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ABSTRACT

IMPLEMENTATION AND TESTING OF UNSTEADY REYNOLDS-AVERAGED 
NAVIER-STOKES AND DETACHED EDDY SIMULATION USING AN IMPLICIT 

UNSTRUCTURED MULTIGRID SCHEME

Juan A. Pelaez 
Old Dominion University, 2003 

Director: Dr. O. A. Kandil

Investigation and development of the Detached Eddy Simulation (DES) 

technique for the computation of unsteady flows on unstructured grids are presented. The 

motivation of the research work is driven by the ultimate goal of predicting separated 

flows of aerodynamic importance, such as massive stall or flows over complex non­

streamlined geometries. These cases, in which large regions of massively separated flow 

are present, represent a challenge for conventional Unsteady Reynolds-Averaged Navier- 

Stokes (URANS) models, that in many cases, cannot produce solutions accurate enough 

and/or fast enough for industrial design and applications. A Detached Eddy Simulation 

model is implemented and its performance compared to the one equation Spalart- 

Allmaras Reynolds-Averaged Navier-Stokes (RANS) turbulence model. Validation cases 

using DES and URANS include decaying homogenous turbulence in a periodic domain, 

flow over a sphere and flow over a wing with a NACA 0012 profile, including massive 

stall regimes.

Because of the inherent unsteadiness of turbulence, the first step towards 

computing separated flows is the development of an unsteady solution technique for
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unstructured meshes to be able to produce time accurate solutions. An implicit method 

for the computation of unsteady flows on unstructured grids was implemented based on 

an existing steady state multigrid unstructured mesh solver. The resulting non-linear 

system of equations is solved at each time step by using an agglomeration multigrid 

procedure. The method allows for arbitrarily large time steps and is efficient in terms of 

computational effort and storage. Validation of the time accurate URANS solver is 

performed for the well-known case of flow over a cylinder.

Co-Director of Advisory Committee: Dr. Dimitri J. Mavriplis
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1

CHAPTER I 

INTRODUCTION

Historical Background

Numerical solutions of complicated mathematical models of physical systems 

have been possible in the last decades based on the introduction and development of 

digital computers. Depending on the computational power, determined by the 

computational speed and storage capacity, different levels of complexity of the 

mathematical models have been solved.

During the last decade, the use of Computational Fluids Dynamics (CFD) in the 

aerospace industry has revolutionized the process of aerodynamic design. CFD has 

become a useful tool used extensively in aerospace applications to determine 

aerodynamic forces and optimize aerodynamic shapes. However, CFD has some inherent 

inconveniences that limit its potential in the aerospace industry. CFD has been mainly 

used during design iterations with the purpose of producing a better final product. The 

decisions made during the design iterations often involve trades between aerodynamics 

and added weight and/or cost with an important impact on the design in terms of time 

and money. If CFD is going to be involved in this crucial design-optimization process, 

CFD must be accurate enough to support these important trade-off decisions and fast 

enough to produce accurate solutions in the fast-paced product development environment
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2

of the aerospace industry. These two issues, accuracy and time, are closely related and 

too much stress on trying to solve one of them can easily deteriorate the other one.

The ultimate goal of computational tools in aerospace is to be able to accurately 

predict flight performance over a wide range of flight envelopes. Current CFD codes are 

considered to be reliable for very limited regions of the flight envelope where the flow is 

attached and steady [1, 2, 3]. Outside this regime, the fidelity of current CFD codes 

deteriorates and accurate solutions are very expensive in terms of time and computer 

resources and, in many cases, results are unattainable. Close to the boundaries of the 

attached and steady flow, Navier-Stokes codes have demonstrated good capabilities of 

yielding accurate enough solutions but with costly time penalties. The aerospace industry 

recognizes CFD as a major future design tool that will considerably reduce the cost of 

the aircraft development cycles, but currently the strength of CFD is not to provide data 

but to provide understanding and to improve the design.

CFD capabilities have evolved from a technology demonstrator during the 

1980’s, to being capable of detailed analysis of specialized cases during the 1990’s, to 

finally becoming a design tool in the present decade. This evolution of CFD capabilities 

and their role in industry has been closely coupled to the research lines explored during 

the last decades. Table 1 shows the expected progression of CFD capabilities predicted 

by Chapman in 1976. These predictions, although slightly optimistic, determined fairly 

well the evolution of CFD during the subsequent decades.
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In the late 1970’s and early 1980’s, potential and Euler codes were able to resolve 

inviscid flows over full aircraft configurations. Efforts focused on decreasing the 

processing time of the algorithms by using powerful acceleration techniques for iterative 

solvers. The bottom line of these convergence acceleration techniques is finding the 

optimum balance between speed of convergence and cost of iteration. One of the most 

powerful acceleration techniques is the multigrid method [4]. Multigrid concepts were 

introduced in the 1960’s by the Russian mathematicians Fedorenko and Bachvalov, but 

the potential of multigrid passed unrecognized until mid 1970’s. The need for more 

efficient steady solvers rapidly increases when going from steady solvers to unsteady 

implicit solvers, which involve the solution of intermediate pseudo steady-state problems 

for each time step iteration.

By 1990, Reynolds-Averaged Navier-Stokes (RANS) methods had matured 

enough to solve complicated flows over complex geometries. Unsteady solvers emerged 

as the next logical step once considerable progress had been made in the computation of 

steady flows. The unsteady time scale of the problem determines what method, implicit 

or explicit, is the most suitable in each case. Explicit methods are used for problems in 

which the frequencies being considered are very high or, in other words, the time scales 

are very small and comparable to the grid scale. When dealing with low frequency 

problems, the use of explicit schemes is too restrictive and implicit methods are the 

desirable option.
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Stage of 
Approximation

Readiness
2D-3D-3I)

Airfoils-Wings-Aircraft
Limitations Pacing Item

Inviscid 1971 1973 1976 No flow 
separation Code development

Viscous time 
averaged 1975 1977 1979 Accuracy of 

turbulence model
Turbulence
modeling

Viscous time 
dependant Mid 1980’s

Accuracy of 
Navier-Stokes 

equations

Development of 
advanced computers

Table 1. Status o f computational aerodynamics as predicted by Chapman in 1976. [7]

Tremendous improvements have been made in the area of solution strategies and 

the advances made in computer architecture and networking speeds has made possible 

the solution of advanced approximations of complicated flows. However, the task of 

generating grids about complex configurations has presented a serious challenge. The 

need for computing flow solutions around complex geometries opened a new area of 

research on unstructured mesh techniques [5]. The unstructured solvers introduced 

flexibility compared with structured mesh solvers for tessellating about complex 

geometries and for adapting around flow features, such as a shocks and boundary layers. 

This not only impacted the flow solution accuracy but also the overall solution 

methodology time since grid generation is a part of the solution process that demands 

considerable skills and resources. The drawback of unstructured mesh techniques, as 

compared to structured mesh methods, is the overhead information required to specify 

the mesh connectivity, which results in increased storage and CPU time requirements.

CFD is expected to become a powerful design tool in the next decades [6], 

capable of solving extremely challenging flows, such as massively separated flows, wake
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interactions, store separation, cavities, separation onset-progression and reattachment, to 

name a few. To accomplish this objective, advances must be made in the area of 

turbulence modeling, which remains one of the major unsolved problems of classical 

physics. In 1996, John Lumley summarized the importance of turbulent flows and our 

ability to calculate them as follows “Rational design of aircraft, automobiles, nuclear 

reactors and all sorts of industrial mixing and forming process,... are dependant on an 

ability to calculate the effects of turbulent transport reliably. Unfortunately, we cannot do 

that. One hundred years of intense effort have brought us very good qualitative 

understanding of turbulent flows in nearly all practical respects, but have not brought us 

the ability to calculate reliably” [6].

Numerical solutions of turbulent flow cases can be achieved using different levels 

of approximation. The most widespread method is to solve the Reynolds averaged 

Navier-Stokes equations (RANS). In the RANS equations, the turbulent fluctuations 

appear in the Reynolds stress term which must be modeled using any of the turbulence 

models available in the literature. However, a common limitation of these models is their 

lack of generality, since the model coefficients are usually set using simple well- 

documented flows. In this sense, current RANS solvers are fairly successful at predicting 

mostly attached flows, such as a wing in cruise condition, but fail to capture a range of 

different off-design situations as post stall regimes, high lift configurations and non­

streamlined bodies. Generally, in cases in which the RANS approach fails, the flow is 

characterized by large regions of separation in which a very wide range of scales are 

present in the flow. While the small scales tend to depend on the viscosity and, therefore,
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to be universal, the large ones are affected by the boundary conditions. This is the main 

cause of the lack of generality of turbulence models, as it is difficult to model the effect 

of the large scales in the same way for many different types of flows.

Therefore, the failure to develop a universal valid turbulence model has led to 

new approaches such as Direct Numerical Simulation (DNS) and Large Eddy Simulation 

(LES). DNS is the most straightforward approach to the problem. It consists in solving 

the governing equations on a mesh that is fine enough to capture the smallest scales 

contained in the flow with a scheme designed to minimize the numerical dispersion and 

dissipation. The drawback is extremely high cost of the DNS computation, which is 

proportional to at least Re3, where Re represents the Reynolds number. The use of DNS 

has grown exponentially based on expanding computer capabilities [7]. However, DNS 

has been limited to very simple flows and low Reynolds number cases, due to its 

expense.

The flow limitations of RANS and the difficulty of using DNS for realistic 

applied engineering problems have generated great interest in the Large Eddy Simulation 

approach (LES) for computing flows with large amounts of separation. Large Eddy 

Simulation is a compromise between Direct Numerical Simulation and Reynolds 

Averaged Navier-Stokes. In LES, the contribution of the large scales is computed exactly 

and only the smallest scales, sub-grid scales (SGS), in the flow are modeled. Because 

LES models the smallest scales present in the flow, the smallest cells in the grid can be 

much larger than the viscous range scales, and much larger time steps can be taken than
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in DNS. This implies that solutions can be obtained at higher Reynolds number than 

using DNS or that the solution can be obtained at less expense for a given Reynolds 

number. However, a major difficulty of LES is that near solid surfaces, all the eddies are 

small and the “large” and “small” eddies tend to overlap. Therefore the required grid 

spacing and time step gradually evolve towards DNS as the solid boundary is 

approached. Using LES to resolve near wall streaks at industrial Reynolds numbers 

would be prohibitively expensive as was highlighted by Spalart et al. [8]. This is 

summarized in Table 2 reproduced from Ref. [8], which is constructed assuming a target 

flow over an airliner or a car and shows the number of grid points required by each 

method and the year in which the simulation will be feasible, as a so-called “Grand 

Challenge” problem. An industrial level solution capability would come later. These 

feasibility estimates are based on the “rule of thumb” that computer power increases by a 

factor of 5 every 5 years.

Detached Eddy Simulation

The Detached Eddy Simulation (DES) approach was conceived with the idea of 

combining the strengths of RANS methods near the solid boundaries and of LES 

elsewhere. The concept of DES was introduced in the literature by Spalart et al. in 1997 

[9]. In that paper, the basis for a hybrid combination of LES and RANS was established. 

In 1999, the first application of DES was presented for a NACA 0012 airfoil at very high 

angles of attack [10], Later applications of DES included flow around a cylinder [11] and 

flow around a sphere [12], showing very promising results for massively separated 

flows.
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All previously mentioned work on DES was developed based on structured mesh 

codes. The first application of DES on an unstructured mesh code appears in a doctoral 

dissertation by J.R.Forsythe in 2000 [13], in which DES was applied to study supersonic 

flow separation for the cases of shock induced turbulent boundary layer separation and 

supersonic flow behind a base.

Name Unsteady technique Number of grid points Year

2DURANS YES 105 1980

3DRANS NO 107 1985

3DURANS YES 107 1995

DES YES 108 2000

LES YES 10° 2045

DNS YES 1016 2080

Table 2. Summary o f turbulence modeling strategies including required grid resolution 
and feasibility date for a simulation o f flow over a vehicle as presented by Spalart in

1999 [8J.

Later applications of DES in unstructured solvers include its implementation in 

the unstructured mesh code Cobalt60 under a U. S. Department of Defense Challenge 

Project titled “Multidisciplinary Applications of Detached-Eddy Simulations of 

Separated Flows at High Reynolds Numbers”. The final goal of this project is the 

computation of the flow around a complete aircraft in massively separated flow regimes. 

Preliminary results of this work have been published in January of 2002 [14, 15, 16, 17, 

18] and include vortical flows over delta wings, flow over a full aircraft configuration 

(F16, F18A/E, C-130, X38), flow over a rounded square and flow over a prolate
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spheroid. This research is still in progress and more results are expected to be presented 

in 2003.

The ultimate goal of this dissertation work was to develop a Large Eddy 

Simulation capability based on an existing unstructured grid Navier-Stokes solver in 

order to perform detached eddy simulations combining RANS near the walls and LES in 

massively separated regions in a non zonal manner. DES is implemented in a second- 

order accurate parallel-unstructured mesh code and tested on cases previously solved 

using structured mesh codes to study its feasibility.

Dissertation Outline

The outline of the dissertation is the following. Chapter II presents an overview 

of the governing equations. Chapter III describes the numerical discretization and solver 

scheme of the steady multigrid unstructured mesh solver. Because of the inherent 

unsteadiness associated with the massively separated regions, the first step in developing 

a large eddy simulation capability involves the extension of the currently existing 

parallel-unstructured multigrid steady-state Reynolds-averaged Navier-Stokes solver to 

an unsteady Reynolds-averaged Navier-Stokes flow solver. This is presented in the 

second part of Chapter III. In Chapter IV, the unsteady Reynolds-averaged Navier- 

Stokes (URANS) solver is tested using the well-known case of the flow over a circular 

cylinder. The DES implementation on the parallel-unstructured mesh unsteady 

Reynolds-averaged Navier-Stokes solver is demonstrated in Chapter V. The DES 

capabilities of the solver and the artificial dissipation effects are assessed using a case of
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decaying isotropic turbulence in a periodic domain which is presented in Chapter VI. In 

Chapter VII, DES and URANS are compared using the case of flow over a sphere. In 

addition, DES and URANS are compared again in Chapter VIII using a case of 

aeronautical interest, such as, the flow over a NACA 0012 airfoil. Finally, in Chapter 

XIX, some ideas are presented as a basis for future research and in Chapter X the 

conclusions of the investigation are stated.
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CHAPTER II

GOVERNING EQUATIONS

Governing Equations

The governing equations for fluid flow will be derived invoking the physical laws 

of conservation of mass, momentum and energy. The starting point for any conservative 

equation will be the Reynolds Transport Theorem that will transform material derivatives 

of volume integrals into volume integrals of Eulerian derivatives.

Let a  be any specific property of a fluid such as density, momentum or specific 

energy. The Reynolds’ Transport Theorem states that the total rate of change of the 

integral of a(t) over an arbitrary material volume will be equal to the time derivative of 

a(t) inside a coinciding control volume plus the flux of a(t) across the control surface 

enclosing the control volume. The mathematical expression of this theorem is shown in 

equation (1).

Using Gauss’ Theorem to convert the surface integral into a volume integral, 

equation (1) transforms into

(l)

(2)
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Conservation of mass

Consider a specific mass of arbitrary shape and volume. By observing this 

material volume as it flows, it is seen that its volume and shape may change, but its total 

mass will remain constant. Mathematically this is equivalent to saying that the 

Lagrangian derivative of the mass contained in the material volume is equal to zero.

In this case the specific fluid property referred before as a, is the mass density, p.

Applying the Reynolds’ Transport Theorem to equation (3)

Since the volume is arbitrarily chosen the only way that equation (4) can be 

satisfied for any shape and volume will be if the integrand is equal to zero.

This is the conservative form of the continuity equation that will be used to force 

the conservation of mass in the flow field.

(3)

(4)

(5)
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Conservation of momentum

The conservation of momentum equation is based on the application of the 

Newton’s second law of motion to an element of fluid. This states that the rate of change 

of the linear momentum of a given mass of fluid is proportional to the net external force 

acting on the mass. The external forces acting on the fluid will be classified as body 

forces, such as gravitational forces, and surface forces, such as pressure and viscous- 

shear stresses. The mathematical expression of the above statement is

\ p u i d V = \ Q i dS + \ p f idV  (6)
^  V( t )  S V

The first term on the right hand side represents the surface forces while the 

second term represents the body forces. Considering that the surface forces are fully 

represented by the stress tensor and applying the Reynolds Transport Theorem to the 

expression above, yields

T ;{P ui ) + ^ — {p ui^k) a t  a xk
dV = \ o ijni dS + \ p f idV (7)

Applying Gauss Theorem to transform surface integrals into volume integrals

: i p u i) + - ^ - { p u iuk) 
a t a xk v dXj

(8)
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Therefore

^ - { p u i ) + ^ — {p u iuk) = ^ - ( 7ij + p f i (9)
a t  a x k oXj

where the stress tensor is taken to be of the form

a ^ - p S y + T y  (10)

Conservation of energy

The conservation of energy is based on the First Law of Thermodynamics, which 

states that the rate of change of the total energy is equal to the rate at which work is

being done plus the rate at which heat is being added.

j r  \ { p E )d V  =  f « ,  • <2 , dS  +  J k .  • p  f .d V  -  j 'qt ■ n, dS  (11)
V( t )  S V  s

where E represents the total energy per unit mass and q the conductive heat flux leaving 

the control volume. The total energy per unit mass is given by

E = e +  — U; -U; 
2

= Total Energy ( 12)

As in the previous case, equation (11) can be transformed into

^Yt^p E  ̂+ ' i x ^ pEU^ dV  =  ’Gkl 'nt d S +  \ ur  P f .d V  ~ \ q t • « ,  dS (13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

\ ^ M E^ X ~ ^ Eu^ V = + f“r  P f,JV -  ! ^ k ) < i v  04)
y O l  O X - V k, V V i

Therefore

5 3 3 3
^ 7  ( p E )  + —  { pEui )= —  (ui ■ ° u  ) + ur p f i - — (q . )  ( 15)
at oxi oxk axi

where the stress tensor is given by equation (16)

<7,y = ~ P S y + T y  (16)

Navier-Stokes equations

The governing equations described above are non-dimensionalised using the 

following reference parameters (Table 3) to obtain the dimensionless governing 

equations (the °o subscript designates freestream conditions).

Li'iigth I-ref
(determined in the input file)

Velocity P ~ /
/ P ~

Lref

P ~ /
i / P ~

Density p ~

Viscosity

Table 3. Non-dimensionalization parameters.
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Starting from equation (9), and dividing and multiplying by the corresponding 

reference parameters, the right-hand-side (RHS) and the left-hand-side (LHS) of 

equation (9) are multiplied by the following parameters:

LHS
" REF REF

LHS = ■ 'P .
REF -‘REF

•RHS -
-‘REF

RHS
P«

(17)

Taking all the parameters to the right-hand-side

LHS
-'REF

RHS -  -
Poo LREF

•RHS =
Re„

RHS

(18)

Therefore, the conservative form of the dimensionless, unsteady, compressible Navier- 

Stokes equations in matrix form is given by

dw [ <*fc , dgc [ %hc _ J y  ■ M„
dt dx dy dz Re„

dfv dgy . dh,
+  -

dx dy dz
(19)

where w is the solution vector and fc, gc and hc are the Cartesian components of the 

convective fluxes
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~ p~ pu pv pw
pu pu2 + p pvu pwu
pv fc = puv 8c = pv2 + p K = pwv
pw puw pvw pw2 + p

PE. puE + up pvE + vp pwE + wp

In equation (19), Moo is the freestream Mach Number, Reoo is the Reynolds Number based 

on a characteristic length, p is the fluid density, u, v and w are the Cartesian velocity 

components in the x, y and z direction respectively, E is the total energy, and p is the 

pressure which can be calculated from the equation of state of a perfect gas

p  =  {y - i ) - p E —
(<u1 + v2 + w2

( 21)

The viscous fluxes fv, gv and hv are given by

0

fv  = xy ( 2 2 )

U - T  + V ' T  +  W*T** " xx y * xy ry " x

0

S V
yx

yy (23)

yz
u - t  + v • T +W-T —ayx yy yz zlyy yz
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h., =

0

u - T z t + v - t z y + w T a - q i

(24)

where x represents the shear stress tensor, and q the heat flux vector, which are given by 

the constitutive equation for a Newtonian fluid under the Stokes hypothesis and Fourier’s 

Law for heat conduction, respectively

du 2 
dx 3 
dv 2

T  — Txy yx M

* x z = t z x = M

T yz = T zy ~  L 1

r du dv^ 1-----
dy dx v J y

^d u dw^ 
dz dx

dv dw 1-----
dz dy

l , d T
<Ix = - *  —  =  -dx y  -1  Pr

Qz =

- k Z :
dy

dz

d
r \  
£

M
Pr dx

d
f  \  
£

V sP ,
Pr dy

d
f  \  
£

M
Pr dz

(25)
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y is the ratio of specific heats of the fluid and Pr is the Prandtl number. The coefficient of 

viscosity is determined from Sutherland’s law

where Cl is a constant.

Reynolds Averaged Navier-Stokes Equations (RANS)

Reynolds time averaging is used with the Navier-Stokes equations to account for 

stationary turbulence, where a stationary turbulence is defined as turbulent flow that does 

not vary with time on the average. For such flow, we define each flow variable as the 

sum of a mean and a fluctuating part such that

In equation (27) the first term on the right hand-side is the time-averaged value, or mean 

value, defined by

H = C \ T 012 (26 )

F(x) = f ( x )  + f \ x , t ) (27)

t+Time

f ( x ) =  lim [f ( x , t ) d t (28)

The time average of the mean value is the same as the time-averaged value,

t+Time

(29)
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The time average of the fluctuating part is zero by definition. Equation (30) illustrates the 

rules of time averaging.

Notice how the time average of the product of the fluctuating parts in the last 

expression of equation (30) is not zero. This will have important consequences when 

substituting in the Navier-Stokes equations as will be shown in the paragraph below.

Substituting the flow variables in the Navier-Stokes equations as the mean value 

and the perturbation, as defined in equation (27), and averaging in time, the following 

expression is obtained for the momentum conservation equation

where u represents the mean value of the velocity, u ’ the perturbation velocity of zero

average in time and the correlation [u'ju'] the time-averaged rate of momentum transfer

due to the turbulence. Note that equation (31) is obtained by introducing density- 

weighted velocities defined in equation (32) as suggested by Favre [19].

A - a  +a

B = b +b

A = a  + a = a

= > (  B = b + V  = b

A - B = (a + a') ■ (b +b') — a ■ b + a' ■ b

(30)

P  Time—̂oo J 1

t+Time

(32)
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The u'.u' correlation term in equation (31) is the real difficulty of the RANS

equations since in order to compute all mean flow properties of the flow, a model of this 

term required for closure. This quantity is known as the Reynolds-stress tensor and, as 

can be observed, it consists of six new unknowns that must be modeled. Without going 

any further, it should be pointed out that the function of the turbulence model is to 

prescribe the unknown correlation terms based on known quantities to make the whole 

system solvable. But it must be stressed that the averaging process is merely a 

mathematical process in nature that does not introduce additional physics information to 

the problem. As expressed by Wilcox [24], “in essence Reynolds averaging is a brutal 

simplification that loses much of the information contained in the Navier-Stokes 

equation”.

Boussinesq Approximation

By manipulating the conservation of momentum equation (31) from the 

conservative form to the non-conservative form, the following expression is obtained

d t 3jc, d Xj
dut
dxj

— p u ^ j +  P f i (33)

The two terms in the parenthesis in the right-hand side of equation (33) represent 

the stresses produced by the viscosity effects and the stresses produced by the turbulence 

effects. In 1877, Boussinesq ended up assuming that turbulence stresses act like the 

viscous stresses in the sense that they are directly proportional to the velocity gradient.
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This is known as the Boussinesq approximation, which introduces the concept of eddy 

viscosity (em) in the stress tensor expression as

<Tij=-p8ij+(M + P£m)Du (34)

where

P £ mD ij = - p UiUj = P £ «
'dU , d U j '  
— '- + — -
dxi dx , 

v 1 '

(35)

The Boussinesq approximation assumes that the principal axes of the Reynolds- 

stress tensor are coincident with the principal axes of the mean strain-rate tensor at all 

points in the flow. The coefficient of proportionality is the eddy viscosity. This 

approximation reduces the number of unknowns from six to one and, although it 

provides accurate predictions for many flows, it also shows important deficiencies in 

flows with sudden changes in the mean strain rate, such as separated flows. The majority 

of RANS turbulence models are based on the Boussinesq approximation and attempt to 

model the eddy viscosity with an algebraic equation or one or two partial differential 

equations in the flow field.

Spalart-Allmaras one-equation model

The one-equation turbulence model of Spalart-Allmaras presents a transport 

equation for the turbulent viscosity assembled using empiricism and arguments of
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dimensional analysis. The Spalart-Allmaras model solves a single field equation for a 

variable related to the eddy viscosity through the kinematic eddy viscosity

v , = v f * i  (36)

The Spalart-Allmaras model can be expressed in dimensionless form as: 

Eddy viscosity equation

Cb2 „ d 2v . 1 3v-
Re a  dx. Re <r dx.

(v + (l + Cb2)v)— -  
dx ,

(37)

with the auxiliary relations

f  =— X___
/vl * 3+ c ’

f v  2 ~  '

1 + X
"v2

x = -
v

f  =C e~c,al Jt 2 t3 f w  &
i + c u

S 6+Cl  3.

X
(38)

g = r + Cw2(r6- r )

Re 
M\  ” 7

2 j 2K d

r = ■
Re
M

V " 7

K d

/ ,v3
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and the closure coefficients

CM =0.1355 Cb2 =0.622 Cvl =7.1 Cv2=5.0 (7 = |

Cw2 = 0.3 Cw3 = 2.0 C,3 =1.2 C(4 = 0.5 *- = 0.41 (39)

/-> _  Q;1 | (l +  C b2)
wl “  *  a

After testing the Spalart-Allmaras turbulence model for cases of a far wake, 

mixing layer, plane jet flow, round jet flow, radial jet flow and boundary layer with 

different favorable and adverse pressure gradient, Wilcox concluded [24] that “on 

balance, Spalart-Allmaras predictions are satisfactory for many engineering applications. 

It is especially attractive for airfoil and wing applications, for which it has been 

calibrated. Its failure to reproduce jet-spreading rates is a cause for concern and should 

serve as a warning that the model has some shortcomings. Nevertheless, the model 

appears to be a valuable engineering tool.”
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CHAPTER III 

SOLVER DESCRIPTION

Spatial Discretization

The governing equations are discretized by using finite-volume techniques in 

meshes of mixed element types that may include tetrahedra, pyramids, prisms and 

hexahedra. The conserved flow variables are stored at the vertices of the mesh and all 

elements of the grid are handled by a unifying edge-based data-structure, which is more 

compact in terms of memory overhead, and minimizes the amount of gather-scatter 

required on parallel computer architectures.

The solver is based on a single unifying edge-based data structure. However, to 

get to this edge-based data structure, a pre-processing of the original mesh is performed 

based on a data-structure containing a list of elements (tetrahedra, pyramids, prisms and 

hexahedra) and a list of nodes identifying the vertices that constitute each element. Each 

node will be spatially specified by its Cartesian co-ordinates. The control volume for 

each vertex is constructed connecting the centroids of all the cells that contain the 

specified node.

Based on the definition of the control volumes, it can be observed that the edges 

of the original mesh are associated with the faces of the control volumes surrounding the 

nodes. Therefore, the convective and viscous fluxes for each node can be computed
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“along” the edges coming out of each node. Note that the fluxes are not computed in the 

direction of the edges but in the direction of the normal to the control surfaces forming 

the control volume around the node and then are assembled using the edge-based data 

structure. This implies that a list of edges will be computed, and for each edge, the 

address of the two end points will be stored as well as three coefficients, which represent 

the x, y and z components of the normal to the face associated with that edge. The 

magnitude of the normal carries the information of the area of the control surface.

The calculation of the coefficients associated with the edges will be illustrated for 

the case of a tetrahedral mesh. For any other element, different than tetrahedral, the 

approach is the same with the corresponding geometrical differences. In three 

dimensions, the face associated with each edge will be the contribution to that face of all 

the tetrahedral cells sharing that edge. As shown in Figure 1, the face of the control 

volume associated with the edge ab will be formed by the triangles m-t3-c2, m-t2-c2, m- 

t2-cl, m -tl-cl. As can be observed, the triangles m-t3-c2 and m-t2-c2 correspond to the 

tetrahedral abGH, while the triangles m-t2-cl, m -tl-cl correspond to the contribution of 

the tetrahedral abHF. The coefficients associated with the edge ab will contain the 

information corresponding to the area of the associated face and the direction of the 

normal to the face that will be computed as the vectorial sum of all the area vectors of all 

the contributing triangles. Note that similar to the tetrahedrals abGH and abHF, more 

tetrahedra will contribute to the edge ab until a face completely surrounding the edge is 

obtained.
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Figure 1. 3D Control Volume Example

Convective and viscous terms

Convective fluxes

The convective terms in the Navier-Stokes Equations are given in equation (19) 

of Chapter I, which are:

"  aConvective Mass Flux - I dx. ■(/>«*) dV

Convective Momentum Flux - f
Jv dx.

-(pUjUk)+ dp
dXj

dV (40)

Convective Energy Flux -
dx. ■(e u k ) + ,

dV
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The Gauss Theorem relates the surface integrals to volume integrals by the expression

f a ( t ) u n d S = [  V-(au)dV  (41)
JS( t )  J V( t )

The convective fluxes will be computed as surface integrals based on the Gauss Theorem

as:

Convective Mass Flux - {puk ■nk)dS

Convective Momentum Flux - J p u j  uk -nk + prij d S  (42)

Convective Energy Flux - £  [e uk -nk + puk ■ hk ]dS

Therefore, the discretized expression of the convective fluxes along the edge connecting 

to nodes (nl) and (n2) will be of the form:

dsl = (nx -v \+ ny -v)+ nz -v\) 

qs2 = (nx -v2x +ny -v2y +nz -v2z)

(qs\- p x+qs2- p 2)

y  y  

. n -v‘ . . .x  y  y z

Convective Mass Flux =
2

Convective_ Momentum _ F lu x_ x =  v* + ^.n (43)
2 2

[as\ • v1 + qs2 ■ v1) (p + p  )
Convective Momentum Flux y —---------------------— -----—-n ,

“  2 2
^ ‘ v! + qs2 -v2) (p ,+ p 7)Convective Momentum Flux z =  --------2 — H  ------— • n,

~  2  2

Convective _ Energy _ Flux = qs\ ■ + qs2 ■ - - - - - -
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Where qsl and qs2 represent the scalar product of the velocity at each node times the 

surface vector of the face crossed by that edge. The superscript indicates the node (nl) or 

(n2), and the subscript the vector component x, y or z.

The viscous fluxes

The viscous terms in the Navier-Stokes equations, assuming a thin layer 

approximation in all directions, are given in equations 22, 23 and 24 of Chapter II as:

Viscous Mass flux -  There is no viscous fluxes in the conservation of mass equation.

Viscous Momentum flux -  x component J //
4 d 2u d 2u d 2u 
3 dx2 dy2 dz2

dV

Viscous Momentum flux -  y component J fl 'd 2v 4 a 2 
- +  -

v a v 
+

dx2 3 ay2 a ^
dV (44)

Viscous Momentum flux -  z component J  fi
a 2w d 2w 4 d 2w 
dx2 dy2 3 dz2

dV

Viscous Energy flux -

4 d 2u d2u a 2« l r a 2v 4 a 2v a 2vl a 2w a 2w 4  a 2w
+ 0 + 0 + ju-v- + . + 0 + JU • w- + +

3 a*2 dy2 dzl \ [dx1 3 ay2 az2J [d x 1 dy2 3 3z2 J
dx2 dy2 dz2
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The final discrete viscous terms obtained in this manner form a nearest neighbor 

stencil. The viscous terms for a vertex, i, depend only on values at i and at vertex k, such 

that k is joined to i by a mesh edge. In three dimensions, for the full Navier-Stokes 

equations, this would require the storage of nine coefficients per edge. However, the 

local edge-based coefficient matrix is symmetric about the diagonal [30]. Thus, only six 

coefficients per edge are required for the discretization of the viscous terms. Neglecting 

the cross derivative terms, the number of coefficients can be reduced to three per edge. 

Finally, note that by adopting the thin-layer form of the Navier-Stokes equations, only a 

single coefficient per edge is required to compute the discretization of the viscous terms 

as the discretization of a Laplacian. The viscous fluxes will be computed based on the 

Gauss Theorem as:

Viscous Mass flux -  There is no viscous fluxes in the conservation of mass equation.

u(nl)k — u(n2)k3 V
Viscous Momentum flux -  [ // • a  -—L • h dS = 'S ' ju  ■ a

Js dx. k=\

n. (45)

Viscous Energy flux -  J -j • a  ■ // ■
u(nl)k — u.(n2)k p ( n \ ) k - p { n 2 ) k

uk ■

1

-Si
<

1

t 1

<

1

■nk dS

where a  represents the viscous edge coefficient for the viscous flux discretization. Note 

that the viscosity is considered to be locally constant to allow the calculation of the edge 

coefficients in a pre-processing phase.
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Therefore, the discretized expression of the viscous fluxes along the edge connecting to 

nodes (nl) and (n2) will be of the form:

+ ed(n2)]
2

\visc(n\) + visc(n2)\
vise aver —-------------------------

2
+ u(n2)]
~2
+ v(n2)]
2
+ w(n2)]
2

fl = ed _ aver + vise _ aver

Viscous_ Momentum_ F lu x_ x  = ju-a  [u(n2)~u(n\)]
Viscous _ Momentum _ Flux _ y  — p- a-  [v(n2) -  v(nl)]
Viscous _ Momentum _ Flux _ z  = fl-cc- [w(«2) -  vv(nl)]

Viscous _ Energy _ Flux — Viscous _ Momentum _ Flux _ x ■ u _ aver +
Viscous _ Momentum _ Flux _ y ■ v _ aver +
Viscous _ Momentum _ Flux _ z - w  _ aver + 
rkv ■ a  ■ [p(n2) • p(n2) -  p(n\) ■ p{n\)\ (46)

Where ed_aver, visc_aver, u_aver, v_aver and w_aver represent respectively the average 

eddy viscosity, the average physical viscosity, the average velocity in the x-component, 

the average velocity in the y-component and the average velocity in the z-component 

between the values in node n l and node n2. The term p_aver is the total average 

viscosity defined as the sum of the average eddy viscosity and the average physical 

viscosity. The a  term in equation (46) is the viscous edge coefficient defined as:

[w(«l) w aver  --------

\u(n\) u aver = -------

[v(nl) v aver = -------

j  \ed(nl)ed aver = ---------
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where ij_2 represents the vector joining the two edge end points, and n is the face 

normal associated with the edge.

Artificial dissipation

Von Neuman and Richtmeyer introduced the concept of artificial dissipation to 

mitigate the problems of second-order three-point schemes associated with instabilities 

and oscillations of the solution in regions of large gradients. The concept is to add terms 

to the scheme to simulate viscosity on the scale of the mesh. These added terms act as 

numerical viscosity that damps high frequency oscillations. Furthermore, these 

additional dissipative terms must be carefully constructed to ensure that the accuracy of 

the scheme is preserved in the inviscid region where convective terms dominate, as well 

as in the boundary layer and wake region, where the artificial viscosity must be much 

smaller than the physical viscous terms.

The artificial dissipation operator is formulated as a global undivided Laplacian 

operating on a blend of the flow variables and their second differences:

(48)

where

u  =  Kx - w - K 2 - W 2w (49)

Neighbors

V?W= X k - w J (50)
k=1
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where Q represents the volume of the control volume being considered and V2w is the

undivided Laplacian of w. The first term of equation (49) constitutes a strong first order

dissipation term which is necessary to prevent non-physical oscillations in the vicinity of 

a shock. To preserve the second order accuracy of the scheme, this term must be turned 

off in regions of smooth flow. In this research the use of this dissipation term was not 

necessary for any of the test cases, and the value of ki=0.0 and k2= 1 .0  were used 

exclusively.

In Equation (48) the overall scaling of the artificial dissipation is accomplished 

via the factor X [30], which in the case of scalar dissipation, has been taken as 

proportional to the maximum eigenvalue, lul+c.

X-K-max(eigenvalue) (51)

While for the matrix dissipation model, a  is defined as:

X  = k - T \ K \ T ~ x (52)

The T matrices on the right hand side of equation (52) represent the eigenvectors 

associated with the linearization of the equations of inviscid compressible flow normal to 

the control volume face, while the | A | matrix is a diagonal matrix containing the 

absolute values of the four eigenvalues associated with these equations. Of these four 

eigenvalues, three are repeated, leaving three distinct eigenvalues which are proportional 

to: u, u+c, u-c, where u is the velocity normal to the control volume face and c the speed 

of sound [25].
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In both cases, scalar dissipation and matrix dissipation, the artificial dissipation 

scaling factor is proportional to k , where k  is a constant of value 2 0  determined 

empirically to produce the best results for steady calculations. This value of k = 20  will be 

referred to as the nominal scaling factor of the artificial dissipation throughout the rest of 

this investigation.

Since most of this research is concerned with the study of highly turbulent 

regions associated with massively separated flows, it is critical to give special attention 

to the correct treatment of the turbulence of the flow. It is crucial to ensure that the 

artificial dissipation does not damp out oscillations generated by small eddies that must 

be captured by the solution. As will be shown in Chapter VI, a detailed study was 

performed, using the case of homogeneous decaying turbulence in a periodic domain, to 

observe the stability and resolution of the scheme using different levels of artificial 

dissipation.

Steady Solver

Neglecting unsteady terms, the steady-state form of the conservative equation 

(19) in Chapter II can be written as:

R \ W )  = 0 (53)

where W is the solution vector, and R* represents the spatial discretization.
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Introducing the pseudo-time variable x and rewriting equation (53) as

i)W
 + R*(W) = 0 (54)
d T

Equation (54) can be advanced in time in two different ways. If the residual, R*(W), is 

evaluated at the pseudo-time (n), the current iteration being (n+1), an explicit scheme is 

formulated as:

W n+l
----------— + R ( W " ) = 0  (55)

A t

Explicit schemes are very easy to implement and parallelize but the pseudo-time 

step size is limited by the mesh size. Therefore, as the mesh size decreases the allowable 

time step gets smaller leading to an excessive number of pseudo-time steps to reach the 

steady state.

If the residual, R*(W), is evaluated at the pseudo-time (n+1), an implicit scheme 

is obtained:

w n+1_ w n
 —  + R (Wn+1) = 0 (56)

A t

This scheme is unconditionally stable for any pseudo-time step. Linearizing the residual 

about the pseudo-time step (n), equation (56) can be re-written as:

AW
------+
At

?IR*
R*(Wn) + — — - AW

d w
;0  (57)
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which can be re-ordered as:

/  dR*■ +
A t  dW

AW = -R *(W n) (58)

Therefore,

AW =
I  dR*

■ +  ■

A t  dW

-l
•{-i?*(W n)} (59)

and dR*
dW

is the Jacobian, which represents the change of the residual with respect to

changes in the solution values. The Jacobian consists of a large sparse matrix for which 

the sparsity pattern depends on the stencil of the residual. Each non-zero entry consists of 

a 5x5 submatrix. It is useful to consider the graph of this sparse matrix as the set of edges 

joining row and column numbers identifying non-zero block sub-matrices. For a nearest 

neighbor stencil, the graph of the Jacobian matrix is shown in Figure 2.
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Figure 2. Illustration o f graph o f block-structured jacobian matrix arising from 
linearization o f unstructured mesh discretization

In our case, the Point-Jacobian approximation will be used for most of the mesh 

points. For these points, only the non-zero block matrices of the diagonal will be 

considered for the Jacobian. For points in the viscous region, in which there is a large 

degree of grid anisotropy, directional smoothing will be achieved by solving implicitly 

along lines normal to the boundary layer using a tridiagonal solver. For these points, a 

Line-Jacobian approximation will be used, adding to the Point-Jacobian approximation 

two block sub-matrices (upper and lower) per edge joining, normal to the boundary 

layer, two of these points in the viscous region (Figure 2). A graph algorithm is used to 

identify the points to which the line solver will be applied in a pre-processing phase. 

Each edge in the mesh is assigned a weight that represents the degree of coupling. Edge 

weights can be taken, for example, as the inverse of the edge length. For each point, the
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ratio of maximum to average weight is an indication of the local anisotropy in the mesh 

at each point. The points are sorted according to this ratio. The first point in this list is 

picked as the starting point for a line. The line is built by adding the original point to the 

neighboring point to which it is most strongly connected based on the edge weights. 

Each point can only belong to one line and the maximum to minimum edge weight ratio 

must be greater than a pre-determined value. The line terminates when no additional 

point can be found. The algorithm results in a set of lines of variable length. In isotropic 

regions, lines containing just one point are obtained and the point-wise scheme is 

recovered.

Finally, the corrections will be added to the flow variables using a three-stage 

implicit multistage scheme with stage coefficients optimized for high frequency 

damping. The scheme is defined by,

where Ok are the stage coefficients and are defined as ai=0.5321, (X2=1.3711 and 

a 3=2.7744.

The basic idea behind multigrid methods is to accelerate the convergence of the 

solver by computing corrections on a coarser grid than the initial fine grid. The 

explanation for this approach is based on the frequency distribution of the error of the

Qk -  Go a k .I.

W n+l=Qm

k = 1,2,3 (60)

Multigrid
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numerical solution. Examining the spectral analysis of the residual it is observed that 

high frequencies are easily damped out with several iterations of an explicit solver. 

However, low frequency errors are less sensitive to the application of an explicit solver, 

which is expected, considering the local nature of the information employed by the 

numerical scheme. Therefore, in a multigrid iteration, the high frequency errors 

associated with local information are eliminated by the application of the solver on the 

fine grid, and the low frequency errors associated with more global information are 

reduced by the application of the solver on a coarser grid, in which the low frequency 

errors appear as high frequency errors. Typically a multigrid scheme begins by 

eliminating high frequency errors on the fine mesh. The smoothed solution is then 

transferred to a coarser mesh and on this coarser mesh corrections are obtained. These 

corrections will be interpolated back to the fine grid in order to update the solution. This 

procedure can be applied recursively on a sequence of coarser and coarser grids, where 

each grid-level is responsible for eliminating a particular frequency bandwidth of errors 

[26]. Note that multigrid is a convergence acceleration technique which can be applied to 

any existing discretization. Therefore, the application of multigrid has no effect on the 

accuracy of the computed solution, but greatly improves the efficiency of the calculation.

For structured mesh cases the construction of coarse mesh levels starting from a 

fine mesh is quite straightforward since this only requires removing rows and/or columns 

of grid points from the initial fine mesh. However, for unstructured mesh applications 

the use of multigrid is not that simple. Coarse levels meshes can no longer be formed as 

subsets of points of the fine mesh. This has prompted the development of graph-based
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methods such as the agglomeration multigrid method for unstructured grids. Multigrid 

techniques have been successfully extended to unstructured grids using an agglomeration 

multigrid algorithm.

An agglomeration multigrid technique is used to enhance convergence to the 

steady state in pseudo-time. The coarse levels are constructed by fusing together 

neighboring fine grid control volumes to form a smaller number of larger and more 

complex control volumes in the coarse grid (Figure 3 and Figure 4). A graph algorithm is 

used to generate the agglomerated levels. This algorithm can be described as follows [28, 

29]:

Agglomerated

Seed points

Figure 3. Illustration o f  agglom eration procedure fo r  coarse level construction in a
multigrid agglomeration algorithm.

Step 1. Pick a starting vertex on a surface element. Agglomerate control volumes 

associated with their neighboring vertices which are not already agglomerated.
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Step2. Define a front as comprised of the exterior faces of the agglomerated control 

volumes. Place the exposed edges in a queue.

Step3. Pick a new starting vertex as the unprocessed vertex incident to a new starting 

edge which is chosen from the following choices given by order of priority:

a) An edge on the front that is on the solid wall.

b) An edge on the solid wall

c) An edge on the front that is on the far-field boundary.

d) An edge on the far field boundary.

e) The first edge in the queue.

Step 4. Agglomerate all neighboring control volumes of the current point which have not 

been already agglomerated to another vertex.

Step 5. Update the front and go to step 2 until the control volumes for all vertices have 

been agglomerated.
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Figure 4. Sample agglomerated multigrid levels used for the computation o f the flow
over a wing between walls
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Fluxes in the coarser levels and Inter-grid operators

Once the different grid levels have been created, the solution of the fine grid must 

be passed to the coarser levels and the corrections of the coarse levels must be 

interpolated back to the fine grid. In the case of agglomerated meshes, the construction 

of the inter-grid operators is particularly simple since all the different grids are fully 

nested. When going from the fine to the coarse levels, the flow variables as well as the 

residuals are passed to the coarse levels. For each new cell, the residual is calculated as 

the sum of the residuals of the agglomerated cells that form the new cell. In the case of 

the flow variables, the new values are calculated as the volume weighted sum of the flow 

variables of the agglomerated cells.

On the coarse levels, the agglomerated cells contain segmented edges (Figure 3) 

which are replaced by straight-line edges in order to simplify the flux integration. The 

new direction and magnitude associated with the straight-line edge is computed as the 

vector sum of the normals of the segmented edge, thus ensuring identical flux integration 

on the new composite edge. Simple injection is employed for the prolongation operator. 

The correction computed in the coarse level agglomerated cell is applied directly and 

equally to all fine-level control volumes, which are contained within the coarse level cell.

Parallelization

The solver is parallelized by partitioning the domain using a graph partitioner 

[27] and communicating between the different partitions, running on different 

processors, using the Message-Passing Interface (MPI) library. This allows the use of the
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solver in distributed memory architectures as well as shared memory machines. The 

pardoning of the computational domain is done on vertices resulting in cut edges that are 

handled constructing “ghost vertices” as explained in the following section.

Ghost points

At the partition boundaries, edges joining mesh points are cut and each of these 

points are assigned to different processors. In these cases, the processors hosting these 

points must communicate in order to compute the fluxes along the cut edges. This is 

handled in the following manner:

1) The edges cut by the partition boundary are assigned to one processor and a ghost 

point is constructed in this processor (Figure 5). The ghost point refers to the physical 

point at the other end of the cut edge, which has been assigned to another processor.

2) The fluxes are computed along edges and accumulated at the vertices (real points 

and ghost points).

3) The fluxes accumulated at a ghost point must be summed with the flux 

contributions of the physical point they represent in order to complete the total residual 

at this point. At this stage, the two processors must communicate to pass the information 

of the fluxes associated with the ghost point.

4) The updates for all points are calculated by time-stepping the computed residual. 

Notice that this operation is only applied to physical points and no inter-processor 

communication is required.

5) Again the processors must communicate to update the values of the flow 

variables at the ghost point. Then the process can be repeated starting from step 2.
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Ghost
Vertex

Created
Internal
Edges

Partition
Boundary

Figure 5. Illustration o f creation o f ghost points at inter-processor boundaries 

Weighted vertices

Since a line-solver is used in some regions of the domain and line-solvers are 

inherently sequential, any line split between two processors will result in a processor 

remaining idle while the off-processor portion of the line is computed in another 

processor. Therefore, the mesh must be partitioned in such a manner that all the points 

contained within a line remain assigned to the same processor. This is achieved using a 

weighted-graph-based mesh partitioner called CHACO [27].

The original unweighted mesh is contracted along the implicit lines to produce a 

weighted graph. Unity weights are assigned to the original vertices and edges. Edges, 

which are part of an implicit line, are contracted and a single point is formed as the line 

edges are merged (Figure 6). Merging points produce merging edges and the weights of
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the merged points and edges are the sum of the weights of the constituent points and 

edges. The weighted contracted mesh is then partitioned using CHACO, which generates 

balanced partitions of weighted points and minimizes the intersection of weighted edges 

by partition boundaries. Once the partition is completed, the mesh is de-contracted and 

each partition is assigned to a processor. Since the implicit lines reduce to a point in the 

contracted mesh, they can never be broken by the partitioning process.

Figure 6. Illustration o f edge contraction and creation o f weighted graph fo r  mesh 
partitioning. Contracted line is represented in red.

Partitioning the different grid levels

Since the different grid levels are fully nested, the partition of the fine grid could 

be used to infer a partition to all the other grid levels. However, this approach, although 

it minimizes the inter-grid communication, gives little control on the quality of the 

partition of the coarse levels. Therefore, each level is partitioned independently. This 

results in unrelated coarse and fine grid partitions. To minimize the inter-grid 

communication, the coarse level partitions are assigned to the same processor as the fine- 

grid partition with which they share the maximum number of points.
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Unsteady Solver Implementation

Turbulence is an inherently unsteady three-dimensional phenomenon. Therefore, 

the first necessary step to compute turbulent flows will be to extend the steady solver to 

an unsteady solver capability. Explicit schemes are well suited for unsteady applications 

in which the time scale of interest is comparable to the spatial scales. However, explicit 

time steps may become too restrictive for low frequency cases, or in other words, long 

time scales. Therefore, it is desirable to develop a fully implicit method in which the time 

step is only determined by the physics of the flow and not by the cell size. This is done 

by discretizing the time derivative using a three-point backward difference scheme and 

solving the non-linear equations at each time step with the steady-state unstructured 

agglomeration multigrid solution algorithm presented in the previous chapter.

Starting from equation (19), the continuous set of unsteady governing partial 

differential equations is given by:

The spatially discretized equations can be written as:

dU
—  +R(U)= 0 
dt

where R(u) denotes the discretization of the spatial derivative terms in equations (61). 

Making a three point backward approximation for the time derivative yields

(61)
dt dx dy dz

— — U n+l -  —  •£/" +— — + R (U n+')  = 0 
2 -At At 2 -At

(63)
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Equation (63) is now treated as a steady state equation. A new unsteady residual is 

defined, which has to be driven to zero (or at least to the truncation error):

R \W )  = 0 (64)

where W is the approximation to U n+1. This unsteady residual is defined as:

R*(W) = —— -W + R (W )-S (U n,U n-1) (65)
2-A t

with the source term

S(U n,U n-l) = —  -Un  -— U n-X (66)
At 2 • At

remains fixed throughout the solution procedure at each time step.

The implicit method presented above will enable larger time steps than an explicit 

method, but this does not necessarily imply an efficient solution process overall. 

Unsteady solutions will be tedious to obtain as will be shown in the next chapters in 

which several unsteady solutions are presented for different flows. Moreover, for DES 

solutions in which detailed turbulent flow must be captured, the time scale of the

unsteady solver will be determined by the smallest eddies that must be resolved. This

will result in quite small time scales that will sum up into very long computational times. 

Nevertheless, implicit schemes are still justified, since the time scales are always larger 

than the time scales required by an explicit scheme.
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As shown in equation (60), the unsteady residual, R*(W), is formed by a source 

term, (2/At) Un - (1/2 At) Un-i, that changes at each time iteration and a term, (3/2At)W, 

that changes for each sub-iteration. This unsteady residual will be solved iteratively 

using the steady solver presented in Chapter III. The number of iterations required in 

each time step to converge to a solution (two orders of magnitude reduction of the 

residual will generally be considered acceptable convergence) is directly proportional to 

the size of the time step. This implies that for large time steps, a higher number of sub­

iterations are required, and for small time steps, a lower number of sub-iterations are 

necessary to converge to the solution in each time step. The net effect is that the overall 

computational time is relatively independent of the time step used, but the unsteady 

accuracy of the solution can be compromised by an inappropriate (too large) time step. In 

any case, the number of multigrid cycles required to achieve two orders of magnitude 

reduction of the residual will be problem dependent.

The computational workload required by the unsteady solutions of highly 

turbulent flows is alleviated by the use of parallel computing. Parallel computing 

substantially increase the speed of the flow solution. The use of Coral, a PC cluster of 96 

processors located in the Institute for Computer Applications in Science and Engineering 

(ICASE) at NASA Langley Research Center (Hampton) and Helios, an HP10000 of 64 

processors at Old Dominion University (Norfolk), was crucial for this research. Most of 

the cases presented in this research would have been impossible to solve without the use 

of a parallel code and a multiprocessor machine.
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CHAPTER IV 

FLOW AROUND A CIRCULAR CYLINDER

Introduction

The flow around a circular cylinder is a well-known case which has been widely 

studied computationally and experimentally. Although the geometry of the case is 

simple, the associated flow field is enriched with fundamental fluid mechanics 

phenomena. At low Reynolds numbers (below 40), the flow around a circular cylinder is 

characterized by symmetric eddies aft of the cylinder. Around Re = 40 the wake become 

unstable and the flow is characterized by periodic vortex shedding, referred to as Karman 

vortex shedding. This vortex shedding has been widely studied and detailed 

measurements of the Strouhal numbers (dimensionless shedding frequencies) over a 

wide range of Reynolds numbers have been reported over the years. A compilation of the 

Strouhal-number vs. Reynolds-number correlation results is shown in Figure 7 [20]. The 

scatter of the data is attributed to the boundary conditions at the cylinder ends and the 3D 

effects which appear at Re~190.

0.22

0.20
D[cm] 

o k0235 
0 0.0613 
v 0.0989 
< 0.3180 
7 Q.6350

0.18

0.16

0.1U

0.12

Figure 7. Experimental Strouhal-Reynolds Number correlation fo r  the flow over a 
circular cylinder. Reproduced from [20].
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The unsteadiness of the wake due to vortex shedding has to be captured by the 

numerical computation through an accurate simulation of the flow-field time behavior. 

This case is used in this research as the basis for validation of the unsteady RANS solver, 

and for assessing grid resolution and time step requirements for accurately predicting the 

vortex shedding frequency observed in the cylinder flow.

Cases with turbulent boundary layer separation have been studied to test the 

capabilities of techniques such as LES and DES [11]. This research focused on a very 

detailed description of the wake aft of the cylinder including length of the re-circulation 

bubble and Reynolds stresses distributions. This is not the main goal of this case in this 

particular work. As previously stated, the objective in this case is to test the unsteady 

RANS solver, observing the effect of grid and time-step resolution in the Strouhal 

number computation.

Computational Domain

This case consists of the flow around a 3D circular cylinder between parallel 

walls at a Mach number of 0.2 and a Reynolds number of 1,200. The computational 

domain has an aspect ratio of 1 and a side length of 100 cylinder diameters in the plane 

normal to the cylinder span. A length of two cylinder diameters is employed in the span 

direction that extends along the entire crossflow domain. Two different meshes of 

252,490 and 631,225 grid points were used with a normal grid spacing for the first point 

closest to the wall of 5 x 10'5 cylinder diameters. The grid points were distributed in
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planes of 25,249 grid points per plane, perpendicular to the span direction and 

symmetrically distributed along the span. Ten planes were used for the coarse mesh and 

twenty-five planes were used for the fine mesh. Three different views of the 

computational domain are shown in Figures 8, 9 and 10.

100

>  0 r j w w i w ^ w , - ,

A R K :WSJrtfft**** *•:
1

-50

■100

Figure 8. Two-dimensional side view o f the computational domain for circular cylinder
case. Fine grid o f631,225 points.
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Figure 9. Two-dimensional side view o f unstructured grid used fo r  computation o f flow  
over circular cylinder. Number o f points=631,225, Wall resolution=5x10 s cylinder

diameters.
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Figure 10. Three-dimensional view o f the computational domain for circular cylinder 
case. Unstructured mesh on side walls o f25,249 points per wall.

Three different time steps of 0.25, 0.125 and 0.05 were used to observe the effect 

of the time step size on the results. The time is non-dimensionalized as t  =  t o / ( d / U o o )  

where d is diameter of the cylinder and Uoo is the freestream velocity. The number of 

sub-iterations per time step was varied to obtain a residual reduction of two orders of
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magnitude per time iteration (Figure 11). The use of an iterative procedure to solve the 

unsteady residual at each time step requires a number of sub-iterations which grows as 

the outer time step size is increased.

Residual Time History

«

□>o—I

30 40

Iteration

Figure 11. Sample convergence rate o f the density residual for one time step and 40 sub­
iterations obtained on grid o f Figures 8 through 10 using four multigrid levels.

The one-equation Spalart-Allmaras turbulence model was used for all 

calculations in fully turbulent mode to avoid issues related to transition. This will be 

shown to affect some of the results. However, the time history of the force coefficients, 

that represent the main objective of this case, will be unaffected.

In all cases, the agglomeration multigrid strategy was used with four levels 

(Table 4). All runs were performed in parallel using 16 Pentium II 400 MHz processors 

in a PC cluster at ICASE.
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Multigrid Level Number ol‘ Nodes Number of Edges Number of 
Boundary Nodes

1 631,225 2,267,501 59,560
2 11,318 43,646 906
3 3,677 13,324 913
4 1,508 5,457 247
Table 4. Multigrid Level Description fo r  grid o f Figures 8 through 10.

Inviscid (slip velocity) boundary conditions were applied at the end-walls and no­

slip boundary conditions were applied on the surface of the cylinder. The three- 

dimensional simulations reported herein were also compared with two-dimensional 

simulations of flow around a circle using a validated two-dimensional unstructured 

solver [21, 22] and found to agree well in terms of force coefficient histories and 

shedding frequency.

Results

Table 5 shows the Strouhal numbers computed for each mesh and each time step. 

Convergence is achieved as the time step is reduced and the mesh size increased. A 

second-order accurate convergence behavior was observed as the time-step was reduced, 

validating the accuracy of the three-point backwards difference scheme used to discretize 

the time step. Note how the error is reduced by a factor of 2.99 for the coarse grid and by 

a factor of 3.42 for the line grid, as the time step is reduced by a factor of 2 from 0.5 to 

0.25, assuming 0.20833 as the grid converged solution. From the smallest time step 

results, the solution can be seen to be grid converged, at least with respect to the 

prediction of the vortex shedding frequency. The computed Strouhal number compares 

very well with the experimental value of St = 0.21 [31]. Figure 12 shows the time history
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of the lift coefficient, while the oscillatory pattern corresponding to the vortex shedding 

is shown in Figure 13.

1 imc 'step

0.5 0.25 0.1

0.252
Million
Points

0.19249 0.20304 0.20833

0.631
Million
Points

0.19379 0.20408 0.20833

Table 5. Predicted Strouhal Number for Various Grid and Time Step Size
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Figure 12. Computed lift coefficient time history for the flow over a circular cylinder 
using three different time steps. Mach=0.2, Re=l,200
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Figure 13. Mach contours at three different time snapshots for flow over a circular
cylinder. Mach=0.2, Re=1,200.
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Figure 14 shows the pressure distribution over the surface of the cylinder. The 

pressure distribution was computed by averaging results at different times distributed 

along four oscillations. For this calculation, results obtained using the finest mesh and 

the smallest time step were used. As can be observed from Figure 14, the computed 

pressure distribution compares more closely with experimental results at a higher 

Reynolds number than the one used for these computations. This is likely due to the use 

of the turbulence model in the fully turbulent mode, in order to avoid the issues of 

transition prediction, which affects the separation point location with the consequent 

effect on the pressure distribution. Similarly, the backpressure Cpb = -1.27 compares 

closely to the CPb = -1.30 at Re=27,700 measured by Linke [32], The mean value of the 

computed drag coefficient is Cd=1.30 compared to Cd=1.20 as measured by 

Wieselsberger [32, 33] for Re=30,000.

Mean pressure coefficient distribution over the cylinder.
M = 0.2, Re = 1200

1r

0.5

0
ci
o

-0.5
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- ’ ■5 0 20 40  60 80  100 120 140 160 180
4> (dsg)

Figure 14. Computed mean pressure distribution over the cylinder surface compared 
with experimental data. Experimental data extracted from [32].
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The mean skin friction over the cylinder surface is shown in Figure 15. Similar to 

the pressure distribution, the mean skin friction distribution over the cylinder surface was 

computed by averaging results at different times distributed along four oscillations. For 

this calculation, results obtained using the finest mesh and the smallest time step were 

used.

Mean shin friction over the cylinder. 
M = 0.2, Re = 1200

0 .08

0 .0 7
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0 .0 4
(S
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0.01

20 40 60 8 0  100 120 140 160 180
<£ (cleg)

Figure 15. Computed mean skin friction over the cylinder surface. M=0.2, Re=l,200. 

Conclusions

The results obtained for the flow around a circular cylinder are very satisfactory 

and demonstrate the successful implementation of the unsteady terms, making the solver 

capable of time accurate calculations based on a second order implicit scheme. Since 

turbulence is inherently unsteady and three dimensional, the solver capability for
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unsteady calculations was the first step toward a Detached Eddy Simulation (DES) 

capability.
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CHAPTER V 

DETACHED EDDY SIMULATION

Detached Eddy Simulation (DES) was introduced by Spalart in 1999 [8] as a 

hybrid technique that combines RANS and LES in a non-zonal manner. DES is based on 

the Spalart-Allmaras one equation RANS model in which the length scale, d, which is 

traditionally taken as the shortest distance at any given point to the closest wall, is 

replaced as the minimum between the distance to the wall and a length proportional to 

the local grid spacing (LGS). The mathematical expression of this is given by

d o E S  =  m i n  ( d ,  C d e s  x  LGS) (6 7 )

where C d e s  represents a model constant which has been taken as 0.65 in previous work 

[10, 40]. Traditionally, on structured grids, LGS is taken as the maximum grid spacing 

over all three directions. In our particular case, the definition of LGS has been modified 

for unstructured grids by taking it as the maximum edge length connecting a given 

vertex. In boundary layer regions, LGS far exceeds the distance to the wall, d, and the 

standard Spalart-Allmaras RANS turbulence model is recovered. However, away from 

the boundaries the distance to the closest wall exceeds C d e s  x  LGS and the model 

becomes a simple one-equation sub-grid-scale (SGS) model with the mixing length 

proportional to the grid spacing. This effect is illustrated by plotting contours of the 

distance or length scale function for both the RANS and DES models in Figure 16, 

where it is observed that both models employ the same length scales near the wall, but
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use vastly differing length scales in the regions far removed from the wall, where the 

DES model reverts to an LES mode and a Smagorisnky-like expression for the eddy 

viscosity is obtained.

Based on the definition of the length scale performed by DES, it is evident that 

grid isotropy is necessary. This is not an unsolvable problem for anisotropic meshes, but 

the DES length scale must be redefined to take into account the anisotropy of the mesh in 

stretched meshes.

Moreover, a good mesh is crucial to DES. Good mesh is defined as mesh that 

concentrates points in the regions where high levels of vorticity are anticipated and DES 

is expected to be most important, capturing large concentrations of small eddies. These 

regions are mainly zones with massively separated flows for which DES was specifically 

designed. Note that in RANS, it is the mean flow that is being computed, and the role of 

grid refinement is to minimize mesh influence. Beyond a certain level of grid refinement, 

the solution accuracy does not improve and becomes limited by turbulence modeling 

inadequacies. In DES, grid refinement adds physical resolution of the flow by increasing 

the number of flow features being captured. Nonetheless, another good characteristic of 

DES is that, in the case of being applied on a mesh which is too coarse to take advantage 

of all the DES potential, it will behave as a RANS calculation. The solution obtained in 

this case will not display all the detail expected from a DES calculation but will maintain 

a “fairly good” averaged value, that may be appropriate for certain engineering tasks. 

Note that the term “fairly good” is very subjective and requires clarification. In some
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flow regimes, characterized by attached flow, these solutions will be within acceptable 

error intervals, but as the flow starts to separate the solution will deteriorate, and for 

cases of massive separation, the solution will be quite poor with error percentages that 

can go up to 50% in CL, as will be illustrated for a NACA 0012 at a 60 degree angle of 

attack in Chapter VIII.

Unstructured meshes exhibit flexibility in terms of mesh adaptivity that can be 

very useful for DES. In a related effort, Spalart [23], in the “Young Person’s Guide to 

Detached Eddy Simulation Grids” (YPG), has described the process of grid design and 

assessment for DES, defining important regions in the solution and offering guidelines 

for grid densities within each region. In the YPG, the advantages of unstructured meshes 

in concentrating points in regions of interest and in coarsening the mesh away from these 

areas, are pointed out. The YPG also stresses the preference of isotropic cells in DES 

regions.

DES is based on the Spalart-Allmaras RANS turbulence model and therefore, it 

maintains some of its characteristics. The SA (Spalart-Allmaras) turbulence model is a 

useful engineering tool that exhibits its best qualities for attached flows, since it has been 

calibrated for aerodynamic purposes. As concluded by Wilcox [24], this model presents 

its worst discrepancies solving jet-like free shear flows (40% discrepancies for spreading 

rates). On the other hand, far-wake and mixing layer flow results are quite satisfactory 

(within 14% for spreading rate). In summary, this model appears to be a good starting 

point for computing massively separated flows especially compared to other turbulence
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models. In Table 6 [24], the computed spreading rates for five different flows (far wake, 

mixing layer, plane jet, round jet and radial jet) using four different turbulence models 

(Baldwin-Barth, Spalart-Allmaras, k-co, k-e) are compared to the measured experimental 

values. The conventional definition of spreading rate for wakes is the value of the

similarity variable, if = y ^ p U l / D x , where the velocity defect is half of its maximum

value, with D the diameter of the circular body generating the wake. Similarly for the 

plane jet, round jet and radial jet, the spreading rate is the value of y/x where the velocity 

is half its centerline value. For the mixing layer, the spreading rate is defined as the 

difference between the values of y/x, where (U-U2)2/(Ui-U2)2 is 9/10 and 1/19. Note also 

that the SA turbulence model is one of the preferred models in industry because of its 

simplicity and reasonable accuracy. Industrial turbulence models must try to capture the 

physics of the flow by introducing the minimum possible complexity.

O n o  K | i i . i i i n i i  M o d e l s

1 w t i -1  q i i d t i o n

E x p e r i m e n t a l

Flow Baldwin-Barth Spalart-Allmaras k-co k-e Measured

Far Wake 0.315 0.341 0.339 0.256 0.365

Mixing Layer - 0.108 0.105 0.098 0.115

Plane Jet 0.156 0.101 0.108 0.10-0.11

Round Jet - 0.246 0.088 0.120 0.086-0.096

Radial Jet - 0.166 0.099 0.094 0.096-0.110

Table 6. Comparison o f spreading rates o f different free shear flows computed using the 
Spalart-Allmaras turbulence model and other turbulence models [24].
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In contrast, it must also be mentioned that, since DES is based on the SA 

turbulence model, it retains some of its weaknesses. That is, DES depends on SA to 

determine transition from laminar to turbulence and more important, DES relies on S A to 

determine the separation location.

Finally, it must be stated that even though DES is not perfect, and has some 

inherent problems, it is acceptable in many situations. It is a good approximation for 

complicated highly turbulent flows, and maintains a good balance between the obtained 

results and the cost to obtain them, in time and computational resources.
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Figure 16. Comparison o f the length scale used by the Spalart-Allmaras turbulence 
model and DES for an unstructured mesh used to compute the flow over a NACA 0012

airfoil shown in Figures 58&59.
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CHAPTER VI 

DECAYING HOMOGENEOUS TURBULENCE

Description of the case

In this chapter, DES is used in a pure LES mode to evaluate the capability of the 

modified Spalart-Allmaras single equation turbulence model to act as a fair Sub-Grid- 

Scale model. Different values of the constant C d e s  will be tested to validate the value of

0.65 as the optimum as stated by Shur et al. [10]. This case will also be used to extract 

information about the magnitude and effect of the artificial dissipation of the numerical 

scheme as compared to the eddy viscosity of the turbulence model.

This test case is based on the experiment performed by Comte-Bellot and Corrsin 

[34] which consists of studying the correlation coefficient of turbulent velocities behind 

a regular grid spanning a uniform airstream. This approximates isotropic turbulence 

since, as stated by Simmons & Salter [35], “the streamwise evolution of the temporally 

stationary turbulence field set up by a regular grid spanning a steady, uniform duct flow 

resembles the time evolution of the mathematical ideal of isotropic turbulence”. The 

condition of isotropy is defined by the invariance under coordinate rotation or reflection 

of the statistically averaged properties of turbulence. Since many of these properties 

involve two or more spatial locations, isotropy requires homogeneity as well. For 

simplicity the motion can be restricted to be an incompressible, Newtonian fluid with
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zero mean velocity everywhere. This can be visualized as a random motion with zero 

mean velocity in an infinite domain decaying with time. Obviously, this kind of flow 

cannot be tested experimentally. However, an approximation can be obtained by using 

the simplest Eulerian space-time correlation by measuring at two different points behind 

a grid in a uniform airstream in the streamwise direction, and choosing a time delay for 

the measurement at the second point that ‘cancels’ the mean flow displacement.

Computational techniques allow us to perform virtual experiments that would be 

impossible in reality. It is not necessary to use a space-time correlation to approximate an 

isotropic decaying turbulence because a decaying random motion in a periodically 

“infinite” domain can be computationally simulated. Therefore, the computational test 

case will consist of a square symmetric box with periodic boundary conditions in all 

directions which is initialized with random values and phases in each node, but with a 

prescribed three dimensional energy spectrum. The flow inside the computational 

domain is computed in time and the energy spectrum is observed as it decays, in order to 

study the decay rate as compared to experimental results and previous computational 

tests [10, 40, 34]. By “correct” decay it is understood that the numerical scheme will not 

pollute the energy spectrum and a -5/3 Kolmogorov slope will be recovered in the 

inertial sub-range. Moreover, the rate of decay should be correct as compared to the 

experimental results.
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Computational domain.

The computational domain consists of a symmetric cube of unit dimension. Four 

different meshes were used: two coarse grids of 32,768 nodes symmetrically distributed 

in all directions (32x32x32), in one case formed by prisms and in the other formed by 

hexahedra, and two fine grids of 262,144 nodes (64x64x64), again one formed by prisms 

and one formed by hexahedra.

Figure (17) shows a three-dimensional sample view of the computational domain.

0.6

Figure 17. Three-dimensional view o f the computational domain for the decaying 
homogenous turbulence case. 64x64x64 mesh shown.
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Initial condition and boundary conditions.

Since the objective is to initialize the computational domain with a velocity field 

with a pre-defined energy spectrum, the initialization is mainly performed in the Fourier 

domain. The flow in the computational domain is initialized with an arbitrary periodic 

velocity field in the Fourier domain and the pre-defined energy spectrum is enforced by 

multiplying the velocity components by the value of the energy spectrum for the wave 

number associated with each node. For this velocity field in the Fourier domain to be a 

realistic velocity field in the physical domain it is necessary to enforce certain 

conditions. First, symmetry is required with respect to the center of the computational 

domain to assure real numbers (no imaginary part) in the physical domain when the 

inverse Fourier transform is performed to go from the Fourier space to the physical 

space. Second, the velocity field has to comply with the continuity condition. A detailed 

description of the process follows to initialize the variable values at each node:

1. Assign to each node a wave number:

N being the number of nodes in each direction (32 for the coarse grid or 64 for 

the fine grid).

k l(in iy’iz) = ix

k?,(h’iy 'iz )= iz

(68)
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2. Assign to each node a velocity vector in Fourier space with its 

components formed by random Gaussian amplitudes of zero average:

ul(ix,iy,iz) = ( - ln t / j )^  -[cos(2-;r-[/2) + /-sin (2-/r-[/2)] 

u2(ix,iy,iz) = ( - ln f / j)^  ■[cos(2-7r-U2) + i-sm (2-K -U 2)] (69)

u3(ixjiy,iz) = (- ln£7,)^ -[co s(2 -;rt/2) + i-sin(2-;r-£/2)]

where

f/j = uniform random number between [0, l] 
f /2 = uniform random number between [0, l]

3. Considering that the shape of the energy spectrum is known, it is 

projected onto the velocity field computed in step 2 by multiplying the velocity 

components by the value of the energy spectrum for the wave number associated 

with each node.

“ i (** > [y »*’*)-> “ i (h »iy»**) • /(* )
«2(**d y ,iz) - * u 2(ix , iy, iz)- f ( k )  (70)

« 3  (* x  ’ * ,  . * * ) - >  « 3  (* x  » i y  ’ ** )  • / ( * )

where

fc(ix, iy ,iz) = J k x2(ix, iy ,iz) + k2 {ix, iy ,iz) + k 2(ix, iy, iz) (71)

4. The velocity components are forced to be symmetric with respect to the

center of the cube. In this way, real values for the physical velocity field are

obtained when the three dimensional inverse Fourier transform is computed .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

u*i  O'*» 0  > 0 )  «► «,• H *  H ,  H * )
u i(ix, iy,/,)<=> M,( N - i x, N - i y, N  - iz) 

m (0,0,0) = ̂  • [u (0,0,0) + it* (0,0,0)] (73)

5. The incompressibility condition ( V • u — 0) is enforced:

k n Or»K (ir , i v, i , )<* / «  .  .  / o  d  v  jc ’  y  ’  z  /  z ' \  *■ /  • • • \

“ A . - , (74)

j  = 1,2,3 /? = 1,2,3

Being the incompressibility condition in Fourier space:

k{ ■ ui = 0 (75)

since:

u = u - e ~ lkx'

dit;
dXj

— = —ik u, e 1 1 = - ik  ■ n,

(76)

6. Finally, the three-dimensional inverse Fourier transform is computed and 

the physical velocity field (Figure 18, 19, 20) with a characteristic energy 

spectrum is obtained.

The boundary conditions are periodic in all directions to emulate an “infinite” 

computational domain. The variables are initialized with equal value for opposite nodes
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in opposite boundary faces and the residuals are forced to be the average of the residual 

at these nodes at each iteration. As a result, the updated variable values at the boundary 

faces are the same and the domain behaves as an infinite domain. The periodic boundary 

conditions were tested by initializing the velocity field with an average freestream 

velocity in the x-direction and adding a periodic disturbance of zero average to the 

velocity value. The result was periodic disturbances moving with average velocity in the 

x-direction, such that the disturbance would disappear through one face of the domain 

and re-appear through the opposite face due to the periodic boundary condition.

A time step of 0.01 was used for the runs, where time was non-dimensionalized

as

where L is the computational domain side length and u’ represents the initial root-mean- 

square (rms) of the average velocity fluctuation. The resulting flowfields at t=0.87 and 

t=2.0 are post-processed to obtain the energy spectra, which are then compared to the 

corresponding experimental data.

In all cases, it is necessary to obtain the initial eddy viscosity field by pre­

converging the turbulence model running with the flow-field held frozen. Once the 

initialization is completed, the solution is advanced in time using the implicit time-step 

procedure described in Chapter III.

(7 7 )
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Figure 18. Sample two-dimensional cut o f the initial velocity field fo r  the 32x32x32 node
mesh.
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Sample Velocty Field - 643

ixstll-

Figure 19. Sample two-dimensional cut o f the initial velocity field fo r  the 64x64x64 node
mesh.
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Figure 20. Close up view o f the sample two-dimensional cut o f the initial velocity field
for the 64x64x64 node mesh
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Cases Tested and Results

Three different kinds of tests were performed.

1. First, the decaying homogeneous turbulence was run for four different levels 

of artificial viscosity (vis2 = 3, 4, 5, 20; 20, being the value generally 

employed for steady calculations in RANS mode). All cases were run with 

and without the turbulence Sub-Grid-Scale model to afford an evaluation of 

the effect of the eddy viscosity on the overall solution. Two different 

hexahedral meshes of 32,768 and 262,144 mesh points were employed for 

these runs. The objective of these runs was to assess the effect of the artificial 

viscosity as compared to the eddy viscosity computed by the DES Sub-Grid- 

Scale model, and therefore, to be able to determine appropriate levels of 

artificial viscosity for accuracy and stability.

2. Second, different values of Cdes (0.25, 0.55, 0.65, 0.75) were tested for two 

hexahedral meshes of 32,768 and 262,144. For all these tests a fourth of the 

nominal value of the artificial viscosity scaling factor was used. In this case 

the objective was to conclude if the Cdes value of 0.65 is the optimum as 

stated by Shur et al. [10].

3. Finally, four different meshes were compared: two meshes of 32,768 nodes, 

one formed by hexahedral and one by prismatic cells, and another two meshes 

of 262,144, one formed by hexahedral cells and the other by prismatic cells.
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In these runs the Cdes value used was 0.65 and the artificial viscosity level 

was set to a fourth of its nominal value. In this case, the two meshes were 

compared to observe the difference produced by different cell shapes.

Test 1

The results obtained for the first set of cases are shown in Table 7 and from 

Figure 21 to Figure 26. These figures illustrate the computed energy spectra in both grids 

(32,768 and 262,144 nodes) at two time levels for different values of the artificial 

dissipation scaling factor starting with the nominal value, i.e. the value generally 

employed for steady calculations in the RANS mode. As can be observed in Figure 21 

and 22, the finer scales decay more rapidly than do the experimental values. When the 

same simulation is performed with the eddy viscosity turned off, little difference in the 

energy spectra is observed, suggesting that the eddy viscosity values are overwhelmed by 

the levels of artificial dissipation. Repeating the same computation for lower scaling 

factors of the artificial dissipation terms (0.25, 0.20, 0.15 of the nominal value) 

substantially better agreement is observed at all scales, as can be observed in Figures 23, 

24, 25 and 26. However, for some of these cases, stability problems arise when the 

artificial viscosity is reduced bellow a certain level and the eddy viscosity is not high 

enough to maintain the stability of the numerical scheme. These cases are marked in 

Table 7 as “not converged” which indicates that at some point, the numerical scheme 

became unstable (not enough dissipation) and could not converge. As can be observed in 

Figures 23 and 24, the results obtained for a scaling factor of the artificial dissipation of 

0.25 of the nominal value, produced a good agreement up to k=10 for both grids. The
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agreement for lower wave numbers is reasonably good for both grids. The value of a 

fourth of the scaling factor nominal value for the artificial dissipation was used in 

consecutive tests since it showed reasonably good results for both grids and did not show 

any stability problems.

Fraction of 
nominal 
artificial 

dissipation 
scaling factor

Artificial 
dissipation 

scaling value

Sub-Grid- 
Scale model Mesh-323 Mesh-643

1 20 Disabled Converged Converged

1 20 Activated Converged Converged

'/4 5 Disabled Converged Not converged

Va 5 Activated Converged Converged

1/5 4 Activated Converged Not converged

1/6.66 3 Disabled Not converged Not converged

1/6.66 3 Activated Not converged Not converged

Table 7. Summary o f converged/not converged runs o f the tests performed 
with different levels o f artificial dissipation and with Sub-Grid-Scale model activated or

disabled (Test 1).
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Eddy Viscosity OFF 
Artificial Dissipation Scaling Factor=  20

«—

  32 ; M>J97
-  -  32s ;twZjOO 
  64s ; t-OJ97
-  -  64s J WZjOO

Comte et al. * t-0.87 
Comte et a l.; t-2.CO

5 10 15 20 25 30
k

Figure 21. Comparison o f the computed and measured energy spectra decay. Sub-Grid- 
Scale model disabled. Nominal value o f the artificial dissipation scaling factor. 

Computation performed in fine (643) and coarse (32s) meshes.
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Eddy Viscosity ON 
Artificial Dissipation Scaling Factor=  20
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Figure 22. Comparison o f the computed and measured energy spectra decay. Sub-Grid- 
Scale model activated. Nominal value o f the artificial dissipation scaling factor. 

Computation performed in fine (643) and coarse (32s) meshes.
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Eddy Viscosity OFF 
Artificial Dissipation Scaling Factor = 5
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  84s ; t-0.87

Comte et a l.; t-0.87 
Comte etai it-2.00

5 10 15 20 25 30
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Figure 23. Comparison o f the computed and measured energy spectra. Sub-Grid-Scale 
model disabled. 1/4 o f the nominal value o f the artificial dissipation scaling factor. 

Computation performed in fine (64s) and coarse (323) mesh.
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Eddy Viscosity ON 
Artificial Dissipation Scaling Factor = 5
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Figure 24. Comparison o f the computed and measured energy spectra decay. Sub-Grid- 
Scale model activated. 1/4 o f the nominal value o f the artificial dissipation scaling 

factor. Computation performed in fine (643) and coarse (323) mesh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

Eddy Viscosity ON 
Artificial Dissipation Scaling Factor = 4
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Figure 25. Comparison o f the computed and measured energy spectra decay. Sub-Grid- 
Scale model activated. 1/5 o f the nominal value o f the artificial dissipation scaling 

factor. Computation performed in fine (64s) and coarse (323) mesh.
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Figure 26. Comparison o f the computed and measured energy spectra. (1/6.66) o f the 
nominal value o f the artificial dissipation scaling factor. Computation performed in

coarse (32s) mesh.
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Test 2

The results of the second test are shown in Figures 27 and 28. In this case, 

different values of the constant Cdes were tested for two hexahedral meshes of 32,768 

and 262,144 nodes. This constant acts as a proportionality constant for the eddy viscosity 

computed by the Sub-Grid-Scale model, which will affect the velocity decay rate of the 

finer scales. Shur et al. [10] also computed this case and concluded that Cdes=0.65 was 

the optimum value. All these cases were computed using a fourth of the nominal value of 

the artificial dissipation scaling factor. As can be observed in Figures 27 and 28, 

Cdes=0.65 and Cdes=0.5 are the two values which give the best results. While Cdes=0.25 

did not converge for some of the cases and Cdes=0.75 is too dissipative.
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Figure 27. Comparison o f the computed and measured energy spectra decay fo r  different 
values o f the C o e s  constant. Computation performed in coarse (32s) mesh with (1/4) o f  

the nominal artificial dissipation scaling factor. Sub-Grid-Scale model activated.
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Figure 28. Comparison o f the computed and measured energy spectra decay fo r  different 
values o f the C des constant. Computation performed in fine (64s)  mesh with (1/4) o f the 

nominal artificial dissipation scaling factor. Sub-Grid-Scale model activated.
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Test 3

Figures 29, 30, 31 and 32 show the results obtained for test 3 in which the 

difference between hexahedral meshes and prismatic meshes was examined for meshes 

of 32,768 and 262,144 nodes. All these cases were computed using Cdes=0.65 and a 

fourth of the nominal value of the artificial dissipation scaling factor. The results 

obtained show that prismatic element meshes produce higher levels of dissipation than 

hexahedral element meshes. This is a reasonable result since the length scale used by the 

Sub-Grid-Scale model was defined as the maximum edge length incident on each node. 

Considering that the prismatic cells were constructed by dividing the hexahedral cells in 

two prisms using a diagonal plane, new longer edges defined by the diagonal planes 

appear in the prismatic mesh. This definition of the length scale is taken from the 

original DES definition by Shur et al [10] and produces the wrong effect of making a 

prismatic cell, theoretically finer than a hexahedral mesh and more capable of capturing 

small eddies, more dissipative since the length scale used by the turbulence model is 

approximately 1.5 times higher, stimulating the eddy viscosity generated by the Sub- 

Grid-Scale model. A better definition of the length scale is necessary to avoid effects 

such as this, especially in meshes in which DES will be applied to regions containing 

different element shapes. In our test cases this issue will not be decisive since the DES 

regions will be formed exclusively by tetrahedral elements.
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Time = 0.87

Vs- \

Comte et a l.; t-0.87 
32s vls2-5; Hexahedral 
32s vls2-5; Prism 
32s vls2-4; Prism 
32s vls2-3; Prism

Figure 29. Comparison o f the computed and measured energy> spectra decay to t=0.87 
fo r  different mesh types (Hexahedral & Prism). Computation performed in coarse (32s) 
mesh with an artificial dissipation scaling factor o f 5. Sub-Grid-Scale model activated.
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Time = 2.00

Y\
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32s VIS2-3; Prism

Figure 30. Comparison o f the computed and measured energy spectra decay to t=2.00 
fo r different mesh types (Hexahedral & Prism). Computation performed in coarse (32s) 
mesh with an artificial dissipation scaling factor o f 5. Sub-Grid-Scale model activated.
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Time = 0.07
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Figure 31. Comparison o f the computed and measured energy spectra decay to t—0.87 
fo r different mesh types (Hexahedral & Prism). Computation performed in coarse (64s) 
mesh with an artificial dissipation scaling factor o f 5. Sub-Grid-Scale model activated.
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Time = 2.00
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Figure 32. Comparison o f the computed and measured energy spectra decay to t=2.00 
fo r different mesh types (Hexahedral & Prism). Computation performed in coarse (64s) 
mesh with an artificial dissipation scaling factor o f 5. Sub-Grid-Scale model activated.
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Conclusions

The test case of decaying homogeneous turbulence in a periodic domain was used 

to investigate DES in a pure LES mode and to assess the effects of artificial dissipation, 

Cdes values, and mesh type in its performance. The results showed that a fourth of the 

nominal value of the artificial dissipation scaling factor yields adequate solutions without 

compromising the stability of the numerical scheme. This means that the solution closely 

reproduced the decaying energy spectrum up to a wave number of 10 in the fine mesh 

without polluting the solution with undesired numerical effects. The lowest value to 

which the numerical dissipation can be reduced before the numerical scheme becomes 

unstable will be test dependant. Nevertheless, at this point, a fourth of the nominal value 

seems quite reasonable assuming a good quality mesh. The conclusions by Shur et al. 

[10] were corroborated and a Cdes value of 0.65 was taken to be appropriate for 

maintaining a good equilibrium between excessive dissipation and numerical stability.

The different mesh types (hexahedral and prismatic cells) revealed potential problems 

when using meshes of mixed elements in DES regions. The definition of the length scale 

of the Sub-Grid-Scale model as the maximum edge length incident on each node can 

produce the wrong effect in cases in which smaller cell volumes can have longer edges, 

as is the case for prismatic shapes. In such cases, higher levels of eddy viscosity will be 

computed by the Sub-Grid-Scale model, and at the same time smaller eddies will be 

captured by smaller cell shapes. This will produce excess dissipation in meshes with 

smaller cell shapes which were expected to produce better results.
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CHAPTER VII 

FLOW AROUND A SPHERE

Introduction

The flow over a sphere is analogous to the flow over a cylinder in some respects 

but presents significant differences due to axial symmetry rather than plane symmetry. 

Three-dimensional flows compared to two-dimensional flows present even more 

complicated kinematic and vortical interactions and therefore, remain less understood.

The flow around a sphere will adopt very different characteristics depending on 

the Reynolds number. For very low Reynolds numbers (Re <0.1, called creeping flow) 

inertial forces are negligible and the streamlines are symmetric with respect to the center 

of the sphere. For Re > 1.0, the inertial effects become significant and the flow becomes 

asymmetrical fore and aft. At Re = 24, separation occurs at the rear of the sphere and a 

thin standing vortex ring is formed. The point of separation moves forward with 

increasing Re numbers until it reaches a stationary point at 81 degrees azimuthal from 

the forward stagnation point at Re = 1.0 x 104. The wake will become fully developed for 

Re = 100 and at Re = 140 the vortex ring will start to be shed periodically. The 

oscillatory behavior will extend up to Re = 2 x 105, with the wake becoming increasingly 

chaotic but keeping a laminar boundary layer on the surface of the sphere and a laminar 

separation point around 81 degrees azimuthal from the forward stagnation point. For
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higher Re ( Re > 2 x 105) the boundary layer will become turbulent and the separation 

point will move backward decreasing the size of the wake and sharply reducing the drag. 

The Reynolds number at which the boundary layer switches from laminar to turbulent 

flow is known as the critical Reynolds number and is characterized by a dramatic 

reduction of the drag. The overall effect of Reynolds number in the flow around a sphere 

is summarized in Figures 33, 34, 35 and 36 [36].
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Figure 33. Experimental measurement o f the drag coefficient o f a sphere as a function 
o f the Reynolds number. Reproduced from [36]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

110

100

80

6 8 10710s 6 8 10® 22 4 4

ReD

Figure 34. Experimentally measured transition angle as a function o f the Reynolds
number. Reproduced from [36]
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Figure 35. Experimental measurements o f the pressure on the surface o f a sphere for  
different Reynolds numbers. Reproduced from [36],
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1809060300

Figure 36. Experimental measurements o f the skin friction on the surface o f a sphere for  
different Reynolds numbers: -o -, Re=1.62xl(f; -x~, Re-3.18x10s; -A -, Re=5.00xl06.

Reproduced from [36].

Extensive experimental studies of the sphere wake have shown the existence of a 

main instability mode related to the large scale shedding of the wake characterized by a 

Strouhal number of 0.185, which is practically constant in the range of Re=104 (the 

Strouhal Number is non-dimensionalized based on the free-stream velocity and the 

sphere diameter). Experiments have shown, that beginning at Re = 800, a second mode 

of instability coexists with the main mode up to a threshold Reynolds number, with some 

disagreement about its value. Most of the experimental investigations captured both 

modes at Re=104. In this research only the main mode was captured.

From a computational point of view, to be able to accurately capture these 

instabilities the numerical scheme must resolve the small eddies and at the same time 

account for the large scale eddy shedding. Therefore, it is difficult to properly predict
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this flow based on some form of the Reynolds-Averaged Navier Stokes (RANS) 

equations since, as was explained previously, the RANS approach fails for flows 

characterized by large regions of separation in which a very wide range of scales are 

present. A different approach, such as DES, must be used to capture the small scales and 

only model the Sub-Grid-Scales.

The flow around a sphere is the ideal case to test the DES approach. 

Constantinescu et al. [12] predicted the flow around a sphere for Re=104 in LES and 

DES cases using second-order and fifth-order upwind schemes for the convective terms 

in a structured mesh code. The most favorable agreement with the experimental results 

was obtained in LES and DES cases using the fifth-order discretization and the model 

coefficient Cdes=0.65. For all these computations, the transition location was forced 

using a ‘turbulence index’. The index is zero in the laminar region and can be assigned 

values higher than one for fully turbulent regions. The effect of transition will be shown 

to be extremely important in the subsequent study.

In this research, the case studied will be the flow around a sphere at a Mach 

number of 0.2 and a Reynolds Number of 10,000. At this point, it is important to 

mention that the initial computations were made assuming fully turbulent flow, that is, 

not forcing the transition from laminar to turbulent flow at a designated point but instead 

running fully turbulent flow over the whole surface of the sphere to avoid dealing with 

transition. This produced solutions associated with higher Reynolds numbers than the 

modeled value of 104 with consequences in the pressure and skin friction distribution
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over the surface of the sphere, as will be shown later. Similar effects were observed in 

Chapter IV for the flow over a circular cylinder.

The unsteady flow solutions obtained using URANS and DES will be compared 

focusing on the unsteady drag history and its frequency content, as well as mean pressure 

distribution and mean skin friction over the sphere surface. The effect of the artificial 

viscosity will be investigated based on the conclusions obtained from the decaying 

homogeneous turbulence in the periodic domain case presented in Chapter VI.

Computational Domain

The computational domain is a cubic box with an aspect ratio of 1 and a side 

length of 100 sphere diameters in all three directions. The center of the sphere is located 

in the center of the computational domain as shown in Figures 37. Figure 38 shows a 

detailed view of the mesh on the surface of the sphere.

The computational mesh is composed of 766,625 nodes. The mesh was generated 

using VGRIDns, a grid generator developed at NASA Langley Research Center [37]. 

VGRIDns uses the advancing layer method, allowing the specification of the initial 

normal coordinate for the first cell nearest a solid surface. To define grid spacing, 

VGRIDns uses “background sources” which can be placed anywhere in the 

computational domain. The mesh spacing at any location will depend on the distance to 

each source, source strength and source spacing. In this case, a single source was placed 

in the center of the sphere.
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A multigrid convergence acceleration technique of four levels (Table 8) was 

utilized in all computations. All the computations were performed in parallel using 16 

PEI 500-800 MHz processors of a PC cluster at ICASE. The unsteady calculations were 

performed using a time step of 0.05, where the time was non-dimensionalized using the 

freestream velocity and the sphere diameter. Thirty sub-iterations were used per time 

step to ensure a residual reduction of two orders of magnitude as shown in Figure 39. 

Each time step (of 30 sub-iterations per time step) took an average wall-time of 565 

seconds.

Multigriri Ia‘U‘1 Number of Nodes Number ol Edges i.;,*!
1 766,625 5,056,985
2 3,112 23,876
3 454 3,823
4 67 681

Table 8. Multigrid level description o f the unstructured mesh used to compute the flow  
around a sphere. Mesh shown in Figure 37 and 38.
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Figure 37. Two dimensional view o f the computational
domain.
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Figure 38. View o f the surface mesh for the sphere test
case
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Figure 39. Sample convergence rate o f the density residual fo r  one time step and 20 sub­
iterations obtained on grid o f Figure 40 and 41 using four multigrid levels.

Steady Results

Following the procedure used by Constantinescu et al. [12], the accuracy of the 

numerical approach was established by comparing the results obtained with previous 

computational and experimental results for the steady flow regime at a Reynolds number 

250. The drag coefficient was computed and the results obtained are compared to other 

simulation results and experimental data in Table 9. The agreement is satisfactory for all 

the cases tested. Because previous results were based on incompressible simulations, and 

the current solver is a density-based compressible formulation, the importance of 

compressible effects was also investigated by running the simulation at Mach numbers of 

0.2 and 0.1, both with and without a low Mach number pre-conditioner. The low Mach 

number pre-conditioner is imperative for flows containing regions of low Mach number 

flow, such as the stagnation regions in this case. The low Mach number pre-conditioner
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was implemented by modifying the dissipation terms in the residual as described in 

reference [38].

Constantinescu et al. 
(2000) 0.70

Johnson and Patel 
(1999) 0.70

Experimental 0.70 - 0.72

M = 0.1 0.7141

M = 0.2 0.7014

M = 0.1
Low Mach Number pre-conditioner 0.6961

M = 0.2
Low Mach Number pre-conditioner 0.6950

Table 9. Computed Steady Drag Coefficient for Flow over Sphere at Re = 250 
compared with Experimental and Previous Computational Values

Unsteady Results

For the unsteady runs, the flow around a sphere is computed at a Mach number of 

0.2, without any additional low Mach number preconditioning, and a Reynolds number 

of 104. At this Reynolds number, the detached vortex sheet from the sphere is fully 

turbulent while the boundary layer on the sphere remains laminar. The Strouhal number 

associated with the vortex shedding at this Reynolds number is in the range of 0.185- 

0.200 depending on the investigation. The differences in the measurements of the 

Strouhal number of the different investigations is mainly due to the influencing 

parameters and the measurement techniques of the different investigations.
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Figure 40. Time history o f the force coefficients using RANS

The RANS run produced the expected results with a good average drag 

coefficient value close to 0.4, but with a very poor solution of the wake oscillations. The 

Spalart-Allmaras turbulence model is excessively dissipative in this region, suppressing 

all the small eddy effects and providing a non physical smooth time history of the drag 

coefficient with no frequency energy content information, as can be observed in Figure 

40.

The Mach number contours depicted in Figure 41 corroborate the difference in 

the predicted flow using the regular Spalart-Allmaras URANS turbulence model and the 

detached eddy simulation (DES). DES exhibits a wider range of scales present in the
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flow while regular RANS models tend to suppress the smaller scales. This is the effect 

expected from DES since the length scale redefinition increases the relative magnitude of 

the destruction term in the Spalart-Allmaras model, diminishing the importance of the 

eddy viscosity and allowing instabilities to develop.

Mach Contours - DES 
m -  10,303, M = 0.2

mach

Mach Contours - SPL Rfl= 10,000, M- 0.2

Mach Contours - DES 
R8» 10,300, M - 0.2

mach

Mach Contours-SPL 
Ra» 10,000, M» 0.2

Figure 41. Comparison o f Mach contours at different time snapshots computed using
DES (left) and URANS (right).

Four different DES calculations were made, the first run was performed using the 

nominal scaling factor for the artificial dissipation and the second run using one fourth of
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the nominal scaling factor value. As was demonstrated in Chapter VI, in the case of 

decaying homogenous turbulence in a periodic domain, one fourth of the nominal value 

of the scaling factor for the artificial dissipation yielded fairly good results in terms of 

accuracy and stability. However, reducing the levels of artificial dissipation produced 

solutions associated with higher Reynolds numbers than the one being targeted. Note 

that all the solutions computed for the flow around a sphere were computed in the fully 

turbulent mode to avoid dealing with transition from laminar to turbulent flow, thus 

producing solutions more closely associated with higher Reynolds numbers flow 

phenomena. This effect is particularly evident in this case, in which the solution obtained 

is extremely sensitive to the Reynolds number. This was observable in the shift in 

separation location and the pressure coefficient and skin friction distribution over the 

surface of the sphere. For all the calculations, a Cdes value of 0.65 was used.

The time history of the drag coefficient, the energy spectrum and the pressure 

coefficient and skin friction distribution obtained using the nominal value of the artificial 

dissipation are shown in Figures 46 through 49. A mean value of the drag coefficient of 

0.433 was obtained as compared to the experimental value of 0.45. However, the energy 

spectrum of the streamwise drag coefficient reveals a peak corresponding to a Strouhal 

number of 0.10 compared to the 0.18 - 0.2 values reported experimentally. The artificial 

dissipation for this case is too dissipative, damping out most of the effects of the small 

eddies. The mean pressure and the mean skin friction distribution were computed by 

averaging over the azimuthal direction (19 test points separated by 10 degrees) and over 

at least 20 time units taking solutions every 0.5 time units (at least 40 solutions). The
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pressure coefficient distribution and skin friction distribution (Figures 43 and 46) 

obtained for the DES run with nominal artificial dissipation are in good agreement with 

the experimental results (Figures 36 and 39). Figure 42 shows the pressure distribution 

over the surface of the sphere at a sample snapshot showing the necessity of integrating 

the pressure distribution in the azimuthal direction and in time.
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Figure 42. Sample pressure coefficient distribution over the surface o f the 
sphere computed using nominal levels o f the artificial dissipation. Mach number=0.2

and R e - l( f .
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Figure 43. Sample time history o f the lift 
and drag coefficients fo r nominal artificial 

dissipation.
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Figure 45. Mean pressure coefficient 
distribution over the sphere for nominal 

artificial dissipation.
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Figure 44. Power spectrum o f the 
streamwise drag coefficient for nominal 

artificial dissipation.
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Figure 46. Mean skin friction distribution 
over the sphere for nominal artificial 

dissipation.
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Utilizing one fourth of the nominal value of the artificial dissipation produced an 

improvement in terms of the frequency content of the wake, as can be observed in the 

energy spectrum of the drag time history (Figures 47 and 50) that yielded a Strouhal 

value of 0.143 as compared to the experimental value of 0.18-0.20. However, the 

pressure coefficient (Figure 49) and the skin friction (Figure 50) distribution deteriorate 

producing solutions similar to the distributions produced for higher Reynolds numbers. 

Reducing the artificial dissipation emphasized the fact that the run was fully turbulent, 

producing a shift of the separation point similar to critical Reynolds number situations as 

shown in Figure 35 and 36.
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Figure 47. Sample time history o f the lift 
and drag coefficients fo r a fourth o f the 

artificial dissipation nominal value
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Figure 49. Mean pressure coefficient 
distribution over the sphere fo r  a fourth of 

the artificial dissipation nominal value.

Figure 48. Power spectrum o f the 
streamwise drag coefficient for a fourth o f 

the artificial dissipation nominal value.
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Figure 50. Mean skin friction distribution 
over the sphere for a fourth o f the artificial 

dissipation nominal value
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To be able to capture the instabilities associated with the small eddies and obtain 

simultaneously a good pressure coefficient and skin friction distribution over the sphere, 

it was necessary to force laminar separation by enforcing laminar flow ahead of the 90 

degree azimuthal location (measured from the front stagnation point). The results 

obtained are shown in figures 51 through 54.
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Figure 51. Sample time history o f the lift 
and drag coefficients for a fourth o f the 
artificial dissipation nominal value and 

laminar flow enforced ahead o f 90 degrees 
azimuthal.
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Figure 53. Mean pressure coefficient 
distribution over the sphere for a fourth of 
the artificial dissipation nominal value and 
laminar flow enforced ahead o f 90 degrees 

azimuthal.

Figure 52. Power spectrum o f the 
streamwise drag coefficient fo r  a fourth of 
the artificial dissipation nominal value and 
laminar flow enforced ahead o f 90 degrees 

azimuthal.
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Figure 54. Mean skin friction distribution 
over the sphere for a fourth o f the artificial 
dissipation nominal value and laminar flow  

enforced ahead o f 90 degrees azimuthal.
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Figure 55 highlights the effect of the artificial dissipation in the solution as it 

shows the transition in the computed lift and drag coefficient time history when the value 

of the scaling factor of the artificial dissipation is switched to a fourth of its nominal 

value at 100 time units. In both cases, the eddy viscosity was forced to zero (laminar) 

ahead of the 90-degree azimuth.
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Figure 55. Time history o f the lift and drag coefficient when transition from artificial 
dissipation nominal levels to V4 o f nominal levels is forced at t=100.
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Conclusions

The time history of the drag coefficient reveals important differences between 

URANS and DES. The mean value of the drag coefficient in all cases is close to the 

experimentally reported value of 0.40. However, the frequency content in each case is 

completely different. The URANS simulation appears to damp out most of the 

oscillations present in the DES runs, while the DES runs show a very chaotic oscillatory 

pattern quite similar to the solutions obtained by Constantinescu et al [12]. Spectral 

analysis of the time-dependent drag coefficient history reveals a peak corresponding to a 

Strouhal number ranging between 0.1 and 0.143 as summarized in table 10.

Artificial Dissipation Strouhal Number C d

Experimental 0.18-0.20 0.450

Nominal 0.1000 0.433

Vz Nominal 0.1300 0.426

Vi Nominal 0.1429 0.440

Va NominalJLaminar 0.1400 0.458

Table 10. Summary o f results o f the Strouhal number and averaged drag coefficient 
computed for the flow over a sphere at M -0.2  and Re-104 for different levels o f

artificial dissipation.

In an effort to completely understand the differences between the solutions 

obtained using the nominal value of the artificial dissipation and a fourth of the nominal 

value, a new run was performed using half the nominal value of the artificial dissipation 

factor. The results obtained are included in Table 10 and, as expected, confirm the trend 

observed for previous runs using the nominal value and a fourth of the nominal value.
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Predictions of the mean pressure distribution and mean skin friction distribution over the 

surface of the sphere are shown in Figures 56 and 57. The surface pressure distribution 

for nominal values of the artificial dissipation is in good agreement with the 

experimental results at Re= 157,200 in Figure 35, which is in agreement with the results 

reported by Constantinescu [12]. The pressure distributions obtained using DES and 

reduced values for the artificial dissipation scaling factor shows a degradation of the 

solution producing results associated with higher Reynolds numbers than the specified 

value, as can be observed comparing Figure 56 and Figure 57. The effects of running 

fully turbulent are magnified by the reduction of the artificial dissipation and it becomes 

necessary to force laminar flow (zero eddy viscosity) ahead of the 90° location to obtain 

better results for the pressure and skin friction distribution and good Strouhal number 

prediction. While the initial goal of this case did not include dealing with transition from 

laminar to turbulent, the necessity of enforcing laminar separation became apparent 

when results revealed shifting of the separation point associated with artificial 

dissipation levels. This stresses one of the main concerns of DES, which is that it relies 

on a RANS turbulence model to determine transition and separation.
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Figure 56. Summary o f pressure coefficient distribution results computed fo r  the flow  
over a sphere at M=0.2 and R e= l(f fo r  different levels o f artificial dissipation.
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Figure 57. Summary o f skin friction distribution results computed for the flow over a 
sphere at M=0.2 and Re=104 for different levels o f artificial dissipation.
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CHAPTER VIII 

FLOW OVER A WING

Introduction

In this case DES is used to compute the flow around a NACA 0012 wing. The 

objective was to test the DES technique as compared to URANS for flows of 

aeronautical interest, such as the stall and post-stall regimes of an airfoil. The NACA 

0012 is an airfoil that has been studied widely up to its stall angle of attack around 15 

degrees. For its post-stall characteristics we will rely on previous computational data [10] 

and some experimental data [39].

Test Description

URANS and DES were used to compute the flow over a NACA 0012 airfoil at a 

Reynolds number of 105 and a Mach number of 0.25. All the runs performed for the 

wing case can be organized in two categories:

• A first set of runs was performed to study the differences between the computed stall 

characteristics of the NACA 0012 obtained using DES and URANS. This included 

nine test points in the linear pre-stall, stall and post-stall regime up to a 16 degrees 

angle of attack (AoA = 4, 6, 8, 10, 11, 11.5, 12, 14, 16 degrees). Following the 

procedure of Shur et al. [10], all cases were computed using the turbulence model in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

the fully turbulent mode to avoid dealing with transition prediction issues. 

Obviously, considering the strong dependence on the Reynolds number of the stall 

characteristics, it was not expected to obtain the exact stall angle and Clmax value. 

However, the objective was to compare DES and URANS to identify major 

differences, assuming the errors derived from the transition issues would be similar 

in both cases.

• A second set of tests was devised to test DES at high angles of attack by attempting 

to reproduce the results obtained by Shur et al [10] which showed that DES was able 

to obtain accurate results of Cl and Cd for 45, 60 and 90 degrees of angle of attack, 

while URANS over-predicted these values by 50% as compared to the experimental 

results.

Computational Domain

The computational domain consists of a box of 30 chord-lengths in the x- and y- 

directions and 2 chord-lengths in the span wise direction. The NACA 0012 airfoil was 

located with its leading edge along the z=0 line. Several views of the computational 

domain are shown in Figures 58 through 61.

A mesh of 1,231,667 points was used with a grid spacing normal to the solid boundary of 

the first grid point closest to the wall of 10'5 chords. VGRIDns [37] was used for the 

generation of this mesh. As stated in Chapter VII, the mesh spacing at any location will 

depend on the distance to each source, source strength and source spacing. In this
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particular case, a line of uniform sources was placed along the leading edge and another 

line of uniform sources was placed along the trailing edge. A convergence acceleration 

multigrid technique of four levels was used in the flow solver. The details for each 

multigrid level are shown in the table below.

IVIiiltigrid Level Number of Nodes Number of Edges

1 1,231,667 6,203,383

2 10,517 65,934

3 1,565 8,832

4 229 1,349

Table 11. Multigrid level description o f the unstructured mesh used to compute the flow  
over a NACA 0012 airfoil. Mesh shown in Figure 58, 59, 60 and 61.

The boundary condition at the end walls is “slip” (inviscid) while on the wing 

surface the no-slip boundary condition is enforced. All runs were computed as fully 

turbulent to avoid having to trigger the transition point.
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Figure 58. Two-Dimensional side view o f the computational domain fo r  the NACA 0012 
wing case. Unstructured grid o f1,231,667points.

Figure 59. Two-Dimensioanl side view o f unstructured grid used fo r  computation o f flow  
over NACA 0012 wing. Number o f points=1,231,667, Wall resolution=lxlO ~5 wing

chords.
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Figure 60. Three-Dimensional view o f the computational domain fo r  NACA 0012 
case. Unstructured mesh o f 1,231,667points.

Figure 61. Three-Dimensional detailed view o f the wing-wall intersection
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In this case, due to time and computing constraints, only one time step of 0.25 x 

(c/Uoo) was used, where c is the airfoil chord. The calculations were carried out for a 

maximum of 50 time units for the post-stall cases, where a time unit represents the time 

it takes for the undisturbed far-field flow to travel one chord length. All the computations 

were performed in parallel using 16 PIII 400-800 MHz processors of a PC cluster at 

ICASE

Results for Stall Tests

The time history of the lift and drag coefficient show good agreement between 

URANS and DES for angles of attack below 11.5 degrees. This was expected since for 

pre-stall conditions the DES model operates primarily in the URANS mode. However, 

for the post-stall condition, i.e. angles of attack over 11.5°, the time history of the force 

coefficients obtained using URANS and DES showed differences similar to the ones 

observed for the sphere case. The time history of the DES results shows higher 

unsteadiness than URANS, indicating that more scales are being captured in the 

separated region, as can be observed in Figures 62 and 63, for sample angles of attack.
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Figure 62. Sample URANS Drag Coefficient Time History for Flow over NACA 0012 
Wing at various Angles o f Attack. Mach number=0.25, Re=105.
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Figure 63. Sample DES Drag Coefficient Time History for Flow Over NACA 0012 Wing 
at various Angles o f Attack. Mach number=0.25, Re=105
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Figure 64 shows four snapshots of the Mach contours computed using URANS 

and DES for angles of attack of 12 and 16 degrees. Note that these snapshots are cuts of 

the computational domain at z=l and they do not represent similar time frames.

12 degrees 16 degrees

0.309814
(X 271925
0.225145
0.151875aii34«
0.0678646
0.0124386

Figure 64. Sample Mach contours computed using URANS and DES at 12 and 16 
degrees angle o f attack. Mach number=0.25, Re=105.

The averaged lift and drag coefficient curves with respect to angle of attack are 

shown in Figures 65 and 66. The DES simulation predicts a more severe stall than the 

URANS results, i.e. lower post-stall lift and higher drag. This is consistent with the DES 

results obtained by Shur et al. [10], who computed an even more severe stall than the one
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obtained in this research. Both computations, URANS and DES, stall at the same 

incidence angle of 11 degrees as compared to the 12 degrees computed by Shur et al. All 

these results must be put in perspective taking into account the crucial effect on 

separation of transition, which is neglected here by assuming fully turbulent flow over 

the whole surface of the wing. With that in mind, it is concluded that comparison 

between URANS and DES with experimental data is not sufficiently close to favor 

agreement for one method over the other. DES is expected to show improvements at 

higher angles of attack for massively separated flow conditions, but it relies on URANS 

to predict separation and near-stall regimes. This dependency on RANS to predict 

transition and separation is one of the major limitations of DES which needs to be 

addressed in future investigations.
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Figure 65. Comparison o f Computed Lift Coefficient versus Angle o f Attack fo r  URANS 
and DES versus Experimental Data at two Different Reynolds Numbers
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Figure 66. Comparison o f Computed Drag Coefficient versus Angle o f Attack for  
URANS and DES versus Experimental Data at two Different Reynolds Numbers
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Results for Post-Stall Tests (AoA=60 degrees)

After concluding that DES and RANS predicted similar separation and little 

differences in near-stall results, it was decided to test DES at higher angles of attack 

since in massively separated conditions DES should produce more valid results than 

RANS. Previous studies [10] had shown that DES was able to accurately predict Cl and 

Cd at 60 degrees incidence while RANS over-predicted this case by 50%.

Initial runs of the wing case at 60 degrees angle of attack were performed using 

the same mesh used for the near-stall tests producing surprisingly poor results, very close 

to the results obtained by previous URANS calculations. The time history of the lift and 

drag coefficients for an angle of attack of 60 degrees is shown in Figure 67. The results 

appear closer to URANS results than to the expected DES values obtained by Shur et al. 

and to the experimental values of 0.90 for the lift coefficient and 1.625 for the drag 

coefficient.

Figure 68 shows a snapshot of the Mach contours obtained using DES for an 

angle of attack of 60 degrees incidence.
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Figure 67. Lift and drag coefficient time history fo r  60 degrees ofAoA. Computation 
performed on unstructured mesh o f 1,231,667 nodes. Mach number = 0.25, Re = 105.
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Figure 68. Sample Mach contours o f the flow around a NACA 0012 at 60 degrees AoA. 
Computation performed on unstructured mesh o f2,107,026 nodes. Mach number = 0.25,

Re = 105.
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The averaged computed Cl and Cd are summarized and compared to the DES 

results obtained by Shur et al. [10], the URANS results, and the experimental results in 

Table 12.

CD
Experimental 0.90 1.625

Shur et al. (DES) 1.000 1.625

URANS 1.300 2.250

DES (original mesh) 1.520 2.540

Table 12. Comparison o f computed lift and drag coefficients obtained for AoA=60 
degrees, Mach number = 0.25 and Re = 105 with experimental values and previous

computational results.

Conclusions

DES was tested in a case of aeronautical interest for flow around a NACA 0012 

wing. The tests cases were grouped around the stall regime (9 test cases from 0 to 16 

degrees angle of attack) and for the massively stalled regime (60 degrees angle of 

attack).

The objective of the near-stall tests was to compare the stall prediction 

capabilities of traditional RANS and DES methods. The results did not show significant 

differences between the computed RANS and DES results. This is quite reasonable if 

one considers that before stall DES acts merely as a RANS method, and in addition, DES 

relies on RANS to predict separation and transition is not modeled. This was already 

identified as a major limitation of DES by Spalart [6] and needs to be addressed in future 

investigations.
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The second set of tests tried to reproduce the very promising results obtained by 

Shur et al. [10], which accurately computed the lift, and drag coefficients for a NACA 

0012 wing profile at 60 degrees angle of attack using DES, while RANS over-predicted 

these values by up to 50%. The DES runs, computed in this investigation, over-predicted 

the results similarly to the URANS calculations, showing no improvement between DES 

and RANS. Examining the mesh it was concluded that the mesh was not dense enough in 

the region of interest. This test highlighted the importance of mesh resolution in the DES 

calculation. A coarse mesh will prevent DES from displaying its full capability and a 

RANS solution will be recovered. Mesh quality is crucial for a successful DES ran. This 

raises the issue of self-adaptive meshing techniques to refine the mesh in the regions 

where it is necessary, automatically solving the problems associated with inadequate 

mesh resolution. This is a line of research that needs to be investigated that will be 

addressed in Chapter IX.
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CHAPTER IX 

FUTURE WORK AND RECOMMENDATIONS

In this chapter four lines of future research that can increase the capabilities of 

DES are presented. These potential fields of investigation include the following: adaptive 

artificial dissipation, adaptive meshing, higher order methods in spatial and time 

discretization and hybrid RANS/LES methods using different RANS turbulence models.

Adaptive artificial dissipation

As was stated in the previous chapters, the motivation for the DES technique was 

to find a general approach to solve flows characterized by large regions of separation in 

which a very wide range of flow scales are present and the traditional RANS approach 

fails. The lack of generality of RANS models restricts their ability to predict the effects 

of large scales contained in these flows, which are associated with the boundary 

conditions for each case. This motivated techniques such as LES, which solves the large 

scales and models the small scales, or DNS, which resolves the entire flow at all scales. 

The complications in both cases are obvious when the scales that must be resolved are 

too small and require very fine grids and very small time steps. In this scenario, DES 

finds its place as a technique that combines the best characteristics of the RANS and the 

LES approaches. DES acts as a RANS technique when close to a solid boundary and as 

an LES method for solving the flow away of the boundary layer. Notice that DES is of 

special interest when solving flows with large regions containing different scales, as is
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the case for massively separated flows, where DES can take advantage of its LES nature. 

DES is a technique which is designed for resolving turbulent flows with a fairly good 

level of detail and it is important to consider and ensure that the artificial dissipation 

associated with the numerical scheme is not diffusing the eddies that the DES approach 

is trying to capture. Note that excess dissipation would not produce meaningless 

solutions, but would prevent the resolution of the flow to the scales the grid resolution 

can allow. This issue has been present through all the research, especially in Chapter VI, 

where the effect of artificial dissipation was studied and calibrated using decaying 

homogeneous turbulence in a periodic domain, and in Chapter VII, where the flow 

around a sphere was studied for different levels of artificial dissipation.

In this investigation, the artificial dissipation was studied to assess its optimum 

level that, without risking the stability of the scheme, would not smooth out the 

instabilities that DES was expected to capture. However, a different approach was 

presented by Strelets et al. [40]. In this work, it was shown how an excessive level of 

dissipation fails to take full advantage of the grid resolution by destroying the energy 

cascade before the Sub-Grid-Scales (SGS) eddy viscosity can dissipate the small scales. 

Although the discussion in this investigation centered on upwind schemes, the effect is 

the same in the case of centered schemes with added artificial dissipation, as is the case 

for the code used in this research. The solution presented by Strelets et al. [40] is to use a 

hybrid central/upwind approximation of the inviscid fluxes in the governing equations. 

The scheme has to adjust from a central scheme to a more dissipative upwind scheme in 

the irrotational regions to guarantee the stability in the coarse grids usually used in such
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regions. The baseline is to have a blending function, that generates this self-adaptive 

scheme which evolves from an upwind scheme in the irrotational regions to a centered 

scheme in the rotational regions, where the eddy viscosity can ensure the stability of the 

solution.

In this research, a similar approach was investigated and is presented here as a future 

line of investigation to be explored. The code used in this research uses a second order 

central approximation for the inviscid and viscous fluxes with added artificial 

dissipation. The goal is to tune the artificial dissipation depending on the mesh density 

and the flow characteristics (vorticity levels) and this was attempted based on two main 

ideas:

• A reference level of total dissipation is established and the artificial dissipation is 

adjusted at each iteration to ensure that this reference level is attained but not 

exceeded. After analyzing the results of Chapter VI, it was observed that the 

stability of the scheme can be ensured using only the artificial dissipation. It can 

be observed in Figures 21 and 22 in Chapter VI, that using the nominal value for 

the artificial dissipation scaling factor, the total dissipation is mainly artificial and 

is enough to ensure stability, and in fact is excessively dissipative in terms of 

flow resolution. Therefore, it is quite easy to envision a simple logic that forces 

the sum of the physical and artificial dissipation to be equal to the levels of 

dissipation obtained by the artificial viscosity on its own for a determined value
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of the scaling factor. The mathematical expression of the adaptive logic explained 

above is the following:

where a  is the calculated artificial dissipation scaling factor required to ensure 

that the total dissipation is equal to the artificial dissipation obtained with a 

reference value of the scaling factor.

As the dissipation is computed along edges, the adaptive logic is applied at each 

iteration for each node along all the edges intersecting the node. Moreover, the 

dissipation is computed for four different equations corresponding to the 

conservation of momentum and energy. Therefore, for each node there will be 

several computed values for the artificial dissipation scaling factor to balance the 

dissipation along each edge containing that node. The final artificial dissipation 

scaling factor value that will be stored as the optimized adaptive value of each 

node will be the average of the values obtained for each equation (1 continuity +3 

momentum + 1 energy) and for each edge containing that node.

• Second, the reference level can be adjusted in each time iteration as a function of 

the averaged cell Reynolds number based on the eddy viscosity. The averaged 

cell Reynolds number will be computed averaging the cell Reynolds number over

Total dissipation =
f Artificial 1 [ Physical 1 f Artificial 1
[Dissipation \ a [Dissipation J [Dissipation j reference 

value o f  thevalue o f  the
scaling factor
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all the cells in the mesh. This Reynolds number will be used to determine the 

reference value of the scaling factor in the right hand side of the previous 

equation.

Results for the decaying homogeneous turbulence in a box using adaptive artificial 

dissipation

Preliminary results were obtained for cases of decaying homogeneous turbulence 

in a periodic domain in which the artificial dissipation was adjusted to force the total 

dissipation, artificial plus physical, to be equal to the artificial dissipation produced for a 

scaling factor value of 3.5 and 4.0 (Figure 71).

LJJ

t = 29 
t = 65 
t = 29 3.5. 
t = 643.5! 
t = 294.0. 
t = 644.0.

20 25 30
k

Figure 69. Preliminary results fo r  the case o f decaying homogenous turbulence in a box 
fo r adaptive artificial dissipation. Computation performed in an unstructured mesh o f

(32x32x32) nodes.
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The results obtained did not significantly improve the results obtained for non- 

adaptive artificial dissipation with a scaling factor of 5.0, as can be observed comparing 

Figure 71 and Figure 24. This indicates that this constant value of the scaling factor of 

the artificial dissipation is very well optimized and better results could not be obtained 

even with adaptive schemes for the artificial dissipation. However, the adaptive artificial 

dissipation logic was initially envisioned for cases in which very different flows were 

present simultaneously (highly turbulent regions and irrotational regions). It is in those 

cases where an adaptive artificial dissipation can be very useful since it will turn itself on 

and off automatically to ensure stability in irrotational regions or let DES capture the 

small eddies depending on the flow characteristics. Obviously, the decaying 

homogeneous turbulence in a periodic domain is not the best case for this purpose since 

there are no different flow characteristics present in the domain. It would be interesting 

to test this approach for cases such as the flow around a sphere or the stall regime of a 

wing at 60 degrees angle of attack.

Some other tests were performed by trying to adapt the artificial dissipation using 

the averaged Reynolds number based on the eddy viscosity as explained above. No 

improvements with respect to non-adapted cases were obtained and further studies need 

to be conducted along that line of inquiry. Again, note that all these cases were 

performed using the decaying homogeneous turbulence in a periodic domain case, which 

is not a well-suited case for these purposes. This test was the preferred choice for speed 

and simplicity.
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In summary, adaptive artificial dissipation seems a reasonable step to improve 

DES performance that should not include excessive complexity in the code. Previous 

work on this area has reported interesting results [40] and further work is recommended.

Mesh refinement and adaptive meshing

As stated in previous chapters, an adequate mesh, fine enough to capture the 

different scales present in the flow, is necessary to allow DES to perform correctly. If 

DES is not applied on an adequate mesh, it will not be able to resolve a detailed flow 

solution and a RANS-like solution will be obtained instead.

For the case of the flow over a NACA 0012 airfoil, initial post-stall runs 

conducted at 60 degrees angle of attack were performed using the same mesh that had 

been used for the near-stall tests. Preliminary results showed that the computed values of 

Cl and Cd were not as accurate as expected based on previous results presented by Shur 

et al [10]. It was concluded that the mesh was not fine enough in the region of interest; 

that is the region on the upper side of the wing where DES is expected to capture most of 

the vorticity associated with the massively separated flow (Figure 59). Consequently, 

DES was not able to display its full capability and no significant improvements were 

obtained as compared to RANS calculations.

Based on this preliminary result, the original mesh was modified by adding nodes 

in the region of interest to enable DES with a fine mesh to capture the small eddies
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present in the flow. A code was programmed which inserted nodes in all tetrahedra that 

had all four nodes inside the pre-defined region. Obviously, the region chosen to inject 

the nodes was the volume on the upper side of the wing where the wake was expected to 

evolve at 60 degrees angle of attack. The node insertion was limited to tetrahedra inside 

the domain, avoiding the insertion of nodes close to the boundaries (wing surface and 

walls). This simplified the process since no modifications were included in the boundary 

conditions or the surface mesh on the wing surface.

The final result was a mesh of 2,107,026 nodes with at least 875,359 nodes 

(number of nodes inserted) in the region of interest. A cut of the new mesh at z=l is 

shown and compared to the original mesh in Figures 72 and 73.

Problems related to the size of the mesh files and the capabilities of the machines 

available appeared in the pre-processing of the mesh and it was impossible to correctly 

produce coarser multigrid levels. Not having multigrid to accelerate convergence will 

dramatically impact the convergence rates and will make an unsteady calculation 

unfeasible due to time limitations. However, a steady calculation (unsteady with very big 

time steps) was used to determine an approximation of the averaged value of the result 

and to determine any improvements in the result as compared to URANS and previous 

DES runs.

A steady run of 10,000 sub-iterations was produced as an alternative to obtain an 

averaged value of Cl and Cd- The evolution of the aerodynamic coefficients through the
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10,000 iterations is shown in Figure 74 and Figure 75 illustrates the sequence of the 

residual. Note, that this is not a time history sequence of the lift and drag coefficient but 

an evolution through the sub-iterations of a steady run, which is not time accurate. 

Nevertheless, it provides an estimate of the averaged value of the Cl and Cd that, without 

being conclusive, shows promising results of what DES is capable of when provided 

with an adequate mesh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

w m m .v>̂ £.;?4»r- 4 & aW a

W&mmm

S f a i . t '* T ^ if t i  A  •V i» S iS « ?

Figure 70. Near-field, view o f original meshes and improved mesh two-dimensional cut
at z-0 .
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Figure 71. Far-field view o f original meshes and improved mesh two-dimensional cut
at z-0 .
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Figure 72. Iteration sequence o f the lift and drag coefficient fo r  a steady DES 
calculation o f a NACA 0012 at 60 degrees AoA. Computation performed on unstructured 

mesh o f2,107,026 nodes. Mach number = 0.25, Re = 105.
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Figure 73. Iteration sequence o f the residual for a steady DES calculation for a NACA 
0012 at 60 degrees AoA. Computation performed on unstructured mesh o f2,107,026

nodes. Mach number = 0.25, Re = 105.
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The averaged Cl and Cd computed are summarized and compared to the DES 

results initially obtained using the coarser initial mesh, the DES results obtained by Shur 

et al. [10], the URANS results and the experimental results, in Table 13. The steady DES 

run is averaged between iterations 6000 and 9400 (Figure 74).

Experimental

CL_

0.90

_ C d  ̂ J  

1.625

Shur et al. (DES) 1.000 1.625

URANS 1.300 2.250

DES (original mesh) 1.520 2.540

DES (improved mesh) 

(Steady run)
0.920 1.590

Table 13. Comparison o f computed lift and drag coefficients obtained fo r  AoA=60 
degrees, Mach number = 0.25 and Re = 105 with experimental values and previous

computational results.

The results obtained with the refined mesh agree more closely to the experimental 

values and to the results computed by Shur et al [10]. Note that these results are not time 

accurate and cannot conclusively be compared to the other unsteady results. However, 

this case emphasizes how important the mesh quality is for DES to be able to capture the 

flow features, and raises the subject of self-adaptive meshing that would inject nodes in 

the regions of interest based on some flow characteristic such as vorticity.
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Higher order methods for spatial and time discretization

Higher order methods for the spatial and time discretizations would improve the 

accuracy of the scheme. Furthermore, higher order methods of the spatial discretization 

would reduce the effects of the artificial dissipation and would improve the solutions 

obtained by DES as it has been proved by previous investigations [11, 12].

Work has been done by G. Jothiprasad, D. J. Mavriplis and D. A. Caughey to 

extend the solver used in this investigation to higher order methods [41]. This work has 

shown how the number of required time steps can be reduced and temporal accuracy can 

be increased through the use of high order accurate implicit Runge-Kutta schemes.

Hybrid RANS/LES methods using different RANS turbulence models

DES is the first technique that combines RANS and LES in a hybrid approach to 

combine their strengths in the flow regimes where they are more capable. However, 

hybrid RANS/LES methods do not necessarily have to be limited to the one equation 

Spalart-Allmaras turbulence model. Other turbulence models can be tested and used 

combined with LES to explore its advantages and disadvantages versus the Spalart- 

Allmaras model. Similarly other LES Sub-Grid-Scale models should also be tested.

In this line of research some work has been done by N. J. Georgiadis, J. I. D. 

Alexander and E. Reshotko [42].
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CHAPTER X 

CONCLUSIONS

The Detached Eddy Simulation (DES) technique was successfully implemented 

in a second-order accurate unstructured mesh steady-state solver. Initial efforts focused 

on making the steady solver capable of time accurate calculations. An implicit second- 

order accurate scheme was employed and the non-linear equations at each time-step were 

solved using a steady-state unstructured agglomeration multigrid solver. The unsteady 

solver was satisfactorily tested for the flow over a circular cylinder. The correct vortex 

shedding frequency was computed as compared to experimental results and the second- 

order accurate convergence behavior was observed as the time-step was reduced. 

Moreover, the pressure distribution as well as the skin friction distribution were 

accurately computed.

DES was implemented and the effect of the artificial dissipation assessed using 

the test case of decaying homogenous turbulence in a periodic domain. The objective 

was to investigate the optimum level of artificial dissipation required to ensure the 

stability of a second-order accurate central difference scheme, and at the same time, to 

minimize damping of most of the physical instabilities present in the flow that DES is 

expected to capture. Tests were conducted using two different meshes, different C d e s  

values ( C d e s  represents a model constant) and different cell types (prism and 

hexahedral). It was concluded that the most consistent results were obtained using one 

fourth of the nominal value (the value generally employed for steady calculations in
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RANS mode) of the artificial dissipation scaling factor and a C d e s  value of 0.65. This 

C d e s  value confirmed the results obtained in previous investigations.

Using the results obtained for the isotropic decaying turbulence in a periodic 

domain, the flow around a sphere was computed at a Reynolds number of 104 and a 

Mach number of 0.2. The solution obtained using DES exhibited frequency contents in 

the drag coefficient time history in reasonable agreement with experimental 

measurements. The RANS solution did not capture any of these instabilities. It was 

necessary to force transition at 90 degrees azimuthal to obtain the correct pressure and 

skin friction distribution over the surface of the sphere.

Finally, a test case of aeronautical interest such as the flow over a NACA 0012 

wing was used to test the DES approach. Computations of the lift and drag coefficient 

near the stall angle of attack (12 degrees incidence) did not show significant differences 

between the computed RANS and DES results. A new test was designed at 60 degrees 

angle of attack to investigate DES in a massive separated regime, beyond the scope of 

application of RANS. The results obtained were surprisingly poor, very close to the 

results obtained by previous URANS calculations and over-predicting experimental 

values by 50%. Since the mesh used to compute these results was suspected to be too 

coarse, a refined mesh was generated by injecting 800,000 nodes in the region of interest. 

Problems with the mesh and time constraints did not allow for a time-accurate solution 

but averaged steady runs delivered promising results for the lift and drag coefficient, 

very close to DES computed results obtained in previous investigations.
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DES has been implemented, tested and concluded to be a quite simple to 

implement turbulence modeling technique, that is practical based on the current 

computational resources and is capable of resolving massively separated flows to scales 

beyond URANS capabilities. It expands CFD to flows out of the feasible domain of 

URANS that could only be explored using LES or DNS. However, considering that it 

will require several decades before LES and DNS mature enough to be suitable 

techniques for engineering problems, DES presents itself as a good solution keeping a 

good balance between the obtained results and the cost to obtain them, in time and in 

computational resources. In conclusion, DES appears highly promising and opens up 

interesting lines of research for future investigations dealing with massively separated 

flows, which in the past would have been limited by the use of very expensive 

techniques such as LES or DNS.
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