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ABSTRACT 

DIRECT CURRENT ELECTROKINETIC PARTICLE TRANSPORT 
IN MICRO/NANO-FLUIDICS 

YeAi 
Old Dominion University, 2011 

Director Dr Shizhi Qian 

Electrokinetics has been widely used to propel and manipulate particles in 

micro/nano-fluidics The first part of this dissertation focuses on numerical and 

experimental studies of direct current (DC) electrokmetic particle transport in 

microfluidics, with emphasis on dielectrophoretic (DEP) effect Especially, the 

electrokmetic transports of spherical particles in a converging-diverging microchannel 

and an L-shaped microchannel, and cylindrical algal cells in a straight microchannel have 

been numerically and experimentally studied The numencal predictions are in 

quantitative agreement with our own and other researchers' experimental results It has 

been demonstrated that the DC DEP effect, neglected in existing numerical models, plays 

an important role in the electrokmetic particle transport and must be taken into account in 

the numerical modeling The induced DEP effect could be utilized in microfluidic 

devices to separate, focus and trap particles in a continuous flow, and align non-spherical 

particles with their longest axis parallel to the applied electric field The DEP particle-

particle interaction always tends to chain and align particles parallel to the applied 

electric field, independent of the initial particle orientation except an unstable orientation 

perpendicular to the electric field imposed 

The second part of this dissertation for the first time develops a continuum-based 

numerical model, which is capable of dynamically tracking the particle translocation 



through a nanopore with a full consideration of the electrical double layers (EDLs) 

formed adjacent to the charged particles and nanopores The predictions on the ionic 

current change due to the presence of particles inside the nanopore are in qualitative 

agreement with molecular dynamics simulations and existing experimental results It has 

been found that the initial orientation of the particle plays an important role in the particle 

translocation and also the ionic current through the nanopore Furthermore, field effect 

control of DNA translocation through a nanopore using a gate electrode coated on the 

outer surface of the nanopore has been numerically demonstrated This technique offers a 

more flexible and electrically compatible approach to regulate the DNA translocation 

through a nanopore for DNA sequencing 
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CHAPTER 1 

INTRODUCTION 

1.1 Microfluidics 

Microfluidics refers to the scientific research of systems that process fluids or 

suspended droplets and particles confined in microchannels The original motivation for 

the development of microfluidic systems came with the demand of micro-analytical tools 

for biological and chemical applications, especially explosion of genomics in the 1980s 

(Whitesides 2006) Meanwhile, the significant advances in microfabncation technology, 

successfully utilized in microelectronics, also boost the development of microfluidics 

(Verpoorte and De Rooij 2003, Whitesides 2006) Analogous to the significant impact of 

integrated electronic circuits on computation and automation, microfluidics holds a 

similar promise of revolutionizing biology and chemistry The tiny dimension of 

microchannels and highly integrated channel network fulfill the demands of parallel and 

automatic analysis, low consumptions of reagents, rapid response, great sensitivity and 

portability for many biochemical applications To sum up, microfluidic systems have 

extensive potential applications including bio-detection, chemical and biological reactors, 

medicine synthesis, clinical diagnostics, and environmental monitoring (Lee et al 2005, 

Lucchetta et al 2005, Xu et al 2005, Dittrich and Manz 2006, Mehn and Quake 2007, 

Gomez 2008, Teh et al 2008, Ahmed et al 2010, Lombardi and Dittrich 2010, Wang and 

Wong 2010) A recent market research report from BCC Research (2010) shows that the 

global market value of microfluidic products (also called Lab-on-a-chip devices) is 
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estimated at $2 6 billion in 2009, which is predicted to increase to nearly $6 billion in 

2014 with a compound annual growth rate of 17 7% 

Figure 1 1 A microfluidic chemostat presenting a near-constant environment is ideal for the 

study of microbes and microbial communities (Balagadde et al 2005) Food dyes are used to 

clearly visualize microchannels and other components The coin is 18 mm in diameter 

At the earliest stage of microfluidics, silicon and glass were widely used to fabricate 

microfluidic devices However, silicon and glass are expensive for mass production In 

particular, silicon is opaque to optical light which is usually necessary for detection and 

analysis Therefore, Whitesides's group (Duffy et al 1998, Xia and Whitesides 1998, 

Whitesides et al 2001, Whitesides and Stroock 2001) developed a cheap and rapid 

prototyping technique especially for microfluidics, namely soft lithography This 

technique could utilize cheap and transparent plastics, such as poly-dimethyl-siloxane 

(PDMS), instead of silicon and glass to fabricate microfluidic devices Commonly, a 

functional microfluidic system consists of various components introducing (e g 

reservoir), moving (e g pump), switching (e g valve), mixing (e g mixer) and detecting 
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(e g sensors) reagents and samples in a complex channel network Apparently, a single 

layer of flow channel network is not able to accomplish a high integration of all these 

components In addition, some components like valves are very difficult to fabricate in a 

single layer Stephen Quake's group at Stanford University developed a multilayer soft 

lithography (MSL) technique for the development of complex microfluidic systems 

(Unger et al 2000) A complex microfluidic chemostat fabricated based the MSL 

technique for microbiological research is shown in Figure 1 1 This MSL technique offers 

a cost-effective way to fabricate highly integrated microfluidic devices, which resolves 

one of the most challenging issues in the development of marketable microfluidic devices 

1.2 Nanofluidics 

Recently, there has been a growing interest in the nanopore-based sensing at one 

single molecule level, which requires at least one characteristic dimension of the confined 

channel below 100 nm The evolution from microfiuidics to nanofluidics is accompanied 

by emerging physical phenomena (Schoch et al 2008, Sparreboom et al 2009, Daiguji 

2010) For example, ion transport in nanofluidics is surface-charge-governed and 

independent of the bulk ionic concentration, owing to the increasing surface-to-volume 

ratio (Daiguji et al 2003, Stein et al 2004, Karnik et al 2005, Schoch et al 2005, Nam et 

al 2009, Cheng and Guo 2010, Daiguji 2010, Joshi et al 2010) This unique 

phenomenon offers a probability to selectively control the ion transport through 

nanopores for various applications (Baker et al 2006, Schoch et al 2008, Vlassiouk et al 

2008, Garcia-Gimenez et al 2009) The charge selectivity becomes significant even 

when the characteristic length of the nanofluidic system becomes comparable to the 

Debye screening length (Schoch et al 2008) 
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Significant advances in nanofabncation technology also enable the study and 

application of nanofluidics (Kim etal 2007, Jung et al 2009, Kalman et al 2009, Nam et 

al 2009, Zhang et al 2009, Joshi et al 2010, Lathrop et al 2010) A diode-hke current-

voltage behavior through an asymmetric nanopore, referring to the ionic current 

rectification phenomenon, shows a potential application in the nanofluidic logic circuits 

(Cheng and Guo 2009, Cruz-Chu et al 2009, Howorka and Siwy 2009, Vlassiouk et al 

2009, Yameen et al 2009, Al et al 2010, Cheng and Guo 2010, Guo et al 2010, Yusko 

et al 2010) Analogous to the metal-oxide-semiconductor field effect transistors 

(MOSFETs) in microelectronics, the surface charge of the nanopore can be controlled by 

an electrically addressable gate electrode This kind of concept, referring to a nanofluidic 

field effect transistor (FET) shown in Figure 1 2, opens an opportunity to build up large 

scale integrated ionic circuits for complex biochemical analysis and computation The 

translocation of DNA molecules through a nanopore can be utilized to interrogate the 

order of nucleotide bases in one single DNA molecule The nanopore-based DNA 

sequencing has emerged as one of the most promising approaches to achieve a high 

throughput and affordable DNA sequencing (Storm et al 2005b, Rhee and Burns 2006, 

Dekker 2007, Healy et al 2007, Griffiths 2008, Gupta 2008, Howorka and Siwy 2009, 

Mukhopadhyay 2009, Derrington et al 2010, Lathrop et al 2010, McNally et al 2010) 

Nanofluidics also provides potential applications in clean energy generation (van der 

Heyden et al 2006, Pennathur et al 2007, Xie et al 2008, Wang and Kang 2010) and 

water purification and desalination (Kim et al 2010, Shannon 2010) 
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Figure 1 2 (a) Schematics of a nanofluidic FET (Sparreboom et al 2009) (b) Photograph of a 

fabricated nanofluidic FET The thickness of the nanochannel is 35 nm Three gate electrodes are 

patterned across the nanochannel (Karnik et al 2005) (c) When the gate electrode is not working 

(Vgate ~ 0), the surface potential of the nanopore is negatively charged If a positive gate potential 

is applied (Vgate > 0), the surface potential of the nanopore becomes less negative or even positive 

If a negative gate potential is applied (Vgale < 0), the surface potential of the nanopore becomes 

more negative The control of the surface potential enables the regulation of ions inside the 

nanopore (Sparreboom et al 2009) 
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1.3 Particle Transport and Manipulation in Micro/nanofluidics 

Transport and manipulation of micro/nano-scale synthesized particles and bio-

particles for biomedical applications has become one of the critical issues in micro/nano-

fluidics (Toner and Inmia 2005, Castillo et al 2009, Kang and Li 2009) For example, 

blood is a very complex mixture of various cells, including red blood cells, white blood 

cells and platelets If only red blood cells are required for analysis, they have to be 

separated from the others, concentrated and trapped in a microfluidic device prior to 

further genomic analysis or clinical diagnostics (Toner and Inmia 2005) Traditional 

manipulation techniques for macroscopic objects are not efficient for micro/nano-scale 

particles due to the size effect As a result, various techniques have emerged to propel 

and manipulate particles in micro/nano-fluidics, which are reviewed in the following 

section 

1.3.1 Inertial Hydrodynamic Technique 

It is generally thought that particles should follow flow streamlines in microflows 

under laminar flow condition However, Di Carlo et al (2007) found that particles 

experience a cross-stream motion in a continuous microflow arising from a significant 

inertial lift force when the particle Reynolds number is of order 1 This kind of mertia-

mduced cross-stream motion could be utilized for a particle focusing in microfluidics 

(Parketal 2009a, Russom et al 2009, Oakey et al 2010) Furthermore, the degree of the 

cross-stream motion highly depends on the particle size, which has also been 

implemented to separate and filtrate particles in a microfluidic device (Di Carlo et al 

2008) However, this technique requires a very high flow velocity (order of 1 mis), 



7 

accordingly very high pressure, to generate a dominant inertial lift force In addition, a 

very long microchannel is required to achieve a significant cross-stream motion 

1.3.2 Magnetic Technique 

Magnetic fields have been successfully applied to manipulate magnetic beads in 

microfluidics (Pamme 2006, Pamme 2007) In the continuous flow magnetic separation, 

the magnetic field is applied in the lateral direction perpendicular to the particle flow As 

a result, magnetic particles are pulled toward the magnetic field, which in turn separates 

them from non-magnetic particles Manipulation of non-magnetic biological materials 

can be achieved by attaching magnetic beads on the material surface With the use of this 

magnetic labeling technique, manipulation of many biological entities such as lysozyme 

crystals (Wakayama 1998), helix-turn-helyx peptides (Lazar et al 2005), cells (Iwasaka 

et al 2006), and amyloid peptides nanotubes (Reches and Gazit 2006), have been 

demonstrated using magnetic fields The magnetic technique has several advantages 

compared to some other particle manipulation techniques First, physical contact between 

the magnet and the liquid is not necessary Second, the magnetic field usually does not 

induce significant damages to biological entities However, most biological entities do 

not exhibit intrinsic magnetism, the magnetic labeling is thus necessary The magnetic 

force is a body force, which is proportional to the particle size Therefore, it is quite 

difficult to manipulate a single nanoparticle using this technique 

1.3.3 Acoustic Technique 

The acoustic technique is a non-invasive particle manipulation method in 

microfluidics In this method, a piezoelectric transducer is usually used to generate an 

acoustic wave laterally across a microchannel, which is perpendicular to the particle flow 
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The acoustic wave exerts an extra force on the particles immersed in the acoustic field 

The direction of the acoustic force highly depends on the properties of the particle and 

the liquid medium In general, solid particles are pushed to the pressure node while gas 

bubbles move toward the anti-node The number of pressure nodes across the 

microchannel is controlled by matching the wave length to the width of the microchannel 

The acoustic technique has been used to focus and separate particles or cells in 

microfluidic devices (Nilsson et al 2004, Petersson et al 2005, Laurell et al 2007, 

Petersson et al 2007, Shi et al 2008, Alvarez et al 2009, Yeo and Friend 2009, Koklu et 

al 2010b, Rogers et al 2010) As the acoustic force is also proportional to the particle 

size, the acoustic technique is not applicable when manipulating nanometer-sized 

particles 

1.3.4 Optical Tweezers Technique 

Optical tweezers refer to a highly-focused laser beam which exerts an attractive or 

repulsive force on the particle in an optical field It is also a non-invasive particle 

manipulation technique Usually, a particle with a higher refractive index than the 

surrounding medium is attracted to the region of maximum light intensity Ashkin and 

co-workers at AT&T Bell Laboratory (1986) were the first research group who 

experimentally demonstrated that a focused light beam is capable of holding microscopic 

particles in three dimensions The optical tweezers have also been used to measure the 

mechanical properties of DNA molecules by interacting with a bead previously attached 

to the DNA molecule (Wang et al 1997a, Bockelmann et al 2002) In recent years, the 

technique has been widely used to manipulate and study cells and single molecules for 

biological studies in microfluidics (Domachuk et al 2007, Huang et al 2007, Fernades et 
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al 2009, Mm et al 2009, Enksson et al 2010, Neve et al 2010) The optical tweezers 

can precisely control the x-y-z position of the trapped particle with a minimum size of 50 

nm However, due to the requirement of a highly-focused laser beam, it is not easy to 

integrate the optical components into a small microfluidic device 

1.3.5 Thermophoresis Technique 

Thermophoresis is the motion of particles suspended in aqueous solutions subjected 

to a thermal gradient, which is very similar to other non-equilibrium transport processes 

such as thermal diffusion Basically, the particle motion under thermophoresis depends 

on the Soret coefficient, defined as the ration of the particle's thermal diffusion 

coefficient to the particle's Brownian diffusion coefficient When the Soret coefficient is 

larger than zero, particles move to the cold side (thermophobic) and vice versa 

(thermophilic) The particle's thermal diffusion coefficient is related to the averaged 

temperature of the suspension It has been found that the particle suspension could switch 

from thermophobic to thermophilic by adjusting the averaged system temperature 

(Iacopini and Piazza 2003) Recently, thermophoresis has been demonstrated to separate 

particles in microfluidics based on their different thermal properties (Piazza 2008, Piazza 

and Parola 2008, Lamhot et al 2010, Vigolo et al 2010, Wienken et al 2010) However, 

the thermal diffusion coefficient is actually restrained in a very narrow range, which 

accordingly limits the separation efficiency of a thermophoresis based microfluidic 

device (Vigolo et al 2010) In addition, the thermal source may also cause significant 

damage to live biological samples, which are commonly interested in microfluidic 

applications 
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1.3.6 Electrokmetic Technique 

As electric fields can be easily scaled down to micro/nano-scale, the electrokmetic 

force acting on a particle becomes dominant in micro/nano-fluidics Electrokinetics has 

become one of the most promising techniques in particle transport and manipulation in 

micro/nano-fluidics using only electric fields (Ramos et al 1998, Hughes 2000, Wong et 

al 2004, Karniadakis et al 2005, Kang and Li 2009) The electrokmetic technique enjoys 

lots of advantages, such as 

(1) Easy fabrication of tiny electrodes makes electrokinetics-based microfluidic 

devices highly portable and disposable 

(2) Microfabncation procedures of microfluidic device and electrode patterning are 

compatible to each other 

(3) It is easy to build electrical interfaces in microfluidic devices for external 

electronic devices 

This dissertation focuses on the numerical modeling and experimental investigations 

of direct current (DC) electrokmetic particle transport in micro/nano-fluidics subjected to 

externally applied DC electric fields In the following, the theories and applications of 

electrokmetic phenomena in micro/nano-fluidics are briefly reviewed 

1.4 Theories and Applications of Electrokinetics 

Electrokinetics refers to a family of several different phenomena that occur in 

colloidal suspensions subjected to external electric fields Based on the type of the 

applied electric field, electrokmetic phenomena can be classified into DC and alternating 

current (AC) electrokinetics In this dissertation, we focus on the DC electrokinetics, in 
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particular electroosmosis, electrophoresis and dielectrophoresis We start with the 

electrical double layer (EDL), which plays a crucial role in the electrokinetic phenomena 

1.4.1 Electrical Double Layer 

In general, most solid surfaces tend to gain surface charges when they are brought 

into contact with ionic aqueous solutions (Hunter 2001, Li 2004) The electrostatic 

interaction between the charged surface and the surrounding ions in turn attracts counter-

ions and repels co-ions from the charged surface As a result, a thin layer predominantly 

occupied with more counter-ions is formed in the vicinity of the charged surface, 

referring to the EDL This layer is actually composed of two layers, the stern layer and 

the diffuse layer, as shown in Figure 1 3 
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Ions within the stern layer are immobilized due to a very strong electrostatic force 

while ions within the diffuse layer are free to move As a result, we mainly focus on the 

diffuse layer The electnc potential arising from the net charge within the diffuse layer 

obeys the classical Poisson equation 

-f /VV = SFz1c,, (1 

1=1 

where ej is the absolute permittivity of the ionic solution, y/ is the electnc potential, F is 

the Faraday constant, z, is the valence of the zth ionic species, c, is the molar 

concentration of the zth ionic species and n is the total number of the ionic species 

The ionic fluxes including the diffusion term, electromigration term and convection 

term are written as 

N, = -D,Vc, - z, —'- Fc,V w + uc, (1 
/ t i l nrT1 i i i v 

In the absence of fluid motion, the ionic fluxes satisfy a simplified Nernst-Planck 

equation 

V . N , = V . ^ - D , V c , - z , A F C ( V ^ O (1 

In the above, £>, is the diffusivity of the zth ionic species, R is the universal gas constant, 

and T is the absolute temperature of the electrolyte solution Equation (13) leads to an 

analytical solution of the ionic concentration in a far field, given as 

c,=C,0exp(-z,-^) , (1 

where C,o is the bulk concentration of the zth species Equation (14) is known as the 

famous Boltzmann distnbution By substituting Equation (14) into Equation (11), the 
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Poisson-Boltzmann equation is obtained by assuming a binary symmetnc ionic solution 

in a one-dimensional space, 

2 z f > 1 ,,zFy/ 
V —— = —rsinh(——) (1 

RT X\ RT 

Here, z = \z,\ and XD = k~x = j£fRT/^j=lF
2z2Cl0 is the Debye length, characterizing the 

EDL thickness It is shown that the Debye length depends on the bulk concentration of 

the ionic solution For example, the Debye length of a charged surface immersed in a 100 

mM KC1 solution at room temperature (25 °C) is about 1 nm The use of the Poisson-

Boltzmann equation implies that the EDL is at its equilibrium state in the absence of any 

disturbance from the external flow field and electric field To satisfy the Boltzmann 

distribution, a far field is also required so that the EDL cannot interact with the other 

nearby EDLs 

RT 
When y/« , Equation (15) can be linearized using the Debye-Huckel 

zF 

approximation (Mashyah and Bhattacharjee 2006) 

V2zFV= 1 zFyf ( 1 

RT X2
D RT 

As a result, the distribution of the electric potential is derived as 

y/ = CtylXD, (1 

where C is the zeta potential at the shear plane defined as the interface between the stern 

layer and the diffuse layer, y is the distance from the shear plane It must be noted that 

RT 
Equation (1 7) is valid when the zeta potential is relatively small If \y » — , Equation 

zF 
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(15) must be further derived as the Gouy-Chapman distribution (Masliyah and 

Bhattacharjee 2006) 

w = 4—atanh(tanh(-^)e^ / A o) 
zF ART 

1.4.2 Electroosmosis 

When an external electric field is applied across a stationary charged surface, the 

excessive counter-ions withm the EDL of the charged surface migrate toward the 

oppositely charged electrode, dragging the viscous fluid with them The induced flow 

motion arising from the electrostatic interaction between the net charge within the EDL 

and the applied electric field refers to electroosmosis, also called electroosmotic flow 

(EOF), as shown m Figure 1 4 
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The electrokinetic force acting on the liquid is written as 

F = E £ F Z , C , = - * / ? > £ , (19) 

1=1 

where E is the externally applied electric field Therefore, the fluid motion is governed by 

the modified Navier-Stokes (NS) equations 

pi— + u«Vu] = -V/? + //V2u-£/VVE, (no) 

and the continuity equation 

V«u=0 , (111) 

where p is the fluid density, u is the fluid velocity, p is the pressure, and fx is the fluid 

dynamic viscosity 

Assuming the external electric field is relatively weak compared to that induced by 

the surface charge of the solid surface, the ionic concentrations near the charged surface 

are not affected by the external electric field If the EOF is fully developed and steady, 

and there is no external pressure gradient across the charged surface, Equations (1 10) 

and (111) lead to a simplified equation 

d2u _ d2yr. 
dy2~Ef dy2 M— = ef-Z-E, (112) 

where u is the x-component fluid velocity Using the following boundary conditions, 

u(y = 0) = 0, — Cv-»oo) = 0, V(y = 0) = £, — 0>-»«>) = 0, Equation (1 12) can be 
dy dy 

easily integrated to gain 

« = ̂ (v{y)-C) (H3) 
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In the above, the exact solution of y/(y) is given in Equation (18) As the electric 

potential due to the surface charge decays to zero in the bulk region, the velocity in the 

bulk region stays a constant— The EDL thickness is on the order of nanometers, 

M 

which is much smaller than the characteristic length of microfluidic devices As a result, 

the velocity profile of an EOF in a microchannel is almost uniform, referring to a plug­

like flow, as shown in Figure 1 4 Therefore, one can use the constant velocity to describe 

the flow outside the EDL, which is known as the famous Smoluchowski slip velocity 

EOF has been widely utilized to convey fluids in micro/nano-fluidic devices for 

various applications, including microelectronics cooling (Jiang et al 2002, Berrouche et 

al 2009), high performance liquid chromatography separations (Chen et al 2003, Chen 

et al 2004), drug delivery (Hirvonen and Guy 1997, Pikal 2001, Chen et al 2007), water 

management in fuel cells (Buie et al 2006, Buie et al 2007), and micro-injection system 

(Gan et al 2000, Pu and Liu 2004, Wang et al 2006, Nie et al 2007) Due to the intrinsic 

plug-like flow profile, EOF transport of species samples can highly diminish the 

dispersion problem, which remains a big issue in pressure-driven transport 

1.4.3 Electrophoresis 

Electrophoresis refers to the migration of charged particles suspended in an aqueous 

solution subjected to an external electric field, as shown in Figure 1 5 The charged 

surface in EOF is stationary, it however becomes mobile in electrophoresis 

The particle's electrophoretic velocity can be written as 

U„=77E, (114) 

where tj is the particle's electrophoretic mobility The governing equations for the steady 

fluid motion, the electric potential and the ionic transport are described as follow 
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n 

-Vp + juV2u - V VYJ FZ.C, = 0. 
1=1 

i=i 

V* -DVc, - z, —*-FcVw + uc, 0 

(1 

(1 

(1 

(1 

The inertial terms in the NS equations are neglected owing to the low Reynolds number 

To determine the particle's steady electrophoretic velocity, one has to balance the 

hydrodynamic force acting on the particle by the electrostatic force acting on the particle 

However, the strongly coupled Equations (1 15) - (1 18) do not lead to a simple analytical 

solution of the particle's electrophoretic velocity 
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Figure 1 5 Schematics of electrophoretic motion of a negatively charged particle 
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Equations (1 17) and (1 18) could be further simplified to the Poisson-Boltzmann 

equation as described in Equation (1 5) under appropriate conditions discussed in Section 

RT 
1 4 1 When the zeta potential of the particle is relatively small (£" < ), the surface 

zF 

conduction within the EDL is negligible Under the condition of a thin EDL (AD « a, 

where a is the characteristic size of the particle), the mobility of a particle suspended in 
an unbounded medium is described as —— , which is known as the Helmholtz-

M 

Smoluchowski law (Mashyah and Bhattacharjee 2006) Under the condition of a thick 

EDL {XD » a), Huckel derived the particle mobility as —-— (Mashyah and 
3ju 

Bhattacharjee 2006) Later, Henry derived the famous Henry's function to account for the 

effect of finite EDL with an arbitrary thickness on electrophoresis of a sphere in an 

unbounded medium (Henry 1931) All the above analytical solutions are on the basis of 

equilibrium EDLs and low zeta potentials In addition, the boundary effect is not 

considered 

In microfiuidic devices, particles are usually confined in a microchannel with a 

comparable length scale to the particle size As a result, the boundary effect plays an 

important role in the particle electrophoresis in a confined channel Keh and Anderson 

(1985) derived the velocities of a non-conducting rigid sphere near a single flat wall, 

within a slit channel and a long circular tube under the thin EDL assumption As 

discussed previously, the finite EDL effect on the particle electrophoresis must be taken 

into account when the characteristic length of the channel or the particle becomes 

comparable to the Debye length, usually happening in nanofluidics With the 
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consideration of EDL, Ennis and Anderson (1997) denved the analytical approximation 

solutions for the velocity of a charged sphere near a single flat wall, within a slit channel 

and a cylindrical tube when the zeta potentials and the applied electric fields are 

relatively weak and EDLs of the particle and the charged boundary are not overlapped 

The developed analytical solutions are of great help in characterizing electrophoresis 

of spheres in simple micro/nano-channels However, lots of existing particles are not 

sphencal In addition, the channel geometries in real micro/nano-fluidic devices are 

usually very complicated As a result, one must turn to numerical modeling tools for the 

prediction of particle electrophoresis in complex micro/nano-channels In the numerical 

study of particle electrophoresis in complex microchannels, the EDL is incorporated with 

the charged surface as one single entity, referring to the thin EDL approximation 

Smoluchowski slip velocity is used to describe the EOF near the charged surface Ye et al 

(2004b, 2004a) developed a numerical model to dynamically track the particle motion 

under electrophoresis and EOF Lots of particles interested in microfluidic applications, 

such as biological entities (Gomez 2008) and synthetic nanorods (Appell 2002, Patolsky 

et al 2006) are non-spherical More and more attention has been put on the 

electrophoresis of non-spherical particles in microchannels Davison and Sharp 

implemented a transient numerical model to predict the electrokmetic motion of a 

cylindrical particle through a slit channel (Davison and Sharp 2006, Davison and Sharp 

2007) and an L-shaped microchannel (Davison and Sharp 2008) It was predicted that a 

cylindrical particle could experience an oscillatory motion in a straight channel (Davison 

and Sharp 2007) and an L-shaped channel could be used to control the orientation of 

cylindrical particles (Davison and Sharp 2008) However, the aforementioned numerical 



20 

studies did not take into account the dielectrophoretic (DEP) effect in the numerical 

modeling, which could play an important role in the particle transport in complex 

microchannels Study of the DEP effect on the electrokinetic particle transport in 

micro/nano-fluidic is one of the most important objectives in this dissertation 

In the numerical study of particle electrophoresis in nanochannels, the finite EDL 

effect on the particle transport must be considered A quasi-static method, assuming all 

the physical fields at their equilibrium states for each particle position, is proposed to 

predict the particle's translational velocity (Liu et al 2004, Hsu and Kuo 2006, Hsu et al 

2006a, Hsu et al 2006b, Liu et al 2007a, Hsu et al 2008a, Hsu et al 2008b) In 

particular, it has been found that the Poisson-Nernst-Planck plus Navier-Stokes (PNP-NS) 

model is valid for arbitrary EDL thickness while the Poisson-Boltzmann plus Navier-

Stokes (PB-NS) model is not valid under the condition of EDL overlapping (Liu et al 

2007a) 

Electrophoresis has been widely used to propel, separate and characterize colloidal 

particles and biological materials in microfluidics (Hunter 2001, Li 2004, Kang and Li 

2009) In the recent nanopore-based sensing technique, nanoparticles are also 

electrophoretically driven through a nanopore, which gives rise to a detectable change in 

the ionic current through the nanopore This technique has been further developed to 

achieve an affordable and high throughput nanopore-based DNA sequencing (Storm et al 

2005b, Rhee and Burns 2006, Dekker 2007, Healy et al 2007, Griffiths 2008, Gupta 

2008, Howorka and Siwy 2009, Mukhopadhyay 2009, Dernngton et al 2010, Lathrop et 

al 2010,McNallyetal 2010) 
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1.4.4 Dielectrophoresis 

Dielectrophoresis refers to the motion of polanzable particles immersed in an 

aqueous solution subjected to a spatially non-uniform electric field (Pohl 1978), as shown 

in Figure 1 6 The ratio of the polanzabihty of particles to those of the electrolyte 

solution determines the direction of the DEP force A positive (negative) 

dielectrophoresis refers to the DEP force directed toward (away from) the region with a 

higher electric field The DEP force is proportional to the square of the electric field, 

indicating a nonlinear electrokinetics In addition, the DEP effect significantly increases 

with the particle size, which indicates an effective way to manipulate particles based on 

their sizes 

Figure 1 6 Schematics of dielectrophoresis of an uncharged particle subjected to a spatially non­

uniform electnc field 

The time-averaged AC DEP force acting on a spherical particle of radius r obtained 

by a point dipole method is expressed as (Karniadakis et al 2005) 

FDEP = Inr'Sf Re[K(fi>)]V|£J2, (119) 
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where co is the frequency of the AC electnc field, £ m , is the root mean square electric 

field strength The applied electric field E = -V y/ is related to the electric potential, 

which satisfies the Laplace equation 

V»(£V^) = 0 (1 

Re[AT((y)] represents the real part of the Clausius-Mossotti factor, which is given by 

K(co)=_>> i (1 
ep+2ef 

In the above, s',=£,-1 — is the complex permittivity with 6t denoting the 

co 

corresponding conductivity The point dipole method for DEP force calculation is only 

valid when the particle size is much smaller than the characteristic length of the system 

and the presence of the particle does not significantly affect the electric field However, 

the characteristic length of micro/nano-fiuidic devices becomes comparable to the 

particle size, which renders the point dipole method inaccurate for DEP force calculation 

Previous studies have demonstrated that the most rigorous approach for DEP force 

calculation is direct integration of the Maxwell stress tensor (MST) over the particle 

surface (Wang et al 1997b, Rosales and Lim 2005, Al-Jarro et al 2007), which is written 

as 

?DEP = JT E wr= j * E E - - J ( E » E ) I • ndT, (1 

where T is the MST and T denotes the surface of the particle Wang et al (1997b) 

revealed that the DEP force obtained by the point dipole method is only the first order 

DEP force derived from the MST method 
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Numerous experimental studies have implemented AC dielectrophoresis to 

manipulate colloidal particles and biological cells (Pethig 1996, Zhou et al 2005, Park et 

al 2009b, Koklu et al 2010a, Lewpinyawong et al 2010, Sabuncu et al 2010, Zhang 

and Zhu 2010) and precisely deposit synthesized nanowires on electrodes (Krupke et al 

2003, Li et al 2004, Li et al 2005, Maruyama and Nakayama 2008, Monica et al 2008, 

Chang and Hong 2009, Raychaudhuri et al 2009, Kumar et al 2010) In addition, DEP 

particle-particle interaction arising from AC electric fields has been widely utilized to 

assemble biological cells and synthesized nanowires into functional structures (Tang et al 

2003, Seo et al 2005, Wang et al 2007, Gangwal et al 2008b, Hoffman et al 2008, 

Velevetal 2009) 

In AC dielectrophoresis, electrodes are usually used to generate non-uniform electric 

fields in microfluidic devices, and in turn induce dielectrophoresis of particles near the 

electrodes In DC electrophoresis, it is generally thought that particles do not experience 

significant DC dielectrophoresis as the electrodes are mostly positioned in the reservoirs 

However, it has been found that DC dielectrophoresis also plays an important role in the 

DC electrophoresis under certain conditions, which has been successfully implemented 

for particle separation (Barbulovic-Nad et al 2006, Kang et al 2006a, Kang et al 2006b, 

Hawkins et al 2007, Li et al 2007, Kang et al 2008, Lewpinyawong et al 2008, Ozuna-

Chacon et al 2008, Pankesit et al 2008) and particle focusing (Xuan et al 2006, Thwar 

et al 2007, Sabounchi et al 2008, Zhu et al 2009, Zhu and Xuan 2009a, Zhu and Xuan 

2009b) in a continuous flow confined in a microfluidic device However, the existing 

numencal models neglect the DC dielectrophoresis in the electrokinetic particle transport 

in micro/nano-fluidics, which could lead to inaccurate predictions 
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1.5 Organization of the Dissertation 

This dissertation provides comprehensive numerical and experimental studies of the 

DC electrokinetic particle transport in micro/nano-fluidics As the particle and the solid 

channel wall are usually both charged and the electric field around the particle is also 

commonly non-uniform, electrophoresis, electroosmosis and dielectrophoresis usually 

coexist in the DC electrokinetic particle transport in micro/nano-fluidics This chapter 

briefly discusses the origin, development and applications of micro/nano-fluidics This 

chapter also reviews the commonly used techniques for particle manipulation in 

micro/nanofiuidics Last, the basic theories of electrokinetics and their applications in 

micro/nano-fluidics are summarized 

The rest of this dissertation can be divided into two parts, electrokinetic particle 

transport in microfluidics (Chapters 2-5) and electrokinetic particle transport in 

nanofluidics (Chapters 6-8), which mainly depends on the treatment of the EDL in the 

numerical modeling Chapters 2 and 3 focus on the electrokinetic transport of spherical 

particle in a converging-diverging microchannel (chapter 2) and an L-shaped 

microchannel (chapter 3) Chapter 4 investigates the DEP particle-particle interaction and 

their relative motions Chapter 5 studies the electrokinetic transport of cylindrical algal 

cells in a straight microchannel Chapters 6 and 7 discuss the modeling of particle 

translocation through a nanopore using the PB-NS based model (Chapter 6) and the PNP-

NS based model (Chapter 7) Chapter 8 demonstrates the feasibility of active regulation 

of DNA translocation through a nanopore using the FET control Chapter 9 concludes 

with a summary and outlook Each chapter is an independent research topic 
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CHAPTER 2 

TRANSIENT ELECTROPHORETIC MOTION of A 

CHARGED PARTICLE THROUGH A 

CONVERGING-DIVERGING MICROCHANNEL: 

EFFECT OF DC DIELECTROPHORESIS 

Abstract 

Transient electrophoretic motion of a charged particle through a converging-

diverging microchannel is studied by solving the coupled system of the Navier-Stokes 

equations for fluid flow and the Laplace equation for electrical field with an arbitrary 

Lagrangian-Eulenan finite-element method A spatially non-uniform electric field is 

induced in the converging-diverging section, which gives rise to a DC DEP force in 

addition to the electrostatic force acting on the charged particle As a sequence, the 

symmetry of the particle velocity and trajectory with respect to the throat is broken We 

demonstrate that the predicted particle trajectory shifts due to DEP show quantitative 

agreements with the existing experimental data Although converging-diverging 

microchannels can be used for super fast electrophoresis due to the enhancement of the 

local electnc field, it is shown that large particles may be blocked due to the induced 

DEP force, which thus must be taken into account in the study of electrophoresis in 

microfluidic devices where non-uniform electric fields are present 
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2.1 Introduction 

Electrophoresis has been widely used to characterize, separate, and purify colloids, 

and to manipulate biological entities like cells and DNAs in microfluidic as well as many 

other microfluidic applications (Hunter 2001, Li 2004) Numerous studies have thus been 

performed on the electrophoretic motion of rigid particles in unbounded and confined 

aqueous electrolyte solutions, as discussed in a recent review by Unni et al (2007) 

Electrophoresis in converging-diverging microchannels has recently attracted 

considerable attention due to its promising applications in super fast electrophoresis 

(Plenert and Shear 2003), sizing and sorting DNA molecules (Chou et al 1999), 

separating beads and biological cells (Xuan et al 2005a, Barbulovic-Nad et al 2006, 

Kang et al 2006a, Xuan and Li 2006, Kang et al 2008), focusing particle flows (Thwar 

et al 2007), and stretching deformable biological entities, such as individual DNA 

molecules for genomic analysis (Larson et al 2006, Hsieh and Liou 2008) Electric field 

becomes highly non-uniform in a converging-divergmg microchannel, especially when 

the particle is passing the throat of the converging-diverging section where the cross-

sectional area is the minimum The non-uniform electric field affects the electrostatic 

force acting on both the particle and the fluid, resulting in significantly different particle 

motions In addition, the particle experiences the DC DEP force arising from the 

interaction between the dielectric particle and the spatially non-uniform electric field 

Even in a uniform microchannel, the presence of a particle with a size comparable to the 

channel cross-section may significantly distort the electric field, yielding a nontnvial 

DEP force on the particle For example, it has been demonstrated that when the gap 

between a sphere and a channel wall is comparable to the sphere radius, the DEP force 
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should be taken into account when studying the particle motion (Young and Li 2005) 

However, in most previous numerical studies of particle electrophoresis in non-uniform 

channels, such as T-shaped (Ye and Li 2004a) and L-shaped microchannels (Davison and 

Sharp 2008), a converging-diverging nanotube (Qian et al 2006), and a nanopore 

connecting two micro-reservoirs on each side (Liu et al 2007a), the effects of DEP force 

have been ignored 

Depending on the electric field and the channel geometry, the induced DEP force may 

become comparable or even larger than other forces involved, such as electrostatic and 

hydrodynamic forces, and thus significantly alters the particle electrophoresis This has 

been demonstrated through experiments (Xuan et al 2005a, Barbulovic-Nad et al 2006, 

Thwar et al 2007, Kang et al 2008) In addition, a numerical model based on the 

Lagrangian tracking method has been developed to understand the DEP effects on 

particle electrophoresis in microchannels (Kang et al 2006b) However, the effects of the 

particle on the fluid flow and electric fields are both neglected in this model, so is the 

particle rotation (Kang et al 2006b) Instead, a correction factor has to be introduced to 

account for the particle size effects on the DEP force, and is determined by fitting the 

numerical predictions to the experimental data 

In this chapter, transient electrophoretic motion of a charged particle through a 

converging-diverging microchannel is numerically investigated for the first time with a 

full consideration of the particle-fluid-electnc field interactions The induced DEP force 

is obtained by directly integrating MST over the particle surface, which is considered as 

the most rigorous approach for DEP force calculation (Wang et al 1997b, Rosales and 

Lim 2005, Al-Jarro et al 2007) The structure of this chapter is as follows Section 2 2 
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introduces the mathematical model composed of the NS equations for flow field and the 

Laplace equation for electric field defined in the Arbitrary Lagrangian-Eulenan (ALE) 

kinematics Section 2 3 describes the numerical method and code validation by 

comparing the present numerical predictions with a few special cases reported in the 

literature. The computational results are discussed in Section 2 4 with focuses on the 

effect of the DEP force, and concluding remarks are given in the ensuing section 

2.2 Mathematical Model 

Figure 2 la schematically illustrates a charged circular particle of diameter d in a 

converging-diverging microchannel, which is based on the fabricated device used in the 

experiment (Xuan et al 2005a), shown in Figure 2 lb A spatial two-dimensional (2D) 

Cartesian coordinate system (x, y), with the origin at the center of the throat, is used as 

shown The computational domain Q. is surrounded by the channel boundary 

ABCDEFGHIJ and the particle surface T The segments AJ and EF are, respectively, the 

inlet and outlet, between which an electric potential difference is applied The segments 

ABCDE and FGHIJ are microchannel walls with a uniform zeta potential Cw The particle, 

with a uniform zeta potential Cp on its outer surface T, is initially located in the upstream 

uniform section with a center-to-center distance h off the centerlme of the channel The 

converging-diverging section is considered to be symmetric with respect to the throat 

with Lb = Lc The widths of the uniform section and the throat are, respectively, a and b 

The length of the upstream uniform section is long enough to ensure a fully-developed 

particle motion prior to the acceleration in the converging section The particle and 

microchannel walls are assumed to be rigid and non-conducting The fluid in the 
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computational domain Q, is incompressible and Newtonian The effects of Brownian 

motion and gravity are both ignored 

Figure 2 1 (a) A 2D schematic view of a circular particle of diameter d and zeta potential C,p 

migrating in a converging-diverging microchannel The zeta potential of the channel wall is Cw 

An electric field, E, is externally applied between the outlet and inlet of the channel (b) 

Photograph of a converging-diverging microchannel fabricated with PDMS The inset shows the 

converging-diverging section of the microchannel (Xuan et al 2005a) 

Compared to the micro-scale channel and particle considered, the EDL formed 

adjacent to the charged surface of particle and channel wall with a typical thickness 

ranging from 0 1 nm to 10 nm, is so thin that it will not be resolved in detail Commonly, 

it will be instead approximated by the Smoluchowski electroosmotic slip velocity (Ye 
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and Li 2004a, Davison and Sharp 2008) In the framework of the thin EDL 

approximation, the particle and its adjacent EDL are considered as a single entity, and the 

fluid motion outside the EDL is described by the Stokes equations without any 

electrostatic body forces The conservation of mass and momentum in the fluid are thus 

expressed as 

V»u = 0 inQ, (2 1) 

and 

p— = -Vp + pV2u infi , (22) 

where u is the fluid velocity vector, p is the pressure, p and p are, respectively, the fluid 

density and dynamic viscosity Since the Reynolds number of electrokinetic flows is 

usually very small, the inertial terms in the Navier-Stokes equations are neglected 

All the electrokinetic effects induced by the surface charges are incorporated in the 

Smoluchowski slip velocity boundary conditions Hence, the fluid velocity adjacent to 

the channel wall is 

u = - ^ ( I - n n ) » V ^ onABCDEandFGHIJ, (2 3) 
M 

where sj is the absolute permittivity of the fluid, I is the second-order unit tensor, n is the 

unit normal vector pointing from the channel wall to the fluid domain, and <j> is the 

electric potential in the fluid domain The quantity (I -nn) • V^ defines the electric field 

tangential to the charged surface 

Since the particle translates and rotates simultaneously, the boundary condition on the 

particle surface not only contains the electroosmotic slip velocity but also the 

translational and rotational velocities of the particle and is written as 
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u = Up+copx(x s-xp) + ̂ ( I - n n ) . V ^ onT, (2 4) 
H 

where Up, wp, xs and xp are, respectively, the translational velocity, the rotational velocity, 

the position vector of the particle surface, and the position vector of the particle center 

No pressure gradient is imposed between the inlet AJ and outlet EF 

Due to the assumption of infinitesimal EDL, the net charge density in the 

computational domain Q is zero, so the electrical potential satisfies the Laplace equation 

VV = 0 inQ (2 5) 

All rigid surfaces are then electrically insulating, 

n • V<*> = 0 on ABCDE, FGHIJ and T, (2 6) 

and the potential difference fo applied between the inlet and outlet is imposed by 

</> = fo onAJ (2 7) 

and 

</> = 0 onEF (2 8) 

The translational velocity of the particle is governed by the Newton's second law 

- , - ^ - F . (29) 

where mp is the mass of the particle and F is the net force acting on it, which consists of 

the hydrodynamic force, FH, due to the flow field originated in the outer region of the 

EDL, and the electrokinetic force, FE, arising from the interaction between the dielectric 

particle and the spatially non-uniform electric field 

F = FH+FE (2 10) 
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Here FH and FE are obtained, respectively, by integrating the hydrodynamic stress tensor 

TH and the MST TE over the particle surface 

FH = JTH»ndT = J [ -pI + /i(Vu + Vu r)]«m/r (2 11) 

and 

FE = jTE«nc/r= J ££0EE — g»0(E«E)l >iu/I\ (2 12) 

where E is electric field related to the electric potential byE = -V^ The integration of 

the first term of the integrand in the right-hand-side of Equation (2 12) vanishes due to 

Equation (2 6) Therefore, Equation (2 12) represents the pure DEP force acting on the 

particle 

The rotational velocity of the particle is determined by 

/ p ^ = Q = J ( x $ - x p ) x ( T H . n ) J r + { ( x s - x p ) x ( T E . n ) J r , (2 13) 

where Ip is the moment of inertial of the particle and Q is the torque exerted on the 

particle 

The center xp and the orientation 8P of the particle are expressed by 

and 

e p = e p o + I W P ^ ' ( 2 1 5 ) 

where xp0 and 8po denote, respectively, the initial location and orientation of the particle 

2.3 Numerical Method and Code Validation 

The ALE technique is one of the most efficient approaches to deal with a moving 

boundary in the computational domain, which has been theoretically demonstrated 
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(Hughes et al 1981) Detailed implementation of this numerical technique was 

introduced to simulate the particle motion in viscous fluids without electrokinetic effects 

(Hu et al 1992, Hu et al 2001) Basically, the ALE algorithm solves the fluid flow and 

the electric field in an Eulenan framework and meanwhile tracks the particle motion in a 

Lagrangian fashion As the particle translates and rotates, the mesh in the computational 

domain can accordingly deform to track the location and the orientation of the particle, as 

shown in Figure 2 2 The mesh motion in the computational domain satisfies a Laplace 

equation to guarantee its smooth variation, 

V.(*eVum) = 0 (2 

In the above, um is the mesh velocity and ke is the inverse of the local element volume 

which controls the deformation of the computational domain The boundary conditions 

for the mesh velocity satisfy um = Up +<op x(x5 -x p ) on the particle surface and fixed 

boundary condition on the wall, inlet and outlet of the microchannel As a result, the 

region away from the particles absorbs most of the deformation, while the region near the 

particles is relatively stiff and move with the particle If the quality of the deformed mesh 

is not satisfied, the preceding deformed mesh is used to create a new geometry, upon 

which a new mesh is generated to continue the computation until the next mesh 

degradation As a result, the ALE algorithm is capable of a long-term particle tracking, 

which is thus adopted in the present study to capture the translation and rotation of the 

particle through the converging-diverging microchannel 
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(a) (b) 

Figure 2 2 (a) Undeformed mesh adjacent to the particle surface (b) Deformed mesh adjacent to 

the particle surface 

The coupled system as described above is simultaneously solved with a commercial 

finite-element package COMSOL (version 3 4a, www comsol com) operated with 

MATLAB (version 2007b, www mathworks com) in a high-performance cluster The 

computational domain Q in Figure 2 la is discretized into quadratic triangular elements 

with a higher density around the particle and in the channel throat region Rigorous mesh-

refinement tests have been performed to ensure that all solutions obtained are fully 

converged and mesh-independent 

2.3.1 Code Validation of Pressure-driven Particle Motion 

The developed ALE code will be validated by several benchmark test problems We 

first reproduce the wall correction factor of a spherical particle translating along the axis 

of a cylindrical channel subjected to a pressure-driven flow using a 2D axisymmetnc 

model The wall correction factor G, which presents the lag effect of the channel wall on 

the particle transport, is defined as the ratio of the particle's steady translational velocity 

to the maximum flow velocity along the axis Figure 2 3 shows the relation between the 

wall correction factor, G, and the ratio of the particle diameter to the channel diameter, 
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dla The wall correction factor predicted by the present NS-ALE model agrees well with 

the analytical solutions (Haberman and Sayre 1958, Bungay and Brenner 1973) and 

existing numerical results (Quddus et al 2008) The analytical solution obtained by 

Haberman and Sayre is valid only when the ratio dla is smaller than 0 8 since only ten 

terms in the Fourier series of the Stokes stream function were used in their derivation Its 

prediction thus deviates from our numerical modeling for d/a >0 8 as demonstrated in 

Figure 2 3 
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Figure 2 3 Wall correction factor, G, of a spherical particle moving along the axis of a cylindrical 

channel Solid line, solid circles, crosses and squares denote, respectively, the analytical solution 

obtained in (Haberman and Sayre 1958) and (Bungay and Brenner 1973), the numerical results 

predicted in (Quddus et al 2008) and obtained by our model The dashed line indicates the limit 

of Haberman & Sayre's analytical solution 

Haberman & Sayre 
Limit (0<d/a<0 8) 
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2.3.2 Code Validation of DEP Force Calculation 

In order to validate the treatment of the DEP force, we make comparisons with 

existing analytical solution of the DEP force acting on a sphere near a planar wall Figure 

2 4 shows the dimensionless DEP force on a dielectnc sphere of radius, r, as a function of 

the dimensionless gap size, 5* = (dp - r)jr, where dp is the distance from the particle 

center to the planar wall The DEP force is normalized by sfEjr2 J2, where Em is the 

external electric field applied far away from the spherical particle and parallel to the 

planar wall Our numerical results (circles) are in good agreement with the analytical 

results (solid line) obtained by Young and Li (2005) 
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Figure 2 4 Dimensionless DEP force exerting on a sphere near a planar as a function of the 

dimensionless gap size Solid line and circles represent, respectively, analytical solution derived 

by Young and Li (2005) and our numerical results obtained by a 3D model 
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Figure 2 5 Dimensionless translational velocity of a sphere moving along the axis of a tube as a 

function of the ratio of the diameter of the sphere to that of the tube Solid line and circles 

represent, respectively, the approximation solution derived by Keh and Anderson (1985) and our 

numencal results obtained by an axisymmetnc model 

2.3.3 Code Validation of Particle Electrophoresis 

Figure 2 5 shows the electrophoretic velocity of a charged spherical particle of 

diameter d translating along the axis of an infinitely long tube of diameter a The 

approximate solution, valid for thin EDL and absence of DEP force, 

C/* =[1-128987 — +189632 (0 -1 02780 (ff +o(\-))](i-y), (2 
a) 

was derived by Keh and Anderson (1985), where y = £w/£p denotes the ratio of the zeta 

potential of the particle to that of the channel wall The translational velocity of the 

particle is normalized by efipEJ/i with Ez representing the electric field along the axis of 

the tube in the absence of the particle The present numerical results (circles) show good 
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agreement with the approximate solution (solid line), in which the DEP force is 

negligible 

Figure 2 6 Particle trajectories through a microchannel with a rectangular hurdle in the middle 

Solid and dashed lines represent the predicted particle trajectories with considering the DEP force, 

the circles and squares represent the expenmental data obtained by Kang et al (2006b), and the 

dotted line represents the predicted particle trajectory of the lower particle without considering 

the DEP force The x and y locations are both normalized by the channel width 

Another validation of the present method is performed for the electrophoretic motion 

of a charged circular particle in a straight microchannel with a rectangular hurdle in the 

middle, as shown in Figure 2 6 The present numerical results are compared against the 

experimental data obtained by Kang et al (2006b) As in the converging-diverging 

microchannel, a spatially non-uniform electric field is induced by the hurdle, and DC 

DEP force is generated The experiments demonstrate that the trajectory of particles close 

to the lower wall is strongly asymmetric with respect to the hurdle, resulting in 

conspicuous shift toward the upper wall after passing the hurdle For two 15 7um 

particles under a 5 kV/m electric field shown, our numencal predictions (solid and 
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dashed lines) are in good agreement with the expenmental data (symbols) If the DEP 

force were neglected, the predicted particle trajectory (dotted line) would be symmetric 

with respect to the hurdle, with substantial discrepancy with the expenmental data It can 

be concluded that the trajectory shift is attributed to the DEP force, which must be taken 

into account for the electrophoretic motion of particles in microchannels with non­

uniform cross-sections, such as converging-diverging microchannels, where the electric 

field is non-uniform 

2.4 Results and Discussion 

Using the computational method developed, a rather comprehensive parametric study 

has been performed to understand the DEP force in a converging-diverging microchannel 

In this section, discussions on a few representative cases are provided in dimensional 

terms with focuses on the effects of the electric field and particle size on the particle 

velocity and trajectory The lengths of the symmetric converging-diverging section are 

taken from the microfluidic device fabricated by Xuan et al (2005 a) with Lb = Lc = 400 

urn, while that of the entire microchannel is set to 1500 um, with La = 400 um and Ld = 

300 urn The widths of the uniform section and throat are, respectively, a = 325 um and b 

= 55 um The applied electric field strength E is calculated by dividing the electric 

potential difference between the inlet and outlet over the total length of the microchannel 

The initial transverse location of the particle is defined as the ratio of the initial distance 

between the particle center and the channel centerline to the half width of the straight 

section, h = 2h/a 
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Figure 2 7 (a) Predicted particle trajectories with (solid and dashed lines) and without (circles 

and squares) considering the DEP force E = 10 KV/m, d = 20 um, CP = 58 mV, a = 325 um, b = 

55 um, and y = 0 3 (b) Predicted particle trajectones with considenng the DEP force (solid and 

dashed lines) compared with the expenmental data (circles and squares) E = 15 KV/m, d = 10 35 

um, CP = -32 mV, a = 325 um, b = 55 um, and y = 2 5 

2.4.1 Trajectory Shift 

Figure 2 7a depicts the predicted particle trajectories through a converging-diverging 

microchannel in the presence (solid and dashed lines) and absence (circles and squares) 

of the DEP force when E = lOKV/m, d = 20 um, CP = 58 mV, and y = 0 3 The solid line 

(or circles) and dashed line (or squares) correspond, respectively, to h = - 0 5 and h = 

0 7 It is clearly seen that the particle trajectory becomes asymmetric with respect to the 

channel throat when the DEP force is considered After passing through the throat, 

particles are pushed toward the centerhne of the channel, which will be explained below 
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In Figure 2 7b the predicted particle trajectories are compared with the experimental 

results (symbols) when E = 15 KV/m, d=\0 35 urn, CP = -32 mV, and y = 2 5 Note that 

the particle size in Figure 2 7b is smaller than that in Figure 2 7a Since the DEP force is 

proportional to the particle size, the particle in Figure 2 7b expenences a slighter 

trajectory shift than that in Figure 2 7a due to a smaller induced DEP force The size-

dependent separation demonstrated in (Barbulovic-Nad et al 2006, Kang et al 2006a, 

Kang et al 2008, Pankesit et al 2008) is based on the idea that particles with different 

sizes experience different trajectory shifts due to the particle-size-dependence of the DEP 

force 
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Figure 2 8 Distribution of the DEP force (arrows) around the throat of the converging-diverging 

microchannel The color levels represent the normalized electric field strength The trajectories (a) 

and (b) represent, respectively, the predicted particle trajectories without and with considering the 

DEP force 
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Figure 2 8 shows the distribution of the DEP force near the throat obtained by a point-

dipole approximation (Pohl 1978) without considering the effect of the particle on the 

electric field The color levels in Figure 2 8 represent the dimensionless electric field 

strength which is normalized by 2$>/d As the particle experiences a negative 

dielectrophoresis, the DEP force acting on the particle always points to the region of a 

lower electric field Since the maximum electric field strength occurs at the throat, the 

DEP force is directed away from it, as shown in Figure 2 8 The trajectory (a) shown in 

Figure 2 8 represents the predicted particle trajectory without considering the DEP force, 

which is identical to the streamline of the flow field originated from the initial location of 

the particle The x-component of the DEP force is negative in the converging section and 

becomes positive in the diverging section The ^-component DEP force is negative 

(positive) m the region above (below) the centerlme of the microchannel Away from the 

converging-diverging section, the DEP force gradually decays, and becomes negligible in 

the uniform section of the channel When a particle is initially located above the 

centerlme and electrophoretically migrates to the converging section, the particle 

experiences negative x-component and ^-component DEP forces that push the particle 

toward the centerlme of the channel After it passes the throat, the x-component DEP 

force becomes positive, while the ̂ -component DEP force is still negative The positive 

x-component DEP force accelerates the translation of the particle, while the negative y-

component DEP force continues to push the particle toward the centerlme of the channel 

Particles transported along the centerlme of the channel would not experience the 

trajectory shift 
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Figure 2 9 (a) Translational velocity ratio of a 20-̂ xm particle along the centerline of the 

converging-diverging microchannel Cp = -32 mV, a = 325 um, b = 55 um, and y = 2 5 Solid, 

dotted, and dash-dotted lines represent, respectively, the velocity ratio under an electric field of £ 

= lOKV/m, E = 20KV/m, and E = 35KV/m with considering the DEP force The symmetric 

dashed line represents the velocity ratio without considering the DEP force (b) The velocity ratio 

under an electric field of 15KV/m Solid line, dashed line (symmetric) and circles represent, 

respectively, the numencal prediction with considering the DEP force, numencal prediction 

without considering the DEP force, and the expenmental data obtained by Xuan et al (2005a) 



44 

2.4.2 Effect of Electric Field 

Several different electric fields are applied to drive the electrophoretic motion of a 

20-um particle moving along the centerhne of the converging-diverging microchannel 

with CP = -32 mV and y = 2 5 Figure 2 9a shows the ratio of the translational velocity of 

the particle to that in the uniform upstream section, Xp = Up/Uup , under the electnc field 

of 10 KV/m (solid line), 20 KV/m (dotted line), and 35 KV/m (dash-dotted line), 

respectively For comparison, the translational velocity ratio without considering the DEP 

force is also shown in Figure 2 9a (dashed line), which as expected is symmetric with 

respect to the throat and independence of the electric field When the DEP force is taken 

into account, however, the translational velocity ratio is asymmetric with respect to the 

throat and strongly dependent of the electric field applied This is because that the x-

component DEP force is negative in the converging section while positive m the 

diverging section, as shown in Figure 2 8 

To clearly explain the asymmetric velocity ratio profile and its dependence of the 

electnc field, we analyze the electrophoretic and DEP forces acting on a particle along 

the centerhne of the channel For the electrophoretic motion of a sphere with a radius of 

10 urn and density of 1000 kg/m3, the charactenstic time for reaching a steady 

translational velocity is in the order of 10"4 s The variation of the particle's translational 

velocity generally follows a similar trend of the electrokmetic force exerted on the 

particle (Kang et al 2006b) Due to the thin EDL approximation, the electrophoretic 

force is not explicitly solved in the present model We instead estimate the dimensional 

electrophoretic force acting on a sphere of radius r as (Probstein 1994) 

F E P = ( r - l ) 6 < ^ / r E (2 
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The dimensional DEP force acting on the particle is given by Equation (2 12), which 

reveals the quadratic dependence of the DEP force on the electric field, in contrast to the 

liner dependence of the electrophoretic force For high electric fields the DEP force can 

dominate Figure 2 10 depicts the normalized electrophoretic force (dash-dotted line), 

DEP force (dashed line) and superposition of the two forces (solid line) acting on the 

particle along the centerline of the channel under an electric field of 15KV/m The forces 

are normalized by £fCp&0 The electrophoretic force is symmetric about the throat with 

the maximum occurring at the throat The DEP force is insignificant in the uniform 

sections, but becomes important near the throat As the negative DEP force always points 

to the region of a lower electric field, the direction of the DEP force in the upstream is 

opposite to that in the downstream, as is also shown in Figure 2 8, which retards the 

particle motion m the converging section but accelerates it in the diverging section The 

translational velocity ratio in the converging section is lower than that in the absence of 

the DEP force, as shown in Figure 2 9a However, the translational velocity ratio in the 

diverging section is higher than that with no DEP force When the particle is located 

exactly at the center of the throat, the surrounding electric field is symmetric with respect 

to the particle center, and so the net DEP force vanishes Thus, whether considering the 

DEP force or not, the translational velocity ratio at the throat predicted is the same The 

maximum translational velocity ratio occurs in the diverging section where the DEP force 

(dashed line in Figure 2 10) and thus the superposition of the electrostatic and DEP forces 

(solid line) reaches a maximum Although the cross-sectional area ratio of the uniform 

section to the throat is 5 91, the maximum translational velocity ratio with the DEP force 

can easily exceed this value When the electric field is above a critical value, the negative 
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x-component DEP force in the converging section becomes large enough to prevent the 

particle from passing the throat (dash-dotted line in Figure 2 9a), which has also been 

experimentally observed by Kang et al (2006b) 
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Figure 2 10 Normalized electrokinetic forces acting on a 20-um particle under an electric field of 

15KV/m Dashed, dash-dotted, and solid lines represent, respectively, the DEP force, EP force 

and the superposed electrokinetic force Cp = -32 mV, a = 325 um, b = 55 |am, and y = 2 5 

Figure 2 9b shows the comparison of the numerically predicted translational velocity 

ratios (lines) with the experimental data (symbols) obtained by Xuan et al (2005a) under 

an electric field of 15KV/m The solid and dashed lines represent, respectively, the 

predictions with and without the DEP force In the converging section, the numerical 

results with the DEP force (solid line) are in good agreement with the experimental data 

However, considerable disagreement is seen in the diverging section The experimental 

J I L 
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data seem almost symmetric and do not show the peak just after the throat Three-

dimensional effects excluded in the present computation may be partially responsible for 

this discrepancy, but more particle velocity measurements are also needed for further 

assessment 
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Figure 2 11 Particle trajectories of a 20-um particle initially located at h* = 0 5 under electric 

fields of E = lOKV/m (dash-dotted line), E = 15KV/m (solid line), E = 20KV/m (dotted line) and 

E = 25KV/m (dashed line) Cp = 58 mV, a = 325 um, b = 55 um, and y = 0 3 

Figure 2 11 shows the particle trajectory shift due to the DEP force under four 

different electric fields when d = 20 \\m, h = 0 5, Cp = 58 mV, and y = 0 3 A higher 

electric field leads to a larger trajectory shift In the case of E = 25 KV/m, the particle is 

shifted to the centerlme of the channel after passing the throat It is thus noted that the 

T 1 I I 1 f r 
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converging-diverging channels can be used for particle focusing, which has been 

expenmentally observed (Xuan et al 2006) and also successfully implemented (Thwar et 

al 2007) in a straight channel with a pair of oil menisci 
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Figure 2 12 Translational velocity ratio of particles with diameter d = 10 um (solid line), d = 25 

um (dotted line), and d = 40 um (dash-dotted line) along the centerhne of the microchannel under 

an electnc field of lOKV/m Symmetric dashed line represents the predicted velocity ratio 

without considering the DEP force Cp = 58 mV, a = 325 um, b = 55 um, and y = 0 3 

2.4.3 Effect of Particle Size 

Figure 2 12 shows the translational velocity ratio of particles with different sizes 

along the centerhne of the channel when Cp = 58 mV and y = 0 3 As discussed above, the 

DEP force exerted on a spherical particle varies with the square of its radius Therefore, 

the DEP force diminishes fairly rapidly with the decrease m particle size For example, 
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the translational velocity ratios for a 10-um particle with (solid line) and without (dashed 

line) the DEP force are very close, as shown in Figure 2 12 As the particle size increases 

to 25 um, the resulting DEP force becomes large enough to establish a clearly 

asymmetric particle motion with respect to the throat (dotted line) For even larger 

particles, the DEP force can prevent the particle from passing through the throat, which 

indicates that the converging-diverging microchannels may be used for particle trapping 

and sorting 

2.5 Conclusions 

The effect of DEP force, arising from a non-uniform electric field, on the 

electrophoretic motion of particles through a converging-diverging microchannel is 

numerically investigated for the first time using a transient ALE finite element model 

We demonstrate that the particle velocity along the converging-diverging microchannel, 

which is symmetric with respect to the throat when the DEP effect is neglected, becomes 

asymmetric due to the opposite directions of the DEP forces induced in the converging 

and diverging sections For larger particles or electric fields, the DEP force may be strong 

enough to prevent the particles from passing through the microchannel, which may be 

used for particle trapping and sorting Particles initially located away from the centerhne 

of the channel experience trajectory shift toward the centerhne in the downstream, which 

is in good agreement with existing experimental data and shows applicability in particle 

focusing As particles with different sizes experience different trajectory shifts, 

converging-diverging microchannels have a great potential for continuous separation of 

biological entities like cells and DNAs, which has been demonstrated in several 

experimental works 
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CHAPTER 3 

DC ELECTROKINETIC PARTICLE TRANSPORT 

IN AN L-SHAPED MICROCHANNEL 

Abstract 

Electrokinetic transport of particles through an L-shaped microchannel under DC 

electric fields is theoretically and experimentally investigated The emphasis is placed on 

the DC DEP effect arising from the interactions between the induced spatially non­

uniform electric field around the corner and the dielectric particles A transient 

multiphysics model is developed in the ALE framework, which comprises the NS 

equations for the fluid flow and the Laplace equation for the electrical potential The 

predictions of the DEP-induced particle trajectory shift in the L-shaped microchannel are 

in quantitative agreement with the obtained experimental results Numerical studies also 

show that the DEP effect can alter the angular velocity and even the direction of the 

particle's rotation Further parametric studies suggest that the L-shaped microfluidic 

channel may be utilized to focus and separate particles by size via the induced DEP effect 
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3.1 Introduction 

The use of electrokinetic means for particle (both biological and synthetic) 

manipulation, such as separation, assembling, sorting, focusing, and characterization in 

microfluidic devices, has recently gained significant attention (Hunter 2001, Li 2004, 

Kang and Li 2009) Electrokinetic particle manipulation offers a way to manipulate 

particles using only electric fields with no moving parts Other inherent advantages 

include non-intrusion, low cost, easy implementation, and favorable scaling with size 

When spatially uniform DC electric fields are applied to colloidal suspensions 

confined in a microchannel, particle motion is generally induced by both electrophoretic 

force acting on the particle and electroosmotic fluid motion arising from the surface 

charges at the channel walls Electrokinetic transport of particles in micro/nano channels 

with simple geometries such as parallel-plate (Keh and Anderson 1985, Unm et al 2007), 

cuboid (Ye and Li 2004b, Xuan et al 2006) and cylindrical tube (Keh and Anderson 

1985, Xuan et al 2005b, Ye et al 2005, Qian and Joo 2008, Qian et al 2008) under 

uniform electric fields has been extensively studied It has also been applied to separate 

and characterize particles based on charges (Leopold et al 2004, Rodriguez and 

Armstrong 2004, Dietrich et al 2008, Gloria et al 2008) 

In the cases of spatially non-uniform electric fields, DC DEP effect arises along with 

the above mentioned electrophoretic and electroosmotic effects due to the induced dipole 

moment on the particles Non-uniform electric fields produce asymmetric net force and 

torque on the dipoles, yielding the translational and rotational motions of particles 

Indeed, most microfluidic channels in microfluidic devices, for example, L-shaped, Y-

shaped and constricted channels, create non-uniform electric fields, which may induce 
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nontnvial DEP forces on the particles and thus affect the particle transport Recently, 

many investigators have utilized the resultant DEP forces under non-uniform DC electric 

fields in microfluidic devices for particle manipulation (Cummings and Singh 2003, 

Lapizco-Encinas et al 2004b, Lapizco-Encinas et al 2004a, Ying et al 2004, Hawkins et 

al 2007, Lapizco-Encinas and Rito-Palomares 2007, Kang et al 2008) It was 

experimentally demonstrated that the particle experiences a trajectory shift in a 

constricted microchannel due to the DC DEP effect (Kang et al 2006b), which was then 

utilized for particle separation (Barbulovic-Nad et al 2006, Kang et al 2006a, Hawkins 

et al 2007, Kang et al 2008, Kang et al 2009) and focusing (Thwar et al 2007, Zhu and 

Xuan 2009a) It was also observed that the enhancement of electrokinetic particle 

transport in a converging-diverging microchannel is much lower than that in a pressure-

driven flow because of the DEP retardation effect (Xuan et al 2005a) DC DEP force 

generated in a serpentine microchannel was recently employed to achieve particle 

focusing (Zhu et al 2009) 

Despite many potential applications of DC DEP manipulations, a comprehensive 

analysis of electrokinetic particle transport under non-uniform DC electric fields is still 

limited Most previous numerical studies of particle electrokinetic transport in non­

uniform microchannels, such as L-shaped (Davison and Sharp 2008), T-shaped (Ye and 

Li 2004a), converging-diverging nanopores (Qian et al 2006), and 

nanopore/microchannel junctions (Liu et al 2007a), have neglected the DC DEP effect 

However, it has already suggested that the DEP effect on the electrokinetic particle 

transport in a microchannel with a uniform cross-section should be taken into account 

when the distance between the particle and channel wall is comparable to the particle size 
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(Young and Li 2005) In Chapter 2, we also reported that the particle trajectory in a 

converging-diverging microchannel with considenng the DEP effect is in good 

agreement with the existing experimental data, which, however, significantly deviates 

from the prediction when the DEP effect is ignored 

In this chapter, we present a numerical and experimental investigation of the transient 

electrokinetic particle transport in an L-shaped microchannel with a full consideration of 

the particle-fluid-electric field interactions L-shaped microchannels, the basic unit of U-

shaped and T-shaped microchannels, are commonly used to switch the transport direction 

of fluids and particles in microfluidic devices (Rhee and Burns 2008) In order to obtain a 

precise prediction of particle motion under the non-uniform DC electric field, flow and 

electric fields are solved in a coupled manner using the numerical model developed in 

Chapter 2 The structure of the rest of this paper is listed as follows Section 3 2 describes 

the procedure of device fabrication and experimental setup Section 3 3 introduces the 

mathematical model The experimental and numerical results are discussed in Section 3 4 

with focuses on the DC DEP effect on particle translation and rotation Concluding 

remarks are given in the final section 

3.2 Experimental Setup 

Polystyrene particles of 4 um and 10 (Am in diameter were purchased from Molecular 

Probes Inc (Eugene, OR) As the original particle solution is highly concentrated, further 

dilution with ImM potassium chlonde (KG) solution is necessary to achieve the tracking 

of a single particle transport The L-shaped channel, as shown in Figure 3 la, was 

fabricated using a standard soft lithography technique (Duffy et al 1998) with PDMS 
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Briefly, SU-8 photoresist (Formulation 25, MicroChem Corp, Newton, MA) was first 

spin-coated on a clean glass slide, followed by a two-step soft bake (65 °C for 3 mm and 

95 °C for 7 mm) Next, the photoresist film was exposed to ultraviolet light under a 3500 

dpi mask with a desired L-shaped geometry, followed by another two-step hard bake 

(65 °C for 1 mm and 95 °C for 3 min) After the hard bake, a positive master was 

obtained by developing the photoresist for 4 minutes with commercial SU-8 developer 

solution Subsequently, the PDMS mixture (Sylgardl84 Silicone Elastomer Kit, Dow 

Corning Corp, Freeland, MI) of pre-polymer and curing agent with a ratio of 10 1 by 

weight were poured over the master and polymerized in a vacuum at 65 °C for 4 hours 

The cured PDMS with an L-shaped microchannel was then peeled from the master and 

two holes were punched to serve as reservoirs Finally, a two-minute oxygen plasma 

treatment (Harrick Plasma Inc, Ithaca, NY) was performed to obtain a permanent 

glass/PDMS bonding and form the desired microchannel Immediately after the bonding 

step, the diluted particle solution was driven into the microchannel by capillary force As 

illustrated in Figure 3 la, the microchannel was measured to be 53 (±1) urn in width and 

25 (±1) um in depth The length of the entire channel between the two reservoirs was 15 

mm 
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Figure 3 1 (a) Photograph of an L-shaped PDMS-based microchannel The channel was filled 

with green food dye for a clear demonstration The inset is a schematic view of the channel with 

actual dimensions The width of the channel is 53 um, and the radii of the arc connections at the 

inner and outer corners are respectively, 10 um and 63 um (b) Distribution and streamlines of 

electric field (10 KV/m in average) within the L-shaped channel in the presence of a particle The 

arrow denotes the direction of the DC DEP force exerting on the particle 

The DC electrokinetic particle transport was observed by a charge-coupled device 

(CCD) camera (PowerviewTM, TSI Inc, Shoreview, MN) equipped in an inverted 

optical microscope (Nikon Eclipse TE2000U, Nikon Instruments, Lewisville, TX), as 

shown in Figure 3 2 Pressure-driven flows were carefully eliminated before each 

experiment by balancing the solution heights in the two reservoirs until particles inside 
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the channel become stationary Two 1 mm in diameter platinum electrodes connected to a 

DC power supply (Circuit Specialists Inc , Mesa, AZ) were placed in the two reservoirs 

to generate the electrokinetic particle transport The particle motion was captured at a rate 

of 7 25 Hz with an exposure time of 100 us The captured images with a resolution of 

1376 x 1040 pixels were processed using a image processing software Image J (National 

Institutes of health, http //rsbwcb nih gov/n/'), to extract the location of the particle's 

center at each time step The reading error of the particle's center was about ±2 pixels, 

corresponding to ±0 645 urn Particle velocity was calculated by dividing the travel 

distance of particles over the time step in a series of successive images Using this 

method, the relative error of the particle velocity is less than ±4 8% Finally, the 

electrokinetic mobility of particles can be estimated by dividing the particle's velocity 

over the corresponding electric field applied 

Figure 3 2 Photograph of the experimental setup 
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3.3 Mathematical Model 

A remarkably good agreement presented in Chapter 2 between the numerical 

predictions of electrokmetic particle transport in converging-diverging microfluidic 

channels, obtained from a 2D mathematical model, and the experimental data suggests 

that a 2D model is sufficient to capture the essential physics of the electrokmetic particle 

transport process Therefore, a 2D mathematical model is adopted in this study We 

consider a circular particle of radius a initially located at the upstream of the L-shaped 

microchannel with outer length L and width b, as shown in Figure 3 3 The distance 

between the particle's center and the inner channel wall is hi A two-dimensional spatial 

Cartesian coordinate system (JC, y) with the origin located at the outer corner of the 

microchannel is used in the present study The computational domain fi, surrounded by 

the channel boundary ABCD, EFGH and the particle surface T, is filled with lmM KC1 

aqueous solution Sections ABGH, BCFG and CDEF in the computational domain Q. are, 

respectively, defined as the upstream, corner and downstream of the L-shaped 

microchannel The radii of the arc connections at the inner and outer corner are, 

respectively, ri and r̂  The segments AH and DE are, respectively, the inlet and outlet 

between which an electric potential difference is externally applied The particle and 

channel wall are assumed to be rigid and non-conducting The fluid in the computational 

domain Q is incompressible and Newtonian The effect of Brownian motion can be 

ignored for micron-sized particles (Davison and Sharp 2008) As the thickness of 

electrical double layer (EDL) is on the order of several nanometers, the thin EDL 

approximation is valid for microscale electrokinetics concerned in the present study The 
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mathematical model and numencal implementation using ALE technique are exactly the 

same as those presented in Chapter 2 3 
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Figure 3 3 A two-dimensional schematic view of a circular particle of radius a migrating in an L-

shaped microchannel 

3.4 Results and Discussion 

The average electrokinetic mobilities of 4 um and 10 (am particles are, respectively, 

determined to be 4 0xl0"8 m2/(V»s) and 1 6xl0"8 m2/(V»s) by measuring the average 

velocities of particles in the straight section where the DEP effect is almost negligible 

The following fluid viscosity and permittivity, ju = 1 OxlO"3 kg/(m»s) and e/= 6 9xl0"10 

F/m, are used in the numencal study The particle electrokinetic mobility, 77, considering 

the effect of channel wall is given as (Keh and Anderson 1985) 
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7 = ( l - 0 267699A3+0 338324A5-0 040224A6)x-^(^ - £ ), (3 1) 

/" 

where A= a/c/ with d, the perpendicular distance between the particle's center and the 

channel wall As the polystyrene particles are slightly heavier than water (nominal 

density is 1 05 g/ml), the diluted particle solutions are sonicated prior to each experiment 

to get rid of the particle sedimentation Due to the DEP repulsive force arising from the 

dielectric interaction between the particle and the top (bottom) channel walls (Young and 

Li 2005, Kang et al 2006a, Liang et al 2010), the particles are usually moving in the 

middle region of the channel depth Thus, we assume that the particle locates in the 

middle of the channel depth Based on the reported zeta potential of PDMS, gw = -80 mV 

(Kang et al 2006b, Venditti et al 2006), the measured particle mobility, values of the 

fluid viscosity and permittivity, the zeta potentials of the 4 [im and 10 urn particles were 

estimated from Equation (3 1) as -56 8 and -22 0 mV, respectively Without specific 

statement, the zeta potentials of the two particles in the following numerical simulations 

are exactly the same as the above two values The channel width b and channel length L 

are, respectively, 53 urn and 200 urn The radii of arc connections at the inner and outer 

corners are, respectively, 10 um and 63 um Although the simulation only covers the re­

shaped section of the actual device, the electric potential difference between the inlet and 

outlet in the numerical study is scaled from the actual value in the experiments to obtain 

the same electric field The electric field intensity mentioned below is calculated by 

dividing the applied electric potential difference over the total length of the centerline of 

the microchannel 
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3.4.1 Experimental Results 

Figure 3 4 illustrates the trajectory of a 10 urn particle migrating through the re­

shaped channel under an electric field of 6 KV/m (a) and 12 KV/m (b) These trajectories 

are obtained by superposing sequential images of a single particle The time interval 

between adjacent images is 0 14s As DEP force can be amplified as the particle size and 

the magnitude of the applied electric field increase, the trajectories of 4 urn particles 

(results are not shown here) almost follow the flow streamlines due to a minimal DEP 

effect, while the 10 urn particle experiences a significant trajectory shift after passing the 

comer of the L-shaped channel Figure 3 lb shows that the most non-uniform distribution 

of the electric field occurs at the comer section in the presence of a particle, resulting in a 

negative DEP force pointing from the higher electric field region at the inner comer to 

the lower electnc field region at the outer comer The induced DEP force around the 

comer shifts the particle trajectory from inner streamlines to outer streamlines, which was 

also observed around the comer in a constricted microchannel (Kang et al 2006b, Xuan 

et al 2006) and used for particle separation and focusing (Barbulovic-Nad et al 2006, 

Kang et al 2006a, Hawkins et al 2007, Thwar et al 2007, Kang et al 2008, Kang et al 

2009) 
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Figure 3 4 Trajectories of a 10 um particle moving through the L-shaped channel under an 

electric field of 6KV/m (a) and 12KV/m (b) Time interval between adjacent particles is 0 14s 

It was observed that all 10 um particles were moving withm the middle 2/3 of the 

microchannel width region at the upstream while 4 um particles could move closer to the 

channel wall This is mainly due to the DEP repulsive force arising from the dielectric 

interaction between the particle and the channel wall The particle incoming location at 

the upstream hi and outgoing location at the downstream h2, normalized by the channel 

width, are summarized in Figure 3 5 to show the trajectory shift of 4 and 10 um particles 

under the two different electric fields (6 KV/m and 12 KV/m) Figure 3 5 demonstrates 

that the trajectory shift of 4 um particles is insignificant because of an insufficient 

particle size and thus a low DEP force acting on the particles The trajectory shift of 10 

um particles depends on the electric field magnitude since a stronger electric field results 

in a larger DEP force exerting on the particle, thus inducing a larger trajectory shift 
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Figure 3 5 Trajectory shift for particles of different sizes under different electric field intensities 

Circles and crosses represent, respectively, the trajectory shifts of 10 ^m particles under electric 

fields of 12 KV/m and 6 KV/m Squares and tnangles represent, respectively, the trajectory shifts 

of 4 um particles under 12 KV/m and 6 KV/m The dashed line is a reference line corresponding 

to hi = h2 

3.4.2 Comparison between Experimental and Numerical Results 

Figure 3 6 compares the experimental particle trajectories to numerical predictions 

obtained by the developed model as described in Chapter 2 3 The experimental (symbols) 

and predicted (lines) trajectories of two 10 urn particles initially located at hilb = 0 27 

(circles, dashed line, and dash-dotted line in Figure 3 6a) and hilb = 0 47 (tnangles and 

solid line in Figure 3 6a) in the upstream under an electric field of 12 KV/m are 

superposed in Figure 3 6a For the particle initially located at hilb = 0 27 in the upstream, 

the numerical predictions without (dash-dotted line) and with (dashed line) DEP are in 

good agreement with the experimental data (circles) in the upstream However, the 



63 

prediction without DEP significantly deviates from the experimental data in the corner 

and the downstream of the microchannel The prediction from the model taking into 

account the DEP effect (dashed line in Figure 3 6a) is in good agreement with the 

experimental data (circles in Figure 3 6a), demonstrating that the DEP effect must be 

taken into account in the study of electrokinetic particle transport in microfluidic 

channels where spatially non-uniform electric fields are present, unfortunately, this issue 

was ignored in most previous studies (Ye and Li 2004a, Qian et al 2006, Liu et al 2007a, 

Davison and Sharp 2008) The good agreement between the predictions with and without 

DEP in the upstream straight section of the microchannel demonstrates that the DEP 

effect is almost negligible in the straight section The numerical predictions of the 10 um 

particle initially located at hilb = 0 47 under 12 KV/m (solid line in Figure 3 6a) and at 

h]/b = 0 51 under 6 KV/m (solid line in Figure 3 6b) are in good agreement with the 

corresponding experimental results (triangles in Figure 3 6a and circles in Figure 3 6b) 

Similarly, the numerical predictions of the 4 um particle initially located at hilb * 0 2 

(dash-dotted line in Figure 3 6b) and at hilb = 0 89 (dashed line in Figure 3 6b) under 12 

KV/m are in good agreement with the corresponding experimental results (squares and 

triangles in Figure 3 6b), demonstrating that the mathematical model captures the physics 

of the electrokinetic particle transport process The good agreement between the 

experimental data and the numerical predictions also confirms the validity of the present 

numerical model and algorithm adopted here 
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Figure 3 6 Comparisons between expenmental (symbols) and predicted (lines) particle 

trajectories (a) 10 um particles located at hilb = 0 27 (circles, dashed line, and dash-dotted line) 

and hilb = 0 47 (triangles and solid line) under an electric field of 12 KV/m Dash-dotted line 

denotes the numencal prediction without DEP (b) 10 um particle located at hilb = 0 51 (circles 

and solid line) under an electric field of 6 KV/m, and 4 um particles located at hilb * 0 2 (squares 

and dash-dotted line) and h,lb = 0 89 (triangles and dashed line) under an electric field of 12 

KV/m The DEP effect is considered in all the numencal predictions 

3.4.3 Particle Rotation 

Besides the particle trajectory shift, the DEP effect also alters the particle rotation as 

shown in Figure 3 7 Solid line and circles represent the predicted angles of the 10 um 

particle initially located at hilb = 0 47 in the upstream from the model with and without 

DEP, respectively The dashed line and triangles represent, respectively, the predicted 

angles of the 10 um particle initially located at hilb = 0 27 in the upstream from the 

model with and without DEP It is noted that counterclockwise angle is defined as 

positive hereafter Because the DEP effect is minimal in the straight section as mentioned 

above, the particle rotations with (lines) and without (symbols) DEP are almost the same 
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at the upstream As the particle passes through the corner, the particle angle with 

considering the DEP effect differs significantly from that without DEP The particle 

rotation without DEP shows a similar trend to that reported in a previous study which 

ignored the DEP effect (Davison and Sharp 2008) 
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Figure 3 7 Rotation angles of two 10 um particles initially located at hilb = 0 27 (dashed line and 

triangles) and h\lb = 0 47 (solid line and circles) through the L-shaped channel under an electnc 

field of 12KV/m Symbols and lines represent, respectively, numerical predictions without and 

with DEP 
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Figure 3 8 Rotation of two 10 um particles initially located at hjlb = 0 12 and 0 88 through the 

L-shaped channel under an electnc field of 12 KV/m The crosses inside the particle and the dot 

on the particle surface are used for a clear demonstration of the particle's rotation 

Figure 3 8 illustrates the rotational dynamics of two 10 urn particles initially located 

at hjlb = 0 12 (located m the zone A in Figure 3 8) and hj/b = 0 88 (located in the zone B 

in Figure 3 8) along their trajectones through the L-shaped channel under an electnc field 

of 12 KV/m Since the electric field between the particle and the channel wall is 

intensified due to the presence of the particle, fluid velocity between the particle and 

channel wall is higher than that on the other side, inducing a net torque on the particle 

Therefore, the angular velocity of particles close to the channel wall is higher than that in 

the middle channel width region Furthermore, the rotational direction of particles located 

in zone A, referring to the inner half channel width region, is clockwise while the other 

one located in zone B, the outer half channel width region, is counterclockwise When the 
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electric field distribution around the particle is symmetric, such as m the case of particles 

located at the centerhne of the straight section, the particle rotation cannot occur 

However, the particles migrating along the centerhne of the corner experience a net 

torque due to an asymmetnc electric field The particle initially located at hilb = 0 12 is 

significantly shifted towards the centerhne of the channel downstream The particle 

initially located at hilb = 0 88 displays a slighter trajectory shift after passing the corner, 

suggesting a less DEP effect at the outer corner As the particle is less shifted toward the 

centerhne, the angular velocity at the downstream is higher compared to the case of hilb 

= 0 12 Therefore, the DEP effect could shift the particle trajectory, and also alters the 

particle's rotational dynamics, which is highly dependent on the particle's location 

Figure 3 9 shows the rotational dynamics of a 10 urn particle initially located at hilb 

= 0 26 through the L-shaped channel under an electric field of 20 KV/m The particle 

with a solid circle and a hollow circle refer to, respectively, the numerical prediction with 

and without DEP As the particle is shifted from zone A to zone B, the rotational 

direction is altered once it crosses the centerhne of the channel The trajectory and 

rotation of the particle in the upstream without DEP is quite similar to that with DEP, and 

thus not displayed in Figure 3 9 When the DEP effect is ignored, the particle remains in 

zone A and maintain the same rotational direction after passing through the corner Thus, 

the precise estimation of the DEP effect is crucial for the prediction of particle dynamics 

It is predicted that the particles initially located in zone A can be shifted to zone B as the 

electric field further increases (results are not shown here), suggesting that incoming 

particles with random initial rotational directions can come out with a consistent 

rotational direction 
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Figure 3 9 Rotation of a 10 um particle initially located at hjlb = 0 26 through the L-shaped 

channel under an electnc field of 20 KV/m The solid and hollow particles represent, respectively, 

the numerical predictions with and without DEP 

3.4.4 Effect of Particle Size 

Trajectories of three particles of different sizes (4um, lOum and 15 um in diameter) 

initially located at hilb = 0 26 in the upstream through the L-shaped channel are shown in 

Figure 3 10 All of them are bearing an equal zeta potential of-56 8 mV, corresponding 

to an electrokinetic mobility of 1 6*10"8 m2/(V»s) The 10 um particle (dashed line) 

experiences a much larger trajectory shift than the 4 um particle (solid line), indicating a 

potential size-based separation in an L-shaped microchannel Most present DEP 

separation techniques are based on the same principle that particles in different sizes 

experience different DEP forces The 15 um particle (dash-dotted line) follows a distinct 

trajectory from that of the 10 um particle in the corner However, both particles recover 
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to almost the same location at the outlet due to the repulsive DEP force originated from 

interactions between the channel wall in the downstream and the particle Hence, too 

large particles may not be separated using the current parameters and geometry, but one 

can still adjust the electric field and geometry (such as channel width and the turn radii) 

to achieve the separation for specific particle sizes 

i\\ 

X 

Figure 3 10 Trajectories of particles of 4 um (solid line), 10 um (dashed line) and 15 um (dash-

dotted line) in diameter through the L-shaped microchannel under an electric field of 20KV/m 

The zeta potential of the particle is -56 8 mV and the particle is initially located at hi/b = 0 26 in 

the upstream 
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Figure 3 11 (a) Trajectories of two 4um particles initially located at hilb = 0 12 and 0 88 in the 

upstream under an electric field of 12 KV/m (solid line), 40 KV/m (dashed line), and 100 KV/m 

(dash-dotted line) (b) Trajectones of two lOum particles initially located at h,lb = 0 12 and 0 88 

in the upstream under an electric field of 6 KV/m (solid line), 12 KV/m (dashed line), and 20 

KV/m (dash-dotted line) 

3.4.5 Effect of Electric Field 

Besides the particle size, adjusting the electric field is also beneficial to achieve 

different trajectory shifts Figure 3 11 illustrates the focusing of two 4 um particles (a), 

and two 10 um particles (b) initially located at hilb = 0 12 and 0 88 in the upstream 

through the L-shaped channel under different electric fields The 4 um particle (Figure 

3 1 la) bearing a zeta potential of-22 0 mV, corresponding to the electrokinetic mobility 

measured in the experiment, shows a negligible focusing under a 12 KV/m (solid lines), 

and a slight focusing effect under 40 KV/m (dashed lines) and 100 KV/m (dash-dotted 

lines) The particle focusing ratios w//w>2, defined as the particle flow width at the inlet 

dividing by that at the outlet, are 1 17 and 1 59 corresponding to the electric fields of 40 

KV/m and 100 KV/m, respectively In contrast, a distinct focusing effect of the 10 um 

(a) 
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particle bearing a zeta potential of-56 8 mV is observed as shown in Figure 3 l ib The 

particle focusing ratios \v1lw2, are 1 34, 2 06 and 3 89 corresponding to the electric fields 

of 6 KV/m (solid lines), 12 KV/m (dashed lines) and 20 KV/m (dash-dotted lines), 

respectively This kind of particle focusing effect in case of constricted (Thwar et al 

2007) and serpentine channels (Zhu et al 2009) has also been experimentally observed m 

previous studies 

3.5 Conclusions 

The effects of the DC DEP force, arising from the interactions between the non­

uniform electric field around the corner and the dielectric particle, on the electrokinetic 

particle transport through an L-shape microchannel are experimentally and numerically 

studied Good agreement between experimental results and numerical predictions verifies 

that the proposed multiphysics model is able to predict the electrokinetic transport of 

particles in complex microfluidic channels Comparisons between numerical predictions 

considering and not considering the DEP effect and the obtained experimental results 

prove that the DEP effect must be taken into account in the study of electrokinetic 

particle transport in non-uniform electric fields Results indicate that the DEP-induced 

particle trajectory shift in the L-shaped microchannel depends on the electnc field and 

particle size The latter dependence implies a potential DEP separation of particles by 

size Numerical studies also demonstrate a strong influence of DEP on the velocity and 

direction of particle's rotations 

file:///v1lw2
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CHAPTER 4 

DC DEP PARTICLE - PARTICLE INTERACTIONS 

AND THEIR RELATIVE MOTIONS 

Abstract 

When particles in an electrolyte subjected to an external electric field get close to 

each other, the presence of particles could alter the local electric field and consequently 

induce mutual DEP forces on each other In this Chapter, a transient, 2D multiphysics 

model under a thin EDL assumption is performed to investigate the effects of the 

imposed electric field, the initial particle's orientation and distance on the DEP 

interaction between a pair of micro-sized particles and their relative motions Prior to the 

study of the DEP interaction, the magnitude comparison between the DEP particle-

particle interaction and Brownian motion is analyzed When the DEP particle-particle 

interaction dominates the random Brownian motion, it is expected to observe the particle 

chaining along the direction of the imposed electric field, independent of the initial 

particle orientation During the attraction motion of particles, their velocities tend to 

dramatically decreases due to the rapid increase in the repulsive pressure force when the 

particle distance decreases to a certain value One exclusive exception of the particle 

chaining occurs when the initial connecting line of the particles is perpendicular to the 

imposed electric field, which is extremely unstable owing to the inevitable Brownian 

motion 
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4.1 Introduction 

Dielectrophoresis, arising from spatially non-uniform electric fields, has become one 

of the most promising tools for particle manipulation in microfluidics and nanofluidics 

Recently, the DEP assembly of colloidal particles or biological entities has been 

successful implemented to construct microscopic functional structures (Hermanson et al 

2001, Velev and Bhatt 2006, Gangwal et al 2008b, Gupta et al 2008, Juarez and Bevan 

2009, Velev et al 2009) This technique exhibits rapid response and easy control features 

compared to previous conventional assembly techniques (Gupta et al 2008) Particle 

chaining is commonly observed in the DEP assembly of particles, as comprehensively 

reviewed by Velev et al (2009) When particles in electrolyte submersed in an external 

electric field get close to each other, the presence of particles may significantly alter the 

local electric field and thus exerts mutual DEP forces on each other It turns out that the 

particle-particle interactions play an important role in the particle chaining 

The Keh's group (Keh and Chen 1989a, Keh and Chen 1989b, Keh and Yang 1990, 

Keh and Yang 1991, Keh and Chen 1993), the Hsu's group (Hsu et al 2005, Hsu and 

Yeh 2007) and Zeng et al (1999) have performed comprehensive studies of the particle-

particle interaction in electrophoresis Swaminathan and Hu (2004) and Yanv (2004) 

denominated this particle interaction "inertia-induced interaction" Under the assumption 

of thin EDL, Swaminathan and Hu (2004) found that the stable orientation of a pair of 

particles occurs when their connecting line is perpendicular to the external electric field 

In addition, Yanv (2004) derived approximation solutions of the inertia force and their 

trajectories, which are valid when the gap between the particles is larger than the particle 

radius Furthermore, it is predicted that a pair of particles with an arbitrary initial 
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orientation tends to rotate toward the aforementioned stable orientation However, the 

DEP particle-particle interaction is neglected in these studies 

Kadaksham et al (2005) suggested that the DEP force acting on particles depends on 

three characteristic length scales the particle size, the length quantifying the non-

uniformity of the local electnc field and the particle distance The second length scale is 

related to the DEP force arising from the interaction between the intrinsic non-uniform 

electric field and an individual particle, while the last length scale is responsible for the 

DEP particle-particle interaction force If the latter DEP force dominates the former, it is 

expected to form chains along the direction of the imposed electric field Otherwise, the 

DEP particle-particle interaction force is negligible A numerical Lagrange multiplier 

method has been used to study the DEP behavior of particles by this group (Kadaksham 

et al 2004a, Kadaksham et al 2004b, Aubry and Singh 2006b, Kadaksham et al 2006) 

However, both of the two DEP forces are obtained using the point dipole method, which 

is valid only when the gap between the particles is larger than the particle size, admitted 

by the authors (Aubry and Singh 2006a) Kang and Li (2006) adopted an approximation 

solution of the DEP particle-particle interaction force to derive an approximation solution 

of the particle trajectory They found that a pair of particles with an arbitrary initial 

orientation tend to attract each other and align to the external electric field as the stable 

orientation, which is totally different from that when the DEP particle-particle interaction 

is not considered (Swaminathan and Hu 2004) Strictly speaking, the approximation 

solution of the DEP force is also valid only when the gap between the particles is larger 

than the particle size In addition, the assumption of a constant Stokes' drag acting on the 

particle is not appropriate due to the presence of the hydrodynamic particle-particle 



75 

interaction Recently, Hwang et al (2008) expenmentally observed the chaining and 

alignment of a pair of spherical particles initially presenting an angle with the external 

electric field, as a result of the DEP particle-particle interaction force Janjua et al (2009) 

also experimentally investigated the alignment and self-assembly of rods on fluid-fluid 

interfaces due to the DEP particle-particle interaction force 

In this chapter, we investigate the DEP and hydrodynamic particle-particle 

interactions using a transient multiphysics model, in which the fluid flow field, electric 

field and particle motion are simultaneously solved using the ALE method Prior to the 

study of the particle-particle interactions and the resulting motions, the magnitude 

comparison between the DEP particle-particle interaction and Brownian motion is 

analyzed 

4.2 Mathematical Model 

We consider a pair of identical circular particles in a square filled with an 

incompressible and Newtonian electrolyte solution of density p and dynamic viscosity rj, 

as shown in Figure 4 1 The center point of the connecting line of the two particles, 

located at the center of the square, is the origin of the Cartesian coordinate system (x, y) 

Far away from the particles, an electric field, E, is imposed along the jc-axis The 

computational domain, Q., is enclosed by ABCD and the particle surfaces A and T The 

particle radius and the side length of the square are, respectively, a and L The center-to-

center distance of the two particles and the angle between the connecting line of the two 

particles and the jc-axis are, respectively, R and 6 Particle interaction due to 

electrophoresis is eliminated in the present study Commonly, the EDL thickness is on 

the order of several nanometers For example, the EDL thickness of a charged surface 
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submersed in a 0 1M KC1 solution at 25 °C is approximately lnm (Schoch et al 2008) 

Regarding the particle interaction within a distance on the order of the EDL thickness, the 

EDL interactive force and van der Waals force are of great importance, which has been 

successfully described by a well-established Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory (Das and Bhattacharjee 2004, Young and Li 2005, Malysheva et al 

2008) Herein, we focus on the DEP interaction of two micro-sized particles and the 

particle distance is much larger than the EDL thickness As a result, the thin EDL 

assumption neglecting the EDL interactive force and van der Waals force, valid for 

microscale electrokinetics (Ye et al 2002, Ye and Li 2004a, Ye et al 2005, Davison and 

Sharp 2008), is adopted in the present study Therefore, the present mathematical model 

is not valid for the interaction analysis of nano-sized particles (Qian et al 2006, Zhao and 

Bau 2007, Liu and Hsu 2009) 

L 

E 

2a 

R *x 

Figure 4 1 A pair of identical particles suspended in a square of electrolyte (ABCD) under an 

externally applied electric field E The origin of the Cartesian coordinate systems (x, y) is located 

at the center point of the connecting line of the two particles and also the center of the square The 
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distance between the two particles and the angle between the connecting line of the two particles 

and the external electric field are, respectively, R and 6 

The governing equations are normalized by the particle radius, a, the electric potential 

applied on segment AB in Figure 4 1, $,, and the particle velocity, Ux =i!z!L*Li where 

ef and TJ are, respectively, the fluid permittivity and fluid viscosity These quantities 

represent, respectively, the charactenstic length, charactenstic electnc potential and 

characteristic velocity, deriving the following normalizations x = ax* , u = Uxu , 

p-2^.p*, (/> = </>0(f and t = -^-t*, where the asterisk denotes dimensionless quantities 

According to the thin EDL assumption, the net charge density in the computational 

domain Q is zero, preserving the distribution of electric potential as the Laplace equation 

V Y = 0 inQ (4 1) 

The potential difference applied to generate the electric field is described by imposing 

$ =$- onAB, (4 2) 

and 

(f = 0 on CD (4 3) 

Non-penetration of the electnc field is applied on all the other boundaries 

n»V>*=0 on BC, AD, Tand A (44) 

As the Reynolds number of the fluid flow in the present study is less than 0 01, the 

fluid inertia is neglected Therefore, the mass and momentum conservation of the fluid 

are given as 
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V «u =0 mQ, (4 5) 

and 

R e ^ r - V V + V V = 0 inQ, (4 6) 
dt 

where Re = f^. 

>? 

The fluid boundary on the particle surface is related to the translational and rotational 

velocities, expressed as 

U; = U ; + G>; x (x„ - xpi) i=r and A, (4 7) 

where U ,̂ and & are, respectively, the translational velocity and rotational velocity of 

the ith particle, x*( and x are, respectively, the position vector of the surface and center 

of the Ith particle A symmetry boundary condition is implemented on segments BC and 

AD, which are far away from the particles Normal flow with zero pressure is imposed on 

segments AB and CD, which are also far away from the particles 
The total force exerted on the z* particle consists of the hydrodynamic force, F^(, and 

the electrokinetic force, F*( , which are obtained, respectively, by integrating the 

hydrodynamic stress tensor T^ and the MST T* over the surface of the Ith particle, given 

by 

K, = | (T ; • n) dS', = {[-/I + ( W + (VV)r)] . ndS; , (4 8) 

and 

F; = {(T;.n)< = {EV-V.E- ) i >ndS' (4 9) 
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Equation (4 9) represents the pure DEP force acting on the particle because the first term 

of the integrand on the right-hand-side of Equation (4 9) vanishes due to the non-

penetration boundary condition, Equation (4 4) 

The translation and rotation of the ?th particle are governed by 

. c/U„, . . » 
m EL = F = F + F (4 

and 

Il,^fL=X = { ( x ; , - x ; , ) x [ ( T ; + T ; ) . n ] < , ( 4 

where m'pi and /*, are, respectively, the mass and the moment of inertia of the i'h particle, 

F(* and T(* are, respectively, the total force and torque acting on the Ith particle By 

integrating the translational velocity and rotational velocity of the Ith particle over a given 

time step, the travelling distance and rotation angle of the /th particle during the given 

time step are obtained The force, torque, mass, moment of inertia, and rotational velocity 

are normalized as ¥,=TjUadF; , T,=TjUua
2X > m

P, =£m'P, > Ip,=vrI'p> ' md 

4.3 Results and Discussion 

4.3.1 Comparison between DEP Particle-Particle Interaction and Browman Motion 

Browman motion of particles suspended in an aqueous solution arises from collisions 

by the random thermal motion of surrounding liquid molecules, which is inevitable 

unless the absolute temperature is zero Prior to the study of the DEP particle-particle 

interaction, we first evaluate the magnitude of the Browman motion compared to the DEP 
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particle-particle interaction motion, which can be determined by the Peclet number 

defined as 

Pe = —JL, (4 12) 

where a, Up and DB are, respectively, the particle radius, particle velocity due to the DEP 

particle-particle interaction and Brownian diffusion (Wilson et al 2000, Davison and 

Sharp 2008) Kang and Li (2006) found that the DEP particle-particle interaction force 

shows a i?"4 decay Apparently, the DEP particle-particle interaction could decrease to the 

same magnitude of the Brownian motion when the particle distance is large enough 

Under such a long particle distance condition, Kang and Li's approximation solution 

could gain an acceptable prediction of the particle velocity It is also revealed that the 

particle velocity due to the DEP particle-particle interaction is maximized when the 

connecting line of the particles is parallel to the imposed electnc field for a given particle 

distance Therefore, we consider two spheres initially located parallel to the electnc field 

with a center-center distance R The DEP force acting on either particle can be 

approximated as (Kang and Li 2006) 

FDEP= *—;-, (4 13) 
DEP (Rlaf 

which is in good agreement with the analytical solution when R /2-1 is greater than unity 

Also, the assumption of a constant Stokes drag acting on the particle is appropriate when 

the particle distance is large enough Therefore, the particle velocity arising from the 

DEP particle-particle interaction is given as 

Up=Jj>EP_ ( 4 1 4 ) 
bnr\a 
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The relative diffusivity due to the Browman motion is given as (Wilson et al 2000) 

KT 
DB=- , (4 15) 

2>7tT]a 

where K is the Boltzmann constant and T is the absolute temperature Therefore, the 

Peclet number can be expressed as 

Pe = f—rr (4 16) 

2KTR* 

When Pe = 1, the DEP particle-particle interaction motion is on the same order of the 

Browman motion Thus, the normalized critical particle distance to neglect the DEP 

particle-particle interaction is given as 

R' = 
r3n£fE

2a3^ 

V 2KT J 
(4 17) 

As an example, when E = 10 KV/m, a = 10 urn, ef= 7 08><10"10F/m and T= 300 K, the 

critical particle distance is approximately R= 16a, under which the DEP particle-particle 

interaction is trivial In the following, we restrict the particle distance to no longer than .ft 

= 5a, which yields a Peclet number larger than 130 Therefore, the DEP particle-particle 

interaction motion dominates the Browman motion which thus is neglected in the present 

study 

All the equations described in Section 4 2 are dimensionless, thus, the following 

results are mainly presented in a dimensionless manner The characteristic length and 

electric potential are, respectively, a = 10 um and <f>0 = 2 V The fluid permittivity and 

fluid viscosity are, respectively, e/= 7 08><10"10F/m and T] = 1 0xl0"3kg/(m»s), based on 

which the characteristic particle velocity can be determined The particle density is 

chosen as p = 1 05*103 kg/m3, and the side length of the square is 20a The following 
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sections are organized based on the initial angle between the connecting line of the two 

particles and the x-axis, 6 

4.3.2 Parallel Orientation: 0 = 0° 

Initially, a pair of particles are positioned at (x'0, y'0) = (±2 5, 0) and subjected to an 

external electric field E* = 0 05 (E = lOKV/m) It is found that the two particles attract 

each other and move toward each other at a same translational velocity, which is 

consistent with the previous studies (Kang and Li 2006) Figure 4 2a shows the electric 

field around the two particles located at (JC , y ) = (±1 56, 0), indicating a reduced electric 

field within the gap between the two particles In the absence of either particle, the 

asymmetric non-uniformity of the electric field around the other one will vanish 

Apparently, the present DEP force arises from the simultaneous presence of the two 

particles, and thus named DEP particle-particle interaction force Usually, particles 

experience a negative DEP pointing from higher electric field to lower electric field, as 

shown in Figure 4 2a As a result, the attractive DEP force drives the two particles 

approaching each other, which is the basic principle of particle chaining observed in 

many previous experimental studies, well summarized by Velev et al (Velev et al 2009) 

As a result of the attraction motion, symmetric circular flow patterns emerge around the 

two particles, as shown in Figure 4 2b Furthermore, the pressure between the two 

particles is enhanced, generating a repulsive hydrodynamic pressure force acting on the 

two particles shown in Figure 4 2c As the flow field and pressure around the two 

particles vary with their locations, in particular significantly when the particles are very 

close to each other, it is not appropriate to assume a constant drag coefficient dunng their 

chaining process induced by the attractive DEP force 
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Figure 4 2 Distribution of the electnc field (a), flow field (b) and pressure (c) around a pair of 

particles located at (x*, y*) = (±1 56, 0) subjected to an external electric field E* = 0 05 (E = 

lOKV/m) Lines in (a), (b) and (c) represent, respectively, the streamlines of the electric field and 

flow field, and the contour of the pressure The darkness represents the magnitude of the 

corresponding parameters The DEP force shown m (a), FDEP3 tends to attract the two particles, 

while the pressure force denoted in (c), FP, resists the attraction motion 
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Figure 4 3a depicts the velocity variations of the two particles along their 

corresponding travelling distance As mentioned before, the translational velocities of the 

two particles are the same in magnitude but opposite in direction At the beginning, the 

attraction motion accelerates owing to the gradually increased DEP force as they 

approach each other, as shown in Figure 4 3b However, the repulsive hydrodynamic 

pressure force, resisting the attraction motion, also significantly increases as the particle 

distance decreases When the center-to-center particle distance decreases to a certain 

value (eg, /? « 3 for this case), the particle velocity decreases as they get even closer, 

since which the repulsive hydrodynamic pressure force increases faster than the attractive 

DEP force However, the particle velocity obtained by Kang and Li's (2006) 

approximation solution consistently increases during the particle attraction, due to the 

assumption of a constant drag coefficient To maintain some elements within the gap of 

the two particles, the particles cannot contact each other in the current simulation In 

addition, when the gap between the two particles is on the order of EDL thickness, the 

EDL interaction force and the van der Waals force must be taken into account (Das and 

Bhattacharjee 2004, Young and Li 2005, Malysheva et al 2008), which is beyond the 

scope of this paper But it is predictable that the particle velocity approaches zero when 

the two particles nearly contact each other 
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Figure 4 3 Velocity (a) and force (b) variations of a pair of particles initially located at (x , y*) = 

(±2 5, 0) subjected to an external electric field E* = 0 05 The solid line and dashed line in (b) 

represent, respectively, the magnitude of the DEP force and the hydrodynamic pressure force in 

the x direction 

4.3.3 Perpendicular Orientation: 9 = 90° 

When a pair of particles are initially located at (x*0, y*0) = (0, ±1 5), indicating a 

perpendicular orientation to an external electric field E* = 0 05 (E = lOKV/m), the 

induced DEP particle-particle interaction force acts as a repulsive force Therefore, the 

two particles repel each other to minimize the DEP force Figure 4 4 shows the velocity 

variation of the particle initially located at (x'0, y'0) = (0,1 5) along its travelling distance 
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As the particle distance increases, the non-uniformity of the electric field adjacent to the 

particles decreases, which consequently reduces the particle velocity Eventually, the 

DEP particle-particle interaction becomes negligible at a large particle distance Although 

the Brownian motion of particles is very limited within the cntical particle distance as 

discussed in Section 4 3 1, a perfect perpendicular orientation is still extremely unstable 

due to the inevitable Brownian motion (Kang and Li 2006), especially at a large particle 

distance 

6 X 10"5 

4 

Q. 

2 

" 1 2 3 4 5 
* 

y 
Figure 44 Velocity variation of a pair of particles initially located at (x0, y0) = (0, ±1 5) 

subjected to an external electric field E* = 0 05 The inset denotes the distribution and streamlines 

of the electric field around the two particles The darkness represents the magnitude of the electric 

field strength The arrows represent the direction of the DEP force 

T r 
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4.3.4Intermediate Orientation: O°<0<90° 

Naturally, the particle orientation is mostly between the two aforementioned critical 

orientations Therefore, it is more practical to understand the DEP interaction force of 

two arbitrarily oriented particles and their relative motions Figure 4 5 shows the 

trajectories of a pair of particles initially located at ( x'0 , y'0) = [±1 5xcos(85°), 

±1 5xsin(85°)] under an external electric field E* = 0 05 along the x-axis At the 

beginning, the repulsive DEP force pushes the two particles away from each other 

However, the jc-component of the DEP force causes the two particles to rotate with 

respect to each other, decreasing the angle between the connecting line of the two 

particles and the electric field As the two particles rotate further, the DEP force becomes 

attractive and pulls them approaching each other, eventually ending up with the parallel 

attraction motion as described in Section 4 3 2 A similar prediction has been reported by 

Kang and Li (2006) using an approximation solution Recently, Hwang et al (2008) 

experimentally observed the attraction and alignment of a pair of particles initially 

presenting a large angle with the external electric field It turns out that the DEP 

interaction force always tends to attract and align particles with their connecting line 

parallel to the external electric field unless the particles are initially perpendicular to the 

electric field As aforementioned, such perpendicular orientation is not stable due to the 

unavoidable Brownian motion (Kang and Li 2006) Hence, the DEP particle-particle 

interaction motion always ends up with chaining and alignment to the electric field, 

independent of the initial particle location 
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an external electric field E* = 0 05 Point A and B represent, respectively, the starting and ending 

of the particle 

>» 1 -

Figure 4 6 Trajectones of the upper one in a pair of particles initially located with R* = 3 and 6: 

85° under E* = 0 05 (solid line), 0 1 (dashed line) and 0 15 (dash-dotted line) 
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Figure 4 7 Trajectories of a pair of particles initially located with 6 = 45° and R* = 3 (solid lines) 

and R* = 4 (dashed lines) subjected to an external electnc field E* = 0 05 Point A and B represent, 

respectively, the starting and ending of the particle 

Figure 4 6 demonstrates the effect of the imposed electric field strength on the 

trajectory of a pair of particles initially located at ( x'Q , y'0 ) = [±1 5xcos(85°), 

±1 5xsm(850)] Due to the opposite symmetry, the trajectories of one particle located at 

(*o> .Vo) = [1 5xcos(85°), 1 5xsin(850)] are shown in Figure 4 6 It is found that the 

particle distance during the rotation and attraction under a higher electric field is slightly 

larger than that subjected to a lower electnc field The time required for two particles to 

nearly contact each other under an electnc field of E* = 0 05 (E = lOKV/m) is 

approximately one quarter of that under E = 0 1 In general, the required time is 
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proportional to (1/E ) 2 Hence, it is efficient to decrease the time required for particle 

chaining by increasing the electric field strength 

The trajectories of a pair of particles initially located at (*„, y'0) = [±1 5xcos(45°), 

±1 5xsm(45°)] under an external electric field E* = 0 05 is shown in Figure 4 7 

Consistent with the previous predictions, the two particles end up with particle chaining 

along the direction of the electric field Compared to the initial particle location in Figure 

4 6, the particle distance is identical The difference is the current initial orientation is 

closer to the stable one As a result, the time required for two particles to nearly contact 

each other is approximately 2/5 of that under the same electric field in Figure 4 6 Keep 

the electric field unchanged, we further increase the initial particle distance to R = 4, 

corresponding to an initial location (**, y*0) = [±2xcos(45°), ±2><sin(450)] As the DEP 

force becomes weaker when the particle distance increases, the travelling distance 

required for chaining also increases, and the time required for chaining increases to 1 6 

times of that when R = 3 

Figure 4 8 shows the velocity variations of the lower particle with two different initial 

locations shown in Figure 4 7 along their travelling distances As the DEP force for R = 

3 is stronger than that for R* = 4, the initial JC- and ̂ -component velocities for R* = 3 are 

nearly twice of those for R = 4 As the velocity variation with the traveling distance is 

very similar for both R* = 3 and 4, we focus on the velocity variation for R = 4 At the 

beginning, the x-component velocity (solid line) is negative Its magnitude decreases as 

the particle travels until the x-component velocity becomes positive Subsequently, the 

magnitude increases to a local maximum value due to the increase in the attractive DEP 

force, and then begins to decreases owing to the faster increase in the repulsive 
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hydrodynamic pressure force, which has been described in Figure 4 3a The ^-component 

velocity (dashed line) is always positive and varies slightly before the x-component 

velocity becomes positive After that, the magnitude decreases gradually to zero until the 

attraction motion happens along the x-axis 
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Figure 4 8 Velocity variations of one of the particles in Figure 4 7 The dotted line and solid line 

denote, respectively, the x-component velocities of the particle with initial R * = 3 and 4 The 

dash-dotted line and dashed line denote, respectively, the ^-component velocities of the particle 

with initial R* = 3 and 4 

4.4 Conclusions 

The DEP particle-particle interaction and their relative motions are numerically 

investigated using the verified multiphysics model under the thin EDP assumption The 

critical particle distance, beyond which the DEP particle-particle interaction is negligible, 

is proportional to (E2^)1'4, determined by the magnitude analysis of the DEP particle-
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particle interaction motion and the Brownian motion Within the critical particle distance, 

it is found that the DEP particle-particle interaction force always tends to chain and align 

particles parallel to the external electnc field, independent of the initial particle 

orientation except an unstable orientation perpendicular to the electric field When two 

particles are located parallel or nearly parallel to the electric field, the particle attraction 

is usually accelerated at the beginning but decelerated due to a faster increase in the 

repulsive hydrodynamic pressure force as the particle distance further decreases When 

the gap between the particles is on the order of the EDL thickness, the EDL interaction 

force and the van der Waals force should be taken into account, which is beyond the 

scope of this current study The electric field strength exhibits a limited effect on the 

particle trajectory, however, significantly influences the time required to bring particles 

in a near contact In addition, particles with a longer initial distance require a longer time 

to contact each other However, once the particle distance exceeds a critical value, the 

DEP particle-particle interaction motion is on the same magnitude of the Brownian 

motion Under such condition, the particle chaining and alignment to the electric field 

cannot be expected 
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CHAPTER 5 

DC ELECTROKINETIC TRANSPORT of 

CYLINDRICAL CELLS IN STRAIGHT 

MICROCHANNELS 

Abstract 

Electrokinetic transport of cylindrical cells under DC electric fields in a straight 

microfluidic channel is experimentally and numencally investigated with emphasis on the 

DEP effect on their orientation variations A 2D multiphysics model, composed of the NS 

equations for the fluid flow and the Laplace equation for the electrical potential defined 

in the ALE framework, is employed to capture the transient electrokinetic motion of 

cylindrical cells The numerical predictions of the particle transport are in quantitative 

agreement with the obtained experimental results, suggesting that the DEP effect should 

be taken into account to study the electrokinetic transport of cylindrical particles even in 

a straight microchannel with uniform cross-sectional area A comprehensive parametric 

study indicates that cylindrical particles would experience an oscillatory motion under 

low electric fields However, they are aligned with their longest axis parallel to the 

imposed electric field under high electric fields due to the induced DEP effect 
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5.1 Introduction 

Electrokmetic phenomena offer an efficient way to manipulate particles using only 

electric fields without moving parts (Li 2004, Gomez 2008) and have been extensively 

used in microfluidic devices for particle characterization, trapping, focusing, separation, 

sorting and assembly (Li 2004, Dittrich and Manz 2006, Weibel and Whitesides 2006, 

Hu and Li 2007, Kang and Li 2009) The success of these electrically controlled 

microfluidic devices for particle transport relies on a comprehensive understanding of 

fluid and particle behavior in these devices However, most existing theoretical (Keh and 

Anderson 1985, Ye and Li 2004a, Ye et al 2005, Unni et al 2007) and experimental 

(Xuan et al 2005a, Kang et al 2006b, Xuan et al 2006, Kang et al 2008, Zhu et al 2009, 

Zhu and Xuan 2009a) studies on the electrokmetic transport in microfluidic devices have 

been performed exclusively on spherical particles In fact, a large amount of particles 

used in microfluidic applications, such as biological entities (Gomez 2008) and synthetic 

nanowires (Appell 2002, Patolsky et al 2006), are non-spherical So far, comprehensive 

understandings of the electrokmetic transport of non-spherical particles are very limited 

To date, a small number of numencal studies on the electrokmetic transport of 

cylindrical particles have been performed using quasi-static and transient models Ye et al 

(2002), Hsu's group (Hsu and Kuo 2006, Hsu et al 2008a) and Liu et al (2004, 2007b) 

studied the translation of a finite cylinder concentrically and eccentrically positioned 

along the axis of a tube using a quasi-static method The effect of the particle's 

orientation on its transport, however, was not examined As the particle's orientation has 

great impact on its adjacent electric and flow fields, it may significantly alter the particle 

motion As a result, a transient simulation accounting for the particle's translation and 
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rotation is necessary to capture the essential physical process of the electrokinetic 

transport of cylindrical particles Davison and Sharp implemented a transient numerical 

model to predict the electrokinetic motion of a cylindrical particle through a tube 

(Davison and Sharp 2006, Davison and Sharp 2007) and an L-shaped microchannel 

(Davison and Sharp 2008) It was predicted that a cylindrical particle could experience an 

oscillatory motion in a straight channel (Davison and Sharp 2007) and an L-shaped 

channel could be used to control the orientation of cylindrical particles (Davison and 

Sharp 2008) However, the aforementioned numerical studies did not examine the DEP 

effect on the particle transport, and the numerical predictions have not been verified by 

experiments The ignoring of the induced DEP motion can cause significant errors in the 

particle's velocity, trajectory and orientation, which has been demonstrated in the 

Chapters 2 and 3 

Dielectrophoresis refers to a nonlinear electrokinetic phenomenon (Gangwal et al 

2008a) in which a force is exerted on a dielectric particle when it is subjected to a 

spatially non-uniform electric field As stated in the previous chapter, this kind of 

electrokinetic phenomenon has been widely used to manipulate spherical particles in 

microfluidics Recently, a DEP-induced alignment phenomenon of nanowires and carbon 

nanotubes (Evoy et al 2004, Lao et al 2006, Makaram et al 2007, Monica et al 2008, 

Chang and Hong 2009, Raychaudhun et al 2009) to external electric fields was 

experimentally observed, indicating a significant DEP effect on the motion of cylindrical 

particles subjected to external electric fields Considering the DEP effect, Winter and 

Welland (Winter and Welland 2009) predicted that non-spherical particles are always 

aligned with their longest axis parallel to the electric field using a transient model, which 
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did not consider the distortions of the electric and flow fields by the presence of the 

particle This approximation can lead to deviations from the experimentally observed 

particle behaviors (Kang et al 2006b, Zhu and Xuan 2009a, Zhu and Xuan 2009b) 

In this chapter, we present an experimental and numerical investigation of a transient 

electrokinetic transport of cylindrical cells in a straight microchannel under direct current 

(DC) electric fields Section 5 2 describes the experimental setup, while Section 5 3 

introduces the mathematical model and its numerical implementation The experimental 

and numerical results are discussed in Section 5 4 with emphasis on the DC DEP effect 

on the orientation vanation of particles Concluding remarks are given in the final section 

5.2 Experimental Setup 

Desmodesmus cf quadncauda (Figure 5 1), a green alga of the Chlorophyceae, was 

grown in RLH medium under fluorescent light (cool white plus, 6500 lux, continuous 

illumination) and aerated with high efficiency particulate air-filtered (HEPA) air Algae 

were then fixed in 4% formaldehyde in 0 1 M phosphate buffer (pH=7 4) for 12 hours at 

4°C, and rinsed three times in 0 1 M phosphate buffer prior to usage in the experiments 

Formalin fixation of cells for scanning electron microscopy (SEM) was performed in 4% 

formaldehyde in 0 1 M sodium cacodylate buffer (pH=7 4) at 4°C for 12 hours Cells for 

SEM were then post-fixed with 2% osmium tetroxide in 0 1 M sodium cacodylate 

(pH=7 4) for 12 hours at room temperature Post-fixed cells were filtered onto 3 0 um 

polycarbonate filters (13 mm, Millipore, Billenca, MA) and dehydrated through graded 

ethanols (25%, 50%, 75%, 95%, and 100%) Dehydrated cells were critical point dried in 

a Polaron CPD7501 (Polaron, E Sussex, England), sputter coated (E Fullam, Latham, 

NY), and examined in a Leo 435VP scanning electron microscope (SEM) 
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Figure 5 1 SEM micrograph of three Desmodesmus cf quadncauda unicells 

A straight microchannel with a rectangular cross-section was fabricated using a 

standard soft lithography technique (Duffy et al 1998) with PDMS, detailed procedure of 

which is given in Chapter 3 2 The length, width and depth of the microchannel are, 

respectively, 10 mm, 50 (±1) um and 25 (±1) um The diameter of the reservoirs located 

in the end of the microchannel is 6 mm The experimental setup is the same as shown in 

Figure 3 2 Pressure-driven flows were eliminated prior to each expenment by balancing 

the solution heights in the two reservoirs until cells inside the channel ceased movement 

Two platinum electrodes connected to a DC power supply (Circuit Specialists Inc , Mesa, 

AZ) were placed in the two reservoirs to generate the electrokinetic particle transport in 

ImM KC1 solution, which was captured at a rate of 7 25 Hz via an inverted microscope 

imaging system (Nikon Eclipse TE2000U equipped with a Powerview™ CCD camera, 

Lewisville, TX) The captured images were further processed using ImageJ (National 

Institutes of health, http //rsbweb nih gov/n/) to extract the location and orientation of the 

cells at each time step The reading error of a given cell's location and angle were, 

respectively, ±0 645 um (±2 pixels) and ±2° The translational velocity was calculated by 
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dividing the travel distance between adjacent cells over the time step in a senes of 

successive images 

5.3 Mathematical Model 

Davison and Sharp (2006) numerically investigated the electrophoretic motion of a 

sphere moving along a cylindrical capillary using two-dimensional (2D), axisymmetnc, 

and three-dimensional (3D) geometries, and the difference between results obtained from 

the 2D and 3D geometries is less than 4% The following proposed mathematical model 

and its 2D numerical implementation have been successfully used to predict 

electrokinetic transport of spherical particles in various microchannels, indicating good 

agreements with the experimental results, as shown in Chapters 2 and 3 In addition, the 

experimental results of the electrokinetic transport of Desmodesmus cf quadrwauda cells 

and their corresponding 2D numerical simulations, presented in section 5 4, are also in 

good agreement Unlike pressure-drive flows, the EOF is a typical plug flow, 2D and 3D 

particles are expected to experience similar flow conditions Although 3D simulations at 

the cost of dramatically increased computational time provide detailed information about 

the dynamics of the particle and the spatial and temporal distributions of the flow and 

electric fields, these remarkable agreements between experimental results and predictions 

of the 2D model suggest that a 2D model is sufficient to capture the essential physics of 

the electrokinetic particle transport in microfluidics Furthermore, in all the experiments 

reported in this paper, cells are always well focused in the microscope and the entire 

length of the cell did not vary a lot during the particle transport, which suggests that the 

cell's translation and rotation mainly happen on the plane of channel length and width (xy 
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plane as shown in Figure 5 2a) Therefore, a 2D simulation of the mathematical model is 

adopted in the current study 

Electric Field 

Figure 5 2 (a) A two-dimensional schematic view of a cylindrical particle in a straight 

microchannel An external electric field is applied between the inlet, AB, and the outlet, CD (b) 

Distribution and streamlines of the electric field within the microchannel in the presence of a 

cylindrical particle The color levels indicate the electric field intensity normalized by the electric 

field intensity in the absence of the particle, with the red color representing high electric field 

As illustrated in Figure 5 1, Desmodesmus cf quadncauda is very similar to a 

cylinder capped by two hemispheres adopted in the numerical simulation Thus, we 

consider a cylindrical particle beanng a zeta potential of Qp electrokinetically moving in a 
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straight microchannel filled with an incompressible and Newtonian fluid of density p and 

dynamic viscosity ju, as shown in Figure 5 2a The 2D computational domain Q. is 

enclosed by the segments ABCD and the particle surface T An electric field is applied 

between the inlet, AB, and the outlet, CD, to drive the particle transport The channel 

walls BC and AD, beanng a uniform zeta potential of Cw, are considered to be rigid and 

non-conducting The length and width of the channel are, respectively, L and b The rigid 

and non-conducting particle, with a length of d, is capped by two hemispheres with 

radius, a A Cartesian coordinate system (x, y) with the origin at the center of the inlet is 

used in the present study The initial location and angle between the longest axis of the 

particle and the centerlme of the channel are (xpo, ypo) and 6po, respectively 

Thin EDL approximation is still adopted in the present study As a result, the 

governing equations and boundary conditions are very similar to those shown in Chapter 

2 2 In order to normalize the equations, the particle radius, a, the zeta potential of the 

channel wall, gw, and the electrophoretic velocity of the particle, Ux = - ^ ^ , are chosen 

as the characteristic length, characteristic electric potential and characteristic velocity, 

respectively Letting x = ax' , u = Uxu' , p-^-p* , <t> = £J>' and t-^-t* , the 

following dimensionless governing equations are obtained 

V * y = 0 inQ, (5 1) 

V*»u*=0 inQ, (5 2) 

R e ^ r - V * V + V y = 0 in ft, (53) 
dt 

where Re = ̂ ^- The dimensionless boundary conditions become 
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n • VV* =0 on BC, AD and T (5 4) 

f =&- onAB, (5 5) 

<£ = 0 on CD (5 6) 

u* = (I - nn) • VV* on BC and AD (5 7) 

u ' = u ; + « ; x ( x ; - x ; ) + r ( i - n n ) . v y o n r , (5 8) 

where U^ and ct)p represent the translational and the rotational velocity of the particle, 

respectively x* and x* represent the position vector of the particle surface and the 

particle center, respectively y = -^- is the ratio of the zeta potential of the particle to that 

of the channel wall The translational and rotational velocities of the particle are governed 

by 

w * ^ f = F * = F ; + F ; , (5 9) 

and 

C-^=T' = \(<-KHT
H

+TE)*ndr'> ( 5 1 °) 

where m* is the mass of the particle normalized by ——, /* is the particle's moment of 

4 i 

inertia normalized by %—, % = - p * I + ( W + ( V Y ) r ) a n d T ; =E*E*-- (E* «E*)l 

T]U 

are, respectively, the hydrodynamic stress tensor and MST normalized by —— The 
r 

normalized equations are solved using the ALE technique presented in Chapter 2 3 
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5.4 Results and Discussion 

For comparisons with experimental observations parameters in numerical simulations 

performed in this section are chosen based on the fluid viscosity// = 1 0><10"3 kg/(m»s) 

and permittivity e/ = 7 08><10*10 F/m The translational velocity of a cylindrical particle 

parallel to the electric field moving along the axis of a tube under the thin EDL 

assumption is given as (Liu et al 2004) 

U'=7^(C'-U- (5 

when the ratio of the tube radius to the particle radius is much higher than the ratio of the 

particle length to the particle radius In the above, Ez is the axial electric field in the 

absence of particles, X is the ratio of the particle radius to the tube radius Based on the 

experimentally obtained particle velocity Up, the zeta potential of PDMS, Cw - -80 mV 

(Kang et al 2006b, Venditti et al 2006), and the given viscosity and permittivity of fluid, 

the averaged zeta potential of the Desmodesmus cf quadricauda was estimated to be CP
 = 

-42 mV Due to the presence of the cylindrical particle, the electric field is non-uniform, 

especially around the particle, as shown in Figure 5 2b The following electric field 

intensities, used to distinguish different electric fields, are calculated by dividing the 

electric potential difference over the length of the channel 

5 4.1 Experimental Results 

Figures 5 3a, 5 3c and 5 3e illustrate the trajectories of Desmodesmus cf quadricauda 

cells in a straight microchannel under electric fields of 0 6 KV/m (a), 6 KV/m (c) and 12 

KV/m (e) These trajectories are obtained by superimposing sequential images of a same 

cell into one single figure Under a 0 6 KV/m electric field, the orientation of the cell 

only has slight change as it translates Under higher electric fields of 6 KV/m and 12 
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KV/m, however, the longest axes of the cells become parallel to the electric field after a 

short travel distance from its initial location The cell under 12 KV/m moves slower than 

that under 6 KV/m, which should be attributed to the variation of the cells' zeta 

potentials The detailed properties of the cells are listed in Table 5 1 Figures 5 3b, 5 3d, 

and 5 3f represent the corresponding numerical predictions for cases in Figures 5 3a, 5 3c 

and 5 3e, respectively, generated by the model proposed in Section 5 3 They are in good 

agreement with the experimental observations 

* * J S J p t j j j j j jjijsjjj O <?<? €>cocc>c>G>a>c>c>e><s>c>&€>o 
(a) • 0 6 KV/m (b) 

O O O 0 O O O B O B O 0 < ? ( ? o o o o o o o 

(c) 6 KV/m (d) 

(e) 12 KV/m (f) 

Figure 5 3 Trajectones of cylindrical particles electrophoretically moving from left to right in a 

straight microchannel The particle trajectories are obtained by superposing sequential images of 

the same particle into one single figure The left gray images, (a), (c) and (e) are experimental 

observations under different electric fields, while the right images, (b), (d) and (f) are the 

corresponding numerical predictions Time intervals between adjacent particles in Figures (a) and 

(b) are 0 7 s, while the time intervals in other figures are 0 14s 

Table 5 1 Properties of the cells in the experiments 

Property Figure 5.3a Figure 5 3c Figure 5 3e 

Cell radius (urn) 1 88 2 25 16 
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Cell length (urn) 

Initial location (um, um) 

Initial angle (deg) 

Zeta potential (mV) 

84 

(52 27, 1 29) 

40 

-49 6 

8 46 

(28 69, -3 69) 

75 
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Figure 5 4 Companson of translational velocity (a) and angle (b) between expenmental results 

and numencal predictions Circles, tnangles and squares are the expenments of Figures 5 3a, 5 3c, 

and 5 3e, respectively Solid and dashed lines with the same color as the symbols are the 

corresponding numencal predictions with and without considenng the DEP effect 
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Figure 5 4a depicts a quantitative comparison between the predicted translational 

velocities of the cells and the experimental results under the three different electric fields 

The translational velocities predicted without considering the DEP effect are almost the 

same as those with DEP, thus, they are not shown here Figure 5 4b indicates that the 

angle of the cell decreases very slowly under a 0 6 KV/m electnc field, which is similar 

to the numerical prediction without DEP The numerical prediction with DEP appears to 

over-predict the angle decrease, which may be attributed to the slight shape mismatch 

between the real cell and the cylinder used in the simulation Under a 6 KV/m electnc 

field, the cell becomes parallel to the electric field The size difference in both ends of the 

cell, as shown in Figure 5 3c, may cause the discrepancy between the experimental result 

and the numerical prediction with DEP However, the angle of the cell predicted without 

DEP is not decreasing at all, resulting in a significant deviation from the experimental 

observation Under a 12 KV/m electric field, the cell becomes parallel to the electric field 

even faster than the case under a 6 KV/m electric field This phenomenon is also captured 

by the numerical prediction with DEP, however, it significantly deviated from the 

numerical prediction without DEP Therefore, the DEP effect must be taken into account 

for a precise prediction of the electrokinetic transport of cylindrical particles even in a 

uniform straight microchannel The DEP force is proportional to the square of the electric 

field intensity As a result, the DEP effect is too small to affect the rotation of the cell 

under low electric fields Hence, the rotation of the cell is mainly dominated by 

electrophoresis and EOF Once the DEP effect becomes larger, the alignment of the 

longest axis of a cyhndncal particle parallel to the electnc field becomes increasingly 

significant This kind of phenomenon has been widely used to manipulate and assemble 
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nanowires and carbon nanotubes onto electrodes (Evoy et al 2004, Lao et al 2006, 

Makaram et al 2007, Monica et al 2008, Chang and Hong 2009, Raychaudhun et al 

2009) 

5.4.2 Effect of Channel Wall 

According to the comparisons between the experiments and numerical simulations, 

the 2D numerical model is sufficient to capture the electrokinetic transport of cylindrical 

particles in a microchannel All the following studies are conducted using the verified 

numerical model and described in a dimensionless manner The dimensionless initial 

location of the particle is (10, 0) Except the section discussing the effect of particle's 

initial angle, the initial angle is always 60° The characteristic length is a = 2 25 um and 

the length of the entire channel is L* = 225 The zeta potential of the channel is (w = -80 

mV 

As the particle transport in microfluidic devices usually exists in confined 

microchannels, the wall effect on the particle transport is of great importance Figure 5 5 

depicts the trajectory of a cylindrical particle in a straight microchannel with different 

channel widths The electric field intensity, aspect ratio of the particle, and the zeta 

potential ratio are E* = 0 0169 (E = 0 6 KV/m), dla = 6 and y = 0 525, respectively When 

the channel width is b =10, the cylindrical particle experiences an oscillatory motion, as 

shown in Figure 5 5a Because of the low electric field, the particle's rotation is highly 

dominated by electrophoresis and EOF As the aspect ratio of the particle is close to the 

channel width, the electric field between the particle and channel is highly distorted, 

similar to Figure 5 2b The oscillatory motion is mainly induced by the fluctuation of the 

electric field due to the presence of the cylindrical particle The predicted oscillatory 
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motion is quite similar to the one predicted by Davison and Sharp without considering the 

DEP effect (Davison and Sharp 2007) However, the amplitude of the oscillatory motion 

depresses as the channel width increases, as shown in Figures 5 5b, 5 5c and 5 5d In 

addition, a longer travel distance of the particle is required to experience one cycle of 

oscillatory motion m a wider channel For example, the travel distance of one-cycle 

oscillatory motion for b = 14 is roughly twice of that for b* = 10 Therefore, the 

cylindrical particle with a non-zero initial angle experiences an oscillatory motion under 

low electric fields 

• 
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Figure 5 5 Sequential images of rotation and translation of a cylindrical particle in a straight 

channel with different channel widths The arrow denotes the translational direction of the 

particle The simulation conditions are E* = 0 0169, dla = 6, y = 0 525 (a) 6*=10, (b) 6*=14, (c) 

b*=22 22, (d) Z>*=40 
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Figure 5 6 Sequential images of rotation and translation of a cylindrical particle in a straight 

channel with different channel widths The arrow denotes the translational direction of the 

particle The simulation conditions are E = 0 169, dia = 6, y = 0 525 (a) b =10, (b) b =14, (c) 

Z>*=22 22, (d) 6*=40 

With the increase in the electric field, the oscillatory motion tends to disappear due to 

the domination of the DEP effect Figure 5 6 illustrates the trajectory of a cylindrical 

particle in a straight microchannel under the same conditions as Figure 5 5 except that the 

electric field is increased ten times (E* = 0 169 and E = 6 KV/m) As the DEP effect 

becomes dominant, the particle becomes parallel to the electric field very quickly, and the 

wall effects on the particle orientation diminish Figure 5 7 shows the orientation 

variations of a cylindrical particle along the centerhne of the microchannel The 

simulation conditions are dia = 6, b* = 10 and y = 0 525 The solid and dashed lines 

represent the cases in Figure 5 5a and Figure 5 6a, respectively As discussed above, the 

particle experiences an oscillatory motion under low electric fields and becomes parallel 
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to high electnc fields Even under low electric fields, the angle of the particle after one 

cycle of oscillation is lower than the initial value, which must be attributed to the DEP 

effect If the DEP effect is ignored (denoted by the dash-dotted line), the particle 

experiences an oscillatory motion even under a high electric field In addition, its angle 

after one cycle of oscillation remains almost the same as its initial value Thus, the DEP 

effect is of great importance in the electrokinetic transport of cylindrical particles under 

high electric fields 
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Figure 5 7 Orientation variations of a cylindrical particle along the centerhne of the 

microchannel The simulation conditions are dla = 6, Z>*=10 and y = 0 525 

E*=0 169_Nodep 
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Figure 5 8 Orientation variations of a cylindrical particle along the centerhne of the 

microchannel under different electnc fields The simulation conditions are dia = 4, b*=22 22 and 

y = 0 525 

5.4.3 Effect of Electric Field 

As stated earlier, the DEP effect is proportional to the square of the electric field 

intensity Therefore, the electric field intensity should significantly influence the particle 

transport, including especially the rotation dynamics Figure 5 8 depicts the effect of 

electric field intensity on the orientation variation of a cylindrical particle The simulation 

conditions are dia = 4, b* = 22 22 and y = 0 525, which are very close to the experimental 

conditions used in the present study Under very low electric fields, E = 0 0028 (E = 0 1 

KV/m), the rotation mainly depends on electrophoresis and EOF As the electric field 

increases, the DEP effect increases faster than electrophoresis and EOF Under a medium 

electric fields, E* = 0 0169, the rotation is not only governed by electrophoresis and EOF 
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but also a weak DEP effect As the electric field increases further, the rotation mainly 

relies on the DEP effect Even higher electric field intensities lead to faster alignments 

Hence, high electric fields are used to achieve a fast alignment of nanowires and carbon 

nanotubes 

Figure 5 9 Onentation vanations of a cylindncal particle with different zeta potential ratios along 

the centerlme of the microchannel The simulation conditions are dla = 6 and b*=\0 and y = 

0 525 The lines in Figure (b) are in the same legend as Figure (a) (a) E* = 0 0028, (b) E* = 0 28 
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5.4.4 Effect ofZeta Potential Ratio 

Figure 5 9 depicts the effect of the zeta potential ratio on the orientation of the 

cylindrical particle under a low, E* = 0 0028 (E = 0 1 KV/m), and a high electric field, E* 

= 0 28 (E = 10 KV/m) Other simulation conditions are dla = 6 and b* = 10 Under the 

low electric field, the oscillatory motion of the particle varies with the zeta potential ratio, 

as shown in Figure 5 9a As the electrophoresis always retards the particle transport 

driven by the electroosmotic flow in the present study, a lower zeta potential ratio leads 

to a higher EOF effect Hence, the angle amplitude of the oscillatory motion increases 

and the period of the oscillatory motion shrinks as the zeta potential ratio decreases 

Although the particles with different zeta potentials are all aligned under the high electric 

field, the alignment evolution still depends on the zeta potential ratio, as shown m Figure 

5 9b As mentioned above, a lower zeta potential ratio leads to a higher particle mobility 

Therefore, a longer travel distance of the particle is required to achieve the ultimate 

alignment 

5.4.5 Effect of Particle's Aspect Ratio 

Figure 5 10 depicts the effect of the aspect ratio of the cylindrical particle on its 

transport under a low, E* = 0 0028, and a high electric field, E* = 0 28, with b* = 22 22 

and y = 0 2 Under the low electric field, the particle's rotation is dominated by 

electrophoresis and EOF, while the DEP effect is negligible Figure 5 10a indicates that a 

particle with a larger aspect ratio experiences a faster rotation Apparently, a particle with 

a larger aspect ratio has a longer arm of force In addition, it induces a more significant 

distortion of the electric field around it than a particle with a smaller aspect ratio Thus, a 

particle with a larger aspect ratio usually experiences a larger torque When the 
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cylindrical particle degrades to a sphere {dla = 2), the particle cannot rotate any more as it 

translates along the centerlme of the channel (Davison and Sharp 2008) One can 

envision that a particle with a larger aspect ratio experiences the oscillatory motion more 

readily than that with a lower aspect ratio Under the high electric field, a particle with a 

larger aspect ratio experiences a faster alignment than that with a lower aspect ratio, as 

shown in Figure 5 10b As the nanowires and carbon nanotubes usually have very large 

aspect ratios, they could have very fast alignment response to the electric field 
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Figure 5 10 Onentation variations of a cylindrical particle with different aspect ratios along the 

centerlme of the microchannel The simulation conditions are b*= 22 22 and y = 0 2 The lines in 

Figure (b) are in the same legend as Figure (a) (a) E* = 0 0028, (b) E* =0 28 
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Figure 5 11 Onentation variations of a cylindrical particle with different initial angles along the 

centerline of the microchannel The simulation conditions are dla = 6,b*= 22 22 and y = 0 2 The 

lines in Figure (a) are in the same legend as Figure (b) (a) E* = 0 0028, (b) E* = 0 28 
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5.4.6 Effect of Particle's Initial Angle 

Figure 5 11 depicts the initial angle of the cylindrical particle on its transport under a 

low, E* = 0 0028, and a high, E* = 0 28, electric field with dla = 6, b* = 22 22 and y = 0 2 

Under the low electric field, all the particles but the one with a zero initial angle 

experience a similar gradual angle reduction, as shown in Figure 5 11a As the channel 

width is much larger than the particle's aspect ratio, the predicted angle decrease should 

be the beginning of an oscillatory motion Davison and Sharp (2007) stated that a larger 

initial angle would cause a more significant oscillatory motion, which is correct under 

low electric fields However, under the high electric field, all the particles with different 

initial angles rapidly align to the electric field, as shown in Figure 5 11b Hence, it is not 

always necessary to use an L-shaped channel, as proposed by Davison and Sharp (2008), 

in order to achieve alignment of cylindncal particles 

5.5 Conclusions 

The effects of the DC DEP effect, arising from the non-uniform electric fields, on the 

electrokmetic transport of a cylindrical green algal cell in a straight microchannel are 

experimentally and numerically studied Good agreement between the experiments and 

the numerical simulations verifies that the proposed theoretical model is reliable in 

predicting the electrokmetic transport of cylindncal particles Furthermore, it is proved 

that the DEP effect must be taken into account for the prediction of the electrokmetic 

transport of cylindrical particles even in a uniform channel Experimental results and 

numerical predictions indicate that cylindrical particles are always aligned with their 

longest axis parallel to the electric field under high electric fields, which is to be used to 

align and assemble nanowires (Evoy et al 2004, Lao et al 2006, Makaram et al 2007, 
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Monica et al 2008, Chang and Hong 2009, Raychaudhun et al 2009) and biological 

tissues (Pethig et al 2008) In addition, a higher electric field leads to a faster particle 

alignment Further numencal studies indicate that cylindrical particles can experience 

oscillatory motions under low electric fields When the particle's aspect ratio is very large 

and the channel is very narrow, it is very easy to observe the oscillatory motion within a 

short travel distance of the particle 
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CHAPTER 6 

ELECTROKINETIC TRANSLOCATION OF A 

CYLINDRICAL PARTICLE THROUGH A NANOPORE 

USING A POISSON-BOLTZMANN APPROACH 

Abstract 

In this chapter, we propose a continuum-based model to investigate the dynamic 

electrokinetic translocation of a cylindrical nanoparticle through a nanopore and the 

corresponding ionic current response It is the first time to simultaneously solve the 

Poisson-Boltzmann equation for the ionic concentrations and the electric field contributed 

by the surface charges of the nanopore and the nanoparticle, the Laplace equation for the 

externally applied electric field, and the modified Stokes equations for the flow field 

using the ALE method Current blockade due to the particle translocation is predicted 

when the EDLs of the particle and the nanopore are not overlapped, which is in 

qualitative agreement with existing experimental observations Effects due to the electric 

field intensity imposed, the EDL thickness, the nanopore's surface charge, the particle's 

initial orientation and lateral offset from the nanopore's centerhne on the particle 

translocation including both translation and rotation, and the ionic current response are 

comprehensively investigated Under a relatively low electric field imposed, the particle 

experiences a significant rotation and a lateral movement However, the particle is 

aligned with its longest axis parallel to the local electric field very quickly due to the 

dielectrophoretic effect when the external electric field is relatively high 



119 

6.1 Introduction 

When a charged surface is immersed in an electrolyte solution, more oppositely 

charged ions are predominately occupied in the vicinity of the charged surface, forming 

the EDL The interplay between the externally applied electric field and the net charge 

within the EDL gives rise to the motion of either the fluid or the charged surface, 

referring to the well-known electrokmetic phenomenon It has become one of the most 

promising techniques for the delivery and manipulation of colloidal particles in 

microfluidic devices in the absence of complicated moving components (Kang and Li 

2009) So far, extensive theoretical analysis (Keh and Anderson 1985, Ye et al 2002, Ye 

and Li 2004b, Ye et al 2005, Yanv 2006, Unni et al 2007) and experimental studies 

(Xuan et al 2005b, Xuan et al 2006, Zhu and Xuan 2009a, Zhu and Xuan 2009b, Liang 

et al 2010) have been performed on the electrokmetic particle translocation in 

microchannels 

Recently, there has been a growing interest in the nanopore-based sensing of 

nanoparticles, especially DNA molecules, proteins and organic polymers One of the 

most important nanopore-based sensing techniques is originated from the Coulter counter 

(Coulter, 2656508, 1953) When individual nanoparticles such as DNA molecules, 

proteins and organic polymers are electrophoretically driven through a single nanopore 

by an external electric field, an ionic current is also generated through the nanopore The 

translocating nanoparticle gives rise to a detectable change in the ionic current through 

the nanopore, which enables the sensing of single nanoparticles for various bio-analytical 

applications (Choi et al 2006, Martin and Siwy 2007, Howorka and Siwy 2009, Purnell 

and Schmidt 2009, Gu and Shim 2010) In particular, nanopore-based DNA sequencing 
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has become one of the most promising applications in the nanopore-based sensing 

(Bayley 2006, Rhee and Burns 2006, Mukhopadhyay 2009) Benefit from the state-of-

the-art nanofabncation technologies, the feasibility of the nanopore-based sensing 

technique has been experimentally demonstrated (Meller et al 2001, Chang et al 2004, 

Heng et al 2004, Storm et al 2005a, Storm et al 2005b, Kim et al 2007, Lathrop et al 

2010) Furthermore, experimental studies also found that the ionic current response due 

to the translocating nanoparticle depends on several factors, such as the externally 

applied electric field (Meller et al 2001, Li et al 2003, Aksimentiev et al 2004, Heng et 

al 2004, Storm et al 2005b), the ionic concentration (Chang et al 2004, Fan et al 2005), 

the nanopore size (Li et al 2003, Aksimentiev et al 2004, Chang et al 2004, Heng et al 

2004), the length and the size of the nanoparticle (Meller et al 2001, Heng et al 2004, 

Storm etal 2005b) 

Besides the rapidly increasing experimental studies on this topic, further efforts are 

also conducted on the modeling and simulations to gain an insightful understanding of 

the electrokinetic translocation of nanoparticles especially DNA molecules through a 

nanopore Molecular dynamics (MD) simulation is one of the most powerful tools for the 

modeling of nanoscale phenomena, which is even able to capture the conformational 

change of DNA molecules during the particle translocation (Aksimentiev et al 2004, 

Sigalovetal 2007, Zhao et al 2008, Comer et al 2009) However, the time scale of MD 

simulations is currently limited to ~ 100 ns As a result, an electric field much higher than 

that practically used in the experiments is usually applied in the MD simulations to 

shorten the duration of the particle translocation less than 100 ns Such a short duration 

requires a detection system with an extremely high temporal resolution In fact, one of the 
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most challenging technical issues of the nanopore-based DNA sequencing is that DNA 

molecules move too fast to conduct a precise analysis Several techniques have been 

proposed to slow down the DNA translocation through nanopores (Fologea et al 2005, 

de Zoysa et al 2009, Kawano et al 2009, Tsutsui et al 2009) So far, MD simulations 

still have some difficulties to handle a practical particle translocation through a nanopore 

From the perspective of continuum-based modeling, Poisson-Nernst-Planck (PNP) 

equations are the most rigorous method to determine the distributions of the ionic 

concentrations and the electric potential within the EDL adjacent to a charged surface 

(Qian et al 2006, Qian and Joo 2008, Qian et al 2008, Qian et al 2009) However, when 

the EDL of a charged surface is not affected or distorted by the external field and the 

nearby EDLs of solid boundaries, the ionic concentrations obey the Boltzmann 

distribution, which accordingly degrades the PNP equations to Poisson-Boltzmann (PB) 

equation and reduces the computational complexity It is found that the PB-based 

modeling is still valid for the electrokmetic particle translocation through a nanopore 

when the particle size is not smaller than the Debye length as the characteristic length of 

the EDL (Cony et al 2000a, Moy et al 2000, van Dorp et al 2009) Liu et al (2007a) 

also confirmed that the numerical results obtained from the PB-based model are in good 

agreement with those predicted by the PNP-based model when the aforementioned 

conditions required for the PB-based model are satisfied On the basis of the PB approach, 

Henry derived the famous Henry's function to account for the finite EDL effect on 

electrophoresis of a sphere in an unbounded medium (Henry 1931) Later, Ennis and 

Anderson (1997) derived the analytical approximation solutions for the electrophoretic 

velocity of a charged sphere near a single flat wall, within a slit and cylindrical tube when 
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the zeta potentials are relatively small under the aforementioned conditions necessary for 

the PB-based model For complicated geometries of nanopores and particles, the 

particle's translational velocity can be determined by balancing the total force exerting on 

the particle, assuming all the physical fields are at their equilibrium states (Hsu et al 

2006a, Qian et al 2006, Liu et al 2007a, Hsu et al 2008b, Qian and Joo 2008, Qian et al 

2008, Qian et al 2009, Chen and Conhsk 2010) As a large number of nanoparticles, for 

example DNA molecules and synthetic nanowires, are approximately m a cylinder shape, 

Hsu's group (Hsu and Kao 2002, Hsu and Kuo 2006, Hsu et al 2008a), Liu et al (2004, 

2007a), and Chen and Conhsk (2010) further implemented the aforementioned quasi-

static method to investigate the electrokinetic translocation of cylindrical particles 

through nanopores However, the quasi-static method is unable to capture the 

translational dynamics and especially the rotational dynamics which could play an 

important role in the particle translocation and also the ionic current response 

In this chapter, a transient continuum-based model (PB-NS-ALE), consisting of the 

PB equation for the ionic concentrations and the electric potential contributed by the 

surface charges of the nanoparticle and the nanopore, the Laplace equation for the 

externally applied electric field, and the modified Stokes equations for the fluid flow field 

defined in the ALE framework, is proposed for the first time to dynamically track the 

electrokinetic translocation of a cylindrical particle through a nanopore Since the Debye 

length is much smaller than the micron-sized particle m the previous study of 

electrokinetic particle motion, the EDL is neglected and the Helmholtz-Smoluchowski 

slip velocity is used to describe the electroosmotic velocity In contrast, the particle size 

becomes comparable to the Debye length in this study, the finite EDL effect on the 
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particle translocation must be taken into account accordingly Effects due to the electnc 

field intensity imposed, the EDL thickness, the nanopore's surface charge, particle's 

initial orientation and lateral offset from the centerlme of the nanopore on the dynamic 

particle translocation and the ionic current through the nanopore are included in the 

present study 

6.2 Mathematical Model 

Consider a negatively charged cylindrical particle of length Lp, capped with two 

hemispheres of radius a at both ends, is immersed in an aqueous solution with density p, 

dynamic viscosity //, and permittivity £/, as shown in Figure 6 1 Two identical reservoirs 

of width 2W and height H are connected by a single nanopore of length h and radius b 

embedded inside an electrically insulating membrane The ionic concentration far away 

from the nanopore and the particle recovers a bulk ionic concentration Co The cylindrical 

particle, with its center of mass initially located at (xpo, ypo), presents an initial angle 6po 

with respect to the centerlme of the nanopore The initial angle Opo is defined as positive 

when the particle rotates counterclockwise with respect to the centerlme of the nanopore 

The cylindrical particle is electrokinetically driven through the nanopore by an externally 

applied electric field, E, induced by an electric potential difference, <f>o, imposed across 

two electrodes positioned inside the two reservoirs Meanwhile, the applied electric field 

also gives rise to an ionic current through the nanopore All the variables are defined in a 

two dimensional Cartesian coordinate system (x, y) with the origin fixed at the center of 

the nanopore The particle radius a as the length scale, RT/F as the potential scale, 

U0 = C0RTa//J as the velocity scale, and ^U0/a as the pressure scale are selected to 

normalize the governing equations described in details below In the above, R is the 
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universal gas constant, Tis the absolute temperature of the aqueous solution, and F is the 

Faraday constant In the following, vanables with a superscript * are dimensionless and 

bold letters denote vectors or tensors 
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Figure 6 1 Schematics of the translocation of a cylindrical nanoparticle through a nanopore 

When the externally applied electric field is relatively weak compared to that induced 

by the surface charges, the overall electric field can be linearly decomposed into the 

aforementioned two electric fields The externally applied electric field arising from the 

imposed potential <j> is described by the Laplace equation 

V*V*=0 (6 1) 
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The boundary conditions associated with the external electric field include the electric 

potentials on the two reservoirs,<f (X\-(H' +h'/2)) = 0 and (/>*ix*,(H* +/J*/2M = $ , 

and the insulation condition n • V <f> = 0 on all the other boundaries, where n is the unit 

normal vector directed from the corresponding boundary into the fluid 

When the EDL of a charged surface is not affected or distorted by the external field 

and the nearby EDLs of solid boundaries, the ionic concentrations satisfy the Boltzmann 

distribution 

c ,=C 0 exp( -z , | ^ ) , (6 2) 

where c, and z, are, respectively, the ionic concentration and the valence of the ith ionic 

species, if/ is the dimensional electric potential contributed by the charged particle or 

nanopore In this study, we assume the aqueous solution is a binary electrolyte (KC1 

solution), and the valences of cations and anions are, respectively, z/ = 1 and Z2 = -1 As 

a result, the electric potential t// arising from the charged surfaces is governed by the 

Poisson-Boltzmann equation 

V*V=Ora)2sinh^\ (6 3) 

where K l = \efRTj^ F2z?C0 is the Debye length Surface charge density boundary 

conditions, -n»VV* =&*p and -n»VV* =o"*, are applied along the charged surfaces 

of the particle and the nanopore wall, respectively The surface charge densities of the 

particle, a*p, and the nanopore wall, CT* , are normalized by efRTJFa The electric 

potentials at the ends of the two reservoirs are y/* ix* ,±\H* +ti J2\\ = 0 The insulating 

condition is applied on all the other boundaries 
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The typical Reynolds number of the fluid flow in a nanopore is very small Therefore, 

the inertial terms in the NS equations can be neglected, and the fluid motion is modeled 

by the modified Stokes equations, given as 

V*»u* =0 , (6 

and 

a * 

R e ^ V - V ' V + V>* - 2 s i n h / v V * +<!>') = 0 (6 
dt 

In the above, u is the fluid velocity vector, p is the pressure and Re = f>U0a/n is the 

Reynolds number The last term on the left-hand-side of Equation (6 5) represents the 

electrostatic body force, arising from the interaction between the overall electric field and 

the net charge within the EDL related to the Boltzmann distribution, which in turn 

generates the electroosmotic flow near the charged surfaces 

No-slip boundary condition is imposed on the fixed boundaries A normal flow with 

zero pressure is specified at the ends of the two reservoirs We assume the two reservoirs 

are sufficiently large Hence, the side boundaries of the two reservoirs (the dashed lines 

shown m Figure 6 1) are far away from the particle and the nanopore and do not affect 

the particle translocation process Therefore, normal fluid velocity and tangential stress 

on the side boundaries of the two reservoirs are both zero, n • u* = 0 and 

T • {[~-p*I + (V*u* +V*u*r)l»n> = 0 , where T is the unit tangential vector on the 

boundary This boundary condition is called slip boundary condition or symmetry 

boundary condition (Mashyah and Bhattacharjee 2006) The fluid velocity on the particle 

surface is 

U * = U * + C D * X ( X ; - X ; ) , (6 
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where U* = t/ 'e, + Vp\y is the particle's translational velocity with ex and ey denoting the 

unit vector in the x- andy- direction, respectively, co* is the particle's rotational velocity 

normalized by Uola, x* and x* represent, respectively, the surface and center of mass of 

the particle 

Newton's second law determines the particle's translational velocity 

at 

where mp is the particle's mass normalized by a2/j/U0 and t is the time normalized by 

alUo The total force acting on the particle normalized by ajuU0 is composed of the 

electrical force, 

F; = 2{Kay2 JTE* • iu/r*, (6 8) 

and the hydrodynamic force, 

F; = JTH*.n</r* (6 9) 

Here, TE* = E X - ~ ( E * E*)1 a n d TH* =-/?*I + (VV+V*u*r) are, respectively, the 

Maxwell stress tensor and the hydrodynamic stress tensor E* =-V*(y/'*+^*) is the 

overall electric field intensity and V represents the dimensionless particle surface 

The particle's rotational velocity is governed by 

C^-= j (x;-x;)x[2(^)- 2TE*.n + TH*.n]^r*, (6 10) 

where /* is the particle's moment of inertia normalized by a4ji/U0 The right-hand-side 

of Equation (6 10) is the torque exerting on the particle normalized by a2/jU0 The center 
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of mass, x*, and the orientation, 8*, of the particle are updated based on the following 

two equations 

f = U„, (6 11) 
dt 

and 

IT"*' <612) 

The dimensional flux density of each ionic species due to convection, diffusion, and 

migration is described as 

N, = u c, - D,Vc, - z, -Q-FClV(i// + <f>), i = 1 and 2 , (6 13) 

RT 

where D, is the diffusion coefficient of the zth ionic species Using Equation (6 2), the flux 

density of each ionic species in Equation (6 13) normalized by UoCo can be simplified as 

N* = exp(-z,(/)(u' - -^-V>*), i = 1 and 2, (6 14) 

Pe, 

where Pet = U0a/Dt is the Peclet number of the *th ionic species The ionic current 

through the nanopore normalized by FUoCoa is 
/* = J (Z ,N; + z2N*2) • ndS*, (6 15) 

where S denotes the dimensionless opening of either reservoir due to the current 

conservation 

The coupled governing equations describing the PB-NS-ALE model are numerically 

solved on the basis of the ALE technique using the commercial finite-element package 

COMSOL (version 3 5a, www comsol com) operated with MATLAB (version 2009a, 

www mathworks com) The computational domain in Figure 6 1 is meshed with 
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quadratic tnangular elements A higher mesh density is applied around the particle and 

the nanopore to resolve the EDLs nearby The obtained results are ensured fully 

converged and mesh-independent through a rigorous mesh test To validate the developed 

PB-based modeling of nano-scale electrokinetics, we simulate the electrokinetic 

translocation of a sphere along the axis of an uncharged cylindrical nanopore Figure 6 2 

depicts the effect of the ratio of the particle radius to the pore radius, alb, on the axial 

particle velocity normalized by ef^E//J. when a - 1 nm, ica = 2 05, the particle's zeta 

potential { = 1 mV, and the applied electric field E = 100 KV/m The analytical 

approximation solution of the axial particle velocity (solid line in Figure 6 2) is derived 

by Ennis and Anderson (1997) when the EDL of the particle is not affected or distorted 

by the external electric field and solid boundaries, and the zeta potential of the particle, C, 

is relatively small (£/(RT/F) < 1) When the pore radius is much larger than the particle 

radius, the numerical results (diamonds) are in good agreement with the analytical 

approximation solution As the pore radius approaches the particle radius, the boundary 

effect arising from the nanopore wall on the EDL of the particle comes into play As a 

result, the numerical results deviate from the analytical approximation solution when alb 

is relatively large 
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Figure 6 2 Effect of the ratio of the particle radius to the pore radius, alb, on the axial 

electrophoretic velocity of a sphere translating along the axis of a uncharged cylindrical nanopore 

Solid line and diamonds denote, respectively, the analytical approximation solution and our 

numerical results The conditions are a = 1 nm, Ka= 2 05, the zeta potential of the particle, Q = 1 

mV, and the axial electric field imposed, E = 100 KV/m 

6.3 Results and Discussion 

The properties of the KC1 electrolyte solution used in the present study include the 

fluid density, p= lxlO3 kg/m3, the fluid viscosity, fi= 1><10~3 Pa s, the fluid temperature 

T= 300K, the fluid permittivity, ef= 7 08xl0"10 F/m, the diffusivity of K+, A = 1 95x10" 

9 m2/s, and the diffusivity of CI", D2 = 2 03xl0"9 m2/s The particle of radius a = 1 nm 

and length Lp = 10 nm, bearing a surface charge density ap = -0 01 C/m2, is initially 

positioned dXypo - -15 nm The radius and the thickness of the nanopore are, respectively, 

b = 5 nm and h = 5 nm The half width and height of the two reservoirs are, respectively, 

X o-
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W=25 nm and H = 40 nm The electnc field intensity, E, evaluating the external electric 

field, is obtained by dividing the electric potential difference, </>0, over the total height of 

the computational domain, 2H+h 

In the following, we investigate the electrokinetic particle translocation subjected to 

relatively low and high electnc fields The electnc field arising from the charged particle 

surface with ap = -0 01 C/m2 is about 14000 KV/m, which is approximated by the surface 

potential dividing by the EDL thickness External electric fields, E = 20 KV/m and 2000 

KV/m, are chosen as the relatively low and high electric fields, respectively, and the 

externally imposed electric field is lower than that generated by the charged particle To 

ensure that the PB model is valid under E = 2000 KV/m, we compared the particle 

translational velocity and the ionic current obtained from the PB model and the PNP 

model (Liu et al 2004, Liu et al 2007a) under the quasi-static condition when xp -0,yp = 

0, 6po=0, and Ka = 1 03 Their relative errors are less than 2%, implying that the PB 

model is still valid in the present study under the relatively high electric field, E = 2000 

KV/m Under similar conditions, Liu et al (2007a) also found that the predictions from 

the PB and the PNP models are in good agreement when the EDL thickness is relatively 

thin Hence, the PB model is appropnate for the simulation conditions described in this 

paper 

As the governing equations are all normalized, most of the following results are thus 

presented in a dimensionless form The following factors the electnc field intensity 

imposed, E*, the ratio of the particle radius to the Debye length, Ka, the particle's initial 

orientation, 6\, the particle's initial lateral offset from the centerhne of the nanopore, 
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xp0, and the nanopore's surface charge density, erw, on the electrokinetic particle 

translocation and the ionic current through a nanopore are thoughtfully investigated 

6.3.1 Effect of the Initial Orientation of the Particle, d'p0 

When the axis of the particle is initially coincident with the centerhne of the nanopore 

(1 e xp0 =0 and #*0 =0), as expected, the particle always translocates along the centerhne 

of the nanopore without any rotation However, the orientation of the particle could 

significantly alter the spatial distribution of the electric field, the ionic concentrations and 

the flow field near the particle, and accordingly affects the particle translocation and the 

ionic current through the nanopore Figures 6 3a and 6 3b show, respectively, the 

superposed trajectories of the particle under two different electric fields, E* = 7 7x10^* (E 

= 20KV/m)and£* = 7 7xlO-2(£ = 2000KV/m)when;c*0=0, 6£0=60°, <x* =0,and>ca 

= 1 03 It is revealed that the particle's initial orientation gives rise to the rotational 

motion as the particle translocates through the nanopore When the externally applied 

electric field is relatively low, E* = 7 7X10"4, the particle rotates clockwise as it 

translocates toward the nanopore After the particle passes through the nanopore, it 

slightly rotates counterclockwise, however, and cannot recover its initial orientation any 

more In addition, the particle experiences a lateral movement during the particle 

translocation in the ̂ -direction, which highly depends on the particle's initial orientation 

When the particle's initial orientation is positive (0pO >0), the particle laterally moves in 

the negative x-direction, as shown in Figure 6 3a Oppositely, the particle expenences a 

lateral movement in the positive x-direction when the particle's initial orientation is 

negative (0*o <0) When the external applied electric field is increased 100 times to E = 
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7 7x10~2, the duration of the particle translocation process is decreased about 100 times 

Furthermore, the particle tends to align with its longest axis parallel to the local external 

electric field very fast, as shown in Figure 6 3b Due to the fast alignment of the particle, 

the lateral movement of the particle is also diminished When the electric field around a 

particle is non-uniform, the particle experiences a DEP effect arising from the interaction 

between the dielectric particle and the spatially non-uniform electric field Our previous 

experimental study in Chapter 5 revealed that the dielectrophoretic effect always tends to 

align cylindrical particles parallel to the local external electric field When the uniform 

electric field contributed by the surface charge of the particle dominates over the 

externally applied electric field, the overall electric field around the particle is nearly 

uniform As a result, the dielectrophoretic effect is negligible and the alignment of the 

particle to the local external electric field is not observed under a relatively low external 

electric field, as shown in Figure 6 3a 
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Figure 6 3 Superposed trajectories of the particle under E* = 1 7xl0~4(a and c) and E* = 77x10 2 

(bandd) x * = 0 , 0'p0 = 60°, aw = 0 and KQ = 1 03 (a and b), KQ = 2 05 (c and d) 
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We further increase the bulk ionic concentration to Ka = 2 05, the evolution of the 

particle's onentation under a relatively low external electric field, as shown in Figure 

6 3c, is very similar to the one shown in Figure 6 3a However, the particle experiences a 

more significant lateral movement in the negative jc-direction For a particle with a fixed 

surface charge, its zeta potential decreases as Ka increases (Ohshima 1998), which in turn 

reduces the particle's ^-component translational velocity As a result, the duration of the 

particle translocation process is increased compared to the case of Ka = 1 03 The 

particle's ^-component translational velocity for Ka = 2 05 is larger than that for Ka = 1 03 

after the particle passes through the nanopore Therefore, the particle experiences a more 

remarkable lateral movement under a relatively high Ka when the external electric field is 

relatively low When the external electric field is increased 100 times, a fast alignment of 

the particle parallel to the local external electric field is also expected, as shown in Figure 

6 3d As the electric potential on the particle surface contributed by its surface charge 

decreases as Ka increases, the externally applied electric field becomes higher than that 

generated by the surface charge of the particle As a result, a stronger dielectrophoretic 

force is exerted on the particle, resulting in a faster alignment compared to the case in 

Figure 6 3b 
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Figure 6 4 ^-component translational velocity as a function of the particle's location y under E 

= 7 7X10"4 (a) and £* = 7 7xl0~2 (b) Symbols and lines represent, respectively, 9*0 = 0 and 60° 

xp0 = 0, <JW = 0, Ka = 1 03 (dashed line and squares) and Ka = 2 05 (solid line and circles) A 

scale of 2 is applied to the solid line and circles for a clear visualization 

(a) 

-

~ 
c a 

* . < * " " 

5 

1 

J 

°7 
°i 

° ° I 
° 

a 1 1 
1 
1 

1 ^ 
"~ *^° 
1?^ 

1 
-7 5 

1 1 

' " \ • 
b 
>a 
\z 
Xi 

_ * 2 * « • 
o o V 

0 7 5 1 



137 

Figure 6 4 depicts the variation of the particle's ̂ -component translational velocity as 

a function of the particle's location y under E* = 7 7X10-4 (Figure 6 4a) and E* = 

7 7xl0-2 (Figure 6 4b) when x'p0=0 and cr'w -0 When the initial orientation of the 

particle is 0pO = 0 (symbols), the velocity profile is symmetric with respect to y = 0 As 

aforementioned, the zeta potential of a particle with a fixed surface charge decreases as 

KO increases, the particle's ^-component translational velocity thus decreases as ica 

increases When the external electric field is increased 100 times, the ^-component 

translational velocity also increases about 100 times When the particle's initial 

orientation is 0*^ = 60° (lines), the j-component translational velocity is reduced 

compared to the case of 6>*0=0 when the particle enters the nanopore Under the 

relatively low external electric field, E* = 1 JxlOT4, the particle exits out of the nanopore 

with an obvious angle with respect to the centerline of the nanopore, as shown in Figures 

6 3a and 6 3c Therefore, the ^-component translational velocity is also lower than the 

case of 0*pO =0 after the particle passes through the nanopore, as shown in Figure 6 4a 

Under the relatively high external electric field, E* = 7 7><10~2, the particle is nearly 

parallel to the centerline of the nanopore after it passes through the nanopore, as shown in 

Figures 6 3b and 6 3d Thus, Figure 6 4b indicates that the _y-component translational 

velocity coincides with the case of 6>*0 = 0 after the particle passes through the nanopore 
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Figure 6 5 Current deviation as a function of the particle's location y under E* = 7 7x10^* (a) 

and E* = 7 7xl0~2 (b) Symbols and lines represent, respectively, # p 0=0and 60° xp0—0, 

<JW = 0, Ka = 1 03 (dashed line) and KQ = 2 05 (solid line and circles) 

In this study, the current deviation x - {I* _ - O A o 1S defined to quantify the change 

in the ionic current arising from the particle translocation through the nanopore I*0 is the 
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base current when the particle is far away from the nanopore Figure 6 5 shows the 

current deviations corresponding to the cases in Figure 6 4 Under the relatively low 

external electric field, E* = 7 7*10^, a symmetric current deviation with respect to 

yp0=0 is observed in Figure 6 5a (circles) when the particle's initial orientation is 

#*0=0 This prediction is in qualitative agreement with existing experimental results 

(Storm et al 2005b, Kim et al 2007) and numerical results predicted by the PNP-based 

model using the quasi-static method (Liu et al 2007a) In addition, the current deviation 

for Ka = 1 03 (not shown in Figure 6 5) is coincident with that for Ka = 2 05 when 0po =0 

It implies that the current deviation is independent of Ka when the EDL of the particle is 

not affected or distorted by the external electric field and the nearby boundary When the 

particle presents an initial angle, 0*pO = 60°, it gives rise to a more significant blockade of 

the ionic current compared to the case of 0*pO =0 As a result, the magnitude of the current 

deviation at>>*0 =-15 is larger than that for 0*pO =0, as shown in Figure 6 5a It is quite 

obvious to conclude that the current deviation highly depends on the orientation of the 

particle As the angle of the particle inside the nanopore for KO = 2 05 is larger than that 

for KQ = 1 03, the corresponding magnitude of the current deviation for Ka = 2 05 (solid 

line) is also larger than that for Ka = 1 03 (dashed line) when the particle is inside the 

nanopore After the particle passes through the nanopore, the current deviation for 

0*pO = 60° is very close to that for 6£0 = 0 due to the lateral movement of the particle 

Under the relatively high external electric field, E* = 7 7x10-2, the current deviation is 

also symmetric with respect to y0 =0 and independent of Ka when6£0 =0, as shown in 
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Figure 4b (circles) The initial orientation, #*0=60° , significantly increases the 

magnitude of the current deviation at yp0 =-15, as shown in Figure 6 5b (lines) Due to 

the dielectrophoretic effect arising from the high external electric field, the particle is 

aligned to the local external electric field, and the current deviation for 6£0 =60° 

gradually approaches to that for 0*o = 0 As explained previously, a higher ica leads to a 

faster particle alignment As a result, the current deviation for Ka = 2 05 approaches to 

that of 6>*0 =0 faster than the case of Ka = 1 03 

6.3.2 Effect of the Initial Lateral Offset of the Particle, JC*0 

Next, we investigate the effect of the particle's initial lateral offset from the centerlme 

of the nanopore (initial x-position), x*p0, on the particle translocation and the ionic current 

through the nanopore Figure 6 6 depicts the superposed trajectories of the particle under 

E* = 7 7* 10"4(Figures 6 6a and 6 6b) and £* = 7 7x 10~2(Figures 6 6c and 6 6d) when KG 

= 2 05, av = 0 and O'p0 =0 Under the relatively low external electric field, E* = 7 7*10^, 

the particle initially located at JC*0=25 (Figure 6 6a) and x*p0=5 (Figure 6 6b) rotates 

counterclockwise as it moves toward the nanopore Therefore, the particle presents a 

positive angle with respect to the centerlme of the nanopore before it enters the nanopore 

Similar to the cases shown in Figures 6 3a and 6 3c, the particle exits out of the nanopore 

with a positive angle Obviously, a larger initial lateral offset of the particle leads to a 

more pronounced rotation prior to entering into the nanopore Therefore, the particle for 

x*0 =5 ends up with a larger angle than that for x*0 =2 5 Due to the positive orientation 

during the particle translocation, the particle also experiences a slight lateral movement in 
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the negative jc-direction When the external electric field is relatively high, E* = 1 7><10"2, 

the particle is aligned to the local external electric field very quickly Due to the rapid 

change in the cross section area between the reservoir and the nanopore, the local electric 

field away from the centerhne of the nanopore is not parallel to the centerhne of the 

nanopore Therefore, the particle exits out of the nanopore with a negative angle, which is 

parallel to the local external electric field Furthermore, the particle is also pushed closer 

to the centerhne of the nanopore after passing through the nanopore, attributed to the 

dielectrophoretic effect This phenomenon has been utilized for particle focusing in 

microfluidics (Zhu and Xuan 2009a, Zhu and Xuan 2009b) Nevertheless, the rotation 

and lateral movement of the particle is still very small, which leads to a very limited 

effect on the particle translocation and ionic current through the nanopore 

We impose an initial orientation 0*pO = 60° to the particle while keeping all the other 

conditions in Figure 6 6 unchanged to show the effect of the initial orientation on the 

particle's trajectory, as shown in Figure 6 7 Under a relatively low external electric field, 

E* = 1 7x10""*, the particle rotates clockwise as it translocates toward the nanopore, and 

then rotates counterclockwise after passing through the nanopore, quite similar to the 

particle translocation shown in Figure 6 3c As the effect of the particle's initial 

orientation dominates over the effect due to the particle's initial lateral offset, the 

trajectories of the particle, shown in Figures 6 7a and 6 7b, are quite similar Because of 

the particle's initial orientation, the particle experiences a significant lateral movement in 

the negative x-direction, compared to the cases in Figures 6 6a and 6 6b Under a 

relatively high external electric field, E* = 1 7xl0~2, the particle translocation shown in 

Figure 6 7c (6 7d) is very similar to the case shown in Figure 6 6c (6 6d) Therefore, the 
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particle translocation is not sensitive to the particle's initial orientation as the 

dielectrophoretic effect aligns the particle to the local external electric field very quickly 

(b) 

1 79jis 

(d) 

Figure 6 6 Superposed trajectories of the particle under E = 7 7xl0^(a and b) and £* = 77x l0 2 

(c and d) Ka = 2 05, <J*W = 0, 0*pO = 0 and x*p0 = 2 5 (a and c), x*p0 - 5 (b and d) 
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Figure 6 7 Superposed trajectories of the particle under E* = 7 7x 10̂ * (a and b) and E* = 7 7x 10 

(c and d) KQ = 2 05, aw = 0, 0*pO = 60° and x*0 = 2 5 (a and c), x"p0 = 5 (b and d) 
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Figure 6 8 ^-component translational velocity as a function of the particle's location y under E 

= 7 7x10^ (a) and E* = 1 7xl0"2(b) Symbols and lines represent, respectively, 0*p0 =0and 60° 

KQ = 2 05, <JW = 0 , xpQ = 0 (circles), xp0 = 2 5 (solid line) and xp0 = 5 (dash line) 
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Figure 6 8 depicts the variation of the ^-component translational velocity as a 

function of the particle's location y under E = 7 7* 10-4 (Figure 6 8a) and E* = 7 7x 10~2 

(Figure 6 8b) when KO - 2 05, #*0=60° and cr* =0 The ^-component translational 

velocity for #*0 =0and JC*0 =0 (circles) is considered as a reference When the external 

electric field is relatively low, E* = 1 7X10-4, the particle's ^-component translational 

velocity is reduced compared to the reference when the particle is outside the nanopore 

However, the particle's orientation enhances the electric field when the particle is inside 

the nanopore, which thus slightly increases the particle velocity at this region, as shown 

in Figure 6 8a When the external electric field is relatively high, E* = 7 7xlCT2, the 

particle's ^-component translational velocity is only obviously reduced at the beginning 

of the particle translocation Subsequently, it approaches the reference due to the fast 

particle alignment to the local external electric field In addition, it is confirmed that the 

particle velocity is not very sensitive to its initial lateral offset under both low and high 

electric fields 

Figure 6 9 depicts the current deviation corresponding to the cases in Figure 6 8 using 

the current deviation for 0*pO =0and x*0 =0 (circles) as the reference When the external 

electric field is relatively low, E* = 1 7x10^, the particle's orientation could significantly 

increase the magnitude of the current deviation, as shown in Figure 6 9a The current 

deviation approaches the reference after the particle passes through the nanopore due to 

the significant lateral movement The difference between the current deviations for 

x*0 =2 5 (solid line) and xp0 =5 (dashed line) is mainly attributed to the difference in the 

particle's initial lateral offset When the external electric field is relatively high, E = 
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7 7*10~2, a significant difference between the reference and the current deviations for 

6£0=60° (lines) is predicted at the beginning of the particle translocation The 

dielectrophoretic effect then aligns the particle to the local external electric field very 

quickly, and thus causes the current deviation approaching to the reference A larger 

initial lateral offset induces a larger angle of the particle when it is inside the nanopore 

Accordingly, the current deviation for JC*0=5 is slightly larger than that for x*0=2 5 

when the particle is inside the nanopore, as shown in Figure 6 9b After the particle 

passes through the nanopore, the current deviations for x'pQ =5 is almost identical to that 

for x^ =2 5 and also the reference 
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Figure 6 9 Current deviation as a function of the particle's location y under E = 7 7x10 (a) 

and E* = 7 7xl0~2 (b) Symbols and lines represent, respectively, &p0 =0and 60° KO = 2 05, 

<JW = 0, xp0 = 0 (circles), x^ = 2 5 (solid line) and xp0 = 5 (dash line) 

6.4 Conclusions 

Different from the existing quasi-static modeling of electrokinetic particle 

translocation through a nanopore (Hsu et al 2006a, Qian et al 2006, Liu et al 2007a, 

Hsu et al 2008b, Qian and Joo 2008, Qian et al 2008, Qian et al 2009, Chen and 

Conhsk 2010), the dynamic electrokinetic particle translocation through a nanopore has 

been numerically investigated in the present study The proposed continuum-based model 

simultaneously solves the PB equation for the ionic concentrations and the electric field 

contributed by the surface charges of the nanoparticle and the nanopore, the Laplace 

equation for the externally applied electric field, and the modified Stokes equations for 

T 1 r 



148 

the flow field using the ALE method for the first time The proposed numerical model is 

valid when the EDL of the particle is not affected or distorted by the external electric 

field and the nearby EDLs of solid boundaries When the axis of the particle is initially 

coincident with the centerhne of the nanopore, the particle translocates along the 

centerhne of the nanopore without any rotation and lateral movement The particle's y-

component translational velocity is symmetric with respect to y =0 and decreases as ica 

increases In addition, current blockade is usually expected under the conditions required 

for the developed numerical model, which is in qualitative agreement with the existing 

experimental observations (Storm et al 2005b, Kim et al 2007), implying that the 2D 

model has successfully captured the physics of electrokinetic particle translocation 

through a nanopore The quantitative differences between the simulations and the 

experimental results can be attributed to the three-dimensional geometry of the synthetic 

pores, which is a subject for future study 

When the externally applied electric field is relatively low, the particle's initial 

orientation gives nse to a pronounced rotation during the particle translocation The 

particle's orientation could significantly decrease the particle's j-component translational 

velocity and increase the magnitude of the current deviation, compared to the cases with 

a zero initial angle In addition, the particle experiences a lateral movement owing to the 

particle's initial orientation And the direction of the lateral movement depends on the 

direction of the particle's initial orientation Conversely, the particle's initial lateral offset 

has a minor effect on the particle translocation and the corresponding current deviation 

When the externally applied electric field is relatively high, the dielectrophoretic 

effect arising from the non-uniform electric field surrounding the particle comes into play, 
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which aligns the particle with its longest axis parallel to the local external electric field 

very quickly As a result, the particle's initial orientation only affects the particle's y-

component translational velocity and the ionic current through the nanopore at the 

beginning of the particle translocation As a result, the lateral movement of the particle 

after passing through the nanopore is very limited Furthermore, it is found that a higher 

KQ leads to a faster alignment 
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CHAPTER 7 

ELECTROKINETIC TRANSLOCATION OF A 

CYLINDRICAL PARTICLE THROUGH A NANOPORE 

USING A POISSON-NERNST-PLANCK APPROACH 

Abstract 

Nanoparticle electrophoretic translocation through a single nanopore induces a 

detectable change in the ionic current, which enables the nanopore-based sensing for 

various bio-analytical applications In this study, a transient continuum-based model 

(PNP-NS-ALE) is developed for the first time to investigate the electrokinetic particle 

translocation through a nanopore by solving the Nernst-Planck equations for the ionic 

concentrations, the Poisson equation for the electric potential and the Navier-Stokes 

equations for the flow field using the ALE method When the applied electric field is 

relatively low, a current blockade is expected In addition, the particle could be trapped at 

the entrance of the nanopore when the EDL adjacent to the charged particle is relatively 

thick When the electric field imposed is relatively high, the particle can always pass 

through the nanopore by electrophoresis However, a current enhancement is predicted if 

the EDL of the particle is relatively thick The obtained numerical results qualitatively 

agree with the existing experimental results It is also found that the initial orientation of 

the particle could significantly affect the particle translocation and the ionic current 

through a nanopore Furthermore, a relatively high electric field tends to align the particle 

with its longest axis parallel to the local electric field However, the particle's initial 

lateral offset from the centerhne of the nanopore acts as a minor effect 
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7.1 Introduction 

It has been found that when the EDLs of the particle and the nanopore are overlapped, 

the PB-NS-ALE model developed in Chapter 6 is not valid to predict the electrokinetic 

translocation of particle through a nanopore (Liu et al 2007a) Poisson-Nernst-Planck 

approach is regarded as the most rigorous continuum-based model to simulate the 

electrokinetic translocation of particle through a nanopore with a full consideration of the 

EDL (Qian et al 2007, White and Bund 2008) In this chapter, a transient continuum-

based model (PNP-NS-ALE), composed of the Nernst-Planck equations for the ionic 

concentrations, the Poisson equation for the electric potential and the Navier-Stokes 

equations for the fluid flow field defined in the ALE framework, is developed for the first 

time to capture the dynamics of the electrokinetic particle translocation through a 

nanopore 

7.2 Mathematical Model 

We consider exactly the same problem and computational domain described in 

Chapter 6 2 Two identical reservoirs of width 2W and height H are filled with a binary 

KC1 aqueous solution, with density p, dynamic viscosity //, and permittivity Sf, connected 

by a membrane embedded with a single nanopore of length h and radius b, as shown in 

Figure 7 1 The two reservoirs are large enough to maintain a bulk ionic concentration Co 

far away from the nanopore A negatively charged cylindrical nanoparticle of length Lp, 

capped with two hemispheres of radius a, is initially located at (xpo, ypo) and presenting an 

angle Opo with respect to the centerline of the nanopore If the angle is counterclockwise 

with respect to the centerline of the nanopore, we define 9po > 0 and vice versa A 

potential difference, <f>o, is applied across two electrodes positioned inside the two 
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reservoirs, inducing a negative electric field, E, across the nanopore to drive the 

negatively charged particle translocation and meanwhile generate an ionic current 

through the nanopore 

Figure 7 1 Schematics of the nanoparticle translocation through a nanopore 

The ionic concentrations, electric field, and fluid flow are simultaneously solved to 

predict the particle translocation through the nanopore The bulk concentration Co as the 

ionic concentration scale, RT/F as the potential scale, the particle radius a as the length 

scale, UQ =£fR
2T2/(juaF2\ as the velocity scale, and //£/0/aas the pressure scale are 

introduced to normalize the governing equations described in details below Here, R is 

the universal gas constant, Tis the absolute temperature of the electrolyte solution, and F 
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is the Faraday constant The ionic mass transport within the electrolyte solution is solved 

using the continuum-based Poisson-Nernst-Planck (PNP) equations (Qian et al 2007, 

White and Bund 2008) 

-V*y=-(™»)2(*,c; + z2c'), (7 

Be 
Hr+V* N;=0, * = land2 (7 
dt 

In the above, <j> is the electric potential within the fluid, K~X = JsfRT/^(=1-F
2z2C0 is 

the Debye length, z; and Z2 are, respectively, the valences of cations (z/ = 1 for K+) and 

anions (z.? = -1 for Cl~), c* and c*2 are, respectively, the molar concentrations of cations 

(K+) and anions (C\~) in the electrolyte solution N* = (u*c* -Z)*V*c* -z,D,'c(VV*) is the 

ionic flux density of the ith ionic species normalized by CoUo, in which u* is the fluid 

velocity and D* =Dt/D0 with D0 = sfR
2T2/(/xF2) is the diffusivity of the i* ionic 

species The variable with a superscript * represents a dimensionless quantity and bold 

letters denote vectors or tensors 

Since the Reynolds number of the fluid flow in the nanopore is extremely small, we 

model the flow field using the modified Stokes equations by neglecting the inertial terms 

in the Navier-Stokes equations, given as 

V*»u*=0 , (7 

R e ^l = -vy + vv-i(^)2(zlC;+z2C;)vv*, a 
at 2 

where Re = pU0a/ju and p are, respectively, the Reynolds number and the pressure 

The electrostatic body force, indicated in the last term on the right-hand-side of Equation 
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(7 4), is generated from the interactions between the imposed electric field and the net 

charge within the EDL, which in turn generates the EOF around the nanoparticle 

To solve the above governing equations, appropriate boundary conditions are 

required The boundary conditions associated with the ionic concentrations at the ends of 

the two reservoirs are c*(X',±(H' + ti/lu = \,i= 1 and 2 The normal ionic flux on the 

moving particle surface only includes the convective flux (Keh and Anderson 1985), 

n*N* =n*(u*c,*), ? = l a n d 2 , where n is the unit normal vector directed from the 

particle surface into the fluid The normal ionic fluxes on all the other boundaries are set 

to be zero 

The boundary conditions associated with the electric field include the electric 

potential on the ends of the two reservoirs, 0*(x*,-(H* + h'/2\\-0 and 

<£ (x ,{H* + h*/2\\ - </>'„, the specified surface charge densities on the particle surface and 

the nanopore, -n*V*^*=<r* and -n»V*</>* -a*w , and the insulating condition 

n • V*(j>* = 0 on all the other boundaries Here, the surface charge densities are normalized 

by sfRTJFa 

To solve the fluid flow field, no-slip boundary condition is applied on the surface of 

the nanopore and the membrane A normal flow with p = 0 is applied at the ends of the 

two reservoirs Because the side boundaries of the two reservoirs are far away from the 

nanopore, a slip boundary condition is applied on these boundaries As the particle 

translates and rotates through the nanopore, the fluid boundary condition on the particle 

surface is expressed as 
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u*=u;+co*px(x;-x*p), (7 5) 

where U* is the translational velocity, <o* is the rotational velocity, x* and x* are, 

respectively, the position vector of the surface and center of mass of the particle 

The total force normalized by apU0 acting on the particle consists of the 

hydrodynamic force, F„, arising from the fluid motion around the particle, and the 

electrical force, F^, which are obtained, respectively, by integrating the hydrodynamic 

stress tensor TH* and the Maxwell stress tensor TE* over the particle surface, 

F; = JTH* .n</r* = J [ V l + ( W + VV r ) ] .m/r ' , (7 6) 

F; = JTE* •ndT' = ][E*E* - i (E* E*)l • ndF', (7 7) 

where E* is the electric field intensity related to the electric potential by E* = -V^* and 

T* denotes the surface of the particle The translational velocity of the particle is 

governed by the Newton's second law 

m'p^f- = K+K, (78) 

where mp is the mass of the particle normalized by a2/j/UQ The rotational velocity of 

the particle is determined by 

I'p^= J(x;-xp)x(TH*.n + TE*.n>/r* (7 9) 

Here, /* is the particle's moment of inertia normalized by a4/j/U0 The term on the ngh 

hand side of Equation (7 9) represents the total torque acting on the particle normalized 
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by a2/jJJQ The center of mass, x*, and the orientation, 9*, of the particle are expressed 

by 

x ; = x;0 + £ v*fdt*, (7 

e;=e;,+ £«>;<//*, a 

where x*0 and 9*0 denote, respectively, the initial location and orientation of the particle 

The induced ionic current through the nanopore normalized by FU0C0a
2 is 

/• = J(z,N; + z2N*)«nrfS*. (7 

where S* denotes the opening of either reservoir 

7.3 Code Validation 

Several benchmark tests were carried out to ensure the validity and accuracy of the 

numerical model For example, the spatial distribution of the electnc potential in a KCl 

electrolyte solution near a charged planar surface is simulated using the PNP model 

without convection The analytical solution of the electric potential along the direction 

normal to the charged surface is given by (Newman and Thomas-Alyae 2004, White and 

Bund 2008) 

±/ , 2RT, l-K&arf-x/A) 
d(x) = In ^ '-, (7 
Y F l + tfexpC-Jc/A) 

where x is the distance from the charged planar surface, K = Q/(2 + -y/4 + Q2), and 

Q = -XFol{RTs) Figure 7 2 shows an excellent agreement between the analytical 

solutions (lines) and the numerical results (symbols) obtained by the PNP model In 

addition, the EOF in a cylindrical nanotube filled with 10 mM KCl electrolyte is 
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simulated using the PNP-NS model The surface charge and radius of the tube are, 

respectively, a = -\ mC/m2 and ro = 50 nm 
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Figure 7 2 Comparisons between the analytical solutions (lines) and numerical results (symbols) 

of the electnc potential near a planar charged surface (a = -1 mC/m2) in 1 mM (solid line and 
circles), 10 mM (dashed line and squares), and 100 mM (dash-dotted line and triangles) KCl 

solution The electric potential, </>{x), is normalized by its value at x = 0 The inset shows a 

schematic view of the computational domain with the charged planar surface at the left side 

T 1 1 1 1 r 
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Figure 7 3 Comparison between the analytical solution (solid line) and the numerical result 

(circles) of the axial velocity of an electroosmotic flow (EOF) in a cylindrical nanotube The bulk 

electrolyte is 10 mM KG solution, and the surface charge density of the nanotube is a = -1 

mC/m2 The externally imposed axial electric field is -50 KV/m The inset shows a schematic 

view of the nanotube with dimensions 

The analytical solution of the fully-developed axial EOF velocity in a cylindrical tube 

is given by (Newman and Thomas-Alyae 2004, White and Bund 2008) 

v » = " T*?E,,Mro'Q-h(r/X)], (7 14) 
Mlx(r0/A) 

where E is the imposed axial electric field, and /, is the modified Bessel functions of the 

first kind of order i Our numerical results (circles) are in good agreement with the 

analytical solution (solid line), as shown in Figure 7 3 We also simulated the 

diffusioosmostic flow in a slit nanochannel connecting to fluid reservoirs using the PNP-

NS model, in which the fluid motion is induced by the imposed concentration gradient 

E = 50 KV/m 
a = -1 mC/m 

100 nm 

2000 nm 

_ l I I 
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Our numerical results (Qian et al 2007) agree with the results obtained by Pivonka and 

Smith (2005) 

08 

07 

v-
06 

0 5 0 0 1 0 2 ~Q3~" 
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Figure 7 4 Axial electrophoretic velocity of a sphere of radius a translating along the axis of an 

uncharged cylindrical nanotube of radius b as a function of the ratio, alb The conditions are a = 1 

nm, Ka= 2 05, the zeta potential of the particle, f = 1 mV, and the axial electnc field imposed, E = 

50 KV/m Solid line and circles represent, respectively, the approximation solution and our 

numerical results 

To further verify the validity and accuracy of the developed numerical model on the 

electrokinetic translocation of nanoparticles, we simulate a sphere translating along the 

axis of an uncharged cylindrical nanopore, whose approximation solution is available 

when the EDL is not overlapped and the zeta potential of the particle, C, is relatively 

small (g/(RT/F)<l) (Ennis and Anderson 1997) Figure 7 4 shows the axial particle 
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velocity normalized by £f£Ej'/j as a function of the ratio of the particle radius to the 

pore radius, alb, when a = 1 nm, Ka = 2 05, {= 1 mV, and E = 50 KV/m The numencal 

results (circles) are in good agreement with the approximation solution (solid line) when 

the pore size is much larger than the particle size However, the approximation solution 

underestimates the particle velocity as alb increases since the Poisson-Boltzmann model 

used to derive the approximation solution becomes inappropriate 

7.4 Results and Discussion 

In the present study, the pore radius and the membrane thickness are, respectively, b 

= 5 nm and h = 5 nm The two identical reservoirs of half width W=25 nm and height H 

= 40 nm, are filled with KC1 electrolyte solution at T = 300K The physical parameters 

used in the simulation are the fluid permittivity, e/= 7 08x 10-10 F/m, the fluid density, p 

= lxlO3 kg/m3, the fluid viscosity, p = lxlO"3 Pa s, the diffusivity of K+, D\ = 1 95xl0~9 

m2/s and the diffusivity of CI-, Di = 2 03xl0-9 m2/s A cylindrical particle of length Lp = 

10 nm and radius a = 1 nm bears a surface charge density of ap = —0 01 C/m2 The 

particle's initials-position isypo = -15 nm In this section, we first compare the PB and 

PNP model, and then focus on the effects of the ratio of the particle radius to the Debye 

length, Ka, the applied electric field, E*, the initial angle, 0*o, the initial jc-position x*p0, 

and the nanopore's surface charge density, cr*, on the electrokinetic translocation of a 

nanoparticle through a nanopore 

7.4.1 Comparison between PB-NS-ALE andPNP-NS-ALE 

Figures 7 5 compares the particle's ^-component velocity obtained by PB-NS-ALE 

model and PNP-NS-ALE model under two different applied electric fields, E* = 7 JxKT4 

(E = 20 KV/m, Figure 7 5a) and E* = 1 7xl0"2 (E = 2000 KV/m, Figure 7 5b) The 
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nanopore is assumed to be uncharged, <rw = 0 The initial x-position and orientation of the 

particle are, respectively, x'p0 = 0 and 6*p0 = 0 Therefore, the particle only translocates 

along the centerline of the nanopore without any rotation and lateral movement When 

the EDLs of the particle and the nanopore are not overlapped (ica > 1), the results 

obtained by PB-NS-ALE model recover those obtained by PNP-NS-ALE model As EDL 

overlapping begins to come into play (KO < 1), the results obtained by PB-NS-ALE model 

gradually deviates from those obtained by PNP-NS-ALE model, especially under high 

electric field 

Current deviations x = (I* ~-OAo corresponding to the cases in Figure 7 5 obtained 

by PB-NS-ALE model and PNP-NS-ALE model are compared in Figure 7 6 In the 

above, I*Q refers to the base current when the particle is far away from the nanopore, and 

is numerically obtained based on Equation (7 12) without including the particle in the 

simulation When the EDLs of the particle and the nanopore are not overlapped {xa > 1), 

the results obtained by PB-NS-ALE model are very close to those obtained by PNP-NS-

ALE model The current deviation is predicted to be independent of ica using the PB-NS-

ALE However, PNP-NS-ALE model reveals that the current deviation strongly depends 

on the degree of EDL overlapping, which has also been confirmed by Liu et al (2007a) 

As Ka decreases to increase the degree of EDL overlapping (KO < 1), the predicted current 

deviation by PB-NS-ALE model significantly deviates from those obtained by PNP-NS-

ALE model, especially under high electric field The comparisons in Figures 7 5 and 7 6 

confirm that the PB-NS-ALE model is only valid to simulate electrokinetic particle 

translocation through a nanopore when the EDLs are not overlapped 
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Figure 7 5 Translational velocity of the particle as a function of the particle's location y under 

two different electric fields E* = 7 7x10"(£ = 20 KV/m, a) and £* = 7 7xl0"2(£ = 2000 KV/m, 

b) xp0 = 0, #0 = 0 Lines and symbols represent, respectively, the results obtained by PB-NS-

ALE model and PNP-NS-ALE model Solid line (circles), dashed line (squares) and dash-dotted 

line (tnangles), represent, respectively, Ka = 2 05, 1 03 and 0 65 A scale of 4 is applied to the 

solid line and triangles for a clear visualization 
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Figure 7 6 Current deviation as a function of the particle's location y under two different 

electnc fields E* = 7 7x10^ (a) and E' = 7 7xl0~2 (b) x*0 = 0 , ^* = 0 Lines and symbols 

represent, respectively, the results obtained by PB-NS-ALE model and PNP-NS-ALE model 

Solid line (circles), dashed line (squares) and dash-dotted line (triangles), represent, respectively, 

KO = 2 05, 1 03 and 0 65 
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7.4.2 Effect of the Ratio of the Particle Radius to the Debye Length, Ka 

Figure 7 7 shows the variation of the ^-component particle velocity as a function of 

the particle's location yp under two different applied electric fields, E* = 7 7x\Q~4 (E = 

20 KV/m, Figure 7 7a) and E* = 1 7><10"2 (E = 2000 KV/m, Figure 7 7b) The other 

conditions are aw = 0, xp0 = 0 and 0'pQ = 0 Under the relatively low electric field, E = 

1 7X10-4, the particle velocity is symmetric with respect to y =0 when KO is relatively 

large (solid line KO = 2 05 and dashed line Ka = 1 03 in Figure 7 7a) As Ka decreases, 

the particle velocity becomes asymmetric with respect to y = 0 (dash-dotted line Ka = 

0 65 in Figure 7 7a) When Ka decreases even further, the particle is trapped before 

entering the nanopore (solid line with circles Ka = 0 46 and dashed line with squares Ka 

= 0 32 in Figure 7 7a) When the applied electric field increases 100 times to E = 

7 7*10-2, the particle velocity almost increases 100 times when Ka is relatively large 

(solid line Ka = 2 05 and dashed line Ka = 1 03 in Figure 7 7b) The particle velocity still 

shows symmetric with respect to y = 0 when Ka = 0 65 Furthermore, the particle cannot 

be trapped even when KO decreases further (solid line with circles KO = 0 46 and dashed 

line with squares Ka = 0 32 in Figure 7 7b) For a particle with a fixed surface charge 

density, its zeta potential increases as Ka decreases (Ohshima 1998) Accordingly, the 

particle velocity increases as Ka decreases, as shown in Figure 7 7b, which has also been 

confirmed m a previous study (Liu et al 2007a) 
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Figure 7 7 ^-component translational velocity of the particle as a function of the particle's 

location yp under E* = 7 7X10"4 (£ = 20 KV/m, a) and £* = 7 7xl0"2 (E = 2000 KV/m, b) 

^ 0 = 0 , 0p0 = 0 and <JW = 0 Solid line, dashed line, dash-dotted line, solid line with circles, 

and dashed line with squares represent, respectively, KQ = 2 05, 1 03, 0 65, 0 46 and 0 32 
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To address the two different particle behaviors, the ionic concentration distribution, 

c* - c\, and flow field around the particle under the two different electnc fields, E* = 

7 7x 10"4 (Figures 7 8a and 7 8c) and E* = 7 7x 10~2 (Figures 7 8b and 7 8d) when x'p = 0, 

7* = - 7 , 0*o = 0, KO = 0 46 and <JW = 0 are shown in Figure 7 8 Since the particle is 

negatively charged, the EDL formed adjacent to the particle is predominantly occupied 

by cations, as shown in Figures 4a and 4b When the particle is close to entering the 

nanopore, the relatively thick EDL of the particle has already invaded the nanopore, 

resulting in an enrichment of cations within the nanopore When the applied electric field 

is relatively low, E* = 7 7*10^*, an EOF opposite to the particle electrophoretic motion is 

generated, as shown in Figure 7 8c, which accordingly retards the particle translocation 

When the particle enters the nanopore further, more cations are attracted into the 

nanopore and a higher EOF is thus generated against the particle translocation Once the 

EOF overpowers the electrical driving force acting on the particle, the particle could be 

trapped near the entrance of the nanopore, which has also been experimentally observed 

and further utilized for pre-concentration of nanoparticles (Plecis et al 2005, Wang et al 

2005) However, a relatively high electric field across the nanopore, E* = 1 7x10~2, can 

considerably repel the cations out of the nanopore As a result, the enrichment of cations 

within the nanopore under a high electnc field is lower than that under a low electric field, 

as shown in Figure 7 8b It is further found that the electrical driving force always 

dominates over the opposite EOF when the electric field is relatively high, which could 

get rid of the aforementioned particle trapping phenomenon Therefore, a relatively high 

electric field is usually applied in the nanopore-based DNA sequencing in which the 

DNA molecules must pass through the nanopore for detection Due to the positive 
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particle velocity, the fluid velocity surrounding the particle also flows upward, as shown 

in Figure 7 8d 
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Spatial distributions of (c* -c\) (a and b) and flow field (c and d) around the particle 

7 7xKr ,(aandc)and£* = 7 7xl(T2(bandd) ** = 0 , y=-l, 0'=O,ica = O46 
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and <rw = 0 The color bars in (c) and (d) represent the ̂ -component fluid velocity and the lines 

with arrows denote the streamlines of the flow field 

As previously mentioned, the nanopore-based sensing is built upon the detection of 

the change in the ionic current through the nanopore due to the presence of nanoparticles 

Figure 7 9 shows the current deviation % = C* _ -OAo » a s a function of the particle's 

location v* under the two different electric fields E* = 7 7* 10-4 (a) and E* = 7 7x 10"2 (b) 

When the applied electric field is relatively low, E =1 7X10"4, Figure 7 9a reveals that 

the presence of the nanoparticle inside the nanopore obstructs the ionic flow and gives 

rise to a decrease in the ionic current compared to the base current This phenomenon is 

called current blockade The numerical prediction of the current blockade is in qualitative 

agreement with existing experimental results (Meller et al 2001, Li et al 2003, Storm et 

al 2005 a, Storm et al 2005b) In general, the ionic concentration within the EDL is 

higher than the bulk concentration In addition, the EDL in the vicinity of the particle is 

nearly uniform as the disturbance arising from the externally applied electric field is 

relatively weak When the particle is located within the nanopore, a thicker EDL implies 

that more ions are present within the nanopore As a result, the magnitude of the current 

deviation decreases as Ka decreases, as shown in Figure 7 9a Since the particle is trapped 

when Ka = 0 46 and 0 32, the corresponding current deviations are not shown in Figure 

7 9a When the applied electric field is relatively high, E* = 7 7><10~2, the current 

blockade is also observed when Ka is relatively large (solid line Ka = 2 05 in Figure 7 9b) 

As Ka decreases, the current deviation becomes asymmetnc with respect to y - 0 

(dashed line KQ = 1 03 in Figure 7 9b) Moreover, a current enhancement when the 
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particle exits out of the nanopore is predicted if Ka decreases even further When the 

particle is close to entering the nanopore, the nanopore is predominantly occupied by 

cations as explained previously However, the relatively high electric field repels cations 

out of the nanopore, which in turn decreases the ionic current through the nanopore 

Therefore, the magnitude of the current deviation increases as Ka decreases when y <0, 

as shown in Figure 7 9b When the particle is exiting out of the nanopore, the cations 

accumulated within the EDL of the particle are pushed into the nanopore Accordingly, 

the ionic current through the nanopore is enhanced when yp > 0, as shown in Figure 7 9b 

When Ka is low enough, the ionic current through the nanopore could be larger than the 

base current, leading to a positive current deviation when the particle exits out of the 

nanopore The result obtained by the continuum-based model is also in qualitative 

agreement with the prediction from a MD simulation, which, however, adopted a much 

higher electric field to shorten the duration of DNA through the nanopore (Aksimentiev 

et al 2004) Furthermore, Heng et al also experimentally observed this kind of current 

enhancement when the particle exits out of the nanopore (Heng et al 2004) In summary, 

the current enhancement can be expected when the EDL adjacent to the particle is 

relatively thick and the applied electric field is relatively high 
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Figure 7 9 Current deviation x as a function of the particle's location y under E* = 7 7x 10̂ * (a) 

and £"* = 7 7xl0~2 (b) Jt*0 = 0 , #*0 =0 and CT* =0 Solid line, dashed line, dash-dotted line, 

solid line with circles, and dashed line with squares represent, respectively, KQ = 2 05, 1 03, 0 65, 

0 46 and 0 32 
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7.4.3 Effect of the Initial Orientation of the Particle, 0'pO 

The orientation of the particle affects the distribution of ionic concentrations, electric 

field and also flow field surrounding the particle, which in turn influences the particle 

motion and the ionic current through the nanopore Here, we consider a particle initially 

presenting a non-zero angle with respect to the centerhne of the nanopore The 

trajectories of the particle under two different electric fields, E* = 7 7x10^ and E = 

7 7x10~2 whenx*0=0, £?*0=60°, Ka = 103 and <r*=0 are, respectively, shown in 

Figures 7 10a and 7 10b Obviously, the particle no longer translocates along the 

centerhne of the nanopore and the rotation of the particle comes into play Under the 

relatively low electric field, E* = 7 7X10"4, the particle slightly rotates clockwise before 

entering the nanopore When the particle is close to entering the nanopore, the 

hydrodynamic interactions between the particle and the nanopore facilitates the particle 

to rotate clockwise Once the particle exits out of the nanopore, the particle slightly 

rotates counterclockwise However, the orientation of the particle cannot recover its 

initial value any more It is interesting that the particle also experiences a lateral 

movement due to the initial orientation If the initial angle is positive (I e , O*p0>0), the 

particle moves toward the negative x direction On the contrary, the particle moves 

toward the positive x direction if the initial angle is negative (results not shown here) 

When the electric field is relatively high, E = 7 7x10~2, the particle rotates clockwise 

very fast as shown in Figure 7 10b and aligns with its longest axis parallel to the applied 

electric field, which is attributed to the negative DEP effect arising from the non-uniform 

electric field around the particle Our previous experimental study in Chapter 6 has found 

that a cylindrical algal cell also experiences such an alignment to a high electric field 
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externally imposed due to the DEP effect Because of the fast alignment to the applied 

electric field, the lateral movement of the particle is very limited When the externally 

applied electric field is very low, the electric field around the particle is dominated by the 

electric field arising from the fixed surface charge on the particle Therefore, the electric 

field around the particle is nearly uniform, resulting in a negligible DEP force acting on 

the particle, which could explain the particle motion shown in Figure 7 10a As the 

electric field applied in Figure 7 10b is 100 times that imposed in Figure 7 10a, the 

duration of the particle translocation through the pore in Figure 7 10b is almost 1/100 of 

that in Figure 7 10a, which is still much longer than the duration in MD simulations 
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Figure 7 10 Trajectories of the particle under £* = 7 7*10^ (a) and E* = 7 7x10 2(b) x'p0 =0, 

0*pO =60°,KG = 1 03 and <7* =° 
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Figure 7 11a shows the variation of the ̂ -component particle velocity as a function of 

the particle's location y under two different applied electric fields, E — 1 7X10-4 (solid 

line and circles) and E* = 7 7x10~2 (dashed line and triangles) when x*pQ = 0, tea = 1 03 

and cr* = 0 Due to the non-zero initial angle of the particle, 0pO = 60°, the particle 

motion before entering the nanopore is significantly slowed down, comparing to the case 

of 0p0 = 0 Once the particle enters the nanopore, the difference between the particle 

velocities for 0pO = 0 and 6p0 = 60° gradually diminishes, especially for the high electric 

field The corresponding rotational velocities under the two electric fields when G*p0 = 60° 

are shown in Figure 7 l ib At the beginning, the magnitude of the rotational velocity 

under E* = 7 7x10~2 is larger than that under E =1 7X10"4, due to the significant DEP 

effect As the particle moves further toward the nanopore, the magnitude of the rotational 

velocity increases and then maximizes near the entrance of the nanopore After that, the 

magnitude of the rotational velocity decreases and attains zero at a certain location when 

the particle is exiting out of the nanopore When the applied electric field is relatively low, 

the rotational velocity becomes positive and maximizes when the particle is nearly out of 

the nanopore Subsequently, the rotational velocity tends to decrease toward zero When 

the applied electric field is relatively high, the variation of the rotational velocity is very 

small when the particle exits out of the nanopore Figure 7 l ie depicts the evolution of 

the particle's orientation under the two electric fields Under the low electric field, the 

angle of the particle gradually decreases and minimizes dXyp = 0 Subsequently, the angle 

of the particle increases, however, it cannot recover the initial angle based on the 

prediction of the rotational velocity shown in Figure 7 11b Under the high electric field, 
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the angle of the particle gradually decreases and also minimizes near^* =0 However, 

after that it varies very slightly and eventually reaches a constant value when the particle 

exits out of the nanopore It is revealed that the stable orientation is parallel to the local 

electric field externally applied when the DEP force is dominant 

Figure 7 11 The -̂component translational velocity (a), rotational velocity (b), angle of the 

particle (c) and current deviation (d) as a function of the particle's location y under E = 

7 7X10"4 (solid line and circles) and E* = 1 7><10~2 (dashed line and triangles) Symbols and lines 
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represent, respectively, 0pO = 0 and 60° xp0 =0 , tea = 1 03 and <rw = 0 A scale of 100 is 

applied to the solid line and circles in (a) and solid line in (b) for a clear visualization 

The effect of the particle's orientation on the ionic current deviation under the two 

different electric fields is shown in Figure 7 l id The initial orientation of the particle, 

0*pO = 60°, significantly blocks off the ionic transport through the nanopore Therefore, 

the magnitude of the current deviation becomes pronounced even whenj>p=-15 , 

compared to the case of 0*pQ = 0 When y < 0, the difference between the ionic current 

deviations for 0pO = 0 and 0*pO = 60° is remarkable Under the low electric field, the 

particle's angle is minimized at y - 0, however, the cross-section for the ion transport is 

also minimized in the nanopore Therefore, the magnitude of the current deviation is still 

larger than that for 0*pO =0 As the particle exits out of the nanopore, the particle's angle 

slightly increases as aforementioned However, due to the lateral particle movement, the 

magnitude of the current deviation is approaching that for 0*pO = 0, as shown in Figure 

7 lid Under the high electric field, the particle's angle becomes nearly zero at yp = 0 

and maintains the aligned status hereafter Therefore, the current deviation is the same as 

the one for 0*pQ = 0 when yp >0 Obviously, the particle's orientation has a significant 

impact on the current deviation, especially under relatively low electric fields 

7.4.4 Effect of the Initial Lateral Offset of the Particle, x'p0 

We locate the particle laterally offset from the centerlme of the nanopore to 

investigate the effect of the initial x-position of the particle, x*0, on its motion and the 
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ionic current through the nanopore Figures 7 12a and 7 12b show, respectively, the 

trajectories of the particle under two different electric fields, E* = 7 7x10^* and E* = 

7 7x1 CT2 whenxp0 =2 5, 6*pQ =0, KO = 1 03 and <r* =0 As the particle is away from the 

centerline of the nanopore, the particle slightly rotates counterclockwise and translates 

laterally toward the centerline when the particle is entering the nanopore Under the 

relatively low electric field, the particle exits out of the nanopore with a positive angle, as 

shown in Figure 7 12a Under the relatively high electric field, the DEP always tends to 

align the particle parallel to the local electric field However, the local electric field away 

from the centerline of the nanopore is not parallel to the centerline As a result, the 

particle rotates clockwise when it exits out of the nanopore, as shown in Figure 7 12b 

Nevertheless, it is found that the initial lateral offset from the centerline has very limited 

effect on both the y-component particle velocity and the current deviation (results not 

shown here) If the particle also has an initial angle, #*0 = 60° , the corresponding 

trajectories of the particle under the two different electric fields, E* -1 7*l(T4and E = 

7 7x10-2, shown in Figures 7 12c and 7 12d, respectively, are quite similar to those in 

Figure 7 10, thus they are not discussed in detail here 
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Figure 7 13 The ^-component translational velocity (a), rotational velocity (b), angle of the 

particle (c) and current deviation (d) as a function of the particle's location yp under E = 

7 7x 10"4 (solid line) and E* = 1 7* 10"2 (dashed line) x*0 = 2 5, 6>*0 = 60°, KQ = 1 03 and CT* = 0 

A scale of 100 is applied to the solid line in (a) and (b) for a clear visualization 

Figure 7 13a shows the variation of the ^-component particle velocity under the two 

different applied electric fields, E* = 7 7X10"4 (solid line) and E* = 1 7><10"2 (dashed line) 

when x*0=2 5 , #* 0 =60°, crw = Q and Ka = 1 03 As explained in Section 7 4 3, the 

particle velocity becomes asymmetric with respect to>> = 0 with a lower velocity before 
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the particle enters the nanopore, which is mainly attributed to the non-zero initial angle 

The rotational velocity of the particle, shown in Figure 7 13b, also shows a similar 

variation to that in Figure 7 11b The corresponding variations of the particle's 

orientation under the two electric fields are shown in Figure 7 13c, which follow the main 

trends predicted in Figure 7 l ie Under the relatively low electric field, the particle 

presents a slightly larger angle than that in Figure 7 11c when it exits out of the nanopore 

due to the initial lateral offset from the centerlme Similarly, the current deviation also 

becomes asymmetric with respect toy* =0, as shown in Figure 7 13d This is mainly 

attributed to the non-zero initial orientation rather than the lateral offset in the present 

study 

7 4.5 Effect of the Surface Charge Density of the Nanopore, cr'w 

In the above investigations, the surface charge density of the nanopore is assumed to 

be zero However, the nanopore usually also carries a surface charge, which gives rise to 

an extra EOF and in turn affects the particle translocation through the nanopore Figure 

7 14 depicts the ̂ -component translational velocity as a function of the particle's location 

yp under E* = 1 7x10^ (Figure 7 14a) and E* = 7 7><l(r2 (Figure 7 14b) when 0*o =0, 

x\=0 and Ka = 1 03 The particle velocity for cr* =0 (solid line) is considered as a 

reference, which is symmetric with respect to yp = 0 When the applied electric field is 

relatively low, the nanopore bearing a surface charge opposite to that of the particle 

(<r* = -0 \ap) generates an EOF in the same direction as the electrokinetic particle 

translocation As a result, the induced EOF enhances the particle translocation about 10% 

at the beginning of the particle translocation, as shown in Figure 7 14a (dashed line) 
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Since the EDLs of the particle and the nanopore are slightly overlapped at xa = 1 03, the 

particle-nanopore electrostatic interaction also significantly affects the particle 

translocation through the nanopore As previously mentioned, the particle and the 

nanopore bear surface charges with different polarities, the particle-nanopore electrostatic 

interaction induces an attractive force on the particle Accordingly, the particle-nanopore 

electrostatic interaction facilitates the particle translocation when y < 0, and retards the 

particle translocation when y > 0 As a result, the particle velocity profile becomes 

asymmetric with respect to y = 0 On the contrary, <rw = 0 lcr* implies that the 

nanopore bears a negative surface charge, resulting in an EOF opposite to the particle 

translocation Therefore, the particle translocation is retarded about 10% at the beginning 

of the particle translocation, as shown in Figure 7 14a (dash-dotted line) In addition, the 

particle-nanopore electrostatic interaction becomes a repulsive force, which resists the 

particle translocation when y < 0, and accelerates the particle translocation when yp > 0 

When the applied electric field is relatively high, the electrical driving force and the EOF 

effect dominates over the particle-nanopore electrostatic interaction As a result, the 

asymmetry of the particle velocity profile is not observed in Figure 7 14b The particle 

translocation is enhanced (retarded) about 10% when a*w = -0 lcr* (aw =0 lcr*) due to 

the extra EOF effect Therefore, the particle translocation through a nanopore could be 

controlled by the regulation of the nanopore's surface charge Although the nanopore's 

surface charge can significantly affect the particle translocation, its effect on the current 

deviation is insignificant when the particle translocates along the centerhne of the 

nanopore 
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We further examine the effect of the nanopore's surface charge density on the particle 

translocation and the ionic current through the nanopore, giving the particle an initial 

lateral offset (x\=5) and an initial orientation (#*0=60°) Figure 7 15a shows the 

trajectories of the particle through the nanopore bearing three different surface charge 
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densities, cr* =0 (solid line), cr* =-0 lcr* (dashed line) and cr* =0 la* (dash-dotted line) 

under E* = 7 7x10"* Before the particle enters the nanopore, the trajectories of the 

particle are almost identical Due to the positive initial orientation of the particle, the 

front end of the cylindrical particle toward the nanopore is closer to the left membrane 

when the particle approaches the nanopore, as shown in Figure 7 12c The nanopore 

beanng an opposite charge to the particle (cr* = -0 lcr*) attracts the particle to move 

laterally in the negative x direction (dashed line) On the contrary, CT* = 0 lcr* induces the 

lateral movement of the particle in the positive x direction (dash-dotted line) Figure 

7 15b shows the corresponding variation of the particle's orientation during the particle 

translocation The particle's orientations are nearly identical before the particle enters the 

nanopore The attractive particle-nanopore electrostatic interaction (cr* =-0 lcr*) causes 

the particle rotate counterclockwise when yp < 0 , however, clockwise when y > 0 

(dashed line) The repulsive particle-nanopore electrostatic interaction ( cr* = 0 lcr* ) 

pushes the particle parallel to the centerhne of the nanopore (dash-dotted line), leading to 

the particle mostly translocates along the centerhne of the nanopore Figure 7 15c reveals 

that the corresponding ^-component translational velocity shows a similar trend as Figure 

10b, which has been explained previously The spine in the dashed line near y*=-6 is 

mainly attributed to the repulsive electrostatic interaction between the particle and the 

edge of the nanopore Figure 7 15d shows the corresponding current deviations as a 

function of the particle's location y The current deviation is not sensitive to the surface 

charge of the nanopore before the particle enters the nanopore As indicated in Figure 

7 15b, different surface charges of the nanopore lead to different particle orientations 
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inside the nanopore Obviously, a larger angle of the particle leads to a more pronounced 

current blockade The orientation of the particle becomes much smaller compared to its 

initial orientation when it exits the nanopore As a result, the difference in the three 

current deviations becomes smaller when the particle exits out of the nanopore When the 

external electric field is relatively high (E = 7 7x10~2), the electrical driving force and 

the EOF effect dominates over the particle-nanopore electrostatic interaction, as stated 

early As a result, the ^-component translational velocity is only affected by the EOF 

effect, and is very similar to Figure 7 14b Furthermore, the particle is aligned to the local 

external electric field very fast, the particle's trajectory, orientation and the current 

deviation are thus insensitive to the nanopore's surface charge 

7 5 Conclusions 

Electrokinetic particle translocation through a nanopore has been investigated using a 

transient continuum-based model, composed of the Nernst-Planck equations for the ionic 

concentrations, the Poisson equation for the electric potential and the Navier-Stokes 

equations for the flow field solved using the ALE method No assumptions concerning 

the EDL thickness, the magnitudes of the surface charge density along the particle and 

the nanopore, and the magnitude of the imposed electric field are made in the present 

numerical model It has been found that numerical prediction obtained by PB-NS-ALE 

model begins to significantly deviate from that obtained by PNP-NS-ALE under EDL 

overlapping (jca < 1) 

When the initial x-position and orientation of the particle are, respectively, xp0 = 0 

and 0*o = 0, the particle only translates along the centerhne of the nanopore without any 

rotation and lateral movement If the externally applied electric field is relatively low, the 
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particle velocity is symmetric with respect to y = 0 when Ka is relatively large As Ka 

decreases, the particle velocity profile becomes asymmetric When Ka exceeds a critical 

value, the particle could be trapped near the entrance of the nanopore In addition, the 

nanopore's surface charge gives rise to an extra EOF, which in turn affects the particle 

translocation If the EDLs of the particle and the nanopore are overlapped, the particle-

nanopore electrostatic interaction becomes a significant effect on the particle 

translocation Current blockade is expected under a relatively low electric field When the 

externally applied electric field is relatively high, the particle can always pass through the 

nanopore with its velocity profile symmetric with respect to y - 0 , and the particle-

nanopore electrostatic interaction becomes negligible compared to the electrical dnven 

force and EOF effect When Ka is relatively large, current blockade is also predicted 

However, as Ka decreases, one could expect to observe the current enhancement The two 

current responses predicted in the present study are in qualitative agreement with the 

existing experimental results 

When either the initial x-position or orientation of the particle is non-zero, the particle 

experiences both rotation and lateral movement The initial orientation of the particle 

exhibits a significant effect on the particle translocation and also the ionic current through 

the nanopore When the external electric field is relatively low, the particle velocity could 

become asymmetric with respect to yp = 0 even under a relatively high Ka due to a non­

zero initial angle of the particle The angle of the particle gradually decreases as the 

particle enters the nanopore and then slightly increases as it exits out of the nanopore 

However, it cannot recover its initial orientation any more Due to the non-zero initial 

angle of the particle, the magnitude of the current deviation before the particle enters the 
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nanopore is larger than that with a zero initial angle However, the current deviation when 

the particle exits out of the nanopore is approaching that with a zero initial angle, as the 

particle experiences the lateral movement and the angle of the particle is decreased as 

well Also, the nanopore's surface charge renders a significant particle-nanopore 

electrostatic interaction under EDL overlapping, accordingly affecting the particle 

translocation and the current response When the external electric field is relatively high, 

the particle velocity also becomes asymmetric with respect to y - 0 As a result of the 

dominant negative DEP effect, the particle aligns with its longest axis parallel to the local 

electric field very quickly when it enters the nanopore and maintains the aligned status 

when it exits out of the nanopore Similarly, the current deviation is asymmetric with 

respect to y = 0 due to the non-zero initial angle However, the initial lateral offset from 

the centerhne of the nanopore plays a minor effect on the particle translocation and the 

ionic current through the nanopore 
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CHAPTER 8 

FIELD EFFECT REGULATION OF DNA 

TRANSLOCATION THROUGH A NANOPORE 

Abstract 

Field effect regulation of DNA nanoparticle translocation through a nanopore using a 

gate electrode is investigated using a continuum model, composed of the coupled 

Poisson-Nernst-Planck equations for the ionic mass transport and the Navier-Stokes 

equations for the hydrodynamic field The field effect regulation of the DNA 

translocation relies on the induced EOF and the particle-nanopore electrostatic interaction 

When the EDLs formed adjacent to the DNA nanoparticle and the nanopore wall are 

overlapped, the particle-nanopore electrostatic interaction could dominate over the EOF 

effect, which enables the DNA trapping inside the nanopore when the applied electric 

field is relatively low However, the particle-nanopore electrostatic interaction becomes 

negligible if the EDLs are not overlapped When the applied electnc field is relatively 

high, a negative gate potential can slow down the DNA translocation by an order of 

magnitude, compared to a floating gate electrode The field effect control offers a more 

flexible and electrically compatible approach to regulate the DNA translocation through a 

nanopore for DNA sequencing 
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8.1 Introduction 

DNA sequencing refers to the order determination of nucleotide bases in DNA 

nanoparticles, which is of great importance for basic biological research, such as the 

famous Human Genome Project launched by the U S National Institutes of Health (NIH) 

in 1990 (Luna 1989) During the past decades, researchers are striving to develop a high 

throughput and affordable DNA sequencing technique (Mukhopadhyay 2009) Among 

vanous DNA sequencing techniques, the nanopore-based DNA sequencing technique has 

emerged as one of the most promising approach to achieve the aforementioned goal 

(Meller et al 2001, Saleh and Sohn 2003, Storm et al 2005b, Rhee and Burns 2006, 

Dekker 2007, Healy et al 2007, Griffiths 2008, Howorka and Siwy 2009) In the 

nanopore-based technique, the DNA nanoparticles are electrophoretically driven through 

a nanopore and the ionic current through the nanopore is simultaneously altered and 

recorded during the DNA translocation process Based on the discrimination of the 

current signals, the order of nucleotide bases in a single DNA nanoparticle can be 

determined (Meller et al 2001, Chang etal 2004, Heng et al 2004) However, one of the 

major challenges using the nanopore-based technique is that DNA nanoparticles 

translocate through the nanopore too fast for detection As a result, an extremely high 

temporal resolution is indispensable for a precise detection of each nucleotide base, 

which requires an extremely high bandwidth for the sensing system (Bayley 2006) 

Although one can reduce the voltage across the nanopore to slow down the DNA 

translocation, the current change may be immersed in noise and becomes undetectable 

Furthermore, the event of the DNA translocation through the nanopore per unit time 

would also significantly decrease as the applied voltage decreases 
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To achieve high throughput, a relatively high electric field across the nanopore is 

typically applied for the DNA sequencing So far, several methods have been proposed to 

slow down the DNA translocation through the nanopore to obtain a detectable current 

signal Trepagnier et al (2007) exerted extra mechanical forces on DNA nanoparticles 

using optical tweezers to slow down the DNA translocation through a nanopore at the 

expense of a highly focused laser Kim et al (2007) chemically functionahzed the surface 

charge of the nanopore to increase the energy barrier to slow down the DNA 

translocation Ghosal (2007) found that the electrophoretic velocity of the DNA 

translocation highly depends on the ionic concentration which could be utilized to control 

the DNA translocation Regulation of the DNA translocation through a nanopore is also 

achieved by adjusting the viscosity of the aqueous solution to manipulate the viscous 

drag force acting on the DNA nanoparticles (Kawano et al 2009) Fologea et al (2005) 

achieved one order of magnitude decrease in the DNA translocation by simultaneously 

controlling the electrolyte temperature, the electrolyte viscosity, the ionic concentration 

and the applied voltage Recently, it was revealed that DNA nanoparticles translocate 

much slower in electrolyte solutions containing organic salts compared to the DNA 

translocation in the commonly used potassium chloride (KC1) electrolyte solution, which 

may be attributed to the forming of a DNA-organic salt complex (de Zoysa et al 2009) 

Tsutsui et al (2009) applied a transverse electric field to control the DNA translocation 

by the electrostatic electrode-particle interaction Some recent work investigated the ionic 

transport in a nanopore under AC electric fields (Feng et al 2010, Krems et al 2010), 

therefore, one might control DNA nanoparticle translocation using a DC-biased AC 

electric field 
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Analogous to the metal-oxide-semiconductor field effect transistors (MOSFETs), 

nanofluidic field effect transistor (FET) with an electrically addressable gate electrode 

has been fabricated using the state-of-the-art nanofabncation technologies (Karnik et al 

2005, Kalman et al 2009, Nam et al 2009, Tamguchi et al 2009, Joshi et al 2010) The 

gate electrode can effectively control the surface potential of the nanopore wall 

(Schasfoort et al 1999), which is consequently employed to regulate the electroosmotic 

flow (EOF) in microfluidic devices (Schasfoort et al 1999, Vajandar et al 2009), ionic 

transport and ionic conductance in nanofluidic devices (Karmk et al 2005, Kalman et al 

2009, Nam et al 2009, Daiguji 2010, Joshi et al 2010) The gate electrode offers a more 

flexible and electrically compatible approach for the control of the surface potential than 

the chemical functionalization method Oh et al (2008, 2009) experimentally 

demonstrated the feasibility to regulate the electrokinetic transport of charged dye 

nanoparticles using the field effect control However, a profound theoretical analysis of 

the field effect regulation of the DNA nanoparticle translocation through a nanopore is 

still unreported so far 

In this chapter, the use of FET to regulate DNA translocation through a nanopore is 

analyzed for the first time Our previous work showed that the multi-ion model (MIM), 

which includes the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass 

transport and the Navier-Stokes equations for the flow field, successfully captures the 

essential physics of the DNA translocation process for an arbitrary thickness of the 

electrical double layer (EDL), while the simplified models based on the Poisson-

Boltzmann equation (PBM) and the Smoluchowski's slip velocity (SVM) are not 

appropriate under the conditions of a thick EDL (Liu et al 2007a) The continuum MIM 
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model has also been used to study the ionic current rectification phenomenon in a 

nanopore, and the obtained results qualitatively agree with the experimental data obtained 

from the literature (White and Bund 2008) The validity of the continuum model has also 

been confirmed when the pore's radius is larger than the Debye length (Corry et al 2000b, 

Stein et al 2004, Pennathur and Santiago 2005, Schoch et al 2005) Therefore, the 

continuum MIM model is adopted in the current study to investigate the field effect 

regulation of the DNA translocation through a nanopore In the previous study without 

field effect control (Liu et al 2007a), the surface potential of the nanopore's inner wall is 

not controllable if the conditions, including the DC electric field imposed, the electrolyte 

concentration, and the surface properties of the nanoparticle and the nanopore wall, are 

fixed In contrast, the objective of this paper is to propose and demonstrate an active 

control strategy to regulate DNA nanoparticle translocation process by FET, which 

actively controls the surface potential of the nanopore by dynamically adjusting the gate 

potential applied to the gate electrode embedded within the dielectric nanopore wall 

Three main factors, including the applied electric field across the nanopore, the ratio of 

the particle radius to the Debye length, and the permittivity of the dielectric nanopore, on 

the DNA translocation through a nanopore are comprehensively investigated in the 

present study 

8.2 Mathematical Model 

A nanopore of length Lc and radius b is connected to two identical reservoirs filled 

with a binary KC1 aqueous solution, with density p, dynamic viscosity //, and permittivity 

Ef, as shown in Figure 8 la An axisymmetnc model is used in the present study due to 

the inherent axisymmetry of the geometry and also the physical fields Therefore, all the 
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variables are defined in a cylindrical coordinate system (r, z) with the origin fixed at the 

center of the nanopore The axial length Lr and the radius R of the reservoirs are large 

enough to maintain a bulk ionic concentration Co far away from the nanopore Usually, a 

very long DNA is coiled up randomly inside the reservoir However, since the nanopore 

is very small (the pore diameter is less than 10 nm), the DNA nanoparticle is elongated or 

stretched to translocate through the nanopore (Storm et al 2005a, Storm et al 2005b) 

The uncoiled DNA nanoparticle is very similar to a nanorod Our previous numerical 

study approximated the DNA nanoparticle as a cylindrical particle capped with two 

hemispheres, which has achieved reasonable agreement with the experimental data (Liu 

et al 2007a) Therefore, it is reasonable to approximate DNA molecule as a cylindrical 

nanoparticle of length Lp and radius a, having two hemispherical caps of radius a at both 

ends, during the translocation process We assume that the DNA nanoparticle bears a 

uniform surface charge density, a When the DNA particle and the nanopore wall are in 

contact with an electrolyte solution, countenons are accumulated m a thin liquid layer 

next to the charged solid's surfaces This thin layer is known as the EDL When the gap 

distance between the nanoparticle and the nanopore wall is relatively small, the EDLs of 

the DNA nanoparticle and the nanopore wall overlap, and the distributions of the ionic 

concentrations and potential in each EDL will be affected by the other nearby EDL 
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Figure 8 1 Schematics of the DNA translocation through a gated nanopore (a) The EOF retards 

the negatively charged DNA translocation when the gate potential is negative (b), and enhances 

the DNA translocation when the gate potential is positive (c) 

A negative axial electric field, E, is applied across the nanopore to drive the 

negatively charged DNA translocation along the axis of the nanopore and also generate 

an ionic current through the nanopore A gate electrode of length W is coated on the outer 

surface of the dielectric nanopore of thickness 8 in the middle region of the nanopore A 

gate potential on the gate electrode, y/g, is applied to modify the surface potential of the 

nanopore's inner surface next to the gate electrode, which in turn regulates the EOF and 

accordingly the DNA translocation through the nanopore When a negative gate potential 
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is applied to the gate electrode, more cations are accumulated in the vicinity of the 

nanopore's inner surface next to the gate electrode as shown in Figure 8 lb The induced 

EOF is opposite to the particle electrophoretic motion and thus retards the DNA 

translocation When a positive gate potential is applied on the gate electrode, anions are 

predominantly occupied in the EDL region where the gate electrode is located Figure 

8 lc shows that the generated EOF, which is in the same direction of the DNA 

translocation, leading to the enhancement of the DNA translocation through the nanopore 

The DNA translocation is determined by simultaneously solving the electric field, the 

ionic concentrations and the fluid flow The ionic mass transport within the electrolyte 

solution is governed by the verified Poisson-Nernst-Planck (PNP) equations (Qian et al 

2007, White and Bund 2008) 

-£fV
2<t> = F(c]Z]+c2z2), (8 1) 

V N, = V (u c, -D,Vc, -z , ^-Fcy<f>) = 0, / = 1 and 2, (8 2) 
RT 

where </> is the electnc potential within the fluid, F is the Faraday constant, c, and c2 are, 

respectively, the molar concentrations of the cations (K*) and anions (CI") in the 

electrolyte solution, zy and Z2 are, respectively, the valences of cations (z/ = 1 for K+) and 

anions (z2 = -1 for CI-), N, is the ionic flux density of the /th ionic species, u is the fluid 

velocity, Dt is the diffusivity of the ith ionic species, R is the universal gas constant, and 

T is the absolute temperature of the electrolyte solution Hereafter, bold letters denote 

vectors The thickness of the EDL is characterized by the Debye length, 

XD = tc'[ = •Js/RT/^ F2zfC0 , based on the bulk ionic concentration 
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The axial symmetric boundary conditions for all the physical fields are applied on the 

axis of the nanopore The Dinchlet boundary condition is used for the ionic 

concentrations at the ends of the two reservoirs, ct (r,±(Lr +Lc/2j\ = C0, i -1 and 2 

The normal ionic flux on the particle surface only includes the convective flux, 

n • N, = n • (uc,), i -1 and 2 , where n is the unit normal vector directed from the 

particle surface into the fluid The normal ionic fluxes on all the other boundaries are set 

to be zero The Dinchlet boundary condition is also used for the electric potentials at the 

ends of the two reservoirs, </>[r,-(Lr +Z,C/2H = 0 and <j>ir,(Lr +Lc/2j\-^0 The 

Neumann boundary condition is applied for the surface charge density of the nanoparticle, 

-efn•V0 = cr The Neumann boundary condition, imposing a zero normal electric field, 

is applied in the other boundaries in contact with the fluid except the interface between 

the nanopore and the fluid 

In contrast to the previous work without field effect control (Liu et al 2007a), in 

order to take into account the field effect arising from the externally imposed gate 

potential, the electric potential inside the dielectric nanopore wall sandwiched between 

the gate electrode and the fluid is also solved 

-*rfVV = 0, (8 3) 

where Ed is the permittivity of the dielectric nanopore material The gate potential y/= y/g 

is applied on the gate electrode The Neumann boundary condition, imposed on the 

interface between the nanopore and the fluid, is given as 

-£fxvV<f> + edifVy/ = crw (8 4) 
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In this study, the intrinsic surface charge density of the nanopore is aw - 0 In addition, 

the continuity of the electric potential is also satisfied at the interface, <f> - y/ The other 

boundaries of the insulator are imposed zero normal electric field using the Neumann 

boundary condition 

The Reynolds number of the EOF in the nanopore is extremely small Therefore, it is 

appropriate to model the flow field using the modified Stokes equations by neglecting the 

inertial terms in the Navier-Stokes equations, given as 

V«u = 0 , (8 

-Vp + JuV2u-F(z,c,+z2c2)V^ = 0, (8 

where p is the pressure The electrostatic body force arising from the interactions between 

the applied electric field and the net charge within the EDL, indicated in the last term on 

the left-hand-side of Equation (8 6), generates the EOF through the nanopore to regulate 

the DNA translocation No-slip boundary condition is applied on the inner surface of the 

nanopore and the reservoir walls A normal flow with p = 0 is applied at the ends of the 

two reservoirs Slip boundary condition is applied at the side boundaries of the two 

reservoirs, which are far away from the nanopore As the DNA nanoparticle translocates 

along the axis of the nanopore, the fluid velocity on the surface of the particle is 

u(r,z) = Upez, where Up is the axial velocity of the particle and ez is the axial unit vector 

The axial velocity of the particle is determined based on the balance of the z-component 

force acting on the particle using a quasi-static method (Qian et al 2006, Qian and Joo 

2008, Qian et al 2008, Hsu etal 2009, Hsu etal 2010), 

FE+FH=0 (8 

In the above, 
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FE = [ 'W L^y L^f 
dz dr 2 dz 2 dr 

dT (8 8) 

is the axial electrical force based on the integration of the MST over the particle surface, 

and 

"••i 
. du, ,dur duz. 

-pnz + 2// —*• nz + /*(—*• + —±)nr 
dz dz dr 

dT (8 9) 

is the hydrodynamic force Here, ur and u2 are, respectively, the r- and z-components of 

the fluid velocity, nr and nz are, respectively, the r- and z-components of the unit vector, n, 

r denotes the surface of the DNA nanoparticle 

The induced ionic current through the nanopore is 

/ = JF(z,N, + z2N2) • n dS, (8 10) 

where S denotes the opening of either reservoir due to the current conservation 

8.3 Results and Discussion 

The physical parameters used in the simulation are the fluid permittivity, e/ = 

7 08xl0"10 F/m, the fluid density, p = lxlO3 kg/m3, the fluid viscosity, p = lxlO"3 Pa s, 

the diffusivity of K+, D\ = 1 95*10"9 m2/s, the diffusivity of CI", D2 = 2 03><10~9 m2/s, the 

temperature of the system, T= 300K, and the surface charge density of the particle, a = — 

0 01 C/m2 The dimensions of the nanopore system are 8 = 5 nm, W-20 nm, Lr = Lc = 40 

nm, b = 4 nm, and R = 40 nm The gate electrode locates in the range, 

-10 nm < z < 10 nm The radius of one single DNA nanoparticle is around a = 1 nm, 

and the length of one nucleotide unit is around 0 33 nm (Mandelkern et al 1981) Here, 

the total length of the DNA nanoparticle is assume to be Lp = 10 nm In this section, we 

focus on the field effect regulation of the DNA translocation through a nanopore When a 
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relatively high electric field is applied across the nanopore, the DNA translocation should 

be slowed down to increase the duration of DNA nanoparticles through the nanopore, as 

aforementioned However, if a relatively low electric field is imposed, the DNA 

nanoparticles should be attracted from the fluid reservoir into the nanopore to increases 

the event of the DNA translocation through the nanopore per unit time Although the 

surface charge density of the nanopore could play an important role on the nanoparticle 

translocation (Chein and Dutta 2009), in order to emphasize the field effect, we assume 

the nanopore in the present study is intrinsically uncharged 

8.3.1 Effect of the Gate Potential, y/g 

Figure 8 2 shows the variation of the particle velocity along the axis of the nanopore 

under two different applied electric fields, E = 10 KV/m (a) and E = 1000 KV/m (b) The 

other conditions are Co = 100 mM (tea = 103) and ed = 3 45x10"" F/m (the 

corresponding dielectric nanopore material is silicon dioxide) Under the low electric 

field E = 10 KV/m, when the gate electrode is floating (circles in Figure 8 2a), referring 

to an ineffective gate electrode, the particle velocity almost remains a constant along the 

nanopore In addition, the particle is accelerated through the nanopore owing to the 

enhanced electric field within the nanopore compared to that within the reservoir 

However, a relatively low electric field results in a long time gap between two sequential 

DNA translocation events Therefore, a positive gate potential is applied to generate an 

EOF in the same direction of the DNA translocation to attract DNA nanoparticles from 

the reservoir into the nanopore When a positive gate potential is applied (y/g = 0 52 V, 

solid line, y/ = 1 03 V, dashed line), the DNA nanoparticle is attracted into the nanopore 

much faster, compared to the case with a floating gate electrode The particle velocity 
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peaks when z = —10 nm, however, decreases as it translocates further Eventually, the 

DNA nanoparticle is trapped after it passes the center of the nanopore Note that the 

negative particle velocity shown in Figure 8 2a demonstrates that the DNA nanoparticle 

cannot translocate through the nanopore and the particle is trapped inside the pore It is 

also found that a higher gate potential induces a higher particle velocity when it is 

attracted into the nanopore Nevertheless, DNA nanoparticles are consistently trapped at 

the same position for both i//g = 0 52 V and 1 03 V As the applied electric field increases 

100 times to E = 1000 KV/m, the particle velocity also increases 100 times when the gate 

electrode is floating, as shown in Figure 8 2b (circles) A positive gate potential, y/g = 

0 52 V, enhances the DNA translocation along the entire nanopore, without observing the 

DNA trapping inside the nanopore (solid line) In addition, the velocity profile is 

asymmetric with respect to the center of the nanopore, zp = 0 The particle velocity 

attains a maximum in the region of zp < 0 When a negative gate potential y/g = -0 52 V 

is applied, the EOF retards the DNA translocation, as shown in Figure 8 2b (dashed line) 

Comparing to the case with a floating gate electrode, an order of magnitude decrease in 

the particle velocity is achieved around zp = —20 nm Again, the particle velocity profile is 

asymmetric with respect to the center of the nanopore The maximum particle velocity 

occurs in the region of zp > 0 
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Figure 8 2 Variation of the particle velocity along the axis of the nanopore under E = 10 KV/m (a) 

and E = 1000 KV/m (b) The circles and solid lines represent, respectively, y/g = floating and 0 52 

V The dashed lines represent, respectively, y/g= 1 03 V (a) and -0 52 V (b) C0 = 100 mM (KCT = 

1 03), and sj = 3 45x10"" F/m A scale of 10 is applied to the circles in (a) for a clear 

visualization 
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For a better understanding of the field effect on the DNA translocation through the 

nanopore, the distributions of c, -c2, the z-component fluid velocity, and the electric 

potential within the nanopore are shown in Figure 8 3 when z = —10 nm (a) and 10 nm 

(b), E = 10 KV/m, Co = 100 mM (KO = 1 03), y/g= 0 52 V, and ed = 3 45xl0"n F/m 

When the particle locates at zp = -10 nm, more cations are accumulated near the 

negatively charged DNA nanoparticle (c, - c2 > 0), while the positive gate potential 

attracts more anions adjacent to the nanopore's inner surface next to the gate electrode 

(c, -c2 <0), as shown in Figure 8 3a (I) The applied electric field generates an EOF in 

the same direction of the DNA translocation, as shown in Figure 8 3a (II) As a result, the 

particle velocity is enhanced as predicted in Figure 8 2a As the applied electric field is 

relatively low, the electric field inside the nanopore is dominated by the surface charge 

density of the nanoparticle and the induced surface potential of the nanopore owing to the 

field effect An attractive electrostatic force, Fpw, arising from the interaction between the 

negatively charged DNA and the positively charged nanopore, as shown in Figure 8 3a 

(III), thus acts on the DNA nanoparticle When the DNA nanoparticle locates at zp < 0 , 

the particle-nanopore electrostatic force also enhances the DNA translocation The 

attractive electrostatic force attains the maximum at zp =-10 nm, which results in a 

maximum peak velocity shown in Figure 8 2a It has also been experimentally confirmed 

that both the EOF and the particle-nanopore electrostatic interaction can significantly 

affect the DNA translocation (Oh et al 2009) When the DNA nanoparticle locates at 

zp =10nm, the distributions of ions near the nanoparticle and the nanopore's inner 
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surface next to the gate electrode remains the same as the case when zp = -10 nm As 

aforementioned, the positive gate potential attracts the negatively charged DNA 

nanoparticle When the particle locates at zp > 0 , the particle-nanopore electrostatic 

interaction retards the DNA translocation The attractive particle-nanopore electrostatic 

interaction overcomes the hydrodynamic force from the EOF and the electrical driving 

force, leading to the DNA trapping inside the nanopore at zp = 3 nm When the particle is 

located at zp =10 nm, the maximized attractive electrostatic force reverses the particle 

velocity to a negative minimum peak, as shown in Figure 8 2a As the EOF always 

enhances the DNA translocation while the attractive electrostatic force facilitates the 

DNA translocation when zp < 0, and retards the DNA translocation when zp > 0, the 

magnitude of the maximum peak is larger than that of the minimum peak As a result of 

the negative particle velocity, the fluid velocity around the particle is also reversed, as 

shown in Figure 8 3b (II) Therefore, the field effect regulation of the DNA translocation 

mainly depends on the particle-nanopore electrostatic interaction under a relatively low 

applied electric field when the EDLs next to the DNA and the nanopore are overlapped, 

under which the distributions of ionic concentrations and electric potential within the two 

EDLs are affected by each other 
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Figure 8 4 shows the distributions of c, - c2, the z-component fluid velocity, and the 

electric potential within the nanopore when y/g= -0 52 V (a) and 0 52 V (b), E = 1000 

KV/m, Co = 100 mM (ica = 1 03), zp = 10 nm, and ed = 3 45*10-11 F/m When the gate 

potential is negative, y/g = -0 52 V, more cations are both accumulated next to the 

negatively charged particle and the nanopore's inner surface next to the gate electrode 

(c, - c 2 > 0), as shown in Figure 8 4a (I) The positive c, - c 2 in the region between the 

DNA and the nanopore clearly indicates an EDL overlapping As a result of the negative 

gate potential, the generated EOF is opposite to the DNA translocation, resulting in a 

retardation effect along the entire nanopore, as shown in Figure 8 4a (II) As the DNA 

nanoparticle is negatively charged and the gate potential is also negative, the particle-

nanopore electrostatic force, Fpw, acts as a repulsive force As a result, the repulsive 

electrostatic force slows down the DNA translocation in the region of zp < 0, however, 

enhances the DNA translocation in the region of zp > 0 The inversion of the particle-

nanopore electrostatic force explains the asymmetric velocity profile with the maximum 

velocity in the region of zp > 0, as shown in Figure 8 2b (dashed line) A relatively high 

electric field, 100 times of that applied in Figure 8 3, is imposed across the nanopore, the 

electric field inside the nanopore is thus dominated by the external electric field Hence, 

the particle-nanopore electrostatic force is smaller than the electrical driving force arising 

from the external field, which is unable to trap the DNA nanoparticle in the nanopore 

When the gate potential is positive, ^ =0 52 V, the ionic distribution is almost the same 

as that shown in Figure 8 3b (I) The induced EOF facilitates the DNA translocation 
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through the nanopore, as shown in Figure 8 4b (II) Here, the particle-nanopore 

electrostatic force acts as an attractive force Therefore, it enhances the DNA 

translocation when zp < 0 , however, retards the DNA translocation when zp > 0 This 

also explains the asymmetric velocity profile with the maximum velocity in the region of 

zp < 0 , as shown in Figure 8 2b (solid line) As stated above, the electric field inside the 

nanopore is mainly determined by the external electric field Therefore, the particle-

nanopore electrostatic force is smaller than the electrical driving force acting on the 

particle under a relatively high external electric field Hence, the DNA trapping 

phenomenon is not expected subjected to a relatively high external electric field 

8.3.2 Effect of the Ratio of Particle Radius to Debye Length, wa 

Figure 8 5 shows the variation of the particle velocity along the axis of the nanopore 

under two different applied electric fields, E = 10 KV/m (a) and E = 1000 KV/m (b) 

when £d = 3 45xl0-11 F/m (the nanopore dielectric material is silicon dioxide) Under the 

low electric field, E = 10 KV/m, the particle velocity almost remains a constant in the 

nanopore when the gate is floating Note that the zeta potential of the DNA nanoparticle 

with a specific surface charge density increases as Ka decreases (Liu et al 2007a) 

Therefore, the particle velocity increases as Ka decreases, as shown in Figure 8 5a When 

a positive gate potential y/ = 0 52 V is applied, the DNA translocation is enhanced in the 

region zp < 0, however, the DNA nanoparticle is trapped around zp = 3 nm when Ka -

1 03 (solid line), as discussed in the previous section When the bulk ionic concentration 

increases to achieve Ka = 3 26, the DNA translocation is enhanced along the entire 

nanopore compared to the case with a floating gate electrode However, the DNA 

nanoparticle cannot be trapped in the nanopore (dashed line), and it is different from the 
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case of Ka = 1 03 In addition, the velocity profile is nearly symmetric with respect to 

zp = 0 , which implies that the particle-nanopore electrostatic force is very small 

compared to the hydrodynamic force by the EOF and the electrical dnving force Under 

the high electric field, E = 1000 KV/m, it is also confirmed that the particle velocity 

increases as Ka decreases when the gate electrode is floating When a negative gate 

potential y/g = -0 52 V is applied, the DNA translocation is slowed down along the entire 

nanopore The velocity profile is asymmetric with respect to zp = 0 when Ka = 1 03, and 

tends to be symmetric with respect to zp - 0 when Ka = 3 26 owing to a small particle-

nanopore electrostatic interaction Obviously, the particle-nanopore electrostatic 

interaction highly depends on the degree of the EDL overlapping, which has been 

recently experimentally confirmed (Wanunu et al 2008) The electric potential due to the 

surface charge decays very fast within the EDL and reaches zero m the bulk If the EDLs 

next to the DNA nanoparticle and the nanopore are not overlapped, happening under a 

high bulk ionic concentration (high Ka), the DNA nanoparticle and the nanopore cannot 

feel the electric potential from each other Consequently, the particle-nanopore 

electrostatic interaction is negligible 
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Figure 8 5 Variation of the particle velocity along the axis of the nanopore under E = 10 KV/m (a) 

and E = 1000 KV/m(b) Symbols and lines are, respectively, y/g= floating, 0 52 V (a) and -0 52 

V (b) Solid lines and circles represent Co= 100 mM (jca = 1 03), while dashed lines and squares 

represent C0 = 1000 mM (jca = 3 26) ed = 3 45xl0"n F/m A scale of 0 2 is applied to the solid 

line in (a) for a clear visualization 
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In summary, the field effect regulation of the DNA translocation is attributed to two 

effects the EOF effect and the particle-nanopore electrostatic effect The former one 

affects the DNA translocation through the entire nanopore in a consistent direction, 

referring to a global effect, while the latter effect highly depends on the location of the 

DNA nanoparticle, referring to a local effect When the particle-nanopore electrostatic 

force dominates over the hydrodynamic force by the EOF and the electrical driving force, 

which usually occurs when the applied electric field and Ka are both relatively low, the 

DNA nanoparticle could be trapped in the nanopore If a relatively high electric field is 

applied, the particle-nanopore electrostatic force is smaller than the driving force, and the 

DNA nanoparticle cannot be trapped in the nanopore However, the velocity profile 

becomes asymmetric with respect to the center of the nanopore due to the particle-

nanopore electrostatic interaction The particle-nanopore electrostatic effect is negligible 

under a relatively high Ka, and the particle velocity shows nearly symmetric with respect 

to the center of the nanopore 

8.3.3 Effect of the Permittivity of the Dielectric Nanopore, €d 

Figure 8 6 depicts the effect of the permittivity of the dielectric nanopore, £</, on the 

DNA translocation through the nanopore under two different applied electric fields, E = 

10 KV/m (a) and E = 1000 KV/m (b) when C0 = 100 mM (m = 1 03) Three different 

materials are considered to fabricate the nanopore, silicon dioxide (e</ = 3 45xl0-11 F/m), 

silicon (sd = 4 16xl0-11 F/m) and Pyrex glass (ed = 1 04><10"10 F/m) It has been found 

that a higher permittivity of the dielectric nanopore leads to a stronger capacitive 

coupling, which accordingly increases the magnitude of the surface potential on the 

nanopore's inner surface (Karnik et al 2005) Under the low electric field, E = 10 KV/m, 
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a positive gate potential, y/g = 0 52 V, is applied to attract DNA nanoparticles from the 

fluid reservoir into the nanopore Figure 8 6a shows that a higher permittivity of the 

nanopore leads to a higher particle velocity in the region of zp < 0 However, the DNA 

nanoparticle under different pore permittivities is trapped at the same location, zp = 3 nm 

As aforementioned, the current change due to the presence of the DNA nanoparticle 

within the nanopore is used for the DNA detection Figure 8 7a shows the current 

deviation, defined a s^ = U ~h)lh x100% with I0 as the ionic base current when the 

DNA is far away from the nanopore, as a function of the location of the DNA 

nanoparticle when Ed = 1 04x10~10 F/m The current blockage due to the presence of the 

DNA nanoparticle within the nanopore is observed Once the DNA trapping in the 

nanopore with y/g = 0 52 V is detected based on the current change, the gate electrode is 

set to be floating to let the DNA nanoparticle exit the nanopore The maximum current 

change with y/g = 0 52 V is larger than that with a floating gate electrode, as shown in 

Figure S3a Under the high electric field, E = 1000 KV/m, a negative gate potential, y/g = 

-0 52 V, is applied to slow down the DNA translocation Obviously, a higher permittivity 

of the nanopore leads to a higher retardation effect due to an increased field effect 
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Figure 8 6 Vanation of the particle velocity along the axis of the nanopore under two different 

applied electric fields, E = 10 KV/m (a) and E = 1000 KV/m (b) Circles and lines represent, 

respectively, a floating and gate potential y/g = 0 52 V (a) and -0 52 V (b) Solid, dashed, and 

dash-dotted lines represent, respectively, ed = 3 45xl0~", 4 16x10"" and 1 04><10"10 F/m C0 = 

100 mM (KO = 1 03) A scale of 10 is applied to the circles in (a) for a clear visualization 
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Figure 8 7 Current deviation^ as a function of the particle's location under two different applied 

electric fields, E = 10 KV/m (a) and E = 1000 KV/m (b) Solid lines represent the gate electrode 
is floating Dashed line in (a) represents y/g= 0 52 V when zp < 3 nm and y/g= floating when 

zp > 3 nm, while the dashed line in (b) represents l//g= -0 52 V Co = 100 mM (KH = 1 03), and 

ed= 1 04x10"10 F/m (a) and 4 16x10"" F/m (b) 
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When Ed = 1 04x 10~10 F/m, the DNA nanoparticle cannot even enter the nanopore due 

to the opposite EOF, as shown in Figure 8 6b (dash-dotted line) In order to drive DNA 

nanoparticles through the nanopore, one has to reduce the magnitude of the gate potential 

to decrease the EOF opposite to the DNA translocation The variation of the current 

deviation due to the presence of the DNA nanoparticle along the axis of the nanopore 

when Ed= 4 16x10"" F/m is shown in Figure 8 7b The current blockage is observed 

when -30 nm <zp < 10 nm while current enhancement is predicted when 10 nm <zp < 30 

nm The current enhancement has been experimentally observed when the EDLs are 

overlapped and the applied electric field is relatively high (Chang et al 2004, Heng et al 

2004), which is attributed to the enhanced diffusive ionic current due to the finite EDL 

effect, and the details are explained in our previous study (Liu et al 2007a) It is also 

revealed that a nanopore with the same charge polarity as the particle could increase the 

current enhancement (Liu et al 2007a) As a result, the negative gate potential slightly 

decreases the current blockage and meanwhile increases the current enhancement, 

compared to the case with a floating electrode Therefore, if high permittivity materials 

are used to fabricate the dielectric nanopores, the field effect regulation of the DNA 

translocation would be enhanced 

8.4 Conclusions 

The field effect regulation of the DNA translocation through a nanopore has been 

investigated using a continuum model, composed of the coupled Poisson-Nernst-Planck 

equations and Navier-Stokes equations Two effects arising from the field effect control, 

namely the EOF and the particle-nanopore electrostatic interaction, can effectively 

regulate the DNA translocation through a nanopore The EOF globally affects the DNA 
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translocation in a consistent direction while the particle-nanopore electrostatic interaction 

highly depends on the location of the DNA nanoparticle, acting as a local effect In 

addition, the particle-nanopore electrostatic interaction would dominate over the EOF 

effect only when the EDLs formed adjacent to the DNA nanoparticle and the nanopore 

are overlapped A positive (negative) gate potential generates an attractive (a repulsive) 

electrostatic force acting on the negatively charged DNA nanoparticle When the applied 

electric field is relatively low and the EDLs are overlapped (low KO), the particle-

nanopore electrostatic effect overpowers the EOF effect and the electrical driving force 

As a result, the DNA nanoparticle could be trapped in the nanopore When the applied 

electric field is relatively high and the EDLs are overlapped, the particle-nanopore 

electrostatic effect is unable to trap DNA nanoparticles, however, is responsible for the 

asymmetric particle velocity profile When the EDLs are not overlapped (high KO), the 

particle-nanopore electrostatic effect is negligible, demonstrated by the nearly symmetric 

particle velocity profile 

The mathematical model used in the current study accounts for the polarization of the 

EDL with no assumption made concerning the thickness of the EDL, the magnitudes of 

the surface charge densities along the particle surface and the nanopore wall, the 

magnitudes of the imposed DC electric field and gate potential, and the length of the 

particle We only examined the FET effect on the DNA nanoparticle's translation when it 

is located along the axis of the nanopore It is also expected that the FET control would 

affect the dynamics of the particle through a nanopore, including both translation and 

rotation The current study approximates the DNA molecule as a rigid nanorod, therefore, 

the unzipping and stretching of the helix during the translocation are not considered 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions and Contributions 

DC electrokinetics, including electroosmosis, electrophoresis and dielectrophoresis, 

has become one of the most promising techniques to propel and manipulate particles in 

micro/nano-fluidics This dissertation has been devoted to numerical and experimental 

studies of electrokinetic particle transport in micro/nano-fluidics The first part (Chapters 

2-5) focuses on the electrokinetic particle transport in microfluidics, in which 

Smoluchowski slip velocity is used to describe the EOF near the charged surface in the 

numerical modeling The second part (Chapters 6-8) investigates the electrokinetic 

particle transport in nanofluidics taking into account the finite EDL effect Specifically 

the major contributions and conclusions of this dissertation are 

1 In Chapter 2, a transient numerical model based on the ALE finite element 

method has been developed to investigate the DC electrokinetic particle transport 

in a converging-diverging microchannel under the thin EDL assumption 

Different from the existing numerical models, the DEP effect has been taken into 

account by integrating the Maxwell stress tensor over the particle surface It has 

been found that the results obtained by the numerical model considering the DEP 

effect quantitatively agree with the experimental data, while the results predicted 

by the existing numerical models in the absence of DEP effect significantly 

deviate from the experimental data Therefore, the DEP effect must be taken into 

account in the numerical modeling of electrokinetic particle transport in 
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microchannels where non-uniform electric fields are presented The DEP effect 

induces an asymmetnc particle velocity profile with respect to the throat of the 

converging-diverging microchannel When the applied electric field is high 

enough or the particle size is large enough, the DEP effect could prevent the 

particle from passing through the converging-diverging microchannel, which 

could be used for particle trapping based the particle size When the particle is 

initially located away from the centerhne of the channel, it experiences a cross-

stream motion due to the DEP effect, which shows applicability to particle 

focusing and particle separation 

2 In Chapter 3, the effect of DEP on the electrokinetic particle transport in an re­

shaped microchannel has been experimentally and numerically investigated It is 

generally thought that the DEP effect in a microchannel with a uniform cross-

section is negligible However, it has experimentally demonstrated that the corner 

of the microchannel could also generate a significant DEP effect to induce the 

cross-stream motion of the particle near the corner The experimental data are in 

good agreement with the numerical predictions obtained by the numerical model 

developed in Chapter 2 It has been further revealed that the DEP effect could also 

significantly affect the particle's rotation Therefore, the DEP effect should also 

be taken into account in the study of electrokinetic particle transport in curved 

microchannels with a uniform cross-section 

3 In Chapter 4, it has been numencally revealed that the DC DEP particle-particle 

interaction dominates over the Browman motion when the particle distance is 

below a critical value depending on the applied electric field and particle size 
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Under the critical particle distance, the dominant DEP particle-particle interaction 

tends to attract each other and align the particle chain parallel to the applied 

electric field independent of the initial particle orientation One exception is when 

the initial particle orientation is perpendicular to the applied electric field, which 

is however very unstable 

4 In Chapter 5, the effect of DEP on the electrokinetic transport of cylindrical algal 

cells in a straight microchannel has been experimentally and numerically 

investigated When the DEP effect becomes dominant under a high electric field, 

the cells are always aligned with their longest axis parallel to the electric field 

The numerical results obtained by the numerical model considering the DEP 

agree well with the experimental results However, the numerical model without 

considering the DEP effect predicts that the cylindrical particle would experience 

an oscillatory motion, significantly deviating from the experimental observations 

Therefore, the DEP effect must be taken into account in the investigation of 

electrokinetic transport of non-spherical particle, even in straight uniform 

microchannels 

5 In Chapter 6, a numerical model (PB-NS-ALE) has been developed to 

simultaneously solve the Poisson-Boltzmann equation for the ionic concentrations 

and the electric field contributed by the charged surfaces of the nanoparticle and 

the nanopore, the Laplace equation for the externally applied electric field, and 

the modified Stokes equations for the flow field using the ALE method for the 

first time This numerical model could be used to study the electrokinetic particle 

transport in nanopores without solving the significantly non-linear PNP equations 
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when the EDL of the particle is not significantly affected or distorted by the 

external electric field, flow field and the nearby EDLs of solid boundaries The 

effect of the particle's initial orientation on the particle translocation was studied 

for the first time It has been found that the initial orientation plays an important 

role in the translocation of a cylindrical particle and also the resulting ionic 

current through the nanopore when the applied electric field is relatively low The 

cylindrical particle is aligned with its longest axis parallel to the local electric 

field very quickly due to the DEP effect when the external electric field is 

relatively high 

6 In Chapter 7, it is the first time to simultaneously solve the Nerast-Planck 

equations for the ionic concentrations, the Poisson equation for the electric 

potential and the modified Stokes equations for the flow field using the ALE 

method, referring to the PNP-NS-ALE numerical model Different from the PB-

NS-ALE model, no assumptions concerning the degree of EDL overlapping, the 

magnitudes of the surface charge densities along the particle and the nanopore, 

and the magnitude of the imposed electric field are necessary in the present 

numerical model It has been found that numerical prediction obtained by PB-NS-

ALE model begins to significantly deviate from that obtained by PNP-NS-ALE 

under EDL overlapping When the applied electric field is relatively low, a 

current blockade is predicted In addition, the particle could be trapped at the 

entrance of the nanopore when the EDL adjacent to the charged particle is 

relatively thick When the electric field imposed is relatively high, the particle can 

always pass through the nanopore by electrophoresis However, a current 
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enhancement is predicted if the EDL of the particle is relatively thick The 

obtained numerical results qualitatively agree with molecular dynamics 

simulations and existing experimental results 

7 In Chapter 8, active control of DNA translocation through a nanopore using a gate 

electrode has been proposed and demonstrated using the quasi-static PNP-NS 

model for the first time The field effect regulation of DNA translocation through 

the nanopore relies on the induced EOF and the particle-nanopore electrostatic 

interaction When the EDLs formed adjacent to the DNA nanoparticle and the 

nanopore wall are overlapped, the particle-nanopore electrostatic interaction could 

dominate over the EOF effect, which enables the DNA trapping inside the 

nanopore when the applied electric field is relatively low However, the particle-

nanopore electrostatic interaction becomes negligible if the EDLs are not 

overlapped When the applied electric field is relatively high, a negative gate 

potential can slow down the DNA translocation by an order of magnitude, 

compared to an ineffective gate electrode The field effect control offers a more 

flexible and electrically compatible approach to regulate the DNA translocation 

through a nanopore for DNA sequencing 

9.2 Future Work 

The research work in this dissertation could be further extended in many aspects, and 

some of them are briefly discussed below 

9.2.1 Electrokinetics-induced Particle Deformation in Microfluidics 

As studied in this dissertation, most existing theoretical analyses and experimental 

studies have been focused on the electrokinetic motion of rigid particles in micro/nano-
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fluidics However, there has been a growing interest in studying the deformation of soft 

particles, such as red blood cell (RBC), in microfluidics It is known that the 

deformability of RBC is associated with its health status (Dondorp et al 1999) Several 

experimental studies have been performed to observe the alterations of deformability 

between healthy and unhealthy RBC subjected to pressure-driven flows in microchaimels 

(Abkanan et al 2006, Konn et al 2007, Abkanan et al 2008, Tomaiuolo et al 2009, 

Tomaiuolo et al 2011) Recently, Chen et al (Chen et al 2010) fabricated a lab-on-a-

chip device with a capillary network to study the RBC hydrodynamics All of the above 

efforts aim to develop a practical lab-on-a-chip device capable of RBC deformability 

diagnosis in clinical applications In addition to the rapidly increasing experimental 

studies on the deformation of RBCs, greater efforts have also been made on the 

development of modeling tools to simulate particle deformation subject to pressure-

driven or shear-driven flows (Eggleton and Popel 1998, Secomb et al 2007, Doddi and 

Bagchi 2009, Gao and Hu 2009, MacMeccan et al 2009, Sugiyama et al 2011) 

However, very few attentions have been paid to the particle deformation in 

electrokinetics-based microfluidic devices Swaminathan et al (2010) numerically 

studied the electrokinetics-induced deformation of a long elastic particle suspended in an 

unbounded medium Confinement of the particle in a microchannel, as well as the DEP 

effect, were neglected in the aforementioned study As concluded in this dissertation, the 

DEP effect must be taken into account in the numerical modeling of electrokinetic 

particle transport in micro/nano-fluidics Therefore, experimental studies and numerical 

modeling with the consideration of DEP on the electrokinetics-induced particle 

deformation in microfluidics could be extended based on the current research study 
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9.2.2 Modeling of Particle Motion in AC Electrokinetics 

This dissertation focuses on the DC electrokinetics in micro/nano-fluidics However, 

AC electric fields have also been widely used in micro/nano-fluidic devices to highly 

suppress electrochemical reactions on electrodes It has been extensively demonstrated 

that AC DEP could be utilized to manipulate colloidal particles and biological cells 

(Pethig 1996, Zhou et al 2005) and precisely deposit carbon nanotubes on electrodes 

(Krupke et al 2003, Li et al 2004, Li et al 2005) Most existing numerical models for 

the particle motion ansing from AC DEP used the point dipole approximation to 

calculate the DEP force (Kadaksham et al 2004a, Kadaksham et al 2004b, Aubry and 

Singh 2006b, Kadaksham et al 2006), which actually does not consider the effect due to 

the presence of the particle on the electric field In micro/nano-fluidic device, the 

characteristic length scale of the electrode could become comparable to the particle size, 

which renders a nontnvial effect of the presence of the particle on the electric field As a 

result, the DEP force must be obtained by integrating the Maxwell stress tensor over the 

particle surface Thus, it is desired to modify the numerical model developed in this 

dissertation to make it capable of solving AC electric fields and evaluating the DEP force 

in AC electric fields The proposed research work would be of great value in an insightful 

understanding of the particle motion due to AC DEP 

9.2.3 Electrokinetics of Conductive Particles in Micro/nano-fluidics 

This dissertation focuses on the DC electrokinetics of dielectric particles Recently, 

the electrokinetics of ideally polanzable particles (I e conducting particles), referring to 

the induced-charged electrokinetics, has attracted lots of attentions in the micro/nano-

fluidics community (Bazant and Squires 2004, Squires and Bazant 2004, Bazant and 
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Squires 2010) The induced-charged electrokinetics exhibits a significant nonhneanty to 

the externally applied electnc field, which brings a more complex system than 

conventional electrokinetic of dielectric particles The developed numerical model in this 

dissertation could be further modified to model the electrokinetic transport of ideally 

polanzable particles in micro/nano-fluidics 
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