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ABSTRACT

NONLINEAR RESPONSE AND FATIGUE ESTIMATION 

OF AEROSPACE CURVED SURFACE PANELS 

TO ACOUSTIC AND THERM AL LOADS 

Adam Przekop 

Old Dominion University, 2003 

Director: Dr. Chuh Mei

This work presents a finite element modal formulation for large amplitude free 

vibration of arbitrary laminated composite shallow shells. The system equations of 

motion are formulated first in the physical structural-node degrees of freedom (DOF). 

Then, the system is transformed into general Duffing-type modal equations with modal 

amplitudes of coupled linear bending-inplane modes. The linear bending-inplane 

coupling is due to the shell curvature as well as unsymmetric lamination stacking. 

Multiple modes, inplane inertia, and the first-order transverse shear deformation for 

composites are considered in the formulation. A triangular shallow shell finite element is 

developed from an extension of the triangular Mindlin (MIN3) element with the 

improved shear correction factor. Time numerical integration is employed to determine 

nonlinear frequency of vibration. An iterative procedure to determine the judicious initial 

conditions for periodic panel response is developed and presented. By neglecting the 

inplane inertia effect, the general Duffing modal equations in functions of modal 

amplitudes of linear bending modes only are also formulated and presented. This 

approach is used for comparison of results with existing classic analytical methods. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



differences in characterizing a shallow shell behavior with modal amplitudes of coupled 

linear bending-inplane and bending only modes are demonstrated and discussed.

Then the finite element modal formulation for large amplitude random response 

of shallow shell panels to acoustic excitation and elevated temperature is presented. 

Reduced order integration is used to determine strains. Rainflow counting method and S- 

N curves are combined by means of damage accumulation theory to predict panel fatigue 

life. Factors contributing the softening effect, namely unsymmetrical lamination and 

curvature are investigated along with their impact on the fatigue life. Two types of 

excitation inputs are considered. Responses and fatigue life estimations to simulated 

band-limited Gaussian white noise and to in-flight recorded pressure fluctuation 

microphone data are presented and compared.
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NOMENCLATURE

A Element area

a Panel length

[A] Laminate membrane stiffness matrix

b Panel width

[B] Laminate membrane bending coupling stiffness matrix

[C] Interpolation function matrix

D Damage

[° ] Laminate bending stiffness matrix

E Young’s modulus

E [] Expected value

f Frequency

{F} Surface traction

G Kirchoff’s modulus

H Nondimensional thickness

[H] Displacement function matrix

h Panel thickness

K Fatigue material property (experimental)

[K] System linear stiffness matrix

[k] Element linear stiffness matrix

[K l] System first order nonlinear stiffness matrix

[k l] Element first order nonlinear stiffness matrix 

[K2] System second order nonlinear stiffness matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[k2] Element second order nonlinear stiffness matrix

kur Kurtosis

[M] System mass matrix

{M} M oment resultant vector

m Mean value

[m] Element mass matrix

N Number of load cycles

n Number of cycles

[N l] First order nonlinear incremental system stiffness matrix

[nl] First order nonlinear incremental element stiffness matrix

[N2] Second order nonlinear incremental system stiffness matrix

[n2] Second order nonlinear incremental element stiffness matrix

{N} Force resultant vector

{M} M oment resultant vector

P Probability

{P} System force vector

{P) Element force vector

[Q] Lamina reduced stiffness matrix

f t Transformed lamina reduced stiffness matrix

lq ) Modal coordinates vector

R Shell radius / Correlation function

{R} Shear force resultant vector

r Nondimensional radius
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s Stress / Sectral density

skew Skewness

T Temperature

[T] Transformation matrix

t Time

tr Trace

u Inplane displacement along x-axis

V Inplane displacement along y-axis

W Virtual work / Normal deflection

w Transverse displacement

(x, y, z) Curvelinear coordinates

G reek  sym bols

a Thermal expansion coefficient /  shear correction factor

P Fatigue material property (experimental)

A Incremental value

{£} Strain vector

[<3>] Modal matrix

System eigenvector

{y} Shear strain vector

{K} Bending curvature vector

p Up-crossing intensity
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V Poisson’s ratio

[0] Slope matrix

p Mass density

a Standard deviation

a 2 Variance

{0 } Stress vector

X Shear stress

O) Frequency

¥ Rotational displacement

\ Area coordinates

C Modal damping

Subscripts and Superscripts

b Out-of-plane (transverse and rotation)

c Center / Cut-off

cr Critical

ext External

f Fatigue life

h Across the thickness

int Internal

k kth layer

L Linear
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m Membrane (inplane)

max M aximum

min M inimum

RFC Rainflow counting

q First order nonlinear in modal coordinates

qq Second order nonlinear in modal coordinates

R Curvature

s Shear

T Transposed

AT Thermal

t Transverse

X Rotation around x-axis

y Rotation around y-axis

X Modal value of quantity X

x , x First and second derivative of quantity X  with respect to time

Subscripts and Superscripts

EL Equivalent Linearization

FE Finite Element

FSDT First Order Shear Deformation Theory

OASPL Overall Sound Pressure Level

PDE Partial Differentia] Equation
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PDF Probability Density Function

PSD Power Spectral Density

PTVC Peak Through Valley Counting

RFC Rainflow Counting

RMS Root M ean Square

SPL Sound Pressure Level

V/STOL Vertical/Short Take-Off and Landing
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1. Introduction

The surface skin panels of a modem aircraft and spacecraft are exposed to high 

levels of random pressure loads. These loads may be acoustic in nature due to the je t or 

rocket engine noise impingement. However, these loads may also be due to boundary 

layer pressure fluctuations or oscillating shock waves. Random pressure loads are very 

likely to be accompanied by elevated thermal environments that are produced by 

aerodynamic heating typical for flight with high Mach numbers. The combination of 

random pressure fluctuations and thermal loads that create very severe conditions for 

surface skin panels might also be a consideration for low speed aircraft, i.e. helicopters or 

Short/Vertical Take-Off and Landing (S/VTOL) designs powered by je t engines.

Sonic fatigue was one of the major design considerations for the F-35 Joint Strike 

Fighter that is currently going into production. There are also several other projects 

presently under development or conceptual studies that will encounter sonic fatigue. 

Among them is a group of Reusable Launch Vehicles (RLV), including X-43C, Crew 

Return Vehicle (CRV), and Liquid Fly Bach Booster (LFBB), as well as Next Generation 

Launch Technology (NGLT) and Quiet Supersonic Platform (QSP). All these vehicles 

will be exposed to high levels of random pressure fluctuation at elevated temperature.

It is known that curved panels may exhibit soft-spring behavior at large 

deflections unlike, hard-spring behavior for the flat plates. Therefore it would be 

expected that the root mean square (RMS) deflection, and subsequently strains, o f a 

curved panel exhibiting soft-spring would be larger than those obtained from the linear 

structural theory. Large amplitude random response to and life estimation of curved 

panels exposed to acoustic excitations have not been investigated in the literature. The
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objective of this work is to study non-linear random response of shallow shell panels to 

acoustic and thermal loads and to investigate the soft-spring effects on panel response 

and fatigue life. Complicated response characteristics being a result of nonlinear 

structural response to simultaneously applied pressure and thermal loads are anticipated. 

Therefore before imposing any kind o f static, dynamic or random loading on a structure 

and investigating the interaction between the external loads and structural response, a 

fundamental study of free vibrations is very useful to help understanding the response 

characteristics.

1.1 Fundamental Studies -  Free Vibrations of Shallow Shells

Shallow shells are common structural components in many fields of engineering. 

Various theories of shells have been described and outlined in many monographs, for 

example references.1'3 A review of vibration of shallow shells covering the advances 

since 1970s is given by Liew et al.4 M arguerre curved plate theory is used by Cumm ings5 

to study large amplitude vibration of a freely supported cylindrical shell segment. 

Perturbation and exact elliptic integral methods were employed for the panel frequency. 

Leissa and Kadi6 derived the nonlinear partial differential equations (PDE) o f motion for 

doubly curved shallow shells and studied curvature effects on period of free vibration. 

They employed the general elliptic equation and the Galerkin method for shells of 

rectangular boundary supported by shear diaphragms. Donnell’s shell theory was applied 

by Hui7 for simply supported cylindrical panels with geometric imperfections. Using the 

Galerkin procedure, the nonlinear vibration frequency was obtained from the Duffing

o

equation with perturbation methods. Fu and Chia presented a multi-mode solution for
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nonlinear free vibration of anti-symmetric angle-ply shallow cylindrical panels with 

edges elastically supported against rotation. Effects o f transverse shear deformation and 

geometric imperfection were included in their analysis. The harmonic balance method 

was employed in determining nonlinear frequency of vibration. The Donnell-M ushtari- 

Vlasov shell theory was used by Raouf and Palazotto9 to model curved orthotropic 

cylindrical panels with simply supported edges. The spatial domain was discretized 

using the Galerkin procedure, and a perturbation method was used to evaluate nonlinear 

natural frequency. Kobayashi and Leissa10 derived governing equations for nonlinear 

vibration of doubly curved shallow shells based on first order shear deformation theory. 

Applying the Galerkin procedure, the governing equations were reduced to an elliptic 

ordinary differential equation in time. Period of vibration for shells with rectangular 

boundaries supported by shear diaphragms was obtained using the Gauss-Lagrange 

integration method. Shin11 studied the large amplitude vibration o f symmetrically 

laminated moderately thick doubly curved shallow open shells with simply supported 

edges. By applying a Galerkin approximation, five governing equations of motion were 

reduced to a single nonlinear time-dependent differential equation. The Runge-Kutta 

time integration scheme was then employed to obtain the nonlinear frequency. Abe et 

al.12 investigated nonlinear vibration of clamped laminated shallow shells by considering 

the first two modes (1st symmetrical and 1st antisymmetrical) and applying the Galerkin 

procedure to the equations of motion. The authors did not treat internal resonance 

between the first and the second modes, thus the second mode was neglected in 

determining nonlinear free vibration frequency for the first mode. The influence of the 

first mode on nonlinear vibration of the second mode was investigated, and the shooting
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m ethod13 was employed for initial conditions. Pillai and Rao14, and Bhim araddi15 were 

concerned about the softening effect in flat plates due to antisymmetrical lamination. 

Alhazza and N ayfeh16 studied forced vibration of shells and found that solution 

characteristics may severely change as a function of the number of modes retained in the 

analysis. Their results, however, utilizing the multiple scale method is lim ited to 

relatively small nonlinearities.

All the aforementioned studies have shown both hard- and/or soft-spring 

behaviors for shallow shells with different geometries, materials and boundary 

conditions. Based on an exhaustive literature search, it is interesting to note that the 

classical analyses of large amplitude free vibration of shallow shells5'12 have all neglected 

the inplane inertia terms due to mathematical difficulties. Also problems with obtaining 

the initial conditions for the steady periodic response resulted in the prevailing num ber of 

investigations using a single mode approximation.5'7,9' 11,14,15 Moreover, classical 

solutions were usually obtained for geometries based on rectangular plan-form, isotropic 

or orthotropic materials, and fully simply supported or fully clamped boundary 

conditions. By neglecting the inplane inertia terms and using classic analytical method 

for large amplitude free vibration of shallow shells, it leads to the case that the linear 

inplane modes are also dropped out from the analysis. The nonlinear Duffing modal 

equations are thus in functions of linear bending modal amplitudes only. For shallow 

shell structures, however, the linear bending and inplane modes are inherently physically 

coupled due to curvature, and to characterize their nonlinear large amplitude behavior 

with linear bending modes may yield inaccurate results.
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The highly versatile finite element methods, on the other hand, have a capability 

to address coupled linear bending and inplane modes for flat unsymmetrically laminated 

composite plates (due to laminate stiffness [fi]^ 0). The nonlinear general Duffing 

equations as functions of modal amplitudes of coupled linear bending-inplane modes 

were reported by Shi et al.17 Abdel-M otaglay et al.18 studied panel flutter with inplane 

inertia neglected and expressed the nonlinear Duffing equations as functions of linear 

bending modal amplitudes. One of the objectives of the present w ork using the versatile 

finite element approach is to investigate the accuracy in predicting nonlinear vibration 

frequency of shallow shells by neglecting inplane inertia terms w ith a single bending 

mode approximation.

1.2 Historical Background on Random Response and Sonic Fatigue

Traditionally, structural design relies on deterministic analysis. Suitable 

dimensions, material properties, and loads are assumed, and an analysis is then performed 

to provide a more or less detailed description of the structure. However, fluctuations of 

the loads and variability of the material properties contribute to an uncertainty of the 

analysis and statistical tools need to be employed to assess a risk o f failure. The term 

fat igue  is understood in a broad sense, including crack nucleaction and growth to the final 

failure under cyclic and/or sustained loads and actions. In addition to the classic high- 

cycle and low-cycle fatigue, such phenomena as creep fatigue, corrosion fatigue, stress 

corrosion cracking, etc., are also considered to be fatigue processes. Fatigue and related 

phenomena are the most frequent causes of structural component failures that result in the
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interruption of operation and the accompanying economic loss up to m ajor accidents with 

disastrous consequences.19

The systematic study of fatigue was initiated by W ohler, who in the period 

between 1858-1860 performed the first systematic experimentation on damage to 

materials under cyclic loading. In particular, W ohler introduced the concept o f the 

fatigue curve, i.e., the S-N diagram where a characteristic magnitude o f cyclic stress is 

plotted against the cycle number until fatigue failure.19

In the past, aircraft designers were aware of the fatigue phenom ena but lacked 

detailed understanding and knowledge o f the underlying mechanisms. In the late nineteen 

fifties, incidents were reported in which aircraft structures close to high intensity je t 

exhausts suffered minor damage.20,21 Skin cracking was noticed and failures of small 

cleats and internal support structure occurred in a few cases. These incidents alerted 

industry and research centers to the possibility of problems as the performance o f aircraft 

and je t engines increased. Several aircraft manufacturers and the research centers set up 

comprehensive tests on large parts of aircraft structures in which it was possible to 

reproduce representative structure around the region of maximum noise intensity. In 

parallel, theoretical work and experiments on simple structures such as rectangular plates 

and shells had begun. Simple theoretical models of the structure and the excitation 

process were proposed. However, theoretical and computational tools available at that 

time were insufficient to predict fatigue life for a complex airframe structure subject to 

broad-band frequency random pressure fluctuations, very often exhibiting non-Gaussian 

and non-white characteristics. The lack of a comprehensive theoretical approach led to 

the development of design guides and data sheets for industry. Extensive programs
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aimed to develop those tools were sponsored by USAF ' and Advisory Group for 

Aerospace Research and Development (AGARD). ‘ USAF sponsored programs led to 

design of nomographs for every type structure in common use, while activity sponsored 

by AGARD provided a larger range of test results but focused on the primary structure.

The need for the abovementioned development - which took place between the 

mid fifties and early seventies - was primarily due to the rapidly increasing noise of je t 

engines as the required thrust increased. In the early seventies the higher bypass je t 

engine configurations allowed designers to boost the power of the je t turbines further 

without increasing the noise level. This factor caused some stagnation in the field of 

sonic fatigue. New interest arose during the mid eighties with the first attempts to 

introduce composite materials into the airframe structure. Also aerodynamic heating 

brought higher operating temperatures to some aircraft and spacecraft designs. Thermal 

effects had to be added to the fatigue life estimation. The main advantage of laminated 

structures is their strength to weight ratio. Better structural efficiency of composite 

materials often yields higher deflections under the external loads. Large deflections 

combined with an elevated temperature environment expose the structure to very severe 

working conditions. Also in many cases the possibility of thermal buckling - which 

dramatically influences composite surface panel response - needed to be investigated. 

Some new design guidelines were created,31 but due to variety of possible layered 

structure configurations it became apparent that a comprehensive semi-empirical 

approach cannot be fully and efficiently developed.

This turned the attention of researchers to available and improved computational 

techniques. The nonlinear random response of isotropic plates subjected to a uniformly
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32distributed truncated Gaussian white noise was reported by Arnold and Vaicaitis. The 

Monte Carlo numerical simulation was applied to the nonlinear modal equations obtained 

from the von Karman large deflection plate equations with the application of G alerkin’s 

method. The extension of this work into composite plates was presented by Vaicaitis and 

Kavallieratos.33 Nonlinear random response o f composite plates of arbitrary shape in an 

elevated thermal environment were investigated by Mei and Chen34 using the equivalent 

linearization (EL) method. Mei et al.,35 and Dhainaut,36 using a FE modal formulation 

and numerical simulation investigated random response and fatigue life o f com posite 

panels subjected to white and non-white excitations. Lee37 improved the EL technique

<3Q <3Q

for stochastic Duffing oscillators. A lso Rizzi and M uravyov ’ used the EL method and 

commercial FE codes for random response prediction of geometrically nonlinear 

structures. M cEwan et al.40 combined a backward elimination regression procedure with 

the singular value decomposition technique to allow identification of an accurate and 

parsimonious system model. Experimental results for flat isotropic and composite panels 

to thermal and vibration shaker excitation were reported by Ng and Clevenson,41 

Murphy,42 and Istenes et a l 43

1.3 Random Response to Combined Acoustic and Thermal Environment

It is known that curved panels may exhibit soft-spring behavior at large 

deflections unlike, hard-spring behavior for flat plates. Therefore, would be expected 

that the root mean square (RMS) deflection, and subsequently strains, of a curved panel 

exhibiting soft-spring would be larger than those obtained from the linear structural 

theory. Large amplitude random response and life estimation of curved panels to
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acoustic excitations have not been investigated in the literature. The objective o f this 

work is to study non-linear random response of shallow shell panels to acoustic and 

thermal loads and to investigate the soft-spring effects on panel response and fatigue life.

1.3.1 Acoustic Loads

High frequency random pressure fluctuations of the acoustic type on aerospace 

structures are generally caused by the turbulent mixing in a high-speed je t efflux. Also a

turbulent boundary layer and oscillating shock waves or flow buffeting can be recognized

21as being pseudo-acoustic loads.

1.3.1.1 Jet and Rocket Pressure Loads

In this area researchers were primarily concerned about the field pressure caused 

by high velocity je t efflux and sound radiation. The first approach o f a quantitative 

description of this phenomenon was made by Lighthill in 1952.44’45 The statistical 

description of jet/rocket efflux gives a relatively smooth power spectrum with a peak 

between 100 and 600 Hz. The resonant frequency is inversely proportional to the 

diameter o f the nozzle. The magnitude is approximately proportional to the fourth power 

of the je t velocity. A more accurate description requires knowledge o f pressure 

distribution over the structural surface. The most common and convenient way of 

describing the spatial pressure distribution is the one by means of cross-spectral density 

over the distance from the surface. At the turn o f the sixties and seventies, the increased 

interest in Vertical/Short Take-Off and Landing configurations (VTOL/STOL) resulted in 

research directed towards this field. Lansing et al.46 considered the je t exhaust impinges
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on the structure or the ground and enhancement of the pressure field on the aircraft 

structure due to this factor. There was shown that in the extreme cases the pressure 

loading on the aircraft surface could almost be doubled. More on the ground reflection 

effects was presented by Scholton.47

1.3.1.2 Turbulent Boundary Layers

The pressure fluctuations under a turbulent boundary layer are also a potential 

source of structural damage. According to the results presented by Coe and Chyu48,49 for 

supersonic flow, the overall pressure level is not usually as high as that for the extreme 

je t cases and the spectrum is relatively flat out to a high frequency. Comparison with 

subsonic flow50 measurements and some supersonic flow work51 show a trend of 

decreasing pressures with increasing Mach numbers..

1.3.1.3 Separated Flow and Oscillating Shocks

Separated flow, cavities and oscillating shocks can also contribute to structural 

fatigue. This area is still not thoroughly explored. Some model-scale experimental 

results have been presented by Coe and Chyu.48,49 As the normal boundary layer flow is 

disturbed, the mean pressure increases and the form of the spectrum changes. In the low 

frequency range the magnitude of the mean pressure increment by up to three orders can 

be observed. Beneath oscillating shock waves, further magnitude increments of one 

order are measured.
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1.3.2 Thermal Loads

Aerothermal loads exerted on the external surface of the flight vehicle can be 

divided into pressure, skin friction (shearing stress), and aerodynamic heating (heat 

flux).52 Pressure and skin friction play im portant roles in aerodynamic performance of 

the vehicle, but aerodynamic heating creates a predominant thermal load at high speeds. 

Elevated temperatures can degrade elastic properties (i.e. Young’s modulus) of the 

material, decreasing their ability to withstand design loads. Simultaneously, the 

allowable stresses are reduced and time dependent material behavior such as creep comes 

into play. In addition, thermal stresses are introduced because of the restrained thermal 

expansion or contraction. Such stresses increase deformation, change buckling loads and 

alter flutter behavior.

An estimation of the surface aerodynamic heating has been much o f a challenge 

for researchers over the decades. U nder the assumption that the atmosphere is a 

continuum the set of Navier-Stokes (N-S) equations need to be solved. For two- 

dimensional flow, the N-S equations governing viscous, compressible flow are a set of 

four nonlinear partial differential equations (PDE) with mixed hyperbolic, parabolic, 

and/or elliptic behavior. A solution to the N-S equations with appropriate boundary 

conditions provides distributions o f the density, two velocity components, pressure and 

temperature throughout the fluid. Subsequently, Fourier’s Law can be used to compute 

aerodynamic heating. First approaches for approximated aerodynamic heating solutions, 

were proposed by Van Driest53 and Truitt54 at the end of nineteen fifties.

Sonic fatigue is a fluid-structure interaction problem requiring simultaneous 

solution of the N-S equations and the structural dynamic equations. For large amplitude
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deflections, the shape of the structure defining the fluid-structure interface is not known a 

priori, hence must be determined from  the solution of the fluid and structure equations. 

A common approach is to decouple structural and fluid parts of the problem and still 

retain sufficient model fidelity. For a hypersonic flow a good approxim ation is achieved 

by applying so-called von Karman-Herrmann-Chu plate equation under prescribed

cc
pressure and temperature variations. Although much progress has been made recently 

to solve the coupled fluid-structural problem, this approach is not in focus of this study.

To appreciate the thermal challenges let us compare some numerical trends. The 

maximum temperature recorded on the surface of X-1B plane traveling at M=1.94 (1957) 

was 185°F.56 Only 8 years later, in 1965, the X-15 plane traveling at M =5.0, which is 

considered hypersonic flow, produced a surface temperature of 1325°F.57 The maximum 

temperatures on the leading edges of the Space Shuttle (first flight in 1981) during re

entry exceeded 2650°F.58 Researchers now developing the RLV-class vehicles must 

consider temperatures on the order of 4000°F.

1.3.3 Acoustic vs. Thermal Loads Over A Mission

Dealing with simultaneous loads introduces the question o f loading variation over 

the duration of the flight. W ill the most severe thermal loads occur at the same time 

when the acoustic pressure peaks? And if not, where is the m aximum of the resultant 

function? In order to attempt to answer these questions one needs to consider separately 

the missions’ profiles for the following air/spacecraft: (i) traditional rocket/jet engine 

design, (ii) VTOL/STOL configurations, (iii) suborbital flight vehicles, i.e. High Speed 

Civil Transport (HSCT), Reusable Launched Vehicles (RLV), Liquid Fly Back Boosters
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(LFBB), and Crew Return Vehicles (CRY).

1.3.3.1 Traditional Rocket / Jet Powered Design

For the traditional rocket/jet powered designs, maximum acoustic loads occur for 

a very short time just before the initiation o f roll o f an aircraft. As soon as the vehicle 

begins to move the relative velocity of the je t stream in the stationary air reduces steadily 

which subsequently reduces surface pressure. Since the pressure is proportional to the 

fourth power of the relative velocity, the decrease is very rapid. The severe sonic

i

environment is present usually for no more then 20 seconds. Over such a short period 

of time the hot exhaust gases do not have enough time to heat up the structure 

significantly. Typical temperature and acoustic load variations are shown in the Figure 

1. 1.

T

dB

Conventional

Time
Pressure -  — — Temperature

Figure 1.1 Typical Temperature and Acoustic Load Variation For Classical Rocket/Jet 

Powered Aircraft20
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1.3.3.2 VTOL/STOL Configurations

The situation described in the previous section is not always the case for the 

Vertical/Short Take Off and Landing (VTOL/STOL) aircrafts. The take-off phase takes 

considerably longer so the maximum acoustic and thermal loads can coincide. A nother 

possible state in flight where these conditions can occur is steady hover (zero vertical and 

horizontal speed, not necessarily involving take-off nor landing). Typical temperature 

and acoustic loads variation is shown in the Figure 1.2.

°T

m

VSTOL

Time

P ressu re  — — — Tem perature

Figure 1.2 Typical Temperature and Acoustic Load Variation for VTOL/STOL A ircraft20

1.3.3.3 Suborbital and Reusable Spacecraft

For the new design of suborbital and reusable spacecraft the take-off/launch 

conditions conform with the traditional configuration described in Section 1.3.3.1.
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Additional design considerations arise with the ascent/re-entry involving high levels 

random pressure fluctuation and extreme thermal conditions. Typical temperature and 

random pressure load variations are shown in Figure 1.3.

m.

Time

• NslienaJ Aerospace Plane (NASP)

—  ■ ■ P r e s s u r e  — — — T e m p e r a t u r e

Figure 1.3 Typical Temperature and Acoustic Load Variation For Suborbital/Reusable 

Launcher Spacecraft20

1.4 Analytical Techniques for Predicting Random Response

This section, in addition to the historical background given in Section 1.2, 

presents some analytical methods not introduced thus far or described before in a rather 

brief manner. This section focuses on the principle of the method, rather than its 

placement in the chronological order, and only for that reason some information might 

seem to be repeated.
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1.4.1 Fokker-Planck-Kolmogorov Equation Approach

The Fokker-Plank-Kolmogorov (FPK) equation approach gives an exact solution 

for a restricted class of simple problems. If the excitation is sufficiently broadband, 

modeling of the response as a multi-dimensional Markov process is feasible. The most 

general extension o f the FPK equation approach to nonlinear second order equations was 

due to Caughey.59

The FPK equation can be derived by applying the Ito differentiation rule to an 

arbitrary function of the diffusion process. An alternative way of deriving the FPK 

equation can be based on the Smoluchowski-Chapman-Kolmogorov equation.

M ost of the available exact solutions of the FPK equation correspond to the case 

in which the transition probability density becomes time-invariant and independent o f the 

initial condition in the limit. Obtaining exact solutions for the non-stationary FPK 

equation is much more difficult. Available results are based on Fourier transforms and 

the method of separation of variables.60 Difficulties in finding the transitional Probability 

Density Function (PDF) with the FPK method led to the development o f a num ber o f the 

approximate solutions that are presented below.

1.4.2 Perturbation Approaches

The perturbation method has been used extensively for the solution o f weekly 

nonlinear systems. First applications of the perturbation method to determine the 

approximate response statistics of weakly nonlinear systems subject to random excitation 

are due to Lyon61 (string, 1960) and Crandall62 (discreet 1 DOF system, 1963), and Tung 

et al.63 (discreet 2 DOF system).
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The principle of the method assumes that the solution is sought as an expansion in 

a power series of some small parameter. Technically, the perturbation method can be 

used to estimate the response to any order of the above mentioned parameter. In practice, 

however, results are obtained to the first order of the parameter because the algebra for 

higher order estimates becomes very complex. The validity of the expansion o f the 

response in powers of the param eter requires convergence of the series, which must 

depend upon the magnitude of the param eter itself. A rigorous proof o f the convergence 

is not available. However comparison of the solutions with the results obtained by other 

methods shows that the perturbation method gives satisfactory results for the parameters 

« 1 . 64 Since the value of this param eter is related to the magnitude of the nonlinearity of 

the system the method does not provide sufficient accuracy for systems exhibiting strong 

nonlinearities.65

Figure 1.4 compares the accuracy of the solutions obtained with perturbation and 

equivalent linearization techniques with the exact analytical solution. The x-axis 

represents the ratio between cubic (p.) and linear (k) stiffness terms coefficients of a 

hardening system, which is a measure of how strong the nonlinearity of the system is. 

The y-axis represents the ratio of variances of the nonlinear and linear solutions. Figure

1.4 shows that the perturbation technique will not give an accurate solution for systems 

exhibiting strong nonlinearities. The accuracy of the results obtained with the equivalent 

linearization technique is acceptable.
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Figure 1.4 RMS Responses of Hardening System by Perturbation, EL, and FPK 

Approaches

1.4.3 Equivalent Linearization Approaches

The Equivalent Linearization (EL) method was developed by Krylov and 

Bogoliubov in 1943 for deterministic vibration problems. For the first time the method 

was applied to random excitation by Booton66 in 1954. W hile Booton used an electrical 

circuit as a physical model to be investigated, first application for the acoustic excitation 

was due to Caughey67 in 1963. The method was expanded into multi-modes by Atalik 

and Utku68 in 1976. In 1980 Sakata and Kimura69 developed the procedure to calculate 

non-stationary response due to non-white excitation, but the assumption of Gaussian 

distribution could not be dropped. The normal distribution assumption was needed in 

order to estimate higher order statistical moments.
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In general, the concept of the EL method is to replace a nonlinear system with its 

linear equivalent such that the difference between two systems is minimized. The 

method is capable of handling all kinds of nonlinearities including inertia, damping and 

stiffness. As for the forcing function, similar to that mentioned before, the method can 

handle non-white Gaussian excitations.

1.4.4 Numerical Simulation

The M onte Carlo Simulation (MCS) for random vibration problem was developed 

by Shinozuka70 in 1972 and extended subsequently with help of his coworkers into a

71 72wide range of structural nonlinearities. ’ Using the large number of generated sample 

excitations, the corresponding response samples are calculated. These response samples 

are then used to estimate corresponding response statistics. The method is capable of 

handling both stationary and non-stationary responses, but the computational cost needs 

to be recognized as a major drawback of this approach.

1.4.5 Partial Differential Equation (PDE) / Galerkin Method

From the mid eighties, the Galerkin method (PDE and modal approach) was 

widely applied in conjunction with the numerical simulation (i.e. Monte Carlo M ethod)

O-} ‘T'3 HA
for prediction of the response of isotropic ’ ’ and symmetrically laminated composite 

panels.33 PDE/Galerkin method was also used in conjunction with the Equivalent 

Linearization (EL) method37,55,75 for isotropic structure. Although the significant 

progress in the analytical approaches, the use of PDE/Galerkin approach was still limited 

to simple panel platform of rectangular shape and simple boundary condition. These
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limitations could be easily waived with use of the Finite Element (FE) method.

1.5 Fatigue Life of an Aircraft/Spacecraft Structure

Despite an extensive search no reference was found regarding analytical 

estimation of fatigue life of shallow shell structure to combined acoustic and thermal 

loads. The available literature is limited to flat panels, and was reported i.e. by 

Vaicaitis,73 Dhainaut,36 and Chen et al.76

1.5.1 High-Cycle vs. Low-Cycle Fatigue

Aircraft/Spacecraft structures are exposed to two different kinds of cyclic loading. 

So-called Low-Cycle Fatigue (LCF) is associated with a single mission performed by the 

vehicle including taxing, take-off, climbing, cruise, descending/re-entry and landing 

where for instance, the fuselage can be thought of as working as a pressurized vessel. 

High-Cycle Fatigue (HSF) is associated with occurrences such as gusts or control 

excitations, which takes place many times during one mission. The transient range of 

cycles between those two categories of fatigue can be placed usually from 101 to 105 

cycles. There is enough historical evidence to prove the statement that both processes 

can cause fatal consequences.

1.5.2 S-N Curves

The concept of Stress-Life Diagrams (S-N Curves) has been established by 

W ohler in the middle of the 19th century. The diagrams present stress (S) versus num ber 

of cycles (N) needed to cause the failure. Since fatigue is a probabilistic process, several 

curves are made available for different testing arrangements. Each curve corresponds to a
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particular reliability of the test, which is, i.e., a function of the number of specimens that 

have been tested. Those curves are known as S-N-P curves, where P  stands for 

probability o f failure. Graphically, a typical S-N curve can be represented as shown in 

Figure 1.5. K  and /? are material properties and in fact they are approximated by their 

expected values e [k ] and E[0], respectively. is the fatigue limit and below the 

value no failure will be encountered regardless of the number of applied cycles.

log S

log N = log K - 13 logS

N = o o
log S

log N

Figure 1.5 S-N Curve

Note here that the S-N curve does not reflect any physical phenom ena occurring in the 

material structure and represents a purely empirical approach to specimen damage.
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1.5.3 Peak Counting Methods

Since large amplitude response characteristics of a thin-walled structure in an 

elevated thermal environment are expected to be non-Gaussian, the frequency domain 

methods of estimating the fatigue life could not be applied. The crucial step in estimating 

the fatigue life based on maximum strain time history is the selection of a peak counting 

method.77 For that reason this section is treated with particular attention.

The simplest peak counting method assumes that characteristic points o f the 

response time history (of strains or stresses) are all the maximum values of the response 

and all the minimum values of the response (Figure 1.6). The restriction may be made 

that only maximum values above the mean load and minimum values below the mean 

load are counted.

Stress

Strain

Mean
Time

Figure 1.6 The Simple Peak Count M ethod

Among more sophisticated methods of peak counting78 one could list: (i) The 

Range Count Method, (ii) The M ean-Crossing Peak Count Method, (iii) The Range- 

Mean Count Method, (iv) The Range-Pair Count Method, (v) The Level-Crossing Count 

Method, (vi) The Fatiguemeter Count Method, and (vii) Rainflow Counting Method.
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The M ean-Crossing Count M ethod assumes that between tw o successive mean- 

crossing only one count is made (Figure 1.7).

S tre s s .

Strain

Mean
Time

Figure 1.7 The M ean-Crossing Peak Count Method

For the Range Count M ethod a range is defined as the difference between two 

successive peak values of the variable y, the range being positive when a minimum is 

followed by a maximum and negative if the inverse is true. The m ethod is illustrated in 

Figure 1.8. Results may be presented as h(r) or H(r).

Stress

Time

Positive Ranges: 
rx = 5 ,r3 = 2  ,r5 = 4  ,r7 =1

Negative Ranges: 
ri = -3 , r4 = -3 , r6 = -2 ,  r8 = - 4

Figure 1.8 The Range Count M ethod
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In contrast with both previous methods this method gives direct information on 

response variations, which have actually occurred. However, it fails to give information 

on the magnitude of the response peaks. This latter remark does not apply to the Range- 

Mean Counting Method. For this method, range values, r, are counted in the same way 

as for the Range Counting Method. However, for each range the corresponding mean 

value m  of this range is counted in addition to the value of r. Figure 1.9 illustrates the 

procedure. The number of exceedings H(r,m) is associated with a two-dimensional 

distribution function. Consequently it should contain more information than the 

analytical methods based on one-dimensional distribution function.

Stress
or

Strain

Time

Results of Counts: 
r = 5, m = 1.5

r = -3 , m -  2.5

r = 2, m = 2

r = -3 , m = 1.5

r — 4, m -  2 etc.

Figure 1.9 The Range-Mean Count Method

For the Range-Pair Count Method, ranges are counted in pairs. The range r has 

meaning in terms of the response variation or increment starting from a minimum or a 

maximum of the response. Each range pair to be counted consists o f a positive increment 

exceeding a prescribed value combined with the next exceeding of a negative response 

increment o f the same magnitude. Figures 1.10a and 1.10b illustrate the counting method 

for a small and a large value of r, respectively. Intermediate response variations are
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disregarded (grayed fields in the Figure 1.10b). The Strain-Range-Counter developed by 

Vickers Aircraft Ltd. is counting in accordance to this method.

Stress

Strain

Time

Stress

Strain

Time

° - First condition for count, •  - Second condition for count 

Figure 1.10 The Range-Pair Count Method: (a) r, - Small Range, (b) r, - Large Range

For the Level-Crossing Count M ethod each time the varying response crosses a 

certain response level with a positive slope a count is made. This is done for number of 

response levels. The method is illustrated in Figure 1.11.

Stress
or

Strain

Time

Figure 1.11 The Level Crossing Count Method
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In the Fatiguemeter Count M ethod the principle of counting is much the same as 

for the Level-Crossing Count M ethod. Above and below the mean response the crossing 

of some pre-set levels are counted. However, in order to prevent small response 

variations from producing the counts a second condition must be met. To com plete a 

count of a level crossing at a level above the mean response the response must have 

decreased to a lower pre-fixed level. This is illustrated in Figure 1.12. The procedure of 

completing a count of a level at another prefixed level implies that certain response 

variations are disregarded. Such variations are indicated in Figure 1.12 as grayed areas.

o - Counting Level Energized (1, 2, 3),
•  - Counting Completed at Lower Level (1’, 2 ’, 3 ’)

Figure 1.12 The Fatiguemeter Count Method

For the Rainflow Counting (RFC) Method, from each local m aximum M, one 

shall try to reach above the same level, in the backward (left) or forward (right) 

directions, with as small a downward excursion as possible. The minima, m~ and m,+ on 

each side are defined. That minimum which represents the smallest deviation from the 

maximum M,- is defined as the corresponding rainflow maximum m f FC. The concept is 

illustrated in Figure 1.13.

Stresr
or

Strain
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Stress
or

Strain

Time

Figure 1.13 Rainflow Count Method

79The RFC method was originally developed by Matsushi and Endo. Later on, a new

OA

explicit definition of RFC redeveloped by Rychlik became more popular.

The comprehensive study of the performance of counting methods to be applied for the

77
fatigue life prediction has been conducted by Dowling. Based on the experimental 

evidence it was concluded: “ ... the counting of all closed hysteresis loops as cycles by 

means of the rainflow counting method allows accurate life predictions. The use o f any 

method of cycle counting other than range pair or rainflow methods can result in 

inconsistencies and gross differences between predicted and actual fatigue lives” .

1.5.4 Cumulative Damage

As described in Section 1.5.2, the S-N curves provide the answer to the question 

how many cycles a structural member can withstand under certain level of applied 

loading. However, as demonstrated in Section 1.5.3 an applied load, represented by 

peaks counted by one of the methods introduced, might have a complicated time history. 

The question arises on how to account for complicated time histories where the amplitude
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of stress varies with time. In other words, a model for the damage accumulation is 

needed.

The cumulative damage is a measure of a loss of a structure’s ability to w ithstand 

applied cyclic loads. M ost generally this concept can be postulated such that the 

cumulative damage increment in time, dD(t)/dt, is a function of load applied to the

QI QO

structure, S(t), and the cumulative dam age experienced before this load, D(t). ’

M L / [ d ( , ) , s ( , ) ]  (1.1)
at

However, fatigue damage theories were investigated for step fatigue tests, with 

the conclusion that Palmgren-M iner theory84,85 was as adequate as the more complex 

theories. Although fatigue theories make interesting studies, the Palm gren-M iner’s 

theory is the easiest to use and to understand, and is suitable for application to the 

acoustic fatigue problem. The concept of Palmgren-Miner linear damage accumulation 

theory can be summarized as follows: for each stress amplitude the contribution to the 

total damage is calculated. For exam ple, if stress amplitude S k requires N ( S k) cycles

for the damage to occur, the contribution to the total damage due to nk cycles at this 

amplitude, where nk < N ( S k ),  is equal nk/ N ( S k ),  and the failure occurs when value of 

damage, D, reaches unity. Note that Eq. (1.1), when simplified by the assumption that

the damage increment is independent on the total damage itself ^  f[D ( t ) \  and
dt

solved with zero initial conditions Z>(o) = 0 ,  reduces to the Palm gren-M iner theory. 

Introducing the S-N curve into Palm gren-M iner damage accumulation theory the fatigue 

life can be predicted in the time domain.
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Very comprehensive reviews of damage accumulation theories for fibre-

oz
reinforced composite materials were presented by Degrieck and Van Paepegem, and the 

most recent advances in the nonlinear damage accumulation for composites are dealt with 

by Sarkani.87

The time domain approach is very general and can handle any arbitrary response 

history, including snap-through behavior. Despite these observations, for certain classes 

of loadings the frequency domain approach has its advantages. The restriction to be 

made while attempting to estimate the fatigue life via the frequency domain is that the 

response is Gaussian. Slightly non-Gaussian distributions can also be handled by 

performing transformations that bring the distribution to the Gaussian characteristics.

no on

This technique is the so-called Transformed Gaussian Process. ’ Another approach by 

Dirlik90 is empirical and based on extensive computer simulations utilizing the M onte 

Carlo Method.
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2. Finite Element Formulation

2.1 Element Displacement Functions

A typical triangular shallow shell element of an arbitrary shape is described by two radii - 

Rx and R y as shown in Figure 2.1. The element used in this work is derived from MIN3

plate element.91'92

Figure 2.1 Triangular Shallow Shell Element

The displacement functions at any point (x, y, z) in the element are 

ux = u ( x , y , t ) + z W y{x,y, t )

uy - v ( x , y , t ) + z y / x( x , y , t )  (2.1)

uw = w(x ,y , t )
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where u ,v ,w  are the displacements of the middle surface, and iffx and y/y are the

rotations of the normals around the x and y  axes due to bending only. The element nodal 

displacements are defined as

W H k J  W  LwmJ) (2-2)

where the transverse, normal rotation and membrane (inplane) components are

w2 W3J (2.3)

W r = k  V *  Vyx V y2 Wy2\  ( 2 . 4 )

K .F  = l“l U2 M3 V1 V2 V3J (2-5)

The interpolation functions91"92 for the shallow shell element are

w(x, y , t )  = |_H w J { w ,} + 1_H w¥l w }

= L6 £  & J M + I A  L2 h  M , M 2 M 3»
(2.6)

V,(x>y j )  = YH* l v } = \ £ \  & 0 0  o jfesr} ( 2 .7 )

¥ y { x , y , t ) = [ H l//yl w } = l O  0  0 £  £  £ 3J V }  (2.8)

“ ( * > ^ 0 = l / * « I Wm } = L 6  € 2  £  0  0  ° l Wm } ( 2 .9 )

v ( x , y , r )  =  L ^ v | w m}  =  L0 0  0  £  £  £ 3 J {w m}  ( 2 .1 0 )

where are the area coordinates and the transformation between x, y  and £  is

given by

l]  [1  1 l ] f £ \
(2 .11)

1' ' 1 1 1 '
X . = X, *2 x 3 €2
y. >3. &

£

£

11

' ^ 3 - ^ 2 y i ~ y 3 x 3 ~ X 2 1

x 3y, - x ,  y 3 y 2 ~ y  1 X, - x 3 X >

y \  - y 2 x 2 - x , y .

(2 .12)
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where

and

where

and

A  =  ^ [ ( * 2  ~  *1 X y 3 -  )  -  (* 3  “  *1 X ? 2  “  ? !  ) ]  ( 2 -1 3 )

L\ = ~ b 2N 6), L2 = ifo iV 5 - b 3N 4)

h  = - b xN , \  M x = ± { a 2N 6 - a 3N 4)

M  2 = —{a3N  4 — d xN 5), M  3 = —{axN  s — a2N  6)

, N s = N 6 =

x y = x i - x j , y tJ =  y, - y,

f o kZ2% mdA = 2 A -.— . (2.16)
j 1 2 3 (2 + k  + l + m)l

(2.14)

~* * 0>2 ~~~ *̂13 * ^3 ^21

^l= y23’ 2̂ 3̂31 ’ 3̂ — 1̂2 (2.15)

2.2 Strain - Displacement Relations

The strain consists of two components

H = > = {e°}+ z{*-} (2.17)

where { e 0 }  is the inplane strain vector and {at} is the curvature vector. These components

2
can be expressed by functions of displacement as
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{*°Hd+fc“}+k}=
'

U ,x 1
r + H  2

wl
w/
7k

v ,y Vk
U , y + V , x . 2 w ,xW ,y 0

(2.18)

W = V x . y (2.19)

Therefore combining Equations (2.17) to (2.19) the expression for the strain becomes

H = k } + k ° } + f c } + ^ W =

U .x 1
r +  — 2

wl
w/
7 k V y . x

v ,y 7 y w/ r
/  y

> +  z- V x , y

U , y + V , x . 2 w ,xW ,y 0 f y , y + V X,X .

Defining the strain interpolation matrices

(C .]=
LM, 

LhJ„+Lh.J,

0 w u

w ,x.

(2.20)

(2.21)

(2 .22)

{G} = p
\w„

K b I M ,

1 / U ,

[c w 3 -

~
H  „

-
_  Wlf/ _ ,x

H  ,_  wyf _
-

(2.23)

(2.24)

(2.25)
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R,

{c r } - '  y Ry (2.26)

0

[c,]=
i/ * » j

K i , +  L ^ J ,

(2.27)

one can write

{*"}= [ C . K } + i [ 4 c „ i » , } + [ c „  W + { C rXLh .J{ w1}+Lh . J | I '} )  (2.28)

(2.29)

The shear strain-displacement relation under First Order Shear Deformation Theory 

(Figure 2.2) is given by

f wXZ J I • f t

'R . (2.30)
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XZ 3w* -
X

1
1u
t

Figure 2.2 First Order Shear Deformation Theory

Defining the strain interpolation matrices

W -
R J .  
Lh , \

1C J =
H  w + H llfx. w yr _ y lf/X _
H +_ wyr_»■* L̂ » J

fc„]=

[cj=

0

R..

" L « .I

R i
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one can write

M=lc, Jk }+1c„ W -  K  K  Jk,}

2.3 Constitutive Relations

For the kth layer of a laminate the stress-strain relations are given by

<*x 'Qn 12,2 G w “
/ '

V
\

H = « . = Qn Q 22 G 26 « £ y a y • a t

. V * f i l6 Q 26 Q(6 kV 2 V * /

1244 G 45

. 2  45 C s s

'  yz

l / « .
= [ Q s \ \ r }

where the transformed reduced lamina stiffness matrices are

l e i  = ( r „ r [ a U n ]  

le,i =V„Y\q,Vp.\

and the transformation matrices are given by

[ r j =

f r ]=

c 2 s 2 2 cs

s 2 c 2 - 2  cs

- c s cs 2 2 c -  s

2 2c s cs
2 2s c - c s

-  2cs 2 cs c 2 - s
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and

lrJ=lrJ=
c - s  

s c
(2.42)

V

M *  = • <*y ■ = f c ] r - a 2

a v . k 0

(2.43)

2.4 Resultant Laminate Forces and Moments

The resultant forces, moments and shear forces per unit length acting on a 

laminate are obtained by integration of the stresses in each layer through the laminate 

thickness

{N }=  f h_{<j}kdz (2.44)

n
{M }= ] \ M , z d z (2.45)

W  = (2-46)
2

Introducing the extensional, coupling, bending and shear stiffness matrices, [a], [#], [d ] 

and [As ] respectively one can write

\ N ]

IM

[A] [B]

[b ] [t>] W  K r .

W = [ a sM

(2.47)

(2.48)
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where

jt=i

2  *=i

M - ' r E f c l f e + i - * * 3)
j  *:=i

[ ^ ]  = Z ^ , l ( z * +i - z * )

(2.49)

(2.50)

(2.51)

(2.52),

and

k=i
{ ^ 4 r} = Z ts * ] [a } t  T0(zk+l - z * ) + ^ ^ - f e +i - Z 2z )

2 h

\ M  AT  1  ~  2  f e *  ] M *  
*=1

\ T 0(zl+l- z 2z ) + ^ ( z l +l- z l )

(2.53)

(2.54)

where T0 represents a uniform temperature increment, and ATh the linear temperature 

gradient across the thickness of the panel.

2.5 Equations of Motion

Finite element equations of motion for a laminated composite shallow shell are 

derived utilizing the principle of virtual work.

5W =SWiu - d W ext= 0 (2.55)

The work done by internal forces is given by

<^int = M  {M }+ a{dy}T (2.56)
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92where a  is the shear correction factor for the MIN3 element, defined as

a - ' 1 + i f W '  (2.57)

where [k] is a linear stiffness matrix, and [ks] is the shear stiffness matrix, and they are 

both introduced later in this chapter.

From Eqs. (2.28), (2.29), and (2.35) one can obtain18,36

{&°f =tv„}r[ c j  +\{s»J\cJ\.eY ^ M T[ c J m

+\{sv}T\p J [e l+ \{v }r[ c j \ s e j

+{'S»',rLff.ffc}r + W rK 1,Jr{C»}r (2.58)

={«-.}T[cJ  +{<*n}r[c„]W + W Y fcJW Y
+{•**’, FLH.J f c F  +{8vY\h \ {c,}T

{Sk }t = { S w Y { C ,J  (2.59)

M  + { S v Y i c J  - { « O r [ c J [ c , , ] r (2 .6 0 )

From Eqs.(2.47) and (2.48) one can obtain

{w H 4 £° } + M k H ' V }  (2.61)

{M }=(s]{£0}+[Z)}[/sr}-{Mi r } (2.62)

W = k M  <2-63)

Expanding the term of the work done by internal forces in Eq.(2.56) one obtains
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w * = j f t & . n c . r *  w k j t f
A

+ { < ^ ,rL H .j r { c , r + w r L « . J { c » F ( w c j w . } + i [ A M c „ k }

+-~[aMc„]M+ Me, In  Jw,}+ Me, l» .  r JM+ [file, M  ~{NiT

+{Swf [c ,f(M c.K }+ | m b ,  t*. y* \  \B\e\c„ \<A 
+M e, 1H.Jk}+ Me, l» .r V )+[d\c, M -  (m„ })
+ 4 * ,,f  [c,r +{s¥y [c j  - { s » j [ c j \ c j )

([a lc, ]k }+[a t v  V}- Ia  Ic*Ic„ If’*'- M**4

Further expansion leads to

= f({^ F {c .ru ic ,K }
/I

{ ^ F [ c J [ A l e l c „ k }

{*». F (c» F UMc„, ]M

{ ^ . F f c J M c . l H j w , }

{<5».F[cJMc,

{«*, F [c„ FW M e, K».}

+ i { & ’, F [ c J [ * r M f l f o k }  

+-- {<*», F [c, } [ej\A{o{c„ fe/}

+{&, F [c„ t  W  M e, i « . J(w,} 

+{■**■, F(c„ F [«F M e,!«», M

}
J

(2.64)

(2.65-1)

(2.65-2)

(2.65-3)

(2.65-4)

(2.65-5)

(2.65-6)

(2.65-7)

(2.65-8)

(2.65-9)

(2.65-10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



+ w [ c w,]r[ « r u i c . K }

+ \ { 5 v Y \ c J m A \ e l c M

+\{Sv}T[ c J m A \ e t c „ \ r }

+ W ( c w rW [A K c,lH .J& »1}

+ { ^ } 1 c w ]r[9nAKcs l H » ,V }  

+{«*■, }r L H .J { c s }r W c , K }  

4 { ^ F L « J { c , 7 [ A l « i c „ k }

+\{S«, Y l « J  {c, F [aM c„ \ w)

+ {^ ,}rL H j{C s F[A]{CBl / / .J [ W,}

+{'Sv(}t Lh-!  { c . F M f c l K J M  

+ M t [ h . J  { c . F M c . R , }  

+ \W Y \ h„ ^  {c„}t M<4c„][«> }

+\{$vY[h , J  {csY[A\eic„\v}

+ {<V}r l.H„r I  {C,}t [aKc,1 h  J>v,} 

+ { M Tl H , J { C , Y [ A l C x i H , r i r i  

+{»*J[cJ{B\c,ly}

+ {^ ,}r[c„]rW M c (}M

41

(2.65-11)

(2.65-12)

(2.65-13)

(2.65-14)

(2.65-15)

(2.65-16)

(2.65-17)

(2.65-18)

(2.65-19)

(2.65-20)

(2.65-21)

(2.65-22)

(2.65-23)

(2.65-24)

(2.65-25)

(2.65-26)

(2.65-27)
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+ { < v F [ c „ ] r [ e n s I c , M

+ { ^ ,} r L H j { c R}r [ B l c , H

+{svY[hJ { cJ [ bIc, M

- w b j i s n ^ }

-{&v,F|ff J f c F R r }  

-^ F L « .J fc F (w „ }

+{^F[c,FWc»K}

+ i{ < s > F [ c ,r [ B lf l I c wi» ',}

^ w i c . r i s M c j d

+ W r [ C , n B K c j H j « ' , }

+{SwYlc, F V )

+{SvY\c,l[D\c,\y/}

~{Svl{cJ{Ma }

+ a{&v,}r(cj(/l,lc,l[w,}

+ a { S » j [ c J { A , t c J M  

-  a{S», F {C, F [A, | c„ Ic „ ][». }

42

(2.65-28)

(2.65-29)

(2.65-30)

(2.65-31)

(2.65-32)

(2.65-33)

(2.65-34)

(2.65-35)

(2.65-36)

(2.65-37)

(2.65-38)

(2.65-39)

(2.65-40)

(2.65-41)

(2.65-42)

(2.65-43)

(2.65-44)

(2.65-45)
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+«{^Ftcw]rU ,][c,k}

+ a{Sy/}T [cw f  [A, tc„ Xv)

-  « {** . F [c„ F [c* F [a, 1c„ ](w, }

-  F [c„ F [c* F [41c „ l w }

+ a{dw, F [c„ F [c* F [4  lc„ Ic„ k , }) dA

Therefore, the membrane-normal linear stiffness matrices are

[*„]= J[c J [ a I c „}m
A

fcj=  jlcJMc.JiA
A

tU =  jic,n«ic.jM
A

W = jtc.FMc, ]m
A

and shear linear stiffness matrices are

[* /1 = « f[c:„
A

K ;]= aj{c ,F [4k lM
A

k l= « |c „ F [4 |c ,lw
4

fe;]=«Jtc„F[4klM
A

and shear linear stiffness matrices due to the shell geometry are

43

(2.65-46)

(2.65-47)

(2.65-48)

(2.65-49)

(2.65-50)

(2.65-51)

(2.66)

(2.67)

(2 .68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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[C]=«j[c»ru,lc*lc„]cw
A

k;]=«J[c^]r[c*lrklc,iM
A

{*£,]=<*§<:„} [a, \cJ c J ia
A

A

[*?}=«J[c„ Me* Y [A, fc* Ic„ }m
A

The linear stiffness matrices due to the shell geometry are

f e '] =  J L » T  {c » F M c k1 h , > i
A

(Cl= JLff./fcJMc.lM
A

[*“ ]=  J L « . / { c . F I a Kc J h . ,  1m
A

k l=  JL« JfcFW c.lM
A

[cl= J[c,FMc„1h„]m
A

lcl= J l « ^ J r f c F U K c , l H . ] M
A

( C l =  j L H ^ l f e F W c . l w ^ j M
A

[ C N  j L f f „ |{ c , F M c , } M
A

[*" ]=  J[C,lr [B lC ,lf f„ ,iM
A
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(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80) 

(2.81) 

(2.82)

(2.83)

(2.84)

(2.85)

(2 .86) 

(2.87)
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( c i =  j L s . r i f c r u i c . i M
A

k ]=  J[c.r[A][cjH.jM
A

faj= J[cJ W cJ h. >

(2 .88)

(2.89)

(2.90)

Expanding parts of the integrals o f Eqs. (2.65-32) and (2.65-33), one can show

that

[«F {Na }=t v  W =t v  Icw k } + lc„ 1M

where

tV ) =
N ATx

N ATy

N

and

t V l  =

ATxy

^  ATx ATxy

N  Ni y  ATxy ATy

Using Eq.(2.91), and Eqs. (2.65-32 and -33) can be written as 

W j I c J l t f f R r l d A
A

= {*<',}r J [ c . ] r K r f c „ j M k }
A

+ { < H F J [c ,,] r t v l c „ ] < M V }

and

{SwY ic„][0j{Na }dA
A

“ W j l c ^ i K j c ^ K }
A

+W  jjc„ } t v  Ic„ JmW

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)
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The linear thermal stiffness matrices become

k " " l =  J [ c „ lr [iV4T][c „ lM
A

[CkjkRkk
A

( C ' l =
A

[CkJkfRrkk
A

Expanding the first-order non-linear stiffness matrices one can notice that

\ef [ Ale, K} = W {n ,  }=K Kc} = K1c* k }+K \c„ V}

[gj [sic, M =M  k }=R  M = R  k  k }+ R  k  k )

W  Me. 1h, Jk }= OT k  }= k, lc}=k K k}+ k  k  k) 

w  Me, lh„ ki=m  k  1= k  k)=k  k  k}+k  k  kt
where

X ' X '

VIIS
-V

J

A

*cV
{AU=- N m y ►. K )= - N c,y X„,

N  ,nxy X k

and

lNmh
N mx N mxy

N mxy N my

X * X

N 'c,v N c*y

k j =
N u N txy

k >
N cK*>

N c ^

K y .
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(2.96)

(2.97)

(2.98)

(2.99)

(2.100) 

(2.101) 

(2.102)

(2.103)

(2.104)

(2.105)
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W ood and Schoefler93 developed an elegant manner to cast the quadratic term s in 

such a way, that the quadratic stiffness matrices remain symmetrical. This concept 

applied to the present formulation is presented as follows.

Using Eq.(2.100) to expand Eq.(2.65-6 and -11) one obtains

{<*>-, }T Jlc* W  M ” , }
A

=\{s»,Y jlc„M [Alc.tuK}
1  A

+|{<**,}r J[c„]rKlc„ki{»’,}
Z  A

and

M T W c .M w .}
A

= i{ < V F  f c „ ] { e ^ [ A \ c mM w , }
1  A

+ ^ { S w Y
1  A

+\{svY 1k, Ic„ ImW

Using Eq.(2.101) to expand Eq.(2.65-27 and -28) one obtains

{ ^ , r j l c j w Tw c > w
A

= ±{<Sw,}r j lc „ r M T[BlC,]dAW
Z  A

1  A

+ ^ k , F  J l c „ l k l c „ k A W

(2.106)

(2.107)

(2.108)
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and

A

=\{svY  J[c„ f  [ef [sic,
^  A

+ ^ tw  jic^rkic^W w,}
^  A

+\{SwY J[c„ ]  k  Ic„ WW
^  A

Using Eq.(2.102) to expand Eq.(2.65-9 and -14) one obtains

{AnF J lc J tsfU fe ltf.M * ,}
A

=I{&v,F J[c„n9]rUKcslH .> ik }  

F J[c„ 1 k „  \c„ W »,}
1  A

+ ^k ,F  jpJ[N'c,\c„\lA{v}
^  A

and

{SvY J[c„ f  [ef M e, lH„ M ”,}
A

4 W  }[c„ Y [sf UKc, 1« „ W » ,}
^  A

+\{SvY J tc ^ f k .k .M " ’,}
^  ,4

+ ^ F  J k J k „ I c „ M r }
^  A
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Using Eq.(2.103) to  expand Eq.(2.65-10 and -15) one obtains

W  §cJ{e]r[Atc,lH„rH<i'}
A

^  A

Y J l c „ }  k "  I c „  ] d » K }
1  A

4 { * * , r  j [ c J W ? , I c „ 1m w

(2.112)

and

(2.113)

A

=\{SvY Wc,][ff.r
1 A

4t<V}r J I c ^ f k .K i M k }
1  A

+ \ { 8 v Y  § P „ \ [ n i \ c „ \ i a {v }
1  A

Now, the first-order non-linear stiffness matrices corresponding to \d\ can be

written as

k l = ) I c J [ « r W c , l M  (2.114)
A

<2 -n 5 >
A

K , ] =  | [ c „ n « f  [AlCm]iA  (2.116)
A

k J =  J [ C , r U M c „ l i A  (2.117)
A

W =  p,Y{B\eic„\lA (2.118)
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[ n l j  = f c „ ] W [ B \ c , ) l A
A

kJ= \a\c m
A

[ « ! . , ] =  f t C . Y l A M c J f l A
A

The first-order non-linear stiffness matrices corresponding to [Nt ] are

k '] =  f[c„ f  [jvt lc„ IcM.
A

k";l=
A

A

[< ']=  J [c „ r 'k lc w ]cM
A

The first-order non-linear stiffness matrices corresponding to [iVm ] are

[ < - ] =  J [c „ ] r k „ ] [ c „ l iA

A

[<■]= f f c w f k . f c v k
A

[<■]= J t c ^ l k J c ^ k

The first-order non-linear stiffness matrices due to shallow shell 

corresponding to [o] are

kT - J(c„rWWc„jLH.j<M

50

(2.119)

(2 .120) 

(2 .121)

(2.122)

(2.123)

(2.124) 

(2! 125)

(2.126)

(2.127)

(2.128)

(2.129) 

geometry and

(2.130)
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k ] = J l w J f c } r W e ] [ c „ lM (2.131)

[<]= j [c j  W M c,1h»„>4
A

[ < ] =  J k . / l c J U I e f c w k
A

[ < ]=  J tc^ rien A fclH .Jd A
A

k f  ]= 1 h » , I  {c ,7 M « 1 c>
A

k r = i k J  \»T[Aic ,iH .r\u.
A

k l=  I h . J { c J [ a M c w \ ia

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)

The first-order non-linear stiffness matrices due to the shallow shell geometry and 

expressed in terms of [nCk J are

< H = J k r k k >

k M - j k j k k k

kH=jfcJkfc>
A

k f- l = j ( c j k , l c >  

»!,";■]= J l c J k l ^ W

(2.138)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)
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" C f ' l = J [ c „ r k ' I c „ l £ 4

A

■ o ? i - j f c w r k f c >
-* A

The second-order non-linear stiffness matrices are

[ - 2 , ] = M c J W [ a M c >
A

[»2„ ]=  1  j t c „  f  M  U ][< 4c„ ]dA
1  A

[»2,r ]= \ J[c„  F W  U M c „  ]rfA
^ A

["2 J  = |  J [ c „  f  [f lf  [Al$ic„ \lA
1  A

The load vectors are

fc " }=  j l c J K ^
A

J L « J rf c } rW „}(iA
A

A

t ? " } =  $ C j { M a }dA
A

Expanding the work done by external forces in Eq. (2.55) one obtains 

= jt~ ph{Sw }T{w}
A

-  ph{Su}T {ii}

-  p  h{Sv}T {v}

52

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154-1)

(2.154-2)

(2.154-3)
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+ { d w f  {Fd }\lA (2.154-4)

where {Fd} is a surface traction due to random pressure fluctuation.

Further expansion of Eq. (2.154-1 to -3) leads to

j[- p  h{Sw}T {w} -  p  h{Su}T {«} -  p  h{Sv}T {vjJdA =

= Y L» J  + [swY k., Y \ h „ Jfa}+k -r M)
+{*>’. F k . f  k . Jf*. 1+{*». F k .fk . I*- }]**

= -{«*’, F J ’f f f . J k k - k F  \p A f lJ \p „ r ly>}dA (2'155)
A A

-{SwY \p A f i . r \\_ H .l* ,)‘iA-{SwY \phY n .r \ \H „ l f ) d A
A A

-{<**■. F Jk .Jk .k -k -.F
A A

Further expansion of Eq. (2.154-4) leads to

jWtoVA= K k F k J  + W K  f f c k
A A

= {«*,F j l « . ]T{F,}M (2.156)
A

+ {$vY Jkwffck
A

From Eq. (2.155) mass matrices can be written as

[m,]= \ p > i H j \ H , ^ A  (2.157)
A

k , ]  = \p h Y n jY H „ ]^A  (2.158)
A

W =  \P> \H „YYH ,^A  (2.159)
A

{ m „ \ = \ p h [ H „ J Y H „ ) i l A  (2.160)
A

k l =  \ p A.H, I l A f M  (2-161)
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[ < ] =  j p h l H j l H . i l A
A

and the external loading vectors from Eq. (2.156) are

A

\ p r h l n . J { F M

(2.162)

(2.163)

(2.164)

The equation of motion for the shallow shell element with von Karman large 

deflection, shear deformation theory, and a thermal loads is

(2.165-1)

j
C, K 1 0 'w/

K J K1
( k

' o ¥

i— o 0 J+kJ:

+

0 0 0 

0  [«y] U

o k j  k j

+ v*
0

0

0

k s

k s
. I f f  .

0 

0

0 0

0

0

+

c l '

k sR]

kd [c l -l*d
Id (IcMcD

dcl+icD K“l+k"]+k"l 
k l  l e i

k^r tC'l o'
. y n (Cd 0
0 0 0

Cl'
c l
0

(2.165-2)

(2.165-3)

(2.165-4)

(2.165-5)

(2.165-6)
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1
+ — 

2

1
+ — 

2

1
+ — 

2

1
H—  

2

0 [ n l , J  [nllm] 
[ n l j  ([nlv,]+ (n l^ ]r ) [nlm ] 

[nlmJ ln lmy,] 0

< ■

0 0 0

n l " \ K m: o"
0

0 0 0

(k i + n l f ' ) k ; + [ < ] ) o‘

k i + < k ; l + [ < ] ) 0
0 0 0

+  -

(kl 
(k ’

' n M |«C'

k*

wl H n ity/

Nw
n l¥c*

1
+  -  

3

[n2,] [n 2 ,J  0

[” 2 J  in 2 v \  0  
0 0 0

w,

V
w „

W ] 0 f 0 ■

r 0 , •+ k H >+•

. 0 J { p NA I 0 . 0

(2.165-7)

(2.165-8)

(2.165-9)

(2.165-10)

(2.165-11)

(2.165-12)

(2.165-13)

Denote for notation compactness {VF(, }=
W,

. Now, assembling all the elements, and

taking into the account the kinematic boundary conditions, the system equations of 

motion in structural node DOF can be expressed as
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~ [ M  J  o ' 
o Im J

\W„
I # _

+

+

w  [K ’f c .n

f c ]  [*.]
[ J f l j  [ K l - I  

[ i f l - 1  0

+ f c ]  o' 
0 0

0 [ d

Id Id + M Id  
Id °

+ K * ' l o’ + " 1 * 1 ? - ] o' + "1* 1? 1 o' + [ m H  o
0 0 0 0 1 o o i o o

(2.166)

[K2 j  O' 

0 0

w h ;n(0] IK T
O f ^ l o A T\W  \ 1 0  1 I P cL m J K. )  ̂ m j

where the top row of Eq. (2.166) represents inertia term, second row - linear stiffness, 

third row -  first order nonlinear stiffness, forth row -  second order nonlinear stiffness 

matrices, and right hand side of the equation includes random pressure fluctuation in time 

and quasi-steady thermal load.

2.6 Free Vibration

Simplifying the equation o f motion Eq.(2.166) to the case o f  free (unforced) 

oscillation yields the right hand side equal to zero. Additionally, the assumption of a 

room temperature environment eliminates thermal stiffness components.

+

+

[*.] 0 
o [ M j.

W  K . J 1  

. I d  K l 
'[*■1*1 [Ki*.n 
[* 1 -1

+

M  o'

0  ° .

1*1?' 1 0 
0 0

o Id rfa] (** ]bm J

id  Id +id 0
+’[*1?-] o'+[ * i ? ] o' + /n"CR] o

0 0 0 0 0 0
(2.167)

+
[K2b] O' 

0 0
\W„
\w_

f°l
0

The free vibration model is developed to  be used further in this work for the purpose of 

validation of the nonlinear stiffness terms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

3. Fatigue Life Formulation

3.1 Fatigue Phenom enon

Experience has shown that a structure can be damaged not only by passing a 

certain levels of static stresses applied momentarily but also through multi-cycle loading 

at a considerably lower stress levels. This phenomenon is called fatigue. The most 

common design tools for the fatigue life prediction are the S-N curves relating the failure 

stress levels to the num ber of load cycles. The S-N curves are obtained experimentally as 

a result of multi-specimen tests. Since there are many geometrical configurations of 

structures and many loading conditions, it is impossible to obtain reliable data for each 

arbitrary design. Also the most common practice when conducting fatigue tests is the use 

of periodic (often harmonic) excitation with constant amplitude and zero-mean value 

which does not reflect real load characteristics.

3.2 Tim e D om ain vs. F requency  D om ain A pproach

As mentioned in Chapter 1, the fatigue life estimation can be attempted departing 

from either the time history or the frequency domain of the curved panel response. In the 

time domain, a stochastic process can be described by statistical characteristics. Basic 

parameters defined in the time domain are 

Mean Value

o
(3.1)

Variance

0
(3.2)
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Standard Deviation

a =  + (3.3)

Skewness

(3.4)
\  <y )

and Kurtosis

4

kur  = E - 3 (3.5)

The mean value is the average of all values, the variance and the standard deviation are 

measures o f the departure from the mean value. The skewness measures the departure 

from the symmetrical distribution. Skewness equal to zero indicates the symmetrical 

distribution with respect to the mean value. Negative skewness refers to the tail of the 

distribution shifted to the right of the mean value, and positive skewness refers to the tail 

being shifted to the left (Figure 3.1).

P r o b a b i l i t y
Distribution

Function

Skewness 
>0 =0  <0

Distribution Range

Figure 3.1 Skewness
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The kurtosis is the measure indicating the departure from the normal distribution. Zero 

value represents a perfectly Gaussian distribution. A negative value of kurtosis is 

obtained when the peak is lower than for the normal distribution and the positive value 

when the peak is higher (Figure 3.2).

Probability
Distribution

Function
>0Kurtosis

=0

Distribution Range

Figure 3.2 Kurtosis

Other statistical values can be defined in a descriptive way. The up-crossing 

spectrum or up-crossing intensity ju(u) is equal to the average num ber o f up-crossings 

per unit time, of a level u by x(t) as a function of u. It is seen in Figure 3.3 that this value 

can differ significantly for the narrowband and broadband signals. The mean frequency, 

/ 0, is the average number of rainflow cycles (see Chapter 1) per unit time. The 

irregularity factor, a  , is the measure of how dense the local extremes are relative to the 

mean frequency / 0 . For a narrowband signal there is only one local m aximum between
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up-crossing of the mean level. This situation refers to the irregularity factor a  being 

equal to 1 (Figure 3.3a). On the other hand when the signal is broadband (Figure 3.3b) 

irregularity factor a  goes to zero. It is worth noticing here that the damage accumulation 

process in m ost o f the theories depends only upon the values and num ber of the local 

extremes. The sequence of appearance is not considered. Experimental studies have 

shown that this is not always the case i.e. for an aluminum riveted airframe.76 However 

reliable data relating the sequence of the occurrences to the damage accumulation is not 

available, and this work is dealing with composite structures. Therefore, the assumption 

that the applied loading sequence is not of importance is adopted in this work.

( a )

x(t)

(b)

Figure 3.3 Up-Crossing and Its Irregularity for (a) Narrowband and (b) Broadband 

Signals

The description o f a stochastic process in the frequency domain is usually based 

on its power spectrum.94 The spectral (Fourier) analysis of a stochastic processes
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considers a process as a mixture of periodic components (e.g. sine or cosine waves) with 

different frequencies and, among others, it enables one to obtain a conception of intensity 

with which particular frequencies are contained in the investigated stochastic process. 

Defining the correlation function as

The power spectral density function o f a weakly stationary stochastic process is a real and 

non-negative function defined as

The spectral analysis of a structural response is a very robust tool, however its 

application is limited to Gaussian or performing some initial transformations slightly 

non-Gausian processes. This is not the case for random large amplitude vibrations of 

shallow shells exposed to elevated thermal environments. Therefore only the time 

domain approach is used in this work.

R {r )  =  E[x{t)x{t  +  T)] (3.6)

(3.7)  ,

Since r ( t )  is an even function of t  , it can be written as

(3.8)

The reverse relations stand

(3.9)

and

(3.10)
o
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3.3 Peak Counting

3.3.1 Rainflow Counting Method

The procedure to calculate strains and stresses using the FE method will be 

presented as a part of the solution procedure in Chapter 4. Once the maximum stress (for 

isotropic materials) or strain (for composites) time history is obtained, one can attempt to 

estimate the fatigue life. The first step of this procedure involves peak counting. As 

introduced briefly in Section 1.5.3 the Rainflow Counting M ethod was developed in 1968 

by Matsushi and Endo80 as a complicated recursive algorithm. Since then, the concept 

was redeveloped in simplified local formulations by Rychlik,80 and Bishop and Sherratt.95 

This work utilizes Rychlik’s formulation.

In fatigue applications it is generally agreed that the shape o f the load connecting 

two intermediate local extremes is o f no importance, and only the values o f local minima 

and maxima of the load sequence influence the lifetime. Consequently, the load process 

can be characterized by its sequence of local extremes, also called turning points (TP). In 

Figure 3.4 maxima are marked with M; and minima are marked with m,-.

X(t)

Figure 3.4 Load Curve with TP M arked
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The RFC method is designed to catch both slow and rapid variations of the load 

by forming cycles by pairing high maxima with low minima even if they are separated by 

intermediate extremes. Each local maximum is used as the maximum of a hysteresis loop 

with an amplitude that is computed by the rainflow algorithm. W hat the algorithm does is 

to count hysteresis cycles for the stress or strain response in the time vs. stress or strain 

plane, as shown in Figure 3.5. There are two (standing and hanging) rainflow hysteresis 

cycles shown in Figure 3.5. How to determine a single rainflow cycle is shown in detail 

in Figure 3.6. The formal definition of RFC reads as follows:

strain
or

s tr e s s

han g in g

standing

tim e

Figure 3.5 Hysteresis Loop in the Stress-Strain

Let X(t),  0  < t < T ,  be a function with finitely many local maxima of height M* 

occurring at times /*. For the kth maximum at time define the following right and left 

minima

m~k = in f{ r(f) :r"  < t < t k}
(3.11)

m +k = inf {x(t): tk < f < C+}
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where

sup{t G [O, tk): X ( t ) > X  (tk)}, i f  X ( t )>  X ( t k) fo r  some t G [0, tk)

0, otherwise
(3.12)

s u p  { t  g  { t k ,T  ]: x ( t )  > X ( t k)}, i f  X{ t )>  X { tk) fo r  some t e ( t k , T ]

T, otherwise

Then the k t h RFC is defined as (mkFC, M k ), where

RFC |  max{mk ,ml ) , t  

1 m ~k .
(3.13)

This strict mathematical definition can be re-paraphrased and explained graphically 

(Figure 3.6) as follows:

From each local maximum, M k, one shall try to reach above the same level, in the 

backward (left) or forward (right) directions, with as small a downward excursion as 

possible. The minima, mk and m f  on each side are defined. That minimum which 

represents the smallest deviation from the maximum M k is defined as the corresponding 

rainflow minimum m kFC.

Stress
or

Strain M k

m k

t k
)- + Time 
k

Figure 3.6 Definition of RFC Cycle
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Consider f* being the tim e of the kth local maximum with the corresponding

rainflow amplitude of the attached hysteresis loop being

.m :  h, (J _M)

For complicated loads (i.e. chaotic motion), where there are infinitely many local 

extremes in a final interval, the rainflow is redefined as follows. Rainflow minimum 

m RFC(t) for all time points t o f a load x(t) is defined in such a way that the rainflow 

amplitude x ( t ) - m RFC (t ) is zero if  the point x(t) is not a strict local m axim um  of the load. 

It is also possible to divide the set o f rainflow cycles into two groups, depending on 

whether the rainflow minimum occurs before or after the maximum. The two different 

kinds o f cycles occur on an up-going or down-going hysteresis arm, and are called 

“hanging” or “standing” RFC (Figure 3.5), respectively. The “standing” cycles are 

defined as (mRFC , M k ), when the minimum occurs before maximum, and the hanging 

cycles are defined as (m k , m RFC), when the minimum occurs after the maximum. The 

RFC counting can be interpreted as a pair of a minimum m RFC and the m axim um  M k ,

where the amplitude is the most important characteristic for fatigue evaluation. In fatigue 

estimates, a cycle is often represented as a range-mean pair. The range is defined as

range = M K -  m RFC (3.15)

and the mean cycle as

(AT* + m RFC)
mean = -—  -------— - (3.16)

2

Values defined in Eqs. (3.14-16) are presented in Figure 3.7.
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Figure 3.7 Definition of Amplitude, Range and Mean

Let { x ( r ) :f  > 0}  be a stochastic process in continuous time with discrete states 

from the set /  ={0,1,2,...} (the states are denoted by non-negative integers, for 

simplicity). The stochastic process { x ( / ) : / > 0} is called the M arkov process if

P { X { t )  =  j \ x ( t )  =  i , x { t „ )  =  i„ X( t t ) = i , ) = p(x{r )  = j \  X ( t )  =  i) (3.17)

for arbitrary 0 < tx < t2 < ...<  tn < t < T and I  (the so-called Markov

property). The probabilities of the Eq. (3.17) are called transition probabilities. If these 

probabilities do not depend on particular values of t and T but only on their difference, 

then such a M arkov process is called homogenous and the transition probabilities are

M arkov chains are an analogy of Markov processes in discrete time. An arbitrary load 

sequence of TP will be called a Markov Chain of TP if  it forms a M arkov chain, i.e., if 

the distribution of a local extremum depends only on the value of the previous extremum. 

The elements in the histogram matrix o f min-to-max cycles and max-to-min cycles are 

equal to the observed number of transitions from a minimum to a maximum (or vice 

versa) of specified height. Therefore, the probabilistic structure o f the Markov chain of

denoted by

(3.18)
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TP is fully defined by the expected histogram matrix of min-to-max and max-to-min 

cycles, referred to as Markov Matrices. The rainflow matrix F RFC is illustrated in Figure 

3.8.

6 ---------

S --------

1 2 3 4 5 6 7 8
1 2
2 1
3 1
4 f i & k 2 1
5 I •r.isj I 'ts li 1
6 1 . ,4 *, V‘‘* A } ' 1
/  ■ - S-sF'Z \  kc|

s  Ik 'h-t if ^
.....
■

Figure 3.8 Rainflow Matrix

3.3.2 Peak Through Valley Counting

In order to demonstrate the difference between RFC and other simpler methods, 

the Peak Through Valley Counting (PTVC) method is introduced. The PTVC definition 

reads: Let X(r), 0 < t <  T,  be a function with finitely many load maximum of height Af* 

occurring at times f*. Then the kth max-min cycle is defined as (M*, m*+;) and is the 

minimum succeeding Af*. By inversion min-max cycle can be defined. The min-max 

matrix F  and max-min matrix F  are illustrated in Figure 3.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

7
6

5

3

2

1 T  2 3 4 5 6 7 8

1 m
1 1

2  PH 1
3 % 1
4 1 1 1
5 i £ . 1
6 . • it

«•* RRR 1
7 - - * - * • ■ 1

CD v 8

u i
2

..1..
m

..2
ESfiSSSSS

9

3 * *
_ _ _

a tm m  i  n u f n in f

5 T j a c i
6 2
7 x x f e l l

V T □
1 p |

Figure 3.9 Min-max and M ax-min Matrices

The observed cycles can be presented as a cloud of points in the min-max plane (Figure 

4.5.)

3.4 Damage Accumulation

The concept of Stress-Life Diagrams (S-N Curves) was established by W ohler in 

the middle of the 19th century. The diagrams present stress (S) versus number o f cycles 

(N) needed to cause the failure. For the composite materials where significantly different 

stresses occur in the matrix and the reinforcement, the concept is modified and stress is 

replaced by strain. Analytically, a typical S-N curve (where S can be either stress or 

strain) is represented as
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where K and (3 are material properties and in fact they are approximated by E[K] and 

E[(3], respectively, and So* is the fatigue limit. Below the value of S«> no damage w ill be 

encountered regardless the number of applied cycles. For random oscillations it is 

apparent that the structure will be exposed to various amplitudes o f vibration, each of 

them occurring with different frequency. Therefore the RFC method and S-N curve must 

be combined by means of some damage accumulation theory. Fatigue damage theories 

were investigated83 for step fatigue tests, with the conclusion that Palmgren-M iner 

theory84,85 was as accurate as the more complex theories. Consequently, Palmgren-M iner 

theory could be recognized as suitable for application to the acoustic fatigue problem.

For each strain amplitude, the contribution to the total damage is calculated. If  the 

strain amplitude S k requires N ( S k) cycles for the damage to occur, the contribution to 

the total damage due to nk cycles at this amplitude, where nk < N ( S k), is equal 

nk / N ( S k). Accordingly, the failure occurs when

reaches unitary value. Combining Equations (3.19) and (3.20) in the time domain, with

for random ergodic stationary processes, the total expected value of damage experienced 

by the structure up to time t is

/ \
V  K 
£ t ( N ( S K)

(3.20)

the assumption that if the kth cycle has an amplitude Sk causing damage equal to l/N(Sk)

(3.21)
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where K  and /? are experimentally determined constants characterizing S-N curve for a 

particular material. Assuming that e [k ]= K  Eq. (3.20) simplifies to

£[C(()] = i f i k ( ( ) ]  (3.22)
K  ' f

and the fatigue life is equal

r ,  = - n ! 7 ^  (3.23)
£[»(<)]

and it corresponds to the total damage value o f Eq. (3.20) being equal 1.
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4. Solution Procedure

In this section the steps and considerations regarding the solution procedure are 

addressed. First, the solution of the linear vibration problem is dealt with. The mode 

shapes obtained at this step allow for the expansion theorem to be used and the modal 

transformation procedure is detailed. Two types of convergence are investigated. Firstly, 

for the linear vibration problem, the convergence of the natural frequencies upon 

discrestization is sought. Secondly, the number of modes remaining in the approximation 

for the nonlinear vibration problem are considered so the modal convergence is reached.

As a part of the preliminary fundamental studies, the free undam ped vibration 

problem is studied. In the section related to this problem, an iterative procedure for 

setting the initial conditions for the periodic response is presented.

Subsequently, the loadings of the panel are discussed. The thermal effects on the 

panel response are followed by acoustic pressure fluctuation behavior. Two types of 

random pressure fluctuations are used -  a simulated truncated white noise, and data 

produced by an in-flight microphone recording.

Finally, the post-processing of the displacement solution and the fatigue life 

estimation are brought into consideration. These include strain and stress estimation 

using the concept of reduced integration,100’101 determination o f the transient and the 

steady-state response and use o f statistical tools for fatigue prediction.

4.1 Linear Vibration Problem

In order to attempt modal transformation of the equation of motion in the 

structural DOF, Eq. (2.167), the linear eigenproblem is solved first to obtain eigenvectors
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needed for the modal reduction. In order to formulate linear vibration problem, nonlinear 

stiffness matrices [K l] and [K2] are neglected andE q. (2.167) becomes

(-® ,2[m ] + K M ' ) = 0  <4 1 >

where {^}(r) is the rth eigenvector, 0)r is the corresponding natural frequency, and

with

Similarly

with

[M] = [M.] o ' 
o  [M ,]

kl =

k l =

[M ,] 1m ,j  

[ m J  [ m J

k,l k  
kJ k

kl k l
kl kl

= [ k  1+kl+k'l+kl

kJ= 0

k l =k-l
The eigenvectors consist of bending and inplane modes

wwi;:
iH

(4.2)

(4.2a)

(4-3)

(4.3a)

(4.3b)

(4.4)

with

(4.4a)
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4.2 Transformation of the Equation of Motion into Modal Coordinates

4.2.1 General Case

Expressing the panel response as

the diagonal modal mass and linear stiffness matrices are

|m ] = M '[ m ]M  (4.6)

(4-7)

Denoting quadratic terms of Eq. (2.167) as

[^ l]  = ( ^ f j + ( ^ l ;v' ] + [ ^ l /v- J + l ^ l /?J+(A:ic'! J (4.8)

and cubic term of Eq. (2.167) as

[K2] = 1 * 2 ,]  O'
0 0

(4.9)

the nonlinear stiffness matrices [K l] and [K2] can be expressed as the sum of products o f 

modal coordinates and nonlinear modal stiffness matrices as17,18

W  2 > , ( d * i M ] <r> M  (4-io)
r=l

and

r = l  j= l

where the super indexes of those nonlinear stiffness matrices denote that they are 

assembled from the corresponding element nonlinear stiffness matrices, see Eq. (2.165). 

Those element nonlinear stiffness matrices are evaluated with the corresponding element 

components {w}(r) obtained from the known system mode {0}(r).
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The modal load vector consisting of the quasi-steady thermal load and the random 

pressure fluctuation takes the form

£ } = [ ( *  ( f o r  } + « » )} )  <4 -12)

Introducing a structural modal damping, the system of coupled equations of motion 

expressed in the truncated modal degrees o f freedom can be written as

|Ffc+ 2 (,o,rM,[l\q}+ |xlJ+ K1+ tO«}= H <413>
where [m  ]=  M  r [/], and M  r is a scalar and [I ] is the unit diagonal matrix.

4.2.2 Case with Inplane Inertia Neglected

Since no prior work has been found on large amplitude random  response of 

shallow shells to combined acoustic and thermal loads, the validation o f the present 

formulation will be conducted by parts in Chapter 5. In order to verify the nonlinear 

stiffness matrices a comparison with analytical free vibration results will be perform ed.10 

For free undamped vibration of a shallow shell, modal Equation (4.13) reduces to

[Mfe}+(B+ls;]+td)i«}={o} <414)

and its solution retains the form of Equation (4.5). However, due to mathematical 

difficulties, classical methods neglect inplane inertia in the equations o f motion. 

Therefore, for the sake of comparison, the FE modal formulation neglecting inertia of 

inplane motion

K f c } = { 0 }  (-U S)

was developed.96 To preserve generality of this formulation, arbitrary force 

{ p } = M O + t o ] M t o } t o } . r  is kept in the derivation. Solving the second o f the Eq. 

(2.166) with the assumption of Eq. (4.15) yields
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{W, }=  ( k  J +  k ?  ])"' ({P„ } -  [K.„ ]+ k l  ]+ k l  ] K  } (4.16)

while the first of the Eq. (2.166) reads

k»]R }+
(kJ+k ]+kl- kk ]+[«»]+ki"* ]
+ k i ? - 1+k ?  ] + k i? *  1+k z t M w ,} (4-17)

+(kJ+kil+k?]+kUKk(nl
Substituting Eq. (4.16) into Eq. (4.17) yields

k l R )
+1 k ]+k 1+k  1- k"“ 1+kl+k"* 1
+ k i s" - ] + k i? ]+ k i? ‘ l + k 2 j

- ( K . ] 4 k * ] + k l ] + k i » J )  ( 4 ' 1 8 )

(k J+kl F (k» 1 ■+ kl ]+kl 1+ ki„ ])k  1
+(k. I+kl 1+kd+k». Mk. 1+k  k.}=(n}
and it represents the equation of motion expressed in terms o f bending displacement 

^Wb} = L k  F  >V *  F  > V ?  F  J) only- Expanding the underlined portion of Eq. (4.18), 16 

new terms are generated. Nine of them are linear:

-kJkl+klTk,! <*-i8a)
-kJkl+klTk,] (4i8b)
-kJkJ+klTk'J h-isc)
-kllkJ+kTkJ (4.i8d)
- k l I k . ] + k l l ) " ' k : J  ( 4 .1 8 e )

-klkJ+k'^'kll ( 4 - i8 f >
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- M i K j + f c i r i K j  (4 .i8g)

- t a i t i f . i + f c n d  <4 -i8 h )

six -  first order nonlinear

- f o - f c i + i c i n A j  <4 i 8 k )

- k l K l + f c ' I ) ' ' ! * : ! - ]  (4.18m)

- f c l K ] + f c ' i " f « - ]  <4 1 8 ">

- k ^ J k l + f c f l T i K j  (4.18p)

- u i f c f l K j + k r i r k ! . ]  ( 4 i 8 q >
<4 i 8 r )

and one - second order nonlinear

- k j K j + k i r t M j  <4 i8 s )

Moreover, it is noticed that the term [ . 0 * ” j depends on the inplane displacement 

{Wm}, therefore it will also be affected by the assumption of neglecting the inplane 

inertia. Recalling the membrane displacement vector of Eq. (4.16)

k  }■= ( [ k  J + [ C  D “  ( k } -  k *  3 ■4  f c j + f c j  1 +  k u  I K }

V r=1 r=l

r=1 r=1 s=l >

Therefore, the membrane vector of Eq. (4.19) can be expressed in a form of
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« = k } -  b ' t f f r j *  + 2 > ( < ) k ' f 1 + £ « , w k ) M
Vr=1 r=1 r=1 (4.20)

+ Z E  9,(<k(>Xw„n
r=l s=l

where {H'.}W = ( K ] + f c ' } " ' [ « - f c } W, W  4 * . ] + k ] ) " ' k k } W .

k ' F  = ( f c ] + k ' ! ) " , t a k } (,). {W,.} W  = ( f c ] + f c ' ] ) " l [ K u F ,{A}W . and

k ’}= ( [ « . ] + k r  }■'{/>,}•

and the new t o f ’” j matrix is built as the following summation:

k - 1 = k - 1 - 2 > ( > ) k -  V  -  i - r i d M ' - ' f ’ - i  P
r=1 ,=1 r=1 (4.21)

r=l l - l

In particular, it is observed that this operation will yield a second order nonlinear term, 

\ K 2 Nbm J, and the final equation reads (assuming that inplane force {Pm}is associated only 

with thermal load, superscript (*) is replaced with 1ST):

+Ek+kMkHkMkkkIkJrik1'1kJ 
- k  Ikj+ fa? Y  k  1- k  Ik ]+ k  Y  k  ]
- k  Ik J+k  Y  k. J- k  Ik 1+ k  P k  1
- k  Ik j +k  Y k  ] - k  Ik J+ k  k1 k  ]
- k  Ik j +k  H1 k  - k  Ik ]+k
+ k i + k M - k - ] -

' sR 
km

+
D -k  

« ; ] +

sR 
m b . (4.22)

- k  Ik)+k  P k j  - k  Ik ]+k  I‘‘ ku ]
- k  Ik ]+k  Y  ku i - k . Ik ]+ k  I"1 k  ]
- k„Ik 1+k  Y  k  1- k„ Ik. ]+k  IF k  ] 
+[K2t ]- [k it„ I k  1+k  J"' k i - 1- k2"- K I= k ,}
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Experience has shown that all (linear, first and second order nonlinear) modal 

equation coefficients are affected by neglecting the inplane inertia. However the 

differences for linear, and first order nonlinear terms are minor — usually not greater than 

1%.96 Based on numerous study cases, substantial differences always occur for the 

second order nonlinear terms, which become96

The ambiguity m entioned above will be discussed and illustrated with examples in 

Chapter 5.

The equation o f motion, Eq. (4.22) is written in terms of the bending 

displacement. The response of a panel becomes

The modal transformation and the solution procedure follow exactly for the one where 

the inplane inertia is not neglected, with

(4.22a)

(4.23)
r = 1

where {(j)b are eigenvectors obtained as a solution o f the eigenproblem expressbd in the

bending degrees of freedom only

(4.24)

and the modal equation becomes

(4.25)

(4.25a)

(4.25b)

(4.25c)
r=I
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l ^ » ) =  £ ! > , ( ' ) ? , (4. 25d)
r= l  s= l

where [k lI)j is established in lines 2 to 6, [Kqb\ is established in lines 7 to 10, and 

\K qqb j is established in line 11 of Eq. (4.22), respectively.

4.3 The Advantages of the Modal Approach

The main advantage o f using the modal approach is computational savings. The 

number of equations remaining in the solution is usually two or three orders lower 

comparing to structural DOF approach. For m ost o f the cases, the num ber o f modes 

needed to obtain modal convergence is less than ten. Moreover -  nonlinear stiffness 

matrices do not need to be reassembled at each integration time step, since they are 

constant. Also, the time step when performing numerical integration can be larger.

4.4 Convergence Considerations

Two types of solution convergence m ust be addressed. Firstly, while attempting 

the solution of the linear vibration problem, convergence to the natural frequency must be 

reached. To investigate this type of convergence the finite model descretization is refined 

and the change in the fundamental frequency is calculated. In this work it is assumed that 

the modal convergence is reached when the refinement of the discretization resulting 

from doubling the number of nodes on both panel edges causes a fundamental frequency 

change of less than 2%. It is also worth noting that since the forcing function is assumed 

uniform over the surface of the panel, symmetry can be exploited and the response o f a 

rectangular panel can be calculated based on the modeling a quarter of the panel.
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Next, when performing modal transformation, the question o f how many modes 

need to be retained in the analysis arises. In order to resolve this issue, modal 

convergence is sought. The nonlinear response of the panel is the linear combination of 

certain modes and each of them  has a certain contribution to the total response. In this 

work it is assumed that modes which contribute to the total response W max/h by less than 

1% and contribute to RMS (Wmax/h) by less then 2% can be neglected. Since the mode 

contribution in the total response varies with the forcing function (random vibration), 

and/or initial conditions enforced (free vibration), the estimation of the modal 

convergence should be performed over the entire range of the panel response under 

investigation. Generally a larger num ber of modes is needed for larger values of W max/h 

or RMS (Wmax/h). Crude prediction with respect to the mode contribution can be made 

based on the analytical solution which states that the contribution of a certain mode is 

inversely proportional to the third power of the natural frequency associated with the 

mode.

Both types of convergence criteria are a compromise between the accuracy and 

the computational cost and can be adjusted by the user according to the objectives and 

computational capabilities.

4.5 Free Undamped Vibration Problem -  Iterative Procedure to Determine Initial 

Conditions For Periodic Response

It is known that the curved panels under moderately large deflection vibrations 

may exhibit primarily softening characteristics, and as the deflection increases further -  

hardening characteristics (Figures 5.1 to 5.3).10 To investigate these phenom ena -  before
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attempting the solution o f the randomly excited and damped vibration problem -  

fundamental studies of a free undam ped system were conducted.

The multimode approach requires the initial conditions to be set in such a m anner 

that the system response is periodic. In this section the derivation of an iterative 

procedure setting the initial conditions is presented.96 It is assumed that the initial guess 

of the shallow shell multimode response (the maximum deflection along with the 

corresponding frequency) is known. These initial trial values can be obtained from the 

single mode solution, perturbation methods or other methods.

The modal approach to a free undamped vibration problem, where the solution is 

sought in the form of Equation (4.5) or (4.23) where n is number of modes considered in 

the solution, results in the general system of Duffing type modal equations in reduced 

DOF, recall Equation (4.14)

Cw’fe 'F  Or i J+ I t ,  j+ i f , ,  j)fa} = o
where \m  J and [ /iL J matrices are diagonal matrices in x «), and \k q J and [k ,„ J are fully

populated (n x n x n ) and (n x n x n x n), respectively. Mass normalization yields

f e } + ( l Z , ] + l ? J + l ^ t o = 0  (4-26>

where each of the matrices [ k t ] ,  [/£<? j, and j is premultiplied by the inverse of the 

modal mass matrix [m  (the same notation is kept for convenience). Denoting 

{<?}={/?}

( 4 ' 2 7 >

the second order system of n Equations (4.26) is transformed into 2n equations o f the first 

order in the state-space form of
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\P\
U\

[/] [0]

.  [0] - M + K ,]+ [x « ])_
P I

L < ? J
(4.28)

Denoting {X } = \ i ,  we have to solve the following differential equationUJ
{x}=F({x}) (4.29)

with a judicious specification of initial conditions {X (o)} that lead to periodic solutions. 

The initial conditions are

{x(o)}=

9i(°) #01

.. 
cs

9.(0) Q on V n

9i(°)
► =  *

$ 0 1 V n + l

,9.(0). f l o n . V 2 n .

For the periodic solution with period T  it follows that

{ X { t + T ) } = \ q

'q,(t + T )

' 9 , ( t  + T)
qx{t + T )

* = *
01 (0

U t + T l M * ) .

=M<)}

or setting t = 0

(X(T)}={X(0)}

Recalling Equation (4.5) for t = 0 results in

r=1

(4.30)

(4.31)

(4.32)

(4.33)

Denote by T  the period of the nonlinear system corresponding to the initial condition 

{^jprescribed by Equation (4.30). It is assumed that
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\ T  = T0 + b i

l W = k } + { A#}
(4.34)

where T0 and {%} are initial approximations, and AT  and {A^} are corrections that need 

to be computed. Initial conditions for the multimode approach are assumed to be

k } =

#01
0

0

(4.35)

where

#01 (4.36)

is a given value. Now, using Equations (4.30), (4.32) and (4.34) one can write

{x(7\t/)}  = {X (r0 + A7\T70 + A?7)}= {x(0,7/0 + A77)} = {t70 + A?/} (4.37)

Employing a Taylor series in the neighborhood of (T0, rj0) and neglecting the non-linear

terms of the expansion yields

{ '? .}+ {A ';}= {x (r0, % ) } + % !
dt

3{X}
A r + a ;  I

( r 0 ,„0 ) d w }

{A/?} (4.38)
(To ’̂ 0)

Equation (4.38) can be rearranged into the form

3{X}
-(/]

( r < > )

{a #}+
a{x}

dt
A 7 - = f e } - { x ( r 0,i;0)} (4.39)

a i x i
One needs to know { x ( ro,^ 0)},-4-—

dt
3{X}

in order to solve Equation
( r 0 ,!7o)

(4.39). The vector {X(T0, rj0)} can be found by solving the system of Duffing equations

using an initial guess (for the first iteration) or using the previous solution (for the
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subsequent iterations) of the initial conditions. In order to estimate 

use Equations (4.29) and (4.30), noting that

3{x}

3{X}

3i
one can

(r„.%)

dt
= F({x(r0,%)})= F({x(0,r,„)})= F({% }) (4.40)

fa,n»)

TheJakobian can be evaluated using the forward scheme
(To ,Vo)

3{X} ‘a x ,'
' A i \ (T'o.%) d r j j

(4.41)

where £ is a small parameter, {e}j is the unit j th vector and i , j  = 1,2,...2n. Denoting 

[<3>] = r /  Eq. (4.39) can be rewritten in the form
afo}

([*]-[/ Ma  ij}+ a t { f  (% )} = { % } - {X (r0, % )} (4.42)

Eq. (4.42) represents a system of 2n equations. Since the amplitude of the first mode is 

prescribed arbitrary by Eq. (4.36) and is to remain constant during the iteration process, 

the number of unknowns is equal to the number of equations available. Replacing Arj01

by AT, the 2n unknowns can be expressed as a vector

AT

A%2 [ATI

l A7?J
(4.43)

2/ucl

lrtx\A^02„J

It follows that the system to be solved is

(4.44)
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where

' ax, ax, ax, ‘
f fa o i)

ax, ax,'
dt a^ dV2n a*72 d*72„

d X 2 ax2 ax2
F{}1o2 )

ax2 ax2
dt dr]2 d*7 2, = ^ 2 n

d x 2n
F{tfo2n ) d x 2„ d*2n

dt drj2 dv2„ . 9^2 3*72„ .

Finally,

(4.46)

The process of determining the initial conditions for periodic motion is iterative. 

The updated period and the updated initial deflections become the initial conditions for 

the subsequent iteration. One needs specify a satisfactory rate of convergence where the 

iterative process is assumed to result in the desired accuracy. The choice o f param etere  

has an affect on the accuracy o f the results. In general, more iterations are needed when: 

the material is anisotropic, when the boundary conditions become more complicated, 

when the panel curvature increases, and/or when more modes are taken into account.

In order to investigate the stability of the scheme one needs to look at the 

eigenvalues o f the Jakobian matrix.

The numerical scheme consists of the following steps:

- Prescribe initial displacement on the first mode

Solve Eq. (4.40) using a 4th order Runge Kutta numerical integration 

scheme (RK4)

- Determine the Jakobian matrix, Eq. (4.41), using the Runge-Kutta 4 th 

order integration scheme
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Construct the [®] matrix prescribed by Equation (4.45)

- Solve the algebraic Eq. (4.46) for <! >
[A //J

- Check the convergence, perform another iteration if  convergence has not 

been satisfied.

The algorithm can be modified in order to obtain better accuracy while 

determining the Jacobian matrix, Eq. (4.41). The improvement of the accuracy by 

employing the centered scheme

results in an increase of the computational cost of the iteration process.

4.6 Thermal Effects

In general, the change in the temperature from ambient or reference conditions 

will generate finite thermal deflection of the curved panel, which becomes the 

equilibrium position for the panel oscillation under acoustic pressure. Panel deflection 

depends upon both the average temperature increase and the temperature gradient across 

the thickness. For the special case of a flat isotropic or orthotropic panel with a uniform 

temperature distribution and inplane boundary conditions, the thermal buckling problem 

needs to be addressed. For a flat symmetrical structure, an initial uniform temperature 

increase will not generate any transverse displacement, although for immovable inplane 

boundary conditions the compression load will be increasing. At some point, known as 

the buckling temperature Tcr, the panel will encounter loss of stability resulting in the 

transverse deflection. Since the structure is flat and symmetrical one of two possible

d{x}  _ TdX,  ]  _ - y , f e , f a } - g H ) - 2 X , ( T 0,{^0})+ X,(r0, f a } +  £{e}j)
(4.47)2e
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equilibrium conditions will be reached. Figure 4.1 shows the buckling of a flat 

isotropic/orthotropic plate along with finite thermal deflection for the general case o f a 

curved and/or antisymmetrically lam inated panel. For an arbitrary curved panel or for the 

flat panel with non-symmetrical lamination, a finite thermal deflection is unique (does 

not exhibit two equilibrium positions).

Figure 4.1 (a) Thermal Finite Deflection, and (b) Thermal Buckling

Solving the buckling problem for the flat isotropic or symmetrically laminated panel is 

beyond the scope of this work. For the detailed solutions the reader is referred to Chen 

and M ei97 and Shi et al.98,99 However, such a case will be used for validation of the 

thermal part of the formulation.
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4.7 Random Pressure Fluctuation

4.7.1 White Random Pressure Simulation

In this work it is assumed that the pressure p(t)  varies randomly with time and is 

spatially distributed uniformly over the panel surface. The white noise is defined as 

stationary random sequence with the autocovariance in a form94

*(f) = K  f o r t  = 0 (44g )
[ 0 fo r  t an in teger, t^ O

The white noise truncated at the cut-off frequency f c , often referred as “pink noise” is

defined as

, v [G0 fo r  0  < /  < // ) _ i  o ( 4 . 4 9 )
[ 0  fo r  /  < 0 and f  > f c

The expression for G0 can be written as32

SPL

G0 = p 20 10 10 (4.50)

where p 0 is the reference pressure, p 0 = 2.90075-10”9 psi (20p P a ),  and SPL is the

Sound Pressure Level expressed in decibels, dB. Integrating the “pink noise” over the 

bandwidth (equal to the value of the cut-off frequency) the Overall Sound Pressure Level 

(OASPL) can be found

f c SPL SPL OASPL

} p 02 10~ ^ d f  =  p i  10 " > • / , =  p i  10 '« (4.51)

It follows that

OASPL = SPL  +10 lo g (/c) (4.52)
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The length o f the simulated process cannot be selected arbitrarily and needs to be related 

to the fundamental frequency o f the structure. It has been shown in previous studies ’ 

that for a stationary response, reasonable statistical properties are obtained from a time 

history that contains more then 100 natural periods of the structure

N - t >  100 —  (4.53)
f \

where N  is the number of simulated points, t is the time step, and / j  is the fundamental 

frequency. The condition of Equation (4.53) is strictly fulfilled for all the curved panels 

studied in this work, and slightly relaxed for a flat panel, which has substantially lower 

fundamental frequency compared to curved panels. It is a common routine to employ 

Fast Fourier Transformation (FFT) while computing the Power Spectrum Density (PSD) 

of the signal. For that reason it is customary to select a value o f N  that can be 

represented by a power of two (N = 2").

The Matlab® code used to generate the white random pressure samples is shown in 

Appendix A.

4.7.2 N on-W hite R andom  P ressu re  D ata (In-F light D ata)

The random pressure fluctuation with non-white characteristics have been 

obtained from in-flight recorded data provided by the Structural Dynamic Branch, Air 

Force Research Laboratory at Wright-Patterson Air Force Base. The microphone data 

were captured on a B-1B strategic bomber during take-off using full afterburner power. 

The recording consists of three parts captured at the three successive stages of take-off: 

(i) takeoff roll, (ii) rotation into flight, and (iii) initial flight when retracting the gear. 

One recording of approximately 14.8 seconds and sampling interval of 0.15294 x 10"3
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sec. (96756 measurement points) was used in this work. Figure 4.2 presents basic 

characteristics o f the recorded data, including the time history, probability density 

function (PDF), and power spectral density (PSD) of the non-white pressure fluctuation, 

and its comparison with the simulated truncated white noise. It is seen that the PSD 

characteristics are non-flat and exhibit an incremental trend for the frequency range from 

0 to about 180 Hz. For higher frequencies, the pow er density decreases. The highest 

rates of change correspond to the frequency interval below 400 Hz. There are also two 

pronounced spikes clearly noticeable on the PSD plots. One corresponds to a frequency 

of 180 Hz, the other occurs at 360 Hz.

Time,sec

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Freauencv (Hz)

~  0.4

-2 -1 0
Distribution Range (psi)

Figure 4.2a Time History, Probability Density Function (PDF), and Power Spectral 

Density (PSD) of Non-White Pressure Fluctuation (in-flight recorded data)
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Figure 4.2b Time History, PDF and PSD of Simulated Truncated W hite Noise

No details regarding the microphone placement, its sensitivity, bandwidth, nor 

other apparatus parameters, were available. Also no data on measurement environmental 

conditions, i.e. temperature or humidity were available to the author. The statistics of 

recorded signal were calculated, and are presented in Table 3.1.
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Table 3.1 Statistics of Microphone Recorded Random Pressure Fluctuation (measurement 

in units of psi)

RMS 0.365755

Mean -0.017597

Variance 0.365331

Skewness 0.197474

Kurtosis 0.162631

4.7.3 Equivalent White Sound Pressure Level Simulation

In order to make comparisons of the panel response results for in-flight recorded 

data and for a comparable simulated white noise, the overall sound pressure level was 

chosen to be the same. In fact this means that the amount o f energy carried by both 

power spectra are equal, however the frequency distribution of this energy is different. 

The overall sound pressure level for the B-1B recorded data was found to be 163.014 dB.

An important issue when simulating truncated white noise is the choice of cut-off 

frequency f c. As mentioned before, when applying FFT it is customary to make the count 

equal to some power of 2. At the same time, the cut-off frequency must be high enough 

to excite a certain number of the desired lowest modes. With respect to this requirement, 

the Nyquist criterion applies.35,36 It states that the excitation frequency should be at least 

double o f the natural frequency to be excited. Since some preliminary studies indicated 

that a 6-mode solution represents a reasonable compromise between the accuracy and the 

computational effort, and for all shallow shells under investigation, the natural frequency
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of the 6th mode did not exceed 1024 Hz, the cut-off frequency was set to 2048 Hz. 

Applying Eq. (4.52), the SPL of truncated white noise was found to be 129.901 dB.

4.8 Monte Carlo Simulation

Monte Carlo methods enable the simulation of any process influenced by random 

factors. However it needs to be recognized that for many mathematical problems 

involving no chance, one can artificially devise a probabilistic model for solving these 

problems. For these reasons the M onte Carlo method can be considered a universal 

method for solving a variety of com plex mathematical problems.

Two distinctive features of the M onte Carlo method can be summarized as 

follows: One advantageous feature o f the method is its simple structure for the 

computation algorithm. As a rule, a program is written to carry out one random trial. 

This trial is repeated N  times, each trial being independent o f the other trials, and then the 

results of all trials are averaged. Therefore, the Monte Carlo method is sometimes called 

the method of statistical trials. A second feature of the method is that the error of 

calculations is proportional to

where D  is some constant, and N  is number of trials. Hence, it is clear that to decrease 

the error by one order of magnitude, it is necessary to increase num ber of trials by two 

orders of magnitude. Therefore the major drawback of this approach is the computational 

cost.

For the random vibration problem the approach essentially consists of generating 

a large number of sample excitations (code listed in Appendix A with different values of

error (4.54)
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seeds - variable ISEED ), calculating the corresponding response samples (by the FE 

modal approach), and processing the desired response characteristics (Section 3.2). 

Based on previous experience,35’36 but also keeping in mind that the scope o f this work is 

to establish a methodology rather than obtain great accuracy for the particular study cases 

the number of samples adopted in this work is 7. Before calculating the desired 

characteristics it is important to recognize that they should be based on the “developed” 

part of response. However, before the response is fully developed, a shallow shell panel 

that is initially at rest undergoes induced transient oscillations. Therefore to ensure that 

accurate response statistics are obtained, the transient part o f a response needs to be 

removed. In this work each random pressure sample is generated for 2.0 sec, than the 

response is calculated for 1.2 sec only, and the first 0.2 sec is rem oved (in Chapter 5 time 

intervals from 0 to 1.0 sec are plotted to demonstrate the presence of an initial transient 

response phase.)

4.9 Time Step Considerations

Runge-Kutta 4th order integration scheme is employed to solve the system of 

nonlinear differential equations of motion. The scheme is explicit, so the step by step 

approximation of qk+l (corresponding to time tk+i) is obtained from qk (corresponding to 

tk) in such a way that the power series expansion of the approximation coincides with the 

actual Taylor series development of q(tk +h) up to terms of 4th order. Therefore

<lk+1 =  9 k + T h (b i + 2 b 2 +  2*3 +  K ) (4 -5 5 )o
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where h = tk+i -  4 . The scheme is conditionally stable. The necessary condition to be 

fulfilled is a Nyquist criterion introduced with regard to the cut-off frequency selection in 

Section 4.7.3. A satisfactory criterion was obtained in such a way that tim e step 

prescribed initially based on Nyquist rule was halved until two consecutive solutions 

resulted in the same response.

4.10 Post-Processing of the Displacement Solution -  Strain and Stress Calculation

Fatigue life models are usually based on strain (composites), or stress (isotropic 

materials) time histories. In this section the finite element displacement solutions are 

post-processed in order to obtain these values.

After the modal displacement {q} for a given combination of acoustic load and 

elevated temperature is determined, }, {y/'} and {Wm} can be evaluated with Eq. (4.5) 

for the general case or with Eq. (4.23) and Eq. (4.16) for the special case described in 

section 4.2.2. The element inplane strain {f0}, curvature {/r} and shear strain {y} can be 

calculated using Eqs. (2.28), (2.29), and (2.30), respectively.

In the displacement based FE model, the assumed displacement functions act as 

constraints on the system, therefore resulting in overly stiff behavior. Barlow 100 and 

Cook et al.101 addressed this issue and demonstrated that application of a lower-order
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quadrature rule improves the accuracy of the strain and stress estimations. This so-called 

“reduced integration” tends to soften an element, thus countering the overly stiff behavior 

associated with the displacement method. The softening is a result of vanishing higher 

order polynomials at integration points (Gaussian quadrature) of a lower-order rule. As a 

consequence, these terms do not contribute to the element strain energy. Based on this 

argument, the strains and stresses are com puted at N -l  Gauss points o f an element, where 

N  is the Gauss quadrature needed in order to obtain an exact integration.

Because this FE formulation is displacement-based, the strains and stresses are 

not continuous between elements with the C°-class element model (C° has continuous 

displacement only in contrast to C 1 that has continuous displacement and slope). To 

improve the accuracy of the strain results the average is taken from different local nodal 

values that share the same global node number. Then, the transformation into the 

material principal coordinates is performed for the kth layer of a laminated panel

f >
£1

£2 II e y * (4.55)

I V k y '  . k

where the transformation matrix is given by Eq. (2.41). If required (for isotropic 

materials) stress is obtained by usual constitutive law.
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4.11 Fatigue Life Estimation

In this section the description o f the numerical procedures implemented in the 

W AVE Analysis Toolbox102 and developed in the Matlab® environment are given. The 

procedures follow closely the formulation presented in Sections 3.3 and 3.4. Source code 

is presented in Appendix B.

4.11.1 Turning Points

Command [TP ind]=dat2tp(x,h,wdef) finds the turning points from data. Input x  

is a two column data fill with a time-sampled value format, h is a threshold, and w def 

defines the type of wave. TP  and ind  are the outputs and refer to the turning point of the 

two column vector o f a structure similar to x, and the indices o f the turning points,

’ respectively. The process of finding TP  is shown in Figure 4.3, and needs to be 

performed before attempting the Rainflow Counting analysis.

X

d a t2 tpX

Figure 4.3 Data to Turning Points (TP)
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4.11.2 Crossing Rate

Command lc=tp2lc(TP,defplotflag,sa) calculates the num ber o f up-crossing from 

the turning points TP. The additional inputs def, plotflag, and sa define whether to 

include also minima and maxima, plotting options, and standard variation of the process, 

respectively. Knowledge of up-crossing rate of certain level of strains permits 

determination whether the process is narrow- or broad-band, and whether or not it 

corresponds with Gaussian distribution. A sample of up-crossing rate o f strain is shown 

in Figure 4.4.

4001
—  Upcrossing
— Gaussian
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<o
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Figure 4.4 Up-crossing Rate
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4.11.3 Rainflow  Cycles

Command [rfc,rfcl,res]=tp2rfc(TP,defrfcO,resO) finds the rainflow cycles from 

the sequence o f turning points TP. Input d e f  allows the selection o f min-to-max cycles 

(correct number of up-crossing), max-to-min cycles (correct num ber of down-crossing), 

and the Cloormann-Seeger method (correct number o f closed hysteresis loops). rfcO and 

resO additionally allow for the computation of rainflow cycles without residuals and the 

residuals themselves -  these values are assigned to the outputs rfc l and resl, 

respectively. The procedure is the realization of the algorithm outlined in Section 3.3.1. 

The central idea of RFC is shown in Figure 3.6.

4.11.4 P eak  T hrough  V alley Cycles

Command [mM,Mm]=tp2mm(TP) finds the min-to-max (mM) and max-to-min 

(Mm) cycles from the sequence of turning points TP. mM  and M m  are in two column 

format o f time-value. These peaks are calculated only for the comparison to demonstrate 

the difference between the simplest available method and RFC. The sample comparison 

is shown in Figure 4.5 and suggests that PTVC will result in more conservative fatigue 

estimation compared with RFC.
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Figure 4.5 Comparison of strain counting by RFC vs. PTVC for Narrow-band and Broad

band Signals
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4.11.5 Damage and Operational Life

Command D=cc2dam(cc,beta,K) calculates the damage, D, o f a cycle count 

according to Palm gren-M iner theory (Equation 1.3). cc is a cycle count in two column 

format of min-max, and beta  and K  are material properties (see Equation 1.1). 

Consequently, the operational life is computed from Equation (1.6).
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5. Results and Discussion

5.1 Validation

Since no work has been reported on multimode nonlinear random vibration o f 

shallow shells exposed to combined acoustic and thermal loads, the validation process 

will be conducted by parts. First, the FE formulation is validated for the case of 

nonlinear free vibrations against classic solution by Leissa and Kobayashi,10 which 

utilizes First Order Shear Deformation Theory. Subsequently, the forced vibration 

response prediction methodology is validated against known solutions for a flat panel 

configuration with random pressure excitation input.103'105 Also, buckling and 

postbuckling behavior are compared with the analytical solution by Paul106 to validate 

thermomechanical portion of the formulation.

5.1.1 Free Vibration Problem -  Nonlinear Stiffness Validation

It is known that curved panels exhibit soft-spring behavior at large deflections

unlike, hard-spring behavior for flat plates. No work has been reported so far for large 

amplitude free vibration of shallow shells considering effects of inplane inertia, and 

characterizing the dynamic behavior with coupled linear bending-inplane modes and 

multiple-mode solutions. The analytical methods, as described in Section 1.1 have 

mathematical difficulties in obtaining closed form solutions unless the inplane inertia is 

neglected in the formulation. Therefore, for the sake o f comparison, the validation of the 

developed free vibration FE formulation is also conducted under the restriction of 

neglecting the inplane inertia and characterizing the nonlinear vibration behavior with 

linear bending modes only. The FE formulation without inplane inertia is presented in 

Section 4.2.2, so that the finite element vibration results could be compared with classical
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analytical results. First, the single-mode solutions for isotropic shells supported by shear 

diaphragms (v = 0, w = 0, \|/y = 0 at x = 0 and x = a, and u = 0, w = 0, \|/x = 0 at y = 0 and 

y = b) were compared with results obtained by Kobayashi and Leissa.10 For all cases 

studied in this section, symmetrical initial conditions were assumed. Consequently the 

response consists only of symmetrical modes, allowing one quarter o f the shallow shell to 

be studied for refined discretization. The mesh size used was 14 by 14 or 392 triangular 

shallow shell elements. For shear diaphragm boundary condition this results in 980 

structural node DOF. The dimensions of the shallow shell used for validation are a = b = 

3.937 in. (0.10 m), nondimensional radii are defined as rx = Rx/a  and ry = R y/b, and 

nondimensional thickness is H  = h/a. The idea behind retaining only the symmetrical 

modes in the formulation was for future random vibration studies, where random pressure 

fluctuations would be assumed to be uniform over the panel surface and only the 

symmetrical modes are excited. Similarly, the only gradient for the temperature 

distribution that is allowed in the formulation is the one across the thickness, therefore 

the thermal environment is not contributing any unsymmetrical deflection components.

Since the cubic nonlinearity is well established and investigated based on flat 

isotropic or orthotropic composites plate studies, the particular attention is now turned to 

the quadratic nonlinearity. The quadratic nonlinear term, responsible for introducing the 

softening characteristics into the dynamic response can originate from tw o factors. One is 

geometrical -  namely, the curvature of the panel; the second is due to the material 

stacking sequences, and its existence is noticeable for unsymmetrical lamination of 

composites.
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Figures 5.1 to 5.3 present a comparison between the present formulation and the 

classical results by Kobayashi and Leissa obtained via PDE/Galerkin method.10 In both 

finite element and classical formulations first order shear deformation theory is used, and 

inplane inertia neglected. Therefore FE modal equation that is being solved is Eq.(4.25) 

obtained under assumption expressed by Eq.(4.15). Presented results are single mode. 

The fundamental frequency ratios coNL/coL as a functions of the nondimensional

maximum deflection W max/h for various shallow shell geometries (doubly curved, 

cylindrical, saddle), radii and thicknesses are investigated. It is seen from Figure 5.1 that 

doubly curved panels (rx/ry>0) exhibit more softening in comparison with cylindrical 

panels (rx/ry=0). Saddle panels (rx/ry<0) do not exhibit softening characteristics. Good 

agreement between the present FE and classical results is found.

—  Present 
  Kobayashi & Leissa

- 1.0

•0.5
_is

0.0z
s

0 .5

r /r= 1 .0
0 .9

0.8

0 .7 .
2 .50 .5

W  /hmax

Figure 5.1 Comparison of Analytical and FE Fundamental Frequency Ratio for Various 

Curvature Ratios rx= 10, h/a = 0.01, b/a = 1, v = 0.3
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The agreement is also good to excellent for a wide range of radii o f curved panels. 

Based on Figure 5.2 it is seen that even for relatively small ratio of shell curvature to its 

corresponding panel length rx = R x/a and ry = Ry/b equal to 10, the agreement is quite 

acceptable.

—  Present 
 Kobayashi & Leissa

100

z
3

r =r =100 .9

0.8

0 .7
2 .50 .5

W /hmax

Figure 5.2 Comparison of Analytical and FE Fundamental Frequency Ratio for Various 

Curvatures h/a = 0.01, b/a = 1, v  = 0.3

First order shear deformation theory, incorporated in the formulation, allows the 

analysis of panels over relatively wide range of thicknesses. It is seen in Figure 5.3 that 

the agreement is very good for the range of thicknesses in terms of the edge of the panel
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ratio H=h/a up to 0.2. It is also observed that thinner shells will have more pronounced 

softening characteristics than thicker ones.

—  Present 
  Kobayashi & Leissa
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0 .7 . 2.50 .5
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Figure 5.3 Comparison of Analytical and FE Fundamental Frequency Ratio for Various 

Thickness Ratios, H=h/a, rx= ry = 10, b /a= l, v = 0.3

Secondly, for a flat, simply supported (0/90)3 cross-ply plate, the coefficients of 

the nonlinear terms o f the single-mode Duffing equation were compared in Table 5.1 

with those obtained by Pillai and Rao.14
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Table 5.1 Duffing Equation Coefficients for a Flat Simply Supported Cross-ply (0/90)3 

Rectangular Plate

q + 0 ) 2(q + a q 2 + Pq3)= 0 a  P

PDE/Galerkin14 

FE (14x14) quarter plate 

Difference, %

0.8896 5.9153 

0.8759 5.8965 

-1.54 -0.32

Dimensions: a=20 mm, b=10 mm, h=0.6 mm 
Material Properties: E n  = 5000 kg/m m2, 
E 22 = 500 kg/mm2, Vi2 = 0.25, G i2 = 250 kg/mm2

Again, good agreement was found. Therefore both factors — namely the curvature o f the 

panel (Figures 5.1-3) and the non-symmetrical lamination sequence (Table 5.1) -- 

contributing to the quadratic term in the Duffing equation were investigated.

In order to predict the random response, some shallow shell configurations to be 

analyzed under random and/or thermal loads have also been analysed and will be 

discussed later. Since shear diaphragm supports are very rare in an aerospace design, all 

the subsequent cases in this work will be dealing with either simply supported (u = 0, w = 

0, V|/y = 0 at x = 0 and x = a) or clamped boundary conditions (v = 0, w = 0, \j/x = 0 at y = 

0 and y = b).

5.1.2 Forced Response Validation

5.1.2.1 Random Response

In order to verify the accuracy of the forced response prediction, random response 

of an isotropic flat plate was computed and compared with several other results obtained
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using the Fokker-Planck-Kolmogorov equation, a finite element with Equivalent 

Linearization formulation,104 and another finite element modal approach utilizing BFS 

elements and Classical Plate Theory.105 The study was conducted on a simply supported 

12 x 15 x 0.040 in. (304.8 x 381.0 x 1.016 mm) aluminium panel. The mesh size used for 

quarter panel was 10 by 10 or 200 triangular elements. The material properties are E = 

10.587 psi (73.0 MPa,) v = 0.3, and p = 2.588 x 10'4 lbf-sec2/in 4 (2763 kg/m2). The 

comparison is presented in Table 5.2. Good agreement is found in com parison with the 

FE/BFS formulation,105 and satisfactory agreement for the remaining tw o references. 

However, one needs to bear in mind that the FPK solution is available for a single mode, 

and inaccuracy of the EL approach was demonstrated in Figure 1.4.65

Table 5.2 Comparison of RMS (W max/h) for a Simply Supported 12x15x0.040 in. 

Isotropic Aluminum Plate

SPL, dB FPK103 

1 mode

FE/EL104 

4 modes

FE/BFS105 

4 modes

Present 

4 modes

90 0.249 0.238 0.266 0.254

100 0.592 0.533 0.489 0.510

110 1.187 1.031 1.092 1.069

120 2.200 1.905 2.113 2.100
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5.1.2.2 Thermal Loads -  Buckling Temperature and Postbuckling Behavior

The thermal buckling problem and post-buckling behavior were used to validate 

the thermal part of the formulation. A comparison with an analytical solution of 25 terms 

by Paul106 was performed. A clamped isotropic plate of 10 x 10 x 0.040 in. (254 x 254 x 

1.016 mm) was used in the study with material properties of E  = 10.587 M si (73.0 GPa), 

v = 0.3 and a  = 12.5 x 10'6 1/°F (27.8 x 10'6 1/°C). The mesh size used for the quarter 

panel was 10 by 10 or 200 triangular elements. The nondimentional critical buckling 

temperature

T^dim = 12(l + v )— Y 7 T ~  (5>1)
i t  n

and large postbuckling deflections were compared. A critical buckling temperature of TC1

106= 5.304 was found, which matches exactly with the solution by Paul. Also, excellent 

agreement of the postbuckling behavior is presented in Figure 5.4.

  Present
o Paul1.4

1.2

X I| 0.8

0.6

0.4

0.2

10
Nondimentional Temperature

Figure 5.4 Critical Buckling Temperature and Post-buckling Behavior o f 10 x 10 x 0.040 

in. Clamped Aluminum Plate
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5.1.3 Strain and Stress Validation

The accuracy of the stress calculations was verified by comparing values of RMS 

(a max) with the results obtained by Dhainaut.36 The accurate results obtained for stress 

implies that prior calculated strains are also accurate. Table 5.3 compares values of RMS 

(<7max) obtained for a 12 x 15 x 0.060 in. (308.4 x 381 x 1.524 mm) simply supported 

isotropic plate with material properties listed in Section 5.1.2.1, and a mesh size of 10 by 

10 or 200 triangular elements for the quarter panel. Both sets of results presented in 

Table 5.3 were obtained by an FE method with 6 modes retained in the solution; it should

O Z  1

be noted that Dhainaut used rectangular C -class elements with Classical Plate Theory 

(Kirchoff Plate Theory), and the present work utilizes triangular C°-class elements with 

First Order Shear Deformation Theory. Bearing this in mind, the comparison is 

considered to be very good.

Table 5.3 Comparison of RMS (a max) psi for a Simply Supported 12x15x0.060 in. 

Isotropic Plate at W hite Noise Excitation with Cut-off Frequency of fc = 1024 Hz

SPL, dB FE/BFS36 Present

83.75 47.01 46.27

113.84 1209.5 1161.9

119.87 2575.8 2491.9

131.91 5858.5 5781.3
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5.2 Results

5.2.1 F ree  V ib ra tion

For all cases studied in this section, symmetrical conditions were employed. 

Consequently the response consists only of symmetrical modes, allowing one quarter of 

the shallow shell to be studied for refined discretization. The mesh size used was 14 by 

14 or 392 triangular shallow shell elements, which results in 980 structural node D O F for 

edges supported by shear diaphragms, and in 978 structural node DOF for simply 

supported boundary conditions.

First, the square isotropic doubly curved shallow shell used in the FE model 

validation (Section 5.1.1,) rx = ry = 10, b/a = 1, H  = 0.01, v = 0.3, was studied to 

investigate the effect o f inplane inertia (neglected/not-neglected) and the discrepancy 

between single- and multi-mode solutions. Subsequently, several graphite-epoxy simply 

supported cylindrical panels were studied to determine the influence of the stacking 

sequence of the laminations on the response.

5.2.1.1 Inp lane  In e rtia  E ffect

Analytical methods have expressed the shallow shell response in terms of linear 

bending modes only by neglecting inplane inertia effects as described earlier. The FE 

formulations presented here are capable of providing solutions to Eq. (4.14) and to Eq. 

(4.25). It is found, as presented in Figure 5.5, that the vibrating shallow shell exhibits 

hard response characteristics when the solution is obtained by utilizing coupled bending- 

inplane modes with inplane inertia effects, and softening response characteristic when 

bending modes only are used and inplane effects are neglected. In an attempt to resolve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this ambiguity two steps were undertaken, namely: (1) multimode solutions for both FE 

modal formulations are computed, and (2) the solution in structural DOF as presented by 

Eq. (2.166) is calculated. A finite elem ent formulation where inplane inertia was 

neglected was presented in Section 4.2.2.

2.2
  Finite Elem ent- w/lnplane
 Finite Element - w/o Inplane
  Analytical - w/o Inplane (Kobayashi & Leissa)

1.6

s

S

0.8

0.6
2.50.5

Figure 5.5 Effect o f Inplane Inertia on the Square Isotropic Doubly Curved Shell 

Response, v = 0.3, rx = ry = 10, H = 0.01
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5.2.1.2 Multimode Solution

The two-mode and three-mode solutions were determined and com pared with the 

single-mode solution using both o f the EE modal formulations considered. Once the 3- 

mode solution is available, also a solution in structural D O F (due to computational 

limitations a quarter section of shallow shell was discretized with 4 by 4, or 32 triangular 

elements) with initial conditions obtained from the shell deflection o f the three-mode 

solution was determined. The first three natural frequencies are given in Table 5.4.

Table 5.4 Natural Frequencies for Isotropic Square Doubly Curved Shallow Shell 

Supported by Shear Diaphragms

(1,3)+(3,1)
Mode (1,1) (3,3)

(1,3)-(3,1)

Frequency, Hz 944.46 2550.6 4427.6

Dimensions: a = b = 0.10 m, h = 1 mm, Rx = R y= 1.0 m

Sample time response, and phase plots for moderately large am plitude vibrations 

are presented in Figure 5.6 and Figure 5.7, respectively, for the formulation in bending 

modes only. It is seen in Figure 5.6 that the FE structural DOF solution (obtained with 

4x4 mesh discretization) agreed very well with the three-mode modal solution in bending 

modes only.
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Figure 5.6 Time Response of an Isotropic Doubly Curved Shallow Shell
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Figure 5.7 Phase Plot for an Isotropic Doubly Curved Shallow Shell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

For the same formulation a typical set of the three-mode results consisting of the 

time response and the phase plots for each mode is presented in Figure 5.8a and 5.8b, 

respectively.

0.5

-0.5

0.80.2 0.4 0.6 
Time, sec

0.2

0.1

- 0.2

-0.3

1.20.2 0.6 
Time, sec

0.80.4
x 10’3

0.015

0.01

0.005

-0 .005

- 0.01

0.8 10.2 0.6 
Time, sec

0 0.4
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t > 1000
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200
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1-100
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Figure 5.8a 3-mode Solution - Time 

Response for Modes (1,1), (1,3)+(3,1), 

and (3,3).

Figure 5.8b 3-mode Solution -  Phase 

Plots for Modes (1,1), (1,3)+(3,1), and 

(3,3).
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It is seen from the aforementioned figures that the multimode solution departs 

from the single mode solution, especially for the inbound part of the oscillation (negative 

deflection -  shallow shell in compression) and for larger amplitudes. For this reason it 

was reasonable to show both positive and negative values, namely W ^ / h  and

n / h  as a functions of frequency ratio, as presented in Figure 5.9, instead of showing 

only the positive values, as is traditionally done for isotropic or symmetrically laminated 

flat plates.

- \  Coupled
e  \  Inplane-Bending Modes

_ i —  Fundam ental Mode 
o Two Modes 
+ Three Modes 
• Structural DOF

3
_ i
z:

8

0 .9
o  +

Bending Modes Only
0.8

-£>

0.7

W /hW . / hm i n  m a x

Figure 5.9 Multiple M ode vs. Single Mode Solutions for Isotropic Doubly Curved 

Shallow Shell
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The differences between the fundamental mode solution and the multimode solutions are 

observed, however the number of modes does not alter the solution characteristics 

between hardening and softening. On the other hand it is seen that a substantial 

difference still exists between the two modal FE formulations in expressing the response 

in terms of coupled bending-inplane modes versus bending modes. Utilizing subscript 1 

to refer to mode (1,1), subscript 2 to refer to mode (1,3)+(3,1), and subscript 3 to refer to 

mode (3,3), the cubic nonlinear terms in each of the three Duffing modal equations are in 

the form of

Alltfl ^  Al2#l #2 ■*" Al3#l ^3 A 22^1^2 + A23<?1#2#3 ^  2 )

A33?1^3 A 222Q2 A23^2^3 A3392#3 A33*?3

Table 5.5 compares the cubic coefficients of the Duffing equations for two different FE 

modal formulations, and major differences are revealed. M ode (1,3)-(3,1) is not shown

in Figure 5.8, nor Table 5.5 since it does not contribute to W max/ h  and W ^ / h . . It is

also seen in Figure 5.9, that the FE solution in structural D OF compares relatively well 

with the FE modal solution in bending modes only. The 4x4 mesh coarse discretization 

gives a slightly overstiff solution obtained in structural DO F compared to FE modal 

solution in bending modes only. The value of contribution for the r-th mode is defined as

Modal Participation  (%) = 1 0 0 -j-^ -^ — (5.3)

5 = 1
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Table 5.5 Comparison of Coefficients o f Cubic Nonlinear Terms of a Duffing-type 

System Equation of M otion Using the Lowest Three Modes with and without Neglecting 

Inplane Inertia

Cubic 
Nonlinear Term 

Coefficient

Coefficient x 10 9 
W / Inplane Inertia 

W /o Inplane Inertia

1st Eq. 2nd Eq. 3rd Eq.

A n
0.0171
0.0040

-0.0059
0.0065

-0.0104
-0.0022

A 12
-0.0089
0.0099

0.1692
0.0448

0.0211
0.0094

A 13
-0.0304
-0.0063

0.0408
0.0183

0.2460
0.0374

A
122

0.0852
0.0254

0.1221
0.0838

0.0961
0.0372

A 23
0.0411
0.0184

0.3727
0.1444

0.0227
0.0235

A
133

0.2402
0.0365

0.0220
0.0228

0.0014
-0.0405

A 22
0.0205
0.0141

0.2830
0.1097

0.0593
0.0341

A 23 0.0938
0.0364

0.3450
0.1982

0.7842
0.2859

A
233

0.0111
0.0115

1.5205
0.5542

0.0208
0.0120

A 33
0.0005
-0.0132

0.0135
0.0078

1.3554
0.4794
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Table 5.6 Modal Participations for Isotropic Doubly Curved Shallow Shell

(O
^max

h
Wmin

M odal Participation at Wmax, 
Modal Participation at Wmm,

%
%

h #11 #13 +  #31 #33

1.0044 0.0988 98.50 1.36 0.13
-0.1055 98.41 1.47 0.12

0.9982 0.1950 97.03 2.70 0.28
-0.2232 96.82 2.95 0.23

0.9917 0.2890 95.64 3.93 0.43
-0.3553 95.15 4.52 0.33

0.9821 0.3813 94.42 4.99 0.59
-0.5050 93.42 6.18 0.40

0.9695 0.4735 93.55 5.70 . 0.74
-0.6768 91.52 8.04 0.45

0.9512 0.5685 93.32 5.79 0.89
-0.8768 89.42 10.12 0.46

0.9307 0.6749 94.87 4.62 0.87
-1.1227 86.63 12.85 0.51

0.9029 0.8899 89.90 9.98 0..12
-1.4858 77.80 21.74 0.46

0.8692 1.0116 84.64 14.44 0.92
-1.7477 87.06 11.93 1.01

0.7545 1.1022 89.87 8.73 1.40
-2.3606 97.97 1.33 0.69

0.7396 1.2333 92.01 6.35 1.63
-2.5480 96.16 3.20 0.65

0.7479 1.3773 95.57 2.99 1.44
-2.6705 93.05 6.83 0.11

0.7717 1.4751 97.00 2.31 0.70
-2.8952 91.07 8.29 0.65

0.8160 1.6895 88.54 4.13 7.33
-3.0547 87.33 10.52 2.15

0.8260 1.6980 89.97 5.07 4.96
-3.2144 88.71 10.40 0.89

0.8660 1.7116 90.14 6.85 3.02
-3.4147 88.48 10.45 1.07

0.9010 1.8190 88.66 7.56 3.78
-3.9575 88.94 10.17 0.89
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In particular, the M odal Participation, defined in Eq. (5.3), can be calculated at 

maximum deflection Wmax, corresponding to time t = kT, and at minimum deflection 

Wmin, corresponding to time t = (k+ l/2)T , where T  is the period and k-0 ,1 ,2 ,... Sample 

modal participation values for the case shown in Figure 5.9 are given in Table 5.6, and it 

is seen that modal participations at Wmax and Wmi„ differ.

A vibrating flat plate always remains in tensile inplane strain. For the shallow 

shell, the outbound part of oscillation is also associated with positive inplane strain, but 

for the inbound part of the oscillation the inplane strain becom es negative. For that 

reason the time when shallow shell remains below the undeflected position is longer than 

half of the period and the negative deflection has a larger absolute value than the positive 

deflection.

It is seen that even for the moderately large deflection, on the order of one 

thickness, the higher mode contributions can reach 20%. It is also observed that the 

modal participations based on the outbound (maximum) and inbound (minimum) 

deflections differ. The difference increases as the deflection increases.

5.2.1.3 Lamination Sequence

Responses of cylindrical, rectangular, simply supported com posite panels with 

different lamination stacking, namely anti-symmetrical (0/90), (90/0), (0/90/0/90), 

(90/0/90/0), symmetrical (0/90/0), and (90/0/90) are investigated. For the (0/90) 

cylindrical panel, the (0) layer is closer to the center of the cylinder. The composite 

shallow shell of the same plan - form dimensions and thickness 10 x 15 x 0.050 in. 

(0.2540 x 0.3556 x 0.00127 m), and curvatures Rx = 100 in. (2.54 m) and Ry = °° is
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studied. Material properties are Ei = 26.24 Msi (181.0 GPa), E 2 = 1.49 (10.3), G 12 = 1.04 

(7.17), Vi2 = 0.28, p = 0 .1458xl0 '3 lb-sec2/in.4 (1550 kg/m3).

For anti-symmetrical lamination stacking, additional linear bending-inplane 

coupling occurs due to the material stiffness [B] not being equal to zero. This additional 

coupling can influence, depending on stacking sequence, the response characteristics, and 

either magnify or suppress the softening effect. Although it was found in the previous 

section that the single mode solution was not of high accuracy, it was also found that 

additional modes added to the solution refining the results but did not alter softening 

versus hardening characteristics. Therefore this preliminary study was performed using 

single mode solution. Since in the previous section it was already concluded that the 

modal FE formulation in terms o f bending modes only produced more accurate results 

(Figure 5.9), all the composite cases were analyzed according to this formulation.

Table 5.7 presents the first three natural frequencies o f the panels where the 

anti-symmetrical lamination stacking was the strongest. As the sequence of lamination is 

reversed, the major differences are found with respect to natural frequencies, mode 

shapes and nonlinear response characteristics. Lamination (0/90) results in the 

fundamental frequency being higher by 16.4% than for lamination (90/0). For the (0/90) 

case, the sequence of mode shapes in increasing natural frequency is (1,1) followed by 

(3,1) and (1,3) while for the (90/0) case the order is (1,1), (1,3) and (3,1). As for 

nonlinear behavior, lamination sequence (0/90) introduces softening characteristics, while 

lamination (90/0) gives purely hardening response.
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Table 5.7 Natural Frequencies for Graphite-epoxy Rectangular Cylindrical Simply 

Supported Panel with Antisymmetrical Lamination Stacking

Frequency, Hz

Lamination M ode (1,1) Mode (1,3) M ode (3,1)

(0/90) 381.8 436.8 409.8

(90/0) 327.9 429.1 591.0

More examples are illustrated in Figure 5.10. Generally it is concluded that 

configurations with lower fundamental frequencies exhibit hardening response 

characteristics, while these o f higher fundamental frequencies exhibit softening response 

characteristics.

650
(90/0/90),

600
(90/0)

550
(90/0/90/0)(0/90/0)500

S  4 5 0  

^  400
L L

350
(0/90)

300
(0/90/0/90)

2 5 Q 2.50.5 1.5 
W /h

max

Figure 5.10 Lamination Stacking Influence on the Simply Supported Cylindrical 

Rectangular Panel Response
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5.2.1.4 Summary of Free Vibration Studies

The major difference that was found between two modal FE formulations was one 

that expresses the solution in terms of coupled bending-inplane modes, and does not 

neglect inplane inertia, and the other that uses bending modes only and neglects inplane 

inertia. From the examples studied, it is concluded that the two aforementioned modal 

FE formulations may give completely different characteristics (hard- or soft-spring), 

while multiple modes will contribute relatively small adjustments to the nonlinear 

frequency. Since analytical results are available only under the latter assumptions, FE 

solution in structural DOF, that holds in account o f inplane inertia and includes both -  

out-of-plane and inplane modes, is used to resolve the ambiguity. Under current 

assumptions and selected mode sets for each solution the formulation in terms o f bending 

modes only is found to be more accurate. It is apparent that the ratio between bending 

and inplane displacement in the linear case does not hold constant due to the von Karman 

type nonlinearity and the ratio changes as the amplitude of vibration increases. Therefore 

expressing the nonlinear system response in terms o f linearly coupled bending-inplane 

modes, there was a fixed ratio between the bending and inplane parts of the eigenvector 

and it acts as a constraint on the system, introducing an excessive amount of stiffening. 

The effect is demonstrated in Table 5.8. Based on the FE in structural DOF, and on the 

FE modal formulation that allows for inplane versus out-of-plane displacement 

adjustment, the ratio between maximum inplane (Umax/h = Vmax/h) and transverse 

displacement (Wmax/h) is calculated. It is seen that the ratio increases significantly as the 

amplitude of the oscillation increases. Another reason why in this study the formulation 

in linearly coupled bending-inplane modes did not give the correct shallow shell response
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maybe also due to the subset of selected modes that does not incorporate all the dynamics 

o f system being modeled.

Table 5.8 Inplane Versus Out-of-plane Displacem ent for Various Amplitudes of Doubly 

Curved Isotropic Shell Supported by Shear Diaphragms

Coupled Linear 

Bending - Inplane 

Umax/ W max= 2.07 %

W max/h Umax/h | Umax/ W  max | % M ethod

0.890 0.022126 2.49 Structural DOF

1.000 0.028897 2.89 Single M ode

1.012 0.027695 2.74 Three M odes

1.248 0.036981 2.96 Structural DOF

1.819 0.060014 3.30 Three Modes

1.989 0.075268 3.78 Structural DOF

3.000 0.135909 4.53 Single M ode

-1.232 0.033634 2.73 Structural DOF

-2.553 0.081945 3.21 Structural DOF

max

max

0
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5.2.2 R andom  Response

5.2.2.1 S im ulated  G aussian  B andlim ited  W hite  Noise E xcitation

A 10 x 15 x 0.050 in. (254 x 381 x 1.27 mm) graphite-epoxy shallow cylindrical 

shell (Ry=°°) was studied. Since the softening effect in shallow shell response (that is 

within the scope of this work in contrast to the hardening response for flat isotropic or 

orthotropic plates investigated previously by Mei et al. and D hainaut ) can be induced 

by both the curvature and the lamination stacking, different radii R x, and lamination 

sequences are investigated. Also different support conditions were studied. The material 

properties for the graphite-epoxy composite are the same as listed in Section 5.2.I.3. 

Additionally, for the cases involving an elevated thermal environment, the coefficients of 

thermal expansion are CXx = — 0 .072xl0 '6 1/°C (-0040xl0‘6 1/°F) and Ct2 = 30.06xl0"6 

1/°C (16.70xl0~6 1/°F). The modal damping, gx, is assumed to be 0.02. The advantage

of symmetry of the structure and the applied load is again taken for refined discretization, 

and one quarter of the shell is modeled with a 10x10 mesh, or 200 triangular elements. 

This corresponds to 498 structural DOF for simply supported and 442 structural DOF for 

clamped boundaries. The cut-off frequency, fc, of the simulated white noise is set to 

2048 Hz, which is more than double the natural frequency corresponding to the highest 

mode retained in the analysis for all cases studied. Modal convergence is studied and 

presented along with modal participations in Table 5.9. The modal participation value is 

defined as

. . RMS (q ) /■«
r  - m o  d e  p a r t i c i p a t  i o n  =  — ---------------

i  RMS ( q , )
5  =  1
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It is seen that excellent modal convergence is reached with the use of 6 modes. The 

difference in RMS (Wmax/h) obtained with 5 and 6 modes retained in the analysis is only 

0.11%. It is interesting to notice that for the 6-mode solution, the participation of the 6th 

mode is 3.24%. However the response RMS (Wmax/h) is affected by a fraction o f this 

number (0.11%). To help understand this phenomenon the ratio o f modal participation 

for two modes corresponding to the two lowest natural frequencies is also shown in Table

5.9. The addition of a higher mode does not simply contribute additional value that is 

always a “net gain,” but it also alters the relative contribution of the lower modes. The 

ratio between modal participation of mode (3,1) versus mode (1,1) is 1.173 for the 2- 

mode solution and 0.775 for the 6-mode solution.

Table 5.9 Modal Convergence and Modal Participations for (0/90) Simply Supported 

Cylindrical Shell of Rx = 75 in. at SPL = 137 dB

Number RMS Modal Participation % Participation (3,1) vs.

of Modes (Wmax/h) (3,1) (1,1) (3,3) (1,3) (1,5) (3,5) Participation (1,1)

2 1.9268 53.99 46.01 1.173

3 2.0096 38.45 46.72 14.83 0.823

4 2.0712 32.52 40.98 17.41 9.09 0.794

5 2.0782 29.62 37.97 15.40 12.29 4.71 0.780

6 2.0804 28.39 36.63 14.20 10.89 6.63 3.24 0.775

Certainly, a modal convergence study should be performed on an individual basis for 

each shallow shell configuration and pressure excitation level, but excellent convergence 

was obtained for the case of very small radius. The highest excitation level investigated 

is seen to be very representative for all the cases studied. The lowest six mode shapes for 

a simply supported (0/90) cylindrical panel are presented in Figure 5.11. The
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corresponding natural frequencies for different curvature ratios are presented in Table

5.10.

M ode (1,1) M ode (1,3)

Mode (3,1) M ode (3,3)

M ode (1,5) M ode (3,5)

Figure 5.11 Six Lowest Mode Shapes for Simply Supported (0/90) Cylindrical Panel 

(Quarter of Panel Shown)
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Table 5.10 The Lowest Six M odes and Corresponding Natural Frequencies (Hz) of 

Cylindrical Panel

Rx

in.

B.C. & 

Lamination (1,1) (1,3) (3,1) (3,3) (1,5) (3,5)

CO SS (0/90) 73.71 219.10 435.05 538.50 546.43 827.50

150 SS (0/90) 240.59 320.51 418.39 530.92 591.35 821.01

75 SS (0/90) 530.36 579.56 418.16 542.29 762.79 848.95

75 SS (90/0) 359.31 495.79 687.29 749.09 779.87 972.31

75 CL (0/90) 462.65 577.24 688.72 773.52 849.03 1015.44

Two groups of modes can be identified for simply supported (0/90) cylindrical panels of 

different radii are shown. The first group has natural frequencies that vary significantly 

with increases in curvature, and modes (1,1), (1,3), and (1,5) fall into this category. On 

the other hand frequencies corresponding to modes (3,1), (3,3), and (3,5) are affected 

only slightly by the curvature Rx only changes. It is interesting to notice that the first 

group has only one semi-sine wave along the curved edge, while the second group has 3 

semi-sine waves along the curved edge. Comparing cylindrical panels of the same radii 

and inverted lamination stacking it is observed that lamination (0/90) results in the first 

six natural frequencies being spaced more closely than for lamination (90/0). For the 

(0/90) case the fundamental mode has a corresponding frequency o f 418.16 Hz, and the 

sixth natural frequency mode is 848.95 Hz, while for the (90/0) case the frequencies are
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359.31 Hz and 972.31 Hz, respectively. Mode switching is also observed. For 

lamination stacking (0/90) and simply supported boundaries, mode ordering by frequency 

is (3,1), (1,1), (3,3), (1,3), (1,5), and (3,5), while for all the other cases studied and 

presented in Table 5.10, the sequence is (1,1), (1,3), (3,1), (3,3), (1,5), and (3,5). It is 

also seen that clamped boundary conditions result in natural frequencies that are higher 

than for the simply supported case with the same curvature o f the panel. For the simply 

supported (0/90) cylindrical shell of Rx=75 in. the modal participation values as functions 

of excitation pressure level are presented in Table 5.11.

Table 5.11 Modal Participation (%) for a (0/90) Simply Supported Panel of R x = 75 in.

M ode Shape, Frequency and Participation

SPL OASPL RMS (p) RMS (3,1) (1,1) (3,3) (1,3) (1,5) (3,5)

dB dB psi (Wmax/h) 418.16 530.36 542.29 579.56 762.79 848.9!

90 123.11 0.0042 0.0044 8.45 53.80 3.01 20.95 10.19 3.61

100 133.11 0.0131 0.0141 8.76 53.52 3.24 20.92 10.14 3.42

110 143.11 0.0415 0.0470 11.63 49.81 6.08 19.94 9.42 3.12

120 153.11 0.1313 0.1847 22.97 35.66 15.73 15.05 7.03 3.57

125 158.11 0.2335 0.3066 26.56 34.62 15.78 12.53 6.71 3.80

128 161.11 0.3299 0.5070 26.94 33.65 15.78 12.91 7.14 3.58

131 164.11 0.4660 0.9285 26.62 36.01 14.90 12.03 6.76 3.68

134 167.11 0.6582 1.4497 27.59 35.14 14.91 11.85 6.70 3.81

137 170.11 0.9297 2.0804 28.39 36.63 14.20 10.89 6.63 3.24
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Large variations of modal participation value are observed. For low excitation pressure, 

mode (1,1) makes a dominant contribution to RMS (Wmax/h). As the level of random 

pressure increases from SPL = 90 dB to SPL = 137 dB, the participations of mode (1,1) 

and mode (1,3) are suppressed from  53.80% to 36:63%, and from 20.95% to 10.89%, 

respectively. At the same time, participations o f mode (3,1) and m ode (3,3) increase 

from 8.45% to 28.39%, and from 3.01% to 14.20%, respectively. Participation o f modes 

(1,5) and (3,5) are affected relatively little.

The RMS of the nondim ensionalized maximum deflection at the panel center 

(Wmax/h) versus excitation pressure for the (0/90) lamination for two different radii, Rx, 

are presented and compared with results for the flat panel (Rx = °°) in Figure 5.12.
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2.5

2

* — Rx = 150 in.1.5
A — Rx = 75 in.

1 - - ♦ -  - Rx = inf.
(linear) 

- - - - - -  Rx= 150 in.
(linear)

- - -A- ■ Rx = 75 in. 
 (linear)

- A
0.5
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Figure 5.12 Nonlinear and Linear RMS (Wmax/h) Versus Excitation Pressure for 

Graphite-epoxy Simply Supported Cylindrical Shallow Shell of Different Curvatures
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Figure 5.12 demonstrates clearly that the smaller the radius the softer the shell panel 

response. It is also observed that for the flat plate, the linear solution will always over

predict the nonlinear response. On the other hand, for the panel with R x = 75 in., the 

linear solution will always under-predict the nonlinear response. Table 5.12 presents 

modal participations for selected radii and excitation pressure levels. It is observed that 

for a panel with small radius, Rx = 75 in., at moderate and high excitation pressures, the 

contribution of mode (1,1) can be as low as approximately 1/3 of the total RM S(W max/h). 

Even for relatively larger radius (Rx = 150 in.) and significantly low er excitation pressure 

(100 dB) the contribution of mode (1,1) is slightly more than 1/2. This leads to the 

conclusion that the single mode solution would not yield accurate results. The statistical 

moments of the response, including mean, variance, skewness and kurtosis, are presented

in Table 5.13.

Table 5.12 Modal Participation (%) for (0/90) Simply Supported Cylindrical Shell of 

Different Radii at 100, 125 and 137 dB

SPL RMS(p) Radius RMS Modal Participation %

dB psi Rx, in. (Wmax/h) (1,1) (1,3) (3,1) (3,3) (1,5) (3,5)

75 0.0141 53.52 20.92 8.76 3.24 10.14 3.42

100 0.0131 150 0.0560 63.11 16.33 9.77 3.54 5.76 1.50

inf. 0.3426 81.20 9.12 4.89 3.12 1.20 0.46

75 0.3066 34.62 12.53 26.56 15.78 6.71 3.80

125 0.2335 150 1.3195 62.69 11.14 13.53 5.50 4.59 2.56

inf. 1.4764 61.14 11.97 9.54 7.79 6.80 3.06

75 2.0804 36.63 10.89 28.39 14.20 6.63 3.24

137 0.9297 150 2.3374 60.01 13.20 12.49 6.25 5.53 2.53

inf. 2.7040 58.29 13.68 8.27 9.05 7.81 2.90
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Table 5.13 Statistics of the Panel Center M aximum Deflection for (0/90) Simply 

Supported Cylindrical Shell of R x = 75 in.

SPL

dB

RMS

(Wraax/h)

M ean

in./in.

Variance

■ 2/ • 2 in. /  in.

Skewness

in.3/in.3

Kurtosis

in.4/in.4

90 0.0044 0.0000 0.0046 -0.0053 -0.1008

100 0.0141 0.0002 0.0147 -0.0153 -0.0686

110 0.0470 0.0018 0.0487 0.0427 0.1077

120 0.1847 -0.0091 0.1863 -0.3851 0.4778

125 0.3066 -0.0423 0.2997 -0.5239 0.6633

128 0.5070 -0.1168 0.4722 -0.9016 1.5409

131 0.9285 -0.3837 0.9719 -1.1929 1.6290

134 1.4497 -0.7212 1.3082 -0.7033 0.1989

137 2.0804 -1.1074 1.7336 -0.3908 -0.5124

Negative values of mean and skewness are the result of the softening effect demonstrated 

later in this section (Figure 5.14a). As expected, the value o f the variance becomes larger 

as the excitation level increases. Small and large amplitude response characteristics are 

presented in Figures 5.13a and 5.13b, respectively, with deflection time histories, power 

spectral densities (PSD), and probability density functions (PDF). At the low SPL of 90 

dB, the 6 modes can be seen clearly in the PSD plot. At the high SPL of 137 dB, the 

peak is broadened and shifted to the right, as is typical for nonlinear random response. 

Both responses reveal non-Gaussian characteristics due to softening-hardening effect.
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Figure 5.13 Random Response of (0/90) Graphite-epoxy Simply Supported 

Cylindrical Panel of Rx=150 in., (a) SPL=90 dB, (b) SPL=137 dB
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Comparison o f the random nonlinear response with the linear solution for a 

cylindrical panel o f Rx=75 in. and two different lamination stacking sequences o f (0/90) 

and (90/0) is presented in Figures 5.14a and 5.14b, respectively. It is found that 

lamination sequence (0/90) makes the softening effect very pronounced (Figure 5.14a), 

while the reverse sequence of lamination (90/0) reduces the amount and range of 

softening response (Figure 5.14b). Comparing RMS (W max/h) for the abovementioned 

two lamination stackings, regardless of their relations to the corresponding linear 

response, it is found that the (0/90) configuration will yield higher RMS ( W ^ /h )  

compared to (90/0).

Nonlinear
Linear

JZ

CO
E
<S

(/)
2
cc

0.5 -

0.4 0.8 10.2 0.60

RMS (p), psi

Figure 5.14a Linear and Nonlinear Response of (0/90) Cylindrical Simply Supported 

Panel of R x = 75 in.
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Figure 5.14b Linear and Nonlinear Response of (90/0) Cylindrical Simply Supported 

Panel of R x = 75 in.

Subsequently, the random response o f a fully clamped (0/90) cylindrical shallow 

shell panel of R x = 75 in. in a uniformly elevated temperature was studied. First, the FE 

modal approach presented by Shi et al.98,99 was used and the Newton-Raphson method 

was employed to solve the static thermal problem. Figure 5.15a and Figure 5.15b are the 

shape of the thermally deflected panel at AT = 180 °F. It is found that mode (1,1) is not 

dominant for the thermally deflected panel, and therefore the deflection of the center of 

the panel (Wc/h) does not coincide with the maximum deflection (Wmax/h). The 

maximum thermal deflections are located at x = 5.00 in., yi = 3.75 in. and x = 5.00 in., y2 

= 11.25 in., and not at x = 5.00 in. and y = 7.5 in. that corresponds to the center o f the 

panel.
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Figure 5.15b Thermal Deflection Along x-axis for y = 3.75 in. and y = 7.50 in. at AT = 

180 °F
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The random response of a uniformly heated shallow shell is presented and compared with 

the response at room temperature in Figure 5.16. There are four curves shown in the 

figure. Two curves describe the response of the center of the panel RM S (W c/h), and the 

other two curves describe the response o f the point corresponding to  the maximum 

thermal static deflection, say RMS (Wa/h). Since the location o f the thermal maximum 

deflection corresponds to RMS (Wmax/h) only at the lower range of excitation pressure 

levels, subscript “a” is used rather than “max.” It is seen from Figure 5.16 (and explicitly 

shown in Figure 5.17) that the point at which the maximum therm al static deflection 

coincides with the maximum RMS of the random response is in the range of excitation 

pressure level RMS (p) from 0 to approximately 0.22 psi (note: RM S (p) = 0.22 psi is 

greater than SPL = 120 dB and smaller than SPL = 125 dB). Above RM S (p) = 0.22 psi, 

the maximum RMS of random the response occurs at the panel center. In other words 

RMS (Wmax/h) does not coalesce with RMS (Wc/h) at low levels o f random pressure 

excitation, up to RMS (p) = 0.22 psi, where the thermal deflection has a prevailing impact 

on the panel response. As the excitation pressure increases, the response o f the panel 

becomes dominated by the deflection caused by the acoustic load, and the maximum 

deflection migrates to the center of the panel. It also needs to be pointed out that in 

general there is no guarantee that the location of RMS (Wmax/h) will always coincide with 

the location of RMS (emax).
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Moderate and large amplitude response characteristics in elevated temperature of 

AT=180 °F (100 °C) are presented in Figure 5.18, with the deflection time history, PSD, 

and PDF. For a moderate SPL o f 110 dB, 4 modes can still be seen clearly in the PSD 

plot. It is observed that the first mode (1,1) and sixth mode (3,5) are suppressed, and the 

remaining four modes are shifted with respect to their linear frequencies. This is 

consistent with thermal static deflection having its maximum not at the panel center, but 

in the location corresponding to the second mode (1,3).

The fact that static thermal deflections (Wc/h) and (Wmax/h) do not coincide must 

be accounted for, not only while attempting to estimate the RMS of maxim um  deflection, 

but also for fatigue life due to combined random pressure excitation and thermal loads. 

The location of the RMS of maximum strain must be sought on an individual basis.

For a curved panel of lamination (0/90), either fully simply supported or fully 

clamped, exposed to spatially uniform and constant through the thickness elevated 

temperature of up to AT = 180°F (100°C), no snap-thru phenomenon was detected. The 

bifurcation for a temperature increase of up to AT = 180°F was found only for the flat 

(0/90) laminated panels. F lat composite plates with anti symmetrical laminations were 

investigated by Mei et al.35 and Dhaunait,36 and are beyond the scope o f this work. In 

general, it is seen that a skin panel should not be designed to work under snap-thru 

conditions, since this will significantly reduce the fatigue life o f a structure.
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Figure 5.18 Random Response o f (0/90) Graphite-epoxy Clamped Cylindrical Panel of 

Rx= 75 in. at AT=180 °F (100 °C): (a) SPL = 110 dB, (b) SPL = 137 dB
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5 .2 .2 2  Microphone In-flight Recorded Pressure Fluctuation Versus White Noise

The in-flight recorded random pressure fluctuations described previously in 

Section 4.7.2 are now used as the excitation. As outlined before the overall sound 

pressure level o f the in-flight recorded pressure fluctuation is 163.014 dB, what for cut

off frequency of fc = 2048 Hz corresponds to truncated white noise o f SPL = 129.901 dB. 

Panel dimensions and material properties are the same as these presented in Section 

5.2.1.3, with coefficients of thermal expansion introduced in Section 5.2.2.I. Also, 

similar to the previous section, the 6-mode solution was used. Table 5.14 presents the 

comparison of RMS (Wmax/h) for two different lamination stacking sequences used 

previously in Section 5.2.2.1, and Table 5.15 presents a comparison for the clamped 

cylindrical shallow shell at room and at a uniformly elevated temperature o f 180°F 

' (100°C).

Table 5.14 Effect of Lamination on Random Response RMS (Wmax/h) for Simply 

Supported Shallow Shell of Rx = 75 in. for Truncated White Noise and In-Flight 

Recorded Pressure Fluctuation

(0/90) (90/0)

W hite Noise 0.8509 0.7813

In-flight Data 1.0122 0.7896

Difference, % 15.9 1.1
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Table 5.15 Effect of Uniformly Elevated Temperature on Random  Response RMS 

(Wmax/h) for clamped (0/90) Shallow Shell of Rx = 75 in. for Truncated W hite Noise and 

In-Flight Recorded Pressure Fluctuation

oII53 AT = 180°F

W hite Noise 0.9132 0.7799

In-flight Data 1.0438 0.8939

Difference, % 12.5 12.8

Good agreement between the response to the truncated white noise and in-flight captured 

pressure fluctuation was found only for simply supported shell with (90/0) lamination 

stacking. For the three other cases investigated the difference ranged from  12.5 to 15.9 

%. Therefore it was concluded that the same amount of energy carried by the excitation 

spectrum (equivalent area under PSD curve) provides relatively weak similarity 

conditions for excitation modeling, and the distribution of energy over the excitation 

bandwidth can significantly affect the response.

Attempting to interpret results of Table 5.15, it is important to realize that for 

unheated shallow shell panels, due to presence of the softening response characteristics 

originating from the combined effects o f curvature and lamination stacking, the inbound 

part of the oscillation (negative W /h) exhibits larger deflections com pared with the 

outbound part of the oscillation (positive W/h). For the heated shallow shell panel
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however, the static thermal deflection shifts the equilibrium position towards positive 

deflection W /h, and therefore tends to make the response more symmetric in the sense 

that inbound and outbound deflections have comparable absolute values. As an example, 

let us consider a shallow shell oscillating at constant amplitude (assumed for simplicity). 

Due to compression in the inbound part of the oscillation and tension in the outbound part 

of oscillation, let us also assume that the amplitude ranges from  Wmax/h = +0.5 to 

Wnun/h = -1.0. Now, let us assume that the panel is heated to a temperature resulting in 

the thermal static deflection of AW/h = +0.3. Again, for simplicity, let us assume that 

this thermal static deflection is small enough, that the original am plitude of the oscillation 

is not affected, and is simply superimposed on the static thermal deflection. That results 

in W max/h = +0.8 and Wmin/h = -0.7. Now, compare the RMS of deflection at room and 

elevated temperature. They are 0.7906 and 0.7517, respectively implying that the 

thermal static deflection of AW/h = +0.3 reduced the value of RM S (W max/h) by Over 5%. 

This argument is applicable for deflection, but not necessarily applicable for strains, since 

the positive thermal deflection will be associated with negative inplane strain.

Finally, a nonrectangular graphite-epoxy cylindrically curved panel (of Rx = 100 

in. and R y = where the longer edge is straight) with complicated boundary conditions, 

at elevated temperature with gradient across the thickness was studied to demonstrate the 

robustness of the present formulation. The geometry is shown in Figure 5.19. The left 

and top edges are clamped, and the bottom and right edges are simply supported. The 

thickness of the shell is h = 0.050 in. The uniform temperature increase is AT = 180 °F 

(100 °C), the temperature gradient through the thickness is ATh = 7.2 °F (4 °C), so the 

outside surface has a temperature o f 187.2 °F (104 °F). Based on the previously analyzed
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rectangular study cases, lamination (90/0), resulting in the stiffening characteristics, is 

chosen. The location o f  the m axim um  RMS (Wmax/h) is also shown in Figure 5.19. 

Random response was calculated for both -  in-flight recorded pressure fluctuation and 

simulated truncated white noise. Additionally, to show the variation o f  the deflection 

upon the excitation pressure level, the response was recalculated for other levels o f 

excitation pressure. A  comparison o f  the response to in-flight recorded pressure 

fluctuations and the corresponding white noise, as well as the variation o f  panel 

deflection RMS (Wmax/h) as a function o f  white noise excitation pressure level are 

presented in Table 5.16. The difference between the RMS (W max/h) for the truncated 

white noise and in-flight recorded random pressure fluctuation was 3.7%.

RM S (W m ax/h)

Figure 5.19 Nonrectangular Graphite-epoxy (90/0) Cylindrically Curved Panel with 

Complicated Boundary Conditions at Elevated Temperature w ith Gradient Through the 

Thickness
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Table 5.16 RMS ( W ^ /h )  of Nonrectangular Graphite-epoxy Cylindrical Panel with 

Complicated Boundary Conditions at Elevated Temperature with Gradient Across the 

Thickness

SPL dB RMS (Wmax/h)

90 0.4596

100 0.4612

110 0.4774

120 0.6172

125 0.8654

128 1.1336

131 1.5344

134 2.1186

137 2.9573

In-flight 1.4579

W hite noise 1.5147

5.2.3 Fatigue Life

In this section the maximum strain histories are obtained and are processed further 

in order to estimate fatigue life. Strain versus the number of cycles to failure curve (S-N 

curve) for graphite-epoxy composite is characterized36 by K =1.37xl02S and (3=9.97. In 

order to investigate the influence of intensity of random acoustic excitation on the fatigue 

life of a curve panel, truncated white noise of different amplitudes was used. Fatigue life 

was predicted for cases of room and elevated temperatures. Then, the fatigue life based
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on the response to in-flight recorded pressure fluctuations was calculated, for room and 

elevated temperatures. Finally, the results obtained for the in-flight recorded data are 

compared with the results of the corresponding truncated white noise.

5.2.3.1 Simulated Gaussian Bandlimited White Noise Excitation

RMS (Emax) versus excitation pressure RM S (p) for a graphite-epoxy, simply 

supported cylindrical shallow shells of different radii were calculated and are presented in 

Table 5.17. It is found that for simply supported boundaries RMS (Emax) occurs at the 

plate center.

Table 5.17 RMS (£max) for (0/90) Simply Supported Cylindrical Shells of Different Radii

SPL RMS (p) RMS (Emax) X 10-3

dB psi R x =  o ° R x = 150 in. Rx = 75 in.

90 0.0042 0.0018 0.0065 0.0214

100 0.0131 0.0059 0.0208 0.0626

110 0.0415 0.0237 0.0737 0.1385

120 0.1313 0.1680 0.3607 0.3136

125 0.2335 0.3186 0.6305 0.4430

128 0.3299 0.4832 0.7532 0.5048

131 0.4660 0.7651 0.8203 0.6456

134 0.6582 1.2073 0.9915 0.7738

137 0.9297 1.6297 1.1111 0.8914
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It is seen that at low levels of excitation pressure, smaller radius R x yields higher strains. 

The trend reverses as the excitation pressure increases, and at the two highest random 

pressure excitation levels considered (SPL = 134 and 137 dB), the flat panel experiences 

the largest strains while the most curved shell experiences the lowest strain.

In order to investigate the correlation between RMS (Wmax/h) presented in Table 5.13, 

and RMS (emax), Table 5.18 presents statistical strain information.

Table 5.18 Statistics of the Panel Center M axim um  Strain for (0/90) Simply Supported 

Cylindrical Shell of Rx = 75 in.

SPLdB RMS (Emax) 

x 10'3

M ean 

x 10'4

Variance 

x 10'4

Skewness Kurtosis

90 0.0214 0.0005 0.0185 0.0762 -0.1619

100 0.0626 0.0051 0.0601 0.1121 -0.1041

110 0.1385 0.0468 0.2418 0.2226 0.4091

120 0.3136 0.1666 1.7556 -0.3656 0.8145

125 0.4430 0.3719 3.0930 -0.6763 1.5445

128 0.5048 -0.1435 4.5884 -1.1241 1.8170

131 0.6456 -2.1583 8.3670 -1.2886 1.5660

134 0.7738 -5.3593 11.1809 -0.5436 -0.2876

137 0.8914 -8.4063 14.0605 -0.2337 -0.7527
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All four statistical moments (mean, variance, skewness and kurtosis) exhibit very similar 

trendlines comparing deflection with strain.

Small and large amplitude strain response characteristics are presented in Figures 

5.20a and 5.20b, respectively, with time histories, PSD, and PDF plots. The six lowest 

modes retained in the analysis are clearly seen on the PSD plot corresponding to  low 

levels of excitation pressure. For higher excitation pressures there is only one broadened 

peak observed, and it moves toward higher frequencies with respect to the fundamental 

linear frequency. In the PDF plots, it is observed that both small- and large-amplitude 

responses reveal non-Gaussian characteristics.

Exploring the previously studied thermal case, in terms of deflection, shown in 

Figures 5.16 to 5.18 and presented in Section 5.2.2.1, the maximum strain RMS (Emax) are 

presented in Table 5.19. At room temperature the maximum strain RM S (emax) occurs at 

x = 0 in., y = 7.5 in. and x = 10 in., y = 7.5 in. (at the midpoint on the straight edge o f the 

panel). Location of the RMS (emax) at AT = 180 °F and high excitation pressure is the 

same, but at AT = 180 °F and low excitation pressure RMS (p) o f up to 0.22 psi the 

maximum strain occurs at x = 5 in., y = 0 in. and x = 5 in., y = 15 in. (at the midpoint on 

the curved edge of the panel). At low to moderate levels o f excitation pressure, random 

oscillation due to acoustic load is of small amplitude, and thermal deflection has a 

dominant role in the way the panel deforms. However, as the excitation pressure 

increases it overwhelms thermal static deflection and maximum strain change locations. 

At this point it is important to realize that even within such a small structural component 

like a single surface panel there can be more than one location of probable origin for a 

fatigue failure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

0.2 0.4 0.6 0.8
Time, s

0 500 1000 1500 2000
Frequency (Hz)

0.5

0.4

0.3
u.
o
CL

0.2

-t

Distribution Range

(a)

0 0.2 0.4 0.6 0.8
Time, s

,-10
w 10

,-12

500 1000 1500 2000
Frequency (Hz)

u.
Q
CL

-2 0 2 
Distribution Range

(b)

Figure 5.20 Strain Response of (0/90) Graphite-epoxy Simply Supported Cylindrical Panel o f 

Rx= 150 in., (a) SPL=90 dB, (b) SPL=137 dB
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Table 5.19 M aximum Strain RMS (£max) for Clamped Cylindrical Shell of R x = 75 in. at 

Room and Elevated Temperature Raise of AT = 180 °F (100 °C) at SPL of 90, 120, 125 

and 137 dB

SPL AT RM S (Emax) Location of

dB °F x 10‘3 RMS (Emax)

90
0 0.0324 x = 0 in., y = 7.5 in. and x = 0 in., y = 7.5 in.

180 0.1410 x = 5 in., y = 0 in. and x = 5 in., y = 15 in.

120
0 0.3463 x = 0 in., y = 7.5 in. and x = 0 in., y = 7.5 in.

180 0.4527 x = 5 in., y = 0 in. and x = 5 in., y = 15 in.

125
0

180

0.4598
0.5938

x = 0 in., y = 7.5 in. and x = 0 in., y = 7.5 in.

137
0

180

0.9187
1.0307

x = 0 in., y = 7.5 in. and x = 0 in., y = 7.5 in.

The differences in strain characteristics for small and large amplitude response at 

room temperature, and at uniform AT = 180 °F are presented in Figures 5.21 and 5.22, 

respectively. Six peaks can be easily identified at the low level excitation pressure (when 

thermal factor is not involved). For the same excitation pressure, but when the panel is 

heated, only 4 modes are clearly visible. The first mode (1,1) and the sixth m ode (3,5) 

are suppressed, as was demonstrated previously in Figure 5.18a for the panel central 

deflection. At high levels of excitation pressure, only one broadened peak is observed for 

the room- and elevated- temperature environments. A t elevated temperature however, 

the peak is “washed out” over a wider range of frequencies and its magnitude is higher.
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Figure 5.21 RMS (Emax)  of (0/90) Graphite-epoxy Clamped Cylindrical Panel of Rx = 75 

in. at SPL = 90 dB, (a) AT=0, (b) AT=180 °F (100 °C)
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Figure 5.22 RMS (emax) of (0/90) Graphite-epoxy Clamped Cylindrical Panel of R x = 75 

in. at SPL = 137 dB, (a) AT=0, (b) AT=180 °F (100 °C)
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A crucial step in fatigue life prediction is associated with the peak counting 

process. A comparison of the RFC m ethod with the PTVC (simple max-m in counting) is 

presented in Figure 5.23a and 5.23b, respectively, for low and high levels o f excitation 

pressure. The influence of the temperature increase on the peak distribution is presented 

in Figure 5.24. Additionally, one case with a pronounced softening response 

characteristic is presented in Figure 5.25.

N o rm a liz e d  eN o rm a liz e d  e

N o rm a liz e d  e N o rm a liz e d  s

Figure 5.23a RFC for Clamped (0/90) 

Cylindrical Shell of Rx = 75 in. at Room 

Temperature and SPL = 90 dB (Top), and 

137 dB (Bottom)

Figure 5.23b PTVC for Clamped (0/90) 

Cylindrical Shell o f R x = 75 in. at Room 

Temperature and SPL = 90 dB (Top), and 

137 dB (Bottom)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-5
N o rm a lized  e .

min

-5
N o rm a liz e d  e .min

(a) (b)

Figure 5.24 Peak Counting for Clamped (0/90) Cylindrical Shell of R x = 75 in. at AT = 180°F 

(100°C) and SPL = 131 dB (a) RFC, (b) PTVC
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Figure 5.25 Peak Counting for Simply Supported (0/90) Cylindrical Shell o f Rx= 75 in. 

at Room Temperature and SPL = 137 dB (a) RFC, (b) PTVC

As the response amplitude becomes larger, a broadened min-max distribution is 

observed. It is clearly seen that low amplitude vibration results in a narrowband peak 

distribution (along the anti-diagonal of the min-max matrix -  see the upper plots of Fig.
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5.23), while large amplitude vibration in the broadband distribution (along both the anti

diagonal and diagonal of the min-max matrix -  see the bottom plots of Fig. 5.23). For the 

case of a heated panel (Figure 5.24) it is seen that the cloud of peaks is shifted towards 

the left bottom com er of the matrix as a result of compression introduced by thermal 

expansion. Figure 5.25 presents the peak counting for simply supported shell with (0/90) 

lamination and radius Rx = 75 in., which is the one with pronounced softening response 

characteristics. It is noticeable that the anti-diagonal data points in the min-max matrix 

are skewed. For each case presented in Figures 5.23 to 5.25 it is concluded that PTVC 

always results in a broader peak distribution in comparison with RFC.

The probability of up-crossing is also presented in Figures 5.26a and 5.26b for 

low and high levels of excitation pressure, respectively.
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Figure 5.26a Probability of Up-crossing per 1 Second for Clamped (0/90) Cylindrical 

Shell o f Rx = 75 in. at SPL = 90 dB (Dashed Line -  Gaussian Distribution)
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Figure 5.26b Probability of Up-crossing per 1 Second for Clamped (0/90) Cylindrical 

Shell of Rx = 75 in. at SPL = 1 3 7  dB (Dashed Line -  Gaussian Distribution)

Probability of up-crossing is found to be Gaussian at the low excitation pressure 

level, but departures from the normal distribution as the excitation pressure increases.

Fatigue life for a variety of panel curvatures and excitation pressure levels for 

simply supported boundary conditions are presented in Table 5.20. A typical 

aircraft/spacecraft is usually designed to last for 25 to 30 years. Therefore fatigue life 

having cycle limits larger than 2.5 x 10s hours is considered to be “infinite” and 

consequently is of academic interest only. Nevertheless, some valuable conclusions can 

be drawn from the results presented. Based on the particular configurations of the panels 

presented in Table 5.20, it is seen that below SPL of 120 dB, sonic fatigue failure would 

not occur. Above this excitation pressure level it can be crudely estimated that doubling
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the energy carried by the excitation spectrum (equivalent to SPL increase by 3 dB) the 

fatigue life is reduced by one order. It is generally observed that for lower levels of 

excitation pressure less curved panels will have longer fatigue lives. On the other hand, 

as the excitation pressure level increases, more curved panels perform better with respect 

to fatigue life. The curvature of a skin panel however is rarely a design freedom, since it 

is a result o f aerodynamic and structural airframe design, as well as payload capacity. 

Therefore the focus and opportunity for optimization is seen to be shifted towards 

lamination stacking optimization.

Table 5.20 Fatigue Life (hrs.) for (0/90) Simply Supported Cylindrical Shells of Different 

Radii

SPL dB R x = 00 in. Rx = 150 in. R x = 75 in.

90 4.8152 x 1027 3.1447 x 1022 4.1079 x 1017

100 3.5429 x 1022 2.6233 x 1017 2.6389 x 1013

110 1.4653 x 1016 7.4665 x 1011 1.4349 x 109

120 1.6989 x 107 1.7103 x 105 3.6087 x 105

125 77,909 4,106 10,591

128 1,684 781 1,623

131 220 210 284

134 2.24 25.4 35.1

137 0.285 5.69 5.86
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Since the influence of lamination stacking on fatigue estimation was obtained for 

both simulated white noise and microphone in-flight recorded data, the results for varying 

laminations are presented in the next Section (5.2.3.2).

5.2.3.2 Microphone In-flight Recorded Pressure Fluctuation Versus White Noise

The effect of lamination on RMS (emax) is presented in Table 5.21. It is seen that 

antisymmetrical lamination stacking (90/0) yields small strains for both types o f random  

pressure fluctuations. The highest strain is obtained for a mirror stacking of (0/90) that 

previously was found resulting in the softening characteristics. Relatively sim ilar 

solutions (difference of 1.8 %) for in-flight recorded and simulated pressure fluctuations 

were found only for the (90/0) panel. Panel o f (0/90) stacking exhibits a substantial 

influence from pressure fluctuation type (11.8 %).

Table 5.21 Effect of Lamination on Random Response RMS (emax) x 10'3 for Simply 

Supported Shallow Shell of Rx = 75 in.

(0/90) (90/0)

W hite Noise 0.6272 0.5484

In-flight Data 0.7111 0.5582

The effect of temperature increase on RM S (emax) is presented in Table 5.22. For 

both room temperature and AT = 180 °F, large differences are found when comparing
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responses from simulated and in-flight recorded pressure fluctuation. The differences in 

RMS (Emax) are equal 10.1% and 6.6% for AT = 0 and AT = 180°F, respectively.

Table 5.22 Effect of Uniformly Distributed Temperature on Random  Response RMS 

(£max) x 10'3 for Clamped (0/90) Shallow Shell of Rx = 75 in.

oII53 AT = 180°F

W hite Noise 0.7494 0.8553

In-flight Data 0.8339 0.9158

Fatigue life estimates obtained for in-flight recorded pressure fluctuations and the 

equivalent truncated white noise are presented in Table 5.23.

Table 5.23 Comparison of Fatigue Life (hrs.) for In-flight and Simulated Pressure 

Fluctuations for Shallow Shells o f Rx = 75 in.

Boundary

Conditions

Lamination Temperature 

Increase, °F

In-flight

Data

Equivalent W hite Noise 

SPL = 129.901 dB

SS (0/90) 0 29.2 321

SS (90/0) 0 809 869

CL (0/90) 0 3.29 5.52

CL (0/90) 180 0.259 2.15
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Fatigue life estimates differ substantially between white noise and microphone recorded 

in-flight pressure fluctuations. For all four configurations studied fatigue life calculated 

for in-flight pressure fluctuations was shorter than for the white noise analog. The most 

severe differences in fatigue estimates occurred for simply supported and clamped panels 

at room temperature and (0/90) lamination stacking, when their magnitudes were o f order 

of one. The panel configuration that resulted in similar fatigue life estimates for simulated 

and in-flight measured pressure fluctuations was the simply supported panel o f (90/0) 

lamination. This panel configuration was found previously to yield the smallest RMS 

strains. The potential for fatigue life extension can be exploited via proper stacking 

optimization can be appreciated by comparing results for simply supported panels. 

Fatigue lives for (0/90) and (90/0) lamination stacking differ 2.7x when simulated white 

noise was used to excite the structure, and by one order when in-flight recorded random 

pressure fluctuation was applied.
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6. Conclusions

6.1 Free Vibration

The inplane inertia effect and coupling between bending and inplane modes play 

an important role in the large amplitude response of shallow shell panels. Analytical 

solutions fail to include these factors. This work has shown that the ratio between 

bending and inplane displacement in the linear case does not extend to nonlinear behavior 

due to the von Karman type nonlinearity. Therefore expressing the nonlinear system 

response in terms o f linear coupled bending-inplane modes, that retains a fixed relation 

between the bending and inplane parts o f the eigenvectors acts as a constraint on the 

system, introducing an excessive stiffening behavior. Also, the overstiff response of the 

formulation in linearly coupled bending-inplane modes may be due to the selected subset 

o f modes and further investigation in this area is needed.

From the examples studied, it is concluded that inplane inertia may give 

completely different characteristics (hard- or soft-spring), while including m ultiple modes 

improves the accuracy of the nonlinear frequency estimates.

Flexibility of enforcing com plicated boundary conditions and non-rectangular 

geometries of the panel promote the finite element approach with transformation into

107
modal degrees of freedom as an essential tool, not only for random response and sonic 

fatigue108, but also for a variety of other surface skin panels response problem s,109 

including flutter,110 large thermal deflections98,99 and even configurations with em bedded 

smart materials, like piezoelectrics111 or shape memory alloys.112
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Since classical analytical methods fail to address inplane inertia, further 

investigation is needed in order to study its influence. Possible methods that can be used 

include:113

- more exhaustive verification by FE method in structural degrees of freedom,

- pseudo-analytical solutions with scaled inplane modes estim ated by linear FE 

solutions and incorporated into a Galerkin procedure,

- experimental work.

6.2 Random Response and Fatigue Life

The multimode finite element large deflection formulation with transformation 

into modal coordinates for the shallow shell response subjected to com bined thermal and 

random pressure loads was developed. Several cases were studied showing the influence 

of curvature, lamination sequence, boundary conditions and temperature change on the 

random response of shallow shells, with a primary focus on hardening vs. softening 

behavior. Modal convergence was sought and modal participation was determined. 

Statistics o f the response were also determined and presented. Factors contributing to 

both softening and hardening response characteristics were determined and discussed. 

The concept of under-integration was used to calculate strains. The Rainflow Counting 

Method and S-N curves were combined by means of damage accumulation theory to 

estimate fatigue life. Results for simulated truncated white noise were obtained and 

compared with those calculated from in-flight recorded pressure fluctuations. Since only 

very short recordings of in-flight measured data were available, this work did not attempt 

to estimate random response or fatigue life for any particular aircraft design. The sole
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intent here was to show, that white noise generated using similarity conditions based on 

integration of the power spectral density characteristic might be too simplistic in 

modeling accurately the excitation applied to an actual aerospace structure.

The cases studied in this work allow forming the following conclusions:

- For the same level of excitation pressure more curved panels yield smaller RMS 

(W max/h) compared to those, which are more flat;

- The above conclusion does not extend into RMS (Emax) behavior;

- For the same level of excitation pressure and the same panel dimensions, clamped 

boundary conditions result in shorter fatigue life compared to simply supported boundary 

conditions;

- Elevated thermal environment can significantly reduce fatigue life;

- Lamination stacking sequence has a substantial impact on the random response 

characteristics and fatigue life estimates. Lamination (90/0) compared to (0/90) yields 

smaller deflections and strains, and longer fatigue life;

Based on the experience built upon previous work regarding isotropic and 

symmetrically laminated composite flat plates, it was thought that linear dynamic 

response analysis would always yield conservative solutions. The softening 

characteristics of the dynamic response of shallow shell panels challenged this conclusion 

and the linear approach cannot be assumed always to result in over-design.

In the area of large amplitude random vibration, good agreement is not found 

between experimental and analytical work. The S-N curves being used for fatigue life 

estimation are based on experiments that were conducted either for pure bending or pure 

axial loads, as represented in Figures 6.1a and 6.1b, respectively.
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a

b

Figure 6.1 S-N curve estimation testing, (a) bending loads, (b) axial loads

The real state of strains how ever is much more complex and involves both types o f loads 

-  namely inplane and bending. M oreover, the relative contribution of the bending and 

inplane components to the total strain changes, as the amplitude of vibration and thermal 

static deflection change.109 On the other hand future higher fidelity computational 

models should consider imperfections o f curved panel geometry, non-uniform 

temperature distribution over the panel surface, nonlinear damping modeling, and also 

address optimal selection of modes used in the process of modal reduction. Therefore 

further research and development of both computational and experimental methods 

appear to be necessary in order to gain better confidence in results being obtained.
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Appendix A -  Simulation of Truncated White Noise

The Matlab® code used to generate the white random pressure samples

NPT=2A14 
Fmax=2048 %Hz 
N=2048;
% use simload 
SPL=129.901
[rdm,step]=simload(SPL,NPT,Fmax,N);

[n_rdm,nn] = size(rdm); 
sum_psi = 0.0; 
for i= l:n_rdm

sum_psi = sum_psi + (rdm(i))A2; 
end
rms_psi = sqrt(sum_psi/n_rdm) 

figure(lOO)
t=0: step: (NPT-1) * step; t=t';
h = findobj(gca,'Type','patch');
set(h,'FaceColor','b','EdgeColor',’w')
subplot(3,l,l)
plot(t,rdm)
set(gca,'FontSize', 12)
xlabel('Time,sec')
ylabel('psi’)

% title('Random Noise Time history') 
subplot(3,l,2)
[Pxx,freq] = pwelch(rdm ,[],[],NPT,l/step); 

% plot(freq,10*log(Pxx)) 
semilogy(freq,Pxx) 
set(gca,'FontSize', 12) 
xlabel('Frequency (Hz)') 
ylabel('PSD (psiA2/Hz)') 
axis([0 2200 le-10 le-2])

subplot(3,l,3)
range=-5.0:0.1:5.0;
RMS=sqrt(rdm'*rdm/length(rdm));
r_mean=mean(rdm);
var=sqrt(moment(rdm,2));
skew=moment(rdm,3)/varA3;
kurt=(moment(rdm,4)/varA4)-3;
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p_gauss=l/sqrt(2*pi)*exp(-0.5*((range-r_mean)).A2);
psi_norm=rdm/std(rdm);
[n ,psi_val] =hi st(psi_norm,30); 
minx=min(psi_val); 
m axx=max(psi_val); 
delta_x=(maxx-minx)/30; 
fo ri= l:3 0  

pos_den(i)=n(i)/NPT/delta_x; 
end
bar(psi_val,pos_den,1.0,'w ') 
hold on;
plot(range,p_gauss); 
set(gca,’FontSize', 12) 
axis([-4 4 0 0.5]); 
xlabel('Distribution Range (psi)') 
ylabel('PDF (1/psi)’)

W pp_in=8.41438*10A(-18+SPL/10); 
W pp_ou=m ean(Pxx(l :N)); 
disp('PSD Error in %')
Erroi- ( (W  pp_i n-W  pp_o u)/W pp_in)* 100

function [y,DT]=simload(SPL,NPT,FMAX,N) %DT:step 
NN=NPT*2;
X=zeros(NN, 1 );SP=zeros(3500,1) ;W =zeros(3500,1); 
R=zeros(NN ,l);

SPP=8.41438*power(10,-18+SPL/10);
DW =FM AX*2*pi/N;
SP(1 :N +l)=SPP/pi/2;
W (1:N+1)=(0:N)*DW ;
DT=N/FM  A X/NPT;

ISEED=12357; %round(sum(10000*clock)); 
rand('state',ISEED);
R=rand(N ,l); 
j= sqrt(-l); 
for i=2:N +l

X(i)=sqrt(2*DW *SP(i))*exp(-R(i-l)*2*pi*j);
end

YY=fft(X,NPT); 
y=real (Y Y( 1: N PT));
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Appendix B -  WAVE Analysis Toolbox for Matlab®

B .l -  Turning Points Subroutine

function [tp, ind] = data2tp (x ,h ,w def);
% DAT2TP Finds th e  turning points from  d ata  
% optionally rainflowfiltered.
%
% CALL: [tp ind] = dat2tp(x,h ,w def);
%
% x = tw o colum n d ata  matrix with sa m p le d  tim es and v a lu e s .
%
% tp = a  tw o colum n matrix with tim e and  turning points.
%
% ind = in d ices to th e  turning points in th e  original s e q u e n c e .
%
% h = a  threshold;
% if h<0, then  tp=x;
% if h=0, then  tp is a  s e q u e n c e  of turning points (default);
% if h>0, then  all rainflow c y c le s  with height sm aller than
% h are rem oved .
%
% w d ef = d e fin e s  th e  type of w a v e . P o ss ib le  op tion s are  
% 'mw' 'Mw' or 'none'. D efault is 'n o n e1.
% If w def= 'none' all rainflow filtered min and m ax
% will b e  returned, o th erw ise  only th e  rainflow filtered
% min and m ax w hich d efin e  a  w a v e  accord ing to  the
% w a v e  definition will b e  returned.
%
% Exam ple:
% x = load('sea.dat'); x1 = x(1:200,:);
% tp = d a t2 tp (x1 ,0 ,‘Mw'); tph = dat2tp(x1,0.3,'M w ');
% plot(x1 (:,1 ),x1 (:,2),tp{:,1 ),tp (:,2),,ro',tph(:, 1 ),tph (:,2)J,k*‘)
%
% S e e  a lso: find cross, findrfc, tp2rfc, dat2tc  

% T e sted  on: m atlab 6 .0 , 5 .3 , 5 .2 , 5.1 

% History:
% R ev ised  by jr 0 3 .0 4 .2 0 0 1  
% - a d d ed  exam p le , updated  info 
% M odified by Per A. Brodtkorb 0 7 .0 8 .9 8
% This is a  m odified version  which is about 2 0  to 3 0  tim es fa ster  than  
% the version  of dat2tp in W AT (perform an ce on  a  pentium ll 2 3 3  MHz 
% with 3 2  MB ram and Matlab 5 .0  under Linux). T h e reason  is
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% that this version  d o e s  not s a v e  x to  disk. Instead it p a s s e s  
% the argu m en ts directly to th e  e x e c u te a b le  file.
% This n ew  version  is a lso  m ore flexib le. It is ab le  to  return th e  
% in d ices to  th e  turningpoints
% (This is u sefu l w h en  determ in ing th e  w a v e  s t e e p n e s s  e tc ...) .

xn=x;

[n m]= size(xn );  
if n<m

b=m ;m =n;n=b;
xn=xn';

end

if n<2,
error('The vector  m ust h a v e  m ore than 2  e lem en ts!')  

en d

istim e= 1; 

sw itch m
c a s e  1, x2=xn; istim e=0;
c a s e  2 , x2=xn(:,2);%  d im en sion  OK!
oth erw ise , error('W rong d im en sion  of input! dim m ust b e  2xN , 1xN, N x2 or Nx1

’)
end

if ((nargin<3) | isem pty(w def)), 
w d ef= 'n on e‘; 

end

if (nargin<2) | isem pty(h), 
h=0; 

end

if h<0  
tp=xn; 
ind=(1:n)‘;
disp('W arning: h<0, th e  original d ata  is returned') 
return 

end

dx=diff(x2); % derivative 
if 1, % finds in d ices  to turningpoints 
ind=findcross(dx,0) + 1 ;
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e ls e  % if fin d cro ss  d o e s  not work u s e  th is  

% indices to  local m ax/m in + p o ss ib le  inflectionpoints
%ind =find((((dx(1 :(n-2))>=0) .* (dx(2:(n -1))<0)) |((dx(1:(n -2))<=0) .* (dx(2:(n% - 

1)) > 0) ) ) )  + 1;

ind=find(dx(2:(n-2))==0); 
for ix=1:length(ind), 

dx(ind(ix)+1)=dx(ind(ix));%  avoid ing  inflection points 
end

% indices to  local m ax/m in ( w ithout inflectionpoints) 
ind =find( (((dx(1:(n-2))>=0) .* (dx(2:(n-1))<0)) | ...

((dx(1:(n -2))<=0) .* (dx(2:(n-1)) > 0 ) ) ) )  +  1 ;
en d
clear dx  
if length(ind)<2, 

tp=Q; 
return; 

en d

% In order to  g e t  th e  e x a c t u p -crossin g  intensity from rfc by  
% m m 2lc(tp2m m (rfc)) w e  h a v e  to  add  th e  in d ices  
% to th e  last v a lu e  (and a lso  th e  first if th e  
% s e q u e n c e  of turning points d o e s  not start with a  m inim um).

if x2(ind(1))>x2(ind(2)),
% a d d s  in d ices  to first and last va lu e  
ind=[1; ind ;n];

e ls e  % ad d s index to  the last va lu e
ind=[ind; n];

end

if h>0
indl =findrfc(x2(ind),h); 
ind=ind(ind1); 

end

N m =length(ind); % num ber of min and M ax

sw itch w d ef % sw itch w def 
c a s e  {'mw'.'Mw'},

% m ak e su re  that the first is a  M ax if w d ef == 'Mw'
% or m ak e su re  that the first is a  min if w d ef ==  'mw'
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if xor((xn(ind(1 ))> (xn(ind (2)))),strcm p(w d ef ,'Mw')), 
ind=ind(2:Nm);
Nm =Nm -1;

end

% m ake su re  the num ber of m inim a and M axim a are accord ing  to th e  w a v e d e f. 
% i.e., m ake su re  N m =length(ind) is odd  
if ~ (m od(N m ,2)), % if Nm  is e v e n  d o  

ind(Nm)=[];
Nm =Nm -1;

end

c a s e  {'none'}% do nothing
otherw ise, error('Unknown w a v e  definition')

en d

tp=xn(ind,:);
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B .2 -  Crossing Rate Subroutine 

function lc= tp2lc(tp ,def,p lotflag ,sa)
% TP2LC C a lcu la tes  th e  num ber of u p cro ssin g s from th e turning points.
%
% CALL: Ic = tp 2 lc(T P ,d ef,p lo tflag ,sa);
%
% Ic = a  tw o colu m n matrix with lev e ls  and num ber of u p cro ss in g s . [mx2] 
% TP = th e  turning points. [nx2]
%
% d ef = 1, only u p cro ss in g s .
% 2 , u p cro ss in g s  and m axim a (default).
% 3, u p cro ss in g s , m inim a, and m axim a.
% 4 , u p cro ss in g s  and  m inim a.
%
% plotflag = 0 , no plotting
% 1, plot th e  num ber o f u p cro ss in g s  overplotted
% with R ice form ula for th e  cro ssin g  intensity
% for a  G a u ss ia n  p r o c e ss  (default).
%
%
% s a  = standard deviation  of th e  p r o c e ss
% (D efault e s tim a te s  it from the num ber of u p cro ssin g s)
%
% S e e  a lso: Icplot

% T e sted  on M atlab 5 .3
%
% History:
% C reated  by PJ (Par J o h a n n e sso n )  0 9 -J a n -2 0 0 0

% C h eck  input argu m en ts

ni = nargin; 
no = nargout; 
error(nargchk(1,4,ni));

if ni<2, def=[]; en d  
if ni<3, plotflag=[]; en d  
if ni<4, sa=[]; en d

% G et m in-m ax c y c le s  
mM = tp2m m (tp);
% G et level c r o ss in g s
%lc = cc2lc(m M ,def,p lotflag ,sa);
Ic = cc2 lc(m M ,d ef,0 ,sa );
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B.3 -  Rainflow Cycles Counting Subroutine

function [R F C ,R F C 1,res,def] = tp 2rfc(x ,d ef,R F C 0,res0 )
% TP2RFC Finds the rainflow c y c le s  from  th e  s e q u e n c e  of turning points.
%
% CALL: [RFC .RFC 1 ,res] = tp 2rfc(tp ,d ef,R F C 0,res0);
% RFC = tp2rfc(tp);
%
% Output:
% RFC = R ainflow  c y c le s  (residual includ ed ). [N ,2]/[N ,4]
% RFC1 = Rainflow c y c le s  (without resu dual). [N 1,2]/[N 1,4]
% res = R esid u a l. [nres,1 ]/[n res,2 ]
%
% Input:
% tp = Turning points. [T,1]/[T,2]
% def = C h o ice  of definition of rainflow c y c le s  [struct array]
% def .res = T reatm ent of residual.
% 'up': C ount m in-to-M ax c y c le s , (default)
% g iv e s  correct num ber of u p cro ss in g s .
% 'down': C ount M ax-to-min c y c le s ,
% g iv e s  correct num ber of d o w n cro ss in g s .
% 'CS': C lo o rm a n n /S eeg er  m eth od ,
% g iv e s  all c lo se d  h y ster e s is  lo o p s.
% T his m ethod is identical to  th e  French A FNO R recom m en d ation ,
% and  the ASTM  standard  (variant ca lled  sim plified version).
% d ef.tim e =  0: Don't store  tim e of m ax and  min. (default)
% 1: S tore  the tim e w h en  th e  m axim a an d  m inim a occu red  in co lu m n s 3-
4 .
% d ef.a sym m etr ic  =  0: g iv es  th e  sym m etric  RFC (default),
% 1: g iv e s  the asym m etric RFC (or From -To RFC), tim e order
b etw e e n
% m axim um  and rainflow m inim um  is p reserved .
% RFCO = Rainflow c y c le s  (without resu d u al). [N 0,2]/[N 0,4]
% resO = R esidual. [n res0 ,1 ]/[n res0 ,2 ]
%
% C a lcu la tes  th e  rainflow c y c le s  (RFC) for th e  s e q u e n c e  of turning points,
% by u sin g  th e  so -ca lled  4-point algorithm.
%
% It is p o ss ib le  to split the signal into sm aller  parts, and ca lcu la te  
% RFC part by part. It can  b e  e sp ec ia lly  u sefu l for long s ig n a ls .
% W e cou n t th e  first part and for the s e c o n d  part w e  con tin u e counting  
% from previously  cou n ted  'RFCO' with residual 'resO1:
% [R F C 1,R F C 0,res0] = tp2rfc(tp(1:1000,:)); % Firts 1 0 0 0  points
% [RFC2] = tp2rfc(tp(1001 :en d ,:),[],RFCO,resO); % Point 1001 to en d  
% This shall g ive  th e  sa m e  result a s  (i.e. A R FC =A R FC 2)
% [RFC] = tp2rfc(tp); % C alcu la te  all at o n c e
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% sum (R F C ~= R F C 2) % Shall return [0 0]
%
% This routine d oesn 't u s e  MEX, Fortran or C c o d e s , only m atlab c o d e .
%
% Exam ple:
% x = load('sea.dat'); tp=dat2tp(x);
% RFC1=tp2rfc(tp); % D efault (m in-to-M ax c y c le s  in residual)
% ccp lot(R F C I)
% RFC2=tp2rfc(tp,'CS'); % C om p are with AFNO R/ASTM  stan dard  
% [l,J] = find(R F C 1(:,1)~=R F C 2(:,1) | R F C 1(:,2)~=R FC 2(:,2));
% hold on ,p lo t(R F C 1(l,1 ),R F C 1(l,2 ),,b + ,,R F C 2(l,1 ),R F C 2(l,2 ),,rx'), hold off 
%
% S e e  a lso: findrfc, dat2tp , rfcfilt, tp2arfc

% Further ex a m p les:
% % Rainflow c y c le s  with tim e  
% def.res='up'; d e f.tim e= 1 ; % S tore  tim es  
% R FC=tp2rfc(tp,def); R F C (1:10,:), ccplot(R FC )
%
% % For long s ig n a ls  it is p o ss ib le  to  split the input in sm aller  parts  
% [dum my,RFCO,resO] = tp2rfc(dat2tp(x(1:5000,:))); % First part
% [RFC3] = tp2rfc(dat2tp(x(5001 :en d ,:)),[],RFCO,resO); % S e c o n d  part 
% % R FC 3 shall b e  th e  s a m e  a s  R F C 1. C h eck  this!
% ccp lo t(R F C I), hold on ,p lot(R F C 3(:,1 ),R F C 3(:,2 ),,r.'), hold off

% T e sted  on  M atlab 5 .3  
%
% History:
% R ev ised  by PJ 2 6 -J u l-2 0 0 0  
% N ew  form at of def.
% A d ded  input 'RFCO' and 'resO'. N ew  output 'R FC 1' and 'res'
% N ow  supp orts A FNO R and ASTM  stan d ard s for rainflow counting.
% C reated  by PJ (Par J o h a n n e sso n )  2 0 0 0 -0 1 -0 4  
% U s e s  s a m e  syn tax  a s  'tp2rfc' in W AT

% C h eck  input argu m en ts  
ni = nargin; 
no = nargout; 
error(nargchk(1,4,ni));

if ni < 2 , def=[]; en d  
if ni < 3 , RFC0=[]; en d  
if ni < 4 , res0=[]; en d

% C h eck  input def  
def0=def;
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if - isem p ty (d e f)  
if ischar(def) 

def. res = defO; 
end  

en d

% S e t  defau lt v a lu e s  
if ~isfield(def,'res')  

d ef.re s  = 'up'; 
en d
if ~isfield(def,'tim e') 

def.tim e = 0; 
en d
if ~ isfield(def,'asym m etric') 

d ef.a sym m etr ic  =  0; 
en d

% C ount rainflow c y c le s  
if no<2

ARFC = tp2arfc(x ,def,[],res0);  
e ls e

[ARFC.ARFC1 ,res] =  tp2arfc(x ,def,[],res0); 
en d

% C onvert to  sym m etric RFC ? 
if d ef.a sym m etr ic  ==  0  % Sym m etric rainflow c y c le s  

RFC = m ake_sym m etric(A R F C ); 
e ls e  

RFC = ARFC; 
end

% Add previou sly  cou n ted  c y c le s  (if any) 
if -isem pty(R F C O )

RFC = [RFCO; RFC]; 
end

% Rainflow c y c le s  without residual 
if n o>2,

if d ef.a sym m etr ic  == 0  % Sym m etric rainflow c y c le s  
RFC1 = m ake_sym m etric(A R F C 1);  

e ls e
RFC1 = A R F C 1;  

end
% Add previously  cou n ted  c y c le s  (if any) 
if -isem pty(R F C O )

RFC1 = [RFCO; RFC1];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



188

end
en d

function RFC = m ake_sym m etric(A R F C )

I = A R FC (:,1)>A R FC (:,2);
[N ,M ]=size(AR FC); 
if M == 2  % N o tim e  
J=1;

e ls e  % T im e of o c c u r a n c e s  is stored  in colum n 3:4 
J=[1 3]; 

end
RFC = ARFC;
RFC(I,J) = ARFC(I,J+1);
RFC(I,J+1) =  ARFC(I,J);
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B.4 -  P eak  T h ro u g h  V alley C oun ting  S ubrou tine  

function [mM,Mm] = tp2mm(tp)
% TP2MM Calculates min2Max and Max2min cycles from a sequence of turning 
points
%
% CALL: [mM,Mm] = tp2mm(TP);
%
% mM = a two column matrix with the min2Max count.
% Mm = a two column matrix with the Max2min count.
% TP = a two column matrix with the sequence of turning points.
%
% Example:
% TP = dat2tp(x);
% [mM.Mm] = tp2mm(TP);
% ccplot(mM);
%
% See also: dat2tp, cc2cmat, ccplot

% Tested on Matlab 5.3
%
% History:
% Updated by PJ 19-0ct-2000 
% Two versions existed (in 'onedim' and 'cycles')!
% Removed version in 'onedim'
% Now handles vectors
% Revised by PJ (Par Johannesson) 01-Nov-1999 
% updated for WAFO 
% Copied from WAT Ver. 1.2

[n m]= size(tp); 
if n<m 

b=m;m=n;n=b; 
tp=tp'; 

end

if n<2,
error('The vector must have more than 1 elements!’) 

end

switch m 
case {1, 2}, % dimension OK! 
otherwise,

error(‘Wrong dimension of input! dim must be 2xN, 1xN, Nx2 or Nx1 ') 
end
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if tp(1 ,m )>tp(2,m ) 
im = 2; 
iM = 1; 

e ls e  
im = 1; 
iM = 2; 

en d

% D ele te  first point if it is a  m axim um  
%if tp(1 ,m )>tp(2,m )
% tp = tp(2:n,:);
% if tp(1 ,m )>tp(2,m )
% error('tp is not a  s e q u e n c e  of turning points.')
% en d  
% end

% C ount m in-m ax and  m ax-m in c y c le s  
n=length{tp);
m M =[tp(im :2:n-1,m ) tp(im +1:2:n,m )]; % m in-m ax c y c le s  
Mm=[tp(iM:2:n-1 ,m) tp(iM +1:2:n,m )]; % m ax-m in c y c le s
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B.5 -  D am age an d  Fatigue S ub rou tine  

function D = cc2d am (cc ,b eta ,K )
% CC2DAM  C a lcu la tes  the total P alm gren-M iner d a m a g e  of a  c y c le  count.
%
% CALL: D = cc2d am (cc,b eta ,K );
%
% D = D a m a g e . [1xm]
%
% c c  = C ycle  count with m inim a in co lu m n 1 and [nx2]
% m axim a in colum n 2.
% b eta  = B eta -v a lu es , m aterial param eter. [1xm]
% K = K -value, m aterial param eter. (O ptional, Default: 1) [1x1]
%
% T h e d a m a g e  is ca lcu lated  accord in g  to
% D(i) =  su m  ( K * S Ab e ta ( i) ), with S  = (m ax-m in)/2
%
% E xam ple:
% x = load('sea.dat'); TP=dat2tp(x); RFC=tp2rfc(TP);
% bv = 3:8;
% D = cc2dam (R F C ,bv); p lo^bv.D .’x-')
%
% S e e  a lso: cm at2d am

% T e sted  on  M atlab 6 .0
%
% History:
% R ev ised  by PJ 0 1 -N ov-19 9 9  
% - u pd ated  for W AFO  
% C reated  by PJ (Par J o h a n n e sso n )  1 9 9 7  
% from T oo lb ox: Rainflow C y c le s  for Sw itch in g P r o c e s s e s  V .1 .0'

% Check input and otput

ni = nargin;
no = nargout;
error(nargchk(2,3,ni));

if ni < 3
K=D;

end

% Set default values 

if isempty(K)
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K = 1; 
end

% C alcu late d a m a g e

am p = a b s(cc (:,2 )-cc (:,1 ))/2 ;

n= length(beta); D = zeros(1 ,n );  
for i=1:n 

D (i)=K *sum (am p.Abeta(i)); 
en d
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