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ABSTRACT 

COMPUTATIONAL INVESTIGATION OF ENERGETIC MATERIALS: INFLUENCE OF 

INTRAMOLECULAR AND INTERMOLECULAR INTERACTIONS ON SENSITIVITY 

 

Ashley Lauren Shoaf 

Old Dominion University, 2018 

Director: Dr. Craig A. Bayse 

 

 

The development of novel high energy density materials (HEDMs) with superior energetic 

properties depends on characterizing how and why detonation occurs. Detonation is highly 

energetic and a nearly instantaneous process, making experimental studies challenging; thus, 

computational modeling through density functional theory (DFT) and molecular dynamics (MD) 

can be used to propose weakened, or activated, bonds that break to initiate explosive 

decomposition, termed trigger bonds. Bond activation is characterized by the Wiberg bond index 

(WBI), a measure of interatomic electron density. Trigger bonds in HEDMs are commonly found 

in explosophores, functional groups that contribute to energetic potential such as X-NO2 

(X=N,C,O) and N-N2 linkages. Comparison of WBIs of potential trigger bonds to the same bond 

type in reference molecules provides a relative scale for bond activation (%∆WBIs) which could 

be used to screen novel HEDMs for trigger bonds and potentially guide development of new 

materials. 

%∆WBIs of nitroaromatic energetic materials indicate that intramolecular hydrogen 

bonding deactivates C-NO2 bonds through resonance, while steric effects activate trigger bonds 

by increasing C-NO2 dihedral angles. In aromatic azide-based and azole-based energetic materials, 

%∆WBIs and activation energies predict that that the N-N2 bond of the azide and N-NO2 are more 

activated than C-NO2. An ortho nitro group to an azide yields a lower activation energy for N2 



 

 

 

extrusion from the azide. Thus, %∆WBIs only provide a clue into the influence of intramolecular 

interactions on the sensitivity of trigger bonds.  

Detonation is unique to the solid state, making condensed-phase calculations necessary to 

characterize the effect of intermolecular interactions on trigger bond sensitivity. In models of 

ammonium nitrate, increased pressure compresses the unit cell and hydrogen bonding between 

ions becomes stronger. In molecular dynamics simulations at high pressure, hydrogen transfer 

from ammonium to nitrate producing ammonia and nitric acid, the initiation step for explosive 

decomposition, is observed around 40 GPa. These condensed-phase calculations can be extended 

to characterize the effect of pressure on intramolecular and intermolecular interactions to provide 

information that can be used to guide the synthesis of novel energetic materials. 
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NOMENCLATURE 

 

DFT Density functional theory 

MD Molecular dynamics 

PBC Periodic boundary conditions 

WBI Wiberg bond index 

BDE Bond dissociation energy 

AIM Atoms-In-Molecules 

φ Dihedral angle, [°] 

d Bond distance, [Å] 

I.S. Impact sensitivity 

𝛺 Oxygen balance 

∆𝐻𝐹 Heat of formation 

𝑄 Heat of explosion 

V Volume of gas released upon detonation 

D Detonation velocity 

P Detonation pressure 

E.S. Electrical spark sensitivity 

F.S. Friction sensitivity 

ReaxFF Reactive force fields 

NMR Nuclear magnetic resonance 

NB Nitrobenzene 

AzB Azidobenzene 
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This dissertation follows the format of Physical Chemistry Chemical Physics. 

 

CHAPTER 1 

INTRODUCTION 

 

Energetic Materials Development 

Energetic materials (Scheme 1) are desirable for military, aeronautics, mining, sample 

collection and pyrotechnics applications.1-3 Due to the ever-changing nature of international 

conflicts and the increase in terrorism over the past 10 years, the development of high energy 

density materials (HEDMs) with superior properties are crucial for enhancing current methods and 

tactics.1 Furthermore, the synthesis of HEDMs for aeronautics is essential for improving personal 

safety and reducing environmental contamination.1-4 Recently, the development of novel HEDMs 

with similar or superior properties to energetic materials currently applied in advanced weapons 

systems (i.e., 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), Scheme 1) and aeronautics 

(i.e., hydrazine, N2H4) has been a priority.1, 5 However, energetic materials have been of 

considerable interest since the unintentional discovery of black powder around 220 BC in China.6  

In the 19th century, however, the limitations of the energetic potential of black powder were 

determined; thus, investigations into energetic materials specifically with reduced sensitivity 

became a priority.7 Alfred Nobel developed nitroglycerine (NG), mercury fulminate (HgII(CNO)2) 

blasting caps,6-8 and dynamite, which is a NG and nitrocellulose gel,6, 8 as some of the first 

compounds that were used to replace black powder. Nobel later determined that dynamite was 

enhanced with ammonium nitrate (AN),7, 9 but the energetic properties and dangers (i.e., accidental 

detonation) of AN were not fully understood until after World War II.7 Picric acid (PA, 2,4,6-

trinitrophenol) was formed in the mid-1700s, but was not used as an energetic material until the 
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late 19th century.6 Shortly thereafter, 2,4,6-trinitrotoluene (TNT) and 2,4,6-

trinitrophenylmethylnitramine (TETRYL) were discovered,6 and TNT replaced PA as the standard 

energetic material for use in World War I.7  More powerful energetic materials, such as 

pentaerythritol tetranitrate (PETN), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and 1,3,5,7-

tetranitro-1,3,5,7-tetrazacyclooctane (HMX), were also formulated6, 7 in the late 19th to early 20th 

centuries for use during World War II.6, 7 Conventional energetic materials like PETN, RDX and 

HMX are accepted as standards for energetic properties in the development of novel HEDMs,5, 6 

such as heptanitrocubane (HpNC), octanitrocubane (ONC), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-

hexaazaisowurtzitane (CL-20), hexanitrostilbene (HNS), and 1,3,5-triamino-2,4,6-trinitrobenzene 

(TATB). In recent years, research has focused on synthesizing ‘green’ HEDMs with superior 

properties compared to energetic materials applied in current systems.3, 5, 7, 10, 11 

 

 

Scheme 1. Examples of conventional energetic materials. 
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‘Green’ energetic materials (Scheme 2) contain higher nitrogen content (i.e., tetrazoles, 

pyrazoles, etc.) and are desirable because they modify burn rates,1, 10 produce nontoxic nitrogen 

gas,1, 10 enhance performance,10 increase stability by greater heats of formation,8, 10 and improve 

energetic properties (i.e., impact sensitivity, detonation pressure, etc.).4 Superior performance, 

stability, and environmentally-friendly qualities are important for developing explosives to be used 

in advanced weapons systems.1 While in aeronautics,4, 12 propellants with enhanced properties are 

essential for replacing hazardous compounds such as hydrazine.1, 3, 4, 8, 10, 12 While ‘green’ HEDMs 

have yet to be used in real-world systems, incentives for exchanging conventional energetic 

materials for ‘green’ HEDMs are eliminating potential health hazards,10 reducing environmental 

pollution,10, 13 and decreasing contamination.12  

 

 

Scheme 2. Examples of novel, ‘green’ HEDMs. 

 

Therefore, understanding how and why detonation occurs in conventional energetic 

materials is crucial for determining the mechanism in novel, ‘green’ HEDMs. Progress has been 

made to develop ‘green’ HEDMs that could replace conventional energetic materials in real-world 

systems; however, a systematic means of predicting and understanding energetic properties is 

necessary in order to guide their syntheses.1, 3, 4, 8, 10, 13 Since detonation is nearly an instantaneous 

process, experimental kinetic studies to determine a mechanism are difficult to perform.14 Thus, 

computational modeling with density functional theory (DFT) and molecular dynamics (MD)1, 15, 
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16 is a promising means to propose explosive decomposition initiation and detonation mechanisms 

from measures of bond strength and intermolecular interactions to understand energetic properties 

and guide syntheses. Characterizing explosive decomposition and detonation can help interpret the 

degree to which energetic properties, energy release, and chemical composition impact the 

environment, in order to streamline the design of novel, ‘green’ HEDMs.1, 3, 4, 8, 10, 12, 14  

 

Chemistry of Energetic Materials 

Energetic materials are compounds that release substantial amounts of energy and pressure 

upon detonation,7, 8, 11 and can be categorized as propellants, primary explosives and secondary 

explosives. Propellants deflagrate, which is a self-propagating process where the compound burns 

rapidly to produce enough gas for propulsion.7, 11 Explosives undergo detonation, defined as the 

propagation of highly energetic reactions under the influence of high pressure from a shockwave 

through the energetic material.6, 17 Primary and secondary explosives differ in sensitivity, where 

primary explosives are highly sensitive to external stimuli (i.e., heat, impact, and friction)5, 6, 11 

while secondary explosives are initiated by the shockwave produced by the detonation of a primary 

explosive.7, 11 Primary explosives used in typical formulations include lead azide (PbII(N3)2) and 

lead styphnate (C6HN3O8 ∙ PbII), while one less frequently used is mercury fulminate 

(HgII(CNO)2).
6, 7 The more powerful secondary explosives include TNT, PETN, RDX, HMX, 

HpNC, ONC, CL-20, HNS and TATB. 

HEDMs with high nitrogen content are desirable in order to enhance energetic properties 

and improve environmental compatibility.3, 5, 6, 10 HEDMs contain large amounts of nitrogen and 

oxygen, along with other oxidizable elements such as carbon and hydrogen.6, 7 Various energetic 

properties are used to further classify HEDMs, including oxygen balance (𝛺), heat of formation 
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(∆𝐻𝐹), heat of explosion (𝑄), detonation velocity (D), detonation pressure (P), and measures of 

sensitivity.7 Oxygen balance (𝛺) is the amount of oxygen released in the gaseous products of 

detonation, determined by comparing the proportion of oxygen in the HEDM to the oxygen 

required for complete oxidation of the fuel elements (i.e., carbon and hydrogen).6, 7, 18 For energetic 

materials containing the general formula 𝐶𝑎𝐻𝑏𝑁𝑐𝑂𝑑 and molecular weight (𝑀𝑊), the oxygen 

balance can be calculated by Equation 1.6, 7, 18 

𝛺 =
[𝑑 − (2𝑎) − (

𝑏
2)] × 1599.940

𝑀𝑊
                                                                                               (1) 

A positive oxygen balance indicates a high proportion of oxygen so that complete oxidation 

occurs; however, an insufficient amount of oxygen, leading to incomplete oxidation, is designated 

by a negative oxygen balance.6, 7, 18 A large and negative oxygen balance means carbon dioxide 

will not form due to an oxygen deficiency; thus, toxic gases are released,6, 7 such as carbon 

monoxide and nitrogen dioxide. For example, PETN (C5H8N4O12, MW = 316 g/mol) has an 

oxygen balance of -10.13%. For HEDMs with an oxygen balance greater than -40.0%, the 

detonation products can be proposed based on the Kistiakowsky-Wilson rules: (1) carbon atoms 

are converted to CO, (2) hydrogen is oxidized to water if oxygen remains, (3) CO is oxidized to 

CO2 if oxygen still remains, and (4) all nitrogen atoms are converted to N2.
7 For example, the final 

detonation products of PETN based on the Kistiakowsky-Wilson rules are (Equation 2): 

C5H8N4O12 → 2CO + 4H2O + 3CO2 + 2N2                                                                                 (2) 

However, if HEDMs have an oxygen balance less than -40.0% like TNT (C7H5N3O6, MW = 227 

g/mol, 𝛺 = -74.01%), detonation products are proposed by the Springall-Roberts rules: (1) carbon 

atoms are converted to CO, (2) hydrogen is oxidized to water if oxygen remains, (3) CO is oxidized 

to CO2 if oxygen still remains, (4) all nitrogen atoms are converted to N2, (5) one third of the 

original CO is converted to C and CO2, and (6) one sixth of the original CO is converted to C and 
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H2O.6, 7 Therefore, the final detonation products of TNT based on the Springall-Roberts rules are 

(Equation 3): 

C7H5N3O6 → 3CO +
3

2
N2 + 3C +

3

2
H2 + CO2 + H2O                                                              (3) 

The final products of detonation are necessary in order to calculate heats of formation 

(∆𝐻𝐹), the heat evolved during complete oxidation; however, when incomplete oxidation occurs, 

the energy released is termed the heat of explosion (𝑄).6, 7 Energetic materials should have negative 

heats of formation (∆𝐻𝐹), since that indicates an exothermic reaction and the release of large 

amounts of heat.7 For example, PETN and TNT have negative ∆𝐻𝐹 (-531 kJ/mol and -62 kJ/mol, 

respectively) and positive 𝑄 values (+1838 kJ/mol and +929 kJ/mol, respectively), but the larger 

negative ∆𝐻𝐹 and positive 𝑄 of PETN indicates more heat liberation and a more powerful energetic 

material when compared to TNT.7 The explosive power of an energetic material is the product of 

the heat of explosion (𝑄) and the volume of gas released upon detonation (𝑉), determined from 

the detonation products (Equation 4).6, 7 

Explosive Power = 𝑄 × 𝑉                                                                                                                (4) 

Comparing the explosive power of an HEDM (𝑄 × 𝑉) to that of a standard energetic material 

(𝑄𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 × 𝑉𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑) results in the power index (Equation 5).6, 7 

Power Index =
𝑄 × 𝑉

𝑄𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 × 𝑉𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
                                                                                         (5) 

Other measures of energetic power include detonation velocity (D, the speed at which the 

shockwave propagates through an energetic column) and detonation pressure (P, the pressure of 

the shockwave). Impact sensitivity (I.S.), friction sensitivity (F.S.), and electrical spark sensitivity 

(E.S.) describe the stability of energetic materials when exposed to external stimuli. Specifically 



7 
 

 

for I.S., the values for conventional HEDMs range from ~10 cm (i.e., sensitive) to ~500 cm (i.e., 

stable). 

Even though detonation products can be proposed based on the structure, many of the 

mechanisms remain unknown due to the rapid nature of the reactions. Thus, computational tools 

are necessary to understand this phenomena by identifying activated bonds that break first to 

initiate explosive decomposition, termed trigger bonds,16 which are categorized based on 

explosophores (i.e., nitro (–NO2) and azide (–N3) functional groups5).1, 14, 15 Assigning trigger 

bonds with an efficient computational method can be used to screen energetic potential, understand 

energetic properties, and guide HEDM synthesis with less waste and improved ‘green’ qualities 

for applications in advanced weapons systems, aeronautics, asteroid mining and sample 

collection.1-4, 7, 19 Furthermore, understanding the influence of intramolecular and intermolecular 

interactions on energetic material sensitivity can help rationalize the complexity behind the 

energetic reactions in order to guide the synthesis of novel HEDMs and screen their energetic 

potential. In this study, trigger bonds of conventional and novel HEDMs are characterized using 

computational methods to determine how intramolecular and intermolecular interactions might 

influence initiation of energetic reactions.  

 

Computational Methods 

Density Functional Theory Overview, Functionals, Basis Sets 

In this dissertation, DFT is used as the basis for all theoretical calculations to show how 

intramolecular and intermolecular interactions influence the sensitivity of energetic materials. DFT 

is a quantum mechanical computational method that determines electronic and molecular 
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properties from the electron density (𝜌) of a system.20 The Schrödinger equation (Equation 6) is a 

quantum mechanical equation that describes the measurable properties of subatomic particles. 

Ĥ𝜓 = 𝐸𝜓                                                                                                                                               (6) 

In the Schrödinger equation, Ĥ represents the electronic Hamiltonian operator which acts upon a 

wavefunction, 𝜓, and returns the original function, termed the eigenfunction, multiplied by the 

electronic energy of the system, 𝐸. Ĥ is comprised of the electronic kinetic energy, nucleic kinetic 

energy, and potential energy (i.e., attraction between electrons and nuclei, electron-electron 

repulsion, and proton repulsion in the nucleus) (Equation 7).20 

Ĥ = − ∑
1

2
𝛻𝑖

2

𝑖

− ∑
1

2𝑚𝑘
𝑘

𝛻𝑘
2 − ∑ ∑

𝑍𝑘

𝑟𝑖𝑘
𝑘𝑖

+ ∑
1

𝑟𝑖𝑗
𝑖>𝑗

+ ∑
𝑍𝑘𝑍𝑙

𝑟𝑘𝑙
𝑘>𝑙

                                            (7) 

The nucleic kinetic energy takes into account the mass of the nucleus (𝑚𝑘). The potential energy 

of the electron-nuclei attraction is defined as the interaction at position 𝑟𝑖𝑘 between the electron 

(𝑖) and nucleus (𝑘) with charge 𝑍𝑘. The potential energy of the electron-electron repulsion is the 

interaction at position 𝑟𝑖𝑗 between the electrons (𝑖 and 𝑗). The potential energy of the proton 

repulsion in the nucleus is expressed as the interaction at position 𝑟𝑘𝑙 between the proton (𝑙) with 

charge 𝑍𝑙 and the nucleus (𝑘) with charge 𝑍𝑘.20 The Born-Oppenheimer approximation reduces 

the number of terms in the Hamiltonian by assuming the heavier and slower nuclei do not 

contribute to the kinetic energy of the system as the electrons do.20 Thus, the kinetic energy of the 

nuclei of the system, which is taken into account in Equation 7, can be ignored (Equation 8). 

Ĥ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 = − ∑
1

2
𝛻𝑖

2

𝑖

− ∑ ∑
𝑍𝑘

𝑟𝑖𝑘
𝑘𝑖

+ ∑
1

𝑟𝑖𝑗
𝑖>𝑗

+ ∑
𝑍𝑘𝑍𝑙

𝑟𝑘𝑙
𝑘>𝑙

                                                      (8) 

 It is not possible to solve the Schrödinger equation for many-electron systems; thus, the 

Hartree-Fock (HF) method is used in order to estimate the energy of the system.21 The HF method 

uses the variation method to get an approximate solution to a many-electron Hamiltonian using a 
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single Slater determinant as the wave function. The electron wavefunction describing the set of 

electrons is described as (Equation 9), 

𝜓(𝑟1, 𝑆𝑧1, 𝑟2, 𝑆𝑧2, … , 𝑟𝑖, 𝑆𝑧𝑖, … , 𝑟𝐼 , 𝑆𝑧𝐼)                                                                                              (9) 

where 𝑟𝑖 is the position of electron 𝑖, 𝑆𝑧𝑖  is the spin of electron number 𝑖 in direction 𝑧, and 𝐼 is the 

total number of electrons. The HF method approximates 𝜓 using single-electron functions, termed 

molecular orbitals (MOs), from a linear combination of basis functions which are often atom-

centered Gaussian functions21 (Equation 10), 

𝜓𝑗 = ∑ 𝑐𝑠𝑖𝜒𝑠                                                                                                                                    (10)

𝑁

𝑖=1

 

where the group of 𝑁 basis functions, 𝜒𝑠, is the basis set, and the coefficients, 𝑐𝑠𝑖, are the MO 

expansion coefficients for electron 𝑖 in orbital 𝑗.22 The Hamiltonian operator changes when the 

electrons are treated individually (Equation 11), 

𝐻̂ = ∑ ℎ𝑖   , and   ℎ𝑖 = −
1

2
∆𝑖

2 − ∑
𝑍𝑘

𝑟𝑖𝑘
+ Ʋ𝑖{𝑗}

𝐼

𝑘=1

 , and   Ʋ𝑖{𝑗} = ∑ ∫
𝜌𝑗

𝑟𝑖𝑗
𝑑𝑟

𝑗≠𝑖

                   (11)

𝑖=1

 

where 𝐼 is the total number of electrons and ℎ𝑖 is the one electron Hamiltonian. Ʋ𝑖{𝑗} is the 

interaction of electron 𝑖 with all the electrons in orbital 𝑗. Furthermore, the wavefunction can be 

written as a product of single-electron wavefunctions or a Hartree-product wavefunction (Equation 

12). 

𝜓𝐻𝑃 = 𝜓1𝜓2𝜓3 … 𝜓𝐼                                                                                                                        (12) 

The HF method represents the antisymmetric wavefunction and can be written as a Slater 

determinant, the sum of the 𝐼! Hartree-products.  

 The main problem with the HF method is that electron correlation is not fully considered; 

thus, the error can be large and dispersion interactions cannot be modeled. Therefore, post-HF 
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methods or multireference methods have been developed to improve upon the HF method, 

including configuration interaction (CI),23 coupled cluster (CC),24 and Møller-Plesset perturbation 

theory25 (i.e., MP2, MP3, etc.). Post-HF methods include more of the electron correlation; 

however, these calculations are computationally expensive. As such, DFT is advantageous because 

it has comparable computational cost to HF and can be as accurate as MP2 calculations.26 While 

HF is based on the molecular wavefunction, DFT is based on the electron probability density 

function.27 Hohenberg and Kohn determined that molecular properties can be described by the 

ground state electron density. The total energy is defined as (Equation 13), 

𝐸0 = 𝐸𝑣[𝜌0] = 𝑇0[𝑝] + 𝑉𝑁𝑒[𝜌0] + 𝑉𝑒𝑒[𝜌0]                                                                                 (13) 

where 𝐸0 is a function of the ground state energy but dependent on the external potential, 𝑣.20 

𝑇0[𝑝] is the kinetic energy, 𝑉𝑁𝑒[𝜌0] is the electron density-nuclei attraction, and 𝑉𝑒𝑒[𝜌0] is the 

electron repulsion.20 

 The Kohn and Sham (KS) method approximates electron density in terms of MOs.28 The 

KS method uses a reference system (𝑠) of 𝑛 non-interacting electrons with the same density as the 

real system (0) (Equation 14), and the electron-nuclei attraction is determined from the nucleic 

external potential, 𝑣𝑠(𝑟𝑖). 

𝜌𝑠(𝑟) = 𝜌0(𝑟)                                                                                                                                    (14)  

Therefore, the Hamiltonian for the reference system would be (Equation 15) 

𝐻̂𝑠 = ∑ [−
1

2
𝛻𝑖

2 + 𝑣𝑠(𝑟𝑖)] ≡ ∑ ℎ̂𝑖
𝐾𝑆

𝑛

𝑖=1

𝑛

𝑖=1

 and  ℎ̂𝑖
𝐾𝑆 ≡ −

1

2
𝛻𝑖

2 + 𝑣𝑠(𝑟)                                     (15) 

where ℎ̂𝑖
𝐾𝑆 is the KS one electron operator and 𝑣𝑠(𝑟) is composed of the exchange-correlation 

potential.20 Thus, the KS ground-state electronic energy of a system can be written as (Equation 

16) 
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𝐸0 = ∫ 𝜌(𝑟)𝑣(𝑟)𝑑𝑟 +
1

2
∫

𝜌(𝑟1)(𝑟2)

𝑟12
𝑑𝑟1𝑑𝑟2 + 𝐸𝑥𝑐[𝜌]                                                           (16) 

where 𝐸𝑥𝑐[𝜌] is the exchange-correlation energy functional, a term previously ignored in the HF 

method. 𝐸𝑥𝑐[𝜌] includes electron-nuclei attraction, the kinetic energy of non-interacting electrons, 

and the electron repulsion correction.29 𝐸𝑥𝑐[𝜌] is difficult to determine, but only accounts for a 

small portion of the total energy. The electron density is calculated by squaring the sum of the KS 

orbitals (𝜓𝑖
𝐾𝑆) (Equation 17). 

𝜌 = 𝜌𝑠 = ∑|𝜓𝑖
𝐾𝑆|

2

𝑖

                                                                                                                        (17) 

Since the exchange-correlation energies are unknown, accurate approximations are necessary to 

estimate the total energy of the system. The exchange-correlation energy can be approximated by 

DFT functionals, including Local Density Approximation (LDA) or Generalized Gradient 

Approximation (GGA). 

 LDAs are functionals that do not uniformly distribute the electron density (Equation 18), 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝑟)𝜀𝑥𝑐(𝜌)𝑑𝑟                                                                                                           (18) 

where 𝜀𝑥𝑐 is the exchange (𝜀𝑥) and correlation (𝜀𝑐) energy for each electron (Equation 19). 

𝜀𝑥𝑐[𝜌] = 𝜀𝑥(𝜌) + 𝜀𝑐(𝜌) = −
3

4
(

3

𝜋
)

1
3

(𝜌(𝑟))
1
3 + 𝜀𝑐

𝑉𝑊𝑁(𝜌)                                                      (19) 

The expression for the correlation energy (𝜀𝑐
𝑉𝑊𝑁) is a function developed by Vosko, Wilk and 

Nusair (VWN).30 The LDA functional can be improved by using the Local-Spin-Density 

Approximation (LSDA). LDA treats paired electrons with the same KS orbitals while LSDA 

allows electrons with opposite spins to occupy different orbitals. Thus, LSDA is a better 

description for open-shell molecules. 
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 GGAs functionals improve both LDA and LSDA by including the position of electron 

density. The exchange-correlation energy (𝐸𝑥𝑐
𝐺𝐺𝐴) adds the electron densities of both 𝛼- (𝜌𝛼) and 

𝛽-spin electrons (𝜌𝛽) (Equation 20). 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌𝛼, 𝜌𝛽] = ∫ 𝑓(𝜌𝛼(𝑟), 𝜌𝛽(𝑟), 𝛻𝜌𝛼(𝑟), 𝛻𝜌𝛽(𝑟))𝑑𝑟                                                        (20) 

Similarly to LDA and LSDA, the exchange and correlation energies are calculated separately and 

then added together. Common GGA functionals include PBE,31 developed by Perdew, Burke and 

Ernzerhof, and PW91,32 developed by Perdew, Chevary, Vosko, Jackson, Pederson, Singh and 

Fiolhais, both containing exchange-correlation without empirical parameters. Another common 

GGA functional, BLYP,33, 34 has an exchange functional developed by Becke (B) and a correlation 

functional developed by Lee, Yang and Parr (LYP). Meta-GGA functionals include the second 

derivatives of electron density instead of simply the first derivatives as in GGA functionals.22 

Hybrid meta-GGA functionals can more accurately calculate the exchange-correlation energy, but 

are more computationally expensive than GGA functionals.22 Hybrid meta-GGA functionals are a 

mixture of DFT and HF exchange functionals with DFT correlation functionals (Equation 21),  

𝐸𝑥𝑐
ℎ𝑦𝑏𝑟𝑖𝑑

= 𝑐𝐻𝐹𝐸𝑥
𝐻𝐹 + 𝑐𝐷𝐹𝑇𝐸𝑥𝑐

𝐷𝐹𝑇                                                                                                    (21) 

where 𝑐𝐻𝐹 and 𝑐𝐷𝐹𝑇 are constants. For example, Zhao and Trular’s hybrid meta-GGA functional 

M06-2X is reliable in describing thermochemistry, kinetics, and noncovalent interactions in 

nonmetal systems.35 In this study, we use M06-2X because it has been shown to have the lowest 

mean unsigned errors (i.e., absolute deviations of calculated values relative to a reference)16, 35, 36 

and most efficiently describe noncovalent interactions compared to other functionals.35, 37  

 In HF and DFT, the MOs that contribute to the wavefunction or density are a linear 

combination of basis functions, 𝜒𝑠, which forms the basis set (see Equation 10). The two types of 

basis functions are Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals (GTOs). An 
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advantage of STOs over GTOs is that STOs are similar to the hydrogenic atomic orbitals (AOs); 

however, the two-electron integrals of STOs are computationally expensive. To lower 

computational cost, Boys38 proposed using GTOs since they are two-center two-electron integrals. 

Multiple GTOs are necessary in order to represent one STO because GTOs do not accurately 

represent the cusp at the nucleus.39 However, using multiple GTOs are used to correct the problem 

while still maintaining faster calculations than STOs. 

 Larger basis sets more accurately model orbitals by allowing electrons to have positional 

freedom.21 Gaussian functions are termed primitives while basis functions are called contracted 

functions. A contracted basis function contains only one Gaussian function for both core and 

valence electrons and are termed minimal basis sets. For example, the minimal basis set STO-3G 

uses three primitive Gaussian functions (3G) per basis function to resemble an STO.22 Basis sets 

with more than one Gaussian function for valence orbitals are termed double-, triple-, quadruple-

zeta basis sets.39 Split-valence basis sets developed by Pople40 describe the number of primitive 

Gaussian functions on the core electrons as well as the basis functions for each valence orbital in 

the form a-bcG. The a is the number of primitive Gaussian functions for core orbitals and b and c 

denote the number of functions the valence orbitals are split into and the number of primitive 

Gaussian functions for each. Polarization functions add GTOs to the angular momentum and allow 

AOs to distort as the charges change,41 while diffuse functions let the AOs spread out in space. 

Correlation-consistent polarized (cc-p) basis sets include electron correlation, and the prefix aug 

is used to add diffuse and polarization functions.42 The TZVP basis set is a split valence triple zeta 

basis set with added polarization functions.43 Even with a slightly higher computational cost, an 

advantage of using TZVP is that the valence electrons are uncontracted44 whereas the Pople basis 

sets have contracted valence electrons. 
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Periodic Boundary Conditions, Plane Wave Basis Sets, Pseudopotentials 

 In order to accurately represent condensed-phase models, periodic boundary conditions are 

used. The model is assumed to be a unit cell of an ideal crystal, or a box (Figure 1), which can be 

duplicated in all directions.22, 39 In periodic boundary conditions, the model is quasi-periodic (i.e., 

an atom or molecule leaves the central box on the right side and reappears on the left side), with 

periodicity equal to the dimensions of the box.39 Since electrostatic interactions extend beyond the 

boundary of the box, cutoff distances are used to evaluate intermolecular interactions.22, 39 A key 

advantage of periodic boundary conditions is that structural anomalies, such as segregation of 

atoms with partial charges of like sign, are avoided.22 Furthermore, k-points are used to describe 

the dimensions of the first Brillouin zone, or the box (Figure 1), and are determined based on the 

size of the unit cell and the periodicity of the system.45 
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Figure 1. Unit cell (in bold) surrounded by 26 periodic images generated by periodic boundary 

conditions. 

 

Rather than using basis functions to model AOs, a linear combination can describe the 

orbitals for the entire system.39 Plane waves as basis sets are used for periodic infinite (extended) 

systems, which are represented using periodic boundary conditions,22, 27 since these are exact 

solutions for free electrons.39 Unit cells of complex systems have inconsistent densities, where the 

basis functions can be localized (Gaussian) or delocalized (plane wave). Once the KS method is 

subjected to periodic boundary conditions, the electron density from Equation 17 is modified 

(Equation 22), 

𝜌 = ∑|𝜓𝑛𝑘
𝐾𝑆|

2

𝑛𝑘

                                                                                                                                  (22) 
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where 𝑛 is the band index and 𝑘 is described as a frequency factor (i.e. high values mean rapid 

oscillation) and related to the crystal momentum.27, 39 For finite systems, the MOs combine into 

bands described by orbitals expanded in a plane wave basis set39 (Equation 23), 

𝜓𝑛𝑘 = ∑ 𝑐𝑘𝑖

𝜒𝑘(𝑟)

√𝑉𝑢𝑐

  , and  𝜒𝑘(𝑟) = 𝑒𝑖𝑘∙𝑟                                                                                  (23)

𝑁

𝑖=1

 

where 𝑉𝑢𝑐 is the volume of the unit cell, 𝑐𝑖𝑘 are the MO expansion coefficients, and a group of 𝑁 

basis functions produces the basis set, 𝜒𝑘.  

In order to accurately describe the wavefunction, multiple plane waves (i.e., large 𝑁) are 

required. Plane wave basis functions are best for describing delocalized, slowly changing electron 

densities. The core electrons are localized around the nuclei while the valence orbitals are 

delocalized. Since it is nearly impossible to describe the nucleus-electron interaction in a plane 

wave basis set, pseudopotentials are used with plane wave basis sets.39 Pseudopotentials smear the 

nuclear charge, model the effect of the core electrons, and are characterized by a core radius that 

is dependent on the angular momentum of the valence orbitals. Furthermore, a hard 

pseudopotential requires more plane wave basis functions for describing the region beyond the 

core radius while soft pseudopotentials require less plane wave basis functions. A disadvantage to 

plane wave basis sets are that multiple rapidly oscillating functions are required to describe the 

unit cell densities and are thus larger than Gaussian basis sets; however, the integrals are relatively 

simple to solve, making this approach applicable in solid-state calculations.22, 27, 39 

 

Software Packages 

In this dissertation, Gaussian 0946 and Quantum Espresso47 software packages have been 

used in order to study the energetic properties and mechanisms of conventional energetic materials 
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and novel HEDMs. DFT calculations were employed using Gaussian 09 and the hybrid functional 

M06-2X35 with a triple- basis set (TZVP)48 in order to understand electronic and molecular 

properties. Several method and basis set combinations were studied in order to determine the best 

correlation with available experimental data16, 49 before settling on this particular combination. The 

structures are optimized and characterized as minima on the potential energy surface through 

vibrational analysis. The strength of bonds in the energetic materials were determined through the 

Wiberg bond index, calculated using Natural Bond Orbital (NBO) version 3.1.50, 51 The gas-phase 

calculations are used to understand the influence of intramolecular interactions on the sensitivity 

of energetic materials. Quantum Espresso uses a pseudopotential approach, which reduces 

computational time by exploring the valence electrons rather than the full electron system. The 

Perdew-Burke-Ernzerhof (PBE)31 pseudopotentials are used for the Quantum Espresso 

calculations due to good correlation with experimental data. Structures are optimized until the 

energy and forces are well converged, and then MD is used to determine how the optimized 

structures change over time with increasing pressure. The condensed-phase calculations are used 

to understand how intermolecular interactions within energetic materials change over time with 

increasing pressure. In this dissertation, the goal is to rationalize the varying sensitivities observed 

in different classes of energetic materials using gas-phase and condensed-phase calculations by 

characterizing the intramolecular and intermolecular interactions of the activated bonds, termed 

trigger bonds, within each of the molecules. 
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Reproduced with permission from Shoaf, Ashley L.; Bayse, Craig A. Trigger Bond Analysis of 

Nitroaromatic Energetic Materials using Wiberg Bond Indices. Journal of Computational 

Chemistry, 2018, 39, 1236-1248. Copyright 2018 Wiley Online Library. 

 

 

CHAPTER 2 

TRIGGER BOND ANALYSIS OF NITROAROMATIC ENERGETIC MATERIALS USING 

WIBERG BOND INDICES 

 

Introduction 

High energy density materials (HEDMs) with enhanced performance, reduced sensitivity 

and controlled energy release are important for the development of advanced weapons systems.1, 

7, 19 In aeronautics,4 propellants with exceptional energetic properties are essential to replace 

hazardous materials, such as hydrazine, to reduce environmental contamination.1-4 How and why 

explosive decomposition occurs in conventional energetic molecules is critical for the design of 

novel HEDMs. Since explosive decomposition is practically instantaneous, mechanisms of highly 

energetic reactions present a significant challenge to experimental analysis.14 Thus, much effort to 

understand decomposition has relied upon information from molecular dynamics and density 

functional theory (DFT) to predict performance and sensitivity from measures of bond strength 

and mechanisms.1, 14, 15 

Explosophores5 such as nitro (-NO2)
52-56 and azide (-N3)

11 functional groups are generally 

needed to sensitize energetic materials. X-NO2 (X=N,C,O) bonds substituted on energetic 

materials have been proposed to form ‘trigger bonds’, activated (i.e., more readily cleaved) bonds 

that break to initiate an explosive reaction.16 Initiation steps proposed based on mass 
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spectrometry57-61 and DFT62-66 for common secondary explosives (1,3,5-trinitro-1,3,5-

triazacyclohexane (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 2,4,6-

trinitrotoluene (TNT), trinitrobenzene (TNB), and pentaerythritol tetranitrate (PETN)) generally 

include homolytic bond cleavage, interatomic rearrangements, molecular eliminations, and/or ring 

fission. Studies of TNT61, 66-69 suggest that C-NO2 homolytic cleavage is the most favorable 

initiation step. Other pathways proposed for nitroaromatic energetic materials include nitronic acid 

formation by hydrogen transfer in nitrophenols70-72 and cyclization by heating nitroanilines to form 

furazan or furoxan derivatives67, 73 (Figure 2). However, the hydrogen transfer pathway is 

endothermic (∆E+ZPE (DFT(M06-2X/TZVP) = +29 kcal/mol) and lacks a clear pathway to 

explosive decomposition because the HONO group is doubly bonded to the aromatic ring rather 

than cleaved (Figure 2a). In contrast, RDX, HMX, and PETN eliminate HONO by extracting a 

hydrogen from a neighboring –CH2– group (Figure 2b).62-65 For the cyclization pathway, Green 

and Rowe74, 75 proposed the oxidation of o-dinitroanilines to dinitroazobenzenes or the furazan 

oxides based on synthesis under neutral and alkaline conditions, respectively. However, 

decomposition either of these two pathways would require the initial loss of either H2 or H2O 

which are necessarily multi-step (Figure 2c)73 and seem unlikely to result in a chain reaction. In 

addition, a DFT study on 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) did not consider cyclization 

as the primary method of initiation due to high activation barriers.76
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Figure 2. Example of (a) HONO molecular rearrangement, (b) HONO elimination in RDX, and 

(c) cyclization in nitroaromatics. 

 

Although many factors unique to the solid state can influence the sensitivity of energetic 

materials,1, 7, 19, 67 gas-phase calculations can contribute to understanding how intramolecular 

interactions influence sensitivity. Theoretical measures of bond strength include the Atoms-In-

Molecules (AIM) method,77, 78 unimolecular decomposition activation barriers,62, 63 bond 

dissociation energies (BDEs),79 and Mulliken population analysis.70, 72, 80 Our group has recently 

examined the use of the Wiberg bond index (WBI) analysis as an efficient method for assigning 

trigger bonds. WBIs are determined as the sum of the squares of the off-diagonal elements of the 

density matrix (Equation 24):81 

WBIAB = ∑ ∑(Dpq)
2

                                                                                                                (24)

qBpA
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WBIs are similar in magnitude to the bond order expected from valence bond theory82 in contrast 

to the Mulliken population, which is well-known to be basis set dependent.81 WBIs on an 

optimized closed-shell molecular structure have a potential advantage over BDEs which require 

multiple calculations on open-shell molecular fragments. Interpreting the factors that activate 

trigger bonds in novel HEDMs through WBI analysis can guide determination of decomposition 

initiation and may allow prediction of energetic properties (i.e., impact sensitivity, electrical spark 

sensitivity, etc.).16 

The strength of possible trigger bonds in HEDMs will be affected by steric effects, electron 

withdrawing groups, and ring strain.16 Activated bonds are expected to be longer and have lower 

electron density relative to reference molecules with the same bond type, hybridization and 

explosophore. A relative scale for the activation of each potential trigger bond can be determined 

by comparing the difference of the WBI for specific bond types in the HEDMs and the reference 

molecules (%∆WBI) (Equation 25).16 

%∆WBIAB =
WBIAB(HEDM) − WBIAB(reference)

WBIAB(reference)
× 100                                                  (25) 

The trigger bond for a molecule is assigned based on the most negative %∆WBIs. For example, o-

C-NO2 and p-C-NO2 bonds in TNT were compared to the C(sp2)-NO2 bond in reference molecule 

nitrobenzene (NB) for %∆WBIs of -1.11% and -0.33%, respectively (Figure 3).16 The trigger bond 

is assigned as the more activated o-C-NO2 bond,16 in agreement with the results of previous 

computational and experimental studies.61, 67-69 Previous studies on energetic materials using 

WBIs83-91 did not apply reference molecules to determine a relative scale for bond activation which 

could lead to inaccurate trigger bond assignment. For PETN,60, 65, 92-94 DFT studies65, 92 found O-

NO2 homolysis to be more energetically favorable than C-ONO2 homolytic cleavage and HONO 

elimination, consistent with experimental thermal decomposition studies of nitrate and nitrite 
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esters.93, 94 Direct comparison of absolute WBIs would suggest that C-ONO2 is more activated than 

O-NO2 (0.892 and 0.901, respectively); however, referencing to bonds in methyl nitrate correctly 

assigns O-NO2 rather than C-ONO2 as the trigger bond (%∆WBIs = -2.92% and -1.33%, 

respectively).16 In addition, our %∆WBIs were able to distinguish between the trigger bond 

strength in conformations of HMX which could help explain different sensitivities observed 

among its polymorphs.16 Thus, %∆WBIs are a promising method for interpreting experimental 

impact sensitivity for a set of conventional and novel HEDMs.16 In this study, DFT %∆WBIs were 

calculated for a set of 63 conventional nitroaromatic energetic molecules (Table 1) and compared 

to experimental energetic properties to determine how intramolecular steric and substituent effects 

can influence the trigger bond. 

 

 

Figure 3. Example of WBI analysis of TNT and reference molecule NB. 
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Table 1. The 63 conventional nitroaromatic energetic materials included in this study. 

Compound Chemical Name  

R1, R2, R3, R4, R5, R6 

Nitrobenzenes 

DNB 1,3-dinitrobenzene NO2, H, NO2, H, H, H 

TNB 1,3,5-trinitrobenzene NO2, H, NO2, H, NO2, H 

TETNB 1,2,3,5-tetranitrobenzene NO2, NO2, NO2, H, NO2, H 

PNB Pentanitrobenzene NO2, NO2, NO2, NO2, NO2, H 

HNB Hexanitrobenzene NO2, NO2, NO2, NO2, NO2, NO2, 

HNBP 2,2’,4,4’,6,6’-hexanitrobiphenyl  

HNDPM 2,2’,4,4’,6,6’-hexanitrodiphenylmethane  

HNS 2,2’,4,4’,6,6’-hexanitrostilbene 

 

Nitrobenzyls 

DNT 2,6-dinitrotoluene CH3, NO2, H, H, H, NO2 

TNT 2,4,6-trinitrotoluene CH3, NO2, H, NO2, H, NO2 

o-TETNT 2,3,4,5-tetranitrotoluene CH3, NO2, NO2, NO2, NO2, H 

m-TETNT 2,3,4,6-tetranitrotoluene CH3, NO2, NO2, NO2, H, NO2 

p-TETNT 2,3,5,6-tetranitrotoluene CH3, NO2, NO2, H, NO2, NO2 

PNT Pentanitrotoluene CH3, NO2, NO2, NO2, NO2, NO2 

DMTNB 1,3-dimethyl-2,4,6-trinitrobenzene CH3, NO2, CH3 NO2, H NO2 

TMTNB 1,3,5-trimethyl-2,4,6-trinitrobenzene CH3, NO2, CH3, NO2, CH3, NO2 

ATNT 3-amino-2,4,6-trinitrotoluene CH3, NO2, NH2, NO2, H NO2 

o-ATETNT 2-aminotetranitrotoluene CH3, NH2, NO2, NO2, NO2, NO2 

m-ATETNT 3-aminotetranitrotoluene CH3, NO2, NH2, NO2, NO2, NO2 
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Table 1 (continued) 

Compound Chemical Name  

R1, R2, R3, R4, R5, R6 

p-ATETNT 4-aminotetranitrotoluene CH3, NO2, NO2, NH2, NO2, NO2 

ClMTNB Chloromethyl-2,4,6-trinitrobenzene CH2Cl, NO2, H, NO2, H, NO2 

TNBMeOH 2,4,6-trinitrobenzenemethanol CH2OH, NO2, H, NO2, H, NO2 

TNBEtOH 2,4,6-trinitrobenzeneethanol CH2CH2OH, NO2, H, NO2, H, NO2 

Nitroanisoles 

DNAN 2,4-dinitroanisole OCH3, NO2, H, NO2, H, H 

TNAN 2,4,6-trinitroanisole OCH3, NO2, H, NO2, H, NO2 

ATNAN 3-amino-2,4,6-trinitroanisole OCH3, NO2, NH2, NO2, H, NO2 

DMOTNB 1,3-dimethoxy-2,4,6-trinitrobenzene OCH3, NO2, OCH3, NO2, H, NO2 

DClTNAN 3,5-dichloro-2,4,6-trinitroanisole OCH3, NO2, Cl, NO2, Cl, NO2 

EOTNB Ethoxy-2,4,6-trinitrobenzene OCH2CH3, NO2, H, NO2, H, NO2 

DMDNPy 2,6-dimethoxy-3,5-dinitropyridine  

Nitroanilines 

DNPH 2,4-dinitrophenylhydrazine NHNH2, NO2, H, NO2, H, H 

TNA 2,4,6-trinitroaniline NH2, NO2, H, NO2, H, NO2 

DATB 1,3-diamino-2,4,6-trinitrobenzene NH2, NO2, NH2, NO2, H, NO2 

TATB 1,3,5-triamino-2,4,6-trinitrobenzene NH2, NO2, NH2, NO2, NH2, NO2 

TETNA 2,3,4,6-tetranitroaniline NH2, NO2, NO2, NO2, H, NO2 

PNA Pentanitroaniline NH2, NO2, NO2, NO2, NO2, NO2 

DADNPy 2,6-diamino-3,5-dinitropyridine  

LLM-105 2,6-diamino-3,5-dinitropyrazine-1-oxide  

HNDPA 2,2’,4,4’,6,6’-hexanitrodiphenylamine (dipicryl 
amine) 
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Table 1 (continued) 

Compound Chemical Name  

R1, R2, R3, R4, R5, R6 

TETNPO 1,3,7,9-tetranitro-10H-phenoxazine  

DAHNBP 3,3’-diamino-2,2’,4,4’,6,6’-hexanitrobiphenyl  

Nitrophenols 

2,4-DNP 2,4-dinitrophenol OH, NO2, H, NO2, H, H 

2,6-DNP 2,6-dinitrophenol OH, NO2, H, H, H, NO2 

2,4-DNR 2,4-dinitroresorcinol OH, NO2, OH, NO2, H, H 

4,6-DNR 4,6-dinitroresorcinol OH, H, OH, NO2, H, NO2 

PA 2,4,6-trinitrophenol (picric acid) OH, NO2, H, NO2, H, NO2 

TNR 2,4,6-trinitroresorcinol OH, NO2, OH, NO2, H, NO2 

THTNB 1,3,5-trihydroxy-2,4,6-trinitrobenzene OH, NO2, OH, NO2, OH, NO2 

MTNP 3-methyl-2,4,6-trinitrophenol OH, NO2, CH3, NO23, H, NO2 

TNAP 4-amino-2,3,5-trinitrophenol OH, NO2, NO2, NH2, NO2, H 

DATNP 3,5-diamino-2,4,6-trinitrophenol OH, NO2, NH2, NO2, NH2, NO2 

HTNA 3-hydroxy-2,4,6-trinitroaniline NH2, NO2, OH, NO2, H, NO2 

DHTNA 3,5-dihydroxy-2,4,6-trinitroaniline NH2, NO2, OH, NO2, OH, NO2 

Nitronaphthalenes 

1,5-DNN 1,5-dinitronaphthalene  

1,8-DNN 1,8-dinitronaphthalene  

TNN 1,4,5-trinitronaphthalene  



26 
 

 

Table 1 (continued) 

Compound Chemical Name  

R1, R2, R3, R4, R5, R6 

TETNN 1,4,5,8-tetranitronaphthalene  

Miscellaneous 

ClTNB Chloro-2,4,6-trinitrobenzene Cl, NO2, H, NO2, H, NO2 

TNBN 2,4,6-trinitrobenzonitrile CN, NO2, H, NO2, H, NO2 

TNBAl 2,4,6-trinitrobenzaldehyde CHO, NO2, H, NO2, H, NO2 

TNBA 2,4,6-trinitrobenzoic acid COOH, NO2, H, NO2, H, NO2 

ENTNB 2,4,6-trinitrophenylethanone COCH3, NO2, H, NO2, H, NO2 

METNBA 3-methylester-2,4,6-trinitrobenzoic acid COOCH3, NO2, H, NO2, H, NO2 

 

 

Computational Methods 

DFT-optimized geometries of the 63 conventional nitroaromatic energetic molecules 

(Table 1) were calculated using Gaussian 0946 and the hybrid functional M06-2X35 with a triple-

 basis set (TZVP).48 Unrestricted DFT(M06-2X) BDEs for homolysis of the C-NO2 bonds were 

calculated for comparison with WBIs. All structures were characterized as minima on the potential 

energy surface through vibrational analysis. WBIs for each potential trigger bond were calculated 

using Natural Bond Orbital (NBO) version 3.1.50, 51 %∆WBIs were determined by comparing to 

the C(sp2)-NO2 bond in reference molecule NB which contains the same bond type, hybridization 

and explosophore as the energetic materials. In our previous paper, diffuse functions (TZVP+) 

were included on all heavy atoms because that basis set gave the lowest mean unsigned errors for 

the bond distances in common energetic materials (RDX, HMX, TNT, TNB, PETN).16 However, 
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WBIs using TZVP+ deviated significantly from the parent basis set (i.e., TZVP), indicating a basis 

set dependence similar to that known for Mulliken population analysis, but not previously reported 

for WBI analysis. Thus, the following results were obtained using TZVP which produced WBI 

and geometry trends comparable to calculations that included diffuse functions. 

 

Results and Discussion 

The DFT(M06-2X)/TZVP optimized structures are in good agreement with available X-

ray crystallographic data95-135 and previous DFT calculations16, 37, 72, 84, 105, 106, 136-145 for 35 of the 

63 nitroaromatic energetic molecules. The optimized structures of the 63 nitroaromatic energetic 

molecules are included in the appendices (Figures A1-A7). Generally, the DFT-optimized C-NO2 

bond distances are slightly longer than experimental values (Table 2) and intramolecular 

NH···ONO and OH···ONO interactions are shorter than those found in experiment.102-107, 111, 112, 

115, 130-133, 146-148 Intramolecular interactions between the nitro and amino102-105, 130-133, 146 or 

hydroxyl111, 112, 115, 148 groups force near-planar ring conformations for the aniline- and phenol-

based energetic materials (Scheme 3). These hydrogen bonds as well as steric effects between 

functional groups influence the strength of the potential C-NO2 trigger bonds. The nitroaromatic 

energetic molecules were grouped according to functional group following Kamlet and 

Adolph’s149 conclusion that impact sensitivity behavior of energetic materials will follow most 

closely with the trend of the most activated substitution. For example, ATNT and (o-, m-, p-

)ATETNT were classified as nitrobenzyls, since the methyl group is more activating than the 

amino group due to steric effects. TNAP, DATNP, DHTNA and HTNA were grouped with the 

nitrophenols because the –OH is more activating than the –NH2 due to repulsion. MTNP was also 

categorized with the nitrophenols since repulsion by the hydroxyl group is more influential than 



28 
 

 

steric effects by the methyl group, but was excluded from the following analysis due to its well-

documented anomalous impact sensitivity.149 

 

 

Scheme 3. C-NO2 trigger bond stability from intramolecular interactions with the amino group in 

TNA and the hydroxyl group in PA. 

 

Table 2. Comparison of available experimental95-135 and DFT(M06-2X)/TZVP bond distances 

[Å], dihedral angles [°] and WBIs for C-NO2 bonds in the nitroaromatic energetic materials with 

the corresponding experimental impact sensitivity (I.S.) [cm] and electrical spark sensitivity (E.S.) 

[J] and reference nitrobenzene (NB).150 

HEDM Position[a] 
dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

Reference 

NB R1 1.481 1.464[d] 0.0 1.7 0.902 0 10071 

Nitrobenzenes 

DNB R1/R3 1.483 1.463, 
1.465 -0.1, 0.0 -10.0, 10.1 0.897 -0.55 >100151 

TNB R1/R3/R5 1.485 1.474 0.0 -1.2, -4.0, 
28.4 0.893 -1.00 100149 

TETNB R2** 1.487 - 65.5 - 0.871 -3.44† 

28152 R1*/R3* 1.484 - 31.9, 32.8 - 0.889 -1.44 

R5 1.486 - 1.8 - 0.892 -1.11 
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Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

PNB R1*/R5* 1.485 - -33.1, -
33.0 - 0.887 -1.66 

11152 R2**/R4** 1.488 - -60.6, -
59.9 - 0.872 -3.33† 

R3** 1.487 - -52.3 - 0.876 -2.88 

HNB R1**/R6** 1.488 1.46 53.6 54.0, 54.9 0.873 -3.22 

11152 R2**/R5** 1.488 1.48 53.9 53.9, 54.0 0.872 -3.33† 

R3**/R4** 1.489 1.40 53.8, 53.9 50.7, 53.1 0.872 -3.33† 

HNBP 
R2*/R2’*/ 
R6*/R6’* 1.481 

1.468, 
1.479, 
1.472, 
1.478 

-30.7, 
±27.9, 3.4 

-26.5, 24.4, 
-10.0, -11.9 0.894 -0.89† 

70152 

R4/R4’ 1.483 1.474, 
1.476 -3.4, 30.7 8.3, 27.5 0.895 -0.78 

HNDPM R2* 1.487 1.477 39.3 43.1 0.885 -1.88 

3970 

R4 1.482 1.491 2.7 -7.4 0.896 -0.67 

R6* 1.484 1.468 -124.3 -99.8 0.880 -2.44† 

R6’* 1.485 1.474 -41.5 -82.5 0.888 -1.55 

R4’ 1.482 1.479 -0.4 4.2 0.897 -0.55 

R2’* 1.481 1.479 -32.3 -33.0 0.895 -0.78 

HNS R2/R2’/ 
R6/R6’ 

1.485 
1.472, 
1.466, 
1.471 

-31.3, 32.8 -13.2, 15.1, 
42.0, -43.9 0.890 -1.33† 

54152 

R4/R4’ 1.484 1.468, 
1.468 0.4 -22.8, 19.3 0.895 -0.78 

Nitrobenzyls 

DNT R2*/R6* 1.480 1.482, 
1.475 ±38.2 -38.0, 53.2 0.896 -0.67 (50 

J)153 

TNT R2*/R6* 1.482 1.478 ±38.6 -50.7, 47.2 0.892 -1.11† 
98152 

R4 1.481 1.471 0.3 22.1 0.899 -0.33 

o-TETNT R2** 1.481 - -56.1 - 0.881 -2.33 

15152 
R3** 1.484 - -52.0 - 0.880 -2.44 

R4** 1.483 - -57.6 - 0.878 -2.66† 

R5* 1.482 - -34.5 - 0.889 -1.44 

m-TETNT R2** 1.485 - -65.2 - 0.876 -2.88† 

19152 
R3** 1.485 - -58.2 - 0.876 -2.88† 

R4* 1.480 - -30.7 - 0.893 -1.00 

R6* 1.485 - -34.0 - 0.891 -1.22 
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Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

p-TETNT R2**/R6** 1.482 - -67.5, 67.7 - 0.874 -3.10† 

25152 
R3*/R5* 1.483, 

1.482 - -27.1, 
-27.0 - 0.893 -1.00 

PNT R2** 1.484 - -58.7 - 0.876 -2.88 

18152 

R3** 1.485 - -51.5 - 0.877 -2.77 

R4** 1.484 - -52.3 - 0.878 -2.66 

R5** 1.486 - -52.0 - 0.877 -2.77 

R6** 1.485 - -63.5 - 0.875 -2.99† 

DMTNB R2**/R6** 1.481 1.480 90.0 75.6 0.869 -3.66† 
100154 

R4* 1.479 1.475 -30.3, 28.9 -34.9, -36.2 0.899 -0.33 

TMTNB R2** 1.479 1.479 -60.5 -68.0 0.881 -2.33 

110155 R4** 1.480 1.473 -69.2 -76.0 0.877 -2.77† 

R6** 1.478 1.479 58.6 79.9 0.884 -2.00 

ATNT R2*# 1.474 - -48.0 - 0.906 +0.44† 

174154 R4
# 1.465 - -5.2 - 0.941 +4.32 

R6* 1.472 - 28.3 - 0.914 +1.33 

o-ATETNT R6** 1.484 - -65.9 - 0.874 -3.10 

36152 
R5** 1.474 - -44.3 - 0.898 -0.44 

R4** 1.488 - -60.5 - 0.872 -3.33† 

R3*# 1.468 - -33.0 - 0.922 +2.22 

m-ATETNT R6** 1.478 - -56.3 - 0.890 -1.33 

37152 
R5** 1.489 - -58.6 - 0.871 -3.44† 

R4*# 1.466 - -31.1 - 0.925 +2.55 

R2*# 1.476 - -53.3 - 0.898 -0.44 

p-ATETNT R2**/R6** 1.485, 
1.486 - 64.1, -64.3 - 0.872 -3.33† 

47152 

R3*#/R5*# 1.471 - 34.1, -34.3 - 0.919 +1.88 

ClMTNB R2* 1.485 - -42.6 - 0.885 -1.88† 

4470 R4 1.483 - -0.6 - 0.896 -0.67 

R6* 1.483 - 39.9 - 0.890 -1.33 

TNBMeOH R2** 1.486 - -39.4 - 0.887 -1.66† 

5270 R4 1.483 - -0.2 - 0.896 -0.67 

R6*# 1.483 - 35.9 - 0.893 -1.00 
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Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

TNBEtOH R2* 1.482 - -43.9 - 0.890 -1.33 

6870 R4 1.480 - -2.5 - 0.899 -0.33 

R6** 1.487 - -42.4 - 0.883 -2.11† 

Nitroanisoles 

DNAN R2* 1.475 1.469 41.0 18.4 0.903 +0.11† 
>220156 

R4 1.473 1.460 1.1 -15.4 0.913 +1.22 

TNAN R2 1.476 1.482 32.7 19.1 0.904 +0.22 

19270 R4 1.477 1.470 1.0 0.9 0.905 +0.33 

R6 1.478 1.470 45.4 39.8 0.894 -0.89† 

ATNAN R2*# 1.469 1.471 -47.3 -51.4 0.915 +1.44† 

>32570 R4
# 1.463 1.464 -5.0 8.8 0.946 +4.88 

R6* 1.465 1.459 -24.9 -19.2 0.927 +2.77 

DMOTNB R2** 1.474 - -62.5 - 0.891 -1.22† 

25170 
R4*/R6* 1.477 - -21.7, 

-21.6 - 0.909 +0.78 

DClTNAN R2** 1.478 - -71.9 - 0.881 -2.33 

7570 R4** 1.479 - 74.9 - 0.878 -2.66† 

R6** 1.476 - -69.1 - 0.885 -1.88 

EOTNB R2* 1.480 1.462 30.8 -29.7 0.901 -0.11 

19070 R4 1.479 1.467 1.6 -2.2 0.903 +0.11 

R6* 1.477 1.479 43.6 64.0 0.896 -0.67† 

DMDNPy R3*/R5* 1.465 - -25.8 - 0.925 +2.55 N/A 

Nitroanilines 

DNPH R2
# 1.461 1.437, 

1.443 0.1 -8.3 0.952 +5.54 

N/A 

R4 1.466 1.450, 
1.454 0.0 8.9 0.923 +2.33† 

TNA R2
#/R6

# 1.472 1.453, 
1.459 1.3, 1.5 -12.5, 26.0 0.936 +3.77 

141152 

R4 1.469 1.452 0.7 6.2 0.917 +1.66† 

DATB R4
#/R6

# 1.458 1.435, 
1.449 -0.3, 2.5 -4.1, 4.4 0.961 +6.54† 

320152 

R2
## 1.444 1.430 11.0 2.5 1.015 +12.53 
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Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

TATB R2
## 1.437 1.416 -22.0 -0.8 1.032 +14.41 

490152 R4
## 1.437 1.417 -21.9 -2.4 1.032 +14.41 

R6
## 1.437 1.423 -21.8 1.9 1.031 +14.30† 

TETNA R6
# 1.472 1.461 -2.9 3.1 0.931 +3.22 

4170 
R4* 1.471 1.446 -24.8 -14.5 0.908 +0.67 

R3** 1.490 1.487 -65.3 -66.1 0.868 -3.77† 

R2*# 1.474 1.467 -40.1 -45.1 0.912 +1.11 

PNA R2*#/R6*# 1.474 1.466, 
1.467 

-39.8, 

-36.4 
-38.2, -34.3 0.911 +1.00 

22152 R3**/R5** 1.491 1.481, 
1.480 

-61.8, 
119.1 

-67.0, 
114.7 0.868 -3.77† 

R4** 1.478 1.474 -47.1 -39.6 0.890 -1.33 

DADNPy R3
#/R5

# 1.448 - 0.0 - 0.968 +7.32 N/A 

LLM-105 R3
#/R5

# 1.471 1.455 0.0 18.1, -2.7 0.900 -0.22 117157 

HNDPA R2
#/R2’

# 1.474 1.473, 
1.474 27.5 4.4, 10.7 0.912 +1.11 

48149 R4/R4’ 1.478 1.467, 
1.463 1.3 3.4, -11.8 0.903 +0.11 

R6/R6’ 1.482 1.487, 
1.478 -38.7 -35.2, -40.5 0.897 -0.55† 

TETNPO R5
#/R5’

# 1.472 - -3.1, -3.6 - 0.928 +2.88 
N/A 

R3/R3’ 1.476 - -0.9, -1.0 - 0.908 +0.67† 

DAHNBP R6*/R6’* 1.473 - -45.9, 
-44.2 - 0.910 +0.89† 

67152 R4
#/R4’

# 1.468 - -1.6, -6.6 - 0.937 +3.88 

R2*#/R2’*# 1.467 - 5.5 - 0.912 +1.11 

Nitrophenols 

2,4-DNP R2
# 1.462 1.457 0.0 -4.0 0.942 +4.43 (>90 

cm)158 

R4 1.473 1.456 0.0 3.9 0.912 +1.11† 

2,6-DNP R2
# 1.463 1.457 2.3 -0.8 0.944 +4.66 

N/A 
R6* 1.476 1.473 40.2 13.4 0.903 +0.11† 

2,4-DNR R2*# 1.459 - 24.5 - 0.951 +5.43† 
296149 

R4
# 1.449 - -0.7 - 0.971 +7.65 

4,6-DNR R4
#/R6

# 1.455 1.444, 
1.447 ±2.2 -1.5, 1.3 0.955 +5.88 >320149 

         



33 
 

 

Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

PA R2* 1.478 1.482 -39.0 -18.8 0.899 -0.33† 

8770 R4 1.475 1.464 -0.7 -4.8 0.907 +0.55 

R6
# 1.467 1.458 -2.0 -3.5 0.935 +3.66 

TNR R4
#/R6

# 1.457 1.456, 
1.455 

-1.5, -0.8 2.1, 2.7 0.948 +5.10 
4370 

R2** 1.477 1.468 68.4 66.1 0.888 -1.55† 

THTNB R2*# 1.454 1.436 21.3 4.7 0.964 +6.87 

2770 R4
## 1.429 1.435 4.8 6.8 1.031 +14.30 

R6** 1.475 1.465 68.3 62.7 0.891 -1.22† 

MTNP R2** 1.479 - 70.8 - 0.880 -2.44† 

191149 R6
# 1.461 - 1.9 - 0.940 +4.21 

R4* 1.476 - -27.5 - 0.907 +0.55 

TNAP R3*# 1.468 - 38.6 - 0.920 +2.00 

13871 R2*# 1.472 - 38.4 - 0.910 +0.89† 

R5
# 1.476 - 11.1 - 0.923 +2.33 

DATNP R2
## 1.423 1.409 -1.0 7.5 1.064 +17.96 

11270 R4
## 1.437 1.423 5.4 -13.3 1.034 +14.63 

R6*# 1.463 1.463 44.6 50.7 0.932 +3.33† 

HTNA R2*# 1.468 - -43.5 - 0.922 +2.22† 

13870 R6
# 1.463 - -5.6 - 0.947 +4.99 

R4
# 1.449 - -2.4 - 0.966 +7.10 

DHTNA R2
## 1.429 1.420 -3.0 -11.8 1.041 +15.41 

3270 R4** 1.474 1.449 -68.1 -57.2 0.893 -1.00† 

R6
## 1.430 1.430 -4.0 1.4 1.041 +15.41 

Nitronaphthalenes 

1,5-DNN R1/R5 1.479 1.486 ±37.6 ±48.4 0.900 -0.22 (11.02 
J)159 

1,8-DNN R1*/R8* 1.478 1.471, 
1.476 

-35.6,  
-35.7 -39.6, -37.7 0.895 -0.78 (18.37 

J)159 

TNN R5* 1.479 - -39.5 - 0.894 -0.89 

(9.52 
J)159 R4* 1.481 - -39.4 - 0.889 -1.44† 

R1 1.482 - 39.5 - 0.893 -1.00 

TETNN R1*/R4*/ 
R5*/R8* 1.482 1.471, 

1.486 

40.6, 
±36.9,  
-40.7 

- 0.888 -1.55 (9.65 
J)159 
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Table 2 (continued) 

HEDM Position[a] dDFT 
[Å] 

dexp [Å] φDFT [°] φexp [°] WBI %∆WBI 
[%][b] 

I.S. 
[cm][c] 

Miscellaneous 

ClTNB R2/R6 1.483 1.474, 
1.476 -43.5, 46.0 -31.8, 69.4 0.888 -1.55† 

7970 

R4 1.481 1.467 0.7 -12.5 0.898 -0.44 

TNBN R2/R6 1.485 - 34.0 - 0.890 -1.33† 
14070 

R4 1.486 - 2.1 - 0.892 -1.11 

TNBAl R2/R6 1.484 - ±19.3 - 0.893 -1.00† 
3670 

R4 1.485 - 0.0 - 0.894 -0.89 

TNBA R2* 1.485 1.477 24.6 10.5 0.891 -1.22 

10970 R4 1.485 1.477 1.9 -13.1 0.894 -0.89 

R6* 1.485 1.487 29.0 15.5 0.890 -1.33† 

ENTNB R2/R6 1.485 - ±20.7 - 0.893 -1.00† 
7970 

R4 1.484 - 0.2 - 0.895 -0.78 

METNBA R2 1.485 - -25.9 - 0.890 -1.33† 

9070 R4 1.484 - -2.1 - 0.894 -0.89 

R6 1.485 - -29.0 - 0.891 -1.22 

[a] Energetic materials with # indicate the number of hydrogen bonds and * indicate the number of 
steric effects and/or repulsion. [b] The trigger bond is designated by a † when there is more than one. 
[c] Nitroaromatics with a lower limit for IS or IS with inconsistent methods (values in parentheses) 
were excluded from correlations with %∆WBIs. [d] NB is documented as 1.464 Å in the cif and 1.467 
Å by Boese et al.150  

 

 

Wiberg Bond Index Analysis of Potential Trigger Bonds 

WBIs were calculated from the DFT(M06-2X)/TZVP optimized geometries for the C(sp2)-

NO2 trigger bonds of the 63 conventional nitroaromatic energetic molecules and compared to the 

C(sp2)-NO2 bond in reference molecule NB. The energetic molecules generally become more 

sensitive (i.e., more negative %∆WBIs of the C-NO2 trigger bond) with an increasing number of 

nitro groups as in the series DNT > TNT > TETNT > PNT (%∆WBIs = -0.67%, -1.11%, -2.88% 

(average) and -2.99%); TNA > TETNA > PNA (%∆WBIs = +1.66%, -3.77% and -3.77%,); 2,4-

DNP > 2,6-DNP > PA (%∆WBIs = +1.11%, +0.11% and -0.33%, respectively), 4,6-DNR > 2,4-
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DNR > TNR (%∆WBIs = +5.88%, +5.43% and -1.55%, respectively); and DNAN > TNAN 

(%∆WBIs = +0.11% and -0.89%, respectively) as reflected in %∆WBIs, consistent with available 

experimental sensitivity data (Table 2). Chlorination also activates C-NO2 trigger bonds for 

ClMTNB versus TNT (%∆WBIs = -1.88% and -1.11%, respectively) and DClTNAN versus 

TNAN (%∆WBIs = -2.66% and -0.89%, respectively). Biphenyl systems with steric effects 

between –CH2– and repulsion between nitro groups enhance sensitivity in the series HNDPM < 

HNS < HNBP (%∆WBIs = -2.44%, -1.33% and -0.89%, respectively), consistent with experiment. 

DNPH and DADNPy lack experimental impact sensitivity data, but are predicted to be more stable 

than TNA and LLM-105, respectively, based on %∆WBIs (+2.33%, +9.31%, +1.66% and -0.22%, 

respectively) due to additional nitro groups and increased repulsion. 

Under-prediction of the sensitivity based on the %∆WBIs in the series DNB > TNB > TETNB 

> PNB > HNB (-0.55%, -1.00%, -3.44%, -3.33% and -3.33%, respectively) could be attributed to 

the differences in the dihedral angle of the nitro group with respect to the ring in the gas-phase 

versus the condensed phase. As the twist of the –NO2 group increases from planar (0°) to 

perpendicular with the ring (90°) in NB, the C-NO2 trigger bond becomes more activated (WBI 

(%∆WBIs) = 0.902 (0.00%) and 0.873 (-3.22%), respectively) (Figure 4) because conjugation of 

the aromatic π-system with the nitro group is reduced. When the dihedral angles are constrained 

to the values in the X-ray structure of HNB (Table 2), the %∆WBI shifts to -3.99% in agreement 

with the series. Similarly, %∆WBI over-prediction of the sensitivity for TETNB could be 

attributed to dihedral angle differences between the phases, but experimental X-ray 

crystallographic evidence is necessary for validation. Similarly, crystal packing effects on 

condensed-phase dihedral angles for TETNA (-65.3° and -66.1°) and PNA (-61.8°/119.1° and -
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67.0°/114.7°, respectively) may lead to under-estimation of their impact sensitivity from gas-phase 

structures. 

 

 

Figure 4. Bond Activation represented by smaller WBIs and increasing C-NO2 dihedral angles in 

NB. 

 

Intramolecular hydrogen bonding generally strengthens and deactivates C-NO2 bonds. 

Energetic materials with these interactions would be expected to be less sensitive to 

decomposition. Contributions from resonance structures with C=N double bond character induced 

by intramolecular hydrogen bonding (Figure 5)70-72 favor nearly planar nitro groups with 

shortened C-NO2 bond lengths which are deactivated toward explosive decomposition. Therefore, 

C-NO2 bonds influenced by hydrogen bonding interactions will not break as easily relative to 

isolated C-NO2 bonds. Overall, C-NO2 trigger bonds are deactivated by an increased number of –

NH2 substituents as in the series TNB < TNA < DATB < TATB (%∆WBIs = -1.00%, +1.66%, 

+6.54% and +14.30%, respectively), as found in previous studies,105, 136 TNAN to ATNAN 
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(%∆WBIs = -0.89% and +1.44%, respectively) and TNT to ATNT (%∆WBIs = -1.11% and 

+0.44%, respectively). Intramolecular hydrogen bonding in TATB strengthens all C-NO2 trigger 

bonds to the extent that it is classified as an ‘insensitive high explosive’.7 Within this series not all 

nitro groups form trigger bonds. For example, TNB has three equivalent trigger bonds, but only 

the p-C-NO2 bond of TNA can be assigned as such because it lacks the hydrogen bonding of the 

ortho groups (Table 2 and Figure 5). Further increasing the number of hydrogen bonding 

interactions to a nitro group from one to two further enhances the double-bond character. In DATB, 

the trigger bond is the nitro with one hydrogen bond (dC-NO2 = 1.458 Å (%∆WBI = +6.54%)) 

given that the nitro group with two hydrogen bonding interactions is stabilized by enhanced partial 

double bond character (dC-NO2 = 1.444 Å (%∆WBI = +12.53%)) which agrees with previous 

results.106 In addition, HNDPA and TETNPO have intramolecular hydrogen bonding with an –NH 

group which stabilized those C-NO2 trigger bonds (Scheme 4). In HNDPA and TETNPO, ortho 

nitro groups are deactivated due to hydrogen bonding (%∆WBIs = +1.11% and +0.67%, 

respectively) while the other ortho nitro groups in HNDPA are activated by steric effects (%∆WBI 

= -0.55%). In addition, HNDPA would be more activated than TETNPO due to the number of 

nitro groups (i.e., 6 nitro groups and 4 nitro groups). However, %∆WBIs indicate the opposite 

trend from TETNTs to ATETNTs (-2.88% (average) and -3.37% (average), respectively) because 

the planarity generally induced by hydrogen bonding interactions to the adjacent nitro groups force 

greater twists in nitro groups meta to the amine. 
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Figure 5. Resonance structures explaining trigger bond strength for nitro-amino interactions with 

select bond distances (Å) and %∆WBIs (%). 
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Scheme 4. C-NO2 trigger bond stabilization from the intramolecular interaction with the –NH 

group in HNDPA and TETNPO. 

 

In the phenol-based energetic molecules, resonance structures induced by hydrogen bonding 

with hydroxyl groups also enhance the double bond character of nitro groups (Figure 2a and Table 

2). However, the unidirectionality of the phenol’s hydrogen bonding leads to a repulsive 

interaction with its lone pair that forces a twist in the other ortho nitro group, activating it for 

decomposition as reflected in the %∆WBIs and experimental data.70, 152 For example, in PA 

(Figure 6), the bond to the nitro group involved in hydrogen bonding is strengthened by resonance 

(%∆WBI = +3.66%) and its dihedral is near planar (-2.0°), but the nitro interacting with the lone 

pair is twisted (-39.0°) and activated (%∆WBI = -0.33%). These results are in contrast with TNA 

in which hydrogen bonding leads to planarity in both ortho nitro groups (%∆WBI = +3.77%) and 

shifts the trigger bond to the para position (%∆WBI = +1.66%). Unlike the proposed nitronic acid, 

nitro groups in phenolic HEDMs are activated by the lone pairs from unidirectional hydrogen 

bonding. 
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Figure 6. Select bond distances (Å) and %∆WBIs (%) for trigger bonds in TNA, PA, TNR and 

THTNB. 

 

In trinitrophenols with additional –OH groups, trigger bonds lacking hydrogen bonding are 

the most activated. In TNR (Figure 6), the –OH groups hydrogen bond to the nitro groups at the 

4- and 6- positions and their lone pairs induce a twist in the 2-nitro group (68.4°) to activate it 

toward decomposition (%∆WBI = -1.55%). Rearrangement of the hydrogen bonding pairs in 

TNR-1 and TNR-2 is less stable and results in less activated trigger bonds because the nitro groups 

are repelled by only one –OH lone pair. Similarly, the trigger bond in THTNB structure has no 

hydrogen bonding to its nitro, but those with one or two hydroxyl interactions are strengthened 

and more planar (Figure 6). Conformation THTNB-1 with one hydrogen bond to each nitro is 

slightly higher in energy with planar, deactivated C-NO2 bonds. Based on experiment, impact 

sensitivity should increase with the number of hydroxyl groups (PA > TNR > THTNB), which is 
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inconsistent with the trend in the gas-phase %∆WBIs (-0.33%, -1.55% and -1.22%, respectively), 

possibly due to secondary crystal packing effects. 

Steric effects should activate trigger bonds if they force an increase in the dihedral angle of 

the nitro group. For example, C-NO2 bonds in TNT, TNBEtOH and TNBMeOH are more activated 

than TNB based on %∆WBIs (-1.11%, -2.11% and -1.66%, respectively), consistent with 

experimental trends (Table 2). However, additional methyl groups stabilize nitrobenzyls for less 

impact sensitivity in the series TNT < DMTNB < TMTNB (Table 2) where %∆WBIs predict 

increasing activation of the trigger bond (-1.11%, -3.10% and -2.77%, respectively). Similarly, in 

nitroanisoles, %∆WBIs predict an increase in activation from TNAN to DMOTNB (-0.89% and -

1.33%, respectively) that is not reflected in the experiment impact sensitivities (192 cm and 251 

cm, respectively). The nitronaphthalenes have more activated C-NO2 trigger bonds with repulsion 

from additional nitro groups in the series 1,5-DNN > 1,8-DNN > TNN > TETNN (%∆WBIs = -

0.22%, -0.78%, -1.44% and -1.55%, respectively), which do not agree with experimental impact 

sensitivity data. These anomalous results could be due to the differences in the nitro dihedral angles 

in the gas-phase and X-ray structure, resulting in over- or under-prediction of the trigger bond 

activation, or due to other crystal packing effects, such as shear slide.160 Replacement of methoxy 

with ethoxy has little effect on the sensitivity of EOTNB relative to TNAN, where %∆WBIs under-

predict a differential in experimental sensitivity (-0.44% and -0.89%, respectively) due to larger 

nitro group dihedral angles in EOTNB (64.0° versus 40.8°). DMDNPy has deactivated nitro groups 

(%∆WBI = +2.55%) and would be predicted to be relatively insensitive. 

The activation of trigger bonds as measured by %∆WBIs were compared with literature 

impact sensitivities determined using consistent experimental methods as these measurements 

often vary depending on the technique used.17, 37, 131, 149, 152, 161-164 Values were selected from drop 
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hammer tests using Type 12 tooling (i.e., sandpaper) and a 2.5 kg drop weight17, 149, 152, 161, 165 with 

the exception of TATB which was estimated from oxygen balance correlations.17 In addition, 

nitroaromatic energetic materials with a reported lower limit for experimental impact sensitivity 

were excluded from the analysis of correlation with %∆WBIs. The uncertainty in the drop hammer 

test can be large, by up to 15%,166, 167 which will affect the quality of the comparison to %∆WBI 

analysis. Since impact sensitivity tests are carried out in the condensed phase, intermolecular 

interactions not accounted for in gas-phase calculations will have a strong influence on the 

sensitivity of energetic materials. However, correlations with %∆WBIs (i.e., information from gas-

phase calculations) can provide a clue into how intramolecular interactions affect the sensitivity 

of these molecules. 

%∆WBIs for the nitroaromatic energetic molecules correlate well with experimental impact 

sensitivity (R2 = 0.741) (Figure 7a) but not electrical spark sensitivity (Figure A8), which is 

highly dependent upon the configuration of the experiment.168 %∆WBIs measure bond strength 

and would not be expected to correlate with properties such as detonation velocity (the speed of a 

shock wave moving through an explosive column) or heat of explosion (a measure of breaking and 

re-forming bonds). Friction sensitivity was not compared with %∆WBIs because these 

measurements are sparse and difficult to obtain for secondary explosives.169 Early studies by 

Politzer and co-workers using low-level Mulliken population analysis (HF/STO-5G without 

geometry optimization) as an estimate of the electrostatic potential of the C-NO2 bond found good 

correlation (R2 = 0.73, note: the reported value of 0.86 in ref 70 is incorrect) to impact sensitivity 

for a set of 26 nitroaromatic compounds, but excluded nitrophenols as anomalous70, 72 (R2 = 0.21 

including the nitrophenols). %∆WBIs improve upon this method by using a higher level of theory 
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and larger basis sets on an optimized geometry and more directly measure the bond strength for a 

comparable correlation with a larger data set. 

Individual subsets of the nitroaromatic energetic materials (Figures 7c) correlated well with 

experimental impact sensitivity for the nitrobenzenes (R2 = 0.878), nitroanilines (R2 = 0.951) and 

nitrophenols (R2 = 0.829). However, %∆WBIs are less predictive for the nitrobenzyls (R2 = 0.425) 

and nitroanisoles (R2 = 0.645) which could be attributed to secondary effects including strong 

hydrogen bonding networks, intermolecular repulsions, ring strain and other secondary effects in 

crystal packing. Eliminating these groups increases the overall correlation (R2 = 0.922) (Figure 

7b) indicating that further studies in the solid state may improve the computational prediction of 

trigger bond activation. 
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Figure 7. Correlation between %∆WBIs and (a) experimental impact sensitivities (cm) (Table 2), 

(b) experimental impact sensitivities for the nitrobenzenes, nitroanilines and nitrophenols, 

excluding the nitrobenzyls, nitroanisoles, and miscellaneous (Table 2), (c) experimental impact 

sensitivities broken down by functional group excluding the miscellaneous (Table 2). 
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Comparison with Bond Dissociation Energies 
 

DFT(M06-2X)/TZVP BDEs for homolysis of C-NO2 bonds of the 63 nitroaromatic 

energetic molecules (Table A1) were compared to %∆WBIs and energetic properties. %∆WBIs 

are expected to be a better measure of bond strength for predicting sensitivity, as they focus on the 

strength of the intact bond rather than the energy of the broken bond. The range of BDEs are in 

agreement with experimental values from pyrolysis studies (~71 kcal/mol61) with additional –NO2 

and –OH groups contributing 1-4 kcal/mol.61, 67 Although a previous study of BDEs on 

nitrophenols found that the O-H bond is the weakest,143 the study was limited to the hydrogen 

bonded nitro ortho to –OH groups and did not consider BDEs for nitro groups not involved in 

hydrogen bonding which are more likely to be the trigger bond. Previous research has found nearly 

linear correlations with BDEs and the log of impact sensitivity167 and impact sensitivity157, 166 as 

well as roughly exponential correlation with impact sensitivity160 for smaller datasets. Assignment 

of the trigger bond based on the BDE generally agrees with %∆WBI, except in cases where 

intramolecular hydrogen bonding is important. Generally, BDEs are found to be poor predictors 

of impact sensitivity (R2 = 0.482) (Figure 8a) for the present dataset with only slight improvement 

using BDEs of the trigger bonds assigned by %∆WBIs (R2 = 0.490) (Figure 8b). The correlations 

with BDEs are inferior when compared to WBIs likely due to the fact that BDEs are calculated for 

a bond that has already been broken while WBIs are calculated for bond that remains intact.  
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Figure 8. Correlations between log (impact sensitivity) (cm) and (a) BDEs, (b) BDEs as assigned 

by WBIs. 

 

Conclusions 

Trigger bonds were assigned to 63 nitroaromatic energetic materials by comparing their 

WBIs to those in reference molecule NB for a relative measure of activation of the C-NO2 bond. 

Based on this definition, trigger bonds with lower electron density than the reference as reflected 

in a negative %∆WBI are therefore more susceptible to cleavage under stress. These bonds were 
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activated as the number of nitro groups was increased. Greater twists in the nitro group with respect 

to the ring (i.e., closer to 90°) lead to more negative %∆WBIs. Based on the analysis, all nitro 

groups within a molecule are not necessarily equally activated to contribute to explosive 

decomposition initiation. Generally, steric effects and repulsion with adjacent functional groups 

induce twists that activate the C-NO2 trigger bonds, but intramolecular hydrogen bonding 

interactions favor planarity, enhanced stability, and deactivated C-NO2 bonds as found in the series 

of nitroanilines (TNB < TNA < DATB < TATB). However, unidirectional hydrogen bonding 

interactions in nitrophenols deactivate the nitro involved in hydrogen bonding, but activate any 

nitro repelled by the lone pair of the –OH group. In some subsets, secondary effects are not 

recovered through gas-phase calculations and may need to be modeled in the condensed-phase. 

Overall, %∆WBIs can assign trigger bonds to help interpret impact sensitivities by understanding 

the influence of intramolecular interactions and explore trends with energetic properties in novel, 

‘green’ HEDMs. 
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CHAPTER 3 

MECHANISTIC STUDY OF SIMPLE AROMATIC AZIDE COMPOUNDS AS A MODEL 

FOR EXPLOSIVE DECOMPOSITION IN AROMATIC AZIDE-BASED ENERGETIC 

MATERIALS 

 

Introduction 

Since the discovery of phenyl azide (PhN3) in 1864,170 the chemistry of azides is of interest 

in organic synthesis,171 nanotechnology,172, 173 pharmacology174 and photochemistry.175-179 Azide 

functional groups are often incorporated into high energy density materials (HEDMs) in order to 

enhance efficiency, increase stability and lower environmental toxicity by releasing nontoxic 

nitrogen gas.1, 4, 10, 12, 180 Explosophores5 such as azide (–N3)
11 and nitro (–NO2)

52-56 are functional 

groups that form trigger bonds, activated bonds that break to initiate explosive decomposition.16, 

49 Our group has shown that the Wiberg bond index (WBI), a measure of interatomic electron 

density, is a computationally efficient means of proposing trigger bonds in energetic materials 

(Equation 24).16, 49 Identifying these bonds with WBIs can guide the characterization of the 

initiation mechanisms of explosive decomposition and rationalization of energetic properties, such 

as impact sensitivity. Understanding the mechanisms of N2 release in azide-based HEDMs is 

necessary in order to rationalize their enhanced sensitivity.  

WBIAB = ∑ ∑(Dpq)
2

                                                                                                                 (24)

qBpA

 

Trigger bonds are influenced by steric effects, electron-withdrawing groups and ring 

strain.16, 49 Trigger bonds are expected to be longer and have lower electron density relative to 

inactivated bonds of the same type, hybridization and explosophore (i.e., bonds in reference 

molecules). A relative scale for trigger bond activation (%∆WBI) has been previously proposed 
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by our group (Equation 25) by comparing the WBI of bond in HEDMs to those in chemically 

similar reference molecules.16, 49 More negative %∆WBIs indicate more activated trigger bonds 

and will most likely break first to initiate explosive decomposition.16, 49 Our previous study 

considered only HEDMs with -NO2 trigger bonds. In this paper, azide trigger bonds are 

characterized to differentiate between the sensitivities of the two explosophores.  

%∆WBIAB =
WBIAB

HEDM − WBIAB
reference

WBIAB
reference

× 100                                                                        (25) 

Many simple azide-based molecules have been studied both theoretically181-190 and 

experimentally.176, 177, 191-200 Pyrolysis studies have shown that the mechanism of methyl azide 

(CH3N3) involves N-N2 bond cleavage with the formation of a triplet methylnitrene (3CH3N) 

through intersystem crossing.196, 197 However, other experimental studies indicate the dominant 

pathway involves hydrogen transfer connected with N-N2 bond cleavage to form a singlet 

methyleneimine (CH2NH).198-200 Studies on ethyl azide (CH3CH2N3) produce nitrogen gas and 

ethyleneimine (CH3CHNH), further supporting the hydrogen transfer pathway.198-200 Several MP2 

studies of methyl azide agree with the hydrogen transfer pathway184, 201 while higher level 

CASSCF calculations indicate that the intersystem crossing path is more probable.182-184, 202 

Experimental photochemical studies on azidobenzene (AzB) indicate the loss of N2 and the 

formation of phenylnitrene176, 177, 179 in the singlet state (1PhN) or the triplet state (3PhN)179 via 

intersystem crossing (Figure 9).186 Electron-spin resonance (ESR) studies of AzB have found that 

the triplet is more stable than the singlet.177, 203 Decomposition of AzB is concentration dependent. 

At low concentrations, dimerization of phenyl nitrene occurs upon irradiation whereas phenyl 

nitrene reacts with AzB at higher concentrations.177  
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Figure 9. Decomposition of AzB. 

 

In o-nitroazidobenzene (o-NAzB), the azide group will undergo cyclization with the ortho 

nitro group,67, 187 similar to proposed cyclization reactions of nitro groups with adjacent methyl or 

amino groups (Figure 10).67 Experimentally, the reaction rate is slower for meta and para nitro 

groups (i.e., Ea = +40.6 kcal/mol (p-NO2) and +26.1 kcal/mol (o-NO2)), since cyclization is not 

possible (Figure 10).67 In contrast, based on ESR studies of AzB,177 it is expected that m-

nitroazidobenzene (m-NAzB) and p-nitroazidobenzene (p-NAzB) would also decompose as a 

triplet, since the nitro group is not in the ortho position. Thermolysis indicates that o-NAzB 

derivatives are insensitive to the presence of other groups because cyclization is the dominant 

reaction (Figure 10c); however, the homolysis pathway (Figure 10d) is accelerated by electron-

withdrawing groups substituted in the para position.67, 204   

Azide-based HEDMs have been studied due to their high nitrogen content, which can 

improve burning rates, performance, and nontoxic nitrogen gas production,1, 10 as well as enhance 

energetic properties.4, 8, 10 2-azido-1,3-imidazole, 3-azido-1H-1,2,4-triazole, 5-azido-1H-tetrazole 

and azidopentazole have comparable energetic properties to 1,3,5,7-tetranitro-1,3,5,7-

tetrazacyclooctane (HMX), and therefore have been studied to understand their decomposition 

mechanisms.190 The study included possible mechanisms involving azide bond (-N-N≡N) breaking 

as well as ring fission pathways, where azide-azole isomerization participates in the pyrolysis of 

2-azido-1,3-imidazole and 3-azido-1H-1,2,4-triazole while ring fission occurs in the pyrolysis of 
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5-azido-1H-tetrazole and azidopentazole.190 Azidonitroaromatic derivatives have been studied due 

to their relatively high velocities of detonation, which are comparable and often superior to 

TNT.165 Furthermore, the energetic properties of TAzTNB were found to be comparable to 

HMX,13 which makes it a candidate to potentially replace HMX in real-world systems. Thermal 

decomposition investigations have determined that azidonitroaromatic derivatives form 

benzofuroxan derivatives upon N2 extrusion.67, 205 Additionally, the experimental activation energy 

of TAzTNB from thermal decomposition is comparable to that of o-NAzB and lower than the 

activation energy of p-NAzB (Ea = +26.0 kcal/mol, +26.1 kcal/mol and +40.6 kcal/mol, 

respectively), suggesting that TAzTNB will decompose through cyclization.67  

 

 

Figure 10. Cyclization reactions in nitroaromatics with (a) ortho methyl, (b) ortho amino, (c) 

ortho azide and (d) para azide groups. 
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 In this study, density functional theory (DFT) calculations were used to propose reaction 

pathways important to the explosive decomposition of several simple azides and azide-based 

HEDMs, including o-NAzB, m-NAzB, p-NAzB, AzB, azido-2,4,6-trinitrobenzene (AzTNB), 

azidopentanitrobenzene (AzPNB), and 1,3,5-triazido-2,4,6-trinitrobenzene (TAzTNB). The 

potential explosive decomposition pathways include azide homolysis as well as cyclization when 

an ortho nitro group is present. The results will be used to rationalize the sensitivity observed in 

azide-based energetic materials and differentiate between the explosophore activations. 

 

Computational Methods 

DFT-optimized geometries of the simple azides and azide-based HEDMs (Scheme 5) were 

calculated using Gaussian 0946 and the hybrid functional M06-2X35 paired with a triple-ζ basis set 

(TZVP),48 as in our previous study.49 WBIs for each potential trigger bond were calculated using 

Natural Bond Orbital (NBO) version 3.1.50, 51 %∆WBIs were determined from reference molecules 

nitrobenzene (NB) and azidobenzene (AzB), which contain the same bond type, hybridization and 

explosophore as the HEDMs. Vibrational analysis characterized the structures as minima on the 

potential energy surface. Transition states were identified by only one imaginary vibrational 

frequency. Transition states were found by mapping the potential energy surface of the compounds 

along the N-N2 coordinate. Unrestricted open-shell and restricted closed-shell calculations for 

potential initiation of explosive decomposition were used to determine the most probable pathway 

within the energetic materials. 
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Scheme 5. The simple azide and azide-based HEDMs included in this study. 

 

Results and Discussion 

The DFT(M06-2X)/TZVP optimized structures of the simple azides (Figure 11) and azide-

based HEDMs (Figure 12) are in good agreement with available X-ray crystallographic data13, 150, 

205, 206 (Table 3) and previous computational results.13, 205 Generally, the DFT-optimized N-N2 

bond distances are shorter than experimental values while the C-NO2 bond distances are slightly 

longer (Table 3).13, 150, 205, 206 The simple aromatic azides prefer to have the azide group in the 

plane of the ring (Figure 11). Additionally, the nitro groups in m-NAzB and p-NAzB are planar 

with the ring, while the nitro group in o-NAzB is slightly twisted due to repulsion with the adjacent 

azide group.   
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Figure 11. DFT(M06-2X)/TZVP optimized structures of the simple aromatic azides. 

 

 

 

Figure 12. DFT(M06-2X)/TZVP optimized structures of the azide-based HEDMs. 
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Table 3. Comparison of available experimental and DFT(M06-2X)/TZVP bond distances [Å], 

dihedral angles [°] and WBIs for C-NO2 and N-N2 bonds in the energetic materials and 

references with the corresponding experimental impact sensitivity (I.S.) [cm].13, 150, 205, 206 

Compound Bond dDFT [Å] dexp [Å] φDFT [°] φexp 

[°] 

WBI %∆WBI 

[%] 

I.S. 

[cm] 

Reference 

NB49 C-NO2 1.481 1.464 0.0 1.7 0.9022 0 100 

AzB NA-NB 1.228 - 0.0 - 1.4627 0 N/A 

 NB-NC 1.192 - - - 2.3904 0  

o-NAzB NA-NB 1.231 1.247 3.4 -2.9 1.4401 -1.55 N/A 

 NB-NC 1.117 1.129 - - 2.4110 +0.86  

 C-NO2 1.475 1.467 39.4 -37.7 0.9029 +0.08  

m-NAzB NA-NB 1.231 - 0.0 - 1.4463 -1.12 N/A 

 NB-NC 1.117 - - - 2.4072 +0.70  

 C-NO2 1.483 - 0.0 - 0.8983 -0.43  

p-NAzB NA-NB 1.233 - 0.1 - 1.4376 -1.72 N/A 

 NB-NC 1.117 - - - 2.4163 +1.08  

 C-NO2 1.474 - 0.0 - 0.9128 +1.17  

HEDMs 

AzTNB NA-NB 1.239 1.251 -29.9 - 1.3852 -5.30 19152 

 NB-NC 1.111 1.115 - - 2.4682 +3.25  

 o-CA-NO2 1.477 1.467 -31.9 -18.9 0.9066 +0.49  

 p-CB-NO2 1.477 1.467 -0.9 0.9 0.9044 +0.24  

 o-CC-NO2 1.481 1.472 -50.4 -73.5 0.8880 -1.57  

AzPNB NA-NB 1.244 - 21.2 - 1.3676 -6.50 17152 

 NB-NC 1.110 - - - 2.4813 +3.80  

 o-CA-NO2 1.480 - 56.3 - 0.8859 -1.81  

 m-CB-NO2 1.489 - 56.5 - 0.8723 -3.31  

 p-CC-NO2 1.482 - 49.4 - 0.8826 -2.17  

 m-CD-NO2 1.487 - 53.5 - 0.8745 -3.07  

 o-CE-NO2 1.485 - 64.4 - 0.8758 -2.93  

TAzTNB NA-NB 1.243 1.236 -18.5 -22.4 1.3826 -5.48 6013 

 NB-NC 1.111 1.129 - - 2.4678 +3.24  

 ND-NE 1.240 1.245 23.2 23.1 1.3890 -5.04  

 NE-NF 1.111 1.120 - - 2.4607 +2.94  

 NG-NH 1.240 1.252 28.3 24.8 1.3908 -4.92  

 NH-NI 1.111 1.115 - - 2.4615 +2.97  

 CA-NO2 1.475 1.464 -68.3 -66.8 0.8898 -1.37  

 CB-NO2 1.467 1.471 49.1 61.3 0.9137 +1.27  

 CC-NO2 1.477 1.473 -91.4 -87.9 0.8781 -2.67  

TAzTNB-1 NA-NB 1.242 - -15.5 - 1.3844 -5.35  

 NB-NC 1.111 - - - 2.4644 +3.10  

 ND-NE 1.241 - -22.8 - 1.3882 -5.09  

 NE-NF 1.111 - - - 2.4615 +2.97  

 NG-NH 1.242 - 14.9 - 1.3834 -5.42  

 NH-NI 1.111 - - - 2.4651 +3.13  

 CA-NO2 1.474 - -63.1 - 0.8944 -0.86  

 CB-NO2 1.475 - -67.7 - 0.8905 -1.30  

 CC-NO2 1.474 - 66.5 - 0.8916 -1.17  
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Table 3 (continued)  
Compound Bond dDFT [Å] dexp [Å] φDFT [°] φexp 

[°] 

WBI %∆WBI 

[%] 

I.S. 

[cm] 

TAzTNB-2 NA-NB 1.240 - 96.6 - 1.3936 -4.72  

 NB-NC 1.110 - - - 2.4738 +3.49  

 ND-NE 1.242 - 22.5, -22.6 - 1.3833 -5.43  

 NE-NF 1.111 - - - 2.4689 +3.28  

 CA-NO2 1.468 - 50.1, -47.6 - 0.9078 +0.62  

 CB-NO2 1.478 - 92.1 - 0.8769 -2.80  

 

 

The azide-based HEDMs can have the azide oriented in or out of the plane of the ring 

(Figure 12). AzTNB, optimized from the X-ray crystal structure, and AzPNB have the azides in 

the plane of the ring. TAzTNB was optimized from the X-ray crystal structure, but conformations 

TAzTNB-1 (i.e., pin-wheel arrangement of the azides) and TAzTNB-2 (i.e., azide out of plane of 

the ring) were lower in energy (∆E+ZPE = -0.22 kcal/mol and -1.23 kcal/mol, respectively) due to 

the orientations of the azide groups. In TAzTNB, the CC-NO2 nitro is nearly perpendicular to the 

ring thereby interacting with NA and NG electrostatically and the CA-NO2 nitro sterically interacts 

with ND, while the CB-NO2 nitro lacks any intramolecular azide interaction. The nitro groups in 

TAzTNB-1 each have one azide interaction, which could explain why it is a lower energy 

conformation. In TAzTNB-2, the CB-NO2 nitro is nearly perpendicular to the ring and has two 

electrostatic interactions with the ND azides while the CA-NO2 nitro lacks an azide interaction 

because NA is not in the plane of the ring. Since NA is out of the plane of the ring in TAzTNB-2, 

it does not interact with any of the nitro groups which could contribute to the lower energy. 

Similarly to our previous study,49 steric effects between functional groups along with the number 

of explosophores influence the activation of the C-NO2 trigger bonds . Furthermore, the activation 

of the N-N2 trigger bond will likely be affected by repulsion with nitro groups as well as the number 

of -N3 trigger linkages. 
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Mechanisms of Simple Azides and Azide-Based HEDMs 

N2 extrusion for the simple azides (i.e., N-N2 bond breaking) (Figures 13-14) were 

modeled at the DFT(M06-2X)/TZVP level of theory in order to guide those in the more complex 

azide-based HEDMs. The activation energies of the structures are referenced to the singlet 

reactant. The transition states were determined by mapping the potential energy surface along the 

N-N2 bond-breaking pathway. In our calculations, the triplet phenyl nitrene product is significantly 

lower in energy than the closed-shell or open-shell singlet nitrene (ΔE+ZPE = +45.56 and +11.54 

kcal/mol, respectively), in agreement with ESR studies finding the triplet state to be the ground 

state177 as well as the singlet-triplet gap to be +15 kcal/mol computationally204 and +31.2 kcal/mol 

experimentally.203 m-NAzB and p-NAzB would also be expected to decompose to the triplet 

phenyl nitrene, because the nitro group is not ortho to the azide group (Figure 11). Comparing the 

N-N2 bond of AzB to the C-NO2 bond in NB indicates that N2 release has a lower activation energy 

(Ea = +38.29 kcal/mol, Figure 13) than C-NO2 homolysis (Ea = +68.2 kcal/mol).67  
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Figure 13. DFT(M06-2X)/TZVP optimized structures on the singlet and triplet surfaces of AzB 

for the reactant, transition state and products. 

 

 

Figure 14. DFT(M06-2X)/TZVP optimized structrues of o-NAzB on the singlet surface for 

reactant, transition state and product. 

 

Thermal decomposition of o-NAzB has a lower experimental activation energy than p-

NAzB (Ea = +26.1 kcal/mol and +40.6 kcal/mol, respectively) and undergoes thermolysis at a 
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faster rate than m-NAzB and p-NAzB67 due to release of N2 through cyclization with the adjacent 

nitro group on the singlet surface. Our DFT(M06-2X)/TZVP activation barrier for o-NAzB (Ea = 

+29.11 kcal/mol, Figure 14) is in good agreement with experiment (Ea = +26.1 kcal/mol).67 

Adding the nitro group in o-NAzB further lowers the activation energy when compared to AzB 

(Ea = +29.11 kcal/mol and +38.29 kcal/mol, respectively). Since the activation energy of the azide 

group is significantly lower for o-NAzB (i.e., breaking the N-N2 bond, +26.1 kcal/mol) than NB 

(i.e., breaking the C-NO2 bond, +68.2 kcal/mol),67 our study was limited to the mechanism of the 

azide even though both potential trigger bonds are observed in the aromatic azide-based HEDMs. 

The triplet nitrene is lower in energy for m-NAzB and p-NAzB than the closed-shell and open-

shell singlet nitrenes (Ea = +45.43 kcal/mol (m-NAzB), +41.43 kcal/mol (p-NAzB); +12.09 

kcal/mol (m-NAzB) and +11.44 kcal/mol (p-NAzB), respectively). The o-NAzB closed-shell 

singlet optimizes to the desired benzofuroxan and is lower in energy than the open-shell singlet 

nitrene and triplet nitrene (Ea = +32.16 kcal/mol and +20.44 kcal/mol, respectively). Therefore, 

the triplet and open-shell singlet surfaces were not considered for aromatic azide-based HEDMs 

with ortho nitro groups. 

The DFT(M06-2X)/TZVP activation energies for N2 extrusion in AzTNB and AzPNB (Ea 

= +28.05 kcal/mol and +31.91 kcal/mol, respectively, Figure 15) are consistent with experimental 

data for o-NAzB (Ea = +26.1 kcal/mol).67 AzTNB has the azide in the plane of the ring, producing 

the desired benzofuroxan derivative (Ea = -28.78 kcal/mol, Figure 15a). AzPNB also formed the 

desired benzofuroxan derivative with the adjacent nitro group while releasing N2 (Ea = -26.27 

kcal/mol, Figure 15b). A three-membered ring, termed benzazirine, has been observed 

computationally for aryl azides but the very small activation barrier between benzazirine and the 

cyclic ketenimine makes experimental observation rare.207 
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Figure 15. DFT(M06-2X)/TZVP optimized structures on the singlet surfaces for N2 extrusion 

for (a) AzTNB and (b) AzPNB. 

 

In order to propose the stability of multiple azide groups on a nitroaromatic backbone, three 

conformations of TAzTNB were examined (Figure 12), including the X-ray crystal structure 

(TAzTNB, Figure 16), a pin-wheel arrangement (TAzTNB-1, Figure 17a), and one with an azide 

out of plane with the ring (TAzTNB-2, Figure 17b). All conformations of TAzTNB extrude N2 to 

produce a benzofuroxan derivative, similar to o-NAzB, AzTNB and AzPNB. The three azides are 

not equally activated in TAzTNB, finding that ND-NE has the lowest activation barrier (pathway 

2, Ea = +30.62 kcal/mol) when compared to NA-NB and NG-NH (pathway 1, Ea = +32.22 kcal/mol; 

pathway 3, +32.69 kcal/mol, respectively). Our activation energies for TAzTNB are in agreement 

with previous experimental results (Ea = +26.0 kcal/mol).67 TAzTNB-1 releases N2 by cyclizing 
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with the ortho nitro group (Ea = +30.34 kcal/mol, Figure 17a) and has a barrier comparable to that 

of the ND-NE bond break in TAzTNB (pathway 2, Ea = +30.62 kcal/mol, Figure 16). TAzTNB-2 

has two potential pathways for N2 release, one with an azide in the plane with the ring (pathway 

1, ND-Ne) and another with an azide out of the plane with the ring (pathway 2, NA-NB). The 

activation energies indicate that releasing N2 from ND-Ne bond breaking is more favorable than 

releasing N2 from NA-NB bond breaking in TAzTNB-2 (Ea = +32.73 kcal/mol and +36.21 kcal/mol, 

respectively, Figure 17b), in agreement with AzTNB (Ea = +28.05 kcal/mol).  

 

 

Figure 16. DFT(M06-2X)/TZVP optimized structures of TAzTNB for N2 release on the singlet 

surface. 
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Figure 17. DFT(M06-2X)/TZVP optimized structures on the singlet surface for N2 extrusion for 

conformations (a) TAzTNB-1 and (b) TAzTNB-2. 

 

Wiberg Bond Index Analysis of Trigger Bonds 

 WBIs were calculated from the DFT(M06-2X)/TZVP optimized geometries for the C-NO2 

and N-N2 bonds and compared to the corresponding reference molecule (Table 3) to identify the 

most activated (i.e., trigger) bonds. In AzB, the dihedral angle of the azide group influences the 

strength of the N-N2 bond. As the dihedral angle increases from planar (0°) to perpendicular with 

the ring (90°), the N-N2 bond becomes deactivated (WBI (%∆WBIs) = 1.4627 (0.00%) and 1.4745 

(+0.80%), respectively, Figure 18) due to resonance disruption between the aromatic π-system 
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and the azide group. The orbitals of the azide no longer overlap with those in the ring as the twist 

of the azide increases (i.e., closer to 90°), forcing an increase in double bond character on the N-

N2 bond in the azide (Figure 19). As such, over- and under-prediction of the sensitivity can be 

attributed to the change in the twist between the gas-phase and the condensed-phase. The azide 

and nitro bonds in m-NAzB (%∆WBIs = -1.12% and -0.43%, respectively) are both activated 

relative to the bonds in AzB and NB. However, the azide is activated while the nitro is deactivated 

in p-NAzB (%∆WBIs = -1.72% and +1.17%, respectively), attributed to the fact that electron-

withdrawing groups decrease electron density through resonance in the ortho and para positions. 

Furthermore, the azide in o-NAzB is activated (%∆WBIs = -1.55%), suggesting that steric and 

electronic effects between the azide and the nitro contribute to activation since the nitro group is 

twisted which allows the azide to be in the plane of the ring. Additionally, the terminal N-N bond 

in the azide is strengthened , as represented by more positive %∆WBIs (Table 3), due to an 

increase in triple bond character, which confirms experimental data67 that finds N2 extrusion more 

favorable than NO2 homolysis. 

 



64 
 

 

 

Figure 18. N-N2 bond deactivation represented by increasing WBIs at larger dihedral angles in 

AzB. 

 

 

 

Figure 19. Resonance of AzB showing strengthening of the C-N bond to the aromatic ring and 

the terminal N-N bond of the azide when the azide is in the plane of the ring. The * indicates the 

resonance structures available when the azide is out of the plane of the ring. 
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The HEDMs are predicted to become more sensitive (i.e., more negative %∆WBIs) with 

an increasing number of nitro groups as in the series AzTNB < AzPNB (%∆WBIs = -5.30% and -

6.50%, respectively), similar to our previous study.49 A greater nitro twist allows the azide to be 

in the plane of the ring, which increases the activation of the N-N2 bond. If the nitro groups are 

more in plane with the ring, then the azide group will be deactivated because it will be more 

perpendicular to the ring. AzTNB has the azide in the plane of the ring and is more activated than 

the nitro (%∆WBIs = -5.30% and -1.57%, respectively). The additional electron-withdrawing nitro 

groups in AzPNB increase repulsion and thereby induces greater dihedral angles of the nitro 

groups. Therefore, the azide is more activated than the nitro from being in plane with the ring 

(%∆WBIs = -6.50% and -3.31%, respectively) due to electronic effects, in agreement with 

previous work.67 The azides are also more activated than the nitros in TAzTNB, TAzTNB-1 and 

TAzTNB-2, in agreement with AzTNB and AzPNB (Table 3). Conformation TAzTNB-1 is 

slightly more stable than TAzTNB but contains slightly less activated azides (%∆WBIs = -5.42% 

and -5.48%, respectively). The decrease in activation could be attributed to a decrease in repulsion 

from the slightly greater symmetry in TAzTNB-1 which leads to each azide interacting with only 

one nitro. The two electrostatic interactions between CC-NO2 with NA and NG and the steric 

interaction of CA-NO2 with ND could contribute to the greater azide activation in TAzTNB. 

Additionally, conformation TAzTNB-2 is more stable than TAzTNB and conformation TAzTNB-

1, but it contains less activated trigger bonds (%∆WBIs = -5.43%), which could be due to the azide 

twisted out of the plane with the ring thereby reducing the interaction with the ortho nitro group. 

The greater activation of the azides compared to the nitros, represented by more negative 

%∆WBIs, indicates that the trigger bond is located in the azide. The activation energies indicate 

N2 extrusion in AzTNB and AzPNB (Ea = +28.05 kcal/mol and +31.91 kcal/mol, respectively) 
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rather than nitro homolysis (Ea = +68.2 kcal/mol),67 in agreement with our %∆WBIs finding the 

azide more activated than the nitro (%∆WBIs = -5.30% and -1.57%, (AzTNB); -6.50% and -3.31% 

(AzPNB), respectively). For TAzTNB, the three azides are not equally activated according to the 

%∆WBIs (Table 3) since each have a different dihedral angle with respect to the ring as well as a 

different number of interactions with adjacent nitro groups. The %∆WBIs indicate that NA-NB is 

more activated than ND-NE and NG-NH in TAzTNB (%∆WBIs = -5.48%, -5.04% and -4.92%, 

respectively) which is in slight disagreement with the barriers for our activation barriers (Ea = 

+32.22 kcal/mol, +30.62 kcal/mol, and +32.69 kcal/mol, respectively) which find ND-NE to be 

most activated. Our results agree that NG-NH is the least activated of the three azide bonds; 

however, the disagreement between NA-NB and ND-NE for our %∆WBIs and activation barriers 

could be attributed to crystal packing effects. 

 

Conclusions 

Trigger bonds were assigned for AzTNB, AzPNB and TAzTNB and conformations by 

comparing their WBIs to those in reference molecules NB and AzB for a relative measure of 

activations of the C-NO2 and N-N2 bonds. Trigger bonds with lower electron densities than the 

reference molecules are indicated by a more negative %∆WBIs and are therefore more susceptible 

to bond breakage under stress. The N-N2 bonds, which were more activated than the C-NO2 bonds, 

became more activated as the number of azide groups increased. Greater twists in the nitro group 

with respect to the ring (i.e., closer to 90°) induce more negative %∆WBIs; however, greater twists 

in the azide group with respect to the ring (i.e., closer to 90°) lead to more positive %∆WBIs due 

to an increase in double bond character. Based on the analysis, all nitro and azide groups within a 

molecule are not necessarily equally activated to contribute to explosive decomposition initiation. 
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Secondary effects are not considered through gas-phase calculations and may need to be modeled 

in the condensed-phase. Overall, %∆WBIs can assign trigger bonds to help rationalize the 

sensitivities of azide groups compared to nitro groups. 

 The activation barriers for the simple aromatic azides indicate that without an adjacent nitro 

group (i.e., AzB, m-NAzB, p-NAzB), the azide extrudes N2 through the triplet state as indicated 

by the triplet nitrene being lower in energy than the closed-shell and open-shell nitrenes (∆E+ZPE 

= +45.56 kcal/mol and +11.54 kcal/mol, respectively). However, the adjacent nitro group in o-

NAzB forces the release of N2 in the singlet state to cyclization forming benzofuroxan. AzTNB, 

AzPNB, and TAzTNB undergo cyclization with the ortho nitro group, in agreement with our 

results for o-NAzB, andthe benzofuroxan derivative is produced when the azide is in the plane of 

the ring. The most favorable cyclization pathway for TAzTNB is for ND-NE (Ea = +30.62 

kcal/mol), which disagrees with our %∆WBIs likely due to crystal packing effects. Overall, 

%∆WBIs and activation barriers can help understand the varying sensitivities of azide trigger 

bonds in aromatic azide-based energetic materials. 
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CHAPTER 4 

TRIGGER BOND ANALYSIS OF EXPLOSOPHORE SENSITIVITY IN AZOLE-BASED 

HIGH ENERGY DENSITY MATERIALS USING WIBERG BOND INDICES 

 

Introduction 

Improving performance, sensitivity and energy release are important for the development 

of high energy density materials (HEDMs) for advanced weapons systems.1 In aeronautics,4 

propellants with exceptional energetic properties are essential to replace hazardous materials, such 

as hydrazine, to reduce pollution.1-4 However, in order to replace conventional energetic materials 

with novel HEDMs, understanding how and why explosive decomposition occurs is necessary. 

Since detonation is practically instantaneous, mechanisms of energetic reactions present obstacles 

that experimental analysis must overcome.14 Thus, models of explosive decomposition have relied 

upon information from molecular dynamics and density functional theory (DFT) to predict 

energetic properties from measures of bond activation and mechanisms of detonation.1, 14, 15  

 Explosophores5 such as nitro (–NO2)
52-56 and azide (–N3)

11 functional groups form trigger 

bonds in HEDMs, activated bonds that break to initiate explosive decomposition.16 Explosive 

decomposition proposed based on mass spectrometry57-61 and DFT62-66 for conventional energetic 

materials generally assigns initiation through homolytic bond cleavage, molecular rearrangements, 

eliminations, or ring fission. Theoretical measures of initiation include the Atoms-In-Molecules 

(AIM) method,77, 78 unimolecular decomposition activation barriers,62, 63 and bond dissociation 

energies (BDEs).79 Our group has shown that the Wiberg bond index (WBI), a measure of 

interatomic electron density measured as the sum of the squares of the off-diagonal elements of 

the density matrix (Equation 24),81 is an inexpensive method for assigning trigger bonds.16, 49 
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WBIAB = ∑ ∑(Dpq)
2

                                                                                                                 (24)

qBpA

 

Identifying trigger bonds in novel HEDMs through WBIs can guide mechanistic studies and 

predictions of energetic properties, like impact sensitivity.  

The activation of trigger bonds in energetic materials will be influenced by steric effects, 

electron-withdrawing groups and ring strain.16, 49 Activated HEDM trigger bonds are expected to 

be longer and have lower electron density relative to reference molecules (i.e., contain the same 

bond type, hybridization and explosophore). A relative scale for trigger bond activation can be 

determined by comparing the WBIs (%∆WBI) (Equation 25).16, 49  

%∆WBIAB =
WBIAB

HEDM − WBIAB
reference

WBIAB
reference

× 100                                                                         (25) 

The most negative %∆WBI specifies the activated trigger bond expected to break to initiate 

explosive decomposition. For example, o-C-NO2 and p-C-NO2 bonds in picric acid (PA) were 

compared to the C(sp2)-NO2 bond in reference molecule nitrobenzene (NB) (Figure 20).49 The 

trigger bond is assigned as the more activated o-C-NO2 bond involved in repulsion from the lone 

pair on the oxygen of the –OH group.49 The other o-C-NO2 bond is deactivated due to the 

unidirectional hydrogen bond with the hydroxyl group.49 Our previous studies determined that 

%∆WBIs correlate with experimental impact sensitivity within conventional energetic materials16, 

49 and could be used to understand how intramolecular interactions influence the sensitivity. 
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Figure 20. Example of %∆WBI analysis of PA and reference molecule NB. 

 

Conventional energetic materials have been extensively studied and thus results have been 

reproduced for experimental impact sensitivity across the literature. Since few novel HEDMs have 

been applied to real-world systems, the experimental studies on impact sensitivity are less reliable. 

Often, the results have not been reproduced or contain large variation between studies and 

methods.11, 208, 209 Therefore, this study will focus on using %∆WBIs to rationalize how different 

explosophores (i.e., C-NO2, N-NO2 and N-N2) might influence the sensitivity of a set of 35 novel, 

azole-based HEDMs (Table 4). Based on activation energies of azide trigger bonds in simple 

azides and aromatic azide-based energetic materials as shown in the previous chapter, azide trigger 

bonds should be more activated than C-NO2 trigger bonds. The results provide support that 

%∆WBIs can be used to determine how intramolecular steric and substituent effects affect the 

sensitivity of the trigger bond. 
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Table 4. The 35 azole-based HEDMs included in this study. 

HEDM Chemical Name Chemical Structure 

Reference 

NAB Nitraminobenzene 

 

MNAB methylnitraminobenzene 

 

NB nitrobenzene 

 
AzB azidobenzene 

 

Pyrazoles 

 
1 4-(N-methylnitramino)-3,5-

dinitropyrazole 

 
2 1-(3,5-dinitropyrazol-4-yl)-3-

nitroguanidine 

 
3 N-methyl-3,4,5-trinitropyrazole 

 
4 N-methyl-4-amino-3,5-

dinitropyrazole 

 
5 4-guanidino-3,5-dinitropyrazole 

 
6 N-methyl-4-azido-3,5-dinitropyrazole 

 
7 N-methyl-3-nitro-4-diazo-5-oxide 

pyrazole 
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Table 4 (continued) 
HEDM Chemical Name Chemical Structure 

8 1-amino-4-nitropyrazole 

 
9 1-amino-3,5-dinitropyrazole 

 
10 1-amino-3,4-dinitropyrazole 

 
11 1,5-diamino-3,4-dinitropyrazole 

 
12 1-amino-3,4-dinitro-5-cyanopyrazole 

 
13 1-amino-3,4-dinitro-5-azidopyrazole 

 
14 1,4-diamino-3,5-dinitropyrazole 

 
15 N-amino-4-(N-methylnitramino)-3,5-

dinitropyrazole 

 
16 1,2-bis(3,4,5-trinitro-1H-pyrazol-1-

yl)ethane 

 
17 1,1’-(ethane-1,2-diyl)bis(3,4-dinitro-

1H-pyrazol-5-amine) 
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Table 4 (continued) 
HEDM Chemical Name Chemical Structure 

18 N,N’-[1,1’-(ethane-1,2-diyl)bis(3,4-

dinitro-1H-pyrazole-5,1-

diyl)]dinitramide 

 
19 1,1’-(ethane-1,2-diyl)bis(3,4-dinitro-

1H-pyrazol-5-azide) 

 
20 1,1’-(ethane-1,2-diyl)bis(3,5-dinitro-

1H-pyrazol-4-amine) 

 
21 N,N’-[1,1’-(ethane-1,2-diyl)bis(3,5-

dinitro-1H-pyrazole-4,1-

diyl)]dinitramide 

 
22 1,2-bis(4-chloro-3,5-dinitro-1H-

pyrazol-1-yl)ethane 

 
23 1,1’-bis(4-azido-3,5-dinitro-1H-

pyrazol-1-yl)ethane 

 

Imidazoles 

 
24 1-amino-2,4-dinitroimidazole 

 
25 1-amino-4-nitroimidazole 
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Table 4 (continued) 
HEDM Chemical Name Chemical Structure 

26 1-amino-4,5-dinitroimidazole 

 
27 1-amino-4-nitro-5-azidoimidazole 

 

Triazoles 

 
28 4-nitramino-5-nitro-2H-1,2,3-triazole 

 
29 4-nitro-5-azido-2H-1,2,3-triazole 

 
30 2-amino-4,5-dinitro-1,2,3-triazole 

 
31 2-amino-4-nitro-5-azido-1,2,3-

triazole 

 
32 2-methyl-4,5-dinitro-1,2,3-triazole 

 
33 2-methyl-4-amino-5-nitro-1,2,3-

triazole 

 
34 2-methyl-4-nitramino-5-nitro-1,2,3-

triazole 

 
35 2-methyl-4-nitro-5-azido-1,2,3-

triazole 
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Computational Methods 

DFT-optimized geometries of the 35 azole-based HEDMs were calculated using Gaussian 

0946 and the hybrid functional M06-2X35 with a triple- basis set (TZVP),48 as in our previous 

study.49 All structures were characterized as minima on the potential energy surface through 

vibrational analysis. WBIs for each potential trigger bond (i.e., C-NO2, N-NO2, and N-N2) were 

calculated using Natural Bond Orbital (NBO) version 3.1.50, 51 %∆WBIs were determined from 

reference molecules nitraminobenzene (NAB), methylnitraminobenzene (MNAB), nitrobenzene 

(NB), and azidobenzene (AzB) which contain the same bond type, hybridization and explosophore 

as the HEDMs. Our previous study found basis set dependence for the WBIs;49 therefore, the 

results were obtained using TZVP. 

 

Results and Discussion 

The DFT(M06-2X)/TZVP optimized structures of the 35 azole-based energetic materials 

are in good agreement with available X-ray crystallographic data210-214 (Table 5). Generally, the 

DFT-optimized C-NO2 and N-NO2 bond distances are slightly longer than experimental values 

while the N-N2 bond distances are shorter (Table 5).210-214 Furthermore, intramolecular NH∙∙∙ONO 

hydrogen bonding interactions are shorter than those found in experiment.211, 212 Intramolecular 

interactions between the nitro and amino groups induce near-planar conformations for the azole-

based HEDMs. Hydrogen bonding interactions as well as steric effects between functional groups 

influence the strength of the potential C-NO2 trigger bonds, specifically. Steric effects between 

functional groups affect the activation of the N-NO2 and N-N2 trigger bonds. The azole-based 

energetic materials were grouped according to ring type (i.e., pyrazoles, imidazoles and triazoles) 

and compared by functional groups.  
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Table 5. Comparison of experimental and DFT(M06-2X)/TZVP bond distances [Å] and WBIs for 

C-NO2, N-NO2 and N-N2 bonds of the azole-based HEDMs210-214 with the corresponding 

experimental impact sensitivity (I.S.) [cm] and reference molecules.71, 150, 215, 216 
Compound Bond dDFT [Å] dexp [Å] WBI %∆WBI [%] I.S. [J] 

References 

NAB N-NO2 1.387 - 1.0088 0 - 

MNAB N-NO2 1.384 - 1.0182 +0.93 - 

NB C-NO2 1.481 1.464b 0.9022 0 10071 [cm] 

AzB N-N2 1.228 - 1.4627 0 - 

Pyrazoles 

1 

 

CC-NO2 1.458 - 0.9044 +0.24 

17211 CE-NO2 1.442 - 0.9364 +3.79 

ND-NO2 1.397 - 0.9775 -4.00 

2 CC-NO2 1.454 - 0.9208 +2.06 

10211 CE-NO2 1.427 - 0.9638 +6.83 

ND-NO2 1.385 - 1.0085 -0.03 

3 CC-NO2 1.458 - 0.9057 +0.39 

>40211 CD-NO2 1.467 - 0.8876 -1.62 

CE-NO2 1.446 - 0.9319 +3.29 

4 CC-NO2 1.436 - 0.9508 +5.39 
>40211 

CE-NO2 1.411 - 1.0102 +11.97 

5 CC-NO2 1.456 - 0.9095 +0.81 
>40211 

CE-NO2 1.421 - 0.9778 +8.38 

6 CC-NO2 1.449 - 0.9246 +2.48 

14211 CE-NO2 1.439 - 0.9524 +5.56 

ND-N2 1.241 - 1.3931 -4.76 

7 CC-NO2 1.451 1.430 0.9124 +1.13 22211 

8 CD-NO2 1.435 - 0.9567 +6.04 >40212 

9 CE-NO2 1.439 - 0.9438 +4.61 
>40212 

CC-NO2 1.455 - 0.9128 +1.17 

10 CC-NO2 1.466 - 0.8839 -2.03 
>40212 

CD-NO2 1.442 - 0.9433 +4.56 

11 CC-NO2 1.467 1.448 0.8804 -2.42 
>40212 

CD-NO2 1.416 1.402 0.9988 +10.71 

12 CC-NO2 1.466 - 0.8871 -1.67 
>40212 

CD-NO2 1.448 - 0.9297 +3.05 

13 CC-NO2 1.468 - 0.8804 -2.42 

1.5212 CD-NO2 1.429 - 0.9690 +7.40 

NE-N2 1.245 - 1.3709 -6.28 

14 CE-NO2 1.408 1.398 1.0165 +12.67 
>40211 

CC-NO2 1.429 1.406 0.9650 +6.96 

15 CC-NO2 1.453 - 0.9145 +1.36 

18211 CE-NO2 1.439 - 0.9394 +4.12 

ND-NO2 1.400 - 0.9727 -4.47 

16 CC/C’-NO2 1.462 1.441 0.8987 -0.39 

25213 CD/D’-NO2 1.465 1.450 0.8931 -1.01 

CE/E’-NO2 1.450 1.433 0.9237 +2.38 

17 CC/C’-NO2 1.465 - 0.8824 -2.19 
>40213 

CD/D’-NO2 1.424 - 0.9812 +8.76 
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Table 5 (continued) 
Compound Bond dDFT [Å] dexp [Å] WBI %∆WBI [%] I.S. [J] 

18 CC-NO2 1.468 - 0.8810 -2.35 

6213 

CD-NO2 1.439 - 0.9520 +5.52 

NE-NO2 1.426 - 0.9307 -7.74 

CC’-NO2 1.465 - 0.8894 -1.42 

CD’-NO2 1.439 - 0.9469 +4.95 

NE’-NO2 1.424 - 0.9319 -7.62 

19 CC/C’-NO2 1.467 1.460 0.8822 -2.22 

4213 CD/D’-NO2 1.430 1.422 0.9663 +7.10 

NE/E’-N2 1.248 1.255 1.3585 -7.12 

20 CC/C’-NO2 1.439 - 0.9436 +4.59 
>40213 

CE/E’-NO2 1.411 - 1.0110 +12.06 

21 CC-NO2 1.453 - 0.9172 +1.66 

7213 

ND-NO2 1.407 - 0.9608 -4.76 

CE-NO2 1.448 - 0.9276 +2.82 

CC’-NO2 1.461 - 0.8985 -0.41 

ND’-NO2 1.407 - 0.9566 -5.17 

CE’-NO2 1.435 - 0.9589 +6.28 

22 CC/C’-NO2 1.462 - 0.9055 +0.37 
>40213 

CE/E’-NO2 1.446 - 0.9350 +3.64 

23 CC/C’-NO2 1.451 - 0.9197 +1.94 

3213 ND/D’-N2 1.241 - 1.3910 -4.90 

CE/E’-NO2 1.441 - 0.9462 +4.88 

Imidazoles 

24 CB-NO2 1.456 - 0.9052 +0.33 
>40214 

CD-NO2 1.454 - 0.9119 +1.08 

25 CE-NO2 1.452 - 0.9166 +1.60 >40214 

26 CE-NO2 1.439 - 0.9398 +4.17 
>40214 

CD-NO2 1.463 - 0.8909 -1.25 

27 CE-NO2 1.435 - 0.9466 +4.92 
3.5214 

ND-N2 1.242 - 1.3824 -5.49 

Triazoles 

28 CE-NO2 1.445 1.421 0.9279 +2.85 
3.5210 

ND-NO2 1.407 1.347 0.9590 -4.94 

29 CE-NO2 1.444 - 0.9298 +3.06 
4210 

ND-N2 1.240 - 1.4043 -3.99 

30 CD-NO2 1.459 1.442  0.8973  -0.54  
24210 

CE-NO2 1.459 1.451 0.8989 -0.37 

31 CE-NO2 1.448 - 0.9253 +2.56 
3210 

ND-N2 1.242 - 1.4003 -4.27 

32 CD-NO2 1.458 - 0.9005 -0.19 
35210 

CE-NO2 1.458 - 0.9008 -0.16 

33 CE-NO2 1.429 - 0.9613 +6.55 >40210 

34 CE-NO2 1.442 - 0.9341 +3.54 
25210 

ND-NO2 1.406 - 0.9630 -4.54 

35 CE-NO2 1.445 - 0.9365 +3.06 
8210 

ND-N2 1.241 - 1.4067 -4.00 
aMNA is documented as 1.317 Å in the cif and 1.318 Å in the paper by Kettner et al.215 
bNB is documented as 1.464 Å in the cif and 1.467 Å in the paper by Boese et al.150 
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Wiberg Bond Index Analysis of Trigger Bonds 

 WBIs were calculated from the DFT(M06-2X)/TZVP optimized geometries for the C-NO2, 

N-NO2 and N-N2 trigger bonds of the 35 novel azole-based energetic materials and compared to 

the corresponding bond in reference molecules with the same bond type, hybridization and 

explosophore (Table 5). The HEDMs should become more sensitive (i.e., more negative 

%∆WBIs) with an increasing number of C-NO2 groups as in the series 5 > 1 (%∆WBIs = +0.81% 

and -4.00%, respectively), 5 > 2 (%∆WBIs = +0.81% and -0.03%, respectively), 20 > 16 (%∆WBIs 

= +4.59% and -1.01%, respectively), 22 > 16 (%∆WBIs = +0.37% and -1.01%, respectively) and 

33 > 32 (%∆WBIs = +6.55% and -0.19%, respectively), consistent with experimental impact 

sensitivity data. %∆WBIs indicate the same trend for HEDMs with a lower limit for experimental 

impact sensitivity (i.e., >40 J), as in the series 8 > 9 (%∆WBIs = +6.04% and +1.17%, 

respectively), 8 > 10 (%∆WBIs = +6.04% and -2.03%, respectively), 4 > 3 (%∆WBIs = +5.39% 

and -1.62%, respectively), 25 > 26 (%∆WBIs = +1.60% and -1.25%, respectively) and 25 > 24 

(%∆WBIs = +1.60% and +0.33%, respectively).  

Similarly to our previous study,49 under-prediction of the sensitivity (i.e., more positive 

%∆WBIs than expected) based on %∆WBIs in the series 16 > 17 (%∆WBIs = -1.01% (I.S. = 25 

J) and -2.19% (I.S. = >40 J), respectively) could be attributed to the differences in the dihedral 

angles of the nitro group with respect to the ring in the gas-phase versus the condensed-phase 

(Table 6). As the twist of the nitro group increases from planar (0°) to perpendicular with the ring 

(90°) in NB, the trigger bond becomes more activated from reduced aromatic π-system 

conjugation.49 When the dihedral angles are constrained to the values in the X-ray crystal structure 

of 16 (Table 6), the %∆WBI shifts to -1.60%; however, the series remains inconsistent. 

Furthermore, %∆WBI over-prediction of the sensitivity (i.e., more negative %∆WBIs than 
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expected) for 17 could be attributed to the differences in the dihedral angles between the phases; 

however, experimental X-ray crystallographic evidence is needed for validation. Finding shifts in 

the %∆WBIs based on constraining the dihedral angles to those in the X-ray crystal structures 

which lead to over- and under-prediction is consistent with our previous study.49 Additionally, 

under- and over-prediction of sensitivity of the azide group could be attributed to differences in 

the dihedral angles with respect to the ring in the gas-phase versus the condensed-phase (Table 6). 

As shown in our study on simple azides and aromatic azide-based energetic materials in the 

previous chapter, when the twist of the azide group increases from planar (0°) to perpendicular 

with the ring (90°) in AzB, the N-N2 trigger bond becomes deactivated (WBI (%∆WBIs) = 1.4627 

(0.00%) and 1.4745 (+0.80%), respectively) likely from resonance disruption between the 

aromatic ring system and the azide group. 

 

Table 6. Comparison of available experimental and DFT(M06-2X)/TZVP dihedral angles [°] for 

C-NO2, N-NO2 and N-N2 bonds of the azole-based HEDMs210-214 and reference molecules.150 
HEDM Bond φDFT [°] φexp [°] 

Reference 

NB C-NO2 0.0 1.7 

Pyrazoles 

7 CC-NO2 0.0 2.6 

11 
CC-NO2 -49.7 -39.8 

CD-NO2 -3.2 -8.3 

14 
CE-NO2 3.2 3.7 

CC-NO2 -0.1 0.1 

16 

CC-NO2 -19.2 -15.1 

CC’-NO2 +19.2 15.2 

CD-NO2 -65.0 -76.8 

CD’-NO2 64.6 76.4 

CE/E’-NO2 ±22.2 ±14.5 

19 

CC-NO2 -51.5 -55.4 

CC’-NO2 47.4 55.2 

CD/D’-NO2 ±5.3 ±4.8 

NE/E’-N2 ±31.1 ±43.6 

Triazoles 

28 CE-NO2 -8.7 6.1 

30 
CD-NO2 -37.0 -31.6  

CE-NO2 -36.1 -29.5 
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Intramolecular hydrogen bonding strengthens and deactivates C-NO2 trigger bonds. 

HEDMs with these interactions would be expected to be less sensitive to explosive decomposition. 

Contributions from resonance structures with C=N double bond character induced by 

intramolecular hydrogen bonding favor nearly planar nitro groups with shortened C-NO2 bond 

lengths which are deactivated toward explosive decomposition. Therefore, C-NO2 bonds 

influenced by hydrogen bonding interactions will not break as easily relative to isolated C-NO2 

bonds. Within energetic materials that contain intramolecular hydrogen bonds, not all nitro groups 

form trigger bonds (Figure 21). For example, the CC-NO2 bond in 11 is activated by repulsion 

while the CD-NO2 bond is deactivated due to hydrogen bonding (%∆WBIs = -2.42% and +10.71%, 

respectively). Furthermore, the C-NO2 bonds in 14 are both deactivated due to –NH2 hydrogen 

bonding interactions. The level of deactivation differs between the C-NO2 bonds due to the number 

of hydrogen bonding interactions (i.e., one for CC-NO2 (%∆WBI = +6.96%) and two for CE-NO2 

(+12.67%)). The greater deactivation with an increasing number of hydrogen bonding interactions 

is due to an increase in double-bond character. 

 

 

Figure 21. Select bond distances (Å) and %∆WBIs (%) for trigger bonds in 11, 14, 9 and 10. 
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The position of the nitro group on the ring influences the sensitivity. For example, 9 and 

10 are isomers with two C-NO2 bonds. However, both have a lower limit for experimental impact 

sensitivity (i.e., > 40 J). Based on %∆WBIs, 10 would likely be more sensitive than 9 (%∆WBIs 

= -2.03% and +1.17%, respectively, Figure 21) due to the increased repulsion in 10 from the 

adjacent nitro groups forcing the twist out of the plane of the ring. The intramolecular hydrogen 

bonding interaction of 9 likely stabilizes the CE-NO2 bond and a lack of repulsion will keep the 

CC-NO2 bond in the plane with the ring, thus keeping the bonds deactivated. Additionally, our 

%∆WBIs suggest that 26 would be more sensitive than 24 (%∆WBIs = -1.25% and +0.33%, 

respectively), but better tests on experimental impact sensitivity are required to confirm our results. 

In 26, the increased repulsion of CD-NO2 from increased planarity of the CE-NO2 from the amino 

group hydrogen bond can account for the potential increase in sensitivity. In 24, the CB-NO2 is 

hydrogen bonded with the –NH2 group, while the CD-NO2 bond is coplanar with the ring. 

 Different combinations of explosophores, including C-NO2, N-NO2 and N-N2, are found 

in novel azole-based HEDMs. When a C-NO2 is substituted with a C-N3 as in the series 3 > 6 

(%∆WBIs = -1.62% and -4.76%, respectively) and 30 > 31 (%∆WBIs = -0.54% and -4.27%, 

respectively), the %∆WBIs indicate that the azide functional group is more sensitized than a nitro 

group bonded to an sp2 carbon (Figure 22), in agreement with experimental impact sensitivity 

values (Table 5). The adjacent C-NO2 functional groups remain planar with the ring, thus 

deactivating the bonds. We also find that the N-NO2 bond is also more activated than C-NO2 

(Figure 23), in agreement with measures of experimental impact sensitivity (Table 5), as in the 

series 16 < 18 (%∆WBIs = -1.01% and -7.74%, respectively) and 32 < 34 (%∆WBIs = -0.19% and 

-4.54%, respectively). However, based on %∆WBIs the N-NO2 bond is predicted to be more 
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activated than N-N2, but molecules with N-NO2 groups are less sensitive experimentally (Table 

5) than the azides, as in 34 > 35 (%∆WBIs = -4.54% and -4.00%, respectively, Figure 24a). This 

erroneous prediction by the %∆WBI method could be attributed to secondary solid-state effects 

on the activation of the explosophores in the condensed phase as the correct order is predicted for 

some pairs of analogous molecules (i.e., 29 > 28 (%∆WBIs = -3.99% and -4.94%, respectively, 

Figure 24b). Therefore, %∆WBIs might not be able to accurately distinguish between sensitivities 

of these explosophore groups.  

 

 

Figure 22. Select bond distances (Å) and %ΔWBIs (%) for trigger bonds in 3, 6, 30, and 31. 

 

 

 

Figure 23. Select bond distances (Å) and %ΔWBIs (%) for trigger bonds in 16, 18, 32, and 34. 

 



83 
 

 

 

Figure 24. Select bond distances (Å) and %ΔWBIs (%) for trigger bonds in (a) 32, 34 and 35, 

and (b) 28 and 29. 

 

Substituting –NH2 groups for N-NO2 group increases the sensitivity of the azole-based 

HEDMs due to an additional nitro group. The %∆WBIs indicate this trend (Figure 25), in 

agreement with experimental impact sensitivity (Table 5), as in the series 5 > 2 (%∆WBIs = 

+0.81% and -0.03%) and 33 > 34 (%∆WBIs = +6.55% and -4.54%). The lack of two hydrogen 

bonding interactions with the addition of an explosophore (i.e., nitro (-NO2) group) forces an 

increase in the %∆WBIs from greater twists of the nitro groups from repulsion. Additionally, 

planarity of the nitro group involved in the one hydrogen bonding interaction with the -NH- group 

induces a decrease in activation based on %∆WBIs. 
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Figure 25. Select bond distances (Å) and %ΔWBIs (%) for trigger bonds in 5, 2, 33, and 34. 

 

Some pyrazole-based HEDMs consist of two rings linked by an aliphatic backbone (i.e., 

16-23). The HEDMs become more sensitive with the second ring, which could be attributed to the 

additional explosophores, as in the series 6 > 23 (%∆WBIs = -4.76% and -4.90%, respectively), in 

agreement with experimental impact sensitivity (Table 5). Within a series with a lower limit for 

experimental impact sensitivity 4 > 20 (%∆WBIs = +5.39% and +4.59%, respectively), the same 

trend is observed. However, the trend does not agree with our %∆WBIs for the trend 16 > 3 

(%∆WBIs = -1.01% (I.S. 25 J) and -1.62% (I.S. >40 J), respectively), which could be attributed to 

secondary effects or the twist of the nitro groups crystal packing. Upon constraining the twist in 

16, the %∆WBIs shift to -1.60% which still does not agree with the trend. However, experimental 

evidence for 3 is necessary to determine whether the twists of the nitro groups change and thus 

influence the impact sensitivity. 

Assignment of trigger bond strengths through %∆WBI analysis should agree with 

experimental sensitivity data. Experimental values were chosen from consistent experimental 

methods across subsets of the azole-based HEDMs since literature values often vary depending on 

the technique used.210-214 Impact sensitivities were selected from a 10 kg drop weight210 data or the 

standard BAM fallhammer method211-214 depending on the subset of the azole-based HEDMs. The 

correlations between %∆WBIs and experimental impact sensitivity data for the novel azole-based 
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HEDMs are not as strong as they were for the nitroaromatic energetic materials,49 which could be 

attributed to secondary effects in crystal packing or the lower limit of the drop hammer test. The 

imperfect R2 values observed in the correlations for the imidazoles, triazoles and pyrazoles (R2 = 

0.857, 0.534 and 0.589, respectively; Figure A9) are likely due to the lower limits of the 

experimental impact sensitivity data (Table 5) and the lack of reproducible results across the 

literature. However, it could also be due to the different dihedral angles between the gas- and 

condensed-phases leading to over- and under-prediction of the %∆WBIs. %∆WBIs are less 

predictive for the novel azole-based HEDMs which could be attributed to secondary effects 

including strong hydrogen bonding networks, intermolecular repulsions, ring strain and other 

secondary effects in crystal packing. Additionally, the impact sensitivities for the azole-based 

HEDMs are only reported once in literature and the conventional nitroaromatic energetic materials 

contain large variations16, 49 suggesting that the HEDMs would also be dependent on the technique 

and drop weight used. 

 

Conclusions 

WBIs have been used to characterize trigger bonds, defined as the bond most likely to 

initiate detonation, for a series of azole-based HEDMs. Trigger bonds were determined by 

comparing WBIs of the energetic materials to those in reference molecules to provide a relative 

scale for the activation of the bond. C-NO2, N-NO2 and N-N2 trigger bonds were assumed in these 

HEDMs based on our previous studies.16, 49 The most activated trigger bond relative to the 

reference was generally the azide. However, the N-NO2 trigger bond was also significantly 

activated throughout the azole-based HEDMs. The C-NO2 trigger bonds were strongly influenced 

by intramolecular hydrogen bonds and were less activated than the N-NO2 and N-N2 trigger bonds, 
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consistent with our previous work on simple azides and aromatic azide-based energetic materials. 

As a result, %∆WBIs can assign trigger bonds to propose initiation for explosive decomposition 

and interpret energetic properties of novel HEDMs, specifically impact sensitivities. %∆WBIs do 

not correlate with impact sensitivity for the azole-based HEDMs likely due to the inconsistent 

experimental methods and the lack of sufficient data in the literature. Nevertheless, %∆WBIs could 

be used as a tool for understanding molecular-level contributions to the origins of energetic 

properties. %∆WBI analysis was previously shown to indicate the influence of intramolecular 

interactions, in agreement with our study; therefore, %∆WBIs can be used to rationalize the varied 

sensitivity observed for different explosophore groups across a set of azole-based HEDMs. 
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CHAPTER 5 

INFLUENCE OF PRESSURE ON INTERMOLECULAR INTERACTIONS IN AMMONIUM 

NITRATE 

 

Introduction 

Generally, conventional, molecular energetic materials undergo explosive decomposition 

by homolytic cleavage or elimination through X-NO2 (X=N,C,O) and N-N2 trigger bonds.5, 16, 49 

However, energetic materials composed of salts, such as ammonium nitrate, are initiated to 

decompose by interatomic transfer.9, 36, 217-219 Ammonium nitrate is the major component used in 

explosives and propellants since it is a halogen-free, inexpensive oxidizer.9, 36, 220 The nontoxic 

detonation products make ammonium nitrate desirable;9 however, accidental detonation can occur, 

even when safety precautions are taken.217, 221 As temperature increases past the melting point 

(170ºC), different reactions are observed. At lower temperatures (170-200ºC), an endothermic 

reversible proton transfer reaction occurs as melted ammonium nitrate vaporizes into ammonia 

and nitric acid (Equation 26):9, 36, 217, 218, 222 

𝑁𝐻4𝑁𝑂3(s) → 𝑁𝐻3(𝑔) + 𝐻𝑁𝑂3(𝑔)                                                                                           (26) 

At higher temperatures and pressures, several dominant and irreversible reactions occur following 

the explosive hydrogen transfer (Equations 27-35).9, 36, 217-219 Previous gas-phase theoretical 

calculations show that the hydrogen transfer is the dominant pathway in the explosive 

decomposition of ammonium nitrate.36, 222 

𝐻𝑁𝑂3 → ∙ 𝑂𝐻 + ∙ 𝑁𝑂2                                                                                                                     (27) 

∙ 𝑂𝐻 + 𝑁𝐻3 → ∙ 𝑁𝐻2 + 𝐻2𝑂                                                                                                           (28) 

∙ 𝑁𝐻2 + ∙ 𝑁𝑂2 → ∙ 𝐻2𝑁𝑂 + ∙ 𝑁𝑂                                                                                                    (29) 
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∙ 𝑁𝐻2 +  ∙ 𝑁𝑂2 → 𝑁2𝑂 + 𝐻2𝑂                                                                                                        (30) 

∙ 𝑁𝐻2 + ∙ 𝑁𝑂 → 𝑁2𝐻+ + ∙ 𝑂𝐻                                                                                                       (31) 

∙ 𝑁𝐻2 + ∙ 𝑁𝑂 → 𝑁2 + 𝐻2𝑂                                                                                                              (32) 

∙ 𝑂𝐻 + ∙ 𝑂𝐻 → 𝐻2𝑂 + ∙ 𝑂                                                                                                                (33) 

∙ 𝑂𝐻 + 𝐻𝑁𝑂3 → 𝐻2𝑂 + 𝑁𝑂3
−                                                                                                        (34) 

∙ 𝑂𝐻 + ∙ 𝐻2𝑁𝑂 → 𝐻𝑁𝑂 + 𝐻2𝑂                                                                                                       (35) 

Once hydrogen transfer occurs, nitric acid initiates the chain reaction by breaking the N-O bond 

(Equation 27) to produce the radicals that propagate the formation of most of the detonation 

products (Equations 27-35).222  

Gas-phase calculations serve as a guide for the behavior of energetic materials in the 

condensed phase;67 however, because detonation is unique to the condensed phase, characterizing 

intermolecular interactions are vital for understanding their performance and sensitivities. 

Studying energetic materials in the solid state provides insight into the stability, efficiency, and 

environmental compatibility in a crystalline environment. For example, in crystal packing, 

hydrogen bonding interactions may affect the activation of nitro groups. Many theoretical studies 

on conventional energetic materials have been performed in the gas phase under ambient 

conditions (pressure, temperature, etc.),66, 223 so investigating energetic materials under increased 

pressure will determine the dependence and influence of intermolecular interactions on their 

shock-sensitive properties. Other studies in the condensed-phase of conventional energetic 

materials, such as 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 

ammonium nitrate, have used MD using DFT65, 224 and reactive force fields (ReaxFF),225-234 

finding structural differences and phase changes,65, 224-233, 235 confirmed by NMR spectroscopy,236 
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and hot spot formation (i.e., defects in the material (high stress and temperature regions) that 

promote rapid decomposition).226-228, 233, 235 

Ammonium nitrate has been widely researched since it is used in various explosive 

formulations.9, 36, 220 Through computational and experimental studies, various phases of 

ammonium nitrate have been determined (Figure 26). Phase V is the low temperature phase, 

confirmed by neutron diffraction studies.232, 235 At ambient temperatures, the ions rotate to Phase 

IV, characterized by X-ray crystallography and neutron diffraction.232, 235 At elevated 

temperatures, ammonium nitrate forms the disordered Phase III in the presence of small amounts 

of water.232, 235 Further heating forces a transition to Phase II, and then Phase I which is disordered 

and stable up to the melting point.232, 235 Thus, phase changes observed in the condensed-phase of 

ammonium nitrate are related to differences in interactions between the ions. 

In this study, pressure dependence of ammonium nitrate will be investigated to determine 

the changes in intermolecular interactions over time. Additionally, the dependence of 

compressibility on intermolecular interactions and the effect of intermolecular interactions on 

phase changes will be determined over time with increasing pressure.  
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Figure 26. Ammonium nitrate phases V, IV, II, and I with rotational freedom of the ions 

indicated by circles. Phase III is not shows since it requires moisture. Reprinted from Velardez, 

G. F.; Alavi, S.; Thompson, D. L. J. Chem. Phys. 2004, 120, 9151., with the permission of AIP 

Publishing. 

 

Computational Methods 

Geometries were optimized in the condensed-phase, starting from the X-ray crystal 

structure of Phase IV ammonium nitrate,237 by Periodic Boundary Conditions (PBC) using 

Quantum Espresso47 for a more realistic crystalline environment. The 8-unit cell was used for the 

ammonium nitrate calculations because it sufficiently models the hydrogen bonding and more 

importantly the reactivity in a crystalline environment without being too computationally 

expensive. The Perdew-Burke-Ernzerhof (PBE)31 pseudopotentials are used for the calculations 
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due to good correlation to X-ray crystal structural data. Structures were optimized until the energy 

and forces were well converged, and the molecular dynamics simulations were performed to 

determine how the optimized structures change over time with increasing pressure. Optimizations 

were performed using “vc-relax” which allows the optimization of the unit cell parameters as well 

as all atomic coordinates. Molecular dynamics simulations were conducted using “vc-md” which 

allows the unit cell parameters and atomic coordinates to fluctuate over time. Pressure was 

increased incrementally, and the temperature was allowed to equilibrate across the simulation.  

 

Results and Discussion 

Optimized Structure of Ammonium Nitrate 

Ammonium nitrate was optimized from the X-ray crystal structure at various pressures to 

determine changes to phase and the hydrogen-bonding between ions. Our optimized structure 

under ambient conditions (Figure 27) is comparable to those previously reported in literature.232, 

234, 237, 238 Our results are consistent with Phase IV of ammonium nitrate, which is reported to be 

stable up to 323 K.232, 235 The optimized structure has bond distances in agreement with the X-ray 

crystal data (i.e., 2.038 Å and 2.326 Å labeled in green, respectively; 2.038 Å and 2.049 Å labeled 

in yellow, respectively; 1.960 Å and 2.161 Å labeled in pink, respectively).237 Previous studies 

indicate that there are five stable conformations of ammonium nitrate at normal pressures and up 

to the melting point around 442 K, all dependent on the orientation of the ammonium and nitrate 

ions.232, 235  
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Figure 27. PBC optimized structure of ammonium nitrate under ambient pressure (volume: 1169 

Å3) with hydrogen bonding interactions circled in green, pink and yellow. The hydrogen bonds 

labeled in green and yellow are identical under ambient pressure. 

 

As the pressure increases from ambient conditions to higher pressures, the unit cell 

condenses and the hydrogen bonds become shorter. The unit cell appears to retain the Phase IV 

conformation with slight orientation differences in the ammonium ions as the pressure increases, 

as seen in Figures 28-32. The ammonium ion re-positions to hydrogen bond with the oxygen atom 

on the nitrate (i.e., circled in yellow) rather than having an equal hydrogen bonding interaction, 

which is observed under ambient conditions. Upon increasing the pressure to 30 GPa and 35 GPa, 

the unit cell contains a strong hydrogen bonding network with much shorter hydrogen bonds than 

those observed under ambient conditions (1.590 Å, 1.575 Å and 2.038 Å, respectively). Therefore, 

intermolecular interactions are influenced by pressure which decreases the volume and makes the 

unit cell more compact. The unit cell retains order at the increased pressures, but molecular 
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dynamics simulations are performed to determine whether changes in orientation and crystal 

packing occur as the pressure increases along with temperature. 

 

 

Figure 28. PBC optimized structure of ammonium nitrate at 1 GPa (volume: 1134 Å3) with 

hydrogen bonding interactions circled in green, pink and yellow. 
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Figure 29. PBC optimized structure of ammonium nitrate at 5 GPa (volume: 1024 Å3) with 

hydrogen bonding interactions circled in green, pink and yellow. 

 

 

Figure 30. PBC optimized structure of ammonium nitrate at 10 GPa (volume: 947 Å3) with 

hydrogen bonding interactions circled in green, pink and yellow. 
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Figure 31. PBC optimized structure of ammonium nitrate at 30 GPa (volume: 792 Å3) with 

hydrogen bonding interactions circled in green, pink and yellow. 
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Figure 32. PBC optimized structure of ammonium nitrate at 35 GPa (volume: 768 Å3) with 

hydrogen bonding interactions circled in green, pink and yellow. 

 

Detonation Mechanism Analysis of Ammonium Nitrate by Molecular Dynamics 

 Previous experimental studies9, 218, 219 have found that ammonium nitrate can undergo 

several decomposition pathways, with the most common being hydrogen transfer to form ammonia 

and nitric acid.9, 234 In the molecular dynamics calculations, we took the optimized structure of 

ammonium nitrate under ambient conditions and then increased the pressure to see how 

conformation, orientation and intermolecular interactions change over time. A previous study 

ReaxFF and a 48-unit cell of ammonium nitrate found that as temperature increased from 0 K to 

2500 K, phases I, IV and V are observed.234 Additionally, the pressure increases to 5 GPa at the 

highest temperature.234 Another study found Phase IV is retained at pressures up to 600 GPa and 

no hydrogen transfer occurs from the ammonium ion to the nitrate ion to form nitric acid and 

ammonia.235 Since a phase change is not observed through 600 GPa, better computational methods 
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are necessary to model structural differences and the energetic nature of compounds like 

ammonium nitrate. 

 Under ambient pressure, molecular dynamics simulations indicate that the unit cell retains 

the Phase IV conformation, as observed with the optimization, without much movement of the 

ammonium and nitrate ions (Figure 33). The H3NH∙∙∙ONO2 intermolecular hydrogen bond, 

labeled in green in Figure 33, fluctuates between 1.725 Å and 2.100 Å throughout the simulation. 

The corresponding N-H bond distance varies (i.e., 1.032 Å and 1.051 Å) but equilibrates around 

1.042 Å while the N-O bond distance changes (i.e., 1.256 Å and 1.270 Å) but stabilizes around 

1.265 Å Additionally, the H3NH∙∙∙ONO2 intermolecular hydrogen bond between the layers of the 

unit cell, labeled in pink in Figure 33, fluctuates between 1.875 Å and 2.275 Å throughout the 

simulation, finding increased stability around 2.125 Å and 2.025 Å. The corresponding N-H bond 

distance varies (i.e., 1.024 Å and 1.040 Å) but stabilizes around 1.033 Å while the N-O bond 

distance changes (i.e., 1.284 Å and 1.298 Å) but stabilizes around 1.292 Å. The temperature 

equilibrates around 21 K and the energy stabilizes between -6 kcal/mol and -11 kcal/mol (Figure 

34) while the volume varies around 1195 Å3. Equilibration at such a low temperature could be 

attributed to the size of the unit cell (i.e., larger volume) and the ambient conditions (i.e., small 

pressure). 
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Figure 33. MD structures of ammonium nitrate under ambient pressure with hydrogen bonding 

interactions circled in green and pink. 

 

 

Figure 34. Energy plot of ammonium nitrate at ambient pressure. 
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The unit cell becomes more compact and starts to deviate slightly from the Phase IV 

conformation at 5 GPa due to the orientation of the ions across the simulation (Figure 35). 

However, the structure equilibrates back to Phase IV by the end of the simulation. The 

H3NH∙∙∙ONO2 intermolecular hydrogen bond, labeled in green in Figure 35, fluctuates between 

2.175 Å and 1.650 Å throughout the simulation. The corresponding N-H bond distance varies 

between 1.023 Å and 1.048 Å while the N-O bond distance changes between 1.258 Å and 1.278 

Å. Additionally, the H3NH∙∙∙ONO2 intermolecular hydrogen bond between the layers of the unit 

cell, labeled in pink in Figure 35, fluctuates between 1.875 Å and 2.100 Å throughout the 

simulation. The corresponding N-H bond distance varies between 1.029 Å and 1.037 Å while the 

N-O bond distance changes between 1.278 Å and 1.295 Å. Additionally, the H3NH∙∙∙ONO2 

hydrogen bond labeled blue in Figure 35, is shortened to around 1.575 Å, indicative of the strong 

hydrogen bonding network; however, that bond also increases to 2.200 Å in the simulation. An 

important note is that the hydrogen bond only lasts for a few frames (~0.004 ps), suggesting that a 

higher pressure will be required for a hydrogen transfer to occur. The temperature plateaus around 

138 K, the energy stabilizes around +68 kcal/mol (Figure 36), and the volume starts to equilibrate 

toward the end of the simulation around 1050 Å3. The large variation in the energy over the first 

half of the simulation can be attributed to the large fluctuation in the unit cell volume across the 

first 2100 frames. 
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Figure 35. MD structures of ammonium nitrate at 5 GPa with hydrogen bonding interactions 

circled in green, pink, blue and yellow. 

 

 

Figure 36. Energy plot of ammonium nitrate at 5 GPa. 
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As the pressure increases to 35 GPa, the unit cell becomes more compact and disordered 

as observed in the initial structure (Figure 37). Furthermore, the intermolecular H3NH∙∙∙ONO2 

hydrogen bonding interactions fluctuate drastically. For example, the hydrogen bond labeled in 

green in the first and last frames in Figure 37 oscillates between 1.500 Å and 4.000 Å across the 

simulation, which can be attributed to the rapid rotation of the ammonium and nitrate ions. The 

corresponding N-H bond distance varies between ~1.000 Å and ~1.300 Å while the N-O bond 

distance changes between ~1.200 Å and ~1.350 Å. The temperature equilibrates around 1722 K 

and the volume stabilizes around 820 Å3 while the energy fluctuates, due to the rapid rotation of 

the ions (Figure 38). The temperature equilibrates at a higher value because the volume of the unit 

cell decreases drastically with greater pressure. 

 

 

Figure 37. MD structures of ammonium nitrate at 35 GPa with hydrogen bonding interactions 

circled in green and the green arrows show their reorientation. 
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Figure 38. Energy plot of ammonium nitrate at 35 GPa. 

 

As the pressure increases to 40 GPa, the unit cell becomes more compact, the hydrogen 

bonding network is increased, and then completely loses the Phase IV conformation observed in 

the initial structure (Figure 39), similarly to the simulation at 35 GPa. The temperature equilibrates 

around 2074 K and the volume stabilizes around 813 Å3. The energy fluctuates widely at the 

beginning of the simulation due to the large changes in overall compactness (Figure 40), similarly 

to the results at 35 GPa. A difference between ammonium nitrate at 35 GPa and 40 GPa is that 

hydrogen transfer occurs toward the end of the simulation, forming ammonia and nitric acid, at 40 

GPa (Figure 39), which could also contribute to the large energy variation. Looking closer at the 

energy after hydrogen transfer (Figure 40, circled in red), you can see stabilization of the energy 

around +1580 kcal/mol. The energy is relatively stable in these frames which indicates the 

increased strength and shortness of the O-H bond from hydrogen transfer to produce ammonia and 
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nitric acid (Figure 39, labeled in pink). The initial hydrogen bond labeled in green in Figure 39 is 

traced in Figure 41, finding the hydrogen bond transfer toward the end of the simulation (i.e., 

~1.000 Å) for the formation of ammonia and nitric acid (Figure 39, labeled yellow) accompanied 

by other strong hydrogen bonding interactions. The results indicate the initial bond breaking and 

formation that could lead to detonation at 40 GPa. Longer simulations are required in order to 

show complete detonation of ammonium nitrate. 

 

 

Figure 39. MD structures of ammonium nitrate at 40 GPa. Green arrows indicate the hydrogen 

that is transferred to the nitrate, which is circled in pink and yellow. 
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Figure 40. Energy plot of ammonium nitrate at 40 GPa. 
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Figure 41. Trace of the intermolecular H3NH∙∙∙ONO2 hydrogen bond labeled with green arrows 

in Figure 39. 

 

Conclusions 

The pressure dependence of ammonium nitrate is studied since it is a simple energetic 

material that remains widely used as an oxidizer in propellants and explosives. As the pressure 

increases, the unit cell becomes more compact and the hydrogen bonds become shorter, indicating 

an increase in the hydrogen-bonding network. The interactions between ions observed in the 

optimizations change with increasing pressure, indicating the orientation of the ions are influenced 

by pressure. Furthermore, the MD simulations suggest that intermolecular hydrogen transfer of 

ammonium nitrate to form ammonia and nitric acid occurs around 40 GPa. The transfer of 

hydrogen, even though it only lasted over a few frames in the simulation, is dependent on pressure. 
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However, the study on ammonium nitrate should be continued to determine the exact pressure at 

which detonation occurs as well as determine whether the hydrogen transfer can last more than a 

few frames. By studying ammonium nitrate over a longer time frame, we hope to see the final 

products from Equations 27-35 become more definitive throughout the MD simulation. 

Additionally, exploring the detonation mechanisms in novel, ‘green’ HEDMs can help understand 

the effect that intermolecular interactions have on the sensitivity of these molecular materials and 

the activation of trigger bonds by the pressure front of an impact. 
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CHAPTER 6 

CONCLUSION 

 

The development of novel high energy density materials (HEDMs) used in military, 

aeronautics and planetary sample collection applications depends on understanding how and why 

detonation occurs in conventional energetic materials. These reactions are highly energetic, 

making experimental modeling incredibly difficult; therefore, computational tools can be used to 

build a comprehensive understanding to this phenomenon. Computational methods such as density 

functional theory (DFT) and molecular dynamics (MD) have been used to propose the bond that 

breaks to initiate explosive decomposition. The activation of trigger bonds, weak bonds that break 

to initiate explosive decomposition, are characterized by the Wiberg bond index (WBI), a measure 

of interatomic electron density. 

Potential trigger bonds in HEDMs are based on explosophores substituted to the energetic 

backbone and most often include X-NO2 (X=N,C,O) and N-N2 bonds. The WBIs of the trigger 

bonds in HEDMs were compared to those in chemically similar reference molecules with the same 

bond type, hybridization and explosophore as the HEDM to provide a relative scale for bond 

activation (%∆WBIs). The trigger bonds in the HEDMs are expected to be longer and more 

activated than the bond in the corresponding reference molecule. This measure of the activation of 

the potential trigger bonds could be applied to guide the synthesis of novel HEDMs by 

prescreening their energetic potential. 

Trigger bonds in the conventional and novel energetic materials were assigned based on 

the most negative %∆WBI relative to the corresponding reference molecule. The %∆WBIs of 

nitroaromatic energetic materials indicate that C-NO2 trigger bonds are deactivated with 
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intramolecular hydrogen bonding due to increased double bond character from resonance which 

stabilize the HEDMs. Nitroanilines deactivate nitro groups due to two hydrogen bonding 

interactions which increases the double bond character by forcing –NO2 planarity with the ring. 

Resonance structures induced by hydrogen bonding with –OH groups also enhance double bond 

character of the ortho nitro group. However, the unidirectionality of the hydroxyl hydrogen bond 

leads to an activating repulsive interaction with the lone pair that forces a twist in the other ortho 

nitro group, resulting in the increased sensitivity of nitrophenols relative to nitroanilines. Steric 

effects from interactions of neighboring nitro groups also activate C-NO2 trigger bonds by 

increasing the dihedral angle, and the HEDMs become more sensitive. The %∆WBIs correlated 

strongly with experimental measures of sensitivity (i.e., impact and electrical spark sensitivities) 

when compared to bond dissociation energies (BDEs). Aromatic azide-based energetic materials 

contained both nitro and azide functional groups. The azide trigger bond is more activated than the 

C-NO2 bond, consistent with previous experimental results. The N-N2 bond will break to release 

N2 and then cyclize with an adjacent nitro group to produce a benzofuroxan derivative. However, 

if the nitro group is meta or para to the azide, then cyclization cannot occur and instead a nitrene 

is formed. Our results on novel azole-based HEDMs found that the C-NO2 bond is less activating 

than N-NO2 and N-N2 trigger bonds. Therefore, %∆WBIs may designate the bond that breaks to 

initiate explosive decomposition and differentiate between the contributions that different 

explosophores have on sensitivity, which is important for interpreting the origins of energetic 

properties at a molecular level. However, gas-phase %∆WBIs can only provide a clue into how 

intramolecular interactions influence the sensitivity of energetic materials. Since detonation is 

unique to the solid state, condensed-phase calculations are required to understand the effect of 

intermolecular interactions on the sensitivity of HEDMs.  
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Ammonium nitrate, an energetic salt, undergoes explosive decomposition through the 

hydrogen transfer from ammonium to nitrate to form ammonia and nitric acid. A study of 

ammonium nitrate demonstrates that the hydrogen transfer occurs with greater frequency as the 

pressure increases. In optimization calculations, the unit cell became more compact and an increase 

in the hydrogen bonding network was observed with greater pressure. As pressure increased across 

a molecular dynamics simulation, hydrogen transfer is observed at 40 GPa. The fact that 

overcoming the barrier for hydrogen transfer requires such a high pressure could explain why 

ammonium nitrate is relatively stable and is typically combined with azides or other fuel sources 

for an explosive mixture.  

In future work, extending these modeling studies to HEDMs with different types of 

explosophores will validate that conventional and novel energetic materials can be categorized by 

using %∆WBIs. Additionally, various molecular and ionic HEDMs with more complex functional 

groups (i.e., nitro (-NO2) and azide (-N3) groups) can be modeled in the condensed-phase to 

determine the influence of intermolecular interactions on their shock-sensitive properties. These 

calculations will be computationally expensive, but the lessons learned from the modeling of 

ammonium nitrate will guide those of more complex energetic materials. The insight gained 

through the gas- and condensed-phase models of contributions of intramolecular and 

intermolecular interactions to the sensitivity of trigger bond types can be used to guide the 

synthesis of ‘green’ HEDMs with superior properties and less hazardous waste. 
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APPENDICES 

 

 

 

Figure A1. DFT(M06-2X)/TZVP optimized structures of the nitrobenzenes with selected bond 

distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2. 
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Figure A2. DFT(M06-2X)/TZVP optimized structures of the nitrobenzyls with selected bond 

distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  
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Figure A3. DFT(M06-2X)/TZVP optimized structures of the nitroanisoles with selected bond 

distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  
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Figure A4. DFT(M06-2X)/TZVP optimized structures of the nitroanilines with selected bond 

distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  
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Figure A5. DFT(M06-2X)/TZVP optimized structures of the nitrophenols with selected bond 

distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  
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Figure A6. DFT(M06-2X)/TZVP optimized structures of the nitronaphthalenes with selected 

bond distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  

 

 

 

 

Figure A7. DFT(M06-2X)/TZVP optimized structures of the miscellaneous energetic materials 

with selected bond distances (Å) and %∆WBIs (%) labeled based on descriptions in Table 2.  
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Figure A8. Correlation between %∆WBIs (from Table 2) and experimental electrical spark 

sensitivity (from Table A1).  
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Table A1. Comparison of available previous theoretical and DFT(M06-2X)/TZVP BDEs with 

experimental electrical spark sensitivities and zero point energies of the nitroaromatic energetic 

materials. Trigger bonds assigned by %∆WBIs are designated by italics as necessary. 

Compound Bond 

BDEDFT(M06-

2X/TZVP) 

[kcal/mol] 

BDEDFT 

[kcal/mol] 
E.S. [J]168 

ZPE 

[Hartree/Particle] 

Reference 

NB C-NO2 73.63 N/A N/A -436.610908 

Nitrobenzenes 

DNB C-NO2 74.86 N/A N/A -641.101435 

TNB C-NO2 68.43 
66.47a, 67.93b, 

64.0c 
6.31 -845.590220 

TETNB 

C**-NO2 55.57 
52.75a, 54.49b, 

50.3c 
N/A -1050.043200 C*-NO2 62.25 

C-NO2 66.94 

PNB 

o-C-NO2 60.70 

51.96a, 53.59b N/A -1254.500294 m-C-NO2 55.88 

p-C-NO2 58.81 

HNB C-NO2 53.15 50.1c N/A -1458.958418 

HNBP 
o-C-NO2 66.50 

66.71a, 68.28b 5.03 -1689.985689 
p-C-NO2 68.05 

HNDPM 
o-C-NO2 60.31 

N/A 4.1 -1729.259440 
p-C-NO2 68.47 

HNS 
o-C-NO2 63.60 

N/A 5.32 -1767.340457 
p-C-NO2 68.01 

Nitrobenzyls 

DNT o-C-NO2 65.62 68.15f N/A -680.374779 

TNT 
o-C-NO2 64.67 61.38a, 62.98b, 

58.9c 
6.85 -884.861064 

p-C-NO2 69.69 

o-TETNT 

o-C-NO2 60.73 

N/A N/A -1089.317043 
m-C**-NO2 58.65 

p-C-NO2 57.09 

m-C*-NO2 61.53 

m-TETNT 

o-C**-NO2 59.15 

61.12f N/A -1089.321274 
m-C-NO2 57.16 

p-C-NO2 60.99 

o-C*-NO2 62.53 

p-TETNT 
o-C-NO2 58.66 

N/A N/A -1089.323228 
m-C-NO2 63.10 

PNT 

o-C-NO2 58.44 

54.83f N/A -1293.783121 m-C-NO2 57.49 

p-C-NO2 56.78 

DMTNB 
C**-NO2 63.08 

65.60f 11.11 -924.140676 
C*-NO2 66.69 

TMTNB C-NO2 65.27 62.23f 8.98 -963.420204 

ATNT 

C*’-NO2 64.66 

64.84a, 66.52b N/A -940.210287 C’-NO2 71.48 

C*-NO2 68.19 
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Table A1 (continued) 

Compound Bond 

BDEDFT(M06-

2X/TZVP) 

[kcal/mol] 

BDEDFT 

[kcal/mol] 
E.S. [J]168 

ZPE 

[Hartree/Particle] 

o-ATETNT 

o-C-NO2 59.82 

N/A N/A -1144.665440 
m-C**-NO2 62.18 

p-C-NO2 55.76 

m-C*’-NO2 64.96 

m-ATETNT 

o-C**-NO2 61.88 

N/A N/A -1144.670534 
m-C-NO2 54.96 

p-C-NO2 64.02 

o-C*’-NO2 63.67 

p-ATETNT 
o-C-NO2 57.43 

N/A N/A -1144.670494 
m-C-NO2 63.83 

ClMTNB 
o-C-NO2 61.59 

N/A N/A -1344.456126 
p-C-NO2 68.26 

TNBMeOH 
o-C-NO2 62.07 

N/A N/A -960.069545 
p-C-NO2 68.34 

TNBEtOH 
o-C-NO2 65.42 

N/A N/A -999.354215 
p-C-NO2 69.56 

Nitroanisoles 

DNAN 
o-C-NO2 66.63 

N/A N/A -755.580151 
p-C-NO2 73.00 

TNAN 
o-C-NO2 64.86 

N/A 28.59 -960.054480 
p-C-NO2 69.28 

ATNAN 

C’*-NO2 62.84 

N/A N/A -1015.406142 C’-NO2 72.53 

C*-NO2 69.24 

DMOTNB 
C**-NO2 56.71 

53.56a, 54.04b N/A -1074.528971 
C*-NO2 61.54 

DClTNAN 
o-C-NO2 63.04 

N/A N/A -1879.229241 
p-C-NO2 61.30 

EOTNB 
o-C-NO2 61.42 

N/A N/A -999.339180 
p-C-NO2 71.98 

DMDNPy C-NO2 68.65 N/A 20.57 -886.130503 

Nitroanilines 

DNPH 
o-C-NO2 74.71 

N/A N/A -751.746974 
p-C-NO2 75.27 

TNA 
o-C-NO2 70.02 70.51a, 72.06b, 

66.5c, 66.49d 
6.85 -900.937800 

p-C-NO2 72.02 

DATB 
C’-NO2 73.27 72.39a, 75.00b, 

69.2c, 69.89d 
10.97 -956.285840 

C”-NO2 71.30 

TATB C-NO2 72.49 
84.80a, 88.50b, 

69.4c, 74.09d 
17.75 -1011.630059 

TETNA 

C’-NO2 63.49 

48.1c N/A -1105.394849 
C*-NO2 53.95 

C**-NO2 65.67 

C’*-NO2 68.63 
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Table A1 (continued) 

Compound Bond 

BDEDFT(M06-

2X/TZVP) 

[kcal/mol] 

BDEDFT 

[kcal/mol] 
E.S. [J]168 

ZPE 

[Hartree/Particle] 

PNA 

o-C-NO2 62.78 
57.29a, 59.18b, 

47.1c 
N/A -1309.852902 m-C-NO2 54.98 

p-C-NO2 61.40 

DADNPy C-NO2 76.48 N/A 12.4 -767.867396 

LLM-105 C-NO2 68.13 
65.44a, 67.57b, 

83.34e 
N/A -859.059426 

HNDPA 

o-C’-NO2 67.25 

65.77a, 67.83b 5.02 -1745.323580 p-C-NO2 69.25 

o-C-NO2 62.65 

TETNPO 
C’-NO2 69.19 

N/A 5.12 -1410.409137 
C-NO2 70.63 

DAHNBP 

o-C*-NO2 66.05 

65.77a, 67.83b N/A -1800.686625 p-C’-NO2 70.03 

o-C*’-NO2 71.29 

Nitrophenols 

2,4-DNP 
o-C-NO2 67.12 

72.42g N/A -716.331858 
p-C-NO2 65.33 

2,6-DNP C-NO2 67.13 N/A N/A -716.319900 

2,4-DNR 
C*’-NO2 79.84 

N/A N/A -791.550646 
C’-NO2 71.16 

4,6-DNR C-NO2 75.41  N/A -791.561651 

PA 

o-C*-NO2 64.52 

60.1c 8.98 -920.806846 p-C-NO2 70.86 

o-C’-NO2 72.48 

TNR 
C’-NO2 74.69 

62.07g 12.3 -996.033185 
C**-NO2 64.89 

THTNB 

C’*-NO2 70.50 

67.67g N/A -1071.249766 C”-NO2 77.50 

C**-NO2 64.84 

MTNP 

C**-NO2 63.01 

N/A 5.21 -960.086992 C’-NO2 73.74 

C*-NO2 67.32 

TNAP 

C*’-NO2 68.42 

62.8c N/A -976.140296 C*’-NO2 61.96 

C’-NO2 61.94 

DATNP 

C”-NO2 77.06 

66.90a, 69.14b N/A -1031.505530 C”-NO2 72.82 

C’*-NO2 68.27 

HTNA 

C*’-NO2 66.77 

65.56a, 67.61b N/A -976.159238 C’-NO2 76.20 

C’-NO2 71.75 

DHTNA 
C”-NO2 76.40 

N/A N/A -1051.380147 
C**-NO2 65.72 

Nitronaphthalenes 

1,5-DNN C-NO2 67.72 N/A 11.2 -794.672531 

1,8-DNN C-NO2 63.25 N/A 13.9 -794.668024 
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Table A1 (continued) 

Compound Bond 
BDEDFT(M06-

2X/TZVP) 

[kcal/mol] 

BDEDFT 

[kcal/mol] 
E.S. [J]168 

ZPE 

[Hartree/Particle] 

TNN 

C*-NO2 62.12 

N/A 10.97 -999.150230 C*-NO2 60.47 

C-NO2 65.59 

TETNN C-NO2 59.57 N/A 8.26 -1203.625458 

Miscellaneous 

ClTNB 
o-C-NO2 61.56 

N/A 6.71 -1305.165985 
p-C-NO2 68.20 

TNBN 
o-C-NO2 61.87 

57.0c N/A -937.802013 
p-C-NO2 66.94 

TNBAl 
o-C-NO2 64.51 

N/A N/A -958.879415 
p-C-NO2 67.68 

TNBA 
o-C-NO2 65.02 

N/A N/A -1034.132395 
p-C-NO2 67.62 

ENTNB 
o-C-NO2 65.79 

N/A N/A -998.172241 
p-C-NO2 68.11 

METNBA 
o-C-NO2 65.62 

N/A N/A -1073.399457 
p-C-NO2 68.02 

aCalculations completed using UB3LYP/6-31G**.157 
bCalculations performed at UB3P86/6-31G**.157 
cCalculations completed using B3LYP/6-31G*.167 
dCalculations performed at B3LYP/6-31G*.239 
eCalculations completed using B3LYP/6-311++G**.132 
fCalculations performed at B3LYP/6-31G*.240 
gCalculations completed using B3LYP/6-31G*.143 

Energetic materials with ‘ indicate the number of hydrogen bonding interactions and * indicate the 

number of steric effects and/or repulsions. 
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Figure A9. Correlations between %∆WBIs and experimental impact sensitivities (cm) (Table 5) 

for the (a) imidazoles, (b) triazoles and (c) pyrazoles. 

 

 



130 
 

 

 

VITA 

Ashley Lauren Shoaf 

Department of Chemistry and Biochemistry 

Old Dominion University 

Norfolk, VA  23529 

Education 

Ph.D., Old Dominion University, Norfolk, VA, December 2018 

B.S., Palm Beach Atlantic University, West Palm Beach, FL, May 2013 

Professional Experience 

Research Assistant for Dr. Craig A. Bayse and Teaching Assistant (ODU), 2013 – 2018 

ODU College of Sciences Graduate Dominion Scholar Recipient, 2016 – 2018 

Graduate Research Fellowships through the Virginia Space Grant Consortium, 2016 – 2018 

Publications 

Shoaf, Ashley L.; Bayse, Craig A. J. Comp. Chem. 2018, 39, 1236-1248. 

Shoaf, Ashley L.; Bayse, Craig A. New J. Chem. 2016, 40, 413-422. 

Harper, Lenora K.; Shoaf, Ashley L.; Bayse, Craig A. ChemPhysChem 2015, 16, 3886-3892. 

Bayse, Craig A.; Shoaf, Ashley L. Molecules 2015, 20, 10244-10252. 

Presentations 

Shoaf, A. L.; Bayse, C. A. 250th ACS National Meeting in Boston, MA, August 16-20, 2015. 

Shoaf, A. L.; Bayse, C. A. Gordon Research Conference on Energetic Materials in Stowe, VT, 

June 5-10, 2016. 

Shoaf, A. L.; Bayse, C. A. SERMACS in Charlotte, North Carolina, November 7-11, 2017. 

Shoaf, A. L.; Bayse, C. A. 255th ACS National Meeting in New Orleans, LA, March 18-22, 2018. 


	Computational Investigation of Energetic Materials: Influence of Intramolecular and Intermolecular Interactions on Sensitivity
	Recommended Citation

	tmp.1549292029.pdf.DZr8r

