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ABSTRACT

NONLINEAR STABILITY AND CONTROL OF THREE-DIMENSIONAL
BOUNDARY LAYERS

Erik Janke 
Old Dominion University 

Director: Prof. P. Balakumar

The linear and nonlinear evolution of steady and traveling disturbances in three-dimensio­

nal incompressible boundary layer flows is studied using Parabolized Stability Equations 

(PSE). Extensive primary stability analyses for the model problems of Swept Hiemenz 

flow and the DLR Transition experiment on a  swept flat plate are performed first. Sec­

ond, and building upon these results, detailed secondary instability studies based on 

both the classical Floquet Theory and a  novel approach that uses the nonlinear PSE are 

conducted. The investigations reveal a connection of unstable secondary eigenvalues to 

both the Unear eigenvalue spectrum of the undisturbed mean flow and the continuous 

spectrum, as weU as the existence of an absolute instability in the region of nonlinear 

amplitude saturation. Third, a passive technique for boundary layer transition control 

using leading edge roughness is examined utilizing a  newly developed impUcit solution 

method for the nonlinear PSE. The results confirm experimental observations and indi­

cate possible means of delaying transition on swept wings.

In the present work, both the solution of the boundary layer equations for the 

mean flow and the exphcit PSE solver are based on a fourth-order-accurate compact 

scheme formulation in body-oriented coordinates. In the secondary instability analysis, 

the ImpUcitly Restarted Amoldi Method is apphed.
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NOMENCLATURE

E n g lish  Sym bols 

A Disturbance amplitude

AL Attachment-line

c Chord length

CF Crossflow

Cp Pressure coefficient

Cgr Group velocity

Cph Phase velocity

f, F Frequency

1 Length

m Similarity factor

N N-factor

p, P Pressure; disturbance and mean flow quantity

Q Freestream velocity

Re Reynolds number

t, T  Time

TS Tollmien-Schlichting

Tu Turbulence level

xi,X2,X3 Body-oriented coordinate system

x i,x 2)x3 Galilean coordinate system

G reek  Sym bols

or Angle of attack
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Qi, c*3 Primary and secondary wave number in the xi-direction

j3i, Primary and secondary wave number in the X2-direction

Ai Hartree-parameter

& Boimdary layer thickness

A Wave length

t) Wall-normal coordinate

v  Kinematic viscosity

<p Sweep angle

$  Stream function

'F Wave angle

a  Growth rate

9 Phase of the disturbance quantities

© Angle of the inviscid streamline

uj Frequency

V ec to r Q u an titie s

k  Wave vector

Q Mean flow

q  Disturbances

v  Disturbance velocities

S u b sc rip ts

avg Average

cf Crossflow

c, cross Direction of the crossflow component

tang Direction tangential to the inviscid streamline
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vii

e edge

imag Imaginary part of complex quantity

max maximal

real Real part of complex quantity

rms Root-mean square

rough Roughness

s, stat Stationary

t, trav Traveling

tot Total

0 basic flow, or local quantity

CO freestream

S u p ersc rip ts

* dimensional quantity, complex conjugate
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CH APTER 1 

INTRODUCTION

The physics of the flow transition from laminar to turbulent in a  wall-bounded 

flow is of great importance for a  variety of industrial applications. W hether it is the 

flow over a heat-exchanger on a high-altitude aircraft, the flow approaching a supersonic 

engine-inlet, or the envisioned implementation of hybrid laminar flow control into fu­

ture swept wing designs for commercial aircraft, the thorough understanding of physical 

mechanisms during the entire transition process is crucial for ch a n g in g  the flow charac­

teristics of any flow of interest favorably.

Laminar Flow Technology (LFT) is one of the key technologies to achieve an 

improved aerodynamic performance on the next generation commercial aircraft like the 

Ultra-High Capacity Aircraft A3XX being developed within the European Airbus Indus­

trie consortium, or the High-Speed Civil Transport developed in cooperation between 

the Boeing Company and the National Aeronautics and Space Administration (NASA). 

Even though the estimates of potential benefits in the aerodynamic performance of sub-, 

super- and transonic aircraft through LFT vary widely, it is reasonable to state that a 

significant decrease in the aerodynamic drag can be achieved by delaying the laminar- 

turbulent transition of the flow on the main lifting and control surfaces of an aircraft. 

Since highly swept geometries are an essential part of state-of-the-art aircraft designs, 

the path of the flow evolution into turbulence on these geometries is of particular interest.

Figures 1.1 and 1.2 show two recent attem pts to control the laminar-turbulent 

transition using the Hybrid Laminar Flow Control (HLFC) technology, i.e. the combined 

application of a laminar wing geometry and boundary layer suction. Figure 1.1 shows a

T he form at of this dissertation is based on the  American Institute of Aeronautics and Astronautics 
Journal and was typeset in 2e by th e  au thor.
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scaled model of the vertical stabilizer of the Airbus A320 that will be flown in a  free-flight 

experiment in the Summer of 1998. The suction panel which porous surface contains 

millions of small laser-drilled holes is seen in the leading edge region of the fin.

Figure 1.1: Model of the A320 fin in the Si wind tunnel (courtesy of ONERA)

A supersonic HLFC-experiment was conducted in 1996 on a modified F-16 at 

NASA Dryden Reseaxch Center, U.S.A. Figure 1.2 shows the top-view of the modified 

F-16 where the suction glove is seen as the dark area on the left-hand side of the wing. 

Despite a successful control of the laminar-turbulent transition, this technology will not 

be utilized for the first generation High-Speed Civil Transport because of a need for 

further subsystem demonstrations.

In order to show the complexity of the flow field that needs to be modeled com­

putationally while studying the effects of boundary layer suction, figure 1.3 shows the
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close-up view of the suction glove of the modified F-16 in comparison to a  dime. Typical 

hole spacings are of the order of 0.2-0.5mm, and the applied suction distribution com-

Dryden F ligh t R esearch Center EC9S-43831-S Photographed Nov 1996 
The d if fe r in g  wing p la tform s on NASA's F-16XL lam inar-flow  

re se a rc h  a i r c r a f t  is  evident In th is  overhead v iew . NASA/Jim Ross

Figure 1.2: Top-view of the F-16XL with HLFC-glove (courtesy of NASA Dryden)

monly varies in space. Thus, the challenges for the development of adequate numerical 

tools are remarkable.

Dryden Flight Research Center EC9S 432IC -I Photographed I0>55 
la s e r  Cue Holes »o M S A  Wing Glove e i t h  e m «  for scale

Figure 1.3: Hole configuration for F-16XL suction panel (courtesy of NASA Dryden)
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1.1 Basics of Crossflow Instability

The flow across infinite swept geometries is usually characterized as quasi-three- 

dimensional, since the inviscid mean flow quantities do not vary in the spanwise direction. 

The terminology of three-dimensional boundary layer profiles chosen herein considers the 

fact that the local boundary layer profiles are indeed functions of all three coordinates, as 

shown below. Assuming that care has been taken to avoid an early transition due to lead­

ing edge contamination1, the stability of such a  mean flow to finite disturbances present 

in the boundary layer is governed by three instability m echan ism s- First, the stagnation 

flow along the line where the flow attaches to a  swept geometry, called attachment-line 

flow and depicted in figure 1.4, is subject to a viscous2 attachment-line instability mech­

anism. An unstable attachment-line flow can make any attem pt of maintaining laminar

Inviscid Streamline

co

Figure 1.4: Attachment-line region on an infinite swept geometry

flow along the chordwise direction obsolete by causing the transition to turbulence at

the attachment-line. Second, the inviscid mechanism of the crossflow (CF) instabil­

1 Leading edge contamination refers to the presence of isolated turbulent spots near the leading edge 
that can be caused by turbulent structures originating from the junction of wing and fuselage that travel 
along the leading edge and across the wing, or by surface imperfections and insect debris.

2 An instability mechanism is denoted as viscous when inviscidly stable mean flow profiles (no inflection 
points are present in the mean flow profiles) become unstable due to the presence of viscous forces. This 
was first shown by Tollmien and Schlichting for the Blasius boundary layer in 1929.
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ity develops in the region directly behind the attachment-line where strong favorable 

pressure-gradients exist. Third, another viscous mechanism, referred to as Tollmien- 

Schlichting (TS) instability, is dominant in regions of small, or zero pressure gradients 

along the chord. There, the boundary layer flow is approximately two-dimensional.

Since the present work is entirely related to the investigation of the crossflow 

instability, its origin will be explained in the following. Figure 1.5 shows the top-view 

of an infinite swept wing. Due to the constant spanwise outer flow component W qq and 

the variation of the chordwise outer flow component Ue(x) along the chord, the inviscid 

streamline experiences a varying curvature in that direction. Being parallel to the leading 

edge at the attachment-line where Ue(x=0)=0, its direction gradually changes with an

Centrifugal Force

Inviscid Streamline,

Pressure Gradient

Figure 1.5: Inviscid streamline curvature across a swept wing

increasing distance from the leading edge. Thereby, this streamline curvature causes a 

centrifugal force at each chordwise position that is balanced by the local pressure gradient 

at the boundary layer edge (see figure 1.5).

Within the boundary layer, however, the velocity decreases to zero at the wall, 

whereas the normal pressure gradient remains constant. Consequently, a force imbalance 

exists perpendicular to the inviscid streamline that causes a velocity component pointing 

in the direction of the pressure gradient. Because of the balanced forces at the boundary
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layer edge and the no-slip condition at the wall, this mean flow component is zero at 

both locations, but non-zero within the boundary layer. Hence, an inflection point must 

exist. Figure 1.6 depicts the resulting tilted three-dimensional boundary layer profile. 

The presence of an inflection point in the mean flow profile of the crossflow component 

is the origin of the inviscid Rayleigh-instability mechanism called crossflow instability.

Figure 1.6: 3D boundary layer profile in a streamline-oriented coordinate system

In order to explain the action and interaction of the TS and the CF-instability 

mechanisms, the three qualitatively different outer velocity distributions as shown in fig-

0.0 0.2 , 0.6 x/c as to

Figure 1.7: Generic outer flow distributions across infinite swept geometries

ure 1.7 will be discussed next. The example shown in Curve a) represents the existence of 

a favorable pressure gradient over the entire chord length that supports the development
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of a flow that is only subject to a crossflow instability. Next, Curve b) shows an example 

where the velocity increases until x/c=0.50 and then remains almost constant over the 

rest of the chord. In that case, a region of a favorable pressure gradient gradually merges 

with a region where the pressure gradient is small, or zero, and both the CF and the 

TS-instability mechanism are present in the flow. An important observation in this case 

is that the crossflow component of the mean flow never changes sign along the chord. 

Finally, Curve c) shows the most typical outer velocity distribution for airfoil designs 

at an angle of attack. Seen is a region of a very strong flow acceleration near the lead­

ing edge with a  local velocity maximum that is immediately followed by a region where 

the velocity remains constant. Hence, the region where the CF-instability mechanism 

dominates is rapidly followed by a region of a prevailing TS-instability. Also, due to the 

strong acceleration and deceleration of the flow in the region close to the leading edge, 

two inflection points are present in the outer flow distribution (see Curve c)). In contrast

IS

0.00 0.1S0.10

ua

10

a o
o .o s a. to o.is

u* ua

a) Non-inflectional outer flow b) Inflectional outer flow

Figure 1.8: CF-mean flow profiles for different outer flow distributions

to the case of Curve b), the sign of the crossflow mean flow component now changes sign 

along the chord. Figures 1.8(a) and 1.8(b) show the mean flow profiles corresponding to
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the outer flow distributions for the Curves a), b) and c), respectively. The change of sign 

in the crossflow components seen for the velocity distribution of Curve c) is assumed to 

introduce qualitatively new features into the flow. In addition to the presence of both the 

TS and the CF-instability, the two m ech an ism s  might interact in tha t case. Evidence 

for the presence of qualitatively new flow physics is seen in the existence of an addi­

tional inflection point in the CF-mean flow profiles (see figure 1.8 (b)). Also, convergence 

problems observed from linear computations using the Parabolized Stability Equations 

for these outer flow distributions, and strong oscillations in the computed growth rates 

at some distance downstream of the first sign change occurrence in the CF-mean flow 

component are further indications for the action of a different mechanism. However, the 

investigation of this topic is not part of the presented work and will be considered in 

future projects.

1.2 Motivation

In the region close to the leading edge of swept wings or vertical stabilizers, 

strong favorable pressure gradients are present in the flow that cause an inviscid crossflow 

instability as explained in Section 1.1. Due to the strong growth of the disturbances in 

that region, the transition to turbulence frequently occurs within the first few percent 

of the chord length. Despite the large volume of previous work, there is still a need 

to better understand the fundamental physics of this transition process and to obtain 

quantitative data about the parameters and mechanisms involved in it. For the eventual 

goal of reliably predicting and delaying the transition location on commercial transport 

aircraft, it is also necessary to develop mathematical models and numerical tools that 

appropriately capture the flow physics and that can be applied efficiently and robustly.
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Industrial applications require computations for many different configurations 

within a short turn-around time. The state-of-the-art of transition prediction meth­

ods for these applications is still dominated by correlations between experimental data 

and linear PSE methods (eN-methods3), as well as by data-base methods4. Despite the 

quick access to results obtained from these methods, it is known that the incorporated 

assumptions miss essential details of the modeled flows. Particularly for the regions gov­

erned by the crossflow instability mechanism, where a relatively short region of strong 

linear disturbance growth is followed by a significantly long region of nonlinear satura­

tion, neglecting the nonlinear interaction of the disturbances has a major impact on the 

results.

From the above, academic and practical motivations for research on the stability 

of three-dimensional boundary layer flow can be formulated. The academic motivations 

include gaining a  deeper understanding of the physical m echa n ism s involved in the transi­

tion process and their interaction, as well as expanding the knowledge about their origin. 

Crucial for successful research in this field is the close cooperation between experimental 

and numerical work, where the focus of the numerical work gradually shifts into a more 

guidance-oriented position for the experimental investigations. The practical challenge 

then is to make the developed numerical tools like the nonlinear PSE methods more 

efficient, robust and suitable for large-scale industrial applications.

3These correlate measured transition locations to predictions of the linear PSE with the aim of finding 
a universal N-factor for the transition prediction.

4These rely on data-bases of boundary layer profiles and growth rates based on similarity solutions 
for different mean flows and computed using local theory, respectively.
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1.3 Present Research

The current research focuses on the linear and nonlinear stability of incom­

pressible three-dimensional boundary layers and their control. The consideration of 

incompressible flows is particularly motivated by two factors. First of all, the physics 

of incompressible flows are less complex than those of compressible flows. Hence, for 

an identification of important instability and transition mechanisms, it is appropriate to 

study incompressible flows first. Secondly, there is a wide variety of experimental data 

available for the validation of numerical models for incompressible flows.

The work presented herein is directed towards a further development of ef­

ficient and robust computational methods that accurately model the physics of tran­

sitional three-dimensional boundary layer flows, and towards explaining experimental 

observations in the transition region.

This problem is approached by first solving the quasi-three-dimensional bound­

ary layer equations for general infinite swept geometries in order to obtain an accurate 

mean flow. Second, linear and nonlinear PSE methods are developed and adapted to the 

present application of three-dimensional boundary layer flow. For the numerical solution 

of both the boundary layer equations and the nonlinear PSE, a fourth-order-accurate 

compact scheme formulation has been implemented.

Third, the experimentally observed phenomenon of a secondary instability is 

investigated taking two approaches. Here, the classical Floquet theory is accompanied 

by an attem pt to model the secondary instability more straightforwardly using the PSE. 

Finally, a newly developed and very robust implicit solution method for the nonlinear 

PSE will be presented together with an investigation of passive laminar flow control 

using leading edge roughness elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

In particular, Chapter 2 contains a survey of the literature related to the investi­

gation of crossflow instability dominated incompressible boundary layer flows. The most 

important experimental work will be reviewed first, followed by compilation of recent 

theoretical and numerical investigations, by selected work on boundary layer control, as 

well as a summary of the state-of-the-art in transition physics.

In Chapter 3, the approach to the mean flow computation is described. A brief 

explanation of the panel method used for the outer flow computation is presented in 

connection with the derivation of a fourth-order-accurate compact scheme formulation 

for the solution of the boundary layer equations.

In Chapter 4, the stability theory for three-dimensional wall-bounded flows will 

be discussed. Considering the spatial eigenvalue problem for locally parallel flows in 

Section 4.2, the linear and nonlinear PSE methods will be derived in Section 4.3. The 

last section of this chapter contains a description of the Floquet theory applied to the 

investigation of the secondary instability. The detailed documentation of the Implic­

itly Restarted Amoldi algorithm, a solution method for the resulting large eigenvalue 

problems that was recently developed at Rice University [1], concludes this chapter.

Chapter 5 presents a comprehensive stability analysis of the stagnation flow 

along a swept infinite geometry, referred to as Swept Hiemenz flow. Presenting the 

existing similarity solution to the boundary layer equations for this problem in the first 

section, the second section shows results from an extensive linear stability analysis using 

local methods and the linear PSE. The findings of this analysis are then used as input 

for the nonlinear stability analysis using the PSE in Section 5.3. The last section of 

this chapter studies the secondary instability using temporal Floquet theory and the 

nonlinear PSE, where both approaches extend previous work.
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The investigation of a  crossflow instability dominated boundary layer flow in 

a  model experiment performed in Gottingen, Germany is considered in Chapter 6. Fol­

lowing the structure of the previous section, linear and nonlinear PSE results, as well as 

results from the secondary instability analysis are compared to the experimental measure­

ments. Of particular interest in this chapter is the examination of the region of nonlinear 

saturation. Experimental observations of an explosive growth of traveling disturbances 

in that region motivate this investigation of the existence of an absolute0 instability.

In Chapter 7, a  newly developed implicit method for the solution of the nonlin­

ear PSE is presented. Its computational efficiency and robustness are documented and 

compared to the explicit solution method.

In Chapter 8, this implicit solution method is applied to a  passive laminar flow 

control problem. Results are presented that confirm experimentally observed nonlinear 

wave-interaction phenomena that lead to a delay of the laminar-turbulent transition in 

boundary layers with favorable pressure gradients. Finally, Chapter 9 concludes the 

present study with general remarks and recommendations for future investigations.

5 Instabilities with a zero phase velocity and an algebraic growth are referred to as absolute instabilities. 
Instead of developing in the downstream direction, they grow at a fixed location.
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CHAPTER 2 

LITERATURE REVIEW

2.1 Introduction

The progress in the development of numerical tools for modeling three-dimensio­

nal boundary layer flows offers a new approach for the investigation of their fundamental 

flow physics, and for examining possible and effective ways to control them favorably. 

Rather than relying primarily on experimental findings in identifying important mecha­

nisms in the flow and performing numerical investigations mainly for the purpose of code 

validations, the maturing of numerical techniques like PSE methods and Direct Numer­

ical Simulation (DNS) within the last 10 yeaxs enables a closer cooperation between the 

two approaches. In fact, due to the extensive amount of data obtained from highly re­

solved computations, the focus of the numerical methods is being shifted towards serving 

as guidance tools for detailed experimental investigations.

Starting with a  historical perspective of the research on the stability of flows 

along swept geometries, this review focuses on three topics. First, the literature on 

experiments related to the stability and transition of three-dimensional boundary layers 

will be considered. Second, the substantial amount of theoretical and numerical work on 

the linear, nonlinear, and secondary stability of three-dimensional boundary layers will 

be reviewed. Third, selected publications regarding the control of boundary layers will 

be cited. This chapter will be concluded with a summary of the current state-of-the- 

art in detected physical mechanisms involved in the laminar-turbulent transition for the 

considered flows, and in numerical methods for transition prediction.
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2.2 Historical Perspective

In 1952, an early boundary layer transition close to the leading edge of swept 

wings was detected by Gray [6] during flight tests conducted at the Royal Aircraft Estab­

lishment in Great Britain. Using evaporation techniques in the experiments, he observed 

streaky streamwise patterns on the surface and a dependence of the transition location 

on a critical freestream velocity. The documentation of this experiment might mark 

the first observation of both the existence of an attachment-line instability, as well as a 

crossflow instability in the literature.

A decade later, swept wing designs at Handley Page Ltd. in Great Britain and 

at Northrop in the United States attem pted to maintain laminar flow along the entire 

chord length. Being aware of the above instabilities, the designers used suction systems 

to control the laminar boundary layer flow for the first time in the history of modern 

wing design. However, the presence of a strong leading edge contamination, originating 

from the junction of wing and fuselage and propagating along the leading edge, caused 

a transition to turbulent flow that was too strong to be controlled by boundary layer 

suction.

Pioneering experiments were then performed by Gregory et al. [7], Gaster [8], 

and Pfenninger [9], in order to obtain more qualitative and quantitative insight into the 

acting instability mechanisms. In addition to the establishment of empirical relations 

for the prediction of transition and to first achievements in developing the theory of 

flow stability, these activities eventually lead to the first practicable passive flow control 

device on swept wings, the Gaster bump. The Gaster bump essentially separates the 

boundary layer on the outer part of a swept wing from the contamination originating 

from the junction of wing and fuselage by creating a vortex across the wing, as depicted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

in figure 2.1. Thereby, a new stagnation point is introduced in the spanwise direction 

and an uncontaminated attachment-line boundary layer starts to develop from there.

newly created vortex

Gaster bump

fuselage

center line

Figure 2.1: Gaster bump configuration on a swept wing

After these initial periods of research activities, it was not until the early 1980’s 

that a new series of experiments emerged due to the need for new aerodynamic tech­

nologies for civil transport aircraft.

2.3 Experimental Studies

A variety of experimental investigations on the stability of three-dimensional 

boundary layers began in the early 1980’s a t different aerodynamic research centers 

around the world. Of particular interest for the present study are the experiments 

performed in France at the Office National d ’Etudes et de Recherches Aerospatiales 

(ONERA), in Germany at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR), 

in Japan at the National Aerospace Laboratories (NAL), at various institutions in the 

United Kingdom, and in the U.S.A. at Arizona State University (ASU).
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2.3.1 T he O N E R A  D -W ing E xperim ents

The series of experiments performed between the early 1980’s and today began 

at the French governmental research institution ONERA. Starting with the work of 

Coustols [5] under the supervision of Guiraud, Amal, Cousteix and others in 1983, their 

systematic investigations were aimed at a detailed characterization of the transition due 

to crossflow instability, at a  derivation of empirical relations for a  reliable prediction of 

the transition location, and at a comparison of the experimental findings with results 

from the linear stability theory. For a symmetric airfoil with a  chord length of 0.35 m, 

measurements were performed for various angles of attack at sweep angles between 40° 

and 60° and at speeds of around 80 m/s. The applied measurement techniques included 

the use of pitot probes, hot-wires and hot-films. A generic experimental configuration is 

depicted in Chapter 8.

In a subsequent publication by Amal et al. [10] in 1984, a detailed description 

of the outer flow conditions can be found. The freestream turbulence level was specified 

as T u= l/3 -v^(u/)2 +  (v')2 +  (w;)2/U oo=0.15%, and the Reynolds numbers ranged from 

Reoo=1.8T06 to Reoo=4-106. The major findings of the work in References [5] and [10] 

are summarized as follows.

For outer flows without a strong suction peak that causes an inflection point 

in the outer flow distribution, the prediction of the transition location by two empirical 

criteria was satisfactory. However, large discrepancies between the experiments and the 

empirical predictions were found for outer flow distributions with a strong suction peak 

(inflectional). Also, findings from a linear stability analysis were presented. The results 

for the most amplified wavelength agreed well with the experimental data. Further, the 

spanwise variation of the streamwise velocity component was documented, and an inter­
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esting observation of a downstream variation of the most amplified spanwise wavelength 

was reported (wavelength coalescence). Finally, a  strong dependence of the transition 

location on the freestream turbulence level was noted.

In a later work by Arnal and Juillen [11] in 1987, the main focuses were on 

investigating the interaction of the streamwise and the crossflow instability mechanisms, 

on studying the problems related to leading edge contamination, and on the measurement 

of the transition location. Two different wing sections were investigated.

First, from the experiments on the symmetric ONERA D-wing, they reported 

fluctuation amplitudes of 20% of the freestream velocity a t x/c=0.60, and unstable fre­

quencies of less than 500 Hz for a  freestream velocity of 48 m /s and a  non-inflectional 

outer velocity distribution. As in the previously cited work [10], they found that the 

ratio of the most amplified stationary wavelength and the local boundary layer thick­

ness remains constant at a value of about four in the chordwise direction. For the same 

symmetric wing and considering an inflectional outer flow distribution, they investigated 

the interaction of crossflow and streamwise (TS) instabilities next. Here, they found 

a significant change in the most amplified frequencies in the regions of negative and 

positive pressure gradients. The initially present strong low frequency crossflow insta­

bilities (f <  500 Hz) were replaced by unstable frequencies of the order of 1 kHz in the 

region of a positive pressure gradient. This observation was related to the presence of 

TS-instabilities in the later chordwise regions.

Second, they investigated the problem of a leading edge contamination caused 

by either an existing attachment-line instability, or by wing/body interference for a 

cambered wing. They found the critical Reynolds number for the onset of turbulent 

spots at, or near the leading edge between Re=240 and Re=276.
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In 1998, Arnal et al. [12] presented an overview of the capabilities and limi­

tations of current transition prediction methods for wings with applied boundary layer 

suction. Using the symmetric wing as described above in a  low freestream turbulence 

level environment (Tu=0.07%) and at tunnel speeds of 75 and 95 m /s, they established 

a data base for various wing configurations. The issue of the leading edge contamination 

was solved using a Gaster bump close to the wing root. From their results, Arnal et 

al. [12] concluded that the linear transition prediction method using the assumption of 

a constant spanwise wave number is superior to the envelope m ethod1. Also, they docu­

mented the positive impact of suction on the crossflow instability dominated boundary 

layer and presented results from nonlinear PSE computations including boundary layer 

suction for different transition scenarios.

2.3.2 T h e D L R  T ransition  E xperim ents

Shortly after the start of the experiments on infinite swept wings in France, ex­

perimental investigations on the flow across a swept flat plate were started in Gottingen, 

Germany by Nitschke-Kowsky and Bippes [13] in 1986. A description of the experimen­

tal setup and the purely crossflow instability dominated mean flow is given in Chapter 6. 

The literature on the various experiments performed is substantial. Therefore, the work 

reviewed herein is limited to the most relevant publications for the presented results.

Besides other findings on primary stationary and traveling disturbances, Bippes 

and Nitschke-Kowsky [14] discussed experimental observations of inflectional mean flow 

profiles at later chordwise positions which originate from the presence of spanwise pe­

riodic stationary disturbances in 1987. In 1988, these experiments were continued by

Muller and Bippes [15]. Their tests were particularly aimed at more detailed measure­

lThe envelope method considers the disturbances with the maximal growth rate at each chordwise 
position and is based on local theory.
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ments for a comparison of the results with those from a linear stability theory, as well as 

at obtaining input data for DNS computations and a  secondary instability analysis of the 

flow using a  mathematical model developed by Fischer and Dallmann [16]. Using hot­

wire and oil-flow visualization techniques, and documenting an additional experiment in 

a water-towing tank, they found a constant ratio of the most amplified wavelength and 

the local boundary layer thickness of 3.3, and a significantly long region of nonlinear 

disturbance growth stretching over 30% of the chord length. The unstable traveling dis­

turbances were found between frequencies of 50 and 200 Hz. Also, they documented an 

interaction of stationary and traveling disturbances starting a t x/c=0.50, and attributed 

the location of the transition onset to positions where the averaged mean flow component 

tangential to the inviscid streamline takes minimal values. Performing tests at different 

freestream turbulence levels (FTL), they found that the stationary disturbances grow 

faster and larger for lower FTL than for higher FTL, but nevertheless transition oc­

curs a t slightly higher Reynolds numbers in the lower FTL environment. By performing 

the same measurements on a plate that was shifted in the spanwise position, they also 

showed that the stationary disturbances originate from surface roughness.

Results from finer resolved measurements performed by Bippes et al. in 1989 

were presented and compared to linear stability results in [17]. For a freestream Reynolds 

number of Re,*, =  6.3T05, they tested the same model as above under different freestream 

turbulence levels. The following observations were reported. The saturation onset of 

the stationary disturbance and their final saturation level depended on the freestream 

turbulence level. The saturation level varied between 10% of the freestream velocity 

and 20% for freestream turbulence levels of 0.15% and 0.05%, respectively. Also, the 

most amplified frequency changed depending on the environmental conditions, where
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higher frequencies axe observed in lower FTL environments. The latter observation was 

attributed to the presence of secondary instabilities in the flow that were caused by larger 

amplitude stationary disturbances.

For the purpose of a very detailed comparison of local linear stability results 

with experimental data, Deyhle et al. [18] performed measurements of the most amplified 

wavelength and the wave angle, the group and phase velocities, as well as the angle of 

the group velocity vector a t a chordwise position of x/c=0.70 in 1993. Even though 

this position is situated far in the nonlinear region of the disturbance evolution, the 

agreement of the linear stability results with the experimental data was good, except 

for the results for the group velocity and the angle of the group velocity vector. This 

discrepancy was attributed to measurement uncertainties.

The most comprehensive summary of the performed series of experiments for 

the swept flat plate model problem at the DLR was given by Deyhle and Bippes [2] 

in 1996. Besides a detailed review of previous experimental work, they presented re­

sults from measurements in systematically varied environmental conditions in order to 

study the receptivity of this three-dimensional boundary layer to surface roughness, 

freestream turbulence and sound. Deyhle and Bippes reported that the receptivity to 

three-dimensional surface roughness was the most important mechanism of introducing 

and selecting the initial disturbances in the boundary layer, whereas the receptivity to 

two-dimensional roughness and sound was found to be of negligible influence. Another 

important result in Reference [2] was the establishment of a relation between the tran­

sition Reynolds number, the saturation amplitudes of the stationary disturbances and 

environmental conditions as surface roughness and freestream turbulence level. Using 

an intermittency approach to determine the transition location, they concluded that the
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longest region of laminar flow is not obtained for the smallest freestream turbulence 

levels, but for the conditions that provoke the most limited growth of the stationary 

disturbances.

2 .3 .3  T he E xperim ents in Japan

A number of experiments on the investigation of crossflow instability dominated 

flows has been conducted at the National Aerospace Laboratory (NAL) and at Tokyo 

University in Japan. Three characteristic experiments will be reviewed in this subsection.

In 1994, Takagi and Itoh [19] performed experiments on a yawed circular cylin­

der in different freestream turbulence level environments at wind tunnel speeds of 25 

m /s. Besides the comparison of their data  to the predictions by linear stability the­

ory, the main objective of their work was to see whether traveling disturbances can 

play a role in the transition process in a low freestream turbulence environment when 

the effect of leading edge roughness is weakened by the presence of a thicker boundary 

layer. During their very detailed measurements, they found that no stationary crossflow 

vortices develop, if the boundary layer thickness is large enough to damp micron-sized 

distributed roughness. In that case, only traveling disturbances were detected in the 

experiments. Further, they determined the wave angles of the traveling disturbances to 

be about 11-14° with respect to the constant phase lines, and noted that the most am­

plified frequencies gradually decreased in the downstream direction. In 1996, Kohama 

et al. [20] used hot-wire velocimetry and visualization techniques on a swept flat plate 

model similar to the one used in the DLR experiments to document the final stages 

of the transition process. They showed some spatial structure of the secondary insta­

bility using smoke visualization techniques and determined the propagation angles and 

spatial locations of the primary and secondary instability structures. Distinguishing a
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lower frequency primary instability (f ~  100 Hz) at the foot of each crossflow vortex 

close to the wall and a higher-frequency secondary instability (f ~  1 kHz) at the back 

of the primary vortices, they argued that the transition to turbulence is triggered by 

the high-frequency secondary instability located a t a normal location of about half the 

boundary layer thickness. The propagation angles were specified as 60° and -55° for the 

most amplified primary and secondary traveling disturbances, respectively, where the 

angles were measured with respect to the freestream flow direction.

Recent work by Takagi et al. [21] on the rotating-disc flow problem focused on 

disturbances caused by streamline curvature (SC). In their experiment, they showed the 

existence of the theoretically predicted two unstable families of crossflow instabilities 

(Mack [22], Malik et al. [23]). By means of an acoustic point-source forcing, they were 

able to excite the otherwise less amplified disturbance family with a critical Reynolds 

number less than the more amplified crossflow instabilities. Further, they observed that 

a weak impulse forcing of the SC disturbances drastically suppressed the more unstable 

crossflow instabilities, and that continuous forcing lead to a  bypass-type2 transition.

2.3 .4  T h e Swept W in g  E xperim ents at A S U

Preceding the series of experiments on the crossflow instability on swept wings 

at Arizona State University (ASU), U.S.A., a swept flat plate experiment was performed 

by Saric and Yeates [24] at the Virginia Polytechnic Institute and State University, 

U.S.A. in 1985. Using an experimental setup similar to the DLR experiment, Saric 

and Yeates [24] documented the existence of a wave-interaction mechanism in the flow

that caused a  strong amplification of a wavelength that was half the most amplified

2The transition with bypass is described as a transition type where the phases of disturbance growth 
as described in Chapter 4 are bypassed and the turbulence is reached more directly by a mechanism that 
is not well understood.
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wavelength (half-wavelength periodicity). The existence of this mechanism was also 

confirmed in theoretical work by Reed [25] where she showed the presence of a parametric 

resonance between the most amplified wavelength Amax and the wavelength Amax/2  in 

the region of finite amplitude saturation. In 1989, the actual work at ASU started with 

the experiment by Dagenhart et al. [26] on a 45°-swept wing. For a  model chord length 

of 1.83 m and wind tunnel speeds up to 35 m/s, the experiments were performed at an 

angle of attack of -4°, and for Reynolds numbers of an order-of-magnitude higher than 

in the DLR experiment. Typically, they obtained Reynolds numbers between Reoo = 

2.0-106 and Reoo =  4.0-106. Also, a favorable pressure gradient was established over 71% 

of the chord length i.e., the growth of two-dimensional TS-waves was not expected in 

that region.

In 1991, a detailed investigation of the secondary instability mechanism was 

performed by Kohama et al. [27]. For the swept wing as described above, they used 

hot-wire and naphthalene visualization techniques to document the evolution of the 

disturbances in the region until x/c=0.50. In detail, they showed the development of 

the multiple inflection points in the averaged mean flow profiles due to the presence of 

a stationary crossflow vortex that caused the onset of high-frequency inviscid secondary 

instabilities. They noted that the transition due to the secondary instability was confined 

to a narrow region in the spanwise direction, and that the energy driving this process 

was produced by the ejection-like motion of co-rotating vortices near the edge of the 

boundary layer. Further, the spatial scales in the spanwise and chordwise direction were 

of the same order and corresponded to the boundary layer thickness in the region of 

the secondary instability. In detail, they reported high-frequency instabilities of f =  3.5 

kHz at x/c=0.46, and a strong increase of the secondary growth rates (a factor of 10)
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within half a wavelength. Once the secondary instability developed at one location, a 

cascade-like development of other instabilities triggered the breakdown to turbulence.

The aerodynamic quality of the ASU wind t u n n el was specified by Radeztsky 

et al. [28] in 1994. They quoted a FTL level of 0.04% over the frequency range of 1- 

1000 Hz at tunnel speeds of about 20 m/s. Performing their experiments [28] at an 

angle of attack of 0° and for various configurations of leading edge roughness elements, 

as well as comparing their data to linear stability results, they concluded that linear 

stability theory correctly predicts the mode shapes of the stationary crossflow vortex, 

the wavelengths involved in the transition process (including a correct prediction of the 

most amplified wavelength), but fails to predict the growth of the stationary disturbances 

in the downstream direction correctly. The prediction of the disturbance growth was 

largely improved in the work of Reibert et al. [29] using the nonlinear PSE in 1996. 

Experimenting with different spanwise spacings of leading edge roughness elements, they 

showed that a careful spacing of the roughness elements produced well defined stationary 

disturbances in the flow whose downstream growth was well predicted by nonlinear PSE 

computations.

Introducing the Proper Orthogonal Decomposition (POD)3 method for the 

identification of flow structures close to the transition location from non-intrusive sur­

face shear stress measurements using hot-films, Chapman et al. [30] showed the presence 

of coherent structures in the flow as a result of the acting instability mechanisms in 

1996. They characterized the POD as a useful tool for the detection of large scale 

structures and the onset of transition in the flow. In a  subsequent work [31] in 1998,

Chapman et al. used spatial auto-correlations in addition to the POD for the evaluation

3The POD was introduced by Lumley in 1967 and represents an objective technique that is used to 
decompose a flow field into various modes based on the mean-square energy. It is usually used to identify 
dominant structures in various flow regimes.
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of hot-film surface shear stress measurements. There, they proposed a mechanism in 

the transitional flow that merges two neighboring prim ary crossflow vortices. Further, 

they argued that the large and small scale turbulent structures observed immediately 

after transition originate from the primary and secondary instability mechanisms prior 

to transition, respectively.

2 .3 .5  O ther E xperim ents

In his classical experiment in 1985, Poll [32] investigated the flow along a  long 

yawed cylinder a t tunnel speeds of about 30 m /s, at freestream Reynolds numbers of 

Reoo =  1-0-106 - 2.0-106 and at turbulence levels of 0.16%. Using china-clay and oil- 

visualization techniques, he documented the presence of stationary crossflow vortices in 

the flow. At occasioned instances, he also measured a  high-frequency secondary distur­

bance riding on top of the primary disturbances, where the frequency of the secondary 

disturbance was one order-of-magnitude higher than the most amplified primary fre­

quency.

In 1996, Kachanov [33] performed experiments on a swept flat plate a t the 

aerodynamic research facility ITAM in Novosibirsk, Russia. The freestream turbulence 

level in these experiments was given as 0.06% for tunnel speeds around 10 m /s. Of 

particular interest for the validation of numerical methods are his results with respect 

to the receptivity to surface roughness, surface waviness and surface vibrations.

2.4 Theoretical and Numerical Models

2.4 .1  Fundam ental T h eoretica l W ork

One of the early theoretical developments on the stability of three-dimensional 

boundary layers was given by Gregory, Stuart and Walker [34] in 1955. Along with the
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presentation of experimental results for rotating-disc flow, they developed the linearized 

equations of motion in curvilinear coordinates for parallel and non-parallel flows. Also, 

they derived theorems regarding the inviscid stability depending on the location of the 

inflectional points in the mean velocity profiles. The results were presented for Gortler 

instabilities and for crossflow instabilities.

In his pioneering work of 1969 [35], Mack presented a complete development of 

the linear stability theory for incompressible and compressible flows. In this subsection, 

the review will be restricted to his work on the stability of incompressible flows. There, 

he derived the stability equations and their linearized version, distinguished between the 

temporal and spatial stability concepts, reviewed different approaches to relate temporal 

and spatial stability results (Gaster [36]), and presented different forms of the stability 

equation. Further, he reviewed previous work on the asymptotic inviscid theory and pre­

sented numerical results from the solution of the Orr-Sommerfeld equation. Finally, he 

discussed earlier work by Gaster and by Stuart [34] on the stability of three-dimensional 

boundary layers, and even mentioned results on the theoretical investigation of the linear 

secondary instability (Greenspan-Benney theory4).

In 1978, Mack [22] developed the spatial stability theory for three-dimensional 

boundary layers further. He derived a method for treating spatially amplified distur­

bances with a  complex group velocity and presented extensive results for the stability 

of Falkner-Skan-Cooke boundary layers for various pressure gradients and at different 

angles of the inviscid streamline. In his work, he predicted the existence of two unstable 

families of disturbances in three-dimensional boundary layers tha t propagate in opposite 

directions.
4In 1963, Greenspan and Benney developed an inviscid stability theory of time-dependent shear 

layers that approximates the distorted and inflectional mean flow profiles by simple expressions based 
on experimental data.
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The linear stability of nonparallel boundary layers with pressure gradients and 

suction was studied by Saric and Nayfeh [37] in 1988. The effect of boundary layer growth 

was accounted for by using the method of multiple scales. They showed that including 

non-parallel effects bridges the gap between the experimental results for the neutral 

Reynolds number for Blasius flow and previous results using the parallel flow assumption, 

and further suggest a  N-factor correlation for transition prediction. Meanwhile, however, 

their results have been re-evaluated and the discussion in Drazin and Reid [38] shows 

that the presented argumentation in [37] was not entirely consistent.

In 1991, Choudhari et al. [39] presented an alternative to the asymptotic ap­

proach to predict the receptivity to freestream disturbances in the infinite Reynolds num­

ber limit. Using the method of matched asymptotic expansions and a streamfunction 

formulation, they reduced the receptivity problem to an Orr-Sommerfeld-type problem in 

the Fourier space and showed more accurate results than obtained from the asymptotic 

theory for the Blasius boundary layer, for adverse pressure gradient boundary layers, 

and for a two-dimensional supersonic boundary layer.

Since the theoretical development of the PSE by Herbert and Bertolotti [40] 

in 1987, Herbert and co-workers have accomplished a substantial amount of work in 

documenting the applicability of the method to several two- and quasi-three-dimensional 

flow problems, and in advancing its effectiveness towards an application to engineering- 

type problems [41-44]. In 1997, Herbert presented an approach to solve the linear PSE 

for a fully three-dimensional mean flow [45] and showed the qualitative difference between 

the results from this novel and the conventional quasi-three-dimensional approach.
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2.4.2 N u m erica l Schem es

The focus of this subsection is on the review of work regarding the development 

of accurate finite difference schemes for the solution of the PSE and the Navier-Stokes 

equations, as well as on the stability of these schemes.

In 1982, Malik et al. [46] developed a finite difference method for an application 

to the flow stability analysis of three-dimensional compressible boundary layer flows. 

Their two-point, fourth-order-accurate method belongs to the class of compact schemes, 

where the fourth-order-accuracy is achieved by utilizing the Euler-McLaurin formula (see 

Chapter 4).

Compact finite differences with spectral-like resolutions for first, second and 

higher-order derivatives were derived by Lele [47] in 1992. These finite difference schemes 

can be used on non-uniform grids and are also applicable for accurate interpolation and 

spectral-like filtering.

In 1995, Li and Malik [48] showed for a two-dimensional base flow that the PSE 

are not a  well-posed initial value problem, and that some approximations are required to 

obtain a stable marching solution. They argued; however, that for practical applications 

convergence problems in the marching procedure arise from the elliptic remainder in the 

PSE consisting of the streamwise pressure gradient. Neglecting this term and thereby 

removing the limitation on the step size was shown to be of minor influence on the results 

for boundary layer flow applications.

2.4.3 Linear S tab ility  T h eory

Supplementary to the work reviewed in Subsection 2.4.1, selected papers on 

solely linear stability topics will be reviewed in this subsection. Additionally, most of 

the publications on nonlinear stability topics cited in Subsection 2.4.3 contain linear
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stability results as well. The discussion of these, however, will not be subject of this 

subsection.

One of the earlier numerical approaches to the investigation of three-dimensional 

boundary layers was given by Bieler [49] in 1986. Solving the Orr-Sommerfeld problem, 

he found that stationary disturbances become unstable close to the neutral point, and 

that the traveling disturbances are more unstable than the stationary disturbances.

In 1992, Balakumar and Malik [50] investigated the linear stability of incom­

pressible and supersonic boundary layer flows over a  flat plate that are subject to distur­

bances originating from a harmonic point source. Computing the receptivity coefficients 

using Fourier-transformation techniques [51] and including non-parallel effects using the 

method of multiple scales, they computed the evolution of the most amplified distur­

bance downstream. Also, they documented the decay of three-dimensional effects close 

to the location of the point source in the downstream direction. Finally, their results 

showed the influence of the second unstable mode on the stability for higher Mach num­

bers, and their results matched experimented measurements of the spreading angle of the 

disturbances very well.

Stuckert et al. [52] investigated the stability of a supersonic boundary layer 

flow over swept wings using the linear PSE in body-oriented coordinates in 1993. By 

comparing their PSE results to different local stability codes, they concluded that the 

influence of non-parallel effects is Reynolds number dependent and cannot be generalized 

from the presented results.

Perhaps the most recent comprehensive review of the linear stability theory 

applied to boundary layer flows was given by Reed, Saric and Arnal [53] in 1996. They 

summarized previous work on temporal and spatial stability formulations, carefully dis­
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cussed the value of the eN-method by Smith and Gamberoni and by van Ingen for current 

transition prediction methods in three-dimensional flows, and listed current state-of-the- 

art numerical codes. Further, they reviewed the stability of two- and three-dimensional 

sub- and supersonic flows, as well as of the attachment-line flow. For the stability of 

incompressible three-dimensional boundary layers studied here, they pointed out the ex­

istence of both stationary and traveling unstable disturbances in the flow, which is in 

contrast to the existence of purely traveling unstable disturbances in two-dimensional 

flow. Also, they attributed the similarity between the angles of the most unstable distur­

bances and the growth rates for the stability of incompressible and transonic boundary 

layers to the inviscid character of the crossflow instability. Next, they presented a detailed 

discussion of different N-factor integration strategies and concluded that the constant 

spanwise wave number/constant frequency strategy is superior to the envelope method, 

mainly because of its distinction between crossflow and TS-instability (see also Arnal et 

al. [12]). Regarding the effects of curvature in the computation, Reed et al. discussed the 

stabilizing and destabilizing effects of including surface and in-plane curvature, respec­

tively. However, they also pointed out the difficulties in determining a suitable coordinate 

system to incorporate in-plane curvature effects. Finally, they briefly discussed control 

concepts for the flow along swept wings.

Different strategies for the N-factor integration were also discussed in detail by 

Schrauf [54] in 1994 and by Schrauf et al. [55] in 1997. In Reference [55], they evaluated 

data obtained from flight tests with a Fokker F-100 aircraft for a  comparison of the 

different strategies. Their results show that no universal N-factor for the transition on 

swept wings could be established. The most consistent correlations for the transition 

location were obtained by using the envelope method for compressible flows with curva­
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ture effects, where the prediction was improved when they distinguished between CF- 

and TS-dominated transition scenarios. The constant wave number/constant frequency 

method5 was considered less effective, since the actual transition occurred after the com­

puted N-factor maximum in about 50% of the considered cases. These findings are in 

contrast to the results by Arnal et al. [12].

Very recently, the topic of linear stability of three-dimensional boundary lay­

ers was revisited by a number of investigators. In 1997, Lingwood [56] theoretically 

investigated the linear stability of attachment-line and Falkner-Skan-Cooke boundary 

layers. Using a Green’s function formulation to investigate the response to an impul­

sive disturbance forcing, she determined the onset of an absolute instability along the 

attachment-line at Re=681, and for the Swept Hiemenz flow problem at Re=545.

Cooper and Carpenter [57, 58] studied the stability of the rotating-disc flow 

over a compliant wall. Coupling a single-layer viscoelastic model to the system of ordi­

nary differential equations describing the linear stability, their results showed that wall 

compliance can be used to completely suppress absolute instabilities in this flow.

2.4.4 N onlinear S ta b ility  Theory

Following the review on the development of the nonlinear theory of flow stabil­

ity by Drazin and Reid in [38], its theoretical foundations were laid by Landau in 1944 

and later refined by Landau and Lifshitz in 1959. They introduced the concept of sub- 

and supercritical stability and also defined the branching curves of neutral solutions as 

bifurcations. Subsequently, several other theories were developed to approximate the 

nonlinear evolution of the disturbance quantities in parallel flows. Among these are the

concept of weakly nonlinear theory introduced by Malkus and Veronis in 1958, and by

sThis method traces modes of constant wave number and constant frequency in the chordwise direc­
tion. It can be based on local theory, but also represents the typical approach taken in PSE computations.
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Stuart in 1958, as well as asymptotic theories developed by Graebel in 1966, by Fraenkel 

in 1969, and by van Dyke in 1975. Due to the strong increase of available computa­

tional resources since the 1980’s, and also due to the pioneering work of Herbert and 

Bertolotti [40] in 1987, the developed PSE methods allow for the physically appropriate 

modeling of the disturbance evolution including non-parallel mean flow effects with an 

affordable amount of computational work. The remainder of this subsection will review 

the work on the nonlinear stability of two- and three-dimensional boundary layers using 

the PSE.

In 1992, Bertolotti, Herbert and Spalart [59] investigated the linear and nonlin­

ear stability of the Blasius boundary layer using their newly developed PSE formulation 

and temporal DNS computations. Noting a very good agreement of the PSE with the 

DNS results, they emphasized tha t the main benefits of the PSE formulation are the 

simultaneous incorporation of mean flow non-parallelism and nonlinearity, as well as the 

correct description of longer wavelength disturbances with drastically reduced compu­

tational effort compared to the DNS. They concluded tha t the impact of including the 

non-parallel effects on the results is weak, and that the maximal amplified frequency 

is higher than predicted by linear theory when finite amplitude effects are considered 

in nonlinear computations. Further, they attributed observed differences between the 

neutral curve for Blasius flow obtained from experiment and computation to an initial 

region of transient disturbance growth close to the location where the disturbances were 

introduced, to the definition of the growth rates, and to experimental uncertainties.

Using an extended PSE formulation that accounts for compressibility, surface 

curvature and nonlinearity, as well as assuming a linear receptivity to freestream tur­

bulence, Herbert et al. [60] studied the effect of different turbulence levels and surface
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curvature on the stability of flows over heated plates and a two-dimensional stator blade 

in 1993. They showed that the PSE correctly predict the effects of turbulence level, 

curvature, wall heating and pressure gradient on the transition process, and were able 

to closely predict the measured location of the transition onset for a stator airfoil.

Malik et al. [23] presented an extensive investigation of the Swept Hiemenz flow 

problem in 1994. Using their PSE formulation, they studied the Unear and nonUnear 

stabiUty of this flow, and also showed results from a secondary instabiUty analysis using 

Floquet theory. In particular, they investigated the nonlinear interaction of stationary 

and traveUng modes, showed that including a small ampUtude traveUng disturbance in 

the computations leads to an earUer saturation of the stationary disturbances at lower 

amplitude levels, and that the transition to turbulence is preceded by the onset of a 

high-frequency secondary instabiUty that rides on top of the stationary vortex. Their 

work is referred to in more detail in Chapter 5.

Bertolotti [61] developed a method to compute the receptivity to surface rough­

ness for non-paraUel mean flows using the linearized Navier-Stokes equations. Expanding 

the surface geometry and the velocity field in Chebyshev polynomials and substituting 

this formulation into the linearized Navier-Stokes equations, he derived a set of ordinary 

differential equations that can be solved within a  few minutes on a Sparc-10 workstation. 

Using the information about the initial disturbance amplitudes thus obtained in a sub­

sequent PSE analysis, he computed the downstream disturbance evolution for the DLR 

experiment. Including a small traveUng disturbance in the computations and allowing 

for the nonUnear interaction of stationary and traveling disturbances, he was able to 

very closely predict the experimentally observed ampUtude evolution and the shape of 

the disturbance profiles.
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A comprehensive review of the capabilities, advantages and limitations of the 

PSE was recently given by Herbert [44] in 1997. Starting with a review of the deriva­

tion of the PSE and different normalization concepts for incorporating the assumption 

of the small streamwise variation of the shape function in the growth rate computation, 

he pointed out that the convective nature of linear instabilities in boundary layer flows 

allows for an application of the linear PSE. This can be rigorously justified according 

to [44]. However, for an application of the nonlinear PSE, one needs to closely compare 

the obtained results to either DNS computations, or experimental results. Using the ex­

ample of the Blasius boundary layer, he showed that the influence of non-parallel effects 

on the disturbance growth is larger for three-dimensional disturbances than for two- 

dimensional disturbances. Also, he presented results from a PSE computation for the 

modeling of the subharmonic secondary instability on a flat plate. Even though the num­

ber of the included Fourier-modes might have been too small in these computations [44], 

he concluded from the reasonable agreement of the PSE and DNS computations that it 

should be possible to perform PSE simulations of the transition onset by increasing the 

number of modes in the wave number and frequency domain. From nonlinear PSE com­

putations for three-dimensional boundary layers and considering the nonlinear evolution 

of a single primary disturbance mode, he stated a weak influence of the initial amplitude 

on the saturation amplitude. From an investigation of the nonlinear compressible sta­

bility of the flow across a swept wing, he finally attributed the experimentally observed 

zig-zag transition pattern to the simultaneous growth and the nonlinear interaction of a 

broad band of disturbances. This observation also explains the often noted failure of the 

eN-method to predict transition for three-dimensional boundary layer flows correctly .
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2 .4 .5  Secondary In stab ility

The investigation of the secondary instability phenomenon in the regions of 

nonlinear disturbance saturation originated from the experimental studies by Klebanoff, 

Tidstrom and Sargent [62] in 1962 and the theoretical work by Gortler and Witting [63] 

in 1958. For other experimental investigations see Section 2.3. Further, a more detailed 

definition of the secondary instability will be given in Chapter 4.

Starting point for the review presented here is the work by Orszag and Pat­

era [64] from 1983. Due to its origin from inflectional points in the velocity profiles and 

its persistence at high Reynolds numbers, they described the secondary instability as an 

inviscid instability and the prototype of a transitioned instability that is inherently three- 

dimensional and has explosive growth rates. In [64], they investigated two-dimensional 

boundary layer flows for the onset of a secondary instability. After describing the primary 

stability and its nonlinear saturation for plane and circular Poiseuille flow, they studied 

the linear stability of these flows to infinitesimal three-dimensional disturbances using 

the linearized Navier-Stokes equations in a Galilean coordinate system and DNS. They 

detected secondary instability structures at locations of maximum vorticity in the flow 

field, and made another observation regarding the energy transfer between the primary 

disturbances, the secondary disturbances and the mean flow. They found that the energy 

transfer between the mean flow and the secondary disturbances is much larger than be­

tween the primary and the secondary disturbances. Finally, they showed the universality 

of the secondary instability mechanism by investigating the parallel Blasius boundary 

layer and plane Couette flow where they found similar instability characteristics.

Also in 1983, Herbert [65] presented results from an investigation of the sec­

ondary instability mechanism in plane channel flow. For existing periodic and two-
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dimensional solutions to the Navier-Stokes equations on a neutral surface of the nonlinear 

dispersion relation in a moving frame of reference (equilibrium solutions), he superim­

posed infinitesimal three-dimensional secondary disturbances on the equilibrium solu­

tions and solved the resulting linearized disturbance equations as an eigenvalue problem. 

He found that the three-dimensional secondary disturbances travel at slightly different 

phase speeds than the primary two-dimensional disturbances, and that the secondary 

disturbances grow by a factor of 100 within five cycles of a  TS-wave. He further de­

termined threshold amplitudes for the onset of various secondary instability modes and 

argued tha t the threshold amplitude physically represents a minimal vorticity concentra­

tion tha t must overcome the viscous damping of the secondary instabilities. Finally, he 

concluded that for a large enough amplitude of the secondary disturbances, the transition 

can be initiated by a single secondary disturbance mode.

As mentioned in Section 2.3, Reed [25] showed the existence of a parametric 

resonance in the region of the nonlinearly saturated stationary crossflow vortex of swept 

wing flows in 1987. Using the parallel flow assumption for the mean flow, neglecting the 

mean flow distortion as well as the amplitude variation in the streamwise direction due 

to the primary disturbances, and finally superimposing two three-dimensional secondary 

waves in a  moving frame of reference on this flow, she established a Floquet system 

that was solved using a spectral collocation method. An unstable secondary structure 

was found away from the wall, and the results closely reproduced the experimentally 

observed modification of the dominant wavelength.

An investigation of the secondary instability in the flow across a swept wing 

was presented by Fischer and Dallmann [16] in 1987. They studied the flow over a 

21°-swept model wing considering a parallel mean flow that is modified by the presence
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of a stationary crossflow vortex. This choice was motivated by the strong receptivity 

of the stationary disturbances to surface roughness. Neglecting the mean flow distor­

tion and the streamwise amplitude variation of the primary disturbances, and further 

superimposing three-dimensional secondary disturbances in a moving frame of reference 

on this flow, they studied the harmonic and subharmonic resonance case, as well as a 

combination of these two cases. They found a great influence of the higher harmonics of 

the fundamental secondary waves on the results, and thus, suggested to include at least 

four or five secondary modes in the computation. From their results, they concluded 

that the time dependent secondary disturbances modify the primary crossflow vortices 

in a way that they oscillate around their stationary equilibrium and are weakened and 

strengthened alternately. Also, they confirmed the half-wavelength periodicity seen by 

Saric and Yeates [24].

A comprehensive review of the findings and methods related to the investigation 

of the secondary instability topic was given by Herbert [66] in 1988. Presenting a very 

detailed overview of previous work on stability and transition analysis first, he summa­

rized the findings on the parametric secondary instability for two-dimensional boundary 

layers as follows. Three-dimensional secondary instability can lead to different distur­

bance types. The primary resonance with a  TS-wave produces peak-valley splitting once 

a threshold amplitude of the primary disturbances is exceeded, and initiates the funda­

mental breakdown to turbulence. A subharmonic resonance can occur at even smaller 

disturbance amplitudes and leads to the subharmonic turbulent breakdown. Secondary 

instability originates from the redistribution of vorticity into streamwise-periodic lumps 

near the critical layer, and the growth of the three-dimensional disturbances arises from 

a combined vortex tilting and stretching mechanism. Lastly, he pointed out that there is
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an intricate connection between linear and secondary instability modes that is revealed 

by considering the limit of a zero amplitude of the primary disturbance. Next, he pre­

sented the mathematical background of the Floquet theory applied to the investigation of 

the linear secondary instability. Incorporating three assumptions in his analysis, namely 

the assumptions of a parallel mean flow, of a locally constant amplitude of the primary 

disturbance, and the neglect of the mean flow distortion (shape assumption), he derived 

the system of equations that travels with the phase speed of the primary disturbances 

(Floquet system). In his formulation, he incorporated both the concepts of spatial and 

temporal secondary growth of the disturbances, where the temporal problem is solved 

more often because of the linear appearance of the temporal wave number in the equa­

tions. Concluding his review on the secondary instability of mostly two-dimensional 

boundary layers, he stated that two essential elements need to be incorporated in the 

numerical analysis in order to improve the transition prediction based on a secondary 

instability analysis. First, the frequency and amplitude composition of the primary dis­

turbances need to be considered, and second, a qualitative criterion for a self-sustained 

growth of the secondary disturbances needs to be established. Both elements cannot be 

provided by linear theory and require nonlinear computations.

A primary and secondary stability analysis of the DLR experiment was pre­

sented by Fischer and Dallmann [67] in 1991. Considering a purely steady primary 

disturbance, taking the same theoretical approach as in Reference [16] and using the 

amplitude information for the primary disturbances directly from the experimental val­

ues, they investigated the secondary instability for the harmonic and subharmonic reso­

nance case, as well as for a combination case. Considering four secondary modes in their 

Fourier approximation, they found the earlier observed half-wavelength periodicity to be
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also present in this experiment, but could not detect the very strong secondary growth 

of frequencies an order-of-magnitude higher than the primarily unstable frequencies.

A qualitatively new result indicating the existence of an absolute instability in 

the convectively unstable Blasius boundary layer was presented by Koch [68] in 1992. 

Computing nonlinear equilibrium solutions at finite Reynolds numbers using numerical 

bifurcation theory first, he examined the secondary instability of the such obtained mod­

ified mean flow using Floquet theory secondly. In contrast to previous work, he obtained 

the modified mean flow from a nonlinear computation, and hence, there was no need 

for incorporating the shape assumption. The remaining simplification of the problem, 

though, is the assumption of a parallel mean flow. Investigating the secondary distur­

bances that travel with the same phase speed as the primary disturbances (phase-locked), 

Koch found the existence of links between several unstable modes (coalescence) and of 

a modal degeneracy. The la tter is defined as the coincidence of two or more amplified 

eigenvalues and their eigenvectors that leads to a locally algebraic growth of these distur­

bances. It is this mechanism that might explain the experimentally observed explosive 

growth of high-frequency disturbances in the late stages of the transition process.

In 1992, Balachandar et al. [69] studied the secondary instability of the rotating- 

disc flow problem. The main focuses of their temporal stability investigations were on 

the parametric dependence of the secondary disturbances on the stationary primary dis­

turbance amplitude, on the vortical structure of the secondary disturbances, and on the 

nonlinear effects of the prim ary disturbances on the secondary disturbances. The pri­

mary disturbances were computed by solving a generalized linear eigenvalue problem for 

the complex frequency. For the formulation of the linear Floquet system, they incorpo­

rated the shape assumption and the assumption of a  locally constant primary amplitude.
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Considering six, or seven secondary modes in their computations, they presented very 

detailed results for the secondary growth rates and their dependence on the primary 

disturbance amplitudes and the Reynolds number. Further, they documented the shape 

of the secondary eigenfunctions. Examining both the fundamental and subharmonic res­

onance case, they found that the secondary frequencies and growth rates are insensitive 

to the exact nature of the resonance conditions. From these results, they also found 

the existence of several unstable eigenvalues in the secondary eigenvalue spectrum. For 

the purpose of a discussion of the effect of including the mean flow distortion in the 

computations, they performed a temporal DNS computation. From the observed quali­

tative agreement of the DNS results with the results obtained by solving the generalized 

eigenvalue problem for the primary disturbances, they concluded that despite quantita­

tive changes due to nonlinearity, the overall picture of the secondary instability can be 

captured by incorporating the shape assumption. In detail, they reported an inclina­

tion of the secondary structure of about 44° with respect to the primary disturbances, 

and a  decrease of the threshold amplitudes of the primary disturbances required for the 

onset of the secondary instability with increasing Reynolds number. These thresholds 

amplitudes varied between 7% and 10%.

Fischer, Hein and Dallmann [70] presented results from a secondary instabil­

ity study for the DLR experiment where they again considered a mean flow that is 

modified by a saturated purely stationary crossflow vortex. Starting from previous re­

sults [67] that showed a low-frequency secondary instability, they artificially increased 

the amplitude of the primary and determined a higher-frequency secondary disturbance 

in that case. In a new approach that considered non-local secondary instability effects, 

Fischer et al. computed the different growth rates for the peaks and valleys in the pe­
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riodically varying modified mean flow components along the spanwise direction. They 

defined a so-called characteristic function that describes the spanwise variation of the 

primary disturbances independently of the chordwise position. Considering the such de­

scribed spanwise variations in a  non-local secondary instability analysis, they accurately 

predicted the experimentally measured maximal and minimal streamwise fluctuations. 

This approach was presented in more detail by Fischer [71] in 1995.

In their previously cited work on the secondary instability in Swept Hiemenz 

flow, Malik et al. [23] obtained the modified mean flow from a nonlinear PSE compu­

tation. In agreement with the results for rotating-disc flow in [69], they found several 

unstable secondary eigenvalues in the region of the nonlinear saturation of the stationary 

primary crossflow vortex, an almost linear dependence of the secondary frequency on the 

secondary wave number, and an inclination of the secondary structure of about 50° with 

respect to the primary disturbances. In their computations, they included 17 and 33 

secondary modes and found good agreement of the results for the two different spectral 

resolutions. Interestingly and in correspondence with experimental work by Kohama 

et al. [20], they found that the secondary instability structure rides on the back of the 

primary stationary vortex where the distortion of the boundary layer is maximal.

2.4.6 D irect N um erical S im ulation

With the rapidly increasing power of shared and distributed memory computers, 

as well as of parallel computational methods, the tremendous computational effort nec­

essary to conduct a well resolved Direct Numerical Simulation (DNS) of a fluid dynamics 

problem becomes more feasible. For example, the consensus at the First AFOSR Inter­

national Conference on DNS/LES6 at Louisiana Tech University in Ruston, Louisiana,

6Large Eddy Simulation
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U.S.A. in 1997 was that hybrid methods consisting of DNS computations in regions of 

particular interest, and Euler-, or Reynolds-Averaged Navier-Stokes computations for 

the remaining flow regions might be a future strategy of investigating complex flow 

problems.

Starting with the early work on spatial DNS methods by Fasel in 1976 [72], 

a wide variety of temporal and spatial DNS solvers has been developed within the last 

10 years. In the following, a selection of these approaches to solving the incompressible 

Navier-Stokes equations for three-dimensional boundary layers will be reviewed.

In 1988, Meyer and Kleiser [73] presented results from a temporal simulation 

of the DLR Transition experiment. In their formulation, they employed Fourier series 

expansions of the flow quantities in the horizontal directions, and a Chebyshev-matrix 

collocation method in the wall-normal direction. The pressure was calculated from a 

Poisson equation using the influence-matrix technique. For preserving the conservation 

of mass, they used a procedure similar to the “Tau-Method”7. Despite some differences 

between experiment and DNS, their computations predicted the development of the ve­

locity fields at various stages of transition, the mean flow distortions and the development 

of the wall-shear stress well.

Building upon well tested DNS codes for the transition on a flat plate (Ref­

erences [74,75]), Joslin et al. [76] showed results from spatial DNS computations for 

swept wedge flow in 1994. Their formulation in Cartesian coordinates used a Chebyshev 

collocation method in the wall-normal direction, fourth-order finite differences for the 

pressure equation, sixth-order compact finite differences for the momentum equations in

the streamwise direction, and a Fourier series approximation on a staggered grid in the

7The “Tau-Method” uses pre-computed auxiliary solutions to eliminate the errors arising from the 
decoupling of continuity and momentum equations.
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spanwise direction. For the time-advancement, they applied an implicit Crank-Nicholson 

differencing for the diffusion terms in the normal direction and a fourth-order, three-stage 

explicit Runge-Kutta method for the time derivatives. The disturbances were introduced 

using periodic blowing and suction through the surface. They found that adjacent indi­

vidual stationary disturbances spread in the region of linear growth, eventually leading 

to the wavelength coalescence experimentally observed by Arnal and Juillen [11].

In 1996, Muller et al. [77] presented temporal DNS results for a  mean flow 

adapted to the DLR experiment. They found that the breakdown to turbulence origi­

nated from spanwise positions of minimal vorticity and maximal rms-values. In a  similar 

simulation by Wintergerste and Kleiser [78] in 1996, a secondary crossflow vortex was 

detected close to the wall and a vortex-splitting mechanism was observed just prior to 

the turbulent breakdown (see Chapter 5).

Starting in 1991 with the work on grooved channel flow by Liu et al. [79], a 

number of explicit and implicit, incompressible and compressible spatial DNS codes were 

developed under the supervision of Liu [80-82]. Liu and co-workers derived multilevel 

adaptive methods that allow for the simulation of the entire transition process on air­

foils and wings. The main features of their codes are summarized as follows. First, 

they utilized curvilinear coordinates and applied a fourth-, or sixth-order accurate dis­

cretization in space. Further, they implemented a multigrid Full Approximation Scheme 

and the newly developed method of line-distributive relaxation. The time integration 

was performed using various methods ranging from backward Euler-steps to five-stage 

Runge-Kutta methods. In the recent work by Liu et al. [82] tha t perhaps represents 

the first DNS computation for the compressible flow along a swept wing geometry, they 

quoted a CPU-requirement of 100 hours on the Cray C-90 for 30,000 time steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

2.5 Control of Three-dimensional Boundary Layer Flow

The work reviewed in this section represents only a small selection of the avail­

able literature on active and passive boundary layer control. It is restricted to cases 

where the control of a crossflow instability dominated three-dimensional boundary layer 

was the objective.

Accompanying the experiments at ASU reviewed in Subsection 2.3.4, a sys­

tematic investigation of the effect of two- and three-dimensional leading edge roughness, 

as well as of freestream sound on the flow stability downstream was conducted starting 

with the work by Radeztsky et al. [83] in 1993. One of the objectives of this work was 

to establish a  data base for the validation of methods to compute the receptivity to 

surface roughness. Using the ASU swept wing model, they investigated three different 

surface qualities with distributed roughness heights of 9 fim, 0.5 /im, and 0.25 /im. They 

suggested that the distributed roughness height near the leading edge might be a  quan­

titative measure for the transition N-factor. Placing different isolated three-dimensional 

roughness elements near the leading edge, they further investigated the dependence of 

the transition location on the roughness geometry. They found that a minimum rough­

ness diameter of eight percent of one stationary crossflow wavelength is necessary to 

influence the transition, and that the transition is a function of the roughness Reynolds 

number8 Re^. Also, the streamwise location of the roughness elements was found to be 

important. Radeztsky et al. recommended that the roughness elements should be placed 

closely behind the neutral point to have a significant impact on the downstream transi­

tion. Neither a measurable receptivity to two-dimensional roughness, nor to freestream

sound was observed in the experiments.

8The Reynolds number based on the roughness height is defined as Re=Uk • k/t/ where Uk is the mean 
flow velocity at the maximal height of the roughness element.
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In 1996, Balakumar and Hall [84] determined the optimum suction distribution 

which gives the longest laminar region for a given total suction using the Lagrange- 

multiplier method with constraints. Their analysis and computations were performed 

for two- and three-dimensional boundary layers. They showed that the amount of suction 

necessary to control the crossflow instability is much larger than for the control of the 

TS-instability. Controlling the crossflow instability along a swept wedge, they were able 

to show a potential transition delay of 6- 10% of the chord length, depending on the 

dominance of traveling, or stationary disturbances.

In a  recent investigation by Saric et al. [4] from 1998, different spanwise spacings 

of roughness elements near the leading edge were successfully used to passively control 

the transition location. Their findings will be explained in Chapter 7.

2.6 Summary

To conclude the literature review, the state-of-the-art in transition prediction 

methods and models for the mechanisms involved in the laminar-turbulent transition in 

three-dimensional incompressible boundary layers will be summarized.

R eceptivity

Choudhari et al. [39] distinguished different streamwise regions where the non­

parallel boundary layer is receptive to freestream disturbances. In particular, they men­

tioned the region of a rapidly changing boundary layer thickness close to the leading edge, 

and a region further downstream where the surface boundary conditions are altered ei­

ther by suction, or surface roughness. Further, the strong receptivity of the stationary 

crossflow disturbances to surface roughness was shown by Miiller et al. [15] in 1988, by 

Radeztsky et al. [83] in 1993, and by Takagi and Itoh [19] in 1994.
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Linear Stability

It has been confirmed experimentally and numerically that three-dimensional 

boundary layers are unstable to stationary and traveling disturbances. This is in con­

trast to two-dimensional boundary layers that are unstable only with respect to traveling 

disturbances. Linear stability theory has been shown to be capable of predicting param­

eters like the wavelength spectrum (including the most amplified wavelength) and the 

shape of the unstable disturbances [10,18] correctly.

Transition Prediction and Detection

For transition prediction using the eN-method, different strategies are recom­

mended in the literature. Whereas Reed et al. [53] and Arnal et al. [12] preferred the con­

stant wave number/constant frequency method in comparison with the envelope method 

(mainly because of its ability to distinguish between Tollmien-Schlichting and crossflow 

waves), Schrauf et al. [55] obtain better correlations with performed flight experiments 

by applying the envelope method. However, for the prediction of transition in three- 

dimensional boundary layers, extreme care must be taken in interpreting the results 

from the linear N-factor computations. This is due to the existence of a relatively short 

region of linear growth that is followed by a significant region of nonlinear saturation, 

where the linear theory cannot predict the disturbance evolution correctly. Another 

complicating factor in the application of the eN-method in three-dimensional boundary 

layers is the simultaneous growth of a  broad band of stationary disturbances [44] in the 

linear region that start to coalesce [76] and interact nonlinearly soon thereafter.

In a Iow-freestream turbulence environment, stationary crossflow disturbances 

dominate the transition process by causing a strong high-frequency secondary instability. 

The initial conditions for the disturbance evolution are determined by surface roughness
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in that case [83] and a saw-tooth transition pattern prevails. In a high-freestream turbu­

lence environment, the traveling crossflow disturbances dominate the transition process 

and the saw-tooth pattern is weaker than in the previous case [83].

For the detection of the transition location, two promising techniques were cited. 

First, a  more traditional intermittency technique was described by Deyhle and Bippes [2], 

and second, a recently developed technique by Chapman et al. [30,31] using surface shear- 

stress measurements, as well as the method of Proper Orthogonal Decomposition and 

auto-correlations.

The location of the transition onset was determined in a narrow spanwise re­

gion [27] where the averaged velocity component tangential to the inviscid streamline is 

minimal [15]. In contrast to the findings by Orszag and Patera [64], Muller et al. [77] 

traced the transition onset back to locations of minimal vorticity and maximal rms- 

values.

In accordance with findings by Malik et al. [23], Wintergerste and Kleiser [78] 

detected a secondary crossflow vortex close to the wall in the region of the nonlinear 

saturation in their temporal DNS results. They further described a vortex-splitting 

mechanism that leads to transition immediately after the appearance of the secondary 

crossflow vortex.

Further, the transition Reynolds number was shown to be a function of the 

surface conditions, the freestream turbulence level and the saturation amplitudes of 

the disturbances by Deyhle and Bippes [2]. They showed that the highest transition 

Reynolds number was obtained for conditions that perm itted the most limited growth 

of the stationary disturbances.
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Applied PSE M ethods

Since the development of the PSE in 1987 [40], explicit solution methods have 

been implemented and adapted to a variety of two- and quasi-three-dimensional prob­

lems in fluid dynamics. The existing PSE formulations in body-oriented coordinates 

have been shown to accurately predict the flow physics of transitional flows into the 

later stages of transition. For example, a computation of the secondary instability in the 

Blasius boundary layer was presented by Herbert [44], and the influence of freestream 

turbulence and surface curvature, as well as the prediction of the transition onset on 

a two-dimensional stator airfoil were successfully modeled in 1993 [60]. In 1997, Her­

bert [45] presented an explicit approach to solve the PSE for fully three-dimensional 

boundary layer flows. A major short-coming of the explicit PSE methods, however, is 

the large amount of necessary iterations on the nonlinear terms in the later stages of the 

transition, where strong gradients are present in the flow.

Secondary Instability

Orszag and Patera [64] determined the onset of the secondary instability in 

two-dimensional flows at locations of maximal vorticity. The onset of the secondary 

instability in three-dimensional boundary layer flow requires a much larger amplitude 

level of the primary disturbances than in two-dimensional flows. In [69], Balachandar et 

al. compared threshold amplitudes of about 9% for rotating-disc flow with a few tens 

of a percent required for two-dimensional flows. Also, they found that the secondary 

instability mechanism in the investigated three-dimensional boundary layer was similar 

for the fundamental and the subharmonic resonance case.

It has been confirmed experimentally [20,32] and computationally [23] that the 

high-frequency secondary instability rides on top of the stationary crossflow vortex and
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is located away from the wall. The experimentally observed half-wavelength periodic­

ity caused by this secondary instability mechanism was confirmed by Reed [25] and by 

Fischer and Dallmann [16] using Floquet theory. Herbert [65] showed an intricate con­

nection between linear and secondary instability modes for plane channel flow that is 

revealed by considering the limit of a  zero amplitude of the prim ary disturbance. In [66], 

he further argued that for an improved transition prediction using secondary instability 

theory, the frequency and am plitude composition of the prim ary disturbances must be 

specified properly, and a criterion for a self-sustained growth needs to be established.

Finally, an explanation for the experimentally observed explosive growth of 

traveling disturbances in the late stages of transition was given by Koch [68]. He showed 

the existence of an absolute instability in the Blasius boundary layer in the region just 

prior to transition.
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CHAPTER 3 

MEAN FLOW COMPUTATION

In this chapter, the approach to the computation of the mean flow profiles 

around arbitrary quasi-three-dimensional geometries is developed. The first section will 

explain the panel method for the computation of the inviscid outer flow, and a solution 

method for the quasi-three-dimensional boundary layer equations will be derived in the 

second section.

3.1 Outer Flow

The assumption of an infinite geometry in the spanwise direction implies that 

it is sufficient to compute the inviscid outer flow distribution in only one spanwise plane. 

This outer flow distribution then provides the freestream boundary conditions for the 

boundary layer equations, the solution of which is explained in the next section. For 

the outer flow computation in Chapter 7, the panel code by Kuethe and Chow [85] was 

used. The source code is given and documented in Reference [85]. The remainder of this 

section will explain the basics of the applied method.

In order to compute the inviscid flow around two-dimensional contours of arbi­

trary shape at an angle of attack, the surface of the particular contour is approximated by 

a finite number of flat panels covered with singularities of undetermined strength. These 

singularities are used to deflect the incoming stream in a way that it will flow around the 

contour. In the presented method, vortex panels with linearly varying strength along 

the panel and continuous strength across the panel edges are used. Figure 3.1 shows the 

panel configuration around a general two-dimensional contour. The boundary points axe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

defined to be on the surface of the geometry (solid points), whereas the control points 

(hollow points) are located in the middle of each panel. Starting at the trailing edge and 

numbering the m panels in the clockwise direction, m+ 1  boundary points and m control 

points are created.

Figure 3.1: Definition of the panel arrangement around the geometry

Defining a uniform incoming flow at an angle of attack a, the velocity

potential (j> at the ith control point is given by equation 3.2 [85]. Here, y(sj) is the un-

7 (Sj) =  7j 4- (7j+l -  7j) • J - , (3.1)

0(xi,yi) =  V0

Sj

Xj cosar +  y; sina — X j J^7(sj) tan -1 ( ^ — — ] dsj
Xj -  Xj

(3.2)

known nondimensional vortex strength of the ith panel, and sj and Sj are the distances 

from the edge of the panel and the total panel length, respectively. Thus, one has to 

solve for the m+1  unknowns 7j at the boundary points in order to determine the velocity 

potential around the contour.

Next, the boundary conditions normal to the surface, as well as the Kutta- 

condition at the trailing edge are formulated. Incorporating these conditions and utilizing 

geometrical relations around the contour, a well-posed problem is established that cam 

be solved numerically. The homogeneous boundaury conditions normal to the surface
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require the flow to be tangential to the surface. They are evaluated at the control points 

and can be written as in equation 3.3, where n; is the vector normal to the surface. The

Q
0(x i,y i)= O  ; i =  1,2, • • •, m (3.3)

on;

Kutta-condition at the trailing edge requires the flow to leave the airfoil smoothly and 

without any pressure gradient across the trailing edge. It forces the total vortex strength 

at the trailing edge to be zero and is written in equation 3.4. Evaluating the normal

71 +  7m+i =  0 (3.4)

boundary conditions and expressing them in terms of the control point coordinates, one 

obtains equation 3.5 [85]. In equation 3.5, the coefficients Cnijj and Cn2,ij are functions

m
5 Z (Cni,i] 'Tj +  Cn2,ij -7j+i) = s in  (©j - a )  ; i = l , 2 , - , m  (3.5)
j=i

of the control points. Their expressions are given in detail in Reference [85]. Equation 3.5 

represents the normal velocity at the ith control point induced by the linear vortex 

distribution on the j th panel.

Combining equations 3.4 and 3.5, a set of m+ 1  equations for the m+1  unknowns 

is obtained which can be written in matrix form in equation 3.6. From the previous de-

An • 7 =  R H S  (3.6)

rivation, the elements of the influence matrix A n and the corresponding vector of the

right-hand side R H S are expressed as follows :

for (i < m +  1) : An>il =  Cni,u , (3.7)

An,im+l =  Cn2,im > (3.8)

A-n,ij =  Cnitij +  Cn2,ij—i ; j =  2 ,3, • • •, m , (3.9)
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RHSi =  sin(0j — a ) , (3.10)

for (i =  m +  1) : An,ij =  1 , (3.11)

•A-n.im+l =  1 i (3.12)

An,ij =  0 ; j =  2,3, • • •, m , (3.13)

RHSi =  0 . (3.14)

After solving the linear system given by equation 3.6 for the vortex strength distribution 

at each control point, the velocity and pressure at these points can be determined. 

Letting tj be the tangential vector to the surface a t each panel, the velocity at each 

control point is defined as in equation 3.15, where the coefficients Cti,ij and Ct2,ij are 

given in Reference [85]. Here, the summation term represents the tangential velocity at

Q m
v i =  ^ -0 (x j,y i)  =  cos ( e j - a )  +  ̂ ( C ti,ij-7j 4- Ct2,ij -7j+i) ; i = l , 2 , - - - , m (3.15)

aZi j=i

the ith control point induced by the linear vortex distribution on the j th panel. Writing 

equation 3.15 in a more suitable form for the implementation into a computer code, one

d  m+1
Vi =  T j-^X i,* ) =  cos (©i -  a ) +  £  At,u • 7j ; i =  l , 2 , - - - , m , (3.16)

ati  j= i

At,il =  ; Atiim+1 =  Ct2,im i (3.17)

At,jj =  Ct i,ij +  Ct2,ij-i ; j =  2 ,3, • • • , m (3.18)

obtains equation 3.16, where the tangential influence coefficients At,ij are defined in 

equations 3.17 and 3.18.

Cp'>= v t  <319)

Finally, the pressure coefficient at the ith control point is expressed in equa­

tion 3.19 and the following algorithm can be itemized :
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1. Computation of the panel geometry according to the given two-dimensional contour 

and the specified number of points.

2. Computation of the influence coefficients Cnijj and Ct,ij, as well as the the influence 

matrices A n and A t, and the vector of the right-hand side R H S  in equation 3.6.

3. Computation of the nondimensional vortex panel strength vector 7  by solving 

equation 3.6.

4. Computation of the inviscid velocity distribution Vj and the pressure distribution 

CPi; around the contour using equations 3.16 and 3.19.

Thus, the inviscid outer flow has been obtained and will provide the boundary conditions 

for the computation of the mean flow profiles which is described in the next section.

3.2 Quasi-three-dimensional Mean Flow Profiles

In this section, a general quasi-three-dimensional geometry and a corresponding 

body-oriented coordinate system are considered. The coordinate system is described 

in figure 3.2. In the first subsection, the governing equations will be derived in their 

nondimensional form. The second subsection then explains the solution method of the 

nondimensional boundary layer equations in detail.

3.2.1 Governing Equations

Defining a dimensional and steady basic flow Vq(xi,X2,X3) =  {UJJ, WjJ, VJ5}T, 

making the boundary layer assumptions and assuming no variations of the basic flow 

in the spanwise direction, the dimensional boundary layer equations in body-oriented 

coordinates (equations 3.20 - 3.23) can be derived from the Navier-Stokes equations.
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Figure 3.2: Body-oriented coordinate system

l r  + ^ = ° -  <3-2°>dxi 0x3

. .  au0 <5U0 a u ,  a v l
Uot e r  +  v “ fe 7  =  u ' & :  +  ‘' a ? ’ (321)

dw„ aw„ <>w§
U o a ^  +  V o a ^ - ‘/ a g ' '  (322)

Uo =  Wo = Vo =  0 at X3 =  0 ; Uo =  Ue, Wo = W ^ =  const, a t X3 —> 00 . (3.23)

Introducing the stream function 4>, the normal coordinate 77 and the similarity parameter 

m in equation 3.24, the mean flow components are defined according to equation 3.25.

/ --------------------------- V *  Y *  f i l l*
*  =  ^ - x iU ; f ( x I , i7 ) ;  T) =  -  -  (3.24)

U3 =  ; v j  =  - d * / d x \  (3.25)

Writing the velocity components explicitly in equations 3.26 - 3.28 and substituting 

these into equations 3.21 and 3.22, one can write the nondimensional version of the 

quasi-three-dimensional boundary layer equations as in equations 3.29 and 3.30. There,

Uo(xt,x5) =  U*(xl ) - f '(x I ,t7) , (3.26)

W 5 (x I,x 3 )= W ^-g (x ;,T ?) , (3.27)

Vq(xI,x5) =  — 1 2 ’ (1 +  m) +  xt • ^ 7  +  ^  • (m — 1 ) | (3.28)
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primes denote differentiation with respect to the normal coordinate 77. These equations

stand for a first-order approximation to the full Navier-Stokes equations, where the order

of approximation is proportional to the small parameter e =  l/^ /R e ^ .

(3.29)

(3.30)

f =  f' =  g =  0 at 77 =  0 ; f' =  g =  1 at 77 —> 00 (3.31)

3.2.2 S o lu tion  M ethod

In this subsection, the solution method for the quasi-three-dimensional bound­

ary layer equations based on a compact scheme formulation will be derived. The Euler- 

McLaurin equation 3.32 describes a fourth-order-accurate finite difference approximation

for functions depending on a single variable, here the wall-normal coordinate a t the sta-

two grid points. Thus, non-uniform grids can be utilized without the need of Jacobian- 

matrices, and it is very straightforward to implement the boundary conditions. Applying 

this scheme to the present problem, one needs to rewrite the non-dimensional bound­

ary layer equations 3.29 - 3.31 as a system of ordinary differential equations (ODE’s). 

This is accomplished by defining new unknown variables. The streamwise equation, 

equation 3.29, is considered first. In equation 3.33, the new vector of unknowns A is 

introduced. Now, one can rewrite the streamwise equation as a system of ODE’s in the 

matrix equations 3.34 and 3.35.

A k -  A k_, =  h  . (A t +  A t . , )  -  • (AJ -  AJ_.) (3.32)

tions k. The advantage of this scheme is th a t it achieves fourth-order accuracy with only

A =  { f ,f ',f"} T =  {f0,f i ,f2}T (3.33)
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r  * * ’ t  *

fl 0 1 0 fo 0

f2 ► = 0 0 1 •  < fi ► + < 0 > (3.34)

f3
k 4

- f 2 ^ m f i + x i ^ -
X l a x ! f2

k 4

m
k. 4

A1 = A '  =  {f1,f2tf3}T =  H r A +  G f (3.35)

The first streamwise derivative of the vector A is written in equation 3.36. Here, a second- 

order-accurate, three-point upwind finite-difference scheme is used where the coefficients 

P i, P 2, P 3 are found from a Lagrangian interpolation.

dA
0^- =  Pi • An_2 +  P 2 • An- i  +  P 3 • An (3.36)

Applying equation 3.36 to the equation for the third component of A i (equa­

tion 3.34), one can rewrite the latter in terms of the components of A in equation 3.37. 

The first subscript denotes the derivative in the normal direction and the second subscript 

the derivative in the streamwise direction. Since equation 3.37 represents a nonlinear 

ODE, the unknowns are also contained in the coefficient matrix H f and one has to solve 

this problem iteratively.

f3 =  — foo • f20 • —2 m • (1 — ff0) +  (3.37)

Xi • fio • { P i  • fl2 +  ?2 • f l l  +  P 3 • f io }  — Xl • f20 • { P i  • fo2 +  P2 ' f d  +  ?3  ’ foo}

Now, the Euler-McLaurin formula (equation 3.32) is considered again. Having 

derived analytical relations for the vectors A and A i, one still needs to express the second 

derivative in the normal coordinate direction. This expression is given in equation 3.38.

A =  (-A -l)A '=const. ■ (  c> A 1 =  ^-2 ,A =const. + •^•2,rj=const. (3.38)
\  O i \  J  7j—const.
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Substituting equations 3.35 and 3.38 into the Euler-McLaurin formula, one obtains equa­

tion 3.39. Here, hk is the distance between two consecutive normal points.

Ak — Ak-i =  • {Ax,k +  A itk-i} — (3.39)

Y2 ’ |  (A2,A=const. "F A2,^=const.)k (A2,A=const. "F A2,7j=const.)k—1 j

As stated above, the present problem is nonlinear and one has to iterate for the 

solution starting from an initial guess. Thus, the terms of equation 3.39 are approximated 

by a one-term Taylor series expansion in equations 3.40 - 3.44, so that the method can 

iterate on the linear correction A A to an initial guess A0.

Ak =  Ag +  A A k , (3.40)

A i,k =  (A2 +  AAk)' =  A?tk+ ^ 0  -A A k (3.41)

=  A? k +  ^k • AAk 1 

A 2,A=coast.,k =  A °A=const„k +  ( d ^ = const-) k • AAk (3.42)

=  ( ^ 2’g = — ) k • A A k =  LA=cons, .k • A A k ,

A2,„=const.,k =  A ^ =const.tk +  ( aA2g ^ ° nSt ) k • AAk (3.43)

=  ^l.^const-.k "+■ IJ2,r;=const.,k ’ AAk

Substituting the above relations 3.40 - 3.43 into equation 3.39, one obtains equation 3.44.

A£ -  A?_ x +  AAk -  AAk_ 1 =  (3.44)

'  {A?,k + A$ik_! + Lk • AAk + Lk-i • A A k-i} — 

h2
^ 2  ’ {^ 'A =const.,k  ‘ A A k  I ,A =const.,k— I ‘ A A k — 1  +

IJl,ij=const.,k "F l 2 ,rj=const.,k ‘ AAk -  Llt7j=const.,k—1 "1" Ii2,7/=const.,k— 1 •AAk_i}
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By collecting terms of A A  in equation 3.44, a matrix equation is derived and written 

in equation 3.45. Here, D  is a 3x1 vector, and A  and B are 3x3 coefficient matrices 

at each normal location. The corresponding boundary conditions for the components of 

the vector A A  (see equation 3.33) are developed in equations 3.46 - 3.48.

A  •  A A k _ i  4 -  B - A A k  =  D (3.45)

At the wall : fb =  A° +  AAi =  AAi =  0 , AAi =  0 (3.46)

f! =  A2 +  AA2 =  AA2 =  0 , AA2 =  0 (3.47)

At freestream : fk =  A2 +  AA2 =  1 4- AA2 = 1, AA2 =  0 (3.48)

Implementing the boundary conditions and forming a block-tridiagonal system 

consisting of the matrix equation 3.45 a t each normal location k are the last steps in 

the formulation of the solution procedure for the streamwise boundary layer equation. 

Then, initializing the vector A 0  with the two-dimensional Hiemenz Flow solution at the 

stagnation point, one can compute the correction A A  by a Newton-Raphson technique 

until the maximum component of the vector A A  is less than a  prescribed tolerance, 

typically e= 10-10.

For the spanwise component, a  similar approach is taken in developing the 

solution procedure. The derivation is simpler, since the spanwise direction is described 

by a linear and second-order partial differential equation (PDE) compared to a nonlinear 

and third-order PDE for the streamwise direction. First, the new vector of unknowns is 

defined below. Then, rewriting equation 3.30 as a system of ODE’s, one obtains the ma-

Ag =  {g,g'}T =  {go,gi}T (3.49)

trix equations 3.50 and 3.51. Here, the second-order upwind scheme (equation 3.36) is 

directly applied to the streamwise derivatives of the function g(xi, 77). In equation 3.50,
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'  * 

gl 0 1
• <

* ' 

go

1 * 1

r '

g2X J Xif.P, glV J i Xifi(PigQ2+P2g0l)
(3.50)

the values for A={fo, fi, f2 }T and the streamwise derivative of fo are known from the iter­

ation on the streamwise equation, and the subscripts of the Ag components stand for the 

streamwise and spanwise derivatives, respectively. In order to apply the Euler-McLaurin 

formula, the expressions for the first and second derivatives in the normal direction need 

to be determined next. From equation 3.50, one can directly write equation 3.51 for 

the first derivative, where the coefficient matrix H g is a  2x2-matrix and G g is a 2x1 

vector at each normal location k. The expression for the second derivative is derived in 

equations 3.52 - 3.55.

:F(r?,A g) (3.51)

(3.52)

(3.53)
'  i \g=consi. \  /  Ag=const.

f d G e \  t f 3 F \  , F

r7 = const.

A^fa)

Agfa)

Agfa)

Agfa)

Agfa)

{gi> 62}T fa) =  Agiifa) =  Hgfa) • Agfa) +  Ggfa) =  

( ^ ) a. - « « .  +

■ \  \ ( d F  
\  err/ J  .\g=const. \^ A g>

f d H g \
V drj ; Ag=

H g,i • Ag -I- G gii +  F a ,

+
.g=const.

dF•a ,  + ( 5 £ )  +
Ag=const. \  °V  J  Ag=const. \ S. I F

rj=const.
(3.54)

(3.55)

In equations 3.52 - 3.55, the matrices H g>i and F a 8 are 2 x 2-matrices, and the 

vectors G gii and F  are 2 x 1-vectors at each normal location. Substituting the above 

expressions into the Euler-McLaurin formula, one obtains equation 3.56, and collect­

ing terms in Ag yields the matrix equation 3.57 a t every normal location k similar to 

equation 3.45 for the streamwise boundary layer equation. Specifying the two necessary
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Ag,k Agik -i — ^ {Hg^ • Agik 4- H gik -i • Agik_i -+- Ggtk +  G gik-i} — (3.56)

h2
^2 {H g.i.k ‘ Ag.k -  H g.i,k-i • A g,k-i +  Gg,i,k +  G g>lik_ i +  F Ag,k • F k -  F Ag,k-i • F k- i}  ,

■̂■g ' ^■g.k—l ®g ‘ -̂ -g.k =  Dg (3.57)

boundary conditions in equations 3.58 and 3.59, implementing these and the matrix 

equations 3.57 into a block-tridiagonal matrix, the spanwise equation can be solved in 

one sweep using a block-tridiagonal solver, since all the matrix coefficients are known.

At the wall : go =  Ag>i =  0 (3.58)

At freestream : go =  Agti =  1 (3.59)

Concluding this subsection, the solution method is summarized as follows :

1. Finding the location of the stagnation point and the streamwise distribution of the 

similarity parameter m from the outer flow solution.

2. Initializing the vectors A0, Ag at the stagnation point using the Falkner-Skan- 

Cooke similarity solution.

3. Marching to the next station, the correction AA is computed using a Newton- 

Raphson technique and the streamwise equation is solved at this location.

4. Solving the spanwise equation in one sweep using a block-tridiagonal solver.

Steps three and four are repeated until the separation point is detected. The method is 

very effective, since it takes only a few iterations, typically two to three, on AA until 

the streamwise solution converges.
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CHAPTER 4 

STABILITY OF WALL-BOUNDED FLOWS

4.1 Introduction

The transition process without bypass in a three-dimensional boundary layer 

flow can be described by five main phases. First, in the receptivity phase, disturbances 

determined by the outer conditions (surface roughness, freestream turbulence, acous­

tic noise) are entering the boundary layer. In the region of their introduction, a wide 

spectrum of disturbances is present. However, many of these initial disturbances decay 

and only a few are amplified in the downstream flow. Second, the phase of exponential 

growth sees a slow amplitude growth of the few unstable modes. Due to its linearity, this 

phase can be well described by following the most unstable disturbance. Third, in the 

phase of nonlinear interaction, the disturbance amplitudes are large enough to interact 

nonlinearly, the uniform spanwise flow is modulated by the disturbances, and a distur­

bance saturation into an equilibrium stage can be observed. The onset of saturation, as 

well as its amplitude level, are strong functions of the initial conditions of amplitude, 

frequency and phase, determined by the receptivity mechanism. In this third phase, the 

mean flow profiles are being distorted, co-rotating crossflow vortices develop within the 

boundary layer causing a lift of low-speed fluid away from the wall and into the outer 

flow, and in turn, a pull of high-speed fluid from the outer flow towards the wall. This is 

seen as a roll-up motion into half-mushroom-like structures that point into the positive 

spanwise direction (see Subsection 5.3.2). Due to the strong distortion of the boundary 

layer, inflectional mean flow profiles develop in both the spanwise and the streamwise
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direction and one can distinguish a fourth phase, in which the boundary layer becomes 

unstable to three-dimensional high-frequency disturbances. The frequencies observed in 

this phase are an order-of-magnitude higher than the primarily unstable ones, and this 

mechanism is usually referred to as secondary instability. Finally, an explosive growth 

of these high-frequency modes initiates the fifth phase, the breakdown to turbulence.

The scope of the presented work are the phases two through four. Starting with 

general remarks on temporal and spatial stability formulations, the derivation of the 

locally parallel stability theory will be given in Section 4.2. The derivations of the linear 

and nonlinear PSE formulation are contained in Section 4.3. There, the main focus is on 

the explanation of the explicit solution method. Section 4.4 introduces the concept of 

the Floquet theory and its application to the secondary instability of three-dimensional 

boundary layer flows. In particular, the developed global and local eigenvalue solver 

that are based on a Newton-Raphson technique and the recently developed Implicitly 

Restarted Arnoldi Method [1], respectively, will be explained.

4.2 Locally Parallel Theory

Following the formulation of the stability theory given by Mack [35] in 1969, 

the concepts of spatial and temporal stability theory for three-dimensional boundary 

layer flows will be introduced in this section, and a solution method based on a Newton- 

Raphson technique will be presented.

The total incompressible flow quantity Q ={V , P}T={U, W, V, P}T can be ex­

pressed as the summation of the mean flow Qo={Vo, Po}T={Uo, Wo, Vo,Po}T and the 

disturbance q i= { v i ,p i} T= {u i, wi, v i,p i} T. Using the body-oriented coordinate sys­

tem applied in the mean flow computations (figure 3.2), the Navier-Stokes equations for
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the disturbances quantities can be written as in equations 4.1 and 4.2. There, the mean 

flow quantities are known, and homogeneous boundary conditions for the disturbance 

quantities are enforced at the wall and at the freestream boundary.

dv

V - V ! = 0  ; (4.1)

-  +  (V ! • V)Vl +  (Vo • V)v i  +  (vx • V)V0 =  -  VPl +  ^ - V 2v i  (4.2)
dt  Re

In the locally parallel approach to the solution of the stability problem, the 

following assumptions are made. First, the mean flow quantity Qo is considered. Since 

the variations of the mean flow in the streamwise and in the spanwise directions are 

much slower than in the normal direction, one assumes that the mean flow quantities 

only depend on the wall-normal coordinate and a zero normal mean flow component as 

indicated by :

Q0(xi ,x2, x3, t ) =  Q o(x3, t) =  (Uo, Wo,0 ,P o}T (4.3)

Secondly, a normal mode formulation is employed for the disturbance quantities. 

The disturbance quantities as written in equation 4.4 consist of a complex amplitude 

vector q i that depends only on the wall-normal coordinate, and a complex phase 6 that 

allows for periodic variations in the wall-parallel directions and in time. In equations 4.4 

and 4.5, a i and (3\ are the complex wave numbers in the streamwise and in the spanwise 

direction, respectively, and u  is the complex frequency of the disturbance. Further, the 

complex wave vector k  is defined in equation 4.6. It represents the propagation direction

qi (xi , x2,x3,t) =  q j(x 3) e'e + c.c. =  q i(x 3) e‘Ql+I^l!C2_lwt +  c.c. ; (4.4)

9 9  9 9  9 9  r  (  a

a  = “ ; s r = £ " ; ar2 = P i ;  (4-5)

k (x 1,x2) =  {a1,A } T =  V0 (4.6)
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of the disturbance waves in the wall-parallel plane. The wave fronts of the disturbances 

perpendicular to the wave vector are denoted as constant phase lines.

Substituting equations 4.3 - 4.5 into the Navier-Stokes equations in disturbance 

form (equations 4.1 and 4.2) and dropping the nonlinear terms, the resulting continuity 

and momentum equations are given in equations 4.7- 4.11.

dv\
0 =  io-iU! 4- i/3iWi 4- —  (4.7)

0 =  (4-8)

0 =  (4-9)

0 =  (410)

A =  iaiUo 4-i0iWo 4- ^ ( a i +  0 i )  ~  luJ (4-ll)

This system of ODE’s and the corresponding homogeneous boundary conditions 

at the wall and in the freestream represent an eigenvalue problem that is written in the 

form of a general dispersion relation for the complex quantities ui, a i, 0\  in equation 4.12.

0 =  F(Re, ai,0i,u>)  (4.12)

In the stability theory, it is assumed that disturbances can either grow in time,

or in space. Accordingly, two different formulations are distinguished. In the temporal 

formulation, the wave numbers in the streamwise and in the spanwise direction axe 

assumed to be real, and a unique solution for the complex frequency of the disturbance 

(^real +  i^imag) is obtained by solving the temporal dispersion relation (equation 4.13) 

for specified values of a j ,  0\  and Re. The temporal growth rate is defined as the positive 

imaginary part of u.

u» =  F (R e,a l ,/31) (4.13)
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In the spatial formulation, the disturbance frequency is assumed to be real and 

the two wave numbers a i and Pi are complex. The resulting spatial dispersion relation 

is written in equation 4.14. There, the wave number Pi needs to specified in order to ob-

a i  =  F(Re,/?i,u;) (4.14)

tain a well-posed problem. However, since there is no prior knowledge about the growth 

of the disturbances in the spanwise direction, an additional condition is required to 

determine the imaginary part of Pi. This condition was derived from a irrotationality 

condition on the complex phase 6 by Mack [86] in 1977 and leads to the relations for 

ori =  a ^ x i )  given by :

da i dPi
=  —  ; Pi =  constant. ; A.imag =  0 (4.15)

That is to say, the disturbances are assumed to grow only in the xi-direction. In the 

light of a mean flow that does not depend on the spanwise direction, this is a  reasonable 

consequence. In the spatial formulation, the growth rate oi is defined as the negative 

imaginary part of the streamwise wave number expressed by :

<J l =  Q^imag (4.16)

In the remainder of this section, the applied Newton-Raphson technique for the 

solution of the spatial eigenvalue problem is explained. In order to utilize the fourth- 

order-accurate compact scheme formulation applied for the solution of the boundary 

layer equations in Chapter 3, a new vector of unknowns is introduced in equation 4.17, 

and the system of ODE’s (equations 4.7- 4.11) is rewritten in equation 4.18.

A i =  ( u i , |^ - ,W 3, ^ ^ , v 3,p 3}T ; (4.17)

^  =  A A j. (4.18)
C7X 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

Since all the coefficients of the matrix A  are either functions of the wall-normal 

coordinate, or constants, the Euler-McLaurin formula in equation 4.19 is applied straight­

forwardly a t each normal location k. In equation 4.19, hk is the normal distance between

A lk -  A lk_, =  ^ ( A i„  +  A ',,. ,)  -  ^ ( A l k -  A lk. , )  (4.19)

two adjacent grid points and the primes denote a differentiation with respect to the 

wall-normal direction. Substituting equation 4.18 and the not explicitly written relation 

for the second normal derivative of A i into equation 4.19, the matrix equation 4.20 is 

obtained at every normal location except the boundaries. There, the matrices Ak and 

Bk are (6 x 6 ) coefficient matrices and the Dk is the (6 x 1) vector of the right-hand side.

Ak • A ik_t +  Bk • A ik =  Dk ; k =  2, 1 (4.20)

Implementing the boundary conditions at the wall in the (3x6) matrix B i, at the 

freestream boundary in the (3x6) matrix A n , and shifting the entire matrix system as 

shown in figure 4.1 results in a block-tridiagonal system tha t is written in equation 4.21.

CC,-

CC.

Nx6

Figure 4.1: Setup of the block-tridiagonal system
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Then, exploiting the compact banded structure of the system and using the 

subroutines ZGBTRF and ZGBTRS of the public-domain software library LAPACK, this 

system can be solved very efficiently.

AAk • A ik-i +  BBk • A ik -F C C k • Axk+1 =  D D k (4.21)

Dropping one velocity boundary condition at the wall and normalizing the 

pressure at the wall by specifying the first element of the right-hand side vector D D  

instead, the iteration for the streamwise wave number a i  starts with an initial guess a i0 

that is obtained from a global eigenvalue computation. Expanding the homogeneous wall- 

boundary condition in a  Taylor series for small changes in a i  (equation 4.22), a  Newton- 

Raphson technique is applied to update the wave number according to equation 4.23. 

After each iteration, the dropped boundary condition is evaluated and the iteration pro-

dll U
ui(ai,oid +  A a) = u lo +  ^ - A a  =  0 ; A a  =  - - ^ 77-  ; (4.22)

1 ' da[)

a  1, new =  <*i,0id +  A a  (4.23)

ceeds until the error in the homogeneous boundary condition is less than a prescribed 

tolerance, typically 10~10. Usually, a converged solution for the eigenvalue of a j  is 

obtained within three or four iterations.

4.3 PSE Methods

In the Parabolized Stability Equations approach, one attem pts to construct 

an approximate solution of the Navier-Stokes equations. The concept was introduced 

by Herbert and Bertolotti [40] in 1987 and has now been well developed and applied 

to a variety of linear and nonlinear stability problems for two- and three-dimensional, 

incompressible and compressible boundary layer flows (see Section 2.4).
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In contrast to the locally parallel approach explained in the previous section, 

the central idea of the PSE formulation is to split the disturbance quantities into a shape 

function that slowly varies in the xi-direction, and an oscillatory wave part as written in 

equation 4.24. Here, f3\ is the spanwise wave number, u  is the frequency, a i  is the wave 

number in the streamwise direction, and q imn is the vector of the shape functions. The 

indices m and n are the Fourier summation indices, and the subscript mn denotes the 

mode number. Before substituting this into the Navier-Stokes equations in disturbance

q i(x i,x 2,x3, t)  =  q imn(xl ,x 3)e1/ Ql'""dxi+Iin<3lX2_in‘i;t (4.24)
n = —oo m = —oo

form (equations 4.1, 4.2), the streamwise derivatives of the shape functions are written 

in equations 4.25 and 4.26. Due to the assumption of a slow variation of the shape func-

^  =  ( i a u „ < h „  +  e‘« -  (4.25)

H K P  -  <4-26>

0mn =  i J  <rimndxi +  im/?iX2 -  inu/t (4.27)

tions in the xi-direction, the second derivative in equation 4.26 can be dropped, which 

enforces the PSE assumption. Now, substituting equations 4.25 and 4.26 into equa­

tions 4.1 and 4.2 and collecting terms with the same Fourier coefficients mn, a new 

system of PDE’s is obtained. This system of PD E’s is referred to as the Parabolized

Stability Equations (PSE) and written in vector form for each Fourier component in eq-

* ^  qimn , g  ^qim n . <~t -  — T} . p  . S mn . OQ.
A m n  ~ 2 +  ° m n  +  O m n q x mn — •L 'm n  o  +  n 'm n T T — ; r ------1------   (4 .Z O jdx3 rix3 d x i d x id x 3 >tmn

uation 4.28. There, the vector Smn represents the Fourier components of the nonlinear 

term (v j  • V )v l5 ^4mn =  e ' f aimndxi  denotes the amplitude and phase modulation by
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the complex wave number Qimn, and A mn, Bmn, Cmn, D mn, Emn are (4x4) coefficient 

matrices.

The major advantage of the PSE is that despite a small elliptic remainder 

consisting of the streamwise pressure gradient, the system of PDE’s is parabolic and its 

solution can be obtained by a marching-type method. From equation 4.28, it is noted 

tha t the linear PSE are obtained by dropping the nonlinear term Smn and setting the 

indices m and n to one. Further, assuming that the amplitude part q j of the disturbance 

quantity is no longer a  function of the streamwise location, but depends only on the 

normal coordinate, the two remaining terms on the right-hand side of equation 4.28 

vanish and one obtains the linear stability equations as discussed in Section 4.2.

In the spatial framework of the PSE, the unknown quantities are the wave 

numbers a i ,  fii, and the frequency uj in addition to the unknown shape functions q i. 

Fixing the real frequency u  and the real spanwise wave number 0 i, a relation to determine 

the complex streamwise wave number a i  is still missing. This forms the main difficulty 

in the PSE formulation, since both the shape functions and the phase of the disturbance 

quantities depend on the streamwise coordinate (equation 4.24). In a non-parallel mean 

flow, the different physical quantities grow at different rates, and thus, one can only 

determine the growth rate <7i=-Q itimag from the computed the wave number a i  based 

on some quantity (e.g., velocities, pressure, or energy). Usually, the wave number q i 

is computed at the location in the boundary layer where the disturbance quantities, or 

the disturbance energy become maximal. This location varies slowly in the marching 

direction.

The procedure to compute a \  at a streamwise station is described as follows. 

Starting with an initial solution found from solving the local eigenvalue problem at
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xi =  xo, one marches to the next station xi =  xo +  Axj and solves for the shape 

functions qx assuming tha t a-i(xi =  xo +  Axj) =  ai(xo). Approximating the change in 

the shape functions with a Taylor series at xi =  xo +  Ax, one can derive equation 4.29 

to update Qi at xi =  xo +  Axi as in equation 4.29, where qi stands for any physical

C*l,new =  O^old "F • Z  i  o ^ (4.29)i - q i

quantity in the flow field. Updating the shape functions and iterating until the change 

in a i  is less than a defined tolerance, the solution at this station is obtained and the 

procedure repeated at the next streamwise station. The PSE method is very efficient, 

since it takes only a few iterations on a i  to obtain an accurate solution, provided that 

the gradients in the flowfield are moderate.

Before the explanation of the implemented solution method for the PSE, an 

important property of the disturbance quantities needs to be mentioned. Since the 

Navier-Stokes equations (equations 4.1, 4.2) represent real physical quantities, the total 

disturbance quantities must be real as well. For the applied Fourier series representation 

of the disturbance quantities (equation 4.24), this condition is expressed in equation 4.30 

and leads to the general symmetry condition for the complex disturbances given in 

equation 4.31. Here, the asterisk denotes the complex conjugate.

OO OO OO OO

£  £  qiraaeifl= £  £  qL»e"i<?* (4-3°)
n = —oo m = —oo n =—o o m = —oo

qim.» = ql_m,_„ (4-3i)

This symmetry condition can be exploited to reduce the computational effort 

significantly. For later reference, figures 4.2 - 4.4 show the symmetry conditions for 

different disturbances in the complex (m,n)-plane.
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Figure 4.2: Symmetry of purely steady, or purely traveling disturbances (2D and 3D)

rN0 0 0  0 9

o -   O   o - o

-M

N

Figure 4.3: Symmetry of interacting symmetric steady and traveling disturbances (2D)

iN

9 0 0
0 9 0

* $  O

9 0 0 0

O O O O
0 9 0 0

0 9 0 0

-M M

f^wiMbyp

•N

Figure 4.4: Symmetry of interacting steady and traveling disturbances (3D)

In the present formulation, the PSE are expressed in body-oriented coordinates 

and solved using a fourth-order-accurate compact difference scheme in the wall-normal
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direction, a second-order-accurate upwind finite difference scheme in the streamwise di­

rection, and Fast Fourier Transform (FFT)-techniques for the formation of the nonlinear 

terms. The remainder of this section will explain the applied solution method that treats 

the nonlinear terms explicitly.

In order to apply the compact scheme formulation in the wall-normal direction, 

a  new vector of unknowns A i= { u i,5 u i /3x3,U2,d u 2/dx3>U3,p}T is introduced. Now, 

the system of PDE’s representing the PSE (equation 4.28) is rewritten as a system of 

ODE’s for each Fourier mode in equation 4.32. The streamwise derivative is discretized

=  H mnA lmn +  F mn^± = = - + G mn (4.32)OX 3 ChCi

using the second-order-accurate upwind scheme given in equation 4.33, where the coef­

ficients Pi, P2, P3 axe found from a Lagrangian interpolation.

=  P i • A ln_a +  P2 • A 1„_l +  P3 • A ln (4.33)

Substituting equation 4.33 into equation 4.32, the first wall-normal derivative is 

expressed in a form suitable for the Euler-McLaurin equation (equation 4.19), and with 

the matrix coefficients of H mn and G mn being functions of the normal coordinate only, 

the second wall-normal derivative of the new vector of unknowns is written in equations

=  H mnA lmn +  G mn (4.34)
£7x3

Hmn =  H mn +  F mn • P 3 (4.35)

Gmn =  G mn +  F mn ' (P l .A ln_2 + P 2 Aln_l ) (4.36)

T q r  = ( Hm" • + )  A> - + (»■»" • + ^ § f )  <4-37)

4.34 - 4.37. In equations 4.32 - 4.37, the matrices H mn and H mn are (6 x 6) coefficient 

matrices, and the vectors F mn, G mn and G mn are (6 x 1) coefficient vectors. It is further 

noted that the vector of the nonlinear terms is contained in the vector G mn.
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Again utilizing the Euler-McLaurin formula as explained in Section 4.2, the

matrix equation 4.38 for any Fourier mode can be formed at every normal location k 

except the boundaries. The (6 x 6) coefficient matrices A mnit and B mnit, as well as the

(6 x 1) coefficient vector D mnk are formed according to equations 4.39 - 4.41, where I  

represents the unit matrix, hk is the normal distance between two adjacent grid points, 

and the indices m and n are dropped for convenience.

the mean flow distortion, the three homogeneous boundary conditions for the velocity 

components at the wall and in the freestream are implemented. For the treatment of the 

mean flow distortion mode, one drops the spanwise momentum equation, since there is no 

disturbance growth in that direction, eliminates the elliptic remainder in the streamwise 

momentum equation consisting of the pressure gradient dp /dx i, and hence, obtains a 

parabolic and boundary layer-type system of equations. The only unknowns of that 

system are ui0 0 and vi0 0 that can be solved for using the continuity equation and the 

streamwise momentum equation. In order to determine the mean flow distortion of the 

pressure, a normalization condition is specified at the wall, and the momentum equation 

in the wall-normal direction is integrated.

Then, shifting the matrix system, the block-tridiagonal system in equation 4.42 

is obtained. This system can be solved efficiently as described in Section 4.2.

A mnit • Aimnk l +  B mnk • A imnfc — D mnk ;; k =  2, • ■ •, N -  1 (4.38)

(4.41)

(4.40)

(4.39)

The boundary conditions are treated as follows. For all Fourier modes except
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A A mn|t • AxBlI,k_i +  B B mnit • A imnk +  C C mn|t ■ A imnk+i — D D mnit (4.42)

Before the summary of the explicit solution algorithm, the dealiasing method 

implemented will be explained for stationary disturbances. The phenomenon of aliasing 

arises due to the truncation of the applied Fourier series at a finite number of modes. 

Consider the generic nonlinear term in equation 4.43. Due to the multiplication of the

well-resolved phase terms 9m, higher phase terms 02m are created that cannot be repre-

( M \  /  M \  /  2M \

53 umi - e,flmi I - I 51 um2 • e1*”2 I =  ( 5 3  • eiflm ) (4.43)

m i= - M  J \m 2= - M  /  \m=—2M /

sented in the (-M,- • -,M)-Fourier space. Hence, they appear as a high-frequency errors 

in the solution, if no measures are taken to avoid that. In the present solution method, 

a double-sized Fourier space (-2M, --,2M) is created for the nonlinear terms, where the 

higher-phase terms arising are set to zero after the evaluation of the nonlinear terms.

Concluding this section, the present explicit solution algorithm for the PSE will 

be summarized. Starting at xi =  xi0 with an initial solution for the shape functions of 

the individual modes q imn, and with an initial guess for the corresponding streamwise 

wave numbers a imn, the nonlinear solution method proceeds as follows.

• Nonlinear iteration

-  Form the individual Fourier modes A imn =  q imn • e‘/ Qlmndxi of the distur­

bances according to the relevant symmetry conditions in the entire complex 

(m,n)-plane, and distribute the wave numbers a i mn according to the selected 

primary disturbances.

— In order to avoid aliasing errors due to the applied FFT-techniques, create a 

double-sized complex plane and transform all complex quantities there.
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— T ransfo rm  all Fourier components into the physical space using the FFT.

— Compute all the nonlinear terms contained in (v i • V )v j in the physical space.

— Using the inverse FFT, transfer the nonlinear terms back to the Fourier space 

and form the vector Smn/-4mn-

— Transfer all complex quantities back to the normal-sized complex plane and 

proceed with a wave number iteration loop for the primary disturbances.

— Wave number iteration

* For the specified primary disturbances, form and solve the block-tridiagonal 

system for the shape functions according to equations 4.38 - 4.42.

* Until convergence, compute the new streamwise wave numbers a imn based 

on different physical quantities according to equation 4.29 and the proce­

dure described in the present section.

* Based on the computed primary wave numbers, distribute the wave num­

bers of the other disturbances algebraically.

— After the wave number iteration converged, check for the convergence of the 

nonlinear terms.

The iteration on the nonlinear terms continues until the maximal difference in 

the shape functions of two consecutive iterations is less than, say, e=10-10. For the wave 

number iteration, a  typical tolerance is also given by e = 10- l °.

In the presented explicit method, convergence problems arise when the nonlin­

ear terms grow to significant amplitude levels. This is due to the lagging of the iteration 

on all nonlinear terms behind the wave number iteration on just the selected primary 

disturbances. This observation is discussed in more detail in Chapter 7, where an alter­

native implicit solution method is presented.
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4.4 Secondary Instability Analysis using Floquet Theory

In the last section of this chapter, the focus is on the presentation of the nu­

merical tools for the investigation of the secondary instability mechanism. The first 

subsection describes the secondary instability according to the findings of previous ex­

perimental and computational work. The second subsection contains the derivation of 

the applied temporal Floquet theory, and the last subsection introduces the recently 

developed and very efficient Implicitly Restarted Amoldi Method for the solution of 

selected regions of the eigenvalue spectrum.

4.4 .1  Portrait o f  th e  Secondary Instability

In the present work, the secondary instability is defined as the linear insta­

bility of a periodic secondary flow. Due to the nonlinear interaction and saturation of 

primary stationary disturbances, highly inflectional velocity profiles are formed in both 

the spanwise and the wall-normal direction, and these are the origin of this instability 

mechanism.

In the review of the previous work on the secondary instability in the Sections 

2.3 and 2.4, it was pointed out that the secondary instability originates away from the 

wall in regions of high vorticity and shear at normal locations of about half the boundary 

layer thickness. The developing instability structures were then found to travel on the 

back of the primary stationary crossflow vortices, and their growth was attributed to 

combined vortex stretching and tilting in the presence of strong flow gradients. Further, 

the inclination of the secondary instability structures with respect to the constant phase 

lines was found to be about 50° for three-dimensional boundary layer flows. The sec­

ondary instabilities are seen as high-frequency disturbances tha t grow explosively within
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a  short streamwise distance. Their frequency is usually in the kHz-range, which is an 

order-of-magnitude higher than the most amplified primary traveling disturbances. This 

high frequency is in accordance with the typical local time scale t* =  S* / U* in the re­

gion of the nonlinear saturation. Further, the experimentally and numerically observed 

half-wavelength periodicity is interpreted as an indication of the presence of secondary 

instabilities in the flow.

An important open question regards the self-sustained growth of the high- 

frequency disturbances. From this discussion, it is clear how the secondary instability 

to high-frequency disturbances develops. Rather, the question is related to the route by 

which the high-frequency disturbances enter the boundary layer before their amplitude 

is explosively amplified by the strong growth rates typical for the secondary instability. 

This question is discussed in subsequent chapters.

4.4.2 F loquet T heory

A Floquet system is defined to be a system of linear ODE’s whose coefficients 

are periodic in the independent variables. Floquet Theory was, for example, applied 

by Herbert [65] in 1983 to explain the nonlinear transition process in two-dimensional 

boundary layers, as well as by Fischer and Dallmann [67] in 1991 for the DLR-Transition 

Experiment (see Subsection 2.4.5).

constant phase line

x„a

Figure 4.5: Definition of the Galilean coordinate system
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In this subsection, the stability of a  new mean flow consisting of the original 

basic flow and the saturated primary disturbance wave is investigated. A new Galilean 

coordinate system (xi,X2,X3) is defined that travels with the phase velocity in the xi- 

direction. The coordinate X2 is aligned with the constant phase lines as shown in figure 4.5 

(see also Appendix I for the definition of the different coordinate systems and angles). 

In this coordinate system, the new mean flow Q 2 =  {U2, W2, V2, P2}T is formed by a su­

perposition of the parallel base flow Qo(x3) and the solutions of the primary disturbance 

quantities obtained from a PSE computation. In equation 4.44, 03 is the real wave num-

Q 2 (x i,x3) =  Q0(x3) +  qin.(x3)eimQ3*1 (4.44)
m= —00

ber in the xi-direction. Its definition is given in equation 4.45, where is the wave angle 

of the primary disturbances. By forming the mean flow Q 2 as described above, the neg-

a 3 =  sg n (^ )v/ a 2 real + /3 f  ; -  tan_1( ^ ^ L )  (4.45)

lect of the mean flow distortion (shape assumption) and the assumption of an arbitrary 

amplitude of the primary disturbance utilized in previous work [65,67] are avoided.

The temporal stability of this mean flow is investigated by seeking a disturbance 

of the form shown in equation 4.46. There, the new vector of unknowns q3 consists of 

the four primitive variables u3, W3, V3 and p3. Further, the real part of cr3 measures the 

growth of the secondary instability, its imaginary part determines the frequency, and /?3 

is the real wave number tangential to the constant phase lines.

q3 (x i,x2,x3,t)  = e‘r3t+uJ3*2 q3m(x3)e,mQ3*1 (4.46)
m= —00

Substituting equations 4.44 and 4.46 for Vo and v i, respectively, into equa­

tion 4.2, dropping the nonlinear term (v i ■ V )v j, and introducing a new vector of
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unknowns A m= { u3m, 5u3m / 5x3, w3m, 5w3[n / 5 x 3  , v3m, p3m }T in a similar way to the ap ­

proach described in Section 4.3, one obtains a linear system of ODE’s for the vector of 

the secondary disturbance eigenfunctions A. The resulting equations for all the Fourier 

modes are given in equations 4.47 - 4.60, where A is a {(2-M-fl)-6}-vector at the normal 

location k .

9Alm = A2m ; ^  =  A4m ; (4.47)5x3 ’ dx3

dA2n
5x3

dA4„
5x3

=  { ^ A lm +  i rn a 3mA6m +  ( £  U2mi) ( £  in iQ3ni Aini) +  (4.48)
mt m

(E w2„, xift, e  a , . ,  ) + (E v2„, )(E ̂ .,) + <4-49)
mi m mi ni

( E A'» , ) < E ini“ 3.1u 2. 1) +  ( E A5 - , ) ( E ^ ::!- » Re ; (4 M )
mi ni mi ni 3

=  {A A 3m -1- i/%A6m +  ( E  u 2mi ) ( E  inia 3ni A3mi) +  (4.51)
mi ni

( E  w 2., ) m  E  ) +  ( E  a * ..  > < £  w „ , ) +  <4 -52)
mi nj mi ni

dWo(E A imi ) ( E  i n i Q3ni w 2ni) +  ( £  A5mi ) ( £  ~ a r ^ » R e  ; <4 -53)
mi m mi m 3

= —im a3Aim -  i&A3m ; (4.54)
O I  1

=  - ^ A 5m -  —  (imQ3inA2m +  ifoA 4m) -  (4.55)

(E U2n>i ) ( E  i n i Q3ni A5ni) -  ( £  W 2mi )(i/% £  ASni) +  (4.56)
mi m mi ni

( E  v 2m, ) ( E  in i Q3ni A ln i) +  ( Y  v 2mi ) m  E a 3„j ) -  (4 .5 7 )
mi ni mi ni

( E a u , ) ( E ” i“ 3 . , v 2„i ) - ( E a 5„1) ( E ^ j-) ; (4 -58>

1

5AS

mi m mi m ^ 3

A =  j^ ( m 2a§m + $ )  + a3 ; (4.59)

5A
5 x 3

=  AA (4.60)

Expanding the summations in mi and ni from -M- • -M, collecting terms with 

the same Fourier component, and writing equations 4.47 - 4.59 in the entire wall-normal
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domain, a generalized eigenvalue problem of the form given in equation 4.61 is obtained. 

In fact, the compact scheme formulation applied here yields the non-trivial case of a sin-

A A  =  o^BA (4.61)

gular, non-symmetric, and semi-positive-definite generalized eigenvalue problem. It is 

noted that the leading dimensions of the coefficient matrices A  and B in equation 4.61 

can easily reach significant orders. Considering a minimal problem size for a satisfactory 

resolution in both the Fourier space and the wall-normal direction, a leading matrix 

dimension of 9-6-71=3834 is obtained by distributing 71 points in the normal direction 

and truncating the Fourier series a t M=4. Hence, the need for efficient eigenvalue solvers 

is obvious. Utilizing the QZ-algorithm that is implemented in the ZGEGV-routine avail­

able in the public-domain software library LAPACK proved to be extremely CPU-time 

intensive for these matrix dimensions. For example, it takes about five CPU-hours on 

a Sun-Ultra-2 workstation (333 MHz) to compute the entire eigenvalue spectrum of a 

problem with a leading matrix dimension of 2700.

Therefore, the recently developed Implicitly Restarted Arnoldi Method [1] was 

adapted to the present problem. This method approximates the eigenvalues and eigen­

vectors in specified regions of the eigenvalue spectrum. The details of this very efficient 

solution method are explained in Subsection 4.4.3. Applying this method to a problem 

size of 5000, the required CPU-time to compute 10 eigenvalues that are located in a 

selected region of interest amounts to only one minute on the workstation quoted above.

For a confirmation of the eigenvalues obtained from the global solver, a local 

eigenvalue solver based on a Newton-Raphson technique was developed. The solution 

method is based on a fourth-order-accurate compact scheme formulation and the solu­

tion algorithm is equivalent to the one explained for the solution of the linear spatial
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eigenvalue problem in Section 4.2. However, additional iteration options have been im­

plemented in order to account for the presence of (2-M-f 1) eigenmodes in the coefficient 

matrices.

Instead of dropping one of the wall boundary conditions as described for the 

linear spatial eigenvalue problem in Section 4.2, the iteration is performed at the wall- 

normal location where the most dominant secondary eigenmode has its maximum. There, 

either one of the momentum equations, or the continuity equation is dropped, the block- 

tridiagonal system is solved, and the convergence check is performed by evaluating the 

dropped momentum, or continuity equation. Hence, the developed solution method is 

capable of iterating on different eigenmodes of the unknowns U3, W3 and V3 at a specified 

wall-normal location.

* 2  =  tan ' 1 ( g )  (4.62)

Finally, and for later reference in Chapters 5 and 6 , the wave angle of the 

secondary disturbances ^ 2  is defined in equation 4.62 and depicted in figure 4.6.

leading edge

constant phase line

wave vector of the 
secondary instability 

structure
Galilean coordinate system

i
*2* P3

Figure 4.6: Definition of the secondary wave angle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

4 .4 .3  T h e Im plicitly  R esta rted  A rnoldi M eth od

The original method developed by Arnoldi [87] in 1951 represents an orthogonad 

projection method for the approximation of a subset of eigenvalues and eigenvectors of 

a  general sparse square matrix. In order to overcome the severe computational and 

storage requirements for a large number of iteration steps towards a converged Ritz- 

approximation, Saad [88] introduced the explicitly restarted Arnoldi iteration in 1980. 

For the sake of improving the starting vector by forcing it into the direction of the desired 

invariant subspace, Sorensen [89] proposed the Implicitly Restarted Arnoldi Method 

(IRAM) which is based on Krylov-subspace projection techniques in 1992. Ever since, 

this method has seen much improvement and automation. In 1995, a public-domain 

software package called ARPACK was developed by Lehoucq et al. [1]. This package was 

used for the computations of this work. In the remainder of this subsection, the essentials 

of this method will be explained.

For the solution of a generalized eigenvalue problem in the form given in equa­

tion 4.61, one is faced with a singular and non-symmetric m atrix A, and with a semi­

positive-definite, symmetric matrix B. Introducing a  complex shift 6 such that it is 

located in the center of a complex cell in which a few eigenvalues are expected, the sin­

gularity problem can be bypassed and equation 4.61 is reformulated as in equation 4.63.

(A -  SB) A  = (o-3 -  S)BA (4.63)

k A  =  (A -  A B ^ B A  ; k = 7— — -  (4.64)
(cr3 — 0 )

Defining a matrix operator M =  (A — <5B)~lB, the problem is then rewritten in the 

form of a standard eigenvalue problem (equation 4.65).

kA  =  M A (4.65)
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The objective of the IRAM is to obtain approximate eigenvalues and eigenvec­

tors of a  selected part of the entire eigenvalue spectrum of the matrix M  in equation 4.65. 

These approximate eigenvectors and eigenvalues are called Ritz-approximations. Equa­

tion 4.66 defines a property for the Ritz-pair (X, 0) [1]. The scalar |/3|<ekr |

||M X  -  X0|| =  ||(M V k -  V kH k)|| =  l& e j r i  (4.66)

is called the Ritz-estimate for the Ritz-pair (X, 6) as an approximate eigenpair for M . 

Ritz-pairs are immediately available from the eigenpairs of the small projected upper 

Hessenberg matrix H . A matrix is called an upper Hessenberg matrix, if its elements 

hjj= 0  for i> j+ l .

Regarding the accuracy of the eventually obtained eigenvalues of the non- 

Hermitian matrix M , the only possible statement is that the residual is small if l/^ e ^ ri 

is small [1]. Typically, this is accomplished to an order of |/?kek T| <  10-15.

Put vj = uxif ; w = Mvi ; Qi = vi*w ;

Put fi <- w — vla 1 ; V <— Vi ; H  <— Qi ;

For j= l,k-l

1. % = ||fj|| ; vj+1 <- fj//3j

2. Vj+1 <— (Vj,vj+1) ; H j ^ Q )

3. z <— Mvj+1

4. h <— yj+1 z ; fj+i <— z — Vj+ih

(hereafter, an orthogonalization is done, if necessary)

5. Hj+1 «- (Hj, h)

EndFor__________________________________________________

Figure 4.7: Algorithm for a  k-step Arnoldi factorization
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In order to utilize the property given by equation 4.66, the method starts  by 

building a m-step Arnoldi factorization of the form given in equation 4.67 according 

to the flow chart in figure 4.7 [1], There, the columns of contain the orthonormal 

so-called Arnoldi vectors, H* is an upper Hessenberg matrix, and ffcejf represents the 

residual. From equation 4.67, the connection to the Ritz-approximation is obvious.

M V m =  V mH m +  fme£ (4.67)

Since the information obtained through this process is determined by the chosen 

starting vector v j , and since there is no a priori information about the number of required 

Arnoldi steps until the solutions converge, it is attractive to restart the method with an 

improved starting vector. This restarting is an essential part of the IRAM. The steps of 

the method are summarized in figure 4.8 [1]. Starting with a sparse square matrix M  

of dimension m, an initial m-step Arnoldi factorization is computed and the implicitly 

restarted iteration begins. First, the eigenvalues of the H m-matrix are computed and 

split into a wanted set k and an unwanted set p, where m=k-Fp. The unwanted set is then 

used as shifts fi} in Step 3 of the algorithm. Here, only p instead of m QR-factorization 

steps are done, and new matrices H m and V m are built. Restarting the method is now 

accomplished in Step 4. The old m-step Arnoldi factorization is post-multiplied by the 

newly obtained matrices Qi,...,p that are associated with the shifts /ij. Because of the 

Hessenberg-structure of the matrices Qj, it turns out that the leading k columns of the 

new factorization remain in an Arnoldi form with an updated residual [1]. It is here 

where the check for convergence is appropriate for just the k eigenvalues wanted. If 

convergence was not reached yet, the method proceeds with p additional Arnoldi steps 

in Step 5 of the algorithm in order to obtain a  new m-step Arnoldi factorization tha t 

has an updated starting vector.
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Have an initial m-step Arnoldi factorization

For 1=1,2,- • -, until convergence

1. Compute eigenvalues of Hm and select p shifts Mi,^2, • • ,Mp

2- qT *- <£

3. For j=l,2,- - -,p

(a) Factor [Qj, Rj] = qr(Hm -  /Xjl)

(b) Hm «- Q fH mQj ; Vm <- VmQj

(c) q < -q HQj

EndFor

4. fit <- Vk+j/Jk +  fmO-fc ; Vic <- V m(1:n,i;k) ; H k «- H m(i:itfi :k)

5. Beginning with the k-step Arnoldi factorization AVk = VkHk + fkej, 

apply p additional steps of the Arnoldi process

to obtain a new m-step Arnoldi factorization 

AVrn = VmH m + fmeT.

EndFor__________________________________________________________

Figure 4.8: Algorithm for the Implicitly Restarted Arnoldi Method (IRAM) [1]

Before the summary of the IRAM advantages, the alternatively mentioned QZ- 

algorithm will be briefly compared to the conventional Arnoldi method. According to 

Golub and Van Loan [90], the number of operations necessary to solve for the entire 

spectrum of the (nxn) eigenvalue problem Ax=crBx amounts to 30n3. This estimate 

is based on two necessary QZ-steps per eigenvalue. In comparison, Saad [91] gives an 

estimate for the number of operations necessary to perform one step of the conventional
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Arnoldi algorithm for linear systems as (m +3)n +  m2/2 . Here, m is the dimension of the 

Krylov-subspace and is usually small compared to n. Making an extremely conservative 

estimate of n necessary Arnoldi steps, the number of operations is still one power less 

than for the QZ-algorithm.

Finally, a few advantages of the IRAM versus the conventional Arnoldi method 

will be pointed out that result in a significant savings regarding the number of necessary 

iterations and the required CPU-time.

•  Due to the restarting, the problem of the a priori unknown memory requirement 

for an unknown number of iteration steps in the conventional method is avoided.

•  Only p instead of (k-l-p)-steps are necessary in each QR-factorization. Even if k is 

small, the savings me significant when a  large number of iterations is necessary for 

convergence.

• Only k residuals instead of (k+p) residuals need to fulfill the specified convergence 

criteria in Step 4 of the algorithm.

• Each iteration begins with an improved starting vector that has enhanced compo­

nents in the wanted directions, whereas the other directions are damped.
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CHAPTER 5 

SW EPT HIEMENZ FLOW

5.1 Introduction

The stability of incompressible quasi-three-dimensional boundary layers of a 

similarity type was previously investigated by Mack [22] and Malik et al. [23]. Whereas 

Mack presented linear stability results for different similarity parameters and documented 

the influence of the pressure gradient on the stability of these crossflow dominated bound­

ary layers, Malik et al. considered the model problem of Swept Hiemenz flow in more 

detail and focused on the nonlinear interaction of different disturbances in the flow. Fol­

lowing the work of Malik et al. [23], the mean flow is defined in Section 5.2. Linear and 

nonlinear results from a primary stability analysis are presented in Section 5.3, and Sec­

tion 5.4 contains detailed results from a secondary instability analysis of Swept Hiemenz 

flow using both the PSE and Floquet Theory.

Inviscid Streamline

W=const.

AL

Figure 5.1: Stagnation flow over a swept flat plate
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The two-dimensional stagnation flow against a wall is usually referred to as

Hiemenz Flow, since it was Hiemenz who found an analytical solution to the problem in

direction along the attachment-line (AL) upon this two-dimensional flow, a quasi-three- 

dimensional mean flow is constructed that represents the stagnation flow against a  swept 

flat plate of infinite extension as shown in figure 5.1. This flow is called Swept Hiemenz 

flow and can be used to model the leading edge region of a swept wing, where the leading 

edge extends along the attachment-line. The inviscid velocity distributions are given in 

equation 5.1. Due to the constant pressure gradient in the flew, the inviscid IP-compo­

nent develops in the streamwise direction according to equation 5.1, whereas the velocity 

component W* along the attachment-line remains constant. The inviscid streamline 

then experiences a continuous curvature, since its angle is defined as in equation 5.2. As 

explained in Chapter 1, it is the imbalance of the forces in the boundary layer due to

using the inviscid velocity components from equation 5.1, these parameters are written 

for Swept Hiemenz flow as follows.

1911 (see Reference [92]). Superposing a constant velocity component in the spanwise

U* =  c • xt ; V* =  - c  • X3; W* =  =  const. (5.1)

this curvature that causes the Swept Hiemenz flow to be inviscidly unstable.

(5.2)

5.2 Mean Flow Computation

According to the definitions for the stream function <£, the similarity parameter

m, the normal coordinate 77 and the velocity components given in Chapter 3, and further

m (5.3)
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$  =  y j = y/c ■ v* ■ x \  ■ f{rj) ,

x? x5
V =

^ x | / U *  V ^ 7 c

U 3 = c -x t - f ' ( r ? )  ; V3 =  -x /E 7 ^ .f ( r ,)  ; • gfo)

90

(5.4)

(5.5)

(5.6)

Substituting these expressions into the quasi-three-dimensional boundary layer 

equations, a set of two homogeneous ordinary differential equations can be derived. It is

f " ' - l - f . f " - l - ( l - f ' 2) = 0  ,

g" +  f - g '  =  0 ,

f =  f' =  g =  0 at 77 =  0 ; f' =  g =  1 at 77—>00

(5.7)

(5.8)

(5.9)

noted that the obtained equations 5.7 - 5.9 are exact solutions to the Navier-Stokes equa­

tions. Further, they represent the homogeneous version of the boundary layer equations 

from Chapter 3 for the similarity parameter m = l .  Solving the equations numerically by 

a Runge-Kutta method yields a solution with the important feature of a constant bound-

1.5

1.0

f.f’.g

0.5

0.0
20 t 3 4

Figure 5.2: Falkner-Skan-Cooke similarity solutions for m = l
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ary layer thickness. In figure 5.2, the obtained similarity profiles are plotted versus the 

wall-normal coordinate.

Next, the velocity and length scales used for the nondimensionalization of the 

velocities in equation 5.6, and for the streamwise and wall-normal coordinates are de­

fined. For the computations in this chapter, the constant inviscid spanwise velocity 

component is used as velocity scale, as well as the constant local length scale given 

in equation 5.10. One can further define two characteristic Reynolds numbers for the

( 5 i o >

stream- and spanwise directions, Re and Re respectively, in equation 5.11. Having de­

scribed the mean flow, the remaining sections of this chapter will deal with the stability 

analysis of this flow.

l*-U*fxTf U* __ 1* • W* W*
Re(xt) = ------ ^  =  ~ ^ =  ; Re = ------ 2 ° = - ^ =  (5.11)

V  s/v* -c V  yju* C

5.3 Primary Stability Analysis

In studying the stability of quasi-three-dimensional boundary layers away from 

the leading edge of the considered geometry, care must be taken in specifying a flow 

that is stable along the attachment-line (see Chapter 1). According to recent results by 

Balakumar [93], the attachment-line of an infinite swept wing is numerically shown to be 

stable against two-dimensional disturbances for Reynolds numbers less than the critical 

value of Recrjt.=583. For the results presented in the next sections, a constant spanwise 

Reynolds number of Re=500 was chosen, and thus, the attachment-line is assumed to 

be linearly stable.

Before the detailed presentation of the results from a linear and nonlinear pri­

mary stability analysis in the following subsections, the applied computational grid needs
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to be described. A typical grid for the primary stability computations consists of 141 

points in the wall-normal direction, where the first 71 points tire clustered within the 

boundary layer according to the grid-stretching equation 5.12. In the region of the outer

A • n  ,
X3,i =  —  A ------ (5.12)

1 +

flow, the remaining points were distributed uniformly up to a maximal normal extension 

of about 10 boundary layer thicknesses. For the marching in the streamwise direction, 

different step sizes were selected depending on the complexity of the flow. Purely station­

ary or traveling cases could be run with a step size of ARe=7.5, whereas the interaction 

cases in Subsection 5.3.2 and in Section 5.4 required values of ARe=5, or even ARe=2.5 

for a proper resolution of the steep gradients in the region of nonlinear saturation.

5.3.1 Linear A nalysis

In order to investigate the stability characteristics of the prescribed flow, local 

stability analyses at different streamwise locations are performed first. Thus, the neutral 

points for stationary and traveling disturbances, as well as the locally most amplified 

wave numbers and frequencies can be determined. In figure 5.3, the spatial growth rates 

for the stationary disturbances are plotted versus the spanwise wave number P\. It 

can be seen that the unstable wave number range begins at P\ ~  0.10 for all investigated 

streamwise locations. However, its extension increases rapidly with increasing distance 

from the neutral point at Re=98.0, where Pi =0.125. The locally most amplified spanwise 

wave number was found to be Pi = 0.32 at Re=300, where the streamwise wave number 

assumes a value of a i =(-0.4398,-0.0231). Next, the most amplified spanwise wave num­

ber according to its spatial growth in the downstream direction is sought. Therefore, 

starting at their neutral point, disturbances of different spanwise wave number are intro-
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Figure 5.3: Stationary growth rates from local theory

duced and their spatial evolution downstream computed. Figure 5.4 shows the N-factors 

obtained from a computation incorporating the parallel flow assumption. Obviously, 

the wave numbers in the range of /?i=0.3 - 0.4 are amplified the most, and for a further 

investigation of the nonlinear development of the disturbances, these wave numbers need 

to be considered.

12

10
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6

4

2

0
500 600 700100 200 300 400 800Re

Figure 5.4: N-factors from a locally parallel computation
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Having determined the most amplified stationary disturbances, the traveling 

disturbances will now be considered. Therefore, the nondimensional frequency F is 

defined in equation 5.13.

F =
2tt • v '  ■ f*

(5.13)
( W ^ )2

First, the existence of two unstable families of spanwise wave numbers will be 

discussed. This observation is due to Mack [22] who investigated the stability of three- 

dimensional boundary layers with different pressure gradients. It was also reported by 

Malik et al. [23] from their study of the Swept Hiemenz flow and by Takagi et al. [21] 

from their experimental work on the rotating-disc flow problem.

a) F=0.75-10 - 4

100

00
0.020

0.01S

0.010

0.005

0.000
•0.6 -0.4 0.0 0.4 0.6

b) F =  1.20-10- 4
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0.030
90

0.02S

0.020
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-as -0.4 ao 0.4 0.6

Figure 5.5: Two unstable spanwise wave number families at Re=300
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Figure 5.5 shows the growth rates and the angle of inclination with respect to

the inviscid streamline of the two unstable families for the later considered frequency

of F=0.75-10 4, and for the most unstable frequency of F=1.2-10 4 at Re=300.

The angles of the inviscid streamline © and of the wave propagation direction 4'

are defined in equation 5.14 and visualized in figure 5.6. At Re=300, the most amplified

subsequent computation) are /3j=0.34 and 0 i =-0.40 with the corresponding streamwise

Figure 5.6: Definition of the wave angle and the angle of the inviscid streamline

wave numbers and angles of a j =(-0.29609,-0.03294) and ai=(0.69103,-0.00611), as well 

as 4* 1=72.01° and 'I' 1 =90.90°, respectively. Observed is, first, that both families are 

propagating in opposite directions. Second, the more unstable family is oriented opposite 

to the direction of the crossflow-component of the mean flow (i.e., it is propagating in 

the direction of the centrifugal force induced by the streamline curvature).

Next, the dependence of the most amplified spanwise wave numbers on the 

frequency will be examined. In this computation, the procedure is as follows. Starting 

from the most amplified spanwise wave number at F=0, the frequency is incremented

4/ =  tan ; 4/1 = 0  +  4' (5.14)

spanwise wave numbers of the most amplified frequency F=1.2-10 4 (as shown in the

Streamline
P, > 0  P , Inviscid 

11 /  Streamline

a l.r

Wave Vector

P , < 0
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and the new eigensolution is found such that it satisfies the condition given below for 

the most amplified P\ . A Newton-Raphson technique can be implemented to compute a

|^ ( A H - A A )  =  ( | i ) „  +  (^ ) . d /3 =  0 (5.15)

correction APi until equation 5.15 is satisfied. In figure 5.7, the most amplified spanwise 

wave number and the wave angle '5 \ are plotted versus the nondimensional frequency at 

Re=300. As discussed earlier in this subsection, the two unstable families of disturbances 

are distinguished by their propagation direction along the wave vector that is inclined at 

the wave angle with respect to the body-fixed coordinate system. Plotting the locally

0.035 100

0.030
90

l.<0

80
(J  0.020

0.015
70

0.010 .<0
60

0.005

0.000 •--
0.0000

50
0.00030.00020.0001

F

Figure 5.7: Two families of unstable waves at Re=300

most unstable growth rate versus the nondimensional frequency at different streamwise 

stations in figure 5.8, one observes a decrease of the most amplified frequency in the 

streamwise direction. Starting with F=1.6*10“4 at Re=100, the locally most unstable 

frequency at Re=600 is F=0.9*10“4. Thus, a wide range of frequencies needs to be 

investigated using a computation that considers the spatial disturbance growth in the 

downstream direction for a determination of the most unstable frequency.
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c) Re = 300

a o o o t 01 scanF

b) Re = 200

d) Re = 400
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e) Re = 500 f) Re = 600

Figure 5.8: Wave angles and most amplified frequencies at different streamwise locations

In table 5.1, the values of the frequency, the spanwise wave number and the 

wave angle are specified at the locations of the maximal growth rate. In the downstream 

direction, the locally most amplified disturbances are shifted to lower frequencies and
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Table 5.1: Locally most amplified eigenpairs at different streamwise locations

Re ® \ ,=max. F<r, =max A,<7i=max. f̂fi=ma*.
100 0.026 1.60 • 10"4 0.237 58.06°
200 0.036 1.35 • 10"4 0.289 67.25°
300 0.033 1.20 - 10-4 0.335 71.70°
400 0.029 1.10-10“4 0.378 74.46°
500 0.026 1.00 • 10"4 0.410 76.72°
600 0.023 0.95 • 10"4 0.434 78.26°

the constant phase lines turn towards the inviscid streamline. The closer alignment of 

the constant phase lines with the inviscid streamline can be also seen in figure 5.9, where 

the propagation direction of the steady crossflow vortices is visualized together with 

corresponding mean flow profiles along the wave vector.

4.0
Constant Phase Lines

3.5
Wave Vectors

3.0

2.5 inviscid Streamline^'

2.0

'  l

1.0

0.5

0.0 2 51 3 4

X,

Figure 5.9: Propagation of steady disturbances relative to the inviscid streamline
(A  =0.4)

Considering the data in table 5.1 and the most amplified stationary wave num­

bers, A  =0.3 and 0.4, were selected for a computation of the most unstable frequency 

according to the spatial growth in the xi-direction. Figure 5.10 shows the N-factors ob-
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tained from a computation incorporating the locally parallel flow assumption for different 

frequencies. Comparing the results of figures 5.4 and 5.10, one concludes the following :

15

10

5

P, *0.4

0
200 300 400 500 BOO600 700

Re

Figure 5.10: N-factors from a locally parallel computation

• The traveling disturbances become unstable at lower Reynolds numbers than the 

stationary disturbances.

• The traveling disturbances are slightly more unstable than the stationary distur­

bances (Ntrav — 15, Nstat — 13.5 at Re=800).

• For Re <  800, the spanwise wave number /?i=0.3 is more amplified than /?i=0.4. 

The difference in the amplification is larger for the traveling disturbances.

• The most unstable frequency for both /?i=0.3 and /?i=0.4 is F=1.0-10-4 .

Concluding this subsection, figures 5.11 and 5.12 show the growth rates and N-factors 

obtained from a PSE computation in comparison with the results of a locally parallel 

computation for the most amplified spanwise wave number /?i=0.3 and the most am­

plified frequency F=1.0-10-4 . The disturbance growth of the different flow quantities 

predicted by the PSE varies widely in the region immediately behind the neutral point.
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Further downstream, the growth rates based on the ui-component and the disturbance 

energy tend towards the same value, as well as the vj- and wi-components. Compar­

ing the physically most relevant results for the growth rate and the N-factor based on 

the disturbance energy with the parallel results, one can state that including the non­

parallel variation of the mean flow in the computation is destabilizing the flow, where 

the destabilizing influence is stronger for the traveling disturbances.

0.040

traveling

0.030

G  0.020

steady

0.010

0.000
200too 300 400 500 600 700 800Re

Figure 5.11: Growth rates from locally parallel theory and PSE

20

traveling

N

steady

200too 300 400 500 600 700 800Re

Figure 5.12: N-factors from locally parallel theory and PSE
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5.3 .2  N onlinear A n alysis

After the extensive study of the linear stability of Swept Hiemenz flow, the non­

linear interaction of the disturbances will be investigated in this subsection. Despite the 

findings in the previous subsection, where the flow was found to be most unstable against 

disturbances with a spanwise wave number of /?i=0.3 and a frequency F=1.0T0-4 , dis­

turbances with a spanwise wave number of (3\ =0.4 and a frequency F=0.75-10-4 will be 

considered in the remainder of this chapter. Thereby, previous work by Malik et al. [23] 

is followed closely. The main objective of this approach is the validation of the mod­

ifications in the nonlinear PSE code that account for three-dimensional disturbances.

0.040

0.030 traveling 4a
steady

0.020

0.010 la (linear) \
1b (linear) \
2 (A,»0.10%.A1=0.000%\
3 <A*o.oo%.A,=o.ui%) 
4a (A,-0.10%.A,=0.014%) 
4b (A,-0.10VA1=0.014%) 
5a(A,-0.10%.A,=0.141%) 
5b (A,=0.10%A,*0.141%)

0.000

-0.010

200 300 400 500 600Re

Figure 5.13: Growth rates based on the disturbance-energy

In particular, the interaction of a stationary and a traveling disturbance of 

similar initial amplitude, as well as the interaction of a stationary disturbance with 

larger amplitude and a traveling disturbance with smaller amplitude were considered. 

Figure 5.13 shows the growth rates for different initial amplitude levels A. The rms 

amplitude A is defined in equation 5.16, where ui and wi are the total shape functions 

in the streamwise and spanwise direction, respectively.
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A =  s/(n i +  w?)max/W ^  (5.16)

Introducing the initial disturbances at Re=186, the computations were per­

formed including eight modes in the spanwise and frequency domain. The results agree 

with the work by Malik et al. [23]. It can be seen from figure 5.13 that the interaction 

of a larger amplitude stationary with a smaller traveling disturbance leads to an earlier 

saturation of the stationary disturbance. On the other hand, the nonlinear evolution 

of the traveling disturbance is not affected by the stationary vortex when both initial 

modes are of similar amplitude.

A =0.1%, A,=0.0%

iff'

■o-

A

- - - A - - -  y

—-O— w
—O—  p

iff*
200 300 400 500 600

Re

Figure 5.14: Amplitudes of the primary disturbances for the purely stationary case

The influence of including a small amplitude traveling disturbance in the com­

putations is presented in figures 5.14 and 5.15, where the evolution of the stationary 

and traveling disturbance amplitudes is shown. In figure 5.14, the results for the purely 

steady case are presented, and figure 5.15 shows the results for a case where a small 

amplitude traveling disturbance interacts with the stationary vortex. The latter case 

will be referred to as the “lower-frequency” case from now on. For the purely stationary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

case, one observes that both the ui- and wi-components are fully saturated at Re ~  

550, and the saturation amplitude levels are As ~  24% for the ui-component and As ~  

17% for the wi-component. For the “lower-frequency” case with a primary frequency of 

F=0.75-10-4 , the stationary disturbance saturates at Re ~  480 and the amplitude levels 

are As ~  10% and As ~  8% for the ui- and wi-components, respectively. Also, since the 

traveling disturbances grow longer in that case (see Curve 4a in figure 5.13), they reach 

larger amplitude levels than the stationary disturbances.

A =0.1%, A,=0.014%

kt’

A 104

 A  V

—0—- w 
— O—  p

i<r*
200 300 400 500 600

Re
Figure 5.15: Amplitudes of the primary disturbances for the “lower-frequency case” 
(solid symbols: traveling mode; hollow symbols: steady mode)

Next, the distribution of the velocity profiles for the purely stationary case is 

presented. In figure 5.16, at the streamwise location where the stationary disturbances 

are saturated (Re=546), the shapes of the individual modes for the velocity components 

tangential to the stationary vortex (wj), and perpendicular to it (ui) are plotted in 

the Galilean coordinate system (xi,X2,X3) as defined in Appendix I. Obviously, the 

first seven modes of the component along the vortex contain im portant information, 

and thus, it is necessary to include at least eight modes in the computation. One also 

observes that the fundamental mode Pi along the stationary vortex is very large at this
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Reynolds number (A ~  30%) and shows the typical double peak structure observed in 

the experiments just before the secondary instability mechanism causes transition. At

4' -

0.00 0.10

lw,l/W
0.0500.000 0.025

lu,l/W_

Figure 5.16: Shape functions of individual modes at Re=546

the same streamwise station, the total velocity component along the stationary vortex is 

shown at four different locations within one wavelength perpendicular to the vortex in 

figure 5.17. Here, 0-3 is a new wave number perpendicular to the vortex (see Section 5.4). 

The inflectional character of the profiles is clearly observed. These strongly inflectional 

profiles are the origin of the secondary instability that will be studied in the next section.
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0
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Figure 5.17: Total flow quantity at different spanwise stations for Re=546
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For the purpose of a  more detailed description of the present flow and in order 

to further explain the onset of the secondary instability, certain features of the purely 

stationary crossflow vortex will be visualized next. First, the spatially developing sta­

tionary crossflow vortex is shown at different streamwise stations in figure 5.18. The 

developing distortion of the boundary layer in the spanwise direction and the roll-up of 

the crossflow vortices in the positive spanwise direction are clearly seen. The spanwise 

variation of the boundary layer thickness is about two at Re ~  400, where the vortices 

start to roll over. At Re ~  600, however, the spanwise difference in the wall-normal lo­

cations where the flow reaches the freestream value is about four. The structure of these 

velocity contours explains the varying inflectional profiles observed at different spanwise 

positions in figure 5.17. Combining these observations, it can be stated that a  strong 

mechanism is present in the flow that moves low-speed fluid away from the wall into the 

outer flow and high-speed fluid from the outer flow towards the wall. It is this exchange 

of fluid that causes the redistribution of vorticity in the spanwise direction.

6
s
*

X3 3
I
\
“'S

X

Figure 5.18: Contours of the total U2-component of the stationary crossflow vortex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

In order to further document the structure of the distorted boundary layer, 

two components of the total modified mean flow are shown at different normal posi­

tions and streamwise locations in figure 5.19. Plotted in the Galilean coordinate system

(,al.03

b) W

Vj/W.

Figure 5.19: Total modified mean flow a t different normal and streamwise locations; 
a) Re=448.5, b) Re=486.0, c) Re=546
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are the components in the streamwise and normal direction, W2 and V2, respectively, 

for two spanwise wavelengths. Also, table 5.2 lists the rms-amplitudes for the differ­

ent disturbance components at the corresponding streamwise locations. At the first 

shown streamwise location of Re=448.5, a  moderate distortion of the boundary layer in

Table 5.2: Amplitudes at different streamwise locations [%]

Re As,u As,v As.w
448.5 7 1 7
486.0 14 2 13
546.0 24 3 17

the spanwise direction is observed. The variation of both plotted components is sinu­

soidal, where the spanwise change in the normal component is very small. At the next 

streamwise location of Re=486.0, the peak and valley structure of the W2-component 

is developed more distinct, and the development of stronger spanwise gradients in the 

normal velocity component is observed as well. At the last shown streamwise location 

of Re=546, a very complex spanwise variation of both plotted velocity components is 

observed. The increased inflectional character of the spanwise velocity profiles corre­

sponds to the growing instability of the flow. Also, the presence of the strong vertical 

mechanism mentioned above is seen in the positive and negative peaks of the normal 

velocity component.

At Re=643.5, where the stationary vortex is fully saturated, the redistribution 

of vorticity is shown from another perspective in figure 5.20. There, the velocity vectors 

that result from a superposition of the normal velocity and the total velocity component 

along the stationary vortex are plotted in the xi,X3-plane. Note that the negative in­

direction in the Galilean coordinate system corresponds to a positive X2-direction in the 

body-fixed coordinate system. Visualizing two streamlines starting close to the wall at
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X3=0.05 and away from the wall at X3=2  reveals the existence of two counter-rotating 

vortices at this streamwise location. The primary crossflow vortex extends far into the 

outer flow, whereas the secondary crossflow vortex remains close to the wall.

*3

5 Primary Cross Fto W Vortex

4

3

2

Seconctaiy: CrossjH jftj

1

0
30 25 20 _  15 10 5 0

-X,
Figure 5.20: Velocity vectors of the stationary crossflow vortex at Re=643.5

UJ — |fltotal| |f lmeanflow| (5.17)
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This secondary vortex is also seen in figures 5.21 and 5.22 where the spatial 

distribution of the vorticity is shown for the disturbance component and for the total 

vorticity. The vorticity was computed by evaluating total and mean flow vorticity 

according to equations 5.17 and 5.18. In figure 5.21, the footprint of the secondary 

vortex can be seen as a region of high negative vorticity between the A-shaped structure 

of the primary vortex close to the wall. Also observed are concave structures of negative
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Figure 5.21: Disturbance vorticity in the presence of a stationary crossflow vortex

Figure 5.22: Total vorticity in the presence of a stationary crossflow vortex
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vorticity away from the wall at X3 ~  1. All these features start to develop a t a  streamwise 

position of Re=480, where the amplitudes of the stationary disturbances are As=13% 

and As= ll%  for the ui- and wi-components, respectively. Further noteworthy is the 

changing inclination of the primary vortex structures in the streamwise direction. While 

growing along the streamwise direction, they straighten more and more up and start 

leaning in into the streamwise direction at Re ~  480.

Finally, figure 5.23 shows the computed disturbance vorticity pattern at the wall 

in the presence of a stationary crossflow vortex. As reported from oil-visualizations in 

experiments (see Chapter 6), a streaky footprint of the stationary vortices is seen, where 

the curvature of the streak lines decreases with growing distance from the attachment 

line according to the variation of the wave angle.

350 400 450 500 550 600 650

Re

Figure 5.23: Computed wall vorticity pattern caused by a stationary crossflow vortex
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5.4 Secondary Stability Analysis

The interpretation of the observed physical features in the previous section, 

where a crossflow instability dominated mean flow is modified by the presence of a sta­

tionary vortex, predicts the onset of a secondary instability. This section will investigate 

this instability mechanism further. For a detailed definition of the secondary instabil­

ity, the reader is referred to Chapter 4 .  First, however, a s u m m a r y  of the observed 

results from the previous section will be given that explains the onset of the secondary 

instability.

•  A necessary condition for the onset of a secondary instability is the existence of a 

strong saturated stationary disturbance.

• Particularly the strong fundamental, first and mean flow distortion modes, having 

maximal amplitudes of A =  30%, A =  13% and A = 10% for the presented 

case, respectively, cause strongly inflectional profiles in the directions tangential 

and perpendicular to the constant phase lines of the stationary disturbance (see 

figures 5.16, 5.17, and 5.19).

•  The disturbances are periodic in the spanwise direction and cause the inflectional 

profiles to differ largely in shape within a wavelength perpendicular to the direction 

of the constant phase lines (see figure 5.17).

• The different magnitude of the disturbances in the spanwise direction also causes 

vertical and horizontal gradients in the flow that appear as crossflow vortices.

• The existence of these gradients in the flow explains the experimental observations 

of well-defined streaks on the body-surface tha t are the footprint of the crossflow 

vortices.
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•  Physically interpreted, the previous items represent a  strong mechanism in the 

flow that moves Iow-speed fluid away from the wall, and high-speed fluid from the 

outer flow towards the wall, thus distorting the boundary layer and redistributing 

vorticity in both the spanwise and streamwise directions.

Provided that a modified mean flow like described in the summary above exists, the sec­

ondary instability sets in once the disturbances reached a  threshold amplitude and the 

inflectional character of the profiles along the crossflow vortex originates an inviscid in­

stability. In the first subsection of this section, a  temporal investigation of the secondary 

instability mechanism is described that uses Floquet Theory and the solution method 

explained in Chapter 4. Utilizing the results of this temporal approach, an attem pt to 

capture the essential features of the secondary instability with a  PSE computation will 

be documented in the second subsection.

5.4.1 Tem poral A nalysis using F loquet T h eory

Following the method described in Section 4.4, the temporal investigation of 

the secondary instability is started at the streamwise location where Re=546. At this 

location, the stationary disturbance of an initial amplitude As=0.1% has fully saturated 

and reached an amplitude level of As =  24% for the ui-component. The computations 

presented here were limited to a maximal number of eight modes (n =  -8,- • - ,8) in the 

Fourier approximation. However, Malik et ad. [23] showed that a consideration of 16 

modes does not change the results qualitatively. Further, the results presented consider 

the fundamental type of secondary disturbances only. This restriction of the work is 

supported by the findings of Balachandar et al. [69] for the three-dimensional boundary 

layer of a rotating-disc flow where they did not find a qualitative difference between the 

behavior of fundamental and subharmonic secondaxy disturbances.
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The computational grid applied in the present computations is described as 

follows. For the same computational domain as in Section 5.3, where the freestream 

boundary conditions were enforced at a  normal extension of about 10 boundary layer 

thicknesses, the total number of points is decreased from 141 to 81. Also, the grid is now 

stretched in the entire domain such that the number of points within the boundary layer is 

50. For the local solution method, the iteration can be performed on either the continuity 

equation, or one of the momentum equations. Additionally, the disturbance mode to be 

iterated on can be specified. Table 5.3 presents the findings from a grid refinement study. 

Shown are results from the local method for different grids and iteration options. The 

guess values from the second-order-accurate global method for the two different numbers 

of points are given by 03=(0.0267,-1.2043) for 71 points, and <73=(0.0262,-1.2073) for 81 

points. The results of the fourth-order-accurate local method vary only in the fourth 

decimal place, and thus, the grid resolution is considered satisfactory.

Table 5.3: Grid study at Re=546, <23 =-0.508, #3 =0.9, Mode=-l

A-Grid Points Equation X3 .m ax <73
3 71 continuity 44 (0.021652,-1.212607)
3 71 X3 — mom. 44 (0.021652,-1.212607)
5 71 continuity 44 (0.021779,-1.212359)
5 71 X3 — mom. 44 (0.021779,-1.212359)
3 81 continuity 55 (0.021715,-1.212264)
5 81 continuity 55 (0.021729,-1.212671)

In general, there will be several unstable eigenmodes for a given wave number 

at a streamwise location. Thus, a scan of the complex (73-plane for a wave number of 

#3 =0.8 is performed first. Here, the global and local solver are used as explained in 

Section 4.4. All eigenvalues that were found within the scanned domain are plotted in 

figure 5.24. Even though they appear clustered around (J3=(0.,-1.), there is no obvious 

connection between the positive (unstable) real parts. For the chosen parameters, this
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isolated appearance indicates that there are no multiple eigenvalues present in the flow, 

and thus no absolute instability. The five detected unstable eigenvalues axe given in 

the order of increasing frequency — o^jmag in table 5.4. It is seen that all the detected 

unstable secondary frequencies are an order-of-magnitude higher than the most amplified 

frequency found from the nonlinear analysis in the previous section (F=1.0-10-4 ). The

0.05

o.oo
O  q O O  

° o  O

oo o  °

-0.05

.real

-0.10

-0.15
#  unstable 

O  stable

o.o 0.4 0.6 0.8 1.0 1.2
3̂.imag

Figure 5.24: Temporal eigenvalue spectrum at Re=546

Table 5.4: Unstable eigenvalues Re=546, a3=-0.508, /?3= 0.8

Mode 0"3 F—-03,imaK/R®
1 (0.0113,-0.5160) 1.03-10-3
2 (0.0030,-0.8566) 1.71-10-3
3 (0.0467,-0.9595) 1.92-10-3
4 (0.0218,-1.0838) 2 .1610-3
5 (0.0021,-1.1205) 2.24-10-3

shape functions of the five unstable modes are shown in figure 5.25. Plotted is the 

summation of eight modes of the wave number 03 in the Galilean coordinate system. 

Observed is that the shape functions of the different modes vary widely in features like 

the location of the maximum in the normal direction, the largest disturbance component,
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the magnitude, the presence of multiple peaks, and the extension into the outer flow. Of 

special interest are Modes 4 and 5, as well as the most unstable Mode 3. Because of their
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Figure 5.25: Total shape functions for unstable modes at Re=546, a 3=-0.508, /33=0.8

full shape profiles, Modes 4 and 5 might be easier detected in experiments them the other 

three modes that show a more narrow and fluctuating shape. For Mode 4, in particular,
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it is noted that the component tangential to the constant phase lines has a shape that is 

very similar to the experimentally and numerically observed profile in the DLR Transition 

experiment at xi/c=0.80 [67]. For that reason, the following study where the spatial 

development of the temporally unstable modes is investigated, considers Mode 4. In 

figure 5.26, the shape functions of the individual Fourier components are given for Mode 

4. Plotted are the normalized quantities for the first seven modes. In contrast to the

x,

lu3l/Iw.

Mode

X,

a s  ^

IVjI/lW,

Mode

Mode

Figure 5.26: Shapes of the secondary instability eigenfunctions for Mode 4 at Re=546

primary stability analysis, where the transformation of a physical (real) quantity into the 

Fourier space yields a symmetry condition for the individual modes (qi,m ,n=qi._m ,-n> 

the asterisk denotes the complex conjugate), one observes non-symmetric mode shapes 

for the presented secondary eigenfunctions. This is due to the missing complex conjugate 

of the secondary disturbance in the formulation of this linear analysis (see Section 4.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Also, it is observed that the disturbance mode tangential to the constant phase 

lines (0-Mode) shows a double peak structure for both disturbance quantities parallel to 

the wall. The maximal disturbance quantity is found for the W3-component tangential 

to the constant phase lines at X3 ~  3, where its normalized value |w3to|/|w 3itotaj|max ~  1.

While studying the origin of the secondary instability, another important is­

sue is whether there exists a link between the eigenmodes of the undisturbed mean flow, 

investigated by the linear stability theory, and the unstable secondary eigenmodes, inves­

tigated by Floquet Theory. Also, which is the threshold amplitude where the secondary 

disturbances become unstable ? In order to investigate this problem, the amplitude of 

the stationary disturbances obtained from the nonlinear stability analysis in the previous 

section is set to A=1.0 for the given Reynolds number. Then, by gradually decreasing 

A to zero, the variation of the eigenvalues is monitored. During the computations, the 

evolution of the shape functions is followed in order to assure that no jumps to different 

eigenvalues occur. A typical step size in the amplitude is AA=0.01. The computations 

axe continued until the local method ceases to converge.

For a Reynolds number of Re=546, a value of A=1 corresponds to amplitudes 

of As=24%, As=17% and As= l%  for the ui-, wi- and vi-disturbance components of 

the primary stationary vortex, respectively. In figure 5.27, the variation of the eigenval­

ues o-3=(<73ireai,o-3iimag) versus a  decreasing amplitude A is shown for the five unstable 

eigenvalues at A = l. Additionally, the eigenvalues of the undisturbed parallel mean flow 

Qo(x3) are shown in the relevant (73-range. It turns out that only one of the five un­

stable eigenvalues at Re=546 has a link to the eigenvalue spectrum of the undisturbed 

mean flow. This connection could be established for Mode 1, the mode with the lowest 

unstable secondary frequency (F=I.03-10-3 ).
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Figure 5.27: Growth rates and frequencies of the secondary disturbances as functions of 
the amplitude A (Re=546, a3=-0.508, /?3=0.8)

As seen in figure 5.27, the variation of the eigenvalues with decreasing ampli­

tude A takes very different routes. For example, the highest frequency mode (Mode 5) 

becomes stable at a threshold amplitude of Athres=0.98. Shortly thereafter, the itera­

tion for an eigenvalue ceases to converge. On the other hand, Modes 2 and 3 could be 

followed further until A~0.1. The threshold amplitudes for Modes 1-4, respectively, are 

A t h r e s = 0 - 8 8 ,  Athres=0-95, Athres=0.31, Athres=0.55. Thus, this analysis predicts the onset 

of a secondary instability due to Mode 3 already for stationary disturbance amplitudes of 

As=0.31-24%=7.5% and As=0.31-17%=5% for the ui- and wi-components, respectively. 

The corresponding values for Mode 4 are As=0.55-24%=13% and As=0.55-17%=9%.

In order to investigate the eigenmode-variation in the amplitude range where 

the eigenvalue computation stops converging, the next study examines the decay of the
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individual disturbance components at the freestream boundary. Thereby, it can be de­

termined whether the convergence problems are due to an insufficient grid resolution, or 

if they are part of the physics of the investigated problem. In the present stability formu­

lation, a complex eigenvalue reaches the continuous spectrum when the corresponding 

eigenfunction does not decay in the freestream and is of rather oscillatory nature [51]. 

In the following, the method of the investigation is described, and results are presented 

for the Modes 1 and 4.

In Floquet Theory, one seeks a solution to the linear eigenvalue problem that 

can be written as in equation 5.19 (see Section 4.4), where the elements of the coefficient

A' =  A • A (5.19)

matrix A  are determined from a nonlinear PSE computation. Since the coefficients of the 

matrix are not constant in the entire domain, one usually solves the eigenvalue problem 

using a Newton-Raphson technique as described in Section 4.4. Here, however, the focus 

is on the eigenvalues of A  at the freestream boundary where the primary disturbance 

quantities are zero, and thus, the coefficients of the m atrix A are constant. Therefore, the 

behavior of the secondary disturbances at the freestream boundary can be investigated 

by finding the eigenvalues of the submatrix A„ a t the maximal normal extension of the 

computational domain. The dimension of the subm atrix A n depends on the number of 

considered Fourier modes in the Floquet analysis and is determined to (2-Nmocie4-l)-6 for 

the six components of the vector of unknowns (see Section 4.4). Considering eight Fourier 

modes in the analysis, the complex and non-symmetric coefficient matrix A n consists of 

102x102 elements. If the eigenvalue problem to be solved is well-posed, one obtains 51 

positive and 51 negative eigenvalues which are distributed almost symmetrically about 

the imaginary axis. In figure 5.28, the eigenvalue spectrum  at the freestream boundary
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of Mode 4 is shown for an amplitude of A = l. In that case, none of the eigenvalues has a 

zero real part, the secondary disturbances decay in the freestream, and the iteration for 

an eigenvalue of the entire problem converges.

Table 5.5: Eigenvalue characteristics at the freestream boundary for Mode 4

A 1.0 0.8 0.6 0.4 0.38 0.36 0.34
#ofAreai i > 0 51 51 51 51 51 51 53
^ofArea]j < 0 51 51 51 51 51 51 49

(A re a l,i)m in 0.8 0.8 0.8 -0.16 -0.078 -0.011 0.0066

15

10

(t0.800.0.000)
5

0tmag

5

•10

15
•10 0 10

•̂reaJ

Figure 5.28: Eigenvalue spectrum at the freestream boundary (Mode 4, A =l)

In the approach the continuous spectrum, however, the real part of the eigen­

value closest to the imaginary axis tends towards zero, and the well-posedness of the 

eigenvalue problem is violated by an imbalance of the eigenvalues with a positive and 

negative part. This is seen in figure 5.29, where the eigenvalue spectrum at the freestream 

boundary of Mode 4 is shown for an amplitude of A^0.34. There are two eigenvalues 

close to the imaginary axis which indicates that the disturbances will not decay in the 

freestream.
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Further, tables 5.5 and 5.6 list the number of eigenvalues in the spectrum with 

positive and negative real parts, as well as the magnitude of the eigenvalues closest to 

the imaginary axis for Modes 1 and 4 depending on the amplitude A. It is seen that the 

eigenvalues of Mode 4 join the continuous spectrum at an amplitude of A=0.34, whereas 

the eigenvalues of Mode 1 indeed reaches the linear eigenvalue spectrum.

Table 5.6: Eigenvalue characteristics at the freestream boundary for Mode 1

A 1.0 0.8 0.6 0.4 0.2 0.1 0.01
#ofAreaU > 0 51 51 51 51 51 51 51
#of Areai ; < 0 51 51 51 51 51 51 51

(^ re a l .i )m in 0.8 0.8 0.8 0.8 0.8 0.8 0.8

15

10

5

-10 

-15

Figure 5.29: Eigenvalue spectrum at the freestream boundary (Mode 4, A=0.34)

Referring back to figure 5.27, a peculiar behavior in the limit of A —>■ 0 is noted 

for Mode 1. From figure 5.27, a clear tendency towards the linear eigenvalue at A=0 

is observed. However, starting at A=0.10, the dominant (-1) Fourier component starts 

to decay and the (0) Mode becomes the prevailing component. At A=0.01, all Fourier 

components are negligible, except the (0) Mode. The fact that the corresponding linear

(0.0066.-2.4950)

10 0 10 

^■real
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eigenvalue of 03=(-O.O7725,-0.44443) at A =0 is obtained for a wave number of 0-3=0 is 

consistent with tha t observation. In figure 5.30, the normalized total shape functions of
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Figure 5.30: Shape functions |w3|/|w 3,max| of the linear eigenmode and of Mode 1 for 
different amplitudes A

the W3-component of Mode 1 are given for different amplitudes. It is seen that the shape 

functions for the different amplitudes indeed belong to the same family of eigenmodes. 

Comparing the linear shape function with the nonlinear shape function a t A=0.01, it is 

obvious that nonlinear and linear results merge in the limit of A —»• 0.
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Next, the eigenvalues 03 for the different unstable modes are computed as func­

tions of the wave number tangential to the stationary vortex at Re=546. In particular,

Mode 4 
Mode 5 
Mode 1 -

M>-8
0.020

*—«
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0.0 1.0 1.5 2.0
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Figure 5.31: Secondary growth rates a t Re=546
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Figure 5.32: Secondary frequencies at Re=546

three of the five unstable eigenmodes at P^—0-8 axe traced through their unstable wave 

number range. Figures 5.31 and 5.32 show the growth rate and frequency development,
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respectively, that was obtained by closely watching the evolution of the eigenfunctions 

with changing wave numbers. Thereby, it is assured tha t the curves for the different 

modes in figure 5.31 indeed belong to the specified modes (see Section 4.4). Moreover, 

the wave angle of the secondary disturbances #2  is given as a function of the wave num­

ber 03 in table 5.7, where $2  is determined according to its definition in Section 4.4.

Table 5.7: Wave angle of secondary disturbances at Re=546 (q3=-0.508)

03 0.25 0.5 0.8 1.0 1.5
$ 2 -63.8° -45.5° -32.4° -26.9° -18.7°

The following observations can be made from figures 5.31 and 5.32 :

• A wide range of unstable secondary wave numbers is present at the investigated 

Reynolds number.

•  Starting at 03—0, which corresponds to an alignment with the primary wave vector, 

the disturbances turn towards the direction of the constant phase lines with a 

growing wave number tangential to the stationary vortex.

• The dependence of the frequency on the wave number 03 is approximately linear.

• An intricate structure of the high-frequency/low-growth rate Mode 5 is observed. 

The growth rate behaves in a periodic manner versus the wave number # 3.

• The most unstable disturbances of Modes 4 and 5 are found in the wave number 

range of 03=0.6 - 0.9. This corresponds to an inclination of the secondary structure 

of ^ 2 =-30° • • • -40° with respect to the direction of the constant phase lines.

• Modes 4 and 5 have very similar frequencies; however, the frequency curves never 

cross each other.
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•  Even though the curves for the real parts (growth rates) of the different modes do 

cross each other, their eigenvalues O3= (0'3,reai?0'3,imag) do not coincide because of 

the missing corresponding crossovers of the imaginary parts (frequencies).

• Thus, multiple eigenvalues were not detected at the investigated location and the 

flow seems to be subject to a  convective type of instability.

Completing the investigation of the secondary instability at Re=546, figure 5.33 

shows the temporal eigenfunctions superimposed on the modified mean flow. Plotted 

are contours of the velocity components along the stationary crossflow vortex. The 

eigenfunctions are computed for the most amplified spanwise wave number $ 3= 0.8 at 

this streamwise location. The secondary instability structure appears riding on top of 

the largest boundary layer distortion caused by the primary crossflow vortex. Also, it is 

completely lifted away from the wall, having its maximal magnitude at X3 ~  2.75.

6 

5 

4

X3 3 

2 

1 

0
0 5 1° —  1S 20

" X 1

Figure 5.33: |w3|-eigenfunctions and the modified mean flow a t Re=546
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Next, in order to gain some first insight into the spatial development of the 

secondary instability, a temporal analysis at eight different streamwise positions is per­

formed. This investigation is also aimed at providing data of unstable frequencies to be 

used in the PSE analysis of the secondary instability in the next subsection. Thus, choos­

ing Mode 4 at Re=546 and decreasing the Reynolds number, this mode is traced back to 

its onset at Re~475. At this Reynolds number, both the ui- and the wi-components have 

reached an amplitude level of A = ll% . Figure 5.34 shows the secondary growth rates 

at the different streamwise positions. It can be seen that the unstable spanwise wave 

numbers align more closely with the direction of the wave vector k rea[ for a decreasing 

Reynolds number. In figure 5.35, the most amplified secondary growth rates are plotted 

together with the primary growth rates. The most unstable secondary frequencies are

0.02S
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Figure 5.34: Secondary growth rates at different streamwise stations

found in the range of F=1.0-10-3-2.0-10-3 , which is an order-of-magnitude higher than 

the most amplified primary frequency of F=1.0-10-4 (see Section 5.3). Also, a linear 

development of the temporal growth rate cr3irea] is observed. Another interesting feature 

in figure 5.35 is the development of primary and secondary growth rates. At Re~510,
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the primary and secondary growth rates are of the same order. At Re=546, however, 

the primary growth rates are about to become stable, whereas the temporal theory pre­

dicts a continued steep growth of the high-frequency disturbances. Looking again at

0.025

' l .u  
ri.v 
[l.w 
*3. max

0.020

0.015

0.010

F .1 .1+ 4’ 10'

0.005

0.000
520 530470 480 500 510 540 550480

Re

Figure 5.35: Trace-back of the secondary instability

figure 5.14 where the amplitude evolution of the stationary disturbances was plotted, 

one notes that the onset of the secondary instability according to the temporal theory 

occurs in the region where the stationary disturbances saturate.

Having gathered quantitative information about the wave number structure 

and frequency spectrum of the secondary instability originating from a purely stationary 

crossflow vortex, the next subsection will describe an attem pt to utilize this information 

in a PSE computation.

5.4 .2  Spatial A nalysis using the PSE

After the discussion of the temporal approach in the previous subsection, the 

focus here will be on an attem pt to capture the high-frequency secondary instability with 

a spatial analysis. Since the physical evolution of the disturbance is more appropriately
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modeled by a  spatial approach, one expects to obtain the flow features of the secondary 

stability in a more straightforward manner than by a temporal computation. Ideally, one 

would like to capture the large growth rates and spike-like amplitude evolution typical 

for the secondary instability in agreement with the prediction by the Floquet Theory and 

with an unchanged steady crossflow vortex. To pursue tha t idea, the initial disturbances 

to be included in the PSE analysis need to be specified such that they resemble the wave 

number structure and frequency spectrum determined in the temporal analysis as closely 

as possible.

The wave number range is considered first. Since the PSE computations are 

performed in the body-fixed reference frame, the wave numbers 03 found from the tem­

poral analysis for each Fourier mode are transformed from the Galilean to the body-fixed 

coordinate system using equation 5.20.

01,n =  —n Q3n sin|'f,| + 03  cos’F ; =  tan-1 ——— (5.20)
& 1, real

This transformation is done a t each streamwise location that was investigated 

in the previous subsection. It is found that for a  spanwise wave number of 03=0.6, 

which is in the unstable range for Re>500 and close to the most unstable wave number 

for Re>520 according to figure 5.34, multiples of the spanwise wave number for the 

primary stationary disturbance 0\=O.4 closely represent the values of 03 in the body- 

fixed coordinate system. Specifically, the transformed spanwise wave numbers for each 

Fourier mode took values from 0 i ts= -2 .8 3  to /3iis=3.58 at Re=523.5. This is a  range 

that can be almost covered by specifying eight modes in the spanwise direction for the 

chosen primary wave number of 0\ =0.4.

The next important parameter is the primary frequency of the traveling mode 

to be included in the PSE analysis. In order to reproduce the behavior of the secondary
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instability as predicted by the temporal analysis, one tries to cluster the available number 

of frequency modes as densely as possible up to the predicted unstable frequency. For 

/%=0.6, this unstable frequency is about F=1.6-10-3 (see figure 5.35). Thus, a  primary 

frequency of F=2-10-4 and eight modes for the discretization of the frequency domain 

are selected.

Finally, the last param eter to be considered while shaping the primary input 

for the PSE is the initial am plitude of the traveling disturbance. Due to the nonlinear 

interaction of traveling and stationary disturbances, the stationary disturbance is mod­

ified as mentioned in Subsection 5.3.2. Keeping the intention of maintaining a mostly 

unmodified mean flow in mind, cases for three different initial amplitudes were run (see 

table 5.8). It turns out th a t the behavior of the high-frequency modes is very sensitive 

to the initial amplitude At . Figures 5.36 - 5.38 show the growth rates based on the 

energy-component, the amplitudes of the individual modes and the amplitudes of the 

primary disturbances for the three cases. For comparison, the plots of the growth rates 

also show the curve of the purely stationary disturbance.

Table 5.8: Secondary analysis using PSE (Re=500, /3i=0.4, As=0.1%, F=2.0 -10-4 )

At .initial Modes in 0i -domain Modes in u/i-domain
Case 1 0.0014% 8 8
Case 2 0.0075% 8 8
Case 3 0.0141% 4 8

In Case 1, it is observed that the steady primary disturbance remains largely 

unaffected by the small am plitude traveling disturbance, since the traveling modes do not 

grow large enough to interact nonlinearly with the steady modes. Thus, one essentially 

maintains the same new mean flow as investigated in the previous subsection using 

the temporal approach. However, for this very small initial traveling amplitude, the
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high-frequency modes remain negligible throughout the investigated region and start 

saturating at a Reynolds number of Re~550 where the temporal theory predicts a large 

growth rate for these modes. Consequently, the initial amplitude of the traveling mode is 

increased by one order-of-magnitude and the computation repeated (see Case 3). There, 

the steady primary disturbance is strongly affected by the nonlinear interaction with 

the traveling disturbance. This was expected from the nonlinear PSE analysis for the 

primary instability (see figures 5.14 and 5.15). However, this now different new mean flow 

gives rise to new physical features in the flow, as shown in figure 5.38. One observes an 

explosive disturbance-energy growth of even the low-frequency primary mode starting at 

Re=480 (figure 5.38(a)), and a  very strong amplitude growth of the high-frequency modes 

(figure 5.38(b)). The highest frequency mode (F=1.6 • 10-3 ) experiences an amplitude 

growth of more than five orders-of-magnitude during a Reynolds number change from 

Re~420 until Re~500. Further, the amplitude of the mean flow distortion shows a 

sharp rise at Re~480 after an earlier saturation onset at Re~460 (figure 5.38(c)). The 

oscillations in the steady growth rate curve are thought to be caused by physical features 

in the flow, rather than by numerical oscillations. Continuing the computations further 

into the transition region exceeded the available computational resources, since it took 

several hundreds of iterations on the nonlinear terms per station for the solution to 

converge in the presence of these steep gradients in the flow. Case 3 will be also referred 

to as the “higher-frequency” case from now on.

Considering the final Case 2, it was attempted to obtain similar results as in 

Case 3 with a less modified new mean flow. Also, this last case was aimed at gaining 

more information about an existing threshold amplitude for a self-sustained growth of the 

secondary disturbances in the investigated flow. From the plots for Case 2 in figure 5.37,
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one can see that the modification of the steady primary disturbance is weaker than 

in Case 3, but there are still features of a weak secondary instability to be noted. In 

particular, the steep gradients in the temporal growth rate are still present, and both 

the amplitudes of the mean flow distortion and the primary traveling disturbance show 

a secondary growth at a Reynolds number of Re~500 after an earlier saturation onset. 

Further, the high-frequency modes grow significantly and reach an amplitude level of 

A t — 0.0005, but their growth is much slower than in Case 3 and a  tendency towards 

saturation at the highest computed Reynolds number of Re=591 is observed.

The saturation amplitudes for the ui- and wi-components of the primary sta­

tionary and traveling disturbances for Cases 1-3 are given in table 5.9. It is noted that in 

Case 2, where the high-frequency disturbances do not grow as explosively as in Case 3, 

the saturation amplitude of the stationary ui-component is of the same order as for the 

purely stationary case. In contrast, for Case 3 where the explosive secondary growth of 

the high-frequency disturbances is observed, the saturation amplitude of the stationary 

ui-component is much lower than observed in the purely stationary case. A detailed dis­

cussion of these observations will be given in the summary at the end of this subsection.

Table 5.9: Saturation amplitudes for the primary disturbance components

As[%], ut As[%], W! A*[56], m At [%], wi
“Purely-steady” Case 24 17 - -
Case 1 20 15 3 1
Case 2 22 16 9 4
Case 3 6 5 12 6
“Lower-frequency” Case 10 8 17 10

For the purpose of illustrating the observations in Case 3, contours of the dis­

turbance component and of the total flow quantity tangential to the constant phase lines
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a) Disturbance component (Re=448.5) b) Total component (Re=448.5)

c) Disturbance component (Re=486) d) Total component (Re=486)

e) Disturbance component (Re=498.5) f) Total component (Re=498.5)

Figure 5.39: Formation of secondary structures for the velocity component tangential to 
the constant phase lines (Case 3, T=18)
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are plotted at the time T=18 at three different streamwise locations in the Galilean 

coordinate system in figure 5.39. The chosen Reynolds numbers represent the region 

where the high-frequency modes experience an explosive growth. It is noted that a neg­

ative xi-direction corresponds to a  positive X2-direction (see Section 4.4), and hence, the 

roll-over of the crossflow vortices in the negative xi-direction (see figure 5.39(b)) agrees 

with the previous observations for a purely stationary crossflow vortex (see figure 5.18). 

At Re=448.5, the high-frequency modes with a frequency of F=1.6 - 10-3  have not yet 

reached any significant amplitude level (A ~  0.1% for the wi-component). Thus, it can 

be seen from figure 5.39(a) that the co-rotating crossflow vortices are a r ra n ged as known 

from a primary stability analysis. In contrast, at Re=486 where A ~  1%, the regions 

of a negative wi-component show two separated vortices. The locations of the primary 

vortices can still be distinguished; however, a large negative vortex structure is being 

lifted away from the wall and above the regions of a  positive wi-component. Finally 

in figure 5.39(c), where the high-frequency modes have reached an amplitude level of 

A ~  3% at Re=498.5, two separated regions of a  positive and a negative ui-component 

are observed. Both regions are characterized by the existence of vortex cores at a smaller 

spanwise spacing than at the previous stations. In particular, a strong positive vortex 

is located near the wall at xi ~  -10, and a strong negative vortex adjacent to it at 

xi ~  -13 and X3 ~  1.5. From the plots of the total quantities at these three Reynolds 

number stations, it can be seen that the degree of the boundary layer distortion is much 

smaller than for the purely stationary disturbance (see figure 5.18 in Section 5.3). This 

is due to the earlier saturation of the stationary disturbance at lower amplitude levels 

in the “higher-frequency” case. On the other hand, the wave number spectrum of the 

disturbance in the “higher-frequency” case is much fuller than in the purely steady case.
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Whereas the fundamental wavelength clearly dominates the observed vortex pattern in 

the steady case (see figure 5.18), it is still present in the “higher-frequency” case, but 

modulated by the wavelength of the traveling disturbances (see figure 5.39(f)).

Further documenting the observed secondary instability features caused by the 

interaction of traveling and disturbances with the stationary vortex in Case 3, figure 5.40
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a) xi=-9.57 b) xi=-13.1

Figure 5.40: Total mean flow components at locations of a maximal/minimal disturbance 
component tangential to the constant phase lines (Re=498.5)

shows the primary disturbances superimposed on the mean flow in the Galilean coordi­

nate system. Plotted are the modified mean flow components perpendicular and tan­

gential to the constant phase lines, U2 and W2, respectively, at the locations where the 

positive and negative disturbance components tangential to the constant phase lines are
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maximal. From figure 5.39(e), these locations are determined as xi ~  -9.5 for the positive 

maximum of the wi-component, and as xi ~  -13.0 for its negative maximum. It is seen 

in figure 5.40 that at the two selected locations both total velocity components show 

multiple inflection points. It is this inflectional character of both wall-parallel velocity 

profiles that documents the presence of a strong inviscid secondary instability.

Investigating the observed lift-up of regions where the disturbance component 

in the direction tangential to the constant phase lines is negative from a different perspec­

tive, figure 5.41 shows streamlines of the total flow quantity in the plane perpendicular 

to the constant phase lines. Plotted are the velocity vectors and streamlines for two 

wavelengths A*, =  2-k / olz at the same time instant and Reynolds number locations as in 

figure 5.39. At a Reynolds number of Re=448.5, where the primary vortices were seen 

to be dominant (figure 5.39(a)), the classical ca t’s-eye pattern of the primary crossflow 

vortices is obtained in figure 5.41(a), and the presence of secondary instability features 

is not yet observed. Here, the normal location of the vortices is X3 ~  1.5. At Re=486.0, 

the basic cat’s-eye structure of the streamlines is still preserved. However, the vortex ob­

served at the previous Reynolds number location has now split into two weaker vortices 

that are contained within one “cat’s-eye” (see figure 5.41(b)). The normal location of 

the vortices still remains at X3 ~  1.5. In contrast, a  qualitative change in the streamline 

traces is observed at Re=498.5. Here, the cat’s-eye structure has dissolved into three 

clockwise rotating vortices that are embedded in a large scale vortex structure covering 

the entire boundary layer thickness. Part of this vortex structure is a  very strong lift-up 

mechanism located between xi=-12 and xi=-14 (figure 5.41(c)). Another qualitative 

difference to the previous two Reynolds number locations is the presence of a counter­

clockwise rotating vortex close to the wall a t xj ~  -10. In figure 5.41(c), it is seen that
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Figure 5.41: Vortex structures perpendicular to the constant phase lines
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two counter-rotating vortices exist almost on top of each other at xi ~  -9.0 and xi ~  

-10. The combination the two above observations at Re=498.5 confirms the existence 

of the earlier mentioned mechanism that moves lower speed fluid on top of higher speed 

fluid (see figure 5.39(e)).

During the computations, another observation was made with respect to the 

time-dependence of the lifting process of lower speed fluid on top of higher speed fluid. 

The assumption of periodicity in time, part of the PSE formulation, causes the described 

lifting mechanism to be periodic in time and in space. That is to say, the observed 

horizontal separation of positive and negative layers of disturbance velocity layers is not 

present at all times, and additionally, the first streamwise occurrence of this phenomenon 

varies as well.

The observed features of vortex-splitting are interpreted as a confirmation of 

the previously stated wavelength modulation of the stationary vortex by the presence of 

high-frequency traveling disturbances. This was also found by Fischer and Dallmann in 

[16] and [67], where they superimposed primary and secondary disturbances, determined 

by solving linear eigenvalue problems, on a parallel base flow. The phenomenon of a half­

wavelength periodicity has also been observed experimentally by Saric and Yeates [24] 

and by Kohama et al. [27].

In a last attem pt to visualize the mechanism of the secondary instability in this 

section, figure 5.42 shows two components of the total modified mean flow at different 

normal and streamwise locations in the Galilean coordinate system for Case 3. Compar­

ing figure 5.42 with the similar figure 5.19 for the purely stationary case, the following is 

noted. Starting with the same sinusoidal spanwise variation at Re=448.5, the spanwise 

variation of the plotted velocity components tangential to the constant phase lines and
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normal to the wall, W2 and V2, respectively, is more complex at the other two Reynolds 

number stations in Case 3. In particular, the modulation of the primary spanwise wave­

length is observed, as pointed out above. Also, at Re=498.5, the fluctuations in the 

wall-normal component are about twice as large as at Re=546 in the purely stationary 

case. This again indicates the presence of strong vertical m echan ism s in Case 3.
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Figure 5.42: Total modified mean flow at different normal and streamwise locations 
a) Re=448.5, b) Re=486.0, c) Re=498.5
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In order to further investigate the role of the stationary disturbance in the 

interaction process with the traveling disturbance, the traveling disturbance is considered 

separately in the next study. For the same initial amplitude as in Case 3, the results of the 

purely traveling case are shown in figures 5.43 and 5.44. Figure 5.43(a) shows the growth 

rates based on the disturbance energy. Plotted are the curves for the purely stationary 

case (At=0), for the purely traveling case (As=0), and for the “higher-frequency” case. 

It can be seen that the purely traveling disturbance saturates slightly later than the 

traveling disturbance in the “higher-frequency” case at Re~470. This corresponds to 

the previously made observations regarding the influence of the interaction of stationary 

and traveling disturbances.
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Figure 5.43: Purely traveling case : Re=500, /?i=0.4, As=0.%, At =0.0141%, F=2.0-10-3 , 
a) Growth rates, b) Amplitudes of individual modes
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However, the growth rate of the purely traveling disturbance does not show the 

strong secondary increase as observed for the “higher-frequency” case. Figure 5.43(b) 

shows the amplitude evolution of the individual traveling modes. The qualitative dif­

ference to the “higher-frequency” case in figure 5.38(b) is obvious. Even though the 

disturbances cover the same frequency range as in the “higher-frequency” case, all the 

traveling modes saturate at different amplitude levels, and no secondary growth is de­

tected. From this, it can be concluded that the secondary instability features observed 

in Case 3 must be attributed to the presence of both a saturated stationary crossflow 

disturbance and a  traveling disturbance of smaller initial amplitude, as well as to the 

nonlinear interaction of the two disturbances.

a) Disturbance component (Re=486) b) Total component (Re=486)
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c) Disturbance component (Re=501) d) Total component (Re=501)
Figure 5.44: Velocity components tangential to the constant phase lines for the purely 
traveling case (T=18)
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Further evidence for this statement is found from figure 5.44. There, contours 

of the velocity component tangential to the constant phase lines are plotted for the dis­

turbance and the total quantity at two Reynolds numbers in the same streamwise region 

and at the same time as shown in figure 5.39 for the “higher-frequency” case. Comparing 

figures 5.39(c)-(f) with figures 5.44(a)-(d), one observes that the typical primary vortex 

structure is obtained in the purely traveling case. The traveling crossflow vortices stretch 

fax into the outer flow and the fundamental wavelength is clearly dominant. There is 

no indication for the presence of the wavelength modulation and the lifting of low-speed 

fluid on top of high-speed fluid, as noted in the “higher-frequency” case.

As the last topic in this subsection, the “lower-frequency” case from the nonlin­

ear stability analysis in Section 5.3 will be reconsidered and compared with the “higher- 

frequency” case from this section. In particular, the following two questions are intended 

to be answered by this study :

• Is there indeed a qualitative difference between the supposedly primary stability 

investigation in the “lower-frequency” case and the attem pt of modeling the sec­

ondary instability in the “higher-frequency” case ?

•  Of which order should the initial amplitude of the stationary disturbance be in 

order to allow for the downstream development of a  secondary instability ?

First, the relevant parameters for both cases are given again in table 5.10. The main 

difference between the input for the two cases is in the specified primary frequency. 

There is a factor of 2.5 between the maximal frequencies for the “higher-frequency” 

case and the “lower-frequency” case. Additionally, the “lower-frequency” case covers 

a wider spanwise wave number range. This, however, is of minor importance for the 

interpretation of the results.
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Table 5.10: Parameters for the “lower-frequency” case and the “higher-frequency” case

“Lower-frequency” case “Higher-frequency” case
Modes in 0\ -domain 8 4
Modes in uu-domain 8 8
0i 0.4 0.4
01 .m ax 3.2 1.6
Fi 0.75 lO"4 2.0-10-4
F  m ax 0.6-10"3 1.6-10-3
A s.in itia l 0.100% 0.100%
A t,in it ia l 0.014% 0.014%

In figure 5.45, the growth rates based on the disturbance energy and the ampli­

tude evolution of the individual modes are plotted for the two cases. From the plots of

“Lower-frequency” Case “Higher-frequency” Case

ReRe

Growth rates based on the disturbance energy

to*

<1.01

(0 .0 )

to*
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to'
(1.11

(1 .0)

to*

10*
10*
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Amplitudes of the individual modes 

Figure 5.45: Comparison of the “lower-frequency” case with the “higher-frequency” case
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the growth rates, it can be seen that the initial growth rate of the traveling disturbance is 

much higher in the “higher-frequency” case. Comparing the growth rates of the steady 

disturbances for both cases with the curve for the purely stationary disturbance, one 

notes that the steady disturbance is less modified in the “lower-frequency” case. It is 

the slower growth of the lower-frequency disturbance in this case that allows for a longer 

growth of both traveling and stationary disturbances. In the “lower-frequency” case, a 

saturation of the steady primary disturbance is observed at Re~480, and the traveling 

primary disturbance saturates at Re~500. In the “higher-frequency” case, however, both 

the traveling and stationary disturbance saturate at Re~460. Also, both primary dis­

turbances show a moderate secondary growth after saturation in the “lower-frequency” 

case, whereas the traveling disturbances experience an explosive secondary growth in the 

“higher-frequency” case.

The same features can be viewed from a different perspective in the plots of 

the amplitude evolution of the individual modes. Due to their longer growth in the 

“lower-frequency” case, both the traveling and stationary primary disturbances reach 

larger saturation amplitudes in this case. However, the main difference between the 

results for the two cases is seen in the growth of the highest frequency modes. Whereas 

the modes with F=0.6-10-3 in the “lower-frequency” case tend towards saturation after 

a steep growth beyond Re=440, the modes with F=0.6-10~3 in the “higher-frequency” 

case show the spike-like growth that was discussed earlier.

Thus, the questions raised earlier are answered as follows. There is qualitative 

difference between the two investigated cases that is embodied in the different growth 

of the high-frequency modes in the region of the nonlinear saturation of the stationary 

disturbance. Thus, the “higher-frequency” case can indeed be referred to as a case
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where secondary instability features are captured. Regarding the second question, it 

can be stated that in both cases the initial amplitude of the stationary disturbance 

was too small to allow for saturation amplitudes of about A ~20%, as observed for the 

purely stationary case. Thus, the obtained saturation amplitude levels for the stationary 

ui-disturbance component of A=6% and A=10% for the “higher-frequency” case and 

“lower-frequency” case, respectively, are too low to allow for the development of a self­

sustained secondary instability. As stated earlier, the observed features are attributed 

to the nonlinear interaction of stationary and high-frequency traveling disturbances.

Summarizing the results of this subsection, one can conclude the following :

•  A certain amplitude level of the primary traveling disturbance and the interaction 

of steady and traveling disturbances are required to cause the large growth rates 

of the high-frequency disturbances. The information about the initial amplitude of 

the traveling disturbance cannot be obtained from the temporal analysis, since it 

does not consider the spatial evolution of the nonlinearly interacting disturbances.

• If the initial amplitude of the traveling disturbance is far below a threshold ampli­

tude, say As/A t ~  0(100), a primary stability analysis is performed (Case 1).

• If the initial amplitude of the primary traveling disturbance is slightly below a 

threshold value, say As/A t ~  0(10), the secondary instability is present in the 

flow, but does not grow large enough to severely modify the flow structure and 

cause an eventual transition to turbulence (see Case 2).

• If the initial amplitude of the traveling disturbance is larger than the threshold 

amplitude, a  PSE analysis can capture typical features of the secondary instability 

(see Case 3).
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• In order to model the secondary instability further into transition, one might need 

to incorporate more modes in both the frequency and the spanwise domain, cluster 

the frequency modes closer and up to a  higher frequency than predicted by temporal 

theory. Also, the initial stationary amplitude might need to be increased in order 

to obtain a  higher saturation amplitude of the stationary disturbance.

• A temporal investigation of the secondary instability using a local Floquet Theory 

misses essential features of the development of the high-frequency disturbances, 

like spatial amplitude growth due to nonlinear interaction between the distur­

bances and the presence of a threshold amplitude for self-sustained growth of the 

secondary disturbances. However, it can serve as a tool for a prediction of an 

existing instability to high-frequency disturbance in the flow.

5.5 Summary

In the preceding chapter, the model problem of Swept Hiemenz flow was studied 

using the linear and nonlinear PSE, as well as Floquet Theory. A detailed qualitative 

description of the mechanisms leading to the onset of a secondary instability was given, 

and quantitative results of temporal and spatial investigations of the secondary instability 

were presented. In summary, the following findings need to be pointed out.

Primary Stability Analysis

• The most amplified stationary and traveling disturbances determined using linear 

theory were found for /3i=0.3 and F=1.0-10-4 .

• The nonlinear evolution of both stationary and traveling disturbances, as well as 

their interaction was investigated. Considered were disturbances close to the most 

amplified ones (/?i=0.4 and F=0.75-10-4 ).
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• A detailed description of the modifications of the mean flow by the nonlinearly 

developing disturbances was presented. In particular, the evolution of a purely 

stationary disturbance was investigated.

• For the presence of a purely stationary crossflow vortex, features that indicate the 

onset of a secondary instability in the flow were observed beyond Re=480 for rms- 

amplitudes of As=13% and As= ll%  for the ui- and wi-disturbance components, 

respectively.

Temporal Secondary Stability Analysis

•  Investigating a  mean flow that is modified by a purely stationary disturbance using 

Floquet Theory, several unstable eigenvalues were found in the region of nonlinear 

saturation of the stationary disturbances. The frequencies of these eigenvalues are 

an order-of-magnitude higher than the most unstable primary frequency.

• For the investigated station at Re=546, no multiple eigenvalues were detected. 

Thus, the dominant instability is of a convective type, rather than of the absolute 

type.

• Applying the local solution method and artificially decreasing the amplitude of the 

primary disturbances, the existence of a link between the unstable secondary eigen­

values and the eigenvalue spectrum of the undisturbed mean flow was examined. 

For the chosen Reynolds number of Re=546, a  connection could be established for 

one particular mode (Mode 1).

•  Decreasing the amplitude of Modes 2-4 showed that these eigenmodes join the 

continuous spectrum at different values of the imposed amplitude A.
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•  The unstable Mode 4 at Re=546 was traced back to its neutral point by gradually 

decreasing the Reynolds number. The onset of this secondary instability was found 

at Re ~  475 in a region where the primary stationary disturbances are about 

to saturate. The amplitudes of both the ui- and wi-disturbance components of 

the stationary crossflow vortex are A =  11%, which is in agreement with the 

observations from the primary stability analysis.

• From the observations of a link of unstable secondary eigenvalues to both the linear 

eigenvalue spectrum and the continuous spectrum, and from the onset of an inviscid 

high-frequency instability due to the highly inflectional character of all modified 

mean flow profiles in the region of a  saturated stationary crossflow vortex, the 

following can be concluded. There exist a t least three different mechanisms in the 

region of nonlinear saturation that cause the onset of a  high-frequency secondary 

instability that leads to transition. First, due to the action of the growing nonlinear 

disturbances, stable linear eigenmodes are modified such that they develop into 

unstable secondary eigenmodes. Second, from the highly inflectional character of 

the modified mean flow profiles originates an inviscid high-frequency instability. 

Third, due to a not yet investigated receptivity mechanism, disturbances from the 

continuous spectrum present in the outer flow enter the boundary layer and cause 

high-frequency disturbances. This corresponds to observations by Choudhari et 

al. in [39], where they allocate the receptivity mechanism to regions of a strong 

variation in the boundary layer thickness. However, it is understood that the 

second mechanism represents the dominant path to the transition in a crossflow 

instability dominated boundary layer.
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Spatial Secondary Stability Analysis

• Using the quantitative information about the wave number structure and the fre­

quency spectrum of the secondary instability obtained from the temporal theory, 

a spatial computation using the PSE was performed in order to capture secondary 

instability features of the flow in a more straightforward and physical way (see 

Case 3).

•  It was was found that for a careful selection of the initial parameters for the pri­

mary stationary and traveling disturbances, it is possible to model the secondary 

instability using the PSE. The captured secondary instability is attributed to the 

presence of both stationary and traveling disturbances, and to their nonlinear in­

teraction. Evidence for the existence of a self-sustained secondary instability could 

not be found.

• The secondary instability features captured for a specification of the initial station­

ary and traveling amplitudes as As=0.1% and At=0.014%, respectively, as well as 

for a primary frequency of F=2.0-10-4  and a fundamental spanwise wave number 

of /3i=0.4 are described as an explosive growth of the disturbance energy, a spike­

like amplitude growth of the high-frequency modes, and a strong secondary rise of 

the mean flow distortion in the region of the nonlinear saturation of the primary 

disturbances (see figure 5.38).

• In the region of the spike-like amplitude growth, a mechanism was distinguished 

that lifts lower speed fluid away from the wail and on top of the higher speed fluid. 

This mechanism is periodic in time according to the PSE formulation.
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• In agreement with a temporal DNS computation by Wintergerste and Kleiser [78] 

for the DLR Transition experiment, the existence of a  counter-clockwise rotating 

secondary vortex close to the wall was observed in the region where the high- 

frequency disturbances experience a  steep growth (see figure 5.41). Also in accor­

dance with the observations in [78], the existence of several weaker vortices in the 

region where the nonlinear interaction of the high-frequency disturbances with the 

stationary crossflow vortex dominates the flow was observed. The development of 

these vortices eventually leads to the breakdown of the crossflow vortex [78J.

• The observed modulation of the primary stationary wavelength by the travel­

ing high-frequency disturbances (see figures 5.39 and 5.42) agrees with the half­

wavelength periodicity observed theoretically by Fischer and Dallmann [67] and 

experimentally by Kohama et al. [27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

CHAPTER 6 

DLR TRANSITION EXPERIM ENT

6.1 Introduction

The variety of wind tunnel tests tha t is usually referred to as the DLR Transition 

experiment began in the mid-eighties a t the German aerodynamic test and research facil­

ity located in Gottingen. Under supervision of Bippes, Nitschke-Kowsky [13] conducted 

the first experiments on a swept flat plate on which a pressure gradient was imposed 

by a  suitable aerodynamic displacement body. A generic version of the experimental 

setup is shown in figure 6.1. Using endplates, infinite wing conditions were simulated

Displacement bodyEnd plate

End plate

Flat plate

Figure 6.1: Experimental setup for the DLR Transition experiment (from [2])

such that there was no variation of the mean flow in the spanwise direction. Due to 

the presence of a  displacement body, the obtained mean flow experiences a favorable 

pressure gradient over the entire chord length of the model, and hence, the transition in 

the boundary layer is dominated by a purely crossflow-type instability (see Chapter 1). 

A detailed discussion of the numerous experiments performed in different environments
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like in a  water towing tank, and under various freestream turbulence levels is given by 

Deyhle and Bippes in [2]. The conducted experiments were aimed at studying the recep­

tivity and transition mechanisms in a crossflow instability dominated boundary layer. 

In particular, they examined the receptivity of the disturbances to surface roughness, 

to sound waves, as well as to freestream turbulence, and established a  data base for a 

variety of initial conditions. For the reason of its very good documentation, the DLR 

experiment is of high value for the validation of computational methods and for further 

investigation of observed phenomena in the experiments using numerical approaches.

The turbulence level during the experiments considered in this chapter is spec­

ified as Tu=0.15% at a  speed of QJ0=19 m/s [2]. Even though this value represents a 

fairly benign environment, it is still high in comparison to the turbulence level present 

in the experiments performed by Saric et al. [4,29] for which a value of Tu=0.04% at a 

speed of QJo=20 m /s is given by Chapman et al. [31]. Thus, in the DLR experiment, 

traveling modes are present in the flow and need to be considered in the computations 

when compared with the experimental results. Also, the initial presence of traveling 

modes complicates the isolation of the physical mechanisms considerably.

In the present chapter, the focus will be on the linear and nonlinear evolution of 

stationary and traveling disturbances, as well as on the secondary instability originating 

from a purely stationary crossflow vortex. Two different experiments will be consid­

ered, the details of which are given in relevant sections. According to the experimental 

observations by Deyhle and Bippes [2], transition to turbulent flow occurred only for 

freestream velocities of Qoo >  27 m /s. The experiments which are investigated in this 

work were performed a t lower freestream velocities, and thus, the considered flows are 

transitional, but not turbulent.
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In particular, Section 6.2 will describe the mean flow computation, Section 6.3 

presents the linear and nonlinear results from the primary stability analysis, Section 

6.4 discusses the findings from a secondary stability analysis using Floquet Theory, and 

Section 6.5 summarizes this chapter.

6.2 Mean Flow Computation

The experiments were performed for a freestream velocity of QJ0=19 m /s, a 

sweep angle of <f>oo=45°, and a model chord length of c*=0.5m. In order to compensate for 

blockage effects and problems with the simulation of infinite swept wing conditions using 

end plates, Deyhle and Bippes [2] suggest the use of Q£o=20.5 m /s and 0oo=43.5° instead. 

The computations presented here are done for the latter parameters. Figure 6.2 shows 

the measured outer velocity distribution in the chordwise direction that was obtained 

by courtesy of the DLR. Noted is the existence of a stagnation point at the plate-fixed 

streamwise position of Xc/c=0.01.

15

10

5

0

•5
0.0 02 0.4 ,  0.6 0.8 1.0xjc

Figure 6.2: Measured outer velocity distribution in the plate-fixed coordinate system
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Previous stability analyses of the DLR experiment [2,3,18,71,78,94] modeled 

the measured mean flow with an approximate Falkner-Skan-Cooke (FSC)-type solution. 

Since this FSC-approximation will be referred to frequently in this chapter, a brief ex­

planation of the essential assumptions will be given first, following the formulation by 

Wagner [94]. Using the similarity solution to the boundary layer equations for the flow 

across a  wedge of an enclosed angle 0^ ■ ir to locally approximate the experimentally 

observed outer flow distribution along the chord wise coordinate x’ , one can write equa­

tion 6.1. The parameter 0^ is also referred to as Hartree-Parameter and can be expressed

U ;( x l ) ~ ( x t ) m , m = ^ - .  (6.1)

in terms of the pressure coefficient Cp as in equation 6.2. For a different experiment 

than considered in this chapter, the chordwise dependence of the measured pressure 

distribution can be approximated by a  straight line (see equation 6.2). Further using the

- i

0h =
X i - ^  

1 dx
, Cp(x!/c) =  0.941 -  0.845 • x ^ c  (6.2)

similarity coordinate d* =  (i/* • xf/U *)1/2, the boundary layer equations can be trans­

formed into a system of two ODE’s and be solved using a Runge-Kutta method. This 

approach yields a base flow that depends only on the local angle of the inviscid streamline 

© =  tan -1  [tan 0 o o /\/l — Cp)] and on the Hartree-Parameter 0^. The advantage of this 

method is that it allows for a systematic investigation of the influence of the parameters 

0h and 0  on the crossflow instability. The disadvantage is; however, that it neglects the 

existence of a stagnation point at the leading edge of the swept flat plate.

In the present work and in contrast to the above approximate approach, the 

mean flow profiles are computed directly from the experimental data. Starting at the 

stagnation point, a computational grid of 200x300 points in the x i- and the X3-directions,
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respectively, is constructed. Both the chordwise and the normal coordinate are uniformly 

spaced up to a normal extension of X3=15 which corresponds to about twice the maximum 

boundary layer thickness. For the nondimensionalization of the mean flow parameters, 

U* 0 and lo=(I/* • xt,o/U2,o) 1̂ 2 are usefi as the velocity and length-scales, respectively, 

where xj 0 is the streamwise coordinate, and U*0 is the freestream velocity in the xi- 

direction at the location where the disturbances are introduced.

In the experiment tha t will be considered first (experiment I), small roughness 

elements were glued to the surface at x{/c=0.08. These cylindrical elements with a height 

of 10 fim  and a diameter of 3.3 mm are spaced 12 mm apart in the spanwise direction 

in order to stimulate the most amplified disturbances. The influence of the roughness 

elements on the mean flow is negligible. Their impact on the downstream evolution of 

the disturbances, however, will be accounted for in the nonlinear PSE computations in 

Subsection 6.3.2.

Table 6.1: Freestream conditions for experiment I

Chord length c 0.5 m
Freestream velocity Q^, 20.5 m/s
Reynolds number Reoo = • xj/i/* 683,000
Sweep angle 0oo 43.5°
Kinematic viscosity v 15.007 10-8 m2/s

Figure 6.3 shows the most important mean flow properties for the freestream 

conditions listed in table 6 .1. From the distribution of the outer flow given in figure 6.3(c), 

the angle of the inviscid streamline 0 ,  the pressure distribution Cp, the Reynolds num­

ber Re=(Ue • x \ / u and the similarity parameter m=^V • are computed. The 

boundary layer thickness shown in figure 6.3(e) is defined at a location where the velocity 

component tangential to the inviscid streamline reaches a  value of 99.9% of the outer 

velocity U*e.
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Figure 6.3: Mean Flow properties from experiment and computation
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For the purpose of a  qualitative comparison of the present approach and the 

FSC-similarity assumption, figure 6.4 shows the similarity and Hartree-parameters ob­

tained from both methods. A direct comparison of the different results is not possible, 

since the linear approximation of the pressure distribution applies to a different exper­

iment. However, the qualitative differences axe especially seen in the region close to 

the stagnation point of the swept flat plate, and in the inflectional variation of (3h and 

m in the results of the present computation. This variation is due to the chordwise 

development of the measured pressure distribution that is not linear.

1.0

0.8

0.8

0.4

Present Computation 
DLfl-FSC- Approximation

o.o
0.4 . 0.6x,/c t.o0.0

Figure 6.4: Similarity parameter from the FSC-assumption and the present computation

Next, the mean flow profiles obtained from the present mean flow computation 

are shown at different chordwise positions in figures 6.5 and 6.6. Plotted are the velocity 

profiles tangential and perpendicular to the inviscid streamline, Ut and Uc, respectively. 

It is seen that the maximum of the crossflow component reaches values between 4% and 

8.5% of the freestream velocity. Also, the crossflow component never changes sign, and 

hence, the stability of the mean flow is dominated by a purely crossflow-type mechanism 

(see Chapter 1).
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Figure 6.5: Mean flow profiles tangential to the inviscid streamline
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Figure 6.6: Mean flow profiles perpendicular to the inviscid streamline
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Finally, figure 6.7 shows a comparison of the computed mean flow profiles from 

the present approach and from the Falkner-Skan-Cooke similarity assumption with the 

measured profiles. The agreement of the computed with the experimental data is good.

Experiment (time avg.) 
DIR FSC-Approximation 
Present Computation

Experiment (time avg.) 
DLR FSC-Approxxnation 
Present Computation

1.0 31.0

0.8

x /8
0.6

0.4 0.4

02

1.00.0 0.5 0.05 0.10

U/Qe UJQe

Figure 6.7: Mean flow profiles at xt/c=0.4 (experimental and FSC-data from [2])

6.3 Primary Stability Analysis

Since the outer velocity distribution shows a stagnation point at the leading 

edge of the swept flat plate, it is necessary to investigate the stability of the attach­

ment line first. The flow along the attachment line must be stable in order to ex­

clude the existence of a leading edge contamination that would cause an early transi­

tion due to this mechanism. Using the local length scale close to the stagnation point 

T =  y j£'*/(dU*/dx’)=0.2mm and the constant outer velocity component in the spanwise 

direction W^0=Q^0 • sin 000=14.11 m/s, the Reynolds number in the spanwise direction 

is determined as Re=W£o • l*/i/*=188, which is far below the numerically critical value 

of Re=583 [93]. Also, Deyhle and Bippes [2] show that the experimentally obtained
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maximal Reynolds number based on the displacement thickness for the present pressure 

gradient is well below the critical value for the existence of a  Tollmien-Schlichting insta­

bility mechanism in the flow. Hence, another two arguments are found which indicate 

that the obtained mean flow is indeed subject to a  purely crossflow-type instability.

Before the presentation of the results, the computational grid needs to be de­

scribed. A typical grid configuration for the primary stability analysis consists of 141 

points in the wall-normal direction, where the first 71 points are clustered within the 

boundary layer according to the grid-stretching equation 5.12. In the region of the outer 

flow, the remaining points are distributed uniformly up to a maximum normal extension 

of about 20 boundary layer thicknesses. For the marching in the streamwise direction, 

a step-size of Axi =0.005 is usually applied. Here the chordwise coordinate xi starts 

at the location of the stagnation point, and the specified step size corresponds to a 

discretization of the chordwise direction using 200 points.

6.3.1 Linear Analysis

For completeness, the wave angle P and the angle of the inviscid streamline 

© are defined in figure 6.8. The wave angle represents the angle between the wave

Leading edge

oo

j f  Inviscid Streamline

Wave vector

Figure 6.8: Definition of the wave angle and the angle of the inviscid streamline
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vector kreai and the inviscid streamline. As for Swept Hiemenz flow, two families of un­

stable disturbances are distinguished that propagate in opposite directions. Next, and 

following the procedure performed in the investigation of the Swept Hiemenz flow prob­

lem, a local stability analysis of both stationary and traveling disturbances is conducted 

first. Thereby, the neutral points and the locally most amplified steady and traveling 

disturbances are determined.

0.015

0.010

0.005

0.000
0.0 0.2 0.4 0.6 0.8

P ,
Figure 6.9: Stationary growth rates from a local analysis

In figure 6.9, the nondimensional growth rates a i for stationary disturbances 

are plotted versus the spanwise wave number P\ at different chordwise positions. Nondi- 

mensionalization is performed using the local length scale ljj =  • x’ 0/U* 0 at the

investigated chordwise stations. It can be seen that the unstable wave number range 

begins at Pi ~  0.08 for x i/c  > 0.20. This wave number is equivalent to a spanwise wave­

length of AX2 ~  4mm. As observed for the Swept Hiemenz flow problem, the local theory 

predicts an increase of the unstable spanwise wave number range in the downstream 

direction for the stationary disturbances. The neutral point for the stationary distur-
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bances is found at xi/c=0.067 for P\ =0.174 (AX2=10.5mm). The locally most amplified 

wave number is determined as P\ =0.295 a t xi/c=0.40, where the chordwise wave number 

is at=(-0.33509,-0.01401). Table 6.2 contains the locally most amplified spanwise wave 

numbers, as well as the corresponding growth rates, dimensional spanwise wavelengths

Table 6.2: Locally most amplified eigenpairs at different chordwise locations (f=0 Hz)

X i / c o i = max. ,a  t = m a x  [m il l ] d l,< rj= m a x . <j i = m a x .
0.07 0.00033 10.43 0.177 87.60°
0.10 0.00289 10.92 0.193 87.45°
0.20 0.00858 11.46 0.234 86.89°
0.30 0.01209 11.31 0.269 86.28°
0.40 0.01401 11.23 0.295 86.09°
0.50 0.01387 11.57 0.308 85.70°
0.60 0.01310 12.27 0.309 86.54°
0.70 0.01279 13.02 0.308 86.48°
0.80 0.01317 13.32 0.313 86.18°

and wave angles. It is observed that the wave angle of the most amplified stationary 

disturbances remains almost constant in the chordwise direction. The constant phase 

lines of the most unstable stationary disturbances are inclined at angles less than five 

degrees with respect to the inviscid streamline.

0.020

0.015

CT, u 0.010

0.005

0.0000.0 0.4 0.6 0.8 1.0
X,/C

Figure 6.10: Stationary growth rates and N-factors from a PSE computation
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Next, the most amplified spanwise wave number according to its spatial growth 

in the downstream direction is sought. Therefore, starting at xi/c=0.07, disturbances of 

a different spanwise wave number are introduced and their spatial evolution downstream 

computed. Figure 6.10 shows the growth rates and N-factors based on the ui-component 

obtained from a linear PSE computation. The maximal N-factors for the different wave­

lengths are given in table 6.3. The wavelengths in the range of AX2=11.5 - 12.0 mm are 

amplified the most, and for a further investigation of the nonlinear development of the 

disturbances, these wave numbers need to be considered.

Table 6.3: N-factors of the most amplified stationary disturbances at x i/c  =  0.935

AXJ [mm] 10.4 11.0 11.5 12.0 12.5
Nma* 9-773 9.962 9.984 9.980 9.936

Defining the nondimensional frequency F in equation 6.3, the locally most am­

plified traveling disturbance is determined next. In this computation, the procedure

2tt • u m • f*
(U ^)2

described in Subsection 5.3.1 is repeated. Starting from the most amplified spanwise 

wave number at f=0 Hz, the frequency is incremented and the new wave number j3\ 

computed such that the growth rate a\ is maximal for the specified frequency. The 

resulting growth rates and wave angles at different chordwise locations are plotted ver­

sus the dimensional frequency in figures 6.11 and 6.12. In table 6.4, the values of the 

frequency, the wave angle, the spanwise wavelength and wave number are given at the 

locations of the maximal growth rate. Also, the unstable frequency range becomes nar­

rower in the downstream direction in the DLR experiment, which is in contrast to the 

observations for Swept Hiemenz flow. Finally, it is noted that the locally most unsta­

ble wavelengths lie within the same range as the wavelengths of locally most unstable
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Figure 6.11: Wave angles and most amplified frequencies a t different streamwise locations

stationary disturbances. They cover the narrow band from AX2 ~10 mm to AX2 ~15 

mm, with an increasing trend in the downstream direction. The locally most unstable 

frequency range, on the other hand, covers the fairly wide range from f=125 Hz to f=242 

Hz. In agreement with the observations for the Swept Hiemenz flow problem, the locally 

most amplified frequency decreases in the chordwise direction. However, the develop­

ment of the unstable frequency range and the wave angle of the most amplified traveling 

disturbances is different. In contrast to the closer alignment of the locally most unstable 

traveling disturbances with the constant phase fines observed for the Swept Hiemenz
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e) x i/c  = 0.50 f) Xl/c = 0.60
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f !H*I f |H2|

g) xi/c = 0.70 h) x i/c = 0.80

Figure 6.12: Wave angles and most amplified frequencies a t different streamwise locations

flow problem, the wave angle of the most amplified disturbances in the DLR experiment 

remains almost constant in the chordwise direction at values of 'F 75°.

Table 6.4: Locally most amplified eigenpairs at different streamwise locations (f>0 Hz)

Xl/c a-i = max. f< ri= m a x [H z ] Pl,c7\ = m a x . AX2 [mm) dr

0.10 0.00685 242 0.20826 10.11 76.82°
0.20 0.01467 224 0.23356 11.49 73.70°
0.30 0.01825 200 0.25900 11.76 74.04°
0.40 0.02041 188 0.27512 12.04 74.40°
0.50 0.02027 172 0.27321 13.03 74.84°
0.60 0.01888 150 0.26681 14.23 75.79°
0.70 0.01773 132 0.26754 14.97 76.59°
0.80 0.01759 125 0.27767 15.04 76.86°
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The neutral point of the traveling disturbances is found between xi/c=0.050 

and xi/c=0.055 for a spanwise wavelength of AX2=8.43 mm and a frequency of f=268 Hz. 

In order to determine the most amplified traveling disturbance according to its spatial 

growth in the downstream direction, the behavior of the locally most unstable frequencies 

is investigated with a linear PSE computation. Therefore, disturbances of different 

frequencies and wavelengths are introduced separately at xi/c=0.05, and their evolution 

downstream is computed. The wavelengths for this analysis are chosen corresponding to 

the results for the most amplified stationary disturbances.

Table 6.5 shows the maximal N-factors based on the ui-component for distur­

bances of different wavelengths and frequencies. Since the growth of the stationary and 

traveling disturbances with the wave lengths of AX2=11.5 mm, 12.0 mm and 12.5 mm, as

Table 6.5: Maximal N-factors of the most unstable traveling disturbances

f=160 Hz f=170 Hz f=176 Hz f=178 Hz f=180 Hz f=190 Hz
AXJ=11.5 mm 
AXj = 12.0 mm 
AX2=12.5 mm

15.258
15.440
15.493

15.296
15.468
15.532

15.314
15.480
15.535

15.317
15.481
15.532

15.318
15.479
15.527

15.301
15.460
15.473

well as with frequencies in the range of f=176 - 180 Hz is very similar, the disturbances 

with AX2=12.0 mm and f= 178 Hz will be specified as the most amplified disturbances 

from now on. This choice is in agreement with the experimentally observed values (see 

Bertolotti [61]).

Comparing the linear evolution of the most amplified stationary and traveling 

disturbances in figure 6.13, it is seen that the traveling disturbances are much more 

unstable. The maximal N-factor for the stationary disturbances is N~10 compared to 

N~16 for the most unstable traveling disturbance. Further, the maximal growth rate is 

about 60% higher for the traveling disturbance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

0.025 20

0.020

0.015

1.U
0.010

0.005

0.0000.0 1.00.4 x,/c 0 6

to n

Figure 6.13: Growth rates and N-factors for the most unstable disturbances from a PSE 
computation

Next, a linear PSE computation is performed for the most amplified stationary 

wavelength of AX2=12.0 mm. Figure 6.14 shows a comparison of the computational 

results with measured data of Deyhle and Bippes [2]. The results are presented for 

the velocity components in the directions tangential and perpendicular to the inviscid 

streamline. Both the locally parallel and linear PSE computation capture the essential 

features of the measured disturbance profiles like the triple peak structure and the

Experiment 
Local Theory 
Linear PSE
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lUaJ/maxOUaJ)tang1'
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Figure 6.14: Stationary disturbance profiles from experiment and computation at
xi/c=0.60
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maximum location of the cross flow component very well. Despite the good qualitative 

agreement of the computed crossflow component with the experimental results, one notes 

that the magnitudes obtained from measurement and computation differ by a  factor of 

two. This was also reported by Deyhle and Bippes and is attributed to measurement 

uncertainties because of the existence of spanwise velocity gradients in the crossflow 

component of the mean flow [2]. Further, the local theory is predicting a slightly too 

high peak location of the tangential component, whereas the linear PSE matches the 

experimental data better.

Concluding the linear stability analysis, results from a local analysis are com­

pared with experimental data  by Deyhle et al. [18]. Their experiment (experiment II) 

was performed for the same experimental setup and outer flow distribution as described 

for experiment I, but for a different Reynolds number and without the use of roughness 

elements near the leading edge. The freestream conditions are listed in table 6.6.

Table 6.6: Freestream conditions for experiment II

Chord length c 0.5 m
Freestream velocity Q^, 20.5 m/s
Reynolds number Reoc 630,000
Sweep angle 0Oa 43.5°
Kinematic viscosity u 16.270-10-6 m2/s

This experiment was mainly motivated by the need of experimental data for 

a comparison of the disturbance propagation direction with the results of the linear 

theory. Therefore, they mounted a rotatable insert holding an array of 10 hotfilms at a 

streamwise location of xi/c=0.70 into the swept flat plate and measured the wave angle, 

the wavelength, the phase speed and group velocity, as well as the direction of the group 

velocity for disturbances of three different frequencies. For details of the experimental 

setup and the measurement techniques, the reader is referred to [18].
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The relevant mean flow parameters a t xi/c=0.7 are Re=527.1, ©=47.5° and 

U*=12.91 m/s for the Reynolds number in the chordwise direction, the angle of the 

inviscid streamline and the chordwise outer velocity component, respectively. In the 

performed local stability analysis, the wave angle, the wavelength and the phase speed 

are computed by solving the spatial eigenvalue problem. Considering the temporal eigen­

value problem, the group velocity is computed. The quantities are determined according 

to the definition in equations 6.4, 6.5 and 6.6, or as in figure 6.8 for the wave angle 

The generally complex vector of the group velocity is real at points of maximal amplifi­

cation [22] and consists of the components given in equation 6.5. In the following, the 

procedure to determine the group velocity will be described. First, an eigenpair ujq,

A _  27t _  2n 0  _  u  fc ^

~  m  ’ ph “

Cgr = { ( d ^ ~ )  ’( I t ) I (65)[  \ 1>real /  ^ 1 = c o n s t .  /  a  i real —co n s t. J

Cgr — |Cgr| —
du> \  2 /  du; \  2

k< 9ai,real /  -c o n s t . '  Ql.r« l= co n st.

o and qi,o is determined such that the growth rate is maximal. For this first step, the 

spatial eigenvalue problem is solved. Second, a lto is incremented and a new eigenpair u/i, 

(3i to and a j j  is found from the temporal approach. Third, /?i,o is incremented and another 

eigenpair u/2> Pi,i and ai,o is determined from the temporal eigenvalue problem. Now, the 

components of the real group velocity vector can be computed from the results of steps 

two and three, and the locus of the group velocity is formed according to equation 6.6.

In figure 6.15, the wave angle 'P relative to the angle of the inviscid streamline, 

the phase speed CPh and the group velocity Cg,- are plotted for both unstable disturbance 

families. The symbols denote different experimental runs and the numbers of the hotfilms
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(HF) the plotted data points were measured with. The results are presented for the most 

unstable wave at a  fixed frequency. Between the two modes with positive and negative 

Pi, the mode with a positive spanwise wave number has the largest growth rate. It is 

this family with a positive Pi tha t seems to match the experimental results reasonably 

well. The results obtained by the spatial eigenvalue problem show a  better agreement 

with the experiment than for the temporal group velocity results. However, Deyhle et 

al. [18] report experimental uncertainties in d e te rm in in g  the group velocity, which might 

also account for the deviations in these results.
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Figure 6.15: Wave angle, wavelength, phase speed and group velocity from a local anal­
ysis and the experiment at xi/c=0.70
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6 .3 .2  N onlinear A nalysis

In this subsection, experiment I will be reconsidered. Having determined the 

most amplified stationary and traveling disturbances from a detailed linear stability 

analysis in the previous subsection, the nonlinear interaction of these disturbances will 

be investigated next. Since the present PSE formulation does not include the receptivity 

to freestream turbulence or surface roughness, the initial amplitudes of the disturbances 

are matched with those given by Bertolotti [61] a t x i/c=0.1  in order to account for the 

presence of the roughness elements. Here, the amplitude is defined as A =  | u i | m a x / U o o -  

For a choice of ASiU =  0.04% at the location where the disturbances are introduced, 

the same value for the averaged disturbance component along the inviscid streamline 

u ta n g ,a v g  =  ( u t a n g .m a x  — u t a n g , m i n ) / 2  at xi/c=0.1, as shown by Bertolotti [61], is obtained. 

The subscripts max and min stand for the maximum and minimum value of an average 

in the spanwise direction. Figure 6.16 shows both the calculated linear and nonlinear

0.030
4a A»«0 04%. V O  004%
4bV 0.04% . V 0 .004% 
2 A,>0.04%. V<> 000%
ia(Rnaar) „ -  -  "

4a x

0.025

1a
0.020

/  traveling
0.015 ib

1.U
steady0.010

0.005

0.000

-0.005
0.0 0.60.4 x,/c

Figure 6.16: Linear and nonlinear growth rates and N-factors (AX2=12 mm, f=178 Hz)

growth rates, as well as the N-factors for the most amplified modes. The obtained values 

for the most amplified spanwise wavelength AX2=12 mm, the most amplified frequency
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f=178 Hz, and the maximum N-factor of N~16 for the traveling disturbance agree with 

previous work [61]. For the nonlinear computations in this section, eight modes in the 

spanwise direction and four modes for the frequency are included. Shown in figure 6.17 

are the measured and computed evolution of the disturbance amplitudes along the

10“

A  A  A

CM 10'

A  Experiment 
Linear
Steady (Bertolotti) 
Steady (Pres. Comp.) 

 Alu=0.04%,A,u=0.004%

10 '

10-
0.0 , 0.6 x,/c 1.00.4 0.8

Figure 6.17: Amplitude growth from experiment and computation

chord. As reported by Bertolotti [61] and previously in Section 5.3, it is seen from 

figure 6.17 that the purely stationary disturbance saturates at a higher amplitude level 

and a later streamwise location than in the experiment. Therefore, a small amplitude 

traveling disturbance with the most amplified frequency of f=178 Hz is included in the 

computations (At,u=0.004%). It is observed that the saturation onset is now predicted 

slightly late, but the experimental saturation amplitude is matched well. Also, a strong 

secondary growth of the stationary disturbance in the case where stationary and traveling 

disturbances interact is seen in curve 4b of figure 6.16. This secondary growth also shows 

in the amplitude evolution in figure 6.17 and seems to be evident in the experimental 

data as well.
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Next, the spatial development of the crossflow vortices is described. Figure 6.18 

shows the ui-disturbance component at x i/c=0.5 , 0.6, and 0.7 for both the purely sta-

5 
4 

. 3 
3 2 

1

0 10 v  20 30

Experimental result at xi/c=0.60 (dashed lines are negative, from [61])

xi/c=0.50 x,

xi/c=0.60 x,

xi/c=0.70 x,

+ +

( J f j  J f i  J r ..
9 » i« w id a  a  »

a) Steady Case b) Interaction Case at T=0

Figinre 6.18: Chordwise disturbance quantity ui from experiment and computation
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tionary and the interaction case, as well as the experimental data at xj/c=0.6 . It can be 

seen that the purely stationary vortices from the computation at x i/c= 0 .6  are further 

developed than the measured vortices. Both their extension in the normal direction and 

their degree of distortion are over-predicted. In the interaction case, however, the normal 

extension of the vortices has decreased to the experimental value, but the structure of 

the vortices is more distorted than shown in the experimental results. This difference 

may be attributed to the longer growth of the disturbances in the computation that 

results into an earlier roll-over of positive and negative disturbance components.

X.“3
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Figure 6.19: Shape functions of the individual modes at two streamwise locations
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In order to further describe the purely stationary vortex that will be investigated 

for its instability to three-dimensional high-frequency secondary disturbances in the next 

section of this chapter, the shape functions of the individual modes and the toted velocity 

component tangential to the stationary vortex are shown at different spanwise positions 

in figures 6.19 and 6.20, respectively. There, ui and wj sure the velocity components in 

the Galilean coordinate system, oriented perpendicular and tangential to the constant 

phase lines. For the two selected streamwise positions, it can be seen in figure 6.17 

th a t the stationary disturbances are about to saturate  at xi/c=0.6 where they reach

xi/c=0.60

4.0
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2.0
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0.0
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Figure 6.20: Total flow quantity tangential to the constant phase lines
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amplitude levels of ASiU ~  20%. At xi/c=0.7, however, they axe fully saturated at an 

amplitude level of ASjU ~  30%. As also observed for Swept Hiemenz Flow in Section 

5.3, figure 6.20 shows that highly inflectional profiles are present at both streamwise 

locations. Comparing the results presented in figure 6.19 with the shape functions for 

Swept Hiemenz Flow in figure 5.16, one notes the very similar shape and even magnitude 

of the individual shape functions in this region of nonlinear saturation of the stationary 

crossflow vortex.

Figure 6.21: Evolution of crossflow vortices (Stationary vortex)

Summarizing the previous plots and visualizing the spatial development of the 

flow in the region of nonlinear saturation, the development of the crossflow vortices for 

both the purely stationary and the interaction case is plotted in figures 6.21 and 6.22. 

Shown are the contours of the total velocity component in the chordwise direction in
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the region between 50% and 70% chord length, where the nonlinear interaction of the 

disturbance components dominates the physics of the flow. Clearly observed are the 

developing distortion of the boundary layer at X i/c=0.50, and the roll-up of the vortices 

in the positive spanwise direction in the purely stationary case.

Figure 6.22: Evolution of crossflow vortices (Interaction case at T=0)

Finally, the footprint of the crossflow instability on the surface of the swept flat 

plate is visualized in figure 6.23. Shown is the experimental result obtained using an 

oil flow-visualization technique in comparison with the numerical result. In figure 6.23, 

the plotted disturbance vorticity pattern at the wall caused by a stationary crossflow 

vortex is obtained using equation 5.18. Even though there is some fine detail missing in 

the computational results for the later chordwise positions, the experimentally observed 

spacing and alignment of the vortex streaks are captured very well.
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Figure 6.23: Oil flow-visualization of the crossflow instability in the DLR Transition 
experiment (from [3]) and the computed wall vorticity pattern
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6.4 Secondary Stability Analysis

This section presents the results from a secondary instability analysis of a basic 

flow tha t is modified by the existence of a stationary crossflow vortex. In particular, the 

purely stationary case of the experiment I studied in the previous section will be recon­

sidered. Temporal analyses using Floquet Theory are performed at the two chordwise 

locations x i/c=0.6  and xi/c=0.7. At xi/c=0.6, the averaged stationary disturbance 

component tangential to the inviscid streamline u tang,avg with an initial amplitude of 

ASiU ~  0.1% at x i/c=0.1 has reached an amplitude level of ASjU =  20% and is almost 

saturated. Even though some moderate secondary growth of the purely stationary dis­

turbance is observed beyond x i/c= 0 .7  (see curve 2 in figure 6.16), utang,avg is considered 

fully saturated a t x i/c=0.7  at am amplitude level of ASjU =  25%.

Special attention will be directed towards the existence of multiple eigenvalues 

in the considered region of nonlinear saturation. Deyhle and Bippes [2] report from 

their experiments in a water towing tank an almost explosive growth of unsteady modes 

that immediately leads to transition. In [2], they compare this explosive growth to a 

bursting of individual stationary vortices. Additionally, they mention the appearance of 

high-frequency disturbances riding on the primary disturbances from the measurements 

in the experiment considered here (experiment I). The measured frequency of these 

traveling disturbances is specified as f=2100 Hz.

The computational grid for these computations is similar to the grid used in 

the Swept Hiemenz flow analysis. The boundary conditions are enforced at about seven 

boundary layer thicknesses, and a total number of 81 points is distributed in the do­

main according to grid stretching equation 5.12. Table 6.7 shows the results of a grid 

refinement study at xi/c=0.6. The results for the temporal wave number <73 obtained
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for different iteration options vary only in the fourth decimal place, and thus, the grid 

resolution is considered satisfactory.

Table 6.7: Grid study at x i/c=0.6 , O3=-0.201, /%=0.35, M ode=l

A-Grid Points Equation ^3 ,max Mode 03
8 71 continuity 44 -1 (0.018000,-0.919902)
6 71 continuity 42 -1 (0.018152,-0.919944)
10 71 continuity 46 -1 (0.018299,-0.919952)
8 81 continuity 45 -3 (0.018195,-0.919669)
6 81 continuity 43 -3 (0.018187,-0.919800)
8 81 continuity 45 -1 (0.018195,-0.919669)
6 81 continuity 43 -1 (0.018187,-0.919800)

Pursuing the sequence of global and local eigenvalue computations as described 

in Section 4.4, the chordwise location of xi/c=0.6  is examined first. It turns out that 

there exist more unstable eigenvalues at this location than found for Swept Hiemenz flow. 

The unstable eigenvalues appear densely clustered in the wave number range between 

/33= 0.1 and #3 =0.4 corresponding to the wide frequency range of f=500 Hz up to f=4000 

Hz. The results for the secondary growth rates and frequencies of three selected modes 

are plotted in figures 6.24 and 6.25. The development of the eigenfunctions with a 

varying wave number tangential to the constant phase lines /% was followed closely in 

order to assure that the plotted eigenvalues indeed belong to the same family of unstable 

secondary eigenmodes. In contrast to the Swept Hiemenz Flow problem, where neither 

multiple eigenvalues, nor crossing growth rate curves could be found at the investigated 

locations, it can be seen in figure 6.24 that the given growth rate curves of the different 

modes cross. This indicates that the absolutely unstable modes found by Koch [68] for 

Blasius boundary layer flow might be also present in this three-dimensional boundary 

layer flow. Table 6.8 lists the secondary growth rates, the wave numbers /%, the wave 

angles of the secondary disturbances according to the definition in Section 4.4, as well 

as the dimensional frequencies at the points of maximal amplification for the considered
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modes. Here, <23 denotes the wave number in the xi-direction of the Galilean coordinate 

system (see Chapter 4.4). It is observed that the wave angles of the most amplified 

secondary disturbances agree with the results for Swept Hiemenz flow.
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Figure 6.25: Secondary frequencies a t x i/c=0.6
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Table 6.8: Parameters for the most unstable modes at xi/c=0.6, (a3=-0.201)

^3 ,max 03,tra=max 'l, 2,<73=max f<rj=max [Hz]
Mode 1 0.018001 0.35 -29.9° 3117
Mode 2 0.032616 0-35 -29.9° 2933
Mode 3 0.001906 0.19 -46.6° 1451

Further, figure 6.26 shows the to tal shape functions of the most unstable sec­

ondary modes a t xi/c=0.6. Plotted are the normalized shape functions of the distur­

bance velocity components for the most amplified wave numbers /%. Comparing the 

shape functions of the unstable modes in the Swept Hiemenz flow problem at Re=546 

and /?3=0.8 (see figure 5.25) with the shape functions shown in figure 6.26, the following 

is noted. First, the shape functions at Re=546 are fuller than the profiles obtained here.
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Figure 6.26: Total shape functions of the most unstable modes at xi/c=0.6 , (a3=-0.201, 
normal axis in millimeters)
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This is attributed to the higher amplitude level of the stationary disturbances in the 

Swept Hiemenz flow problem (As,u=24% at Re=546; ASjU=20% at xi/c=0.6). Second, 

all the shape functions at x i/c = 0.6 show a strong m ax im u m  at a  height of X3 ~  1 mm, 

which is equivalent to about 30% of the boundary layer thickness at this location and 

can be interpreted as a formation of shear layers near X3 ~  1 mm.

From figure 6.25 and as observed for Swept Hiemenz flow, it appears tha t 

a  linear frequency dependence on the wavenumber can serve as a first guess for a 

distinction of the different modes. For closely clustered eigensolutions, however, only an 

additional comparison of the eigenfunctions can be a conclusive test. It is also noted 

from figure 6.25 that the frequency curves of Modes 1 and 3 cross at the same wave 

number (J3 =  0.15 as the corresponding growth rate curves in figure 6.24 (see Point 

1.). Hence, the existence of a multiple eigenvalue at this wave number needs further 

investigation. The temporal wave number at the location where Modes 1 and 3 cross 

is ct3=(0.00146,-0.33792). This corresponds to a dimensional frequency of f=1145 Hz, 

which is about six times the most amplified frequency. In contrast, the dimensioned 

frequencies at the ^-locations where Modes 1 and 2 cross at (3$ =  0.5 are f=4561 Hz 

and f=4291 Hz for Mode 1 and 2, respectively. Even though the growth rates are similar 

at this wave number, the difference in the frequency is considered too large to suspect a 

multiple root there.

In figures 6.27 - 6.29, the eigenfunctions of the two crossing Modes 1 and 3 of 

figure 6.24 are plotted at three wave numbers at and near the point of their crossover. It 

is seen that the shape functions of all disturbance quantities are very similar close to the 

crossover location at /33=0.15. Further, the development of the shape functions of both 

modes with an increasing wave number tangential to the constant phase lines indicates
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Figure 6.27: Total shape functions near the multiple eigenvalue at xi/c=0.6, (a3=-0 .201, 
/?3=0.125, normal axis in millimeters)
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Figure 6.28: Total shape functions of the multiple eigenvalue at xi/c=0.6, (a3=-0.201, 
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that the two modes indeed coincide. Hence, the existence of a multiple eigenvalue at 

xi/c=0.6 can be concluded. The experimentally observed time-dependent occurrences of 

an explosive growth of traveling disturbances might be related to this result. Obviously, 

the current investigation of a crossflow vortex that originates from a purely station­

ary disturbances does not fully capture the quantitative features of the experimentally 

obtained mean flow, since it over-predicts the saturation amplitude (see Section 6.3). 

However, the same qualitative features as in the previously computed interaction case 

that matched the experiment well, like a  strong spanwise and streamwise distortion of the 

boundary layer in the studied saturation region, are also present in the purely stationary 

case.

In order to also examine other points in the flow for the existence of multiple 

eigenvalues, the chordwise location x j/c= 0 .7  will be considered next. Investigating the
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Figure 6.30: Secondary growth rates at x i/c=0.7

same frequency range as at xi/c=0.6, several unstable modes are determined. Out of 

these, three modes will be examined more closely. Figures 6.30 and 6.31 show the growth
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rates and frequencies of those modes. It can be seen that the unstable wave number 

range increased significantly in comparison to the previously investigated location. On 

the other hand, the obtained growth rates at x i/c= 0 .7  are of the same magnitude as

30
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Figure 6.31: Secondary frequencies at xi/c=0.7

the growth rates at x i/c= 0 .6 . This is in contrast to the observed linear growth of the 

secondary disturbances in the Swept Hiemenz flow problem. However, since there are 

several unstable eigenmodes present at this chordwise location, the modes considered at

Table 6.9: Parameters for the most unstable modes at xi/c=0.7, (a3=-0.200)

°3,max /̂ 3,<T3=max ^2,ff3=max f<7,3=max [Hz]
Mode 1 0.029947 0.250 -38.7° 2250
Mode 2 0.021711 0.450 -24.0° 3865
Mode 3 0.018223 0.325 -48.0° 2856

xi/c=0.6 and at x i/c= 0 .7  might not belong to the same families. Table 6.9 shows the 

maximal secondary growth rates, the wave numbers /%, the wave angles of the secondary
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disturbances and the dimensional frequencies for the considered modes. As observed at 

xi/c=0.6, it is seen tha t the wave angles of the most amplified secondary disturbances 

agree with the results for Swept Hiemenz flow. Moreover, the frequency of f=2250 Hz 

for the most unstable wave number /% of Mode 1 is close to the measured frequency of 

the secondary instability in the experiment (f=2100 Hz) [2].

Next, the total shape functions of the most unstable wave numbers tangential to 

the constant phase lines at xi/c=0.7 are shown in figure 6.32. Plotted are the normalized 

shape functions of the disturbance velocity components. Noted is a strong qualitative

Mode 1 Mode 1 Mode 1

Mode 2 Mode 2 Mode 2

Mode 3 Mode 3 Mode 3

|u3|/|w 3| max |w3|/ |w 3|max |v3|/|w 3|max
Figure 6.32: Total shape functions of the most unstable modes at xi/c=0.7 , (a3=-0.200, 
normal axis in millimeters)

difference between the shape functions at x i/c= 0 .6  and at xi/c=0.7 . First of all, the 

shapes are much fuller at xj/c=0.7, which might be due to the higher amplitude level of 

the stationary disturbance at this location. Second, the shapes are much more oscillatory
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at x i/c=0.7. In order to ensure that the obtained results are not due to numerical 

oscillations, various runs for different grids were performed. It turns out that the plotted 

shape functions indeed represent grid-independent solutions. Third, the disturbance 

component of the normal velocity (V3) is now of the same order as the the disturbance 

velocity component perpendicular to the stationary crossflow vortex (U 3 ) .  A discussion 

of this qualitative difference between the results for similar modified mean flows for the 

Swept Hiemenz flow problem and the present investigation is given in the summary of 

this chapter in Section 6.5.

Mode Mode

Mode

IVjI/lW,

Mode

Figure 6.33: Shapes of the secondary instability eigenfunctions for Mode 1 at x i/c=0.7  
(03 =  0.25, normal axis in millimeters)

In order to complete the portrait of the most unstable secondary disturbance 

found at x i/c=0.7, figure 6.33 shows the shape functions of the individual Fourier com-
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ponents for Mode 1 at 03=0.25. It is seen tha t the dominant (-2) and (-3) Fourier modes 

of the wall-parallel disturbance components U3 and W3 reach their maximal values at 

X3 — 3 mm, which corresponds to the boundary layer thickness at this chordwise lo­

cation. Further, particularly the ^ -d is tu rb an ce  component consists of very oscillatory 

Fourier components.

Since the growth rate curves of the investigated modes at xi/c=0.7 show similar 

crossovers as observed at xi/c=0.6 (compare figures 6.24 and 6.30), the existence of 

multiple eigenvalues at the chordwise location of x i/c=0.7  will be investigated next. As 

seen from figure 6.30, the growth rate curves of Modes 1 and 2 cross at 03=0.125 and 

03=0.375, and the curves of Modes 2 and 3 in the range of 0 j ~  0.3. Further, the growth 

rates of Modes 1 and 3 are similar at 0 j >  0.5.

However, since the frequency curves are close to each other only for 03 <  0.4 (see 

figure 6.31), the investigation will be restricted to the above three crossover locations. 

Table 6.10 shows the values of the temporal wave number a3 for the relevant modes and 

wave numbers. The corresponding total shape functions of the disturbance components 

tangential and perpendicular to the constant phase lines are plotted in figure 6.34.

Table 6.10: Temporal wave numbers 03 at crossover points (xi/c=0.7)

03 0.125 0.275 0.375
Mode 1 
Mode 2 
Mode 3

(0.005516,-0.303645)
(0.005322,-0.292697) (0.0166478,-0.688554)

(0.0156597,-0.708947)

(0.020089,-1.014967)
(0.019954,-0.944205)

From figure 6.34, it can be seen tha t the eigenfunctions of the different modes at 

the crossover points are similar, but there are still qualitative differences. It is concluded 

that in contrast to the previously investigated chordwise location, no multiple eigenvalues 

were found a t xi/c=0.70.
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Figure 6.34: Total shape functions at crossover points of the growth rate curves
(xi/c=0.7, normal axis in millimeters)
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Concluding the secondary instability analysis of the DLR Transition experi­

ment, the structure of the secondary instability at xi/c=0.60 will be examined. Con­

sidering the mode with the highest frequency at tha t chordwise location (Mode 1), fig­

ure 6.35 shows contours of the amplitude of the secondary eigenfunction tangential to 

the constant phase lines |w3| for the most amplified wave number /%=0.35, and iso-lines 

of the modified mean flow component in that direction in the Galilean coordinate sys­

tem. The temporal analysis of the isolated frequency f=3117 Hz of Mode 1 predicts a

4.0

3.0

X3 2.0

1.0

0.0
-15 -10 -  -5 0

X 1

Figure 6.35: Contours of |w3| and W2 at x i/c=0.6  (axis in mm)

structure that is completely detached from the wall. The secondary instability rather 

rides on top of the primary crossflow vortex having two maxima at X3 ~  1.8 and X3 ~  

2.2. This observation is in full agreement with the results of the temporal secondary 

instability analysis for Swept Hiemenz flow (see figure 5.33). Taking a cut in the hori­

zontal (xi,X2)-plane at the normal location of X 3 = 2 . 2 ,  the secondary instability structure 

is viewed from the top in figure 6.36. Here, the point (xi=0, X2= 0 ) coincides with the
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chordwise location of xi/c=0.6. Plotted for two periods in the xi- and the ^-directions 

are contours of the real part of the secondary disturbance component W3. Further, the 

wave angle $2  =  tan -1  (0 3 //%) of the secondary structure is shown. The secondary 

structure is of an elongated shape that aligns with the angle of secondary disturbance 

waves.

7 

6 

5 

4

X2
3

2

1

0 
-1

Figure 6.36: Contours of w3 at x i/c=0.6  and X 3 = 2 .2 m m  ( a - 3 = - 0 .2 0 1 ,  / ? 3 = 0 .3 5 )

Superimposing the secondary structure on a modified mean flow component 

W2 that is assumed to be constant in the xi-direction, the total flow component tan­

gential to the constant phase lines W 3  =  W 2  -F W3  is obtained. Shown in figure 6.37 

is a top view of W 3  contours at the same normal location of X3= 2.2 as in figure 6.36, 

where the secondary structure is assigned an amplitude of 1%. The dark patches cor­

respond to lower-speed fluid traveling on the crest of the primary crossflow vortices in
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the X2-direction. Depending on their assigned amplitude, these secondary structures can 

severely modify the ordered primary structure of the stationary crossflow vortex.

-15 -10 — -5 o
X1

Figure 6.37: Contours of W3 at x i/c=0.6  and X3=2.2mm

From the observations in figures 6.35 - 6.36, it seems that the structure of a 

single-frequency secondary instability is well defined and might be detected in experi­

ments, if care is taken as to where the measurements are performed in the boundary 

layer. However, the results from the secondary instability investigation of the Swept 

Hiemenz flow problem using the PSE indicate that the secondary instability structures 

might be more intricate in the presence of more than one unstable high frequency (see 

figure 5.39).

6.5 Summary

In the present chapter, two different experiments out of the test series known 

as the DLR Transition experiment were investigated using the linear and nonlinear PSE,
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as well as Floquet Theory. Computing the mean flow directly from the measured outer 

velocity distribution, the results from both the performed detailed linear stability anal­

ysis, as well as from the nonlinear computations are found in good agreement with the 

experiment. In summary, the following points need to be emphasized.

Primary Stability Analysis

• The most unstable disturbances found from a linear PSE computation have a 

wavelength between AX2=11.5 mm and AX2=12.5 mm and are in the frequency range 

of f=176 - 180 Hz. These values are in excellent agreement with the experimental 

results.

•  In contrast to the Swept Hiemenz flow problem, the wave angle of the most am­

plified disturbances found from a local analysis remains almost constant for both 

the stationary and the traveling disturbances at '&=86° and '&=75°, respectively.

• Also in contrast to the results for Swept Hiemenz flow, the range of the unstable 

frequencies becomes narrower in the downstream direction. Close to the neutral 

point of the traveling disturbances, the unstable range covers the frequencies from 

f=0 Hz up to f~500 Hz. At the chordwise location of X[/c=0.80, it has shrunk to 

a range from f=0 Hz to f~330 Hz.

• A good agreement of the disturbance profiles obtained from the linear PSE analysis 

with the measured disturbance profiles was found at xi/c=0.60.

•  The results from a local spatial stability analysis at xi/c=0.70 compare well to the 

experimental data for the wave angle, the wavelength and the phase speed of the 

disturbances by Deyhle et al. [18]. The discrepancies in the temporal stability re­

sults for the group velocities might be attributed to experimental uncertainties [18].
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•  As in the Swept Hiemenz flow investigation, including a small amplitude traveling 

disturbance in the nonlinear PSE computation and allowing for the nonlinear inter­

action of stationary and traveling disturbances decreases the saturation amplitude 

in comparison with a purely stationary case. The results of this computation are 

in good agreement with the experimental results for the disturbance amplitudes.

Temporal Secondary Stability Analysis

The results from the temporal secondary stability analysis in the region of the 

nonlinear saturation of a purely stationary disturbance performed for Swept Hiemenz 

flow and the DLR Transition experiment show both similarities and qualitative differ­

ences. Summarizing the results of the Floquet analysis for DLR experiment first, a 

comparison of the two considered problems will be given at the end of this section.

• At the chordwise location of xi/c=0.60 in the DLR experiment (experiment I), 

several unstable eigenvalues were found. Out of these, three mode families were 

investigated closer.

• The maximal growth rate of the examined secondary disturbances was determined 

as CT3,real= 0.0326 for a wave number tangential to the stationary vortex of /?3=0.35 

and a  frequency of f=2933 Hz. This secondary growth rate compares to a max­

imal primary growth rate of cri =0.0225 for the traveling disturbance in the case 

where stationary and traveling disturbances interact nonlinearly (see curve 4a in 

figure 6.16).

• The existence of a multiple eigenvalue at xi/c=0.60 was confirmed. This obser­

vation might explain the experimentally observed phenomena of a time-dependent 

explosive growth of the traveling modes [2].
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• At the chordwise location of xi/c=0.70 and for the same frequency range as at 

xi/c=0.60, several unstable eigenvalues were determined. Again, three out of these 

modes were investigated in detail.

•  The shape functions of the most unstable disturbances at xi/c=0.70 are quali­

tatively different from the results at xi/c=0.60. This difference is especially at­

tributed to the following observation. The experimentally measured saturation 

amplitude is largely over-predicted by a purely stationary computation. There­

fore, the results of the Floquet analysis at xi/c=0.70 are assumed to over-predict 

the secondary instability. This over-prediction also shows in the obtained shape 

functions at this location which represent almost turbulent features, as the magni­

tudes of the wall-normal and wall-parallel disturbance velocity components are of 

the same order, and the profiles are very oscillatory. In contrast, the experimental 

observations [2] show that no transition to turbulence was detected for the here 

considered freestream velocity.

• At both investigated chordwise locations, the wave angles of the most unstable 

secondary disturbances closely correspond to the results from the investigation of 

the Swept Hiemenz flow. The most amplified secondary structures are inclined at 

angles between '$2=-24° and 'P2=-48° with respect to the direction of the constant 

phase lines.

The differences in the results of the temporal secondary instability analysis for 

the Swept Hiemenz flow problem and the DLR Transition experiment are found in the 

existence of an absolute instability in the DLR experiment only, and in the qualita­

tively different shape functions of the secondary eigenmodes at Re=546 and xi/c=0.70. 

Discussing these differences, a comparison of the two mean flows is provided first. A char­
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acteristic parameter for the strength of the crossflow instability mechanism is given by 

the Crossflow-Reynolds number defined in equation 6.7. There, |U*|max is the maximum

R eCf =  |U ^ |m.x - < W « '*  (6-7)

of the crossflow mean flow component, and 5q.i is the normal coordinate where the cross- 

flow velocity has dropped to 10% of its maximal value. From figure 6.38 can be seen 

that the Crossflow-Reynolds numbers obtained in the DLR experiment are lower than 

for the Swept Hiemenz flow problem a t the streamwise locations of interest. A value of 

Recf=151 at xi/c=0.70 for the DLR experiment compares to Recf=175 at Re=550 for 

the Swept Hiemenz flow. Hence, it can be stated that the crossflow instability mecha­

nism present in the Swept Hiemenz flow problem is slightly stronger than in the DLR 

experiment.

Re,

Re,

Re

2S0

200

ISO

too Re,

SO

0 as to04 x,/c

a) Swept Hiemenz flow b) DLR Transition experiment

Figure 6.38: Crossflow-Reynolds numbers of the basic flow

Second, other differences between the two considered cases are found in the 

wave number perpendicular to the constant phase lines 0 :3 . For the Swept Hiemenz flow 

problem, the wave number Q3 at Re=546 takes a value of a3=-0.508, whereas its value 

at xi/c=0.70 is Q3=-0.200 in the DLR experiment. However, the inclination of the most
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amplified secondary disturbances with respect to the constant phase lines is of the same 

order for both problems (see values of ^2  above).

a) xi/c=0.60

4 0

20

0.0 “ 3 
0.00 0.10
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0 .0500000

b) Xl/c=0.70

3.0
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000 0.10

2 0  -

0.02S 0.050

c) Re=546

3.0 -

00
0.100.00 o.oso00250.000

Figure 6.39: Normalized total shape functions from the DLR experiment and Swept 
Hiemenz flow
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Third, the eigenfunctions for the two problems are compared at the chord- 

wise locations of interest. Sampling 100 disturbance profiles over one wavelength in 

the xi-direction, an average of the absolute value of the total disturbance quantities in 

the Galilean coordinate system obtained from a nonlinear PSE computation is taken. 

The figures 6.39 (a-c) show the results for the disturbance components tangential and 

perpendicular to the stationary vortex, wx and fix, respectively. Despite the different 

magnitudes of the disturbance profiles at xx/c=0.60 and xi/c=0.70, no qualitative dif­

ference between the plotted profiles is noted. Particularly similar are the disturbance 

profiles a t xx/c=0.70 and Re=546, which are the two locations where the differences in 

the results for the shape functions were found.

Thus, no strong statem ent about the origin of the observed differences between 

the temporal secondary instability results at Re=546 for the Swept Hiemenz flow prob­

lem and at xi/c=0.70 for the DLR Transition experiment can be made. Some hints about 

their origin are seen in the different Crossflow-Reynolds numbers for the two problems 

and the much stronger curvature of the inviscid streamline present in the DLR experi­

ment. The fact that there were no multiple eigenvalues found at the studied locations of 

the Swept Hiemenz flow problem might be explained in a recent linear stability analysis 

by Lingwood [56]. There, Lingwood determined a critical Reynolds number for the de­

velopment of an absolute chordwise instability as Re=545, which is above the specified 

value in the present work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



204

CHAPTER 7 

IMPLICIT SOLUTION OF THE NONLINEAR PSE

7.1 Introduction

The explicit solution method as presented in Chapter 4 has been shown to be 

very accurate and efficient in flow regions where the nonlinearity is not yet strongly 

developed, and hence, the gradients in the flow field are still moderate. In these regions, 

it typically takes three to five iterations on the streamwise wave number, and two to four 

iterations on the nonlinear terms per station to obtain a  converged solution.

However, once the disturbances have grown to significant amplitude levels and 

nonlinearity becomes a dominant feature of the flow, the number of iterations increases 

drastically and the solution eventually ceases to converge. In fact, only an implemented 

successive under-relaxation (SUR) for the iteration on the nonlinear terms allows for 

convergence in the later region of nonlinear disturbance growth. There, and for typical 

SUR-parameters of 0.25 and 0.125, it takes up to 200 iterations on the nonlinear terms 

until the solution converges at a particular streamwise location.

There are two possible reasons for the convergence problems of the explicit 

solution method in the highly nonlinear region. First, the iteration on the streamwise 

wave number might not converge due to very rapid changes in both the wave number 

phase and its amplitude part. This implies that the PSE assumption of a small amplitude 

variation in the streamwise direction is violated, and hence, the convergence problems 

are due to the physics of the flow. Second, the iteration on the nonlinear terms might 

not converge. In the highly nonlinear region, the different disturbances do not grow
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linearly on their own, but their growth is more dominantly influenced by their nonlinear 

interaction. The lagging between the iteration on the specified primary disturbance 

and the subsequent update of all other nonlinear terms applied in the explicit iteration 

method (see Chapter 4) disrupts that nonlinear interaction and is the reason for the 

convergence problems. In that case, an implicit solution method that computes all the 

nonlinear terms simultaneously would improve the convergence of the nonlinear iteration.

The present chapter presents an implicit approach to the solution of the PSE. 

The details of this recently developed and very robust solution method are explained in 

Section 7.2. An application to Swept Hiemenz flow and a comparison of the efficiency 

and robustness of the two solution methods will be presented in Section 7.3.

7.2 Solution Method

The solution method was developed by Balakumar in 1997 and is documented 

in Referecne [95]. For simplicity, and since the investigation of the passive laminar flow 

control using leading edge roughness assumes that the stationary modes are dominating 

the traveling disturbances, the derivations in this section will be restricted to the steady 

case.

As a starting point, consider the nonlinear PSE for each Fourier mode in matrix 

form as derived in Chapter 4 (equation 7.1). However, in contrast to the explicit method

A m - ^ 2- +  + c mqlm =  D m^  + Em| ^ -  + ^  (7.1)
O X  I <7X3 OX[ O X 1 O X 3  A m

where the vector of the nonlinear terms Sm is obtained from a computed FFT, it is 

here determined by performing a summation of all the Fourier modes and collecting 

only the contributions to the mth-mode. Expressing the xi-component of vector S as in 

equation 7.2, the terms contributing to the m th-Fourier mode are written in equation 7.3.
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S i = ^  E  uimie'^Qlmidxi j  • ^ Y  ^ ”3 el^Ql,n2dxt | +

mi J \ mk -u  )

E  v lmiei -Ta i” . dx^  - ( Y  ^ ^ e^ a ' m2dxi>) ; (7-2)
^mi=-M J \m 2= —M 3 /

S x =  V  f u X dft'm- mi + W i  ^ lm- ni + V 1  ^ +Q lmI d*i
V 1 1 3 * 2  ‘ 3 x 3 J

(7.3)

Writing the other components of S similarly, the nonlinear system (equation 7.1) 

is solved using the two-point fourth-order-accurate compact scheme. In order to utilize 

the Euler-McLaurin formula (equation 4.19), the system of nonlinear PDE’s needs to be 

rewritten as a system of linear ODE’s. This is accomplished by linearizing the system 

over a one-term expansion, as explained in the following.

Considering a new vector of unknowns qm as in equation 7.4, the nonlinear 

system (equation 7.1) can be rewritten for each normal location k as in equation 7.5. 

In the present stationary case, q  and F  are (6x(2-M +l)} column vectors. From equa­

tion 7.5, the second derivative with respect to the wall-normal coordinate is written in 

equation 7.6. Substituting equations 7.5 and 7.6 into the Euler-McLaurin formula (equa­

tion 4.19), one obtains equation 7.7 for the Fourier mode m at each normal location.

qm =  {uim, ^ L,W3tn, ^ = - , V 3m,p 3m}T ; m =  —M ,• - • ,M (7.4)

q 'm  =  F m(qm,x 3) (7.5)

&  = ^  + ; f  =  ( f Im .-  - , f m}T (7.6)
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Next, this nonlinear system of ODE’s is transformed into a  system of linear ODE’s using 

the one-term expansion of the vector qm in equation 7.8. Substituting equation 7.8 into

hk
clm k ~  Qmit-x =  y ^ m i ,  +  F m|t_ l ) —

( 7 ' 7 )12

qm =  qom +  Aqm (7.8)

equation 7.7 and linearizing in A qm, one can write equation 7.9. Finally, collecting 

terms of Aqm, the obtained linear system (equation 7.9) is rewritten in the familiar ma-

qomk +  Aqmk -  q0mk_l -  Aqmfc.x =

T  ( F° -  +  F°—  +  ( ^ ) kA9k+ ( ^ L * * - > )  -

| { F L k +  ( ? | - ) k A9k + ( ^ ) k Pok +

k

( ^ ) k- 1 ( ^ ) k- , A—  ( ^ )  P- A^ >
(7.9)

k—1

trix form in equation 7.10 for each Fourier mode m at the normal location k. Combining 

the equations for all the Fourier modes at a normal location k into a single matrix equa-

Amit ■ A qm|t_l -+• B mk • A qmic — D mk (7.10)

tion, considering all points in the wall-normal direction, incorporating the homogeneous 

boundary conditions at the wall and in the freestream, as well as shifting the individual 

matrices according to the procedure explained in Chapter 4, a block-tridiagonal system is 

obtained (equation 7.11). There, the dimensions of the complex coefficient matrices A A,
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B B  and C C , and of the complex right-hand side vector D D  are 6-(2-M+l)x6*(2-M+l) 

and 6-(2-M +l)xl, respectively, considering the six elements of the vector of unknowns

AAk • Aqit-x +  BB |t • Aqic +  CCjc • Aqjc+i =  D D it ; k =  2, — 1 (7.11)

Aqjc. Exploiting the block-tridiagonal structure of the system and writing it in a 

compact storage format, a complex coefficient m atrix  C tridiag with the dimensions 

{4-6-(2-M+l)}x{N-6-(2-M+l)} is obtained. This rearranged system is written in equa­

tion 7.12.

Ctridiag ' A q =  D D  (7.12)

Since the still significant amount of memory necessary to store the complex 

coefficients of Ctridiag constitutes a major problem for an application of the implicit 

solution method (especially for the case where steady and traveling disturbances interact 

nonlinearly), an algorithm that drastically reduces the required memory by utilizing the 

symmetry and the block-tridiagonal structure of the linear system will be described next.

First of all, the amount of memory that needs to be allocated for storing the 

complex matrix C tridiag is considered. In order to solve the linear system (equation 7.12) 

for the (N-l)-(2-M-l-l) complex unknowns Aqm, one needs to consider the entire complex 

plane. This corresponds to the above problem size of {4-6-(2-M+l)}x{N-6-(2-M-l-l)} 

and will be taken as the baseline for the following comparisons. However, according to 

Chapter 4, the symmetry of the problem can be exploited. To accomplish that without 

neglecting the necessary number of equations from the conjugate half of the complex 

plane, the complex matrix coefficients axe split into their real and imaginary parts, as 

explained in the following.

Consider the Euler-McLaurin formula for Mode (m) at the normal location k 

(equation 7.11). Adding the corresponding equation for Mode (-m) and utilizing the
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symmetry condition A q im =  A qJ_m, one obtains equation 7.13. Here, the asterisk 

denotes the complex conjugate. Now, expanding the complex coefficients and vector ele-

A m,lc—1 ' Aqjn^-1 +  B rai|t - Aqm it +  A —m,k—1 • A qm,k -i +  B —m,k ■ Aqm^

=  D m,k +  D l mk (7.13)

ments, and collecting the real and imaginary terms yields equation 7.14 for the real parts 

and equation 7.15 for the imaginary parts. There, the subscripts r and i denote the real 

and imaginary parts of the complex quantities, and the subscripts k and k-1 are omitted 

for simplicity. Using these two equations, the complex coefficient matrices for each mode,

^ q rm-(arm +  +  brro +  b L m)+ A q im-(a|’_m -  ajm +  b ^  -  bim) =  drm+d*_m (7.14)

Aqrm • (aim +  aT_m +  bim +  b?_m) +A qjm • (arm -  a ^  +  brm -  b^_m) =  dim+dr_m (7.15)

each component of the vector Aq, and at each normal location are restructured, and the

resulting new structure of the coefficient matrices A and B  is shown in figure 7.1. Taking

0 1 2 0 1 2  ___

6x6
imaginary

coeff.'s

6x6 real

coeff.'s

6x6
imaginary
coeff.'s

6x6 real 
coeff.’s

AQo

Aq,

AO,

AQo

Aq,

Aq,

real

imaginary

Figure 7.1: Matrix structure utilizing symmetry and purely real coefficients (M=2)
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the described approach, real {2-(M+l)-6}x{2*(M-f 1)*6} block matrices are obtained in­

stead of complex {(2-M+l)-6}x{(2-M+l)-6} block matrices at each normal location. 

Hence, utilizing the symmetric properties of the system and splitting the complex quan­

tities into their real and imaginary parts results in a  decrease of the required memory by 

about 50% compared to the base line value in the case of a purely steady disturbance.

The second system property exploited in the current solution method is the 

block-tridiagonal structure of the now real coefficient matrix C tridiag- Instead of storing 

the entire matrix Ctridiag and solving the matrix equation 7.12 directly at each itera­

tion step, a Gaussian elimination is performed line by line using efficient computational 

libraries that are available in the public domain (LAPACK). Inverting the block-matrix

B B i (see figure 7.2), the first row of the equation 7.12 can be solved for A qi. The solu­

tion A qi is then substituted into the second row and the Gaussian elimination proceeds.

BB,

AAJBB.

AA BBN-t

AAn BB.

> —

*v,,

*1n do]

Figure 7.2: Structure of the real block-tridiagonal matrix C tr;diag

The main advantage of this algorithm is that the real coefficient matrices A A „ 

and B B n can be overwritten after solving the system at a particular line, and only the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



211

newly obtained matrices C C n need to be stored for the back-substitution (see figure 7.2). 

Thus, utilizing the block-tridiagonal structure of Ctridiag* this algorithm results in a  de­

crease of the required memory by 66% compared to storing the entire m atrix Ctridiag- 

Combined with the decrease obtained by utilizing the symmetry of the problem, the 

required memory is therefore decreased by 50%+66% ~  80%. Even though the pre­

sented approach increases the computational work due to the rewriting of the coefficient 

matrices, the extensive amount of book-keeping involved, and the slower solution of the 

block-tridiagonal matrix compared to the application of an efficient block-tridiagonal 

solver, it is only due to this drastic decrease in the required memory that the presented 

implicit solution method is applicable for problems of interest.

Concluding this section, the implicit solution method will be summarized. 

Starting from an initial guess for qo at xi0, the algorithm proceeds as follows :

1. Nonlinear iteration

• At each normal location k :

— Form the complex matrices Ak and Bk, as well as the vector Dk-

— Split the complex matrices and vectors into their real and imaginary parts 

according to equations 7.14, 7.15 and form the real coefficient matrices 

Ak and Bk, as well the real vector Dk-

— Shift the two coefficient matrices into the matrices AAk, B B k and CCk-

— Perform a Gaussian elimination step for the current row.

• Perform the back-substitution in the entire wall-normal domain and determine 

the vector of the corrections to the initial guess Aq.

• Update the shape functions : q new =  q0id +  Aq.
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•  If lAqmaxI <  ei, then proceed with the wave number computation, else con­

tinue the nonlinear iteration with updated shape functions.

2. Wave number computation

•  According to the chosen method, compute the number of specified wave num­

bers Q!i after equation 4.29 and distribute the remaining wave numbers alge­

braically.

• If |c*i,new  — c*i,oidl < ^2 , then continue with the next streamwise station, else 

go back to the nonlinear iteration.

Regarding the convergence rates of the implicit method, it is first observed that the 

convergence rate of the nonlinear iteration is almost quadratic. Second, in the wave 

number computation, the maximal deviation obtained for an iteration on just the primary 

wave number typically drops by four orders-of-magnitude within two or three iterations. 

This rapid convergence is slightly decreased; however, when the convergence of the wave 

number iteration is based the on maximal deviation of several computed wave numbers.

Finally, an important advantage of the implicit method versus the explicit 

method needs to be pointed out. Since all the shape functions of the different modes 

are computed at the same time, the computation of the individual wave numbers is very 

straightforward and requires no extra iteration on the nonlinear terms.

7.3 Computational Efficiency

In order to discuss the efficiency and robustness of the implicit solution method 

in comparison with the explicit method, this section will show results from an applica­

tion of both methods to the Swept Hiemenz flow problem. For a  Reynolds number in 

the spanwise direction of Re=500, a  steady disturbance with a spanwise wave number
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of /?i=0.4 and an initial amplitude of A=0.1% (see Section 5.3) is introduced a t the 

streamwise position of Reo=150.

0.030

0.020

Last converged Solution ^  

from the explicit Code for SU Rsi .0
0.010

0.000

wjinear

200 300 400 500 600
Re

Figure 7.3: Growth rates and regions of convergence for the explicit and the implicit 
methods

Figure 7.3 shows the growth rates a\ based on the disturbance component in 

the spanwise direction that are obtained from the explicit and the implicit method. 

Additionally, the linear growth rates are plotted. Besides the perfect agreement of the

o  Explicit Code

Implicit Code

Oi—
CD

E=3
2

O O O
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Re

Figure 7.4: Number of iterations on the nonlinear terms (SUR=1.0)
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results obtained from the different methods, it is noted that the nonlinear effects modify 

the growth rate starting at a  Reynolds number of Re=400. It is further seen that the 

explicit method ceases to converge at Re=570 for an SUR-parameter of 1.0, whereas 

the implicit method continues to converge well beyond the plotted region. From the 

previous computations for the same mean flow parameters in Section 5.3, it is recalled 

that a Reynolds number of Re=570 corresponds to the region where the stationary 

disturbances saturate, and hence, the nonlinear effects are indeed strong at the point 

where the explicit method stops converging for an SUR-parameter of 1.0.

The number of iterations on the nonlinear terms necessary to obtain a converged 

solution, and the convergence history at Re=570 are shown in figures 7.4 and 7.5, re­

spectively. There, the residue is defined as the maximal difference in the shape functions 

of the primary disturbance obtained in two consecutive iterations. The extremely rapid 

convergence of the implicit method is visualized in figure 7.5 and shows the superiority 

of the implicit method in the developed nonlinear region. The kinks in the curve are 

caused by the restart of the nonlinear iteration after every wave number computation.

1 0 '

Explicit MethodResidue

Implidt Method

0 so 100 150
Number of iterations

Figure 7.5: Convergence history for the explicit and the implicit methods at Re=570 
(SUR=1.0)
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Two observations can be made from these above plots. First, in the region of 

linear disturbance growth (Re<400), the explicit method needs as many iterations on the 

nonlinear terms as the implicit method. Since the explicit method iterates just on the 

primary disturbance, whereas the implicit method computes all disturbances simultane­

ously, the explicit method is expected to be much more efficient in that region. With an 

increasing effect of the nonlinear terms for Re>400, however, this similar performance 

of the two methods is altered significantly. The number of iterations on the nonlinear 

terms using the explicit method increases exponentially, whereas the performance of the 

explicit code basically remains unchanged.

For a fair comparison of the two methods, the necessary CPU-time needs to 

be documented. Both methods were run  on a  one processor Sun-Ultra-II workstation 

(333 MHz), and the required CPU-times for the two methods are listed in table 7.1. As 

expected, it turns out tha t the explicit method is more efficient for the computations 

performed in a domain tha t is in large parts representing the region of linear disturbance 

growth. In fact, the implicit method takes about 50% more CPU-time to compute the 

solutions at the considered 85 streamwise stations.

Table 7.1: CPU-time for the explicit and the implicit methods (85 stations)

Explicit Method Implicit Method 
2:55:11 4:29:41

However, figures 7.4 and 7.5 also show the limitations of the explicit method. 

Obviously, the CPU-time balance would drastically change when the computations were 

continued further into the nonlinear region by specifying a SUR-parameter less than 1.0.

At the end of this chapter, it is concluded that the presented implicit method 

represents a powerful tool to conduct nonlinear PSE computations in the regions of highly
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nonlinear disturbance growth. The most effective technique in applying the developed 

algorithms is seen in combining the explicit and implicit methods by starting the com­

putations with the explicit method, and once a critical number of nonlinear iterations is 

reached, by continuing with the implicit method.
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CHAPTER 8 

TRANSITION CONTROL USING ROUGHNESS

ELEMENTS

8.1 Introduction

Recent results by Saric et al. [4] from an experimental investigation of the 

crossflow dominated boundary layer on an infinite swept wing document observations of 

a passive transition control mechanism that originates from roughness elements near the 

leading edge.

The intention of the study presented in this chapter is to investigate the physical 

mechanisms observed in the ASU experiment in more detail. With a numerical simulation 

using the nonlinear PSE and an implicit solution method, it will be shown that the 

growth of the most amplified disturbance in a crossflow dominated boundary layer can 

be effectively decreased by forcing disturbances with a spanwise wavelength smaller than 

the most amplified wavelength. Thereby, the growth of the total disturbance quantities 

is delayed, which is an observation that might be a useful passive technique for laminar 

flow control.

Since it was not possible to obtain the experimental data and the wing ge­

ometry of the ASU experiment on time for a  consideration in this work, the ONERA 

D-wing experiment performed by Amal et al. [10] was chosen instead. In Section 8.2, 

the observations of different experimental runs in the ASU experiment will be described 

in detail. Section 8.3 contains an investigation of the passive control mechanism for the 

ONERA D-wing experiment. Selecting a case where the flow is purely crossflow dom­
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inated (a= -8°, 0=40°, see figure 8.4), the mean flow computation is presented in the 

first subsection. In  the second subsection, a linear stability analysis for stationary dis­

turbances is conducted in order to determine the most amplified stationary disturbance. 

The results from a  nonlinear PSE computation are presented in the third subsection. 

There, the qualitative observations of the ASU experiment are successfully reproduced. 

Concluding this chapter, a su m m ary  is given in Section 8 .4 .

8.2 The ASU Swept W ing Experiment

In the experiments, Saric et al. [4] used the natural laminar flow airfoil NLF 

(2)-0415 with a hand-polished aluminium surface. The experimental conditions for the 

considered test case are given in table 8.1. The profile geometry and the pressure distri­

bution for the given freestream conditions are depicted in figure 8 .1.

Table 8.1: Freestream conditions for the ASU experiment

Chord length c 1.83 m
Freestream velocity ~20  m/s
Reynolds number Re,*, 2,400,000
Sweep angle 0 45°
Angle of attack a -4°

0 9

0 7

0 6

OS

O* 00
0 3

OS 02

to
00

«0 t
00 02 0 3 04 OS

tfc
0 7 0 90.9

Figure 8.1: Airfoil geometry and Cp-distribution for the ASU experiment (from [4])
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Studying the natural transition case without roughness elements first, they 

determined the most amplified spanwise wavelength as AX2=12mm. Transition occured 

closely before the location of the pressure m inim um  of the outer flow at x i/c  ~  0.71 in 

that case. Next, they forced disturbances of equal, or larger wavelength than the most 

amplified spanwise wavelength by putting roughness elements a t distances of 12mm, 

18mm and 36mm near the leading edge at xi/c=0.023. The ratio of the roughness 

height of the elements (krough=6^m), and the distributed roughness height of the hand- 

polished aluminium surface (krough=0.25/im) was 24. The Reynolds number based on 

the height of the roughness elements was specified as Rejc ~  0.1 [4] which is of negligible 

influence on the undisturbed mean flow.

By forcing the most simplified disturbances with AX2=12mm, they found tha t 

transition moved forward to x i/c  ~  0.52. Forcing the initially stable disturbances with 

AX2=18mm, they observed that neither the 12mm, nor the 36mm modes were amplified 

in the downstream direction. However, a  strong initial growth of the disturbances with 

AXj=9m m  was measured. Varying the roughness height, they further noted a weak 

dependence of the saturation amplitude of the total disturbance on the roughness height. 

For values of krough=6,12, and 18/xm, the saturation amplitude a t xi/c=0.45 remained 

almost constant at levels of A~14%.

Most interestingly, however, Saric et al. [4] were able to delay transition beyond 

the location of the pressure minimum to x i/c  ~  0.80 by forcing disturbances with a  

wavelength smaller than the most amplified spanwise wavelength. To accomplish that, 

they placed roughness elements at a spanwise distance of AX2= 8mm near the leading 

edge. Interpreting the detailed measurements, they attributed the transition delay to 

the strong early growth of the 8mm disturbances that suppressed the very unstable
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higher wavelengths AXj=9m m  and AXl=12mm initially. The saturation and decay of the 

8mm disturbances beyond x i/c  ~  0.30 then gave rise to the growth of longer wavelength 

disturbances that eventually lead to transition. However, this succesful transition delay 

could be accomplished for the Reynolds number of Re=2,400,000 only. Increasing the 

Reynolds number slightly to Re=2,600,00, or to Re=2,800,000 moved the transition 

forward to locations of x i/c=0.59 and xi/c=0.50, respectively.

8.3 The ONERA D-W ing Experiment

As reviewed in Section 2.3, a series of transition experiments on infinite swept 

wing models was performed at the French research institution ONERA/CERT between 

1984 and 1997. A significant number of these tests was performed on a symmetric airfoil 

especially designed for the investigation of laminar flow phenomena on infinite swept 

wings - the ONERA D-airfoil. In figures 8.2 and 8.3, the experimental setup and the

Adjustable Angle of Attack

& M M

Adjustable 
Sweep Angle Test Section (0.6 m x 0.35 m)

Figure 8.2: Experimental setup for the ONERA D-wing experiment (from [5])

airfoil geometry are shown. The relations for the airfoil geometry are given in Appendix

II. The main objectives of these experiments were to develop data bases and empirical
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correlations for fast transition prediction methods, as well as to gain more insight into 

the transition physics of swept wing flows. Therefore, a number of cases for different 

angles of attack a  and sweep singles (f> was investigated.

050

~  0 052 at x,/c=0.36

02S

0200 oa

Figure 8.3: ONERA D-airfoil geometry

1.0

0.0
0.0 0 4 x,/c 0 8 0.8 1.0

Figure 8.4: Outer velocity distributions for different angles of attack

For different angles of attack, figure 8.4 shows the outer velocity distributions 

on the upper wing surface. Clearly seen is the vanishing suction peak in the leading edge 

region with decreasing angles of attack. According to the explanation of the crossflow 

basics in Section 1.1, it is the adverse pressure gradient near the leading edge that
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introduces flow physics which are not purely crossflow dominated. For that reason, the 

study in this chapter was performed for an outer flow that has a  favorable pressure 

gradient over a  large region of the chord.

8.3 .1  M ean Flow C om putation

Given the freestream conditions as in table 8.2, the outer flow distribution was 

obtained using the panel method as described in Section 3.1. In table 8.2, the Reynolds 

number is defined as R e^  =  • c*/i/*. The mean flow profiles along the chord were

Table 8.2: Freestream conditions for the ONERA D-wing experiment

Chord length c 0.35 m
FVeestream velocity 80 m/s
Reynolds number Reoo 1,840,000
Kinematic viscosity v 15.217-10-6 m2/s
Sweep angle tf> 40°
Angle of attack a -8°

computed using the solution method for the boundary layer equations that was derived 

in Section 3.2. For the directions tangential and perpendicular to the inviscid streamline, 

they sure plotted at different streamwise locations in figures 8.5 and 8 .6, respectively. It

*3̂ 1.0

[mm]

0.0 0.2 0.4 0.6 0.6 1.0
U/Q_

Figure 8.5: Mean flow profiles tangential to the inviscid streamline for a = - 8° and <f>=40°
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is noted that the crossflow component Uc remains positive over the entire chord length, 

and thus, the present mean flow is purely crossflow dominated.

2.0

1.0

[mm]

0.020 0.070

u /Q .

Figure 8.6: Mean crossflow profiles for a = -8° and <£=40°

For the boundary layer computations, a computational grid of 400 x 300 points 

was constructed in the xj- and the X3-direction, respectively. Starting at the stagnation 

point, both the chordwise and the normal coordinates were uniformly spaced up to a 

normal extension of X3=15 which corresponds to about twice the maximum boundary 

layer thickness. For the chosen angle of attack, the stagnation point was found at 

xi/c=0.014. Starting a new coordinate system at this point, the separation point of the 

flow was determined at xi/c=0.89.

Characteristic parameters of the mean flow are shown in figure 8.7. Plotted are 

the outer pressure distribution, the Reynolds number in the chordwise direction Rex =  

(U*-x*/V*)1/2, the angle of the inviscid streamline 0 , the dimensional boundary layer and

X*displacement thickness along the inviscid streamline, the similarity parameter m = ^  •
j r r .

j j f ,  and the curvature term hi. The boundary layer thickness shown in figure 8.7(d) is 

defined a t a  location where the velocity component tangential to the inviscid s tre am line 

U( reaches a value of 99.9% of the outer velocity U*e.
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a) Pressure Distribution

Re,

9200 04 01 o a 10

b) Reynolds number

e

c) Angle of inviscid streamline

5

d) 8 and 5\ along inviscid streamline [mmi

m

Vc

h,'l

Vc

e) Similarity parameter f) Chordwise curvature term

Figure 8.7: Mean flow parameters

8.3 .2  Linear Stability  A nalysis

As in the previously investigated problems of Swept Hiemenz flow and the DLR 

Transition experiment, the stability of the attachment-line needs to be investigated prior
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to any subsequent stability analysis. Using the local length scale close to the stagnation

point 1* =  yi/*/(dU*/dxJ)=0.07mm and the constant outer velocity component in the 

spanwise direction W^0=Q^0 • sin 000=50.92 m /s, the Reynolds number in the spanwise 

direction is determined as Re=W£0 • =224.5, which is far below the numerically

critical value of Re=583 [93]. Hence, the attachment-line is assumed to be linearly 

stable.

Before the presentation of the results of the linear stability analysis, the applied 

computational grid for both the linear and nonlinear stability computations is described. 

The chordwise direction was devided into 200 points which corresponds to a  step-size 

of Axi =0.005. In the normal direction, a grid of 51 points was distributed according 

to equation 8.1 up to a normal extension of X3=15. Beyond tha t extension, another 51 

points were spaced uniformly up to a maximum extension of X3=75, which corresponds 

to about six to eight boundary layer thicknesses.

x 3,i =  , ^    ; A =  3 (8 .1)
1 +  -  *

Since the purpose of this study is to investigate the nonlinear interaction of 

purely stationary disturbances, the linear stability analysis will be restricted to steady 

disturbances. First, a local analysis is performed in order to determine the neutral point 

of the stationary disturbances and the locally most amplified modes. Figure 8.8 shows 

the nondimensional spatial growth rates crj based on the chordwise velocity component 

for stationary disturbances versus the spanwise wave number (3\ a t different chordwise 

positions. At the investigated chordwise stations, the nondimensionalization is performed

using the local length scale 1q =  yjv* ■ x* 0/U* 0. It can be seen tha t the unstable wave 

number band width increases in the chordwise direction, which is in agreement with the 

observations for Swept Hiemenz flow and in the DLR experiment. The neutral point for
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Figure 8.8: Spatial growth rates for steady disturbances from a local analysis

the stationary disturbances is found at x \ f c ~0.022 for /3i =0.225 (AX2=1.9mm). The 

locally most amplified wave number is determined as /3i =0.302 a t xt/c=0.10, where the 

chordwise wave number is qi=(-0.31545,-0.00919). Table 8.3 contains the locally most 

amplified spanwise wave numbers, as well as the corresponding spatial growth rates, 

dimensional spanwise wavelengths and wave angles. As in Chapters 5 and 6, the wave 

angle represents the angle between the wave vector kreai and the angle of the inviscid

Table 8.3: Locally most amplified eigenpairs at different chordwise locations

X i / c a i = max. A x2  ,<n = m a x  [mm] /^ l,< ri= m ax . 4* <t,  = m a x .
0.0225 0.00031 1.90 0.2288 86.58°
0.0250 0.00169 1.89 0.2361 86.58°
0.0500 0.00732 1.97 0.2790 86.74°
0.1000 0.00919 2.30 0.3020 86.66°
0.2000 0.00877 2.94 0.3085 87.11°
0.3000 0.00845 3.41 0.3137 87.31°
0.4000 0.00789 3.82 0.3159 87.62°
0.5000 0.00662 4.09 0.3271 88.14°

streamline. It is again observed that the wave angle of the most simplified stationary 

disturbances remains almost constant in the chordwise direction. The constant phase
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lines of the most unstable stationary disturbances are inclined at angles less than five 

degrees with respect to the inviscid streamline and the vector of the most amplified wave 

points towards the convex side of the inviscid streamline.

Next, the most amplified spanwise wave number according to its spatial growth 

in the downstream direction is sought. Therefore, disturbances of a different spanwise 

wave number are introduced at xi/c=0.02 and their spatial evolution downstream com­

puted using the linear PSE. Figures 8.9 and 8.10 show the spatial growth rates ba-

0.015

0.010

0.005

0.000
0.0 0.4 0.6 0.8 1.0x7c

Figure 8.9: Spatial growth rates for steady disturbances from a PSE computation
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N
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Figure 8.10: N-factors based on ui from a PSE computation
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sed on the chordwise velocity component and the corresponding N-factors, respectively, 

that are obtained from a linear PSE computation. From figure 8.9, it is noted tha t the 

most amplified disturbance (Amax=3mm) and its subharmonics with AX2=1.5mm and 

AX2 =2mm behave according to the observations in the ASU experiment. A strong initial 

growth of the subharmonics (especially of the 2mm mode) is immediately followed by 

fast decay. Even though the wavelength of AX2 =  2 mm shows a strong initial amplifica­

tion, the largest N-factor a t xi/c=0.80 is obtained for the disturbance with a  spanwise 

wavelength of AX2 =  3 mm. This wavelength will be denoted as Amax from now on. The 

maximal N-factors for the different wavelengths are given in table 8.4.

Table 8.4: N-factors of the most amplified stationary disturbances at x i/c  =  0.80

Ax,[mm] 3.0 4.0 5.0 6.0
Nmax 12.35 12.00 10.97 9.77

For completeness, the stabilizing influence of considering the surface curvature 

in the computations is documented in figure 8.11. Plotted sue the N-factors based on the

14

12 without curvature

with curvature10

8

6

4

2

0
0.0 0.4 0.6 1.00.8

Figure 8.11: N-factors with and without surface curvature (AX2=Amax)
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disturbance energy and the chordwise velocity component. At xi/c=0.5 , the difference 

between the maximal N-factors obtained with and w ithout curvature is about AN~0.75, 

which is not negligible when considering that the experimentally observed transition 

location was between x i/c= 0 .5  and xi/c=0.6.

Concluding the linear stability analysis, a comparison of computed and exper­

imentally obtained values is provided in table 8.5. Arnal et al. [10] reported an almost 

constant value of four for the ratio of the locally most amplified wavelength and the 

local boundary layer thickness along the chordwise direction. As shown in table 8.5, the 

agreement with the here obtained results is good.

Table 8.5: Ratios of the most amplified wavelength and the boundary layer thickness

X i / c AX, H S [mm] A*a/<S
0.1 2.30 0.51 4.5
0.2 2.94 0.70 4.2
0.3 3.41 0.84 4.1
0.4 3.82 0.97 3.9
0.5 4.09 1.11 3.7

8.3 .3  N onlinear S ta b ility  A nalysis using th e  Im p licit P SE

From the linear stability results, it is seen tha t the disturbance with a wave­

length of 2/3-Amax shows a strong initial growth th a t is followed be a rapid decay. En­

couraged by this good qualitative agreement with the findings of the ASU experiment [4], 

this subsection documents results from nonlinear computations that attem pt to quali­

tatively model the experimental observations of a passive transition control mechanism 

originating from leading edge roughness. For the solution of the nonlinear PSE, the 

newly developed, efficient and very robust implicit PSE solver documented in Chapter 

7 is utilized. According to the experimented observations, four cases are considered :

1. “Natural transition” , dominated by the most amplified disturbance (Amax=3mm).
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2. Forcing of the fundamental disturbance (Amax=3mm).

3. Forcing of a subharmonic wave number-disturbance (Ax,=6mm).

4. Forcing of a superharmonic wave number-disturbance (AX2 =2/3A max=2mm).

An appropriate model for the forcing of selected disturbances by roughness elements 

requires an estimate of the initial disturbance amplitudes as given next, where the scaling 

influence of the receptivity coefficient is neglected. Taking the maximum boundary layer 

thickness of <5j5 as length scale and the freestream velocity component in the chordwise 

direction U^0=61.7m/s as velocity scale Uq, a typical time scale tjj is obtained. Assuming 

that this time scale is also representative for the location where the disturbances are 

introduced, the roughness height is estimated as in equation 8.2.

; k ^ = A  ^ ' t ;  =  A.0.002m (8.2)

Hence, an amplitude of A=0.002 corresponds to a roughness height of k*ough=4^m . 

This compares to the experimental value of k’ough=6/im [4]. Due to the lack of other 

information, and since this amplitude choice leads to realistic saturation amplitudes of 

the disturbances, A=0.2% is chosen as a base line amplitude to model the cases with 

forced disturbances. For the cases without forcing, an initial amplitude of A=0.008% 

is specified according to the ratio of k*ough and the distributed surface roughness in the 

experiment (k*ough/k j istrib=24). The four investigated cases are defined in table 8.6.

Table 8.6: Definition of the passive control cases

Case At [mm] A2 [mm] A3 [mm] Ai A2 A3
1 3 - - 0.008% - -

2 3 - - 0.200% - -

3 6 3 2 0.200% 0.008% 0.008%
4 6 3 2 0.008% 0.008% 0.200%
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8.3.3.1 N atural Transition (C ase 1)

For the purpose of establishing a reference case that the cases with forced 

disturbances can be compared to, the case of a “natural transition” is considered first. 

The influence of a  small distributed roughness height near the leading edge is modeled by 

assuming the dominance of the most amplified disturbance with a  spanwise wavelength 

of AXj=3mm and a small initial amplitude of A=0.008% in the downstream evolution.

0.015

0.010

0.005

0.000

-0.005

0.0 0.4 0.6 0.8 1.0
X /C

10'

Iff*
0.0 0.4 0.6 0.8 1.0x/c

Figure 8.12: Growth rate and amplitudes for Case 1 (AX2=3mm, A=0.008%)

The growth rate based on the disturbance energy and the ui-amplitudes of the 

fundamental disturbance in the chordwise direction are plotted in figure 8.12. The ui-
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component of the 3mm mode grows over about 40% of the chord, and the growth rates 

based on disturbance energy does not saturate until x i/c  ~  0.50.

The amplitudes of the ui-component of the 3mm mode reach a  level of A=10% 

at xj/c=0.28, and a final saturation amplitude of A=34.0% is reached at xi/c=0.46.

[mm]

Xj [mm]

a) Xi/c=0.20

Xj [mm]

b) Xi/c=0.30

•0.34
-0.40

x̂ mm]

c) xi/c=0.40

x, [mm]

d) x i/c= 0 .50

Figure 8.13: Contours of the uj-disturbance at different streamwise locations (Case 1)

Figure 8.13 shows contours of the total ui-disturbance component in the plane 

parallel to the leading edge. According to the fundamental wavelength, the crossflow 

vortices develop a t a  spanwise spacing of 3mm. The development of the total amplitude 

of the ui-disturbance in the streamwise direction will be compared with the following 

cases in the summary at the end of this chapter.
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8.3.3.2 Fundam ental Forcing (C ase 2)

Simulating the presence of roughness elements at a spanwise spacing of 3mm 

near the leading edge by increasing the initial amplitude of the 3mm disturbance from 

A=0.008% to A=0.2%, the disturbance evolution is largely modified in comparison to 

Case 1. Figure 8.14 shows the computed growth rate based on the disturbance energy

0.01 s

0.010

0.005

1.6

0.000

•0.005

0.0 0.4 1.00.6xJc

10®

0.0 0.4 0.6 1.0
X ./C

Figure 8.14: Growth rate and amplitudes for Case 2 (AXj=3mm, A=0.2%)

and the amplitude of the fundamental ui-disturbance component. Here, the amplitudes 

of the uj-component reach a  level of A=10% already at xi/c=0.15, and after a  stronger
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secondary growth at xi/c=0.26, the ui-disturbance saturates at x i/c  ~  0.50 at an am­

plitude level of A=32%.

[mm]

x, [mm]

a) Xi/c=0.20

X j[m m ]

b) xi/c=0.30

x, [mm]

c) X x / c = 0 . 4 0

Xj [mm]

d) Xi/c=0.50

Figure 8.15: Contours of the ui-disturbance at different streamwise locations (Case 2)

As for the “natural transition” in Case 1, figure 8.15 shows contours of the 

total m-disturbance. According to the higher initial amplitude of the disturbance, the 

distortion of the boundary layer by the presence of the crossflow vortices is observed much 

earlier than in Case 1. Here, a well-defined crossflow vortex with disturbance amplitudes 

of A ^  0.30 is already present at xi/c=0.30. Otherwise, there is no qualitative change 

in the evolution of the crossflow vortices in comparison to Case 1.
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8.3.3.3 Subharm onic Forcing (C ase 3)

A qualitatively different disturbance evolution is observed when disturbances 

with a  wavelength that is twice the most amplified wavelength are forced by placing 

roughness elements at a spanwise spacing of 6mm.

0.01 s

0.010

a ,  e 0.005

0.000

-0.MS >1*6mm (without interaction)

0.0 0.4 0.6 1.0x/c
Figure 8.16: Growth rates for Case 3 (Ai=6mm, A=0.2%; A2=3mm, A=0.008%; 
A3=2mm, A=0.008%)

Following the development of the forced disturbance and its first superharmonic, 

figures 8.16 shows the growth rates based on the disturbance energy. Also plotted is the 

growth rate of the 6mm disturbance with the same initial amplitude when there is no 

nonlinear interaction (AA,mm =  AA3mm=0.). It is noted tha t the growth rate of the 3mm 

disturbance is largely modified due to the forcing of the 6mm disturbance in comparison 

with the previous two cases. This is caused by the large initial amplitude of the (1,0) 

mode (A=6mm).

A disturbance can either grow on its own, or its growth can be initiated by the 

nonlinear interaction of other disturbances. Here, the nonlinear contribution from the 

(0,1) mode to the (0,2) mode (A=3mm) is much larger than the initial amplitude of the 

3mm mode. Thus, the linear growth of the 3mm mode is completely suppressed in favor
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of its nonlinear excitation by the 6mm mode. It is also seen from figure 8.16 that the 

6mm mode is hardly affected by the nonlinear interaction.

iff1

A

JU3mm (no forcing) 
>Ls6mm

ur*o.o 0.4 0.6 1.0x,/c
Figure 8.17: Amplitudes for Case 3 (Ai=6mm, A=0.2%; A2=3mm, A=0.008%; A3=2mm, 
A=0.008%)

Figure 8.17 shows the uj-disturbance amplitudes of the forced 6mm mode and 

its first two superharmonics. For comparison, the amplitude evolution of the 3mm mode 

in Case 1 is also plotted. The 6mm-disturbance forcing, that excites the 3mm mode 

nonlinearly, strongly affects the development of the 3mm mode. After an initially slower 

growth than in the natural case, the disturbances start to grow faster than in the reference 

case at X j / c  ~  0.15. Due to nonlinear interaction with the strong 6mm mode, they start 

saturating much earlier than in Case 1 at an amplitude level of A ~  0.10 near x i/c  ~  

0.30. A secondary growth at x i/c  ~  0.35 delays the final saturation until x i/c  ~  0.66, 

where the amplitude level of the ui-disturbance reaches a value of A=0.23. Hence, the 

growth of the most amplified disturbance is largely suppressed by the forced subharmonic 

6mm mode. Despite the suppression of the most amplified 3mm mode, the large initial 

amplitude and the long growth of the 6mm mode until x i/c  ~  0.40 (see figure 8.16) in 

the present case would probably result in an earlier transition than in the reference case.
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The qualitative difference of Case 3 to the two previous cases is clearly seen 

in the contour plots of the total ui-disturbance in figure 8.18. Starting with a  span- 

wise spacing of 6mm at xi/c=0.20 that is due to the forced disturbances, the crossflow 

vortices are modified by the superharmonic disturbances starting at xi/c=0.35. At this 

streamwise location, the 3mm and the 2mm modes have reached amplitude levels of 

A=0.11 and A=0.06, respectively. Prom figure 8.18(b), it is seen that the negative por­

tion of the 6mm crossflow vortex devides into vortex structures with a  smaller wavelength 

according to the superharuionic wave numbers. This wavelength modulation becomes 

stronger in the streamwise direction, and at xi/c=0.50, new vortex structures with dif-

x, [mm]

a) xi/c=0.20

x,[mm]

b) xi/c=0.35

■at*

I
Xj [mm]

c) xi/c=0.40

x,[mm]

d) xj/c=0.50

Figure 8.18: Contours of the ui-disturbance at different streamwise locations (Case 3)
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ferent wavelengths are present in the flow. In figure 8.18(d) the 6mm wavelength is still 

distinguishable. Also, the 3mm vortex from figure 8.18 has become more dominant and 

forms an intricate A-shaped vortex structure in conjunction with the 6mm vortex.

8.3.3.4 Superharmonic Forcing (Case 4)

From the observations in the ASU experiment [4], one expects that forcing 

the initially fast growing 2/3-Amax mode is the most efficient means of controlling the 

transition onset. Therefore, the following case will simulate the placement of roughness

0.01 s

Xs3mm (without interaction)

0.010

0.005

' i . e

0.000

-0.005

Xs2mm (without interaction)

0.0 0.4 0.8 1.0x,/c
Figure 8.19: Growth rates for Case 4 (Ai=6mm, A=0.008%; A2=3mm, A=0.008%; 
A3=2mm, A=0.2%)

10“

10'1

L*3mm (no forcing) ~ 
* A s& n m  

~  A*3mm 
■■ Xs2mm

0.0 0.8 1.0x,/c
Figure 8.20: Amplitudes for Case 4 (Ai=6mm, A=0.008%; A2=3mm, A=0.008%; 
A3=2mm, A=0.2%)
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elements at a spanwise spacing of 2mm. Investigating the influence of the same roughness 

height as in Cases 2 and 3, the initial amplitude of the forced 2mm disturbance is specified 

as A=0.002. Figures 8.19 and 8.20 show the growth rates and the amplitudes of the forced 

disturbance and the fundamental disturbance with Ai=3mm, as well as the  growth rates 

of the 2mm and the 3mm disturbances with the same initial amplitudes in the cases 

without nonlinear interaction. In agreement with the observations in Case 3 where the 

development of the forced disturbances was not altered by nonlinear interaction, the 

evolution of the forced 2mm mode is not affected at all (see figure 8.19). However, the 

growth of the fundamental mode is largely affected, and its development shows significant 

differences to the previously investigated Cases 1-3.

First of all, the initial growth of the fundamental disturbance is largely sup­

pressed, as seen in the early tendency towards a  saturation a t xi/c=0.16. Secondly, three 

local maxima in the growth rate based on the disturbance energy are observed before 

the ui-disturbance component saturates a t the very late chordwise location of x i/c  ~  

0.55. Despite the late saturation, the earlier tendency towards saturation before the sub­

sequent rise to two other growth rate maxima keeps the 3mm disturbance mode at very 

low amplitude levels. The urcomponent of the 3mm mode does not reach its maximal 

amplitude level of A=19.0% until xi/c=0.56, and hence, the 3mm mode is considered to 

be succesfully supressed.

Due to its strong initial growth, however, the forced 2mm mode reaches high 

amplitude levels at early chordwise positions. For example, the amplitude level of A=0.20 

is already reached at xi/c=0.20. Due to the absence of experimental data regarding the 

disturbance amplitudes in the transition region, it is therefore not possible to make a 

statement about a  succesful delay of the transition in the present case.
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On the other hand, the experimentally observed mechanisms in the case of su­

perharmonic disturbance forcing (see the description of the 8mm case in Section 8.2) are 

very well captured in the present simulation. This is shown in figure 8.21, where contours 

of the total ui-disturbance are plotted at different streamwise stations. At xi/c=0.20, 

the forced 2mm mode dominates the disturbance development and the crossflow vortices 

are spaced accordingly. At xi/c=0.35, however, the relatively strong 6mm mode with an 

amplitude of A ~ 10% (see figure 8.20) is also distinguished. This represents the onset 

of a subharmonic disturbance growth which is in accordance to the results by Saric et 

al. [4]. There, the excitation of the 8mm mode initiated the growth of the 16mm and
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&
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Figure 8.21: Contours of the ui-disturbance at different streamwise locations (Case 4)
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the 24mm modes. Further downstream at xi/c=0.40, the footprint of the 2mm mode 

has disappeared and the 3mm mode can be distinguished instead. Finally at xi/c=0.50, 

the 6mm mode clearly dominates the crossflow vortex pattern.

8.4 Summary

In the presented study and in accordance with the experimental observations 

by Saric et al. [4], the existence of a  nonlinear wave-interaction mechanism in swept wing 

flows that favorably modifies the evolution of the most amplified disturbances has been 

documented. By a  proper placement of micron-sized leading edge roughness near the 

neutral point of the stationary disturbances, the growth of the most amplified disturbance 

can be successfully delayed, if not suppressed, which indicates a possibly useful technique 

for the passive control of laminar three-dimensional boundary layer flows.

The computations using the implicit PSE solver were performed considering 

eight wave number modes in the Fourier space. For only three of these modes, however, 

the chordwise wave numbers were computed directly. The wave numbers of the remaining 

modes were then determined based on the mode with the largest amplitude. Diming

0.01S

3 Modes
0.010

0.005

i.e

0.000

-0.005

0.0 0.60.4 a s 1.0
x /c

Figure 8 . 2 2 :  Growth rates for two iteration options ( A A l = 3 m m = 0 - 0 2 % ;  A A 2 = 2 m m = 0 - 2 % )
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the computations, no quantitative difference was observed when the wave numbers were 

computed directly for five modes instead. This is seen in figure 8.22 tha t shows the 

growth rates obtained for both iteration options.

Summarizing the presented cases, table 8.7 lists the initial amplitudes and the 

wavelengths of the considered disturbances, the chordwise locations where the distur­

bance components reach certain amplitude levels, as well as the maximal amplitude 

levels and their chordwise locations for the ui-disturbance component.

Table 8.7: Evolution of the uj-disturbance amplitudes

Case A [mm] Ainit. [%] x i/c  (A10%) x i /c  (A20%) A m a x  [% ] X l / C  ( A m a x )

1 3 0.008 0.28 0.33 0.36 0.46
2 3 0.200 0.15 0.20 0.28 0.50
3 6 0.200 0.22 0.27 0.30 0.36

3 0.008 0.34 0.53 0.23 0.66
2 0.008 0.40 - 0.15 0.55

4 6 0-008 0.36 0.43 0.34 0.53
3 0.008 0.46 - 0.19 0.56
2 0.200 0.14 0.20 0.23 0.23

0.020

Case 1 
Case 20.015

Case 4
0.010

i.e 0.005

0.000

•0.005

0.0 0.4 0.8 1.00.6
x /c

Figure 8.23: Growth rates of the fundamental disturbance (A=3mm)
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10**

A

Case 1 
Case 2 
Case 3 
Case 4

o.o u.4 0.6 0.8 1.0

Figure 8.24: ui-disturbance amplitudes of the fundamental disturbance (A=3mm)

Considering the results presented in Subsections 8.4.2.1-8.4.2.4, the plots of 

the growth rates and the ui-disturbance amplitudes of the fundamental disturbance for 

the four investigated cases (see figure 8.24), as well as the data listed in table 8.7, the 

following is concluded.

• Forcing the most amplified disturbance leads to an earlier disturbance saturation 

at the same high amplitude level as in the “natural transition” case which results 

in an  earlier transition (Case 2).

•  Forcing a  subharmonic wave number disturbance with a  wavelength larger than the 

most amplified one leads to an initial dominance of the forcing disturbance that 

results in a significant suppression of the most amplified mode. After the satura­

tion of the forcing disturbance at high amplitude levels, the nonlinear disturbance 

interaction causes a break-up of the forced disturbance into its superharmonics 

(Case 3).
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•  Forcing a superharmonic wave number disturbance leads to a very strong initial 

growth of the forced disturbance tha t entirely suppresses the most amplified dis­

turbances over large regions of the chord. After its strong initial growth, the forced 

disturbance saturates early and its decay gives rise to the growth of subharmonic 

wave number disturbances. These become dominant in the downstream direction 

and eventually lead to transition, if the transition was not caused earlier by the 

forced disturbance (Case 4).

However, for the prediction of the transition onset in comparison with experi­

mental data, the evolution of the total disturbance amplitude rather than the amplitudes 

of individual modes needs to be considered. Concluding this chapter, figure 8.25 presents 

the amplitude evolution of the total ui-disturbance component for the four different cases. 

Plotted is an average of the total disturbance quantity in the spanwise direction.

0.6

Case 1 
Case 2 
Case 3 
Case 4

0.5

0.4CM
c
I

3  0.3IX

0.1

0.0
0.0 04 x,/c 06 0.8 1.0

Figure 8.25: Amplitude evolution for the total ui-disturbance component

In agreement with the experimental observations (see Section 8.2) and confirm­

ing the conclusions for the evolution of the individual modes, the following observations
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can be made. Both Cases 2 and 3 would definetely cause an earlier transition, since the 

region of a  strong rise in the amplitudes is moved towards the leading edge in compar­

ison with the “natural transition” in Case 1. In contrast, the development of the total 

disturbance amplitude in Case 4 exactly corresponds to the experimental observations 

for the case with a succesful delay of the transition. A strong initial amplitude growth 

is followed by a region of amplitude saturation (A=0.25 at xi/c=0.25) and amplitude 

decay, before a second region of amplitude growth sets in at xi/c=0.40. Hence, the 

region of a second amplitude growth in Case 4 is located about 10% chord behind the 

corresponding region in the “natural transition” case. As mentioned before, due to the 

lack of experimental data for the ONERA D-wing, a strong statement about a succesfully 

delayed transition cannot be made.

For practical applications of this mechanism, the challenge consists in decreasing 

the primary peak in the total disturbance amplitude. From the conducted research and 

the experimental results, it is assumed that both the m axim um  of the primary saturation 

amplitude and its chordwise location depend on the freestream Reynolds number, on the 

individual height of the distributed roughness of the wing surface and of the roughness 

elements, as well as on the ratio of the two roughness heigths.
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CHAPTER 9 

CONCLUSIONS

9.1 Overview

The linear, nonlinear, and secondary stability of incompressible three-dimension­

al boundary layers was numerically investigated using PSE methods. Using a fourth- 

order-accurate compact scheme formulation in body-oriented coordinates, the accuracy 

of the developed methods and algorithms was validated using the model problem of 

Swept Hiemenz flow and the results of the DLR Transition experiment on a swept flat 

plate. Both explicit and implicit solution algorithms for the PSE were presented, and 

their efficiency and robustness documented. The confirmation of an experimentally ob­

served passive control mechanism for the laminar-turbulent transition on infinite swept 

wings concludes the presentation of the results.

In Chapter 1, the scope of the present research was motivated and outlined. A 

survey of the literature on the stability of three-dimensional boundary layer flows was 

given in Chapter 2. Beginning with a historical review of the research on the stability 

of the considered flows, the survey focused on relevant experimental work, theoretical 

developments and numerical methods.

Chapter 3 explained the approach to the solution of the boundary layer equa­

tions for infinite swept geometries. Using the developed fourth-order-accurate compact 

scheme formulation, the mean flows for the DLR Transition experiment (Chapter 6) and 

for the ONERA D-wing experiment (Chapter 8) were computed directly from the outer 

velocity distributions, which is in contrast to previous work.
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The development of the explicit formulation for the solution of the PSE, the 

documentation of the developed local and adapted global solver for the arising large 

eigenvalue problems of the established Floquet Theory, as well as the present under­

standing of the secondary instability mechanism were the focuses of Chapter 4.

In Chapters 5 and 6, extensive linear and nonlinear stability analyses preceded 

a  detailed investigation of the secondary instability in the highly nonlinear region of 

disturbance saturation. Documenting the developed implicit solution method for the 

PSE, as well as its efficiency and robustness in comparison with the explicit approach 

in Chapter 7, the implicit method was used for the investigation of a passive laminar 

flow control method using leading edge roughness elements on the ONERA D-wing in 

Chapter 8.

9.2 Discussion

The developed PSE methods represent a powerful tool for the detailed analysis 

of transitional three-dimensional boundary layer flows. If used as a hybrid of the explicit 

solution method in the region of moderate nonlinearity, and the implicit solution method 

in the later region of nonlinear saturation and secondary instability, they are very ef­

fective in accurately capturing and predicting experimentally observed flow phenomena 

related to the laminar-turbulent transition.

The stability of a three-dimensional boundary layer immediately prior to tran­

sition was studied by considering the model of a steady mean flow that is modified by the 

presence of a stationary crossflow vortex. Due to the action of the stationary vortices, 

the boundary layer is largely distorted and becomes susceptible to high-frequency distur­

bances. Pursuing one possible approach of the investigation of this secondary instability
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mechanism, the modified mean flow was computed using the PSE and then investigated 

for its secondary instability characteristics using temporal Floquet Theory. In the region 

of a strong secondary instability, connections from both the linear eigenvalue spectrum 

of the undisturbed mean flow and from the continuous spectrum to highly unstable 

secondary eigenvalues could be established. It is concluded that the receptivity to high- 

frequency disturbances in the region of a strong boundary layer distortion might be one 

path by which the secondary disturbances enter the boundary layer from the continuous 

outer spectrum.

In the investigation using the temporal Floquet Theory, the utilization of the 

Implicitly Restarted Amoldi Method proved to be very efficient for the solution of se­

lected regions of interest in the eigenvalue spectrum of the secondary disturbances.

Modeling the secondary instability in a more physical and direct approach using 

the spatial frame work of the PSE, a second approach was pursued. In agreement with 

the definition of the secondary instability given in Chapter 4, an explosive growth of 

high-frequency disturbances was observed in the highly nonlinear region of amplitude 

saturation. There, the development of a counter-clockwise rotating secondary vortex 

close to the wall, as well as the splitting of large vortex structures into several weaker 

vortices was observed. From DNS-computations, it was reported that these smaller 

vortices eventually lead to transition. It is argued that the nonlinear interaction of 

stationary and traveling disturbances is important for the strong growth of the secondary 

disturbances.

From both the Floquet Theory approach and the PSE computations for the 

investigation of the secondary instability, the onset of secondary instabilities was found 

for saturation amplitudes of the stationary disturbances of A~10%.
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Starting from PSE results that were found in good agreement with the mea­

surements, a temporal investigation of the secondary instability in the DLR Transition 

experiment resulted in the documentation of an absolute instability in the region of non­

linear amplitude saturation. It is this absolute instability that might explain experimen­

tal observations of a  time-dependent explosive growth of high-frequency disturbances.

Finally, the basic physical mechanisms of am experimentally detected passive 

laminar flow control mechanism on in fin ite  swept wings were modeled using the implicit 

PSE formulation. For the ONERA D-wing, the presence of micron-sized ro u g h n ess ele­

ments near the leading edge was modeled by forcing different wave number disturbances. 

It was found that forcing a superharmonic wave number disturbance with a wave length 

of AX2=2/3-AX2max entirely suppresses the most amplified disturbance with a wave length 

AX2 ,max over large regions of the chord. This is due to a strong initial growth of the 

forced disturbance. The subsequent decay of the forced disturbance gives rise to the 

growth of subharmonic wave number disturbances that eventually cause transition. For 

practical applications, it is crucial to limit the initial growth of the forced disturbance 

in order to avoid an earlier transition than in the natural transition case due to the 

disturbance forcing.

9.3 Recommendations for Future Research

In spite of the variety of presented applications of nonlinear PSE methods in the 

research community, their implementation for large-scale parameter studies demanded by 

the industry has not yet been accomplished. Further, the full potential of PSE methods 

is still to be utilized by developing them for fully three-dimensional flows without the 

assumption of infinite geometries. Finally, most of the flows across swept geometries

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



250

tha t are of practical interest are dominated by both the crossflow and the Tollmien- 

Schlichting instabilities. The physics of these flows are more complex than in the purely 

crossflow-instability dominated flows investigated in the presented work. Thus, the key 

areas in which future research is recommended are as follows :

• Optimizing the computational efficiency of the PSE methods by implementing 

multiprocessor algorithms.

•  Application of the nonlinear PSE to a systematic investigation of flows where CF- 

and TS-instabilities are present.

• Further investigation of passive and hybrid laminar flow control mechanisms on 

swept wings.

•  Adapting and implementing nonlinear PSE methods into design-packages for in­

dustrial applications.

•  Extending the PSE methods to a fully three-dimensional formulation.
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APPENDIX I 

DEFINITION OF ANGLES A N D  COORDINATE 

SYSTEMS

constant phase line

x „ a

Figure 1.1: Body-fixed and Galilean coordinate system

leading edge

primary wave vector

/  secondary wave vector

constant phase line

Body-fixed coordinate system  y  r /  1 , OL

Galilean coordinate system

Figure 1.2: Angle definitions
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APPENDIX II 

ONERA D SYMMETRIC WING SECTION

The profile is generated using the following formulas [96].

P(x/c) =  £  
i=0

For x/c<0.044 :

z jc  =  \Jx./c • P(x/c)

aO = 0.189830875843790

al — 0.31813568315041E -

a2 = —0.79875599950822E2

a3 = 0.19826412221164E4

a4 = —0.75862963116995E5

a4 = —0.17124203429644E5

a5 = —0.83765417234613E4

a6 = 0.89884596073744E6

a7 _ —0.35691922706000E7
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For 0.044<x/c<0.945 :

aO =  

a l  =  

a2 =  

a3 =  

a4 =  

a5 =  

a6 =  

a7 =  

a8 =

For 0.945<x/c<1.0 :

z/c =  -0.127

z/c  =  P(x/c)

0.205117E -  1 

0.27338051409795 

-0.12221782415231E1 

0.3886472060892E1 

-0.75862963116995E1 

0.68359355107744E1 

-0.73185676985056 

-0.27540347977852E1 

0.12790983175276E1

• (x/c -  0.945) +  0.0077958
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