t A 2 ] 
31 = Jmotor + J r t a n g l e + Jsumitomo; 
% a l l i n e r t i a s on t h e load s i d e [ s l u g * f t A 2 ] 
32 = Jos + Jsmf + Ds t ing + J b a l m e t r i c + Jmodel; 
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i f 3_param == - 1 % low t e s t c a s e 
3 = 3motor; 
% t o t a l motor + l o a d i n e r t i a s e e n a t t h e motor [kg*mA2] 
3 = 3 / 0 . 7 3 7 6 ; 

e l s e i f 3_param == 1 % h i g h t e s t c a s e 
3 = 31 + J 2 * ( r a t i o A 2 ) ; 
% t o t a l motor + l o a d i n e r t i a s e e n a t t h e motor [kg*mA2] 
3 = 3 / 0 . 7 3 7 6 ; 

e l s e i f 3_param = = 0 % c e n t e r t e s t c a s e 
3 = (3motor + ( 3 1 + 3 2 * ( r a t i o A 2 ) ) ) / 2 ; 
X t o t a l motor + l o a d i n e r t i a s e e n a t t h e motor [kg*mA2] 
3 = 3 / 0 . 7 3 7 6 ; 

e l s e i f 3_param = = 0 . 5 
3 = 0 . 0 0 0 5 3 7 4 ; % [kg*mA2] 

e l s e i f 3_param == - 0 . 5 
3 = 0 . 0 0 0 2 9 4 4 ; % [kg*mA2] 

e l s e i f 3_param = = 2 % p o i n t p r e d i c t i o n 
3 = 0 . 0 0 0 2 5 1 7 

e l s e 
e r r o r ( ' w r o n g s e l e c t i o n f o r e q u i v a l e n t i n e r t i a , 3 e q ' ) ; 

end 

% Convert i n e r t i a s t o a p p r o p r i a t e u n i t s 
% a l l i n e r t i a s on t h e motor s i d e [kg*mA2] 
31 = 3 1 / 0 . 7 3 7 6 ; 
% a l l i n e r t i a s on t h e l oad s i d e [kg*mA2] 
32 = 3 2 / 0 . 7 3 7 6 ; 
% % t o t a l motor + l o a d i n e r t i a s e e n a t t h e motor [kg*mA2] 
% 3 = 3 / 0 . 7 3 7 6 ; 

% *** DOUBLE CHECK CALCULATION BELOW *** 
% B a l a n c e C o n s t a n t s 
% b a l a n c e s p r i n g ( s t i f f n e s s ) c o n s t a n t [ f t * l b / r a d ] 
Bal_K = ( 1 / 0 . 0 1 3 2 * ( 6 0 / 1 ) * 1 8 0 / p i ) * ( 1 / 1 2 ) ; % NEEDS TO BE PITCH! 

% b a l a n c e damping c o n s t a n t [ f t * l b / ( r a d / s e c ) ] 
Bal_B = 0 . 0 0 5 * 2 * s q r t ( B a l _ K / 3 b a l ) ; 

% s t i n g c o n s t a n t s 
S t i n g _ r t = 1 . 1 / 2 ; % m i s s i n g l a b e l (Gene?) 
s t i n g _ r b = 1 . 8 7 5 / 2 ; % m i s s i n g l a b e l (Gene?) 

% s t i n g s p r i n g c o n s t a n t [ f t * l b / r a d ] 
S t i ng_K = 1 / ( 2 * 3 3 . 1 0 8 / ( 3 * p i * 6 . 4 e 6 ) * . . . 

( S t i ng_rbA2 + s t i n g _ r b * s t i n g _ r t + . . . 
S t i n g _ r t A 2 ) / ( S t i n g _ r t * S t i ng_rb)A3) ; 

% s t i n g damping c o n s t a n t [ f t * l b / ( r a d / s e c ) ] 
S t i ng_B = 0 . 0 0 5 * 2 * s q r t ( s t i n g _ K / 3 s t i n g ) ; 

% c o n v e r t s p r i n g and damping c o n s t a n t s t o a p p r o p r i a t e u n i t s 
% b a l a n c e damping c o n s t a n t [ N * m / ( r a d / s ) ] 
Bbal = B a l _ B / 3 . 2 8 0 8 / 0 . 2 2 4 8 ; 
% s t i n g damping c o n s t a n t [ N * m / ( r a d / s ) ] 
B s t i n g = S t i n g _ B / 3 . 2 8 0 8 / 0 . 2 2 4 8 ; 

i f Beq_param == - 1 % low t e s t c a s e 
Beq = 0; 

e l s e i f Beq_param == 1 % h igh t e s t c a s e 
Beq = (Bbal + B s t i n g ) * ( r a t i o A 2 ) ; 

e l s e i f Beq_param = = 0 % c e n t e r t e s t c a s e 
Beq = ( (Bba l + B s t i n g ) * ( r a t i o A 2 ) ) / 2 ; 

e l s e i f Beq_param = = 0 . 5 
Beq = 0 . 0 0 6 0 4 2 ; 

e l s e i f Beq_param == - 0 . 5 
Beq = 0 . 0 0 2 0 1 4 ; 

e l s e i f Beq_param == 2 
Beq = 0 . 0 0 0 3 2 6 6 

e l s e 
e r r o r ( ' w r o n g s e l e c t i o n f o r e q u i v a l e n t damping c o e f f i c i e n t , B e q . ' ) ; 

end 
%{ 

NOTE: - NOT USED IN SIMPLIFIED SIMULATION MODEL 
- WILL NEED FOR COMPLEX COMPLIANCE MODEL 

K^al = B a l _ K / 3 . 2 8 0 8 / 0 . 2 2 4 8 ; X b a l a n c e s p r i n g c o n s t a n t [N*m/rad] 
K s t i n g = s t i n g _ K / 3 . 2 8 0 8 / 0 . 2 2 4 8 ; % s t i n g s p r i n g c o n s t a n t [N*m/rad] 
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PART 2 RUN SIMULATION AND GET RESULTS 

S6{ 
NOTE: MAKE SURE THE CONFIGURATION PARAMETERS IN THE SIMULINK 

FILE IS SET FIRST. 
%} 
s i m ( ' P 0 S _ f i n a l _ v e r l 4 ' . t F i n a l ) ; % runs s i m u l i n k model from m - f i l e 

f i g u r e ( l ) , p l o t ( P d a t a ( : , 1 ) , P d a t a ( : , 2 ) , ' - b ' , " L i n e w i d t h " , 2 ) , g r i d o n , . . . 
x l a b e l ( ' t i m e [ s e c ] ' ) , y l a b e l ( ' P o s i t i o n [ r a d ] ' ) ; 

PART 3 DATA REDUCTION FOR ONE COMPLETE CYCLE (PRE-PROCESSING) 

DATA TAKING SCHEME: 
1 . i n p u t d a t a from t h e s i m u l i n k f i l e . 

( i . e . 1 i f t and moment c o e f f i c i e n t ) 
2 . A polynomal c u r v e i s f i t t e d t o t h e d a t a . 
3 . u s e r s e l e c t s d e s i r e d r o o t s from t h e r e s u l t s . 
4 . Data i s t a k e n from s e l e c t e d r a n g e , based on t h e r o o t s , 

t o o b t a i n 1 c o m p l e t e c y c l e . 
5 . Data i s t h e n p r o c e s s e d f o r t h e dynamic aerodynamic 

c o e f f i c i e n t s . 

NOTE: T h i s scheme i s o n l y a c c u r a t e up t o 3 s i g n i f i c a n t d i g i t s 
%} 
t o l = l e - 2 ; 
d i s p C S e l e c t s t a r t i n g p o i n t i n g and end ing p o i n t u s i n g mouse c u r s o r ' ) ; 
[ p o i n t X . p o i n t Y ] = g i n p u t ( 2 ) ; 

e r r l = a b s ( P d a t a ( : , 1 ) - p o i n t x ( l ) ) ; % e r r o r f o r s t a r t i n g p o i n t 
e r r 2 = a b s ( P d a t a ( : , 1 ) - p o i n t x ( 2 ) ) ; X e r r o r f o r e n d i n g p o i n t 

f o r n = l : l e n g t h ( P d a t a ( : , 2 ) ) 
i f e r r l ( n ) <= t o l 

s t a r t p t = n; 
end 
i f e r r 2 ( n ) <= t o l 

f i n a l p t = n; 
end 

end 

s t a r t p t 
f i n a l p t %{ 
% p l o t check 
f i g u r e ( 2 ) , p l o t ( P d a t a ( s t a r t p t : f i n a l p t , l ) , P d a t a ( s t a r t p t : f i n a l p t , 2 ) ) . g r i d on; %} 

PART 4 COMPUTE DYNAMIC COEFFICIENTS (POST-PROCESSING) 
%{ 

NOTE: 
Computes t h e u n s t e a d y s t a b i l i t y d e r i v a t i v e s from t h e s i m u l a t i o n 

r e s u l t s . 
%} 
X f i g u r e ( 2 ) , p l o t ( P d a t a ( : , l ) , C L d a t a ) , g r i d on; 

alphaA = t h e t a O ; % o s c i l l a t i o n a m p l i t u d e [ r a d ] 
t = P d a t a ( s t a r t p t : f i n a l p t , l ) - P d a t a ( s t a r t p t . l ) ; % t i m e v e c t o r [ s e c ] 
t e n d = m a x ( t ) ; 
nc = t e n d / T ; 

C L s t a t i c = mean(CLdata); % s t a t i c l i f t c o e f f i c i e n t 
CMsta t i c = mean(CMdata); % s t a t i c p i t c h i n g moment c o e f f i c i e n t 

CLdyn = C L d a t a ( s t a r t p t : f i n a l p t ) - C L s t a t i c ; X dynamic l i f t c o e f f i c i e n t 
CMdyn = C M d a t a ( s t a r t p t : f i n a l p t ) - C M s t a t i c ; % dynamic p i t c h i n g moment 
c o e f f i c i e n t 

f i g u r e d ) , p l o t ( t , C L d y n ) , g r i d on; 



f i g u r e ( 2 ) , p l o t C t . C M d y n ) , g r i d on; 

CLalpha_bar = ( 2 / ( a l p h a A * n c * T ) ) * t r a p z ( t , C L d y n . * s i n ( w * t ) ) 
CLq_bar = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C L d y n . * c o s ( w * t ) ) 

CMalpha_bar = C2/ (a lphaA*nc*T) )* trapz( t ,CMdyn.*s inCw*t ) ) 
CMq_bar = ( 2 / ( a l p h a A * k * n c * T ) ) * t r a p z ( t , C M d y n . * c o s ( w * t ) ) 



APPENDIX F 

ANOVA RESULTS FOR RESPONSES 



RESPONSE - IN-PHASE LIFT COEFFICIENT C, 

Table 35: ANOVA table for in-phase lift coefficient 
Response 1 CLalpha_bar 

ANOVA for Response Surface Reduced Cubic Model 
Analysis of variance table [Partial sum of squares - Type III] 

Source Sum of 
Squares df Mean 

Square 
Model 0.15160 20 0.00758 
A-Jeq 0.00159 1 0.00159 
B-Beq 0.00149 1 0.00149 

C-k 0.03241 1 0.03241 
D-BL 0.00596 1 0.00596 
E-IS 0.01061 1 0.01061 
AB 0.00058 1 0.00058 
AE 0.00232 1 0.00232 
BC 0.00326 1 0.00326 
BD 0.00114 1 0.00114 
CD 0.00119 1 0.00119 
DE 0.00113 1 0.00113 
AA2 0.00039 1 0.00039 
BA2 0.00017 1 0.00017 
CA2 0.00467 1 0.00467 
DA2 0.00115 1 0.00115 
EA2 0.00661 1 0.00661 
AA3 0.00286 1 0.00286 
BA3 0.00131 1 0.00131 
CA3 0.00607 1 0.00607 
DA3 0.00434 1 0.00434 

Residual 0.01765 32 0.00055 
Cor Total 0.16925 52 

Table 36: Model adequacy results for in-phase lift coefficient 
Std. Dev. 0.0235 R-Squared 0.8957 

Mean 1.1047 Adj R-Squared 0.8305 
CM. % 2.1261 Pred R-Squared 0.7670 
PRESS 0.0394 Adeq Precision 14.4567 



RESPONSE - OUT-OF-PHASE LIFT COEFFICIENT CL 

Table 37: ANOVA table for out-of-phase lift coefficient 
Response 2 CLq_bar 

ANOVA for Response Surface Reduced Cubic Model 
Analysis of variance table [Partial sum of squares - Type III] 

Source Sum of 
Squares df Mean 

Square 
Model 37.8115 20 1.8906 
A-Jeq 0.2336 1 0.2336 
B-Beq 0.1399 1 0.1399 

C-k 7.1022 1 7.1022 
D-BL 0.6663 1 0.6663 
E-IS 0.0033 1 0.0033 
AB 0.0953 1 0.0953 
AE 0.1677 1 0.1677 
BC 0.3207 1 0.3207 
BD 0.1103 1 0.1103 
CD 0.1033 1 0.1033 
DE 0.1470 1 0.1470 
AA2 0.0324 1 0.0324 
BA2 0.0036 1 0.0036 
CA2 0.5661 1 0.5661 
DA2 0.1766 1 0.1766 
EA2 0.4150 1 0.4150 
AA3 0.4026 1 0.4026 
BA3 0.1386 1 0.1386 
CA3 0.5937 1 0.5937 
DA3 0.4998 1 0.4998 

Residual 1.6844 32 0.0526 
Cor Total 39.4959 52 

Table 38: Model adequacy results for out-of-phase lift coefficient 
Std. Dev. 0.2294 R-Squared 0.9574 

Mean 12.6622 Adj R-Squared 0.9307 
C.V. % 1.8119 Pred R-Squared 0.9110 
PRESS 3.5140 Adeq Precision 20.9072 



RESPONSE - IN-PHASE PITCHING MOMENT COEFFICIENT Cm m. 

Table 39: ANOVA table for in-phase pitching moment coefficient 
Response 3 CMalpha_bar 

ANOVA for Response Surface Reduced Cubic Model 
Analysis of variance table [Partial sum of squares - Type III] 

Source Sum of 
Squares df Mean 

Square 
Model 4.1268E-03 20 0.000206 
A-Jeq 3.0946E-05 1 3.09E-05 
B-Beq 1.6649E-05 1 1.66 E-05 

C-k 7.7259E-04 1 0.000773 
D-BL 8.2841 E-05 1 8.28 E-05 
E-IS 2.2994E-04 1 0.00023 
AB 1.0769E-05 1 1.08E-05 
AE 2.4896E-05 1 2.49E-05 
BC 4.1258E-05 1 4.13E-05 
BD 1.4432E-05 1 1.44 E-05 
CD 1.3609E-05 1 1.36E-05 
DE 1.8003E-05 1 1.8E-05 
AA2 6.2519E-06 1 6.25E-06 
BA2 1.6235E-06 1 1.62E-06 
CA2 7.4202E-05 1 7.42E-05 
DA2 1.7082E-05 1 1.71 E-05 
EA2 8.7242E-05 1 8.72E-05 
AA3 5.0522E-05 1 5.05E-05 
BA3 1.5718E-05 1 1.57E-05 
CA3 8.0642E-05 1 8.06E-05 
DA3 6.1907E-05 1 6.19E-05 

Residual 2.3936E-04 32 7.48E-06 
Cor Total 4.3661 E-03 52 

Table 40: Model adequacy results for in-phase pitching moment coefficient 
Std. Dev. 0.00273 R-Squared 0.9452 

Mean 0.20025 Adj R-Squared 0.9109 
C.V. % 1.36576 Pred R-Squared 0.8762 
PRESS 0.0005407 Adeq Precision 20.2269 



RESPONSE - OUT-OF-PHASE PITCHING MOMENT COEFFICIENT Cm m. 

Table 41: ANOVA table for out-of-phase pitching moment coefficient 
Response 4 CMq_bar 

ANOVA for Response Surface Reduced Cubic Model 
Analysis of variance table [Partial sum of squares - Type III] 

Source Sum of 
Squares df Mean 

Square 
Model 1.3732E+00 20 0.068661 
A-Jeq 6.3838E-03 1 0.006384 
B-Beq 5.4304E-03 1 0.00543 

C-k 2.5905E-01 1 0.25905 
D-BL 2.2725E-02 1 0.022725 
E-IS 1.9828E-03 1 0.001983 
AB 2.9139E-03 1 0.002914 
AE 6.9594E-03 1 0.006959 
BC 1.2042E-02 1 0.012042 
BD 3.7028E-03 1 0.003703 
CD 3.9133E-03 1 0.003913 
DE 4.8571 E-03 1 0.004857 
AA2 1.1187E-03 1 0.001119 
BA2 2.7803E-04 1 0.000278 
CA2 1.7750E-02 1 0.01775 
DA2 5.4419E-03 1 0.005442 
EA2 1.7492E-02 1 0.017492 
AA3 1.1758E-02 1 0.011758 
BA3 5.2159E-03 1 0.005216 
CA3 2.1826E-02 1 0.021826 
DA3 1.6892E-02 1 0.016892 

Residual 6.0917E-02 32 0.001904 
Cor Total 1.43413861 52 

Table 42: Model adequacy results for out-of-phase pitching moment coefficient 
Std. Dev. 0.0436 R-Squared 0.9575 
Mean 1.5613 Adj R-Squared 0.9310 
C.V. % 2.7944 Pred R-Squared 0.9089 
PRESS 0.1307 Adeq Precision 20.9245 



APPENDIX G 

MONTE CARLO SIMULATIONS 
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FILENAME: MCMv5_i ndi r e c t . m 

AUTHOR: 
PURPOSE: 

REFERENCE: 

NOTE: 

%} c l c ; 
c l e a r a l l ; 
c l o s e a l l ; 

Br ianne Y. W i l l i a m s 

Performs Monte C a r l o method s i m u l a t i o n on i n d i r e c t 
computa t ion o f t h e a b s o l u t e s e n s i t i v i t y c o e f f i c i e n t and 
r e s p e c t i v e d e r i v a t i v e s . 

Monte C a r l o ( i n d i r e c t method) 

Coleman, H .w. , and S t e e l e , W.G., " E x p e r i m e n t a t i o n , v a l i d a t i o n , 
and u n c e r t a i n t y A n a l y s i s f o r E n g i n e e r s " 3rd e d i t i o n . 

1 ) For ex treme c a s e s where t h e Monte C a r l o d i s t r i b u t i o n i s 
h i g h l y skewed, t h e asymmetr ic u n c e r t a i n t y l i m i t s w i l l 
be more a p p r o p r i a t e t o p r o v i d e a g i v e n l e v e l o f 
c o n f i d e n c e f o r t h e u n c e r t a i n t y e s t i m a t e , (pg 8 1 ) 

2 ) C a l c u l a t i n g t h e s t a n d a r d d e v i a t i o n and assuming t h a t t h e 
c e n t r a l l i m i t theorem a p p l i e s t o o b t a i n t h e u n c e r t a i n t y 
w i l l n o t n e c e s s a r i l y be a p p r o p r i a t e on t h e d e g r e e o f 
asymmetry 

% . . . S e t nominal v a l u e s 

t e s t _ c a s e = 5; 

i f t e s t _ c a s e == 1 
Jeq = 0 . 0 0 0 6 5 8 9 0 0 ; 
Beq = 0 . 0 0 8 0 5 6 0 0 ; 
k = 0 . 0 8 1 ; 

f i x e d f a c t o r *** 
BL = 2 . 0 0 0 0 0 ; 
IS = 0 . 0 8 7 2 7 ; 

e l s e i f t e s t _ c a s e == 2 
Jeq = 0 . 0 0 0 4 1 5 9 0 0 ; 
Beq = 0 . 0 0 4 0 2 8 0 0 ; 
k = 0 . 0 9 0 5 0 0 0 ; 
BL = 6 . 0 0 0 0 0 ; 
IS = 0 . 0 8 4 0 8 5 0 ; 

e l s e i f t e s t _ c a s e == 3 
Jeq = 0 . 0 0 0 1 7 2 9 0 0 ; 
Beq = 0 . 0 0 0 0 0 0 ; 
k = 0 . 0 8 1 0 0 0 0 ; 
BL = 2 . 0 0 0 0 0 ; 
IS = 0 . 0 8 0 9 0 0 0 ; 

e l s e i f t e s t _ c a s e == 4 
Jeq = 0 . 0 0 0 4 1 5 9 0 0 ; 
Beq = 0 . 0 0 4 0 2 8 0 0 ; 
k = 0 . 0 8 1 0 0 0 0 ; 
BL = 2 . 0 0 0 0 0 ; 
IS = 0 . 0 8 0 9 0 0 0 ; 

e l s e i f t e s t _ c a s e == 5 
Jeq = 0 . 0 0 0 6 5 8 9 0 0 ; 
Beq = 0 . 0 0 8 0 5 6 0 0 ; 
k = 0 . 1 0 0 0 0 0 ; 
BL = 2 . 0 0 0 0 0 ; 
IS = 0 . 0 8 0 9 0 0 0 ; 

[kg*mA2] 
% e q u i v a l e n t damping [Nms/rad] 
X e q u i v a l e n t i n e r t i a 
% e q u i v a l e n t 
% reduced f r e q u e n c y " [ — ] 

% b a c k l a s h [arcmin] 
% i n p u t s a t u r a t i o n [ r a d ] 

A = + 1 . 0 
B = + 1 . 0 
C = - 1 . 0 

D = - 1 . 0 
E = + 1 . 0 

% A = 0 . 0 
% B — 0 . 0 
% C — 0 . 0 
% D — 0 . 0 
% E = 0 . 0 

% A _ - 1 . 0 
% B — - 1 . 0 
% C - 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

% A 0 . 0 
% B = 0 . 0 
% C = - 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

% A + 1 . 0 
% B = + 1 . 0 
% C — + 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

end 

[ z 0 , S ] = s e n s i t i v i t y _ c o e f f 2 ( J e q , B e q , k , B L , l S ) ; 

n = 100000; % number o f samples 

% . . . un i form d i s t r i b u t i o n f o r e q u i v a l e n t i n e r t i a 
Jeq_low = 0 . 0 0 0 1 7 2 9 0 0 ; % [kg*mA2] 
Jeq_h igh = 0 . 0 0 0 6 5 8 9 0 0 ; % [kg*mA2] 

dJeq = Jeq_low + C(Jeq_high - J e q _ l o w ) . * r a n d ( n , l ) ) ; 
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djeq = mean(dJeq) - daeq; 

f i g u r e d ) , h i s t ( d 3 e q , 1 0 0 ) . g r i d o n , . . . 
x l a b e l ( ' \ d e l t a Jeq [ k g * m A 2 ] ' ) , y l a b e l ( ' F r e q u e n c y o f O c c u r a n c e ' ) , , 
t i t l e C ' u n i f o r m D i s t r i b u t i o n f o r Equiva lent i n e r t i a ' ) ; 

uniform d i s t r i b u t i o n f o r e q u i v a l e n t damping % 
Beq_Iow = 0; 
Beq_high = 0 . 0 0 8 0 5 6 0 0 ; 
Beq_mean = m e a n ( [ B e q _ n i g h , B e q _ l o w ] ) ; 

N - m / ( r a d / s ) 
N - m / ( r a d / s ) 
N - m / ( r a d / s ) 

dBeq = B e q _ l o w + ( ( B e q _ h i g h - B e q _ l o w ) . * r a n d ( n , l ) ) ; 
dBeq = m e a n ( d B e q ) - d B e q ; 

f i g u r e ( 2 ) , h i s t ( d B e q , 1 0 0 ) , g r i d o n , . . . 
x l a b e l ( ' \ d e l t a Beq [ N - m / ( r a d / s ) ] ' ) , y l a b e l ( ' F r e q u e n c y o f O c c u r a n c e ' ) , . . . 
t i t l e ( ' u n i f o r m D i s t r i b u t i o n f o r Equiva lent Damping'); 

% . . . No d i s t r i b u t i o n f o r reduced frequency 
dk = z e r o s ( n , l ) ; 

% Normal d i s t r i b u t i o n f o r backlash 
Bl low = 2; 
BL_high = 1 0 ; 
muBL = mean([BL_high,Bl_ low]) ; 
sdBL = 2 .60623; 

dBL = muBL + ( randn(n , l )* sdBL) ; 
dBL = mean(dBL) - dBL; 

a r c r m n 
a r c m i n 
a r c m i n 

% s t d (from d e s i g n e x p e r t ) [arcmin] 

f i g u r e ( 3 ) , h i s t ( d B L , 1 0 0 ) , g r i d o n , . . . 
x l a b e l ( ' \ d e l t a BL [ a r c m i n ] ' ) . y l a b e l ( ' F r e q u e n c y o f O c c u r a n c e ' ) , , 
t i t l e ( ' N o r m a l D i s t r i b u t i o n f o r B a c k l a s h ' ) ; 

% . . . Normal d i s t r i b u t i o n f o r input s a t u r a t i o n 
lS_low = 0.0809000; % 
IS_high = 0 .0872700; % 
muis = m e a n ( [ l s _ h i g n , l S _ l o w ] ) ; X 
s d l S = 0 .00207521; 

d i s = m u i s + ( r a n d n ( n , l ) * s d i s ) ; 
d i s = m e a n ( d i s ) - d i s ; 

rad 
rad 
rad 

% s t d (from d e s i g n e x p e r t ) [rad] 

f i g u r e ( 4 ) , h i s t ( d i S , 1 0 0 ) . g r i d o n , . . . 
x l a b e l ( ' \ d e l t a IS [ r a d ] ' ) , y l a b e l ( ' F r e q u e n c y o f o c c u r a n c e ' ) , , 
t i t l e ( ' N o r m a l D i s t r i b u t i o n f o r input S a t u r a t i o n ' ) ; 

% . . . Monte c a r l o s i m u l a t i o n 
dCLabar = s q r t ( ( s ( l , l ) A 2 * d J e q . A 2 ) + ( s ( l , 2 )A2*dBeq .A2) + ( s ( l , 3 ) A 2 * d k . A 2 ) + 

(S( l ,4)A2*dBL.A2) + ( S ( l , 5 ) A 2 * d I S . A 2 ) ) ; 

dCLqbar = s q r t ( ( S ( 2 , l ) A 2 * d 3 e q . A 2 ) + (S(2,2)A2*dBeq.A2) + (S(2 ,3)A2*dk.A2) + 
(S(2,4)A2*dBL.A2) + ( S ( 2 , 5 ) A 2 * d I S . A 2 ) ) ; 

dCMabar = s q r t ( ( S ( 3 , l ) A 2 * d 3 e q . A 2 ) + (s (3 ,2)A2*dBeq.A2) + ( s (3 ,3 )A2*dk .A2) + 
(S(3,4)A2*dBL.A2) + ( S ( 3 , 5 ) A 2 * d I S . A 2 ) ) ; 

dCMqbar = s q r t ( ( S ( 4 , l ) A 2 * d J e q . A 2 ) + (S(4,2)A2*dBeq.A2) + (S(4 ,3)A2*dk.A2) + 
(S(4,4)A2*dBL.A2) + ( S ( 4 , 5 ) A 2 * d I S . A 2 ) ) ; 

% D i s t r i b u t i o n output i s added t o t h e nominal 
CLabar = z 0 ( l ) + dCLabar; 
CLqbar = Z0(2) + dCLqbar; 
CMabar = Z0(3) + dCMabar; 
CMqbar = z 0 ( 4 ) + dCMqbar; 

% . . . Histogram P l o t s 
f i gu r e ( 6 ) , h i s t ( C L a b a r , 1 0 0 ) . g r i d o n . . . . 

x l a b e l ( ' C _ L _ \ a l p h a ( b a r ) ' ) , y l a b e l ( ' F r e q u e n c y o f o c c u r a n c e ' ) ; 

f i g u r e ( 7 ) , h i s t ( C L q b a r , 1 0 0 ) , g r i d o n , . . . 



217 

x l a b e l C ' c _ L _ q ( b a r ) ' ) , y l a b e l ( " F r e q u e n c y o f O c c u r a n c e ' ) ; 

f i g u r e ( 8 ) , h i s t ( C M a b a r , 1 0 0 ) , g r i d o n , . . . 
x l a b e 1 ( ' c _ M _ \ a l p h a ( b a r ) ' ) . y l a b e l ( ' Frequency o f O c c u r a n c e ' ) ; 

f i g u r e ( 9 ) .h i s t (CMqbar, 1 0 0 ) , g r i d o n , . . . 
x l a b e 1 ( ' C _ M _ q ( b a r ) ' ) , y l a b e l ( ' F r e q u e n c y o f O c c u r a n c e ' ) ; 

% . . . Summary s t a t i s t i c s and c o v e r a g e i n t e r v a l s 
X i n - p h a s e l i f t c o e f f i c i e n t 
CLa_mean = m e a n ( C L a b a r ) ; 
C L a _ s t d = s t d ( C L a b a r ) ; 
C L a _ v a r = v a r ( C L a b a r ) ; 
CLa_max = m a x ( C L a b a r ) ; 
C L a _ m i n = m i n ( C L a b a r ) ; 
CLa_skew = s k e w n e s s ( C L a b a r ) ; 
C L a _ k u r t = k u r t o s i s ( C L a b a r ) ; 
% coverage i n t e r v a l f o r CLalpha (bar ) 
C L a _ s o r t = s o r t ( C L a b a r , ' a s c e n d ' ) ; 
CLa_rlow = C L a _ s o r t ( 0 . 0 2 5 * n ) ; 
CLa_rhigh = C L a _ s o r t ( 0 . 9 7 5 * n ) ; 
C L a _ r a n g e = r a n g e ( C L a b a r ) ; 

% O u t - o f - p h a s e l i f t c o e f f i c i e n t 
CLq_mean = mean(CLqbar); 
CLq_std = s td(CLqbar) ; 
CLq_var = var(CLqbar); 
CLq_max = max(CLqbar); 
CLq_min = min(CLqbar); 
CLq_skew = skewness(CLqbar); 
CLq_kurt = k u r t o s i s ( C L q b a r ) ; 
% Coverage i n t e r v a l f o r CLq ( b a r ) 
CLq_sort = s o r t ( C L q b a r , ' a s c e n d ' ) ; 
CLq_rlow = C L q _ s o r t ( 0 . 0 2 5 * n ) ; 
CLq_rhigh = C L q _ s o r t ( 0 . 9 7 5 * n ) ; 
CLq_range = range(CLqbar); 

% i n - p h a s e p i t c h i n g moment c o e f f i c i e n t 
CMa_mean = mean(CMabar); 
CMa_std = std(CMabar); 
CMa_var = var(CMabar); 
CMcLjnax = max (CMabar); 
CMa_min = min(CMabar); 
CMa_skew = skewness(CMabar); 
CMa_kurt = kurtos i s (CMabar) ; 
% Coverage i n t e r v a l f o r CMal pha (bar ) 
CMa_sort = s o r t ( C M a b a r , ' a s c e n d ' ) ; 
CMa_rlow = CMa_sort (0 .025*n) ; 
CMa_rhi gh = CMa_sort (0 .975*n) ; 
CMa_range = range(CMabar); 

% O u t - o f - p h a s e p i t c h i n g moment c o e f f i c i e n t 
CMq_mean = m e a n ( C M q b a r ) ; 
C M q _ s t d = s t d ( C M q b a r ) ; 
CMq_var = v a r ( C M q b a r ) ; 
CMq_max = m a x ( C M q b a r ) ; 
CMq_min = m i n ( C M q b a r ) ; 
CMq_skew = s k e w n e s s ( C M q b a r ) ; 
C M q _ k u r t = k u r t o s i s ( C M q b a r ) ; 
X Coverage i n t e r v a l f o r CMq ( b a r ) 
C M q _ s o r t = s o r t ( C M q b a r , ' a s c e n d ' ) ; 
CMq_rlow = CMq_sort (0 .025*n) ; 
CMq_rhigh = CMq_sort (0 .975*n) ; 
CMq_range = r a n g e ( C M q b a r ) ; 

s u m m a r y _ s t a t i s t i e s = . . . 

[CLa_mean,CLa_std,CLa_var,CLa_mi n,CLajnax,CLa_skew,CLaJ<urt,CLa_rlow,CLa_rhi gh,CLa_ 
range; 

CLq_mean,CLq_std,CLq_var,CLq_mi n,CLq_max,CLq_skew,CLq_ku rt,CLq_r1ow,CLq_rhi gh,CLq_r 
ange; 

CMa_mean,CMa_std,CMa_var,CMajni n,CMa_max,CMa_skew,CMa_ku rt,CMa_rlow,CMa_rhi gh,CMa_r 
ange; 

CMq_mean,CMq_std,CMq_var,CMq_mi n,CMq_max,CMq_skew,CMq_ku rt,CMq_rlow,CMq_rhi gh,CMq_r 
a n g e ] ; 
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FILENAME: MCMv6_di r e c t . m 

% e q u i v a l e n t i n e r t i a [kg*mA2] 
% e q u i v a l e n t damping [Nms/rad] 
% reduced f r e q u e n c y [ — ] 

% b a c k l a s h [arcmin] 
% i n p u t s a t u r a t i o n [ rad] 

A = + 1 . 0 
B = + 1 . 0 
C = - 1 . 0 

D = - 1 . 0 
E = + 1 . 0 

AUTHOR: B r i a n n e Y. W i l l i a m s 

PURPOSE: Performs Monte C a r l o method s i m u l a t i o n on d i r e c t r e g r e s s i o n 
model ( from D e s i g n E x p e r t ) . 

Monte C a r l o ( d i r e c t method) 

REFERENCE: Coleman, H .w . , and S t e e l e , W.G., " E x p e r i m e n t a t i o n , v a l i d a t i o n , 
and U n c e r t a i n t y A n a l y s i s f o r E n g i n e e r s " 3rd e d i t i o n . 

NOTE: 1 ) For ex treme c a s e s where t h e Monte C a r l o d i s t r i b u t i o n i s 
h i g h l y skewed, t h e asymmetr ic u n c e r t a i n t y l i m i t s w i l l 
be more a p p r o p r i a t e t o p r o v i d e a g i v e n l e v e l o f 
c o n f i d e n c e f o r t h e u n c e r t a i n t y e s t i m a t e , (pg 8 1 ) 

2 ) C a l c u l a t i n g t h e s t a n d a r d d e v i a t i o n and assuming t h a t t h e 
c e n t r a l l i m i t theorem a p p l i e s t o o b t a i n t h e u n c e r t a i n t y 
w i l l n o t n e c e s s a r i l y be a p p r o p r i a t e on t h e d e g r e e o f 
asymmetry 

%} c l c ; 
c l e a r a l l ; 
c l o s e a l l ; 

t e s t _ c a s e = 5 ; 

% . . . S e t nominal v a l u e s 
i f t e s t _ c a s e == 1 

JeqO = 0 . 0 0 0 6 5 8 9 0 0 ; 
BeqO = 0 . 0 0 8 0 5 6 0 0 ; 
kO = 0 . 0 8 1 ; 

*** f i x e d f a c t o r *** 
BL0 = 2 . 0 0 0 0 0 ; 
ISO = 0 . 0 8 7 2 7 ; 

e l s e i f t e s t _ c a s e == 2 
JeqO = 0 . 0 0 0 4 1 5 9 0 0 ; 
BeqO = 0 . 0 0 4 0 2 8 0 0 ; 
kO = 0 . 0 9 0 5 0 0 0 ; 
BLO = 6 . 0 0 0 0 0 ; 
ISO = 0 . 0 8 4 0 8 5 0 ; 

e l s e i f t e s t _ c a s e == 3 
JeqO = 0 . 0 0 0 1 7 2 9 0 0 ; 
BeqO = 0 . 0 0 0 0 0 0 ; 
kO = 0 . 0 8 1 0 0 0 0 ; 
BLO = 2 . 0 0 0 0 0 ; 
ISO = 0 . 0 8 0 9 0 0 0 ; 

e l s e i f t e s t _ c a s e == 4 
JeqO = 0 . 0 0 0 4 1 5 9 0 0 ; 
BeqO = 0 . 0 0 4 0 2 8 0 0 ; 
kO = 0 . 0 8 1 0 0 0 0 ; 
BLO = 2 . 0 0 0 0 0 ; 
ISO = 0 . 0 8 0 9 0 0 0 ; 

e l s e i f t e s t _ c a s e == 5 
JeqO = 0 . 0 0 0 6 5 8 9 0 0 ; 
BeqO = 0 . 0 0 8 0 5 6 0 0 ; 
kO = 0 . 1 0 0 0 0 0 ; 
BLO = 2 . 0 0 0 0 0 ; 
ISO = 0 . 0 8 0 9 0 0 0 ; 

end 

n = 100000; 

% . . . un i form d i s t r i b u t i o n f o r e q u i v a l e n t i n e r t i a 
J e q j l o w = 0 . 0 0 0 1 7 2 9 0 0 ; % [kg*mA2] 

' " 1 % [kg*mA2] 

% A = 0 . 0 
% B — 0 . 0 
% c — 0 . 0 
% D — 0 . 0 
% E = 0 . 0 

% A - 1 . 0 
% B — - 1 . 0 
% c — - 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

% A 0 . 0 
% B = 0 . 0 
% c = - 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

% A + 1 . 0 
% B = + 1 . 0 
% c = + 1 . 0 
% D — - 1 . 0 
% E = - 1 . 0 

% number o f samples 

J e q j i i g h = 0 . 0 0 0 6 5 8 9 0 0 ; 

dJeq = J e q j l o w + ( ( J e q j v i g h - J e q j l o w ) . * r a n d ( n , l ) ) ; 
dJeq = mean(dJeq) - dJeq; 

% . . . un i form d i s t r i b u t i o n f o r e q u i v a l e n t damping 
Beqj low = 0 ; % [ N - m / ( r a d / s ) 
Beq_high = 0 . 0 0 8 0 5 6 0 0 ; % [ N - m / ( r a d / s ) 
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Beq_mean = mean([Beq_high,Beq_low]); % [ N - m / ( r a d / s ) ] 

% % % 
arcmin 
arcmin 
arcmin 

% s t d (from d e s i g n e x p e r t ) [arcmin] 

dBeq = Beq_"low + ((Beq_high - B e q _ l o w ) . * r a n d ( n , l ) ) ; 
dBeq = mean(dBeq) - dBeq; 

% . . . No d i s t r i b u t i o n f o r reduced frequency 
dk = z e r o s ( n , l ) ; 

% . . . Normal d i s t r i b u t i o n f o r backlash 
BI low = 2; 
Bl high = 10: 
muBL = mean([BL_high,BL_low]); 
sdBL = 2 .60623 ; 

dBL = muBL + ( randn(n , l )* sdBL) ; 
dBL = mean(dBL) - dBL; 

% . . . Normal d i s t r i b u t i o n f o r input s a t u r a t i o n 
i s j l o w = 0 .0809000; % [rad] 
i s j i i g h = 0 .0872700; % [rad] 
muis = mean([ lS_hi g h , i s _ l o w ] ) ; % [rad] 
s d i S = 0 .00207521; % s t d (from d e s i g n e x p e r t ) [rad] 

d i s = muis + ( r a n d n ( n , l ) * s d i S ) ; 
d i s = mean(dis ) - d i s ; 

% . . . Monte Carlo input d i s t r i b u t i o n f o r each input f a c t o r 
j eq = JeqO + dJeq; 
Beq = BeqO + dBeq; 
k = kO + dk; 
BL = BLO + dBL; 
IS = ISO + d is; 

f i g u r e d ) , h i s t ( J e q , 1 0 0 ) , g r i d o n , . . . 
x l a b e 1 ( ' J e q [kg*mA2] ) , y l a b e l ( ' F r e q u e n c y o f o c c u r a n c e ' ) , . . . 
t i t l e C u n i f o r m D i s t r i b u t i o n f o r Equiva lent i n e r t i a ' ) ; 

f i g u r e ( 2 ) , h i s t ( B e q , 1 0 0 ) , g r i d o n , . . . 
x l a b e l ( ' B e q [ N - m / ( r a d / s ) ] ' ) , y l a b e l ( " F r e q u e n c y o f O c c u r a n c e ' ) , . . . 
t i t l e C u n i f o r m D i s t r i b u t i o n f o r Equiva lent Damping'); 

f i g u r e d ) , h i s t ( B L , 1 0 0 ) , g r i d o n , . . . 
x l a b e l ( ' B L [arcmin] ) , y l a b e l ( ' F r e q u e n c y o f o c c u r a n c e ' ) , . . . 
t i t l e ( ' N o r m a l D i s t r i b u t i o n f o r B a c k l a s h ' ) ; 

f i g u r e ( 4 ) , h i s t ( l S , 1 0 0 ) . g r i d o n , . . . 
x l a b e K ' l S [ r a d ] ' ) . y l a b e l ( F r e q u e n c y o f O c c u r a n c e ' ) , . . . 
t i t l e ( ' N o r m a l D i s t r i b u t i o n f o r input s a t u r a t i o n ' ) ; 

Monte Carlo s i m u l a t i o n ( d i r e c t ) method 
% i n - p h a s e l i f t c o e f f i c i e n t r e g r e s s i o n 

Beq + . . . 
k + . . . 

* BL + . . . 
« IS + . . . 
* Jeq.*Beq + . . . 

J e q . * l S + . . . 
* Beq.*k + 

Beq.*BL + . . . 
* k.*BL + . 

BL.*IS + . . . 
* Jeq.A2 + 
* Beq.A2 + 
* k.A2 + . . 
* BL.A2 + . 

IS.A2 + . . . 
* Jeq.A3 + 

Beq.A3 + . . . 
k.A3 + . . . 
BL.A3; 

% 
CLabar = 15.24237555 + 
-181 .4547712 * Jeq + 
- 4 9 . 0 4 9 3 9 7 9 1 
-1644 .883794 
-0 .01445232 
849.5947162 
5978.4137 
-15085 .95095 
362.0822832 
-0 .507463123 
0 .220413651 
-0 .638542716 
3472467.826 
5191.116119 
17809.68319 
0 .011718675 
-4951 .365718 
-2618135863 
-388593 .7143 
-63874 .59632 
-0 .000723644 

CLqbar = . 
- 200 .5918986 
5947 .141961 
481 .1658016 
16298.74358 

* Jeq + 
* Beq + 
* k + . . 

% Out-of-phase l i f t coef f . regression 



0 . 0 6 6 2 4 9 8 3 6 * BL + . . . 
- 6 6 9 7 . 4 0 4 2 3 8 * IS + . . . 
- 7 6 4 9 2 . 1 3 3 8 9 * Jeq.*Beq + . . 
1 2 8 3 4 0 . 3 8 6 8 * J e q . * l S + 
- 3 5 8 9 . 0 5 6 7 7 8 * Beq. *k + . . . 
4 . 9 9 8 8 4 6 5 4 * Beq.*BL + 
- 2 . 0 5 1 7 3 1 5 2 * k. *BL + . 
7 . 2 9 8 7 6 2 8 0 1 * BL.*IS + 
- 4 0 6 5 2 5 6 0 . 5 8 * Jeq.A2 + . . . 
- 5 0 6 7 1 . 9 5 3 0 4 * Beq.A2 + . . . 
- 1 7 6 6 1 4 . 5 4 8 7 * k.A2 + . . . 
- 0 . 1 2 3 5 0 4 2 2 * BL.A2 + . 
3 9 2 2 4 . 8 4 5 2 9 * IS.A2 + . 
31073217728 * Jeq.A3 + 
4 0 0 3 3 0 6 . 8 9 7 * Beq.A3 + 
6 3 1 5 4 6 . 1 8 9 8 * k.A3 + . . 
0 . 0 0 7 7 6 2 6 8 1 * BL.A3; 

CMabar = . 
1 . 8 2 6 6 4 3 7 0 6 + . . . 
- 5 9 . 6 9 2 7 4 1 0 6 * Jeq + . . . 
- 5 . 5 0 3 5 9 5 2 9 9 * Beq + . . . 
- 1 8 9 . 9 7 2 2 4 5 5 * k + . . . 
- 0 . 0 0 1 0 8 2 8 7 2 * BL + . . . 
9 7 . 7 8 5 3 6 6 1 2 * IS + . . . 
8 1 3 . 1 4 7 1 0 0 9 * J e q . * Beq 
- 1 5 6 3 . 5 9 8 6 2 9 * J e q . * IS + . . 
4 0 . 7 1 1 3 2 4 1 9 * Beq.* k + 
- 0 . 0 5 7 1 8 6 2 4 6 * Beq.* BL + 
0 . 0 2 3 5 4 5 5 1 2 * k . * BL + 
- 0 . 0 8 0 7 7 5 3 6 * BL.* IS + 
4 6 0 4 8 3 . 8 6 6 5 * 3eq.A2 + 
5 6 3 . 6 5 6 4 6 3 7 * Beq.A2 + 
2 0 5 7 . 2 8 9 2 1 5 * k.A2 + . . 
0 . 0 0 1 3 9 5 5 0 7 * BL.A2 + . 
- 5 6 8 . 7 5 0 1 2 3 8 * IS .A2 + . . . 
- 3 4 8 1 0 2 9 0 3 . 4 * Jeq.A3 + . . . 
- 4 2 6 3 0 . 5 0 8 9 1 * Beq.A3 + . . . 
- 7 3 6 0 . 3 3 8 9 4 2 * k.A3 + . . . 
- 8 . 6 3 9 2 7 E - 0 5 * BL.A3; 

CMqbar = . 
- 3 4 . 7 2 5 8 6 0 2 6 + • • > 

6 9 4 . 1 6 2 7 3 1 2 * Jeq + . . . 
9 4 . 3 3 6 1 5 4 9 4 * Beq + . . . 
3 1 1 1 . 5 1 7 4 2 6 * k + . . . 
0 . 0 1 6 9 5 8 6 4 1 * BL + ... 
- 1 3 7 6 . 1 2 4 5 6 6 * IS + . . . 
- 1 3 3 7 5 . 6 2 0 2 7 * J e q . * Beq + . 
2 6 1 4 2 . 4 7 8 4 8 * J e q . * IS 
- 6 9 5 . 5 1 8 5 1 0 8 * Beq.* k + . . . 
0 . 9 1 5 9 8 8 3 0 4 * Beq.* BL 
- 0 . 3 9 9 2 6 7 4 1 6 * k . * BL + . . . 
1 . 3 2 6 7 6 9 1 6 2 * BL.* IS + 
- 6 9 7 5 7 9 0 . 8 7 7 * Jeq.A2 + . . . 
- 1 0 0 1 8 . 9 2 1 2 5 * Beq.A2 + . . . 
- 3 3 7 8 7 . 1 0 8 3 4 * k.A2 + . . . 
- 0 . 0 2 2 8 3 9 2 7 7 * BL.A2 + . . . 
8 0 5 3 . 4 2 1 6 7 2 * IS.A2 + . 
5310496432 * Jeq.A3 + 
7 7 6 5 7 3 . 5 8 0 2 * Beq.A3 + 
1 2 1 0 8 7 . 4 6 4 6 * k.A3 + . . 
0 . 0 0 1 4 2 7 0 6 8 * BL.A3; 

% i n - p h a s e p i t c h i n g moment c o e f f . r e g r e s s i o n 

% o u t - o f - p h a s e p i t c h i n g moment c o e f f . r e g r e s s i o n 

Histogram R e s u l t s 

% . . . summary S t a t i s t i c s and c o v e r a g e i n t e r v a l s 
% i n - p h a s e l i f t c o e f f i c i e n t 
CLa_mean = mean(CLabar); 
CLa_std = s td (CLabar ) ; 
CLeL-var = var(CLabar) ; 
CLa_max = max(CLabar); 
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CLcunin = mi n (CLabar); 
CLa_skew = skewness(CLabar); 
CLaJ<urt = k u r t o s i s ( C L a b a r ) ; 
% c o v e r a g e i n t e r v a l f o r CLalpha (bar ) 
CLa_sort = s o r t ( C L a b a r , ' a s c e n d ' ) ; 
CLa_rlow = C L a _ s o r t ( 0 . 0 2 5 * n ) ; 
CLa_rhigh = C L a _ s o r t ( 0 . 9 7 5 * n ) ; 
CLa_range = range(CLabar); 

% O u t - o f - p h a s e l i f t c o e f f i c i e n t 
CLq_mean = mean(CLqbar); 
CLq_std = s td(CLqbar) ; 
CLq_var = var(CLqbar); 
CLq_max = max(CLqbar); 
CLq_min = min(CLqbar); 
CLq_skew = skewness(CLqbar); 
CLq_kurt = k u r t o s i s ( C L q b a r ) ; 
% c o v e r a g e i n t e r v a l f o r CLq ( b a r ) 
CLq_sort = s o r t ( C L q b a r , ' a s c e n d ' ) ; 
CLq_rlow = C L q _ s o r t ( 0 . 0 2 5 * n ) ; 
CLq_rhigh = C L q _ s o r t ( 0 . 9 7 5 * n ) ; 
CLq_range = range(CLqbar); 

% i n - p h a s e p i t c h i n g moment c o e f f i c i e n t 
CMa_mean = mean(CMabar); 
CMa_std = std(CMabar); 
CMa_var = var(CMabar); 
CMa_max = max(CMabar); 
CMajnin = min (CMabar); 
CMa_skew = skewness(CMabar); 
CMa_kurt = kurtosisCCMabar); 
% c o v e r a g e i n t e r v a l f o r CMalpha (bar ) 
CMa_sort = s o r t ( C M a b a r , ' a s c e n d ' ) ; 
CMa_rlow = CMa_so r t ( 0 . 0 2 5 * n ) ; 
CMa_rhi gh = CMa_sort (0 .975*n) ; 
CMa_range = range(CMabar); 

% O u t - o f - p h a s e p i t c h i n g moment c o e f f i c i e n t 
CMq_mean = m e a n ( C M q b a r ) ; 
C M q _ s t d = s t d ( C M q b a r ) ; 
CMq_var = v a r ( C M q b a r ) ; 
CMq_max = m a x ( C M q b a r ) ; 
CMq_mi n = mi n ( C M q b a r ) ; 
CMq_skew = s k e w n e s s ( C M q b a r ) ; 
C M q _ k u r t = k u r t o s i s ( C M q b a r ) ; 
% C o v e r a g e i n t e r v a l f o r CMq ( b a r ) 
C M q _ s o r t = s o r t ( C M q b a r , ' a s c e n d ' ) ; 
CMq_rlow = CMq_sort (0 .025*n); 
CMq_rhi gh = CMq_sort (0 .975*n); 
CMq_range = r a n g e ( C M q b a r ) ; 

s u m m a r y _ s t a t i s t i e s = . . . 

[ C L a _ m e a n , C L a _ s t d , C L a _ v a r , C L a _ m i n , C L a _ m a x , C L a _ s k e w , C L a _ k u r t , C L a _ r l o w , C L a _ r h i g h , C L a _ 
r a n g e ; 

C L q j n e a n , C L q _ s t d , C L q _ v a r , C L q _ m i n , C L q _ m a x , C L q _ s k e w , C L q _ k u r t , C L q _ r l o w , C L q _ r h i g h , C L q _ r 
a n g e ; 

CMa_mean, C M a _ s t d , C M a _ v a r , CMa_jni n , CMa_max, CMa_skew, CMa_ku r t , C M a _ r l o w , C M a _ r h i g h , CMa_r 
a n g e ; 

C M q _ m e a n , C M q _ s t d , C M q _ v a r , C M q _ m i n ,CMq_max,CMq_skew,CMq_ku r t , C M q _ r 1 o w , C M q _ r h i g h , C M q _ r 
a n g e ] ; 
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The f u n c t i o n computes t h e s e n s t i v i t y d e r i v a t i v e c o e f f i c i e n t s 
a t t h e nominal s e t t i n g s . R e g r e s s i o n metamodels a r e put 
i n t o s y m b o l i c form ana Matlab computes t h e s e n s i t i v i t y 
d e r i v a t i v e s s y m b o l i c a l l y . The f i n a l s o l u t i o n i s computed 
a t t h e nominal v a l u e s u s i n g s u b s Q . 

J e q f a c t , B e q f a c t , k f a c t , 

ZO 

=> a c t u a l f a c t o r v a l u e s 

- mean v a l u e a t nominal s e t t i n g computed u s i n g 
t h e r e g r e s s i o n metamodels 

S - s e n s i t i v i t y d e r i v a t i v e c o e f f i c i e n t m a t r i x u s i n g 
t h e a c t u a l f a c t o r s a t nominal s e t t i n g s 

2 / 1 5 / 1 0 
%} 
syms CLabar CLqbar CMabar CMqbar 
syms Jeq Beq k BL IS 
% R e g r e s s i o n Metamodel ( A c t u a l ) 
% Actua l Metamodels 

CLabar = . m 
1 5 . 2 4 2 3 7 5 5 5 + . . . 
- 1 8 1 . 4 5 4 7 7 1 2 * Jeq + . . . 
- 4 9 . 0 4 9 3 9 7 9 1 * Beq + . . . 
- 1 6 4 4 . 8 8 3 7 9 4 » k + . . . 
- 0 . 0 1 4 4 5 2 3 2 * BL + . 
8 4 9 . 5 9 4 7 1 6 2 * IS + . 
5 9 7 8 . 4 1 3 7 * Jeq * Beq 
- 1 5 0 8 5 . 9 5 0 9 5 * Jeq * IS + • • • 

3 6 2 . 0 8 2 2 8 3 2 * Beq * k + 
- 0 . 5 0 7 4 6 3 1 2 3 * Beq * BL + • • • 

0 . 2 2 0 4 1 3 6 5 1 * k * BL + . 
- 0 . 6 3 8 5 4 2 7 1 6 * BL * I S + • • • 

3 4 7 2 4 6 7 . 8 2 6 * jeqA2 + . . 
5 1 9 1 . 1 1 6 1 1 9 * BeqA2 + . . 
1 7 8 0 9 . 6 8 3 1 9 * kA2 + • • • 

0 . 0 1 1 7 1 8 6 7 5 * BLA2 4 
- 4 9 5 1 . 3 6 5 7 1 8 * ISA2 + . . . 
- 2 6 1 8 1 3 5 8 6 3 * JeqA3 + . . 
- 3 8 8 5 9 3 . 7 1 4 3 * BeqA3 + . . 
- 6 3 8 7 4 . 5 9 6 3 2 * kA3 + . . . 
- 0 . 0 0 0 7 2 3 6 4 4 * BLA3; 

CLqbar = . 
- 2 0 0 . 5 9 1 8 9 8 6 + ... 
5 9 4 7 . 1 4 1 9 6 1 * Jeq + ... 
4 8 1 . 1 6 5 8 0 1 6 * Beq + • • • 

1 6 2 9 8 . 7 4 3 5 8 * k + . . 
0 . 0 6 6 2 4 9 8 3 6 * BL + . 
- 6 6 9 7 . 4 0 4 2 3 8 * IS + . . . 
- 7 6 4 9 2 . 1 3 3 8 9 * Jeq * Beq + . . 
1 2 8 3 4 0 . 3 8 6 8 * Jeq * IS + 
- 3 5 8 9 . 0 5 6 7 7 8 * Beq * k + • • • 

4 . 9 9 8 8 4 6 5 4 * Beq * BL + 
- 2 . 0 5 1 7 3 1 5 2 * k * BL + . 
7 . 2 9 8 7 6 2 8 0 1 * BL * IS + 
- 4 0 6 5 2 5 6 0 . 5 8 * JeqA2 + . . 
- 5 0 6 7 1 . 9 5 3 0 4 * BeqA2 + . . 
- 1 7 6 6 1 4 . 5 4 8 7 * kA2 + . . . 
- 0 . 1 2 3 5 0 4 2 2 * BLA2 
3 9 2 2 4 . 8 4 5 2 9 * ISA2 4 
31073217728 * JeqA3 + . . 
4 0 0 3 3 0 6 . 8 9 7 * BeqA3 + . . 
6 3 1 5 4 6 . 1 8 9 8 * kA3 + ... 
0 . 0 0 7 7 6 2 6 8 1 * BLA3; 

CMabar = . . . 
1 . 8 2 6 6 4 3 7 0 6 + 



- 5 9 . 6 9 2 7 4 1 0 6 « Jeq + . . . 
- 5 . 5 0 3 5 9 5 2 9 9 * Beq + . . . 
- 1 8 9 . 9 7 2 2 4 5 5 * k + . . . 
- 0 . 0 0 1 0 8 2 8 7 2 * BL + . . . 
9 7 . 7 8 5 3 6 6 1 2 * I S + . . . 
8 1 3 . 1 4 7 1 0 0 9 * Jeq * Beq 
- 1 5 6 3 . 5 9 8 6 2 9 * Jeq * I S + . . 
4 0 . 7 1 1 3 2 4 1 9 * Beq * k + 
- 0 . 0 5 7 1 8 6 2 4 6 * Beq * BL + . . 
0 . 0 2 3 5 4 5 5 1 2 * k * BL + 
- 0 . 0 8 0 7 7 5 3 6 * BL * I S + 
4 6 0 4 8 3 . 8 6 6 5 * JeqA2 + . 
5 6 3 . 6 5 6 4 6 3 7 * BeqA2 + . 
2 0 5 7 . 2 8 9 2 1 5 * KA2 + . . . 
0 . 0 0 1 3 9 5 5 0 7 * BLA2 + . . 
- 5 6 8 . 7 5 0 1 2 3 8 * I S A 2 + . . . 
- 3 4 8 1 0 2 9 0 3 . 4 * JeqA3 + . . . 
- 4 2 6 3 0 . 5 0 8 9 1 * BeqA3 + . . . 
- 7 3 6 0 . 3 3 8 9 4 2 * kA3 + . . . 
- 8 . 6 3 9 2 7 E - 0 5 * BLA3; 

CMqbar = . 
- 3 4 . 7 2 5 8 6 0 2 6 + • • • 

6 9 4 . 1 6 2 7 3 1 2 * Jeq + . . . 
9 4 . 3 3 6 1 5 4 9 4 * Beq + . . . 
3 1 1 1 . 5 1 7 4 2 6 * k + . . . 
0 . 0 1 6 9 5 8 6 4 1 * BL + . . . 
- 1 3 7 6 . 1 2 4 5 6 6 * I S + . . . 
- 1 3 3 7 5 . 6 2 0 2 7 * Jeq * Beq + . 
2 6 1 4 2 . 4 7 8 4 8 * Jeq * I S 
- 6 9 5 . 5 1 8 5 1 0 8 * Beq * k + . . . 
0 . 9 1 5 9 8 8 3 0 4 * Beq * BL 
- 0 . 3 9 9 2 6 7 4 1 6 * k * BL + . . . 
1 . 3 2 6 7 6 9 1 6 2 * BL * I S + 
- 6 9 7 5 7 9 0 . 8 7 7 * JeqA2 + . . . 
- 1 0 0 1 8 . 9 2 1 2 5 * BeqA2 + . . . 
- 3 3 7 8 7 . 1 0 8 3 4 * kA2 + . . . 
- 0 . 0 2 2 8 3 9 2 7 7 * BLA2 + . . . 
8 0 5 3 . 4 2 1 6 7 2 * I S A 2 + . . 
5 3 1 0 4 9 6 4 3 2 * JeqA3 + . 
7 7 6 5 7 3 . 5 8 0 2 * BeqA3 + . 
1 2 1 0 8 7 . 4 6 4 6 * KA3 + . . . 
0 . 0 0 1 4 2 7 0 6 8 * BLA3; 

% F i r s t - o r d e r S e n s i t i v i t y A n a l y s i s 
% S e n s i t i v i t y d e r i v a t i v e c o e f f i c i e n t s u s i n g a c t u a l r e g r e s s i o n metamodel 
dCLabardA = d i f f ( C L a b a r , J e q ) ; - ~ • • 
dCLabardB = d i f f ( C L a b a r , B e q ) ; 
dCLabardC = d i f f ( C L a b a r , k ) ; 
dCLabardD = d i f f ( C L a b a r , B L ) ; 
dCLabardE = d i f f ( C L a b a r , I S ) ; 

% d C L a l p h a _ b a r / d J e q 
% d C L a l p h a _ b a r / d B e q 
% d C L a l p h a _ b a r / d k 
56 dCLa l p h a _ b a r / d B L 
% d C L a l p h a _ b a r / d l S 

% d C L q _ b a r / d J e q 
% d C L q _ b a r / d B e q 
% d C L q _ b a r / d k 
% d C L q _ b a r / d B L 
% d C L q _ b a r / d i S 

% d C M a l p h a _ b a r / d J e q 
% d C M a l p h a _ b a r / d B e q 
% d C M a l p h a j b a r / d k 
% d C M a l p h a J i a r / d B L 
% d C M a l p h a _ b a r / d i s 

X d C M q _ b a r / d J e q 
% dCMq_bar /dBeq 
% d C M q _ b a r / d k 
% dCMq_bar /dBL 
% d C M q _ b a r / d i S 

% s e t s t h e n o m i n a l c o n d i t i o n s f o r coded and a c t u a l f a c t o r s 
Jeq = J e q f a c t ; 
Beq = B e q f a c t ; 
k = k f a c t ; 
BL = B L f a c t ; 
I S = i s f a c t ; 

% Computes t h e mean v a l u e a t n o m i n a l s e t t i n g s : 
ZO = [ s u b s ( C L a b a r ) ; 

dCLqbardA 
dCLqbardB 
dCLqbardc 
dCLqbardD 
dCLqbardE 

dCMabardA 
dCMabardB 
dCMabardC 
dCMabardD 
dCMabardE 

= d i f f ( C L q b a r , J e q ) ; 
= d i f f ( C L q b a r , B e q ) ; 
= d i f f ( C L q b a r , k ) ; 
= d i f f ( C L q b a r , B L ) ; 
= d i f f ( C L q b a r , I S ) ; 

= d i f f ( C M a b a r , J e q ) ; 
= d i f f ( C M a b a r , B e q ) ; 
= d i f f ( C M a b a r , k ) ; 
= d i f f ( C M a b a r , B L ) ; 
= d i f f ( C M a b a r , I S ) ; 

dCMqbardA = d i f f ( C M q b a r , J e q ) ; 
dCMqbardB = d i f f ( C M q b a r , B e q ) ; 
dCMqbardC = d i f f ( C M q b a r , k ) ; 
dCMqbardD = d i f f ( C M q b a r , B L ) ; 
dCMqbardE = d i f f ( C M q b a r , I S ) ; 
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s u b s ( C L q b a r ) ; 
s u b s ( C M a b a r ) : 
s u b s ( C M q b a r ) ] ; 

s 
[ s u b s ( d C L a b a r d A ) , s u b s ( d C L a b a r d B ) , s u b s ( d C L a b a r d C ) , s u b s ( d C L a b a r d D ) , s u b s ( d C L a b a r d E ) ; 

s u b s ( d C L q b a r d A ) , s u b s ( d C L q b a r d B ) , s u b s ( d C L q b a r d c ) , s u b s ( d C L q b a r d D ) , s u b s ( d C L q b a r d E ) ; 

s u b s ( d C M a b a r d A ) , s u b s ( d C M a b a r d B ) , s u b s ( d C M a b a r d C ) , s u b s ( d C M a b a r d D ) , s u b s ( d C M a b a r d E ) ; 

s u b s ( d C M q b a r d A ) , s u b s ( d C M q b a r d B ) , s u b s ( d C M q b a r d C ) , s u b s ( d C M q b a r d D ) , s u b s ( d C M q b a r d E ) ] ; 
end 
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