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ABSTRACT

CONTINUOUS ADJOINT SENSITIVITY ANALYSIS FOR
AERODYNAMIC AND ACOUSTIC OPTIMIZATION

Kaveh Ghayour
Old Dominion University, 1999
Director: Dr. Oktay Baysal

A gradient-based shape optimization methodology based on continuous adjoint
sensitivities has been developed for two-dimensional steady Euler equations on
unstructured meshes and the unsteady transonic small disturbance equation. The
continuous adjoint sensitivities of the Helmholtz equation for acoustic applications have
also been derived and discussed.

The highlights of the developments for the steady two-dimensional Euler
equations are the generalization of the airfoil surface boundary condition of the adjoint
system to allow a proper closure of the Lagrangian functional associated with a general
cost functional and the results for an inverse problem with density as the prescribed
target. Furthermore, it has been demonstrated that a transformation to the natural
coordinate system, in conjunction with the reduction of the governing state equations to
the control surface, results in sensitivity integrals that are only a function of the tangential
derivatives of the state variables. This approach alleviates the need for directional
derivative computations with components along the normal to the control surface, which

can render erroneous results.
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With regard to the unsteady transonic small disturbance equation (UTSD), the
continuous adjoint methodology has been successfully extended to unsteady flows. It has
been demonstrated that for periodic airfoil oscillations leading to limit-cycle behavior, the
Lagrangian functional can be only closed if the time interval of interest spans one or
more periods of the flow oscillations after the limit-cycle has been attained. The steady
state and limit-cycle sensitivities are then validated by comparing with the brute-force
derivatives. The importance of accounting for the flow circulation sensitivity, appearing
in the form of a Dirac delta in the wall boundary condition at the trailing edge, has been
stressed and demonstrated. Remarkably, the cost of an unsteady adjoint solution is about
0.2 times that of a UTSD solution.

Unlike the Euler equation sensitivities, the Helmholtz equation requires the
Hessian of the acoustic field on the control surface. Obtaining accurate Hessian
information on curved surfaces is not an easy task, if not impossible. It is been shown that
in the natural coordinates, the only required derivative information are the first and
second order tangential derivatives of the acoustic field that can be computed very
accurately by fitting the boundary variables with a cubic-spline interpolating function. If
it were to be attempted, the sensitivities of the Navier-Stokes equations would also
require the Hessian of the state variables. Based on above experiences, it is contended
that a transformation to the trihedral coordinate system may ease the problem associated

with the acquisition of accurate boundary derivative information.
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CHAPTER 1

INTRODUCTION"

Optimal shape design is an old problem in various scientific disciplines that has
attracted the attention of many well-known applied mathematicians and physicists for
centuries. Calculus of variations was the early research tool that was used extensively for
finding the optimality conditions. However, very few problems allow purely analytical
solutions, especially when the physical system under consideration is governed by a set
of partial differential equations. Nonlinearity of the equations governing fluid flow and
the geometric complexity of the domains on which these equations need to be solved
render the task of aerodynamic shape design challenging and complicated. Apart from
some oversimplified problems, optimality conditions cannot be found in general with
purely analytical approaches and, as such, aerodynamicists have always been seeking for
experimental, computational, or even different analytical tools to find solutions to their
design or inverse problems.

In the last four decades, the emergence of Computational Fluid Dynamics (CFD)
has made it possible to compute complicated flows with no previously known analytical
closed form solutions. It has opened up the possibility for developing new hybrid

analytical-computational techniques to address the problem of aerodynamic shape

" The format of this dissertation is based on the Journal of Fluids Engineering.
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optimization. The researcher starts with defining a mathematical model for the problem
in hand and tries to come up with equations for the optimality conditions using analytical
techniques. Subsequently, a suitable computational method takes over and solves those
equations iteratively, which at times may require numerous solutions of the flow field
equations. Hence, it should be realized that the accomplishment of this task requires an
efficient and robust computational analysis method that can navigate the design space
with minimal interference by the researcher. Furthermore, considering the amazing rate
of advancement in the field of CFD, the dependency of the computational method on a

particular flow solver should be kept to a minimum to avoid obsolescence.

1.1 A Perspective on Aerodynamic Design Optimization

In all 2erodynamic design methods, the ultimate goal is to come up with a shape
that improves some desired acrodynamic measure of performance, while abiding with the
imposed physical (for present arguments, aerodynamics) and geometrical constraints. As
it has already been mentioned, analytical and computational techniques need to be
combined to achieve the final goal of design improvement. However, the integration
process of the various available tools is not unique and gives rise to different schools of
thought in this field. If this task has to be done in an iterative manner, starting from an
arbitrary shape, classical gradient-based approaches require knowledge of the value of the
functional and its gradient with respect to the design parameters of the problem. Having
obtained the functional value and its gradient, one can use various numerical optimization
methods, such as, steepest descent, conjugate gradient, GMRES, etc., to move in the

design space towards the local optimal point. Success of all gradient-based methods
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pivots on the assumption of smoothness for the design space, implying that the gradient

and higher order derivatives of the functional exist and are continuous.

Currently, CFD flow solvers are capable of producing highly accurate and reliable
solutions to complex aerodynamic problems over complicated geometries and
computation of the objective functional with a high degree of accuracy does not pose a
major problem. Therefore, bulk of the work in an optimal shape design problem is
geared towards obtaining accurate functional gradients with respect to the design
variables. Gradients can be computed in two different ways:

(a) Brute force method. As the i component of a gradient vector is merely the partial
derivative of the objective functional with respect to that design variable, it can be
obtained by means of finite-differencing the flow analysis code. In other words, to
obtain an array of perturbed functionals, each design variable is perturbed by an array
of small quantities, while all other design variables are kept constant. Subsequently,
the partial derivative can be calculated by finite-difference formulas of varying
accuracy. For instance, if the design variable is perturbed by £ and -£ respectively,
where ¢ is sufficiently small, central difference formula yields a value for the partial
derivative with an error bound proportional to £ (O(£)). This error bound is valid if
one assumes that the perturbed functional values are exact. However, in practice, the
CFD flow solution differs from the exact solution due to the truncation error incurred
in the discretization process and an additional error arising from the approximate
resolution of the discretized equations. A simple error analysis shows that an upper
bound for the error in a central difference formula is given by 24/ + O(£%); A being

the difference between the exact solution and the approximate solution obtained from
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CFD analysis. For a choice of A=107 and £=107, the computed partial derivative
will not even be accurate to the first decimal place! In other words, smaller step size
translates into more accurate derivatives only if A—0 for an infinitely fine mesh and a
resolution scheme with zero tolerance. As A is not known a priori, it can be easily
concluded that a suitable value for the step size £ for obtaining reliable derivatives is
highly problem dependent. It has to be mentioned, however, that Newman ez al.
(1998) have developed a new method for computing single and multidisciplinary
sensitivity derivatives using complex variables that avoids subtractive cancellation
error and is not sensitive to step size selection.

Furthermore, the gradient can be computed within the cost of 2N flow analysis for N
design variables; the cost of which becomes computationaily formidable as the
number of design variables are increased.

(b) Adjoint method. In this method, the governing equation and its boundary conditions
are introduced as constraints on the optimization problem in such a way that the
gradient of the objective functional can be found without resorting to multiple flow
solutions. Some arbitrary variables, function of space and time in the most general
form, are introduced in the analysis in a manner that an analytical expression for the
gradient can be obtained. These arbitrary variables are also known as the Lagrange
multipliers or adjoint variables. Adjoint variables satisfy an adjoint problem that at
the continuous level is always a linear differential equation with constant or variable
coefficients predetermined from the flow equations. The adjoint equation and its
boundary/initial conditions are a function of the flow equations and the objective

functional.
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This dissertation is mostly concerned with the application of method (b) for
obtaining reliable and efficient sensitivities of various state equations. Therefore, this
method is outlined as follows. An optimization problem can be stated as:

Minimize 7(0, X, )

Subject to:
®0.X,) = 0 (1.1)
G¢(%p) < 0

In Eq. (1.1), Ic is the objective (cost) functional, Q is the vector of flow variables, X p is
the design variables, and R is the vector of flow equations and its boundary/initial
conditions through which 0 and X p are implicitly related. ég is the array of geometric
constraints, and éa is the vector of aerodynamic constraints. An augmented objective
functional is defined as:

10.%p.2)=1:0.%,)+1-%(0.%p) (1.2)
In Eq. (1.2), A is the vector of adjoint variables and the inner product operator is defined
as integration over the flow domain. At the optimal condition, the derivative of the

augmented cost functional with respect to Z,0 and X p must vanish:

R=0

ar- (aRY
—£ 4= -2=0 1.3a-
30 (ag] (1.3a-¢)
are (& Y -

l, R | . i=0

ax, |axp
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For a given X p - the governing flow equations can be solved to provide the vector of
flow variables, Q . Inserting the known values of X p and 0 in Eq. (1.3b), one can solve
for the adjoint variables. Eq. (1.3b) is known as the adjoint equation. The total

derivative of the cost functional with respect to the design variables, X p - is hence given

by:
= \T
Al 9l [[9R ) 7 (1.4)
dXp dXp |9Xp

Note that at the optimal design point, the RHS of the above equation is zero in agreement
with the optimality condition of Eq. (1.3c).

Egs. (1.3a-c) and (1.4) are the common starting point of continuous and discrete
adjoint sensitivity analysis. By continuous adjoint method, it is implied that the
variational method is applied directly to the partial differential equations of the governing
state equations resulting in a corresponding set of partial differential equations as the
adjoint set. The obtained adjoint system is then discretized and solved numerically. On
the other hand, one can start from the discretized equations of state and derive a discrete
set of adjoint equations directly. This method is known as the discrete adjoint sensitivity
analysis.

Both of these methods have some advantages. The continuous method is more
theoretically challenging, while the discrete approach is more systematic. The discrete
approach, if applied carefully and correctly, provides derivatives which are consistent
with the brute-force method derivatives irrespective of the mesh size, while the
continuous derivatives only agree with the finite difference derivatives in the limit when

the mesh spacing tends to zero. Continuous adjoint equations are usually very similar to
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the governing state equations and the CFD solver can be modified accordingly to be used
for resolving the adjoint equations. It is of utmost importance to make sure that the CFD
solver module is robust, accurate and possesses a high rate of convergence, as an adjoint
solver developed based on the discretization and resolution of the CFD module will
possess similar characteristics. In the case of the discrete method, however, adaptation of
the CFD module for the solution of the adjoint set is not very straightforward and
depends strongly on the flow solution algorithm employed in the CFD module.
Furthermore, as the number of mesh points increase, the direct solution of the large
sparse system of Eq. (1.3b) becomes more impractical and even resorting to indirect
solvers can result in modest improvements. The continuous method can primarily utilize
the storage used by the CFD module and in this sense, the continuous method has a great
advantage over the discrete approach. Competitive discrete solvers will have to develop
the capability of solving the adjoint set with approximately the same computational

resources as required for the CFD module.

1.2 Motivation and Objectives
In this research, the method of continuous adjoint sensitivity analysis is applied to
a variety of state equations. A cursory glance at the publications on the subject regarding
the steady Euler/Navier-Stokes equations on unstructured meshes reveals some
shortcomings in the utilized analytical and computational treatments. There are
numerous references in the literature to ‘admissible’ cost functionals, referring to cost
functionals solely dependent on the pressure and/or wall shear stress on the control

surface. Anderson and Venkatakrishnan (1997), Soemarwoto (1997), Jameson et al.
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(1998), and Hiernaux and Essers (1999) report difficulties with the proper closure of the
Lagrangian associated with the Euler equations and general functionals. Giles and Pierce
(1997) conclude that only certain choices of objective functionals would lead to a well-
posed adjoint problem. However, according to the theory of functional analysis adjoint
variables exist for any cost functional and Arian and Salas (1997) are the first to find a
remedy for this problem for the potential, Euler, and Navier-Stokes equations. They
showed that the inclusion of additional terms in the Lagrangian functional, resulting from
the restriction of the interior PDE to the control surface, could alleviate the difficulties
encountered in the derivation of the boundary conditions for the adjoint problem.

The approach adopted in this research will use the material derivative approach
with a subsequent switch to the natural coordinate system. The development is more or
less in line with that of Anderson and Venkatakrishnan (1997) with the significant
difference being that the method is extended to generil objective functions. The
extension to general cost functionals for the steady Euler equations is more direct and
simpler compared to that discussed in Arian and Salas (1997). Salas and Arian propose
an additional system of partial differential equations that need to be solved to obtain the
transpiration boundary condition for the adjoint set. However, it can be shown by some
lengthy but straightforward algebraic manipulations that the proposed additional system
can be simplified to yield the same boundary condition that has been derived in this work
for steady Euler equations. Also, the optimization results with density as the integrand of
its objective functional are the first published result of its kind to the best of the author’s

knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pironneau (1994) reports dissatisfaction with the accuracy of the sensitivity
derivatives obtained by the continuous adjoint method and states that this inaccuracy
emanates from the lack of accuracy in the normal derivative information on the control
surface. He attributes these errors to the discretization errors of the numerical techniques
used to solve the governing and the adjoint system of equations. In this research also, it
is pointed out that accurate computation of normal derivatives of state and/or adjoint
variables on the design surface is crucial for the calculation of shape design sensitivity
information, often expressed as a surface or line integral over the design surface.
However, Babuska paradox, as discussed in Strang and Fix (1973), states that when linear
segments are used for representing a curved boundary, the solution for normal derivatives
to the boundary may not be accurate. This poses a major problem for finite volume
discretizations on first order triangular elements as the boundary is indeed represented
with piece-wise linear segments. In this work, it will be demonstrated that a
transformation to the body-fitted coordinates, s-n, along with the application of the
governing state equations on the control surface can be used to eliminate normal
derivatives from the sensitivity integrals.

Most of the research work in the field of aerodynamic optimization has been
conducted for steady flows and the resuiting steady aerodynamic loads. In numerous
applications, however, the flow is unsteady, which necessitates the analysis equations to
include the time dependent terms. The motivation for research on optimization involving
unsteady flows resides in at least three application areas: flow control, aeroelasticity, and
shape design. To establish this point, some examples of research in these areas will be

given next. Among the objectives for flow control are optimal placement of sensors by
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Loncaric (1998), drag reduction in turbulent flows in the works of Bewley and Moin
(1994), suppression of boundary layer instability by Joslin et al. (1997), and adaptive
airfoil to control unsteady flow separation in the experimental work of Chandrasekhara et
al. (1998). As for the examples in aeroelasticity, there are applications for
turbomachinery as in Murthy and Kaza (1991) and Lorence and Hall ( 1994). Li and
Livne (1995) and Kolonay (1996) report results for aeroelastic optimization of wings
with analytical sensitivities and approximate methods in supersonic and subsonic wing
aerodynamics. Of great interest to this research are the two examples for shape
optimization in unsteady, incompressible flows given by Beichang et al. (1997). It
should be noted that Beichang er al. (1997) use the discrete adjoint sensitivity method for
their work. In the present work, the continuous adjoint methodology is extended
successfully to unsteady flow equations and the limit-cycle sensitivities of the unsteady
transonic ~ small-disturbance equation (UTSD) are derived and implemented
computationally (Ghayour and Baysal (1999)). It has also been shown that the adjoint
equation exists if and only if the time period of concern spans one or more periods of the
flow oscillations after the limit cycle has been attained. The demonstrated case designing

for the limit-cycle Cy-a distribution is the first of its kind in the current literature on
shape optimization.

In the last part of this dissertation, it is intended to obtain the shape sensitivity
derivatives of an acoustic pressure field (Ghayour and Baysal (2000)). This problem is

not only very interesting mathematically but has practical applications as well, for

instance, in the reduction of noise pollution in populated urban areas. Bonnet (1992) has
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embarked on addressing a shape identification problem using the boundary integral
method and shape differentiation, but the analysis is not conclusive because of the

author’s mishandling of a non-analytical complex function.

1.3 Organization of the Dissertation

This dissertation is organized in ten chapters. The background, brief description
of the methodology, motivations and objectives have been presented in this chapter.
Chapter 2 is devoted to literature survey, a detailed review of the research work
conducted in the field. Chapter 3 discusses the mathematical tools a researcher needs to
be familiar with for the proper implementation of the continuous adjoint methodology.
Chapter 4, 5, and 6 include the detailed derivations of the method as applied to the Euler,
the UTSD, and the wave equation respectively. Chapter 7, 8, and 9 present the
optimization and other relevant results for the above-mentioned class of state equations.
Finally, conclusions of the present investigation and recommendations for future

enhancement of the work are given in Chapter 10.
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Chapter 2

Literature Survey

In this chapter, the current literature on adjoint methods pertaining to the field of
fluid dynamics is reviewed and underlying concepts highlighted. In general, adjoint
methods have been used extensively in the following areas:

® Shape optimization in aerodynamics and acoustics
® Flow Control

® Error estimation for CFD analysis

® Aeroelasticity

As the primary concern of this dissertation is shape optimization, the survey of the
literature found in this particular area has been covered more extensively than the other
areas mentioned above. Nevertheless, it is also intended to provide the reader with an
informative review of the work conducted in the other areas, where the present method

will be the key enabling technology.

2.1 Shape Optimization
In the gradient-based optimization environment, which is the focus of this work,
most of the analytical and computational effort is geared towards acquirement of accurate
gradient information. The existing literature in acrodynamic optimization draws heavily
from the theory of control of systems governed by partial differential equations as

outlined by Lions (1971). Marrocco and Pironneau (1978) may be credited for being the
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first researcher applying the control theory to the design of an electromagnet. They lay
the foundation for discrete adjoint analysis by computing the optimality condition of the
discretized Maxwell’s equation for magnetostatics. Taking advantage of the variational
formulation of the full potential equation, Angrand (1983) combines the techniques of
optimal control, finite element method, and numerical optimization to solve both for
inverse and direct optimization of incompressible and compressible flow in nozzles and
around airfoils. He, too, finds the optimality conditions directly from the discretized state
equations, referring to the discrete approach as the safe approach.

Jameson (1988) provides a theoretical framework to extend control theory to
airfoil and wing design based on the full potential and Euler equations. The control is the
shape of the boundary that upon using conformal mapping becomes the mapping
function. The problem is solved in the mapped domain, which is stationary, avoiding the
complications of moving boundaries in the physical plane. In a later publication,
Jameson (1990) applies his theoretical development to the reduction of shock induced
pressure drag on airfoils in two-dimensional transonic flow using the full potential
equation. Later, Jameson (1994), Reuther and Jameson (1994), Jameson et al. (1998) use
an 2lternative formulation, which does not depend on conformal mapping and can be
easily extended to treat general configurations in three dimensions. It should be noted
that all these investigations are carried out on structured meshes and deal with the so-
called admissible cost functionals, functionals solely dependent on one flow variable on
the control surface, that is, pressure. Pironneau (1994) demonstrates results for drag
minimization in Stokes flow and analysis for drag minimization in laminar Navier-Stokes

flow. Discouraged by the lack of accuracy of gradients obtained by the continuous
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adjoint method, discussed earlier in Chapter 1, Pironneau resorts to the discrete adjoint
method and computes the optimality condition of the discretized incompressible potential
flow in a duct.

Frank and Shubin (1992) apply the implicit function theorem to the discretized
equations of a one-dimensional Eulerian duct flow. They also introduce the all-at-once
method, where the optimization simultaneously varies the flow and design variables and
the discretized flow equations are viewed as equality constraints on the optimization.

It is noteworthy that the discrete approach for the computations of sensitivities is
also known as the implicit gradient method, discrete sensitivity analysis, or quasi-
analytical approach. Elbanna and Carlson (1990) use this method first to optimize airfoil
shapes using the transonic small disturbance theory, and later in Elbanna and Carlson
(1992) the discrete sensitivities are used for wing optimization in three dimensions using
the full potential equation.

Baysal and Eleshaky (1991, 1992) and Baysal et al. (1993) apply the discrete
method to 2D compressible Euler equations with first and third-order accurate spatial
discretizations to design the nozzle and after-body of a hypersonic plane. In these works,
the finite-difference, direct differentiation, and the adjoint variable methods have been
discussed and the relative merits of each with regard to computational efficiency and
accuracy have been explained thoroughly. In a later work of Eleshaky and Baysal
(1993), the method has been extended to the thin-layer Navier-Stokes equation to account
for viscous effects in the transonic regime. Furthermore, several methods for solving the
adjoint system of linear algebraic equations have been discussed and compared with

regard to the computational time and storage requirements. Burgreen and Baysal (1994)
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use a preconditioned conjugate gradient (PCG)-like method, GMRES, as explained in
Saad and Schultz (1986), to reduce the computational time and storage considerably
compared to that of a direct inversion technique. In Eleshaky and Baysal (1994a, 1994b)
a preconditioned domain decomposition technique is used to compute three-dimensional
aerodynamic sensitivities. Automatic differentiation of CFD codes for practical design
purposes has also received attention in the recent years (e.g. Baysal et al. (1997)).

To mitigate the computer memory and CPU time problem associated with large
two- and three-dimensional problems, Pandya and Baysal (1997a) have used the ADI
based solution methodology for a large-scale arrow-wing optimization study in inviscid
flow. Later in Pandya and Baysal (1997b) the solution method is extended to viscous
flows in order to study the effect of viscous terms, mesh size, and various problem
formulation strategies on the optimized shape.

Of great importance is the work of Burkardt and Gunzburger (1995) in comparing
the relative accuracy of discrete and continuous sensitivities. The relationship between
discrete adjoint variable and continuous adjoint variable has been examined and it has
been concluded that the continuous sensitivities with respect to the boundary shape are
significantly inaccurate. The primary source of the error is reported to lie in the boundary
conditions, which are affected by errors in approximate spatial derivatives.

Although the decoupling of the state equation solver from the adjoint module and
surface modification routines reduces the programming effort needed to integrate
different components of an optimization code, such decoupling may prove to be
computationally expensive.  Decoupling requires numerous time-consuming fully

converged flow and adjoint analyses, which can be avoided by relaxing the state and the
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adjoint equations simultaneously. The methods reported by Frank and Shubin (1992),
Ta’asan et al. (1992), Arian and Ta’asan (1994), Shenoy et al. (1997), and Marco and
Beux (1993) are examples of the effort geared towards tight coupling of the components
of an optimization code. In particular, Kuruvila er al. (1994) present an efficient
numerical approach for design of optimal aerodynamic shapes with the full potential
equation reducing the computational cost of the whole optimization problem to
approximately two to three times the cost of the analysis problem. High efficiency in
reaching the optimum solution is achieved by using a multigrid technique that updates the
shape in a hierarchical manner such that smooth changes are done separately from high
frequency changes.

Application of a fully continuous adjoint method to the two-dimensional Euler
equations on a psuedo-unstructured meshes appears in the work of Beux and Dervieux
(1992). The ‘concertina mesh’, used in this work, is a triangular mesh where the
abscissae of the nodes are fixed and the ordinates change only for a portion of the
domain. By using such a mesh, the complications of mesh adjustment and boundary
conformity, essential in the course of an optimization process, are avoided as the mesh
parameterization almost relies on i-j as in a structrued mesh.

Anderson and Venkatakrishnan (1997) present the very first application of the
continuous adjoint approach for obtaining sensitivity derivatives of admissible cost
functionals on unstructured grids for Euler/Navier-Stokes equations. With regard to the
Navier-Stokes equations, the authors contend that the shape sensitivity derivatives of
viscous flows require accurate second order derivatives of the velocity on the conirol

surface. They further argue that consistent second derivatives cannot be obtained with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

spatially second-order accurate schemes. They propose that only using a higher order
discretization of the flow equations can circumvent this problem which obviously
requires a considerable amount of effort. Their solution for alleviating this problem is to
essentially abandon the purely continuous adjoint approach in favor of the discrete
approach. Consequently, Anderson and Bonhaus (1997) and Neilsen and Anderson
(1998), completely shift to the discrete approach. Three-dimensional Euler/Navier-
Stokes computations on unstructured grids can also be seen in the works of Elliot and
Peraire (1996, 1997).

Coming back to the continuous adjoint approach, a major concern is the
requirement of smooth functionals in variational techniques. The presence of a shock in
the flowfield causes numerical difficulties; even good shock-capturing schemes with low
continuity properties cannot be often combined successfully with efficient optimization
methods requiring smooth functionals. [ollo and Salas (1995) split the domain by means
of a curve coinciding with the shock and then apply the methodology on each of the sub-
domains. The supersonic outlet boundary condition is applied before the shock while
subsonic inlet boundary condition is applied after the shock. CIiff et al. (1995) introduce
the shock location as an explicit variable in the design problem of a duct flow with a
shock and prove the existence of optimal solutions, differentiability, and the existence of
Lagrange multipliers. Giles and Pierce (1997) show that for the quasi one-dimensional
and two-dimensional Euler equations, adjoint variables have a logarithmic singularity at
the sonic line in the quasi one-dimensional case, and a weak inverse-square-root
singularity at the upstream stagnation streamline in the two-dimensional case. However,

the adjoint variables are continuous at shocks in both cases. Their conclusion with regard
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to restrictions on the permissible choice of operators in the linearized functionals is not

correct as shown in Arian and Salas (1997) and Baysal and Ghayour (1998).

2.2 Flow Control

In this section, it is intended to review the important advances in the field of flow
control that has taken place in the past few years. It is of great practical importance to
have the ability to manipulate wall-bounded and free shear flows to prevent or provoke
separation, delay or advance transition and suppress or enhance turbulence. Gad-el-Hak
(1996) presents a thorough survey of the recent developments in the control of turbulent
flows spurred by chaos control theory, microfabrication and neural network techniques.
In this section, an outline of the theoretical and computational research in this field that
has used the adjoint method or optimization techniques is presented.

Bewley and Moin (1994) have utilized the concept of adjoint equations to find
optimal wall-normal blowing and suction distribution to efficiently reduce drag in a
turbulent channel flow. The cost functional is constructed to represent some balance of
the drag integrated over the walls and the net control effort. Subsequently, an adjoint
approach is used to find the flow sensitivity to the applied control and the control is
updated using a gradient algorithm subsequently. Numerical simulations indicate an
approximate 17% drag reduction with small levels of output. A later work of Bewley et
al. (1997) lays the mathematical framework for the application of the robust control
theory, which is a generalization of optimal control theory, to the field of fluid

mechanics. The goal of the work is to obtain effective control algorithms that are
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insensitive to a broad class of disturbances for a wide variety of infinite-dimensional
linear and nonlinear problems in fluid mechanics.

Ravindran (1995) establishes the existence of an optimal state and derives the
first-order optimality conditions for optimal control in magneto-hydrodynamics. Ito and
Ravindran (1996) present a reduced order method for simulations and control of viscous
incompressible flow. The feasibility of the method has been demonstrated with two
boundary control problems: velocity tracking in a cavity flow and vorticity control in a
channel flow.

Balakumar and Hall (1996) present results for optimum suction distribution
resulting in the longest laminar region for a given total suction. The problem is
formulated using Lagrange multipliers and the resulting nonlinear system is solved by the
Newton-Raphson technique. The computations are performed for a Blasius boundary
layer on a flat plate and cross-flow cases. It is shown that for the Blasius boundary layer,
the optimal distribution of suction peaks upstream of the maximum growth rate region
and is flat in the middle before it decreases to zero at the end of the transition point. For
the stationary and travelling cross-flow instability, the optimal distribution peaks
upstream of the maximum growth rate region and decreases gradually to zero. Tang et al.
(1996) use low order models to minimize wake unsteadiness behind a circular cylinder in
an incompressible flow regime at Re=/00 through the rotation of the cylinder about its
axis.

Joslin et al. (1997) present a self-contained automated methodology for active
flow control by combining the time-dependent Navier-Stokes equations with an adjoint

system to determine optimality conditions. To validate the proposed methodolgy, the
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problem of boundary layer instability suppression through wave cancellation is studied
and it is reported that instability suppression can be achieved without any a priori
knowledge of the disturbance. This is very significant in the light of the fact that other
control techniques require some knowledge of the flow unsteadiness, such as, frequencies
or instability type.

From the experimental perspective, the recent reviews of Ho and Tai (1996,
1998), and McMicheal (1996) offer well-organized compilation of the research
conducted in this field. From the mathematical perspective, the recent dedicated volumes
compiled by Banks (1992), Gunzburger (1995), Lagnese et al. (1995), and Sritharan

(1998) are valuable sources of information.

2.3 Aeroelasticity

In many modern engineering applications, it is desirable to find the effects of
design parameter changes on the dynamic response of a system. Integration of the
structural and aerodynamic design processes for developing better aerospace structures in
an automated manner is the essential step. In turbomachinery blade design, aeroacoustic
and aeroelastic considerations play an important role due to governmental regulations and
community standards demanding reduced levels of noise on the one hand, and
competitive pressures requiring increased efficiency and mechanical reliability on the
other hand. The common practice is a loose coupling of the aerodynamic and structural
design processes. First, the blade is designed primarily to maximize steady aerodynamic
performance and then detailed aeroelastic studies are performed to determine whether the

blades satisfy the requirements for flutter stability and flutter. The blade is redesigned if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

it fails to meet these requirements and the process is repeated. This process increases the
time and expense required for designing a blade and highlights the importance of tight
coupling between the underlying unsteady aerodynamics and structural sensitivities.
Murthy and Kaza (1991) develop a semi-analytical approach for the sensitivity
analysis of linear unsteady aerodynamic loads, reporting considerable gain in execution
time and accuracy over the finite difference approach although only sensitivity
coefficients with respect to non-shape design variables are addressed in their work.
Arslan and Carlson (1994) investigate the static aeroelastic behavior of transonic flow
about an unswept and twisted rectangular wing. The incremental iterative technique is
used to couple the structure and flow modules and obtain sensitivity derivatives of the
fully coupled system. They show that the sensitivities of the coupled system often exhibit
significant differences in magnitude and sometimes sign from the discipline derivatives.
Lorence and Hall (1994) use the full potential equation to compute the effect of
perturbations in the shape of the airfoils in a cascade on the steady and unsteady flow
through the cascade. They proceed to show that the derived coupled sensitivities can be
used to redesign an aeroelastically unstable cascade in torsion to be aeroelastically stable.
Sorenson and Drela (1995) use a time-harmonic formulation of the full potential
equation to model a transonic unsteady flow. Due to the highly nonlinear behavior of
transonic flows, this restricts their analysis to very small amplitude unsteady oscillations
about a mean steady flow. However, this limitation is acceptable because, for flutter
calculations, the flutter condition is defined as the point at which infinitesimal
oscillations grow unboundedly. They show that a single Newton system can be used to

solve three seemingly disparate problems: /.) steady analysis module for mean flow
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calculations, 2.) harmonic-unsteady module, and 3.) design sensitivity calculations.
Kolonay (1995,1996) develops an indicial response method to approximate

unsteady transonic aecrodynamics and the resulting transfer functions are used in linear

unsteady aeroelastic analyses to allow for multidisciplinary structural optimization in the

transonic regime.

2.4 Error Estimation

The adjoint solution can also play a critical role in numerical error analysis. It can
be used to analyze the error of computed functionals, such as, lift and drag. As well as
offering useful bounds on the accuracy of CFD predictions, the adjoint solution can be
also be used as the basis for optimal grid adaptation, giving the most accurate predictions
for a given level of computational cost. Literature on the subject is quite limited and until
recently, the pioneering works of Johnson and Rannacher (1994) and Becker and
Rannacher (1996) were the only available literature in the CFD community for
incompressible flows. Giles and Pierce (1999) show that, when solving for the Poisson
equation or the quasi-1D Euler equations using second order accurate finite element
solutions, fourth order accuracy can be achieved for functional computations in the
presence of both curved boundaries and singularities. The additional accuracy is
achieved at the cost of a linear adjoint calculation similar to those performed for design
optimization. Venditti and Darmofal (1999) also use the method as indictors in a grid-
adaptive strategy designed to produce specially tuned grids for accurately estimating the
error in functional computations. They present results for quasi-1D Euler equations for

both isentropic and shocked flows.
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Chapter 3

Continuum Approach for Shape Design Sensitivity Analysis

In shape optimization problems, where the physics of the problem is governed by
a set of partial differential equations, one often encounters the problem of relating the
variation of a functional to a small variation in the shape of the domain £. As it is often
assumed that the domain deformations in response to small changes in the design
parameters are smooth and regular, €2 can be thought of as a continuous medium and the
shape design process can be viewed as a dynamic process of continuous deformation in a
continuum. In the light of this similarity, one can borrow extensively from the principles
of continuum mechanics to build a framework for shape design sensitivity analysis. A
time-like parameter 7 may be introduced into the domain deformation process to trace the
motion of a point within the domain and a design velocity vector field can be defined as
the counterpart of the Eulerian velocity in continuum mechanics. The Eulerian velocity
measures the velocity of a fluid particle as it passes through a fixed point in space.
Similarly, the design velocity field measures the velocity of a point in  as it moves under
the action of the design transformation. In this section, the building blocks of continuous
shape sensitivity analysis are introduced and several relations that will be used in later

sections are derived in details.
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3.1 Design Velocity Field and Material Derivative
Consider a domain £ undergoing deformation, shown schematically in Figure 3.1.

The new position of any point in £ can be written as a function of its original position X

and the time-like parameter, 7, as:

% =% (%1) (3.1)
Deformed
Initial I=T
t=s0 7N

Figure 3.1 Domain deformation in the design process

A design velocity field at the initial configuration of T = 0 can be defined as

V(E)=9Fe| (3.2)
dt | _,

Under certain regularity hypothesis such as existence and boundedness of higher-order

derivatives of X, , a first-order accurate approximation of X, can be written as:

X =¥+tV(@)+ 0(1’2) (3.3)
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With the notion of design velocity in hand, one can proceed and find expressions

for the total variation of a state variable, sayz[xt (%.7).z]. The first-order material

derivative of the state variable z at the undeformed state, i.c., at 7 = 0, is denoted by z and

defined as

(%)= lim[ 2 (F+1V.7)- o )] =(%)+Vz-V . (3.4)
70 T

In Eq. (3.4), Z’is the local derivative while the position is held fixed and is defined as:

9z (%.7) (3.5)

2(x)= ot

‘t:O
The design parameter 7 and the spatial coordinates ¥ are independent variables and
assuming that all second order partial derivatives of z with respect to ¥and T exist and are

continuous, the local derivative operator commutes with all spatial derivative operators;

e.g., (Vz)' =V7.

3.2 Material Derivative Formulas
In this section, the changes in size and orientation of material arc, surface, and
volume elements due to the action of the design velocity field are discussed.
Subsequently a number of technical material derivative formulae are derived which will

serve as the starting points for most of the material presented in this thesis.
3.2.1 Directional Line Differential

Consider an infinitesimally small line element,§ X, representing a material line

element that remains approximately straight in the course of deformation (Figure 3.2).
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. T=T t(V+6%-VV)

53|

1’:0

Figure 3.2 Transformation of a line element

It can be readily seen from Figure 3.2 that the material derivative of a line element is

related to the gradient of the design velocity as

5}5‘1“55{ =8%-VV. (3.6)
dt 720

Now, Eq. (3.6) is specialized to the moving trihedral or natural coordinate system
(Figure 3.3). f, 2, and b are the unit vectors in the tangential, normal, and bi-normal

directions respectively, and their derivatives with respect to the distance traversed along

the curve are known collectively as the Frenet-Serret formulae, given by:

>

-

dt dn i d_=’#ﬁ 3.7
ds

ar _rt. dn_ ;1
ds R as H°TR

R e (0,+0<)is the radius of curvature and u is a scalar called the torsion.
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X

Figure 3.3 Moving trihedral coordinate system

Eq. (3.6) can now be written in terms of the components of the design vector field in the

new coordinate system as such:

e’ d n |2 d n - d 2 x|
5x{(a_y-%}{iﬁ-u%)w(—a"fwﬂHlaxl 39

The material derivative of the arc length |§ | simply becomes

* SESE (v, vy oo
6% = o7 =(as' —%]|5x|. (3.9)

3.2.2 Volume Differential

An element of volume 69 changes its volume owing to the movement of each

element 80 7 of its bounding surface by TV ; # being the outward unit normal vector.

Using the Gauss’ theorem, it can be shown that:
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>, dov

50 =V.Vé0 (3.10)
drt £=0

3.2.3 Unit Normal
The material derivative of the unit normal to a three dimensional surface is given

by the following expression:

i=[a-(3-v9T)a-a. w07 (3.11)
The derivation of Eq. (3.11) is quite involved and the reader is referred to Haug et al.

(1986).

3.2.4 Surface Differential

Arbitrary infinitesimal line, surface, and volume elements are related by the
following first-order relation:

0¥9=48x-6on (3.12)

Material differentitation of Eq. (3.12) with the help of Egs. (3.6) and (3.10) renders the

following expression involving the total derivative of the surface element of area 8¢ :

5%.| 499 -ﬁ+60d—"1 =—(6%-VV) -804 +V.-V50 (3.13)
dt |._o dt|. o

As d x is arbitrary, it can be set equal to the unit normal 7 and Eq. (3.13) simplifies to

1 déoo| _ —’ (7-VV)a+V.V. (3.14)
o dt | _,
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Substituting for 7 from Eq. (3.11) in Eq. (3.14), the following expression for the design

derivative of a surface differential is obtained.

déo

— =lv.v- (3 -vV) -alsa (3.15)

®
00 =
T=0

3.2.5 Domain, Surface and Line Functionals

Let ¥ be a domain functional defined as an integral over 2,

¥ = [ f(¥)d0 (3.16)
Q

where f is a regular function defined on £2. This integral is only a function of 7 and there
will be contributions to its material derivative due to both changes in the value of the
functional and changes in the shape and size of the domain as it deforms under the action
of the design velocity field. At any instant, the integral functional can be viewed as the
limiting sum of the contributions from an infinite number of infinitesimal volume
elements. Therefore, the design derivative of the domain functional ¥ can be written as
¥ = j}dd +[f 4o
Q Q

= [(F'+Vf -V)do+ [ fV-Vao (3.17)
Q Q

= [f'd0+[fV- hdo
Q r

where I' is the boundary of the domain. Egs. (3.4) and (3.10) in conjunction with the
Gauss’ divergence theorem have been used to render the final form of Eq. (3.17).

In a similar fashion, the design derivative of a surface functional of the form

O=[f(¥)do (3.18)
r
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can be written as:
é:j[}+ f(v.v-(v‘?-ﬁ)-ﬁ)]da (3.19)
r

Consider the following line functional:

A= f(@)d5 (3.20)
C

Upon using Egs. (3.4) and (3.9), and performing integration by parts, the following

expression is obtained for the derivative of the line functional A:
° ® af f - zp

A= +v,| ——= ||{ld x|+ fv,|- 3.21

i[‘f n(an R)]l I leA ( )

X4 and xp are the end points of the curve C and obviously for a closed contour the last
term on the right hand side of Eq. (3.21) will be identically zero.

In two dimensions, the orthogonal curvilinear coordinates s-n differs from the
natural coordinate system, used so far in this chapter, in a subtle manner. In the natural
coordinate system, the curvature, k, is always a positive quantity with the unit normal
always pointing towards the center of curvature. In the s-n system, the unit normal is
conventionally chosen to point consistently towards the interior or the exterior of the
domain irrespective of the curvature of the path. Consequently, x changes sign
depending on the local convexity of the path. Figure 3.4 illustrates the difference
between the two systems and the sign convention used for x in this dissertation. The s-n
coordinates will be used extensively in this thesis from this point onwards and it should
be noted that a negative sign needs to be inserted in front of the curvature terms present
in Eqgs. (3.8), (3.9), (3.21) to render the aforementioned equations applicable to the s-n

coordinate system.
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To conclude this chapter, it is sought after the design derivative of a functional
defined on a 2-D space with the tangential component of the state vector field as its

integrand. Such functional can be written formally as

R=[f(G-7)d3]. (3.22)
C
n t t
t n n t ¢
t x>0 \2
n k<0 n
k>0 k<0
b
(@) (b)
Natural Coordinates s-n Coordinates

x>0

Figure 3.4 Natural coordinates vs s-n coordinates

This functional is different from A in Eq. (3.22) due to the integrand containing an
clement of geometry, f, embedded within. Denoting the tangential component of g with

¢s. the design derivative of Eq. (3.22) can be written as:

o af * (dvg v
X = —= d 3.23
(“;':aqs qs+( 35 + R )j]l f] ( )

If gis resolved into its components in the s-n coordinate system, the material derivative

of g takes the form

4 =G P+ -VG) 1 +qst -i+qui-t. (3.24)
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The gradient of a vector field is a second order tensor which for an arbitrary vector

d=agt +a,n takes the following form in the s-n orthogonal curvilinear coordinate
system:

I (dag ) I (da, )
+a,K —agx
Vi = I+nk| ds

l1+nx| ds (3.25)
oas oa,
on on

The convective derivative term of Eq. (3.24) can now be simplified as:

-Y - 9 . g dq
V .-Va)t = s 4 dn |4y, s 3.26
( q) g vs( ds R ) Y on ( )

Since fand 7 are unit vectors,

(=0 (3.27)
Af=—hi
it can be easily shown with the aid of the Eq. (3.11) that
: ~T A aV dv, v
A-f=a-(VVT .f)=h - =20t 3.28
( ) "3 as R 3.28)

Upon substitution of Egs. (3.26), (3.27) and (3.28) in Eq. (3.24), the material derivative
of the tangential component of a vector field can be written as:

qs=q’.;+vs ai.’.q—n +vna&+qn %—&
ds R on ds R
) P) ) 329
’ qs ds Vp
s <+ _— + —_—
qs T Vs s Vn on qn Js

Substitution of Eq. (3.29) in Eq. (3.23) and integration by parts renders the material
derivative of the functional as:
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Note that the third term in Eq.(3.30) does not exist in Eq. (3.21).
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Chapter 4

Continuous Adjoint Sensitivities of the 2D Euler Equations

Chapter 3 presented the essential material derivative formulaec needed for
obtaining the first variation of line, surface, and volume functionals. This chapter
explores the application of the continuous adjoint methodology to the optimization of
general aerodynamic cost functionals in the context of the steady two-dimensional Euler
equations discretized on an unstructured grid. In the following, a summary of the
motivation for the work presented in this chapter is given.

The term ‘general cost functional’ refers to cost functionals not solely dependent
on pressure on the control surface. Anderson and Venkatakrishnan (1997) and Jameson
et al. (1998) reported difficulties with the proper closure of a Lagrangian associated with
the Euler equations and general functionals while Giles and Pierce (1997) concluded that
only certain choices of objective functionals would lead to a well-posed problem.
However, according to the theory of functional analysis adjoint variables exist for any
cost functional and Arian and Salas (1997) were the first to find a remedy for this
problem for the potential, Euler, and Navier-Stokes equations. They showed that the
inclusion of additional terms in the Lagrangian functional, resulting from the restriction
of the interior PDE to the control surface, could alleviate the difficulties in the derivation
of the boundary conditions for the adjoint problem. The development here is in line with
that of Anderson and Venkatakrishnan (1997) with the significant difference being that
the method is extended to general objective functions for the steady 2-D Euler equations

in a more direct manner compared to that discussed in Arian and Salas (1997).
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In the course of this chapter, it is also pointed out that accurate computation of
normal derivatives of state and/or adjoint variables on the design surface is crucial for
calculation of accurate shape design sensitivity information, often expressed as a surface
or line integral over the design surface. However, Babuska paradox, as discussed in
Strang and Fix (1973), states that when linear segments are used for representing a
curved boundary, the solution for normal derivatives to the boundary may not be
accurate. This poses a major problem for finite volume discretizations on first order
triangular elements as the boundary is indeed represented with piece-wise linear
segments. In this work, it will be demonstrated that a transformation to the body-fitted
coordinates, s-n, along with the application of the governing state equations on the
control surface can be used to eliminate normal derivatives from the sensitivity integrals
resulting in accurate sensitivity information.

It should also be noted that the mathematical relations of Chapter 3 and the
formulation of this chapter are only valid if the state variables of interest vary smoothly
in the domain. Therefore, the formulation is not strictly valid for a flow with a shock
discontinuity. From the numerical point of view, however, the numerical damping
present in CFD solvers transforms a shock discontinuity into a thin region of finite width
where the flow experiences a very sharp gradient in flow quantities. This is the premise
of the ‘shock capturing’ methods that are widely used in CFD practice. An alternative
approach can be derived based on the ‘shock fitting’ approach where the shock location is
determined iteratively by imposing the Rankine-Hugoniot relations across the shock.
Hence, one can actually get away with the following formulation, which does not take the

shock discontinuity into account.
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4.1 Optimal Design Problem

The state equations considered in the present method are the Euler equations of

fluid flow:
d0 JF 4G
g gr oYy _ 4.1
8t+ax+8y 0 4.1

The vector of conserved variables, 0, and the flux vectors F and G in the respective x

and y directions are written as

P pu pv
o= pu Fo pu +P G = puv | 4.2)

pv puy pv2 +P

pE puH pvH

Suitable boundary conditions are applied along the whole or part of the boundary

I'=TI,ur, of the domain sketched in Figure 4.1.

Io

Figure 4.1 Sketch describing a domain £2 with design surface I and outer boundary I
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The objective functional, /¢, is a general function of pressure, density, and

tangential velocity on the body surface that can be written implicitly as:

I.= [ f(p.p. us)ds (4.3)
T,

In the above, u, and ds, denote the tangential velocity and the arc length differential
respectively. The optimal design problem under consideration is simply minimization of

the above general objective functional.

4.2 Continuous Adjoint Method

Ic is a function of the state variables, @, and the governing state equations and its

boundary conditions are the constraints subject to which /¢ has to be extremized. In line

with the method of Lagrange multipliers, an augmented cost functional is introduced as
I=1I,+1Ig 4.4)

where / is the inner product of the governing state equations and its boundary conditions

with respective Lagrange multipliers 4 in the domain and y on the boundary.

Ie=]
Q

+

dET 9GT
ax ady

J- AdQ+ [y (pG-i)ds 4.5)
I,

The farfield boundary condition is not included in Eq. (4.5) and will be treated separately.

4.2.1 First Variation of the Objective Functional
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If the cost functional, /¢, was a function of purely field variables such as the
pressure or density, Eq. (3.21) could be used directly to yield the first variation with
respect to the boundary. However, the tangential velocity on the surface has an element
of the surface orientation embedded within that necessitates a special treatment. This
simply emanates from the fact that the design derivative of the tangential unit vector to
the curve does not have a convective derivative part. Using Eq. (3.21) for the first two
arguments of Ic, and Eq. (3.30) for the third argument, u,, the first variation of /¢ can be

written as:

i
fo(p'+V -Vp)+ £, (p"+V -Vp)
Ic=| +fu,(u;+u"§%;'ﬁ%(‘7,,‘)+ dus (—-ﬁ)] ds (4.6)

on
N f(a(ga‘s-f }+ W: _))

Specializing the gradient operator to the s-n orthogonal curvilinear coordinates and
noting that the control surface is located on the n=0 line renders Eq. (4.6) in the

following form:

; , 9f (5 a -~ oWv-r) (V- V.i
Ic= J'(f +~é-£-(‘/-n)+%»(v-t))ds+l{l:f(-—(é-f—)-+—(vkn))+ fu,tn a(as" ]ds 4.7)

I

The tangential derivatives of the above equation form a complete differential that can be

integrated directly, resulting in an additional term at the contour endpoints.

= J’(f’+-g%(‘-ﬁ)+f£—v"z—ﬁ)+fu unﬂ‘;—;@)ds+[f(7-f)ﬁi (4.8)
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For a closed contour or an open contour with fixed end points, the last term is
identically zero. Furthermore, if the design contour lies on the airfoil surface, which is
the case here, u. is zero and the fourth term can also be dropped from Eq. (4.8).
However, it should also be noted that for an oscillating airfoil or an airfoil with suction or
blowing over a portion of its surface, the fourth term could not be omitted from the above
equation. The fourth term reflects the influence of the boundary condition type on the
design derivative of the objective functional. It must be kept in mind, however, that the

sign convention used for the radius of curvature is that of case (b) in Figure (3.4).

4.2.2 First Variation of the Augmented Cost Functional

In this section, the first variation of Iz, which comprises of two integrals over the

domain and airfoil surface, is found using Egs. (3.20)-(3.24) as follows:

= T e ’ ]
Ig =j(aF L6 J-Idsh jv((pé) -ﬁ+pé-ﬁ+(‘7-V(pé))-fszs 4.9)
al 9x ay r

£

Next, the derivative operators in the first integral are transferred to the adjoint variable by
the means of the Gauss’ theorem. Also, local derivative of the fluxes are written in terms

of the local variation of the vector of conserved variables, @, and the flux Jacobians,

A Ea—€ and B = a—?, by using the chain rule’.
20 a0
ig=-fOT(AT 7, +B7 .1, )da
@ . (4.10)
+ j’(nxf"+nyc-}’)r -Ads+ fw((pii) -ﬁ+p¢7-ﬁ+(l7-V(p(7))-ﬁ)ds
=L+l I
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On the airfoil surface, the integrand of the second integral in Eq. (4.10) can be written in

terms of pressure and mass flux vector variations in the following way.

1 0
~ ~r u |l n ’ - -\ A
nF'+n,G = CIEF n’ p E=(pg) ‘A 4.11)
y
H 0

Expanding the last two terms, and using Eq. (4.11), the first variation of the augmented

cost functional takes the following form:

r ’ ’ ’ g. ‘j_- 7 A
I—J{fpp +f,P +f“’uS+(an +R)V n)} ds

_IQ’T(AT A +BT "iy)dﬂ+f(n,F’+nyG')-i ds
fa L

+ [2(A; +uldy +vAs + HA ) ds + jp'(nx,lz +ny2,3)ds
) y

+r_[w(3+pq-;i+(\7'-v(pq‘))-ﬁ)ds

s

4.12)

4.3 Adjoint Problem Statement

The domain integral is removed from Eq. (4.12) by requiring that the Lagrange

variables satisfy the following adjoint equation:

AT-%’1+BT-3—1‘=0 Vie Q (4.13)
X

It is evident from Eq. (4.13) that the adjoint of the quasi-linear Euler equations is a linear
system with variable coefficients. Some of the terms involving the variations of the flow
quantities with respect to the boundary can be eliminated by simply setting the following

relation to zero:

' The details of the algebraic manipulations needed to obtain Eq. (4.10) is provided in Appendix A.
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y+ (A +uds +vA; + HAy)=0. 4.14)

4.3.1 Farfield Boundary Condition

The farfield integral boundary condition can be rewritten in the following form:

[oT Al i=0 (4.15)
o

In this equation, A=n_A+ n,B is the Jacobian matrix associated with the direction of

propagation n. As the adjoint equation in domain (Eq. (4.13)) is a mixed elliptic-
hyperbolic equation, the adjoint variable cannot be set to zero everywhere at the farfield.
Therefore, it is desirable to put the Eq. (4.15) in a form that some characteristic
information can be deduced from it. This can be done by the standard characteristic

transformation

w=r"10Q
A=T-A-T! (4.16)
A=Diaglg-i G- G-i+c G-i—c]

where c is the local speed of sound, the columns of T are the right eigenvectors of A, and
the rows of T'are the left eigenvectors of the same matrix. If a new adjoint variable is

also defined as
e=171 4.17)

the farfield boundary condition in terms of the transformed adjoint variable, &, reduces

to the following simple form:
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(4.18)

If the farfield conditions are kept constant, the characteristic variable W’ corresponding

to the i eigenvalue will be zero for negative eigenvalues. If ©; corresponding to the i

positive eigenvalue of A, is denoted by ©,*, the farfield boundary condition will be

satisfied if

o7 =0.

4.19)

Table 4.1 presents the different scenarios in the farfield and the corresponding boundary

conditions for the adjoint variables.

Physical Conditions

Numerical Conditions

Subsonic outlet 6;, 6, 6; 64
Supersonic outlet 6;, 6, 6364 None
Subsonic inlet 6; 6, 6, 6,
Supersonic inlet None 6,, 65, 656,

Table 4.1 Physical and numerical boundary conditions at the farfield.

However, these boundary conditions on © should be transformed back to the original

adjoint variable 1. Hence, at any point on the farfield boundary, matrix 7 defined as
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i 0 £ L
2c 2c
u pn, Lwren) L(u-cn,)
T= 2; f; (4.20)
-.v‘ - pn, Z(v+cny) ?c—(v—cny)
_qz;q p(uny -vnx) Z%(H +cG-h) -ZEC—(H —cEj-ﬁ)d

is formed and the entries of the LHS of Eq. (4.17) are filled with zeros for the physical
conditions and with the extrapolated values of the adjoint variables from the inner
domain ( e.g. from the cell centers) for the numerical conditions. Subsequently, Eq.

(4.17) can be inverted to obtain the adjoint variable 1 at the farfield.

4.3.2 Generalized Wall Boundary Condition

This far, the expression for the first variation of the augmented cost functional has

been reduced to

I= [ + fo07+ fu i+ p(nedy +n,25 ) ds
T,

—I!(}.,+u1,_,_+vA,3+Hl4{pr'-':l+(‘7'V(P‘7))'ﬁst. (4.21)
TA
+[{[an+R}V n)ds

In Eq. (4.21), the first integral contains all the local variations of the flow variables and
the second and the third integrals contribute directly to the sensitivities. As there are no
additional terms to balance local variations of density and tangential velocity, it seems at

the first sight that the local variations p’, p’,u; can only be eliminated from Eq. (4.21) for
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objective functionals solely dependent on the pressure. However, one should note that
the pressure, density, and tangential velocity are not independent quantities on the airfoil

surface. Because the steady Eulerian flow is inviscid and adiabatic, it is isentropic along

the streamlines, but obviously with different constants of proportionality Ly before and
p

after the shock. Therefore, density or temperature variations can be easily written in

terms of the pressure variation as

¢=%§¢? (4.22)

Furthermore, the pressure and tangential velocity are related through the momentum

equation in the s-direction on the airfoil surface (n =0, u,, =0) as follows:

d du n \du, u.u , ,
T?+pusT;+pu"(1+E)87+%zi=0 = p'=-pugu (4.23)

With the aid of Egs. (4.22)-(4.23), the generalized wall boundary condition can be written

as:

p Ja,
n,A, +nyl3+fp+ﬁfp—pus =0 (4.24)

At this stage the adjoint system comprising of Egs. (4.13),(4.19), (4.24) can be solved for

the adjoint variable 1 .

? The relationship between the variations of density, pressure, and the tangential velocity can also be found
from the conservation of total enthalpy.
pp-—pp  v-1
P Y

pusuy =0.
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4.4 Sensitivity Derivatives
The first-variation of the augmented functional now reduces to:
i =—jn(pq.ﬁ+ (V-V(p'q’))-r‘z)ds+

T
[M=A4; +ud, +vA; + HA,

3f  F X5 -
oL L 7-7)d
rf( ot |V oR)s (4.25)

As it has already been mentioned, it is necessary to switch to body-fitted coordinates s-n
to rid the above expression from non-tangential directional derivatives. However, certain
control surface parameterizations result in unidirectional design velocity fields and the
proposed formulation must be able to take the utmost advantage of this simplifying

condition. As such, two slightly different approaches can be used:
i) Full transformation to the s-n plane
ii) Coexistence of the Cartesian and s-n coordinate systems in the formulation

In approach i), one can show by straightforward algebraic manipulations that the Eq.

(3.14) can be specialized for a 2D curve in the s-n coordinates as

e

_(3W-3) Vi) ..
_( . 2 )z-er (4.26)

where 6 is the angle between the tangent and the positive x-axis. Also, the convective

derivative term of Eq. (4.25) with A=[0 —IJ can be written as:

7-V(pq)-4= (_ais.(pun )+ Bl )(‘7 L ou)F-7) @

The normal derivative term in Eq. (4.27) can be eliminated by using the continuity

equation in the s-n coordinate system.
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s;(pu:)'{'a—n(pun)— p;;n =0. (4.28)

Furthermore, for a solid wall with no suction or blowing, Eq. (4.27) can be further

simplified as

7-v(o3) =v.(&;+i(pu,)ﬁ] (4.29)
R ds

Substituting Egs. (4.27) and (4.29) back in Eq. (4.25) yields

= P ) 2 (ou Wi L _L\7.4)ds. 4.30
I fﬂ(puse a— \% :)+as(pusXV n)]ds-i-[{(an R}V 7t)ds (4.30)

L

In approach ii), the convective derivative term of Eq. (4.25) takes the following form in

the Cartesian coordinates:
V-V(p )4 =V (1.V(ou)+n,V(pv)) @.31)

The Cartesian components of Eq. (4.31) can be found very easily by applying a rotation
of axis to the results of Eq. (4.29).
Kpuscos8 —sin6 a—(apu—")
s
ncV(pu)+n, Vipv) = ( pu; ) (4.32)

Kpu,sin6 + cos @ ——=
s

Therefore, the final form of the sensitivities for approach ii) is

pus8'+(xpu,cos9—sin0%) V—f)+
I=-fn

ds+ [[ 2L+ L7 7)as- (433)
r, . dlpug) Y5 - rlan R
Kpug smg.q.cosg_a_s_ V-j) s
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As it is apparent from Eqgs. (4.30) and (4.33), the normal derivative of flow
quantities to the control surface only appear implicitly in the normal derivative of the cost
functional. Accurate computation of these derivatives is the subject of the following

section.

4.4.1 Normal Derivatives of Flow Quantities
The method of approach here is to write the Euler equations in the s-n coordinates
and come up with equations relating normal derivatives of flow variables to expressions

involving only tangential derivatives. The governing equations in the s-n coordinates are:

d 0 pu
g 9 ~£%n _p 4.34
ap dug n \ou; . pugu,
£ 4+ s n 1+ — =0 4 35
os pu ds +pu(+R)an+R+n ( )
2
dp _ pug U ou, +pu, du, —0 (4.36)
oan R+n JL ds or
+
d 0 ( Rpu,H
_ H —_— == |=0 4.37
as(p“’ )+8n( n+R ) ( )

Also, one should note that on the surface, n=0, the normal component of velocity, u,,
vanishes. The normal derivative of pressure can be found directly from the normal

momentum equation as

QU
A
A

8
“ N

(4.38)

Y}
=
x
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Normal derivatives of density and tangential velocity are more involved. The
energy equation on the airfoil surface can be simplified to show that the total enthalpy is

constant throughout the flowfield before and after the shock.

2
H=C,T +“7S = Const. (4.39)

Eq. (4.39) cannot be differentiated with respect to n because it is valid only at n=0.

2 2 2
However, if -“-2‘-1s replaced by 5‘—*2-’&111 Eq. (4.39), then it can be differentiated with

respect to n to provide the following relationship between the normal derivatives of

density, pressure and tangential velocity.

90 _ ¥ 9p, Phs ()0 (4.40)
n n

If the tangential momentum equation is differentiated with respect to n, and normal
derivatives of pressure and density are substituted from Egs. (4.38) and (4.40)

respectively, the following first order differential equation will result:

d (du, du, | u, du, [ dp d (u ¥y u? du
I [ || s [ B ()Y _ 2 9P |- _ 9 (U |_ ¥ Us OUs 441
as[an) (an Iaz(y )as pas) BS(R) a’ R 9s @40

The source term and the coefficient of the normal derivative of u, are known functions of
s from the CFD analysis. Hence, this equation can be solved for the normal derivative of
us with a periodic boundary condition. Consequently, normal derivative of density can be
found by substituting for the normal derivatives of pressure and tangential velocity in Eq.

(4.40).
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4.5 Sensitivity with Surface Parameterization

A non-parametric geometry definition requires the surface mesh coordinates.
Although this approach utilizes the readily available data, it increases the number of
design variables. On the other hand, a parametric geometry definition reduces the

number of design variables, since the number of control points is significantly less than

th

the surface mesh points. In the present approach, a m™ degree Bezier curve

representation is used,

R@)= f B"t)P, telo0.1] (4.42)
(=0

where P;is the i control point and R(¢) is the position vector of a point on the curve.

The Bernstein polynomials are defined as:

B:"(:){';‘) F -y =

m! ; ;
i —_ m-—i 4.4
itm-iy (17 @43

The design vector at an arbitrary point lying on the control surface can now be defined as

the change in its coordinates as the Bezier control points are perturbed.
7 - m D’ - m X,’
V=3B8"0F=XB"0) ", (4.44)
i=0 i=0 Y;

In sensitivity analysis, it is often required to find the design derivative of
geometric quantities such as the unit normal and the element of arc length. If the unit
tangential and normal vectors are given by

T

T
=== __ 2y | il _=x

(4.45)

~>
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Eq. (4.26) relates the design derivative of the unit normal to the perturbation of the angle

6 between the unit tangent and the positive x-axis. & can be written as:

X

6 = tan_l(l:) (4.46)

Differentiating Eq. (4.46) with respect to the design variables and substituting for 6” in

Eq. (4.26) yields

e
!
D

~
A 3Y
]

XXXy = L7 (4.47)

The design derivative of the components of the unit normal can now be written explicitly
as:

2

n.n m dB" n m dB™
’ Xy i X,"+ y i Y,',

n=—te 3 ))
2, .2 = 4t .2, .2 dr
+ =0 + i=0
N V2 + 5 @)

_nl mdEN . nn, @ dE
ny=Tm——2 TS 2 dr
Jx + y~ =0 X+ y° i=0

)}i’

It is quite interesting to notice that the term pu 8’in Eq. (4.33) further simplifies to

m 4", m 4BM _,
pud = Yi-pvE X
i=0 i=0 ) (4.49)

Vil + 5?2

puB’ =

Starting from Eq. (3.9), the design derivative of the element of the arc length for a

Bezier- Bernstein representation can be easily shown to have the following form:

v dB/” = dB["
A X —'X‘.'-{.- Y _'Yi'
|5.f| _ o0xd0x _ ov, _Va lafl _ ‘_§0 dt y i§(’) dr w50
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Finally, the sensitivity equation, i.e. the variation of the cost functional with respect to the
y-coordinate of the Bezier control points, is obtained by incorporating Eqgs. (4.44) - (4.50)

into Eq. (4.33):

m
di.dt

XPU) | 4y (a51)

———=— y(0,%+ Q;3y)+ %
Vi +y y x +y y ds
1
+j[a—f BI'\i? + y? —f——xg’ —2 B" )dt
o\ 9an x“+y

[M—

= {me
;[ m

In the above, [T=A4; +ui, + vi; + HA,.

4.6 Solving State and Adjoint Equations

The state equation Eq. (4.1) is first expressed in the integral form for a bounded

domain £2 with a boundary I' as:
a—thdQ-f-[j:(nxA,- +n,BT )0 dr=0 (4.52)

Second-order spatial discretization for the present upwind scheme is accomplished by
using Roe's flux-difference splitting. Cell-centered solutions are Taylor-series expanded
to each of the faces of each triangular cell in the domain. The spatially discretized form
of the governing equations are then integrated in pseudo-time using the explicit four-
stage Runge-Kutta method. On the airfoil surface, the standard inviscid boundary

conditions for the velocity is implemented: impermeable and velocity parallel to the wall.
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In the farfield, I'y, characteristic boundary conditions are employed based on the locally
one-dimensional Riemann-invariants.

For adapting the mesh to the boundary changes as the shape evolves, the tension-
springs analogy is used, i.e., each edge of a triangle is represented by a tension spring.
Assuming that the spring stiffness is inversely proportional to the edge length, the
equilibrium of the composite spring forces provides the displacement of each node. To
restrict the size of the adaptation region, a window is created around a boundary being
reshaped. The entire domain is searched to locate the window nodes and the window
frame nodes. Then, the window nodes are allowed to be adapted, but the nodes exterior

to the window and the window frame nodes are spatially fixed.

The adjoint (co-state) equation, Eq. (4.13), is of the same order and form as the
flow equations. Hence, it is desirable to discretize and solve for the Lagrange variable
vector, 1, by the same CFD scheme used for the state equations. However, to facilitate

this pseudo-time marching scheme, a pseudo-time term is added:

22 _ T3, -BTZ, =0 (4.53)

Assuming that the flux Jacobeans are constant over the volume of a cell, the discrete form

of Eq. (4.53) for cell i, can be written as:

-AZ‘-:L'(X;‘” -1 )— | (;1fo +n yB,-T)-,i ds=0 (4.54)
r

If the Jacobian matrix associated with direction # is denoted by

n AT +n BT =&(Q;4) (4.55)
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then the cell boundary term of Eq. (4.55) can be rewritten as

[ (neAT +n,BT )-Zds= Gyl (4.56)
r JEN;

where J;; is the side of cell i lying between the cell i and the neighboring cell j, and G;; for

a cell centered scheme can be written as:
G,-]- =é(K(Q,-; ﬁ)(-‘ +ir)+lzlr (j:r _il)) (4.57)

IKI is the Jacobian matrix evaluated at the Roe state and the left and right values are cell

quantities extended to the sides by the Taylor series expansion around the cell center. The
solution is then advanced in psuedo-time using an explicit four stage Runge-Kutta

scheme until convergence to some tolerance.

4.7 Optimization

The gradient-based and constrained optimization method of Kreisselmeier-
Steinhauser (1979), as coded in KSOPT and based on the work of Wrenn (1989), is used
in this work. This method converts all the equality constraints into a set of inequality
constraints, then it combines the objective function and all the inequality constraints into
one composite KS function. At this point, a sequential unconstrained minimization
technique (SUMT) is used. The particular choice herein is the Davidson-Fletcher-Powell
(DFP) search algorithm for the uni-variate search direction and the optimum step size.

Although not used here in this work, this method can handle multiple objective functions.
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Chapter 5

Limit-Cycle Shape Optimization Using Unsteady Transonic Small
Disturbance Equation (UTSD)
Most of the research work in the field of aerodynamic optimization has been
conducted for steady flows and the resulting steady aerodynamic loads. In numerous
applications, however, the flow is unsteady, which necessitates the analysis equations to

include the time dependent terms.

In this chapter, unsteady compressible flows are considered. The analytical
sensitivities with respect to the shape are derived using the continuous adjoint approach.
The approach is identical to that of Chapter 4, but the sensitivity equation, the adjoint
equations and their boundary conditions now include time-dependent terms. This has
direct implications on practically every step of a shape optimization methodology, but in
particular, the derivation of the analytical sensitivities. With regard to the validity of the
formulation for shocked flows, the reader is referred to the concluding paragraph of the

introduction to Chapter 4. The derivation is discussed in detail next.

5.1 MATHEMATICAL MODEL

5.1.1 State Equations and Boundary Conditions

The flow is governed by the modified UTSD equation, which may be written in

the conservation form as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

dfp ,0f1 ,9f>
3t  ox  dy ©-1)

where fo, f; and f> are defined as

fo=~Bp.-Ag, , f; =C@.+Do} , f=09, (5.2)

and constants A, B, C, D are given by:
A=M2.B=2M2,C=1-M2,D=-é(y+1)M'”. (5.3)

In these equations, ¢ denotes time and x and y are the freestream and stream normal
coordinates. The disturbance velocity potential is denoted by ¢, M is the freestream
Mach number. The exponent m is a function of M chosen to adjust the critical pressure

coefficient to match the exact isentropic critical pressure.

Under the assumptions of the small-disturbance theory, the wall and wake
boundary conditions can be transferred to the x-axis by performing a Taylor series
expansion. The imposed boundary conditions for low frequency oscillations of a pitching

airfoil about position x = x, in the Cartesian plane are given by:

Far upstream o =0; (5.4a)
Far downstream Q. =0; (5.4b)
Far above and below Q=0 (5.4¢)
Wake lol=I, [¢]=0. [p+ex]1=0; (5.4d)
Subsonic trailing edge [Cl=0; (5.4e)

Oscillating airfoil surface

q’ylu,z = ;;ix ul ~ (@ + @, sinkt)—Ket, (x - xp )cos xt (5.4
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The upper and lower surfaces are denoted by F,«(x). x denotes the reduced frequency
based on the freestream velocity and chord length. The nondimensional time and
circulation are denoted by t and I" respectively.

5.1.2 Computational Domain and Transformation

It is desirable to cluster the grid points near the airfoil and place the farfield
boundaries as far as possible from the source of disturbance. As the physical domain is
rectangular, this can be easily achieved by stretching the mesh independently in the x and
y directions. Mesh spacing in the x-direction is uniform on the airfoil and increases
exponentially away from the body. It is of prime importance to make sure that the
metrics are continuous throughout the domain. In the y-direction, the mesh is clustered

symmetrically about the x-axis as depicted in Figure 5.1.

Mesh: 120 x 30 with 80 points on airfoil

4

3

-

2Pr

y/c

'
N
T qrr

T

x/c

Figure 5.1 Clustered grid for transonic flow past an airfoil
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With transformations ¢ = ¢, x = x(§), and y = y(7), the governing equation can be

recast in the &-7 plane as:

d
;(—A@ ~Bog£, )+ (Erpgéx + FolE?)e, «*(;9—,1(@,;1y Jn,=0 5.5

3

The boundary conditions in the &-7) plane are found by applying the chain rule to the

boundary conditions stated earlier (Egs. 5.4 a-f).

5.1.3 Discretization and Linearization

For a cell 2 of width d& and height dn in the £n-plane, one can write

Q{ ( Ag, - B(pééx) ag (C¢¢§x + D(p§§x )gx an ((pnny )ny}x§ )’r,dédn 0.

(5.6)

The term xg yy is the Jacobian of the transformation. It represents the ratio of the
elemental area dxdy to the area of its image in the &-7) plane. The integral over space can
be transferred to the boundaries of the cell via the Green’s theorem. After some algebraic

manipulations, Eq. (5.6) takes the following form:

(an)®

ylj+l/2

lho. + BosL. ], ~[angn,lii 2+

2
(22) §‘|i+1/2 [— (¢§§xlx+1/2 ¢§§x| 1/2) C][A§¢§5x]'+;;§—0 3.7
r”’Ij+1/2
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At this stage, Eq. (5.7) is lincarized by letting ¢ "*' = ¢" +¢’, where ¢ is an
approximation to ¢"*’ and @’ will approach zero as @° — ¢@**/. Then, the time derivative
is discretized using second order backward differences, the &-derivative in the time
dependent term is backward differenced for stability reasons, and other spatial derivatives
in & are discretized according to the Murman-Cole switch as explained in Murman and
Cole (1971). Central differencing is employed for all n-derivatives. Consequently, Eq.

(5.7) results in a form for which the left hand side is,

3 _(AEY¥ et L @l (1Y _
LHS ==~ B=z-—=2— +2AE ——— = D -
2 At q’éli’j xlis1/2 At) géxl””’ 2 Aéwgéx***//’} ¢
, n+l , . 2
T 9eoxli_y2,) [ ZDAé‘pCé" ,,A_C]-[Am’n"y i
(5.8a)

3
where = —(A ) x"” 2 and the right hand side of this equation is simply the
¢ ")'I j+1/2

discretized UTSD equation.

RHS — _B= (A§)2

- ‘[ (fpgéx

2
[3% ~4g7 +o1 ;- \ ) 20" - 50" + 49" —p™2],;

éx ivl/2 (A‘
j+172

+172 %é"l _172 J-C]j [Aéq)géx]'*f%-f-[An(D,;ny j-1/2
+1

(5.8b)

As ¢ "' = @  +¢", the boundary conditions are enforced on both ¢ and @ to
ensure that at the end of each time step, ¢ will satisfy the stated boundary conditions.

The nonhomogenous part of each boundary condition is implemented on the RHS, while
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the homogeneous part is applied through the LHS. For instance, the wake boundary is

treated with the following jump conditions:
[¢'1=T. [¢%4]=0, [@]1=0 , [p]=0 (5.9)

The continuity of the n-derivative across the wake can be utilized to find

(P,"_é_ —q),',_% - r(f,t)
Pnle_pe = An

(5.10)

where the circulation, I is lagged in time. Continuity of pressure across the wake can be
written as an advection equation for the circulation, i.e. I;+I; = 0. This equation is
integrated from the trailing edge to the downstream boundary to solve for I” along the
wake. [ is second order upwind differenced, whereas first order backward difference is
used for the time derivative. Starting with the new value of ITx=x7z) after the completion
of each iteration, one can obtain the new value of the circulation at downstream stations

using the following:

I 1, 248
e A0 —TEz + 25T 5.11

3+
SxAf

The flow tangency boundary condition is imposed within the differencing of (p;
and (0,', terms on the &-axis. Far downstream, (pg is computed by second order backward

differencing and the boundary condition is simply satisfied by putting qog +@:=0. A

similar procedure is applied at the far upstream boundary.
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The reader is referred to Caughey (1982), Goorjian and Van Buskirk (1985) and
Batina (1988) for further information on the different solution strategies used for the

UTSD equation.

5.1.4 Resolution scheme

Eq. (5.8), when written for all the grid points, is a set of linear equations in terms
of ¢” which needs to be solved at each sub-iteration to update ¢". These sub-iterations
are required to achieve time accuracy. For steady calculations, time accuracy is not an
issue and sub-iterations are not used. The unknowns at the cell centers are packed in the
n-direction according to @k = @i.;v+j , N being the number of divisions in the r)-direction.
The nonzero elements are confined within a band formed by diagonals parallel to the
main diagonal. As the computational stencil of a supersonic cell (i, j) contains four
points in the &-direction, there are at most six nonzeros on the k™ row of the coefficient
matrix. Hence, the maximum bandwidth is 3N. The resulting banded matrix is solved
efficiently by the public-domain software LAPACK. The importance of mesh stretching
becomes transparent in light of the fact that the number of calculations grows rapidly
with increasing bandwidth and, consequently, efficiency deteriorates dramatically.

Hence, one needs to use highly stretched meshes in the 7-direction to reduce the

bandwidth without sacrificing accuracy.

5.2 Optimization Problem

5.2.1 Continuous Adjoint Equations
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The problem we consider is the design of the shape of a pitching airfoil that
attains a prescribed velocity potential distribution ¢/(s, t) within the time period [T,,T-].
The freestream Mach number, M.., and the reduced frequency of oscillation, «; are fixed.
This problem can be cast into an optimization problem, where it is required to minimize

the following cost functional:

T, )
Ic = | [lpls.00-¢' .00 dsde (5.12)
T,U.L
Tbom
Airfoil
Lboun U / ----- w.!" - Rboun
L W,
Q

Figure 5.2 Boundaries of the computational domain.

Abbreviations used for the different segments of the boundary are shown in Figure. 5.2.

The cost functional /¢ is augmented with the weak form of the state equations.

T
Ig =1f‘j;{—a%(A¢, +B¢x)}).dﬂdt+
! (5.13)

TZ a 2 a TZ
I j{a— (C¢x + D¢, §_¢y }/’Ldﬂdt + j I(F, + T wdsd:
ol y W
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The arbitrary weighting functions, A(x,y,?) and y (x > x7z,0,t), are the adjoint variables.
One can use integration by parts to transfer the derivative operator with respect to time
and space to the adjoint variable and arrive at the following for the first variation of Iz
with respect to the boundary:

T,
Ie=[[F (A% +BA,), +(Ch, +2Dg 2, ), + A, pp’dQdr +
7Q

T.
f {- [€+2D¢ )2 ¢’ds+ [(C+2D¢, )/’L_tcp’ds}dt

TI Rbowx Lboun

+Tf{- [A,0ds+ | Ay¢'ds}dt+rf{ f (A.y¢'—¢;/l)ds}dt

T Thoun Byoun Ty | Wy U (5.14)

T,
+J{ [(@54—2,0")ds— | (C¢;+2D¢x¢;)1ds}dt

TI ‘VLUL Lboun
T, T, T,
+ [ [Bo'hdsdt- | [@, +y, ) dsdt+ | [l“’n;/];75 dt
Ty Ryoun nw T;
- [[A0/2 + BoA - Ap'h I dQ+ [[Ty ] ds
Q w

In Eq. (5.14), ¢” denotes the perturbation in the disturbance potential due to a slight
change in the shape of the boundary. Let’s denote the time at which the initial transient
dies out and the limiting periodic motion starts by #,. The last two terms in Eq. (5.14)
involve ¢7x,y) at t = T,,T; and can be omitted from /% if and only if ¢ (xy,T)) = ¢
(x,y,T2). In other words, T; should be greater than tp, and T>-T; should be an integer
multiple of the period of oscillation 27 /k. Eq. (5.14) can be further simplified if the

adjoint variable satisfies the following:
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- AA, - B, +(CA, +2Dg,A,) +2,, =0 YieQ

Yy
Ax =0 Vxe Rboun
}uy =0 Vxe Tyoun UBboun
A =0 Vxe Lyoun
A=Ay Ay, =2,
Vety, =A'y Vt,EEWU UWL
y(e,2)=0

Subsequently, the first variation of the augmented cost functional can be written as:

r -1C+1R-j j(¢ ¢)¢dsdt+ j{qu ds — qu ds}dt

TIUUL T[

’

+”aiz.dd H Fy Adsd:+jr'w|
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(5.15)

(5-16)

To eliminate the remaining perturbations of the disturbance potential, one can rewrite the

last term in Eq. (5.16) using the Dirac delta notation, & (x-x7z), as:

j Wlx—xn: drt= J. x=xp¢ 5(x — XTE )drdt -
1 T[ TIL

Consequently, the wall boundary condition is found as:

ly+(¢—¢;)—5(x—x1-£)[l| =0 VexelU

X=XTE

—(¢—¢1')‘5(x‘xns)'l/| =0 Vtxel

X=XTE

However, if one chooses to use the more relevant cost functional

Ic(¢.Xp)=%] f[?,(A',t)—¢;(s,t)]2dsdt

T,U.L
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(5.17)

(5.18)

(5.19)



the wall boundary condition becomes

b~k 5 Wl ~(07F -0 )
-8(x- xu;)':qb —¢x J=0 ViieU
—¢x

(5.20)
00k x72)| vl +(07F -0t )
+5(x-xu;)|:¢x -0 ]=o Vt,Xe L
Eq. (5.16) for the first variation of the objective cost functional reduces to
aF T2 (3F,\
H —L |Adsdt— [ [| =% | A dsdt (5:21)
7,0 ox

5.2.2 Resolution of Discrete Adjoint Equations

As the coefficients of the highest order derivatives appearing in Eq. (5.16) are
only a function of space, the adjoint equation is linear in A and the linearization step
described in the discretization of the governing UTSD equation can be skipped. At any
point (x, y) in the domain, the sign of E+2F¢, determines whether the PDE is locally
elliptic, hyperbolic, or parabolic. Central difference formulas can be used for the elliptic
points while the discretization is upwind-biased at the hyperbolic points using the
Murman-Cole switch. The discretization of the adjoint equation in the domain takes the

following form in the computational domain (&, n):
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§X|i+1/2 An g n+l n+lg 2|i¥172 o p4g j+is2
r’yl Aé) [CA&A'E §x+2DA§¢§l§ éx ]‘._1/24-2.,' nyAnlj—[/z—

j+1/2

An [A 27 52" 441! —}."‘2# 832.2” —423+ 2zt ,-+1/2J —0.

2 x
ny|j+1/2 At 2

(5.22)
However, A is related to the wake Lagrange variable, y, by the nonhomogenous linear
convection equation

=A
ek 63

Hence at each time step, Egs. (5.22) and (5.23) need to be resolved simultaneously by
some iterative procedure. In the present work, successive over-relaxation is used to
update the A’s. The process is continued until the L,-norm of the difference between two
consecutive iterations falls below some tolerance, €, currently taken as 10%.  The
numerical representation of the Dirac delta function and its impact on the accuracy of the
sensitivity derivatives will be discussed in Chapter 8. Also in Chapter 8, after validating
the unsteady flow analysis and unsteady sensitivity analysis components, the overall
methodology will be demonstrated for a stationary airfoil and for an airfoil performing a

sinusoidal pitching oscillation.
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Chapter 6

Continuous Adjoint Sensitivities of Helmholtz Equation

In this chapter, the method of continuous adjoint sensitivity analysis is applied to
an acoustic diffraction problem. The acoustic phenomena in a stationary fluid medium
can be modeled by the wave equation. The time dependency is alleviated by applying the
method of normal modes, whereby the noise source is resolved into modes, which may be
treated separately due to the linearity of the governing wave equation. As such, the wave
equation is transformed into a complex elliptic Helmholtz equation with boundary
conditions of the Dirichlet, Neumann, or Sommerfeld radiation (Robin) type imposed
over the whole boundary. There is a trade-off between time dependency and switching
from the real to the complex domain. In this chapter, it is intended to obtain the shape
sensitivity derivatives of an acoustic pressure field. This problem is not only very
interesting mathematically, but has practical applications as well. Noise pollution in
populated urban areas is a major problem that has resulted in a dramatic increase of
academic interest in the development of computational techniques for noise propagation
simulations and design of noise reducing disposals (e.g. Harris (1992) and Piacentini
(1996)). One of the most effective noise reducing disposals are optimally shaped and
placed barriers on the side of highways, railroads, airports, and industrial buildings.
Height, shape, position relative to the noise source, and surface properties determine the
effectiveness of such barriers. However, aesthetic, architectural, and economic

constraints on the size of barriers result in a very small feasible design space. Under such
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circumstances, accurate sensitivity information is essential for a successful search for a
better design.

In this chapter, it will be demonstrated that the shape sensitivity derivatives of any
general objective functional involve the first and second order directional derivatives of
the acoustic pressure field on the control surface. Hence, it is essential to ensure that
these derivatives are computed quite precisely. The sensitivity derivatives will be

derived in two different coordinate systems and compared for relative accuracy.

6.1 Mathematical Model
The wave equation can be easily obtained from the linearized Euler equations
with zero mean flow by adding the derivative of the x-component of the momentum
equation with respect to x and the y- derivative of the y- momentum equation. The wave
equations is given by:

2
TP 22v2P+s(i) (6.1)

where P is the acoustic pressure and S(¥,?) is a time-dependent source. ao is the velocity
of sound in the medium, ie., the velocity at which small amplitude acoustic waves
propagate. As this equation is linear in its dependent variable, the pressure field and the
source term can be resolved into their harmonics, with the obvious advantage of being
able to study each harmonic component separately. The harmonic time dependence can
be exploited to write

P= p(f)eim' + p(x P

; . (6.2)
S t)=06(%,)e” +8(x,)e "
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in which the bar denotes the complex conjugate and a point source generating spherical

acoustic waves at frequency o is represented using a Dirac delta function centered at X,

the position of the source. Substitution of Eq. (6.2) in Eq. (6.1), yields the Helmholtz
equation

V2 p(E)+ k2 p(%)=5(%s) 6.3)
k =aYao is the acoustic wave number. In the farfield, p must satisfy the Sommerfeld

radiation boundary condition:

lim r{a—p - ikp} =0 (6.4)

r—oo a r

The boundary condtion imposed on a solid wall reflects its physical properties:
homogenous Neumann condition for rigid perfectly reflecting surfaces, homogenous
Dirichlet for non-reflecting walls, and Robin condition with complex coefficients for
absorbing walls.

The particular problem considered in this paper is the diffraction of 2-D acoustic
waves by a barrier placed on an infinite perfectly reflecting ground. As the ground
extends to infinity from both directions, it can be removed from the computational model
and an equivalent infinite-domain problem can be solved by including the images of the
noise source and the barrier with respect to the plane of the ground in the model ( Figure

6.1). Consequently, Eq. (6.3) is modified as:
V2p(E)+ k% p(%) = 8(%5)+ 8 (¥s) (6.5)
Figure 6.1 is a schematic of a barrier located on an infinite rigid ground. The barrier,

ground, farfield and design surfaces are denoted by I', G, O, and D respectively.
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Farfieid (O) Design Surface (D)
r—
Observation Deck (C)
Y
Noise Source I Barrier
infinke Rigd Ground (G)
Image | S

Figure 6.1 Barrier on an infinite rigid ground

6.2 Optimization Problem
The process of searching for an optimal design configuration requires accurate
sensitivity information. The objective is to find the design configuration that minimizes a
measure of sound intensity on some contour C. Choosing the time average of the square
of p(¢) as a suitable measure of the acoustic field, the cost functional of the equivalent

minimization problem can be written as:

e =4 (o) do= 4] pp) as (6.6)

6.2.1 First Variation of Cost Functional

In Eq. (6.6), Ic is not an analytical function in p as it involves the complex
conjugate of the acoustic pressure field. Hence, variation in /¢ cannot be written only in
terms of the complex pressure field and it is needed to write the variation explicitly in

terms of the real and imaginary parts of p.
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= [ pP)p,p; + pip})ds

ﬁ‘—\

6.7)

The second integral in the above equation will simply vanish if the contour C is
stationary in space. Also, the terms involving the normal derivatives of the pressure field

vanish, as either the contour lies on the surface, where the boundary condition endorses a

zero normal derivative, or the contour lies stationary in the domain, in which case V=0.

6.2.2 First Variation of Augmented Functional
The real and imaginary parts of the governing Helmholtz equation are multiplied

by arbitrary Lagrange multipliers, A,, A, respectively and integrated over the whole

domain 2. Then using Eq. (2.20), the first variation of /z can be written as:

i = [2,(V?p; +k2p,)dQ+ [4,(V2 pi +k2p;)de2 (6.8)
Q Q

Using the Green’s second identity or symmetrical theorem, Eq. (6.8) can be cast in the

following form:

ix = [ pi(V2A, + k24, )d+ [ pi(V2A; + k74;)dQ
Q Q

(6.9)
ap, 82, api 04
+I( -pr ) Jdr+[( 5 —piajdl“

Combining results of Eq. (6.7) and Eq. (6.9), the design derivative of the augmented cost

functional becomes:
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(6.10)

on

J
C
+ [0 (724, + k24, Ja+ [ pi (V24 + k74 )de
Q Q
IJ: an

ap, ., A 9pi .0k
(z, ; }m{(& i _ ;0% ]dr

6.2.3 Adjoint System Formulation
First, we focus our attention on the farfield boundary condition (Eq. 6.4). As the
boundary at infinity is stationary, the perturbed boundary condition at infinity can be

written

lim r{a Pr +kp;} =0

- | On
~ S 6.11)
r—oo an

Substituting Eq. (6.11) in Eq. (6.10) and looking for a suitable choice of the Lagrange
multipliers that would eliminate p’ from integrals over the farfield present in Eq. (6.10), it
is not hard to show that the Lagrange variables should satisfy the following at the

farfield:

lim r{%—kﬂ,}:O

roe ] " (6.12)
lim r{—ﬁ+k).,}=0
r~»co an

If the complex adjoint variable, 4, is defined as 4 = 4, +i4;, Eq. (6.12) can be written

more compactly as:
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lim r{ﬂ + kA
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}=0 (6.13)

Comparing Egs. (6.4) and (6.13), it is interesting to note that the Sommerfield radiation

boundary condition describes an outgoing wave at infinity while its adjoint counterpart

requires an incoming wave structure for the adjoint variable.

Examination of Eq. (6.10) reveals that the formulation of the adjoint system

depends on the location of the contour C. If C lies on the barrier surface, the governing

adjoint in the domain will be homogenous while the Neumann boundary condition on the

portion of the surface coinciding with C will be nonhomogenous. The opposite holds for

C located in the domain Q.

If C lies on the design surface, the top edge of the barrier, it is easy to show that

the complex adjoint variable has to satisfy the following:

VZA+k?A=0
%:o
%%-(ipﬁ)pw
%%-ma:o

If C lies in the domain, the term arising from
absorbed in the adjoint equation as a source term.

VA + k24 +(L pp)pSc =0
Y

—:0

an

dA

= _ikA=0
an !

VxeQ
Vxel'uG-D

(6.14a
YxeD )
VxeO

the variation of the cost functional is

VxeQ

Vxel'uG (6.14b)

VxeO0

In Eq. (6.14b), the Dirac delta term & is defined as:
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| f6cdQ =] sds (6.15)
Q C

6.2.4 Sensitivity Derivatives
The sensitivity equation, Eq. (6.10) reduces to

) .
9p; , 5 2P0 $G) |
i= j( 5L }/nj ({7 - )ds (6.16)

C

At this stage, one needs to find the material derivative of the boundary condition

prescribed on the design surface. This would allow us to write ﬂ’- in terms of the design
n

velocity and pressure fields as

aa_P=-‘7-v(Vp).ﬁ-vp-ﬁ' (6.17)
n

Substituting Eq. (6.17) in Eq. (6.16) yields

P==[@F-V(p,) #+Vp, )+ A0 -V(Vp;) i+ Vp, - i’ )dT
D
(6.18)

11 =)
NECLINN
C
Once again, one should notice that for a stationary contour the second integral in Eq.
(6.18) vanishes. The above equation is a vector relation and coordinate system
independent. In the following, this equation is specialized to the Cartesian and the s-n
coordinate systems and the accuracy of obtained sensitivities will be discussed

consequently.
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6.2.4.1 Cartesian Coordinate System

The design vector field is chosen to have only one component in the y-direction,
V), and Bezier-Bemnstein parameterization is used on the control surface as depicted in
Figure 6.2. It is easy to see that Eq. (6.18) can be written in the following form for the

design sensitivities with respect to the y-coordinate of the Bezier control points:

al L m ’ - azpr azpr dem apr 2 apr
—=—£{lrli8,- x2+y2( ny+ayaxnx +—dt— —-xny‘k E)y ngn, dr

aY; ay’
1 2 2 m
m [ 2| 9°p; d°p; dB;} ap; 2 9p;
_ 1B 2 2 i 4+ i i _ i i i d
!H Py (ay2 " ayax"’)+ ar ( ax " Ty M (14
1 L(L 5
+] Z(ZP ) BMn i% + y2d:
0 R ’
(6.19)

6.2.4.2 Body-fitted s-n coordinates

The second order tensor, V(Vp), can be shown to have the following form in the

s-n coordinates:

R (82p R dp n  OJR IapJ R (azp_‘a_p 1 )

V(Vp)= R+n| 3s° R+n+ ds (R+n)2 ds +R on R+n|dson ds R+n

¥p R R 3p ’p

dson R+n (R+n)2 as anz
(6.20)

Substituting Eq. (6.20) with n=0 and 5 = [0 —IIr in Eq. (6.18) yields
1dp o d%p . 9P, .
I —L V- -t)+ =\% Lo’ |dT"

6.2
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Bezier Control Points

i+10| /
Oi

s, t

X-axis

Figure 6.2 Schematic representation of the control surface (Barrier’s top surface)

6 is the angle between the unit tangent and the positive x-axis. In the above equation, the
second derivative of the pressure normal to the control surface can be eliminated by

writing the governing equation in the s-n coordinates .

R° 3°p. Rn dRAp I 3p 3%p ,:
crar == = 6.22
(n + R)? as2+(n+R)3 ds 3s | R+n 8n+an2+k p=0 (622

Vip+kip=
By setting n=0 and the normal derivative of pressure to zero (from the boundary
condition), Eq. (6.21) simplifies considerably and allows us to write the second derivative
of p in the normal direction only in terms of its second derivative in the tangential

dircction and p itself. Hence, the sensitivity derivatives of the cost functional with

respect to the y-coordinate of the Bezier control points can be written as:
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1 2 m
aY; 0 as asz ds Ji2+)"2 dt
1 . m
L —L5in6 + B™ N p’ —Li 4 k?p; lcos6— 9p: Cose dB’ P2 +y%dr

_ } (L pﬁ)z
AR

B cosOx* + y2dt

(6.22)

6.3 Numerical Solution of State Equation
The similarity of the Helmholtz and Laplace’s equations suggests that the boundary
element method (BEM) is a good candidate for solving the problem in hand. First, a
suitable fundamental solution is needed to start off the BEM method. The Bessel function
of the second kind and order 0, Yy, with a coefficient of —1/4 satisfies
Va3 + k% +6(%)=0 (6.23)
and the Bessel function of the first kind and order 0, Jy, satisfies the above equation

without the Dirac delta term. Hence, a combination of the form
u (kr)= al, (kr)—é Y, (kr) r= r[Jt',- ,i] (6.24)

can be used as the fundamental solution. r is the distance between point ¥; and any field

point. However, it is desirable to choose the coefficient « in a way that «" also satisfies

the farfield Sommerfeld boundary condition. For large values of r, the following

asymptotic relationships hold:
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g, (kr) ~ —Zk—r- cos(kr-%—%]
T
(6.25)

Y, (kr) ~ 2 sin(kr—i-ﬂ)
nkr 4 2
It is straightforward to show that with the choice of & = i, u” satisfies the boundary
condition of Eq. (6.4) with u" replacing p. This would help to restrict the surface
unknowns to the barrier surface only.

Next, the inner product of the differential problem with the fundamental solution

is formed:

lim | (V"' ®)+ k2 p(F)-8(%s)- 5 (% ))u dQ =0 (6.26)
g_

The limiting process is essential because «~ is unbounded as r tends to zero. €2 is a circle
of radius o centered at X;isolating point X;from the rest of the domain (Figure 6.3).

Using Green’s second identity, the BIE formulation for the Helmholtz equation is

obtained as:

* * a a ‘ * /. * /-
ltm[ jp( 20" +k%u )dQ+ I [ 85 ™ }dr]—u (Fs)-u (Fs)=0 (6.27)

70 o q, ror,

Substituting from Eq.(6.23), the first integral has a Dirac delta as the integrand, but as

r=0 has been excluded from its domain, it vanishes. Therefore, Eq.(6.27) reduces to

dp ou N
——— dr— bt 4 =0 .2
cflzlorjr (u =~ P, J u (¥5)-u (%) (6.28)
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Interior Point Boundary Point

Figure 6.3 Process of exclusion of a point from domain

The fundamental solution u ", behaves like

u -~ i[z +i3m(ﬁﬂ (6.29)
4 /4 2

for small r and its normal derivative behaves like I/r. Therefore, the limiting process is

quite straightforward and yields

im [ (u 22 p2 lar=flu* 22 p2%% lr_cG)p)  (630)
on on r n on

where C(%:) is equal to unity for points in the domain interior and on the boundary it is
equal to 0(%;)2m, 6(%;) being the internal angle subtended at Xx;. Application of the
boundary condition for perfectly reflecting surfaces renders the final form of the BIE

formulation:

ou’

dU =-u" (%) —u" (%) (6.31)
on

CEpGi)+ [ p
r
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Both linear panels and three node quadratic elements are used to represent the geometry
and the unknown p. Eq. (6.31) can be written in matrix form as Hp=S; H being the
coefficient matrix resulting from the discretization of the LHS and S the vector of source
terms from the RHS. The coefficients Hj; are calculated using numerical integration
formulae such as Gauss quadrature for nonsingular elements (i #j). For linear, constant,
and quadratic elements, the contribution of singular panels can be shown to be identically
zero. Linear and quadratic panels are only C, continuous and, for C; continuity, one has

to use cubic elements with two degrees of freedom at each endpoint.

6.4 Numerical Solution of Adjoint Problem
The adjoint problem in the domain is identical to the Helmholtz equation and it is
possible to use the same fundamental solution of Eq. (6.24). However, the farfield
boundary condition of the adjoint system is different from that of the state equation.
Hence, one can still proceed and use the same fundamental solution but will need to add
panels at farfield as the farfield boundary condition is not satisfied by the fundamental
solution. The alternative is to look for a fundamental solution satisfying the boundary

condition of Eq. (6.13). It is not too difficult to see that
u‘(k")="é(-’o(k')—iyo (kr)) (6.32)

satisfies the adjoint radiation boundary condition. With regard to the adjoint system of
Eq. (6.14a), one has to account for the nonhomogenous boundary condition on the control
surface and its image, while in the case of Eq. (6.14b), special care has to be given to the

accurate integration of the source term in the domain equation.
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6.5 Gradient and Hessian of Acoustic field
Sensitivities of Eq. (6.19) require accurate computation of the gradient and some
second order derivatives of the acoustic pressure field on the control surface. As the
derivatives of p involve highly singular integrals and finding the finite part of these
integrals with quadratic shape functions is very cumbersome, this part of the analysis is
done on linear panels with two degrees of freedom at the endpoints. Starting from Eq.

(6.31) and assuming that X;is away from the endpoints of the panel where C(X;)is

discontinuous, it can be written as follows:

ou’ du_ ‘ ou’
—V =—|pV ds — -V; - -V; 6.33
P= fp ( on J T ar rl_ ar ’,_ ( )
Is xs'
It can be shown by using some vector identities that

) _ . . d 3 o« _mxlei—x)+n,(yi~y) 3 (au”
Vf(an ]:(n-V,-)Vu =[nx3;+nyf]Vu = X 3, aur vr

yi r
(6.34)
After some algebraic manipulations, Eq. (6.33) can be cast in the following form:
1 u
—Z—Inx(x. sy O = )= )i+ 6 = 5)3]
1
_V‘. = - P, - ds
At L IV (PO SURORS ) 3 B
t=5357 2)- (6.35)
P [+l x) O - vy -5 )i
_i“_.v _aL.V r
ar ar -
Xg X’

This integral is performed along the whole boundary and it is obviously an improper

integral when point i lies on panel j. To simplify the matters, it is chosen to find the
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derivatives only at the center of the panels. The above integral on non-singular panels
can be found very accurately using Gaussian quadrature but for the singular panel, using

the notation of Figure 6.4, it can be shown that

*

f = —(sinaf —cosx }) f (6.36)
panel j panel j

and the singular integral on the RHS of Eq. (6.36) can be written as

*

a“ 4 2r
51—
j‘ J’ . { aau _Iall dr (6,37)
panel j 0

Substituting for " in terms of the Bessel functions, J, and Yy, the first integral on the

RHS of Eq. (6.37) can be cast in the following form:

! ] 2r L 2r L 1 2r

2 -— e * . 2 _——— 2 ——

| du —ikp; / kp; A
2p; dr = Jkr)dr + — Y, (kr)d 6.38
pi] - Smar == s rar+ B Ly r)ar (639)

The integral involving J; is regular as J;/r is finite as r— 0, but the integral with Y; in its
integrand is singular and its principal value (PV) needs to be found. After integration by

parts and some straightforward limiting process, it can be shown that

L y,(kr)dr —T(Yo(v)——(y an)J "p'jyodn-7y,(v) (6.39)

where v=kl/2 and y=.5772156 is the Euler’s constant.
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Figure 6.4 Schematic of a panel on the surface of the barrier

Putting together the results of Egs. (6.37)-(6.39), the principal value of the integral on the

singular panel can be finally written as:

E 3

du
- X o
pv| [ |=—(sinai-cosaflpv| | —ds
panel j panel j r
[ LI 2r 1(6.40)
(. dp 2 1T
o &(u (v)--g(i(y-znz)n-ﬁj L 7, (kr)dr
=—(sinai—cosaj) 4 T 25 T

Y -V -
+ 2y, 0)- 24— 1n2) |+ 2 [y,an - 2iy, @)
I ) T 2 0 2 ]

Note that the integral of Yo in the above equation is regular because Y, behaves like the
natural logarithm for small values of r. Now, the second derivatives of the acoustic
pressure field on the barrier’s surface can be computed by differentiating Eq. (6.35) with
respect to xy and yr and after some algebraic manipulation, the following three equations

are obtained.
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VD I o’
perweal ELR D) ST MUY e SN CR
X - 3 u
=—jp<+ x[—n,(x, x) +ny(y - yNx - x,)]( 29’ uz +—12———de.€
r or 0
3 ou’ 2" o
H -t L [ n b oy - ) e P
L ar ar r J
_'x,--x(iazu‘_iau* o —x)s L3
r 2 3,2 2 9r ! oror |
=%
_ )c,-—xfia?'ut __I_Qu* x-—x')+iau*
r r? or? 2 9r T ror |
L \. X=Xg-
(6.41a)
E 1 3%" ‘
Z 55 el == 2n, e - 5 S - )
-29? 1 3u*
_IP<+ [ 'ly(y V) +'lx(,V y,)(x, x)] l; -2 l; ?ds
r I’ a ar
3 du 1 3%4" 2 Yi—Yy
+[-7 L2 )(-ny(x—x.-) o= =)L
yimy(1 %" 18" ) 1au" ]
r 2 or2 % or i Ys or J_ _
L \ X=Xg
yimy(23%" 13’ ')+121_¢:
r rz ar2 r2 ar ! Ys ar
L \ X=Xs
(6.41b)



(1 az * *
u I du
Z 5o+ 555l G-y -n, (- x)

1 3%p Yi=y 2 ~20%d" 13"
—_——— i — < <4 —_ . — -+ . - —_— - —
2 dydx; [j:p r [ (e = x) ny(y, 28 x,)] roar? +r2 or’ [
3ou” 134 2 yi—Yy
{ (_r—4 or +,.—3 or2 }—”x(y_}’i) '*‘ny()’—)’i)(x‘xi))‘r_J
| Yi=ys iazu*_iazfk Y=y Lazu*_l_au*
r r?2arr 2 or |l . r 2 ort r2or ||
x:xs X=Is'
(6.41¢c)

When point i lies on the panel, the above integrals are singular and the principal values of
these integrals need to be determined. Fortunately, it can be shown that the integrands of
the singular panels of the Egs. (6.41a-c) can be all written in terms of one singular

integral as indictated in Eq. (6.42).

2 * -
qu.(6.41a )=—sin(2cx) I %{_raa uz + du st
r

2 * *
|Eq.(6.41b)=sin(2er) | L2 B ‘; +1 | g (6.42)
panel j panel j T or ar
2+ .
JEq.(6.41c)=cos(a) | % —,—a 142 4 Ou ds
panel j panel j T ar ar

Using the first order shape functions and assuming that 7 is at the middle of the panel, the

singular integral of the RHS of Eq. (6.42) reduces to

4
2 * * E 2 = *
p d‘u  du d°u  1du
£2i- =2p:[| - Lo 6.43
pa;l"eljrz[ ’ar2+a,}s pg[ ar2+rar)r ( )
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Substituting for the fundamental solution in terms of Bessel functions and using the

reccurence formulas available for the Bessel functions, the integrand of Eq. (6.43)

reduces to

2 . 2 -
_97u_  10u _k 1 -i;) (6.44)
or® r or 4 r

and upon using integration by parts and the fact that
Pv(w% L (y~in2)- L (6.45)
£ /4 2r

the following expression for the principal value of Eq. (6.43) is obtained.

R R e O )

(6.46)

The result of Eq. (6.46) can be inserted in Eq. (6.42) to compute the principal
value of the singular panels confronted in the computation of the second derivatives of

the acoustic field. For all the regular panels, Gaussian quadrature is used for integration.
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CHAPTER 7

Results of Shape Optimization with 2D Euler Equations on
Unstructured Meshes for General Cost Functionals

7.1 Definition of Demonstrated Cases

The continuous adjoint formulation of Chapter 4, which is coupled with a CFD
solver, optimizer, surface parameterizer, and mesh movement module, will now be
demonstrated. Three cases are considered where the shape of an airfoil is optimized for
different objective functions, f, as assigned to the cost function of Eq. (3.3). In all three

cases, the Bezier control points, P, of Eq. (3.42) are treated as the design variables, and

side constraints are assigned to the y-coordinate of each one of the knots, ¥; of Eq. (3.44).
Also, geometric constraints can be applied to control, e.g., the trailing edge included

angle, maximum thickness, thickness at mid-chord, included area.

Each optimization cycle starts with a symmetric profile as the initial design. A
steady state solution is obtained for the airfoil at 2-deg angle of attack in Mach 0.75 flow.
For the sake of driving the optimization, the target aerodynamics is obtained from the
solution of the flow at the same conditions but for an RAE profile. The initial profile and
its 11" order Bezier control point distribution and the unstructured mesh for the target
profile are shown in Figure 7.1 a-b. The mesh has 14,590 cells (7,480 nodes) and there
are 370 nodes on the airfoil (design) surface. The airfoil surface is Bezier-Bernstein
parameterized with 24 Bezier control points, of which 22 of them are used as the design
variables. The Bezier points located at the leading and trailing edges are kept fixed to
enforce unit chord length and avoid the effect of pure translation in a finite computational

domain.
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Figure 7.1 (a) Bezier control points for initial airfoil (b) Unstructured mesh for target

airfoil design.
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Figure 7.1 Concluded.
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7.2 Sensitivities and Optimization

In Figure 7.2, the computed sensitivities are compared with the benchmark brute
force derivatives to ensure that the formulation is capable of producing comparable
derivatives with the finite-difference sensitivities. As the discretization error of the
continuous formulation does not correspond to that of the state equations, only in the
limit when the mesh size approaches zero, the continuous approach and the brute force
method are expected to yield identical sensitivities. However, it is clear from Figure 7.2
that the computed sensitivities compare well with the finite difference derivatives for the

fairly fine mesh employed in this work.

————— Finite Difference(Upper Surface)
; —-—a—-— Adjoint(Upper Surface)

-0.2 ——e—— FinRe Difference(Lower Surface)
—-—o—-— Adjoint(Lower Surface)

-025%

~HE NN ITEN I AN NI AT AN S TR AT INTTAT T B
2 4 6 8 10
Bezier Control Points

Figure 7.2 Computed continuous adjoint sensitivities versus benchmark finite-difference

(brute force) derivatives.

The first case is the conventional minimization of the departure from the target

pressure distribution denoted by p’
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retlpp'f =

Presented in Figures 7.3 a-c are the surface pressure distributions, shape evolution, and
the variation of the cost functional for Case 1. Each figure includes the respective plots
for the initial and target profiles, and those that correspond to two intermediate and the
final designs. The final design and its pressure distribution are virtually identical to the
target. Although the results are very close to the target after 30 flow analyses and S
gradient evaluations, with the shock locations coincident, the residual of the cost
functional does not meet the stopping criterion. It is only after another 45 analyses and 5

gradient evaluations, the variations in the cost functional reduces to stop the optimization.

0 01 02 03 04 05 06 07 08 09

i) s

IXATII» I]'rl' Illll Tl lnnt.ln—l‘uﬁ .r[ I Vb
03} ,./“‘1“ ,,,,, = 403
[ i .
04 — l 1 04
- i :
05 i Jos
i ]
. i i 3
2 o6 : —o06
= | ]
@ : p
13 H i :
E 07F ] 0.7

o
[+

Initial Profile _
—-———-— 10 analysis and 2 adjoint solutions

30 analysis and 5 adjoint solutions T
——————— 7S analysis and 10 adjoint solutions
Target

0.9

L LN

1

'l'll‘l,L'lJllJ_L'Ll_Lll"II'J"l'lllll"'l"'""'L
0 01 02 03 04 05 06 07 08 09 1

x/c

(a)
Figure 7.3 (a) History of surface pressure distributions for Casel
(b) Evolution of airfoil shapes for Casel
(c) Convergence history for Casel.
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The second case is selected to demonstrate that the present formulation is general and the
cost functional does not have to include pressure. The objective now is the minimization

of the departure from a target density distribution, p;,

f=tlp-p*yf (7.2)
Presented in Figures 7.4 a-c are the surface density distributions, shape evolution, and the
variation of the cost functional for Case 2. Each figure includes the respective plots for
the initial and target profiles, and those that correspond to one intermediate and the final
designs. The final design and its pressure distribution are again virtually identical to the
target. To the best of author’s knowledge, these results are the only results available in

the literature for a generalized cost functional with the continuous adjoint method.
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Figure 7.4 (a) History of surface density distributions for Case2.
(b) Airfoil shape evolution for Case 2.
(c) Convergence history for Case2.
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Finally, Case 3 is considered to demonstrate a composite cost functional which includes
an aerodynamic constraint through a penalty coefficient. The drag is added to the cost

functional of Case 1 after multiplying it by the coefficient, A, which is assigned a value

of 0.1:
f=4(p-p' ) as+ac, (7.3)

Presented in Figures 7.5 a-c are the surface pressure distributions, shape evolution, and
the history of the lift and drag for Case 3. Each figure includes the respective plots for
the initial and target profiles, and those that correspond to three intermediate and the final

designs.

————— Initial Profile
— — — ~ 10 amlysis and 2 adjoint solutions
——————— 40 amalysis and ¢ adjoint solutions
€0 analysis and § adjoint solutions
$0 analysis and 12 adjoi luti

1 Targetp without C, minimization
PEENEE S (TSN N S D S ST SU S S S S ST
0 0.25 0.5 0.75 1
x/c
(a)

Figure 7.5 (a) History of surface pressure distributions for Case3.
(b) Shape evolution for Case 3.
(c) History of C; and Cp in optimization process for Case 3.
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Since this case is not only a minimization of a departure from the target but also drag
minimization, the final shape is not known a priori (blind optimization). Instead, the
profile that supports the target pressure distribution (the first term in Eq. (7.3)), is
overlaid on the figures. The final design has the upper surface shock at about the same
location as the target shape. However, as expected, the shape and the distribution,

particularly the upper surface, are shaped by the optimizer to minimize the drag.

e

—————— Initial Profile
10 analysis and 2 adjoint solutions
40 analysis and 6 adjoint solutions
€0 analysis and 8 adjoint solutions
80 analysis and 12 adjoint solutions
Target withoot C, minimization

(b)

Figure 7.5 Continued.
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Figure 7.5 Concluded.

All of these cases are produced on a desktop computer. This is possible since
generating the continuous sensitivities requires no additional memory beyond that of the
flow analysis (for the present cases, it is 65 megabytes). Unlike solving for the discrete
sensitivities, here there is no need to form any large matrices. In the present continuous
adjoint method, the average computational time needed for one design cycle is about 1.8

times that for one flow analysis.

7.3 Summary of Results

An adjoint approach is developed to obtain the continuous sensitivity derivatives
for the Euler equations and general cost functionals. Both the state and the adjoint

equations are second-order finite-volume discretized for unstructured meshes, and they
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are coupled with a constrained optimization algorithm. Also integrated into the overall
methodology are a geometry parameterization method for the shape optimization, and a
dynamic unstructured mesh method for the shape evolution and the consequent volume
mesh adaptations. For the proof-of-concept, three airfoil optimization problems in
transonic flow are presented. These results establish the generality of the method in
accepting cost functions, the accuracy of the obtained sensitivity derivatives, and the

efficiency with which the optimized shapes are obtained on a desktop personal computer.
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Chapter 8

Results of Steady and Limit-Cycle Shape Optimization with Transonic
Small Disturbance Equation
8.1 Justifying TSD Modification
Experimentation with the original TSD shows, that for a NACA 0012 airfoil at
freestream Mach number of 0.63 and 2° angle of attack, a nonphysical shock appears on
the suction surface, whereas experimental data certifies that both surfaces are subcritical.
Figure 8.1 illustrates that the inclusion of the correction term in Eq. (5.2) delays the

unphysical transition of the partial differential equation from elliptic (subsonic) to
hyperbolic type (supersonic).

NACA 0012, M_=0.63, a=2.0°
Mesh: 300x40 with 200 points on the airfoil surface

p———

!
!
i
i

Q:. 05 :
1
sk Modified TSD (m=1.5)

i e Original TSD

2
<SS TS TSNS TN W S SN [N SR NN S NN SN S S
0 025 05 0.75 1

x/c

Figure 8.1 Prediction of shock-free flow past airfoil with modified TSD.
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8.2 Steady Transonic Flowfield
Figures 8.2 and 8.3 show the present computations performed for flows past a
NACA 0012 airfoil at different Mach numbers and angles of incidence. In Figure 8.2, the
results have been compared with the corresponding Euler solution, which requires
significantly more computing time. The comparison is strikingly good except very close
to the leading edge. This is somewhat expected, since the small disturbance assumption

is less valid in the vicinity of a blunt leading edge.

—-—o--— 2™ Order Euler Computation
———— TSD on 384 x 60 mesh

lll"llll"ll!

0.t 02 03 04 05 06 07 08 09 1

x/c

O

Figure 8.2 Comparison of TSD and Euler solution.

Shown in Figure 8.3 are the pressure distributions over the same airfoil at the freestream

Mach number of 0.70 but for different angles of attack.
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NACA 0012, M_=0.70, m=1.90

Figure 8.3 TSD solutions for flow past airfoil at different angles of attack.

The agreement of the TSD results with the experimental data deteriorates as the shock
gets stronger (by increasing either the incidence or the freestream Mach number). This is
attributable to the limitation of the TSD equation in modeling shocks; it does not satisfy
the jump condition across the shock. Thence, as shocks get stronger, their position and
the pressure coefficients before and after the shock are predicted with less accuracy. This
also manifests itself in more iterations required for convergence, as can be observed in
Figure 8.4 and Table 8.1. The convergence (reduction of L,-norm of the residual to 10°"?)

of the algorithm for computations on a 192x20 grid (128 points on each airfoil surface)

requires more execution with increasing angle of attack.
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NACA 0012, M_=0.70, m=1.9

10"

100 150 *
No. of iterations

Figure 8.4 Convergence history for flow past airfoil at different angles of attack

M..=0.70 No. of Iterations Execution Time
(Seconds)’
a=0.0° 34 6.5
a=2.0° 73 13.9
a=3.0° 181 33.7

Table 8.1 Execution time and iteration numbers versus angle of attack

YAl computations performed on a 200 MHz Pentium Pro desktop computer.
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8.3 Validation of Unsteady Flow Analysis

The problem considered here for the validation is the AGARD benchmark case
number 5 of Landon (1982): NACA 0012 airfoil in freestream Mach number of 0.755,
undergoing a forced pitching oscillation around a pivot point at its quarter-chord
measured from the leading edge. The angle of incidence as a function of time is given by
aft)=ag +og sin( kt) where oo =0.016°, o, =2.51°, and x = 0.1628 . The grid size is
150x20 with 100 points on each side of the airfoil. In Figure 8.5, the normal force
coefficient is plotted against the angle of attack. The limit cycle is achieved after

computing three cycles, and the results compare as well with the experimental data as the

other published results using Euler or Navier-Stokes equations, e.g. Periare (1997).

~—a—— First Cycle
——e—— Limk Cycle ( 4® Cycie)
A  AGARD Experimental Data

Figure 8.5 Limit-cycle for normal force of a pitching airfoil in Mach 0.755.

Also compared with the experimental data are the instantaneous pressures over the airfoil

surface at three different instants (Figure. 8.6 a-c). Only minor deviations are observed,
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as expected, close to the leading edge. In these computations, one cycle is covered in 200
uniform time steps, with 15 to 20 subiterations needed per time step to achieve
convergence to 10'°. On a 200 MHz Pentium computer, each time step requires
approximately 3.8 seconds to converge. The number of time steps per cycle can be
reduced at the expense of an increase in the number of subiterations. The optimal

combination for the minimum processing time has not been studied.

a=2.410

-0.5
0
0.5
o
(&)
1F
s Present UTSD Computation
15F ° AGARD Experimental Data
2F
: TEEE S S T N ST S T SN IR RS SN R S TN S
0 025 0.5 0.75 1
x/c
(a)

Figure 8.6 Pressure coefficients on airfoil surface in Mach 0.755 flow at three instants:

(a) 2.41° -pitch down, (b) 1.09°-pitch up, and (c) 2.34°-pitch up.
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15 s AGARD Experimental Data (LS)
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Figure 8.6 Continued.

-1

a=2.34°T

Present UTSD Computation
° AGARD Experimental Data

Tyrvoow.,

1.5
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0 0.25 0.5 0.75 1
x/c
©

Figure 8.6 Concluded.
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8.4 Validation of Analytical Adjoint Sensitivities

The present continuous adjoint sensitivities are now compared in Figure 8.7 with those
obtained by the brute-force finite differences. The Dirac delta function in the wall
boundary conditions, Eq. (5.20), confronts the methodology with the problem of
representing an infinite number (& (x-xrg)— « as x — x7z) on a finite grid. Refining the
mesh in the vicinity of x7z and scaling the Dirac delta with the local mesh spacing can
alleviate this obstacle at the expense of a stretched mesh close to the trailing edge. Yet
ignoring the Dirac delta term causes error in the computed sensitivities. Also shown in
Figure 8.7 is the divergence of the sensitivities from the correct values when the Dirac

delta is dropped from the analysis.

Finite Difference (US)
a Finite Difference (LS)
Adjoint with Dirac deita (US)

-0.08
----- Adjoint with Dirac delta (LS)
-0.09 Adjoint without Dirac delta (US)
0.1 ———— Adjoint without Dirac delta (LS)
-0.11

S IFENIEEN IFETErEr EPAUNEr S ISR
2 4 6 8 10

Design Variables Y's

Figure 8.7 Comparing adjoint sensitivities with finite-difference derivatives and effect of

boundary conditions.
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More specifically, this would effectively be neglecting the boundary sensitivity of the
circulation I', which takes values that are at least two orders of magnitude larger than the

sensitivities of the cost functional as can be seen in Figure 8.8.

45 T

2 ———— Upper Surface
[ R S Lower Surface

9 10 11

4 S ] 7 8

Design Variables Y's

2 3

Figure 8.8 Sensitivity of flow circulation.

8.5 Steady Shape Optimization

The present method will now be used to optimize a shape subjected to steady
loads. The demonstrative example considered herein, starts from an arbitrary symmetric
airfoil as the initial design. A steady state solution is obtained for Mach 0.6 flow
approaching at 2.0° angle of attack. The target values of the velocity potential
distribution are obtained from the solution of a RAE airfoil at the same conditions. The
mesh, which has 192x30 points, is highly stretched normal to the surface, and 128 points
are along the airfoil surface. The design variables are the 22 of the total 24 Bezier control

points. The evolution of the profile shape and the corresponding C, distributions are
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presented in Figures 8.9(a) and 8.9(b) respectively. The resulting optimized shape meets

the target airfoil shape virtually point by point.

Shape Evolution

[ — = = = Inkial Profile ~
—————— 10 State Sokstions, 2 Adjoint Solutions
- 20 State Solstions,4 Adjoint Solutions

(a)
Figure 8.9 History of optimization with steady loads: (a) shape, (b) surface pressures.

This result is obtained after 51 adjoint solutions (full optimization cycles) and a total
of 288 state equation solutions (Figure 8.10). Each state equation solution is converged
to 107 in about 20 seconds on a 200 MHz Pentium Pro desktop computer. The cost of an

average adjoint solution with convergence to 10® is about 2.2 times that of one flow

analysis.
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Evolution of Pressure Coefficient
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xe
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Figure 8.9 (Concluded)
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Figure 8.10 Convergence history of cost functional and its gradient during steady
optimization
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8.6 Unsteady Shape Optimization

The example considered here is an inverse problem, where the target potential is
that of a known RAE airfoil at freestream Mach number of 0.6. The airfoil is performing
a pitching oscillation with ao=0°, o, = 2°, and x = 0.1. The pivot point is located at the
quarter-chord measured from the leading edge. Each cycle of the airfoil motion is
divided into 60 equal computational time steps. The mesh size for this case is 120x20,
with 80 points along the airfoil surface, and the mesh is highly stretched normal to the
surface. As in the steady flow case, the design variables are the 22 Bezier control points

defining the upper and lower surfaces of the profile.

Double integrals present in the formulation (Eq. 5.21) are reduced to two one-
dimensional integrations. At each time step, the integrand is approximated in space with
an interpolating cubic spline and the integration is carried out analytically. The
integrated values are once again fitted with an interpolating cubic spline in time and the
value of the double integral is rendered by the analytical integration of the piecewise
continuous interpolating spline.

In Figures 8.11-8.12, this shape optimization process is summarized. The
evolution of the shape from the initial to the target profile is demonstrated in Figure 8.11.
The optimized profile shape is very close to the target profile. As it is observed in Figure
8.11, the normal force variation of the optimized shape for one period of motion matches

that of the target airfoil very closely.
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T T

......... Optimized Profile
Target Profile

Figure 8.11 Shape evolution during optimization with unsteady loads due to airfoil

oscillations.

Optimized Profile
Target Profile
—-————|nitial Profile

0.5

04

0.3

Figure 8.12 Normal force coefficient versus angle of attack at limit-cycle.
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The convergence histories of the cost functional and its gradient are presented in Figure
8.13. An average adjoint solution takes about 163 seconds on a 200 MHz Pentium Pro
desktop computer, which is about 0.2 of one UTSD solution. The unsteady flow analysis
from the UTSD equation requires about 20 sub-iterations for advancing the solution by
one time step while the adjoint solution requires only about § iterations to resolve the
coupled adjoint variable system A-y at each time step. Therefore, the average cost of

obtaining the gradient of the cost functional is about 1.2 times that of an analysis.

No. of Adjoint Solutions

10°

107

10" : i . i L : A PR
50 100

No. of State Equation Solutions

Figure 8.13 Convergence of cost functional and its gradient during optimization with

unsteady loads.

8.7 Summary of Results
In unsteady aerodynamics and automated aerodynamic design optimization, the
flowfield needs to be analyzed numerous times. Hence, a compromise between the

computational efficiency and the level of accuracy in the flow physics quickly becomes
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the critical issue. Therefore, the modified, unsteady, transonic, small disturbance
(UTSD) equation is considered to render quick and inexpensive solutions for a design
environment on desktop computers. By virtue of the underlying assumptions, only flows
past streamlined objects at small angles of attack can be considered.

To perform gradient-based shape optimization, a new time-accurate algorithm is
developed for the UTSD equation and its adjoint equation. The steady state and limit-
cycle sensitivities are derived by the continuous adjoint method and validated by
comparing them with those obtained by using the brute-force finite difference approach.
The importance of accounting for the variation of the flow circulation, appearing as a
Dirac delta in the wall boundary condition, is emphasized and demonstrated. Then, an
airfoil is shape optimized very efficiently to meet the prescribed target aerodynamics in

both steady and unsteady flow regimes.

It is remarkable that the cost of an unsteady adjoint solution is about 0.2 times that of
a state equation solution, which demonstrates the advantage of the continuous adjoint
method over the brute force method. It should be noted, however, that unsteady
optimization requires the history of the flow variables within a full period of the flow
oscillation. This can potentially be impractical for higher-fidelity physical models of the
flowfield. Further research, therefore, would be needed to extend the method to more

complicated models of the flow physics such as the Euler and N-S equations.
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CHAPTERY

Demonstration of Helmholtz Equation Sensitivities

9.1 Sensitivities at Various Control Surface Configurations

In this chapter, the results of the application of the continuous adjoint method to
the Helmholtz equation are demonstrated. In Chapter 6, the sensitivity derivatives were
derived in two coordinate systems, the Cartesian and the natural s-n coordinates, and it
was emphasized that the accuracy of the computed derivatives depended primarily on the
accuracy with which the first and second order derivatives of the acoustic field were
obtained. It was also shown that in the s-n system, the only derivative terms in the final
expression for the sensitivities were the first and second-order tangential derivatives,
while in the Cartesian system, the sensitivities involved the gradient vector and the
Hessian of the acoustic pressure. Intuitively, one would expect the s-n coordinates to
render more accurate results, and this point is illustrated through the computation of
design derivatives for a few carefully chosen test cases in the present chapter.

In Figure 6.1, the sound source of frequency f=150 Hz is located at x,= -54.0” and
ys= 12.27”, measured from the origin of a coordinate system with the y-axis along the

symmetry line of the barrier and the x-axis on the ground. The thickness of the barrier is

4.875” and its height is 55.25”. The speed of sound ay is assumed to be 1140 ft/sec. The
x and y dimensions are both scaled by x_scale = 7.875”, and the frequency f, is scaled by

ao/ x_scale, resulting in an acoustic wave number & equal to 0.452. The control surface
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is chosen to be the top surface of the barrier, parameterized with the Bezier-Bernstien
polynomials. The Helmholtz equation and its adjoint system are both resolved using
quadratic panels, but the derivative information on the control surface for the Cartesian

approach are computed using linear panels. The cost functional is chosen as,
=§£(2 pp) ds ©-D

The contour C is chosen to be either the control surface itself or a vertical straight line in
the domain connecting points (27.625, 55.250)” and (27.625, 82.875)".
The initial configurations, at which the design derivatives are computed, are

shown in Figure 9.1.

Initial Configurations
( Top Surface of Bamier)

85
Case: 1
- - - - Case:2

s Cam: 4
C | { —— —~ Case:5 (paraboic)

75k

70fF

ssk, 4

Figure 9.1 Top surface shapes at which the sensitivites are computed.

In Cases 1-4, the control surface is parameterized with an 8" order Bezier-

Bernstein polynomial, while a 2™ order (parabolic) polynomial is used for Case S. The
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curvature of the control surface in Case 1 is zero everywhere, but the Cases 2-4 exhibit
considerable variation in curvature as a function of arclength, increasing in the order of
their numbering.

First, cases where the contour C is coincident with the control surface are
considered.  Figure 9.2a illustrates the sensitivities obtained using the Cartesian

formulation for Case 1.

Brute Force Derivatives
- - 100 Quadntic Panels L\,
—-=>—-~ 200 Quadnatic Panels (0

———— 400 Quadratic Panels

rgrrrrgrrrTrTfrTTTITIEIIYTIrIOTTY

' I NS Y AN

2 3 4 5 6
Bezier Control Points

b

-

(@
Figure 9.2 (a) Design derivatives with the Cartesian formulation for Case 1.

(b) Effect of panel refinement on accuracy.

The computed sensitivities agree fairly well with the finite-difference derivatives
for Bezier control points 2-5 but deviate considerably at the control points close to the
end points of the top surface. However, as the number of panels are increased, the
deviation at the end control points decrease rapidly. This is expected, because the

accuracy of the gradient and the Hessian matrix deteriorate considerably in the vicinity of
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geometric singularities (slope discontinuity at the intersection of the barrier walls with the
top surface). Figure 9.2b focuses on the 4% control point and demonstrates the effect of

panel refinement on the accuracy of design derivatives.

0.555 = A
8 9 Brute Force Derivatives
[ 100 Quadnatic Panels
[ D 200 Quadratic Paneis
0.5548 b= d 400 Quadnatic Panels
> L
e 0.5546 _
R >
0.5544 =
[ q
0.5542
L 1
4

Bezier Control Points

(b)
Figure 9.2 Concluded.

However, the Cartesian approach fails in predicting accurate derivatives for Case
2, as depicted in Figure 9.3. Even the panel refinement has an unexpected adverse effect
on the accuracy. This phenomenon is in line with the Babuska paradox as discussed in
Chapter 4. The author believes that further work is necessary to obtain the first and
second order derivatives from second-order quadratic panels instead of linear panels. At

its current form, the Cartesian approach cannot handle curved surfaces.
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Figure 9.3 Deviation of the Cartesian approach in spite of panel refinement for Case 2.
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(a)
Figure 9.4 (a) The s-n approach sensitivities for Case 1.
(b) Effect of panel refinement.

Next, the natural coordinate approach is tested with the Case 1 configuration. In

all the following results, the acoustic pressure on the control surface are fitted with
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interpolating cubic splines and the integrations are done adaptively to capture the sharp
variation of surface curvature. As it can be seen from Figure 9.4a, the s-n formulations
produces design derivatives which match the brute force derivatives virtually point by
point. A blow up of Figure 9.4a at the 4" control point is shown below in Figure 9.4b,
demonstating the effect of panel refinement. With 200 panels on the design surface, the

derivatives differ on average from the exact values by less than 0.005%.

0.5556 9 Bruts Force Derivatives
- 25 Quadratic Panels on Control Surface
05555F A S0 Quadratic Pansls on Control Surface
0.5554 > 100 Quadratic P anels on Conrol Surface
0.5553
0.5552 o
0.5551
> 0555
o
— 05549
g~
0.5548
0.5547
0.5546 A
0.5545
0.5544
0.5543 e
0.5542
Bezier Control Point
(b)
Figure 9.4 Concluded.

The s-n formulation design sensitivities for Cases 2-4 are illustrated in Figures 9.5-9.7. It
can be easily seen that the accuracy of the obtained derivatives deteriorates sharply as the
control surface becomes progressively more curved. For instance, for the slightly curved
Case 2, derivatives match the finite difference values by an average margin of error of

0.01% with 100 quadratic panels on the control surface. For Case 2, this margin increases
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to 0.7% with 200 panels, and for Case 3 the derivatives deviate from the brute force

derivatives by more than 34% with 300 panels!

~

2y,

A

-

9 ‘ 9 Bnuts Force Derivatives
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- q 20 Quadratic Panels
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2 3 4 5 6 7
Bezier Control Points

Figure 9.5 (a) The s-n approach sensitivities for Case 2.

(a)

(b) Effect of panel refinement.
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Figure 9.5 Concluded.
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Figure 9.6 (a) The s-n approach sensitivities for Case 3.

(b) Effect of panel refinement.
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Figure 9.6 Concluded.
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Figure 9.7 (a) The s-n approach sensitivities for Case 4.
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(b) Effect of panel refinement.
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It is clearly seen that the rate of convergence to the brute-force derivatives drops sharply
as the surface curvature becomes more pronounced. There can be two plausible
explanations for this phenomenon: either the analytical development is wrong or the
problem lies in the numerics. The analytical formulation of Chapter 6 assumes
continuous first and second order tangential derivatives gauranteeing smooth variation of
the control surface curvature. However, at the discretized level, the control surface is
fitted with piecewise quadratic panels with discontinous derivatives at panels endpoints.
The curvature that the discretized equations see is the curvature of the quadratic panels ,
while the analysis deals with the curvature of the smooth 8" order Bezier-Bernstein
polynomial. It can be seen from Figure 9.7b that as the number of panels increase the
deviation of the adjoint sensitivities from the finite-difference derivatives decreases, but it
is essential to show that this is actually the case. To validate the analytical sensitivities of
Chapter 6 and the above argument, the control surface is parameterized with a second
order Bezier-Bernstein polynomial (Case 5 of Figure 9.1). With this choice of
parameterization, the quadratic panels would match the quadratic parameterized curve
and the curvature seen by the discretization would be identical to that of the analytical
developement. The end Bezier control points are fixed and only one design variable
remains. The results are listed in the Table 9.1. With 300 quadratic panels on the design
surface, the deviation from the brute-force derivative is less than 3%, dropping to about
0.3% for 700 panels. Comparing these results with the results shown in Figure 9.7 for
Case 4, where the deviation is approximately 34% with 300 panels, further validates the

above argument.
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No. of Quadratic Panels Derivative
100 57.716
200 61.327
300 62.926
500 64.218
700 64.593
Finite-Difference Derivative 64.778

Table 9.1 Comparison of brute-force derivative with continuous adjoint derivative for a

parabolic control surface.

Next, the results of the case with curve C in the domain for Cases 1 and 3 are

demonstrated.
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Figure 9.8 (a) The s-n approach sensitivities with C in the domain for Case 1.

(b) Effect of panel refinement.
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Figures 9.8a-b and 9.9a-b clearly show that the method can easily provide
sensitivity information for functionals that are not necessarily defined on the control
surface. The key to obtaining accurate sensitivities is precise integration of the source
term of the adjoint system, which can be easily done adaptively to the required accuracy.
Figure 9.8b clearly shows that with 200 quadratic panels on the design surface, the
deviation from the exact derivative is less than 0.002%. The deviation from the brute-

force derivatives is considerably higher (0.3%) for Case 3.

9.2 Summary of Results
The results demonstrate a satisfactory correspondence between the finite-

difference derivatives and the continuous adjoint sensitivities for the Helmholtz equation.
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The conclusion with regard to the deployment of the natural coordinates for ridding the
analysis from normal derivatives in the final sensitivity expression and its impact on the
accuracy of design derivatives is the most notable achievement of this chapter. Acquiring
accurate and efficient gradient information is the most crucial element for any gradient-
based optimization process to be practical. In Baysal et al. (1999) and Baysal and Kelly
(1999), the finite-difference sensitivities of the Helmholtz equation are coupled with an
optimization module to increase the acoustic effectiveness of a railroad barrier through
reshaping the top surface of the barrier. Replacing the brute-force sensitivities with the
present validated adjoint sensitivities of this chapter will result in a more efficient
optimization process.

The author also believes that this experience can somehow help to pave the way
for obtaining consistent sensitivities of the Navier-Stokes equations, where the first and

second order derivatives of the state variables appear in the sensitivity integrals.
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CHAPTER 10

Conclusions and Recommendations for Future Work

In this dissertation, the method of continuous adjoint sensitivity analysis has been
applied successfully to the two-dimensional steady Euler equations, the unsteady
transonic small disturbance equation (UTSD), and the Helmholtz equation. In the course
of the analytical and computational development of each of these problems, new ideas
and improvements on the existing methodologies have been discussed and demonstrated.
In the following, a summary of the achievements and conclusions pertaining to each of

the above-mentioned problems is presented

10.1 Sensitivities of the Two-dimensional Steady Euler Equations

In this work, the sensitivities of the steady Euler equations associated with a
general cost functional that can be a function of pressure, density, and tangential velocity
on the airfoil surface has been derived analytically. Generalization of the airfoil surface
boundary condition of the adjoint set of equations to allow a proper closure of the
Lagrangian functional is one of the first attempts to address this specific problem. The
demonstrated results for an inverse problem with density as the prescribed target is the
first of its kind in the current literature. In the numerical aspect of the work, it has been
shown that for second order accurate schemes on a cell-centered triangular mesh,

boundary derivative information can be accurately obtained to the s-n coordinate system.
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The transformation to the natural coordinate system in conjunction with the reduction of
the governing state equation to the control surface results in sensitivity integrals that are
only a function of the tangential derivatives of the state variables. These tangential
derivatives can be computed very accurately with cubic spline fitting of the available
information on the surface and furthermore, this approach eliminates the need for normal
derivative computations that can be erroneous.

With regard to computational storage, the continuous adjoint approach primarily
uses allocated space of the CFD module and in this sense, it is much more economical
than the discrete sensitivity approach. Furthermore, the gradient of the cost functional
with respect to the array of design variables is computed within the cost of two state

equation solutions, almost independent of the number of design parameters.

10.2 Limit-Cycle Sensitivities of the UTSD Equation

In this part of the work, the continuous adjoint methodolgy is extended to unsteady
flows. It is demonstrated that for periodic airfoil oscillations that lead to a limit-cycle
behavior at large times, the Lagrangian functional can only be closed if the time interval
of interest spans one or more periods of the flow oscillations after the limit cycle has been
attained. Consequently, a new time-accurate algorithm is developed for the UTSD
equation and its adjoint equation and the steady state and limit-cycle sensitivities are
derived by the continuous adjoint method and validated by comparing them with those
obtained by using the brute-force finite difference approach. The analytical work of
Chapter 7 for the UTSD equation and the computational results for limit-cycle

sensitivities of Chapter 8 are the first of their kind in the field.
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Furthermore, the importance of accounting for the variation of the flow circulation,
appearing as a Dirac delta in the wall boundary condition at the trailing edge, is
emphasized and demonstrated. It has been shown that the proper closure of the
Lagrangian necessitates the inclusion of the Dirac Delta term, and it has a great immpact on

the accuracy of the obtained sensitivities.

It is remarkable that the cost of an unsteady adjoint solution is about 0.2 times that
of a state equation solution, which demonstrates the advantage of the continuous adjoint
method over the brute force method. It should be noted, however, that unsteady
optimization requires the history of the flow variables within a full period of the flow
oscillation. This can potentially be impractical for higher-fidelity physical models of the

flowfield.

10.3 Sensitivities of the Helmholtz Equation

The starting point of this work is the wave equation in two-dimensions that is
reduced to an elliptic Helmholtz equation by applying the method of normal modes.
There is obviously a trade-off between solving for the unsteady wave equation in the real
domain and the elliptic Helmholtz equation in the complex domain. The derivation of the
adjoint system is straightforward but one needs to be careful with the choice of the
fundamental solution for the adjoint set. From all the various feasible choices for the
fundamental solution of the adjoint system, the clever choice is the one that satisfies the
incoming wave behavior at the farfield identically. With any other choice for the
fundamental solution, one has to use panels at the farfield and this increases the number

of boundary unknowns dramatically.
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The sensitivities of the Helmholtz equation require the gradient and the Hessian of
the acoustic field in the Cartesian coordinate system. It has been shown that for curved
surfaces, accurate Hessian computation is not an easy task and with a linear presentation
of the curved surface, it is impossible to find directional derivatives having components
along the normal to the surface direction (Babuska paradox). However, obtaining the
Hessian by differentiating the discretization directly for a quadratic representation of the
curved boundary is quite cumbersome, because of the need for finite-part computations of
highly singular integrals, and it has not been attempted in this work. Nevertheless, it has
been demonstrated that in the s-n coordinates the only derivative information needed are
the first and second order tangential derivatives. These derivatives can be easily
computed by fitting the boundary information with the cubic-spline interpolating
function. It should be noted that it is of utmost importance that all integrations are done

adaptively to capture the curvature variation along the control surface.

10.4 Recommendations for Future Work

Based on the experience gained in this work with the steady Euler equations, the
extension to the Navier-Stokes equations remains to be investigated. Anderson and
Venkatakrishnan (1997) abandoned the continuous approach in favor of the discrete
sensitivity analysis, arguing that the accurate and consistent acquirement of second order
derivative information on the control surface necessitates a higher order discretization of
the flowfield, possibly third or fourth order accurate schemes. The experience gained in
the work done on the Helmholtz sensitivities, which also requires the Hessian of the state

variable, suggests that a similar transformation to the s-n coordinates in two dimensions
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or the s-n-b system in three dimensions may ease the problem associated with the

acquisition of accurate boundary derivative information.

Extension of the work on UTSD limit-cycle sensitivities to the Euler equations
and transient sensitivities of unsteady state equations remains to be investigated. As these
problems require the full flow history within a time interval of interest, computer storage

and run-time problems may render the problem impractical.

Another open issue that needs further investigation is the level of coupling
between the state, adjoint, optimization, and surface parameterization modules required
for the minimization of the whole optimization cycle. Flow control and error estimation
analysis with the aid of adjoint equations are among several newly emerging fields that

the continuous adjoint methodolgy can be applied to directly.
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APPENDIX A
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and using Egs. (3.4) and (3.9), one can easily arrive at the following expression for the

design derivative of /.

al 9x ady dx dy (A2)
S ) . _ .9 i
+IV[M~"+((M) +V-V(pq))-n]dS+Iv/(pq it 34—%]4
L T

The second integral is identically zero because the governing Euler equations are satisfied

on the boundary I" and the fourth integral vanishes because of the wall boundary

condition on I';. Hence, Eq. (A.2) reduces to

T ~T ° ,
I = ;(” +26 )-idﬂ+ Iw(pé-fu—((pé) +‘7.v(pzj))-ﬁ)ds. (A.3)
ql 9x ady r

s

Now, the first integral appearing in Eq. (A.3) can be rewritten as follows:

=T ~:T i i
;(” +28 J.m=I[;—x(ﬁ'r.x)+i(é'T-i)—F'Tﬂ-G”ﬂ}fﬂ A
O y Q

dx ax ady

The fluxes, F and G, are functions of the state variable, @, and their local design

variations can be written as

T _ A7 4T
F"=0-4 (A.5)
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using the chain rule. In Eq. (A.S) the flux Jacobians A and B are defined as:

oF oG
As— , B=— Al
a0 Q0 (4.0

Using the Gauss’ theorem, the complete differentials present in Eq. (A.4) are written in

terms of boundary integrals. Hence, Eq. (A.4) reduces to

T ~iT >3 3
2598 \2da= [ Fren,GY Aas—f[F7.2%, 67 24) (A7)
ol 9x dy F=0+T, Q dx ay

Upon using Eq. (A.5) in Eq. (A.7), and then in Eq. (A.3), the following is obtained

ix=—[QT(AT .2, +B7 Z,)de
“ (A.8)

+ _f(n,l?'+ny5')r -Ads + jw((pq), -ﬁ+p2j—r°‘z+(V-V(pZi))-fles
[‘=[‘,+[‘o r;

Eq. (A.8) is Eq. (4.10) of the main text.
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