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ABSTRACT 

HYPERSONIC BOUNDARY LAYER RECEPTIVITY TO ACOUSTIC 
DISTURBANCES OVER CONES 

Kursat Kara 
Old Dominion University, 2008 
Director: Dr. Osama A. Kandil 

Co-Director: Dr. Ponnampalam Balakumar 

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic 

disturbances are studied using both linear stability theory (LST) and direct numerical 

simulations (DNS). A computational code is developed for numerical simulation of 

steady and unsteady hypersonic flow over cones by combining a fifth-order weighted 

essentially non-oscillatory (WENO) scheme with third-order total-variation-diminishing 

(TVD) Runge-Kutta method. Hypersonic boundary layer receptivity to freestream 

acoustic disturbances in slow and fast modes over 5-degree, half-angle blunt cones and 

wedges are numerically investigated. The free-stream Mach number is 6.0, and the unit 

Reynolds number is 7.8x106 /ft. Both the steady and unsteady solutions are obtained by 

solving the full Navier-Stokes equations in two-dimensional and axisymmetric 

coordinates. 

Computations are performed in three steps. After the steady mean flow field is 

computed, linear stability analysis is performed to find the most amplified frequency and 

the unstable disturbance modes in different flow regions. Then time accurate 

computations are performed using slow and fast mode acoustic disturbances, and the 



initial generation, interaction and evolution of instability waves inside the boundary 

layers are studied. 

Receptivity computations showed that the acoustic disturbance waves propagated 

uniformly to downstream, interact with the bow shock, enter the boundary layer, and then 

generate the initial amplitude of the instability waves in the leading edge region. Effects 

of the entropy layer due to nose bluntness to the receptivity process are studied. It is 

found that transition location moves downstream and is delayed by increasing bluntness, 

and the role of the entropy layer in this process is revealed. Also, the effects of wall 

cooling to the receptivity process using slow and fast mode acoustic disturbances are 

studied. The effects of cooling on the first and second mode regions are investigated. It is 

found that the first mode is stabilized and the second mode is destabilized by wall cooling 

when the flow is forced by acoustic waves in the slow mode. 
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NOMENCLATURE 

English Symbols 

a Speed of sound 

c Phase velocity 

dj Interpolation coefficients 

decpt Receptivity coefficient 

cv Specific heat at constant volume 

cp Specific heat at constant pressure 

dr Weight coefficients 

e Molecular internal energy 

E Total energy 

f Disturbance frequency 

Fo Non-dimensional disturbance frequency 
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Fv, Gv Viscous fluxes 
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kr Thermal conductivity coefficient 
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Mach number 

N factor 

Pressure 

Prandtl number 

Conservative flow field vector 

Heat flux 

Gas constant, Nose radius 

Radius of curvature of bow shock 

Nose radius 

Reynolds number 

Reynolds number based on distance from leading edge 

Reynolds number based on nose radius 

Source term 

Temperature 

Time 

Velocity vector 

Velocity in streamwise, spanwise and normal directions 



Velocity in streamwise, spanwise and normal directions 

Weight coefficients 

Cartesian coordinates 

Cartesian coordinates 

Cylindrical coordinates 

Distance from leading edge 

Streamwise wave number 

Spanwise wave number, Shock angle at inviscid limit 

Smoothness indicator 

Density 

Stress tensor 

Molecular viscosity coefficient, Free stream Mach angle 

Kinematic viscosity coefficient 

Specific heat coefficient 

Boundary layer thickness, Shock standing distance 

Curvilinear coordinates 

Similarity coordinate 
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0 ) 

Acoustic disturbance frequency 

Second viscosity coefficient 

Maximum eigenvalue 

Cone half-angle, Acoustic wave incident angle 

Shear stress 

Smoothness function 

Disturbance frequency 

Subscripts 

CO 

ac 

aw 

w 

max 

amp 

0 

i 

Freestream flow variables 

Boundary layer edge values 

Acoustic disturbance 

Variables on adiabatic wall 

Variables on wall 

Maximum value 

Amplitude of variables 

Mean flow variables, Stagnation conditions 

Dummy index, Imaginary part of a complex variable 

Real part of a complex variable 
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np Neutral point 

sim Similarity solution value 

tr Transition values 

Superscripts 

Dimensional variables 

Acoustic disturbance variables 

Amplitude of disturbance variables 

The variables in curvilinear coordinates 

Numerical flux 

Split flux with positive eigenvalues 

Split flux with negative eigenvalues 
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CHAPTER I 

1. INTRODUCTION 

Transition from laminar to turbulent flows in hypersonic boundary layers is 

crucial for prediction and control of heat transfer, skin friction, separation and other 

boundary layer parameters. This effect is critical to reentry vehicles and airbreathing 

hypersonic cruise vehicles, yet the physics of the transition process is not yet well 

understood enough to be used for predictive purposes1. The U.S. National committee on 

Theoretical and Applied Mechanics reported that "/n hypersonic flight, delaying the 

transition to turbulence can make the difference between successful reentry from space 

and the loss of a mission." 2 Also, a 1992 National Aerospace Plane review by the 

Defense Science Board found that further design development and increased confidence 

in boundary layer transition and scramjet engine performance have paramount 

importance in the NASP program. 

Figure 1.1 shows an example Mach 4.3 transition on a sharp cone near a zero 

angle of attack, at a freestream Reynolds number of 2.66xl06 /in.1 In this figure the cone 

is travelling from left to right in still air. The lower surface boundary layer is turbulent, 

and acoustic waves radiated from turbulent eddies can be seen passing downstream at the 

Mach angle. On the upper surface, the boundary layer is intermittently turbulent, with 

two turbulent spots being visible in the image, interspersed among laminar regions1. 

Larger waves can be seen in front of the turbulent spots, with smaller levels of acoustic 

This dissertation is formatted based on AIAA Journal. 
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noise being radiated from the turbulence within the spots. The acoustic noise is not 

present above the laminar regions1. 

Figure 1.1 Shadowgraph of transition on a sharp cone at Mach 4.311. 

Laminar to turbulent transition controls are important aerodynamics quantities 

such as drag and heat transfer. Heating rates generated in the turbulent region may be 

three to eight times higher than that of the laminar region as shown in Figure 1.2 which 

presents computations and measurements of the surface heat transfer during the reentry-F 

test of ballistic RV. Here, the symbols show the flight data and the computations were 

done using a variable-entropy boundary layer code. According to Hamilton, who 

conducted the simulations, the typical accuracies are 20-25% for the turbulent boundary 

layer and 15-20% for the laminar layer; error bars are sketched on the figure based on 

these estimates. Transition onset causes the rise in heating at z/L=0.65. Current 

computational capabilities for laminar and turbulent heating in attached flows are fairly 



3 

good; the uncertainty in prediction of the overall heating is often dominated by the 

uncertainty in predicting the location of transition1. 

400 Transition Uncertainty 300% 
Laminar Uncertainty 15% 
Turbulent Uncertainty 20%. 

Computed 
Free Flight Data 

'0 0.25 
Hamilton. Re-Entry F. NASA-TP-3271. 

Figure 1.2 Heating-rate distribution along cone for reentry-F . 

1.1 Hypersonic Flow over a Blunt Cone 

In hypersonic flow, blunt leading edge is necessary to control the heating of the 

leading edge region. The effect of bluntness can be experienced by the flow hundreds of 

Bow Shock 

Entropy Layer 

M . 

Sonic Line 

Aids of Symmetry 

Figure 1.3 Schematic view of hypersonic flow over a blunt cone. 

nosetip radii downstream. The actual distance that the effects seem to propagate is 

dependent on the bluntness and the free stream conditions3. 
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Figure 1.3 shows a schematic view of hypersonic flow over a blunt cone. 

Hypersonic flow comes from the left and generates a strong bow shock at the 

downstream of the nose region. The bow shock creates a layer of high specific entropy 

and strong entropy gradients in the gas outside the boundary layer, commonly referred to 

as an entropy layer. The thickness of this layer is a function of the bluntness on the 

leading edge of the cone. The entropy layer is "swallowed" by the growing boundary 

layer at a certain downstream location of the cone called a swallowing point. 

1.2 Hypersonic Boundary Layer Transition and Receptivity 

The physical mechanism of transition from laminar to turbulent flow has long 

been investigated since Reynolds' famous experiment in 1883. At the present time, no 

mathematical model exists that can predict the transition Reynolds number on a flat 

plate4. One obvious reason for this is the variety of influences such as free stream 

turbulence, surface roughness, sound, etc. that are incompletely understood. Periodically 

the state of our knowledge is reviewed by Dryden5, Tani6, Morkovin7, Reshotko8"11, 

Morkovin and Reshotko12, Bayley13, Arnal14, Saric4'15"17, and Reed18,19. 

The process of transition for boundary layers in external flows can be 

qualitatively described using Figure 1.4 and following a scenario based on one of the 

different roadmaps to turbulence developed over the years4, 20. In Figure 1.4, the initial 

amplitude increases systematically from left to right. Initially, these disturbances may be 

too small to measure, and they are observed only after the onset of instability. 
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Forcing Environmental Disturbances 
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Figure 1.4 The paths from receptivity to transition4 
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Figure 1.5 Schematic view of transition process, (from Saric) 

A number of different instabilities can occur independently or together, and the 

appearance of any particular type of instability depends on the Reynolds number, wall 

curvature, sweep, roughness, and initial conditions. 
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Though there are several mechanisms and routes to go from a laminar to turbulent 

state, most generally follow these fundamental processes : 

1. Receptivity 

2. Linear instability 

3. Nonlinear instability and saturation 

4. Secondary instability and breakdown to turbulence. 

In the receptivity process (see Morkovin7, and Reshotko8) external disturbances 

such as free stream (acoustic, vortical and thermal perturbations) and/or wall induced 

(vibrations, periodic suction/blowing, surface heating, roughness, and geometry) enter the 

boundary layer and generate initial amplitude, frequency and phase of instability waves. 

In the second step, the amplitudes of these instability waves grow exponentially 

downstream and this process is governed by the linearized Navier-Stokes equations. 

Further downstream, the amplitudes of the disturbances become large, and the nonlinear 

effects inhibit the exponential growth and the amplitude of the waves eventually saturate. 

Then these finite amplitude saturated disturbances become unstable to two- and/or three-

dimensional disturbances. This is called secondary instability. Beyond this stage the 

spectrum broadens due to complex interactions and further instabilities, and the flow 

becomes turbulent in a short distance downstream21'22. 

1.3 Outline of Present Research 

The main objective of the present research is to study hypersonic boundary layer 

receptivity to free stream acoustic disturbances by direct numerical simulation (DNS) 

over cones. Figure 1.6 shows the schematic view of the cone geometry and computational 
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domain in axisymmetric coordinates. By DNS we refer to the numerical simulation of the 

full nonlinear, time-dependent Navier-Stokes equations without any empirical closure 

assumptions. 

Figure 1.6 Sketch of cone geometry and computational domain. 

This approach can provide a complete space-time history of the flow field and 

permit precise parametric study. It is the most accurate and appropriate method for 

laminar to turbulence transition study. However, linear stability and PSE results are also 

used in the present work. This dissertation includes the following chapters. 

In chapter 2, the governing equations, numerical methods, computational grid and 

solution algorithm for two-dimensional and axisymmetric geometries are presented. 

In chapter 3, validation results of the axisymmetric flow solver are presented. 
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In chapter 4, the transition process induced by the interaction of acoustic 

disturbances in the free stream with boundary layers over a 5-degree straight cone and 

wedge with blunt nose is numerically investigated at free stream Mach number 6.0. 

In chapter 5, effects of nose bluntness on hypersonic boundary layer receptivity 

are investigated using DNS, and steady and unsteady simulation results are presented. 

In chapter 6, effects of wall cooling on hypersonic boundary layer receptivity are 

investigated using DNS, and steady and unsteady simulation results are presented. 

In chapter 7, conclusions of the present research and recommendations for future 

research are presented. 
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CHAPTER II 

2. GOVERNING EQUATIONS AND SOLUTION METHOD 

In this study, the main objective is to investigate hypersonic boundary layer 

receptivity to free-stream acoustic disturbances over cone and wedge using direct 

numerical simulation (DNS). In this chapter, we will first give a derivation of Navier-

Stokes equations in two-dimensional and axisymmetric coordinates and numerical 

schemes to solve these equations 

2.1 General Form of Governing Equations 

Unsteady, compressible three-dimensional Navier-Stokes equations in the vector 

notation in Cartesian coordinate system can be expressed in the following equations 

where the superscript '*' denotes the dimensional variables. 

^ r + V - / ? V = 0 (2.1) 
dt 

rdY* \ 
* -___._* 

dt - + V -W = V-n* (2.2) 

PCy 
(BT* \ -V+v*-vr =v-^vr*+o* (2.3) 
Kdt ) 

* * » • » » • « * 

p =pRT* (2.4) 
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Equations (2.1)-(2.4) represent continuity, momentum, energy, and state equation 

respectively. The gas is assumed to be thermally and calorically perfect, n represents 

stress tensor and its components rtj are expressed in Equation (2.5) where Stokes' 

2 

hypothesis A* = —ju* is enforced. 

* * c> * du* du* 2 _ duk 

— - 1 1 8..—r 
dx* dx* 3 " dx. 

^ 

V ~"J 

(2.5) 
* ; 

The dissipation term, O, in energy Equation (2.3) can be expressed as follows 

._ * * * 
u IJ 

(2.6) 

where 

• 1 
*\ du* duf 

^X] dx; ; 

(2.7) 

Molecular viscosity coefficient {\C) is calculated using Sutherland's law. 

* c,T 

c2+T 
(2.8) 

where cx = 7.30246 • 10"7,c2 = 198.7°R. 

The thermal conductivity coefficient (fey) is given in terms of the Prandtl number 

(Pr). 

t\,rp ^~" _r_M_ 
r-iPr 

(2.9) 

where y is the specific heat coefficient, y = 1.4 and Pr = 0.7 
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2.2 Nondimensionalization of Navier-Stokes Equations 

Before proceeding, to the computation model governing equations are 

nondimensionalized using characteristic quantities for convenience. The density, p*, 

temperature, T*, pressure, p*, and velocities, u\, are nondimensionalized using their 

corresponding upstream reference values, pla,T^,pla, and L^e/' respectively. The 

reference values for length and velocity are computed by 

* * L*=^> tC=V*£ (2-10) 

where, XQ is the location of the beginning of the computational domain in the streamwise 

direction. 

Using the above characteristic quantities, nondimensional variables can be written 

in the following form. 

x t u, 
x = —— t = u = —— 

1 L* ' L* /U* ' U* 
P T T P 

Pi=—r, r = ^ ' P = —, 
Ac Tx p x 

* -r T * T * 

/"oo A» K 

The nondimensionalized Navier-Stokes equations in two-dimensional and 

axisymmetric coordinate systems are given in the following sections. 
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2.3 Two-dimensional Navier-Stokes Equations 

After nondimensionalization using the above reference quantities, two-

dimensional, unsteady, compressible Navier-Stokes equations can be written from 

equations (2.1)-(2.4) in conservative flux vector form as follows. 

dQ tdF , dG _dF1_ dG^ 
• + — + -

dt dx dy dx dy 
(2.11) 

where Q is the solution flow field vector, F and G are the streamwise- and wall normal-

direction inviscid flux vectors given by 

Q = 

p 

pu 

pv 

pE 

F = 

pu 

pu2 + p 

puv 

(pE + p)u 

G = 

pv 

pvu 

pv2 + p 

(pE + p)v 

(2.12) 

and Fv and Gv are the streamwise- and wall normal-direction viscous flux vectors given 

by 

F = 

0 

* • * 

^ 

UTxx+VTxy ~q*. 

Gv = 

0 

T 
yx 

Ty> 

Myx+VT^ -qy_ 

(2.13) 

Shear stresses (2.14) and heat fluxes (2.15) have the following form. 

** 3 Re 

T =T = -*— 
v ** Re 

w 3 Re 

3u dv 

dx dy, 

du dv 
— + — 

{dy dx 

dv dw' 

dy dx 

(2.14) 
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y dT 
q*~ (y-DPrRedx 

y dT 
qy~~\y-\)PrRe~dy 

Here (x, y) are the two-dimensional Cartesian coordinates, and (w, v) are the 

corresponding velocity components, p is the density, and p is the pressure. E is the total 

energy given by 

E = e + -
2 

e = cvT (2.16) 

p = pRT 

Here e is the molecular internal energy, and T is the temperature. 

2.4 Navier-Stokes Equations in Axisymmetric Coordinates 

For governing equations of an axisymmetric flow field, the vector form of Navier-

Stokes Equations (2.1)-(2.4) are written in cylindrical coordinates (x, y,0). Then, these 

equations are nondimensionalized using reference quantities given in Section 2.2. In 

axisymmetric flow it is assumed that there is no flow in the circumferential (0) direction 

and the derivatives in this direction are also zero. 

The axisymmetric flow assumptions in Equation (2.17) are applied to 

nondimensionalized equations and the resulting axisymmetric, unsteady, compressible 
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Navier-Stokes equations in conservative flux vector form are expressed in the following 

form. 

dQ dF dG_8F dG 

dt dx dy dx dy 
(2.18) 

where Q is the solution flow field vector, F and G are the axial- and radial- direction 

inviscid flux vectors given by 

Q = 

P 

pu 

pv 

pE 

F = 

pu 

pu2 + p 

puv 

(pE + p)u 

G = 

pv 

pvu 

pv2 + p 

(pE + p)v 

(2.19) 

and Fv and Gv are the axial- and radial- direction viscous flux vectors given by 

F = 

0 

* • « 

T*y 

M 7 » + v ^ ~q*. 

Gv = 

0 
t 

yx 

Tyy 

_U*y*+VTy, -%_ 

(2.20) 

The vector S contains viscous and inviscid fluxes of the source term associated 

with the axisymmetric geometry. The source term Equation (2.21), shear stresses 

Equation (2.22) and heat fluxes Equation (2.23) in the axisymmetric formulation have the 

following form. 

s-i 
y 

o 
yx 

Tyy X86 

UT +VT —a _"yx yy Vy 

pv 

puv 

pv2 

(pE + p)v 

(2.21) 
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2 // 
* 3 Re 

T =T = - — 
39 yx Re 

du dv v 

dx dy y 

du dv 
— + — 
dy dx 

2 M f 
Tyy 3 Re 

66 3 Re 

dv du v 

dy dx y 

v du dv 

< y dx dy 

( 

(2.22) 

qy 

Y dT 

(j-\)PrRe dx 

y dT 

(y-\)PrRe By 

(2.23) 

There exists a singularity along the axis of symmetry, y=0. To remove the 

singularity we apply l'Hopital rule to the source term and take the limit of the resulting 

equation as y -* 0 using symmetry conditions given in Equation (2.24). The source term 

along the axis of symmetry becomes; 

dy 
= 0 

y=0 

du 

~dy~ 
= 0 

y=0 

dp 
= 0 (2.24) 

y=0 

dy 
= o 

y=0 

V\ n = 0 

l.y=0 
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S = 

dv 

dy 

P"y=0 
dv_ 

dy y=0 

JL 
Re 

y=0 

f 

dy 

du 
+• 

fj. d 

Redy 

dv_ 

y=0 

dv_ 

dx y=0 

y=oJ 

( ^ + P ) | 
y=0 

-U y=0 
Re 

d 
dy 

du 

ev 
'dy y=0 

2 n 
3 Re 

Y 

dy 

av 

dy 

d 

+ -
y=0 

y=0 

dv 

dx 

du 

dx 

y=Oj 

\ 

y=0 

( 

(^- l )PrReay 

dT 

dy 

\ 

y=oJ 

(2.25) 

Applying the same procedure to shear stresses and heat fluxes we get new terms 

without singularity in them along the symmetry axis (y=0). 

4 u 

" 3 Re 

r JUL 
" iRe 

du dv | 

Kdx dy) 

'dv du} 

^dy dx) 

T0ff = 7»> 

^ = 0 

V = o 

y dT 

* • " > - \)PrRe dx 

y=0 

y=0 

y=0 

(2.26) 

(2.27) 

<zv=o 
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Here (x, v) are the axisymmetric coordinates, and (w, v) are the corresponding velocity 

components, p is the density, and p is the pressure. E is the total energy given in Equation 

(2.16). 

2.5 Coordinate Transformation 

For convenience of computation, the equations are transformed from physical 

coordinates (x, y) to the computational coordinate system (^, x\) in a conservative manner 

such that the general form of the equations is unchanged. 

dQ dF dG dF dG -
— + — + — = ̂ - + — V - + S (2.28) 

8t d% drj 8% 8TJ 

where 

Z = 4(x,y), r1 = 71{x,y) (2.29) 

The metrics are expressed as the following. 
&=My7

 Ttx=-\J\y( (2.30) 

where J is the Jacobian given by 

/ = (2.31) 

The components of the flux in the computational domain are related to the flux in 

the physical domain by 
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H\ 
•T = i — i 

kl 
(&FW+£,G,) 

kl 
- (TjxF + rjyG) 
KJ = 1—; 

kl 
_ (^Fv + 7 yGv) 

(2.32) 

2.6 Computational Methods 

The governing equations are solved using the 5th order weighted essentially non-

oscillatory (WENO) scheme for space discretization and the 3rd order total variation 

diminishing (TVD) Runge-Kutta scheme for time integration. These methods are suitable 

in flows with discontinuities or high gradient regions and solve the governing equations 

discretely in a uniform structured computational domain in which flow properties are 

known at grid points. 

The WENO scheme approximates the spatial derivatives in a given direction to a 

higher order at the nodes, using neighboring nodal values in that direction. The TVD-RK 

scheme integrates the resulting equations in time to get the point values as a function of 

time. Since the spatial derivatives are independent of the coordinate directions, the 

method can easily add other dimensions. It is well known that approximating a 

discontinuous function by a higher order (two or more) polynomial generally introduces 

oscillatory behavior near the discontinuity, and this oscillation increases with the order of 

the approximation (Figure 2.1). 
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The essentially non-oscillatory (ENO) and the improvement of these WENO 

methods are developed to keep the higher order approximations in the smooth regions 

and to eliminate or suppress the oscillatory behavior near the discontinuities. 

-0.5 

0.7$ '-

0.5 \ 

0.251 

# 

-0.25 

4.5 

-0.75 

A 
* ' * ' t * ' ' * • ' . ' • " ^ • • • M " ' ^ ' ' ^ ! . ! . . ! 

^5W ''4i w •«:»o WM m wm t ^ " ^ " ^ " ^ ' " A ^ " ^ " ^ ' 

Figure 2.1 Fixed central stencil cubic interpolation (left) and ENO cubic interpolation 

(right) for the step function. Solid: exact function; Dashed: interpolation polynomials.23 

They are achieved by systematically adopting or selecting the stencils based on 

the smoothness of the function being approximated. Shu23 explains the construction, 

analysis and application of ENO, WENO and TVD-RK methods and the formulas for 

hyperbolic conservation laws. Atkins24 gives the application of ENO method to the 

laminar three-dimensional Navier - Stokes equations. Balakumar et al.25 describe in 

detail the application of WENO and TVD-RK schemes to three-dimensional Navier-

Stokes equations. 

2.7 Essentially Non-Oscillatory (ENO) Scheme 

The ENO idea was proposed in the classic paper of Harten, Engquist, Osher and 

Chakravarthy26 in 1987. It seemed to be the first successful attempt to obtain a self-
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similar (i.e. no mesh size dependent parameter), uniformly high order accurate, yet 

essentially non-oscillatory interpolation for piecewise smooth functions. The generic 

solution for hyperbolic conservation laws is in the class of piecewise smooth functions. 

The ENO scheme is based on point values and TVD-RK discretization, which can save 

computational costs significantly in multi-dimensions are developed later ' . In the 

ENO and WENO methods the spatial derivatives with respect to a given direction are 

approximated by expansions in that direction only. Hence, a one-dimensional description 

is trivially extended to multi space dimensions. Here we considered application of the 

ENO scheme to the following one-dimensional equation. 

&--& (2.33) 
dt dx 

The spatial derivative at a point is calculated using difference of numerical fluxes; 

Equation (2.34) is similar to the approach of finite-volume methods. 

fix J-f(x ,) 
2 

dx Ax-
W&- ^ '-*- + 0(Axl

k) (2.34) 

where JC,- represents the coordinate at the ith grid point and k stands for the order of 

accuracy. 

The numerical flux is determined from linear combination of flux values at 

neighboring nodes from Equation (2.35). 

it-i 

fx =Ycrif . r= 0,...,k-l (2.35) 
j=0 
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where crj are the interpolation coefficients for the rth interpolation cell. Equation (2.36) 

gives the interpolation coefficient formula for uniform grids, and Table 2.1 gives the 

values of c„ for k=3 and 5. 

k 1=0 9=0 

c, = E I^Ti <2 3 6> m=;+i n(m _ /) 
/=0 

Table 2.1 The interpolation constants crj. 

k 

3 

5 

r 

-1 

0 

1 
2 

-1 

0 
1 

2 

3 

4 

j=o 
11/6 

1/3 

-1/6 

1/3 

137/60 

1/5 
-1/20 

1/30 

-1/20 

1/5 

j=l 
-7/6 

5/6 

5/6 

-7/6 

-163/60 

77/60 
9/20 

-13/60 

17/60 

-21/20 

j=2 
1/3 

-1/6 

1/3 

11/6 

137/60 

-43/60 
47/60 

47/60 

-43/60 

137/60 

j=3 

-21/20 

17/60 

-13/60 

9/20 

77/60 

-163/30 

j=4 

1/5 

-1/20 
1/30 

-1/20 

1/5 

137/60 

Figure 2.2 shows the physical and numerical fluxes defined in Equation (2.35) on 

a one-dimensional grid. 

The ENO scheme uses an adaptive procedure to search for the smoothest stencil 

relative to the specified reference point. Therefore, a good resolution at the discontinuity 

can be achieved. The basic idea of ENO is to construct a stencil that does not include a 

cell which contains discontinuity. For example, if we want to construct a third order 

interpolation function at point xi+m, three candidate stencils can be used: (x,-, xi+i, xt+2), 
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(xi-u Xt, xi+i), and (Xi.2, x^, xi). Among these stencils, shown in Figure 2.3, some may 

contain a discontinuous cell or cells. These stencils are not desired in the numerical flux 

reconstruction and have to be removed from the reconstruction process. 

f - \ f»\ 

j-3 i-2 i-1 i hi 1*2 i+3 

Ji-\ Ji JM 

Figure 2.2 Physical and numerical fluxes on one-dimensional grid. 

The selection procedure of the interpolation stencil has been described by Shu23 in 

Procedure 2.1 ID ENO reconstruction. Using this procedure, one can get an interpolation 

stencil of k"1 order, which is the smoothest one among all other computed stencils at the 

interpolation point 

2.8 Weighted Essentially Non-Oscillatory (WENO) Scheme 

In the ENO scheme one first calculates fluxes from k candidate stencils covering 

the (2k-1) cell during the stencil selection process and then uses only the smoothest 

stencil and obtains \ih order accuracy. However, if all of the (2k-1) cells in the potential 

stencils are used, one could get (2k-l)th order accuracy in smooth regions. This is the 

reason for the development of the WENO scheme. 

As an example for three candidate stencils (k=3) five cells are considered (2*3-

1=5), and the smoothest stencil is used to form the numerical flux and 3rd order accuracy 

gained in the ENO scheme. In contrast, the WENO scheme uses three stencils (k=3) 
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covering (2*3-1=5) cells then combines the stencils to form the numerical flux, resulting 

in 5 order accuracy. 

The basic idea of the WENO scheme is that instead of using only one of the 

candidate stencils to form the reconstruction, one can use a convex combination of all of 

them. Numerical fluxes can be calculated for each stencil shown in Figure 2.3 as follows. 

2 

/ ! ( * l ) 

!+2 

/ 2 ( X , ) 

I 

i+2 

i-2 i-1 i+1 i+2 

Figure 2.3 Numerical flux components in WENO scheme. 

4->=2c«W r=0 *-* (2.37) 

In the next step, convex combination of the numerical fluxes from all the stencils 

can be computed using the following formula. 

/(^)=S^A rw r=o,...,*-i (2.38) 

Apparently, key to the success of the WENO scheme is the choice of the weights 

cor. For stability and consistency, the following conditions are required. 

cor>0, 
i-1 

2>,=i (2.39) 
r=0 
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When the function/has discontinuity in one or more of the stencils, it is required 

that the corresponding weights, 6)r, should be essentially zero to emulate successful ENO 

ideas. Another consideration is that the weights should be smooth functions of the cell 

averages involved. Also, the weights should be computationally efficient. All of these 

considerations lead to the following form given in Section 2.2.2 Weno approximation of 

Shu23 

0)r^j^—, r = 0,..,k-l (2.40) 

s=0 

where 

ar=—^—T (2.41) 

Here s > 0 is introduced to prevent the denominator from becoming zero, and we 

take £ = 10"6 in our numerical computations. The dr is the weight coefficient for the r"1 

interpolation stencil when/^ is smooth in all of the candidate stencils. We can see that dr 

must satisfy 

dr>0 | X = 1 (2-42> 

For the 5th order WENO scheme which employs three candidate stencils covering 

five cells, the weight coefficients are 

d°=W d'=To- ">'To (243) 

Smoothness indicators, fir, for the rth stencil are 
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Po ^(PI-IPM + PM? +^QPi-4Pi+i+Pi+2)2 

A =§(A- . -2A + A+1)
2 +\(P-l ~PMf (2-44) 

P\ =§(A- 2 -2A-1 + Pf +\(Pt-2 -4/V-i +3p,)2 

2.9 Flux Splitting 

The inviscid and viscous terms of Navier-Stokes equations represent 

fundamentally different properties and require different numerical treatments24. The 

inviscid terms characteristically describe wave phenomena. The ideal approach would be 

to decompose the inviscid flux vector into characteristic components and treat each wave 

with an appropriate scalar operator. However, within the WENO framework, such an 

approach requires the creation of a characteristic subset at each grid point, which greatly 

increases the computational cost and storage requirements. A computationally efficient 

alternative is a local flux-splitting approach24. For each coordinate direction, k, the 

inviscid flux is split into two components: one with all positive eigenvalues and the other 

with all negative eigenvalues. 

fk=fk
+ + fk~ (2-45) 

f!=fkTcxkq (2.46) 

ok=a^k)>\Ak\ (2.47) 

where Xk = maximum eigenvalue of dfk\ 
dq\ 
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More elaborate means of flux splitting exist, but this simple approach is 

inexpensive and works well. The only formal restriction on the splitting is that split 

fluxes must be smooth functions of q. This is necessary to ensure that higher order 

derivatives exist when evaluating the numerical flux, in addition to the usual need to 

prohibit expansion shocks. For the present splitting technique, the splitting flux will be 

smooth if the function a is smooth. In the present implementation it is selected as 

cr(x)=J$+A? (2.48) 

' 25 

where e^s a small number taken as 0.05 in this computation . 

The viscous terms are diffusive and dissipative in nature and should be treated 

symmetrically. Therefore, the viscous flux is divided into two parts equally, and each part 

is added to the positive and negative component of the inviscid flux respectively. The 

WENO scheme is then applied to each component of the combined flux according to the 

wave propagation direction. 

2.10 Total Variation Diminishing (TVD) Runge-Kutta Integration 

A class of total variation diminishing (TVD) high order Runge-Kutta methods is 

developed by Shu and Osher27, and Gottlieb and Shu29. Figure 2.4 shows the result of the 

TVD Runge-Kutta method and non-TVD method for a shock propagation problem. We 

can clearly see that the non-TVD result is oscillatory (there is an overshoot). Such 

oscillations may cause difficulties when physical problems are solved, such as the 

appearance of negative density and pressure Euler equations of gas dynamics. On the 

other hand, the TVD Runge-Kutta method guarantees that each middle stage solution is 
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also TVD, and this result convinces us that it is much safer to use a TVD Runge-Kutta 

method for solving hyperbolic problems 23 

( K M ?<>(>-*,:<"i X X K K ><'^ "O-

TVD time discretization 

exact 

TVD 

exact 

non-TVD 

Non-TVD time discretization 

Figure 2.4 Comparison of second order TVD MUSCL spatial discretization23. 

Although higher order TVD Runge-Kutta methods are available, the third-order 

method was chosen on the basis of storage considerations. The optimal third-order 

method is given by: 

q"=qn+AtL, 
V) 

4 4 4 (<?w) 
(2.49) 

3 3 3 («()) 

where L(q) is the WENO approximation to the spatial derivative of flux vectors. The time 

step At is determined on the basis of an inviscid CFL number, 

^-gtw (2.50) 

where Ak are the eigenvalues of the Jacobian matrix. 
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2.11 Boundary Conditions 

The equations of motions require boundary conditions on all sides of the domain 

in which the solution is to be obtained. In CFD methods the boundary conditions (solid 

wall, symmetry, inflow, outflow, etc.) must be applied at each edge of the computational 

blocks. This section describes the boundary conditions used in steady and unsteady flow 

computations. Figure 2.5 shows the computational setup. 

Symmetry[i 
DoJ=-L,j„„ 
Doi=l,5 

P — P 

ViscousWall[j = j^] 

AdiabaticWall 

v = 0 

u "mil +S-U = u 
Vi.+5-i>/' 

Extrapolation^ = i^] 

Mmax — rimax-1 

E - E 
/max imax-1 

V. —V- , imax imax-1 

Figure 2.5 Computational domain and boundary conditions. 

At the outflow boundary, the extrapolation boundary condition is used. At the 

wall, viscous conditions for the velocities and adiabatic or isothermal condition for the 

temperature are used. The density is computed from the continuity equation. The cone 

and wedge are assumed to align with the free stream, and the symmetry condition is 

applied to the axis of symmetry of cone and wedge. In the mean flow computations, the 

simulation prescribes the free stream values at the outer boundary, which lies outside of 



29 

the bow shock. In the unsteady computations, it superimposes the acoustic perturbations 

on the uniform mean flow at the outer edge. 

Acoustic disturbance waves are obtained from the linearized Euler equations in a 

uniform mean flow as follows 

dp T1 dp du dv 

dt dx dx oy 

du rr du dp 

dt dx dx 
dv Tr dv dp 

dw n 9w dp 

dT TT dT dp TT dp 
^° P a* ro o P ~ ~ o a dt 

P0=P0RTo 
p = p0RT + pRT0 

dx dt dx 

(2.51) 

The solution of this system can be written as 

p 
u 
V 

w 

T 

• = . 

-aac/(Po(aacVo-<°)) 

-£ac/(po{aacU
0-<»)) 

-PJ(P»("aP*-<»)) 
. (r-i)VA,«o 

\p (2.52) 

Here the pressure p is in the form 

P= P e 
r ramp 

f(,aacx+£xy+fixz-(t)t) (2.53) 

The dispersion relation among the wave numbers aac, eac, f3ac and the frequency 

(o is given by 
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(aJJ,-a>)2=(aJ+8j+fiJ)af (2-54) 

For acoustic disturbances with zero sweep (i.e. /?ac = 0), and zero incident angle 

(i.e. 6 = tan x — = 0), the x-wave number aac can be expressed as 

a-=T771—\ (2-55) 
ac 

The plus sign corresponds to the fast moving wave, and the minus sign 

corresponds to the slow moving wave. The corresponding phase speeds are c = U0 ± a0. 

The wave number of the fast moving wave is aac < ~— and for the slow moving wave 

is aac > —-—. For free stream Mach number M=6.0 and nondimensional frequency 
U0-a0 

F=1.2xl0~4, wave numbers and wave lengths of the slow and fast waves are given in 

Table 2.2. 

Table 2.2. Wave number and wave length for the slow and 

fast acoustic waves. F=1.2xl0-4( f = 467.79 kHz) 

Oac X(ia.) 

Slow wave 0.0821 0.0671 
Fast wave 0.0586 0.0940 

2.12 Computational Grid 

The grid is generated using analytical formulae. The grid stretches in the n 

direction close to the wall and is uniform outside of the boundary layer. In the ^ direction, 

the grid is symmetric about the leading edge and very fine near the nose and is uniform in 

the flat region. Figure 2.6 shows that every 10 grid line of the computational grid near 

the leading edge region. 
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Figure 2.6 The computational grid near nose region. 

The outer boundary that lies outside the shock follows a parabola so that the 

boundary layer growth could be captured accurately. The computational domain extends 

from x = -0.015 to 20.0 in. in the axial direction. The length of the computational domain 

is determined using neutral stability analysis. After obtaining mean flow results, linear 

stability analysis is performed to find the most amplified frequencies, an N-Factor curve 

is computed for this frequency, and the location of transition onset determined. The grid 

distribution in the ^ direction on the flat part of the cone is determined from the 

wavelength (Table 2.2) of acoustic disturbance. To capture the disturbance propagation 

one wavelength is represented by 20 points that give dx=0.003 in. on the flat part. 
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Figure 2.7 Computational blocks for parallel computation. 

Calculations were performed using a grid that has 32 blocks; each block has 

127x425 grid points. The computational domain has approximately 2 million grid points. 

Due to the very fine grid requirement near the nose, the allowable time step is very small 

and the computations become very expensive to simulate the unsteady computations in 

the entire domain. 

Figure 2.7 shows the streamwise partitioning of the computational domain in the 

nose region. In the computation, blocks are numbered from 0 to 31. Although the code is 

running on 32 processors it can be scalable to any number. Data exchange at the 

interfaces is done using MPI routines. Each block sends and receives data from a block 

on the left and on the right. These sending and receiving functions are executed at each 

step of the Runge-Kutta time iteration. The master node sends the flow parameters to 

every block and organizes the work between the blocks. 

FTTH 
Computational Blocks For Parallel Computations 

• ' • • • • ' ' 
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2.13 Solution Algorithm 

This section summarizes the solution procedure of this work. The governing 

equations are solved using a 5th order accurate, Weighted Essentially Non-Oscillatory 

(WENO) scheme for space discretization and a 3rd order total-variation-diminishing 

(TVD) Runge-Kutta scheme for time integration. Computations are performed for 

hypersonic flow at free stream Mach number 6.0 over a 5-degree, half-angle cone with 

different nose bluntness and wall temperature conditions. Also, cone results are compared 

with wedge results. 

In the first step steady mean flow is computed by performing unsteady 

computations using a variable time step until the maximum residual reaches a small 

value, -10"11. These computations use a CFL number of 0.2 for the adiabatic case and 

0.1 for isothermal cases. Mean flow density and temperature profiles are compared to 

similarity profiles to validate the results. Also, bow shock standing distance and shock 

shape are compared with the available formulas. Using mean flow results, linear stability 

analysis is then performed to find the stability characteristic of the mean flow. Neutral 

stability diagrams and N-Factor curves are calculated, and the most amplified frequency 

is found. In the next step unsteady disturbances with the most amplified frequency are 

introduced at the upper boundary of the computational domain and time accurate 

computations are performed to investigate the interaction and evolution of these 

disturbances to downstream. Since a very fine spatial grid is used to resolve the leading 

edge region, these computations require a very small time step that is taken as the 

minimum time step allowable for the CFL number given in Equation (2.50). 
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The acoustic field that impinges on the outer boundary is taken to be in the 

following form. 

p' = Real { peia-x±i^y-ia" } (2.56) 

Here o^0 eac are the x, y wave numbers, respectively, of the acoustic wave, and co 

is the corresponding frequency of the acoustic disturbance. The incident angle 6 of the 

acoustic wave is defined as 

^ t a n " 1 - ^ - (2.57) 

and in this study computations are performed for zero incidence angles. 

2.14 Summary 

In this chapter, we have discussed the governing equations, numerical algorithms 

and boundary conditions for direct numerical simulation of Navier-Stokes equations in 

two-dimensional and axisymmetric coordinates. In the next few chapters, we will apply 

these theories and numerical methods to analyze hypersonic boundary layer receptivity 

due to free stream acoustic disturbances over blunt cones and wedges. First, developed 

code is validated with available experimental data. Then a DNS was performed to study 

evolution of two-dimensional acoustic disturbances over cone and wedge, and receptivity 

characteristics were compared. Finally, nose bluntness and wall cooling effects on the 

hypersonic boundary layer stability and receptivity are investigated. DNS results were 

checked using linear stability theory (LST) and parabolized stability equations (PSE). 
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CHAPTER III 

3. CODE VALIDATION 

In this study our objective is to solve hypersonic steady and unsteady flow around 

circular cones and wedges to study hypersonic boundary layer receptivity and transition 

problems. For this reason, a 5th order accurate flow solver is developed. In this chapter, to 

validate the axisymmetric solver a series of comparisons with the data available in the 

literature was performed. 

3.1 Comparison with Mair's Experiment 

Mair30 performed experiments on blunt-nosed bodies in supersonic flow and some 

of his results were included in Van Dyke's31 famous An Album of Fluid Motion. In this 

section supersonic flow field around hemisphere-cone is computed and results are 

compared with Mair's30 experiment. Table 3.1 gives the flow parameters, and Figure 3.1 

shows the comparison of the flow field. 

Table 3.1 Flow parameters for Mair's wind tunnel model. 

Free stream 
Mach number MM= 1.96 
Reynolds number ReM = 1.3xl07/m 
Density Poo = 0.2922 kg / m3 

Velocity \J«,= 511.76 m/s 
Reservoir Pressure P0 = 14230.9 N / m2 

Reservoir Temperature T0 = 169.65 °K 
Wall temperature Adiabatic condition 
Prandtl number Pr = 0.70 
Ratio of specific heats y= 1.4 
Length scale (x0=0.5m) Vv--«o/£/- = 6.5xl0"3m 
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30 
Figure 3.1 Comparison of Mach contours with Mair' s experiment 
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Figure 3.2 (a) Velocity vectors near the stagnation point, (b) Streamlines colored by Mach 

contours near the leading edge. 
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Figure 3.1 clearly shows that the shock shape, bow shock standing distance 

matched perfectly. Velocity vectors near the stagnation point are shown in Figure 3.2 (a). 

From this figure one can easily see that flow is decelerating and stops on the stagnation 

streamline. Also, Figure 3.2 (b) shows the streamlines near the leading edge colored by 

Mach contours. In this figure uniform flow comes from left parallel to the x-axis and sees 

the bow shock and changes its direction. 

3.2 Comparison of Bow Shock Shape and Standoff Distance 

Bow shock shape and standoff distance are flow features that are reasonably easy 

to measure in experiments using optical techniques such as Schlieren imaging and 

shadowgraphs32. The position and shape of the shock is strongly dependent on flow 

physics and will not be correctly predicted by a CFD solver with an improper 

implementation of the Navier-Stokes or Euler equations33. In this section we will 

consider bow shock standing distance and shock shapes. 

Ambrosio and Wortman34 developed a correlation for shock standoff distances as 

a function of Mach number. The correlations are given as follows 

— 
— = 0.143eMl (3.1) 
R 

8 ™ 
— = 0.386eM« (3.2) 
R 

for sphere-cones and cylinder-wedges, respectively. Bow shock standoff distance is 

denoted by 8, and R is the nose radius of the body. Simulations performed for Mach 

numbers ranges from 1.5 to 6.0. Table 3.2 shows the computational parameters used in 
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these simulations. The nose part is modeled as a sphere and cylinder for cone and wedge 

respectively, and nose radius is 0.03125 in. for both. The length of the model is 0.2 in. 

and the flat part has a 5-degree, half-angle. Computations were performed using two-

dimensional and axisymmetric WENO codes on a 721 x 321 cell grid. 

Table 3.2 Flow parameters for Horvarth's experiment. 

Free stream 
Mach number 
Reynolds number 
Density 
Velocity 

Reservoir Pressure 
Reservoir Temperature 
Wall temperature 
Prandtl number 
Ratio of specific heats 
Length scale (x0=0.05in) 

Simulated standoff distances are presented in Figure 3.3, together with the curves 

of Equations (3.1) and (3.2). Very good agreement is observed for both cone and wedge 

geometries at high Mach numbers, with results diverging slightly at lower speeds. This 

happened due to the same grid, which is used for all simulations. 

Additionally, some empirical correlations for shock shape based on experimental 

results are given by Billig36 and summarized by Anderson37'38 as follows 

H,= 
Reoo = 

P°D = 

u„ = 
Po = 
T0 = 

6.0 
7.8xl06/ft 
7.059xl0"3lbm/ft3 

3140.21 ft/s 
475 psi 
475 °F 

Adiabatic condition 
Pr = 
Y = 
rKV^ _ 

0.72 
1.4 
7.308xl0"3ft 

x = R + S-Rcot2 J3 
' . y tan B * 

1 + - — T - i -

v Rl . 
(3.3) 

0.54 

^ • = 1.143e("-"1)U sphere-cone (3.4) 

1.8 

R —£- = 1.386e'M°°~1' cylinder - wedge (3.5) 
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Equation (3.3) gives the shock shape in Cartesian coordinates. Here R is the 

radius of the nose. Rc is the radius of curvature of the shock wave at the vertex of the 

hyperbola, 5 is the shock standoff distance, x and y are Cartesian coordinates, and (3 is the 

wave angle for an attached shock wave in the inviscid limit 
:*37,38 

0.14 

0.12 + 

0.10 +--

0.08 + 

8 0.06 + 

0.04 + 

0.02 

0.00 

Bow Shock Standing Distance vs Mach Number 

Simulated Sphere-Cone 

Correlation Sphere-Cone 

Simulated Cylinder-Wedge 

Correlation Cylinder-Wedge 

Q 

* 

Mach Number 

Figure 3.3 Bow shock standoff distances obtained by simulation compared with the 

predictions from the correlations of Ambrosio and Wortman34. 

Here shock shape is constrained to a hyperbolic curve fit which asymptotes to the 

freestream Mach angle37'38, u, given by 

// = arcsin — 
KM) 

(3.6) 
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In addition to code validation, shock shape is also used to help the grid generation 

process. To enforce the inflow boundary condition on the j=jmax n n e shock shape needs to 

be known and upper boundary, which lies outside the bow shock is, created based on this 

information. 

Figures 3.4 and 3.5 show the comparison of bow shock shape obtained by 

numerical simulation with the predictions from the correlations of Billig for sphere-

cone and cylinder-wedge, respectively. The figures show Mach contours. The white 

dotted lines are obtained from Equation (3.3) and show the empirical results. 

Figure 3.4 Bow shock obtained by simulation for cone compared with the predictions 

from the correlations of Billig . 

In the nose region simulated and correlated shock shapes are matched very well 

but away from the leading edge they separated from each other. Since the correlations are 
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based on a number of experimental results containing scatter, perfect agreement is not 

expected. 

-0,04 -0.02 0.00 0.02 0.04 0,06 0.08 
X (in) 

Figure 3.5 Bow shock obtained by simulation for wedge compared with the predictions 

from the correlations of Billig . 

3.3 Comparison of Wall to Total Temperature Ratios 

Horvath et al. investigated the effect of bluntness on the transition onset at Mach 

6.0 for 5-degree, half-angle cones. Figure 3.6 shows the schematic diagram of the 

experimental model. They measured wall to total temperature ratio to see the effect of 

bluntness on boundary layer transition. In this section computations were performed for 

three different nose bluntness that are used in the experiment35, and wall to total 

temperature ratios in the laminar part are compared. Computational parameters are the 

same as the parameters given in Table 3.2, but the length of computational domain and 
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grid resolution is different for each case where nose radii are 0.0625, 0.3125, and 0.001 

in. 

Rn = 0.00010, 0.03125, 0.06250 

R ,,,„/ 
n 

i •+ "P 

/ 

/ 
X 25 

/ 

"""won; 

\ Origin (tip) 
(0,0) 

1 Thermocouples (94) 

Figure 3.6 Schematic diagram of the experimental model35. 

Moo=6.0, Re=7.8xl06 /ft, T0=475 °F, P0=475psi 

Figure 3.7 shows the comparison of simulated wall to total temperature ratio with 

conventional wind tunnel data 5-degree straight cone of tree different nose radii, 

0.0625, 0.03125, and 0.001 in. Adiabatic wall to total temperature ratio is 0.86 for all 

cases. In Figure 3.7 red lines show the simulation results, which match perfectly with the 

experimental results shown by a dotted black line. The transition location is observed at 

x=ll in. for Rn=0.0625 in. From leading edge to this point, flow is laminar, and it 

becomes turbulent after x=15 in. Between these regions is called as transition region. 

Good agreement is obtained in all three simulations until the transition onset point. 
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Figure 3.7 Comparison of simulated wall to total temperature ratio with conventional 
,35 wind tunnel data for different nose radii of 5-degree, half-angle straight cone 

(a) Rn=0.0623 in. (b) Rn=0.03125 in. (c) Rn=0.001 in. 
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Since we are interested in receptivity and boundary layer transition problems that 

occur in the leading edge and the laminar part of the flow, the comparison is done only 

for the laminar region. 

3.4 Comparison with Similarity Solutions 

Preceding sections of this chapter showed that axisymmetric and two-dimensional 

solvers produce good results. In addition to these validation cases, for every mean flow 

simulation we also compared the mean flow density and/or temperature profiles over the 

body at different axial locations with similarity solutions. Similarity profiles are obtained 

by solving boundary layer momentum and energy equations given as 

( 

drj 
PM \ 

VAoM 
• / ' 

+ jf =0 
J 

_d_ 

drj P.M. Pr 
+fg'+(r-Wl < P ^ 

\P*>V*J 
r2=o 

The boundary conditions for these equations are 

/(7=0) = f(r,=0) = 0 

J (»/-»°°) °(7-»<JO) 

0 AdiabaticWall 

g'(7-0) \LL Isothermal Wall 

(3.7) 

(3.8) 

(3.9) 

Equations (3.7) and (3.8) are solved using a 4th order Runge-Kutta scheme with 

the given boundary conditions. 
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Figure 3.8 Comparison of mean flow (a) density and (b) temperature profiles at different 

axial locations in similarity coordinates with similarity solutions. Rn=0.001 in. M=6.0 



46 

3.5 Summary 

In this chapter, we have shown the validation studies of axisymmetric code. 

Results are compared with available experimental data, empirical formulation and 

analytical methods. Very good agreements are obtained in the comparisons. In addition to 

these results for the following chapters, mean flow profiles compared with similarity 

solutions and unsteady computations are performed after validating the steady mean flow 

results. Also, mean flow pressure distribution along the surface, boundary layer edge 

Mach number and temperature are checked. Oblique shock converged to inviscid shock 

angle for cone and wedge. Results of this chapter were published by the author39'40. In 

the next few chapters, we will apply these theories and numerical methods to analyze 

hypersonic boundary layer receptivity due to free stream acoustic disturbances over blunt 

cones and wedges. First we will compare the receptivity of hypersonic boundary layers 

due to small acoustic disturbances over cone and wedge. 
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CHAPTER IV 

4. RECEPTIVITY OF BLUNT CONE AND W E D G E 

4.1 Introduction 

In this chapter the transition process induced by the interaction of acoustic 

disturbances in the free-stream with boundary layers over a 5-degree straight cone and a 

wedge with a blunt nose is numerically investigated at a free-stream Mach number of 6.0. 

To compute the shock and the interaction of shock with the instability waves, the Navier-

Stokes equations are solved in two-dimensional and axisymmetric coordinates. The 

governing equations are solved using the 5 order accurate, Weighted Essentially Non-

Oscillatory (WENO) scheme for space discretization and using 3rd order Total-Variation-

Diminishing (TVD) Runge-Kutta scheme for time integration. 

After the mean flow field is computed, acoustic disturbances are introduced at the 

outer boundary of the computational domain, and unsteady simulations are performed. 

Generation and evolution of instability waves and the receptivity of boundary 

layer to slow and fast acoustic waves are investigated. The mean flow data are compared 

with the experimental results and similarity solutions. The results show that the instability 

waves are generated near the leading edge, and the non-parallel effects are stronger near 

the nose region for the flow over the cone than that over a wedge. It is also found that the 

boundary layer is much more receptive to the slow acoustic wave (by almost a factor of 

67) as compared to the fast wave. 
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4.2 Literature Review 

There have been a number of investigations conducted on the interaction of 

acoustic waves with supersonic boundary layers. The interactions of acoustic waves with 

a supersonic boundary layer using inhomogeneous stability equations were investigated 

by Mack41 and Gaponov42. One important finding was that due to the interaction, the 

acoustic waves excite disturbances inside the boundary-layer, which is much larger than 

that in the free stream. The interaction of stream acoustic waves with a non-parallel 

boundary layer was studied by Gaponov and Smorodsky43. The analysis and the 

calculations showed that the disturbances inside the boundary layer reach values 

significantly higher compared to that in the free-stream. It was also observed that there 

exists a critical Reynolds number where this excitation is the highest. 

For a supersonic boundary layer with sufficiently high Mach number to allow 

both first and second Mack modes44, Fedorov and Khokhlov45 considered boundary layer 

response to both the fast and slow acoustic waves. The boundary layer modes excited 

near the leading edge by the two acoustic waves can be referred to as Mode F and Mode 

S, for convenience. The work of Fedorov and Khokhlov46 and Fedorov47 identified two 

receptivity mechanisms in this Mach number regime: (1) leading-edge receptivity and (2) 

inter-modal exchange between Mode F and Mode S. For the adiabatic wall, Federov47 

found that receptivity to slow acoustic waves could be as much as 50 times the 

receptivity via the fast acoustic waves. Thus, the leading edge receptivity via the slow 

mode excitation is much stronger than in the case of inter-modal exchange. According to 

Fedorov47, this receptivity mechanism may gain significance in the highly cooled 

boundary layers. 
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Ma and Zhong48"50 performed direct numerical simulation for a Mach 4.5 flat-

plate boundary layer to investigate receptivity to fast and slow acoustic waves and the 

mechanisms of inter-modal exchange. They employed a fifth-order accurate shock fitting 

method to solve the governing equations. Egorov, Fedorov and Soudakov51 investigated a 

similar problem at a Mach number of 6.0 whereby simulation of receptivity to slow and 

fast acoustic waves and the effect of incidence angle on the receptivity were studied. 

The transition process induced by the interaction of acoustic disturbances in the 

free stream was numerically investigated for a boundary layer over a flat plate with a 

blunted leading edge at a free stream Mach number of 3.5 by Balakumar2 . The 

governing equations are solved using 5th -order accurate Weighted Essentially Non-

Oscillatory (WENO) scheme for space discretization and 3rd -order TVD Runge-Kutta 

scheme for time integration. Balakumar also investigated the receptivity of boundary 

layers over blunt flat plates and wedges at a free stream Mach number of 3.5 and at a 

high Reynolds number of 106 /in. The linear stability result of his work showed that the 

bluntness has a strong stabilizing effect on the stability of two dimensional boundary 

layers. It was also revealed that the boundary layers on blunt wedges are far more stable 

than on blunt flat plates. Malik and Balakumar52 investigated the receptivity of 

supersonic boundary layers to acoustic disturbances at a free stream Mach number of 4.5. 

The results showed that the instability waves are generated near the leading edge region 

and that the boundary layer is much more receptive to slow acoustic waves by almost a 

factor of 20 compared to fast acoustic waves. The effect of the acoustic wave incidence 

angle was also investigated, and it was found that the receptivity of the boundary layer on 

the wind ward side decreases when the incidence angle is increased. 
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An experimental investigation was conducted on a 5-degree, half-angle cone in a 

conventional Mach 6 wind tunnel by Horvath et al35 to examine the effects of facility 

noise on boundary layer transition. They checked the influence of tunnel noise on the 

transition onset points by comparing transition locations determined from their test to 

those previously obtained in a Mach 6 low disturbance quiet tunnel. 

Here, we employ a fifth order weighted essentially non-oscillatory (WENO) 

scheme for spatial discretization and use a third order total variation diminishing (TVD) 

Runge-Kutta scheme for time integration to solve for the hypersonic boundary layer 

receptivity problem. 

The objectives of this chapter are to understand the receptivity process near the 

leading edge of a cone and to estimate the receptivity coefficient of the instability waves 

generated near the leading edge. Computations are performed to determine whether the 

slow or the fast acoustic waves are more efficient in generating the instability waves. 

Also, comparisons of computed shock standoff distances with the experimental results 

are shown. To compare the receptivity process between the axisymmetric and two-

dimensional geometries, computations are performed for the hypersonic flows over a 

cone and a wedge. 

4.3 Mean Flow Results 

For this study, we have selected the following flow conditions (Table 3.2), 

geometry (Figure 3.6) used by Horvath et al.35 and computational set up (Figure 2.5). The 

cone has a small nose radius (Rn=0.001 in.), and the flow around the leading edge is 

resolved by using a sufficiently dense grid. We assume adiabatic wall conditions for 
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steady flow computations. Boundary conditions, computational grid and the solution 

algorithm used in this chapter to obtain steady mean flow are given in Sections 2.11-2.13, 

respectively. Flow conditions at the boundary layer edge for the cone and wedge are 

given in Table 4.1. 

Table 4.1 Conditions at the edge of the boundary layer. 

(VarOedge/CVar.)*, Cone Wedge 
Mach Number 0.932 0.885 
Pressure Ratio 1.560 2.069 
Density Ratio 1.372 1.663 
Temperature Ratio 1.137 1.244 

Figure 4.1 illustrates the mean flow data for the cone and the wedge computed 

using the WENO code. The figures on the left show the contours for the cone and the 

figures on the right show the results for the wedge. Figures 4.1 (a) and (b) show die mean 

flow density contours for the entire domain obtained by the Navier-Stokes computations. 

As expected, the bow shock for the cone is narrower than that for the wedge because of 

the relieving effect of axisymmetry. 

Figures 4.1 (c), (d) show the density contours and (e), (f) show the Mach contours 

near the leading edge for the cone and wedge respectively. The bow shock for the cone is 

located at 5COne=2.4xlO"4 in. upstream of die leading edge, and for the wedge it is at 

8Wedge=5.6xl0" in. Beyond die expansion fan the shock angles approach an inviscid 

shock angle of 10.6 degrees for the cone and 13.1 degrees for the wedge. Figures 4.2 (a) 

and (b) show the streamline patterns colored by Mach contours. Figure 4.2 (b) clearly 

shows that the boundary layer is thicker, and deflection of the flow due to bow shock is 

larger for the wedge. 
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The density profiles at x = 0.01, 0.03, 0.05, 8.94 in. (yfRe^= 87, 151, 196, 2615) 

are plotted in Figure 4.3 (a) and (b) in similarity coordinate for the cone and the wedge. 

The compressible Blasius similarity profile is also included for comparison. The density 

profiles approach the similarity solutions close to x=0.1-in. for the cone. However, the 

density profile of the wedge is away from the similarity solution even at the end of the 

computational domain x = 9 in. This implies that the bluntness effects are stronger and 

persist for a longer distance for flow over wedges compared to flow over cones. Figures 

4.4 (a) and (b) depict the same mean density profiles in physical coordinates. These 

figures clearly show that the flow becomes self similar for the cone after it passes the 

nose part, but for the wedge non-parallel effects are dominant even at the end of the flat 

part. 

Figure 4.5 (a) shows the mean flow wall pressure distribution along the surface 

for the cone and the wedge, and Figure 4.5 (b) shows the variation of the boundary layer 

edge Mach number. Figure 4.5 (b) also illustrates that there is a strong bow shock located 

very close to the leading edge, and the associated compression is followed by an 

expansion over the leading edge. Then the shock approaches the inviscid solution for the 

cone and the wedge at x=8.9 in., Me=5.57 and Te=129.61°R and Me=5.29 and 

Te=141.79°R for cone and wedge respectively. 



53 

Cone Wedge 

2 -

1 -

" 

"F 
- M 

- 1 
I 

-

Z_L 

" ' i T i ' i i — ' • | ' i — ' • ' ' 

0 
1 5-44 

^ 4.70 
g 3.96 
1 3.22 ^ 
1 2.48 ^ ^ f l | 
I 174 ^^^^M 

• 0.98 . ^ • • • • l 0-24 .^flBYJBYI 

' " I '' ' • , - , ' M 1 ' • " ' " ' . 

. ^ H -

HHHHHH 

-i_l.-u-„>„..^J- u l 

0"003 

0.002 

*— 
JE 

>-

D 
HI 5.44 
ffl 4.70 
U 3.96 
• 3.22 
• J 2.48 

H 174 
• 0.98 
— 0.24 

)0S9.S 0.000 0.001 
X(in) 

0.002 

0.003 

0.003 ""iff.001 OOOO OOOi O00T O003 
X(in) 

(e) (f) 

Figure 4.1 Comparison of mean flow density and Mach contours for cone and wedge at 
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Figure 4.2 Mean flow streamlines colored by Mach contours in the leading edge region. 
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4.4 Linear Stability Analysis 

Derivation of linear stability equations and the numerical scheme to solve are 

given in the appendix. Linear stability results for the similarity boundary layer over a 

cone and a wedge for the inviscid conditions at the surfaces are presented in Figure 4.6. 

Figures 4.6 (a) and (b) show the neutral stability diagram in (Re, F) plane for two-

dimensional disturbances. The figures show the first and second mode unstable regions 

and the variation of the wave number with the Reynolds number. Figures 4.7(a) and (b) 

show the N-Factor curves for different frequencies. Here the variables are non-

dimensionalized by the variables at the edge of the boundary layer. To obtain the 

variables non-dimensionalized by the free stream values as given in Table 3.2, the 

variables in this section should be multiplied by the appropriate factors from Table 4.1. 

The non-dimensional frequency F has to be multiplied by 1.174 to obtain the values in 

terms of free stream values. 

In Figures 4.6 (a) and (b) the neutral stability curve clearly shows the unstable 

first and second mode regions for the boundary layers over the cone and wedge at a free 

stream Mach number of 6.0. The first mode and the second mode neutral stability curves 

merge at a Reynolds number of Re=1600 for the cone, and they do not merge for the 

wedge case for these parameters. The most amplified frequencies are higher for the cone 

boundary layers than for the wedge. The transition Reynolds numbers based on an N-

Factor of 9 are about 3500 for the cone and about 5200 for the wedge. The most 

amplified frequencies are 0.85xl0"4 and 0.34xl0"4 for the cone and the wedge 

respectively. 
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4.5 Interactions of Acoustic Disturbances with Boundary Layer 

After the steady mean flow is computed, two dimensional slow and fast acoustic 

disturbances are separately introduced at the outer computational boundary as explained 

in Section 2.11, and the time accurate simulations are performed. Unsteady simulations 

are performed using the frequencies F=1.2 xlO"4 and 1.4 x 10"4 for the cone case and 

using the frequency F=0.85 xlO-4 for the wedge. These frequencies give maximum 

amplifications within the computational domain of x=9 in. For the freestream these 

frequencies correspond to 331, 467 and 546 kHz respectively. To remain in the linear 

regime, the amplitude of the forcing freestream acoustic waves is given a small value of 

Pac/Poo=2xl0"5. Even with this small amplitude, nonlinearity starts to develop near the end 

of the computational domain for the frequency F=1.2 xlO"4. 

Figure 4.8 shows the evolution of unsteady density fluctuations obtained from the 

simulations for the slow acoustic wave at a fixed time for the cone case with F=1.2 xlO . 

To obtain fluctuation plots, mean flow results are subtracted from unsteady simulation 

results. Figure 4.8(a) shows the contours of the density fluctuations in the entire domain, 

and Figure 4.8(b) depicts the same results inside the boundary layer. In Figure 4.8(b) the 

surface of the cone is plotted along the x-axis to show the clear growth of instability 

waves inside the boundary layer. 

In Figure 4.8(a) the perturbation field can be divided into four regions. One region 

is the area outside the shock where the acoustic waves uniformly propagate to 

downstream. The second region is the shock layer across which the acoustic waves are 

transmitted. The third region is the area between the shock and the boundary layer. This 

region consists of the transmitted external acoustic field and the disturbances that are 
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radiated from the boundary layer. The fourth region is the boundary layer where the 

instability waves evolve. 

Figures 4.8 (a) and (b) noticeably show that the disturbances inside the boundary 

layer are generated near the nose region. Figure 4.8 (b) also shows the evolution of the 

first mode up to x~4.5 in. and the gradual transformation of the first mode to the second 

mode in downstream. Another interesting observation is that the region between the 

boundary layer and the shock layer is quieter compared to the acoustic waves outside the 

shock layer. This implies that the acoustic waves are weakly transmitted through the 

CO 

shock. This was also observed in the flat plate simulation of Malik and Balakumar 

where, as the acoustic wave incidence angle is increased, disturbances become quieter in 

the windward side. 

Figure 4.9 shows the contours of the density fluctuations inside the boundary 

layer at different streamwise locations to illustrate the structure and the evolution of the 

instability waves inside the boundary layer. The contours show that the disturbances are 

concentrated near the edge of the boundary layer and in downstream the disturbances 

exhibit the classical "rope"-like structures associated with the second mode. 

Figures 4.10 and 4.11 show the evolution of the wall pressure fluctuations for the 

cone and the wedge case. Figures 4.10 (a) and (b) show the pressure fluctuations induced 

by the slow and the fast acoustic waves for the frequency F=1.2 xlO"4 for the cone case, 

and Figure 4.11(a) shows the results induced by the slow acoustic wave for the frequency 

F=1.4 xlO"4. Figure 4.11(b) shows the pressure fluctuation induced by the slow wave for 

the frequency F=0.85xl0"4 for the wedge case. It should be noted that different scales are 

used in Figure 4.10 due to a difference in amplification in the slow and the fast mode 
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cases. For the frequency F=1.2 xlO"4, the maximum amplitude in the slow mode case is 

about 0.16 and is about 0.0025 in the fast mode case. This implies that the slow mode is 

more efficient (by about 67 times) in generating the instability wave inside the boundary 

layer compared to the fast wave. This agrees qualitatively with other simulations and 

analysis21'22'52'53. 

One other observation is the amplification of the first mode near the leading edge 

region. The parallel linear computations revealed that the first mode is stable up to x~3 

in. for this frequency. However, the simulation shows that the first mode disturbances are 

growing starting from the leading edge. Hence, the non-parallel effects are stronger in the 

cone case compared to the flat plate case, and this yields a higher amplification ratio 

(about 67) between the induced flow field by the slow and the fast modes in the cone case 

compared to the flat plate case (about 20). Figure 4.11(b) shows that the amplification of 

the disturbances are small for the wedge case for this frequency F=0.85xl0"4. The 

maximum amplitude attained is about 2xl0"4 compared to 0.16 in the cone case. The first 

mode region in the wedge case is stable in contrast to the cone case. 

Figures 4.12 and 4.13 show the amplitude of the pressure fluctuations along the 

wall in a log scale. This figure also includes results from the parabolized stability 

equations (PSE) computations obtained for the same mean boundary layer profiles. The 

growth of the disturbances agrees very well with the PSE results. The figures clearly 

show the initial generation and the eventual exponential growth of the instability waves 

inside the boundary layer. The slow wave whose wavelength is closer to the wavelength 

of the instability wave transforms into an instability wave smoothly. The fast mode, as 

was in the flat plate case, initially generated the instability mode corresponding to the fast 
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acoustic wave and then switched to the unstable second mode close to x = 4.5 in. As 

discussed earlier, Figure 4.12(a) shows that the first mode is growing due to the non-

parallel effect. Due to the growth of the first mode starting from the nose region, it is 

difficult to define a receptivity coefficient in the cone case. We selected the amplitude 

near the nose region x~1.0 in. to compute the receptivity coefficient defined by the ratio 

between the initial amplitude of the pressure fluctuations at the wall near x~1.0 in., and 

the free stream acoustic pressure can be evaluated. 

For the wedge case (Figure 4.13 (b)), the first mode is decaying and a well 

defined neutral point is discerned. The receptivity coefficient is the ratio of the amplitude 

of wall pressure fluctuations at the neutral point to the initial amplitude of pressure waves 

and is given by Equation (4.1). Table 4.2 gives the respective receptivity coefficients for 

the different cases. The receptivity coefficient for the cone cases is about 4.569 and 0.068 

for the slow and the fast acoustic modes, and it is about 0.77 for the slow acoustic mode 

for the wedge case. 

(Pwaii) 
"P (A \ \ 

recpt,pwall V • ) 

Table 4.2 Variation of receptivity coefficient for different X locations. 
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4.6 Discussion and Conclusion 

In this chapter the receptivity and stability of hypersonic boundary layers due to 

the interaction of two-dimensional slow and fast acoustic waves over a 5-degree, half-

angle cone and wedge with nose bluntness 0.001 in. are numerically investigated at a free 

stream Mach number of 6.0 and at a Reynolds number of 7.8xl06/ft. Both steady and 

unsteady solutions are obtained by solving compressible Navier-Stokes equations in two-

dimensional and cylindrical coordinates using the 5th order accurate Weighted Essentially 

Non-Oscillatory (WENO) scheme for space discretization and using a third-order Total-

Variation-Diminishing (TVD) Runge-Kutta scheme for time integration. 

The unsteady simulations showed that the instability waves are generated very 

close to the leading edge region. The simulations for the cone showed that the first mode 

starts to grow starting from the leading edge due to the nonparallel effects before they 

grow strongly due to the unstable second mode. In the wedge case, the first mode 

disturbances decay first, before they start to grow, due to the second mode. The 

receptivity coefficient of the instability waves generated by the slow acoustic wave is 

about 4 times the amplitude of the free stream acoustic wave. 

It is also found that the amplitude of the instability waves generated by the slow 

acoustic waves is about 67 times larger than that for the case of fast acoustic waves. 

Therefore, forcing the flow by slow acoustic wave is much more relevant in the transition 

process involved in hypersonic boundary layers. 

The receptivity coefficient in the wedge case is about 0.8 which is about 5 times 

smaller than that in the cone case. This is due to the initial growth of the first mode in the 
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cone case compared to the decay in the wedge case and also due to the strong 

stabilization effect of the bluntness in the wedge case. The receptivity coefficient for a 

flat plate boundary layer with a bluntness of 0.0001 in. at a free stream Mach number of 

4.5 is about 9, and the slow mode is about 20 times more efficient than the fast mode in 

generating the instability waves. This shows that the slow mode is much more efficient in 

flows over axisymmetric bodies than in two-dimensional flows. 
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CHAPTER V 

5. NOSE BLUNTNESS EFFECTS ON RECEPTIVITY 

In this chapter receptivity and stability of hypersonic boundary layers are 

numerically investigated for boundary layer flows over a 5-degree straight cone at a free-

stream Mach number of 6.0 to find out the effects of nose bluntness on the receptivity 

process. To compute the shock and the interaction of shock with the instability waves, we 

solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations 

are solved using the 5th -order accurate Weighted Essentially Non-Oscillatory (WENO) 

scheme for space discretization and using the 3rd -order Total-Variation-Diminishing 

(TVD) Runge-Kutta scheme for time integration. 

After the mean flow field is computed, disturbances are introduced at the 

upstream end of the computational domain. Our objectives in this chapter are to estimate 

the stabilizing effects of nose bluntness on the hypersonic boundary layers over cones, to 

calculate the transition Reynolds numbers based on eN criteria, and to compute the 

receptivity coefficients of the instability waves generated inside the boundary layer. Also, 

generation of instability waves from the leading edge region and receptivity of the 

boundary layer to slow acoustic waves are investigated. 

The objectives of this work are to estimate the stabilizing effect of bluntness on 

the hypersonic boundary layers over blunt cones and to estimate the transition Reynolds 

number based on the eN criteria and to compute the receptivity coefficient of the 

instability waves generated inside the boundary layer. 



74 

To investigate the effect of the Reynolds number based on nose bluntness, 

simulations are performed at different leading edge radii ro = 0.001, 0.05 and 0.10 in. at a 

unit Reynolds number of 7.8xl06/ft for a 5-degree, half-angle cone. To differentiate the 

unit Reynolds number effect from the nose Reynolds number effect, one simulation is 

performed at a higher unit Reynolds number of 15.6xl06/ft with a bluntness of 0.05 in. 

These parameters yield the Reynolds number based on the nose radius to vary from 650 

to 130,000 and listed in Table 5.1. The results consist of: (1) mean flow profiles, linear 

stability and transition onset Reynolds numbers at different bluntness, and (2) receptivity 

coefficients for different bluntness. 

Table 5.1 Computational parameters for nose bluntness study 

Nose radius, r0 (in.) Re^x 106 /ft Re,o 

0.001 7.80 650 

0.050 7.80 32,500 

0.100 7.80 65,000 
0.050 15.6 65,000 
0.100 15.6 130,000 

5.1 Introduction 

The transition onset mainly depends on the boundary layer characteristics and on 

the frequency, wave number distributions, and the amplitudes of the disturbances that 

enter the boundary layer. The boundary layer profiles depend on the flow parameters 

such as Mach number, Reynolds number, wall temperature, and model geometry. In 

supersonic and hypersonic boundary layers, one important geometrical parameter is nose 

bluntness. The effects of bluntness on transition have been studied experimentally and 
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numerically by many researchers54"60. It was found that the bluntness generally stabilizes 

the boundary layer. The critical Reynolds numbers for blunt cones are much higher 

compared to those for sharp cones. However, the transition Reynolds number increased 

only by a factor of two compared to the sharp cones. 

It was identified that the entropy layer that is formed near the bow shock region 

persists for a long distance downstream as shown in Figure 5.1 and makes the boundary 

layer more stable compared to the sharp cone case. 

Figure 5.1 Hypersonic flow field over a blunt cone 

After the entropy layer and the boundary layer that is developing along the 

surface merge together, the boundary layer becomes unstable. It was also found that in 

addition to the first and second mode instability waves, other inviscid type disturbances 

grow inside the entropy layer. It is also observed that with increasing bluntness the 

stabilizing trend is reversed in axisymmetric boundary layers. Another influence of the 

bluntness is in the generation of instability waves near the leading edge region. 
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5.2 Literature Review 

Stetson60 carried out boundary layer experiments to investigate the effects of nose 

tip bluntness on an 8-degree, half-angle cone containing two rays of thermocouples in 

AEDC Tunnel F at Mach 6. The location of the boundary layer transition was obtained 

from heat transfer measurements. It was found that the small nose tip bluntness had a 

stabilizing effect upon the boundary layer when transition occurred at locations where the 

entropy layer was nearly swallowed. 

Also, Stetson et al.54 experimentally investigated the stability of the laminar 

boundary layer on a blunt, 7-degree, half-angle cone at Mach 8 and identified 

disturbances growing in the entropy layer indicating the existence of an inviscid 

instability. 

Recently, Maslov et al.61' 62 conducted stability experiments on sharp and blunt 

cones at Mach 5.92. Rufer and Schneider measured mass flux profiles over 7-degree, 

half-angle sharp and blunt (0.020 in. radius) cones to study the amplitude and growth of 

instability waves. Also, Schneider64 published additional experimental stability results of 

Stetson's54 experiment. 

An experimental investigation was conducted by Horvath et al.35 on a 5-degree, 

half-angle cone in a conventional Mach 6 wind tunnel to examine the effects of facility 

noise on boundary layer transition. In addition, the model nose tip radius was varied from 

0.0001 in. to 0.0625 in. to examine the effect of bluntness on transition onset. 

Malik et al.56 computed the effect of nose bluntness on boundary layer instability 

for Mach 8 flow past a 7-degree, half-angle cone. They included the entropy-layer effect 
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using Parabolized Navier-Stokes equations. It is concluded that nose bluntness stabilizes 

the boundary layer, and the effect of unit the Reynolds number in the aeroballistic range 

data of Potter65 was a nose bluntness effect. 

Rosenboom et al.66 and Zhong67 did further study on the effect of nose bluntness 

on the linear stability of hypersonic flow over Stetson's54 blunt cone and focused on the 

transition reversal phenomenon. However, no instability reversal was observed as the 

nose radius increased in both studies. Their results indicated that to understand the cause 

of the transition reversal phenomenon it is necessary to conduct further studies on nose 

bluntness. 

Balakumar22 performed computations for a blunt flat plate with thicknesses from 

0.0001 to 0.01 in. and a wedge of 10-degree, half-angle with different leading edge radii 

0.001 and 0.01 in. to find out the effect of nose bluntness on the stability of two 

dimensional boundary layers. He found that bluntness has a strong stabilizing effect on 

the stability of two dimensional boundary layers, and the boundary layers on wedges are 

far more stable than on blunt flat plates. 

Here, we employ the fifth order Weighted Essentially Non-Oscillatory (WENO) 

scheme for spatial discretization and use the third order Total Variation Diminishing 

(TVD) Runge-Kutta scheme for time integration to solve for the hypersonic boundary 

layer receptivity problem. 

5.3 Mean Flow Results 

For this study, we have selected the following flow conditions (Table 3.2 and 

Table 5.1), geometry (Figure 3.6) used by Horvath et al.35, and computational setup 
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(Figure 2.5). The nose radii are varied from r0 = 0.001 to 0.010 in. and the flow around 

the leading edge is resolved by using a sufficiently dense grid. We assume adiabatic wall 

conditions for steady flow computations. Boundary conditions, the computational grid 

and the solution algorithm used in this chapter are summarized in Sections 2.11-2.13. 

Figures 5.2 and 5.3 show the mean flow density contours computed using the 

WENO code. Figures 5.2 (a), (b) and 5.3 (a), (b) show the results for the 5-degree, half-

angle cone at different nose radii ro= 0.001, 0.05, 0.10 and 0.10 in. (at two-times the unit 

Reynolds number). Smaller nose radii cases ro= 0.001, 0.05 and 0.10 in. are performed at 

a unit Reynolds number of 7.8xl06 /ft. This yields Reynolds numbers based on the nose 

radius of 650 to 65,000 (Table 5.1). Figure 5.3(b) shows the results obtained at a higher 

unit Reynolds number of 15.6xl06 /ft with ro= 0.10 in., which yields the Reynolds 

number based on the nose radius of 130,000. All of these figures show the density 

contours near the nose region. 

One interesting observation is that the inviscid density contours and the shock 

locations are the same between Figures 5.3 (a) and (b), which are obtained with the same 

bluntness, ro= 0.10 in., but at different unit Reynolds numbers 7.8 and 15.6 *106 /ft. The 

leading edge shocks are located at approximately 0.0002, 0.008 and 0.016 in. upstream of 

the leading edge. 

The density profiles at different axial locations are plotted in Figures 5.4 (a) - (d) 

for the different bluntness cases r0=0.001, 0.05, 0.05(Re<»=15.6xl06 /ft) and 0.10 in. in 

the similarity coordinates. The compressible Blasius similarity profile is also included for 

comparison, and Figures 5.4 (e) and (f) show the density profiles for ro= 0.05 and 0.10 in. 

in the physical coordinates. For the small bluntness case the density profiles matched 
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perfectly immediately beyond the nose region, as shown in Figure 5.4 (a). However, the 

difference between the density profiles and the similarity profiles increased 

proportionally with increasing nose bluntness of the cone. Even at the end of the 

computational domain bluntness effects are observed on the density profiles in Figures 

5.4(b)-(d). 

Figures 5.5 and 5.6 depict the entropy contours for different bluntness cases 

r0= 0.001, 0.05, 0.10 and 0.10 (Reoo=15.6xl06) in. For the small bluntness case r0= 0.001, 

only the boundary layer appears near the nose region, and the entropy layer is not 

discernable in the outer part of the boundary layer as shown in Figure 5.5 (a). For the 

higher bluntness cases the entropy layer that is visible near the nose region persists 

downstream and eventually merges with the boundary layer. 

Figures 5.7 and 5.8 show the entropy profiles at different axial locations for 

different bluntness cases. Figure 5.7 (a) shows that the entropy layer is not discernable for 

the small bluntness case as was observed in the entropy contours (Figure 5.5 (a)). For the 

bluntness case ro= 0.05, two layers are clearly seen in the profiles at x= 0.50 and 1.0 in. 

One layer is very close to the wall with a large gradient, and the other is away from the 

wall with a small gradient. The outside entropy layer merges with the boundary layer 

near the wall close to x= 2.0 in. 

Figure 5.8 shows more blunt cases where the boundary and entropy layers are 

more evident and merging occurs at larger axial distances from the nose. Figure 5.8 (a) 

illustrates that the two layers merge around x=6.0 in. for r0=0.10 in. with Reoo=7.8xl06 

/ft, and Figure 5.8 (b) shows the merging point for two times the unit Reynolds number at 
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x=6.0 in., which is equivalent to 12.0 in. when it is converted to the same unit Reynolds 

number. 

0,004 
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X (in.) 

-0.05 0 0.05 0.1 0.15 0.2 

X(ia) 
Figure 5.2 Density contours for different nose bluntness (a) ro=0.001 in, (b) ro=0.05 in. at 

M=6.0 and Re=7.8xl06 /ft. 
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Figure 5.3 Density contours for different Reynolds numbers (a) Re=7.8xl0 /ft, 

(b) Re=15.6xl06 /ft at M=6.0 and r0=0.10 in. 
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Figure 5.4 Mean flow density profiles at different axial locations compared with 

similarity solutions for (a) r0=0.001 in. Re=7.8xl06, (b) r0=0.05 in., (c) r0=0.05 in., (d) 

r0=0.10 in. Density profiles in physical coordinates for (e) ro=0.05 in., (f) ro=0.10 in. 
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Figure 5.7 Entropy profiles at axial locations for different nose bluntness (a) ro=0.001 in, 

(b) r0=0.05 in. at M=6.0 and Re=7.8xl06 /ft. 
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Figure 5.8 Entropy profiles at axial locations for different Reynolds numbers 

(a) Re=7.8xl06 /ft, (b) Re=15.6xl06 /ft at M=6.0 and r0=0.10 in. 
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5.4 Linear Stability Analysis 

Derivation of linear stability equations and the numerical scheme to solve are 

given in the appendix. In this section, Figures 5.9 (a) and (b) show the N-Factors and the 

growth rates for the most amplified disturbances computed using the mean profiles 

obtained from the numerical simulation for different bluntness ro= 0.001, 0.05, 0.10 with 

the unit Reynolds number of 7.8xl06/ft and for r0= 0.05, 0.10 with the higher unit 

Reynolds number of 15.6xl06/ft. For comparison, the results for the Blasius similarity 

profiles, which model a sharp leading edge, are also shown in the figures. 

The frequency for the most amplified wave is about F= 0.90xl0"4 for the 

similarity profiles. There is significant difference both for the mean flow and the stability 

results with increasing bluntness. The growth rates become smaller and the N-Factor 

curves move downstream. For the smaller bluntness, ro= 0.001 in., the N-Factor curve 

remains closer to the similarity curve. For the larger bluntness cases the growth rates 

become smaller, and the N-Factor curves move further to the right. The most amplified 

frequencies are (0.85X10"4, 0.75 xlO"4, 0.60 xlO"4, 0.425 xlO-4) for r0= 0.001, 0.05, 0.10 

and 0.10 in. (with two times the unit Reynolds number) respectively. This shows that the 

frequencies of the most amplified disturbances become smaller with increasing bluntness. 

The growth rate curves are similar to the Blasius profile for all the cases. 

The transition Reynolds numbers obtained using the N-factor of 10 for different 

bluntness cases are summarized in Table 5.2 and plotted in Figure 5.10. The ratio 

between the transition Reynolds number with respect to nose bluntness and the transition 

Reynolds number for the similarity profile, (Re^to / (Retr)simiiarity, is about 1.10, 1.27, 

1.82, 3.33, respectively for Rero = 650, 32500, 65000 and 130000. To differentiate 
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between the effects of the free stream unit Reynolds number and the nose Reynolds 

number one simulation is performed for the bluntness case ro= 0.05 in. at twice the unit 

Reynolds number of 2x7.8xl06/ft. The expectation is that the results from this simulation 

should be close to the results obtained for the case with r0= 0.10 in. at a unit Reynolds 

number of 7.8xl06/ft. It is interesting to see in Figure 5.9 that the growth rates and the N-

Factor curves are very close to each other, and the most amplified non-dimensional 

frequencies are also the same, F=0.60xl0"4. The transition Reynolds numbers are 

21.90xl06 and 23.70xl06 for the cases r0 = 0.10 in. and 0.05 in. (higher unit Reynolds 

number) respectively. 

Table 5.2 Transition Reynolds numbers with respect to nose bluntness. 

r0 (in.) 

0.0 
0.001 
0.050 
0.100 
0.10 (2xRe) 

0.05 (2xRe) 

Re*, 

0 
650 
32,500 
65,000 
130,000 

65,000 

xtt (in.) 

18.55 
20.50 
23.50 
33.70 
61.88 
36.44 

Reu xlO6 

12.06 
13.32 
15.30 
21.90 
40.22 

23.70 

(RetrW(Rett)sm, 

1.00 
1.10 
1.27 
1.82 
3.33 
1.96 

The transition Reynolds number for this case is also included in Figure 5.10. This 

implies that the stability and the transition over blunt bodies are determined by the nose 

Reynolds number. Previous experiments54 and the stability calculations56 showed that the 

transition Reynolds number for a blunt cone at a Mach number of 8 with nose Reynolds 

numbers of 30,000 increased by a factor of 1.7-2.0 compared to a sharp cone. Potter65 

found from a series of aeroballistic range experiments on nominally sharp cones that the 

transition Reynolds number increases with the free stream unit Reynolds number as a 

power of 0.63. A line with the slope of 0.60 is included in Figure 6.10 for comparison. 

The prediction from the present calculations follows this slope closely. 
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Figure 5.9 N-Factor and growth rate curves for different nose bluntness cases. 
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Nose Reynolds number, Re, 

Figure 5.10 The transition Reynolds numbers for different bluntness. 

5.5 Interactions of Acoustic Disturbances with Boundary Layer 

After the mean flow is computed two dimensional slow acoustic disturbances are 

introduced at the outer computational boundary as described in Section 2.13, and the time 

accurate simulations are performed. Unsteady simulation results are presented for the 

cases ro= 0.001, 0.05, 0.05(2xRe<»), 0.10 in. at the most amplified frequencies 

F=0.80xl0"4, 0.75xl0"4, 0.60 xlO"4 and 0.60xl0"4 respectively. These frequencies 

correspond to 304,285,228 and 556 kHz respectively for this unit Reynolds number. 

To remain in the linear region, the amplitude of the forcing freestream acoustic 

waves is given a small value of Pac/P«>=2xl0"6. Even with this small amplitude, 

nonlinearity starts to develop near the end of the computational domain for the small 

bluntness case, ro=0.001 in., with the frequency F=0.80 xlO"4. 
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Figure 5.11 shows the results for the evolution of unsteady fluctuations obtained 

from the simulations for the slow wave at a fixed time for the case where ro=0.05 in. and 

F=0.75 xlO"4. Figure 5.11 (a) shows the contours of the density fluctuations near the nose 

region up to x ~ 6.0 in. and Figure 5.11 (b) depicts the results near the end of the 

computational domain x=15~25 in. 

Figures 5.12 (a)-(d) display the expanded view of the density contours near the 

wall along the axial direction. The perturbation field can be divided into four regions. 

One region is the area outside the shock where the acoustic waves propagate uniformly. 

The second region is the shock layer across which the acoustic waves are transmitted. 

The third region is the area between the shock and the boundary layer. This region 

consists of a transmitted external acoustic field and the disturbances that are radiated 

from the boundary layer. 

Figures 5.12 (a)-(d) also show that the flow field between the shock and the wall 

exhibit four different regions of excitations. One is the region directly below the shock 

where small wave diffraction occurs; the second is the region below this diffraction zone 

and above the entropy layer where the disturbances are quieter; the third is the entropy 

layer and the boundary layer edge region where large perturbations exist; and the fourth 

is the region near the wall. 

The first important observation is that near the nose region (Figures 5.11 (a) and 

5.12(a)) the acoustic disturbances propagate across the leading edge bow shock and 

perturb the entropy layer. These disturbances as they evolve downstream remain inside 

the entropy layer and get into the boundary layer further downstream. Figures 5.12 (b)-
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(d) clearly show that these disturbances remain near the edge of the boundary layer for a 

long distance before they become the highly unstable second mode. 

Another interesting observation is that the region between the boundary layer and 

the shock layer is quieter compared to the acoustic waves outside the shock layer. This 

quiet region originates from the leading edge region (Figures 5.11 (a) and 5.12(a)) where 

the bow shock and the oblique shock meet. This implies that the acoustic waves are 

weakly transmitted through the shock and do not directly interact with the boundary layer 

further downstream. This was also observed in the flat plate simulation52 whereas when 

the acoustic wave incidence angle is increased disturbances become quiet on the 

windward side. 

Figure 5.13 shows the evolution of the wall pressure fluctuations for different 

cases. Figures 5.13 (a), (c), (e), and (g) show the amplitude of the pressure fluctuations 

along the wall in a linear scale, while Figures 5.13 (b), (d), (f) and (h) depict the same 

results in a log scale and include the results from the Parabolized Stability Equations 

(PSE) computations obtained for the same mean flow boundary layer profiles. The 

growth of the disturbances agrees very well with the PSE results. The figures clearly 

show the generation and the eventual exponential growth of the instability waves inside 

the boundary layer. 

The first observation is that there are large differences in the amplitude levels of 

the disturbances attained between the small bluntness case and the large bluntness cases. 

In all the cases the amplitude of the free stream acoustic pressure is the same. For the 

small bluntness case r0=0.001 in. in Figures. 5.13 (a) and (b), the disturbances grow from 

the leading edge and reach large amplitude levels of 0.50 near the predicted transition 
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onset point. The slow wave whose wavelength is closer to the wavelength of the 

instability wave smoothly transforms into an instability wave near the nose region. The 

parallel linear computations show that the first mode amplifies weakly up to x~10 in. for 

this frequency and yields an N-Factor of 1.0 near x~10 in. However, the simulation 

shows that the first mode disturbances are growing much stronger near the leading edge 

and yield an N-Factor of 3.0 near x~10 in. Hence, the non-parallel effects are stronger in 

the small bluntness case near the nose region. 

The maximum amplitudes obtained for the large bluntness cases ro=0.05 in., 0.05 

in. (2xReoo), 0.10 in. (Figures 5.13 (c-d), (e-f), (g-h)) are very small in the range of ~10~4. 

The reason for this is the disappearance of the amplification of the first modes in the early 

part of the evolution. The disturbances not only grow but decay by two orders in 

magnitude before they start to grow due to the instability of the second modes. This may 

be due to the thickening of the boundary layer due to the entropy layer. 

Following the PSE results up to the neutral point, the initial amplitude of the 

instability waves at the neutral point can be estimated. From these values the receptivity 

coefficients defined by the amplitude of the pressure fluctuations at the wall at the neutral 

point non-dimensionalized by the free-stream acoustic pressure can be evaluated using 

Equation (4.1). 

Table 5.3 shows the amplitude of the pressure fluctuations at the neutral point 

(PwaiOnp and the receptivity coefficients for different nose radii. The amplitudes are 

8.5xl0"6 for the small bluntness case, and they are on the order of 10"9 for the large 

bluntness cases. This is reflected in the magnitude of the receptivity coefficients. The 
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receptivity coefficients are 4.23, 1.85xl0"3 and 4.75xl0"3 for the cases where r0=0.001, 

0.05 and 0.10 in. 

Also interesting is the comparison of the amplitudes and the receptivity 

coefficients for the two cases where ro=0.10 in. and ro=0.05 in. (2xReoo). The amplitudes 

and the receptivity coefficients are almost the same for these two cases. Hence, not only 

the instability properties but also the receptivity coefficients depend only on the nose 

Reynolds number. This implies that the unit Reynolds number effect is a direct 

consequence of the variation in the nose Reynolds numbers. 

Table 5.3 Receptivity coefficients for different nose readii. 

r0 (in.) 
0.001 
0.050 
0.100 
0.050 (2Re«) 

Re* 
650 
32500 
65000 
65000 

F(xl0"4) 

0.80 
0.75 
0.60 
0.60 

("walUnp 

8.5x10" 
3.7 xlO"6 

9.5 xlO'9 

lO.OxlO"9 

*recpt,Slow 

4.23 
1.85 xlO3 

4.75 xlO"3 

5.0xl0"3 

Figure 5.14 shows the density fluctuations inside the boundary layer near the nose 

region for a small r0=0.001 in. and a large ro=0.10 in. case. This clearly shows the effect 

of bluntness in the generation of disturbances near the nose region. As discussed 

previously, in the small bluntness case there is no entropy layer, and the disturbances 

excite the boundary layer up to the wall. However, in the large bluntness case, the 

disturbances are seen only away from the wall inside the entropy region. 
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Figure 5.11 Contours of the unsteady density fluctuations due to the interaction of slow 

acoustic wave with a blunt cone: F=0.75xl0-4. (a) Nose part, (b) Flat end. 



96 

|aK« 0.05 ia 

i/f v t / u r f". >* . .*. 

FIFd #* 
Figure 5.12 Expanded view of the contours of unsteady density fluctuations near the wall 
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Figure 5.14 Contours of unsteady density fluctuations inside the boundary layer near the 

nose region for two bluntness cases (a) rO=0.001, F=0.80xl0-4 and (b) rO=0.10, 

F=0.60xl0-4. 
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5.6 Discussion and Conclusion 

In this chapter the effect of nose bluntness on the receptivity and stability of 

hypersonic boundary layers over a blunt cone with a 5 degree half-angle are numerically 

investigated at a free stream Mach number of 6.0 and at a unit Reynolds number of 

7.8xl06/ft. Both steady and unsteady solutions are obtained by solving compressible 

Navier-Stokes equations using the 5th order accurate Weighted Essentially Non-

Oscillatory (WENO) scheme for space discretization and using a third-order Total-

Variation-Diminishing (TVD) Runge-Kutta scheme for time integration. Computations 

are performed for different nose radii ro= 0.001, 0.05, 0.05 (2xReoo), 0.10, 0.10 in. 

(2xReoo), which yield nose Reynolds numbers of 650,32500,65000,65000,130000. 

The results show that bluntness has a strong stabilizing effect on the stability of 

the boundary layers. The transition Reynolds number increases slowly up to a nose 

Reynolds number of 30,000 and then increases sharply at higher nose Reynolds numbers. 

The transition Reynolds number for a cone at a nose Reynolds number of 65,000 is about 

1.8 times larger than that for the Blasius boundary layer. This is due to the entropy layers 

that are generated near the leading edges. These layers persist for longer distances with 

increasing bluntness. There may be other unstable modes in the entropy layer as were 

observed in the experiments54 other than the first-mode type instabilities that were 

considered in this work. Whether they exist and what role these waves play in the 

transition process still has to be investigated. 

In the small bluntness case, the disturbances grow starting from the nose region 

and reach very large values of ~0.50 near the transition point. The growth of the first 

mode is much stronger for this case due to the non-parallel effects. The amplitude levels 
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of the disturbances are much smaller in the order of 10"4 in the larger bluntness cases. 

There are no unstable first modes observed in the large bluntness cases, and the 

disturbances decay by two orders before they start to grow due to the second mode 

instability. The receptivity coefficient of small bluntness, ro=0.001 in., case is about 4.23, 

and it becomes much smaller, in the order of ~ 10"3, for the larger bluntness cases. This 

raises some questions about the transition process over blunt bodies. If the receptivity 

coefficients are very small for the second modes as was found in this chapter, how can 

the amplitude of the disturbances attain high values? One possibility is that the N-Factors 

are larger, about 15-16, in these cases. This will increase the transition Reynolds number 

further than is computed in this work. Another possibility is that the receptivity 

coefficients at non-zero acoustic incident angles may be larger than is obtained at zero 

incident angles. These computations have to be carried out to find the largest receptivity 

coefficients. 
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CHAPTER VI 

6. WALL COOLING EFFECTS ON RECEPTIVITY 

6.1 Introduction 

In this chapter the effects of wall cooling on the receptivity process induced by 

the interaction of slow and fast acoustic disturbances in the free-stream are numerically 

investigated for a boundary layer flow over a 5-degree straight cone. The free-stream 

Mach number is 6.0, and the Reynolds number is 7.8xl06 /ft. Both the steady and 

unsteady solutions are obtained by solving the full Navier-Stokes equations using the 

5th order accurate weighted essentially non-oscillatory (WENO) scheme for space 

discretization and using the 3rd order total variation diminishing (TVD) Runge-Kutta 

scheme for time integration. 

Computations are performed for a cone with nose radius of 0.001 in. for adiabatic 

wall temperature (Taw), 0.75xTaw, 0.5xTaw, 0.40xTaw, 0.30xTaw, and 0.20xTaw. Once the 

mean flow field is computed, disturbances are introduced at the upstream end of the 

computational domain. 

Generation of instability waves from the leading edge region and receptivity of 

the boundary layer to slow acoustic waves are investigated. Computations showed that 

wall cooling has a strong stabilization effect on the first mode disturbances as was 

observed in the experiments. Transition location moved upstream when wall cooling was 
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applied. It was also found that the boundary layer is much more receptive to the fast 

acoustic wave (by almost a factor of 50). 

6.2 Literature Review 

The transition process from laminar to turbulent flow is still an important 

challenge even after years of research. Accurate prediction of the transition location is 

vital for the design of hypersonic vehicles. Because transition controls important 

quantities such as aerodynamic drag, heat transfer and other boundary layer parameters. 

In hypersonic boundary layers one important parameter is the wall temperature. Wall 

cooling would be expected to stabilize first mode disturbances while destabilizing the 

second mode. The effects of cooling on transition have been studied experimentally and 

numerically by many researchers. 

Lees68 predicted that cooling the surface would stabilize the boundary layer. 

Later, Mack's69 results showed that the first mode was stabilized by cooling; however, 

7ft 

the higher modes were destabilized by this process. Experiments of Demetriades and 

Lysenko71 confirmed that cooling the wall increased the growth rates of the second mode 

disturbances and reduced the transition Reynolds number. Stetson72 investigated the 

effects of surface temperature on the stability of the laminar boundary layer 

experimentally, and the results also verified the linear stability theory. Balakumar and 
71 

Malik computed the parametric effects of the pressure gradient and wall cooling on the 

stability of the flow over the cone using the quasi-parallel, compressible linear stability 
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Receptivity7 is a process by which free-stream or wall-induced disturbances enter 

the laminar boundary layer and generate unstable waves8. The receptivity process is 

poorly understood at hypersonic speeds. The understanding of this phenomenon is of 

great importance because receptivity connects the amplitude of the free-stream 
* 

disturbances and initial amplitude of the unstable waves61. Recent experimental,' ' ' 7 ' 

75 theoretical46' 47' 76"79 and computational22' ^ 48"53' 58' 67' 80"85 studies increased our 

understanding about the receptivity mechanism. However, it still remains a challenging 

problem with practical importance. 

The objectives of this chapter are to estimate the destabilizing effects of wall 

cooling on the hypersonic boundary layers over a blunt cone and to calculate the 

receptivity coefficient of the instability waves generated near the leading edge. 

6.3 Mean Flow Results 

Computations are performed for hypersonic flow at a free stream Mach number of 

6.0 over a 5-degree, half-angle cone with blunt leading edge, Rn=0.001 in., for different 

wall temperatures to investigate the effects of wall cooling on hypersonic boundary layer 

receptivity due to acoustic disturbances in slow and fast modes. For this study we used 

the following flow conditions (Table 3.2 with adiabatic and isothermal wall temperature 

conditions), geometry (Figure 3.6) used by Horvath et al.35, and computational setup 

(Figure 2.5). Boundary layer edge conditions for a sharp cone are given in Table 4.1. The 

nose region of the cone is modeled as a circle. Simulations are performed for wall 

temperatures Tw= Adiabatic wall (Taw), 0.75xTaw, 0.50xTaw, 0.40xTaw, 0.30xTaw, and 

0.20xTaw. Different cases are summarized in Table 6.3. This table shows wall 
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temperature ratios to adiabatic wall temperature (804 °R) and freestream temperature 

(113.98 °R) and corresponding bow shock standoff distances. According to the data in 

Table 6.1 the standoff distance (in column 4) decreased proportionally to the applied wall 

temperature from 2.50xl0"4 to 2.13xl0"4. 

Table 6.1 Wall temperatures and bow shock standing distances. 

Twalll 
'TAa.wa.ll 

1.00 
0.75 
0.50 
0.40 
0.30 
0.20 

(i — 'wall/ G0 - /Too 

7.052 
5.289 
3.526 
2.8208 
2.1156 
1.4104 

Twall(°R) 

804 
603 
402 
322 
241 
161 

S ( x l O - 4 i n . ) 

2.50 
2.39 
2.28 
2.21 
2.15 
2.13 

Tm = 113.98 °R. 

Validation studies of axisymmetric code are given in Chapter 3 and presented by 

the author39'40. Figures 6.1 and 6.2 show the mean flow temperature contours computed 

using the WENO code. Figures 6.1 (a), (b) and 6.2 (a), (b) show the results for the 5-

degree, half-angle cone at different wall temperatures Tw=Adiabatic wall (Taw), 0.75xTaw, 

0.50xTaw, and 0.20xTaw. In the adiabatic wall case bow shock generated a high 

temperature region. This region convected to downstream over the cone wall. For cooled 

wall cases the high temperature region is trapped between the bow shock and nose part of 

the cone. Bow shock standing distance decreased 15% when wall temperature decreased 

to 0.20xTaw (Table 6.1). 

Figures 6.3 (a) and (b) depict the mean flow density contours over the adiabatic 

cone and cooled cone (Tw=0.20xTaw) cases. Maximum non-dimensional density occurred 

on the stagnation point for adiabatic and cooled conditions are 6 and 33 respectively. 

Over the flat part of the cone density contours look similar. The high density region is 

http://'TAa.wa.ll
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increased when is cooling applied, but it does not extend to the flat part. Figure 6.4 

compares the Mach contours of the aforementioned wall conditions. Wall cooling 

decreased the oblique shock angle and compressed the Mach layers to the wall. 
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0 0 0 W 

^ M ^ ^ ^ * ^ ^ 1 
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(a) Adiabatic wall (Taw) 

I I i i i 
0.003 0.004 

0.000 0.001 0.002 
X (in.) 

(b) T^TawxO.75. 

0.003 0.004 

Figure 6.1 Mean flow temperature contours for different wall temperature conditions 

(a) Adiabatic wall (Taw), (b) Tw=Tawx0.75. 

Figure 6.5 (a) shows the wall to free stream temperature ratio, Go, along the cone 

surface for different wall cooling conditions, and Figure 6.5 (b) shows the variation of the 
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boundary layer edge Mach number, Me, along the cone surface. The boundary layer edge 

Mach number and temperature for the adiabatic case at x=13.96 in. are Me=5.57 and 

Te=129.53 °R, and for the 80% cooled case at x=19.58 in., are Me=5.58 and Te=129.2 °R. 

0.002 

0.001 

0. °%.m 

0.002 

r r 0.001 

O.OQOj 

0.000 0.001 0.002 
X (in.) 

(a) Tw=Tawx0.50 

0.000 0:001 0.002 
X(ln.) 

(b) Tw=Tawx0.20 

0.003 0.004 

0.003 0.004 

Figure 6.2 Mean flow temperature contours for different wall temperature conditions 

(a) Tw=Tawx0.50, (b) Tw=Tawx0.20. 

Steady mean flow density profiles at different axial locations are plotted in 

Figures 6.6 and 6.7 in similarity coordinates for adiabatic wall and cooled walls 
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(0.50xTaw, 0.30xTaw, and 0.20xTaw). In Figure 6.6 (a) mean flow density profiles 

converge to a certain profile at x=0.2 in., which stays the same until the end of the 

computational domain for adiabatic wall conditions. 

0.002 

r* 0.001 
>-

0.001 0.002 
X (in.) 

(a) Adiabatic wall (Taw) 

0.003 0.004 

0.002 

0.001 

0.00$ 001 0.000 0.001 0.002 
X (in.) 

(b) Tw=Tawx0.20 

0.003 0.004 

Figure 6.3 Mean flow density contours for different wall temperature conditions 

(a) Adiabatic wall (Taw), (b) Tw=Tawx0.20. 

Figures 6.6 (a) and 6.7 (b) show that wall cooling decreased boundary layer 

thickness from n=14.6 (Tw=Taw) to n=8.19 (Tw=0.20xTaw) and also increased the non-
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dimensional density on the wall from p=0.16 (Tw=Taw) to p=0.80 (Tw=0.20xTaw). The 

density increase on the wall changed the characteristic of density profiles. In the adiabatic 

case, the minimum value of the density occurred on the cone wall and steadily increased 

away from it. 

0.000 

0.000 j 

0.000 0.002 0.004 
X(in.) 

(a) Adiabatic wall (Taw) 

0.006 0.008 0.010 

0.000 0.002 0.004 0.006 
X(in.) 

(b) Tw=Tawx0.20. 

0.008 0.010 

Figure 6.4 Mean flow Mach contours for different wall temperature conditions 

(a) Adiabatic wall (Taw), (b) Tw=Tawx0.20. 

However, for the cooled wall case (Tw=0.20xTaw) the density on the wall 

(Pti=o=0.80) first started to decrease away from the wall until r|=2 (pt,=2=0.42). After 
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making a minimum at this point the density changed its character and increased as in the 

adiabatic wall case. Even these density profiles seem to have a low density region. Their 

minimum density, at n=2 (pn=2=0.42), is 2.6 times larger than the minimum density value 

of adiabatic case (pn=o=0.16). As a result, we can say that wall cooling reduced the 

boundary layer thickness and increased the density inside it. 

Figures 6.8-10 show the temperature profiles at axial locations for different 

cooling cases. The compressible Blasius similarity profiles are also included for 

comparison. In the adiabatic wall case even at x=0.2 in. calculated mean flow 

temperature profiles perfectly matched with the similarity solution as shown in Figure 6.8 

(a). As was observed in the density graphs, temperature profiles also converged to the 

same profile at x=0.2 in. and stayed the same until the end of the computational domain. 

Wall cooling decreased thermal boundary layer thickness also. 

For the highest cooling case (Tw=0.20xTaw), as shown in Figure 6.10 (b), the wall 

temperature was 161 °R, and it increased away from the wall until n=2 (1^=2=305 °R). 

After maxing out at this point the temperature of the mean flow decreased, as was seen in 

the adiabatic case, to 129.26 °R. The difference between the similarity profiles and 

simulation results originates with the leading edge bluntness. 

Figures 6.11 (a) and (b) show the mean flow density profiles at different axial 

locations in physical coordinates for the adiabatic (Tw=804 °R) and highest wall cooling 

case (Tw=161 °R) respectively. The minimum value of mean flow nondimensional 

density is 0.43 at y=0.01 in. normal to the wall, and boundary layer thickness is 0.04 in. 

for highly cooled wall simulation. Figure 6.11 also shows that wall cooling decreased the 
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boundary layer thickness two times from 0.08 in. to 0.04 in. Non-parallel effects are 

stronger for the cooled wall at x=1.01 in. as compared to the adiabatic case. 

Figures 6.12 (a) and (b) depict the mean flow temperature profiles at different 

axial locations in physical coordinates for adiabatic (Tw=804 °R) and cooled wall 

(Tw=161 °R) conditions. 
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Figure 6.6 Mean flow density profiles at different axial locations in similarity coordinates 

for different wall temperatures, (a) Adiabatic wall (Taw), (b) Tw=Taw*0.50 
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Figure 6.7 Mean flow density profiles at different axial locations in similarity coordinates 

for different wall temperatures, (a) Tw=Tawx0.30, (b) Tw=Tawx0.20 



114 

20 

15 -

r 10 

5 -

-

I 1 ' 
\ 
\ 

1 * 

1 i 
1 
i • 
I 

I 

1 ' ' ! ' ' ' ! 

i * w a l = 

V • 

_.V ' 

A i 
X . J 

. X . — — — —.—• 
X 

XV 

_ ;.> r 
"•ifctaJ X-

^ ^ * h k » _ x 
. ^ ^ * % » ^ ^ ' • X -

^ ~ * - h , X 
l ^ ^ * t e « ^ • X , 

^ ^ t * ^ ^ i X 

, , 1 , , l 

1 ' 
iticWall 
B04R 

x= 0.01 in 
x= 0.10 in 
x= 0.20 in 
x=13.96in 
Similarity 

X 
- - V * 
fcw X 

—
I—

I—
I—

I—
I—

I—
I—

I—
I—

1
 

1 t 

1 1 1 

1 
1
 

1
 

1
 

1
 

1
 

1
 

1
 

1
 

200 400 600 800 

Temperature ( R ) (a) 
20 

15 h 

r I0h 

5h 

i—r 
\ 

T 
i i i 

Cooled Wall 
Twall = 603R 

x=0.01 in 
x= 0.10 in 
x= 0.20 in 
x=13.96in 
Similarity 

200 800 400 600 

Temperature ( R ) ^ 

Figure 6.8 Mean flow temperature profiles at different axial locations in similarity 

coordinates for different wall temperatures, (a) Adiabatic wall (Tw), (b) Tw=Tawx0.75. 



20 

15h 

pr 10h 

5 h 

20 

15 -

F 1 0 -

5 -

9 00 

1 
I 

-i 1 r 1 ' r ~ 
Cooled Wall 
Twal, - 402 R 

x=0.01 in 
x= 0.10 in 
x= 0.20 in 
x=13.96in 
Similarity 

200 400 600 

Temperature ( R ) 

800 

(a) 
I I 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 

. I t . . 
w 

[----;- —y-
i • j • • \ 

U ; 

l l | 

\ 

V Cooled Wall: 
V . . . J . . . . J Twall = 322R! 

U*J I I 1 

f . A : . . . . i x= 0.010 in 

| Nv i \ . i x= 0.100 in -
_! X j * . i _ - j S ^ . _ . ._ . .—. . . . . . . . v I Q E O i n 

I . . . . 1 . . . . «4 

; . . . . : . . . . i^~*^ : :*-S^5^iii 
. . . . . . . . r~*^^5ssa 

>U II 1 _ 

nx 

__i 

y 

i i i — 

150 200 250 300 350 400 450 

Temperature ( R ) ^ 

Figure 6.9 Mean flow temperature profiles at different axial locations in similarity 

coordinates for different wall temperatures, (a) Tw=Tawx0.50, (b) Tw=Tawx0.40. 
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Figure 6.10 Mean flow temperature profiles at different axial locations in similarity 

coordinates for different wall temperatures, (a) Tw=Tawx0.30, (b) Tw=Tawx0.20. 
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Figure 6.11 Mean flow density profiles at different axial locations in physical coordinates 

for different wall temperatures, (a) Tw Adiabatic wall (Taw), and (b) Tw=Taw*0.20. 
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Figure 6.12 Mean flow temperature profiles at different axial locations in physical 
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6.4 Linear Stability Analysis 

Linear stability computations are done for flow over an axisymmetric cone at a 

free stream Mach number of 6 at different wall temperature conditions Tw/Taw=l-0, 0.50 

and 0.20. The derivation of the linear stability equations and the numerical scheme to 

solve are given in the appendix. Figures 6.13 and 14 depict the results in the (Re, F), (Re, 

a) and (Re, Cr) planes for two-dimensional disturbances respectively. 

Figure 6.13 shows the neutral stability diagram for the steady mean flow over a 5-

degree straight cone. This figure clearly shows the first and second mode unstable regions 

for adiabatic wall temperature conditions, but when wall cooling is applied the unstable 

first mode region disappears. The first and second modes of the neutral stability curves 

merge at a Reynolds number of Re=1600 for the cone. From this figure we can say that 

wall cooling stabilized the first mode and increased the unstable frequencies. 
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Re 

Figure 6.13 Neutral stability diagrams for a 5-degree cone at different wall temperature 

conditions in Re-F plane. 
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conditions in (a) Re-a plane, (b) Re-Cr plane. 
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Figure 6.14 shows the neutral stability diagram for the same conditions in the (Re, 

a) and (Re, Cr) planes. Figure 6.14 (a) also shows the first and second mode unstable 

regions for adiabatic wall temperature conditions. As expected, when wall cooling is 

applied the unstable first mode region disappears. Also, the unsteady wave number 

increased with wall cooling. The range of wave speeds of the unstable waves narrows 

with wall cooling as shown in Figure 6.14 (b). 

Figures 6.15 and 16 show the N-Factor curves for decreasing frequencies at 

different wall temperature conditions. The most amplified frequencies for wall 

temperatures Tw/Taw=1.0, 0.75, 0.50 and 0.20 are found as 0.8xl0"4,0.9x xlO"4,1.1 xlO"4, 

and 1.7 xlO"4 for N=10. These values clearly show that the most amplified frequency is 

increased more than two times with wall cooling. Here, the variables are non-

dimensionalized by the variables at the edge of boundary layer. To obtain the variables 

non-dimensionalized by the free stream values as given in Table 3.2, the variables in this 

section should be multiplied by the appropriate factors from Table 4.1. The frequency 

variable F has to be multiplied by 1.174 to obtain the values in terms of free stream 

values. 

Figure 6.15 (a) shows the N-Factor curves for the frequencies ranging from 

0.70xl0~4 to l.OxlO"4 at adiabatic wall conditions. In this figure the curves start from zero 

and increase linearly until a certain value in the first mode unstable region then change its 

characteristic and grow exponentially in the second mode unstable region. Since there is 

no first mode unstable region in cooled cases, the linear growth is not observed in Figures 

6.15 (b), 6.16 (a), and 6.16 (b). The second mode is destabilized and estimated transition 

location moved upstream with increased wall cooling. 
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Figure 6.15 N-Factor curves for decreasing frequencies for a blunt cone (rn=0.001 in.) at 

different wall temperature conditions, (a) Adiabatic wall (Taw), (b) Tw=Tawx0.75. 
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Figure 6.16 N-Factor curves for decreasing frequencies for a blunt cone (rn=0.001 in.) at 

different wall temperature conditions, (a) Tw=Tawx0.50, (b) Tw=Tawx0.20. 
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6.5 Interactions of Acoustic Disturbances with Boundary Layer 

After the mean flow is computed two dimensional slow acoustic disturbances are 

introduced at the outer computational boundary, and the time accurate simulations are 

performed. Unsteady simulation results are presented for the cases Tw=Taw, 0.75xTaw, 

0.50xTaw, and 0.20xTaw (slow and fast acoustic waves) at the most amplified frequencies 

0.96xl0"4, 1.08 xlO"4, 1.32 xlO"4, and 2.0 xlO"4. These frequencies correspond to 375, 

421, 515, and 780 kHz respectively. These frequencies give maximum amplification 

within the computational domain. To remain in the linear region, the amplitude of the 

forcing freestream acoustic waves is given a small value of 2x10" for the first three 

simulations and 2xl0"6 for 0.20xTaw simulation. Even with these small amplitudes, 

nonlinearity starts to develop near the end of the computational domain for the adiabatic 

case. 

Figures 6.17 and 18 show the evolution of the wall pressure fluctuations for the 

aforementioned cases in a linear scale while Figures 6.19 and 20 depict the same results 

in a log scale. The figures clearly show the generation and the eventual exponential 

growth of the instability waves inside the boundary layer for adiabatic and cooled wall 

conditions. 

For adiabatic wall conditions, Figure 6.17 (a) and Figure 6.19 (a), the disturbances 

grow from the leading edge and reach large amplitude levels of 0.50 near the predicted 

transition onset point at x=19in. The slow wave whose wavelength is closer to the 

wavelength of the instability wave transforms smoothly into an instability wave near the 

nose region. The parallel linear computations show that the first mode amplifies starting 

from the leading edge weakly up to x~15 in. for this frequency. 



0.4 

0.2 

Pwa./P°° 

0 

-0.2 

-0.4 

—-, i 1 1 1 1 , 1 1 | r—i 1 r - ' | 1 . 

- r0 = 0.001 in. F=0.80 *10"4 Slow wave 

• 

*» 

__, , ^ _ l _ ^ , , ^ _ L _ , , , . — l — , , 

'I'­
ll 

"H 

s 

_ 

-

-
-

1 
J_

l 

, 1" 
10 X (in.) 15 20 

(a) 
1.0 

0.5 

S 0.0 -

-0.5 -

-1.0 

0.06 

0.04 

0.02 

S 0.00 

-0.02 h 

-0.04 

-0.06 

i i i | i i i | i i i | i i I | i i i | r— T- i | f 

Wall Pressure Fluctuations 
Twaii = Cooled Wall (603 R) " itltltlti' 

" F=1.08x10"* Slow Wave i l l l l 

itlll H 1 1 1 

^ 
• 

• 
• 

I
I

I
! 

1 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1... 1 1 :,i^L 1 

10 12 
X (in.) 

10 12 

14 

(b) 
, , . i , . , 

. 

I 
I 

I 

. 

• 

I 1 1 1 1 1 1 1 1 T 1 1 

Wall Pressure Fluctuations 
L i , = Cooled Wall (402R) ... 
F=1.32x10" Slow Wave 

— i — i 

• 

i — i I 1 - "1 ' I T" ' I 

; i ; ; ; i 

-

• 

. 

: 

-

14 

X (in.) 

Figure 6.17 Unsteady pressure fluctuations on the wall, (a) Adiabatic wall (Taw), (b) 

Tw=Tawx0.75, (c) Tw=Tawx0.50. 
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Figure 6.18 Unsteady pressure fluctuations on the wall (a) Tw=Tawx0.20 (Slow Wave), 

(b) Tw=Tawx0.20 (Fast Wave). 

Figure 6.19 (b) shows the pressure fluctuations for Tw=0.75xTaw in log scale. It is 

evident that wall cooling reduced the growth of the first mode until x=6 in. then growth 

of the second mode is observed. Maximum amplitude only reached to 0.734 because of 

the wall cooling and it is in the same order of adiabatic case. When more wall cooling 

(Tw=0.50xTaw) is applied stabilization of the first mode becomes obvious. 
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Figure 6.19 Unsteady pressure fluctuations on the wall in log scale, (a) Adiabatic wall 

(Taw), (b) Tw=Tawx0.75, (c) Tw=Tawx0.50. 
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In Figure 6.19 (c) the neutral point appeared at x=5.55 in. with an amplitude of 

6.18xl0"6. Maximum amplitude for this case is 0.041 at x=10.73 in. The neutral points 

are not discernable for the adiabatic case and Tw=0.75xTaw, but it appeared for 

Tw=0.50xTaw and stayed in the picture for cooler cases. 
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Figure 6.20 Unsteady pressure fluctuations on the wall in log scale (a) Tw=Tawx0.20 

(Slow Wave), (b) Tw=Tawx0.20 (Fast Wave). 

Figures 6.20 (a) and (b) show the wall pressure fluctuations for slow and fast 

acoustic disturbance waves respectively at Tw=0.20xTaw. In these figures the neutral 

points are located at 4.94 in. (Slow Wave) and 5.62 in. (Fast Wave) with amplitudes of 
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2xl0"8 and lxlO"6 respectively. Maximum wall pressure amplitudes of 0.00023 for slow a 

wave and 0.0029 for a fast wave are observed at x=7.6 in for both cases. Because of the 

difference in the initial amplitude of the acoustic disturbances the maximum amplitudes 

for Tw=Taw, 0.75xTaw and 0.50xTaw need to be divided by 10, and they become 0.05, 

0.0734, and 0.0041 respectively. The maximum amplitude of Tw=0.20xTaw simulation is 

0.00023 for slow acoustic waves, and it is in the same order for fast acoustic waves. On 

the other hand it is almost 20 times less than the 0.50xTaw simulation. 

Also, it is interesting to observe that the first mode is not stabilized for fast 

acoustic wave simulation in Figure 6.20 (b) while Figures 6.19 and 6.20(a) clearly show 

the stabilization effect of wall cooling on the first mode for slow acoustic wave 

simulations. The transition locations obtained from these simulations for Tw=Taw, 

0.75xTaw, 0.50xTaw, and 0.20xTaw (slow and fast) wall temperature conditions are 19, 13, 

10.7, and 7.6 in. respectively. From these results one can conclude that wall cooling is 

destabilizing the boundary layer and estimated transition points are moving upstream. 

Another set of simulations were run for Tw=Taw, 0.75xTaw, 0.50xTaw, 0.40xTaw, 

0.30xTaw, and 0.20xTaw using the same forcing disturbance frequency, F=1.2xl0"4, in 

slow wave mode to observe the effects of wall cooling on development of instability 

waves in the same disturbance environment. Figures 6.21 and 6.22 show the unsteady 

wall pressure fluctuations for the aforementioned simulations. 

Figure 6.22 (b) shows the pressure fluctuations for Tw=0.50xTaw in log scale. It is 

evident that wall cooling reduced the growth of the first mode until x=6.96 in. where the 

amplitude is 6.5xl0"6; then growth of the second mode started. In this case maximum 

amplitude only reached 0.0035 because of the wall cooling. It is 35 times less than of the 
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adiabatic case. Stabilization of the first mode became apparent with wall cooling as was 

seen in the neutral stability diagrams (Figure 6.13). An exponential decrease of amplitude 

of wall pressure fluctuations for the Tw=0.40xTaw simulation until the neutral point 

located at x=8.46 in. with an amplitude of 9.95x10" is observed. Maximum amplitude for 

this case is 0.129 occurred at x=14.62 in. More cooling increased the maximum 

amplitude level to the same value of adiabatic case. 

Finally, for the Tw=0.20xTaw simulation the maximum amplitude increased more 

than two times and reached 0.301 at the end of the computational domain x=19.9 in. 

Further cooling moved the neutral point to x=13.4 in. where the amplitude is 4.7xl0"8. 

In these simulations the neutral point was not discernable for the adiabatic wall 

and Tw=0.75xTaw, but it appeared for Tw=0.50xTaw and cooler wall temperatures because 

of the stabilization of the first mode (Slow Wave) with wall cooling. 

Transition locations computed for Tw=Taw, 0.50xTaw, 0.40xTaw, and 0.20xTaw wall 

temperature conditions forced with slow wave acoustic disturbances are 9.47, 9.67, 

14.62, and 19.9 in. respectively. Transition location is delayed with wall cooling for the 

same slow wave frequency because of the stabilization of the first mode. However, the 

amplitudes of wall pressure fluctuations increased with wall cooling to larger values than 

those of the adiabatic case. 

Figure 6.23 compares the unsteady wall pressure fluctuations for Tw=Taw, 

0.75xTaw, 0.50xTaw, 0.40xTaw, 0.30xTaw, and 0.20xTaw wall temperature conditions in log 

scale. The delay of the transition locations and comparison of the amplitude levels can be 

easily seen in this figure 
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gure 6.21 Pressure fluctuations on the wall under the effect of same forcing frequency 

F = 1.2xl0"4, (a) Adiabatic wall (Taw), (b) Tw=Tawx0.50, (c) Tw=Tawx0.20. 
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Figure 6.23 Comparison of wall pressure fluctuations under the same forcing frequency 

(F=1.2xl0~4) at different wall temperature conditions. 

Figure 6.24 shows variation of phase speed (Cr) and eigenvalues (ar, a;) for the 

slow and fast acoustic disturbance waves for the non-dimensional frequency of F=2xl0"4 

at the Tw=0.20xTaw, wall temperature simulation. Figure 6.24 (a) and (b) have similar 

topological structure to Fedorov46's cooled wall case where Tw/Taw=0.1. There are three 

distinct regions in Figure 6.24 (a). Region one shows that the boundary layer modes are 

synchronized with acoustic waves in the leading edge. At region two a fast acoustic wave 

is synchronized with the waves of phase speed Cr=l, and in region three the fast wave is 

synchronized with the slow wave that leads to discrete spectrum branching. In this region 

the boundary layer is extremely receptive to acoustic disturbances. Figure 6.24 (b) shows 

growth rate branching of slow and fast acoustic waves. 
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Figure 6.25 compares the evolution of unsteady density fluctuations obtained 

from the simulations for a slow wave (F=1.2xl0"4) at a fixed time for adiabatic and 

cooled wall (Tw=0.20xTaw) conditions. Figures 6.25 (a) and (b) clearly show that there is 

no entropy layer generated by small bluntness, and the disturbances excite the boundary 

layer up to the wall. These figures clearly show the disturbance evolution in the nose 

region. Acoustic disturbances pass the bow shock and directly enter the boundary layer. 

Figure 6.25 (b) shows that the boundary layer is thinner and the amplitude of the 

fluctuations inside the boundary layer is weaker for the cooled wall than for the adiabatic 

wall presented in Figure 6.25 (a). 

Figure 6.25 Contours of unsteady density fluctuations inside the boundary layer near the 

nose region, (a) Adiabatic wall (Tw =Taw), (b) Cooled wall (Tw =Tawx0.20) 
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Figures 6.26 and 6.27 show the propagation of density fluctuations inside the 

boundary layer from the leading edge to the end of the computational domain. In Figure 

6.26 (a) disturbances interact with the bow shock in the nose region and directly enter the 

boundary layer. Then the disturbances generate a rope shape structure inside the 

boundary layer and on the oblique shock. The interaction is obvious between the density 

fluctuations on the oblique shock and boundary layer. 

Figure 6.26 (b) shows the disturbance field from 0.3 in. to 2.0 in. In this figure 

four different zones are observed similar to previous studies.22'40'52'84'85 First zone is the 

area outside the shock where acoustic disturbances propagate uniformly. In the second 

zone acoustic waves are transmitted through the shock layer. The third zone is the area 

between the shock and the boundary layer. This region consists of the transmitted 

external acoustic field and the disturbances radiated from the boundary layer. It is 

interesting to see that the third region is much quieter compared to the acoustic waves 

outside the shock layer. This implies that the acoustic waves are weakly transmitted 

through the shock. The fourth zone is the boundary layer where the boundary layer 

disturbances evolve. Figure 6.26 (c) clearly shows the decay of amplitudes of density 

fluctuation from the order of 10"5 to 10"8, which corresponds to first mode stabilization. In 

Figure 6.27 (a) and (b) density fluctuations inside the boundary layer are not discernable, 

and the region between shock layer and the cone wall seems quiet. However, acoustic 

disturbances propagated from 4 in. to 16 in. (also look at Figure 6.22 (c)) in the order of 

10" or below and then started to gain amplitude and became visible. This phenomenon 

shows the necessity of a high resolution grid and higher order accurate schemes. Figure 
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6.27 (c) shows destabilization of the second mode disturbances near the end of the 

computational domain. 
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Figure 6.27 Contours of unsteady density fluctuations inside the boundary layer along the 

cooled cone wall (Tw=Tawx0.2), (a) x=[4-5.7], (b) x=[6-15], and (c) x=[14-19.8] in. 
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6.6 Discussion and Conclusion 

The receptivity and stability of hypersonic boundary layers over a blunt cone with 

a 5 degree half-angle with nose radius 0.001 in. are numerically investigated at a free 

stream Mach number of 6.0 and at a Reynolds number of 7.8xl06/ft. Both steady and 

unsteady solutions are obtained by solving compressible Navier-Stokes equations using 

the 5 order accurate Weighted Essentially Non-Oscillatory (WENO) scheme for space 

discretization and using a 3rd order Total-Variation-Diminishing (TVD) Runge-Kutta 

scheme for time integration. Unsteady flow is forced using slow and fast acoustic 

disturbance waves with the most amplified disturbances calculated based on mean flow 

analyses and also forced with non-dimensional frequency of F=1.2xl0"4. Computations 

are performed for different wall temperatures 804 (adiabatic wall), 603, 402, 322, 241, 

and 161 °R. 

Table 6.2 summarizes computation parameters and the receptivity coefficients for 

the most amplified slow and fast mode acoustic disturbances at different wall temperature 

conditions. It is shown that the first mode of slow wave acoustic disturbances was 

stabilized by wall cooling. However, wall cooling also caused the destabilization of the 

second mode, and the transition location moved to upstream from x=19.1 in. for the 

adiabatic case to x=7.61 in. for the highly cooled wall case. 

It is also interesting to observe that wall cooling did not affect the first mode of 

fast acoustic disturbance waves. The receptivity coefficient of the fast wave case is 50 

times greater than of the slow wave case. We can conclude that the boundary layer is 

much more receptive to fast acoustic waves as compared to the slow wave. 
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Table 6.2 Computation parameters and receptivity coefficients for the most 

amplified frequencies at different wall temperatures. 

F x 10 -4 

0.96s 

1.08s 

1.32s 

2.0s 

2.0F 

Twall 1 
IT 

'aw 
1.00 
0.75 
0.50 
0.20 
0.20 

\"wall)np 

8.5xl0"6 

4.8xl05 

6.2xl0"6 

2.0xl0"8 

l.OxlO"6 

^recpt. ~ 

4.23**'# 

2.39*'# 

0.309* 
0.010** 
0.500** 

(."wallJnp I 

IPac xTrXin.) 

19.1 
13.1 
10.7 
7.61 
7.59 

(^wail)rr . 

0.552 
0.0734+ 

0.0041+ 

0.0002 
0.0029 

To, = 113.98 °R, *Pac = 2 x 10"5, **Pac = 2 x 10"6. +These values divided by 10 to make 
the initial amplitudes in the same order. #In these simulation neutral point is not observed 
and amplitude values from x=l in. is used. 
S Slow wave, F Fast Wave. 

The transition locations stayed almost the same for the adiabatic wall and cooled 

walls (603°R and 402°R) respectively for 9.475, 9.714 and 9.672 in. Transition locations 

increased dramatically for wall temperatures 322°R, 241°R and 161°R to 14.628,17.013, 

and 19.906 in. This happened due to the stabilization of the first mode disturbances. 

However, amplitude of wall pressure fluctuations of the cooled wall case (TW=161°R) 

increased 2.34 times that of the adiabatic wall case (Tw= Taw=804°R). Table 6.3 

summarizes the simulation parameters and gives the receptivity coefficients for the same 

slow wave disturbance frequency, F=1.2xl0"4, at different wall temperature conditions. 

Because of the initial growth of the first mode in the adiabatic and cooled wall 

cases (Tw=0.75xTaw) neutral points are not observed. Therefore, wall pressure 

fluctuations at 0.207 in. are used in the receptivity coefficient calculations. Neutral point 

locations moved downstream with wall cooling. Receptivity coefficients are 1.5225, 

1.4613, 0.3246, 0.0497, 0.0059, and 0.0023 respectively for wall temperatures 804, 603, 

402, 322, 241, and 161 °R. 
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Table 6.3 Computation parameters and receptivity coefficients for the same 

slow wave disturbance frequency at different wall temperatures. 

i r — ̂  wall'nt'/ 
!wai((°R) """A- XnpMn.) W - " /P^ XTr,(itl.) (PWaH)rr . 

804 
603 
402 
322 
241 
161 

1.00 
0.75 
0.50 
0.40 
0.30 
0.20 

0.207 
0.207 
6.965 
8.466 
10.964 
13.397 

1.5225* 
1.4613* 
0.3246 
0.0497 
0.0059 
0.0023 

9.475 
9.714 
9.672 
14.628 
17.013 
19.906 

0.129 
0.046 
0.003 
0.129 
0.068 
0.301 

TM = 113.98 °R, Pac = 2 x 10~5, Nose Radius Rn = 0.001 in. * Neutral point is not 
observed for this case and amplitude from x=0.207 is used. 

Wall cooling reduced receptivity coefficients and increased the transition 

Reynolds numbers for the same forcing frequency, F=1.2xl0"4. The receptivity 

coefficient for the adiabatic wall case is 1.5225, and it is much smaller in the order of 10"3 

for highly cooled cones (241°R and 161°R). This raises some questions85 about the 

transition process over a cone with small bluntness. If the receptivity coefficients are very 

small for the second modes, as was found in this chapter, how can the amplitude of the 

disturbances reaches such high values? Probably, non-zero acoustic incident angles may 

produce larger receptivity coefficients than the zero incident angle used in this work. 
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CHAPTER VII 

7. CONCLUSIONS AND RECOMMENDATIONS 

The receptivity mechanisms of hypersonic boundary layers to free stream acoustic 

disturbances are studied by using both linear stability theory (LST) and direct numerical 

simulations (DNS) over cones and wedges. A computational code is developed for 

numerical simulation of steady and unsteady hypersonic flow over cones by combining a 

fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme with a third-order 

Total-Variation-Diminishing (TVD) Runge-Kutta method. Hypersonic boundary layer 

receptivity to freestream acoustic disturbances in slow and fast modes over 5-degree, 

half-angle blunt cones and wedges is numerically investigated. The free-stream Mach 

number is 6.0, and the unit Reynolds number is 7.8xl06 /ft. Both the steady and unsteady 

solutions are obtained by solving the full Navier-Stokes equations in two-dimensional 

and axisymmetric coordinates. 

Computations are performed in three steps. After the steady mean flow field is 

computed, linear stability analysis is performed to find the most amplified frequency and 

the unstable disturbance modes in different flow regions. Then, unsteady acoustic 

disturbances in slow or fast mode are introduced from the upper boundary of the 

computational domain with the most amplified frequency and time accurate computations 

performed to investigate the initial generation, interaction and evolution of instability 

waves inside the boundary layer. Since a very fine spatial grid is used to resolve the 

leading edge and boundary layer regions, these computations require a very small time 
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step. To reduce the runtime the code is parallelized with message passing interface (MPI) 

routines. 

Receptivity computations showed that the acoustic disturbance waves propagated 

uniformly downstream and interacted with the bow shock and entered the boundary layer; 

then they generated the initial amplitude of the instability waves in the leading edge 

region. 

Effects of the entropy layer due to nose bluntness to the receptivity process are 

studied. It is found that transition location moved downstream and was delayed by the 

increasing bluntness. Moreover, the role of the entropy layer in this process is revealed. 

Also, the effects of wall cooling to the receptivity process using slow and fast mode 

acoustic disturbances are studied. The effects of cooling on the first and second mode 

regions are investigated. It is found that the first mode is stabilized and the second mode 

is destabilized by wall cooling when the flow was forced by acoustic waves in slow 

mode. 

Chapters 4-6 have their own detailed discussion and conclusion sections and here 

we will give the summary of those. Based on all the numerical simulations the following 

conclusions and recommendations for future research have been made. 

7.1 Conclusions 

The simulations for the comparison of the receptivity process over a cone and 

wedge revealed the following. 
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1. According to the unsteady simulations, instability waves are generated very 

close to the leading edge region. 

2. The simulations for the cone showed that the first mode starts to grow starting 

from the leading edge (due to the nonparallel effects) before they grow 

exponentially due to the unstable second mode. 

3. In the wedge simulations, the first mode disturbances decay first before they 

start to grow exponentially due to the second mode. 

4. The receptivity coefficient of the instability waves generated by the slow 

acoustic wave is about 4 times that of the free stream acoustic wave's 

amplitude. 

5. The amplitude of the instability waves generated by the slow mode acoustic 

disturbances is about 67 times larger than that for the fast mode. Therefore, 

forcing by slow mode is much more relevant in the transition process in 

hypersonic boundary layers. 

6. The receptivity coefficient for the wedge is 0.8, which is 5 times smaller than 

that for the cone. This is due to the initial growth of the first mode in the cone 

case. 

7. The above item shows that the slow mode is much more efficient in flows 

over a cone with small bluntness than a wedge with the same cross section. 

Effects of the nose bluntness on the receptivity process are summarized as 

follows. 

1. The results showed that bluntness has a strong stabilizing effect on the 

stability of the boundary layers. The transition Reynolds number increases 



146 

slowly up to a nose Reynolds number of 30,000 and then increases sharply at 

higher nose Reynolds numbers. 

2. The transition Reynolds number for a cone at a nose Reynolds number of 

65,000 is about 1.8 times larger than that for the Blasius boundary layer. This 

is due to the entropy layer that is generated near the leading edge. These 

layers persist for longer distances with increasing bluntness. 

3. In the small bluntness case, the disturbances grow starting from the nose 

region and reach very large values, -0.50, near the transition point. The 

growth of the first mode is much stronger for this case due to the non-parallel 

effects. The amplitude levels of the disturbances are much smaller, in the 

order of 10'4 in the larger bluntness cases. 

4. There are no unstable first modes observed in the large bluntness cases, and 

the disturbances decay by two orders before they start to grow due to the 

second mode instability. 

5. The receptivity coefficient at small bluntness ro=0.001 in. is about 4.23, and it 

is much smaller, in the order of ~ 10"3, in the larger bluntness cases. 

Effects of the wall cooling on the receptivity process are summarized as follows. 

1. It is shown that the first mode of slow wave acoustic disturbances is stabilized 

by wall cooling. However, wall cooling caused the destabilization of the 

second mode, and the transition location moved upstream from x=19.1 in. for 

adiabatic case to x=7.61 in. highly cooled wall case. 

2. It is also interesting to note that wall cooling did not affect the first mode of 

fast acoustic disturbance waves. The receptivity coefficient of the fast wave 
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case is 50 times greater than that of the slow wave case. We can conclude that 

the boundary layer is much more receptive to fast acoustic waves as compared 

to the slow wave when wall cooling is applied. 

3. For the same slow wave disturbance frequency, F=1.2xl0' , at different wall 

temperature conditions the transition locations stayed almost the same for the 

adiabatic wall and cooled walls (603 °R and 402°R) at 9.475, 9.714 and 9.672 

in. Transition locations increased dramatically for wall temperatures 322°R, 

241°R and 161°R to 14.628, 17.013, and 19.906 in. This is due to the 

stabilization of the first mode disturbances. However, the amplitude of wall 

pressure fluctuations of the cooled wall case (TW=161°R) increased 2.34 times 

of the adiabatic wall case (Tw= Taw=804°R). 

4. Wall cooling reduced receptivity coefficients and increased the transition 

Reynolds numbers for the same forcing frequency, F=l.2xl0"4. 

7.2 Recommendations for Future Research 

Future work should be performed to investigate the following items. 

1. The acoustic disturbance waves considered in this dissertation have zero 

incident angles. Non-zero acoustic incident angles may produce larger 

receptivity coefficients than the zero incident angle used in this work. 

2. There may be other unstable modes in the entropy layer, as were observed in 

the experiments54, other than the first-mode type instabilities that were 

considered in this work. Whether they exist and what role these waves play in 
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the transition process still has to be investigated using three-dimensional 

simulations. 

3. Additional simulations for larger nose bluntness can be considered to capture 

the transition reversal phenomena. 

4. In order to fully understand the instability mechanisms, vortical and wall 

induced disturbance waves should be considered over cones. 
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APPENDIX 

LINEAR STABILITY THEORY (LST) 

The following formulation of linear stability theory was given by Mack44 (and 

more recently by Cebeci86). To derive the linear stability equations for a compressible 

flow we start with the Navier-Stokes equations (non dimensionalized by the parameters 

given in Section 2.2) for a perfect gas. Neglecting the body forces one can write they as 

Continuity equation 

f+i^u)+iipv)+i{pw)=0 (A.1) 

Momentum equations 
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State equation 

P = 
pT (A.6) 

where 

D d() a ( ) d() d() 
Dt dt dx dy dz 

(A.7) 

and assume that the velocity components u, v, and w, pressure p, temperature T, density 

p, represent the instantaneous components of the flow properties in Equations (A.l) to 
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(A.6) and divide them into a mean term and a fluctuating term so that the instantaneous 

flow properties can be expressed as 

u = U + u' T = f+T /u = Ji+ju' 

v = y + v' P = P + p' P = P + p' (A.8) 

w = W + w' 

where the symbol '-' represents the mean flow quantities, and " ' stands for the 

disturbance quantities. The viscosity is a function only of temperature. We have the 

following equations. 

dT 

$£=¥£-!!!Lr+fE— (A.9) 
dxi dT2 dxt dT dxt 

dji _ d]u 8T 

dxi dT dxt 

First one can substitute Equation (A.8) into Equations (A.1)-(A.6) and cancel out 

the mean flow terms assuming that they satisfy the Navier-Stokes equations for steady 

laminar flow. Since disturbance quantities are small, their squares and products can be 

neglected. They are, however, still complicated and can be further simplified by 

assuming the flow is parallel, and we can write them as follows. 

u=u{y), w=w(y), P = P{yy T = f(y), v = 0 (A.10) 

Dropping the over-bars on mean flow variables for convenience allows the 

nondimensional linearized disturbance equations to be written as 
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Equations (A. 11) to (A. 16) form a set of coupled partial differential equations 

whose solutions describe how disturbances originate near the surface, y=0, and spread 

out through the boundary layer. One can assume that the small disturbance is a sinusoidal 

travelling wave and write the three-dimensional disturbances 
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where u,v,w,p,p,fate the complex amplitude functions of the flow variables 

u',v',w',p',p',T' respectively, a and (3 are the dimensionless wave numbers 2nUXx and 

2ixL/A.z, where Xx and Xz are the wavelengths in streamwise and spanwise directions 

respectively, and 0) is the dimensionless frequency. 

After substituting Equation (A.17) back into Equations (A. 11) to (A. 16) we can 

get eight first order differential equations written in matrix form as follows 
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In Equation (A. 18) <?is 
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„ du „ dv - dT „ 
u, — , v, —, T, — , w, p 

dy dy dy 

The boundary conditions are 

u = v = w = t = 0, aty = 0 (A.19) 

u,v,w,f ->0,as y -><x> (A.20) 

The first order differential equations derived above along with die homogenous boundary 

conditions are actually an eigenvalue problem that can be written as follows. 

F(a,0,c»,R) ~ ® (A.21) 
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For a given Reynolds number, if any pair of three variables a, p\ and co is known, 

one can find the third variable from the above equation. 

The eigenvalue problem can be solved using the boundary value method (BVM). 

Malik, Chuang and Hussani87developed a fourth order accurate two-point compact 

difference scheme based on BVM using the Euler-Maclaurin formula: 

xnk _\nk-l _ "K 

2 

i K (dVk
 ] dH> 

dy dy 

k-l\ h2 

_L 
12 

Id2x¥k d2Vk-^ 

dy1 dy2 
+ 0(h5

k) (A.22) 

where Y* =^{yk) and hk=yk-yk_l,k = l,2,...,N. 

In order to apply this scheme to Equation (A. 18), one can write 

* = {««}• 
dW 

dy - § ^ ' 
(A.23) 

where 

u da'J ^ V 
ay i=i 

(A.24) 

Substituting the above equations into Equation (A.22), we get 

*'-fi>;«;+§i>^ 
y=i 

r -H^ r+S i r r 
2^f 12 J=I 

= 0 (A.25) 

Following the procedure given by Cebeci and Bradshaw88 the above equation 

system along with the boundary conditions given in Equations (A. 19) and (A.20), can be 

written in block tridiagonal form as follows. 

Akq
k~l + Bkq

k + Ckq
M =RHS, k = \,2,...,N (A.26) 
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where A^ Bk, and C* are 8x8 matrices and RHS is an 8x1 null matrix. 

Nonhomogenous boundary conditions are imposed at the wall to avoid a trivial 

solution. The boundary condition q\ = 0 is replaced by q\ = 0, which is equivalent to 

normalizing the eigenfunction by the value of the pressure perturbations at the wall. Now 

Equation (A.26) is nonhomogenous and a non-trivial solution can be obtained for a 

guessed eigenvalue. For example, co= coo if a and /?are given. Newton's method is used 

to iterate on co such that the missing boundary condition q\ = 0 satisfied. Thus, when a 

solution, q, is obtained for coo, the correction, Aco, is determined from the following 

equation. 

q{+%k-Aa> = 0 (A.27) 
do) 

where q\ is known from the solution q just obtained; dql/dco is obtained by solving 

£ i 
i <h co+Sa> 

A1 

"ft 
dco Sco 

one can use the same strategy to obtain q{\ 

(A.28) 

OH-Sw 

We can also obtain a and /? based on the same method described above if the 

other two variables are known. 
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