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ABSTRACT

SHOCK WAVE DISPERSION IN WEAKLY IONIZED GAS

Prasong Kessaratikoon 
Old Dominion University, 2003 

Director: Dr. Leposava Vuskovic

Electrodeless microwave (MW) discharge in two straight, circular cylindrical resonant 

cavities in TEljU and TM0)i ,2 modes were introduced to perform additional experimental 

studies on shock wave modification in non-equilibrium weakly ionized gases and to 

clarify the physical mechanisms o f the shock wave modification process. The discharge 

was generated in 99.99% Ar at a gas pressure between 20 and 100 Torr and at a discharge 

power density less than 10.0 Watts/cm3. Power density used for operating the discharge 

was rather low in the present work, which was determined by evaluating the power loss 

inside the resonant cavity. It was found that the shock wave deflection signal amplitude 

was decreased while the shock wave local velocity was increased in the presence of the 

discharge. However, there was no apparent evidence of the multiple shock structure or 

the widening o f the shock wave deflection signal, as observed in the d.c. glow discharge 

[3,5]. The shock wave always retained a more compact structure even in the case of 

strong dispersion in both the TE and the TM mode. The shock wave propagated faster 

through the discharge in the TE mode than in the TM mode. Discharge characteristics 

and local parameters such as gas temperature Tg, electron density Ne, local electric field 

E, and average power density, were determined by using the MW discharge generated 

from an Argon gas mixture that contains 95% Ar, 5% H2 , and traces o f N2 . The gas 

temperature was evaluated by using the amplitude reduction technique and the emission
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spectroscopy o f Nitrogen. The gas temperature distribution was flat in the central region 

of the cavity. By comparing the gas temperature calculated from the shock wave local 

velocity and from the amplitude reduction technique, the present work was sufficiently 

accurate to indicate that the thermal effect is dominant. The electron density was obtained 

from measured line shapes o f hydrogen Baimer lines by using the gas temperature and 

the well-tested approximate formula for deconvolution o f Stark and Doppler broadening. 

The local electric field inside the MW discharge was evaluated by using a simplified 

kinetic model. Dispersion o f a shock wave in a MW discharge will most likely be 

applied in future technical solutions in aircraft design, or rocket shock wave modification 

systems. We hope that the present study will contribute to a better understanding of the 

physical mechanism leading to shock wave dispersion in weakly ionized gas.
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Section 1

INTRODUCTION

Shock wave dispersion and propagation in non-equilibrium weakly ionized 

gases have been the subject o f many recent experimental studies (see, for example, [1- 

3]). Most o f the studies were performed in positive columns o f d.c. glow discharges. 

The most important observed effects o f non-equilibrium plasma on the shock wave are 

the decrease o f shock amplitude combined with the widening o f the shock width 

(dispersion) and the increase o f the propagation velocity of the shock. However, there 

are some ambiguities related to the presence o f electrodes in this type o f discharge and 

also their impact on the local values o f plasma and gas parameters. In order to 

eliminate a possible influence of the electrodes on shock modification, a microwave 

(MW) discharge in a straight circular cylindrical resonant cavity was introduced in the 

present work. The aim of these experimental studies on shock wave modification in 

non-equilibrium weakly ionized gases was to clarify the physical mechanisms of the 

shock wave modification process.

An apparatus to study the dispersion and the propagation of a shock wave in 

MW discharge was set up in the Atomic Beams Laboratory at ODU. This facility was 

used to implement and test the proposed electrodeless MW large volume "near" 

atmospheric pressure plasma generator. The proposed experimental set-up is the 

combination o f a shock tube and a microwave discharge, integrated in a single tube in a 

manner similar to that previously described in [4-6], which used a d.c. glow discharge

This dissertation follows the style o f Physical Review
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to generate the plasma. Moreover, this type o f discharge is the most likely future 

technical solution for use in an aircraft, or rocket shock wave modification system.

MW discharges initiated by high frequency or MW fields differ significantly 

from d.c. or low frequency discharges in many ways. For example, this type o f 

discharge requires sufficient size o f the container walls. The direction o f electron 

motion inside the discharge changes and oscillates inside the container in the rhythm of 

the external high frequency electric field all the time. Further differences include the 

initiation o f the discharge and the conditions required to keep it operating. There are 

many basic processes which go on in a gas subjected to MW electric field. These 

processes, involving the interaction o f the field, electrons, atoms or molecules, ions and 

walls of the container, determine the values o f the experimental parameters by which 

we describe the phenomenon. We can see that these considerations lead us directly to 

one of the great difficulties in describing this kind of discharge, namely the large 

number o f independent variables which must be taken into account. In order to 

describe the phenomena, I performed auxiliary experiments in order to determine the 

power density, the reduced electric field, the electron density, and the gas temperature 

during the discharge in the range of gas pressure between 20 and 100 Torr. Also I 

calculated, designed, and constructed several resonant cavities capable o f sustaining 

particular modes o f MW field distribution. The cavities were used for studies o f the 

effect o f MW mode structure on the dispersive properties of the MW cavity discharge.

The first objective o f the study was to generate an acoustic shock wave by using 

a spark gap and to investigate the influence on shock wave parameters o f macroscopic 

parameters such as distance between a spark gap, gas pressure, and applied power. It
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included evaluation o f the propagation velocity and Mach number o f the shock wave in 

the absence and in the presence o f a MW discharge in Ar. The second objective was to 

generate and characterize a MW discharge in Ar. The third objective was to study the 

equilibrium and non-equilibrium conditions o f a MW discharge in Ar. The fourth 

objective was to evaluate the propagation and dispersion o f a shock wave in weakly 

ionized argon generated by the MW discharge. The task was to examine the effect of 

microscopic parameters such as electron density, gas temperature, and electric field 

during the MW discharge in Ar. Finally, the fifth objective was to study the mode 

dependence o f the shock wave propagation and dispersion in the MW discharge in Ar. 

Cylindrical resonant cavities in TE and TM mode were designed, constructed, and used 

in this study.

This dissertation is organized as follows: In Section 2 , 1 describe the method of 

generating the shock wave by using a spark gap. In addition, I describe the generation 

of a MW discharge and design o f a resonant cavity, as well as detuning of the resonant 

cavity. In Section 3 , 1 discuss the experimental apparatus and diagnostic techniques to 

determine the discharge characteristics such as electron density, gas temperature, and 

local electric field. I also discuss the methods for measuring the shock wave 

propagation and dispersion. In Section 4 , 1 present and discuss the experimental results, 

and also I outline a direct application o f this work. Finally, the conclusion will be given 

in Section 5.
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Section 2

SHOCK WAVE AND MICROWAVE DISCHARGE

2.1 Introduction

Shock wave propagation in plasmas has been the subject o f extensive 

investigations in recent years [7-9]. This work is devoted to a separate group of 

phenomena associated with the interaction o f the shock wave with weakly ionized gas at 

atmospheric or near-atmospheric pressure. Recent experimental and modeling work in 

Russia [10-14] and in the U.S. [15-18] has been extensively focused on shock wave 

propagation in weakly ionized glow discharge plasmas (with an ionized fraction o f ne /N  

~ 10"8 -  10~6). At these conditions, a number o f "anomalous" effects were observed, 

including the shock wave acceleration, weakening, and dispersion. These effects were 

studied in discharges in different kind of gases (i.e., air, N2, Ar) at moderate pressure, 

typically P  = 30 Torr, and Mach number M  = 1.1 - 10. This "anomalous" shock wave 

behavior in non-equilibrium weakly ionized gas was originally suggested to be due to the 

effect o f the flow field modification by the charged species (ion-acoustic wave) [19] or 

by the metastable species present in the discharge [20-22]. However, there were 

difficulties related to the presence o f electrodes and their influence on the dispersion of 

the shock wave, which were reported in some works [16, 18, 23-24], One of the 

objectives o f the present thesis is to perform a new experiment avoiding these 

ambiguities by introducing the MW electrodeless discharge in this type o f research.
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MW electrodeless discharges have played an important role for several decades in 

plasma sources for industrial applications, such as solid surface modification and thin 

film deposition. In recent years, there has been a great interest in MW discharges as 

primary light sources in analytical atomic emission spectrometry [25-26] and also as 

discharge sources in plasma physics [27-29]. We will apply this kind o f discharge to 

review the study o f the "anomalous" behavior o f shock waves that has been mostly 

investigated in dc glow discharges.

The non-equilibrium state is a very important property o f the MW discharge. 

Electrons start to accelerate and consequently increase their kinetic energy under the 

applied MW electric field. In the course o f acceleration from an electric field, the 

electrons mainly collide elastically with much heavier neutral particles. Most scattered 

electrons continue to increase their kinetic energy due to the effect of the applied electric 

field. Due to collisions and the effect o f the external field, the average energy o f 

electrons becomes remarkably higher than the energy o f the heavy particles. Therefore, 

the non-equilibrium state o f the discharge plasma is observed to have different average 

kinetic energies for electrons and heavy particles. Furthermore, a fraction of electrons 

keeps gaining more energy from the field until they reach the threshold for inelastic 

collisions. When inelastic collisions occur, electrons transfer most o f their energy to the 

gas molecules and excite, ionize or dissociate the molecule. As a result, the population o f 

electrons in the high-energy tail o f the energy distribution decreases quickly as the energy 

increases. For this reason, the electron energy distribution function (EEDF) is far from a 

Maxwellian distribution, due to the combined effect o f  all elastic and inelastic collision 

processes leading to a highly non-equilibrium electron energy distribution.
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According to this result, the non-equilibrium state o f the MW discharge directly 

affects the discharge characteristic (i.e., electron density, electron average kinetic energy, 

and gas average kinetic energy). Consequently, the interaction between the shock wave 

and the MW discharge depending on the characterization o f the discharge will also be 

affected by this result. In this work, the degree o f ionization in the MW discharge was 

about 10'5 - I O'4, which is greater than in the dc glow discharge (~ IQ'8 -  10'6).

This chapter is devoted to a detailed description o f the shock wave and the MW 

electrodeless discharge. The shock wave generation technique will be discussed in 

Section 2.2. We will describe the spark gap shock wave generator in Section 2.3. The 

description o f MW electrodeless discharge will be given in Section 2.4. Designation and 

detuning o f the resonance MW cavity will be discussed in detail. We will also discuss 

the generation o f transversal electric (TE) and transversal magnetic (TM) mode o f 

generation o f a MW.

2.2 Shock Wave Generation

The propagation o f an ordinary sound or acoustic wave in gas is accomplished 

through small amplitude longitudinal displacements o f molecules. There is no net flow 

of gas, and any physical changes in the gas are small and reversible. The velocity of such 

a wave, termed the local sound speed of the gas, is determined by the collision rate 

between gas molecules. It is therefore approximately equal to the mean kinetic velocity 

o f the molecules and is primarily determined by the temperature o f the gas.

A totally different situation arises when a disturbance is forced through the gas at 

a speed greater than the speed o f sound. In this case it is evident that a wave o f a very 

different nature is established in the gas. Since the molecules can only move away from
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the supersonic (i.e. greater than the sound speed) disturbance at the sound speed, the 

pressure, density, and temperature must change due to this disturbance. Familiar 

examples are the phenomena associated with detonation waves, explosions, and the wave 

system formed at the nose of a projectile moving with a supersonic speed. In all those 

cases the wave front is very steep, and there is a large pressure rise in transversing the 

wave, which is termed a shock wave. Because o f the large pressure gradient in the shock 

wave, the gas experiences a large increase in its density with a corresponding change in 

its refractive index. Since the shock wave is more or less an instantaneous compression 

o f the gas, it cannot be a reversible process. The energy for compressing the gas flowing 

through the shock wave is derived from the kinetic energy it possessed upstream of the 

shock wave. Because of the irreversibility o f the shock process, the kinetic energy of the 

gas leaving the shock wave is smaller than that for an isentropic flow compression (no 

heat transferred to or from the system) between the same pressure limits. The reduction 

in the kinetic energy because of the shock wave appears as a heating of the gas to a static 

temperature above that corresponding to the isentropic compression value.

By definition, the shock wave is a front across which there is a linearly 

discontinuous, finite jump in pressure with corresponding jump in temperature, density, 

and other fluid properties. Because shock waves are nonlinear, analysis o f their behavior 

is complex; e.g., its reflection does not obey any simple wave laws such as equality o f the 

incident and reflected angles. We can study a shock wave using the Mach number that is 

the ratio o f the local speed o f a shock wave to its sound speed in a medium.

The basic equations describing the properties o f shock waves are derived for the 

normal shock wave as described in next section, and it is applied to the flow of perfect or
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ideal gas and also in weakly ionized gas.

2.2.1 Normal Shock Wave

There are several types o f shock waves, each having specific characteristics. In 

some cases, the shock wave is stationary with respect to the body in which it is formed, 

signifying that the speed o f propagation o f the shock wave is equal to that o f the body 

itself; otherwise the shock would not be attached to the body. When the shock wave 

front is perpendicular to the direction o f the flow, as illustrated in Figure 1, it is termed a 

normal shock.

Direction o f the flow
*4—

Normal shock wave

FIG. 1. Scheme o f normal shock wave.

The theory describing the effects produced by a shock wave is fairly well 

developed. Equations have been derived relating the velocities and the thermodynamic 

properties o f the gas immediately in front o f and in back o f the shock wave. However, 

the theory does not give complete information regarding the causes leading to the 

formation o f the compression shock wave. Undoubtedly, the more or less spontaneous 

manner in which the shock process occurs makes it difficult to derive a complete 

theoretical explanation for the shock wave phenomena. In recent years considerable 

experimental work has been devoted to the accumulation o f data regarding shock waves.
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Those data are being correlated with the results of theoretical studies to evolve a working 

theory for the shock wave phenomena. In this section, we will discuss the general 

characteristics o f the normal shock wave.

The flow through a normal shock wave may be analyzed by considering the one 

dimensional flow through a stream tube created by the streamlines. In the analysis, the 

following assumptions are made.

1. The boundary surface forming the stream tube is far removed from the 

boundary layers adjacent to any solid surface. Since all friction forces 

may be assumed to be confined to the shearing stresses in the boundary 

layer, the configuration under discussion is a frictionless duct.

2. The shock process takes place at constant area\ that is, the streamlines 

forming the boundary o f the stream tube are parallel.

3. The shock wave front is perpendicular to the streamlines.

4. The flow process, including the shock wave, is adiabatic, no external work 

is performed, and the effects o f body forces are negligible.

Figure 2a illustrates a model o f a shock wave moving to the right, with a velocity 

fshock measured with respect to a stationary observer. It is demonstrated in the 

investigation o f the speed o f propagation o f small disturbances that a moving wave 

problem may be transformed into a stationary wave problem by superimposing the wave 

velocity on all o f the flow velocities, as is illustrated schematically in Figure 2b. In 

effect, the observer in Figure 2b moves at the same speed as the shock wave. The control 

volume enclosing the stationary normal shock wave is illustrated in Figure 3.
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' Streamline

(a) P2 
P2 
T2 Vsafter V shock

V=  0
Pi
pi
Tj

(b)
P2
P2
t2

Vshock= 0

Vi

Pi
Pi
T,

----------------- ► x

FIG. 2. Model o f normal shock wave, (a) Moving normal shock wave, 

(b) Stationary normal shock wave.

Stream tube boundary

Control volume

A i -  A 2

---------------------------- ► x

FIG. 3. Control volume for a normal shock wave.
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The pressure p, density p, temperature T, specific enthalpy h, cross sectional area 

A, and velocity V are all listed in Figure 2 and Figure 3. Subscripts 1 and 2 refer to the 

regions in front o f (upstream) and behind a shock wave, respectively.

The analysis o f the normal shock wave involves, as for any other flow problem, 

determining the pressure, density, and speed of the fluid at the location under 

consideration. In general, there are four unknown properties: p 2, P2, h2, and Vy, for their 

determination there are available the continuity equation, the momentum or dynamic 

equation, the energy equation, and the equation o f state for the fluid.

Continuity equation

For a simple thermodynamic system, each of the properties p , p, T, h, the gas 

specific internal energy (w), and entropy (s ) is uniquely related to any two of the other 

properties.

P,V, = P2V2 (1)

Momentum equation

P i  + P , v t2 = P i  + P i v 22 (2)

Energy equation

(3)

Equation o f  state

u = u ( p , p )  and h = h(p,p) . ( 4 )
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Eqs. (1), (2), (3), and (4) comprise a set of four equations involving the four flow 

properties p, p, u, and V. Those equations are quite general, and they govern the behavior 

o f a normal shock wave for a simple thermodynamic system. The specific enthalpy h is

defined by

h -  u + RT, 

where R is the gas constant for unit mass.

2.2.2 Normal Shock Wave in Ideal Gases

For an ideal gas, the equations of state are

P = PRT, (6)

h = c p T  > (7)

c p ~  c > =  R  > ( 8 )

and

y  = l H - ,  (9)

where cp and cv are the specific heats at constant pressure and volume, respectively. 

By using Eqs. (1) through (9), the following relations for the changes in pressure, density, 

and temperature across the shock can be derived:

Pj_ = 2l M ] - ( y - i )  (10)
Pi  y + i

P j_ _  Y ± . -  ( y + f ) m ) ( i i )
Pi  V2 ( y - 1  ) m ] + 2 ’
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and

r , Pi
Pi,

[ z j m ]  -  j y  - i ) I ( y  - i ) m ]  + 2 }  

( y  + 1 ) 2 M 2i
(12)

We also obtain the shock Mach number after a normal shock (M2 )

M 2

M l y - 1

2y M]  - 1
y  - 1

( 1 3 )

where is the shock Mach number before a normal shock, defined as

Vi
( 1 4 )

and a 1 is the sound speed in the un-shocked gas, given by

CL,
y p i

( 1 5 )

Figure 4 presents the Mach number after a normal shock wave M 2 as a function 

o f Mi , for an ideal gas (y = 1.4). This picture shows that as M i in front o f the normal 

shock wave is increased indefinitely, the Mach number M 2 in back o f the normal shock

wave continually decreases, but approaches the limiting value ^ J ( y - i ) /2 y  . The limiting 

value of M 2 depends only on the specific heat ratio for the gas. Figure 5 presents the 

limiting value o f Af? as a function of y.
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FIG. 4. Mach number behind normal shock wave for y — 1.4.
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FIG. 5. Limiting values of the Mach number behind the normal shock wave as a 

function of y.
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2.2.3 Shock Tube

The shock tube used in the present work is a device in which normal shock waves 

generated by the discharge of a spark gap (see also Section 2.3) are launched into a 

weakly ionized gas. The tube, itself, was a quartz tube; the discharge was generated in a 

spark gap via the d.c. high voltage power supply circuit (see Figure 7). The normal shock 

wave would then propagate to the other end of the tube, as shown in Figure 6. A 

discharge region could be produced at the center o f the tube at the same time, which 

could cover 1/3 to 1/4 o f the tube length. During the experiment, a shock wave was 

propagated through the shock tube either when the discharge was turned on or when it 

was turned off. Thus, this specific shock tube/discharge tube was very useful for 

studying shock wave propagation and dispersion in a neutral gas or a gas discharge.

Normal shock wave Shock tube

Spark gap
Discharge region

FIG. 6. Scheme o f shock tube.
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In our experiment, an Ar MW discharge in two different modes were generated in 

the central region (~ 1/4 o f the shock tube/discharge tube) at various values o f gas 

pressure by using the magnetron tube and the magnetron tube circuit (see Section 2.4.1). 

The normal shock wave generated by a spark gap that was always fired at the same 

discharge voltage would propagate along the tube through the Ar neutral gas region 

(discharge off) or through the Ar MW discharge region (discharge on). By using the 

laser Schlieren measurement technique (see Section 3.2.2), we were able to study the 

propagation and dispersion o f the shock wave in both the Ar neutral gas and the Ar MW 

discharge.

2.3 Shock W ave Generation Using a Spark Discharge

The spark discharge in a gas is a very well-known phenomenon. The ability o f a 

spark to convert electrical energy into highly concentrated thermal energy is an extremely 

useful process. In the spark discharge process, after initial breakdown, the gas is 

electrically conductive. The electric current heats up the gas, changing it into a plasma 

and forcing the plasma to expand. The evolution o f spark gap discharges in gases was 

studied by Akram and Lundgren [33, 34].

We can assume that a spark discharge process in a chemically inert gas mixture 

occurs in the following four stages:

1) Breakdown o f the gas mixture and the formation o f the breakdown channel

2) Dissociation and ionization o f the gas and heating of the neutral gas by fast 

electron (thermalization)

3) Expansion o f the plasma channel and the formation o f a shock wave
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4) Recombination, cooling of the plasma, and attenuation o f the shock wave to a 

sound wave

In this section, we will focus only on the last two stages, termed the 

thermodynamic phase o f a spark discharge process. In the following, we describe the 

spark gap which was used to create a shock wave in our experiment.

2.3.1 Spark Gap

This section presents the spark gap that is used for generating a normal shock 

wave in a shock tube. The spark gap technique is one o f several methods used to 

generate a shock wave. The spark discharge is generated between two coaxial pins made 

o f conductive material. These two pins will be used as electrodes o f the high voltage 

power supply and will be used to create a shock wave, as shown in Figure 7.

Our design o f the spark generator is shown in Figure 7. We recommend the use 

o f a 1.865 pF/25kV capacitor or any other with specifications close to this value. After 

the capacitor is charged, the high voltage spark gap 1 is closed, and the capacitor current 

begins to flow through the gap and the 150 Q resistor. The voltage across the 150 O 

resistor appears across the tungsten or copper electrodes in spark gap 2, which are inside 

the pressurized shock tube, and this produces a spark discharge. It is this discharge that 

produces the normal shock wave inside the shock tube.

Usually, the high voltage spark gap 1 is closed via a pulse generator. However, 

we used an electrically controlled opening valve. This scheme works as follows:
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1) The high voltage spark gap 1 is pressurized (usually with dry air) to a few 

atmospheres.

2) The capacitor is charged and the voltage is monitored with a voltmeter.

3) The normally closed pneumatic valve is then energized and opened.

4) The pressure in the spark gap falls quickly to atmospheric pressure, and 

breakdown occurs across spark gap 1.

5) The capacitor voltage is transferred to spark gap 2, and the spark discharge is 

generated.

Spark Gap 1Voltmeter

150 0

Shock Tube
1MO

Shock Wave1.865pF

Spark Gap 2

HV DC Power Supply 
(0-15 kV)

FIG. 7. High voltage d.c. power supply circuit to create a spark discharge and 

generate a shock wave.
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This scheme has two major advantages: (a) an expensive high voltage pulser is 

not required as a triggering mechanism, and (b) the electromagnetic impulse (EMI) 

produced by the trigger source (which is significant) is avoided.

2.3.2 Shock Wave Generation

During the discharge process, the energy in the gas is stored in highly excited 

molecules, which may even be dissociated and ionized. However, a few milliseconds 

after the inception o f the discharge, relaxation and recombination process will have 

returned the molecules to low-energy states, with all the energy in the form of 

translational, rotational, and vibrational modes. The energy in the gas can then be 

determined from the measured pressure rise and the heat capacity o f the gas at constant 

volume. Reinmann and Akram [35] used this technique to measure the energy delivered 

to the gas by a spark discharge. The time history o f the energy balances in the spark gap 

for the three cases have also been studied and reported by these authors. Their 

conclusion was that increasing the spark gap distance as well as increasing the pressure 

will deposit more energy into the gas under the same electrical conditions o f  the ignition 

system. Basically, we can say that we can make a stronger shock wave i f  we increase the 

distance o f  the spark gap and the pressure o f  the system. In section 3, we have some data 

to confirm this conclusion.
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2.4 Microwave Discharge

Discharges driven by high frequency or MW fields differ significantly from dc or 

low frequency discharges in many ways. Electrons and charged particles will be 

accelerated when a high frequency or MW electric field is applied across a volume of 

gas. The energy will be transferred to these electrons much more than to the ions, and the 

electrons are accelerated so much more than the ions because o f the difference in mass 

between them. The direction of the force on the electron changes when the direction of 

the field changes, so the electron will oscillate inside the container. For this reason, the 

walls of the container o f the gas must be sufficiently far apart (see Figure 8). This is the 

characteristic that distinguishes high frequency or MW discharges from low frequency or 

d.c. discharges. For a low frequency, the electron will strike the walls of the container 

before changing the direction o f acceleration. The impact of electrons on the wall is 

likely to create other electrons or impurity atoms from the walls, thus introducing 

complicating factors into the discharge.

<
Wall of

container

*■

FIG. 8. Electron oscillation in MW discharge.
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At high frequencies, the electrons are accelerated by the field each time they 

collide with an atom. Sometimes, they may lose energy, and sometimes they may gain 

energy, but on the average energy transfer from the field to the electrons will occur. An 

electron may gain sufficient energy to exceed the excitation energy level o f the atom, if  

the field is large enough. In the next collision, the electron may excite the atom and lose 

most o f its energy. Subsequently, the excitation energy is transferred into radiation when 

the atom de-excites to its ground state. Hence, the electron energy losses by elastic 

collisions and by inelastic collisions must be taken into account in the energy balance. 

Furthermore, some electrons may acquire sufficient kinetic energy to ionize the atoms. 

We gain more electrons by this process while, at the same time, electrons are being lost 

by diffusion to the walls, by recombination with positive ions, or by attachment to neutral 

atoms or molecules. The value o f the electron concentration in the microwave discharge 

will be determined by the relative values o f these production and loss rates. The 

production and loss rates are complicated functions of the gas species, the gas density, the 

electric field magnitude and frequency, and the geometry o f the container. We should 

now consider in detail how to make our own microwave discharge for studying the 

dispersion o f a shock wave inside this type of discharge.

The magnetron power supply used in generating microwave radiation in this work 

is described in Section 2.4.1. The geometry and design o f the cylindrical resonant cavity 

is discussed in Section 2.4.2. In Section 2.4.3, I will describe the resonant cavities 

sustaining the transverse electric (TE) mode and transverse magnetic (TM) mode, which 

are used in the experiment. The important phenomena of detuning a resonant cavity is 

discussed in Section 2.4.4.
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2.4.1 Magnetron Power Supply

In our experiment, we used the magnetron tube from a commercial MW oven to 

generate the required 2.45 GHz of MW energy. Magnetron tube operation is based on 

the motion of electrons under the combined influence of electric and magnetic fields. 

Basically, the magnetron tube required a low-voltage-high-current ac filament supply and 

a high-voltage-low-current dc cathode supply. The microwave output power is directly 

related to the dc input power. We can measure and adjust the dc input power by 

employing the circuit o f Meiners and Alford [38] in our experiment, as shown in Figure 

9-

We bought a small portable MW oven providing 700 Watt o f MW power at 2.45 

GHz and an extra transformer for the magnetron power supply. We used a variable 

autotransformer (120 V, 5 A) to supply current for this transformer. To monitor the 

power input to the cathode d.c. supply, we did not use an ac wattmeter such as described 

in Ref. [38], but we developed other experimental techniques to measure the input power 

to the discharge. This topic will be discussed in Section 3. This circuit is very useful 

because we can supply a constant current to the magnetron filament while allowing for an 

adjustable level o f the d.c. voltage applied to the magnetron cathode.
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Magnetron tube

Transformer

120 VAC

( 60H z)

Transformer

0.76 nF

120 VAC 

(6 0  H z )
Variac

FIG. 9. Magnetron tube circuit.
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2.4.2 Design of a Cylindrical Resonant Cavity

In order to generate a MW discharge by using MW energy from a magnetron 

tube, we had to make a resonant cavity which was designed to correspond to 2.45 GHz. 

We used a the right circular cylinder resonant cavity (as shown in Figure 10) in our 

experiment.

y

FIG. 10. Right circular cylinder cavity.

We assume that the end surfaces are planar and perpendicular to the axis o f the cylinder. 

Generally, the walls o f the cavity are taken to have infinite conductivity, while the cavity 

is filled with a lossless dielectric with permeability pi and permittivity e.

The relationship between the resonance frequencies and the dimensions o f the 

right circular cylinder resonant cavity with inner radius R and length d  can be derived 

from the propagation o f electromagnetic waves in a hollow metallic cylinder. The
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detailed theory given, for example, in Ref. [39]. The equations that were used to design 

the cavities used in our experiment are as follows:

For a TM mode, we have the equation

  1 I Xmn , P ft
Wmnp ~ I " 1 2i z h L + p j l , (16)

■Jpe 'i R‘

where xmn is the nth root of the equation, Jm(x) = 0. Jm(x) is the mth order Bessel function. 

These roots are given in Table I. The integers m, p , and n take on the values m, p  — 0, 

1, 2,..., and n = 1 ,2, 3,... ; p  is the permeability o f the material, s is the permittivity o f the 

material, R is the cavity radius, and d  is the cavity length, as shown in Figure 10.

TABLE I. Roots o f the Bessel Function Jm(x) = 0

m — 0, xo„ = 2.405, 5.520, 8.654,...

m = 1, xi„ = 3.802, 7.016, 10.173,...

m — 2 , x2n = 5.136, 8.417, 11.520,...
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For example, for a TM mode corresponding to m = 0, n = 1, and p  -  2, designated as 

T M qj,2 , we can rewrite Eq. (16) as follows;

W0]2 ~~
2.405

JueR
1 + 6.8309

d 2
(17)

Similary, for a TE mode, we can write the equation as follows:

w m
2 2 2 

X  mn P  7T (18)
ie V R

where x'm„ is the nth root o f J'm(x) = 0. J ’m(x) is the mth order Bessel function that satisfies 

the boundary condition for this cavity mode. These roots, for a few values o f m and n, 

are shown in Table II. The integer m = 0, 1, 2,..., but the integers n, p  = 1 ,2 ,3 ,....

TABLE II. Roots o f the Bessel Function J'm(x) = 0

m = 0, x'on = 3.832, 7.016, 10.173,...

m = \, jf'yB = 1.841, 5.331, 8.536,...

<Nli 
• 

• 
•

S x'2n -  3.054, 6.706, 9.970,...
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For example, for the TE mode with m = n = p  = 1, denoted as TE Uji, we can rewrite 

Eq. (18) as

By using these equations, we can design our cavities by calculating the 

dimensions (d  and R) that correspond to our microwave energy (2.45 GHz) and our 

chosen mode of operation. In the next section, we will discuss in detail how to design 

and choose suitable resonant cavities in the TE and TM modes o f operation for our 

experiments.

In our experiment, we directly connect a magnetron tube antenna to a resonant 

cavity in order to generate a MW discharge (as shown in Figure 11). We actually need a 

cavity with a radius (R) that is approximately 2 times longer than the length of the 

magnetron tube antenna and with a length (d) that is about 1 foot (~ 0.24 m) long to 

perform our measurement. We also need both TE and TM modes to compare our data. 

For this purpose, we wrote a computer program for calculating the size of the cavity 

using Eqs. (17) and (19), and the result is shown in Figure 12.

We can see from Figure 12 that we chose TEi,],! and TMo,i, 2  modes because they 

can be created in cavities with radii and lengths that satisfy our requirements. We need to 

fix <i = 0.24 m, and this corresponds to the cavity R = 0.037 m  for the TEi,i,i mode and to 

R = 0.054 m for TMq,i,2 mode.

1.841 ( R 2 V1 + 2.912 — -
d 2)

(19)

2.4.3 TE Mode and TM Mode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

d  ~ 0.24 m

Shock tube

""/fT

R

1 .

AT

Antenna

Resonant cavity

Magnetron tube

FIG. 11. Scheme of microwave discharge experiment.
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For our experiment, we built two resonant cavities that have the same length (d = 

0.24 m) but have different radii, as discussed above. For diagnostic purposes, we drilled 

holes along the lengths o f the cavities. We will describe this topic in detail in the section 

on the experimental set-up in Section 3.

2.4.4 Detuning of Resonant Cavity

In Section 2.4.2 and 2.4.3, we assumed that the cavity is an ideal, lossless cavity. 

In this case, the wall of the cavity has an infinite conductivity, and the cavity is filled 

with a lossless dielectric material. However, we have to recognize that our cavity is 

made o f an imperfect conductor and filled with an ordinary dielectric material. The MW 

energy may be lost in a cavity in many ways as shown in Ref. [40]. Furthermore, when 

we have a MW discharge inside a cavity that has been used in a previous experiment, the 

conductivity and dielectric constant of the gas in the discharge column will be different in 

the new experiment. The MW energy, generated by a magnetron tube, will be absorbed 

inside the cavity, but the absorbed energy will be less than for an ideal cavity. To 

evaluate this difference, either by experiment or by theory, is a complicated problem. We 

reduced the degree o f complexity o f this problem by designing our resonant cavity to be a 

piston-like cavity, as shown in Figure 13. We can adjust the length o f the cavity and tune 

the size o f the cavity to correspond with the MW energy within in the cavity. It was 

found that the resonant cavity can be built in the same shape as the cavities discussed 

above (right circular cylinder cavity with radius R), but it should be longer than 0.24 m to 

allow for precision tuning.
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Section 3

EXPERIMENT

3.1 Experimental Apparatus

The shock wave generation system consists o f the high voltage power supply 

with a voltage range of 0 kV to 30 kV and a current range of 0 mA to 2.0 mA 

(Spellman), a spark gap circuit created by Accurate Automation Corporation in 

Chattanooga Tennessee, [shown in Figure 7 in Section 2.3.1 (not included the spark gap

2)], and the spark gap 2 that was made in our own laboratory. The two copper wires 

(each with 0.254 cm diameter and 25.4 cm length) covered with a rubber insulator and 

connected with an electrical feedthrough, were used as two electrodes in the spark gap 

2. This system was connected to the shock tube/discharge tube and to the vacuum 

chamber.

The shock tube/discharge tube is made o f quartz and is 1.22 m long, has a 3.3 

cm outer diameter (OD), and has a 3.0 cm inner diameter (ID). One end o f the tube was 

connected to a vacuum chamber containing the shock wave generation system via the 

spark gap 2. Therefore, we call it the spark gap chamber. On the other end, the tube 

was connected to an expansion chamber to avoid complications with the reflected shock 

wave. Two ports, one in the spark gap chamber and the other at the end o f the 

expansion chamber, allowed for evacuation, filling, and gas flow. The vacuum chamber 

was evacuated by a mechanical pump (Sargent-Welch), with a pumping speed o f about 

25-30 1/min, to a background pressure o f  10'3 Torr. About a quarter o f the shock 

tube/discharge tube's length was covered by the MW discharge.
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The MW source was a magnetron tube taken from a 700 Watt commercial MW 

oven (General Electric JES739WD). It was connected with one o f the right circular 

cylindrical resonant cavities, either in TM or TE modes, and the special magnetron tube 

operating circuit, as shown in Figure 9 in Section 2.4.1. The shock tube passed through 

the cavity along its axis. This design allowed us to couple the microwaves into the gas 

in the shock tube/discharge tube without passing probes through the vacuum wall. In 

this way, we created a MW discharge that covered about 0.30 m o f the tube's length. 

During the discharge operation, we used a digital multimeter (BK Precision, Model 

2704B) to monitor the approximate temperature o f the magnetron tube. By doing this, 

we found that the magnetron tube could be operated, with the temperature of its cooler 

fins as high as 130 °C.

In our experiments we used Argon (Ar) gas mixture at a research grade purity of 

(99.99%) for shock wave velocity measurements and a mixture o f Ar + H2 at a research 

grade purity o f 95.0% Ar and 5.0% H2 1 for MW discharge diagnosis. The gas was 

filled with a sealed valve (Hoke) from a gas tank. Two capacitance manometer gauges 

were used to monitor chamber pressure (covering the pressure range 10~3 -  103 Torr) 

(MKS 122A) via a pressure read-out (MKS PDR-C-2C). We performed our experiment 

first in the absence and then in the presence o f the MW discharge in Ar. The gas 

exhaust from the experiment was pumped out by a mechanical pump connected to the 

chamber near the spark gap region, via a controlling valve (Veeco).

1 0.01% of N 2 was examined in the MW discharge o f Ar gas
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A ceramic vacuum-sealed feedthrough to spark gap 2 electrically insulated the 

shock tube/discharge tube and the vacuum chamber from the shock wave generation 

system. At the same time, the vacuum chamber had to be insulated from the MW 

discharge system. A weak gas flow was regulated inside the chamber both during and 

in the absence o f the discharge. Furthermore, we applied a strong flush o f fresh Ar 

through the discharge tube for the purpose o f cleaning the chamber walls after every 

measurement. This procedure was introduced after the gas exhaust was pumped out of 

the chamber. A general schematic o f the experimental apparatus is shown in Figure 14. 

In this figure, the specific plasma diagnostics, such as the laser deflection technique 

(Section 3.2) and the imaging monocromator measurement technique (Section 3.3) are 

not shown. The lay-outs for the specific diagnostic techniques will be described 

separately in the corresponding sections.

3.2 Determination of Shock Wave Characteristics

3.2.1 Schlieren Measurement Technique

We used the Schlieren technique to study shock wave propagation through the 

MW discharge. The Schlieren technique is based on the angular deflection experienced 

by a light ray when passing through a fluid region characterized by refractive index 

inhomogeneities. Basically, these inhomogeneities are generated by density and 

temperature variations. Because o f its simplicity (simple alignment o f the equipment), 

ease o f application, low cost (expensive laser sources are not required), and satisfactory 

accuracy o f results, the Schlieren technique has found extensive use in the study of 

compressible gas flow and deserves attention in many applications in Physics.
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F I G .  14. Schematic of the shock tube/discharge tube and the experiment apparatus.



Hook and Huygens reported their first observations on the Schlieren effect in the 

17th century. Schlieren measurement was applied in the manufacture o f optical 

instruments for astronomic studies. August Toepler (1864), who gave it the name 

Schlieren, the German term for striations or inhomogeneities in transparent solids, used 

this technique in fluid and heat transfer investigations. Toepler also developed a knife- 

edge, which is the first basic tool for flow visualizations, to produce a black and white 

image in which the intensity o f the light is related to the density and temperature 

gradients in the optical field. Many applications and modifications have been 

introduced to the original system, including different arrangements o f the optical 

components and the use of special filters to produce color images in lieu of black and 

white pictures.

Recently, the Schlieren technique has been routinely applied in shock wave and 

plasma physics. This technique is very useful and well-known in many successful and 

illuminating applications in these fields [41], A detailed discussion o f the Schlieren 

technique will not be given here because we can find a complete account in Ref. [42]. 

However, a brief description will be presented below.

A schematic arrangement used to employ the Schlieren measurement technique 

is shown in Figure 15.

In order to produce a collimated light beam through the test section, a point light 

source S  is placed at the focal point o f a lens Lj. In the case that no deviation o f light 

rays occurs in the test section, the light rays from the source pass with essentially equal 

intensity through all parts o f the test section and are reunited at a point in the image I  of 

the light source. This image is formed by the lens Li- Thus, if  we put a knife edge at
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the position of the image I, intercepting some of the rays through /  , we should get the 

uniform darkened image o f the test section on the screen. However, if  we have some 

o f the light rays deflected by the inhomogeneities of the refractive index at some 

locations in the test section, the image on the screen of those points will be lighter or 

darker than the rest o f the field, depending on the direction o f deviation.

Test Section

Ax

S

Knife Edge

Screen or Film

FIG. 15. Schematic o f Schlieren photography arrangement.

From the Schlieren measurement technique shown in Figure 15, the relationship 

between the component o f the angular deviation that is perpendicular to the knife edge 

and the relative change in light intensity on the screen is approximately

AI  _ aJ i  (20)
I  Ax ’

where a coordinate system has been chosen, as shown in Figure 15, in which x  is the 

direction perpendicular to the knife edge and the z-axis is the direction o f the
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undeviated ray. In this equation, ax is the v-component o f the total angular deviation, jG 

is the focal length o f lens L 2 , 1 is the intensity at the screen, and Ax is the unobscured 

width (in the x direction) o f the image o f the source. We can calculate the x-component 

o f the total angular deviation that is related to the x- component o f the gradient of the 

refraction index by using the expression

ax = I— In n(x, y, z )  dz -
J 8x

where n is the refractive index, and the limits of integration range over the length of the 

test section in the z direction.

For a plasma, n (the phase index o f refraction) is given by

n -  1 = K , N a -  K 2X2N e , (22)

where Na and Ne are atom and electron number densities, respectively, Kj  and K2 are 

positive constants, and X is the wavelength o f the light.

We can also use this technique to apply to the study o f shock fronts and other 

regions o f large density gradient. Their Schlieren photographs, positions, and motions 

are conveniently studied and observed by this technique. However, if  the plasma is only 

partially or weakly ionized, the atomic contributions to the refractive index may 

dominate, and the gradients observed will be the gradients in atom and ion number 

density.

We may also choose a laser to be the light source in the Schlieren system. We 

will discuss the laser Schileren system in the following section.

J n 8x (21)
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3.2.2 Laser Schlieren System

Figure. 16 shows the schematic of the laser Schlieren set-up and the 

experimental procedure followed for shock wave propagation analysis. A low powered 

(< 5mW) laser is passed through the test section and received by an array o f very high 

response (-1-20 ns) photodiodes placed on the opposite side o f the test section. The 

principle of operation o f a laser Schlieren system is the same as that o f the ordinary 

Schlieren technique, except that the voltage signals are obtained from photodiodes 

instead of the image on the screen or film. These voltage signals relate to the density 

gradient fluctuations o f the flow field.

Test Section

Photodiodes

Laser Sheet Knife Edge
Laser

Fast Data 
Acquistion system

Computer

FIG. 16. Schematic o f the laser Schlieren set-up.
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Shock wave characteristics can be observed and studied by applying this 

technique. A laser sheet was generated using a cylindrical lens. When the laser sheet 

passes through a shock front, it is deflected and a time trace obtained from the array o f 

photodiodes shows unsteady voltage signals as shown in Figure 17.

Photodiodes
plane

r

Light rays

Light intensity 
in recording 
plane

V/Vi

FIG. 17. Voltage signal (density gradient profile) across a shock wave.

This arrangement can produce the information on the existing density gradient 

fluctuations in the flow and the fluctuating nature of the flow. However, this 

arrangement should be free from its structural vibrations and initially required very 

careful alignment o f the laser sheet itself. Therefore, a more rigid Schlieren set-up was 

later used. It is described in the following section.
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3.2.3 Experiment Set-up

We applied the laser Schlieren technique in our experiment for studying shock 

wave characteristics. Two Helium-Neon laser heads (JDS Uniphase, Model 1101) 

compatible with the Model 1200 power supply, available in either 100/120 or 220 V 

AC configurations, were introduced to our experiment arrangement. These two laser 

heads have 1.5 mW minimum rated output power, 633 nm wavelength light, and 0.48 to 

0.81 nm laser beam diameter. We also used two high response (-20 ns) photomultiplier 

tubes (PMT) from Hamamatsu (Model R1527) to detect a laser beam at the opposite 

side o f the shock tube test section. These two photomultiplier tubes were supplied by a 

DC high voltage power supply (Keithley, Model 247) and connected to a two-channel 

oscilloscope (Tektronix, Model TDS 340A) for displaying signals. The right circular 

cylindrical resonant cavity designed to have two circular holes on the envelope was 

attached to our experiment, as shown in Figure 18. These two holes were separated by 

about 3.15 inches, or 8.0 cm, and were used to observe and study the characteristics of 

the shock wave created by a spark gap in neutral gas.

The gas pressure was varied from 20 to 100 Torr. The acoustic shock wave was 

generated by a spark gap driven by a triggered spark gap switch and high voltage 

capacitor. The stored pulse energy could be varied by changing the spark gap distance, 

as shown in Section 2.3.2. The change o f acoustic shock wave propagation velocity at 

two different positions along the propagation path inside the shock tube was measured 

by this technique. The laser photo deflection amplitude is proportional to the shock 

density gradient. Thus, this technique provides an accurate measure o f shock profiles 

and time-of-flight for the shock wave. The laser photo deflection waveform signals
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were recorded by a two-channel oscilloscope. Two laser beams with a separation o f 

about 8.0 cm were set perpendicular to the shock wave propagation path.

Lasers

Resonant Cavity

Shock Tube

Knife Edge
Spark Gap

Knife Edge

PMT PMT

Two-Channel
Oscilloscope

DC High Voltage 
Power Supply

FIG. 18. Shock wave characteristic experimental set-up.
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3.2.4 Laser Schlieren Technique Results and Discussion

The laser deflection waveform signals were detected in our first series of 

experiments by a two channel digital oscilloscope after a careful alignment o f the 

experimental apparatus. The deflection waveform signals in Nitrogen (N2), Neon (Ne), 

and Argon (Ar) were recorded at a variety o f gas pressures. Typical characteristics of 

these signals for N2 and for Ar are shown in Figures 19 and 20, respectively. The shock 

wave profiles can be derived from these signals, as shown in Figures 21 and 22. The 

data in Figures 19 and 20 can be collected by using only one laser beam at the 1st or 2nd 

holes on the resonant cavity.

0.002

- 0.002

0

-0.004

£  -0.006

- 0.01

- 0.012

-0.014

0.9 0.95 1 1.05 1.1 1.15 1.2

Time o f Flight (ms)

FIG. 19. Shock wave deflection waveform signal in neutral N2 

at 20 Torr and 10 lcV d.c. high voltage to spark gap.
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FIG. 20. Shock wave deflection waveform signal in neutral Ar 

at 20 Torr and 10 kV d.c. high voltage to spark gap.
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FIG. 21. Shock wave profile in neutral N2 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cu
m

ul
at

iv
e 

In
te

ns
ity

 
(m

V
)

47

- 0.2 -

-0.3 -

-0.4 -

-0.5 -

- 0.6 -

-0.7 -

1.245 1.247 1.249 1.251 1.253 1.255 1.257 1.259
Time of flight (ms)

FIG. 22. Shock wave profile in neutral Ar.
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The times-of-flight shown in Figures 19 to 22 are the differences between the 

times-of-arrival o f the shock wave at a given position and the times o f the shock wave 

generation. By using two laser beams at the same time, we can get the time-of-flight to 

two different position from the same shock wave, as shown in Figure 23.

-0.08

- 0.12  -

£  -0.14 -
GO

-0.16 -

-0.18 -

- 0.2
1.1 1.2 1.3 1.4 1.5 1.6

Time o f Flight (ms)

FIG. 23. Shock wave deflection waveform signal from two laser beams 

in neutral Ar at 20 Torr and 10 kV d.c. high voltage to spark

gap.
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We can determine the average velocity and the local velocity o f a shock wave in 

neutral gas by using those sets o f data and a simple method o f calculation, as shown in 

Figure 24.

Shock Tube

Laser
Beam 2 '^ y

Laser
BeamSpark Gap

Low pressure gas

Shock Wave Deflection Waveform 
Signal from Two laser Beams

Resonant Cavity

FIG. 24. Calculation o f average velocity and local velocity in 

neutral gas.
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We use data for neutral gases at different pressures and a certain value of d.c. 

high voltage applied to the spark gap (10 kV). We can then calculate an average 

velocity and a local velocity by using the following equations:

vi»g = V[spark,lst\ = ( L  4- l , ) / t , r (23)

VI2ng = v \ l s t , 2 nd\ = (24)

and

r ,*  =  v[spark,2-‘ ] = (L  + l2 ) / t 2, ( 2 5 >

where Vjng and V2ng are the average velocities o f a shock wave from the spark gap to the 

1st and 2nd holes (or to the 1st or 2nd laser beam), respectively, Vung is the local velocity 

between the same two points, L, l}, and h  are the distances shown in Figure 24, and f  

and t2 are the times-of-flight o f the shock wave measured by the two-chamiel 

oscilloscope at the 1st and 2nd holes, respectively.

We plot the two average velocities and the local velocity in neutral N 2 , Ne, and 

Ar as functions of gas pressure, as shown in Figures 25, 26, and 27, respectively. The 

spark gap distance (d) in those three set of experiments is approximately 0.38 cm. The 

increase o f gas pressure in a shock tube reduces both the average and the local shock 

wave velocities. When we increase the gas pressure we increase the density o f the gas, 

which affects directly the velocity o f a shock wave. A shock wave cannot propagate 

very fast when the gas density is increased so that and the gas molecules or atoms pile

up at the shock front. For this reason, the shock wave deflection waveform signal is

very strong (very high intensity) when we increase the gas pressure. As the shock wave
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propagates through the neutral gas, friction slows it down. This effect can be observed 

by noting that the local velocity is smaller than the average velocity, as shown in 

Figures 25 to 27. For the same reason, the average velocity Ving is smaller than the 

average velocity Ving-
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FIG. 25. Average and local velocity o f shock wave in neutral 

N2 and d = 0.38 cm.
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From Figures 25 to 27, we can see that the average velocities o f the shock wave 

in neutral N2, Ne, and Ar (V,ng and V2ng) are not the best values to represent the shock 

wave velocity in our experiments. Flowever, we can see that the local velocities o f the 

shock wave ( Vj2ng) can be used to describe the phenomena of the dispersion o f a shock 

wave in neutral gas and maybe in a discharge. We will focus on the local velocity o f a 

shock wave in both a neutral and in a MW discharge.

From those three sets o f data, we can use those local velocities o f the shock 

wave in three different gases to calculate three Mach numbers in front o f the shock 

wave by using Eqs. (14) and (15) in Section 2.2.2. By doing this, we assume that the 

temperature o f  the gas in front o f  the shock wave does not change much as the gas 

pressure changes, or in other words, the temperature in front o f  the shock wave 

remains constant while the gas pressure is changing. The gas temperature in front of 

the shock wave is equal to the room temperature (~25 °C) during the experiment.

The ratio between the temperature behind and the temperature in front o f the 

shock wave (relative temperature {T2/T /)) was calculated by using Eq. (12) in Section 

2.2.2 and plotted as a function of gas pressure in Figure 28. We can also calculate the 

relative pressure (p2/pi), and relative density (p2/pi), as shown in Figures 29 and 30, by 

using Eqs. (10) and (11) from Section 2.2.2. According to this assumption, the 

temperature in front o f the shock wave (T)) in all gases is 298.15 K, and the density in 

front o f the shock wave (pj) can also be calculated. Thus, the total energy per unit 

volume, which is proportional to pi (T2 -Tj), was derived and plotted in Figure 31 as a 

function o f the gas pressure. We calculated (by using Eq. (13) in Section 2.2.2) and 

plotted the Mach number behind o f the shock wave (M2) as a function o f gas pressure in
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Figure 32 for all three neutral gases. By using the set o f data o f the relative temperature 

and pressure, we also derived the relative number density (n2/n}) o f the shock wave in 

all three neutral gases and plotted them against the gas pressure, as shown in Figure 33.

♦ Argon

Nitrogen

a Neon

8 1.2

53 1.15
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Pressure (Torr)

FIG. 28. Relative temperature o f shock wave in neutral Ar, N 2 , 

and Ne.
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FIG. 29. Relative pressure o f shock wave in neutral Ar, N2, 
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FIG. 30. Relative density o f shock wave in neutral Ar, N2 , 

and Ne.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

m
<
s

o>

200

180

160

140

120

100
<Df t
& 80
S3
8

1  60

40 

20 H

0
0

— I—

50 100 150 200

Pressure (Torr)

♦ Argon 

■ Nitrogen 

A Neon

250 300

FIG. 31. Total energy per unit volume of shock wave in neutral 

Ar, N 2 , and Ne.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

350



M
ac

h 
nu

m
be

r 
be

hi
nd

 
sh

oc
k 

wa
ve

 
(M

2)

59

0.92

0.9

0.88

0.86

0.84 -

0.82

0.8 -

0.78

0.76

0.74

■  A
■ ♦

■ ♦

♦
♦

♦

A

♦ Argon 

■ Nitrogen 

A Neon

50 100 150 200 250 300 350

Pressure (Torr)

FIG. 32. Mach number behind shock wave in neutral Ar, 

N2 , and Ne.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Re
la

tiv
e 

nu
m

be
r 

de
ns

ity
 

(n
2/

nl
)

6 0

1.6

1.5

1.4
\  *

♦ Argon 

■ Nitrogen 

a  Neon

1.3

1.2 ▲
♦

1.1

Pressure (Torr)

FIG. 33. Relative number density in neutral Ar, 

N 2 , and Ne.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

The voltage dependence of the average velocity of a shock wave in neutral N 2 

gas was measured by using the 1st laser deflection waveform signal at 30 Torr and 

plotted in Figure 34. The average velocity o f the shock wave produced at a spark gap 

distance (d) o f  about 0.50 cm increases when the d.c. high voltage power supply is 

increased from 5 to 12 kV, as shown in the Figure 34.

490

a

S 440

6 8 10 12 

D.C. high voltage power supply (kV)

FIG. 34. Voltage dependence o f the average velocity o f a shock 

wave generated by a spark gap (d ~ 0.5 cm) in neutral 

N2 at 30 Torr.
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The experiment by Reinmann and Akram [35], described in Section 2.3.2, 

showed that changing a spark gap distance will give a strong shock wave. We repeated 

this experiment in neutral N2 gas with 10 kV o f d.c. high voltage supplied to the spark 

gap. The average velocity o f the shock wave was plotted as a function o f gas pressure, 

as shown in Figure 35.
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FIG. 35. Pressure dependence o f average velocity o f shock wave in 

neutral N2 at V = 10 kV with some distances between 

the spark gap.

«■ ▲

♦ ■ 
♦

♦ d = 0.33 c m  

■ d = 0.65 c m  

A d  = 0.93 c m

A

■
♦

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

In this case, the distance o f the spark gap was set successively to 0.33 cm, 0.65 

cm, and 0.93 cm. From this figure, we can see that the shock wave can propagate faster 

when the spark gap has a larger distance, d.

3.2.5 Local Velocity of Shock Wave in Argon MW Discharge

By using the same set-up as shown in Figure 18, the deflection of the laser 

signals was measured when we have a MW discharge in all three gases. In this case, 

the resonant cavity was designed to generate a MW discharge in TEi,i,i mode, and the 

applied power to the magnetron tube was approximately 750 Watts. By increasing the 

gas pressure from 5 to 30 Torr, some waveform signals were detected in the Ar MW 

discharge, but it was very difficult to detect the signals in the Ne and N 2 MW 

discharges. In the case o f the Ne MW discharge, it was easy to generate a Ne MW 

discharge and increase the gas pressure up to 30 Torr or more, but it was very difficult 

to get a waveform signal when a shock wave propagated through the discharge. The 

signals were very weak and hard to detect at the high end of the pressure range near 100 

Torr. We have a strong waveform signal in the N 2 MW discharge, but it is very 

difficult to maintain the N 2 MW discharge at gas pressures from 20 to 30 Torr. In the 

case o f the N 2 MW discharge, the magnetron tube and the resonant cavity were always 

heated up, and the variac in the magnetron power supply circuit would shut down the 

experiment. Ar gas was very convenient to work with in this experimental set-up; we 

could easily make a MW discharge and increase the gas pressure up to 100-200 Torr or 

more if  we had a good cooling system for the magnetron tube and the resonant cavity. 

Furthermore, Ar gas is very well characterized in gas discharge physics. For this 

reason, we focus only on the experiment o f the Ar gas and the Ar MW discharge.
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Typical characteristics o f laser deflection waveform signals in the Ar MW 

discharge and in pure Ar gas (no discharge) at a gas pressure o f about 15 Torr are 

shown in Figure 36.

-0.05

-0.15 -

- 0.2  -

 Discharge on at 1st position

Discharge on at 2nd position

-0.25 - Discharge off at 1st position

- — Discharge off at 2nd position

-0.3
1.13 1.18 1.23 1.28 1.33 1.38

Time of Flight (ms)

FIG. 36. Laser deflection waveform signal in Ar MW discharge 

and Ar gas at 15 Torr and d = 0.38 cm.
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By using the picture in Figure 24 and Eqs. 23 and 25, we can calculate the local 

velocity o f a shock wave at the 1st position (VjdiSC) and at the 2nd position ( F ^ c) for 

the Ar MW discharge from the following set o f equations:

ting =  tj = (L + lj) /  Vi„g , (26)

tidisc = (L /V Jng) + ( l i /V ldisc) , (27)

t2ng -  t2 -  (L + l2) / V 2ng, (2 8 >

and

tidisc -  (L /  Ving) +  (l2 /  Vidisc). (29)

We can also directly calculate the local velocity of a shock wave between the I s 

position and the 2nd position (Vndisc) by using the following equation:

Viidisc -  (h -  h) /  (tidisc -  tidisc), (30)

where Vidisc and V2diSC are the local velocities of a shock wave in the Ar MW discharge 

at the 1st position and at the 2nd position, respectively, and Vndisc is the local velocity 

o f the shock wave in the Ar MW discharge between the two positions. In this case, the 

times-of-flight o f a shock wave in neutral Ar gas, ti and t2, are equal to ting and t2ng, 

respectively. We plotted those three local velocities o f the shock wave in the Ar MW 

discharge as a function o f pressure, as shown in Figure 37. The spark gap distance (d) 

is the same as for those experiments in neutral Ar gas (d ~ 0.38 cm).
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The result from Figure 37 shows that the local velocities o f a shock wave in the 

Ar MW discharge calculated from Eq. (27) ( Vidisc) and Eq. (29) (V?disc) are higher than 

the local velocity calculated between the two positions from Eq. (30) {Vndisc) for 

pressures from 5 to 15 Torr. Furthermore, the local velocities o f a shock wave in the Ar 

MW discharge ( VJctisc and V2diSC) are still different (-20-30%) from the local velocity of 

the shock wave between the two positions ( Vndisc) at pressures above 20 or 25 Torr. 

Our results suggest that for pressures above 20 Torr, calculation o f the local velocity of 

a shock wave between two positions is the best way to study the dispersion and 

propagation o f the shock wave in an Ar MW discharge.

If we measure the gas temperature in front o f the shock wave in the Ar MW 

discharge, we can calculate the relative temperature, pressure, density, the total energy 

per unit volume, the Mach number behind a shock wave, and the relative number 

density o f the shock wave propagating in the Ar MW discharge. The experiment by 

which we measured the gas temperature in the Ar MW discharge will be introduced in 

the next section, and the new resonant cavity that has a set o f thirteen holes along its 

axis will also be introduced in the new experimental set-up. Thus, we can get a new set 

of data at 13 positions to study the dispersion and propagation o f a shock wave in the 

weakly ionized Ar gas.
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3.3 Determination of Shock Wave Dispersion in MW Discharge

In order to study the dispersion o f a shock wave in the Ar MW discharge, we 

concluded that more than two data points were necessary. Therefore, we built another 

resonant cavity (for TE mode) in which we drilled a set of thirteen holes (instead o f two 

holes) along the envelope o f the cavity, as shown in Figure 38. The diameter o f each 

hole is 0.5 cm. The holes are separated by about 0.75 inches (~ 1.9 cm) (see Appendix). 

The 4th, 7th, and 10th holes are elongated vertically to about 1.0 inch (~ 2.5 cm) (see 

Figure 38). We used these three special holes to measure the gas temperature distribution 

(described in Section 3.4) along the vertical axis. For the TM mode, we built a different 

resonant cavity to support the T M oj; mode according to the discussion outlined in 

Section 2.4.3.

Both new resonant cavities (TE and TM mode) were substituted for the two-hole 

resonant cavities, and essentially the same time-of-flight experiment was set up, as in 

Figures 14 and 18 in Sections 3.1 and 3.2.3, respectively. The two laser beams crossed 

two selected points at the same time. In this way, by turning the Ar MW discharge on and 

off, we could obtain two sets o f shock wave time-of-flight data at thirteen different 

positions from the spark gap along the shock tube (or resonant cavity) axis. By plotting 

those two groups o f data for the time-of-flight of the shock wave to these thirteen 

positions, we could obtain the information on dispersion of the shock wave in the Ar MW 

discharge. The results and analysis o f the data for the TE mode and the TM mode will be 

shown in Sections 3.3.1 and 3.3.2, respectively.
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3.3.1 Shock W ave Dispersion in Ar MW Discharge (TE Mode)

The laser deflection waveform signals from the shock wave dispersion experiment 

in neutral Ar and in the Ar MW discharge by using the TE mode resonant cavity are 

shown in Figures 39 -  42 at several gas pressures. The shock wave waveform signals 

measured in the Ar MW discharge are obviously different from the shock wave 

waveform signals measured in neutral Ar in three ways. First, the waveform signal shape 

o f a shock wave when the discharge was on at every observation position is the single 

peak signal. The double peak signal that occurs for a shock wave in a d.c. glow discharge 

can not be found in the Ar MW discharge (see Ref. [3,5]). Second, the time-of-flight for 

a shock wave in the discharge decreased at every observation position. In other words, a 

shock wave propagates faster in the Ar MW discharge than in neutral Ar. Thus, the 

shock wave propagation velocity both in the discharge and in the neutral gas could be 

calculated and compared, as shown at the end o f this section. Third, the amplitude of the 

waveform signal for a shock wave propagating through the Ar MW discharge was 

reduced in comparison to the signal in neutral Ar gas. This effect is called "amplitude 

reduction." Its value was used to evaluate the gas temperature during the discharge, as 

discussed in Section 3.4.1.

The dynamics o f shock wave dispersion during its propagation through the 

discharge is illustrated in Figure 43. Shown here is a sequence o f time-of-flight data at 

the same pressure for several central locations in the cavity. One can see that the time-of- 

flight increases as the shock propagates from one observation point to another but that the 

increase is not uniform. The local velocity o f the shock wave increases rapidly between 

the 6 th and 7th positions.
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Plots o f the distance from the spark gap as a function o f the shock wave time-of- 

flight at the thirteen positions at two values o f gas pressure for both the Ar MW discharge 

and neutral Ar, are shown in Figures 44 - 45. Based on the uncertainty of our 

measurement results, the average errors in the time-of-flight measurements at a particular 

observation point when the discharge was first on and then off are about 0.14% and 0.1 %, 

respectively. The uncertainty in the measurement o f the distance from the spark gap is 

about 1 mm, or approximately 0.17%, obtained by averaging over all distance values. All

values o f uncertainty are too small to be seen in Figures 44 -  45, but we will use this

value to evaluate the uncertainty o f the local velocity o f a shock wave.

From those sets o f data shown in Figures 44 - 45, we can evaluate the local 

velocity o f the shock wave in neutral Ar gas and in an Ar MW discharge by using the 

same technique that was used in Section 3.2.4 (see Eq. 24). In order to determine the 

velocity at the 2 nd position, we used the time-of-flight between the 1 st and the 3 rd 

positions (see Eqs. (31) to (33)), etc.:

y 2 = ^ — - — 1~l, (31)
t3 ~ 11

y 3 = ^ ^ , (32)

h ~  h

i s ~  h  '

h -  1 :

1 4 -  t 2 >

I  n+1 /  n—l

tn+J

\

.T*
'

T

V„ = — -------- — , (33)

where n = 2, 3, 4,...,12.
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By doing that, we obtained the sets o f data for propagation o f the shock wave in 

neutral Ar gas and in the Ar MW discharge at any local position from the spark gap for 

gas pressures between 20 and 100 Torr. The local velocities o f the shock wave 

propagating through neutral Ar and the Ar MW discharge for pressures from 20 Torr to 

100 Torr at the 6 th and 7th position in TE mode are shown in Figures 46 -  47, 

respectively. The distribution o f the shock wave local velocity along the resonant cavity 

in neutral Ar and the Ar MW discharge at 50 and 70 Torr are shown in Figures 48 -  49, 

respectively. According to Eqs. (31) to (33), by use of the average errors for the time-of- 

flight and for the distance from the spark gap, we found the average errors in the shock 

wave local velocities in neutral Ar and in the Ar MW discharge (as shown in Figures 46 - 

49) to be 4.68% and 5.98%, respectively. Due to the statistical error shown in Figures 46 

-49, the systematic error can be estimated to be the same order o f the statistical error.

From these results in TE mode, we can conclude that shock wave deflection 

signal amplitudes in the Ar MW discharge are weaker than in neutral Ar. We have no 

sign of the broadening o f the shock wave deflection signal (double peak) that is seen in 

d.c. glow discharges. The times-of-flight for a shock wave propagating in the Ar MW 

discharge are shorter than in neutral Ar (see Figures 39 - 45). A shock wave propagates 

in the Ar MW discharge faster than in neutral Ax (see Figures 46 - 49). A shock wave 

always propagates faster at the central region (5th to 8 th positions) o f the resonant cavity 

(see Figures 43 - 49).

Generally, the shock wave local velocity depends on the gas temperature in front 

o f the shock. The calculation of the gas temperature in neutral Ar will be derived, and 

the result will be shown in Section 3.4; the measurements o f the gas temperature in the
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Ar MW discharge will be described in the same section. We will discuss these results 

detail again in Section 4.
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FIG. 39. Shock wave deflection waveform signal in neutral Ar and 

Ar MW discharge at the 1st position and 7th position; 

Pressure 60Torr ; Spark gap voltage 8  kV.
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FIG. 40 Shock wave deflection waveform signal in neutral Ar and 

Ar MW discharge at the 1st position and 7th position; 

Pressure 70 Torr; Spark gap voltage 8  kV.
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Pressure 50 Torr; Spark gap voltage 8  kV.
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FIG. 42 Shock wave deflection waveform signal in neutral Ar and 

Ar MW discharge at the 5th position and 11th position; 

Pressure 40 Torr; Spark gap voltage 8  kV.

a— 5th Position; Discharge off 

b— 5th Position; Discharge on 

c— 11th Position; Discharge off 

d— 11th Position; Discharge on
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FIG. 43 Shock wave deflection waveform signal in neutral Ar and 

Ar MW discharge at the 5th, 6 th, 7th, and 8 th position; 

Pressure 30 Torr; Spark gap voltage 8  kV.
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FIG. 44 Propagation o f shock wave through neutral Ar and 

Ar MW discharge at 50 Torr; Spark gap voltage 8  kV.
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3.3.2 Shock Wave Dispersion in Ar MW Discharge (TM Mode)

Using the resonant cavity that supports the TM mode, we performed the same set 

of measurements of the laser deflection waveform signals as in the discharges generated 

in T E  mode (Section 3.3.1) in neutral Ar and in the Ar MW discharge at several values o f 

gas pressure. Typical waveforms are shown in Figures 50 to 53. We obtained almost the 

same results as in the TE mode. The reduction o f shock wave amplitude, the decrease in 

time-of-flight, and the increase in shock wave propagating velocity in the discharge were 

apparent. Furthermore, we still could not see the double peak structure (broadening) of 

the shock waveform signal in the presence o f the Ar MW discharge in the TM mode. 

Since this is a difference between the electric field polarization in TE mode 

(perpendicular to shock wave propagation direction) and the TM mode (parallel to shock 

wave propagation direction), we carefully examined these results in TM mode and then 

compared them with the results in TE mode. By doing this, we found that the time-of- 

flight for a shock wave in the Ar MW discharge in TM mode is relatively longer than in 

TE mode. This means that a shock wave propagates in the Ar MW discharge in TE mode 

faster than in TM mode. The amplitude reduction for a shock waveform signal in the Ar 

MW discharge in TM mode is relatively less than in TE mode at the same measurement 

point and gas pressure. Thus, the gas temperature (evaluated by using the amplitude 

reduction technique) in TM mode should be lower than in TE mode at the same position 

and gas pressure. This result will be shown and discussed in Section 3.4. Our interest in 

TM mode was due to the polarization of the electric field inside the resonant cavity, as 

mentioned above. This would be equivalent to the change o f electrode polarity in the 

d.c. glow discharge (Bletzinger et. al.) [3], The difference in the observed shock
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dispersion in TE and TM modes would suggest that the different electric field 

polarization in these two modes has an effect on shock wave propagation through the Ar 

MW discharge.

A train o f several deflection signals at the same pressure, but at different 

positions, is shown in Figure 54. The waveforms indicate strong amplitude dispersion 

but a smaller change in propagation velocity. The plot between the distance from the 

spark gap and the shock wave time-of-flight at the thirteen positions at several gas 

pressures, with and without the Ar MW discharge, are shown in Figures 55 and 56. For 

TM mode, we assumed that the average error o f the time-of-flight measurements at these 

observation points, with the discharge both on and off, were the same values as for the 

TE mode (about 0.14% and 0.1% respectively), since the same experimental setup was 

identical. The uncertainty in the measurement o f the distance from the spark gap in TM 

mode can be estimated to be the same as for the TE mode (about 1 mm, or approximately 

0.17%, by averaging over all distance values) and will be used to evaluate the uncertainty 

o f the local velocity o f a shock wave at the end o f this section.

The same technique used for the TE mode has been used to evaluate the local 

velocity o f a shock wave in neutral Ar and in the Ar MW discharge in TM mode. Then, 

the local velocity o f the shock wave in neutral Ar gas and in the Ar MW discharge in TM 

mode at any position from the spark gap at pressures from 30 to 100 Torr can be obtained 

as precisely as in TE mode by using Eqs. (31) to (33). The local velocity o f the shock 

wave propagating through neutral Ar and through the Ar MW discharge for pressures 

from 30 to 100 Torr at the 4thand 5th positions in TM mode are shown in Figures 57 -  58, 

respectively. The distribution o f the shock wave local velocity along the resonant cavity
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in neutral Ar and in the Ar MW discharge at 50 and 70 Torr are shown in Figures 59 -  

60, respectively. Calculated in the same way as for TE mode, the average errors in the 

shock wave local velocity in neutral Ar and in the Ar MW discharge in TM mode (as 

shown in Figures 57 - 60) are 4.68% and 5.98%, respectively. We can also estimate the 

systematic error that is in the same order o f the statistic error for the TM mode.

From Figures 50-56, we can see obviously the same three results obtained in TE 

mode. First, shock wave deflection signal amplitudes in the Ar MW discharge are 

smaller than in neutral Ar in TM mode. Second, we still have no sign o f the broadening 

o f the shock wave deflection signal (double peak) seen in d.c. glow discharges. Third, 

the times-of-flight o f a shock wave propagating in the Ar MW discharge are shorter than 

in neutral Ar. As in TE mode, we also see from Figures 57-60 that the shock wave local 

velocity propagates in the Ar MW discharge faster than in neutral Ar for TM mode. 

Furthermore, a shock wave always propagates faster at the central region (4th to 9th 

position) of the resonant cavity for TM mode (see Figures 54-60).

By comparison to the TE mode, we can see that the average local velocity o f a 

shock wave in the Ar MW discharge in TM mode is lower than in TE mode at the same 

measurement point or gas pressure (see Figures 48, 49, 59, and 60). We have seen in 

Section 3.3.1 that the shock wave local velocity depends on the gas temperature in front 

of the shock. Therefore, we estimate that the gas temperature in the Ar MW discharge in 

TE mode should be higher than in TM mode. Furthermore, we found that the amplitude 

reduction of a shock waveform amplitude in TM mode is smaller than in TE mode. This 

result confirmed that the gas temperature in the Ar MW discharge in TE mode should be 

higher than in TM mode. Results and discussion o f how the shock wave local velocity
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depends on gas temperature in either TE and TM mode will be discussed in detail and 

results for these modes will be compared in Section 4. In the present work, we have not 

only calculated the gas temperature by using the amplitude reduction technique but have 

also measured the rotational temperature and assumed it to be equal to the gas 

temperature in the Ar MW discharge. The technique and results will be described and 

shown for both the TE and the TM mode in Section 3.4.
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Pressure 70Torr; Spark gap voltage 8  kV.
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discharge at 5th position in TM mode.
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3.4 Determ ination of Gas Tem perature

Gas temperature is one o f the most important local parameters in a discharge. 

Local gas temperature effects directly the rates o f processes occurring inside the 

discharge. In the flow tube that we used for our experiment, the gas density decreases 

with increasing gas kinetic temperature because pressure in the tube is kept constant. 

Thus the reduced electric field E/N, which is one o f the fundamental parameters o f the 

discharge, will be increased when the gas kinetic temperature is increasing. The local 

and reduced electric field in the discharge will be discussed in Section 3.6. Besides, gas 

kinetic temperature determination will be used to calculate and predict accurately the 

electron density inside the discharge (see Section 3.5). Therefore, in the present case, 

by evaluating the gas kinetic temperature, one actually determines the fundamental 

parameter of the discharge, providing that the local value o f electric field is known.

The determination o f rotational temperature from the rotational spectra o f the 

excited molecules is one of the standard diagnostic techniques used in discharges 

involving molecular gases. By assuming thermodynamic equilibrium of the molecular 

gases in the discharge, translational temperature and rotational temperature are equal. 

However, it is well known that rotational temperature may not be identified with gas 

translational temperature when chemical reactions are involved during the discharge. In 

order to avoid any error based on the assumption of identity o f rotational temperature 

and translational temperature, we performed two different measurements for 

determining the gas temperature o f the discharge.

In the first method, we used the same set o f data from the time-of-flight 

measurements in both TE and TM mode (see Section 3.3) in order to calculate the gas
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temperature using the amplitude reduction technique. We will discuss this technique in 

detail in the Section 3.4.1. In the second method, we will focus on the gas temperature 

measurement evaluated from the rotational emission spectrum of N 2 molecules in the 

discharge. We will describe and show some results from this technique in Section

3.4.2.

3.4.1 Amplitude Reduction Technique

We will use the set o f data from time-of-flight measurements in Section 3.3 to 

calculate the gas temperature in the Ar MW discharge. This technique requires the 

shock waveform deflection signals that are measured in neutral Ar and in the Ar MW 

discharge at different distances from the spark gap and at various gas pressures. Shock 

wave deflection signals were time-integrated to obtain a real-time shock profile. Thus, 

the shock profile was subtracted from a mean o f the background signal. The shock 

profile can be visualized by the time-dependent intensity, as shown in as Figures 61 and 

62. Therefore, we can measure the amplitude o f the signal in the presence o f (a) the 

discharge and (b) in neutral gas. The amplitude values a and b depend on the density 

difference, as shown in Eqs. (34) and (35):

a ~ P 2k ~ P„, (34)
and

b ~ P lc~  Pic’ (35)

where pjh and p 2h are the densities o f the Ar gas in front o f and behind the shock front

when the discharge is on, p lc and p 2C are the densities of the Ar neutral gas in front of

and behind the shock front when the discharge is off.
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We can calculate the ratio o f these amplitudes for the shock wave (a/b), as 

shown in Eq. (36):

a
b

f  Pal 
\PlcJ

Pih

Plh
-  1

Pu

Pic

( 3 6 )

By assuming that the gas in the Ar MW discharge is ideal, we can use Eqs. (6 ) 

and (11) in Section 2.2.2 and to rewrite Eq. (36) in term of the Mach number, pressure 

and temperature, as in Eq. (37):

{ y + i ) M ]
a
~b

T
f  \

v ,h

Ti h ) \VlcJ

ri„

( y + i ) M
2

( 3 7 )

In the present experiment, the gas pressure in front of the shock wave was the 

same when the discharge was on (plh) as when it was off (p/c). Therefore, we can 

calculate the value o f (a/b) in terms of the Mach number and temperature, as shown in 

Eq. (38):

a
~b \T ih j

( y + P ) M] h

2 + ( y - l ) M ] h
1

{ y + i ) M ] c 

2 + { y - i ) M 2c
-  1

( 3 8 )

where M jc and Mih are the Mach numbers in front o f  a shock wave when the discharge 

is off and then on, respectively, TJc is the gas temperature in front of shock wave when 

the discharge is off (~ 293 K), and IA  is the gas temperature in front o f shock wave
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when the discharge is on. The dominant species in our discharge was Ar, which is an 

atom. Therefore, the specific heat ratio for the Ar atom roughly corresponds to the y 

value of monatomic gases. In the present case, we have y = 1.658 at 293 K, and it does 

not change substantially with temperature.

0.3

Discharge off 

Discharge on0.25 -

0.15 -

0.05 -

-0.05
1.45 1.5 1.55 1.6 1.65 1.7

Time o f Flight (ms)

FIG. 61. Amplitude reduction o f shock wave in neutral Ar and 

Ar MW discharge at 8 th position, 30 Torr and TE Mode.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In
ten

sit
y 

(a
.u

.)

103

1.2

1

0.8 

0.6

0.4

0.2

0

- 0.2
1

FIG. 62. Amplitude reduction o f shock wave in neutral Ar and 

Ar MW discharge at 6 th position, 70 Torr and TM Mode.

Discharge off 

Discharge on

-j----------------------------- ,----------------------------- ,----------------------------- j--------------------------- r - --------------- ----------- 1—

.46 1.51 1.56 1.61 1.66 1.71

Time of Flight (ms)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

The left hand side o f Eq. (38) can be evaluated from the data of the time-of- 

flight measurements described in Section 3.3 by using the technique described above. 

We can also calculate the Mach number in front o f a shock wave for the discharge-off 

and discharge-on situations by measuring the shock wave velocity and by applying Eqs. 

(14) and (15). The gas temperature (Tih) in front o f a shock wave when propagating 

through the discharge could be evaluated numerically to fit Eq. (38). The value of Tjh 

obtained from Eq. (38) depends on the distance from the spark gap along the resonant 

cavity in both TE and TM mode, as shown in Figures 63, 64, 65, 6 6 , 67, and 6 8 .

The set o f error bars shown in Figures 63 to 6 8 , can be obtained by applying the 

average measurement uncertainty o f a, b, M jc and M//, in Eq. (38). The average 

measurement uncertainties o f a and b are about 2.5% and 1.4%, respectively. For M ic 

and Mjh, the average measurement uncertainty is between 1.0% and 4.0%, depending 

on the gas pressure. Thus, the average measurement uncertainties of the gas 

temperature in TE mode are 7.6%, 10.3%, and 5.9% at the gas pressures of 30, 50, and 

70 Torr, respectively (see Figures 63 to 65). For TM mode, the average measurement 

uncertainties in the gas temperature are 12.3%, 7.6%, and 6.4% at the gas pressures of 

40, 50, and 70 Torr, respectively (see Figures 6 6  to 67).

From all o f the data and from Figures 63, 64, and 65, the gas temperature in TE 

mode can be obtained. All maximum values of the gas temperature at any pressure are 

always at a distance from a spark gap o f about 0.60 to 0.65 m (5th position to 8 th 

position). The gas temperature maximum values are between 700 K to 1100 K. By 

considering all the data and Figures 6 6 , 67, and 6 8 , we conclude that the gas 

temperature in TM mode was distributed along the resonant cavity with a wider range
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than for TE mode. All maximum values of the gas temperature at any pressure in TM 

mode were always at 0.57 to 0.68 m (4th position to 8 th position) from a spark gap, and 

the maximum value o f the gas temperature in this mode was between 500 K and 1000

K.

In order to compare these results with another technique, the rotational emission 

spectrum of N2 molecules measurement was measured, and the gas temperature inside 

the discharge was determined at any distance from the spark gap (especially between 

the 4th to the 8 th position) along the resonant cavity in both TE and TM modes. This is 

discussed in the next section.
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3.4.2. Emission Spectroscopy of Nitrogen

Optical emission spectroscopy (OES) is one of several highly accurate 

diagnostic techniques used to observe the gas temperature o f a discharge. Since the 

diagnostic techniques based on OES involve nondestructive measurements and are very 

simple to set up, they are rather popular in discharge physics. OES can be used to 

determine the rotational temperature from the spectra of diatomic molecules by 

measuring the intensity o f light emitted from excited molecules. The rotational 

temperature is approximately equal to translational temperature when the gas molecules 

are in a state o f thermodynamic equilibrium in the discharge. Although the electron and 

gas temperatures are far from equilibrium, heavy particles in a weakly ionized 

discharge can attain thermodynamic equilibrium when the rotational and translational 

temperatures are practically equal during the steady state. For this reason, the rotational 

temperature can be correlated with the gas temperature o f a weakly ionized discharge 

[43].

During the MW discharge, electrons gain energy from an electric field and 

excite the molecules by electron impact excitation. The intensity o f light emitted by 

those excited molecules can be measured. However, only a small fraction of the 

molecules, are excited in a weakly ionized discharge, while most of them remain in the 

ground state. As their masses are large in comparison with the mass o f an electron, 

those excited molecules preserve the same angular momentum and rotational energies 

as in their ground states. Furthermore, the distribution o f rotational levels for these 

excited molecules is almost the same as those in the ground state. By using the 

equivalence o f the rotational energy distribution o f excited state molecules to that o f the
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ground state molecules and by carefully examining the spontaneous emission spectra 

from the de-excitation process o f the molecules, we can identify the rotational structure 

o f the excited molecules. We can also measure the rotational temperature o f the excited 

molecules, which we assumed to be the gas temperature of the MW discharge.

In our work, we will use OES to measure the rotational temperature from the 

spectra o f Nitrogen gas, which is the impurity inside the Ar MW discharge. The results 

of the rotational temperature by use of this technique will be compared with the gas 

temperature measured by the shock wave amplitude reduction technique in Section 

3.4.1.

The spectral experimental setup for the rotational temperature measurement of 

the Nitrogen gas in the Ar MW discharge is shown in Figure 75. The imaging 

spectrograph (Acton SpectraPro-500i: Model SP-556 Spectrograph) has a focal length 

o f 0.5 m and is equipped with a triple grating turret for gratings 1, 2, or 3 (grating 1 : 

3600 grooves per millimeter; grating 2 : 1800 grooves per millimeter; and grating 3 : 

600 grooves per millimeter). The spectral range is 200 to 1400 nm. The resolutions of 

this spectrograph are 0.005 nm , 0.02285 nm, and 0.07 nm at 435.8 nm for gratings 1, 2, 

and 3, respectively. The CCD camera (Apogee: Model SPH5-Hamamatsu S7030-1007: 

Back-Illum, with a pixel array of 1024x122 and a pixel size of 24 micron) is connected 

to the spectrograph to record the intensity o f the emitted light from the Ar MW 

discharge. A mercury lamp was used to calibrate the wavelengths o f absorbed spectra.
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FIG. 69. Schematic of the experimental set-up for N2 emission spectroscopy.

In the Ar MW discharge, we used the Ar + H2 (95/5 %) and N 2 (~ 0.01 %) gas 

mixture. The most abundant constituents inside the discharge were Ar, H2, and N2. 

According to its relatively strong band emission intensity and its well-defined rotational 

term values, as shown in Table III, the N 2 molecule is the best species for the rotational 

spectrum analysis. In our experiment setup, we chose the Second Positive System 

(Figure 70) with the electronic transition from C 3IJU - B 3IJg (492.0 -  280.0 nm) in the 

ultraviolet and visible ranges o f the emission spectra o f N2 [44], We observed the most 

intense emission bands in the Second Positive System (C 3n u -  B 3n g ) with band 

origins starting at 466.7 nm, 434.3 nm, 405.9 nm, 380.5 nm, 357.7 nm, and 337.1 nm. 

These band origins correspond to the (0 -  5), (0 -  4), (0 -  3), (0 -  2), (0 -  1), and (0 -  0) 

vibrational transitions, respectively [45]. Because o f its small value o f self absorption
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and because there is no contamination of rotational spectra with Ar lines, we selected 

the rotational spectrum o f the ( 0  -  2 ) vibrational transitions, which correspond to the 

band origins 380.5 nm for the rotational temperature analysis.

('X

X X

FIG. 70. Energy level diagram o f the N 2 molecule reproduced from Ref. [44].
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From Figure 70, we have many rotational transitions in each vibrational band or 

transition in the fine structure. Vibrational bands in the Nitrogen Second Positive 

System consist o f strong P  and R branches and weak Q branches. The structure is 

further complicated by the triplet splitting o f the rotational quantum number J  in both 

states, giving three separate P  and R sub-branches and two Q sub-branches that 

correspond to the J  selection rules for multiplet components with the same spin (Q). 

Therefore, we can write three sub-bands, which are 3TIo - 3I7o , iTl1 - Ji7/ , and sI l 2 - 

3n 2 from the 3II  - 3I I  band. An example of the 3Ui - 3IIj transition belonging to 

the P, Q,  or R branches in the (0 - 2) vibrational band of the C  3IIU - B 3n g electronic 

excitation transition is shown in Figure 71, where C  and B are spectroscopic notation. 

In the example, five rotational transitions are from an excited state with a rotational 

number J  = 6 , 5, 2, or 1 to the lower states with rotational quantum numbers J  = 6 , 5, 

2, or 1 that correspond to A J  = J  -  J  = +1,0 , -1 . Generally, in a particular excited 

vibrational band, there are many rotational transitions that are classified into P, Q, or R 

branches corresponding to the selection rules A J = J  -  J  -  -1, 0, +1, respectively, 

where J  and J  are the upper and lower rotational quantum numbers.

The wavelength [cm'1, the number o f wavelengths per centimeter] o f the lines of 

each P, Q, or R branch, can be obtained by following the procedure directed by 

Herzberg [44] and Hartmann and Johnson [45], as shown in Eq. (39) for the 

band v ’-  v ”.
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FIG. 71. Example o f five rotational transitions o f the 5i7/ - 3Ui 

transition belonging to the P, Q, or R  branches in the (0 - 2) 

vibrational band of the C fn u - B 3n g electronic excitation system.
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P  branches : v L  ~ v 0 +  F ' q.-j - i ~ F "  Q , ; Q  -  0 , 1 , 2 .

Q  branches : v%:J -  v 0 + F'a.-j - F a  = 0 , 1 . (39)

R branches : V q :j  -  V o + F ' q : j+i ~ F ' Q : J  ’
Q  =  0 , 1 , 2 .

Here, Vo is the band head o f the electric vibrational transition, F ’ and F ” are 

the term values for the multiplet rotational components o f the upper and lower levels, 

respectively and J  is the rotational quantum of the lower level v”( /  = J ”). The 

subscripts o n f '  and F ” represent the application o f J  selection rules.

The term values Fq -.j ( O  = 0 , 1 , 2  ) for the multiplet o f any vibrational level 

v can be expressed by the semi-empirical formulae given in Ref. [45]:

and

{ j ( J  +  l ) - Z 1/ 2 - 2 z 2] - D vF o-.j  =  5 ,

F v.j  =  B V[J(J + 1 ) - 4 Z 2\ -  D,
c

J  +
2

F.2: J b \ j (J  + 1) + z ’/ 2- 2 z ] - D J J + ~ ) 4 .

(40)

where

and

Z) -  y X y - 4 )  + -  + 4 J ( J  + 1)

Z 2 = Y v { Y v - l )  -  -  - 2  J  ( J + 1 )

B v and D v are rotational constants and Yv a spin-axis coupling constant. The values 

used in the present work for C  3I1U and B 3lJg are given in table III.
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TABLE III. Values o f constants for the evaluation o f rotational term values of 

the Nitrogen Positive System, C 3I J U and B  3I J g  , from Ref. [45].

V

c 3n u b  n g

B y Y y D y  X 106 B y Y y D y  X 106

0 1.8149 21.5 6.7 1.62849 25.9 6.4

1 1.7933 21.5 6 . 8 1.61047 26.2 6.5

2 1.7694 21.4 7.3 1.59218 26.4 6.7

3 1.7404 2 1 . 1 8.5 1.57365 26.8 6 . 8

4 1.6999 20.3 12.5 1.55509 27.0 6.9

5 - - - 1.53676 27.3 7.0

All B v , D v, and Y v  values are presented in wavenumber units, cm '1, and they have 

different values that depend on the specific vibrational level (v). For the (0 - 2) band 

o f the C JJ7U - B  3I J g  transition, the band head (vo) is 26281.2 cm ' 1 (or A0 = 380.5 

nm). By using the information from Table III, we constructed the Fortrat diagrams 

shown in Figure 72. The location o f each particular line in the spectrum was calculated 

from Eqs. (39) and (40). In Figure 73, we show is the actual rotational spectrum for the 

(0 - 2) band in the Nitrogen Second Positive System that was obtained in the MW 

discharge with our spectral apparatus.
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From Figures 72 and 73, as well as in all other rotational spectra measured in the 

experiment, the rotational transition lines corresponding to particular rotational 

quantum numbers could be identified. However, the calculation of rotational 

temperature requires more information about the relationship between the relative 

intensity o f rotational lines and the rotational quantum numbers. For this reason, we 

would like to discuss further the spectral intensity distribution for the C iTIu state during 

the excitation process from the ground state x l Zg (v = 0 ) o f Nitrogen Second Positive

principally in the v = 0 vibrational level, is excited to the upper level o f the Nitrogen

assumed to be unchanged in the excitation process, so it corresponds to the distribution

where J ' is the rotational number o f the excited state, Bx is the rotational constant of the 

ground state (Bx = 1.9898 cm '1), and c, h, and k  are the speed o f light, Planck's constant 

and Boltzmann's constant, respectively. By dividing /  by the partition function

system.

As described in the beginning of this section, the ground state N 2 (x;2 g +),

Second Positive System C3TJU by electron impact. The rotational distribution is

in x }Eg+ at its rotational temperature (7).). We can determine the population 

distribution term /  for any v' of C 3I1U by application o f the Boltzmann law to x 3I g+

(v = 0 ):

(41)

Qr = Z f ’
J '

(42)
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we obtain the normalised population Pj< in the state with the rotational quantum 

number J':

f_  =  (2S  +  / )

Q, Q,
exp

hcB,
kT ( 4 3 )

r J

In the de-excitation process from C3T1U to B 3P1S , the population Pj< is 

distributed between the P, Q, and R branches following the line strengths (Honl- 

London factors) S pq  ■ r ,  S  Q q  : j<, and S R q  ; For the Nitrogen second positive system, 

they are given by

and

S i r  =

S i r

S ,Q : J ‘

(■P  + 1 + Q%J' + 1 - Q )
(r + 1)

(2 j '  + 1)Q-’
J '(J '  + 1 ) ’

( j '  + Q \ J ' - Q )  
J '

( 4 4 )

The line strengths obey the sum rule

Z \ S a,,. + SS.r + SJ,,I  = U'+ 1 (45)

Combining Eqs. (41), (43), (44), and (45) gives the normalised intensity of any line; e.g. 

in the R branch,

I e  =  S l . r - ^ - e x P

hcBr
kTr J

(46)

We can write identical formulae for the P  and Q branches.
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In the Nitrogen Second Positive System C3IIU - B 3IIg , the difference o f the 

total angular momentum is AA = 0 ( A = 1 for IT ). By using the Honl-London factors in 

Eq. (44), we found that the strong value o f the line strengths are in the P  and R 

branches. In order to clarify this, we use Eq. (46) with a given rotational temperature Tr 

-  1200 K to calculate the relative intensity distributions for the P, Q, and R branches 

as functions o f J'. The result shows that the peak intensities o f the P  and R branches, 

which occur around a J' value of 20, have almost the same value. Therefore, it is very 

difficult to choose a the particular sub-branch (e.g., Po, Ro, or R/) from the P  and R 

branches to calculate the rotational temperature. For this reason, we use this 

information and the Fortrat diagram (Figure 72) to plot the relative intensity 

distributions o f the P, Q, and R branches as functions o f wavelength variation from the 

band head (Figure 74). It is clear that the R branch at high J ’ is the best choice to use to 

calculate the rotational temperature, since the lines corresponding to a small J ’ are 

closely packed for all three branches. The possibility of overlapping produces 

difficulties in identifying the rotational transition out o f the P, Q, and R branches at low 

rotational quantum numbers. Furthermore, the resolution o f our imaging spectrograph 

is not sufficient (~ 0.005 nm). Therefore, in order to avoid those problems, we have 

chosen the rotational transitions at the large rotational quantum numbers o f the R 

branch. By careful examination o f Figures 72, 73, and 74, the R 0 sub-branch o f the R 

branch was chosen to use to calculate the rotational temperature in the present 

experiment.
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Eq. (46) can be rewritten in the following form:

ln (—t )  -  -  + 1 ) + constant, 4̂ 7 )
j  hr,

where S  Rq ■ j> was replaced with the factor J '  obtained from the Honl-London factors 

for the R 0  sub-branch o f the C 3UU - B 3IIg transition. All other coefficients and their 

logarithms were considered constant with respect to J ’. Hence, the slope o f the linear 

plot of the logarithm of normalized rotational line intensity, Iti[ I e / J ] ,  with respect to 

J ’(J ’+1) is inversely proportional to the rotational temperature o f the Nitrogen 

molecules.

The rotational temperature calculated from the slope o f the fitting line is shown 

in Figures 75 and 76 at two different gas pressures (30 and 75 Torr) at the same position 

o f measurement (8 th position) in TE mode, while the other discharge parameters were 

kept constant. In order to reduce the systematic error in measuring the rotational 

temperature, we have to keep the chemical reactions inside a discharge at a minimum 

level. Therefore, we tried to take the N2 (0 - 2) band spectrum from the discharge after 

the discharge had been operating for a long enough period to allow conditions in the 

discharge to reach equilibrium. At the same gas pressure, the power applied to the 

resonant cavity to generate the discharge was kept constant during the data taking 

process. The discharge volume was maintained inside the resonant cavity throughout 

all measurements (with the discharge on) by tuning the adjustable wall o f the cavity 

(see Section 2.4.4). Figures 77 and 78 show the rotational temperature o f N 2 obtained 

with the resonant cavity in TM mode at the same power as in Figures 75 and 76 and at 

two different gas pressures (50 and 70 Torr) and at two different positions of
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measurement (7th and 9th position ). Error bars in Figures 75, 76, 77, and 78 indicate the 

uncertainties in the intensity measurements. The errors for rotational temperatures 

calculated from the slope differences are also shown in the diagrams.

0.008 

0.007 

0.006 

0.005

3, 0.004
■Er*

* f-#

1 0.003 

0.002 

0.001 

0

- 0.001
362 367 372 377 382

Wavelength (nm)

FIG. 74. Intensity distribution o f rotational branches in ( 0 - 2 )  band of 

the second positive system, C 3I1U - B 3I lg in Nitrogen 

emission spectrum as a function of wavelength variation from 

the band head (380.5 nm) at T, = 1200 K. Note that the 

intensity o f R branch around 377.0 nm is much higher than the 

intensities o f  P  and Q branches.

P2 branch

~o— PI branch

P0 branch

R2 branch

R1 branch

R0 branch

Q2 branch

X”  Q1 branch
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FIG. 75. Rotational temperature from the Rq branch o f the N2 ( 0 - 2 )  

band in Second Positive System from TE mode at 8 th 

position and 30 Torr.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

-3 

-3.5 

-4 

-4.5

-5 

-5.5

-6 

-6.5 

-7
100 300 500 700 900

J'(J'+1)

FIG. 76. Rotational temperature from the Ro branch o f the N 2 ( 0 - 2 )  

band in Second Positive System from TE mode at 8 th 

position and 75 Torr.
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FIG. 77. Rotational temperature from the Ro branch of the N2 ( 0 - 2 )  

band in Second Positive System from TM mode at 7th 

position and 50 Torr.
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The rotational temperature distribution in the Ar MW discharge at the 7th 

position measured using the N 2 (0-2) band rotational emission spectrum technique in 

TE and TM modes are shown in Figures 79 and 80, respectively. We conclude that the 

rotational temperature in TE mode is slightly higher than in TM mode. The average 

value o f the rotational temperature in TE mode is 1220.82 K and in TM mode is 

1199.67 K for a pressure range of 20 to 100 Torr. Therefore, we measured 

approximately only a two percent difference for the rotational temperature 

measurements in TE and TM modes. The pressure dependence of the rotational 

temperature in TE and TM modes is essentially the same. The rotational temperature in 

TE and TM modes decreases at low pressure to a minimum value in the pressure range 

from 30 to 50 Torr and then increases again at higher pressure (see Figures 79 and 80).

Error bars in Figures 79 and 80 are the average values o f the errors in rotational 

temperature calculated from the slope differences. One of the important sources of 

error is the departure from the equilibrium rotational distribution. This issue requires 

more study in future work. Another source o f error indicated in the literature is self­

absorption. In order to verify the possibility o f self-absorption in our case, we 

performed a separate analysis o f rotational temperature evaluated from the (0 -2 ) and (0 - 

3) bands in TM mode. The two values o f temperature were different by 16.1% (as 

shown in Figure 81). Therefore, we conclude that self-absorption can be neglected in 

the present work.

The comparison between the gas temperature evaluated from the amplitude 

reduction technique and the rotational temperature measured by using N 2 (0 -2 ) band 

rotational emission spectrum technique will be shown and discussed in Section 4.
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FIG. 79. Rotational temperature in TE mode.
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3.5 Determination of Electron Density

The electron density, Ne, is one o f the most significant fundamental parameters in 

many types o f discharges. Electron density can be obtained from the lineshape o f the 

Balmer lines o f atomic hydrogen where the Stark broadening mechanism is dominant 

over Doppler broadening (usually, Hp at 486.13 nm) in discharges with electron densities 

greater than 1013 cm ' 3 [46]. The hydrogen Balmer /? line is the most frequently used 

spectral line for plasma diagnostic purposes. This technique can be applied to determine 

the electron density by addition to the discharge of a small amount o f hydrogen 

(typically >1% mole fraction). In our experiment, 5% of hydrogen was mixed with Ar 

gas in a tank and used to produce a MW discharge.

The shape o f the Hp transition is influenced not only by several broadening 

mechanisms that include Stark and Doppler broadening, but also by instrumental 

broadening due to the resolution o f spectral equipment. The shape of the Hp line has 

been extensively studied both theoretically as well as experimentally. Basically, the 

electron density was determined from the half-width at half-maximum (HWHM) of the 

Hp profiles. As a result o f these studies, well-established methods for Ne diagnostics 

from Hp line profiles have been developed. Simplified techniques for evaluating electron 

density from Stark broadening o f Hp lines have been described in the literature [47,48]. 

One o f them was used in the present work.

The Stark broadening is due to the Coulomb interactions between the outer 

electron o f the hydrogen atom and the charged particles present in the discharge. 

Because o f the relatively higher velocities o f electrons in the discharge as compared to
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ions, the broadening due to the positive ions is negligible. The electron density is a 

function o f Stark broadening of the Hp line, as shown in Eq. (48).

The Doppler broadening occurs when the emitting hydrogen atom moves with 

respect to the detection system. As a consequence o f the Doppler effect, the wavelength 

of the detected photon is shifted from A0  = 486.13 nm. Since the radiating hydrogen 

atoms are in thermodynamic equilibrium at gas temperature Tg, the Doppler broadening 

can be expressed in term of the mass o f the radiating atom (M), the wavelength A, and the 

temperature o f the radiating atom (Tg), as shown in Eq. (51).

The instrumental broadening due to the resolution o f the diffraction grating and 

the finite dimension of a single pixel in the CCD camera o f our imaging spectrograph 

also add to the Hp lineshape, as shown in Eq. (50).

The experimental set-up for measuring electron density will be described in 

Section 3.5.1, and the calculation method and results will be discussed and shown in 

Section 3.5.2.

3.5.1 Experimental Set-up

The experimental set-up for the Hp profile measurement was the same as shown in 

Figure 69. According to the wavelength o f the Hp transition line, the grating of the 

imaging spectrograph was changed so that 468.13 nm is the central wavelength o f the 

detector frame. The experimental Hp profiles (e.g. in Figure 82) were recorded by the 

CCD camera, and all experimental Hp profile measurements were performed at the 7th 

position at difference values o f gas pressure from 20 -100 Torr in TM mode.
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FIG. 82. Hp profiles in Ar (5% o f hydrogen) MW discharge (TM mode) 

at 7th position; 30 Torr.

3.5.2 E l e c t r o n  Density Evaluation

In order to simplify and make the determination of Ne from the experimental Hp 

profiles much faster, the well-tested approximate formulae in Eqs. (48) to (51) by 

Jovicevic et al. [47] and Kelleher [48] will be used to calculate Ne from the 

experimental Hp profile data in section 3.5.1:
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(50)

(49)

(48)

and

WD = 3.58xl(T7M ~ 7 (51)

Here, Ws, Wm, WD, and W/ are the Stark HWHM, the measured HWHM , the Doppler 

HWHM, and the instrumental HWHM of the Hp profile, respectively. All o f these 

HWHM are given in A (10'1 0 m). Tg is the gas temperature o f the discharge (in K), M  is 

the mass o f the hydrogen atom in amu, and X is the wavelength o f Hp transition line 

(4861.3 A).

For all evaluations o f the instrumental HWHM, W/ was detennined by the grating 

resolution and the pixel size o f the CCD camera in the imaging spectrograph, and its 

value was 0.02258 nm. For the gas temperature, the results from Section 3.4.2, were 

used. The electron density in the Ar MW discharge in TM mode can be evaluated using 

Eqs. (48) to (51) and is shown in Figure 83. The electron density in the Ar MW 

discharge in TM mode shown in Figure 83 rises for pressures between 4.0 x IQ13 and 7.0 

x 1013 cm '3. The uncertainties shown in Figure 83 (3%), can be obtained by applying the 

average measurement uncertainty o f  Tg (4%) and W,„ (0.4%) in Eqs. (48) to (51). Since 

we used the same value o f input power to the magnetron tube in the Ar MW discharge, 

we also assumed that the electron density in TE mode would not be much different from
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the electron density in TM mode. In conclusion, the electron density in the Ar MW 

discharge in both TE and TM modes should be on the order o f 1013 cm ' 3 for pressures 

between 20 and 100 Torr during the experiment.

60 80 1 0 0  1 2 0  

Pressure (Torr)

FIG. 83. Electron density in Ar MW discharge (TM mode).
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3.6 Evaluation of the Local Electric Field

The local electric field is one o f the parameters that characterize conditions in a 

MW discharge. The local electric field in the Ar MW discharge with impurities was 

evaluated on the basis o f variation o f the (0-0) band head intensity (/to = 337.1 nm) for 

the Second Positive System of Nitrogen [49]. By assumption, the band head intensity is 

proportional to the population o f the upper electronic state o f the Second Positive 

System:

I337.1 (t) ~ Nc(t). (52)

Here, I337.1 (t) is the time dependence o f the (0-0) band head intensity and Nc (t) is the 

time dependence o f the population o f the upper electronic state o f the Second Positive 

System.

By applying a simplified model for the kinetics of state C, involving only the 

populating process o f direct electron excitation from the ground state and depopulating 

process of radiative decay to the lower state B shown in Figure 84, the Nc (t) in this 

model is given by

d N c (t)/dt = kc (t)N e (t)N0 - N c (t)/r (53)

and

kc (t) = kc [E(t)/N 0 , T v],  (54)

where kc (t) is the rate coefficient for the electron-impact excitation o f the state C from

the ground state, E(t)/N0 is the time-dependent reduced electric field, Tv is the vibrational
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temperature o f the system during the discharge, Ne (t) is the time-dependent electron 

density, N 0 is the ground state concentration, and r  is the average lifetime of the state C.

B

C

G

i

w

Iw .i(t) ~ Nc(t)

r

N c (t)

No

FIG. 84. Simplified kinetic scheme in calculating balance of the 

excited state C o f the Second Positive System of Nitrogen.

The initial electric field (Eo) can be estimated from the observed initial discharge 

conditions. This electric field amplitude decreases, however, as the MW discharge is 

established. That happens in the following way: the MW cavity is initially resonant in 

the TEi,i,i (or TMo,i,2) mode with the microwaves generated by the magnetron. As the 

MW discharge builds up in the shock tube, the dispersive properties o f the plasma alter 

the wavelengths o f these standing microwaves, so that the cavity becomes slightly 

detuned. This slight loss o f resonance decreases the stored microwave energy, and the 

electric field amplitude is thereby reduced to a saturation value (£,„/). The unknown
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saturation value, E inf, is treated as a free parameter. Therefore, we had to set up an 

auxiliary experiment to measure E q at the central observation point (7th position) by using 

the microwave breakdown characteristics. We will discuss this topic in detail in Section 

3.6.1.

We also assumed that the discharge temperature did not change appreciably 

during a single pulse o f microwave discharge (3 to 6  ms). In this evaluation we used the 

values o f the rate coefficient kc [E(t)/N 0 , Tv]  from Refs. [50] and [51],

According to the average electron density given in Section 3.5.2 and the 

assumption that the time evolution o f the electron density is approximated by the time 

dependence o f the intensity of Hp line, we can model the local time-dependent electron 

density during the discharge Ne(t). The experimental set-up for measuring the time 

dependence of the intensity o f Hp line will be introduced and discussed in Section 3.6.2. 

The result for the local electric field in the MW discharge calculated from Eq. (53) will 

be shown in Section 3.6.3.

3.6.1 Measurement of Initial Electric Field

In order to measure the initial electric field E0, we used the same basic set up as 

described in section 3. By adjusting the power supply o f the magnetron tube through the 

variable transformer from 0.75 to 0.85 kW and gradually increasing the pressure in the 

tube, we could measure the gas pressure at the moment when we got breakdown. By 

using the microwave breakdown characteristics o f Argon from Ref. [52], we could 

evaluate the breakdown electric field as the initial electric field E q in the Ar MW 

discharge.
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The experimental data for breakdown at various diffusion lengths are shown in 

Ref. [52] for Argon. In our experiment, the microwave frequency was 2.45 GHz. The 

diffusion length (A) o f the cylindrical cavity with flat ends can be evaluated from Ref.

[ 5 3 ] :

1 ' ti')
2

f  2.405')----  = — +
A 2 [ h j I r J

where h is the length o f a cylinder with flat ends, and r is the radius of the cavity (shock 

tube). Thus, the diffusion length (A) in our experiment is 0.622 cm in both TE and TM 

modes. In accord with the microwave frequency and the diffusion length of the 

cylindrical cavity, the breakdown electric field (initial electric field) at a given pressure 

can be estimated by extrapolation o f data listed in Ref. [53] and assigned to the observed 

pressure of breakdown. Thus, the initial electric field can be plotted and expressed in 

term of the input power from the variable transformer o f the magnetron tube, as shown in 

Figure 85.

3.6.2 Measurement of T ime Dependence of the Intensity of Hp  Line

The scanning monochromator and photomultiplier tube (PMT) were added in the 

experimental set up in order to measure the time dependence o f the intensity of the Hp 

line (as shown in Figure 8 6 ). The monochromator (Jarrell Ash 82-000) has a focal length 

o f  0.5 m and is equipped with a grating o f 1180 grooves per millimeter. The spectral 

range o f the monochromator was between 190 nm to 910 nm. The resolution o f the 

monochromator was 0.2 A. The PMT was a Hamamatsu R928 with a wide spectral 

response range from 185 nm to 900 nm.
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FIG. 85. Initial electric field (.Eq) in Ar MW discharge.
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power supply

Scanning monochromator

FIG. 8 6 . Schematic o f time dependence o f the intensity of Hp line measurement.

In the range o f the Hp line spectrum (A = 486.13 nm), we can scan and measure 

the time dependence o f the intensity o f the Hp line, as shown in Figure 87. This 

experimental data can be fitted using a polynomial regression model for the time- 

dependent electron density Ne(t), as shown in the same figure. The time-dependent 

electron density Ne(t) will be used in Eq.(53) for calculating the population o f the upper 

state electronic state o f the Second Positive System of the (0-0) band o f Nitrogen, N c(t).
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FIG. 87. Time dependence of the intensity o f Hp line and time- dependent 

electron density , Ne(t), at 7th position; p = 30 Torr.
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3.6.3 Evaluation of the Time Evolution of the Local Electric Field

In order to proceed with the time evaluation o f the local electric field, we need to 

measure the variation of the (0-0) band head intensity of the Second Positive System of 

Nitrogen, I3 3 7 .1 (f). We used the same experimental set-up from Section 3.6.2 tuned to the 

range o f the (0-0) band head wavelength (X0 = 337.1 nm) and obtained the normalized 

waveform o f the time variation o f the (0-0) band head intensity o f the Second Positive 

System of Nitrogen, I3 37.i(t)/Imax during the microwave pulse, as shown in Figure 8 8 .

By using the average value electron density given in section 3.5.2, the tim e- 

dependent electron density N e(t) from section 3.6.2, the rate coefficient for the electron- 

impact excitation o f the C  state from the ground state k c  [E (t) /N 0 , TVJ ,  and all parameters 

including the assumptions and arguments listed above, we can evaluate the normalized 

waveform N c(t) /N c ,lwx from Eq. (53). This numerical solution o f the normalized 

waveform also should satisfy the Eq. (52). For this reason, the measured normalized 

waveform l 33 7 .i(t)/Imax should be fitted with the calculated normalized waveform 

N c (t) /N Cmax by adjusting the free parameter E inf . The result o f the fitting curve is shown 

in the Figure 8 8 .

The time evolution o f the local electric field was evaluated by use of the adjusted 

value o f Einf  and plotted in Figure 89. From this figure, the local electric field inside a 

resonant cavity in the Ar MW discharge decreased by approximately 60 to 70 percent of 

the initial electric field supplied from the magnetron tube power supply circuit.
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3.7 E v a lu a t io n  of the average power density

Using the local electric field in the Ar MW discharge, we can estimate the power 

loss inside the resonant cavity during the experiment. In this case, the shape o f our 

resonant cavity is the cylindrical coaxial cavity shown in Figure 90.

resonant cavity
shock tube

So , fio , O'

a

FIG. 90. A cylindrical coaxial cavity in Ar MW discharge.

The average power loss at resonance in the outer cylinder can be obtained by using Eq. 

(56), as shown below (see also Ref. [40]):

P  t =  Y l i   (56)
2*0'bdez l

where Vo is the voltage between conductors o f a coaxial cavity [that is calculated from 

the local electric field of Figure 89, as shown in Eq. (57)], I is the length o f the outer (or 

inner) cavity at resonance (/ -  A/4), ac is the conductivity o f the outer conductor
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(Aluminium) [equal to 3.82 x 107(O.m)'1], b is the radius of the outer cavity, 8 C is the skin 

depth o f the outer cavity [shown in Eq. (58)], and Z0  is the characteristic impedance of 

the resonant coaxial cavity calculated from Eq. (59).

2 Vo
E ‘  M t T T ) -  <57>

where p  is radial distance in the range from the radius o f the inner cavity (a) to the radius 

o f the outer cavity (b), or a<  p <  b.

1

(58)
o  c

where /  is the microwave frequency (2.45 GHz) and p c is the aluminium permeability, 

which is nearly equal to the permeability o f free space {pi0).

In — , (59)
2ft ij So ^

where eg is the permittivity o f free space. A similar calculation for the average power loss 

in the inner cavity (filled with the Ar MW discharge) gives

_  y \ l
in,ay ~ ? 2 ' (60)

2ft(idaSd Z 0

where ad is the conductivity o f  the Ar MW discharge obtained from Ref. [53] and S(i is 

the skin depth o f the inner cavity o f the Ar MW discharge, which can be obtained from

Eq. (58).
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Furthermore, the average power loss in the outer cavity walls can be calculated 

using Eq. (61) as shown below:

2 ^

p-»., -  „-vihp ln~- (« )K(Jcdc Zo a

Since pd «  p c, the average power loss in the inner cavity is much more than in the outer 

cavity. For this reason, we can estimate the average power loss in this experiment as 

being approximately equal to the average power loss in the inner cavity or in the Ar MW 

discharge, shown in Eq. (62):

p  „ p  =  YlL   ( « )
JT  T L .av I  in ,a v  ^ c _2  '

2x<jdadd Zo

Therefore, the average power loss in TM mode can be obtained from Eq. (62), which 

yields 18.92 Watts.

The input power (750 Watts) supplied to the TM mode cavity by the magnetron 

circuit was kept constant at all times during the experiment. By use o f the dimensions of 

the TM mode cavity, the average power density in TM modes can be calculated, as 

shown below.

For TM mode,

750 -  p TL av (63)

where hjM is the radius o f the outer resonant cavity for TM mode.

From Eq. (63), the average power density in the TM mode is approximately 2.61

Watts/cm3.
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For the TE mode, a similar calculation for the average power loss and the average 

power density can be performed. According to the difference in the dimensions for the 

TE and TM modes, we believe that the average power loss in TE mode should be less 

than in TM mode and that the average power density in TE mode should be higher than 

in TM mode when the strengths o f the electric fields inside those two cavities are equal.
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Section 4

RESULTS AND DISCUSSION

4.1 Introduction

During the last two decades several studies have been published on experimental 

investigations o f shock waves propagating in non-equilibrium weakly ionized gases, 

especially in d.c. glow discharge [3, 5], The most important observed effects o f non­

equilibrium weakly ionized gases on the shock wave are a decrease o f shock amplitude 

combined with a widening o f the shock width (dispersion) and an increase o f the shock 

wave velocity.

A simultaneous multi-point laser beam deflection technique was applied to study 

the local shock wave propagation velocity and shock wave dispersion in a low pressure 

Nitrogen d.c. glow discharge [3], The results show that the observed increase in shock 

wave propagation velocity inside a uniformly diffuse discharge positive column can be 

explained by thermal gradient effects. The shock wave propagation velocity increase is 

also dependent on the direction of the applied electric field. Shock wave propagation 

characteristics in the shock tube have also been measured in low pressure non­

equilibrium Argon d.c. glow discharge using the same technique [5], Since this 

measurement technique relies on the reflective index modulation, an accurate multi­

point measurement o f the gas density profiles can be obtained with this technique. 

Moreover, the shock velocity change in the discharge due to non-equilibrium “plasma 

effect” versus gas heating can be measured. Simultaneous multi-point measurements
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also permit estimates o f the amplitude-dependent shock wave interactions with the 

discharge under identical operating conditions.

Spark-generated shock waves were studied in d.c. glow discharges in Argon and 

Argon-Nitrogen mixtures [18, 54]. The laser Schlieren method was used to measured 

shock wave arrival times and axial density gradients. The changes in shock wave 

structure (splitting for instance) and velocity in weakly ionized gases are explained by 

classical gas dynamics, with the critical role o f thermal and multi-dimensional effects 

(transverse gradients, shock curvature, etc.). Experiments with pulsed discharges 

allowed us to separate thermal effects from those due to electric fields and charged 

particles. It was proposed that gas heating is necessary for shock velocity and Schlieren 

signal parameters to attain their steady-state values. This provides a direct proof that a 

thermal mechanism is responsible for the effects o f a weakly ionized gas on shock wave 

propagation.

Recent experiments involving shock waves propagation through weakly ionized 

gases have raised questions regarding interpretation of the experimental results [23], To 

aid in analyzing these experimental results, shock waves that were initiated by a 

simulated spark and that subsequently propagated in a cylindrical tube containing Argon 

initially at 30 Torr and 300 K have been analyzed numerically. Although discharge 

processes have not been simulated, it was proposed that the effects o f wall shear and 

thermal gradients alone are sufficient to explain most o f the experimental observation.

In the present work an electrodeless MW discharge in TE or TM mode was 

introduced to study a shock wave dispersion in non-equilibrium weakly ionized gases in 

order to eliminate a possible influence o f the electrodes on shock wave modification that
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was present in other experimental work [5, 18, 23]. A simultaneous multi-point laser 

Schlieren technique was also applied to this study. The results from the present work 

will be shown and discussed in detail in the next section.

4.2 Shock Wave Dispersion in Weakly Ionized Gas

The present study of shock wave dispersion in weakly ionized gas was 

performed by using the laser Schlieren technique to measure a time o f flight o f a shock 

wave propagating through a neutral Ar and an Ar MW discharge (see Section 3.2). 

Laser deflection signals were obtained at all available observation points (13 points) 

along the resonant cavity envelope both in the absence and in the presence o f the 

discharge for a pressure range between 20 and 100 Torr. The discharge operated at 

constant input power 0.75 kW. Typical waveforms of the laser deflection signals are 

given in Figures 39 - 43 for the TE mode and Figures 50 - 54 for the TM mode. All 

results can be plotted in the form of the time-of-flight versus distance from the shock 

wave generator (see Figures 44 - 45 for TE mode and Figures 55 - 56 for TM mode). It 

is obvious that the shock wave propagation velocities in the Ar MW discharge are 

always greater than the shock wave propagation velocities in neutral Ar. Furthermore, 

the shock wave deflection signal amplitudes were always smaller when the shock wave 

propagated through the discharge than when it propagated through neutral Ar gas. 

These two results, as mentioned above, are the same as obtained in a d.c. glow discharge 

[3, 5]. However, some other effects differ considerably from those obtained in a d.c. 

glow discharge. In the present experiment, there is no apparent evidence o f the multiple 

shock structure or widening of the shock wave deflection signal that are observed in the
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d.c. glow discharge (see Figure 91). The shock wave always retained a more compact 

structure, even in the case o f strong dispersion for both TE and TM modes.

0
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Neutral gas 
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d.c. glow discharge
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Fig. 91. Comparison of shock wave deflection signal in neutral gas, MW 

discharge and d.c. glow discharge.
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We believe that the primary reason for the observed compact dispersion pattern 

is the radial distribution o f the plasma parameters in the microwave cavity discharge. 

The electric field and plasma density increase gradually toward the center o f the cavity. 

Therefore, there is no sharp boundary between the cold neutral gas and the hot rarefied 

medium of discharge plasma as in the case o f the electrode region o f  the d.c. glow 

discharge. Furthermore, the radial distribution of the rotational temperature in the MW 

discharge did not change very much, contrary to the radial distribution o f the rotational 

temperature in a d.c. glow discharge. In other words, the radial distribution of rotational 

temperature in a d.c. glow discharge decreased from the middle position much faster 

than in the MW discharge, for which it is relatively constant. For this reason, the 

incoming shock wave is propagating against relatively small gradients in plasma density 

and gas temperature.

The local propagation velocity of the shock wave in neutral Ar and in the Ar 

MW discharge was evaluated by using the data obtained from the time-of-flight 

measurement (see Section 3.3). The local velocity o f the shock wave propagating both 

in the absence and in the presence o f the discharge is shown in Figures 46 - 49 for TE 

mode and in Figures 57 - 60 for TM mode. The local propagation velocity increased in 

the discharge at all observation points, and in most cases the increase can be attributed to 

thermal effects, only. Furthermore, in the central region of the cavity ( 4 th to 9th 

position), the local propagation velocity increased sharply to a level that could also be 

explained by the increase o f gas temperature alone. Beyond the central region, the 

shock wave local propagation velocity was reduced again to the expected thermal level. 

This result was consistent in the whole pressure range that we observed. The
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comparison between the gas temperature calculated from the observed velocity, on the 

assumption that the gas is an ideal [see Eqs.(6 ) and (15) and also Sections 3.3.1 and 

3 .3 .2 ] and the gas temperature measured from the shock wave amplitude reduction 

technique in TE and TM mode (see Section 3.4.1) is shown in Figures 92 - 93.
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FIG. 92. Comparison between the gas temperature corresponding to the observed 

local propagation velocity and the measured gas temperature evaluated 

from shock wave amplitude reduction technique at 70 Torr in TE mode.
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FIG. 93. Comparison between the gas temperature corresponding to the observed 

local propagation velocity and the measured gas temperature evaluated 

from shock wave amplitude reduction technique at 70 Torr in TM mode.
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4.3 Characterization of MW Discharge

4.3.1 Gas Temperature

The gas temperature distribution along the resonant cavity axis can be evaluated 

by using the amplitude reduction technique and the data taken from the time-of-flight 

measurements (see Section 3.4.1). At all pressures, the gas temperature distribution in 

TE mode had a maximum value between 700 K and 1100 K, and those maximum values 

were located at the central region o f the cavity at distances from a spark gap that are in 

the range from 0.60 to 0.65 m (5th position to 8 th position). In TM mode, the gas 

temperature maximum values were scattered along the cavity axis in a wider range than 

in TE mode. All maximum values of the gas temperature at every pressure in TM mode 

were located at the central region from 0.57 to 0.68 m (4th position to 9th position) from 

the spark gap, and the maximum values o f the gas temperature in this mode were 

between 500 K and 1000 K. The gas temperature distribution in the Ar MW discharge 

at selected pressures were shown in Figures 63 -  65 for TE mode and Figures 6 6  -  6 8  

for TM mode.

The gas temperature distribution along the axis o f the resonant cavity at all 

observation points corresponded with the local propagation velocity o f the shock wave. 

The sharp increase o f gas temperature in the central region o f the cavity could explain 

the increase o f the observed local propagation velocity in TE mode shown in Figure 92. 

For TM mode, the gas temperature evaluated from the amplitude reduction technique 

could apparently be fitted to the sharp increase o f the observed local velocity shown in 

Figure 93. On the other hand, we could explain the increase o f shock wave local
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propagation velocity at the central region of the cavity in TE and TM modes by using 

the thermal effect only. The gas temperature calculated from the amplitude reduction 

technique and observed local velocity at the central region of the cavity, satisfy the

necessary relationship V  ~ •>f f . We can conclude that this present work is sufficiently 

precise to show that the thermal effect is dominant.

The result from the amplitude reduction technique was compared with the gas 

temperature evaluated from the rotational temperature o f the spectra of molecular 

Nitrogen. (Nitrogen was the impurity in the discharge.) Assuming thermodynamic 

equilibrium of heavy particles in the discharge, the rotational temperature was evaluated 

and treated like a gas temperature (see Section 3.4.2).

The comparison between the gas temperature measured by using the shock wave 

amplitude reduction technique and the rotational temperature measured by using N 2 (0- 

2) band rotational emission spectrum technique in TE and TM mode are shown in 

Figures 94 and 95, respectively. From both figures, the maximum value of gas 

temperature calculated using the shock wave amplitude reduction technique at any 

position was plotted with respect to gas pressure and compared with the rotational 

temperature evaluated from N 2 (0-2) band rotational emission spectrum at the same 

observation point. The discharge power was kept constant in all measurements, and the 

gas pressure varied between 20 and 100 Torr. For TE mode, the relative difference 

between the two temperature measurements was approximately between 1 0 % and 3 3 %, 

except at the gas pressure o f 80 Torr for which the relative agreement increased to 4 5 %. 

In TM mode, the relative difference between the two temperature measurements was 

between 35% and 58%, except for the gas pressure o f 70 Torr for which the relative
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agreement decreased to 25%. We note a relatively large difference between the two 

measurements.

From this result, we can see that the shock wave amplitude reduction technique 

can be used to calculate the real gas temperature distribution inside the Ar MW 

discharge along the axis of the resonant cavity in both TE and TM mode. On the other 

hand, the rotational temperature measured from the N 2 (0 -2 ) band rotational emission 

spectrum can only be used to estimate the upper limit o f the discharge temperature.

The rotational temperature in the Ar MW discharge for both TE and TM modes 

was calculated from the N 2 (0-2) band rotational emission spectroscopy technique based 

on the assumption of thermodynamic and chemical equilibrium of excited state 

molecules and ground state molecules in the discharge. According to the result of 

temperature measurement by two different techniques (see Figures 94 and 95), this 

assumption may not be satisfied at any time during the experimental process. During the 

discharge, the electron impact may not only be the major reaction, but also other 

inelastic collisions may occur (e.g., ground-excited or excited-excited collisions). 

Furthermore, some chemical reactions may not be in the minimum level, and some of 

them can occur and evolve toward chemical equilibrium of the discharge. All o f these 

situations can increase the rotational temperature of the excited state molecules. For this 

reason, the rotational temperature is always higher than the real gas temperature. We 

observed better agreement for temperature measurements in TE mode than in TM mode. 

This result requires more study based on detailed spectroscopic data for the TE and TM 

modes.
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FIG. 94. Gas temperature and rotational temperature in TE mode.
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4.3.2 Electron Density

The electron density was evaluated from the Stark broadening o f Hydrogen 

Balmer lines, corrected for Doppler broadening, by use o f the gas temperature from 

Section 3.4 and the well-tested procedure discussed in Section 3.5. The value of 

electron density in our experiment varied between 4.4 x IQ13 and 6 . 8  x 1 0 13 cm ' 3 for the 

gas pressure range between 20 and 100 Torr (see Figure 83). According to this value of 

electron density, the degree o f ionization in the Ar MW discharge was between 10' 5 and

A 8
1 0  , compared to the d.c. glow discharge where the degree o f ionization is between 1 0 ' 

and 10~6. Therefore, the present microwave discharge has a higher electron density and 

a higher degree o f ionization than the d.c. glow discharge.

4.3.3 Local Electric Field

The local electric field in the Ar MW discharge can be considered on the basis of 

the variation of the (0-0) band head intensity (A0 -  337.1 nm) of the Second Positive 

System of Nitrogen. By using a simplified model, based on the assumptions and 

arguments discussed in Section 3.6, the time evolution o f the local electric field could be 

obtained, as shown in Figure 89. The local electric field inside the resonant cavity in the 

Ar MW discharge decreased to 40 V/cm from the initial electric field of 130 V/cm 

generated by the magnetron. Since the magnetron power supply was kept constant in 

each experiment, we assume that the decrease o f the local electric field inside a resonant 

cavity at any pressure in both TE and TM mode was approximately the same. Due to 

the detuning effect o f the plasma column, the local electric field inside the resonant
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cavity decreased by approximately 70% from the initial electric field during a single 

pulse (3 to 6  ms) in the Ar MW discharge in both TE and TM modes.

4.3.4 Power Density

The average power density inside the discharge was evaluated by calculating the 

power loss inside the resonant cavity, as discussed in Section 3.7. The power loss 

during the discharge in TM mode can be determined from the local electric field inside 

the resonant cavity and the dimension of the cavity. By use o f the local electric field 

evaluated in Section 3.6, the average power density inside the resonant cavity for TM

-5
mode during the discharge can be estimated to be about 2.61 Watts/cm . This value of 

average power density was a low power density used for operating the discharge in the 

present work. Since the strength of the local electric field inside the resonant cavity for 

the TE and TM modes is approximately the same, the average power loss in TE mode 

should be less than in TM mode, but the average power density in TE mode should be 

higher than in TM mode due to the difference in dimension between the TE and TM 

mode. We believe that the value o f the average power density in TE mode was still in 

the low power density range (< 10 Watts/cm3) for this work.

4.4 Conclusion

We can conclude that shock wave dispersion in the Ar MW discharge differs 

considerably from that obtained in a d.c. glow discharge. Multiple shock wave structure 

or widening of the shock wave deflection signal did not appear in the microwave 

discharge. In the microwave discharge, we can use the observed gas temperature
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(thermal effect) to explain the shock wave local propagation velocity in the central 

region of the resonant cavity. The rotational temperature was evaluated and used to 

estimate the upper limit o f the gas temperature o f the microwave discharge. The degree 

of ionization o f the microwave discharge is about 1 0 ' 5 to 1 0 '4, which is in the range of a 

weakly ionized gas (< 10'3 ). The local electric field inside the microwave discharge 

decreased by at least 70% from the initial electric field. The average power density 

inside resonant cavities during the discharge was in the low power density range (< 1 0  

Watts/cm3) for this study. There are some interesting differences between TE and TM 

modes for the shock wave local propagation velocity and the gas temperature. We found 

that the range o f the local propagation velocity distribution for a shock wave in TM 

mode is wider than in TE mode. Furthermore, the difference between the rotational 

temperature and the gas temperature in TM mode is more than in TE mode. This result 

will lead us in the future to develop new ways to study in more detail the effect of 

various modes o f the resonant cavity on a microwave discharge.
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Section 5

CONCLUSION

Shock wave dispersion in weakly ionized gas was studied in the range of pressure 

from 20 to 100 Torr at low power density. Weakly ionized gas was generated by a cavity 

microwave discharge in Argon. This study is complementary to the experiment of 

Bletzinger, Gunguly, and Garscadden [3,5] on propagation o f weak shock waves through 

weakly ionized gas. Here, the propagation is studied in a microwave cavity discharge 

instead o f in a d.c. glow discharge. The microwave discharge is electrodeless, and shock 

wave propagation in weakly ionized gas is not affected by the presence o f electrodes in 

the flow. We can conclude that the result o f shock wave dispersion in the Ar MW 

discharge differs considerably from that obtained in a d.c. glow discharge. Multiple 

shock wave structure, or widening o f shock wave deflection signal, did not appear in the 

microwave discharge. However, the increase of the shock wave local propagation 

velocity and the decrease o f the shock wave deflection signal amplitude were still 

observed in the microwave discharge. The local propagation velocity o f the shock wave 

was obtained at all observation points along the resonant cavity envelope by using the 

time-of-flight measurements. The velocity increased sharply in the central region o f the 

cavity (TE and TM modes).

Correlation of local velocity and the gas temperature between the TE mode and 

the TM mode reveals some interesting aspects of the interaction between the shock wave 

and the microwave discharge. We found that the range of the local propagation velocity 

distribution o f shock waves in TM mode is wider than in TE mode. Furthermore, the
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difference between the rotational temperature and the gas temperature in TM mode is 

larger than in TE mode. This effect indicates that properties o f external fields produce an 

observable effect on the shock wave. This evidence of the electrodynamic nature of the 

interaction is analogous to findings in a d.c. glow discharge. In the latter case, the shock 

wave dispersion is modified by the polarity o f the electric field. In the present case, we 

have evidence that the direction o f the electric field (vertical in TE mode and parallel in 

TM mode) affects a shock wave propagation velocity.

In this study, the fundamental discharge parameters such as the gas temperature, 

Tg, electron density, Ne, and local electric field, E  were evaluated in order to characterize 

the Ar MW discharge.

The gas temperature in both TE and TM modes were obtained at all observation 

points along the resonant cavity envelope by using the shock wave amplitude reduction 

technique. The value o f the gas temperature was compared to the rotational temperature 

calculated from the rotational spectra o f Nitrogen gas. We found that the rotational 

temperature could only be used to estimate the upper limit o f the gas temperature o f the 

microwave discharge in both TE and TM modes. The temperatures obtained by these 

two techniques differs less in TE mode than in TM mode. This result was used to 

describe the mechanism responsible for changing the shock wave local propagation 

velocity at the central region of resonant cavity. It was found that the thermal effect was 

the dominant effect needed to explain the distribution o f the shock wave local 

propagation velocity in the central region o f the resonant cavity.

Electron density was evaluated by deconvolution o f the Stark and Doppler 

broadened line shape o f Hp using the gas temperature o f the discharge and the well-tested
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approximate formula [47,48]. The value o f electron density can be used to evaluate the 

degree of ionization o f the microwave discharge, which is about 10' 5 to 10-4. This degree 

o f ionization for the microwave discharge is in the range of a weakly ionized gas (< 1 0  ) 

but a few orders o f magnitude higher than for a d.c. glow discharge.

The time evolution o f the local electric field inside the microwave discharge was 

evaluated on the basis o f the variation o f the (0-0) band head intensity ( X q  = 337.1 nm) o f 

the Second Positive System o f Nitrogen, time dependence o f the electron density, and a 

simplified model. The local electric field inside the microwave discharge decreased by at 

least 70% from the initial electric field.

In conclusion, shock wave dispersion in the Ar MW discharge was not the same 

as that observed in a d.c. glow discharge. We could not observe the multiple shock wave 

structure or widening of the shock wave deflection signal in the microwave discharge. 

Most observed effects could be explained by the thermal effect in this study. However, 

there is a different between the same effects observed in TE and TM modes. The present 

study provides an experimental analysis o f shock wave dispersion in microwave 

discharges. As such, it provides basic knowledge for future studies o f shock wave 

dispersion in microwave discharge at atmospheric pressures and higher power densities. 

Since microwave discharge is one o f the methods chosen to produce weakly ionized gas 

media for shock modification around the hypersonic aircraft o f the future, the data 

collected in this work will hopefully provide a stepping stone for future work in that 

direction.
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APPENDIX

TABLE OF LASER POSITIONS IN TIM E-O F-FLIG H T MEASUREMENT

Position Distance from spark gap (m)

1 0.517

2 0.536

3 0.556

4 0.575

5 0.594

6 0.613

7 0.632

8 0.651

9 0.669

1 0 0.689

1 1 0.708

1 2 0.727

13 0.746
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