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ABSTRACT

DIGITAL LIBRARY SERVICES FOR 3D MODELS

Hesham Anan 
Old Dominion University, 2004 

Co-Directors of Advisory Committee: Dr. Kurt Maly
Dr. Mohammad Zubair

With the growth in computing, storage and networking infrastructure, it is 

becoming increasingly feasible for multimedia professionals -  such as graphic designers 

in commercial, manufacturing, scientific and entertainment areas - to work with 3D 

digital models of the objects with which they deal in their domain. Unfortunately most of 

these models exist in individual repositories, and are not accessible to geographically 

distributed professionals who are in need of them.

Building an efficient digital library system presents a number of challenges. In 

particular, the following issues need to be addressed

• What is the best way of representing 3D models in a digital library, so that 

the searches can be done faster?

• How to compress and deliver the 3D models to reduce the storage and 

bandwidth requirements?

• How can we represent the user’s view on similarity between two objects?

• What search types can be used to enhance the usability of the digital 

library and how can we implement these searches, what are the trade-offs?

In this research, we have developed a digital library architecture for 3D models that 

addresses the above issues as well as other technical issues. We have developed a 

prototype for our 3D digital library (3DLIB) that supports compressed storage, along 

with retrieval of 3D models. The prototype also supports search and discovery services 

that are targeted for 3-D models. The key to 3DLIB is a representation of a 3D model 

that is based on "surface signatures". This representation captures the shape information 

of any free-form surface and encodes it into a set of 2D images. We have developed a 

shape similarity search technique that uses the signature images to compare 3D models.
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One advantage of the proposed technique is that it works in the compressed domain, thus 

it eliminates the need for uncompressing in content-based search. Moreover, we have 

developed an efficient discovery service consisting of a multi-level hierarchical browsing 

service that enables users to navigate large sets of 3D models. To implement this targeted 

browsing (find an object that is similar to a given object in a large collection through 

browsing) we abstract a large set of 3D models to a small set of representative models 

(key models). The abstraction is based on shape similarity and uses specially tailored 

clustering techniques. The browsing service applies clustering recursively to limit the 

number of key models that a user views at any time.

We have evaluated the performance of our digital library services using the 

Princeton Shape Benchmark (PSB) and it shows significantly better precision and recall, 

as compared to other approaches.
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CHAPTER I 
INTRODUCTION

1.1 Motivation

With the increase in the number and in the extent of using three-dimensional (3D) 

images and models, 3D models are spreading and their use is no longer limited to 

specialists. Recently, there have been rapid improvements in the technology of acquiring 

3D models along with their visualization and modeling tools. With the easy acquisition 

of 3D models and because of the versatility of the acquiring tools, 3D models are 

currently used in many fields like medicine, engineering, entertainment, and electronic 

commerce.

In medicine, the number of 3D models repositories of the different parts of the 

human body is rapidly growing. The management and the access to those large 

repositories have become increasingly complex. The goal of any medical information 

system is to improve the quality and efficiency of healthcare processes by delivering the 

needed information at the right time. Such a goal will need more than a query by patient 

name, series ID or study ID for 3d models. Teaching and research in the medical field are 

expected to improve significantly through the use of search, retrieval, and navigation 

systems of 3D medical models. In teaching, it can help lecturers as well as students to 

browse educational 3D models repositories and visually inspect the results found, which 

can augment the educational quality. Content-based techniques can facilitate internet- 

based medicine teaching by browsing medical databases in a fast and efficient way. 

Research can also benefit from content-based retrieval methods. Researchers will have 

more options for the choice of cases to include into research and studies, where 3D data 

can be mined to find changes or interesting patterns which can lead to the discovery of 

new knowledge by combining the various knowledge sources. Another important issue 

with the 3D medical repositories is the need for efficient storage techniques for the 

models which need a large amount of storage spaces.

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.
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2

Engineers can use search engines that can mine catalogs of three-dimensional 

objects, like airplane parts or architectural features in designing a certain model. They 

sketch what they are thinking of, and the search engines should produce comparable 

objects. Search engines can also serve industrial companies by saving their engineers’ 

time and energy in designing a specialized part, when someone else has already created 

something similar to it. Even though engineers use computer-aided design (CAD) to 

design different 3D parts, they are tediously examining each part separately because of 

the way the parts are normally catalogued. The visual channel of our brains has not been 

exploited effectively for information retrieval in engineering. Using shape information to 

retrieve similar 3D models will retrieve shape as well as other related knowledge. 

Engineers relate objects to 3D shapes more than to meta-data and hence a shape-based 

system could provide an answer where other methods fail. Effective deployment of a 

search/retrieval system requires a combination of text and shape-based searching.

In the area of entertainment, multimedia professionals like graphic designers can 

benefit from using a 3D based search/retrieval system when searching for 3D objects to 

use in making a film or in a 3D computer game, as text descriptions rarely convey the 

most valuable information. Text-based search usually retrieves also irrelevant 

information that consumes the programmer’s time to filter them.

As shopping through the Internet is becoming a very acceptable way for many 

users, electronic commerce becomes one of the most important applications that needs 

significant improvements in the way of searching and displaying items a user is 

interested in buying. Unfortunately, most of the e-commerce applications use text-based 

search techniques and one has to manually search through many retrieved irrelevant 

objects, which causes many of the buyers to get bored and leave without buying. Using a 

3D search engines will make life easier for Internet shoppers and will increase the 

percentage of online buyers.

After presenting only a few of the many applications that use 3D models, it 

becomes obvious that the volume of 3D models available in digital form is rapidly 

growing, which highlight the need for digital library services for 3D models. Traditional 

digital libraries have proved to work well with one-dimensional data such as reports. A
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great number of digital libraries have been developed for handling two-dimensional data 

such as images. However, handling three-dimensional data in digital libraries is relatively 

new and faces many challenges such as: efficient storage, faster retrieval, and user- 

friendly search and discovery process.

Some of the previously listed applications require direct access to 3D models in 

archives as well as tools to find 3D models when necessary. Also, when those 

applications maintain or need to access large archives of 3D models, it will become 

convenient (if not necessary) to browse the large collection in a controlled manner that 

will present the user with as much information in as little time as possible.

1.2 Issues

The general objective of any information search/retrieval system is to minimize the 

time a user spends in finding the needed information. Handling three-dimensional data in 

digital libraries is relatively new and faces many challenges such as: efficient storage, 

faster retrieval, and user-friendly search and discovery process. We will address some 

important issues in designing a digital library to manage 3D objects, which are listed as 

follows.

Repositories issues

• What is an efficient representation of ffee-form 3D models that: (a) 

reduces the storage requirements, and (b) enables fast reconstruction of 

the 3D models to improve interactivity and response time?

User interfaces and human computer interaction issues

• How can we represent the user’s perspective on similarity between two 

objects that helps in better discovery?

• How to minimize the response time in browsing and navigating through 

the search results?

In the following subsections, we will give an overview of the approach that we are 

adopting to address these issues, and then we will present the objectives of our research.

1.3 Approach

A digital library is a set of collections and services. To construct a digital library 

for 3D models, the collections will contain appropriate representation of 3D models and
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the services will be the traditional library services such as storage, search, retrieval, 

publishing and management of the collections as well as advanced services such as 

hierarchical browsing to enhance the experience of browsing and retrieving 3D models.

In developing the digital library, we will address issues that were presented in the 

previous section. We shall now discuss specifically the approach we will use to address 

these issues.

1.3.1 Approach to Build the 3D Repository

The central idea here is to arrive at a representation of 3D models that will lead to 

efficient storage, progressive delivery, and a better similarity measure that will help in 

discovery. To our knowledge, there is no representation of 3D models currently that can 

be used both for compressed representation of the model and for computing a shape 

similarity measure at the same time.

To handle the issue of efficient representation of 3D models, we will develop a 3D 

model representation in which the model is represented as a sequence of 2D images, 

called surface signature images, which capture shape information of the model. This 

representation will

• reduce the storage requirements for 3D models

• and at the same time it can be used in shape similarity search of 3D models.

• Moreover, this representation can be used to progressively transmit and 

reconstruct the 3D model.

The multiple uses of the signature image representation means that we can work 

entirely in the signature image domain to perform operations, such as shape similarity 

computations or progressive reconstruction, which were not available before without 

using or extracting some features from the 3D model itself.

Using signature images as a representation of the 3D model should allow 

progressive retrieval of the model in which a rough view can be reconstructed even with 

only incomplete data. The model can be reconstructed with better accuracy as more data 

arrives.

The simple approach for retrieving models with different resolutions could have 

been also achieved by storing different versions of the same model at different resolution
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levels. This can be done by using mesh simplification techniques to get a simpler 

representation of the same model. However, this approach will ultimately require more 

storage space than what is required by the original model (the original model needs to be 

stored as well as every simplified version). Moreover, if a low resolution model was 

transferred and there is a need to get one with a better resolution, the current model will 

be discarded and he transmission of the better resolution model will start from scratch. 

This is not the case in our representation where we will build upon previous 

transmissions.

Although there are many progressive representations of 3D models (as we will 

review in chapter 2), our representation is unique in that it does not require the 

transmission of data to be in a certain order and it can be also used as a feature to 

compute shape similarity.

Unlike text documents, one cannot search for a specific 3D model using only 

textual metadata. This leads to an inevitable need for content-based 3D shape retrieval 

methods. Hence, in this research we will use a shape similarity type of query in which a 

model will be represented as a query to retrieve models of similar shapes. Shape-based 

retrieval cannot be achieved by comparing the actual 3D models due to the complexity 

and the time needed for such an operation. Shape-based retrieval usually is achieved by 

extracting features from the 3D model and using these features to compare the similarity 

of models. Hence, the key for a good shape-based retrieval technique is extracting 

features from the 3D models that are discriminatory enough to provide accurate 

similarity data.

In order to accurately search for 3D models by shape, with a response time 

comparable to searching in document digital libraries, we shall use the signature images 

as a mean to compare the shape similarity of 3D models.

There are similarity based search services that exist in the literature, such as [9] [6], 

[63], [83], [74], [28][84], [21], [62], [29] and [78]. In these services features are extracted 

from the 3D model for the sole purpose of shape similarity computation. However, in our 

approach, we use signature images which are utilized to reconstruct the 3D model. This 

does not only allow us to search directly in the domain used to represent the 3D model
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but it also provides a proof that our shape-similarity measure is discriminatory enough to 

be used in accurate retrieval of 3D models. Such a proof does not exist in any of the 

shape features described in the literature. We will support this by comparing precision 

and recall results of shape-similarity searches to those reported in the literature and will 

prove that our shape-based search outperforms other existing methods.

1.3.2 Approach for Building User Friendly Interfaces

To address the issue of minimizing the time used in browsing and navigating the 

3D models, we will provide convenient tools to browse large collections of 3D models. 

We shall use the signature image to cluster similar models together and provide a more 

abstract view based on clusters instead of displaying all the models when browsing. 

Moreover, we shall extend clustering to multiple levels to accommodate a large number 

of models.

Recently, some digital libraries that support 3D models started to emerge (as will 

be discussed in chapter 2) such as the Visible Human Project [8], Princeton 3D Model 

Search Engine [60] and 3DESS [40]. Though these libraries have collections of 3D 

models, none of them provide a complete set of services as we do. For example, the 

Visible Human Project and Princeton 3D Model Search Engine do not provide 

hierarchical browsing tools that can help in browsing large collections of 3D models. The 

Visible Human Project does not provide tools to search for 3D models by similar shape, 

unlike our digital library. Though Princeton 3D Model Search Engine and 3DESS 

provide shape-based search services, our approach should prove to provide better 

precision and recall. None of these libraries provide a progressive retrieval service as we 

propose.

1.3.3 Digital Library Services

To handle the above issues while providing a complete set of services, we have 

developed the architecture shown in Fig. 1. Our 3D Digital Library (3DLIB) consists of a 

set o f modules; each module w ill provide an implementation for one o f  the digital library 

services. On the backend, we have a database server to store the 3D models along with 

their corresponding metadata and extracted features or signatures. 3DLIB will provide a
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set of services that are extended for traditional digital libraries to support 3D models. 

These services are:

• A storage service: It will use a repository to store the 3D models. The repository 

will be implemented using an Oracle database and will be divided into three parts. 

One part will be for storing metadata of the 3D models such as the author of the 

model, description or annotation of the models, etc. Another part of the database 

will be used to store features about the 3D model “signatures”. These signatures 

(as will be explained in chapter 3) will be used in comparing shapes of the 3D 

models and conducting similarity searches as well as retrieving and 

reconstructing the actual 3D model. Original models can be reconstructed from 

the signatures. And the third part will contain the actual full 3D models (although 

they could be reconstructed from the 2D signature images).

• Progressive retrieval service: a streaming service to progressively retrieve the 

3D models. The compression format of the 3D models has the characteristic that 

not all data are required for an initial view of the model. This makes the 

compression technique amenable to progressive retrieval, and for fault-tolerance 

in network applications. In other words, the response time to view the initial 

model is smaller. The initial display is refined with time as more data arrives. In 

addition, if  some data frames are lost, the end user will still be able to visualize 

the model and interact with it, though with lower resolution. This service 

achieves the objective of reducing the storage requirements for the 3D models 

and it helps in minimizing response time to the user, to help in enhancing the 

experience of retrieving 3D models.

• Publishing service: a service which will be used to upload 3D models and their 

metadata to the repository. This service will accept a 3D model from the client, 

will determine anchor points (points at which signatures are calculated), will 

compute the signatures, and will upload the signatures along with the metadata of 

the 3D models to the repository.

• Search and discovery service: This service should achieve the objective of being 

able to accurately search for 3D models. This service will support two basic types
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of search: a text search and a shape-based search. In the text search mode, a user 

shall provide some textual metadata about the 3D model in a query interface 

designed as a web page. The metadata searcher shall try to find the results of the 

query in a local cache. If no results were found, a query shall be sent to the 

backend database. The results shall be then collected, sorted, grouped and 

presented back to the user through the web client. In the shape-based search, a 

user can select (or present) an existing 3D model and ask through the web 

interface to retrieve similar models (in shape). In this case, the signatures of the 

model shall be compared against the signatures of other models in the database 

and the results are sent back to the user. If the user decides to use an external 

model in the similarity query instead of using an existing model, an additional 

process to get anchor points and signatures at these anchor points has to be 

invoked first. A user also has the option of browsing the existing models, in 

which the user views hierarchies of the models grouped by shape (as will be 

illustrated in chapter 4).

1.4 Objectives

In summary, the objectives of our research are:

• To develop digital library architecture that supports storage, search, retrieval, 

publishing and management of 3D models. The design should also support 

advanced services such as hierarchical browsing and progressive retrieval, to 

enhance the experience of browsing and retrieving 3D models.

• To demonstrate the feasibility of developing a digital library for 3D models by 

deploying a prototype with more than 1,500 models to address issues o f scaling.

• To reduce the storage requirements for 3D models by developing a compression 

algorithm to represent a 3D model as a sequence of 2D images (called signature 

images) and developing algorithms to reconstruct the 3D model from the 

signature images.

• To be able to accurately search fo r  3D models using shape with a response time 

comparable to searching in document digital libraries by using the signature 

images as a way to compare the shape similarity of 3D models.
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Fig. 1. 3DLIB digital library architecture.

• To provide convenient tools to browse large collections of 3D models by using 

the signature image to cluster similar models together and provide a more abstract 

view based on clusters, instead of displaying all the models to the user when 

browsing the database.

• To compare the performance of our 3D shape-based search against other known 

algorithms and to evaluate the performance of browsing.

1.5 Organization of the Dissertation

The rest of this thesis is organized as follows:
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Chapter 2 - Background and Related Work: In chapter 2, we will present the 

background and related work in the areas of 3D representation, progressive compression, 

shape-based retrieval and clustering. Also, we will describe selected sample digital 

libraries.

Chapter 3 - Storage and Retrieval Services: In chapter 3, we will show details 

about the derivation of the surface signature representation of 3D models and how 

signatures can be used to compress and reconstruct the 3D model.

Chapter 4 - Search and Discovery Services: In chapter 4, we will present how 

surface signature was used in shape-based retrieval and will present details about our 

hierarchical browsing service.

Chapter 5 - Performance Evaluation: In chapter 5, we will describe the 

experiments we conducted to evaluate the performance of our digital library services and 

will compare the performance of the services to the performance of similar services in 

the literature.

Chapter 6 - Conclusions and Future Work: Finally, in chapter 6 we will 

summarize the contributions of our research and provide suggested directions for future 

work.
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CHAPTER II 
BACKGROUND AND RELATED WORK

2.1 Introduction

Our objective is to develop a digital library of 3D models with some services to 

facilitate storing, progressive compression, searching, browsing and retrieving 3D 

models.

This chapter highlights previous work related to our research. We begin by 

presenting the existing 3D Model Representation techniques. We follow this by a 

discussion of progressive compression of 3D Models. Then we talk about shape-based 

retrieval of 3D Models. As in our thesis we use clustering to group similar models, we 

present an overview of clustering algorithms. Finally we discuss digital libraries and talk 

about some samples of digital libraries that manage documents, images or 3D models.

2.2 3D Model Representation

The key to building an efficient digital library for 3D models is to use a 3D model 

representation that requires less storage, and results in user-friendly discovery services. 

There are different existing representations for 3D models that vary in their efficiency (in 

terms of computational complexity or storage), simplicity (in terms of the ease of 

acquisition or hardware acceleration), and usability. These representations can be divided 

into the following categories:

• Raw data

• Surfaces

• Solid Models

In the following subsections, we will give examples for each one of these 

representations.

2.2.1 Raw Data

Raw data is the basic unsophisticated form of 3D model representation. It is usually 

unstructured, easy to acquire, and may require significant computations and storage. 

Point clouds ([20], [36][), range images, and polygon soup [55] are examples of raw 

data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

2.2.1.1 Point Clouds

Point clouds are sets of unstructured points in the 3D space [36]. These points are 

usually acquired using special sensors or algorithms (such as stereo vision).

2.2.1.2 Range Images

Range images are acquired using laser sensors [68]. The images are rectangular 

grids of distances from the sensor to the objects being scanned. To capture a scene with a 

3D laser scanning system it is often necessary to scan multiple views. Multiple views can 

be captured by moving the camera about the object and scanning previously occluded 

regions of the surface. Using this method each camera position has a unique coordinate 

system that results in accurate reconstruction of the object.

2.2.1.3 Polygons

Polygon soups [55] are collections of unstructured polygons. They are unstructured 

in the sense that they do not have special order nor do they define separate clusters for 

different objects.

The mathematical simplicity of polygonal meshes attracts 3D model designers to 

use in rendering datasets. Polygons act as a standard for designing 3D models; this is 

because most 3D model representations may be converted with arbitrary accuracy to a 

polygonal mesh.

Unfortunately, in order to accurately represent a three-dimensional model, large 

number of polygons is required. For example, a smooth looking sphere requires 

thousands of polygons to be accurately represented.

2.2.1.4 Discussion

Point clouds and range images are usually easy to acquire. However, polygons can 

be rendered easier than the later two representations. This is why the use of polygons, 

mostly triangles, is more common and it is even supported by hardware of most graphic 

cards.

2.2.2 Surfaces

2.2.2.1 Polygon Meshes

A polygon mesh is a collection of edges, vertices, and polygons that are connected 

in a way such that each edge is shared by at most two polygons [31]. An edge connects
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two vertices, and a polygon is a closed sequence of edges. An edge can be shared by two 

adjacent polygons, and a vertex is shared by at least two edges.

2.2.2.2 Implicit Surface

A general surface in three dimensions can be represented as:

S = {(x,y,z): F (x,y,z)=0}.

This is referred to as an implicit representation of the surface, 

where

F(x; y; z) = 0 is an implicit function that can determine if a point is inside (when F(x; y; 

z) < 0), outside (when F(x; y; z) > 0), or on (when F(x; y; z)=0) the surface. The equation 

of a sphere (x2 + y2 + z2 - r2 = 0, where r is the radius) is an example of the function F.

2.2.2.3 Parametric Surface

The parametric representation of surfaces maps a domain’s portion to a patch of the 

surface in another domain. The surface is parameterized by two coordinates that can 

uniquely identify any position in the plane, and thus any position on the surface patch. A 

single surface patch may cover an entire surface or only a portion of it. In the latter case, 

a big part of the surface may be assembled using copies of one or many patches. Creating 

a rectangular grid over a part of the original domain and evaluating the mapping function 

at each point on the grid is a simple way of generating parametric surfaces.

2.2.2.4 Discussion

A parametric or implicit representation of surfaces is usually a complex task and in 

many situations can be applied only to specific types of models. On the other hand 

polygonal meshes are easier to acquire and process.

2.2.3 Solid Modeling

Solid modeling (sometimes called volume modeling) defines the techniques and 

data structures for constructing 3D objects as rigid solids [16].

Boundary representations (B-rep), spatial occupancy representations, and 

constructive solid geometry representations (CSG) are the most well known methods of 

representing 3D solid models.
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2.2.3.1 Boundary Representations (B-rep)

A solid may be represented by a set of non-overlapping faces, whose union 

approximates the solid boundary. Such a scheme is called boundary representation or B- 

rep [9]. This scheme is based on the fact that an object can be defined by its boundary.

2.2.3.2 Spatial Occupancy Representations

Spatial occupancy representations use either volume elements (called voxels) or a 

hierarchical structure known as octree, to represent a solid model. In a voxel 

representation, a solid model is built up from a 3D binary array, where an occupied array 

element has the value 1 whereas an un-occupied element has a value of 0. The resolution 

is uniform throughout the voxel representation. An octree representation, however, has a 

varying resolution across the model, depending on the shape of the object. Octrees can be 

illustrated with quadtrees, which are a useful way of encoding a spatial occupancy array.

2.2.3.3 Constructive Solid Geometry Representation (CSG-rep)

In Constructive Solid Geometry representation, a binary tree is constructed for each 

object, where the tree’s leaves are solid primitives such as cylinders, spheres, etc. A new 

solid is made via using Boolean operations such as union, intersection, and set 

differencing of these primitives.

2.2.3.4 Discussion

CSG-rep is very intuitive and it is excellent to use in situations where shape-based 

matching is needed. However, unless the 3D model is designed using special tools that 

keep track of primitive solids constructing the model, it will be a very complex task to 

get this set of primitive solids. Spatial occupancy is the simplest representation of solids 

and it can be manipulated to be space efficient as in the case of octree representation.

2.2.4 Discussion of 3D Models Representation

The use of the right representation depends on the application. For example, when 

models are acquired using scanning devices, raw model representation is used. For 

graphic design applications, there is more interest on the external shape of the model, 

which makes surface representation the best choice. For medical industrial design 

applications, there is interest in modeling the space the model occupies. Hence, solid
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representation is the best choice in this case. In this research, we focus on surface 

representation of 3D models.

2.3 Progressive Compression

Researchers in the past had developed a set of techniques to compress 3D models 

using different resolutions depending on whether the viewer is far (low resolution) or 

near (high resolution). These techniques were initially used to render 3D models using 

multiple levels of details but they evolved to be progressive compression techniques. In 

these techniques a 3D model in low resolution is represented as a set of polygons. To 

support higher level of resolution, additional data is included in the representation, which 

helps in dividing the polygons and generates new polygons to achieve higher level of 

detail.

Most of the progressive compression techniques start with polygonal representation 

of the 3D model. The polygonal geometry of small, distant, or unimportant portions of 

the model is simplified by polygonal simplification algorithms to get a lower resolution 

representation to reduce the rendering cost.

This section presents several progressive compression techniques, each having its 

own input criteria and advantages. A majority of the algorithms assume that the input 

model contains only triangular polygons.

2.3.1 Classification of Algorithms

Erikson [29] classified the polygonal simplification algorithms based on the 

method used to produce a simplified model, into three categories: adaptive subdivision, 

geometry removal, and sampling. Erikson [29] also classified the algorithms into 

topology preserving algorithms or topology simplifying algorithms. In the following 

sections, we will briefly define each of the previously mentioned algorithms. The reader 

can refer to [29] and [55] for more details.

2.3.1.1 Adaptive Subdivision

This algorithm starts with a very simple base model (that captures the original 

model important features) and recursively subdivides it, to closely approximate the initial 

model. The algorithm stops when the approximation is close to the original model as 

determined by the user. Adaptive subdivision algorithms preserve the surface topology
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and thereby appropriate for multi-resolution surface editing, because changes made at 

low levels of subdivision propagate naturally to higher levels.

2.3.1.2 Geometry Removal

This algorithm starts with the original mesh and iteratively removes faces or 

vertices from the mesh until the model can no longer be simplified and at the same time 

when the model is satisfactory to the user. Most of geometry removal algorithms 

preserve the topology by preventing vertex and face removal operations which may cause 

topology violations. Hence, they perform very well in removing redundant geometry 

such as coplanar polygons.

2.3.1.3 Sampling

This algorithm initially samples the geometry of the original model either with 

points on the model’s surface or voxels superimposed on the model in a 3D grid. The 

user can control the amount of sampling either by specifying the number of points to be 

sampled or by choosing the dimensions of the grid. These algorithms work well on 

smooth models with no sharp comers, because high frequency features are difficult to 

sample accurately and this is where the sampling algorithms may not perform well.

2.3.2 Topology Preserving Algorithms

Topology refers to the connected polygonal mesh’s structure. Local topology is the 

face or vertex’s connectivity with the immediate neighborhood. When an algorithm 

preserves local topology, it does not change the local geometric structure and the number 

of holes of the object. Global topology is the geometric structure of the whole polygonal 

model and when an algorithm preserves it, it preserves local topology and does not create 

self-intersection in the object which occurs when two non-adjacent faces intersect each 

other.

Topology-preserving algorithms preserve either local or global topology and they 

work well in applications where surface topology can affect results. They also simplify 

some applications, such as multi-resolution surface editing, where a correspondence 

between an object’s high detailed and low detailed representations is required.
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2.3.3 Topology Simplifying Algorithms

Topology simplifying algorithms do not guarantee the preservation of local or 

global topology of a model. Thus, the algorithms can close up holes in the model and 

aggregate separate objects into assemblies as simplification progresses. These algorithms 

have fewer constraints to satisfy and they can simplify models to a greater degree than 

topology preserving algorithms. They can be used on scenes or objects when poor visual 

quality is acceptable.

2.3.4 Discussion

Most of the previous algorithms were designed to support multi-resolution 

rendering where models are rendered with few number of polygons when seen from a far 

view point and with higher number of polygons when seen from close view point. 

Compression of the 3D model was a second priority. None of these techniques was 

designed with shape-based retrieval in mind. The 3D model representation (signature 

images) we developed not only acts as a progressive representation of the 3D model but 

this representation acts as feature used in shape-based retrieval of 3D models. However 

our representation can not be used for multi-resolution due to the lengthy reconstruction 

time and due to the fact that using less number of signature images usually results in 

higher number of polygons in the reconstructed model.

2.4 Shape-Based Retrieval

The rapid growth of modeling and visualization techniques of 3D shapes has led to 

an explosion of the number of 3D models all over the world. Unlike text documents, 3D 

models can not be easily retrieved using textual conventions. This leads to an inevitable 

need for content based 3D shape retrieval methods. The problem of 3D object 

representation and recognition has attracted a lot of researchers, survey papers to this 

literature have been provided by Besl et al [9], Campbell et al [13], and Tangelder et al 

[78]. Content based 3D shape retrieval systems can be classified as shown in Fig. 2 [78], 

We will discuss these shape-based retrieval algorithms in the following subsections.

2.4.1 Feature-based methods

In feature based shape matching methods, 3D models can be discriminated 

according to their geometric and topological properties. In the local based features
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methods, for each surface point of the 3D shape a descriptor is used to represent the 

shape’s feature. A shape descriptor is a point in a high dimensional space, two shapes are 

considered similar if they are close in this space. In global feature-based, view based, and 

in spatial map feature based methods, features from the 3D shape are represented using a 

single descriptor consisting of a d-dimensional vector of values, where the value of d is 

fixed for all shapes.

3D shape  matching 
methods

Feature-based Graph-based

Local feature Global features View-based Spatial m aps

Invariant-based S hape distribution S hape histogram Harmonics

Fig. 2. Classification of shape-based retrieval techniques.

2.4.1.1 Local features methods

Local feature based similarity methods are based on accumulating information 

about the surface shape in the neighborhood of points on a 3D model’s boundary. Such 

information is very complex and hence local feature based methods are difficult to be 

applied to 3D matching [78],
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2.4.1.2 Global features methods

Global feature-based similarity methods describe the global shape of a 3D model. 

In invariant based methods, invariants or descriptors of the 3D shape are used. Examples 

of these descriptors include surface area, volume, and high order moments. Elad et al. 

[26] used moments based classifier and a weighted Euclidean distance measure to 

retrieve VRML objects.

In shape distribution methods, measures such as distance, angles, areas or volumes 

between surface points are used to represent a shape distribution of a 3D model. The 

shape matching complexity thus reduces to a comparison between probability 

distributions from being a feature correspondence problem. For example, Osada et al. 

[63] used random sampling to produce a continuous probability distribution to be used as 

a signature for 3D shape. The similarity between the objects was evaluated based on 

measuring distances between distributions. The D2 shape distribution developed by 

Osada [63] measures distances between pairs of random points on the surface to calculate 

the similarity between the objects. Horn et al [39] defined an Extended Gaussian Image 

(EGI) shape descriptor as a spherical function that gives the distribution of surface 

normals. Kang et al [45] defined a Complex Extended Gaussian Image (CEGI) shape 

descriptor as a complex-valued spherical function that gives the distribution of surface 

points’ normals and their associated normal distances.

2.4.1.3 View-based methods

In view based similarity methods, if all viewing angles of two 3D models are 

similar then these two models are similar. Cyr and Kimia [21] recognize a 3D model by 

comparing its view with all the views of 3D models using shock graph matching. Chen et 

al [15] developed a Light Field shape Descriptor (LFD) to represent a model as a 

collection of images rendered from uniformly sampled positions on a view sphere. The 

minimum difference of all rotations and all pairings of vertices on two dodecahedrons (a 

dodecahedra is a polyhedron with 12 faces) defines the distance between two descriptors.

2.4.1.4 Spatial map-based methods

Spatial map methods use the spatial location of a 3D model in calculating 

similarity. The different sections of the model are arranged such that the locations of the
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model’s features are preserved. Shape histograms and harmonics are examples of spatial 

map based similarity methods.

In Shape Histograms, the bounding sphere of a 3D model is divided into a number 

of sectors. A histogram is constructed based on the volume of the 3D model lying in each 

sector. Ankerst et al. [6] use shape histograms that are built from uniformly distributed 

surface points taken from 3D molecular surfaces to analyze the similarity of the 

molecular surfaces. The shape descriptors (SHELLS, SECTORS, and SECSHEL) 

developed by [6] and used by [74] are based on shape histogram approach. SHELLS is a 

histogram of distances from the center of the object’s body to points on the surface. 

SECTORS is a spherical function giving the distribution of the model’s area as a 

function of spherical angle. SECSHEL is a collection of spherical functions that give the 

distribution of the model’s area as a function of radius and spherical angle.

Harmonics based methods use spherical or Fourier functions to generate harmonic 

functions of a shape for shape comparison. For example, Vranic & Saupe [83] used the 

coefficients of 3D Discrete Fourier Transform as feature vector components of a 3D 

shape descriptor. Novotni and Klein [62] used 3D Zemike descriptors, an extension of 

spherical harmonics based descriptor, to capture object coherence in the direction along a 

sphere and in the radial direction. Kazhdan et al [46] presented a spherical harmonics 

based approach to transform rotation dependent shape descriptors into rotation 

independent ones: Gaussian Euclidean Distance Transform (GEDT), and Spherical 

Harmonic Descriptor (SHD). GEDT is a 3D function whose value at each point is given 

by the composition of a Gaussian with the Euclidean Distance Transform of the surface. 

SHD is a rotation invariant representation of the GEDT obtained by computing the 

restriction of the function to concentric spheres and storing the norm of each frequency. 

The authors’ approach generalizes the method to compute voxel-based spherical 

harmonics shape descriptor, used by [74], which is defined as binary rasterization of the 

model boundary into a voxel grid. Vranic et al [83] developed the Radialized Spherical 

Extent Function (REXT) shape descriptor, which a collection of spherical functions 

giving the maximal distance from center of mass as a function of spherical angle and 

radius. Saupe et al [72] defined a Spherical Extent Function (EXT) shape descriptor as a
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spherical function that defines the maximal distance from the object’s center as a 

function of a spherical angle.

2.4.2 Graph-based methods

As we have seen in the previous section, feature based methods take into account 

the pure geometry of the 3D model. On the contrary, graph based methods use graph to 

extract a geometric meaning from a 3D model by showing how shape components are 

linked together.

Lou et al. [51] used global features and skeletal graphs to describe volume models, 

where they obtained a skeletal graph by using a thinning algorithm that erodes voxels of 

voxelized solid models to a one-voxel width. They matched two shapes by an algorithm 

that detects graph/sub-graph isomorphism based on a decision tree approach. Though 

their algorithm obtains a search time polynomial in the number of graph nodes, their 

approach is feasible for relatively small volume models.

2.4.3 Discussion

Shape-based retrieval methods that are graph-based are very slow and most of them 

can be applied to solid models only which makes it impractical to use in many situations 

[78].

Shape-based retrieval methods that use global features are usually fast. However, 

they usually have low discriminative power which leads to low precision in retrieving 

query results [78]. Methods that use local features use complex calculations and are less 

efficient than global-feature based methods. However, they have high discriminative 

power. Spatial maps provide good retrieval results within reasonable time. The shape- 

based similarity technique, we are using in this research combines local features with 

global features resulting in fast and precise retrieval of results.

2.5 Clustering

Clustering is an unsupervised process that structures a collection of unlabeled data. 

It is different from classification in that classification predicts the classes of unlabelled 

data based on a supervised training on pre-labeled data. The goal of clustering is to 

determine the intrinsic grouping in a set of unlabeled data. Users have to provide a 

grouping criterion to constitute good clustering results that suits their needs. A cluster is
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a collection of “similar” objects, where the similarity criterion is based on the distance 

between objects. The clustering process consists of the following steps.

•  Preprocessing and feature selection-. This involves preprocessing and extracting 

appropriate features from data objects to construct n-dimensional feature vectors 

that are necessary for objects’ representation. In order to reduce the 

dimensionality of the problem, a subset of all the available features should be 

chosen which in turn requires good domain knowledge and data analysis.

•  Similarity measure: This is a function which calculates the distance between 

objects to decide how close they are and hence whether they are similar or not.

clustering

 |_______

Hierarchical
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Fuzzy
clusterin

mixture
resolving

m ode
seek ing

N earest
neighbor

S q u a re
error

graph
theoretic

expectation
maxim ization k-m ean s

Agglom erative Divisive

Fig. 3. Classification of clustering algorithms.

•  Clustering algorithm: Clustering algorithms are the schemes that use particular 

similarity measures to assign data to clusters.
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• Result validation-. It involves evaluating results to check whether they make 

sense or not. It is useful to check whether clusters are available at all or not 

(testing for clustering tendency). It is worth to mention that some clusters will be 

produced regardless of whether natural clusters exist or not.

Different clustering methods can be described with the aid of figure which is based 

on the taxonomy of the survey done by Jain et al. [41]. We will discuss these clustering 

algorithms in the following subsections.

2.5.1 Hierarchical Clustering

Hierarchical clustering algorithms produce a nested series of partitions based on a 

criterion for merging or splitting clusters based on similarity. The end result of the 

algorithm is a tree of clusters that shows how the clusters are related. The complete 

process of hierarchical clustering can be summarized as shown in Fig. 4.

• Calculate the distance between all initial clusters. In most analysis initial clusters 

will be made up o f individual cases.

• REPEAT

o Merge the two most similar clusters and recalculate the distances.

• UNTIL all cases are in one cluster.

Fig. 4. Hierachical clustering.

Hierarchical algorithms can be further divided into divisive (top down) and 

agglomerative (bottom up). Agglomerative hierarchical clustering starts with every single 

object in a single cluster. Then, it successively agglomerates (merges) the closest pair of 

clusters by satisfying some similarity criteria, until all data is in one cluster.

The single link and complete link clustering algorithms are the most popular 

agglomerative hierarchical clustering techniques. The two methods differ in the way they
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define the similarity between a pair of clusters. The single link algorithm takes the 

distance between two clusters as the minimum of all the distances between all pairs of 

patterns drawn from the two clusters, while the complete link algorithm takes the 

maximum distance. The complete link algorithm produces compact clusters and more 

useful hierarchies in many applications than the single link algorithm [42]. The single 

link algorithm, on the other hand, tends to produce elongated clusters. It is more versatile 

than the complete link algorithm where it can extract concentric clusters, for example, 

when the complete link fails.

On the contrary to agglomerative algorithms, divisive algorithms starts with a 

single cluster containing all objects, and then successively splits resulting clusters until 

only clusters of individual objects remain. All possible partitions of clusters are checked 

at every step to find the partition that would yield two clusters of minimum similarity 

(the most dissimilar sets of items need to be in separate clusters as soon as possible).

The main disadvantage of both the agglomerative and the divisive hierarchical 

techniques is that once a merge or a split is done, it can not be reversed or refined.

2.5.2 Partitional Clustering

Partitional clustering algorithms attempt to directly decompose the data set into a 

set of disjoint clusters. The decomposition is achieved by minimizing a criterion function 

that is defined either locally (on part of the data) or globally (over all the data).

2.5.2.1 Square error clustering methods

Square error methods are the most commonly used clustering methods which are 

based on the square-root error criterion. The square error is the sum of the Euclidean 

distances between every pattern and the center of its cluster. The objective of square 

error clustering methods is to obtain a partition that minimizes the square error for a 

fixed number of clusters. The algorithm is shown in Fig. 5 [41].

K-means algorithm is the simplest and most commonly used algorithm that 

employs the square error criterion. It starts with a randomly selected initial partition and 

keeps reassigning the patterns to clusters based on the similarity between the pattern and 

the cluster centers until it meets a convergence. This algorithm has been applied to large
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scale data sets due to the linearity of its time complexity. However, it can converge to a 

local minimum if the initial partition is not chosen carefully [41].

• Select an initial partition with k clusters.

• REPEAT

o REPEAT

■ Generate a new partition by assigning each pattern to its closest 

cluster center.

■ Compute new cluster centers as the centroids o f the clusters, 

o UNTIL an optimum value o f the criterion is found.

o Adjust the number o f clusters by merging and splitting existing clusters or 

by removing small or outlier clusters.

• UNTIL the cluster membership stabilizes.

Fig. 5. Square error clustering.

2.5.2.2 Mixture-Resolving Clustering Methods

Mixture-resolving methods assume that the data items in a cluster are drawn from 

one of several distributions (usually Gaussian) and the goal is to estimate the parameters 

and the number of all these distributions. Traditional approaches to solve the parameters 

estimation problem involve obtaining a maximum likelihood estimate of the component 

densities parameter vectors. The expectation maximization (EM) algorithm, which is a 

general purpose maximum likelihood algorithm, can be used to solve this problem. The 

EM algorithm initially assumes a parameter vector and iteratively re-calculates the data 

items against the density produced by the parameter vector. The new data items are then 

used to update the parameter vector [41].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Mixture-resolving methods have a high computational complexity and make rather 

strong assumptions regarding data distribution. They usually view each cluster as a single 

simple distribution and thus strongly constrain the shape of the clusters.

2.5.2.3 Graph Theoretic Clustering Methods

These algorithms treat the patterns as nodes in a graph and the dissimilarity 

between two patterns is the length of the edge between the two corresponding nodes. 

Each pattern is connected with all its neighbors to form a complete graph. Most graph 

theoretic algorithms are based on constructing the minimal spanning tree (MST) of the 

data where the longest edges are deleted to generate clusters. The MST-based clustering 

algorithm is summarized in Fig. 6 [41].

• Construct the MST o f a set ofpatterns.

• Identify inconsistent edges whose weight is significantly larger than the average 

weights o f the neighbor edges.

• Remove the inconsistent edges and make clusters from the connected components.

Fig. 6. Graph theoretic clustering.

The MST approach, however, suffers from a great deficiency when it works in 

more than two dimensions. This deficiency involves the complexity of identifying the 

inconsistent edges in three or more dimensional data. Proper heuristics need to be used in 

complex data which in turn requires a prior knowledge of the shapes of the clusters to be 

able to choose the prior heuristic.

2.5.2.4 Mode Seeking Clustering Methods

In mode seeking clustering algorithms, clusters are viewed as dense sets of data 

items separated by less dense regions; clusters may have arbitrary shape and data items 

can be arbitrarily distributed [41]. Clusters can be identified by searching for regions of 

high density, called modes, in the data space where each mode is associated with the
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cluster center and each item is assigned to the cluster with the closest center. The 

simplest way to identify modes is to search for bins with large number of items in a 

multidimensional histograms of the input data set. Histograms can be constructed by 

partitioning the data space into a number of non-overlapping regions.

2.5.2.5 Fuzzy Clustering Methods

In this type of clustering, an object can be a member of more than one cluster. The 

relationship between objects and clusters are maintained through a membership function. 

Fuzzy clustering algorithms can be summarized as in Fig. 7 [41].

• Select an initial fuzzy partition o f N  objects into K  clusters.

• REPEAT

o Select the N x  K  membership matrix such that members have values in 

[ 0, 1] .

o Compute a fuzzy criterion function which is a weighted squared error 

criterion function associated with the corresponding partition, 

o Reclassify patterns to reduce the value o f the criterion function.

• UNTIL the cluster memberships do not change significantly.

Fig. 7. Fuzzy clustering.

Fuzzy clustering avoids local minima of the criterion function and it is useful in 

cases where the clusters are touching or overlapping.

2.5.2.6 Nearest Neighbor Clustering Methods

In this type of clustering, each unlabeled data item is assigned to the cluster of its 

closest labeled neighbor item, provided that the distance between the unlabeled item and 

that labeled neighbor is below a certain threshold. The assignment continues until all 

items are labeled or no additional labeling occurs [41].
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2.5.3 Discussion

The k-means clustering algorithm is a well known, understood, and a simple 

algorithm that has been adapted to many problem domains. The linearity of its time 

complexity O (n), where n is the number of objects to be clustered, is what makes it 

attractive to researchers to use in many clustering problems. In designing our hierarchical 

navigation service, we used k-means clustering algorithm to group 3D models together 

for faster navigation. Though the clustering was done offline, it took us about 20 minutes 

only to cluster 1800 3D models. In addition to having a linear time complexity, k-means 

has another advantage that the number of clusters, k, needs to be specified in advance. In 

designing our hierarchical navigation service, we needed to specify a maximum number 

of clusters that a user can view at a time and this is one of the reasons we chose k-means 

to implement.

2.6 Digital Libraries

2.6.1 Definition of a Digital Library

The term “digital library” has been defined in literature by many different ways. It 

can be defined as a data repository, a collection of digital objects, or to be an extension of 

the traditional library. Being an extension of the traditional library, a digital library will 

carry out the traditional library functions of collection, preservation and access provision, 

in addition to integrating digital media and remotely accessible digital services [18].

According to Terry Smith [76], a digital library is an enhanced version of a 

traditional library where digital technology has been applied to enhance many of 

traditional libraries’ aspects. These aspects include the organization and management of 

library collections, accessing library items, processing and communicating the 

information of the different items. We define a digital library to be a set of collections 

and services. Collections can contain text documents, image or any type of document that 

can be stored in digital format. Services provided in the digital library should -at a 

minimum- support storage, search, retrieval, publishing and management of documents. 

In the following section, we will provide sample of existing digital libraries including 

those who have text document, images or 3D models.
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2.6.2 Sample Digital Libraries

2.6.2.1 Text Digital Libraries

Arc [50] is one of the first federated searching services based on the OAI protocol. 

“Arc harvests metadata from several OAI compliant archives, normalizes them, and 

stores them in a search service based on a relational database (MYSQL or Oracle). The 

Arc architecture is based on the Java Servlets-based search service that was developed 

for the Joint Training, Analysis and Simulation Center (JTASC) ([58],[59]). This 

architecture is platform independent and can work with any web server. Moreover, the 

changes required to work with different databases are minimal. Arc’s implementation 

supports two relational databases, one in the commercial domain (Oracle), and the other 

in the public domain (MySQL). The architecture improves performance by employing a 

three-level caching scheme” [50].

Archon ([2],[57]) is a federation of physics collections with varying degrees of 

metadata richness. “Archon provides services on these metadata that make the federation 

a learning environment useful not only for the researcher but for students as well. Archon 

uses the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) to 

harvest metadata from several Physics collections that are geographically distributed. 

The architecture of Archon [2], [57] is largely based on Arc [50], the first OAI-PMH 

compliant service provider to provide end-user search services across OAI-PMH 

repositories. However, Archon provides some services that are specifically tailored for 

research and education in the physics community. Archon currently supports searching 

and browsing of equations and formulae and a citation linking service for arXiv and 

American Physical Society (APS) archives. The architecture of Archon provides the 

following basic services: a storage service for the metadata of collected archives; a 

harvester service to collect data from other digital libraries using the Open Archives 

Initiative Protocol for Metadata Harvesting (OAI-PMH) [47]; a search and discovery 

service; and a data provider service to expose the collected metadata to other OAI-PMH 

harvesters. A range of services were especially developed for physics collections based 

on metadata available from the participating. For example, a service to allow searching 

on equations embedded in the metadata was provided. It also provides a cross-archive
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citation service has been developed to integrate heterogeneous collections into one 

unified linking environment” [2],[57].

2.6.2.2 Image and Multimedia Digital Libraries

The American Memory project contains the historical collections for the National 

Digital Library at the Library of Congress. It contains multimedia collections of digitized 

documents, photographs, recorded sound, moving pictures, and text. There are currently 

over 40 collections in American Memory digital library.

The Astronomy Digital Image Library (ADIL) [66] was supported by NASA and 

the National Science Foundation (NSF) to address some of the challenges of distributing 

scientific data over the network. The purpose of ADIL is to collect fully processed 

astronomical images in FITS format (a standard astronomical image format) and make 

them available for searching, browsing, and downloading to the research community and 

the interested public via the World Wide Web. ADIL also allows researchers to add 

images to its growing collection, thus providing them with a place to archive and share 

their fully processed images with the community.

The Columbia's Content-Based Visual Query Project was developed at 

Columbia University [13] to establish large digital image and video archives. It provides 

content based retrieval tools by allowing users to specify image queries by giving 

examples, drawing sketches, selecting visual features like color and texture, and by 

arranging spatial structure of features.

The Informedia Digital Video Library at Carnegie Mellon University is one of 

the NSF/DARPA/NASA jointly funded Digital Library Initiative projects [85], 

established in 1995. This particular effort focuses on the achievement of machine 

understanding of video and film media, including all aspects of search, retrieval, 

visualization and summarization in all collections via desktop computers and 

metropolitan area networks. The library has been deployed in education, health care, 

defense intelligence and the coordination of human activity. Additionally, it has been 

extended to include multilingual, multi-cultural and cross-lingual versions across Europe 

and Asia.
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2.6.2.3 3D Digital Libraries

The Visible Human Project [8] from National Library of Medicine (NLM) 

produced complete, anatomically detailed, three-dimensional representations of the male 

and female human body by collecting transverse CT, MRI and cross section images of 

representative male and female cadavers at one millimeter intervals.

Princeton 3D Model Search Engine [60] provides a repository and search engine 

for 3D models. Its goal is to investigate issues in shape-based retrieval and analysis of 

3D models. The Princeton 3D search engine has about 36,000 models and they provide 

text search interface as well as various 3D and 2D query interfaces.

3DESS: A 3D Engineering Shape Search System [40] was developed at Purdue 

Research and Education Center for Information Systems in Engineering (PRECISE). The 

primary goal of this project is to develop a search system for 3D engineering shapes. 

This required the extraction of four feature vectors which are moment invariants, 

geometric ratios, principal moments, and eigenvalues of the adjacency matrix of skeletal 

graph. The system consists of two modules: multidimensional index and database. 

Multidimensional indexes is hard to be implemented in current commercial databases, 

therefore it was built on top of the system’s database (Oracle 8i). Whenever a shape is 

inserted in the database, an ID is generated for it, all the feature vectors are extracted and 

stored in the database, and the index is updated with the ID and feature vectors. The 

3DESS database consists of 113 engineering shapes employed to test the effectiveness of 

the shape descriptors. The 113 shapes are manually classified into 26 similar groups and 

they are mixed with some noisy shapes that do not belong to any group..

2.6.3 Discussion

The Visible Human Project produced an excellent set of anatomically detailed 2D 

and 3D models of the male and female human body. However, this project lacks essential 

3D digital library services such as a user-friendly interface to search for models or the 

capability to search by characteristics of models other than text. On the other hand, the 

Princeton 3D Model Search Engine is the most complete digital library existing for 3D 

models. They provide services for search and retrieval of 3D models by text annotation 

or by shape. However, they do not provide specialized navigation services for large
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collection. In this research, we will present details of developing a hierarchical browsing 

service to reduce the time for browsing large collections. Moreover, we will prove that 

our 3D search is more accurate than that provided by Princeton. 3DESS supports services 

such as searching 3D models by shape. However, 3DESS does not provide compression 

services specialized for 3D models. Due to lack of data, we could not compare the 

performance of our shape-based retrieval to that of 3DESS. However, in our research, 

we provide a storage service that stores 3D models in compressed format that will enable 

progressive reconstruction of the 3D model.
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CHAPTER III 
STORAGE AND RETRIEVAL SERVICES

3.1 Introduction

Our objectives include reducing the storage requirements for 3D models, searching 

for 3D models by shape and providing convenient tools for browsing large collections. 

The key to achieve this is developing a compressed representation for 3D models, which 

can also be used to identify or recognize the 3D model in the compressed format. We 

developed the surface signatures which are 2D images that capture information about the 

3D model and can be used in recognizing the 3D model. The surface signatures are a 

compressed representation of a 3D model, and as demonstrated the original 3D model 

can be easily reconstructed from these signatures.

We now give details for the surface signature of a 3D model followed by the 

inverse signature transform for reconstructing the original model.

3.2 Surface Signature

A surface signature at a given point on the surface of an object is a descriptor that 

encodes the geometric properties measured in a neighborhood of the point. In early work, 

Besl and Jain [9] characterized surface points according to the signs of their mean and 

Gaussian curvatures. In recent years, more complex surface signature representation 

schemes have been reported in the literature. They include the splash representation of 

Stein and Medioni [77], the point signatures of Chua and Jarvis [17], the shape spectrum 

scheme of Dorai and Jain [26], the surface signatures from simplex meshes of Yamany et 

al., [86],[5], the harmonic shape images of Zhang and Hebert [87], and the spin-image 

representation introduced by Johnson and Hebert [41].

We developed a new surface signature representation based on the surface 

signature, developed by Yamany and Farag [86]. Yamany ([86], [5]) encoded the 

curvature of the surface inside the signature and computed the signature at selected 

points on the surface. In our version of the signature, we reduced the signature size by 

removing curvature information, and we extended the definition of the signature to allow 

it to be computed at points that might not be on the surface of the 3D model. Moreover,
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we updated the calculation of the signature to be able to use it in reconstructing the 

original 3D model as we will show in the following subsections.

The signature image is computed as follows [4], [5]: Using an anchor point A,
- 4

defined by its 3-D coordinates and a direction U A , each other point Pj on the surface can 

be related to A by two parameters:

(1) the distance di = || A -  P.|| and (1)

(2) the angle a i = cos -1 UA-W-Pj ) (2)

Examples of some basic 3D surfaces and the signature viewed from some selected 

points are illustrated in the following figures. These examples are included to get an idea 

of how a typical signature looks like and will be used later in illustrating how to get the 

inverse signature which is the basis for our compression technique. Fig. 8 shows a 3D 

sphere with radius 1 and Fig. 10 shows the signature at any point on the surface of the 

sphere using the surface normal as the direction for the anchor point (any point on the 

sphere has the same signature).

Fig. 10 shows a 3D cone and Fig. 11, Fig. 12, and Fig. 13 show the signature of the 

cone calculated from 3 different points. Notice that the signature calculated from the 

apex of the cone is a straight line as the signature. This is due to the fact that all points on 

the surface of the cone have the same (a) value with respect to the apex of the cone.

3.2.1 Anchor Point Selection

The surface signature is calculated from different view points called anchor points. 

The strategy for selecting anchor points, greatly affects the number of signatures to be 

used. Flence; it controls the compression ratio and accuracy. In the following 

subsections, we will illustrate different approaches along with their trade-offs in 

acquiring the anchor points.

3.2.1.1 Highest Curvature Points

In this approach, we select points on the 3D surface having highest curvature 

values to be anchor points. These points are selected because they are perceived to 

capture the shape of the 3D models from different perspectives. Moreover, they are
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independent of the orientation of the 3D model. The curvature was calculated at each 

point on the surface using an approximation approach developed by Yamany [86].

i

i
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Fig. 8. Sphere. Fig. 9. Signature of a sphere.
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Fig. 10. Cone. Fig. 11. Signature of cone (from apex).

Fig. 13. Signature of cone (from point 3).Fig. 12. Signature of cone (from point
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We conducted some experiments to see if using highest curvature points as anchor 

points will be effective. In the experiments, we used a 3D model and calculated the 

signature at an anchor point on the surface that has the highest curvature and we used the 

normal direction as the surface normal at the anchor point then we calculated the surface 

signature. We then repeated the experiment with variations of the same model after 

removing some parts of the model or applying Gaussian noise to the points of the model.

Table 1 shows Variations of a 3D chair with signatures calculated at an anchor 

point that has highest curvature. Table 1 shows variations of 3D chair with signatures 

calculated at an anchor point that has the highest curvature.

Table 1 shows that removing parts of the 3D model, has minimal effects on the 

shape of the signature. However, adding noise significantly affects the shape of the 

signature.

3.2.1.2 Using the Signature Area to Select Anchor Points

When calculating the signature for the sphere, we found that any point on the 

surface of the sphere have the same signature. This it is enough to use only one anchor 

point for representing a sphere. Looking at Fig. 10- Fig. 13, we can see signatures of the 

cone from different points on its surface. Fig. 11 shows the signature of the cone where 

the anchor point is at the apex. This signature is a single line. This signature is special for 

the fact that it can be used (alone) to reconstruct the full 3D cone. On the other hand, the 

other two signatures in Fig. 12, Fig. 13 can not fully reconstruct the cone.

We looked at the special characteristic of this signature and found that it has the 

minimum area. We, then, conducted experiments to find is using anchor points that 

produce a minimal area signature will be better for reconstructing the 3D model. In the 

experiments, we acquired a 3D model, calculated the surrounding cube for that 3D 

model. Then we divided that cube into set of 15 equidistant planes.

On each plane, we calculated set of 15x15 equidistant points that cover the whole 

plane. We used these equidistant points as anchor points. For each anchor point, we 

calculated the signature.
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TABLE 1

VARIATIONS OF A 3D CHAIR WITH SIGNATURES CALCULATED AT HIGHEST

CURVATURE POINTS

Model

Fig. 14. Original 3D chair.

*: r\ ■.-.”'.v

Fig. 16. 3D chair after removing some 
parts from the back of the chair.

Fig. 18. 3D chair after removing some 
parts from the back of the chair and two 
legs._____________________________

Signature at Highest Curvature Point

J
Fig. 15. Signature of the original 3D 

chair.

J
Fig. 17. Signature of the chair that has 
missing parts from the back.

$
&

Fig. 19. Signature of a chair that has 
missing parts from the back and 
missing legs.
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Model
'•tsaiSr^jEys^iiSzaBiarafiiS iTTT

Fig. 20. 3D chair after applying 5% noise.
'""S.. - '■

Fig. 22. 3D chair after applying 10% 
noise.

Signature at Highest Curvature Point

Fig. 21. Signature of 5% noisy model of a 
chair.

Fig. 23. Signature of 10% noisy model of 
a chair.

Based on the signature, we calculated the area of the signature defined as the 

number of pixels in the signature. Then we tried to reconstruct the 3D model from this 

signature and computed the reconstruction error.

Fig. 24 shows the actual 3D model and Fig. 25 - Fig. 39 show the area of signature 

at each anchor point along with the reconstruction error for each of the 15 planes.

Looking at the graph, we could not conclude that there is a relation between the 

signature area and the reconstruction error. Hence, we decided not to select anchor points 

based on the area of the signature.
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Elle J5ew Iransform Signature tJelp

Fig. 24. A 3D model for a cow.

3.2.1.3 Medial Axis 

Medial Axis Definition

The medial Axis (MA) of a shape is the locus of the centers of all the maximal 

inscribed circles of the shape [11].

A maximal inscribed circle does not intersect with the shape’s exterior; it does 

however touch the shape’s boundary at two or more points.

The medial axis of a 3D model is the locus of the center of a maximal sphere, as the 

sphere rolls around the object interior, which can be referred to as the medial surface 

[74], Fig. 41 shows examples of Medial Axes for 3D models.

The distance lfom a medial axis point to its nearest boundary points defines the 

local feature size, which measures the local diameter of the geometry. The medial axis 

together with the local feature size gives a complete description of the original geometry. 

This description is referred to as the Medial Axis Transformation.
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Fig. 25. Signature area (right) and 
reconstruction error (left) at plane 1.
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Fig. 26. Signature area (right) and 
reconstruction error (left) at plane 2.
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Fig. 27. Signature area (right) and 
reconstruction error (left) at plane 3.
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Fig. 28. Signature area (right) and 
reconstruction error (left) at plane 4.

Fig. 29. Signature area (right) and 
reconstruction error (left) at plane 5.

Fig. 30. Signature area (right) and 
reconstruction error (left) at plane 6.
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Fig. 31. Signature area (right) and 
reconstruction error (left) at plane 7
|> j» ' t *  * e w “ l ^ b  " i S J ^  Help'

Fig. 32. Signature area (right) and 
reconstruction error (left) at plane 8.

Fig. 33. Signature area (right) and Fig. 34. Signature area (right) and
reconstruction error (left) at plane 9. reconstruction error (left) at plane 10.

Fig. 35. Signature area (right) and 
reconstruction error (left) at plane 11.

Fig. 36. Signature area (right) and 
reconstruction error (left) at plane 12.
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Fig. 37. Signature area (right) and Fig. 38. Signature area (right) and
reconstruction error (left) at plane 13. reconstruction error (left) at plane 14.

Fig. 39. Signature area (right) and reconstruction error (left) at plane 15.

The medial axis transformation (MAT) specifies the radii of the maximal circles 

along with their centers to define the object’s skeleton. The goal of finding the skeleton is 

to reduce the object’s dimensionality and hence extracts a simple, robust representation 

of the shape of an object.

Fig. 40. Example of 2D medial axis.
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The MAT however does not reflect non-geometric related topology (CAD 

topology), which obstructs the mesh generation of objects. This makes the MAT a useful 

tool geometrically, but may not be used solely to determine meshing complexity.

Fig. 41. Examples of 3D medial axis.

Why Use Medial Surface in positioning anchor points

The inverse signature uses the intersection of a sphere whose center is the anchor 

point with a cone that has the anchor point as an apex. Hence, using anchor points as the 

medial axis (centers of sphere tangent to the surface) will maximize the number of 

correct points generated by the signature. This will reduce the total number of signatures 

needed to reconstruct the 3D model.

Problems in using the medial surface points as anchor points

The use of the medial axis has been limited mainly by two significant drawbacks: 

First, it is unstable, in that small deformations in the boundary of the solid can lead to 

large changes in the medial axis. Second, it is difficult to compute because of the 

underlying algebraic complexity. Geometric computation with primitives of high degree 

is hard to make the medial axis calculation both reliable and fast. For example, 

calculating an approximate medial axis for a 3D model with about 3700 vertices may 

take about 10 minutes. This might work if  the calculations are done offline, however, in
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real time applications when a user submits a model online to retrieve similar models he is 

not likely to wait for 10 minutes to get the results back.

3.2.1.4 Pre-specified fixed points

In this approach, fixed points relative to the surrounding cube of the model are 

selected as anchor points.

Fig. 42. Fixed anchor points using the bounding cube of the 3D model.

The points selected are the center point and the intersection of axes starting from 

the center point with each surface of the 6 surfaces of the cube. The drawback for this 

approach is that it rotation variant which means it depends in the orientation of the 3D 

model. To overcome this effect, 3D models should be aligned to be normalized for
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rotation before selecting the anchor points. We used principal axes to normalize models 

for rotation1. The algorithm to get the anchor points is shown in Fig. 43.

3.2.1.5 Discussion

Based on the experiments we conducted, we decided not to use anchor points based 

on the curvature of the 3D model as minor variations in the model significantly changes 

the signature making it unusable for comparing shapes of 3D models. Using points on 

the medial axes has proved to be computationally expensive. Moreover, when using 

either highest curvature points or points on the medial axes, we get number of anchor 

points that vary depending on the complexity of the 3D model. Thus, resulting in 

complicating the process of comparing the shape of the 3D models using signature 

because in this case, we have to find what are the corresponding points to compare 

between the 3D models and decide what to do if we get different number of anchor 

points in the 2 models?

Using fixed points makes the compression ratio always predictable. However, the 

selection of the anchor points does not vary with the complexity of the model which 

might sometimes produce more points than what is needed as in the case of a sphere 

where one point is enough to reconstruct the whole sphere. Some times these points 

might not be enough to reconstruct the whole model which might result in inaccurate 

reconstruction of the 3D model. Moreover using fixed points is rotation variant which 

requires an additional process to normalize the orientation of the 3D model. Table 2 

summarizes the different used in selecting the anchor points.

3.3 Progressive Compression Based Approach

3.3.1 Inverse Signature

The point A at which the signature image is calculated is called the anchor point for
—A

that signature. Let us define the normal at point A to be N . A point P on the signature 

image as shown in Fig. 42, has distance d from A and angle a  with respect to the normal

N  as shown in Fig. 44.

1 In our experiments we used models from Princeton Shape Benchmark which had the center and principal 
axis pre-computed.
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Get the center C (xc,yc,zc) o f the 3D model as the average (x,y,z) 

coordinates for all points on the surface o f all polygons.

H pi
C = -^ —

N

Where

P i  is the (xi,yi,Zj) coordinates of a point on the surface

N is the number of points on all polygons of the 3D model.

Translate all points o f the 3D model to the center C.

Get the covariance matrix CM

r cov (x,x) cov(x, y) co v(x,z)^
CM = co v(y,x) cov(y,y) co v(y,z)

co v(z, x) co v(z, y) cov(z, z)

(5)

(5)

Where

£ ( 4  - A C) ( B , - B C))
CO v(A,B) = -------------------------

N
(5)

Where

N is the number of points on all polygons of the 3D model

Ac and Bc are the average values of all values of A; and B, respectively (center

coordinates).

• Get the eigenvalues and eigenvectors o f the covariance matrix CM.

• Sort the eigenvectors by the values o f eignenvalues in descending 

order.

• The sorted eigenvectors represent the principal axis o f the 3D model.

• Rotate the 3D model to align it with the principal axis.

Fig. 43. Model aligning algorithm.
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TABLE 2

COMPARISON OF ANCHOR POINT SELECTION TECHNIQUES

Anchor Point Selection Rotation Invariance Efficiency Robustness

Highest Curvature Points Yes Medium Low

Medial Axes Points Yes Slow Medium

Fixed Points (on the bounding cube) No Fast High

In order to get the reverse mapping of the point P and get the corresponding point

in the 3D domain, we must locate all points that have distance d from the anchor A and
—̂

angle a  with respect to the normal N . All points that have distance d from the anchor A 

lie on the surface of a sphere that has center A and has radius d. On the other hand all 

points that has angle a  lie on the surface of a cone that has its apex at the point A, has

normal N  at the apex and has angle a  with the normal as shown in Fig. 45.

Arbitrary point on the 2D  
signature

a

Fig. 44. 2D Signature.
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The intersection of the cone and the sphere is a circle that has radius d sin (a), and
—>

perpendicular to the normal N  and its center has distance d cos (a) from the anchor A as 

shown in Fig. 44.

Anchor point

d c o s(a )

Point on die 
Surface d sin (a )

Fig. 45. Signature calculation from a point P.

This means that each point on this circle represents the inverse mapping of a single 

point in the 2D signature image. In other words, in the 3D domain any point that lies on 

this circle will map its signature in the 2D domain to a single point P. This means that the 

mapping from the 3D domain to the 2D signature image is many-to-one.

3.3.1.1 Derivation of the Inverse Signature

We will derive the equations of the inverse signature in the 3D- domain given:

(1) a point S = (d,a) on the 2D-surface signature as shown in Fig. 42,

(2) the coordinates of the anchor point A in the 3D domain A = (al,a2,a3) and

m 1

(3) the normal at the anchor point N  =m2
m3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

We will transform the 3D-coordinate system such that the anchor point A will be 

the origin and the normal jv will be in the Z-axis direction.

This will result in two transformations: a translation by (al,a2,a3), and rotation by angle 

0 around the vector

V = N x Z

where

n\ 'O' n2
n2 X 0 n\
n3 _1 0

(6)

6 = cos l(N.Z)  = cos \n 3 )

When applying these two transformations on a point P = (x,y,z) , we get a point P :

P' = (V .P) V + ( P - V  .P V) cos(6>) + V x p  sin(0) + A

cos (6) + n 2 (1 -  cos(6)x -  nxn2 (1 -  cos(6))y + nl sin(0)z + a\

P = -  npi2 (1 -  cos(0))x + cos(0) + n 2 (1 -  cos(0))y + n2 sin(0)z + a2 
-  nx sin(0)x -  n2 sin(0)y + cos(0)z + a3

( V )

Anchor point

Fig. 46. Inverse signature calculation.
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As we illustrated before, the inverse signature of a point S = (d,a) is a circle in the 

3D-domain that results from the intersection of a cone, whose apex is at the anchor point 

(currently translated to the origin) and its normal is n (currently rotated to the Z-axis), 

with a sphere of radius d.

The parametric equations of this circle is 

x = d sin (a) cos (2 n t) 

y = d sin (a) sin (2 n t) 

z = d cos (a) 

where t e  [0,1].

To get the correct coordinates in the 3D- domain, we have to apply the translation 

and rotation for each point in this circle as in equation (7).

3.3.2 Compression and Reconstruction Algorithms

This section illustrates how to compress the 3D model using surface signatures and 

restore it back from the compressed format. The compression algorithm is shown in Fig. 

47.

• Select anchor points

• Compute the surface signature at each anchor point

• Store the data o f the each anchor point (including its position and normal) along 

with the 2D-signature image at this point

• Compress each 2D-signature image (using any traditional compression technique 

such as Huffman encoding, JPEG or GIF). Since the 2D-surface signatures are 

usually sparse, this is expected to have a high compression ratio.

• Each anchor point along with the compressed 2D-surface signature image forms a 

component o f the new representation o f the 3D object.

Fig. 47. Signature compression algorithm.
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To reconstruct the 3D model, we map the 3D space into a three dimensional grid of 

Voxels (Volume Elements) as shown in Fig. 48.

Fig. 48. 3D grid.

The reconstruction algorithm is shown in Fig. 49. For memory optimization, a 

single grid can be used and the calculation for each component can be computed directly 

for this grid (along with the intersection operation for all components except the first 

one).
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• FOR each signature image, do the following:

o Create a (m*l*n) grid o f Voxels (Volume Elements). Where m, I, and n are 

determined according to the available memory storage and to the required 

granularity in the directions o f X , Y  and Z  respectively, 

o Define a mapping function from the grid coordinates to 3D coordinates 

that maps each Voxel cube to an (x,y,z) location in the 3D space, 

o Decompress the 2D-surface signature image 

o FOR each non-zero pixel in the 2D-surface signature image

■ compute the equation o f the inverse signature circle

■ put the circle as a set o f Voxels in the 3D grid 

o END FOR

• END FOR

• Find the intersection o f all 3D grids. This will be the decompressed vertices o f the

3D object.

Fig. 49. Reconstruction algorithm.

In the previous algorithm, a circle in the 3D space is generated for each point in the 

2D signature image which is computationally expensive. Moreover, the number of circles 

generated will depend on the number of pixels in the signature image. To speed up the

computations, we devised an inverse grid approach. This approach is shown in Fig. 50.

In this approach, instead of starting by a pixel from the 2D-surface signature image 

and finding the corresponding circle for it in the 3D grid, we start from the 3D grid and 

test if a corresponding pixel exist in the signature image in the 2D domain. This will 

reduce the computation by eliminating the need for computing the 3D circle 

corresponding to a signature pixel.
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• FOR each signature image, do the following:

o Create a (m*l*n) grid o f Voxels (Volume Elements). Where m, I, and n are 

determined according to the available memory storage and to the required 

granularity in the directions o f X, Y and Z  respectively, 

o FOR each Voxel in the 3D grid

■ Compute (x,y) coordinates o f the corresponding point in the 2D 

signature image

■ IF a pixel exists at position (x,y) in the signature image

• Mark the current Voxel as part o f the reconstructed 3D 

mode

■ END IF  

o END FOR

• END FOR

• Find the intersection o f all 3D grids. This will be the decompressed vertices o f the 

3D object

Fig. 50. Accelerated reconstruction algorithm.
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CHAPTER IV 
SEARCH AND DISCOVERY SERVICES

Due to the different requirements of users of 3D digital libraries, we are developing 

multiple types of search and discovery services. These services provide the means to 

locate 3D models with special requirements or based on some features of the model, as 

well as providing mechanisms to browse large collections of 3D models.

4.1 Metadata Search

Each 3D model has a group of metadata associated with it such as title, description, 

creation date, size, number of vertices, etc. (A detailed description of the metadata used 

will be presented in section 4.1.1).

The metadata search service is a service that allows a user to search combinations 

of metadata. It can also allow of the use of operators such as AND/OR to enhance the 

search if required. Of most importance to these queries, are queries on the text 

description of the model. These queries can provide accurate results if  each model is 

accurately described, which - unfortunately - is not always done. Details on the 

implementation of this service are presented in section 4.1.2.

4.1.1 Metadata Repository

The repository stores the metadata for the 3D models. We used metadata that are 

derived from Dublin Core (DC) representation [27], Table 3 shows a list of Dublin Core 

metadata elements [27] that we used in our database together with our definition.

We added metadata specific to the 3D models to the previously listed Dublin Core 

metadata elements, such as: the height, length, width, number of vertices, number of 

triangles and orientation directions. A detailed list is shown in Table 4.

These metadata fields are stored in an indexed Oracle database that provides fast 

search capabilities through the metadata sets.

4.1.2 Metadata Search and Retrieval

The metadata search service that we developed and implemented is derived from an 

implementation of a search service developed for JTASC [59] for searching text
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documents and from the Arc search service [Liu2001] developed at Old Dominion 

University.

TABLE 3

DUBLIN CORE METADATA ELEMENTS USED IN OUR DATABASE

Data Element Definition

Contributor An entity responsible for making contributions to the content of 

the resource.

Coverage The extent or scope of the content of the resource.

Creator An entity primarily responsible for making the content of the 

resource

Date A date associated with an event in the life cycle of the resource.

Description An account of the content of the resource.

Format The physical or digital manifestation of the resource.

Identifier An unambiguous reference to the resource within a given context.

Language A language of the intellectual content of the resource.

Publisher An entity responsible for making the resource available.

Relation A reference to a related resource.

Rights Information about rights held in and over the resource.

Subject The topic of the content of the resource.

Title A name given to the resource.

Type The nature or genre of the content of the resource.

We used an Oracle-based implementation using Servlet technology ([57],[59]). The 

Oracle database stores the index information (metadata) to speed searching for 3D 

models using different metadata attributes such as the author name, the title and the
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abstract. In the prototype we implemented, all Dublin Core metadata are indexed to 

speed up searching by any of these attributes.

TABLE 4 

3D MODEL METADATA

Data Element Definition

VERTEX_NUM Number of vertices in the 3D model

TRIANGLE_NUM Number of triangles in the 3D model

Length, Width, Height Dimensions of the 3D model

MinX, MaxX, 

MinY, MaxY, 

MinZ, MaxZ

Coordinates of the surrounding cube of the 3D model.

Center Center of mass of the 3D model.

Scale The average distance from all points on the surfaces of all 

polygons to the center of mass.

Principal axes The major axes of the 3D model. They can be used to align 

the orientation of 3D models

Thumbnail An image of the model rendered with colors and textures.

Fig. 51 shows the architecture of the search server. The search server is 

implemented in Java using Servlets. The search server has a session manager that 

maintains one session per user per query. It is responsible for creating new sessions for 

new queries (or for queries whose session has expired). Sessions had to be used because 

queries may return large number of results (hits) that cannot be displayed on one page. 

Thus sessions are used to cache some or all of the results (as will be explained later) in 

order to make browsing through the hits faster. The session manager receives two types 

of requests from the client. The session manager receives either a request to process a
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new query (search), or a request to retrieve another page of results for a previously 

submitted query (browsing).

M etadat
(XML)Documents'

Metadata

File I/O

Metadata
Database

IfitS Qieries

Users

XSL
Style
Sheet

XSL
Style
Sheet

WWW
S erver

Oracle
Server

Search
Server

WWW
Client

XML 
Utility for

XML 
Utility for

Local Cache

XSLT

XML

Java Servlet

XML P arse r for Ja v a

XSLT P rocessor

SQL Q ueries 
( viaJD B C )

R esults
(XML)

Fig. 51. Metadata search & retrieval component architecture.

For a search request, the session manager calls the index searcher that formulates a 

query (based on the search parameters) and submits it to the Oracle server (using JDBC) 

then retrieves the search results. The session manager then calls the result displayer to 

display the first page. For a browsing request, the session manager checks the existence 

of a previous session (sessions are expired after a specific time of inactivity). If a 

previous session is not found (expired), a new session is created and the search is re
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executed, then the required page is displayed. In the case where the previous session still 

exists, the required page is displayed based on the cached data (which may require 

additional access to the Oracle database). Different caching alternatives are used to get 

better response time.

4.2 Shape-Based Search of 3D Models

In the shape-based search, a 3D model is provided as input to a query and similar 

models are retrieved. We have multiple modes for 3D shape-based search:

A query model is selected from the digital library and similar models are retrieved. 

This search mode can be used in situations where users browse the digital library and 

find models of interest. Upon locating models of interest in the digital library, a search 

can be initiated to retrieve similar models.

A query model is provided as a file. In this search mode, users already have 3D 

models and they want to retrieve similar models. In this case, the 3D model will be 

uploaded to the digital library. The model will then be processed to extract features used 

in shape-based retrieval. These features include the anchor points and the signature 

images at each of the anchor points. These features are compared with those of the 

models in the digital library to retrieve similar models.

A query model is sketched using 3D authoring tool or a view of the model is 

sketched using a 2D drawing tool. This mode is helpful to users who have an idea on 

what the target model looks like. This mode is currently not supported in the prototype.

This requires a robust technique to recognize 3D models. The 3D recognition 

basically depends on extracting salient features from the models and then uses these 

features to identify 3D models. We used the surface signature as the feature used in 

computing the shape similarity of 3D models. In the following subsections, we will 

present details on how to compute shape similarity using the surface signature and how 

to search the 3D models collection based on the similarity measure that we developed.

4.2.1 Shape Similarity

In our work, we convert the process of computing shape similarity between two 3D 

models into the process of computing the similarity between the signature images of the 

3D models. The basic assumption we used here is: “if two signatures i and j are similar
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the models i and j are similar”. We experimentally verified this assumption and we will 

provide the results of our experiments in chapter 5.

The process works by generating the signature images for the 3D models at the 

selected anchor points (For more details about selecting anchor points, please see section 

3.2.1.). Next, we use 2D image matching techniques to compute the similarity for each 

2D image pair and compute the overall average, which will be defined as the similarity 

between these models. We defined the similarity as the average root mean square error 

between all signature images of the two models [1]:

(r.MD-P-.MDY (8)
ft S = 1

m ail
j_£te fid * J f le w F i'/o r ite s  T o w  H«p

\ Q t f e C k  -  - '1 .* 1  2 ?  4 -  j  Sc^ch  'Favo-K S  Meda &  '  “  - H

r

Fig. 52. Sample 3D models and their corresponding signature images.

Fig. 52 shows sample of 3D models and their corresponding signature images using 

7 anchor points.
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4.3 Shape-based retrieval of 3D models

In this section we will describe the technique we used for shape based retrieval 

where a model is provided as a query and similar models are retrieved from the digital 

library. The query model can be an already existing model in the digital library or an 

external model provided as a file2. In the first case, anchor points, and signature images 

should be already available in the digital library. In the later case, the model needs to be 

processed to extract vital information needed for shape-based retrieval. This processing is 

done as shown in Fig. 53.

• Compute principal axes as the eigenvectors (and associated eigenvalues) o f the 

covariance matrix obtained by integrating Xi.Xj with xi e {x,y,z}, over all points 

on the surfaces o f all polygons [74]. We used these axes to normalize the models 

fo r  rotations (see section 3.2.1.4).

• Align the model to the principal axes direction

• Select the anchor points as explained in section 3.2.1.

• Compute the signature image at each anchor point.

Fig. 53. Model aligning and signature computation.

The steps shown in Fig. 54, can then be used in shape-based retrieval given the 

query model (m)source:

The above algorithm has a time complexity of O(n) where n is the number of 

models in the digital library. Fig. 52 shows a snapshot of the result page where a sphere 

was presented as a query. Similar models of the sphere are retrieved and presented in 

order of similarity.

2 In our prototype, we support files o f STL, OFF and PLY formats.
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• FOR each 3D model (m) in the digital library

o FOR each anchor point

■ Compute the similarity between each two corresponding 

signature images (similarity o f 2D images is calculated as the 

percentage o f matching pixels on the two images or hamming 

distance/total number o f pixels). 

o END FOR

o Compute the average similarity o f all the signature images. 

o IFthe average similarity is higher than a pre-specified threshold, (m)SOurce 

and mt models are considered similar.

• END FOR

Fig. 54. Shape retrieval algorithm.

4.4 Cluster-Based Navigation

A difficult problem even in 2D collections is to provide the searcher with 

mechanisms to explore the collection in a controlled manner especially when the size of 

the collection is large. As the size of the collection becomes larger, it comes harder for 

the user to look at all the models and search for models of interest. In our approach, we 

limit the number of models the user scans at any one time while attempting to present the 

user only with relevant objects. We propose an iterative process where more and more of 

the collection is eliminated as not being relevant to the user’s search. To achieve this, we 

use clustering to group models based on their shape similarity.

The clustering of models is based on the shape similarity measure presented in 

equation (1). In the following subsections, we will introduce the optimal clustering 

criteria and we will follow this by the clustering algorithm used to group the models and 

we will explain how it can be used for hierarchical browsing of 3D models.
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Fig. 55. Objects similar to a sphere.

4.4.1 Optimal Clustering Criteria (Clustering Distance)

The optimal clustering algorithm should select clusters such that it will maximize 

the similarity of members of the same cluster (internal distance) and minimize the 

similarity of members o f different clusters (external distance).

Internal Cluster Error: Clusters should be formulated such that models in the 

same clusters are as close together as possible. In this case, we use the following 

equation to compute the error:
1 N  1 Mj

Internal Cluster Error = —  — Sim j k ) (9 )
N  l=1 /n. j=x k=x

Where

N is the number of clusters,

mi is the number of members of cluster I,
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Simjk is the similarity value between model j and model k.

Equation (9) thus computes the average dissimilarity over all clusters. This works 

by computing the average dissimilarity between each two members of a cluster and it 

then computes the total average for all clusters.

External Cluster Error: Clusters should be formulated in such a way that models 

in different clusters are as far from each other as possible. In this case, we use the 

following equation to compute the error:

Where

N is the number of clusters,

mi is the number of members of cluster I,

Simj k is the similarity value between model j and model k.

As equation (3) shows, external cluster distance computes the similarity between 

members of a cluster and non members of the same cluster. This is averaged for all 

clusters. This error measure assumes that if  we have two models belonging to different 

clusters, they should be dissimilar (otherwise they should have been in the same cluster). 

Thus, to compute the external error, we compute the average similarity between each 

members of a given cluster and each member of the rest of clusters. This is repeated for 

all clusters and an average is computed to indicate the overall external clustering error.

4.4.2 Hierarchical Browsing

As indicated in the introduction, to browse large collections of 3D models, we shall 

limit the size of the cluster at any level to a parameter (M) associated with the user 

capability to analyze M 2D representations (signature images) of the 3D models. For 

example we can set M to 30 which means, a user will not see more than 30 models (or 

clusters) at the same time.

There is a tradeoff between the maximum number of clusters per level and the 

accuracy of the cluster. When the number of clusters per level is very large, the user will 

be presented with the large number of models at each time which will make inconvenient

ExtemalCluster Error = ■

p=i

j=l h=1 k=1
(10)
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to browse and will defeat the purpose of clustering. On the other end, when the 

maximum number of clusters is small, this will result in higher number of members per 

cluster which will affect the accuracy of the clusters. In which case, we apply the 

clustering process to these clusters. Hence, we create hierarchy of clusters. For example, 

if  a digital library has 3000 models and we limited M to 30, the average number of 

models per cluster will be 100 which is fairly large. This might result in having clusters 

that contain models that are not very similar. Of course this can be resolved by increasing 

the number of clusters. For instance, if  we set M to 300, we will have an average of 10 

models per cluster. But this will defeat the purpose of clustering since the user will be 

presented with large number of clusters to view. We resolve this by re-applying 

clustering process recursively to clusters that have large number of members.

When presenting the models to the user, clusters are abstracted by representative 

models called cluster keys. Each of the M images may represent a specific 3D model or 

the key model of an entire cluster. The user navigates through the hierarchy by selecting, 

at each level, the image(s) most similar to the desired target model.

A cluster key is defined to be the cluster member that represents the whole cluster. 

We select the cluster key to be the cluster member that has the max average similarity 

with other cluster members. Fig. 56 shows an example of hierarchical clustering. At the 

first level, a user is presented with cluster keys. Upon selecting a key, the user will see 

the actual contents of the cluster if  its size is less than or equal to M. Otherwise the user 

will see cluster keys for members of that cluster.

Fig. 57 shows a sample of 9 models grouped into a hierarchy (remember the user 

sees only one level at a time). At the first level the user is presented with 2 cluster keys a 

fish and a plane. Upon selecting the plane, the user will be presented with two cluster key 

representing fighter jets and biplanes. Upon selecting the fighter jet, the user will be 

presented with 3 models of fighter jets.

Fig. 58 and Fig. 59 show snapshots of the digital library prototype (3DLIB). Fig. 58 

shows a snapshot of the cluster keys for the first level. Fig. 59 shows a snapshot of the 

members of a cluster whose key is the dolphin.
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4.4.2.1 Hierarchical Clustering Algorithm

We used k-means clustering algorithm [1], [41] to group 3D models based on the 

similarity measure we presented earlier. The k-means algorithm starts with a collection 

of models in a chosen number of clusters (n). The models are initially randomly assigned 

to a cluster. The k-means clustering proceeds by repeated application of a two-step 

process where the mean vector for all models in each cluster is computed and the models 

are reassigned to the cluster whose center is closest to the item. Since the initial cluster 

assignment is random, different runs of the k-means clustering algorithm may not give 

the same final clustering solution. To deal with this, the k-means clustering algorithm is 

repeated many times, each time starting from a different initial clustering. The sum of 

distances (based oh our similarity metric) within the clusters is used to compare different 

clustering solutions.

;— 7”"1  r " n i " ,  r 1 n —    _ a»tti . . .  • : . s ..

Fig. 58. Snapshot of cluster keys.

Our objective in clustering was to present the user with a view of the whole models 

that can show the different categories of models that are available in the database in just
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on glimpse. This is why we limited the number of members of a cluster to a pre-specified 

number M, where M is chosen such that models can be displayed within one page.

Fig. 59. Expansion of a cluster whose key is the dolphin.

• Put all 3D models in one cluster

• WHILE there are clusters with cardinality > M  DO

o FOR All Clusters with cardinality>M

■ Apply k-means clustering

■ Select a key model that minimizes the average distance to all 

other models within the same cluster.

o END FOR

• END-WHILE

Fig. 60. K-means clustering.
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Since we can not guarantee that all clusters will have a number of members that are 

less than M, the same clustering algorithm is re-applied again for clusters that have 

number of members higher than M. After applying the clustering algorithm, a model is 

selected out of the cluster members to be a representative (key) for that cluster. The key 

model is selected to be the model that has the min average distance to all other models 

(based on our similarity metric). Specifically, the algorithm works as shown in Fig. 60.

Set current level to 1

IF the current cluster has cluster keys

o FOR all cluster key models (CK) in the current level

■ Compute the similarity between model (m)source and (CKi)

■ IF the similarity higher than a pre-specified threshold

• Repeat the same algorithm recursively for cluster i

■ END IF  

o END FOR

ELSE IF the current cluster has 3D models

o FOR each 3D model (m0 in the digital library

■ Compute the similarity between (m)source and (m)k

■ IF the similarity is higher than a pre-specified threshold,

• (m)source and (m)k models are considered similar.

• END IF

o END FOR 

END IF

Fig. 61. Hierarchical clustering.
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4.4.3 Hierarchical Shape-Based Retrieval

Our shape-based retrieval algorithm, which was illustrated in section 4.3, has a time 

complexity of 0(n) where n is the number of models in the digital library. Though the 

time complexity is linear, this would be a considerable time when the number of models 

is large. Thus, we will show a more scalable version of this algorithm using the 

hierarchical clusters we created for browsing [1],

In this algorithm, given a model as a query, we will retrieve similar models. Instead 

of comparing the similarity of the query model with all models in the digital library, we 

will compare the similarity of the query model with the cluster keys first. If the result of 

comparison shows a great difference between the query model and the cluster key, we 

will not need to compare the similarity of the query model and all member of this 

clusters based on the assumption that members of the same cluster are similar. The 

algorithm works as shown in Fig. 61 given the query model ( m ) S0Urce-

This algorithm has a time complexity of 0(log(n)) where n is the number of models 

in the digital library. This has a significant effect on the time of processing the shape- 

based retrieval query especially if n is very large. That makes this algorithm more 

scalable than the one that searches all the models.
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CHAPTER V 
PERFORMANCE EVALUATION

5.1 Overview

In the previous chapters, we illustrated the architecture of 3DLIB and how this 

architecture helps in managing 3D models by providing services for storage, discovery 

and retrieval of 3D models. In this chapter we will evaluate the performance of the 

services provided by 3DLIB and we will compare the performance of some of the 

services to previously published similar services. In this chapter we will focus on 

quantitative evaluation of these 3DLIB services. We will not, however, illustrate 

subjective evaluations of our contributions such as the digital library architecture or the 

ease of use of the interface.

We will first start by describing the test bed we used in evaluating the performance. 

We will follow this by a description of performance measures and experiments we 

conducted to evaluate the performance of progressive compression, shape-based retrieval 

and hierarchical browsing.

5.2 Test Bed Description

In order to evaluate the performance of our 3DLIB services, we needed to build a 

collection that has a number of 3D models sufficient for valid performance data. 

Moreover, we needed the models to be of various sizes and shapes. In the following 

subsections, we will describe the test beds we used and how they were acquired.

5.2.1 Test Bed 1

We constructed a test bed that contained about 350 3D-models. Some of the models 

were designed using 3D studio. Others were collected from the Internet from different 

archives such as 3D cafe (http://www.3Dcafe.comV We used some of the models that 

were publicly available by 3D research groups such as Stanford 3D Scanning Repository 

(http://www-graphies.stanford.edu/data/3DscanrepA from Stanford University and GIT 

Large Geometry Models Archive (http: //www.cc. gatech. edu/proi ects/1 ar ge models A 

from Georgia Institute of Technology.
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5.2.2 Test Bed 2

Though we spent some time in collecting and constructing test bed 1, we decided to 

use Princeton Shape Benchmark (PSB) which was released in 2004 [74] as our test bed 

to conduct performance comparisons. The advantage of using PSB is that it is a 

standardized benchmark which makes it easy to compare the performance of various 

services without the bias of using a privately collected test bed.

The 3D models in PSB were collected from the World Wide Web in two years. 

The PSB collection we used contained a database of 1,814 manually classified 3D 

models collected from 293 different Web domains. For each 3D model, there is an Object 

File Format (.off) file with the polygonal surface geometry of the model, a textual 

information file containing meta-data for the model. For instance, the following metadata 

is provided to help identify the source and object type for each model:

Model URL [74]:” the web address where the model was found on the web”

Referring URL [74]: “the address of the Web page containing a link to the model”.

Thumbnail image [74]: “an image of the model rendered with colors and textures”.

In addition PSB provides useful data for normalizing 3D models for differences in 

translation, scale and orientation such as:

Center of mass [74]: “the average (x,y,z) coordinates for all points on the surfaces of all 

polygons”.

• Scale [74]: “the average distance from all points on the surfaces of all polygons to 

the center of mass”.

• Principal axes [74]: “the eigenvectors (and associated eigenvalues) of the 

covariance matrix obtained by integrating the quadratic polynomials Xj.Xj with Xi e 

{x,y^}, over all points on the surfaces of all polygons. We used these axes to 

normalize the models for rotations”.

The 3D models were manually partitioned by Shilane et. al. [74] into classes based 

on shape attributes of the models into 161 classes each containing at least four models. 

Fig. 62 shows the main categories of models in the PSB database. It shows that models 

are distributed among different categories such as vehicles, buildings, household items,
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animals, furniture and plants. The wide variety of model categories available in this 

benchmark reduces the bias in results.

PSB Category Distribution

Buildings 6%
Household

22%
Vehicles 26%

Plants 8% Furniture 11%
Animals 16%

Fig. 62. Princeton shape benchmark categoy description.

5.3 Compression Technique Evaluation

5.3.1 Compression Ratio

The compression ratio is defined as the ratio of the size of the original 3D model to 

the size of the compressed 3D model. We use this ratio to judge the amount of storage we 

save by applying our compression technique.

5.3.2 Compression Ratio Experiments

We conducted experiments to compute the compression ratio for our signature 

image representation of the 3D model. The experiment to compute the compression ratio 

is as shown in Fig. 63.
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Using 7 signatures in representing the 3D model, we computed the average 

compression ratio which was about 18. This means that our signature representation uses, 

on the average, 1/18th of the original model size.

• FOR each 3D model in 3DLIB

o Get the actual size o f the 3D model

o Get the size o f the sum o f the sizes o f signatures used to represent the 

model

• END FOR

• Divide the sum o f actual model sizes by the sum o f all signature sizes to compute 

the compression ratio

Fig. 63. Compression ratio computation.

TABLE 5

SAMPLE COMPRESSION RATIO RESULTS FOR SOME 3D MODELS

Model Compression Ratio

Stanford Bunny
r \  ^

54

Dragon 129

Turbine Blade

-:i

158
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We believe we can get even higher compression ratio if  the signature images 

themselves are compressed using one of the existing 2D image compression techniques 

such as those listed in [18]. This ratio is significantly better than Deering [22] who 

reported a lossy compression ratio ranging from 6 to 10. However for relatively large 

models we could achieve higher compression ratios as shown in Table 5.

Though we could get high compression ratios, the compression technique is a lossy 

compression technique and we cannot guarantee that we will recreate the original 3D 

model. However, using the signatures we reconstruct models that are similar to the 

original model. Fig. 64 shows a 3D view of the Stanford bunny, which was developed 

by Stanford University and is widely used in testing 3D applications.

i f

. AS
Fig. 64. 3D view of the original Stanford Fig. 65. Reconstructed Stanford bunny, 
bunny.

Fig. 65 shows the same model reconstructed using the signature images. Fig. 66 

shows the reconstruction of the Stanford bunny using seven signature images. We can 

see that after seven signatures we reconstructed a model that looks like the original 

Stanford bunny but it is not 100% accurate.
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j*  '

■

Fig. 66. Progressive reconstruction of the Stanford bunny (rear view on left and side 
view on right).
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5.3.3 Parameters Affecting the Compression

There are some parameters that affect the quality of the reconstructed 3D model. 

These parameters include the signature image size and the size of the 3D grid used in 

reconstructing the model.

The signature image is a 2D N*N image that is used to represent the relation 

between the distance and the angle of points on the surface relative to the anchor point 

where N is represents the width and height of the signature image in pixels.

N is selected prior to the compression process. The angle ranges from 0 to n  and 

the distance is normalized to range from 0 to 1. When the value of N becomes higher, we 

will have less quantization error in representing the angle and the distance but the size of 

the signature will increase.

On the other hand, the grid used in reconstructing the model does not affect the 

signature representation or the storage of the 3D model. However, it has a great effect on 

the quality of the reconstructed model. This grid is simply a temporary storage allocated 

on the computer where the model is reconstructed. When is the size of the grid is higher, 

more memory will be needed for reconstructing the model and the process will become 

slower.

We studied these effects on some models using 2.6GH computer with 1GB ram and 

the results are shown in Table 6. This table shows that as the grid size increases, the time 

needed for reconstructing increases as well. For instance, we need 14 seconds to 

reconstruct the Stanford bunny using 128*128*128 grid. This time is comparable to that 

obtained by Valette [81] which reported 14.5 seconds to reconstruct the same model. 

However, it is impractical for a user to wait for 14 seconds to view a 3D model over the 

web. This time includes the transmission time of the 3D model from the server to the 

client’s computer.

5.4 Shape-Based Retrieval Evaluation

We will start by defining the measures we used in evaluating the shape-based 

retrieval. We will follow this by describing the experiments we conducted and their 

results.
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TABLE 6

EFFECT OF SIGNATURE SIZE AND GRID SIZE ON RECONSTRUCTION

Signature

Size

Grid Size Reconstruction 

Time (sec)

Reconstructed Model

64*64 100*100*100 3 * *

128*128 100*100*100 3

i s ?

64*64 200*200*200 14

H r

100*100 128*128*128 4

128*128 128*128*128 5

• ‘' I f ? '

100*100 200*200*200 14

j .
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TABLE 6 (continued)

Signature

Size

Grid Size Reconstruction 

Time (sec)

Reconstructed Model

128*128 200*200*200 14

- W j i  * '*

64*64 250*250*25 28

■®jf
100*100 250*250*250 27 &
128*128 250*250*250 27

5.4.1 Precision and Recall

In traditional digital libraries, precision is defined as the ratio of the number of 

relevant documents retrieved to the total number of documents retrieved.

. . | Rel n  Ret |Precision =   1 (11)
| Ret |

Where:

R e l: is the set of relevant documents to the query model
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R e t: is the set of models retrieved by the query

Recall is defined as the ratio of relevant documents retrieved to the total number of

relevant documents.

| R e in  Ret | , .Recall = 1--------------1 (12)
I Rel I

Where:

R e l: is the set of relevant documents to the query model

R e t: is the set of models retrieved by the query

For 3DLIB we simply replace the word document by model to obtain analogous 

metrics.

5.4.2 E-Measure

E-Measure is a composite measure of the precision and recall for a fixed number of 

retrieved results [69]. This measure takes into consideration that a user in a search engine 

is more interested in the first page of query results rather than in later pages. So this 

measure considers only the models retrieved in the first page (depending on the max size 

of the page) in precision and recall results. The E-Measure is defined as ([69], [74] and

[47] y

E = i 2 i <13> [-----------
Precision Recall

5.4.3 Precision and Recall Experiments

The objectives of these experiments were to test the accuracy of the search service 

as well as its capability to retrieve the correct models in shape-based search queries. We 

used the precision and recall measures, which we defined earlier, to quantitatively 

evaluate the shape-based retrieval technique. Precision and recall are usually two 

contradicting measures. For example, if in any query we will return all the models 

existing in the database, we will get a 100% recall but very low precision. On the other 

hand if  we are more aggressive and we limit the number of models retrieved, we will get 

a high precision but we may get a low recall value. We can control the values of
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precision and recall by using a threshold T that specifies the cutoff value for similarity. 

We conducted the experiments as shown in Fig. 67.

The average precision and the average recall for different values of threshold are 

shown in Fig. 68.

Fig. 68 shows that the bigger the threshold becomes, the better the recall. However 

the precision becomes poorer. On the other hand, as the threshold becomes lower, the 

more the precision becomes and the less the recall. The value of the threshold can be 

tuned according to the user community requirements.

• FOR a value o f cutoff threshold (T) ranging from 0 to 1

o FOR Each 3D model in 3DLIB

■ Provide a 3D model from 3DLIB as a query, and compute the 

similarity between this model and all the models in 3DLIB using the 

signature similarity measure described in earlier chapters.

■ Retrieve all models that have a similarity value higher than a cutoff 

threshold T.

■ Compute the actual number o f relevant results using the manual 

classification o f models

■ Compute precision using equation (11)

■ Compute recall using equation (12) 

o END FOR

o Compute the average precision 

o Compute the average recall

• END FOR

Fig. 67. Precision and recall experiments.
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Based on the results of the previous experiments, we have drawn a curve that 

shows the relationship between precision and recall in Fig. 69. For perfect shape-based 

retrieval, the precision should be 1.00 for every recall value. This means that the closer a 

curve approaches a constant 1, the better the retrieval algorithm is.

Precision/Recall

Recall
Precision

o. 0 .4 -------

0.2

0.40.2 0.6

Threshold

Fig. 68. Average precision & recall.

We also compared our results to the results of 12 shape matching algorithms 

reported in [74], The algorithms reported in [75] use shape descriptors to compare the 

similarity of 3D models. The following are the descriptors used in these algorithms:

• D2 Shape Distribution (D2): “a histogram of distances between pairs of points on 

the surface “ [63].

• Extended Gaussian Image (EGI): “a spherical function giving the distribution of 

surface normals” ([39] and [74]).

• Complex Extended Gaussian Image (CEGI): “a complex-valued spherical 

function giving the distribution of normals and associated normal distances of 

points on the surface “[45] and [74] ).
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• Shape Histogram (SHELLS): “a histogram of distances from the center of mass 

to points on the surface “ ([6] and [74])

• Shape Histogram (SECTORS): “a spherical function giving the distribution of 

model area as a function of spherical angle” ([6] and [74] ).

• Shape Histogram (SECSHEL): “a collection of spherical functions that give the 

distribution of model area as a function of radius and spherical angle” ([6] and 

[74]).

• Voxel: “a binary rasterization of the model boundary into a voxel grid”.

• Spherical Extent Function (EXT): “a spherical function giving the maximal 

distance from center of mass as a function of spherical angle” ([72] and [74] ).

• Radialized Spherical Extent Function (REXT): “a collection of spherical 

functions giving the maximal distance from center of mass as a function of 

spherical angle and radius” ([83] and [74]).

• Gaussian Euclidean Distance Transform (GEDT): “a 3D-function whose value at 

each point is given by composition of a Gaussian with the Euclidean Distance 

Transform of the surface” ([46] and [74]).

• Spherical Harmonic Descriptor (SHD): “a rotation invariant representation of the 

GEDT obtained by computing the restriction of the function to concentric spheres 

and storing the norm of each (harmonic) frequency” ([46] and [74] ).

• Light Field Descriptor (LFD): “a representation of a model as a collection of 

images rendered from uniformly sampled positions on a view sphere. The 

distance between two descriptors is defined as the minimum difference, taken 

over all rotations and all pairings of vertices on two dodecahedra”. ([15] and 

[74]).

The results are shown in Fig. 69. This figure shows that our signature shape based 

retrieval method (SSBR) for computing the similarity performance exceeds the other 12 

methods. The other methods show all a typical concave characteristic and the distance 

between our curve to any other curve is greater than the distance between any curve of 

the other methods. For example our method provides about 40% recall at 80% precision 

which is nearly double of the value of any other curve.
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Precision/Recai!

SHELLS

0.7 D2

EGI

CEGI

 SECTORS0.5

 VOXEL

0.4 SECSHEL

EXT
0.3

-  SHD

GEDT0.2

REXT

LFD

-  SSB R

0 0.2 0.4 0.6 0.8 1 1.2

R ecall

Fig. 69. Precision and recall curves.

5.4.4 E-measure Experiments

Precision and recall are good measures to quantify search queries performance. 

However, these measures assume that a user will retrieve all the results of a search query. 

Such assumption is not practically true especially if the number of results returned by a 

search query is large. The fact is that most users will probably look at a limited set of 

results.

Consider for example a search engine like Google (http://www.google.com). When 

using text as search query, you can get millions of hits. But the reality is that no one will 

look at all the results. Most of the users will probably browse the first couple of pages of 

search results. This is why another measure is needed to quantify the quality of search 

results taking into consideration the limited capability of users to browse large number of 

search results. We used the e-measure [69] which is a composite measure of precision
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and recall considering only a limited number of search results. We conducted 

experiments to compute the e-measure as shown in Fig. 70.

• FOR Each 3D model in 3DLIB

o Provide the 3D model as a query to retrieved similar models

o Get the results and order them by similarity.

o Consider only the first (N) results and discard the rest

o Compute the actual number o f relevant results using the manual

classification o f models

o Compute precision using equation (11)

o Compute recall using equation (12)

o Compute e-measure using equation (13)

• END FOR

• Compute the average e-measure

Fig. 70. E-measure experiments.

We repeated the previous experiment for values of N ranging from 0 to 100 and the 

values of e-measure are shown in Fig. 71.

Fig. 71 shows that the value of e-measure tends to decline as the max retrieval size 

increases. For example for a max retrieval size of 20, the e-measure is 0.65. For a max 

retrieval size of 80, the e-measure is 0.38. In an ideal search, the precision will be 

always 1. On the other hand the recall will start from a value less than 1 and will increase 

till it reaches 1 when the max retrieval size is equal to the max cluster size. Which means 

the ideal e-measure will start from a value less than 1, then climbs till it reaches 1 then it 

will remain fixed. So far, there is no such similarity search that always gets the ideal 

results. However, the fact that our e-measure value decays when we increase the max 

retrieval size, indicates that the results retrieved first have higher relevance than those
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retrieved later. This indicates that ordering the results by similarity measure coincides 

with the relevance of the similarity of the models resulting in the user getting the relevant 

models first. We did not find anything in the literature of reported shape-based retrieval 

techniques that shows how the e-measure changes for different values of maximum 

retrieval size. However, in [74], we found, the value of e-measure for a maximum 

retrieval size of 32 computed for 12 shape-based retrieval techniques.

E-Measure

0.7

0.6

0.5

0.4

0.3

0.2

100 120

Max Retrieval Size

71. E-measure vs retrieval size.

We compared the value e-measure of our similarity measure to the e-measure from 

other algorithms and the results are shown in Table 7. Table 7 shows that the e-measure 

for our SSBR method is 57% which is twice as good as the best reported technique.

5.5 Hierarchical Browsing Evaluation

In our research we implemented a hierarchical browsing and navigation services 

using clustering techniques. To evaluate the accuracy of the hierarchical browsing, we 

will evaluate the clusters we generated.
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TABLE 7 

E-MEASURE COMPARISON

Content-Based Retrieval Algorithm E-Measure

LFD 28.0%

REXT 25.4%

SHD 24.1%

GEDT 23.7%

EXT 21.9%

SECSHEL 20.9%

VOXEL 20.7%

SECTORS 19.8%

CEGI 17.0%

EGI 16.5%

D2 13.9%

SHELLS 10.2%

SSBR 57.0%

The effectiveness of clustering depends mainly on the calculation of the similarity 

between cluster members. In previous sections we have demonstrated the effectiveness of 

our shape similarity computation method; in this section we will specify additional 

measures to evaluate the performance of our clusters Generated for hierarchical 

browsing.

Another factor that affects the quality of clustering is the number of clusters and the 

cluster size. If the number of clusters is large, the cluster size is small, we will have high 

quality clusters but the large number of clusters will defeat the purpose of clustering. On 

the other hand if  the number of clusters is small, the number of members in a cluster 

becomes large. Hence, the small number of clusters may lead to the inclusion of not-so- 

similar models in the same cluster. To allow us to study this trade-off quantifiably, we
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introduce two error metrics: the internal cluster error and the external cluster error. The 

first measures the average distance (similarity) of any two objects in a cluster and the 

second measures the average distance of objects in different clusters. The first we 

obviously try to minimize and the second we want to maximize. To evaluate the 

clustering, we used the internal and external error measures defined in section 4.4.1. The 

experiments to get the cluster error are shown in Fig. 72. The clustering errors are shown 

in Fig. 73.

Performing the clustering of a collection is a time consuming process and can not 

be done in real time to allow a user to change number of clusters on the fly. However we 

can produce a few clusters in advance and give the user the choice of the ones available. 

This will need updating as new models are published and change the clustering (we need 

to satisfy the size constraint). In Fig. 73, we show the relation of the internal and external 

cluster errors for a particular collection for varying cluster size. This kind of graph can be 

useful to the user in making a choice of cluster size, given that users are aware of their 

own capacity for handling a number of 3D objects simultaneously.

• Start with the set o f all models in the database

• FOR number o f clusters (N) changing from 2 TO 30

o Apply clustering algorithm to cluster model in a maximum o fN  clusters 

o Compute the internal clustering error 

o Computer the external clustering error

o Compute a weighted average o f internal and external clustering errors

• END FOR

Fig. 72. Clustering error computation.
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Fig. 73. Clustering errors

In Fig. 73, we also show an overall error that is the combination of the two: overall 

error = 0.5*Intemal Cluster Error+ 0.5*Extemal Cluster error (different weight can be 

used according to the significance of these errors for the application). The direction of 

the curve is intuitive. For example, if we have only one cluster, the external error will be 

zero and the internal error will be high. The curve shows that the error tends to decrease 

as the cluster size increases. This suggests that selecting a large cluster size will likely 

produce better results. However, we should take into consideration that we want to limit 

the number of clusters that a user can see at a time.

5.5.1 Time Analysis Experiments

We ran experiments to measure the average time to compute similarity between 

two models. The average time was about 0.007 seconds on a 1.8MGH PC, 512 MB of 

memory and running Windows XP Professional. This time is relatively small. However
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t  0.4 
2
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the actual time of processing a shape-based retrieval query depends on the number of 

models in the digital library. In out example where we have 1814 models in 3DLIB, a 

similarity query would require comparing the signature of the query model with the 

signatures of all models in the digital library. Hence, it will require 12 seconds to process 

one similarity query.

On the other hand, based on clustering the 3D models, which was used in 

hierarchical browsing, we developed a scalable shape-based search in which similarity is 

computed between the query model and cluster keys. This reduces the total number of 

similarity computation to O (logk (n)) instead of O (n) where n is the number of models 

in the digital library and k is the maximum number of clusters per level.

TABLE 8

SIMULATED NUMBER OF SIMILARITY COMPUTATIONS BASED ON THE 

NUMBER OF MODELS IN THE DIGITAL LIBRARY

Number of Models Linear Shape-Based Retrieval Hierarchical Shape-Based Retrieval

200 200 37

400 400 43

600 600 50

800 800 57

1000 1000 61

2000 2000 62

3000 3000 63

4000 4000 64

5000 5000 66

10000 10000 71

100000 100000 94

1000000 1000000 121

Table 8 shows the result of simulating the number of similarity computations based 

on the number of models in the digital library where the maximum cluster size is 30. It
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shows the relationship between the number of models in the digital library and the 

number of signature comparison needed in shape-based retrieval queries using cluster 

assisted search (hierarchical shape-based retrieval) or non-cluster assisted search (linear 

shape-based retrieval). In cluster-assisted search, the signature of the query model is 

compared with the signatures of cluster keys in the first level of the hierarchical clusters 

instead of comparing it with signatures of all models of the digital library. This process is 

repeated recursively for clusters that has a key similar to the query model. For more 

details about this algorithm, please refer to section 4.4.3.

This clearly shows that using clusters reduces the number of comparisons needed to 

process a similarity query which in turn reduces the time needed to process such query.
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CHAPTER VI 
CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions
In this research, we have developed an architecture for a digital library that 

supports 3D models. We have demonstrated its feasibility by implementing a prototype 

containing about 1800 3D models, which are part of the standard benchmark developed 

at Princeton University, and which we used to evaluate our 3D models search engine. We 

have reduced the storage requirements for 3D models by developing a novel compression 

technique with an average compression ratio of 18, in which 3D models are represented 

as sequences of two-dimensional images called surface signatures. We have extended the 

traditional metadata-based search functionality by developing a 3D shape-based search 

technique that uses surface signature to compute the similarity between 3D models. We 

have compared the performance of our 3D shape-based search with other well-known 

algorithms and we have demonstrated by extensive experiments that our algorithm 

outperforms other algorithms in precision and recall. In order to add to the usability of 

our 3D digital library, we have developed a hierarchical browsing mechanism to browse 

large collections of 3D models by recursively clustering them into groups. This 

hierarchical browsing technique provides the user of the digital library with a limited set 

of key models that are easier to view, enables the user to browse the digital library 

contents in a shorter time, and helps the user to locate the required 3D models faster. 

Accordingly, we expect that our hierarchical browsing feature will be beneficial to the 

users of 3D digital libraries in fields like engineering, medicine and electronic commerce. 

Finally, we have studied scalability issues with respect to the number of 3D models in 

the digital library and we have improved the shape similarity search time using the 

hierarchical clustering. This was achieved by comparing a query model against key 

models of clusters, instead of comparing a query model with all the models of the 

database. This means that the search time complexity will be logarithmic (0(log n)) 

instead of being linear (O(n)), where n is the number of models in the digital library.
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6.2 Future Work

Though our search proved to outperform existing techniques in terms of precision 

and recall, we believe that feedback from users (relevance feedback) can be used to 

adaptively enhance the search precision. This can be done by monitoring responses of 

users to query results. This monitoring can be either explicit or implicit. Explicit 

monitoring works by providing users with forms to provide feedback on models they did 

not expect to find in the search results. Implicit feedback can work by monitoring which 

models the user has selected from the query result. Implicit feedback will be more 

convenient from the user’s point of view and will be totally transparent. However, it may 

have less accuracy than explicit feedback. The results of feedback from users can be used 

later to update the similarity of the 3d models.

It will be beneficial if an artificial intelligence technique be used to implement a 

semantic-based search. For example, queries like “retrieve all living-room furniture 

models” will save the users hours of searching for individual items. In addition, 2D 

sketches and drawings can be used in searching for models instead of using pre-existing 

3D models. This means that a user should be able to sketch a 2D image of what he is 

searching for, and the search engine should use this sketch to retrieve a 3D model similar 

to what the user has in mind. This will be a very useful research since the 2D 

environment remains the simplest way of sketching, especially to non professional users.
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