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ABSTRACT 

LARGE AMPLITUDE PITCHING OF SUPERMANEUVER DELTA 

WINGS INCLUDING FLOW CONTROL 

Yahia A. Abdelhamid 
Old Dominion University, 1999 
Director: Dr. Osama A. Kandil

The unsteady, three-dimensional Navier-Stokes equations are solved to simulate 

and study the aerodynamic response o f a delta wing undergoing large amplitude pitching 

motion up to 90° angle o f attack. The primary model under consideration consists of a 

76° swept, sharp-edged delta wing of zero thickness, initially at zero angle o f attack. The 

ffeestream Mach number and Reynolds number are 0.3 and 0.45 x 106, respectively. The 

governing equations are solved time-accurately using the implicit, upwind, Roe flux- 

difference splitting, finite-volume scheme. Both laminar and turbulent flow solutions are 

investigated. In the laminar flow solutions, validation o f the computational results is 

carried out using existing experimental data, and shows good agreement.

The effect o f  reduced frequency o f the wing motion is then presented and a grid 

refinement study is introduced. In the turbulent flow simulations, both Baldwin-Lomax 

and Spalart-Allmaras turbulence models are used and the results are compared with those 

o f the laminar solution and experimental data as well. A sinusoidal pitching motion of 

the wing is also investigated in the present work. The computational results provide 

complete information and details about the flowfield response, which are difficult to
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obtain from experiment. A feasibility study o f using one o f the flow control techniques, 

blowing, to enhance maneuverability is introduced.

The investigation o f  the unsteady flow over a wide range o f angles of attack 

provides crucial understanding o f the variations o f the leading edge vortex cores, their 

breakdown behavior, aerodynamic hysteresis, and wing aerodynamic characteristics at 

very high angle o f attack. The current study shows that numerical simulations in the very 

high angle o f attack range are obtainable. Such calculations were thought to be 

unattainable as recently as the 1980’s.
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CHAPTER 1 

INTRODUCTION

1.1 Motivation

The ability o f  modem fighter aircraft to fly and maneuver at high angles o f  attack 

is o f  prime importance for aircraft design. At high angles o f attack, unsteady 

aerodynamic effects may have a major impact on the maneuverability and controllability 

o f an airplane. Currently, some modern fighter airplanes are capable o f performing 

transient maneuvers involving high pitch rates to extreme angles o f attack. The advent of 

innovative high angle o f  attack control effectors such as thrust vectoring and forebody 

controls will enable ever greater capability to effectively exploit a substantially enlarged 

envelope for a ir  combat. With the emphasis on aggressive maneuvering capability near 

or beyond the stall angle o f  attack for future airplanes, research is needed to understand 

the effects o f  large-amplitude unsteady motions at high angles o f attack on stability, 

control and performance.

The complicated physics associated with high angle o f attack vortical flows 

involves massive separation, leading edge vortices, vortex burst, flow interactions, 

asymmetric flows, buffet, and vortex breakdown, which result in a penalty o f undesirable 

unsteadiness in the flowfield. In order to exploit these flight regimes and extend current

This dissertation is based on the format o f  the Journal o f  Fluid Mechanics.
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performance envelopes, a better understanding o f these unsteady, vortical flows 

associated with maneuvering swept wings is required.

Present prediction methods o f the coefficients o f aerodynamic derivatives depend 

on simplified theoretical models, which cannot be applied in all flowfield regimes. In 

this research work, the aim is focused on analyzing and understanding the flowfield 

behavior at very high angles o f  attack and explaining the vortex breakdown phenomena 

in more detail, which could be useful for further advanced design configurations. 

Computational Fluid Dynamics (CFD) plays an important role in the design process by 

providing detailed flowfield information at a relatively low cost that is unavailable with 

experiment alone. CFD reduces design cycle time and provides information that is 

complementary to wind tunnel and flight-test data, see Fig. 1.1. The main advantage of 

CFD over the experimental methods is that results can be obtained for many 

configurations using the same computational scheme with low cost. Also o f prime 

importance are the flowfield details, which can be obtained extensively using CFD.
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Figure 1.1 Breakout o f  F-16 wind tunnel testing by flowfield complexity. Young (1983)

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Although extensive computational and experimental work has been done in the 

area o f steady vortex-dominated flows, very limited research work exists in the area of 

unsteady vortex-dominated flows. This is one o f the motivations for the present study. 

Using the limited available experimental data to serve as benchmarks for validating the 

computational results, the main objective for this study is to accurately and efficiently 

resolve the unsteady flowfield at very large angle o f attack computationally.

1.2 Present Work

In the present study, both the unsteady, laminar, full Navier-Stokes equations and 

unsteady, Reynolds Averaged Navier Stokes (RANS) equations are used to investigate 

the aerodynamics o f supermaneuver aircraft approximated by a delta wing planform 

including flow control. All the computational runs are three-dimensional flowfield cases. 

In Chapter 2 a literature survey o f research work concerning high angle o f attack 

aerodynamics is introduced. Reviews o f analytical, experimental, and computational 

research work are covered. Emphasis is focused on work related to low-aspect-ratio delta 

wings.

The formulation o f the problem is presented in Chapter 3. The unsteady, 

compressible, three-dimensional Navier-Stokes equations are presented. The Navier- 

Stokes equations are written in the flux-vectored, conservative, dimensionless form in 

terms o f time dependent body conformed coordinates. In Chapter 4, the computational 

scheme used in the present study is discussed in detail. The computational scheme is an 

implicit, upwind, flux-difference splitting, finite volume scheme. It employs the flux- 

difference splitting scheme o f  Roe, which is based on the solution o f the approximate
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one-dimensional Riemann problem in each o f the three directions. Two turbulence 

models are used in the current study (Baldwin-Lomax and Spaiart-Allmaras) are 

presented. This Chapter concludes with a discussion of the boundary and initial 

conditions.

Chapter 5 covers the present computational results for the laminar flow cases. A 

validation case is presented first to compare the current results with the available 

experimental data. Three cases with ramp pitching motion and with different reduced 

frequencies are studied to investigate the effect o f reduced frequency. The effects o f grid 

refinement are also investigated. Turbulent-flow cases are presented in Chapter 6 . The 

turbulence models o f Baldwin-Lomax (zero order) and Spaiart-Allmaras (one equation) 

are used for turbulent-flow simulations. A comparative study is presented to show the 

effect o f different turbulence models on the computed results. A sinusoidal case is also 

introduced in this Chapter to study the hysteresis effects o f unsteady motion.

In Chapter 7 flow control using a new blowing technique is introduced. Blowing 

at the trailing edge with an angle equal to 2 0 ° downward is used to highlight its 

applicability for active control o f  the unsteady vortex breakdown phenomenon and 

investigate its use to increase the maneuverability o f  fighter aircraft. Finally, concluding 

remarks and recommendations for future work are presented in Chapter 8 .
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CHAPTER 2 

LITERATURE SURVEY

2.1 Introduction

Extensive analytical, experimental and numerical research work on the 

aerodynamic characteristics o f wings and bodies at high angles o f attack has been 

reported in literature from the 1930’s until the present time. One o f the most important 

developments in airplane design was the swept wing. The swept wing, or a wing that 

angles back away from the nose, allowed planes to fly faster than straight-winged planes. 

These swept wings evolved into delta wings, which are shaped like triangles. These 

wings provide better control and mobility for today’s high technology jets. One of the 

examples o f planes that use this type of design is the McDonnell Douglas F-15 Eagle. 

The structural advantages o f delta wings, supersonic cruise characteristics and high 

subsonic maneuver capability, made them the subject o f extensive experimental and 

theoretical investigation.

Polhamus(1971) reported:

‘Throughout the history of aeronautics, one of the major wing design considerations has 
been the avoidance of flow separation. However, as wing sweep angles were increased and the 
thickness decreased, to avoid undesirable effects, the maintenance of attached flow became 
increasingly difficult and the origin and spread of the separated flow was generally unpredictable 
causing many performance, stability, and control problems. Although many techniques have 
been developed to alleviate these problems, it has quite often [been] necessary to apply them by 
means of rather complicated variable geometry devices in order to satisfy the wide range of 
conflicting flow conditions encountered in the various regions of the flight envelope of modem 
high speed aircraft A rather historic departure from the time honored “attached flow” wing 
design concept occurred in the late 1950’s when, based on studies made primarily at the Royal 
Aircraft Establishment the British embarked on the design of a supersonic transport aircraft 
which was based on a slender, sharp-edge wing concept to minimize cruise wave drag but in
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which the flow (except for the cruise condition) was allowed to separate along the entire leading 
edge and produce the well-known leading edge spiral vortex. The primary advantages of this 
approach are that one type of stable flow can be maintained over a wide range of attitudes and 
Mach numbers without the need for flow control devices, and that the additional lift resulting 
from the leading edge vortex flow tends to eliminate the need for high-lift devices. Competing 
with these advantages, of course, is the disadvantage of increased drag resulting from the loss of 
leading edge thrust. The resulting British-French ‘"Concorde” project, the similar Russian TU- 
144 design, and the interest in slender hypersonic vehicles have added impetus to the study of 
leading edge vortex flows.”

Flow around slender wings was initially investigated for supersonic applications. 

As a result o f  experimental work in the late 1940’s and early 1950’s, it was discovered 

that by replacing the round leading edge by a sharp leading edge, the lift was greatly 

enhanced. The use o f the sharp leading edge created the well-known separation-induced, 

highly stable, leading edge vortices. For high angles o f attack at subsonic speeds, this 

type o f vortex flow forms and results in a large lift increment. The vortex-induced 

reattachment also avoids the undesirable trailing edge separation and attendant stall 

characteristics that often plague conventional swept wings. Therefore, at low speeds and 

moderate angles o f attack, the delta wing provides high lift by virtue o f the strong leading 

edge vortices. A good illustration o f the type o f flows that can be expected on aircraft 

and missile configurations at moderate and high angles o f attack can be obtained from the 

observation o f  flows over slender sharp edge delta wings.

According to Polhamus (1971) the total lift generated over delta wings consists o f 

a potential flow term, C l p , and a vortex-lift term, C l v , as seen in Figure 2 . 1 . The 

expressions for C l p  and C l v  take the following forms 

C l p  = Kp sin a  cos2  a  (2 . 1 )

C l v  = Kv sin2a  cos a  (2 .2 )

where Kp is the normal force slope given by small disturbance potential flow lifting- 

surface theory, and K v is the vortex lift constant and can be obtained from the overall lift
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0

Figure 2.1: Illustration o f vortex lift for a 75° delta wing. Polhamus (1971)

and induced drag obtained from an accurate lifting-surface theory, and a  is the angle of 

attack. The above expressions give very good result for angles o f  attack lower than 20°. 

Figure 2.2 gives the potential flow lift constant Kp and the vortex lift constant Kv for 

delta wings in incompressible flow as a function o f aspect ratio, where A in Figure 2.2 

denotes aspect ratio.

4.0

Kp

*V

2.0

Figure 2.2: Variation o f Kpand Kv with A for delta wings; M=0. Polhamus (1971)
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While Kp shows rapid increase with aspect ratio, Kv increases only slightly with aspect 

ratio. Also the magnitude of Kv is larger than Kp for low aspect ratio delta wings.

The flow configurations over a delta wing with leading edge sweep angle A, 

which is positioned at an angle o f attack a  at Mach number Moo, can be classified in 

accordance to the angle o f attack measured normal to the leading edge and the normal 

component o f  the Mach number cin — tan 'l(tan a/tan  A) and Mn = [l-sin2A.cos2a ] 1 2, 

presented in Figure 2.3. When the Mach number normal to the leading edge Mn is less 

than 1, the subsonic rolled-up vortex structure is obtained even when the external flow is 

supersonic. Thus, vortical flow structures which are identical to those obtained at 

subsonic speeds are also observed over a very slender delta wing in supersonic flow, 

including the transition to asymmetric vortex structure. However, for supersonic Mach 

number normal to the leading edge, Mn > 1, there is a Prandtl-Meyer expansion at the 

leading edge on the leeward side of the wing, causing an over-expansion which requires a 

terminating shock wave. As the angle o f  attack increases, the terminating shock wave 

strength increases, causing separation o f  the boundary layer on the wing surface. At 

moderate angles o f  attack, the separated boundary layer reattaches to form a separation 

bubble. At higher angles o f attack, the separating boundary layer detaches from the 

surface and rolls up to concentrated vortices with the terminating shock waves.

These types o f  flows are in general the result o f three-dimensional separation. 

The theoretical analyses o f such complicated three-dimensional flows with strong- 

viscous-inviscid interactions are very difficult to obtain. The concentrated vortex lines- 

tubes, rotating around their viscous cores, are known to “breakdown” under certain flow
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conditions. Vortex breakdown affects the induced flowfield and causes loss of 

aerodynamic lift force, leading to stall of the lifting surface. The breakdown may not be 

symmetrical and /  or steady, causing the appearance of asymmetric loading, lateral forces 

and moments, and unsteady phenomena such as wing rock.

8
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Figure 2.3: Classification of flow structures over slender sharp-edge delta wings. Miller
and Wood (1985)
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The flow structure induces velocity fields which result from the strong interactions 

between the generated vortical flows and the outer flow governed by the configuration's 

geometry, see Figure 2.4.

OB

/

Top -  Small a  - separation bubble at leading edges 

Medium -  Medium c* -  two roilcd-up vortices reattaching on surface 

Bottom -  High a  -  large rollcd-up vortices with one reattachment line 

on surface and one singularity in free stream

Figure 2.4: Structure o f flows over sharp leading edge delta wings. Werle (1958)

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



1L

Vortex breakdown represents a limiting condition for slender wings. Once vortex 

breakdown passes through the trailing edge of the wing, the surface pressure field begins 

to be altered and the lift curve slope is reduced. Delta wing stall occurs when leading 

edge vortex breakdown moves over the wing. There are a number o f theories for vortex 

breakdown; however, at this time no one theory has been widely accepted. Common 

vortex breakdown theories are:

1- Instability o f  swirling shear flow. Ludweig (1961)

2- Finite transition between two states, an upstream supercritical state and a

downstream subcritical state, in an analogy to shock wave or hydraulic jump. 

Benjamin (1962)

3- Standing waves in the vortex core. Leibovich (1978)

4- Stagnation o f  core flow. Bossel (1969) and Hall (1972)

The vortical flow is generated either by the separated viscous shear layer at the 

sharp leading and side edges (in addition to the "classical" separation at the trailing edge 

as expressed by the Kutta condition), or by the three-dimensional boundary layer 

separation from the surfaces o f the wings and bodies. As can be anticipated, many 

unexpected flow structures may occur in these complicated flowfields. Because the 

flowfield is complex, the understanding o f flow details at high angles o f attack is limited 

and in many cases remains to be established.

Figure 2.5 shows the effect o f  aspect ratio on the lift coefficient. As the aspect

ratio increases the lift coefficient increases. Also the flowfield over delta wing is

depicted in Figure 5.6 using leading edge suction analogy o f Polhamus (1971).
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Figure 2.5: Polhamus results for different aspect ratio compared with 
experimental data. Polhamus (1971)
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Figure 2.6: Leading-edge suction recovery boundaries for delta wings; M=0. Polhamus
(1971)
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Much o f what is known about vortex breakdown originates from experimental 

work conducted on an isolated vortex created inside a tube. Many different types of 

breakdown have been identified in vortex tube experiments. For slender wings at angle 

o f attack only two types o f  breakdown are generally identified: the bubble and the spiral 

types. Therefore, it is necessary to study and classify the various aerodynamic 

configurations at increasing angles o f  attack. A. significant amount o f research has been 

conducted in the area o f  unsteady aerodynamics at high angles o f attack. In the following 

sections a survey o f  the analytical, experimental and computational work done in this 

area is presented.

2.2 Analytical Survey

Analytical research implies the development o f mathematical models which are 

solved in closed form for unsteady 3D flow around delta wings at high angles of 

incidence. In a very few cases and with some severe approximations one can get an 

approximate solution, which will be valid in certain ranges o f Mach number and 

Reynolds number and at low angles o f  attack. Most o f the analytical work which has 

been done focused on modeling the vortex breakdown phenomenon.

Mangier and Smith (1959) were among the pioneers who tried to simulate the 

vortex sheets over the delta wing. They found a fairly good representation of the vortex 

sheets and it was a benchmark for other research workers.

Benjamin (1962) claimed that “vortex breakdown is not a manifestation of 

instability or of any other effect indicated by study o f  infinitesimal disturbances alone. It 

is instead, a finite transition between two dynamically conjugate states o f axisymmetric
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flow, analogous to the hydraulic jump in open channel flow.” The transition is from a 

supercritical flow, which cannot support standing waves, to a subcritical flow, which can 

support standing waves. A universal characteristic parameter, N, was defined which 

delineates the critical regions o f  the flow analogous to the Froude number for open- 

channel flow and Mach number for compressible flow. This parameter is the ratio of 

absolute phase velocities o f  long wavelength waves, which propagate along the vortex in 

the axial direction. A flow is said to be supercritical ifN  > 1  and subcritical ifN  < 1 .

Legendre (1966) has presented a review o f  the work done of the flow over a delta 

wing during the 1950’s and the early 1960’s. Slender body and conical flow theories 

were discussed and compared. In the same year, Smith (1966) supplemented the 

previous review by Legendre by covering some o f the new theoretical developments 

bearing on the formation o f coherent vortex sheets which were described at the 

I.U.T. A M . Symposium on Vortex Motions at Ann Arbor in July 1964.

Hall (1966) presented a review o f work on the structure o f vortex cores. He 

began with a discussion o f the equations o f motion and the appropriate boundary 

conditions, and continues with a description in general terms o f the vigorous but highly 

responsive character o f  the flow, o f the effects o f  compressibility and turbulence and the 

phenomenon o f energy separation. In many vortex cores, including those o f trailing 

vortices far downstream behind a body, and those o f leading edge vortices above slender 

wings, the variations o f velocity and pressure in the axial direction are small compared 

with those in the radial direction. Such cores, called quasi-cylindrical, were described in 

some detail.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



15

Hall (1972) presented a mathematical model for vortex breakdown phenomena. 

He mentioned “Vortex breakdown has been observed only in highly swirling flows. 

More precisely, if  the angle o f swirl cp is defined by <p = tan*l(v/w), where v and w are the 

swirl (or azimuthal) and axial components o f  velocity respectively, it is found that the 

maximum value o f cp upstream o f breakdown is invariably greater than about 40°. 

Provided the swirl angle is large enough, the flow along the axis o f  an initially 

concentrated vortex core, with an appreciable axial velocity, can decelerate and diverge 

as if a solid obstacle were met. All the observations that have been capable o f showing a 

free stagnation point have in fact shown one at breakdown, together with a region of 

reversed axial flow.”

Ashenberg (1987) presented a new theoretical model for evaluating the effect of 

vortex breakdown on the aerodynamics o f slender wings. The vortex breakdown 

phenomenon was represented by a distribution o f sources.

Huang, Sun and Hanff (1997a) proposed a parabolic distribution for the 

chordwise axial circulation distribution over slender delta wings. Leading edge vortex 

breakdown locations were predicted on the basis o f a critical value o f the circulation.

2.3 Experimental Survey

Harvey (1962) described an experiment in which a cylindrical vortex, formed in a 

long tube, was used to study the ‘vortex breakdown’ that has been previously reported in 

investigations o f  the flow over slender delta wings. By varying the amount o f  swirl that 

was imparted to the fluid before it entered the tube, it was found that the breakdown was
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the immediate stage between the two basic types o f  rotating flows, that is, those that do 

and those that do not exhibit axial velocity reversal.

Hummel (1967) reported an investigation with slender delta wings at large angles 

o f attack. His investigation was limited to the angle o f attack range before the onset of 

the vortex breakdown and he reported the reasons for the lift decrease in the angle of 

attack range beyond the onset o f the vortex breakdown.

Hummel (1977) presented an experimental study o f the flowfield around an 

AR=1.0 delta wing at an angle of attack o f a  = 20.5°. The effect of Reynolds number on 

the formation o f the secondary vortex is studied in detail. Boundary layer measurements 

were carried out for laminar and turbulent boundary layers and the bound vortex lines in 

the lifting surface were determined for both cases.

Leibovich (1978) mentioned “vortex flows are subject to a number o f major 

structural changes involving very large disturbances when a characteristic ratio of 

azimuthal to axial velocity components is varied. Vortex breakdowns are among the 

structural forms that may occur.”

Werle (1982) presented a progress review o f the principal methods of visualizing 

flows using solid, liquid or gas tracers, in water tunnels and wind tunnels, especially in 

the experimental facilities at ONERA. Such visualization brought to light the physical 

flow patterns with all their partial singularities as well as the evolution o f these 

parameters as a function o f their principal parameters: incidence, yaw angle, Reynolds 

number, etc. These visualizations also revealed the separation phenomena which 

characterized high angles o f attack; in addition, they defined with precision all vortical,
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transitional and unsteady aspects. Some examples o f  results were obtained for swept- 

back and slender bodies.

Wendt (1982) studied the effects o f  compressibility on the flowfields and overall 

aerodynamic characteristics o f low aspect ratio, sharp-edged planforms at high incidence. 

Emphasis was placed on the leeside vortex-dominated flow structure, including vortex 

bursting. Both subsonic and supersonic regimes were considered; unsteady effects were 

not considered.

Orlik-Ruckemann (1982) presented a progress review o f some o f the fluid 

dynamics phenomena that are associated with the oscillatory flight at high angles o f 

attack. The emphasis was on asymmetric shedding o f forebody vortices, asymmetric 

breakdown o f leading edge vortices, the oscillatory motion of such vortices, and the time 

lag between the motion o f the vortices and that o f the aircraft.

Gad-el-Hak and Blackwelder (1985) conducted flow visualization experiments in 

a low Reynolds number towing tank to study the time dependent flow around two generic 

classes o f wings. Delta and swept(inciuding zero sweep) wings were sting mounted to a 

four-bar mechanism, which generated a large-amplitude, harmonic pitching motion 

around the one-quarter chord location at a reduced frequency that varied in the range of 

0.2-3.0. Fluorescent dye layers were placed in the weakly stratified water channel prior 

to towing the wing. The horizontal dye sheets were excited using a vertical sheet o f laser 

light parallel to or perpendicular to the flow direction. The dye marked the flow in the 

separation region around the wing, the flow in the wake region, and the potential flow 

away from the lifting surface.
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Payne, et al. (1986) presented an experimental investigation o f vortex breakdown 

on delta wing at high angles o f attack. Smoke flow visualization and the laser light sheet 

technique were used to obtain cross-sectional views o f the leading edge vortices as they 

breakdown for a series o f flat-plate delta wings having sweep angles o f 70°, 75°, 80°, and 

85°. The dynamic characteristics o f the breakdown process were recorded using high

speed movies. Velocity measurements were obtained using a laser Doppler anemometer. 

The measurements showed that, when breakdown occurs, the core flow is transformed 

from a jet-like to a wake-like flow. In the same year, Lamar (1986) studied nonlinear 

lift control at high speed and high angle o f  attack using vortex flow technology.

Atta and Rockwell (1987) investigated the hysteresis o f  vortex development and 

breakdown on an oscillating delta wing. The investigation focused on the development 

and breakdown o f the core o f the vortex, defined by the vorticity fed into the vortex at 

and near the tip o f the wing.

Jarrah (1987,1988,1989) presented a comprehensive experimental program for 

unsteady aerodynamics o f delta wings performing maneuvers to high angle o f attack. 

These tests were conducted in one o f the 7 ft by 10 ft low-speed wind tunnels at NASA 

Ames Research center on a series o f flat delta-wing models with sharp leading edges. He 

conducted his experimental study on an “agile” fighter aircraft with three different aspect 

ratios, 1, 1.5 and 2, simulating rapid motions. These motions involved sinusoidal or ramp 

variation o f angle o f attack from 0° to 90° and with reduced frequencies between 0.01 

and 0.08. The three delta wings used in this investigation are shown in Figure 2.7 and 

table 2.1. They were constructed from a 6.4 mm (0.25 in) thick flat aluminum plate. The 

sharp leading edge had a roughly 30° angle cut on the lower surface.
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Table 2.1: Geometry o f delta wings. Jarrah (1988)

AR Wing
Type

A,
<*e§

Edge
Angle,

deg

Root Chord, 
(mm /  in.)

Span,
(mm /  in.)

Thickness, 
(mm /  in.)

1.0
1.0
1.5
2.0

smoke
force
force
force

76
76
69.5
63.5

29.3
29.3
23.4 
27.3

406 /  16 
305 /  12 
305 /  12 
305 /  12

203 /  8 
152 /  6 
229 / 9  

305 /  12

7.6 /  0.30
6.4 /  0.25
6.4 /  0.25
6.4 /  0.25

i_ L

7t

Figure 2.7: Sketches o f the delta wing used for flow visualization. Jarrah (1988)
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He concluded that pitching motion with large angle o f attack produced large 

hysteresis in the aerodynamic loads and in the vortex breakdown position relative to the 

wing. The primary a  time histories that were examined are shown in Figure 2.8. The 

author o f this study has used this experimental data for validating the present 

computational results.

3
37
9

I

i
3
3

i

Figure 2.8: Typical angle of attack time variation. Jarrah (1988)
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Jarrah (1988) reported “It is expected that a high pitch rate will delay the onset 

o f vortex breakdown to much higher angles o f attack than in the steady case during pitch 

up. The opposite effect is anticipated during pitch down.”

In the same year, Soltani, et al. (1988) investigated the aerodynamic loads on a 

delta wing oscillated up to post-stall angles o f attack. Their model was a 70° sweep flat 

delta wing with its leading and trailing edges beveled symmetrically. A six component 

strain gauge balance was mounted on the pressure side o f the wing producing a 

significant negative camber. The wing was pitched continuously at the 57% root chord 

station and could be rotated up to 15° of sideslip. The motion was a simple harmonic one 

with angle o f  attack changes between 0 to 55°. The Reynolds number was l.lx lO 6 to 

l.97x l06, and the reduced frequency range reported in the paper ranged from 0.015 to 

0.0825. Measurements at a sideslip angle of 0°, 5°, and 15° were reported, and the 

corresponding lift, normal force, drag, pitching moment, and rolling moment coefficients 

were plotted for various reduced frequencies and Reynolds number. Moderate effects of 

Reynolds number were reflected in this study.

Solignac, et al. (1989) made a detailed study o f the flow around a 75° sweep angle 

delta wing. Experiments were carried out in three different facilities to generate data for 

different Reynolds numbers. The upper surface flow was visualized and the external 

flow was probed by 3D Laser Doppler Velocimetry (LDV) and a five-hole pressure 

probe. In the analysis o f  the results, it appeared that the secondary vortex was larger for a 

laminar boundary layer than it was for a turbulent one. The primary vortex presented a 

good conical similitude whereas the pressure distribution on the wing depended on the 

wing dimensions.
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Brandon (1990) presented recent research conducted at NASA Langley Research 

Center on the effects of large amplitude pitching motion on the aerodynamic 

characteristics o f modem fighter airplane configurations. Wind tunnel tests were 

conducted on simple flat-plate wings to gain understanding of the complex flow 

phenomena during unsteady motion at high angles of attack. Using a computer 

controlled dynamic apparatus, tests were conducted to investigate the effects o f pitch rate 

and motion time history, and to determine the persistence of unsteady effects. Force and 

moment data were obtained using a 6-component internal strain-gage balance. Flow 

visualization using a laser light-sheet system was also obtained.

Soltani (1990) has performed wind tunnel experiments to study the flow 

mechanism on a 70° sharp leading edge delta wing model at both static and dynamic 

conditions at a Reynolds number o f 1.43 xlO6. Large amplitude oscillatory motions (up 

to 60°) were produced by sinusoidal pitching the model over a range o f reduced 

frequencies. Ramp motions were obtained using an initial sinusoidal increase in angle of 

attack and hold. Aerodynamic forces and moments were obtained from a six-component 

strain-gauge balance. In addition, smoke flow visualization was conducted to study the 

development and breakdown of the leading edge vortices under static, dynamic, and ramp 

conditions. The visualization experiment was performed at a Reynolds number of 

0.16xl06. Dynamic data varied substantially with reduced frequency. Large forces and 

moments overshoots, a delay in dynamic stall, and a hysteresis loop between the values 

o f aerodynamic loads in upstoke and downstroke motion were observed.

Nelson and Visser (1991) performed an experimental X-wire measurement o f the 

flowfield above a 70° and 75° flat plate delta wing at a Reynolds number o f 250,000.
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Grids were taken normal to the wing at various chordwise locations for angles of attack 

o f 20° and 30°. The dependence o f circulation on distance from the vortex core and on 

chordwise location was also examined.

Elsenaar and Hoeij makers (1991) investigated the flow about a sharp edge 

cropped delta wing experimentally. The experiment comprised detailed surface pressure 

measurements at low-subsonic, transonic and low-supersonic freestream Mach numbers 

for angles o f attack up to 27°. The major part o f the measurements were carried out at a 

Reynolds number o f 9 million, but some data was also obtained at lower and at higher 

Reynolds numbers. The investigation included continuous schlieren flow-field 

visualization as well as surface flow visualization at a limited number o f  freestream 

conditions.

Nelson (1991) presented a review o f unsteady aerodynamics for slender wings 

undergoing large amplitude motions. Static and unsteady aerodynamic characteristics 

were discussed and the relationship between the aerodynamic loads and the leeward 

structure was investigated. Data was presented showing the influence o f the wing motion 

on the aerodynamic loads. Both large amplitude pitching and rolling motion 

experimental results were discussed.

Rediniotis, et al. (1992) investigated the transient flowfield over a delta wing 

during pitch-up motions to very large angles o f attack. Emphasis was directed at the 

growth and the eventual breakdown o f leading edge vortices. Delta wing models were 

tested in a wind tunnel at Reynolds number o f order 105. Instantaneous pressure 

measurements were obtained, while the flowfield was mapped out via a seven-hole probe 

designed, constructed and calibrated to generate time-varying information.
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Moreira and Johari (1995) investigated the effectiveness of steady and pulsed 

blowing as a method o f controlling delta wing vortices during ramp pitching in flow 

visualization experiments conducted in a water tunnel. The recessed angled spanwise 

blowing technique was utilized for vortex manipulation. The technique was 

implemented on a beveled 60° delta wing using a pair o f blowing ports located beneath 

the vortex core at 40% chord. The flow was injected primarily in the spanwise direction 

but was also composed o f  a component normal to the wing surface. The location o f 

vortex burst was measured as a function o f  blowing intensity and pulsing frequency 

under static conditions, and the optimum blowing ca?e was applied at three different wing 

pitching rates. Experimental results have shown that, when the burst location is upstream 

o f the blowing port, pulsed blowing delays vortex breakdown in static and dynamic 

cases. Dynamic tests verified the existence o f  a hysteresis effect and demonstrated the 

improvements offered by pulsed blowing over both steady blowing and no-blowing 

scenarios.

Huang, Sun, and Hanff (1997b) investigated the effect on leading edge vortex 

breakdown o f geometric modification on slender flat delta wings by means o f water- 

tunnel flow visualization experiments. Effectiveness o f the leading edge bevel in 

delaying breakdown appeared to be related to the ratio between leading edge width and 

pre-separation boundary layer thickness. The trailing edge bevel mainly delayed 

breakdown in the aft part o f the wing and a centerbody had a small delaying effect 

everywhere.

Kowal and Vakili (1998) have conducted an investigation of vortex breakdown 

using quantitative flow visualization in the Royal Military College (RMC) of Canada
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water tunnel using a 70° delta wing under varying steady and unsteady conditions and 

combinations o f pitch and roll oscillatory motion. Ail unsteady analysis was conducted 

at four distinct values o f reduced frequencies. For all unsteady motions, a hysteresis 

effect and a phase lag existed that increased with reduced frequency.

2.4 Computational Survey

Numerical methods for the prediction o f vortical flow can be classified under two 

categories as:

1- Methods which model the vortex in an approximate manner (Leading edge 

suction analogy, Vortex-lattice, Panel, ..etc).

2- Methods which capture the vortical region as a part o f  solution to the 

governing equations (Navier-Stokes CFD computations).

A substantial volume o f  research work has been, and still continues to be done by 

many researchers using different levels o f  mathematical models.

Kandil, et al. (1976) developed a numerical method to predict the distributed and 

total aerodynamic loads on nonplanar lifting surfaces for steady, inviscid, incompressible 

flow. There were no restrictions on aspect ratio, planform, camber, or angle o f attack as 

long as separation occurs along the sharp edges only. The lifting surface was represented 

by a lattice o f discrete vortex lines. The wake generated by leading edge, tip, and 

trailing-edge separation were represented by families o f discrete, nonintersecting vortex 

lines; each line was composed o f a series o f straight, finite segments and one straight, 

semi-infinite segment; the positions o f these lines were obtained as part o f the solution. 

Rectangular, arrowhead, and delta wings were considered.
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Kandil, et al. (1978) extended the nonlinear-discrete vortex method in a moving 

frame o f  reference for asymmetric flows past a wing with leading edge separation. The 

method was applied to delta wings undergoing steady o r unsteady rolling motions at zero 

angle o f attack and for yawed wings at large angles o f  attack. Asymmetric flows were 

obtained due to the forced motion.

Hunt, M.A. and F.I.M.A. (1982) presented the role o f computational fluid 

dynamics in high angle o f attack aerodynamics. He pointed out the recent advances in 

computers and in numerical algorithms at that time. He discussed the prospects of high 

angle o f attack aerodynamic predictions via theoretical methods with particular emphasis 

on panel methods (including rolling and coning motions), discrete vortex dynamics 

calculations for the incompressible Euler and Navier-Stokes equations, and some other 

field methods for the compressible Euler equations.

Hoeijmakers and Vaatstra (1983) described a computational method for two- 

dimensional vortex sheet motion in incompressible flow. The procedure utilizes a 

second-order panel method, an adaptive panel scheme, and a concept for treating highly 

rolled-up portions o f the vortex sheet. One o f the presented results was for a delta wing 

with leading edge vortex sheets.

Gordon and Rom (1985) have presented a new vortex lattice model for the 

calculation o f  the flow over delta-shaped wing planforms at high angles o f attack in 

subsonic flow. The new vortex lattice model is combined with the panel source 

singularity for the calculation o f the aerodynamic characteristics o f thick wings having 

sharp leading edges.
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In the same year, Kandil and Yates (1985) solved the problem o f transonic flow 

around sharp-edge delta wings. They wrote the steady full-potential equation in the form 

o f  Poisson’s equation, with the solution o f the velocity field expressed in terms o f  an 

integral equation. The solution consists o f  a surface integral o f  vorticity distribution on 

the wing and its ffee-vortex sheets and a volume integral o f source distribution within a 

volume around the wing and its free vortex sheets. The solution was obtained through 

successive iteration cycles.

Krause, Menne and Liu (1986) investigated the initiation o f the breakdown 

process for compressible flow with a numerical solution of the conservation equations for 

mass, momentum, and energy. Their work was based on the following assumptions: I) 

the vortex is isolated, with its axis parallel to the direction of the main stream; 2) the flow 

is axially symmetric, and 3) the core radius R is small compared to the breakdown 

length L.

Newsome and Kandil (1987) presented the first survey paper on the numerical 

prediction o f vortical flow due to three-dimensional flow separation about flight vehicles 

(wings, bodies, and complete configurations) at high angles o f attack and quasi-steady 

flight conditions. While full potential equations with discrete vorticity were briefly 

reviewed, the predominant emphasis o f  this paper was on solutions to the Euler and 

Reynolds-averaged Navier-Stokes equations.

In the same year, Beran (1987) has presented solutions o f  the steady-state Navier- 

Stokes equations for the axisymmetric bursting of a laminar trailing vortex with 

Newton’s method and the pseudo-arc length continuation method for wide ranges of 

vortex strength and Reynolds number. The results indicated that a trailing vortex could
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undergo a transition from a state in which the core slowly diffuses to a state marked by 

large amplitude, spatial oscillations o f  core radius and core axial velocity. At the 

transition point the core grows rapidly in size. This event is interpreted as vortex 

bursting.

Kandil and Chuang (1988) solved the unsteady flow around maneuvering wings 

using the unsteady Euler equations. The unsteady conservative Euler equations were 

derived for the flow relative motion with respect to a moving frame of reference. The 

equations are solved using two computational schemes; an explicit multi-stage finite- 

volume scheme and an implicit approximately factored finite volume scheme.

Thomas, et al. (1990) applied an upwind-biased finite volume algorithm to the 

low-speed laminar flow over a low-aspect-ratio delta wing from 0° to 40° angle o f  attack. 

They used second order accurate differencing spatially and a multigrid algorithm to 

promote convergence to the steady state. The governing equations are the thin-layer 

approximations to the three-dimensional time-dependent compressible Navier-Stokes 

equations.

In the same year, Kandil, Wong, Kandil (1990) used the unsteady, compressible, 

thin-layer and full Navier-Stokes equations to numerically simulate steady and unsteady 

asymmetric, supersonic, locally conical flows around a 5°-semiapex angle circular cone. 

The main computational scheme, which was used in their work, was the implicit, upwind, 

flux-difference splitting, finite-volume scheme. Passive control of asymmetric flows was 

demonstrated and studied using sharp and round-edged, thick and thin strakes. Baron, 

and et al. (1991) used a nonlinear unsteady vortex lattice method to predict the geometry 

o f the wakes and the distribution of the aerodynamic loads on impulsively started wings.
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Agrawal, and et al. (1991) presented a numerical investigation o f leading edge 

vortex breakdown on a delta wing at high angles o f attack. The analysis has been 

restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler 

and Navier-Stokes (assuming fully laminar and fully turbulent flows) equations were 

used in this study. Predictions o f vortex breakdown progression with angle o f attack with 

both Euler and Navier-Stokes were presented. The Navier-Stokes predictions showed 

significant improvements in breakdown location at angles o f attack where the vortex 

breakdown approached the wing apex.

Hoeijimakers (1991) presented a review o f mathematical models o f different level 

o f approximation and application to the numerical simulation o f vortical type of flows 

occurring in subsonic and transonic aircraft aerodynamics. Luckring (1991) presented a 

review progress in computational vortex-flow aerodynamics at the Langley Research 

Center. Emphasis was placed on Navier-Stokes methodology, both for compressible and 

incompressible flows, and results were presented from central and upwind-biased 

schemes for laminar, transitional, and fully turbulent flows.

Kandil and Salman (1991) considered the interdisciplinary problems o f unsteady 

fluid dynamics and rigid-body dynamics and control o f delta wings with and without 

leading edge flap oscillation. For the fluid dynamics problem, the unsteady, 

compressible, thin-layer Navier-Stokes (TLNS) equations were solved along with the 

unsteady, linearized, Navier-Displacement (ND) equations. The NS equations v/ere 

solved for the flowfield using an implicit finite-volume scheme. The ND equations were 

solved for the grid deformation, for oscillating leading edge flap, using an Alternating 

Direction Implicit (ADI) scheme. For the dynamics and control problem, the Euler
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equations o f  rigid-body dynamics for the wing and its flaps were solved interactively 

with the fluid equations for the wing-rock motion and subsequently for its control. Wong 

(1991) solved steady and unsteady vortex-dominated flows around slender bodies at high 

angles o f  attack using the unsteady, compressible Navier-Stokes equations.

In the same year, Sawada and Inoue (1991) solved the flowfield over a 3D delta 

wing having a vortex fence at the apex region by solving the unsteady compressible 

Navier-Stokes equations. A second order explicit finite volume scheme was used to 

simulate the temporal evolution o f  the flowfield. The computational efficiency and the 

spatial resolution were improved by adopting various multi-zone techniques. Simulations 

were conducted to show the typical features o f the flowfield in the subsonic range. 

Kandil, et al. (1992) used the unsteady, compressible, full Navier-Stokes (NS) equations 

to study the critical effects o f the downstream boundary conditions on the supersonic 

vortex breakdown.

Hoeijimakers (1992) applied a cell-centered central-difference finite-volume 

Euler method to the steady subsonic flow about a 65° sharp-edged cropped delta wing at 

incidences close to the incidence at which leading edge vortex breakdown is observed in 

wind tunnel experiments. Above a critical value o f the incidence the pseudo-time 

dependent numerical procedure failed to attain a steady-state solution.

Liu and Hsu (1992) developed an implicit finite-difference scheme for solving 

three-dimensional incompressible Navier-Stokes equations. Computations for 

complicated vortical flows past several sharp and round-edged delta and double-delta 

wings at high angles o f  attack and sideslip were discussed.
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Longo (1992) presented a progress review in numerical simulation of vortex-flow 

aerodynamics at the Institute for Design Aerodynamics of the DLR-Braunschweig. He 

focused on the prediction o f vortex lift including vortex breakdown, vortex-vortex 

interaction and shock-vortex interaction. Results were obtained both for compressible 

and incompressible flow using the DLR Euler/Navier-Stokes CEVCATS-RANS solver.

Bannink and Houtman (1992) used a 3D Euler code of a flux difference-splitting 

type upwind scheme to investigate the high-speed flow over a sharp-edged plane delta 

wing with 65° sweep. Salman (1992) considered in more details the unsteady flows 

around rigid or flexible delta wings with and without oscillating leading edge flaps. Both 

unsteady Euler and Navier-Stokes equations were used in the investigation.

Kandil (1993) presented computational simulation o f supersonic vortex 

breakdown for internal and external flow applications. The problem was formulated 

using the unsteady, compressible, full Navier-Stokes equations. Kandil, et al. (1994) 

carried out computation of transonic flow around a 65° sharp-edged, cropped delta wing 

undergoing a forced pitching oscillating using the unsteady, compressible, full Navier- 

Stokes equations. The wing mean angle o f attack was kept at 20° and the ffeestream 

Mach number and Reynolds number were 0.85 and 3.23xl06, respectively. The wing was 

forced to oscillate in pitch around an axis at the 0.25 root-chord station with amplitude of 

4° and a reduced frequency o f t z . For the initial conditions, a shock system consisting of 

a ray shock beneath the primary vortex core and a transverse terminating shock have been 

captured. Behind the terminating shock, the primary vortex core breaks down. The flow 

behind the terminating shock was reconstructed accurately. For the pitching wing, it was 

shown that both the terminating shock and the vortex-breakdown bubble behind it,
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experience oscillatory backward and forward motion including the disappearance and 

appearance o f the vortex-brekdown buuble. This is a significant finding for the transonic 

regime since vortex breakdown occurs at moderate angles o f attack, a  = 20°. Kandil and 

Menzies (1996) studied the coupled rolling and pitching oscillation in transonic flow. 

The focus was to analyze the effects of coupled motion on the wing response and vortex 

breakdown flow by varying oscillation frequency and phase angle while the maximum 

pitch and roll amplitudes were kept at 4°.

Kandil and Abdelhamid (1997) carried out computation and validation of a 76° 

sewpt delta wing, aspect ratio o f one, pitching up to 90° amplitude. The Reynolds 

number and Mach number were 0.85xl06 and 0.3; respectively. The comparisons o f the 

computational results were in good agreement with those o f the experimental data of 

Jarrah (1988). Abdelhamid and Kandil (1998) studied the effect of the reduced 

frequency at very large angles o f attack. The unsteady, full NS equations were solved 

time accurately using the implicit, upwind, Roe flux-difference splitting, fmite-volume 

scheme. The computed results were compared with each other as well as to the existing 

experimental data.

2.5 Flow Control

“Alternative flight control by means of Complete [yaw-pitch-roll] Thrust-Vectoring 
[CTV] propulsion and CTV-based tailless air-vehicles, post-stall-flight and maximized air safety 
aerothermodynamics and practice are the biggest contributors to military aviation today -  and to 
safer civil aviation tomorrow -  since the invention of the jet engine. At the end of the first one 
hundred years of Aerodynamic-only Flight Control [AFC] based aviation, CTV emerges as the 
best alternative, most effective and safest flight technology. It introduces a new era in aviation, 
an era marked by complete flight control that is nearly free of the limiting and dangerous 
characteristics of the external air flow regime, AFC-tails, AFC-only education, AFC-stability 
criteria and AFC-air-safety certification processes. Vectored thrust F-15, F-16, F-18, F-22, JSF, 
X-36 and Su-37 represent a sample of highly active international development programs today. 
Any conventional air force fleet can now be upgraded to become ‘effectively vectored’.
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Proceeding side by side is an emerging international effort to civilize this technology to prevent 
more than 50% of jet airline crashes and bring the saving of many lives.” Gal-Or (1996).

As mentioned before, one o f the features o f delta wing is the generation o f an 

additional lift, the vortex lift. The use o f vortex lift is limited by vortex bursting or 

breakdown, which is characterized by a sudden expansion o f the vortex about a rapidly 

decelerating core, with subsequent vortex disintegration and loss o f the orderly vortical 

flow. As the angle o f attack increases, the point o f vortex breakdown moves upstream, 

causing loss o f  lift and, finally, stall.

The vortex breakdown control over delta wings can be achieved using several 

ways, such as the addition o f strakes, canards, or Leading Edge Extension (LEX) before 

the wing. One o f  the methods that can be used to control vortex breakdown is by using 

blowing. Some o f  the factors, which affect the effectiveness o f the blowing process, are 

blowing rate, location o f the blowing ports, steady or unsteady blowing, and continuous 

or pulsating blowing. The main problem with this blowing is the high momentum 

needed to achieve a significant increase in the lift.

In general, there are five types o f blowing reported in the literature:

1- Vortex Core Blowing (VCB)

This attempts to delay vortex breakdown by increasing the momentum o f the 

vortex core, see Figure 2.9a. This is accomplished by injecting a stream o f fluid directly 

into the vortex core along the vortex axis. The result is an energized vortex with 

increased axial velocity.

2- Spanwise Blowing (SWB)

This method attempts to energize the vortex by ejecting high-momentum fluid in 

a spanwise direction from ports along the leading edge as shown in Figure 2.9b. The
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intent o f  SWB is to increase the vortex strength by increasing the vorticity o f the free 

shear layer. It is reported in the literature that this method enhance the lift coefficient but 

also resulted in increased drag. Moreover, vortex breakdown was observed at lower 

angles o f  attack in comparison with the wing without blowing. Both effects can be 

attributed to a larger span perceived by the oncoming flow.

3- Parallel to the Leading Edge Blowing (PLEB)

This consists o f  injecting fluid parallel to the leading edge, see Figure 2.9c. 

Although this technique is often referred to as SWB, it is significantly different from the 

SWB in that the blowing ports are located at the wing root (usually on the fuselage) 

above the wing surface. The injected flow in PLEB acts like a line sink creating suction 

on the upper surface o f the wing, pulling the vortex back to the wing and reattaching it to 

the surface. This flow strengthens the vortex, thereby delaying breakdown. The stability 

o f the wing is also improved by reducing the wing rock common to delta wings in this 

flight regime. A drawback o f PLEB is the significant bleed momentum required to attain 

the desired effects. This technique has been used by Bradley and Wray (1974), Anglin 

and Satran (1980), Seginer and Salomon (1986), and Meyer and Seginer (1994).

4- Tangential to the Leading Edge Blowing (TLEB)

This method uses slots located on the leading edge to inject fluid tangent to the 

wing’s leading edge bevel or normal to the wing surface (in a rounded geometry), see 

Figure 2.9d. The phenomenon o f  Coanda je t attachment to convex surface is the basis for 

TLEB on rounded leading edge wings. By being able to affect the cross-flow separation 

point on rounded leading edge delta wings, the location (with respect to the wing surface) 

and strength o f  the vortices can be controlled. This technique has a strong effect on the
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vortices and lift is increased for even small amounts o f blowing. Experimental results 

reveal that TLEB can improve the lift coefficient. Wood, et al. (1988), Wood, et al. 

(1990), and Gu, et al. (1993) have used this technique.

5- Recessed Angled Spanwise Blowing (RASB)

This method can be achieved using blowing ports, located on the suction side of 

the wing and beneath the vortex core. The blowing ports are canted upward in the 

spanwise direction such that the blowing flow is injected in the spanwise direction from 

the top surface o f the wing, parallel to the sharp leading edge bevel, see Figure 2.9e. The 

intent o f the momentum injection in this scheme is on increasing the stability o f the 

vortex, thus delaying vortex breakdown. Johari, et al. (1995), has used this technique.
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Figure 2.9: Vortex control techniques: (a) VCB, (b) SWB, (c) PLEB, (d) TLEB,
and (RASB). Johari, et al. (1995)
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2.6 Summary

Design trends for future fighter aircraft indicate continued emphasis on maneuver 

capability in the stall/post-stall high angle o f attack flow regime. Aggressive exploitation 

o f the high angle of attack envelope will likely encounter large unsteady effects. These 

effects need to be identified and analyzed in order to ensure that adequate predictions of 

airplane flight dynamics can be obtained.

A complete literature survey has been presented. A more general analytical 

model is very difficult to obtain. Most o f  the analytical work was done during the 

1960’s before the advent o f supercomputers and Personal Computers (PC’s), which 

provide significant advantages for the computational techniques relative to the analytical 

models. The experimental data is very expensive but necessary for the final design.

The viscous effects can be accounted for by solving the unsteady full Navier- 

Stokes equations. Solving the viscous conservation equations (i.e., the full Navier-Stokes 

equations) will enable full simulation o f  the complex viscous-inviscid interactions in the 

three-dimensional separated flows at high angles o f attack, even on complex 

configurations. This is true provided that the correct algorithm and an appropriate grid 

generation scheme are given, which can be solved on a large memory and high speed 

computer. However, there are still fundamental difficulties in modeling the turbulent 

shear layer and o f predicting the transition from laminar to turbulent flows. Therefore, 

the present “exact numerical” solutions o f the full Navier-Stokes equations are limited by 

the lack o f  appropriate modeling o f flow turbulence and transition. So, there is a need 

for reliable numerical solutions, which can be used in the preliminary design stages to
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obtain quantitative description o f complex flow fields that cannot easily be obtained from 

experimentation.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



39

CHAPTER 3 

PROBLEM FORMULATION

3.1 Introduction

The nature and details o f  the fluid flow that is predicted by a particular flow 

solver depend on the governing equations that are discretized in the solver. The order o f 

the governing flow equations can vary from the potential equations level to the full 

Navier-Stokes equations level. Before 1970, most numerical solutions o f  fluid dynamic 

problems were obtained using the potential flow formulation. However, due to the 

isentropic and irrotational flow assumptions, many fluid problems cannot be accurately 

represented using this formulation. In the last two decades, rapid advancements in 

computer technology have enabled computational fluid dynamicists to use more complete 

equations, such as Euler equations and Navier-Stokes (NS) equations, rather than the 

potential flow equation. While Euler equations can model distributed vorticity and 

shocks, they do not model the viscous effects.

For complex flow fields with strong viscous-inviscid interactions, reduced forms 

o f the equations o f  fluid motion do not provide an adequate model o f the flow physics. In 

vortex flows, viscous effects are o f great importance especially within and downstream of 

a vortex breakdown region. In high Reynolds number viscous flows, viscous effects are 

concentrated near the vortex axis, adjacent to solid walls and in wake regions. The full 

NS equations are clearly superior for modeling these viscous flows. They can more 

accurately model flow separations, shock development and motion, and shock-boundary
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layer interaction as well as vortex breakdown and vorticity evolution, convection and 

shedding. In this study, strong viscous-inviscid interactions in the form o f large-scale 

three-dimensional boundary layer separation require that full NS equations be considered 

rather than the simplified Euler equations or even the thin-layer Navier-Stokes (TLNS) 

equations. Therefore, for this research work, the laminar, and Reynolds Averaged (RA), 

unsteady, compressible, full NS equations are used to formulate the current problem.

In this Chapter, the three-dimensional NS equations are presented followed by 

discussion o f the boundary conditions.

The conservative form o f the nondimensional, unsteady, compressible, full NS 

equations in terms o f  Cartesian coordinates (xi,X2 ,X3 ) is given by

3.2 Governing Equations

dg , d{EJ - E VJ)
= 0 ; j = 1-3 (3.1)

8t dx;

where the flow field vector, q is given by

q = [p, p u {, pu2l pu2, pe] (3.2)

and the inviscid flux vectors are given by

E j  = p u j , puyUj + S j ip ,  p u 2Uj + S j 2p,  pu 2u j + S j3 p ,pU j(e  + £-) 1 ; j = 1 - 3

(3.3)

where 8,-,- is the Kronecker delta function, 5if — ^
" 10 i * j

(3.4)

and the viscous fluxes are

(3 .5 )
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In the equations above, the variables are nondimensionalized using the 

corresponding ffeestream variables. The reference parameters are L, a*, L/a*, p« and (x*, 

for the length, velocity, time, density and molecular viscosity, respectively. The total 

energy per unit mass, e, is nondimensionalized by (a«)2 and the pressure, p, is 

nondimensionalized by pccla^)2. The pressure is related to the total energy per unit mass 

and density by the perfect gas equation

p  = (y - 1) p 1e — u ,-u j 
2

; j = 1 -3  (3.6)

where y is the specific heat ratio which is assumed to be constant and its value is L .4 in 

this study.

In Equation (3.5), the tjm terms represent the Cartesian components o f the shear- 

stress tensor for a Newtonian fluid, where Stokes hypothesis is employed and the fifth 

term represents the shear-dissipation power, and heat flux components. The Cartesian 

components o f the shear-stress tensor are given by

, | a . ) ; U k „ i _3 (3.7)
Re dxj dxi 3 oxk

The shear-dissipation power and the heat flux components are given by 

V _  + ; j.k .m  = l -3  (3.8)

q = ----- fM ,°- dT  ; j = 1-3 (3.9)
(y  — 1) Pr Re dxj

where the dimensionless viscosity, j i ,  is calculated from Sutherland’s law

= (3 io )
T + c
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where T is the dimensionless temperature and c is Sutherland’s constant, c=0.4317. The 

Prandtl number, Pr, is assumed to be constant with a value o f 0.72 throughout the 

calculations. The freestream Reynolds number, Re, is defined by

Re = (3 .1 1 )
A®

According to the characteristic parameters, the freestream flow variables are given by 

A. = 1-0

u. =loo co

“ 2® = “ 3® = 0 0

1 M le =  + — -  (3.12)
/ ( /  — !) 2

1
P ®  = -

r

a = T „  =1.0CO aO

U -  =  V “ t® +  » 2 «  +  W3® =  WI®

= ^  = Mlooco lao
co

where Mo is the freestream Mach number.

The unsteady Navier-Stokes equations in the Cartesian system are transformed 

into time-dependent body-conformed coordinates, £ L, £2, and £3; where

4 m = Z m (xl , x 2,xy ,t )  (3.13)

The conservative form of the equations, in terms o f the body-conformed coordinates, is 

given by
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3 0  5Em 3 (EV), 
dt + S£- 3 ?

= 0 ; m = 1-3; s = 1-3 (3.14)

and

Q = J  =  y O ’ P“ i -P “ 2 .P “ 3- / * ] ' (3.15)

where 1/J = J '1 is the Jacobian o f the transformation from the Cartesian coordinates to the 

body-conformed coordinates, which is given by

j -1 = S (x ,,x2,x 3;/) _ 
S(<fl, £ \ £ 3;r )

3 x Sc, Sc, Sc,

S£3
0

d f  3 ?  3 ?  3t
Sc2 Sc z Sc2 Sc2
a ?  W  W
Sc3 Sc3 Sxr3

w  w  
0 0

3t
Sc3
3 t
1

(3.16)

The inviscid fluxes are given by

E = — 
m J

m p  3t;m 
E k + —— q 

dt

p U m,puiUm + 3lZmp ,p u 2u m + 31Z p ,p u 3Um + d3% p,(pe  + P)Um ~ ~ ^ ~ P

(3.17)

where the contravariant velocity component in the £,m direction, Um, is given by

Um = d k f a«k +?±r ; k = 1,2,3
(3 .18)

and S^ s
o

3xk
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The viscous and heat-transfer terms in the £,s direction, are given by 

(£„)= - q k) \  ; k,p = 1-3

The shear stress and heat-transfer terms in the above equation are given by

(3 .19)

=

f t  = “

* * 4 d £ m ^  + dk4 m ^ - - 8 ad ^ M '
Re ^ d £ m d 4 m 3 '  d%m

A r a i a
(3-20)

( /  — 1) Pr Re * d%n

Expanding the first element o f the three momentum elements o f Equation (3.19) to get

&k% Tkl —
M /a

Re
s k^ d xr  -  + ^

4 j  eg  eg
(3.21)

The second and third elements o f the momentum elements are obtained by replacing the 

subscript “ 1”, everywhere in Equation (3.21), with 2 and 3, respectively. The last 

element o f  Equation (3.19) is given by

M*o
Re

S k i ’ dp?"  - \ d ^ sd k4 n U  ,
duk_

d $ n

+ d ^ s dk4 nu p 2 ^ -  + -----   d k £ sdk%n —
P d $ n ( r - l ) P r  d $ n

; k, s, n, p = 1 - 3

where a is the dimensionless local speed o f sound, a2=T.

(3.22)

3.3 Turbulence Modeling

For the case o f  turbulent flow, the NS equations are transformed to the Reynolds 

Averaged equations. Using the concepts o f eddy viscosity and turbulent conductivity,

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



45

the molecular viscosity, p., is replaced by an effective viscosity, pe in the momentum 

equations

where pt is the turbulent viscosity. Similarly, in the energy equation, the molecular 

thermal conductivity, k, is replaced by the effective thermal conductivity, ke

where Prt is the turbulent Prandtl number, which is chosen as 0.92 in this research work, 

and Cp is the constant pressure specific heat. For closure, pt is commonly handled 

through a turbulence model, which is discussed in the next Chapter. To compute the 

mathematical model o f flow problems using the Navier-Stokes equations, initial and 

boundary conditions need to be specified.

Two turbulence models were used in the current investigation. The first one is an 

algebraic model (Baldwin-Lomax) and the second one is a one-equation model (Spalart- 

Allmaras).

3.3.1 Baldwin-Lomax Model

This model was first developed by Cebeci for the boundary-layer equations and 

modified by Baldwin and Lomax for the Navier-Stokes equations. It is a conventional 

two-layer model. The Prandtl mixing length with Van Driest damping governs the inner 

layer, and the outer layer follows the closure approximation. Computed vorticity is used 

in defining the reference mixing length required for the outer layer. The turbulent 

viscosity is given by

(3.23)

k e = k  +  k t  = (3.24)
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Where r is the normal distance from the body surface and rc is the smallest value of r at 

which the inner-layer turbulent viscosity (p.t)i is equal to the outer-layer turbulent 

viscosity (|it)0. For the inner layer, the turbulent viscosity is calculated by using the Van 

Driest algebraic formula given by

U ) , = P / 2H  (3-26)

Where | oo | is the magnitude o f vorticity and the mixing length 1 is given by 

/  = A r[l-ex p -(r*/' ° ]  (3.27)

Where k is the von Karman constant, A+ is a damping constant and r" is given by

r  = r J PwTw (3.28)

The subscript w refers to the body surface. For the outer layer, the turbulent viscosity is 

given by

(M[)0 = K cCcp p F S n i r )  (3.29)

Where Kc is the Closure constant and Cep is another constant. The wake function Fw, is 

given by

K  = ™n(raaxFaax,C wraax( V V )2 / F max) (3.30)

Where Fmax is found as the maximum o f  the following function

F ( r )  = |<a|r[l —exp-(r*/' ° ]  (3.31)

And Tmax is the corresponding value of r. The difference in the total velocity profile, VV, 

is obtained from
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(3 32)

Fkb (r) is the Klebanoff intermittency function given by

(■*>  ̂ \ J .J j)

The remaining constants are given by

A" = 26 , k = 0.4, Kc = 0.0168, Cep =1.6, Cw = 0.25, Ckb = 0.3 (3.34)

In the current study the Degani and SchifF modification is used to obtain Fmax.

3.3.2 Degani-Schiff Modification

The Degani-SchifF (1983) modification to the Baldwin-Lomax model is an 

algorithmic change, which attempts to select the first occurrence oF Fmax in a search from 

the wall outward. This can be important when there is a vortex somewhere above the 

body surface. If the code is not Forced to select the Fmax in the boundary layer, it may 

choose a length scale corresponding to the distance to the vortex, since F can be large in 

the vortex. In the current study, marching outward away from the body, Fmax is updated 

index by index. Then, if  F < 0.9 Fmax, the code stops searching.

3.3.3 Spalart-AUmaras Model

The Spalart-AUmaras model solves a single field equation For a variable v related to 

the eddy viscosity through

&  = p y f vl (3.35)

where

(3.36)

v (3 .37)X = ~v
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The equation is

^  + B | ! 1  = Cw[ 1 - / , , ] Q v
dt dx,

+ {Cm [(1" 7,2 )Ll + fcl ̂  " Cm/w }d )

Cb2 , d 2v  . M „ 1 5
Re cr ex '  Re a  dx}

( y + ( l  + Cb2)v)
dv
dx.

f i  =Cl3 exp(-C t4j 2)

d = distance to the closest wall = minimum distance function

r  i + c :316

W+cu\ L i  JL = g

g  = r + Cwl(r6 - r )

r =
f  R e^

K z d z

where

S ' / . j n + T — %
Re 2 _r2a: a

/v 3 -  

/v2 =

x

l
r  ^

i + ^
v ^ 2  y

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)

(3-45)

The constants are
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Cbi =0.1355 CJ = 2/3Cb2 = 0.622 k  = 0.41 Cw2 = 0.3

Cw3 — 2.0 Cvi = 7.1 Co = 1 .2 Ct4 = 0.5 Cv2 = 5.0

(3.46)

r  _ Q i  , (l + Q z)'-'wl (3.47)

3.4 Initial and Boundary Conditions

3.4.1 Initial Conditions

All initial conditions for the present study (except for the flow control solution) 

correspond to the flow around a stationary wing at zero angle of attack, for which the 

wing surface is parallel to the streamwise direction. This is equivalent to impulsively 

inserting the wing into a uniform freestream. The initial conditions for the flow control 

solutions correspond to the flow around a stationary wing at an angle o f attack o f 20° that 

was impulsively inserted into a freestream with Mach number and Reynolds number of 

0.3 and 0.45 x 106, respectively. The solution after 17,000 time steps with a time step of 

At = 0.001 is then used as an initial condition for the flow control case.

3.4.2 Boundary Conditions

All boundary conditions are explicitly implemented. They include inflow-outflow 

conditions, solid-boundary conditions and plane o f geometric symmetry conditions. At 

the plane o f  geometric symmetry, periodic conditions are enforced. At the inflow 

boundaries, the Riemann-invariant boundary conditions are enforced. At the outflow 

boundaries, first-order extrapolation from the interior point is used.
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The theoretical far-field boundary conditions for any external flow problem are that 

the gradient o f  disturbances vanishes at infinity. Unfortunately, the extent o f the 

computational domains is always finite, and hence it is inappropriate to implement the 

physical far-field boundary conditions on a limited domain. Therefore, the numerical far- 

field boundary conditions are specified such that the reflection o f  waves at the boundaries 

should be minimized and the actual implementation is stable and well posed.

The non-reflecting boundary condition is based on characteristic theory. Using a 

local orthogonal coordinate system, one assumes that one of the coordinates outward unit 

vector is normal to the far-field boundary, and the others are tangential to the boundary 

surface. The eigenvalues o f  the flow-Jacobian matrix are un, un+a, and un-a with un being 

repeated three times for three-dimensional flows, where un is the local outward normal 

component o f velocity at the boundary. The corresponding characteristic variables 

associated with each o f the eigenvalues are s, uti, Uq, un+2a/(y-l), and un-2a/(Y-l), where 

s = p/pY is the entropy and uti and u^ are the two tangential components o f velocity at the 

boundary. The last two characteristic variables are called the Riemann invariants. The 

characteristic variables are invariant along the characteristic lines and the sign o f the 

eigenvalues determines the slope o f the characteristics, which will indicate the direction 

of propagation, either into or out o f the domain.

Since the wing is undergoing pitching motion, the grid is moved with the same 

angular motion as that o f  the body. The grid speed, and the metric coefficient,

c^m/dxn, are computed at each time step o f the computational scheme. Consequently, the 

kinematic boundary conditions at the inflow-outflow boundaries and at the wing surface 

are expressed in terms o f  the relative velocities. The dynamic boundary condition,
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cp/on, on the wing surface is no longer equal to zero. This condition is modified for the 

oscillating wing as

dp_
dn

- ~ P  a w» n (3.48)
wtng

where aw is the acceleration o f a point on the wing flat surface; n , the unit normal to the 

wing surface. The acceleration is given by

a w = h x F + Q X ( Q X r )  (3.49)

where Q is the angular velocity, noting that for a rigid body, the position vector r  , is 

not a function o f time and hence, r = r = 0. Finally, the boundary condition for the 

temperature is obtained from the adiabatic boundary condition and is given by 

dT
dn

= 0 (3.50)
wmg

The boundary conditions for the flow control case are the same as before but the 

wake of the wing is given an angle equal to the angle o f attack to simulate the flow in the 

wake region. The grid, which has been generated for the flow case, has been modified 

to include the tilting o f the wake region.
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CHAPTER 4 

COMPUTATIONAL SCHEME

4.1 Introduction

An upwind, finite-volume scheme, with Roe flux-difference splitting, is applied to 

the conservative form o f the full Navier-Stokes equations in a generalized body- 

conformed coordinate system. The unsteady, full Navier-Stokes equations are integrated 

time accurately. Two types of schemes, explicit and implicit, may be used to integrate 

the equations in time. Although explicit schemes are simpler and require less 

computational effort per time step, an implicit scheme is used in this study. The implicit 

scheme has less restrictive stability boundaries. Ultimately, the implicit scheme, while 

more costly per time step, allows larger time steps and is more economical overall.

Central-differencing schemes while generally more accurate, produce oscillations 

in the vicinity o f  discontinuities which must be numerically damped with second and 

fourth order dissipation terms. By implementing an upwind scheme, the physical 

propagation o f disturbances in the flow equations is mimicked by the difference 

equations without adding artificial viscosity. Using the theory o f characteristics, the 

direction o f propagation o f information is determined and the time-dependent 

differencing is introduced in a separate and stable manner. While upwind schemes 

require two or three times more computational operations when compared to an 

equivalent central-differencing method, the increase in computational effort per iteration 

is offset by an improved rate of convergence and a wider applicability to general 

problems. Therefore, the upwind scheme is used for this study.
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Upwind schemes can be used with either conservative or non-conservative forms o f 

the governing equations. The advantage of using the conservative form is that shock 

waves and contact discontinuities evolve as parts o f the solution process. The 

disadvantage is that upwind differencing can be implemented more economically in a 

non-conservative formulation but must be supplemented with a shock-fitting scheme for 

accurate results.

In this Chapter, the finite-volume implementations o f conservative methods are 

discussed. Then, the application o f  the upwind flux-difference scheme to the three- 

dimensional Navier-Stokes equation is presented. The scheme is capable o f solving time- 

dependent problems by using global time stepping and steady-flow problems by using 

pseudo time stepping to get asymptotic steady solutions. Because of the unsteady nature 

o f the vortex-breakdown flows, a global time-integration technique was used in all the 

presented calculations. At the end o f this Chapter, the computational resources used in 

the current study are also discussed.

4.2 Time Advancement

For a nondeforming mesh, the governing equations can be written as

(4.1)

where

d { F - F v) [ d ( G - G v) [ d { H - H v) (4.2)
8 t j  dg

The time term can be discretized with backward differencing
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(1 + O )(0 "+l - Q n)-<t>(Qn- Q n- 1) = E(on+l)
JAt

(4.3)

where the superscripts indicate time level. When 0 = 0  the method is first-order 

temporally accurate; when O = Vi the method is second-order accurate. This equation is 

implicit because the right-hand side is a function o f the unknown flow variables at time 

level n+1.

The implicit derivatives are written as spatially first-order accurate, which results in 

block-tridiagonal inversions for each sweep. However, for solutions that utilize Flux 

Difference-Splitting (FDS) scheme, the block-tridiagonal inversions are usually further 

simplified with a diagonal algorithm.

4.3.1 Inviscid Fluxes

The spatial derivatives o f  the convective and pressure terms are written 

conservatively as a flux balance across a cell as, for example,

where the i index denotes a cell-center location and i +1/2 corresponds to a cell-interface 

location. The interface flux is determined from a state-variable interpolation and a 

locally one-dimensional flux model.

For FDS, the interface flux is written as an exact solution to an approximate 

Riemann problem as

4.3 Spatial Discretization

( % F ) , = F  , - F  i
* H—  I--

(4.4)
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) + F(qR) -  |4„v|(<7* -  qL )J+i

- \  )+F(qR) -  |4j(?* -  qL )J_i

2
(4.5)

2

Interpolated values qL and qR at each interface are required. The state variable 

interpolation determines the resulting accuracy o f the scheme. The values o f qL and qR 

are constructed from interpolation o f the primitive variables. For first-order fully- 

upwind differencing 

(<7J i =q,r-*-—2

0qR) i =qM
(4.6)

Higher order accuracy is given by the family o f interpolations

t o )  , = ? , + 7 [(i - ^ ) a . + ( i + ^ ) a . 1 

t o ) , = -  j [ 0  ■- £ ) a . + (1 + ^)A _L,

where

K s qM - q i  
A- =?, -q.~i

(4.7)

(4.8)

The parameter K 6 [-1,1] forms a family o f difference schemes. K = -1 corresponds to 

second-order fully upwind differencing, K=l/3 to third-order upwind-biased differencing, 

and K = 1 to central differencing.

4.3.2 Flux Limiting

For solutions with discontinuities (such as shock waves), high-order schemes 

generally require a flux limiter to avoid numerical oscillations in the solution. There are

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



56

several limiter options available in the computational scheme which has been used in the 

current study.

The smooth limiter is implemented via

(<7i)j _  - < J i [(1 — AIs)A_ + (l+ A Is)A +] |  

(<?*),., = - | | [ ( l - K s ) A .  +(1 + & )A .] |
(4.9)

where

2A A + s
s =  . .  . .  , 2-----  (4.10)

( A J -+ (A  _ Y + s

and e is a small number (e = 1 x 10"6) preventing division by zero in regions o f null 

gradient.

The min-mod limiter is implemented via

(?„) , = ? , . , - 7 [ ( l - K ) A .+ ( l+ * ) A _ L ,
'4-- 4

where

A_ = min mod(A_,6A+) 

A+ = min mod(A„,6A_)

(4.11)

(4.12)

min mod(x,.y) = max{0, min[x sz'gwO>), b y  sign(x)]}sign(x) (4.13)

The parameter b is a compression parameter, b = (3-K)/(l-K).

The smooth limiter tuned to K=l/3 is implemented as follows

(<7l) . = q , + ] : ^ Lq)i 
*+2 2

(^r) 1 = #H-l ~  t Ô R̂ Oh-I 2

(4 .14)
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where

(8Lq), =/(<?,.,
(4 .15)

(SRq)i =I (q i - q l_ltqM - q i)

2x~ - x y  + 2y~ + 3e

and I is designed to recover the state variable to third-order accuracy in the one

dimensional case in smooth regions o f  the flow and interpolate without oscillations near 

discontinuities. The parameter e2 is a small constant o f  order Ax3, which is used to 

improve the accuracy near smooth extremum and reduce the nonlinearity of the 

interpolation in regions o f small gradient.

4.3.3 Flux-Difference Splitting

The approximate Riemann solver o f Roe is based on a characteristic decomposition of the 

fluid differences while ensuring the conservation properties o f the scheme.

Consider a one-dimensional equation in the form

^  + M . = 0 (4.17)
dt Sxr,

where E is a linear function o f q ,  Equation (4.17) can be written as

—  + A ^ -  = Q (4.18)
dt cfcc,

where

A = —  (4.19)
dq

The exact solution o f the Riemann problem in terms o f the flux difference is given by
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Er ~ El = Z  a k*kek (4.20)
fc=i

where A.k and ek are the eigenvalues and eigenvectors o f the Jacobian matrix A, 

respectively, and oik represents the projection o f the difference in q between the initial 

right and left states onto the eigenvectors o f A. The flux at the cell interface can be 

determined by either o f the two following equations

E j_  a kK ek (4-2 1)

E  = (4-22)
I f -2

where the signs on the summation symbols refer to the directions o f the wave speeds. 

Averaging the previous two equations, one can obtain

E  i (fit ) —
2

(El + Er ) ^ la k\A\kek
k=I

(4 -23)

If E is not a linear function o f q, e.g. one-dimensional Euler equations, Roe developed the 

following solution for the approximate linearized problem

K + a ^ -  = Q (4.24)
dt etc,

where A is called the Roe-average matrix. However, this matrix must have the following

list o f  properties to ensure uniform validity across flow discontinuities 

1- For any pair o f  qi, qi+i,

Ei+1 - E , =  A{q(, qM ) ■ % -  qM ) (4.25)

2. If qi = qi+i = q, the matrix

A(q ,q )  = A(q)  = | |  (4.26)
dq
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3. A must have real eigenvalues with linearly independent eigenvectors.

From this, the flux difference between the left and right states can be written as 

Er ~ El — A((Jr ~<Jl )

The interface flux is thus

^  j (Qr 'Ql) = tIc^x
2

For three-dimensional generalized flows, this can be written as 

K J O r A ) -  M (4 *  J+, ; in = 1-3

(4.27)

(4.28)

(4.29)

where j, k and n are kept constant. The last term in the above equation represents the 

dissipation contribution to the interface flux and is given by

<Qr - Q l ) = A * Q

“ i « 4  + Q a s + « 6  

“ 2«4 +  %2a S + a l

“ 3a 4 + & a 5 + «8 

Ha4 +Uma 5 +uxa6 +u2a 7 +u3a% — a,

where

(4.30)

a t =
gradtf” )

J
(4.31)

a-, - 1 gradtfm)
Id 2 J

\Um+a\(Ap + paAUm) (4 .32 )
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a ,  = 1 g r a d ^ m )
2 a 2 J

Um - a \ ( A p - p a A U m)

a A =or, + a 2 + a 3 

a 5 = d ( a 2 - a 3)

grad  ( £ m)a 5-y J
\Um\(pAuJ - ^ p A U m) ; j  = l - 3

The ~ superscript denotes Roe-averaged values where

P = 4 P lPr

~  _ U,L + U jR V P l P r

_  H L +  H r * J P l P r 

1 +  V P l P r

a 2 = ( y - l ) [ H - u JuJ /2]  ; j = l -3

where H  is the Roe-averaged enthalpy.

The contravariant velocity normal to the cell interface is given by

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4 41)

4.3.4 Discretization of the Viscous Fluxes

The viscous terms, which represent shear stress and heat transfer effects, are 

discretized with second-order central differences. The second derivatives are treated as 

differences across cell interfaces o f first-derivative terms. The viscous flux contribution 

on the left-hand side o f the difference equations are given by

dE,<5£i ^ 0 -+ 5 % i - m = 1-3:2 dEv2 3  d£v3 _ :mdE,
8 0 dO dQ dQ

(4 .42)
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Differentiating the terms that are functions o f £n (where n^m) will produce cross

derivative terms. The presence o f these terms on the left-hand side o f  the difference 

equation would destroy the advantage of solving a tri-diagonal matrix by requiring a 

central differencing o f these terms. Also, the viscous terms containing derivatives 

parallel to the solid body surface can be neglected relative to those in the normal 

direction. This approximation is known as the thin-layer approximation where only the 

viscous terms containing derivatives normal to the body surface (along the coordinate 

line), are retained. In this study, the thin-layer approximation was used only to simplify 

the viscous terms on the left-hand side o f the difference equation for better efficiency of 

the computer code; while the cross derivative terms were retained on the right-hand side 

o f the difference equation where they can be evaluated explicitly.

The thin-layer type viscous terms are obtained from the momentum and energy 

equations by retaining only terms with derivatives in the direction under consideration. 

Therefore, the momentum equation becomes

\ s A mS A m ^
at;

; k, m, n = 1 - 3 (4.43)

and the energy equation becomes

ak£s(UpTk p -q k ) = Re

+ d £ sd £
<3ur 1 5(a2)^ ; k,n ,p ,s = 1-3

(4.44)

ee; ( y - i ) P r

On the right-hand side o f  the difference equation, the viscous term contribution in the 

residual is given by

R v — a^iEvi +8^2E v2 + 8 ^ E v3 — S^mE^ , m —1-3 (4-45)
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The viscous fluxes are linearized in time as follows

E ^ 1 = E"to + O(At) (4.46)

The viscous terms at the n+I time step are evaluated using information from the previous 

time step, n. The fluxes are centrally differenced and a second-order approximation to 

the cross derivative terms is used as follows

= a 5 ,1 ^2  ( u l ) .  I . L + 5 . ie 2 ( U [ )  t !
'+2^2 2'J 2 J

+ a I . 1 + 5 jIe2( u 1) j l
I .H —  ^2 2 t^-J--

2 2 J

(4.47)

where

i+ - , j  
2 J 2

(4.48)

and

a  + a  =  —  

2
(4.49)

4.4 Computational Resources

The modified, full NS equations within the CFL3D code (Versions 1, 2, and 3) of 

NASA Langley Research Center has been used. The original CFL3D code (all versions) 

is for Thin Layer Navier Stokes equations. In the beginning o f the current study, the 

modified, full NS equations o f CFL3D version 1 have been used for the experimental 

validation, reduced frequency effect, Baldwin-Lomax, and pitch-up pitch-down solutions. 

The modified, full NS equations o f CFL3D version 2 is used for the refined grid and flow 

control solutions. Because CFL3D versions 1 and 2 don’t have the Spalart-Allmaras

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



63

model, the modified, full NS equations o f CFL3D version 3 has been used for the 

Spalart-AJlmaras solution.

The computational results obtained for the validation solution and for the Baldwin- 

Lomax turbulence model were performed using a CRAY-YMP computer at NASA 

Langley Research Center. On this machine, each case took 82 hours to complete a ramp 

amplitude o f  90°. Also, a CRAY C-90 machine was used in the pitch-up pitch-down 

case. The refined grid, Spalart-Allmaras, and flow control cases were performed on PC’s 

because of unavailability o f  supercomputers. Each case took around 3-4 weeks on a 

Pentium II 300 MHz machine. One o f the important differences between the Cray and 

PC’s is that while the Cray is a 64 bit machine, the PC’s are 32 bit architecture.
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CHAPTER 5 

LAMINAR FLOW SOLUTIONS

In this Chapter, the laminar, time accurate, three-dimensional Navier Stokes 

solution along with the aerodynamic response o f a 76° delta wing undergoing pitch-up 

motion up to 90° amplitude are presented.

5.1 Validation with Experimental Data

The delta wing model used in the present computational study consists of a 76° 

swept back, sharp-edged wing with zero thickness and an aspect ratio o f one, similar to 

that in Jarrah (1988). The three-dimensional O-H grid topology used in the calculations 

is shown in Figure 5.1 with a cross-section at the trailing edge. The name o f O-H grid 

comes from the shape o f the grid in both lateral and longitudinal directions, respectively. 

A relatively coarse grid is used to minimize the computational cost o f very low non- 

dimensional pitching rate maneuvers in order to facilitate comparison with the available 

experimental data. The non-dimensional pitching rate is equal to (dr C / 2 aM), where a  

is the rate o f change o f  angle o f attack, C is the root chord length, and a^ is the upstream 

speed o f sound. Because o f  the large gradients near the wing surface the grid clustering 

technique has been used to capture any flow details near the solid boundary. Even with 

the current coarse grid, 84 x 65 x 43 in the axial, wrap-around, and outward directions, 

respectively, this case took 82 hours on a CRAY-YMP computer at NASA Langley 

Research Center to complete a ramp amplitude o f  90°.

The pitch axis is located at two-thirds o f  the root chord station, as measured from 

the wing vertex. The wing is forced to undergo a pitching motion through a ramp
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function shown in Figure 5.2 and is described by a  = 0.024 t, which is related to the 

reduced frequency. The angle o f attack, a , varies from 0° to 90° through this function. 

In the current study, the reduced frequency word will be used interchangeably with the 

non-dimensional pitching rate because they are equal in the case o f ramp motions.

The freestream Mach number and Reynolds number are 0.3 and 0.45 x 106, 

respectively. The NS Equations are integrated time accurately with At = 0.001. This 

translates into 65,450 time steps to complete the solution for the flow response of the 

ramp motion up to a  = 90°.

Figure 5.3 shows the variations o f Cl with a  of the present computational results 

and the corresponding values o f the experimental data of Jarrah (1988). The Cl curve 

shows a very good agreement until a  reaches 40°. For angles o f attack greater than 40°, 

the computed Cl values o f the present study over-estimate those o f the experimental data 

by about 12%. The predicted peak o f the Cl curve slightly under-estimates the 

experimental value. The uncertainty in measuring the force coefficients in the 

experimental data is around 7.5%.

Figure 5.4 shows the variations o f Co with a . An excellent agreement between 

the computed Cd values o f the present study and those o f the experimental data is 

observed until a  reaches 60°. After a  = 60°, the computed results over-estimate the 

experimental data. However, the present study predicted accurately the angle of attack at 

which the breakdown point passes upstream o f the trailing edge, which is in the current 

case about 39°.

Figures 5.5-5.20 show the time-dependent vortex core development and 

breakdown over the wing surface from very low to very high values o f angle o f attack
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(I0°-80°). Figure 5.5 shows the particle traces o f the leading edge vortices over the delta 

wing and the spanwise pressure coefficient distributions at three different axial chord 

stations o f 0.3, 0.6 and 0.9 at a  = 10°. The pressure suction peaks are close to the leading 

edge at the 80% semi-span location. As one can observe, the vortex flow is developing 

over the wing surface and the pressure variations are starting to build-up. Figure 5.6 

shows the cross-flow instantaneous streamlines at a  = 10° for two axial stations o f x = 

0.4 and x = 0.9 (one near the apex and one near the trailing edge). A very small separated 

flow region is located over the wing surface. The vortex core is very tight over the wing 

surface and its center is located near the leading edge. Figures 5.7 and 5.8 show the 

axial velocity and Mach number contours at a  = 10° and x = 0.4 and 0.9. The axial 

velocity contours do not show significant acceleration inside the vortex core.

Figure 5.9 shows the particle traces over the delta wing and the spanwise pressure 

coefficient distributions at a  = 20° for three different axial chord stations. The vortex 

core over the wing surface starts to expand laterally and the pressure distribution peaks 

are higher than those at a  = 10°. These characteristics can be observed in Figure 5.10, 

which shows the cross-flow instantaneous streamlines at a  = 20° at two different axial 

stations of 0.4 and 0.9. Figures 5.11 and 5.12 show the axial velocity and Mach number 

contours at a  = 20° and x = 0.4 and 0.9. The flow is accelerated inside the vortex core 

region.

Figure 5.13 shows the particle traces over the delta wing and spanwise pressure 

coefficient distributions and Figure 5.14 shows the cross-flow instantaneous streamlines 

at a  = 30°. Figures 5.15 and 5.16 show the axial velocity and Mach number contours at 

a  = 30° and x = 0.4 and 0.9. The flow is symmetric and accelerated further inside the
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vortex core. While the magnitude o f  the axial velocity inside the vortex core at x = 0.4 is 

0.47, its value is 0.36 at x = 0.9. Also, the Mach number values, inside the vortex core, 

at x = 0.4 and 0.9 are 0.54 and 0.37; respectively.

The vortex breakdown passes across the trailing edge at around 39° angle of 

attack as can be seen from Figure 5.17. The streamlines adapt spiral motions near the 

trailing edge as can be seen from Figure 5.18. Figures 5.19 and 5.20 show the axial 

velocity and Mach number contours at a  = 40° and x = 0.4 and 0.9. At still higher 

angles o f attack, Figure 5.21 shows that the vortex breakdown is translating further 

upstream and the vortex core is expanding laterally. The pressure coefficient peak is 

flattening and the pressure suction peak magnitudes are decaying at x = 0.6 and 0.9. 

Figure 5.22 shows the cross-flow instantaneous streamlines at a  = 50°. The post

breakdown spiral motion is moving upstream toward the apex o f the wing. Figures 5.23 

and 5.24 show the axial velocity and Mach number contours at a  = 50° and x = 0.4 and 

0.9. Vortex breakdown is observed at x = 0.4 and 0.9 at a  = 50°. The flow is decelerated 

inside the vortex core region and even undergoes flow reversal as indicated by the 

negative axial velocity values.

Figures 5.25 and 5.26 show that the breakdown is covering a large portion of the 

wing surface at a  = 60° (from the trailing edge until x = 0.3). The pressure coefficient 

distribution is flattening near the leading edge o f the wing at x = 0.6 and x = 0.9. Figures 

5.27 and 5.28 show the axial velocity and Mach number contours at a  = 60° and x = 0.4 

and 0.9. Axial velocity contours show higher negative velocity values in the core region 

in comparison with those at a  = 50°.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



68

The particle trace shapes, spanwise pressure coefficient distributions, and cross- 

flow instantaneous streamlines at a  = 70° and 80° are shown in Figures 5.29, 5.30, 5.33, 

and 5.34. Figures 5.31, 5.32, 5.35, and 5.36 show the axial velocity and Mach number 

contours at a  = 70° and 80° at x = 0.4 and 0.9. The asymmetry o f  the flow over the whole 

wing surface is clearly observed in Figures 5.30 and 5.34. The pressure coefficient 

distributions are flat over the wing span for the three axial stations with noticeable lateral 

unbalance.

In summary, at low angles o f attack, a tight vortex core develops at the leading 

edge o f the wing. As the angle o f attack increases, the vortex core expands laterally until 

it breaks down at the trailing edge around a  = 39°, due to the adverse axial pressure 

gradient associated with large regions o f flow separations. Then, the breakdown point 

moves upstream expanding the size o f the vortex core, due to the axial momentum loss, 

until it covers the entire wing surface showing asymmetric flow field.

Figures 5.37-5.41 show two snapshots o f the flow streamlines along with the wing 

surface stagnation pressure and the vortex core stagnation pressure surfaces at a  = 30°, 

38°, 40°, 50° and 60°. From these figures, the development o f the vortex breakdown 

over the wing surface with increasing angle o f attack is clear. At a  = 70° the breakdown 

moves further upstream to cover a larger area o f the wing making this area a non-lifting 

area with the remaining area o f the wing generating a lift force. At a  = 90°, the whole 

wing is a non-lifting surface. Figure 5.42 gives four different views o f the wing at an 

angle o f  attack o f 70° showing the vortex core shape and the flow streamlines. After the 

angle o f attack, a , reaches 40°, the breakdown moves upstream o f the trailing edge and as 

the angle o f attack increases further, the breakdown moves towards the wing apex.
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During this transition period, the vortex core pair flows expand and coalesce in the front 

portion o f the wing as shown in Figure 5.42 (see back and top views).

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



70

Figure 5.1: Portion of the three dimensional grid and cross section at the trailing 
edge
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Figure 5.2: Forced ramp function time history
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Figure 5.26: Cross-flow instantaneous streamlines at a  =  60° (a) x=0.4 and (b) 
x=0.9
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Figure 5.27: Axial velocity contours at a =  60° (a) x=0.4 and (b) x=0.9
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Figure 5.28: Mach number contours at a  =  60° (a) x=0.4 and (b) x=0.9
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Figure 5.29: Particle traces over the delta wing and spanwise pressure coefficient 
distributions at a = 70°
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Figure -5.30: Cross-flow instantaneous streamlines at a = 70° (a) x=0.4 and (b) 
x=0.9
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Figure 5.31: Axial velocity contours at a =  70° (a) x=0.4 and (b) x=0.9
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Figure 5.32: Mach number contours at a = 70° (a) x=0.4 and (b) x=0.9
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Figure 5.33: Particle traces over the delta wing and spanwise pressure coefficient 
distributions at a  =  80°
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Figure 5.34: Cross-flow instantaneous streamlines at a =  80° (a) x=0.4 and (b) 
x=0.9
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Figure 5.35: Axial velocity contours at a  =  S0° (a) x=0.4 and (b) x=0.9
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Figure 5.36: Mach number contours at a =  S0° (a) x=0.4 and (b) x=0.9

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



89

S t a g n a t i o n  P r e s s u r e

Figure 5.37: Stagnation pressure and particle traces over delta wing at a  =  30°
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Figure 5.38: Stagnation pressure and particle traces over delta wing at a  — 3SJ
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Figure 5.39: Stagnation pressure and particle traces over delta wing at a  =  40°
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Figure 5.40: Stagnation pressure and particle traces over delta wing at a = 50°
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Figure 5.41: Stagnation pressure and particle traces over delta wing at a =  60“
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5.2 Fine Grid Solution

The delta wing model used in the present computational study consists o f a 76° 

swept back, sharp-edged wing with zero thickness and an aspect ratio o f one similar to 

that used by Jarrah (1988). The three-dimensional O-H grid topology used in the 

current case is shown in Fig. 5.43 with a cross section at the trailing edge. The 

dimension o f the grid used is 81 x 81 x 50 in the axial, wrap-around, and outward 

directions; respectively. This grid is relatively finer than the previous grid used in 

Section 5.1. Since the resolution in the wrap-around and normal directions are very 

crucial in the boundary layer calculations near the solid boundaries, the number o f points 

in wrap-around and normal directions have been increased by 16 and 7 grid points; 

respectively, whereas the number of points in the axial direction is decreased by 3 points. 

This case took about one month o f running time on a Pentium II 300 MHz processor to 

complete a ramp pitching amplitude o f 90°.

The pitch axis is located at two-thirds o f  the root chord length, as measured from 

the wing vertex. The wing is forced to undergo a pitching motion through a ramp 

function shown in Fig. 5.2 and is described by a  = 0.024t, which is related to the reduced 

frequency. In this case, the reduced frequency is equivalent to k = 0.04. The ffeestream 

Mach number and Reynolds number are 0.3 and 0.45 x 106, respectively. The NS 

Equations are integrated time accurately with At = 0.001. This translates into 65,450 time 

steps to complete the ramp motion up to a  = 90°. The laminar NS equations have been 

used in this case.

Figures 5.44 and 5.45 show the variations o f C l and C d with a  o f the present 

computational results and the corresponding values o f the experimental data of Jarrah
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(1988). The same behavior for both C l and Cd is noticed again. The C l curve shows a 

very good agreement with experimental data until a  reaches 40°. For angles o f  attack 

greater than 40°, the C l obtained from the present study over-estimates the experimental 

data by about 10%. The predicted peak o f the C l curve slightly underestimates the 

experimental value. This difference may be attributed to the absence o f turbulence 

modeling that is needed for the massive flow separation at very high angles o f attack after 

the onset o f  the vortex breakdown. Another source might be the grid resolution required 

to capture the massive flow separation and the vortex breakdown regions. Excellent 

agreement between Cd obtained from the present study and that obtained experimentally 

is noticed until a  reaches 60°. After a  = 60°, the computed results over-estimate the 

experimental data. Again this could be attributed to the effects o f  turbulence at high 

angles o f attack and the grid resolution in the vortex breakdown region. Also, the 

present study predicted accurately the angle o f attack at which the breakdown crosses 

through the trailing edge, which is in the current case about 39°, which is the same 

critical angle as before.

Figures 5.46-5.60 show the vortex core development over the wing surface from 

high to very high values o f angle o f attack (40°-80°). Figure 5.46 shows the spanwise 

pressure coefficient distributions at four different axial chord stations o f  0.3, 0.6, 0.9, and 

1.0 and at a  = 40°. Two suction peaks are observed in this figure which means that the 

current grid is able to capture the secondary vortex near the leading edge o f the wing. 

The amplitude o f the suction peak is decreasing in the downstream direction. Figure 5.47 

shows the axial velocity contours at a  = 40° and for two axial stations o f  0.3 and 0.9 (one 

near the apex and one near the trailing edge). The flow is symmetric and decelerating in
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the downstream direction. Figure 5.47 also shows that before the onset of the vortex 

breakdown the most decelerated portions o f the flow are inside the vortex core, and that 

the flow decelerates less in the lateral direction outside the vortex core. Also, the vortex 

core is observed to expand laterally in the downstream direction.

Figure 5.48 shows the particle traces o f the leading edge vortices over the delta 

wing and the Mach number contours at a  = 40°. Observe how the vortex breakdown is 

crossing the trailing edge. The particle traces over the wing are tight until they reach the 

breakdown position at the trailing-edge and then breakdown and spiral motions start 

behind the wing trailing-edge. The leading edge vortices show that the flow is symmetric 

at this angle o f  attack.

Figures 5.49 shows the spanwise pressure coefficient distributions for three 

different axial stations, x = 0.3, 0.6, and 0.9 and at a  = 52°. The suction peaks show that 

the vortex breakdown has passed through the x = 0.9 location. Figure 5.50 shows the 

axial velocity contours at a  = 52° for two different axial stations o f 0.3 and 0.9. The 

axial velocity exhibits negative values inside the vortex core at x = 0.9 where the vortex 

breakdown has occurred. Figure 5.51 shows the particle traces over the delta wing and 

Mach number contours at a  = 52°. Until the flow reaches the breakdown locations the 

particle traces show a tight vortex. At and aft o f  the breakdown regions, the particle 

traces start to divert and undergo spiral motions over the wing surface. Also, the Mach 

number decreases behind the breakdown region.

Figure 5.52 shows the spanwise pressure coefficient distributions for a  = 60°. The 

suction peaks at all chord stations, x = 0.3, 0.6, and 0.9, have disappeared, which implies 

that the vortex breakdown covers most o f  the wing surface. Figure 5.53 shows the axial
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flow velocity contours at x = 0.3 and 0.9 for a  = 60°. The vortex core is expanding 

laterally, the axial velocity has negative values inside the vortex core for both axial 

stations, and the flow is asymmetric. Figure 5.54 shows the particle traces over the delta 

wing along with the Mach number contours for a  = 60°. Although the right hand side 

vortex core shows a bubble type vortex breakdown, the left-hand side shows a spiral type 

vortex breakdown. The asymmetry o f the flow is clearly seen in this figure.

Figure 5.55 shows the spanwise pressure coefficient distribution for a  = 72°. 

Figure 5.56 shows the axial velocity contours at x = 0.3 and 0.9 for a  = 72°. The 

asymmetry o f the flow is very clear. Large separated areas within the flow, where the 

axial velocity is equal or less than zero, are present in the flow. Figure 5.57 shows the 

particle traces over the delta wing and Mach number contours for a  = 72°. The 

asymmetry o f the flow is also seen from the Mach number contours. Moreover, the two 

vortex cores do not breakdown at the same location when flow asymmetry exists.

Figure 5.58 shows the spanwise pressure coefficient distribution for a  = 80°. 

Figure 5.59 shows the axial velocity contours at x = 0.3 and 0.9 for a  = 80°. Again, the 

asymmetry flow is very clear. Figure 5.60 shows the particle traces over the delta wing 

and Mach number contours for a  = 80°.

At low angles o f attack, a tight vortex core develops at the leading edge of the 

wing. The flow is symmetric and decelerates while traversing downstream. Very little 

spiral motion is present in the flow. As the angle o f attack increases, the vortex core 

expands until it breaks down at the trailing edge around a  = 39°, due to the adverse axial 

pressure gradient, and the particle traces begin to exhibit strong spiral motions. If the 

radius o f spiral is small, the bubble vortex breakdown type is generated. If the radius o f
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spiral motion is large, the spiral vortex breakdown type is generated. The vortex 

breakdown moves upstream expanding the size o f the vortex core, due to the axial 

momentum loss, until it overwhelms the entire wing surface. The symmetry o f  the vortex 

flow remains until large separated regions are generated within the vortex core, after 

which the flow becomes asymmetric. After the flow becomes asymmetric the vortex 

breakdown on the two sides may not occur at the same axial location.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.43 Three-dinaeE

in h ib ite d  w ith o u t p e r m is s io n .

F u rth er  r e p r o d u c tio n  p

f rhp c o p y r ig h t  o w n e r .

R e p r o d u c e d  w W i p e r m is s io n



1 0 1

Lift Coefficient

0.8

0.6

0  .4
P re s e n t
E x p e rim e n t. J a rra f i  (1 9 8 8 )

0.2

60 800 20 40

a  (deg.)

Figure 5.44: Lift coefficient vs. a  using finer grid

Drag Coefficient

1.0

0 .5

P re s e n t
E x p e rim e n t. J a r r a h  (1 9 8 8 )

0.0
800 6 020 4 0

a  (deg.)

Figure 5.45: Drag coefficient vs. a  using finer grid

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



102

Pressure Coefficient-4

Laminar Solution 
a=40°

•3

CP

•2

1

I !9
0

1
0 .5 1.0-0.5 0.0- 1.0

x = 0 .3
x = 0 .6
x = 0 .9

Y/Span

Figure 5.46: Spanwise-pressure-coefficient distribution for a = 40°
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Figure 5.47: Axial flow velocity contours at (a) x=0.3 and (b) x=0.9 for a  =  40c
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5.3 Reduced Frequency Effect

The delta wing model used in the present computational study consists o f a 76° 

swept back, sharp-edged wing with zero thickness and an aspect ratio o f  one. The three- 

dimensional grid topology used in these computations is an O-H grid o f 84 x 65 x 43 in 

the axial, wrap-around, and outward directions, respectively, the same as that o f Figure 

5 .1. Again, a relatively coarse grid is used to minimize the computational cost needed to 

perform very low reduced frequency maneuvers in order to compare with the available 

experimental data. The pitch axis is located at two-thirds of the root chord length, as 

measured from the wing vertex.

The wing is forced to undergo a pitch-up motion through ramp functions shown in 

Figure 5.61, which are related to the reduced frequency. The values o f  reduced 

frequency, which are used in the present study, are 0.834, 0.134, and 0.04. Table 5.1 

summarizes the three ramp cases used in this study. The running time is based on the 

CRAY-YMP at NASA Langley Research Center.

Table 5.1 Summary o f  the test cases

Data Case I Case 2 Case 3

Angle o f Attack (rad.) 0 .5 1 0.08 t 0 .0241

No. o f time steps 3,141 19,635 65,450

Running Time (Hrs) 4.4 27.3 90.9
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The ffeestream Mach number and Reynolds number are 0.3 and 0.45 x 106, 

respectively. The laminar unsteady, full NS equations are integrated time accurately 

with At=0.001.

Figures 5.62 and 5.63 show the variation o f Cl and Cd with a  for the three values 

o f  reduced frequency. In these same figures, experimental validation for three reduced 

frequency values o f 0.01, 0.02, and 0.04 is given to show the same trend for both lift and 

drag coefficients. As the reduced frequency decreases the Cl and Cd coefficients values 

decrease. Figure 5.64 shows cross-flow instantaneous streamlines at the chord station x = 

0.6 (just ahead o f the pitch axis) and a  = 30° for the three values o f reduced frequencies. 

The vortex core is largest for the lowest reduced frequency value. Figure 5.65 is similar 

to Figure 5.64 but for a different chord station o f 0.9 (after the pitch axis). The vortex 

core is largest with the lowest reduced frequency value.

Figure 5.66 shows the spanwise pressure-coefficient distribution for the same 

angle o f attack o f 30° for three different chord stations o f 0.3, 0.6, and 0.9. The pressure 

difference between the lowest suction peak and the highest suction peak is larger for the 

lowest reduced frequency and decreases with increasing reduced frequency. Moreover, 

the suction peak, corresponding to the primary vortex core location, moves inboard of the 

wing leading edge as the reduced frequency decreases.

The total-pressure-loss contours, shown in Figure 5.67, show vortex core size 

increases with a more inboard movement o f the leading edge vortex core as the reduced 

frequency decreases. Figure 5.68 shows snapshots o f the particle traces o f the leading 

edge vortices over the wing for the three values o f  reduced frequency. The roll-up of 

these vortices become tighter as the reduced frequency decreases.
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Figure 5.69 shows the cross-flow instantaneous streamlines at x = 0.6 and a  = 60° 

for the three reduced frequencies. Although vortex breakdown occurs for the reduced 

frequency values o f 0.134 and 0.04, there is no breakdown corresponding to k = 0.834 at 

this chord station. Figure 5.70 shows the cross-flow instantaneous streamlines at x = 0.9 

and a  = 60° for the three reduced frequency values. Here, it is clear that for all reduced 

frequency values the breakdown occurs at this location with various degrees of strength.

The spanwise pressure coefficient distribution for a  = 60° for the three chord 

stations o f 0.3, 0.6, and 0.9 for the three reduced frequencies is presented in Figure 5.71. 

At a  = 60° the breakdown reaches all the three chord stations for k = 0.04 whereas the 

breakdown is at x = 0.6 for k = 0.134 and at x = 0.9 for k = 0.834. Figure 5.72 shows 

total-pressure-loss contours at x = 0.9. As can be observed from Figure 5.72, the total 

pressure loss is more pronounced for k = 0.04 and covering larger area over the wing 

surface. The total pressure loss value inside the vortex core is 0.19, 0.07, and 0.08 for k = 

0.04, 0.134, and 0.834; respectively. Figure 5.73 shows snapshots o f the flow over the 

delta wing for a  = 60° for the three reduced frequency values. The spiral motion 

strength increases as the reduced frequency decreases.

Figure 5.74 shows the cross-flow instantaneous streamlines at x = 0.6 and 

a  = 75°. The asymmetry of the flow is very obvious for the lowest reduced frequency 

value. For k = 0.834, the flow even with the occurrence o f the breakdown is slightly 

asymmetric.

Figure 5.75 shows cross-flow instantaneous streamlines at x = 0.9 and a  = 75°. 

Here, again the flow is more asymmetric for the low reduced frequency value. Figure 

5.76 shows the spanwise pressure-coefficient distribution. The pressure coefficient at
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each chord station is more uniform without a suction peak for the lowest reduced 

frequency value. The vortex breakdown covers the upper wing surface up to x = 0.3.

Figure 5.77 shows the total-pressure-loss contours at x = 0.9 for a  = 75°. Figure 

5.78 shows snapshots of the particle traces o f the leading edge vortices over the delta 

wing for a  = 75°. The vortex breakdown flow gets larger as the reduced frequency value 

gets smaller.

The vortex core expands more as the reduced frequency is decreased, and early 

vortex breakdown occurs, see Figure 5.79. Flow asymmetry is also more pronounced as 

the reduced frequency decreases. These flow responses are attributed to the fact that as 

the reduced frequency decreases, the flow will have longer periods o f time to adjust to the 

forced wing motion. Highly swept-back winged aircraft can fly with increased margins 

from disrupted and undesirable flow conditions (delayed vortex breakdown and 

consequently delayed stall) during maneuver using high reduced frequency values at high 

angles of attack.
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Figure 5.68: Particle traces over the delta wing at a  =  30°
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5.4 Summary

Validation of the computational results was carried out using existing 

experimental data o f Jarrah (1988). A grid refinement study was introduced and the 

effect o f reduced frequency of the wing motion was then presented. Computational 

results provide complete information and details about the flowfield response, which 

were not given in the experimental data. This investigation of the unsteady flow over a 

wide range o f  angles of attack provided crucial understanding o f the variations o f  the 

leading edge vortex cores, their breakdown behavior and wing aerodynamic 

characteristics at very high angles o f attack.
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CHAPTER 6 

TURBULENT FLOW SOLUTIONS

Two turbulence models are used in conjunction with the Reynolds-Averaged NS 

equations. The first one is zero order or an algebraic model (Baldwin-Lomax). The 

second one is a one-equation model (Spalart-Allmaras). The purpose o f using these 

models in our current study is to improve the predicted results at very high angle of attack 

range (greater than 60°). Three flow cases are shown in this Chapter. The first and third 

cases are solved using Baldwin-Lomax model whereas the second case is solved using 

Spalart-Allmaras model.

6.1 Results Using Baldwin-Lomax Model

The delta wing model used in the present computational study consists o f a 76° 

swept back, sharp-edged wing with zero thickness and an aspect ratio o f one. The same 

coarse grid topology is used in the calculations. The pitch axis is located at two thirds of 

the root chord station. The wing is forced to undergo a pitching motion through a ramp 

function shown in Figure 5.2 and is described by a  = 0.024t, which is related to the 

reduced frequency. In our analysis, the reduced frequency is equivalent to 0.04. The 

ffeestream Mach number and Reynolds number are 0.3 and 0.45 x 106, respectively. 

This flow condition is the same case as that o f section 5.1. The Reynolds-Averaged NS 

equations are integrated time accurately with At = 0.001. This translates At into 65,450 

time steps to complete the ramp up to a  = 90°. In this study case, we have used the 

Reynolds-averaged NS equation with a Baldwin-Lomax turbulence model along with the
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Schiff and Degani modification for massively separated flows to study the turbulence 

model effects on the solution.

Figures 6.1 and 6.2 show variations o f the lift and drag coefficients with a . There 

is an excellent agreement between the computed C l and Cd values and the corresponding 

experimental data o f  Jarrah (1988). For angles o f attack less or greater than 40°, C l 

shows a very close agreement with the experimental data. For angles o f attack around 

40°, the difference between the computed C l and the experimental value is appreciable. 

This difference may be attributed to the grid resolution at the trailing edge where the 

vortex breakdown crosses and moves upstream over the wing surface. Using the 

Baldwin-Lomax turbulence model enhanced the computed C l values. Further, the 

computed C d values are slightly enhanced. The good agreement with the experimental 

data has been improved up to a  = 65°.

Figures 6.3-6.18 show the vortex core development over the wing surface from 

very low to very high values o f angle o f  attack (10°-80°). Figure 6.3 shows the particle 

traces o f  the leading edge vortices over the delta wing and the spanwise pressure 

coefficient distributions at three different axial chord stations o f 0.3, 0.6 and 0.9 and at a  

= 10°. The vortex flow is beginning to develop over the wing surface and the pressure 

distribution has started to build-up. Figure 6.4 shows the cross-flow instantaneous 

streamlines at a=10° and for two axial stations o f 0.4 and 0.9 (one near the apex and one 

near the trailing edge). The suction peaks o f  the pressure distributions are weaker than 

those o f  the laminar solution. Although the suction peak at x = 0.9 for the laminar 

solution is equal to -  0.5 the current turbulent value is -  0.4.
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Figure 6.5 shows the particle traces o f the leading edge vortices over the delta 

wing and the span-wise pressure coefficient distributions at a  = 20° for the same axial 

chord stations. The vortex core over the wing surface has started to expand laterally and 

the pressure distribution peaks are higher than the corresponding values at a  = 10°. The 

suction peaks show typical turbulent boundary layer flow on the wing surface with one 

suction peak under the primary vortex and no secondary suction peak. Figure 6.6 shows 

the cross-flow instantaneous streamlines at a  = 20° at two different axial stations of 0.4 

and 0.9. Again, the suction peaks o f the pressure distributions are weaker than those of 

the laminar solution. Although the suction peak at x = 0.9 for the laminar solution is 

equal to -  0.8 the current turbulent value is -  0.7.

Figure 6.7 shows the particle traces over the delta wing and spanwise pressure 

coefficient distributions and Figure 6.8 shows the cross-flow instantaneous streamlines at 

a  = 30°. The vortex breakdown passes through the trailing edge around 40° as one can 

see from Figure 6.9. The streamlines take expanded spiral paths near the trailing edge 

as can be seen from Figure 6.10. Figure 6.11 shows that the vortex breakdown is 

translating further upstream and the Cp curves at x = 0.6, and 0.9 show no suction peaks. 

The front portion o f the vortex core is expanding in the lateral direction. Figure 6.12 

shows the cross-flow instantaneous streamlines at a  = 50°. The spiral motion is moving 

upstream toward the apex o f the wing.

Figures 6.13 and 6.14 show that breakdown is covering a significant portion of 

the wing surface at a  = 60°. The pressure coefficient curves up to a forward location of 

x =  0.3 do not show any suction pressure peaks. The streamline shapes, spanwise 

pressure coefficient distributions, and cross-flow instantaneous streamlines at a  = 70°
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and 80° are shown in Figures 6.15-6.18. The asymmetry o f the flow over the whole 

wing surface can be seen from Figure 6.18. In contrast, at low angles o f attack, a tight 

vortex core develops at the leading edge of the wing, the vortex core center is located 

near the leading edge, and the flow is symmetric (zero side-slip angle).

Figure 6.19 and 6.20 show snapshots o f  the flow streamlines along with the wing 

surface stagnation pressure and the vortex core stagnation pressure surfaces at a  = 70°. 

At a  = 70° the breakdown moves further upstream to encompass a larger area o f the wing 

making this area ineffective in producing lift while the remaining area o f the wing 

continues to generate a lift force. At a  = 90°, the whole wing is no longer generating 

any lift. The differences between this case and the laminar solution of Chapter 5 are 

appreciable. The lift and drag coefficient values obtained using Baldwin-Lomax model 

underestimate the laminar solution. This discrepancy is attributed to the spanwise 

coarseness o f the grid in the vicinity o f the primary and secondary separations.

In general, the Baldwin-Lomax model introduced some improvements o f the 

computational results o f  C d-<x curve in comparison with the experimental data up to an 

angle o f attack o f  about 65°. As for the lift coefficient, the Baldwin-Lomax model gives 

very good agreement with the experimental data except around a  = 40°. The differences 

are believed to be due to the grid resolution particularly at the trailing edge where the 

vortex breakdown crosses this location at a  = 39°. As the angle o f attack increases above 

the critical angle, the vortex breakdown advances upstream with an upward displacement 

and lateral expansion. These results call for the development o f a dynamic fine grid 

resolution compatible with the vortex breakdown motion and deformation. Moreover, a 

higher order turbulence model may improve the predictions at very large angles o f attack.
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6.2 Results Using Spalart-Allmaras Model

The delta wing model used in the current case consists o f  a 76° swept back, sharp- 

edged wing with zero thickness and an aspect ratio o f one. The three-dimensional grid 

topology used in the calculations along with a cross section at the trailing edge is shown 

in Figure 5.1. The grid dimensions are 81 x 65 x 41 in the axial, wrap-around, and 

normal directions; respectively. The pitch axis is located at two thirds o f the root chord 

station. The wing is forced to undergo a pitching motion through a ramp function shown 

in Figure 5.2 and is described by a  = 0.024 t, which is related to the reduced frequency. 

The reduced frequency is equivalent to 0.04. The freestream Mach number and Reynolds 

number are 0.3 and 0.45 x 106, respectively. The Reynolds-Averaged NS equations are 

integrated time accurately with At = 0.001. This case took 65,450 time steps to complete 

a ramp motion flow response up to a  = 90°. In this case study, we have used the 

Reynolds-averaged NS equation with the standard Spalart-Allmaras turbulence model to 

study the turbulent effects on the solution. The turbulent quantities are applied in only 

one direction (the normal direction).

Figures 6.21 and 6.22 show variations o f the lift and drag coefficients with a . 

There is an excellent agreement between the computed C l and Cd and the corresponding 

experimental data o f Jarrah (1988) until a  = 35°. For angles o f attack greater than 35° 

and less than 60°, C l and Cd show a significant difference between current results and 

experimental data. For angles o f attack greater than 60°, the difference between the 

computed C l and C d and the experimental value starts to diverge.
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Figure 6.23 shows the particle traces of the leading edge vortices over the delta 

wing and the Mach number contours at a  = 32°. The vortex core is tight and travels 

smoothly from the apex to the trailing edge of the wing. The vortex flow is developing 

over the wing surface and the flow is symmetric. The flow is accelerated around the 

vortex core region. Small-scale spiral motion is present in the flow.

Figure 6.24 shows the spanwise pressure coefficient distribution for a  = 40° for 

the three cases o f  laminar, Baldwin-Lomax, and Spalart-Allmaras. The turbulence model 

is adjusting the flow and removes the secondary suction peaks as expected, since the 

turbulent boundary layer is thicker than the laminar boundary layer, see Hummel (1973). 

Although there are two suction peaks on each side o f the wing in the laminar solution, 

there is only one suction peak (corresponding to the primary vortex) in all turbulent 

cases. The Spalart-Allmaras solution gives slightly higher suction peaks values than the 

laminar and Baldwin-Lomax solutions. Although the primary vortex suction peak for the 

laminar solution is equal to -3.0, the suction peaks for Baldwin-Lomax and Spalart- 

Allmaras models are equal to -3 .2  and -3.4; respectively.

Figure 6.25 shows the particle traces over the delta wing and the Mach number 

contours at a  = 40°. The vortex core is tight and travels smoothly from the apex until the 

vortex breakdown region, where the particle traces start to move in a strong spiral 

motion. The flow is decelerated behind the breakdown region and slightly asymmetric. 

The high Mach number regions are concentrated in the vortex core up front the 

breakdown region. Both small-scale and large-scale spiral motions are present in the 

flow. The small ones are present in front o f  the breakdown whereas the large ones are 

present behind the breakdown region.
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Figure 6.26 shows the spanwise pressure coefficient distribution comparison 

among the laminar, Baldwin-Lomax, and Spalart-Allmaras cases for a  = 52°. The 

vortex breakdown has reached the x = 0.6 chord station and the pressure peak is 

attenuated at and behind this location. Again, two suction peaks are noticed in the 

laminar solution and only one peak in the Baldwin-Lomax and Spalart-Allmaras 

turbulent solutions at x = 0.3. The Spalart-Allmaras turbulent solution shows breakdown 

up to x = 0.3 and flow asymmetry. Figure 6.27 shows the streamlines over the delta 

wing and the Mach number contours at a  = 52°. The flow is highly asymmetric and 

large-scale spiral motion exists over large portion o f the wing surface. Figure 6.28 shows 

the spanwise pressure coefficient distribution comparison among the laminar, Baldwin- 

Lomax, and Spalart-Allmaras cases for a  = 60°. The vortex breakdown has reached x = 

0.3 station and the pressure peaks have disappeared.

Figures 6.29 shows the axial velocity contour comparison among the three cases; 

laminar, Baldwin-Lomax, and Spalart-Allmaras, for a  = 40° at two axial stations o f x = 

0.3 and 0.9. Although the axial velocity value inside the right vortex core at x = 0.9 in 

the laminar solution has a value o f 0.44 the corresponding value using Baldwin-Lomax 

model is 0.07 and Spalart-Allmaras model is 0.03; the turbulent quantities decelerate the 

flow inside the vortex core faster. Also the vortex core is more concentrated for 

turbulent cases. The flow is symmetric for all cases.

Figure 6.30 shows the axial velocity contours comparison among the three cases; 

laminar, Baldwin-Lomax, and Spalart-Allmaras, for a  = 60° at two axial stations o f x = 

0.3 and 0.9. Both axial chord stations for all cases have passed through vortex 

breakdown. The largest axial velocity value inside the vortex core for laminar, Baldwin- 

Lomax, and Spalart-Allmaras at x = 0.9 is - 0.12, - 0.09, and - 0.13; respectively.
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The standard Spalart-Allmaras model failed in modeling this type of flow at very 

large angles o f attack ( > 60°) with the current grid resolution. The model should be 

tailored to suit these kind o f  large separated flows or the turbulent quantities should be 

applied in all three directions to take into considerations the boundary layer effects in the 

wrap-around and axial directions. This big difference at very high angles o f attack may 

also be attributed to the grid resolution at the trailing edge where the vortex breakdown 

crosses and moves over the wing surface. The Spalart-Allmaras model needs a finer grid 

than the Baldwin-Lomax model. Utilization o f the Baldwin-Lomax turbulence model 

gives better results than Spalart-Allmaras model for this specific case and flow condition.

The differences between this case and the Baldwin-Lomax solution are 

appreciable. In general, Baldwin-Lomax model introduced some improvements o f the 

computational results regarding Co-a curve in comparison with the experimental data up 

to an angle o f attack o f about 65°. Moreover, a higher order turbulence model may 

improve the predictions at very large angles o f attack. A requirement for fine grid 

resolution is suspected for the Spalart-Allmaras model.
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Figure 6.22: Drag coefficient vs. a  using Spalart-Allmaras model
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Figure 6.23: Mach number contours and particle traces over the delta wing at 
a  =  32° using Spalart-Allmaras model
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Figure 6.27: Mach number contours and paxticle traces over the delta wing at 
a = 52° using Spalart-A llm aras model
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6.3 Pitch-Up Pitch-Down Case

The delta wing model used in the present computational study consists o f a 63.5° 

swept back, sharp-edged wing with zero thickness and aspect ratio o f two. The three- 

dimensional grid topology used in the calculations is an O-H grid o f 84 x 65 x 43 in the 

axial, wrap-around, and outward directions, respectively, similar to that o f Figure 5.1. 

The pitch axis is located at two thirds o f the root chord station, as measured from the 

wing vertex.

The wing is forced to undergo a pitch-up pitch-down motion through a sinusoidal 

function shown in Figure 6.31, which is related to the reduced frequency. The ffeestream 

Mach number and Reynolds number are 0.3 and 0.45 x 106, respectively. The unsteady, 

RANS Equations are integrated time accurately with At = 0.002. The reduced frequency 

(Q C /a * ,)  is equal to 0.058. The Baldwin-Lomax turbulence model was used to 

account for the turbulent quantities. The total numbers o f  time steps, which are needed 

to complete one cycle (0° to 90° to 0°) are 205,800 time steps. Each iteration took 2.2 

seconds o f running time based on a CRAY-90 at NASA Ames Research Center.

Figure 6.32 shows the variations o f Cl with a  o f the present computational results 

and the corresponding values o f  the experimental data o f Jarrah (1988). Both results are 

in good agreement except around a  near 20° to 50° in the upstroke and from 40° to 25° in 

the downstroke. The computed results under-estimate the experimental data in the 

upstroke motion and over-estimate the experimental data in the downstroke motion. 

This difference is attributed to the massive flow separation at very high angles o f attack 

after the onset o f  the vortex breakdown. Another source might be the coarse grid used to
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capture the massive flow separation and the vortex breakdown regions. Also, the 

uncertainty in measuring the normal force coefficient in the experimental data is around 

7.5%.

Figure 6.33 shows the variations o f Co with a. A good agreement between the 

computed C d values o f the present study and those o f the experimental data of Jarrah 

(1988) is observed except around a  near 40° to 65° in the upstroke and from 45° to 30° in 

the downstroke. The computed results under-estimate the experimental data in the 

upstroke motion and overestimate the experimental data in the downstroke motion. 

Again this is attributed to the coarse grid resolution used in the vortex breakdown region. 

The difference between the upstroke and downstroke motion is because of the hysteresis 

effects o f  the unsteady flow. The vortex breakdown starts at the trailing edge around 30°, 

which is below the corresponding value from the previous cases.

Figures 6.34 and 6.35 show comparisons between particle traces at the leading 

edge vortices over the wing surface and spanwise pressure coefficient distributions for 

pitch-up at a  = 25° and the corresponding graph for the pitch-down motion at the same 

angle o f  attack. Although the flow is relatively smooth over a large portion of the wing 

surface for the pitch-up motion the flow is highly turbulent in the pitch-down motion. 

Also in the pitch-down motion there are nearly no suction peaks. This difference can be 

attributed to the hysteresis effects o f the unsteady m otion. In the pitch-down period, 

while the wing is moving, the flow has a short period o f time to adjust with the wing 

motion. In other words, the flow response is lagging behind the wing motion.

Figures 6.36 and 6.37 show cross-flow instantaneous streamlines at a  = 25° and 

for three chord stations o f  x = 0.3, 0.6, and 0.9 for both pitch-up and pitch-down motion.
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For pitch-up, the vortex breakdown is close to x = 0.9 station and the spiral motion is 

about to start near this location. Although the flow is symmetric in the pitch-up motion, 

the asymmetry o f the flow can be seen from the pitch-down motion. Figures 6.38 and 

6.39 show axial velocity contours at a  = 25° and for three chord stations o f x = 0.3, 0.6, 

and 0.9 for both pitch-up and pitch-down motion. While the flow does not yet 

breakdown at any axial station in the pitch-up motion, the vortex breakdown covers most 

o f  the wing surface in the pitch-down motion. Large portions o f the flow in the pitch- 

down motion are reversing direction as can be seen from the negative values o f the axial 

velocity at x = 0.3, 0.6 and 0.9. Figures 6.40 and 6.41 show Mach number contours at a  

= 25° and for three chord stations o f x=0.3, 0.6, and 0.9 for both pitch-up and pitch-down 

motion. There is flow deceleration in the downstream direction and the vortex core does 

not yet develop in the pitch-down motion.

Figures 6.42 and 6-43 show comparison between streamlines over the wing 

surface and spanwise pressure coefficient distributions for pitch-up at a  = 36° and the 

corresponding graph for the pitch-down motion at the same angle o f  attack. The vortex 

breakdown location for the pitch-up motion moved to the axial station of 0.6. The two- 

pressure suction peaks at x =  0.6 and 0.9 are weakened for the pitch-up motion. There is 

no pressure suction peak for the pitch-down motion. The particle traces show that vortex 

breakdown exists over a large portion o f the wing surface for the pitch-down motion 

which correlates with the decrease in lift coefficient during the pitch-down motion. 

Again this difference is attributed to the hysteresis effects o f  the unsteady motion.

Figures 6.44 and 6.45 show cross-flow instantaneous streamlines at a  =  36° and 

for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up and pitch-down motion.
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For pitch-up, the vortex breakdown is at x = 0.6 station and the spiral motion is getting 

stronger at this location. Again, although the flow is symmetric in the pitch-up motion, 

the asymmetry o f  the flow can be seen from the pitch-down motion. Figures 6.46 and 

6.47 show axial velocity contours at a  = 36° and for three chord stations o f x = 0.3, 0.6, 

and 0.9 for both pitch-up and pitch-down motion. The flow starts to reverse direction at 

x = 0.6 for the pitch-up motion but the flow remains symmetric. Most o f the flow in the 

vortex breakdown regions in the pitch-down motion is reversing direction. Figures 6.48 

and 6.49 show Mach number contours at a  = 36° and for three chord stations o f x = 0.3, 

0.6, and 0.9 for both pitch-up and pitch-down motion. The flow starts to decelerate 

inside the vortex core region in the pitch-up motion while some portions o f the flow over 

the wing surface are nearly stagnant in the pitch-down motion.

Figures 6.50 and 6-51 show comparison between streamlines over the wing 

surface and spanwise pressure coefficient distributions for pitch-up at a  = 48° and the 

corresponding graph for the pitch-down motion at the same angle o f  attack. The vortex 

breakdown reaches x = 0.3 for the pitch-up motion. A large portion o f the flow in the 

pitch-down motion is stagnant. Figures 6.52 and 6.53 show cross-flow instantaneous 

streamlines at a  = 48° and for three chord stations of x = 0.3, 0.6, and 0.9 for both pitch- 

up and pitch-down motion. The flow is still symmetric in the pitch-up motion and highly 

asymmetric in the pitch-down motion. Figures 6.54 and 6.55 show axial velocity 

contours at a  = 48° and for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up 

and pitch-down motion. Both pitch-up and pitch-down motions have large negative 

velocity areas over the wing surface with symmetric flow for the pitch-up motion and 

asymmetric flow for the pitch-down motion. Figures 6.56 and 6.57 show Mach number
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contours at a  = 48° and for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up 

and pitch-down motion.

Figures 6.58, 6-59, 6.66, and 6.67 show comparison between particle traces over 

the wing surface and spanwise pressure coefficient distributions for pitch-up at a  = 60° 

and 72° and the corresponding graph for the pitch-down motion at the same angle of 

attack. Figures 6.60, 6.61, 6.68, and 6.69 show cross-flow instantaneous streamlines at 

a  = 60° and 72° and for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up and 

pitch-down motion. Figures 6.62, 6.63, 6.70, and 6.71 show axial velocity contours at a  

= 60° and 72° and for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up and 

pitch-down motion. Both pitch-up and pitch-down motions have large negative velocity 

areas over the wing surface with symmetric flow for the pitch-up motion and asymmetric 

flow for the pitch-down motion. Figures 6.64, 6.65, 6.72, and 6.73 show Mach number 

contours at a  = 48° and for three chord stations o f x = 0.3, 0.6, and 0.9 for both pitch-up 

and pitch-down motion. The flow remains symmetric for the pitch-up motion even at 

higher angles o f attack and large vortex-breakdown regions o f the flow.
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x=0.3. (b) x=0.6. and (c) x=0.9
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Figure 6.45: Cross-flow instantaneous streamlines for pitch-down at a  =  36° and 
(a) x=0.3, (b) x=0.6, and (c) x=0.9
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Figure 6.46: Axial velocity contours for pitch-up at a  =  36° and (a) x=0.3. 
x=0.6. and (c) x=0.9
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Figure 6.47: Axial velocity contours for pitch-down at a = 36° and (a) x=0.3. 
x=0.6, and (c) x=0.9
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Figure 6.48: Mach Number contours for pitch-up at a = 36° and (a) x=0.3. (b) 
x=0.6, and (c) x=0.9
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Figure 6.49: Mach Number contours for pitch-down at a  =  36° and (a) x=0.3. (b) 
x=0.6, and (c) x=0.9
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Figure 6.51: Particle traces over the delta wing and spanwise pressure coefficient 
distributions for pitch-down a t a  =  48°
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Figure 6.52: Cross-flow instantaneous streamlines for pitch-up at a = 4S° and (a) 
x=0.3, (b) x=0.6. and (c) x=0.9
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Figure 6.53: Cross-flow instantaneous streamlines for pitch-down at a =  48° and 
(a) x=0.3, (b) x=0.6, and (c) x=0.9
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Figure 6.55: Axial velocity contours for pitch-down at a  =  48° and (a) x=0.3, 
x=0.6, and (c) x=0.9

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Pitch-Up
a=48°

. M ach N um ber C o n tours M ach N um ber C on to u rs M ach N um ber C o n tours

(c) x=0.9(b) x=0.6(a) x=0.3

Figure 6.56: Mach Number contours for pitch-up at a  =  48° and (a) x=0.3. 
x=0.6. and (c) x=0.9
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Figure 6.57: Mach Number contours for pitch-down at a  =  48° and (a) x=0.3. 
x=0.6, and (c) x=0.9.
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Figure 6.58: Particle traces over the delta wing and spanwise pressure coefficient 
distributions for pitch-up at a  =  60°
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Figure 6.59: Particle traces over the delta wing and spanwise pressure coefficient 
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Figure 6.60: Cross-flow instantaneous streamlines for pitch-up at a  = 60° and (a) 
x=0.3. (b) x=0.6. and (c) x=0.9
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Figure 6.61: Cross-flow instantaneous streamlines for pitch-down at a  = 6CF and 
(a) x=0.3. (b) x=0.6, and (c) x=0.9
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Figure 6.62: Axial velocity contours for pitch-up at a =  60° and (a) x=0.3. 
x=0.6. and (c) x=0.9
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Figure 6.63: Axial velocity contours for pitch-down at a  =  60° and (a) x—0.3. 
x=0.6, and (c) x=0.9
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Figure 6.66: Particle traces over the delta wing and spanwise pressure coefficient 
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Figure 6.67: Particle traces over the delta wing and spanwise pressure coefficient 
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Figure 6.6S: Cross-flow instantaneous streamlines for pitch-up at a = 72° and (a) 
x=0.3, (b) x=0.6, and (c) x=0.9
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Figure 6.69: Cross-flow instantaneous streamlines for pitch-down at a  =  72° and 
(a) x=0.3, (b) x=0.6, and (c) x=0.9
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6.4 Summary

Both Baldwin-Lomax and Spalart-Allmaras turbulence models were used and the 

results were compared with each other and with those o f the experimental data as well. 

A pitching sinusoidal motion of the wing was also investigated. The Baldwin-Lomax 

model introduced some improvements o f the computational results o f  C l and C d- The 

standard Spalart-Allmaras model failed in modeling and simulating the flow at very large 

angles o f  attack ( > 60°) with the current grid resolution. In the sinusoidal pitching case, 

there was a substantial difference in the lift and drag coefficients between the upstroke 

and downstroke motion because o f the hysteresis effects o f the unsteady motion. The 

asymmetry o f the flow was obvious from the pitch-down motion at low angles o f attack. 

Also, as the aspect ratio increased the vortex breakdown at the trailing edge started at a 

lower angle o f attack, in comparison with that o f  a low aspect ratio wing.
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CHAPTER 7 

FLOW CONTROL

7.1 Initial Conditions

The delta wing model used in the current case consists o f a 60° swept back, sharp- 

edged with zero thickness and an aspect ratio o f 2.3. The three-dimensional grid 

topology used in the calculations along with a cross section at the trailing edge is shown 

in Fig. 7.1. The grid dimensions are 81 x 65 x 41 in the axial, wrap-around, and normal 

directions, respectively. The pitch axis is located at two third the root chord station. The 

freestream Mach number and Reynolds number are 0.3 and 0.45 x 106, respectively. The 

initial conditions used for the blowing case correspond to the solution of a stationary 

wing impulsively inserted into the freestream conditions. The wing is held at an angle o f 

attack o f 30° for 17,000 time steps which equals a total dimensionless time o f 17 when 

At = 0.001.

Figure 7.2 shows spanwise pressure coefficient distributions for three axial 

locations; x = 0.3, 0.6, and 0.9. The vortex breakdown covers all the three axial station, 

as it is obvious from the pressure coefficient distributions. The pressure coefficient is 

flattening at x = 0.3. Figure 7.3 shows the axial velocity contours at x = 0.3, 0.6 and 

0.9. The flow is decelerated inside the vortex core region showing negative axial velocity 

values. While the axial velocity inside the vortex core at x = 0.3 is equal -0 .1 4 , its value 

at x = 0.6 and 0.9 is -  0.12 and -  0.08; respectively.

Figure 7.4 shows the cross-flow instantaneous streamlines at x =0.3, 0.6, and 0.9. 

Although vortex breakdown covers the three locations, the vortex core size is different at
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the three locations. Also secondary vortices can be seen from Fig. 7.4 at x = 0.9. Figure 

7.5 shows Mach number contours at x = 0.3, 0.6, and 0.9. The flow is slightly 

asymmetric as can be seen from the different Mach number values on both sides of the 

plane o f symmetry. Figure 7.6 shows the particle traces and Mach number contours over 

the delta wing. It is obvious from this figure that the vortex breakdown covers most of 

the wing surface. The spiral motion o f the particles becomes stronger as the particles 

move downstream.
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7.2 Blowing Solution

The blowing type used in the current study is a new blowing technique where the 

blowing ports are located at the trailing edge of the wing. The fluid is injected 

downstream with an angle to the axial direction equal to 20° downward. See Fig. 7.7. 

After applying the blowing, the lift coefficient has increased slightly from 1.2 to 1.37 but 

in the same time the drag coefficient has increased from 0.70 to 0.8. The lift-to-drag ratio 

is remained constant at 1.71. Figure 7.8 shows the lift and drag coefficients history 

before and after applying the current blowing technique.

Figure 7.9 shows spanwise pressure coefficient distributions for three axial 

locations; x = 0.3, 0.6, and 0.9. The pressure coefficient is flattening at x = 0.3 and its 

value on suction side is relatively smaller than the corresponding value of no blowing 

solution. Figure 7.10 shows the axial velocity contours at x = 0.3, 0.6 and 0.9. All the 

three locations indicate negative axial velocity inside the vortex core. The absolute value 

of the axial velocity inside the vortex core is higher than the no-blowing solution at all 

locations. After applying blowing the asymmetry o f the flow starts as can be seen from 

Figures 7.9 and 7.10.

Figure 7.11 shows the cross-flow instantaneous streamlines at x = 0.3, 0.6, and 

0.9. The vortex breakdown is strengthened at all locations. Also the original vortex has 

been broken into smaller vortices near the wing surface. Figure 7.12 shows Mach 

number contours at x =0.3, 0.6, and 0.9. The flow is asymmetric as can be seen from the 

different Mach number values on both sides o f the plane o f  symmetry. Figure 7.13 

shows the particle traces and Mach number contours over the delta wing. The iso-
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surface contours show that the vortex core has been broken near trailing edge. The spiral 

motion of the particles is strengthened as the particles move downstream.

20 /  

/
Figure 7.7: Schematic o f the current blowing technique
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Figure 7.13: Particle traces and Mach num ber contours over the delta wing at 
a  =  30°
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7.3 Summary

The concept o f  blowing to enhance aerodynamic performance at very large 

incidence was investigated. Blowing at the trailing edge with an angle equal to 20° 

downward was used. Both lift and drag coefficients were increased. The vortex 

breakdown has been strengthened and the vortex core has broken into small discrete 

vortices near the wing surface. Still there is a need to investigate other types o f blowing. 

There are many parameters that can affect the blowing process (blowing rate, blowing 

ports location, continuous or pulsating, steady or unsteady blowing) and which should be 

investigated thoroughly.
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Computational results provide complete information and details about the 

flowfield response, which was not available from existing experimental data. This 

investigation o f the unsteady flow over a wide range o f angles o f attack provide crucial 

understanding o f the variations o f the leading edge vortex cores, their breakdown 

behavior and wing aerodynamic characteristics at very high angles of attack. The current 

study also shows that the computational solutions and results in the very high angle of 

attack range are obtainable. Such calculations were thought to be unattainable as recently 

as the 1980’s.

8.1.1 Laminar Flow Solutions

8.1.1.1 Validation with Experimental Data

In general, the current predicted results were in very good agreement with the 

corresponding experimental data. The lift coefficient values were within the uncertainty 

error range o f the experimental data. For the drag coefficient, the laminar results 

showed good agreement with the corresponding experimental data except at very high 

angles o f attack ( a  > 60°) where the difference between the predicted values and the 

experimental values reached about 24% maximum (not including the experimental 

uncertainty error). The differences were believed to be due to the grid resolution 

particularly at the trailing edge where the vortex breakdown crosses this location at
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a  = 39°. As the angle o f attack increased above this critical angle the vortex breakdown 

advanced upstream with an upward displacement and lateral expansion.

At low angles o f attack, a tight vortex core developed at the leading edge o f the 

wing. As the angle o f attack increased, the vortex core expand until it broke down at the 

trailing edge around a  = 39°, due to the adverse axial pressure gradient. Then, the 

breakdown point moved upstream and expanding the size o f the vortex core, due to the 

axial momentum loss. After the angle o f attack reached a  = 40°, the breakdown moved 

upstream of the trailing edge and as the angle o f attack increased the breakdown moved 

further upstream. In the same time, the vortex core pair flows expanded and coalesced. 

Flow asymmetry started also after breakdown moved upstream over the wing and 

increased with increasing the angle o f attack. At a  = 70° the breakdown moved 

significantly upstream overwhelming a larger area o f  the wing making this region a non

lifting area. The remaining area o f the wing continued to generate a lift force. At 

a  = 90°, the whole wing was no longer generating any lift.

8.1.1.2 Fine Grid Solution

The grid resolution had a major effect in obtaining accurate results but 

unfortunately there was a trade-off between using fine grid and obtaining a highly 

accurate solution on one hand and obtaining a faster solution on the other hand. The fine 

grid solution gave better resolution o f the flow details. Although the coarse grid was 

refined by adding few points in the wrap-around and normal directions (16 and 7 grid 

points), the resulting fine grid was able to capture the secondary vortices. Lift and drag 

coefficients were slightly different from those o f the coarse grid solution.
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8.1.1.3 Reduced Frequency Effect

As the reduced frequency increased, the lift and drag coefficient peaks increased. 

The vortex core expanded more rapidly as the reduced frequency was decreased, and 

early vortex breakdown occurred. Flow asymmetry was also pronounced as the reduced 

frequency decreased. These flow responses were attributed to the fact that as the reduced 

frequency decreased, the flow would have longer time to adjust to the forced wing 

motion. Aerodynamically, highly swept-back winged aircraft could fly safely (delayed 

vortex breakdown and consequently delayed stall) during maneuvers using very high 

reduced frequency values at high angles o f attack.

8.1.2 Turbulent Flow Solutions

8.1.2.1 Results Using Baldwin-Lomax Model

Using Baldwin-Lomax turbulence model enhanced the computed C l values. On 

the other hand, the computed C d values were slightly enhanced. The good agreement 

with the experimental data has been improved up to a  = 65°. The turbulent model 

smoothed the pressure coefficient near the leading edge and only one suction peak was 

present in the flow, which corresponds to the primary vortex. The effects o f secondary 

vortices disappeared from the pressure coefficient curves due to the thick turbulent 

boundary layer flow on the wing surface.

8.1.2.2 Results Using Spalart-AIImaras Model

Spalart-Allmaras produced good results compared to experimental data until 

a  = 35°, then the differences increased as a  increased. The turbulent quantities were
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applied in only one direction (normal) and a coarse grid was used in the investigation. 

The coarse grid was used because o f the restrictions on computational costs. In general, 

Baldwin-Lomax model introduced some improvements of the computational results of 

the lift and drag coefficients in comparison with those o f the Spalart-AIImaras model.

8.1.2.3 Pitch-Up Pitch-Down Sinusoidal Case

There was a substantial difference in the lift and drag coefficients between the 

upstroke and downstroke motion because o f the hysteresis effects o f  the unsteady motion. 

As the aspect ratio increased the vortex breakdown at the trailing edge started at a lower 

angle o f attack, in comparison with that of a low aspect ratio wing. Although the flow 

stayed symmetric in the pitch-up motion even at high angles o f  attack values, the 

asymmetry o f the flow was obvious from the pitch-down motion at low angles of attack. 

Vortex breakdown occurred over a large portion o f the wing surface for the pitch-down 

motion, which justified the decrease in lift coefficient during this part o f the motion. The 

vortex core reformation was delayed during the pitch-down motion because o f the 

hysteresis effects o f the unsteady motion.

8.1.3 Flow Control

The vortex breakdown was strengthened and the vortex core was broken into 

small discrete vortices near the wing surface. Although the current blowing technique 

has enhanced the lift coefficient, it increases the drag coefficient.
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8.2 Recommendations

The current study concentrated on sharp-edged delta wings and it is recommended 

in future work to include thickness and camber. Also, it is o f  great value if  the current 

study could be tested using different reduced frequencies at various Mach and Reynolds 

numbers to see the effect o f  the last two parameters on the results and compare these 

results with the experimental data. The aspect ratio (sweep angle) effects should also be 

investigated. All the cases considered in the present study have zero sideslip angles. 

In future work, investigation o f the unsteadiness behavior o f  delta wing at large 

amplitude pitching and with sideslip angle is recommended. The pitch/roll and 

pitch/yaw interaction should also be considered in future work.

Due to the strong vortex movement and breakdown over the wing surface, there is 

a need for the development o f a dynamic, adaptive, fine grid resolution compatible with 

the vortex breakdown motion and deformation. The use o f a fine mesh with high order 

turbulence models is o f great importance. The turbulence model should be tailored to be 

suitable for large separated flows. Also applying the turbulent quantities in all coordinate 

directions is highly recommended. Moreover, a higher-order turbulence model may 

improve the predictions at very large angles o f attack.

There is a need still to investigate other types o f blowing. Also the use of 

unsteady blowing techniques is recommended for forced dynamic motion (pitching, 

rolling, and yawing).
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