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ABSTRACT

MEASUREMENT OF THE SPIN STRUCTURE FUNCTION G f OF 
THE DEUTERON AND ITS MOMENTS AT LOW Q1

Krishna P. Adhikari 
Old Dominion University, 2013 
Director: Dr. Sebastian E. Kuhn

Double polarization cross section differences (Aoy) for proton and deuteron targets 
have been measured in the EG4 experiment using the CL AS detector at Jefferson Lab. 
Longitudinally polarized electron beams at relatively low energies of 1.056, 1.337, 1.989, 
2.256 and 3.0 GeV from the CEBAF accelerator were scattered off longitudinally polar

ized NH3  and ND3 targets. Scattered electrons were recorded at very low scattering angles 
(down to 0 = 6 °) with the help of a new dedicated Cherenkov counter and a special mag
netic field setting of the CLAS detector in order to measure the cross section differences 
in the resonance region (1.08 GeV< W < 2.0 GeV) at very low momentum transfers (Q2 
for the deuteron was as low as 0.02 GeV2). These measurements on the deuteron were 

used to extract the deuteron’s spin structure function gi as well as the product A\F\ of the 
virtual photon asymmetry A\ and the unpolarized structure function F\. These extracted 

quantities, in turn, were used to evaluate three important integrals for the deuteron - the 
first moment (T)) o fg i, the extended Gerasimov-Drell-Heam (GDH) integral ( I t t ) ,  and 

the generalized forward spin polarizability (■$)• These measurements extend and improve 
the world deuteron data on gi to the previously unmeasured low Q2 region. The data, in 

combination with the corresponding proton data from the same experiment, will be valu
able to extract gi on the neutron in the same kinematics. They will shed more light on the 
nucleon spin structure in the region of quark-confinement as well in the transition region 
between hadronic and partonic degrees of freedom. In addition, the three integrals evalu

ated from the measured data are compared to predictions from different Chiral Perturbation 
Theory (%PT) calculations and phenomenological models. Extrapolations of the integrals 

(especially the GDH sum and the polarizability) to the real photon point (0 2 =O) enable us 
to test the validity of the predictions for their real photon counterparts. The new results 
have extended and improved the very low Q2 data on g  1 and the corresponding results 
on moments compare very well with the latest %PT and phenomenological calculations 

(especially near the photon point).
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CHAPTER 1

INTRODUCTION

The goal of the natural sciences as a whole is to understand the natural world - to 
understand its structure and the underlying principles as much as possible. From centuries 
of experimental and theoretical scientific effort, we have come to know a lot about nature, 
and we have already been exploiting those scientific achievements whenever and wherever 
we find them useful. From our own field of physics, for example, we know a lot about 

the properties of bulk matter, about atomic structure and about the even lower sub-strata of 
the world, i.e. the sub-microscopic world of nuclei, nucleons and many other sub-nuclear 
particles. In spite of achieving an unprecedented level of understanding, there are still a 
lot of questions that remain unanswered. One such subject that has drawn a great deal of 

attention from the nuclear and particle physics community is the stmcture of the nucleons 
(i.e., protons and neutrons) and their intrinsic property called “spin”.

According to modem physics, spin is an intrinsic form of angular momentum1 [1] 

carried by elementary particles (electrons, quarks, photons) as well as composite particles 
(hadrons, atomic nuclei, atoms as a whole, molecules etc) [2]. The concept o f spin as 
an intrinsic property of a particle was introduced by Uhlenbeck and Goudsmit in order 

to explain the results of the Stem and Gerlach experiment [3] as well as other puzzling 

observations from the early 1920s such as the hyperfine splitting in atomic spectral lines. 
Later, in 1933, Stem also measured the proton’s much smaller (relative to the electron’s) 
magnetic moment using his improved apparatus [4] and found that the measured value 

did not agree with the value predicted by Dirac theory for particles with spin-1/2 and no 
stmcture (i.e., point particles)2. This discovery of the anomalous magnetic moment was 
the first concrete signature for the fact that the proton is not a simple point particle like 
an electron, but rather had a substructure, thus heralding a new still ongoing era in the

’Classically, angular momentum is a vector quantity that represents the amount of rotation an object has, 

taking into account its mass and shape.
2Dirac’s prediction for a point like particle of charge q, mass M and spin S is juq =  qhS/M , but the mea

surements showed that np = 2.79 /i# and =  -1 .91  Hn, where =  eJi/2Mp =  3.1525 x 10~u M eV /T  = 

5.05078324(13)_2V .7  1 is the Nuclear magneton.
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quest to understand the nucleon’s structure and the origin of its spin. Many decades later, 
experiments at powerful accelerators have provided more independent confirmations of the 
nucleon substructure.

A truly vast amount of data on the inelastic structure of the nucleons has been accumu
lated since the late 1960s from both fixed target and colliding beam experiments with po

larized as well as un-polarized incident photons, (anti)electrons, muons and (anti)neutrinos 
as well as (anti)protons on a variety of targets (both polarized and unpolarized) from hydro
gen through iron [5]. The initial measurements at SLAC confirmed the picture of the nu
cleon as made up of partons (now identified with quarks and gluons). Since then more pre
cise measurements have been conducted at several accelerators, improving our knowledge 
and understanding about the nucleon structure (both spin-dependent and spin-averaged), 
and, at the same time, continuing to give us new and sometimes very surprising results 
such as the original “European Muon Collaboration (EMC)-Effect” [6 ], the violation of 
the Gottfried sum rule [7, 8 ], and the so-called ”Spin-Crisis” [9, 10] (see below).

With such a vast amount of experimental data available, a lot is now known about 

the spin-averaged quark structure of the nucleon, but a lot less is known about the spin- 
structure of the nucleon in terms of its constituents quarks and gluons [5]. In a simple 
non-relativistic model one would expect the quarks to carry the entire spin of the nucleon, 

but one of the early more realistic theories that explained the partonic substructure of the 
nucleon, the Naive Parton Model (NPM), predicted that 60% o f the nucleon spin is carried 
by the quarks [1 1 ],

The polarized beam and target technologies have greatly advanced during the last three 
decades, and many subsequent experiments on nucleons and some nuclei have contributed 
to the extraction o f their spin structure functions gi and g2 , which carry information on how 

the spin is distributed inside the target. One of the first experiments carried out at SLAC, 
in a limited kinematic region, seemed to confirm the predictions of the NPM. However, a 
subsequent, more precise measurements over a larger kinematic region performed by the 

EMC experiment at CERN reported that, contrary to the NPM predictions, only 12 ±  17% 
(i.e., practically none) of the spin is carried by the quarks [9, 10]. This discovery of the 
so-called “spin crisis” sparked a large interest in measuring the spin content of the nucleon, 
giving birth to several experiments (completed, underway and proposed) around the globe. 
The theoretical developments of Quantum Chromodynamcis (QCD) - the quantum field 
theory that describes the nuclear interaction between the quarks and gluons - have clarified 

our picture of the nucleon spin structure in great detail. With the discovery of a unique
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QCD property known as “asymptotic freedom”, quarks are known to be essentially free 
and interact very weakly at higher energies (or shorter distances) allowing perturbative 
QCD (PQCD) calculations of testable predictions for processes involving high energy or 

high momentum transfers [12]. The so-called Bjorken sum rule, which relates results 
from inclusive, polarized deep inelastic scattering (DIS) (a high energy process) to the 

fundamental axial coupling constant (gt) of neutron beta decay, is a precise test of QCD. 
The interpretation of existing DIS results has verified the Bjorken sum rule at the level of 
10% accuracy and has shown that only about 30 ±  10% of the nucleon spin is carried by the 
quarks; the rest of the spin must reside either in gluons or orbital angular momentum of its 
constituents. Experiments to measure the gluon contribution are underway at Brookhaven 
National Laboratory (BNL) and CERN.

Probing nucleon structure on the other end o f the energy scale (i.e. probing with low 
momentum transfers) provides information about the long distance structure of the target, 
which is also associated with static properties of the nucleon. In this low energy regime, 
however, QCD calculations with the established perturbative methods become difficult or 
even impossible because the coupling constant (as) becomes very large, and so the pertur
bative expansions (in powers of as) do not converge. In other words, in this energy regime, 

the partons become very strongly coupled to the point of being confined into hadrons which 
now emerge as the new (effective) degrees of freedom for the interaction. Therefore, other 
methods must be relied on to make predictions in these non-perturbative energy scales. For 
example, at very low energies, effective theories such as chiral perturbation theory CtPT) 

are used. There is also an intermediate region where neither of these approaches (PQCD 
or #PT) is expected to work. In this region, it is expected that lattice QCD methods will 
provide testable predictions in the near future. There are also some phenomenological 
models aimed at describing the entire kinematic range. The description of the low energy 

regime in terms of these theories and models is still a challenge and theories used here are 
still fraught with several issues (see Chap. 2). There are already several predictions (for 

both nucleons as well as some light nuclei such as the deuteron and Helium-3) from these 
low energy theories and models on various observables which can tested using experimen
tal data. Therefore, having high precision data at the lowest possible momentum transfer 
is very important to test these already available predictions. In addition, new results will 
also help constrain future calculations and provide input for detailed corrections to higher 

energy data.
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With that perspective and motivation, the “EG4” experiment (E06-017) for a preci
sion double polarization measurement at low momentum transfer using both proton and 
deuteron targets and the Hall B CLAS detector was performed at Jefferson Lab. In ad
dition to the usefulness of the measured deuteron data for testing theoretical predictions 
calculated for the deuteron itself, the data are also useful for extracting neutron data3 in 
combination with similar data from the proton target. An experiment with the similar goal 

of probing the neutron at low momentum transfers but using 3He was performed in Hall 
A [13]. However, due to the not-fully-understood complexities of nuclear medium effects, 
neutron information extracted from only one type of nuclear target cannot give us enough 
confidence in our measurements. So, having results from different types of targets is very 
important for better confidence in the extracted neutron results, which will enable us to 

test the theoretical and model predictions as is done for other targets (deuteron, proton). 
The data on the deuteron (and eventually on the neutron) will not only be useful to test 
the theoretical predictions at low but finite momentum transfers but they can also be used 
to extrapolate to the real photon absorption limit, thus providing tests o f some long stand
ing predictions such as the Gerasimov-Drell-Heam (GDH) sum rule (derived not from the 
aforementioned low energy effective theories but independently from general principles). 

The analysis of the deuteron data is the subject of this thesis and the proton target data 
collected by EG4 are being analyzed by another member of the collaboration.

In the future, we will extract information from the deuteron and proton data from the 
EG4 experiment to provide a self-consistent determination of the Bjorken sum, helping 

us to understand the transition from the partonic to hadronic descriptions of the strong 
interaction. The data will also be useful in studying the validity of quark-hadron duality 

in the spin sector, thus helping further to understand the transition from the partonic to 

hadronic pictures.
In this thesis, I will describe the work done to analyze the deuteron data from the EG4 

experiment and will present and describe the preliminary results obtained for the deuteron 

target. For that purpose, I will first describe the theoretical formalism in Chapter 2. Then, 
in the third chapter, the experimental details are discussed. After that, the details of the data 
analysis are described in Chapter 4. The preliminary results calculated for the deuteron are 
presented in Chapter 5. Finally, Chapter 6  presents a summary and conclusions.

3 Due to the relatively very short lifetime and various other complexities, no free neutron target has been 

devised yet. All the relevant neutron information so far has come from measurements on nuclear targets 

(mostly very light nuclei such as 2H and 3He).
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CHAPTER 2 

THEORY

2.1 INCLUSIVE ELECTRON SCATTERING

High energy particle scattering processes provide very powerful microscopes to exam
ine objects such as nuclei and nucleons. Scattering o f leptons (most commonly electrons) 
is one of the most extensively used processes. For example, the scattering of high en

ergy leptons off nucleons has played a key role in determining the partonic structure of 
the nucleons. Following are some of the advantages o f lepton (and in particular electron) 
scattering:

• Leptons interact through the electroweak interaction which is very well understood.

•  The interaction is relatively weak, thus enabling measurements with only small dis
turbances to the target structure.

•  In electron scattering, one can, moreover, control and vary the polarization of the 
virtual photon (exchanged during the interaction) by changing the electron kinemat
ics. This allows the separation of the charge and current interaction. Data from 

the scattering of polarized electrons by polarized targets allows one to examine the 
target’s strong-interaction spin structure.

•  A great advantage of electrons is that they can be copiously produced in the labora

tory relatively easily and at low costs, and since they are charged, they can readily 
be accelerated and detected. (It is not as easy and cheap to produce and handle the 

other lepton types.

In this section, we discuss the process of inclusive electron scattering (in which only 
the scattered electron is detected ignoring the rest o f the components o f the final state 
after the interaction). In doing so, the relevant kinematic variables and related physical 
quantities to be measured or calculated from the process will be introduced and some of 

their relations with one another will be deduced and discussed.
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2.1.1 KINEMATIC VARIABLES

A lepton scattering process, in which an incoming lepton represented by l(p) of four 
momentum p  = p*1 = (E,k) scatters off a target N(P) which is usually a nucleon or a 
nucleus at rest and with four momentum P = P*1 = (M, 0), can simply be represented by

l (p )+ N (P )-> l(p ')+ X (P ')  (1)

where l(p') and X{PI) represent the scattered lepton and the rest of the final state (which 

can have any number of particles) with four momenta /A 1 =  (E\J?) and P1̂  =  (E x ,k x ) 
respectively. The scattering angle which is the angle between the incident and outgoing 

path/direction of the electron is denoted by 0. The final (hadronic) state denoted by jc is 
not measured, with only the scattered electron detected and measured by the detector(s). 

In the first order (Bom) approximation of the process, a virtual photon is exchanged (as 
depicted in Fig (1)) whose four momentum is equal to the difference between that of the 
incident and the scattered electron and is given by (p — p 1)^ = (v,q), where v =  (P.q)/M  
and q represent the energy and 3-momentum transferred by the incident electron to the 
target N(P).

To D ete c to r(s)

P  =  (M, 0)

FIG. 1. Lowest order (Bom approximation) Feynmann diagram representing the process 
of inclusive lepton scattering

The kinematics of the scattering process can be completely described in terms of two
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of the following Lorentz invariant variables.

v =  E - E '  (2)

Q2 -  —q2 ~  4EE'sin2^  (3)

W = \/{P  + 4)2 = x/AT2  +  2Mv -  Q2 (4)

e 2  e 2

2P-q 2 M v (5)

q P _ v
y  p -P  E  ( *

where Q2 =  — is the negative o f the squared four-momentum transferred (with electron
mass neglected in the expression for Q2), which defines the resolution o f the electron

probe; W is the invariant mass o f the unmeasured final state (jc) ; x  is known as the Bjorken 
scaling variable, which is also interpreted as the momentum fraction carried by the struck 
quark (parton) in the infinite momentum frame; M  is the nucleon mass ~  0.939 GeV, and 
lastly, y  is the fraction o f the energy that is lost by the lepton during the process.

2.1.2 DIFFERENTIAL CROSS SECTION AND STRUCTURE FUNCTIONS

The differential cross section for the process of inclusive (polarized) electron scattering 

on (polarized) targets can be expressed, in the Bom approximation, in terms of the product 
of leptonic tensor L^y and the hadronic tensor WMV as follows :

“ 2 V v ^  (7)
dQ.dE' Q* E  /iV

where a  =  ~  1/137 is the electromagnetic fine stmcture constant.
The lepton tensor, which is calculable from QED, is given by:

Luv = Y . ^ p ) y ^ s < p ) ^ { p ' ) y vus(p) (8 )
s'

+  2 [P uPy+ p'uP v-gpvP P  +i£tivaps<xqp} (9)

where u{p) are the Dirac spinors, =  uy^ysu is the lepton spin vector, £ 0 1 2 3  =  +1 is 
the Levi-Civita tensor (using the special convention of [14]) and the sum is over all the 
unobserved final lepton spin states. This tensor can be can be considered as having two 
parts - symmetric (consisting of the first three terms) and antisymmetric (the last term) 
under the interchange of the indices p,  v. The antisymmetric part vanishes if one uses an 
unpolarized lepton beam due to the averaging over the spins [15].
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On the other hand, the hadron tensor characterizing the hadronic target is not calculable 
yet, due to the difficulties 1 of fully solving the established theory (called QCD) for strong 
interacting objects. In this case, one needs to consider all the possible transitions that can 

happen from the target ground state \N(P)) to any of its excited states |A"(/y)). Using the 
completeness of the excited states, the hadronic tensor is given by:

(^v(5,p)|yM(CVv(o)|iv(5,p)) (io)

where s denotes the target spin, is the electromagnetic current operator with £ being 
the spatial four vector.

As with the lepton tensor, the hadronic tensor can also be further split into a sym

metric and an anti-symmetric parts W^v = + Wfiv, with the two parts given by the
following most general forms (as obtained from Lorentz and gauge invariance and parity 
conservation of the electromagnetic interaction):

^ ( v . e V o  p_ < i.
q2+  A fi V ^  “  ~Qr q >1 J VPy ~  ’ ( l l )

and

^tv =  i£nvaf}q G i(v ,Q 1)sP +  G2{^ 1) ( s t P  q - p P S  q) ( 12)

where = u(P)y^ysu(P)/2M  is the spin vector for the hadron. This effectively param

eterizes the the internal hadronic structure information into four response functions - two 
spin independent (W \2) and two spin dependent (G 1 2 ) functions, which are usually re-

placed by the following dimensionless structure functions:

F ,(x ,0 2) = (13)

F2{x , & )  = v W2(v ,Q 2) (14)

g i ( x , i f )  = M vGiiViQ2) (15)

g i & Q 2) = v2G2(v ,< f) (16)

'Due to the running of the coupling constant (a consequence of the unique QCD property known as 

the asymptotic freedom), the coupling between partonic constituents of the hadrons become very large, not 

allowing the perturbative method (the only ’’exact” method available so far) o f solving QCD in the hadronic 

energy scale [12],
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The structure functions can be measured experimentally by using different combinations 
of beam and target polarizations. For example, one can extract the first two from the un
polarized scattering experiments because the total spin averaged differential cross section 
in the lab frame is related to the these unpolarized structure functions as follows:

with the Point cross section (for the lepton scattering from a Dirac particle - a spin-1/2 

point particle of charge +e) given by

The polarized stmcture functions gi and g 2  can, in principle, be separated by using 
different target spin orientations with respect to the beam direction and measuring two 

independent observables - the polarized cross-section differences Aoy and Acr^ as given 
by the following equations. In the first case, the target spin is aligned along the beam 
direction and the cross-section difference is measured between anti-parallel and parallel 

target and electron spins.

In the second case, a transversely polarized target with respect to the beam polarization 

is used, and the corresponding cross section difference (under the reversal o f the target or 
beam spin direction) is related with the two spin stmcture functions as follows:

dCldE’
(17)

d & )  Point 4 E 2s i n 4 % E

d a \  _  a 2cos2§ E'
(18)

r«/

with y  being the recoil factor.

Ao]| =  [iE + E 'cos6)gi(x,Q2) - 2 M x g 2(x,Q2)} (19)

where

_  d2o ^  d2a ^
° ]l ~  dCi.dE’ ~  dCldE’

(20)

4 a 2  E a  [ . 2E . •>.] .
(21)

where

d2a ^  d2o^=> 
ACf± =  dCldE’ ~  dSldE’

(22)

Figures 2 and 3 show some of the past measurements of gi for proton.
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2.1.3 VIRTUAL PHOTOABSORPTION CROSS SECTIONS

We have seen in Sec. 2.1 that the lepton scattering can be viewed as the two step inter

action process of the lepton with the target - first the emission of a virtual photon described 
by the Lepton tensor and then the absorption o f the photon by the target as described by 
the hadronic tensor. The complete description is then obtained by the contraction of these 
tensors resulting in the inclusive differential cross-section, which can be expressed and 
described in terms of four structure functions. Equivalently, the process can be viewed as 
absorption of a virtual photon on the target and, therefore, the cross-section can also be 
expressed as virtual photo-absorption cross section in terms of four partial cross-sections 

Gl , Gj , Gi t , and Gjt  as follows:

d2G
dQ.dE' ~

where h is the helicity of the polarized beam electron (h = ±  1 for longitudinally polarized 

electrons) defined as

?  G  ■ p

h = i i  (24)

with a  and p  being Pauli spin matrices and particle momentum respectively. Likewise, Pz 
and Px are the target polarizations parallel and perpendicular to the virtual photon momen
tum q. e is the longitudinal to transverse ratio of the exchanged virtual photon polarization

Gj +  £Gl ~  hPxy/2e(l -£ )G lt -  hPz \J  1 - £ 2o TT (23)

V2 \  29l + 2 \ l  + g ) , a n 2
-1

(25)

and T is the photon flux factor which is proportional to the photon flux K

a  E' K
(26)

2Jt2Q2 E  1 -  £

Different conventions are used for virtual photon flux K. One given by Anselmino et al. 
[16] is:

Ka =  v (27)

In the Hand convention, the virtual photon spectrum is normalized using the equivalent 
photon energy [17]:

W2 - M 2

K h =  ~ 2 a T ~  =  V (1 ' x) (28)
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Alternatively, Gilman’s choice o f the definition is [17]

Kg =  \qiab\ = \ / v 2 + Q2 (29)

In the first convention, the flux is simply equal to the photon energy. In the Hand conven
tion the flux is chosen to be equal to the equivalent photon energy in the center-of-mass 
frame and in Gilman’s convention it is given by the photon momentum in the lab frame. 

In all cases, they become equal to v at the photon point, and they also give numerically 
similar results in DIS but they are strongly convention dependent in the intermediate Q2 
region [15].

The partial cross-sections 0 £, Or, a n ,  and Ott are functions of v and Q1 among which 
the first two are cross sections for the absorption of longitudinally and transversely polar
ized photons respectively, while the latter two are the interference cross-sections which 
involve spin flips and can only be measured experimentally by double polarization meth

ods. In the real photon limit (Q*=0), and a n  vanish and the total photo-absorption 
cross-section becomes equal to Or i.e. o (v ) =  Or(v).

The partial cross sections Or and Ott can, in turn, be expressed in terms of the helicity 
dependent photoabsorption cross sections o f  and o f :

where the subscripts 1/2 and 3/2 indicate the total helicity projections o f the photon and 

the target as illustrutated in the Fig. 4, whereas the superscript’T’ implies that the photons 
are transversely polarized (i.e., spin ± 1 ).

As indicated at the beginning of this section, these photoabsorption cross sections are 

related to the four structure functions (F\ , F2 , g\ and g i) of the target as follows:

2

2aT = o f  +  o f ,  2aTr  =  o f  -  o f ,  aLT = 0 tl = o f r
2 2 2 2 2

(30)

(31)

(32)

r(g\ +g2) (33)



FIG. 4. Helicity o f virtual photons (h) and target spin projections (S) corresponding to the 
helicity dependent photoabsorption cross sections o f  and o f  respectively

(34)

and, equivalently, the structure functions can be expressed in terms of the helicity ampli
tudes. For example, the relation forgj becomes as follows:

where y =  Q /v.  Due to the earlier indicated convention dependent nature of the photon 

flux K, these relationships are also convention dependent and the interference terms can 
also be defined such that oLT(TT) =  —o rLT^ r y

2.1.4 VIRTUAL PHOTON ASYMMETRIES

Most of the past measurements of the spin structure functions come from measure
ments of asymmetries (defined below) rather than from direct measurements of cross sec
tions because the asymmetries, being calculated from the ratios of measured counts, do 
not rely on the knowledge of detector acceptance, target thickness etc. The two experi
mental asymmetries measured in the electroproduction experiments are the ’’longitudinal”

%it2a{ \  + y2)^a h
MK

{ o f  - o f  + 2 yoLT)
I 2

(35)
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and ’’transverse” asymmetries defined as follows:

A t  A2\ A a ^ - A a 1̂A\\(x ,Cr) =   77 ---------------------77-  (36)
l|V ’ Aortlt +  A a ^

,  ,  A c t ^ - A c t ^

It is a common practice, for historical and practical reasons, to express these electro
production asymmetries and structure functions in terms of the virtual photon asymmetries 
A\ and A2 given by:

i ( x rf2) Gl  ° l

2  I

A ^ x O 2) -  2gr _ y [g l(^ g 2 ) + g 2 ( ^ g 2)] G9.
A 2{ x , ! f )  -  r  +  <yr -  Fl(X)Q2)

I 2

By using equations (30) through (34), we get the following expressions for the spin 
structure functions in terms of the two asymmetries and the unpolarized structure function 

F ,:

g . ^ e 2) =  +r-<2) (40)i + y z

(41)

As their definitions indicate, the virtual photon asymmetries A i and A2 have simple physi
cal interpretations and A i can be directly measured, in principle, from real photon absorp

tion measurements. But they are not directly accessible in the electroproduction data[5]. 
However, they can be extracted indirectly from the measured experimental asymmetries 

because the two types of asymmetries are related as follows:

A\\ = D(A i + t]A2) 

Ax = d(A2 - $ A x)

(42)

(43)
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where
y [ ( l + f y / 2 ) ( 2 - y ) - 2 f m 2/Q 2}

(44)
>^(1 - 2 m 2/Q 2){\ + y2) +2(1 + /?)(! - y - ' f - y 2/4 )

[ l + y 2>'/2 ( l + 2 / » V g 2)]v/ l  - y - f y 2^  D
0  - V 2 ) ( l  + r V 2) - y 1m2/Q 2

(45)

71 r ( i - > ,/2 ) ( i + r V 2 ) - j 2w2/ e 2
(46)

^1 +  / 2y /2 (l +2m2y /Q 2)
(47)

Thus, the directly measurable quantities yly and /lj_ are related to the spin structure 

functions through the virtual photon asymmetries, and hence provide a method to extract 
the spin structure functions. In practice, however, several o f the past experiments have 
extracted g\ by only measuring A^, with g 2 related part (which is small) either ignored or 
giving some parameterization input with an upper bound [18].

2.1.5 TYPES OF INCLUSIVE SCATTERING

While studying and discussing inclusive measurements, it is sometimes very useful 
to make distinctions between different kinematic regions defined in terms of the invariant 

mass (W) of the final state. Most often, three regions are recognized - elastic, quasi-elastic 
and inelastic. The inelastic region is further considered to have two kinematic regions - that 
of resonance production and the deep inelastic scattering (DIS) which is typically defined 
by Q2 > 1 —2 GeV2  and W > 2  GeV. These different regions are depicted in a typical 
cross section spectrum for inclusive scattering from a light nuclear target as shown in Fig
5. As one varies the transferred energy v and momentum Q2, different nucleon resonance 

peaks such as A, N \  and Nj show up in the final state at specific values of invariant mass 
W. At low Q2 values, a prominently tall but narrow peak shows up at v =  Q1 /2 M j  (or 

equivalently at W — Wqe = y jld1 + Q2{ \ - M / M t ) ,  where M  is the nucleon mass) due 
to the elastic scattering from the given target, and if it is a nuclear target, one more rather 
smeared out peak appears in between the elastic and resonance region due to the quasi
elastic scattering from the constituent nucleons of the target. In addition, excited nuclear 
states also show up in between the nuclear elastic and quasi-elastic peaks.

Elastic Scattering

Elastic scattering occurs when the target remains intact after the scattering, in other words 
it remains in the ground state and the transfered energy and momentum goes into supplying
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Cross section

W = 2 GeV 
(Deep Inelastic Scattering)

Few (GeV/c): Constant W 
(resonances)

W = M
(q u a s i-e la s tic )

FIG. 5. Cross section (in arbitrary units) for the process of inclusive lepton scattering off 

a nuclear target (figure from [19]).

the kinetic energy of the target recoil. Because the final state entity represented by X(PI) 
above is simply the recoiling target, its invariant mass equals the target rest mass . This 

means, energy transfer v =  , and the conservation of energy and momentum constrains
the energy of the scattered electron (Ef) to be directly correlated with the scattering angle 

B:

£ '=  2 f  r j e  <48>
l + W s™ I

In other words, given the target mass and the beam energy, the kinematics of an elastic 
process can be completely described in terms of a single variable such as 6 or E'.

Because unpolarized elastic scattering is a special case o f generic inclusive scattering,
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the differential cross section for the elastic process must also be a special case of the cross 
section (see Eq. (11)). Therefore, in the elastic limit, the response functions reduce to the 
combinations of the following Sachs form factors (G e ( Q 2) and G m ( Q 2)),  also popularly 

known as the electric and magnetic form factors) as follows:

Wl *  m

K  -> < * « ?>  + ( 5 0 91 + m
4/i

and the generic double differential cross section reduces to the following single differential 
cross section (because now, we have one independent variable) known as the Rosenbluth 

cross section:

4

The two Sachs form factors encode the information on the electric and magnetic charge 
(or equivalently electric current) distributions inside the target as seen through the scatter
ing “probe” of resolution Q2. These form factors for the nucleons must be normalized 
at Q2 = 0 to their respective total charge and magnetic moments . Therefore, we get the 
following limiting values of the form factors in the units of the charge ’e’ and the nuclear 

magneton Hn  = ^ -

Gg(0) =  e and G^f(0) = flp = +2J93fiM for proton (52)

^1(0) =  0 and GnM(Q) =  {i„ =  — 1.913/iv for neutron (53)

It has been observed from the available measurements that magnetic form factors for
both proton and neutron follow a dipole form over a significantly wide range of Q2 (with 

deviations below 10% for GPM in the Q2 < 5GeV2 region) as given by

? M } = % m =GD{(? ) (54)

where Go is the dipole form as given by

Gi>(e2) = ( ;VA 2 + Q2

with A =  0.84GeV.

(55)
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On the other hand, the proton electric form factor also follows the same form but only 
in the shorter Q1 <  1 GeV2 region, with significant deviation at higher Q2. In other words, 
significant differences have been observed between the electric and magnetic form factors

well as some hints on the point in the energy scale from which the perturbative behavior 
begins to manifest.

Because the processes of polarized elastic and quasi-elastic scattering are well under
stood and their theoretical asymmetries are well determined, the polarized data collected 
for the processes can be used to reliably determine the luminosity times the product of 
beam and target polarizations (P^P,).

Quasi-elastic Scattering

When the target is a nucleus with more than one nucleons, then there is some kinematic 
region where the electron penetrates the nucleus and scatters off one of the nucleons rather 
than off the whole nucleus. In such a process, the struck nucleon initially behaves as a 
nearly (quasi) free nucleon and gets knocked out of the nucleus after the interaction. In 

this case, the effective target mass as seen by the lepton becomes different from the overall 
target mass, and, because of the nuclear binding energy the effective nucleon (target) mass 
is also not exactly the same as the free nucleon mass either, thus changing the kinematics 
of the process to the effect of shifting the position of the quasi-elastic peak from the usual 
free nucleon elastic peak. In addition, the nucleons also have Fermi motion inside the 

nucleus, which has the effect of smearing out the energy and momentum distributions 
which is manifested in the broadening of the quasi-elastic peak.

For such processes, the Rosenbluth cross section is given by

where and R t ( v , Q 2) are the response functions corresponding to the scatter
ing/absorption of longitudinal and transverse virtual photon respectively.

Resonances

When the energy transfer in the scattering process increases beyond the point correspond
ing to the pion production threshold (i.e. when the combined invariant mass o f the ex
changed virtual photon and the target exceeds the value Wn =  Mp +  mK m 1.072 GeV),

of the proton. The study of the Q1 evolution o f these form factors between the high and 
low Q2 regions provides us information on the non-perturbative structure of the nucleon as

d2o  ( d o  
dQ.dE1 ~ \ d O

(56)
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we leave the region of elastic or quasi-elastic scattering and enter the region of inelastic 
scattering. The region starts with a rich spectrum of nucleon excitations known as reso
nances. The existence of such excitation states provides further evidence that the nucleons 
are composite objects [20]. These resonances show up as different isolated or overlapping 
peaks in the measured scattering cross sections between the pion production threshold and 
the onset of deep inelastic scattering (about 2 GeV in IV), therefore this region is also 
sometimes known simply as the resonance region.

These resonances have been observed not only through the lens of lepton scattering 
but also through the absorption of photon and the scattering of hadron beams at different 

energies and so their properties have been studied using all o f these types of experiments. It 
has now been well established that unlike the artificial width observed for the elastic peak 

as a result of the finite detector resolution and radiative effects, each o f the resonances 
has a finite natural width (denoted by F) in its mass distribution (typically of over 1 0 0  

MeV), indicating (according to the uncertainty principle) that they are very short lived (the 
broader the widths, the shorter the lifetimes) [20], As a result, these unstable particles 

quickly decay into other lighter particles (hadrons) such as pions and nucleons. Another 
consequence of this fact is that signals of some of the closely spaced resonances overlap, 
making it very difficult for them to be identified and investigated.

Right after the elastic or quasi-elastic peak in the W spectrum of the cross sections, 
three prominent resonance related peaks are observed. The first peak corresponds to the 
A( 1232) resonance with the number 1232 representing its rest mass (W) in units o f MeV.

Next comes the peak denoted by N\,  which consists of two closely spaced resonances 
V*(1520) and A*(1535). The third prominent peak denoted by is due to many reso
nances but at low g 2, it is mainly due to jV*(1680) which is the strongest in this kinematics. 

There also exists one resonance A* (l 440) (also known as Roper resonance) between the A 
and the N\  peaks.

In addition to these low lying resonances, several other higher resonances exist that can 

contribute to the cross sections measured but they cannot be isolated and measured using 
inclusive lepton scattering. These higher resonances have been observed and studied using 
different experimental and data analysis techniques, with varying levels o f confidence in 
the experimental evidence for their existence. For example, [21] shows a complete list 
of the resonances observed or suggested so far, classified into two broad categories of 
N-resonances and A-resonances, where the main distinction is that the each of the N- 

resonances has isospin 1 / 2  (just like a nucleon), whereas the latter type of resonances all
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have isospins of 3/2 (just as the prominent delta resonance).
By studying polarized scattering in the resonance region, one can learn about internal 

structure of nucleon resonances and their excitations. For example, the electromagnetic ex
citation of spin-3/2 resonances such as Delta occur mostly via Ml transitions and therefore 
the asymmetry A\ «  —0.5, while the spin-1/2 resonances such as SI 1 have asymmetries

of A i = 1 because the spin-flip helicity amplitude A \  cannot contribute. By studying the
2

(^-dependence of the structure functions and the asymmetries in different parts of the 

resonance region, one can learn about the relative strengths o f overlapping resonances, 
non-resonant background.

Deep Inelastic Scattering (DIS)

Looking at Fig (5), one can observe that as we go to higher energy transfer v or the higher 
momentum transfer Q1, the strengths of the resonances get weaker and after some point 

they get completely washed out. This “no-resonance” inelastic region, which is typically 
defined by Q2 > 1 -  2 GeV2  and W > 2  GeV, is known as the deep inelastic scattering (DIS) 
region. In this case, the resolution of the virtual photon gets so sharp, it gets deep inside the 
nucleon and that it scatters off its constituents rather than from the whole target. In other 
words, the scattering cross section becomes an incoherent sum of the cross sections from 
different target constituents (partons). In this region, the cross sections and the structure 

functions depend only weakly on Q1 [2 0 ] and depend mosly on the dimensionless variable 
x  =  Q1 j2M v.  This behaviour of DIS is known as “scaling” phenomenon and the variable 

x  on which the DIS properties depend is known as the Bjorken scaling variable or simply 
as “Bjorken x” (because the variable was introduced by James Bjorken in 1968). For 
example, Fig. (6 ) shows the (^-evolution of the F2 structure function for the proton for 

different values of x.
The scaling phenomenon for the structure function was previously predicted by Bjorken. 

The confirmation of the prediction by the DIS data from SLAC prompted Feynman to ex
plain the behavior by proposing a partonic picture/model for the nucleons. In the model the 
nucleon (proton) is made up of point-like objects called partons (now identified as quarks 
and gluons). Because, in the DIS process, the lepton gets scattered off the point like par
tons rather than the finite sized target as a whole, the (^dependence disappears because it 

is the finite size of the target which causes it to have have a form factor, thus introducing 
the (^-dependence in the measured cross sections (note the earlier discussed dipole form 

for the Q1 dependence of the form factors).
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FIG. 6 . The F f  structure function showing the approximate scaling behaviour in DIS).
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Another important observation from the DIS results was that the ratio of the two unpo
larized structure functions F\ and F2 satisfy the following Callan-Gross relation [20]:

F2(x ) =  2 x F i i x )  (57)

These two important observations led to the following profoundly important conclu
sions about the nucleon strucuture:

•  The fact that the scaling behaviour is observed experimentally gives a strong ev
idence for the nucleon as being made up of point like charged particles (now 

identified with the quarks).

•  Because, it is expected theoretically that the Callan-Gross relation holds true only 

for the scattering of spin-1/2 Dirac particles, the experimental observation of this 
behaviour confirms that the point-like constituents of the nucleon must be spin- 

1/2 particles.

To simplify the interpretation of the DIS results, a carefully chosen frame of reference 
(dubbed the infinite momentum frame), in which v and 0 2go to infinity, is used to formu
late the the parton model2. If the proton is observed from such a fast moving system, then 

one can ignore the transverse momenta and the rest masses o f the constituents, allowing 
the target structure to be expressed, to a first approximation 3, by the longitudinal momenta 
of its constituents. This gives a direct interpretation of the Bjorken scaling variable as the 
fraction o f the proton’s four-momentum which is carried by the struck parton. In other 
words, the virtual photon of four momentum q =  (v /c ,q ) (measured in lab frame) inter
acts with a parton of four momentum xP, where P  is the proton’s overall four momentum. 

(One caveat about this is that, strictly speaking, this interpretation is valid only in the limit 

Q2 °°) [2 0 ]. The nucleon cross section then becomes the simple incoherent sum of the 
individual parton cross sections with the latter weighted by their respective parton number 
densities as well as by the squares of their charges (because the process occurs through

2It should be remembered that the physics o f any process doesn’t change with the choice of the reference 

frame. Any frame can be chosen for the convenience o f the description without affecting the Physics process
3This approximation is known as the impulse approximation (IA), because in the interaction time between 

the photon and the struck parton is so short that, in this fast moving frame the interaction between the partons 

themselves seem safely negligible, thus allowing the DIS process to be viewed as an incoherent sum of the 

elastic scatering from its non-interacting constituents. The validity of the impulse approximation in DIS is 

also helped by the fact that the parton-parton interaction at short distances is weak due to the property of the 

interaction known as the “asymptotic freedom”.
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the electromagnetic interaction (the weak interaction ignored all along)). As a result, the 
structure functions take the following forms:

where qj{x) and Aq/(x) are known as the unpolarized and polarized parton distribution 
functions for a parton of flavor f, with the the function q/(x) representing the probability

words, the integral of qf(x)  and xq/(x) over the complete range of x gives us the total 
number of quarks and the total momentum carried by the quarks of the particular flavor 
T  (i.e. up, down, strange etc)). Likewise, Aq/(x) being the difference between the distri-

net spin aligned along the nucleon helicities minus the antialigned. Since F\ (x) and /^(x) 
are related via the Callan-Gross relation, Fzix) can similarly expressed and interpreted in 
terms of the parton distribution functions, but because of the lack of similar simple re
lation between g\ (x) and g2 (x), there is no simple intuitive interpretation of gi{x) in the 
quark-parton model. But from the study of operator product expansion (OPE) method 

(see the next chapter), it is revealed that in addition to a g\ related part, the g2 structure 
function also has so-called “higher-twist” part which carries information on quark-gluon 

interactions that occur inside the nuclon [18].

Q2 Dependence of Structure Functions

Finally, it is worthwhile to note that the Bjorken scaling observed in the DIS data is only an 

approximation, and the scaling law is obeyed in the strict sense only in the asymptotically 
free kinematics of Q2—> «>. In the DIS region, the structure functions show a slow loga
rithmic Q2 dependence, and the dependence gets stronger at lower Q2. There are, in total, 
four sources for the scaling violation or the Q2 dependence: 1 ) gluon radiation, 2 ) scale 
dependence of the parton distribution functions due to DGLAP evolution, 3) higher twist 
contributions, and 4) Q2 dependence of the amplitudes for different resonant excitations. 

The first two sources are dominant in the DIS region and the other two are negligible, 
whereas the latter two become dominant when one moves away from the DIS region.

(58)

(59)

of finding a certain number q/{x) of partons of flavor T  at a given value of x  [5] (in other

butions o f qj{x) and q^{x), it gives the probability of finding the number of partons with
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(Anti)quarks can radiate gluons (similar to QED radiative effects) before and after 
the scattering (and these gluons, in turn, can turn into quark-antiquark or gluon-gluon 
pairs), thus resulting in a logarithmic Q2 dependence o f structure functions. In addition, 
the coupling constant (as), which is used as the expansion parameter to get the pQCD 
corrections, is also Q2 dependent (also known as the “running” of as). This Q2 variation of 

the structure functions is referred to as QCD evolution, which is described by the DGLAP 
equations as developed by Dokshitzer, Gribov, Lipatov, Altarelli and Parisi [22, 23, 24] in 

the form of the (^-evolution of the parton distribution functions. The significance o f such 
evolution equations is that once the parton distributions are known at one scale or at point 
in kinematics, then these equations can be used to calculate the distributions at any other 

scale where the perturbative QCD is applicable.
In addition to the logarithmic scaling violations due to the two sources which are dom

inant in the DIS regime, corrections also arise due to multi-parton correlations in the nu
cleon which gives rise to terms that are proportional to different powers of 1 IQ2. These 
corrections are relatively small at large Q2 but are expected to be large and non-negligible 

in the low Q2 region. These contributions are represented by all the non-leading order 
terms in the power series expansion in terms of 1 /Q2 and are known as the higher twist 

corrections in the language o f Operator Product Expansion (discussed later in Sec. 2.3.2). 
Finally, the resonance excitations themselves have different Q2 dependent excitaion ampli
tudes due to the different kinematics dependent excitation mechanisms (electric, magnetic, 
Columb/scalar) and their contributions to the structure functions make the latter Q2 depen

dent as well.

2.2 MOMENTS OFgi AND SUM RULES

Moments of structure functions are their integrals (over the complete x range) weighted 
by various powers o f the variable x. The nlh moment o f g\ , for example, is given by

nucleon structure. For example, the first moment of xF\ of a nucleon gives the total mo
mentum or mass fraction carried by quarks and the first moment of gi gives the fraction 
of the nucleon spin contributed by the quark helicities. These integrals get their particular 

significance from the fact that they can be predicted from rigorous theoretical methods,

(60)

The moments allow the studies of the (Q1 dependence of) fundamental properties of
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such as in the sum rules derived from general assumptions or from the method of Operator 
Product Expansion, lattice QCD calculations and #PT calculations 4  (see Sec. 2.3). Their 

importance can be highlighted from the fact that it was the experimental tests o f the sum 
rales involving the first moments of nucleon that led to the discovery of the original “spin 
crisis” and provided a significant test of QCD in the spin sector [18].

In this section, three integrals are considered which have been calculated from the EG4 
data on deuteron - the first moment of g \  (Ti), the generalized GDH integral ( I t t ) ,  and the 

generalized forward spin polarizability (/o)-

2.2.1 FIRST MOMENT T, OF g\

The first moment of gi is the integral of gi over the complete range of the Bjorken 

scaling variable x.

This moment gives, in the quark-parton model, the fraction of the nucleon spin con
tributed by the quark helicities and enters directly into two historically important sum rales 

- Ellis-Jaffe sum rule and Bjorken sum rale. Measurements of the moment on the proton by 
the European Muon Collaboration (EMC) in 1988 showed that the Ellis-Jaffe sum rale is 
violated, which meant that the long held belief that all the proton spin is carried by quarks 

is not true, thus, sparking the well known “spin crisis”. On the other hand, measurements 
from SLAC, CERN, Fermilab, DESY, and more recently, from JLab, have confirmed the 
Bjorken sum rale (which relates the difference of the first moments of the proton and the 
neutron to the fundamental axial coupling constant (gj)  of neutron beta decay) at the level 

of 10% accuracy, thus helping establish the QCD as the correct theory of the strong inter
actions. The moment also enters into the virtual photon extension of another famous sum 

rale - the GDH sum rale (see below).
In addition, the moment is studied on its own right because it provides a powerful tool 

to test the validity of various theories and models in which it is calculable. In the past, 

it has been measured on proton, deuteron and neutron (3 He) at SLAC, CERN and DESY 
in the DIS region in order to understand the quark spin contribution as well as to test the 
validity of the Bjorken sum rale and hence QCD as a result [18], Recently, it has also been

4In contrast, the same is not true about the structure functions because presently their complete descrip

tion based on QCD first principles has not been possible yet (especially in the low to intermediate momen

tum transfer regions due to the strong coupling property o f QCD).

(61)
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measured at JLab from DIS down to a fairly low Q1 region. In the intermediate and low 
momentum transfers, some phenomenological model predictions are available, whereas in 
the very low Q* region, many chiral perturbation theory (^PT) calculations are available. 

Fig. 7 shows some of these calculations along with the past measurements from SLAC 
and from the EG lb experiment at JLab.
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FIG. 7. Some theoretical predictions for r f  and some data from past measurements. The 

theories and models which make these predictions are described in Sec. 2.3.
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2.2.2 GENERALIZED GDH INTEGRAL 

GDH Sum Rule

The Gerasimov-Drell-Heam (GDH) sum rule [25, 26] relates the energy weighted sum of 
a particle’s photo-absorption cross sections to its anomalous magnetic moment K. For a 
target of arbitrary spin S, the sum rule is:

where <7/> and a  a are the photoabsorption cross sections with photon helicity parallel and 

anti-parallel to the target spin respectively. M and k represent the target mass and anoma
lous magnetic moment respectively and S represents the target spin. The integration ex

tends from the onset v,f, o f the inelastic region5 through the entire kinematic range and is 
weighted by the inverse of the photon energy v.

The sum rule was derived (see App. A) in the late 1960s based on some very general 
assumptions as follows:

1. Lorentz and gauge invariance in the form of the low energy theorem of Low, 
Goldman and Goldberger

2 . Unitarity in the form of the optical theorem

3. Causality in the form of an unsubtracted dispersion relation for forward Comp

ton scattering.

The sum rule for the proton has been measured (at various places such as Mainz, Bonn, 

BNL and others) and verified to within 10% [27,28,29, 30], whereas there is little data on 
neutron and other targets.

Implications of the sum rule The sum rule relates the static property k  of a particle’s 

ground state with the sum of the dynamic properties of all the excited states. One deeper 
significance of this sum rule is that if  a particle has a non-zero anomalous magnetic mo
ment, then it must have some internal structure, and, therefore, a finite size, in order to 
have the excited states (a point-like particle cannot have excited states). Because of the

5The pion production threshold given by v,* =  mn(\ + m K/2M)  «  150 MeV marks the onset o f  the in

elastic region for the nucleons, but for nuclei, the summation starts from the first nuclear excitation level

(62)
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same reason, the discovery of nucleon anomalous magnetic moments provided one of the 
first strong indications that the nucleons had some intrinsic internal structure.

In addition to the benefit of that implication, the sum rule and its extension to Q1 > 0 

provides an important testing ground for various theoretical predictions based on QCD and 
its effective theories/models.

Generalization of the GDH Sum (Rule)

In order to investigate the “spin crisis” o f the 1980’s, Anselmino et al. [31] proposed that 

the real photon (Q1- 0) GDH integral could be extended to electroproduction cross sec
tions (finite Q1) and that the experimental determination of the extended integral would 

shed light on the transition from the perturbative to non-perturbative QCD. The idea was 
to use the virtual photoabsorption cross sections in place of the real photoabsorption cross 
sections and proceed in exactly the same way as when deriving the real photon GDH sum 
rule. This extension depends somewhat on the choice of the virtual photon flux (see Sec. 

2.1.3), and on how the spin structure function g2 is considered [32], In one extension the 
virtual photon flux given by K — v (see Eq. 27) is chosen and the real photoabsorption 

cross section difference in Eq. 62 are replaced by the corresponding virtual photoabsorp
tion cross section difference 2<Jt t  as given by Eq. 30. With the use of Eq. 34, and some 
algebraic manipulation, we get the following extended GDH integral (considering only the 
inelastic contribution starting from the pion production threshold) [18]

where *o(£?2) =  Q ^/iQ1+ m 7t(2M +mJ[)) is the pion production threshold that defines 
the onset of the inelastic region.

Using Eq. 38, the integral can also be expressed in terms of the first moment of the 
product A \F \  as follows:

Fig. 8  shows a #PT prediction along with the integral calculated from the model used 
in the EG4 data analysis covered by this thesis (see below). As is evident from the figure, 

the limiting value of the integral as Q1 goes to zero is I t t ( 0 )  =  —1-5897

,TT = W l
2 M1 f xole2)rxoUT) ,  4 M V  ,

I  dx[gl 0 , Q1)  g - g l f a  <f) (63)

(64)
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Itt(Q2)= (2M2/Q2) I A F,(x,Q2).dx
h1A1F1Sm1WalScld
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Bernard et al xPT(2013)

FIG. 8 . A ^PT theoretical predictions for I j T along with the integral calculated from the 

model used in the simulation for the data analysis.

2.2.3 GENERALIZED FORWARD SPIN POLARIZABILITY y0

Polarizabilities are fundamental observables (quantities) that characterize the structure 
of composite objects such as nucleons or deuteron. They reflect the response to external 

perturbations such as external electromagnetic fields. Like the GDH sum, they are also 
integrals over the excitation spectrum of the target and their derivations rely on the same 
basic assumptions. At the real photon point, for example, the electric and magnetic polar

izabilities a  and /3 represent the target’s response to external electric and magnetic fields 
respectively. The generalized polarizabilities represent the extensions of these quantities 
to the case of virtual photon Compton scattering. Because the integrals defining the po
larizabilities involve weighting by some powers o f 1 / v  or x, they converge faster than the
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first moments and thus are more easily determined from low energy measurements. In 
other words, they have reduced dependence on the extrapolations to the unmeasured re
gions at large v, and higher sensitivity to the low energy behavior of the cross sections 
(particularly the threshold behavior), thus providing better testing grounds for theoretical 

predictions such as from %PT and phenomenological models [32].
The GDH sum rule comes from (see App. A) the first term of the low energy expan

sion of the forward Compton amplitude [33]. Likewise, we get another sum rule from the 
second, i.e., the next-to-leading term (which is in the third power of v). The second coef
ficient of the expansion is known as the forward spin polarizability % and by comparing 
the coefficients of the v 2  terms on both sides (coming from the dispersion relations on 
the left side and from the low energy expansion on the right side) gives us the following 

expression for the polarizability [34]:

1 roo <7i — 03* I *r
7b =

poo U} — U3

„ 2   '.3... l d V  (65>
4 ? T 2  J t h r  V3

Now, by considering the case of forward scattering of a virtual photon and using the 
same general approach as for getting the generalized GDH sum rule, the ^ ( v 3) (NLO) 
term in the low energy expansion of VVCS (doubly virtual Compton scattering) amplitude 

gTr(x> Q1) gives the following generalization of the forward spin polarizability [17] [18]:

TtbiQ1) = YrHQ1) = l6(̂ f  jgi AMq 2 Sz{x ,Q2) x?dx (6 6 )

16aM2 p X Q

/  A l(x,Q2)Fl(x,Q1) x 1dx (67)
JoQ6

where a  = ^  is the fine structure constant. At large Q2, the g2 dependent term in the 
integrand becomes negligible and ft reduces to the third moment of gi [17].

In exactly the same manner, from the £?(v2) term of the low energy expansion of the 

VVCS amplitude gLT(x,Q*) one gets another polarizability - the generalized longitudinal- 

transverse polarizability as follows:

M Q 2) = $l t (Q2) 1 Jo [g i(^ 0 2 ) + g 2 (^ ,0 2)] X1dx (6 8 )

But, this latter polarizability is not considered in this thesis.
Because the generalized polarizabilities can be expressed with the moments of the 

structure functions, it is possible to measure them using measurements o f the structure 

functions. As stated earlier, because of the weighting by some powers of v or x, these
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integrals converges more rapidly in energy than the GDH integral and therefore can more 
easily be determined by low beam energy measurements. These integrals are valuable 
because they shed light on the long distance (soft), non-perturbative aspects of the target 

structure. The integrals are possible to be calculated using effective or approximate theo
ries such as £PT and lattice methods. Thus the measurements of these quantities provide 
benchmark tests of such theories.

The first measurement of this quantity for a proton target at the real photon point was 
done by the GDH experiment at Mainz [34], Recently the JLab EG lb experiment has 
provided some finite Q1 results for both deuteron (see Fig. 9) as well as nucleon targets 
[35], Some %PT calculations [36] [37] as well as phenomenological predictions [38] are 

also available and have been used to compare with the available measurments.

Y0(Q2)= Ĉ ofltf/Q6)! x2*A,F1(x,Q2).dx
hi  A1F1 Sm2WalScld2

Entries 33

Bernard etalxPT(2013

Kao et al HByPT-0(d4)

JLab (EGlb)

FIG. 9. Some theoretical predictions for yf together with the recently measured EGlb 

data.



33

2.3 THEORETICAL TOOLS

In this section we will take a closer a look at a few common theoretical methods that 
are used to describe and predict the low Q2 behavior/evolution of the structure functions. 
In addition, some phenomenological models which are also useful in describing the Q2 

behavior will be reviewed as well.

2.3.1 CHIRAL PERTURBATION THEORY (xPT)

Chiral Symmetry

QCD is the non-abelian gauge theory of colored quarks and gluons. The complete QCD 
Lagrangian is:

■&QCD =  -^2  -  q J t q  (6 9 )

where G is the gluon field strength, q is the quark spinor field, and is the diagonal quark 

mass matrix.
For low energy interactions, the quark-gluon degrees of freedom become impractical 

due to confinement property of QCD. So, effective theories in terms of composite particles 

such as hadrons as the approximate degrees of freedom are employed to describe such 
processes and make relevant predictions. To do so, an effective Lagrangian is formed

that retains all or most of the symmetries and symmetry breaking patterns as the more
fundamental parent theory.

In the effective theory, the quark masses are generally considered to be zero because 
they are very small (a few Me Vs) compared to typical hadronic mass scales (such as proton 
mass or the mass of the first non-Goldstone resonance Mp) and the Lagrangian takes the 

form

#QCD = -2%pD +#QCD (70)

with

•^qcd =  q (71)

regarded as a perturbation to JZ'qCD.
For a massless fermion, chirality is identical to helicity and is a constant of motion. 

The central idea o f the ^PT is that the massless left- and right-handed quarks defined by:

q L * = \ { \ ± l h ) q  (72)
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do not interact with each other so that the theory allows a U(3)l x  U(3)r symmetry. Ex
plicit breaking of this symmetry is then treated as a perturbation. As with any other effec
tive theory, the theory will fail at some point in the energy scale and it has to be superseded 
by a more fundamental approach.

Chiral Symmetry Breaking and Perturbation Theory

At very low energy scales, well below the chiral symmetry scale (of the order of 1 GeV), 
nucleon dynamics can be described in rigorous terms using %PT, because the chiral sym

metry of QCD dominates in this region. At low photon virtualities (i.e. small Q2), the 
theory can make rigorous predictions on the spin dependent observables by employing 
a systematic expansion in powers of low momenta and masses of the Goldstone bosons 
(which are pions when only two ”up” and ’’down” flavors of QCD degrees o f freedom are 
considered) [37].

Baryon Chiral Perturbation Theory

Over past two decades, a lot of theoretical work has been done on ̂ PT calculations. In this 
section, we highlight some of the calculations that are relevant to the extracted/measured 

quantities that are covered in this thesis. The calculations are limited to the two flavor case 
of up and down quarks and they typically examine the Q2 evolution of the Compton am
plitudes S) (v, Q2) and ^ ( v ,  Q2) in the low energy and momentum scales. Earlier we saw 
that the integrals of spin structure functions and the Compton amplitudes are connected 
through the dispersion relations.

As indicated above the low-energy expansion is made in powers of small momenta 

(p) and quark (pion) masses, which involves pion loops o f the effective theory. Since, 
the baryon mass in the chiral limit is not negligible, their addition to the theory adds a 

new scale to it, thus creating a complication - now there is no guarantee that all next- 

to-leading-order (NLO) corrections at order p 4 are given completely by one-loop graphs. 
To get around this added difficulty, two approaches are considered - Heavy Baryon £PT 
(HB^PT) and Relativistic Baryon %PT (RB^PT).
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Heavy Baryon Chiral Perturbation Theory

In this approach [36, 39], the baryon masses are considered very large and the chiral ex
pansion is done in powers of the inverse baryon mass or in powers of the pion to nucleon 
masses mn/M,y, which gives a consistent counting scheme. However, Bernard and others 
warn that the expansion may not converge very fast. In line with that warning, a signif

icant (^-variation was observed in the extended GDH sum when the NLO (£?(p4) order 
was calculated in %PT.

£PT with Resonance and Vector Meson Contribution

The chiral models discussed so far include only the pion-nucleon contributions, with 
no resonance considerations which are expected to have significant contributions to the 
Compton amplitudes, especially from the A (1232) resonance. The best approach to adding 

the A contribution would be to include the resonance as a new dynamical degree of free
dom in the effective Lagrangian, but such an effective theory o f 3-body pion-nucleon-delta 
system has not been tried or published yet. Rather, as a way around, a systematic addition 
of the A contribution in the heavy baryon framework has been attempted, with the nucleon- 
delta mass difference treated as an additional parameter. The A resonance contribution is 

estimated by calculating relativistic Bom cross-sections that are functions of a number of 
”not-well-known” experimental parameters. Due to the uncertainties in these parameters, 
the model predictions are in the form of a band of values. Some authors [40] have also 

added vector meson contributions.
One possibility in getting around the resonance contributions in order to make mean

ingful predictions over a wider range of distance scales (thus providing good tests of the 
theoretical model) is to calculate and examine quantities involving the difference between 

proton and neutron observables (such as the Bjorken sum rule). In such a difference, the 
resonance contribution mostly cancels out leaving a more reliable ^PT prediction that has 

a reduced Q2  dependence [41].

2.3.2 METHOD OF OPERATOR PRODUCT EXPANSION

OPE provides direct predictions for moments of structure functions in the form of sum 

rules. It was introduced by Wilson [42] as a way to evaluate the non-perturbative part of 
QCD calculations. The method is called OPE because it allows evaluation of product of 

two operators (representing, for example, some observables such as the electromagnetic
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currents Jji(§)Jv(0 )) in the asymptotic limit of spatial vectors becoming infinitesimal (by 
expanding it into a series of terms with Wilson coefficients containing pQCD calculable 
spatial dependence, and only a few terms significant for large enough Q2 (equivalently 

small enough spatial 4-vector) compared to the relevant mass scale AqcD)).

lim ^ ( € ) ^ ( 0 )  =  Y ,C a b k t iW m  (73)

The remaining factor ^ (0 )  of each expansion term is a quark-gluon operator of dimension 
d and spin n, representing the fundamental fields in QCD. The concept of twist x = d  — n 

is introduced for the contribution of any operator to i.e. the differential cross
section is of the order:

The lowest possible twist is “twist-2”. At large Q2, the leading twist term dominates 
because the higher twists are suppressed by increasing powers o f M/Q, and obviously, one 
can expect the higher terms to be important in the low Q2 region. The reliable parts of the 
parton model map onto the leading twist part of the OPE, while the twist-3 and higher arise 

from quark-gluon interactions and non-zero quark mass effects. By connecting the matrix 
element for virtual Compton scattering to the hadronic tensor W^v through the Optical 

theorem, the twist expansion leads to an infinite set of sum rules for the structure functions, 
both polarized and unpolarized. For example, disregarding contributions beyond twist-3,

[  xn~lg i (x,Q1)dx=}-a„-i w= 1,3,5,... (75)
JO 2

J^xJ ,~ lg2 { x ,& ) d x = r̂ - { d n- . \ - a n- \ )  n =  1,3,5,... (76)

where an- \  and d„-\ are the twist-2 and twist-3 matrix elements o f the renormalized 

quark and gluon operators respectively. Notice that only odd values of n contribute due to 
the symmetry properties of the structure functions under the charge conjugation.

By measuring the spin structure functions at moderate to high Q2 over the entire x 
range, these sum rules allow extraction of higher twist matrix elements arising from par
ton interactions. Confinement arises from such interactions, so such higher twist measure

ments offer tools to examine one of the fundamental properties of QCD. One can expect 
higher twist effects becoming more and more significant until at some point the whole 

twist expansion approach breaks down.
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Higher Twists Effects in gi

The generalization of equation 75 to include all orders of higher twist is:

(77)

with r i  (Q1) = f  dxg\ (x, (T2). Notice that the OPE sums over all possible states including 
the elastic contribution.

One can gain access to the higher twist contributions to Tj by subtracting the leading 
( t  =  2) twist f i^ Q 2) term from the experimentally measured value of the first moment. Up 
to 0 ( a j )  in the strong coupling constant for three quark flavors, the result for the leading 

twist terms of Ti is given by:

•  ± : for proton and neutron respectively

•  as : the strong coupling constant

•  gA'. the non-singlet triplet axial charge measured precisely from neutron j3 decay

•  a%\ the octet axial charge, extracted from weak hyperon decays assuming SU(3)

•  AE: the singlet axial current. In the parton model, it is the amount o f spin carried by 
quarks, which has been extracted from global analysis of world DIS data.

•  0{cts)\ Q2  evolution due to QCD radiative effects (calculable from PQCD)

The first non-leading order contribution is the ^  term:

(78)

(79)

with,

symmetry.

f r iQ 2) = [a2(<?) +4d2(Q1)-4f2(Q ?)] (80)
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where 0 2 , the second moment o f gi arises from the target mass correction and is pure 
twist-2. d2 , as revealed above, is primarily twist-3 / 2  represents the only pure twist-4 
contribution to /I4 . The twist-3 and -4 operators contain all the interaction information and 
collectively describe the response of the color electric and magnetic fields to the presence 
of the nucleon spin. This behaviour is encorporated in the color electric and magnetic 

polarizabilities t o  and Xb , which are related with the matrix elements as follows:

t o  =  \{2 d 2 + f 2) (81)

to  =  (82)

The difference between the first moments of the proton and neutron g\ (using Eq. 78) 
gives rise to the well known Bjorken sum rule as Q2 —> <»:

r f  ( e 2) -  n e e 2) =  \ s a + ^ ( e 2) ) + i / e 2) (83)

Bjorken first derived this sum rule using the current algebra method, so it provides a fun
damental test of the structure of QCD. With the PQCD corrections included, the sum rule 
has been tested and verified to the level of 1 0 %.

2.3.3 PHENOMENOLOGICAL MODEL PREDICTIONS

There exist several phenomenological models that parameterize existing world data. In 

this subsection, we will examine some o f those which are used for predictions and analysis 
of the observables in the kinematic region covered by our experimental data.

MAID

The Mainz-Dubna (MAID) parameterization is a unitary isobar model relying on phe

nomenological fits to the world experimental data in the form of cross sections and po
larization asymmetries from pion photo- and electro-production in the resonance region 

(traditionally defined as the range from the pion production threshold up to W=2 GeV 
and photon virtualities Q1 <5 GeV2). The model is used for partial wave analysis of 
pion photo- and electro-production data in the resonance region, with predictions possible 
for multipoles, amplitudes, cross sections and polarization observables [43]. The model
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contains both the non-resonant background and many resonance terms (13 of the four- 
star6  resonances with masses below 2 GeV), unitarized according to the prescription of 
K-matrix theory and using appropriately unitarized Breit-Wigner functions to construct 

the various resonance production channels [38]. For example, the contribution of a partic
ular resonance to the transverse cross section is given by:

a^ = ^ ; Ak ) B{v’Q2) (84)

where, B(v,  Q2) is the Breit-Wigner distribution function generalized to electroproduction,
M is the nucleon mass, Wo is the resonance mass, To is the resonance width and A2 is the

2
corresponding helicity dependent photo-coupling amplitude. In addition to these resonant 
terms, contribution terms for the non-resonant background as well as t-channel vector 

meson exchanges are also included [15][43].
The predictions from this model are in good agreement with both polarized and un

polarized data on pion photo- and electro-production from the nucleon. The model also 
agrees with the GDH sum rule on the proton (at the real photon point) but does not predict 
the rule for the neutron at low Q2. The discrepancy between the data and the neutron pre
diction could be due either to the fact that final state interactions for pion production from 
’’effcctive-neutron” nuclear targets (deuteron or 3 He) are neglected (not well-accounted 

for) or two-pion contribution are larger than assumed or possible modification of multi
pole expansion due to the nuclear binding effects [19].

Burkert and Ioffe

Burkert and Ioffe proposed a phenomenological model [44] [45] to describe the Q2 evolu
tion of sum rules for real and virtual photon scattering off nucleons. This model is built on 

an earlier proposed vector meson dominance model for the GDH integral by Anselmino, 

Ioffe and Leader [31].

The older model interpolated the measured high Q2 (asymptotic) value of the integral 
down to Q2=Q point of the real-photon GDH sum rule, by using a two parameter function

6The star system is used by the PDG to indicate the strength o f the evidence for a given resonance.

•  **** - Existence convincingly established with properties at least fairly well-explored [21]

•  *** - Existence very likely but further confirmations required.

•  ** - Evidence of existence only fair.

•  * - Evidence of existence poor.
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as follows:
2

r , H  (85)
L & + » 2 Q2+ h 2 J

where the mass parameter /i (taken at p or gj mass) sets the scale of the Q2 evolution 
and the other parameter c is chosen such that the integral (I) at QL=0 coincides with the 
GDH sum mle. The authors of the model contended that the two terms of the interpolation 
function represented two dominant diagrams in the VDM picture of the photon-nucleon 
interaction.

The older model, which ignored the large contribution o f the low W resonant states, 
was improved by Burkert and Ioffe by explicitly adding the contributions for individual 

resonances (upto W=1.8 GeV) extracted from pion electroproduction data. Now, in the 
refined model, the GDH integral has two parts - one given by eq.85 and another being that 

for the resonance contributions as follows:

h  (Q2) =  l \ DM( f )  + l f es(Q2) (8 6 )

where the parameter c in for the first term as represented by eq.85 is given by:

(87), 1 M 1c = 1 +  - -2 M T\  H

with M, K being the mass and the magnetic moment of the nucleon. And, the second term 
is approximated by the amplitudes for the pion electroproduction (y*/V —> N* —> Nri) data 
which are reasonably well known from phase shift analysis.

This model predicts that Ti (Q2) changes sign at about Q2 = OAGeV2, which is at
tributed to a large negative contribution of A(1232)-resonance.

Soffer and Teryaev

Soffer and Teryaev proposed [46] another model suggesting that the strong (^-dependence 
of the GDH integral I\ (Q1) should be studied in combination with the ^-counterpart i.e. 

hiQ2) =  ^ r  / gl(x,Q2)dx  (which is also known as Schwinger integral for the namesake 

sum rule). Assuming that the evolution of It =  / 1 + 2  J(g\ + g i ) ( x , f ) d x sj  from
DIS to low ( f  is smooth, the authors first express the GDH integral as I\ =  / 1 + 2  — h-  It 
is also assumed that the Burkhard-Cottingham (BC) sum rule (i.e. / 0' g2 (x,Q2)dx = 0)
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is valid (with the elastic contribution included in the integral) generating the strong Q1- 
dependence of h- The constraint of BC sum rule implies that the inelastic contribution to 
I2 (all o f these integrals are defined for the interval x[0 ,l]) is given by

we2) =
1 +  4.

(88)

which gives / 2 (C)) =  with e being the nucleon charge. For the proton a smooth 
interpolation is made between asymptotic limits for It for which the lower limit is provided 

by the combination of “GDH sum rule” (=gi integral at photon point) and “Schwinger sum 
rule” (=g2 integral at Q2=0) and upper limit is provided by the fact that Q2 —> °°, IT —v 
^ r , ( j c ) .  And, the large Q2 behavior o f the interpolation is set to match the existing 

world data. A similar procedure is implemented for the neutron, however, the interpolating 
function is used to represent the isovector difference /^"(C?2).

Most recently, Pasechnik, Soffer and Teryaev [47] have improved their previous QCD- 

inspired model for the Q2 evolution of the extended GDH integral by adding the latest 
results extracted from Jefferson lab data, particularly the results on the higher order ra
diative and higher-twist power corrections to the first moment r^(Q2) of the proton’s g\ 
structure function and the sum r ^ " ( ^ 2) of the Bjorken sum rule.

2.3.4 LATTICE QCD

Lattice QCD is a Lattice Gauge Theory which is defined on a spacetime that is dis
cretized into a lattice. Gauge theories describing the interactions of elementary particles 
(such as for QED, QCD) can sometimes be solved perturbatively. When one has to use 

a non-perturbative apporoach, then the related calculations become computationally in

tractable if this is done in the continuous spacetime, because that would require evaluating 

an infinite-dimensional path integral. But, in a discrete spacetime grid of finite size, the 
path integral becomes finite dimensional and can be evaluated using powerful computers 
by implementing stochastic simulation techniques such as Monte Carlo methods. The ex
act continuum gauge theory is then recovered by extrapolating the LQCD results to the 
limiting case of infinitely large lattice and infinitesimally close grid points [48].

Lattice QCD provides a framework for a non-perturbative approach to solving QCD 

in order to calculate the structure and properties of strongly interacting particles and pro
cesses. Being non-perturbative in nature, the theory, in principle, is useful in making 

predictions at all kinematic scales. However, the calculations are numerically extremely
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intensive and computationally very costly warranting the use o f very powerful supercom
puters or big LQCD dedicated clusters of powerful computers. The method becomes even 
more intensive and costlier computationally as one uses larger lattices and smaller lattice 

spacings to ensure reliable predictions for the desired observables. To reduce the com
putational burden, certain approximations (e.g., quenched field approximation used in the 
early lattice calculations, with the quark fields treated as non-dynamic ’’frozen” variables) 
are used [49].

The LQCD is a rapidly developing field with significant progress made in algorithms, 
together with a steady increase in the computational technologies and capabilities leading 
to better calculations and enabling theorists to make a number of predictions that match 
well with the experimental data. For example, the proton mass has been calculated within 

the 2 percent error of the well known value [50]. It is hoped that the lattice calculations 
will bridge the gap in the intermediate Q2 regime, where no other method (neither PQCD, 
nor OPE or #PT) is precise enough to make predictions. A strong connection between 
lattice and ^PT calculations developed recently. One approach has been to use the ^PT 
predictions to make LQCD extrapolations, thus, tying the LQCD results with ^PT and 
making the experimental verification of ^PT calculations essential to the test of LQCD 

results [51, 52].

2.4 THE DEUTERON

The structure functions, their moments and polarizabilities defined for the nucleons 
are also valid for the deuteron and the work of this thesis focuses solely on the deuteron 
results. So, it is worthwhile to have a closer look at this particular nucleus.

The deuteron is the bare nucleus of the heavier and less abundant isotope7  of hydrogen 
known as deuterium. It is made up o f two nucleons - a proton and a neutron bound together 

with nuclear forces amounting to a binding energy of about 2.22 MeV[53]. It has a mass 

of 1875.6 - nearly double the mass of a proton. It is the only stable bound system of two 

nucleons found in nature.

The deuteron in its ground state is in an isospin singlet state which is antisymmetric

7The natural abundance relative to the ordinary hydrogen is about one atom in 6,700 o f hydrogen [53].
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under the exchange of the proton and the neutron8. In addition to the isospin, the nucleons 
also have spins and spatial distributions. The symmetry for the latter is known as parity 
(denoted by P) which dictates how the wave functions change under the exchange of the 

locations of the constituent nucleons (the symmetric and antisymmetric exchanges are said 
to have even or positive and odd or negative parities respectively and are fully determined 
by the total orbital angular momentum L as given by P = (—l)1).

Since the deuteron (wave function) is antisymmetric in the isospin representation , it 
must be symmetric under the double exchange of constituent nucleon spins and locations. 
This means that the deuteron can either be in a state in which it is symmetric under both 

spin and parity or in a state in which both are antisymmetric. In the first case, the deuteron 
is a spin triplet with the total spin of 1 and even orbital angular momentum 1 (to ensure even 

parity). The lowest possible energy state in this category has s=l and 1=0. In the second 
possible state, the deuteron is a singlet with the lowest possible energy state having s= 0  

and 1=1. Since the s=l gives a stronger nuclear attraction, the first state turns out to be the 
deuteron ground state [53]. Therefore, the deuteron has spin +1 (’’triplet”) and is thus a bo

son. The fact that the deuteron ground state is the S-state with S=l, L=0 (even parity) (and 
thus J= l) is only an approximation, and in reality, the D-state with L=2 is also possible and 
contributes a small part to the ground state. The fact that the precisely measured deuteron 
magnetic dipole moment ( j = 0.8574) is slightly different from the total of the moments 
of proton and neutron (jlp +  jU„ =  0.8797) indicates that higher orbital momentum states 
are also contributing to the deuteron wave function. The electric quadrupole moment9  for 

deuteron is also measured to be non-zero (=  0.2859e- fm 2  [53]), indicating that the charge 
distribution in the deuteron cannot solely be a spherically symmetric S-state, rather it must 
be a quantum mixture of S and D states with L=0 and L=1 respectively. The S-state, which

8Totally analogous to the ordinary spin, isospin is a SU(2) symmetry. Proton and neutron are considered 

as two isospin types or states o f the same object commonly known as nucleon. In other words, the two 

possible isospin states of a nucleon are said to form an isospin doublet, with the isospin ”up” and ’’down” 

states o f the doublet being identified as proton and neutron respectively.

In contrast to the doublet for a single nucleon, a pair o f nucleons can exist in any o f the following four 

possible isospin states - one being the antisymmetric isospin singlet ^ ( |  | | >  — | 4 t > )  with a total of 
0 isospin (i.e., neither ”up” nor ’’down”) and the other three being the symmetric isospin ’’triplet” states 

^ ( 1  T4> + | 4t>)» I 4 4 > ), with total isospins of (1,0,-1) respectively. The antisymmetric sin
glet state is identified as the ordinary deuteron in its stable ground state, whereas the other three symmetric 

states are identified with three very highly unstable objects - a nucleus o f two protons, a highly excited state 
of a deuterium nucleus and a nucleus with two neutrons respectively [53].

9The electric dipole moment for deuteron is zero as it is for all nuclei.
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has the spins of both nucleons aligned along the deuteron spin, can be expressed as:

| J = l , y 2 = l )  =  |£ =  0,JLz =  0 ) | 5 = l , 5 z =  1) (89)

whereas, the D-state, in which z-projections of the nucleon spins are not always aligned 

with the total angular momentum can be written as:

\ J = l , J z = l )  =  J ± \L  = 2,Lz = 0 ) \ S =l , S z = l )

\L = 2,LZ= 1) |S= 1,SZ =  0)

+  A/ - | I  =  2,Z* =  2 ) |S =  ! , & = - ! > (90)

The probability of finding the deuteron in the D-state is (Do ~  0.056 [35]. Therefore, from 
eq.90, the likelihood of finding a nucleon in the spin-down state is \(Dd - Using this fact 
and ignoring other nuclear effects (to be discussed later), we get the following deuteron 

cross sections (normalized as ’’per nucleon”) in terms of those of the nucleons:

.ft

rTt _

(91)

(92)

with On  = (<yp +  cr») /  2  and the two arrows indicate the spin directions o f the beam electron 
and the target relative to the beam direction. If these two equations are substituted into the
basic definition of the virtual photon asymmetry A\ =  ( o f  — o f ) / ( o f  +  o f ) ,  one gets,

2 2 2 2

A \ =  (
ofA^ +  o/fA'l

<*p + < * Z

(93)

where the subscript “T” in o  indicates the transverse polarization of the exchanged virtual 
photon. By using the relations between the virtual photoabsorption cross sections and the 
structure functions as discussed in section 2.1.3, one gets the following relation:

( ■ - ! « * > ) (94)

with the factor 1 / 2  introduced to express g f as ’’per nucleon” value (the factor in front 

represents the ratio of the nucleon polarization P„ to the deuteron polarization Pj).
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2.4.1 EXTRACTION OF NEUTRON INFORMATION FROM A DEUTERON TAR
GET

One of the objectives of having deuteron data is that it can be used in combination 
with similar data on the proton target to extract the corresponding neutron information 

(this is important because a free neutron target is impractical). Once the deuteron and 
proton data is available, to a first order approximation, simply subtracting proton results 
from deuteron ones would be expected to give neutron information. But, a nucleus is 
not simply a collection of the two free neutrons, but it is more complex than that with 
various nuclear medium effects (such as Fermi motion, deuteron D-state correction, Off- 
shell effects, EMC effect) These effects must be understood and properly accounted for to 
extract neutron information from the deuteron. In addition, in order to have confidence in 
the extracted neutron results, it is also important to have data on other nuclei such as 3 He 

targets.
In the resonance region and at large x >  0.5, Fermi motion and the depolarizing ef

fect of the D-wave are considered the most important nuclear effects, (the latter already 
considered in Eqs. (93) and (94)).

Fermi Motion

As in any other nucleus, the bound nucleons in a deuteron are in a constant random motion 
of quantum origin called Fermi-motion. Due to this motion, an incident lepton does not see 
a nucleon at rest but with some momentum, resulting in systematic kinematic shifts and 

smearing which causes the various nucleon resonances to show up at slightly shifted places 
and their peaks/widths to suffer some Doppler broadening. Due to this fact, if one attempts 
to extract the neutron structure functions by subtracting the proton ones from those of 
the deuteron, a ’true’ maximum in the proton structure function may result in a ’false’ 

minimum in the those of the neutron and vice versa, even if we assumed similar behavior 
for the two in the beginning. For this reason, the Fermi smearing becomes an important 

effect (particularly important at high x and in the resonance region) to be considered while 
extracting correct neutron information from the deuteron and proton data.

Folding Algorithm to model Deuteron

Recently Kahn et al [54] suggested a new convolution method to extract neutron structure 
functions from nuclear data. This method uses iterative technique to take these effects into
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account and extract the neutron information. The method convolutes proton and neutron 
structure functions (SFs) to model the deuteron and relies on the knowledge of the proton 
and deuteron to iteratively extract the neutron SFs. The process starts with a predefined 

input function for the neutron which is then evolved iteratively until the function becomes 
stable. In the current form, the method considers only the two major sources o f corrections 

- the Fermi motion and the D-state of the deuteron and ignores other nuclear effects. Still, 
the method is capable o f including other corrections as well. It has been tried and tested 
well on the unpolarized structure functions which show no sign change. The spin struc
ture function g\, however, has several sign changes in the resonance region, causing the 

iterative method to fail in some kinematic regions when one uses data with errors for the 
proton and deuteron. But this method can be made reliable by using parameterizations of 

the structure functions, instead, as was done successfully in the EGlb data analysis [35].
In our analysis, we did not extract information on the neutron but we did use this 

convolution method to model the deuteron.
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CHAPTER 3

EXPERIMENTAL TOOLS AND SET UP

The EG4 experiment was performed in the experimental Hall-B of the Thomas Jeffer
son National Accelerator Facility (TJNAF, also known as Jefferson lab or simply JLab) in 

Newport News, Virginia. The experiment ran from February to May in 2006. Longitudi
nally polarized (~  85% polarization) electron beams from the CEBAF linear accelerator 
(with beam energies 1.0, 1.3, 1.5, 2.0, 2.3 and 3.0 at different times) were scattered off 
longitudinally polarized solid ammonia targets (polarizations up to ~  90% and «  45% 

for NH3 and ND3 respectively). The particles scattered or produced in this process were 
detected using the unique CLAS (CEBAF Large Acceptance Spectrometer) detector and 
with the help of the Hall-B triggering and data-acquisition (DAQ) system, the detector 

signals (that passed the criteria for viable scattering events) were sorted out and recorded 
on tape silos for later off-line analysis. In the following sections, all these experimental 
components are introduced and the way they work is described.

3.1 CEBAF LINEAR ACCELERATOR

As with all other electron or photon scattering experiments carried out in the experi
mental halls in Jefferson Lab, the polarized electron beam for EG4 was provided by the 

Continuous Electron Beam Accelerator Facility (CEBAF) (Fig. 10) [55]. CEBAF is capa
ble of providing beams of up to 6  GeV1 with energy spread AE /E  ~  10- 4  and currents up 

to 300 flA , with a 1497 MHz pulse structure, which are then sent to the halls in a round 
robin fashion so that the effective pulse frequency in each hall is 1497/3 (= 499 MHz). The 

beam polarization is up to 90% and the charge per bunch is up to 3 pC [56]. The CEBAF 
consists mainly of three elements: an injector that produces a 45 MeV polarized beam, 
two linacs (north and south) each boosting the energy o f an electron by upto 600 MeV in 

one pass, and two recirculating arcs to steer the beams from one linac to another for up to

’Currently, JLab is undergoing an upgrade that will enable it to generate and work with beams up to 12 

GeV.
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five passes (controlled by by beam switch-yard operator) before the beam delivery to the 
halls.

H o w  C ebaf W o rks

Each linear accelerator use* 
superconducting technology to 
drive electrons to higher and 
higher energies.

The electron beam begins its first 
orbit at the injector. At nearly the 
speed of light, the electron beam 
circulates the 7 /8  mile track in 
30 millionths of a second.

i M

Magnets in the ares steer the electron 
beam from one straight section of the 
tunnel to the next for up to five orbits.

A refrigeratiun plant provides liquid 
helium for ultra-low-temperature, 
superconducting operation.

The electron beam is delivered to the 
experimental halls for simultaneous 
research by three teams of physicists.

FIG. 10. CEBAF accelerator at Jefferson Lab [55].

The injector uses a state-of-the-art room-temperature electron gun system with a strained 

GaAs photocathode, which is capable of delivering high polarization (up to 90%), high 
current (~200 juA), continuous [57] wave beams into the accelerator and eventually to 
the three end stations (Halls A, B and C), while maintaining a low current, high polariza
tion beam to Hall B [58]. In the injector, beams of circularly polarized light from a unique 

system of three diode lasers - each pulsed with the frequency o f499 MHz (the third subhar
monic o f the accelerating RE i.e., 1497 MHz) - illuminates the cathode under ultra-high 

vacuum level (~  10~ 12 Torr) [59], That causes the excitation of electrons from the top 
(spin-biased) valence band to the conduction band, thus emitting a 1497 MHz pulse-train 
o f low energy linearly polarized electrons. The direction of the polarization can be flipped 
by using a voltage driven Pockel cell at about 30 Hz and occasionally reversed, which flips
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the polarization of the laser light and consequently flipping the photo-electron polariza
tion. (During most polarized target experiments, data is collected with a “half-wave-plate” 
(HWP) inserted and removed semi-regularly so as not to have a polarization dependent bias 

in the data.) The electrons are first accelerated to 100 keV by the 100 kV field in the gun 
before passing them through a pre-buncher cavity and two circular apertures, where the 
beam is pared down to improve the distorted shape and size of the bunches (due to space 
charge effects). Thereafter, an optical chopper splits the beam into 499 MHz bunches des
ignated for the three halls, and sends them through a buncher cavity, followed by a capture 
section made of a five-cell cavity, which further accelerates the beams to 500 keV while 
controlling the beam bunch length and energy spread with the unwanted electrons steered 
away to a beam dump. Next, the beam passes through two superconducting (SRF) cavi

ties to get further bunched and accelerated to 5 MeV. At the end, two cryomodules - each 
with 8  SRF cavities - boosts the beams to the final injector energy of 45 MeV and then 
injects it into the north Linac by bending it with a chicane magnet. The bending produces 
synchroton light with intensity proportional to the beam current, which is exploited by a 

Synchroton Light Monitor (SLM) to monitor the relative beam current [60, 61].

Recirculation /  
Arcs , /

FEL FnciBty

0.4-GeV Unae 
(20 Cryomodules)

. 0.4-GeV Unac 
(20 Cryomodules) i f45-MeV Injector 

(21/4 Cryomodules)

Extraction
Elements

FIG. 11. CEBAF accelerator and some components

The 45 MeV beam injected into the north linac (linear accelerator) starts a number
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of laps (up to 5) of acceleration to reach up to about 6  GeV in the main CEBAF ma
chine that looks like a race track. In between the accelerations in the two linacs (north 
and south) of the machine, the beams are directed around two 180° magnetic recirculat
ing arcs each with a radius of 80 m [58]. For acceleration, each linac employs a series 
of 2 0  cryomodules, each of which is a cryogenic unit consisting of a series of 8  niobium 

resonant superconducting RF cavities, vacuum pipes and pumps for cryogenics, and mag
netic dipoles/quadrupoles for beam focussing and steering. The cavities in the modules 
are cooled below the 9 K superconductivity point by 2.2 K2  LHe (liquid-Helium) from the 

central helium refrigerator and the radiation shields are kept cool with 4.5 K LHe from 
an end-station refrigerator. A 5-kW klystron synchronized (to less than 1° in phase differ
ence) to the master driving RF (at the injector) supplies the RF power to each cavity which 

creates an oscillating phase gradient along each cavity with the field maxima and minima 
having the same separation as the spacing between the cavity nodes (see Fig. 12). Since 
the bunch frequency is in resonance with the RF field, the electrons get a net acceleration. 
The cavities operate in continuous wave (CW) mode with a gradient of at least 5 MeV per 
meter so each of the linacs provides a boost of about 600 MeV to the beam. The electron 
bunches are delivered to the three halls in sequence, and since the bunches can be acceler

ated to different energies by recirculating3 them through the CEBAF different number of 
times, the three halls can either get the same energy or different multiples of the one-pass 
energy (about 1.2 GeV). By controlling the intensities of the three independent lasers shin
ing the photocathode in the injector, electron densities in the corresponding bunches can 
also be made different to provide different beam currents to the halls [62, 61].

To minimize the accelerator hardware resources (tunnel space, cryomodules, magnets 
etc.) the idea of using the recirculation arcs was implemented in the CEBAF design. The 
arcs allow for the multiple laps/passes (up to 5) of beams through the linacs for higher 

energies. Although the bunch lengths are the same for the different passes (enabling the 
use of the same SRF cavities), their energies being different, they require different bending 

strengths and, therefore, different bending magnetic fields for each pass. For that reason, 
there are 5 arcs at the eastern end of the linacs and 4 at the other. A chicane magnet at 
each end of the linacs separates the multi-energy beam into single energy beams and sends

2The lower temperature minimizes the BCS energy losses.
3 Since electrons are extremely light particles, they travel essentially with the same speed as light at 

energies above 45 MeV, thus making it possible to use the same resonant cavities and driving RF frequencies 

to boost the beam energy in every pass through the CEBAF machine.
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them through the different arcs each consisting of a chain of six “periods”, with each “pe
riod” made of 8  dipoles, 8  quadrupole and 4 sextuple magnets. This optical configuration 
keeps the beam from degrading due to dispersion and blurring, and also provides a path 
length that is an integer multiple of the accelerating RF wavelength in addition to helping 
minimize the energy spread due to the synchrotron radiation [61]. After the beam passes 

through the south linac, a beam switchyard separator either lets the beam to go through 
another pass of acceleration, or extracts it with a chicane from the appropriate recircula
tion arc (after 2 to 5 passes depending on the beam energy requested). After the extraction, 
a 5  harmonic RF separator, with the help of an oscillating deflecting field, separates the 

bunches meant for the three different research halls and steers them towards 3 different 
openings in a Lambert septum. After the separation, the three beams are sent to the appro
priate halls - via a straight beam-line to the CLAS detector in Hall B, and via two arcs4  

(with steering magnets) to the Halls A and C.
One final point to be noted is that during the beam recirculation process, the bending 

magnetic fields cause the electrons to undergo spin precessions, the amount of which is a 

function of the total number of times the beam is recirculated, the energy boost from each 
linac, and the injector energy. As a result, the maximum (pure longitudinal) polarization 

is achieved when the precession angle 0 is a multiple of n. This condition can happen 
simultaneously in the three halls if particular combinations o f beam energies are chosen. 
However, that is not always a feasible choice and, therefore, in many cases, a fraction of 
transverse polarization can be present. But, this does not affect the experimental results 
much because the contributions from the transverse polarizations are suppressed by a factor 

of 1/y [62]. In addition, a Wien filter is used in the injector which allows further control 
of the spin direction [63, 64].

4The bendings here are exploited for the precise measurements o f the beam energies
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FIG. 12. The acceleration is provided by establishing standing waves tuned such that an 
electron always experienced a positive electric force while passing through the cavity

3.2 HALL-B BEAMLINE DEVICES

After the beam extracted from the CEBAF machine is directed towards the Hall B, it 
passes through a number of devices before reaching and after exiting5 the EG4 target and 
the CLAS detector. As depicted in the schematic Fig. 13, the devices used before the beam 
reaches the targets are a Moeller Polarimeter, 3 Beam Position Monitors (BPMs), and 3 
Harp Scanners, and the one that comes after the CLAS is a Faraday Cup.

The beam polarization is measured at the injector using a Mott polarimeter, but we can

not rely on that because the polarization may differ due to the spin precession mentioned 
in the previous section. Therefore, a Moeller polarimeter installed at the entrance of Hall 
B is used to make beam polarization measurements.

Moeller polarimetry is based on Moeller scattering of beam electrons from the atomic 
electrons in an iron (or iron-alloy) target polarized by an external magnetic field. The 

method is an invasive one, and therefore requires separate Moeller data runs (~30 minutes 
long) taken periodically throughout the experiment.

The polarimeter (see Fig. 14) consists of a target chamber with a 25-fim  thick per- 

mendur6  foil oriented at ± 2 0 ° with respect to the beam line and longitudinally polarized

5Applies only to the electrons that didn’t get scattered in the target
6Permundur is an alloy of 49% Fe, 49% Co, and 2% Va.



FIG. 13. CLAS in the Hall-B beamline

to 7.5% by a 120 G Helmoltz magnet. Two quadrupoles separate the scattered electrons ac
cording to their polarizations. The electrons then enter one of two lead/scintillator/photomultiplier 

tube combinations for detection. Elastic electron-electron scattering coincidences are used 
to determine the polarization. The differential scattering cross-section, in terms o f the 

permendur target polarization (Pt) and beam polarization (/),), is given by

(95)

where,

Ayy — A xx (96)
(3 +  c o s1 0 cm )1 ’

(7  +  c o s20CM )sin2 OCM 

(3 +  c o s 2 0 c m ) 2
(97)
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FIG. 14. A schematic diagram of the Hall B Moeller Polarimeter (from the top view 

perspective).

Here, Qqm  is the scattering angle in the center-of-mass (CM) frame, z is defined as 
the beam axis, and the ee scattering plane is defined to be the xz plane. Using knowledge 

of the scattering kinematics and Pt (from the detectors and foil alignment, respectively), 
the beam polarization, P2?, can be determined. The Moeller measurement typically had an 
absolute statistical uncertainty of 1% and a systematic uncertainty of ~  2%. In practice, 
normalization to the elastic scattering asymmetry is used to determine the beam times 
target polarizations; the only actual use for the Moller measurements in this analysis is for 

consistency checks on the P*P, measurements [61].
During the experiment, it is very important to have systems to keep track of the stability 

of beam alignment and the current level. There are three such systems which are known 
as Beam Position Monitors (BPM) and are located at 36.0, 24.6 and 8.2 m upstream from 

the CLAS center. Each of them monitors three things - the X and Y position of the beam 
and the beam current - with position and current resolutions of 10 microns and 50 pA 

respectively. Each BPM has 3 RF cavities operating at 1497 MHz to monitor the three 
variables. The monitoring data is taken at a rate of 1 Hz and are used in a feedback loop 

to keep the beam centered on target [65, 66,67,61].
The next set o f the beam-monitoring devices are the three Harp Beam Profile Monitors, 

which are located at 36.7, 22.1 and 15.5 m upstream of the CLAS center. Each o f them 

measures the profile and diameter of the electron beam through periodic harp scans. A scan

A y # )  »  0. (98)
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is done by slowly moving a cross-hair of two thin wires (20 n m W, 50 /im W and 100 jum 
Fe, respectively) through the beam. A beam profile is then reconstructed by detecting 
the electrons scattered off these wires using photomultipliers (PMTs) located at 10 cm 

distance from the beam line. Past diameter measurements have shown an RMS of around 
80 jum indicating that most of the beam falls within a 200 /tm  diameter. Like Moeller 
measurements, harp scans are invasive, and therefore, not done during data collection [61].

Finally, the total integrated beam charge, which is a crucial part of data required for 
the calculation of experimental cross-sections, is measured by a Faraday Cup (FC), which 
is located at the end of the beam line (29.0 m downstream from the CLAS center) as a 
part of the beam dump7. The device is a horizontal, 75 radiation lengths long (4000 kg) 
lead (Pb) cylinder with a diameter of 15 cm which is connected to an isolated electrical 

circuit to measure the collected charge, which, in turn, is connected through a logic gate 
to the CLAS data acquisition system (DAQ) to record two types of measurements - one 
for the total (un-gated) charge and the other for the “detector-live-time” (gated) charge 
which ignores the electrons that arrive while the readout system (DAQ) is busy. Separate 
recordings are made for each beam helicity bucket by gating the device with the main RF 
frequency.

3.3 EG4 TARGETS

This experiment took two sets of data - one each for polarized hydrogenated and deuter- 
ated ammonia (i.e., NH3 , and ND3 ) targets. The choice of the target material was a com
promise between the desire for a pure proton/deuteron target, and the practical necessities 
of materials that provide better polarization and resistance to radiation damage [6 8 ]. For 
each of the beam energy settings, for the purpose o f background studies and systematic 

checks, some data were also collected with the following three types of unpolarized targets 
- carbon-12, target cup with liquid-helium-4 only, and empty target cup without helium.

Even though the target sample itself was tiny in size (1.0 cm), the fact that it needed 
to be polarized made the whole target system big with a host of accessories. The sys
tem consisted of a superconducting magnet, a one-Kelvin refrigerator, a target insert/stick 
(carrying the target samples), a microwave system and an NMR system, with the entire 
assembly, including the pumping system, attached to a rail-mounted cart which could be

7Because only a tiny fraction o f the beam is lost due to the scattering at the target as well as on other 

beamline materials, the FCup measurement is not much different from the actual incident charge (not exactly 

true for low beam energies).



56

Main Roots 
pump (1 of 2)

pump (1 of 2)1K refrigerator LHe to 
/  /  refrigerator

Target
insert Electron beam

LHe to magnet

LHe reservior
Vacuum
chamber

Magnet

Cryostat support 
post ------ Rotary vane 

pump (1 of 3)

Pumping tube Booster Roots

1K Helium 
bath

Vacuum
window

FIG. 15. Sectional view (from the beam-left side) of the polarized target system

rolled into or out of the CLAS within a matter o f minutes [69].

One may be inclined to think that we could achieve the intended nuclear polarization 
simply by forcing the alignment of proton spins in our target sample by placing it in a very 
high magnetic field (B) and at a very low temperature (T). As per Boltzmann statistics such 
a thermal equilibrium (TE) polarization (we could call it the Static Nuclear Polarization) 

would be given by

At a field of 5 T and temperature o f 1 K, the proton polarization would be only 0.3% only 
(free electron gas polarization would be near 1 0 0 % due to the 660 times higher magnetic 

moment), which obviously is not practical for experiments [6 8 ]. For this reason, the tech
nique of microwave driven Dynamic Nuclear Polarization (DNP) [70] was used to enhance 
the polarization. At the 5 T field and 1 K temperature, DNP can produce polarizations as 
high as 96% and 46% in NH3 and ND3 targets respectively [69].

DNP is one of several techniques for hyper-polarization (polarization of nuclear spin 

beyond thermal equilibrium) of a given material. DNP results from the spontaneous trans
fer of spin polarization from electrons to nuclei which takes place when the electron spin

fiB  - f i B  
W — e kT

(99)
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FIG. 16. Schematic of Hall-B polarized target insert

polarization deviates from its thermal equilibrium value [70]. In our case, such a devia

tion is induced by continuous microwave irradiation close to the corresponding electron 
paramagnetic spin resonance (EPR or ESR) frequency.

The basic idea involves using the hyper-fine splitting as shown in Fig. 17 which results 
from the spin-spin coupling of free electrons to the nuclei (protons or deuterons) we wish 
to polarize. By irradiating the target with microwaves of frequencies that match the energy 
gaps seen in the diagram, transitions can be induced to flip the spin o f the proton/deuteron 

along with the spin of the electron. As shown, the aligned electron-nucleus state 
can be flipped to the “fl'ft” aligned state using microwaves. Also, by using a different
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FIG. 17. Electron energy levels arising from the hyperfine splitting due to the coupling of 

free electron and proton spins.

microwave frequency matching the corresponding energy gap, it is possible to flip the 
“114” state to the “ft'-IJ-” state, thereby producing an anti-alignment of the nucleus spin 

without changing the magnetic field. Thus both positive and negative polarizations can be 
produced using the same field. After these upward transitions, the electron relaxes back 
to the lower energy spin state. Due to the stronger coupling of electrons with the lattice 

than that of nuclear spins, the electron spins flip back much more quickly (the relaxation 
times at IK are ~  10_3 s, and ~  103s for electrons and protons respectively) [6 8 ] and the 
same electron now can be used to polarize another nucleus and so on. This way, the nuclei 

near the free electrons accumulate into one spin state producing a net polarization which 

propagates throughout the target volume via the process of spin diffusion.

In order to provide free electrons for the spin-spin coupling required by the DNP, our 
targets were doped with paramagnetic centers (radicals) twice. First, in what is called a 
warm dose, the target at 80 K is irradiated with an electron beam in a smaller accelerator, 

which produces radicals such as NH2  from NH3 . Finally, the cold dose (at IK) of the 
CEBAF beam produces different radicals such as atomic H.

The 5 T field required by the DNP is produced by a superconducting Helmholtz magnet 
which is kept at 4.2 K. The magnet produces a field uniform to better than 1 x 10~ 4  (enough



59

to resolve the ESR linewidth of the paramagnetic radicals) over a cylindrical volume that 
is 2 0  mm long, 2 0  mm in diameter and is centered at the target location.

The polarized target material is kept at a temperature o f about 1 K by immersing it in 
bath of liquid 4  He. The low temperature is achieved with a cooling system that consists of 

a system of Roots and rotary-vane vacuum pumps, a 1 K refrigerator and an evaporation 
chamber. An insert as shown in Fig. 16 is used to hold all the target materials in four 
cylindrical cups roughly 1 cm in diameter and length. The insert is introduced into the 
evaporation chamber and then remotely controlled by a stepping motor to move each of 
the four targets onto the designated target position along the beam path. A gold-plated rect
angular hom connected to a mircowave generator via waveguides, which is fixed rigidly 
inside the evaporation chamber and facing towards the designated target position, contin

uously delivers the needed microwave power, thus driving the DNP to produce the needed 
polarization.

A continuous wave NMR (Nuclear Magnetic Resonance) system is used for online 
(real time) monitoring of the target polarizations. The NMR system is essentially an RCL 
circuit with its coil wrapped around the cylindrical cell containing the polarized target 
material [61].

Two software systems installed on separate computers were used to control and mon
itor the operation and performance of the target system. Labview 5.2 was one of the two 
which operated from a PC located in the experimental hall and was primarily dedicated to 
NMR monitoring. The second program running on a VME-based single board computer in 

the hall was known Experimental Physics and Industrial Control Software (EPICS), which 
was used to control the cryogenic subsystems. The system handled most processes auto
matically, but it could also be monitored and controlled from outside the hall by accessing 
its graphical user interface from any Unix/Linux workstation on site via the Jlab Local 
Area Network [6 8 ],

3.4 CEBAF LARGE ACCEPTANCE SPECTROMETER (CLAS)

The CEBAF Large Acceptance Spectrometer (CLAS) (see Figs. 18 and 19), which is 
housed in Hall B of Jefferson Lab, is a nearly 4k  detector, which makes it ideal for study

ing multi-particle final-state reactions induced by photons and electrons at luminosities up 
to 103 4  cm- 2 sec“ 1 [71]. The detector is divided into six identical sectors (each functioning 
as an independent magnetic spectrometer) with a superconducting coil located in between 
each two of them (see next section). Each sector has three layers of drift chambers (DC)
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FIG. 18. EG4 Experimental Setup showing a cross-sectional view of the CLAS detector 
along with the polarized target system in place.

and one layer of time of flight (TOF) or scintillation counters (SC), which cover the full de
tector acceptance. Each sector also has a Cherenkov counter (CC) and an electromagnetic

O O
calorimeter (EC) installed in the forward region of 8  to 45 .

A new (Moeller) Shield made of Tungsten (higher density than Lead) was put in place 

to suppress low-momenta background electrons (also called Moeller electrons because 

they originate due to the Moeller scattering from the atomic electrons), optimized for small 

angle (0 ) operation at high luminosity.

3.4.1 TORUS MAGNET

The six superconducting coils placed one each in the gaps between the six indepen
dently instrumented CLAS sectors form a toroidal configuration. This arrangement allows 

for a central magnetic field-free region which can be very useful for purposes such as the



FIG. 19. Cut-away view of CLAS detector

insertion of a polarized target [69].
The torus magnet setup produces a magnetic field up to 2.7 Tesla in the 0 -direction, 

surrounding the beam line. The magnetic field causes charged particles to bend when they 
are moving through the detector. If the electron bends towards (away from) the beam 
line, we call it the in-bending (out-bending) setting. This allows one to determine the 
charge type and measure the momenta of charged particles according to the bending in 

their trajectories.
In order to perform an absolute cross-section measurement, the CLAS-setup with a 

few modifications was used. In contrast to the usual in-bending torus configuration, an 
out-bending torus field was applied in this experiment in order to make measurements
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FIG. 20. The CLAS Torus superconducting magnet (left) and the contour of its field.

down to as low as six degrees so as to achieve as low-0 2  measurements as possible.

3.4.2 DRIFT CHAMBERS (DC)

Charged particles in CLAS are tracked by a set of drift chambers (DC). A drift chamber 
has thin wires fixed in a volume filled with a special gas in such a way that there is a 
posititve central (sense) wire surrounded by six negative (field) wires to form hexagonal 
cells. Inside these cells a traversing charged particle ionizes the gas and the ionization 
electrons drift to the sense wires. The connected electronics measures the charge of the 
signals and the corresponding times the signals appear. The difference between this signal 

arrival time and the time when the particle traversed the cell (measured by other detectors) 
is used to reconstruct the particle impact points in the chamber virtual planes [72], Using 

such impact points, one can re-construct the track of the traversing particle.
The CLAS drift chambers are arranged in three regions: Region 1 is located closest 

to the target, within the (nearly) field free region inside the Torus bore, and is used to 

determine the initial direction of charged particle tracks. Region 2 is located between 
the six super-conducting Torus coils, in the region of strong toroidal magnetic field (up 
to 2.7 Tesla [73]), and is used to obtain a second measurement of the particle track at a 

point where the curvature is maximal, to achieve good energy resolution. Region 3 is 
located outside the coils, again in a region with low magnetic field, and measures the final 
direction of charged particles headed towards the outer TOF, CC and the EC counters. All 
three regions consist of six separate sectors, one for each of the six sectors o f the CLAS. 

So, there are 18 different drift chambers in CLAS [74].
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The DC information is important for energy, momentum and angle determination as 
well as for particle identification. In this experiment, the drift chamber system was used in 
the standard CLAS configuration.

FIG. 21. Different parts of a DC sector (left) and a section of such a sector showing arrays 
of DC cells as well as those that fired when a charged particle passed through them.

3.4.3 SCINTILLATION COUNTERS (SC) OR TIME OF FLIGHT (TOF) SYSTEM

The TOF (SC) system (here used in the standard CLAS configuration) provides a high- 
resolution (~  140 ps) timing measurement that can be used for velocity and mass calcu

lation purposes. A scintillation counter measures ionizing radiation with a transparent 
crystal, usually phosphor or plastic (CLAS uses 5 cm thick BC408 [73]) that fluoresces 
when struck by the ionizing radiation. A sensitive photo-multiplier tube (PMT) detects the 
light from the crystal. Scintillation counters typically have a poor spatial resolution but a 

very good time resolution. They are also continuously sensitive, and are therefore often 
used as triggers for other types o f detectors.

In EG4, the CLAS was triggered by requiring a coincidence between the forward elec
tromagnetic calorimeter (EC) and the new INFN Cerenkov counter (CC) which was in
stalled only in the sixth sector [34].

Wire (Srecton

Endpiate

Qas Window
Circut board

(a) A DC sector (b) DC cells
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3.4.4 CHERENKOV COUNTERS (CC)

The Cherenkov Counter (CC) serves the dual function of triggering on electrons and 
separating electrons from pions (or identifying charged particles). These detectors use the 
light emitted by Cherenkov radiation (emission of light when the charged particle travels 
faster than light in that medium) to measure the particle velocity (and, therefore, = v/c). 
The knowledge of P combined with the particle momentum (from the tracking detectors) 

determines the particle’s mass, thus giving us information on the particle identification. 
The index of refraction (n) is carefully optimized for the particle masses and momentum 
range of the experiments in question. Threshold counters record all light produced, thus 
providing a signal whenever j3 is above the threshold pt = 1/n. In the standard configura

tion, CLAS uses one Cherenkov threshold detector in each of the six sectors in the forward 
region from 8 ° to 45°.

New CC in the 6th Sector

The standard CLAS Cherenkov detectors (as shown by Figs. 24 and 23) were designed 

such that their optics, geometry, module position and mirror orientation were optimized 
for low rate high (^experiments that mostly use(d) electron in-bending torus fields. The 

design was a compromise between the desired kinematic coverage and the complexities of 
the CLAS detector system including the effect of the torus field. As a consequence, light 

collection is constrained causing the number of photoelectrons to be strongly dependent on 
scattering angles, and making the detection efficiency non-uniform, and strongly reduced
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in some regions (for example, up to 30% drop in the middle of the sector and at forward 
angles) [34]. While it would still be possible to detect electrons, the use of the existing CC 
would mean that the absolute cross-section measurement would require large and com
plex corrections which are difficult to evaluate. That would significantly contribute to the 
systematic uncertainties, thus not meeting the proposed high accuracy requirement of the 
measurements.

In order to avoid having all those CC-related issues in the new measurements, a new gas 
threshold cherenkov counter (designed and built by INFN - Genova, Italy) was installed in 
the sixth sector. This new CC detector (see Fig. 25 for its CAD rendition) is specifically 
optimized for the out-bending field configuration, which is necessary to reach the desired 
low momentum transfer (measurements down to 6  degrees). The detector uses the same 

radiator gas (C4 F 1 0  - perfluorobutane) and the same gas flow control system as the old 
one, but it uses a different design. In the new CC, the number of CC-modules is now 
11 instead of the 18 in the standard ones. In order to maximize the light collection, a 

single reflection design (see Fig. 3.26(b)) using spherical mirrors is used (the standard 
CC used double relections from elliptical and hyperbolic mirrors). The geometry, the size, 
the mirror size, position, and orientation, the dimensions as well as the assembly of the 
modules were optimized for the experiment and the performance study was done using a 
complete GEANT simulation [34],

This new detector achieves a very high and uniform electron detection efficiency («s 
99.9%) in most of its central (fiducial) region, to allow for the measurement o f the absolute
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FIG. 24. The schematic diagram of a CLAS Cherenkov Counter (CC) module showing 

mirrors, PMTs and the light reflections.

cross-section with minimal corrections and a high pion rejection ratio (of the order of 
10-3). Due to the high electron rate at low (T2, the coverage can be lowered, while still 
having a large counting rate. Therefore, for reasons of limited data storage capability, and 
also for the fact that only the sixth sector had the required new CC, only the sixth sector 
events were collected, stored and subsequently used for data analysis [57],

3.4.5 ELECTROMAGNETIC CALORIMETERS (EC)

Each CLAS sector has an electromagnetic sampling calorimeter (EC) in the forward 
region (8 ° <  6 < 45°). These electromagnetic shower calorimeters are optimized for mea

suring the energies and positions o f electrons and gammas [71]. EC helps to discriminate 
electrons from hadrons and photons from neutrons. When a high-energy electron or photon 
(y) passes through, a fraction of its energy is deposited in the form of an electromagnetic 
shower (because o f Bremsstrahlung and electron-positron pair production). This shower 

produces a signal (in the scintillators - the active material) proportional to the energy de
posit, which is recorded by the EC read-out. The calorimeter is made o f alternating layers 

of scintillator (SC) strips (36 strips per layer) and lead (Pb) sheets with a total thickness of 
16 radiation lengths. In order to match the hexagonal geometry of the CLAS, the Pb-SC 
sandwich has the shape o f an equilateral triangle. There are 39 layers in the sandwich, 
each consisting of a 1 0  mm thick scintillator followed by a 2 . 2  mm thick lead sheet.

The calorimeter has a “projective geometry” in which the area of each successive layer 
increases. This minimizes shower leakage at the edges o f the active volume and minimizes



FIG. 25. The new Cherenkov counter (courtesy of INFN, Genova)

the dispersion in arrival times o f signals originating in different scintillator layers. The 

active volume of the sandwich thus forms a truncated triangular pyramid with a projected 
vertex at the CLAS target point 5 meters away and an area at the base of 8  m2. The 
projective geometry maximizes position resolution for neutral particles.

For the purposes of readout, each SC layer is made of 36 strips parallel to one side 

o f the triangle, with the orientation of the strips rotated by 1 2 0 ° in each successive layer. 
Thus there are three orientations or views (labeled U, V, and W), each containing 13 layers, 

which provide stereo information on the location of energy deposition. Each view is fur

ther subdivided into an inner (5 layers) and outer ( 8  layers) stack, to provide longitudinal 
sampling of the shower for improved hadron identification (or electron-pion discrimina
tion; the electron-pion rejection factor is ~0.01.). Each module thus requires 36 (strips) x 
3(views) x 2(stacks) = 216 PMTs. Altogether there are 1296 PMTs and 8424 scintillator 
strips in the six EC modules used in CLAS. The intrinsic energy resolution for shower
ing particles is 10%/E, with approximately a 3 cm position resolution at 1 GeV. These 
detectors have up to 60% efficiency for detecting high momentum neutrons [73].

With its good energy and position resolution, the main functions o f EC are:
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•  Detection and primary triggering of electrons at energies above 0.5 GeV. The total 
energy deposited in the EC is available at the trigger level to reject minimum ionizing 

particles or to select a particular range of scattered electron energy.

•  Detection of photons at energies above 0.2 GeV. Allowing n° and 77 reconstruction 
from the measurement of their 2 y  decays.

•  Detection of neutrons, with discrimination between photons and neutrons using TOF 
measurements [71].

In our experiment, DC, SC and EC counters were used in the standard CLAS configu

ration. The modifications for this experiment were only in the CC (see section 3.4.4), torus 
polarity (outbending for electrons), the Moeller shield (new one made of Tungsten which 

is denser than lead which was used previously), and the position of the target (at -100.93 
cm) relative to the CLAS center.
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FIG. 27. EC sandwich (left) and the readout (right)

3.5 TRIGGER AND DATA ACQUISITION SYSTEM (DAQ)

Each detector subsystem in Jefferson Lab has its own electronic modules8 to monitor 
its performance as well as to collect its signals for further analysis. A detector can produce 
signals due to a number of unwanted reasons such as the incidence of a cosmic radiation 

or the intrinsic electronic noise, and so not all signals are desired. There exists another 
electronic system - the trigger-system - whose job it is to determine whether a given set 
of detector signals constituted a desired physics event. The trigger acts as an interface 
between the detector subsystems and the final data-acquisition system (DAQ), which re

ceives the desired signals and records them on disks in intended data formats for online 
as well as off-line analysis. The trigger helps minimize the dead-time of the detectors and 
also minimzes the resources required to process and store data.

A two-level trigger hierarchical system is generally used with CLAS to acquire the 
desired events. The level-1 (LI) trigger, which is dead-timeless and uses all prompt PMT 
signals within 90 ns, controls the data acquisition through the front end electronics using a 

trigger supervisor (TS) module by providing a common start signal to the ADCs (Analogue 
to Digital Converters) and TDCs (Time to Digital Converters) and a delayed common stop

Commercial (FASTBUS or VME) modules were used whenever possible, but custom modules with 

in-house designs were developed when commercial options were not available, or the application was so 

specialized that significant gains in performance or cost could be achieved [75].
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signal to the DC electronics. When a LI trigger signal occurs, i.e. the event is accepted, 
further signal reception from CLAS is halted for 2 jus while the Level-2 trigger (L2) uses 
additional information from the acquired data to make the final decision on whether to 
reject the data and reset the front end electronics or convert and read out the data. If L2 
okays an event, the conversion is initiated and the detector will not go live until all ADCs 

and TDCs have digitized and locally buffered their data, a process which typically takes 
20 us  [76]. In this experiment, only the Level-1 triggers requiring a coincidence between 

the signals (above some specified thresholds) in the EC and the new CC (from INFN) 
were used. Because the new CC was only in sector-6 , no electron triggers came from the 
other five sectors, thus, basically using them only to record the other coincident particles 
from the accepted multi-particle final states. In addition to the normal production data, a 
few special “EC-only” data runs were also taken with no CC signals required in the event 
triggers. These special data sets together with normal data were used in estimating the 
(in)efficiency of the CC-detector.

After passing through the pre-trigger discriminators, all prompt PMT signals contain

ing information about the hit locations in SC, and CC and deposited energy levels in EC 
are sent to a custom electronic system to make groupings and sums of them to generate a 

fast 62 bit signal, which, in turn, is sent as input to the LI trigger in order to decide if a 
desired event has occurred. Using a three-stage pipelined memory lookup with a pipeline 
speed of 67 MHz, the input bit pattern is compared against preloaded patterns in memory 
tables which are programmed using a graphical software package called TIGRIS [75].

As soon as a LI signal comes, the TS generates the gates for the detectors to allow 
their signals to be digitized in the 24 FASTBUS and VME crates stationed in the experi

mental hall, waits for conversion (by ADCs, and TDCs) of all crates to complete, and then 
places the event on the readout queue by sending all information to the 24 VME Readout 
Controllers (ROC1 to ROC24). (The readout happens asynchronously with conversion.) 
Fig(28) shows the overall schematic of the data data flow in the CLAS DAQ. The arrays 

of digitized values related to different detector components collected by the 24 ROCs are 
translated into tables with each data value (having a size of up to 16 bits) in it given a 

unique number to identify which component o f the detector was responsible for the data. 
The tabulated data is then transferred via fast Ethernet cables to the CLAS online acqui
sition (CLONIO) computer in the control room, with three primary processes - the Event 
Builder (EB), Event Transport (ET), and Event Recorder (ER) - running in it. The EB as
sembles the data pieces coming in the form of different tables to build the complete events,
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and then packages the complete event data by prefixing individual tables with headers to 
form “banks” and labelling the collection o f banks by a run and event number, an event 
type, and the trigger bits which are put in a separate header bank. The packaged event is 
then passed to the ET managed shared memory (ET1) in the CLONIO which allows si
multaneous access by various event producer or consumer processes running on the local 
or remote systems. The ER collects data from the ET1 and writes it in a single stream to 
a local array of magnetic RAID disks. When the disk is full, the data is transferred to a 
remote tape silo managed by the computer center a kilometer away9. Some events from 

ET1 are also sent to remote ET systems, e.g. ET2 and ET3, for the online monitoring 

purposes.
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FIG. 28. An schematic of the data flow in the CLAS DAQ.

9Since the maximum tape writing speed is small (about 10 MByte/s) [75], data transfers are performed 

in parallel, so that consecutive files may end up in different tape silos
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THgger bits

Every reconstructed event in the BOS file has, in its HEVT bank, an integer variable called 
trigger bits, which represents a 16-bit binary number that carries trigger information about 
various detector components (the level- 1 trigger bit variable in the ntuple- 1 0  is named 
’lib it’). An N-bit binary number is an array of N zeros and ones which represents the 

following:

a \2 ° +  a22 1 +  a 3 2 2  +  a4 2 3 +  as24 + .. .  4 - aN2N~1 ( 1 0 0 )

where, the coefficients a„ are either 1 or 0 (i.e., the bit is either present or absent). For an 

example, if  the trigger bits variable has the value o f 41481, it means that the bits 1,4, 10, 
14, and 16 are present and others absent because,

41481 =  2° +  23 + 2 1 0 + 2 1 3 + 2 15 (101)

Out of the 16 bits, the first six (1-6) indicate whether there was proper event trigger 

(CC+EC) in the sectors 1-6 respectively. The next two (7th and 8 th) represent EC trig
gers only, with 8  representing a lower EC threshold than that normally used for event 

triggers. The next six bits (9-14) are left unused and the last two (15-16) both indicate 
(redundantly) the sign of the corresponding helicity bucket.

In general, only those events that have valid hits in at least one sector are good for 
inclusive analysis, so only events with at least one bit present out of 1 - 6  are kept and the 
rest is discarded. In fact, EG4 used only the 6 th sector, so only events with the 6 th bit 
present are useful for the final analysis. The bits 7 and 8  are useful for works such as pion 

background studies. The last two bits are eventually overriden by the modified variable 
read from the fixed helicity tables and, hence, go unused.
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CHAPTER 4

DATA ANALYSIS

As stated in previous chapters, the goal of this data analysis is to extract the spin struc
ture function g\ for the deuteron and evaluate its moments. We also saw (see Sec. 2.2) 
that the product A\F\, which is proportional to Gt t , directly enters sum rules for the real 
photon point, which leads to the generalized GDH integral ( I t t )  and the generalized for

ward spin polarizability (%) being expressed in terms of the first and third moments of the 
product A \F \. In view of that, we decided also to extract the product A iF\ using exactly 

the same procedure as for g \ .
The extraction of both gi and A i F\ depend directly on the measurement of the follow

ing polarized cross-section difference:

d2o ^  d2o ^  1 N + N'
CT|1 =  dQ.dE' ~  dQ.dE' = N, ' J F ~ T r[_ e e

where,

•  N, = Number of deuteron nuclei in the target

•  N +/~ : Number of scattered electrons (off deuteron only) for each helicity state (+/-).

•  N ^J~ : Number of incident electrons for +/- helicity states

•  P^P, -  Product of the beam and target polarizations

•  AQ. = sind AO A<j> : The solid angle for the given kinematic bin. This term includes 
the “detector acceptance”.

•  Edetector accounts for the detector efficiencies

The data analysis to extract the physics quantities involves accurately measuring each 
of these quantities, either separately or in some combined form. To do so, the data must be 
properly reconstructed, calibrated and corrected to build all the scattering events during the

PbPf Ail Edetector
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experiment. Since the reconstructed events include a wide range of physical processes in 
addition to the electron-deuteron scattering process that we are interested in, proper event 
selection cuts must be applied. In this chapter, all these steps from the data reconstruction 

and calibration through the extraction of g\ are described.

4.1 EG4 RUNS

The deuteron target part of the EG4 experiment ran for about a month in 2006, mostly 

with longitudinally polarized frozen ND3 as the target. In between these deuteron runs, 
some small amount of data was also collected on carbon- 1 2  and empty cell targets, which 
are important in various auxiliary studies during the data analysis (such as their use in 

estimating nuclear background while developing momentum corrections, estimating the 
length of the target material or estimating unpolarized background). A total of 113 data 

runs (from run ID 51896 to 52040) were collected for the lower beam energy (1.3 GeV) 
and 221 runs (from 51593 to 51867) for the 2.0 GeV case (with each run consisting of 
about 3.0 x 107 event triggers) [77]. Each run took about 2 hours and collected about 2 
GB of data in raw format and saved as about 20-30 BOS files (see next section). With the 
combination of low beam energy and low scattering angle, low momentum transfers can 
be measured down to about 0.02 GeV2  within the kinematic coverage of the resonance 

region (1.08 < W < 2.0 GeV.)

4.2 RAW DATA PROCESSING - CALIBRATION AND RECONSTRUCTION

The raw data recorded by the CLAS DAQ system consist of ADC and TDC values 
registered by different components of the detector (in response to the passing o f various 

particles through them) and also some beam related information such as Faraday Cup 
readings and beam helicity information. These data are collected and saved (by the DAQ 

system) in the fortran-77 based BOS format [78] which implements a dynamic memory 
management. In the BOS file, the data is organized into banks, with each bank carrying 
data belonging to a particular detector or some part o f it. Each bank consists of two parts - 
header and body. The body contains the actual collected data (such as the ADC and TDC 

values from detector components such as PMTs, in the case o f raw data, or information 
such as energy and time in case of the reconstructed data), while the header contains some 
relational information - such as the bank identifier, the number o f rows and columns o f data 
in the bank and the location of the next bank. In the case of reconstmcted data, in addition
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to the banks carrying detector specific reconstructed information such as the energy and 
time of the signals, more banks are added to the data file for storing high level information 
such as the number of particles detected in a given event, the four-momenta of each of the 

particles etc.
These raw data are next processed with another standard CLAS software package 

called RECSIS, which analyzes and combines the matching bits and pieces of the raw 
information (in the form of the TDC and ADC values from various detector components) 
to reconstruct particles and events that produced those signals. Such reconstruction pro
duces output data that consist of event and particle IDs, particle positions and energies and 
momenta (in the lab frame CLAS coordinate system), and also some static particle proper
ties such as charge and mass. The reconstruction program uses geometric parameters and 
calibration constants (from the CLAS database) for the detector to process and convert the 

raw data into the output form.
This iterative work of data reconstruction and detector calibration, which was a very 

computing intensive and time consuming, was done by R. De Vita - one of the EG4 col

laborators from INFN, Genova, with good expertise on CLAS data reconstruction - soon 
after the data collection was completed (from 2006-2007).

The first part of the data processing is the detector calibration. In this phase, a small 
sample (about 1 0 %) of raw data (uniformly selected over the entire run period to ensure 
time stability verification) is chosen and the energy and time calibration constants are ad
justed to give the correct behavior while constantly monitoring related variables. This is 
done separately for each run period to consider the different running conditions, the possi
bility of unwanted changes in hardware that may have occurred, as well as drift of detector 
response over time. This process of adjusting the calibration constants and reconstructing 

the data is repeated until a desired level of accuracy is reached. Once that level is reached, 
the calibration constants are “frozen” and the final reconstruction is done. The resulting 
output is saved in especial formats'. These saved data provided the starting point for our 

higher level data analysis as described in this dissertation. The details of the calibration 
and reconstruction process can be found in [62].

4.3 HELICITY STATES

As we saw from Eq. 102, the physics extraction depends on measurements of the 
number of events in the two (+/-) electron helicity states. The CEBAF accelerator provides 

'Two especial data formats - BOS and ntuple (hlO) - were used
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FIG. 29. Different data signals sent from the injector that monitor the helicity states of 
beam electrons. (Fig. courtesy of N. Guler [35]).

the polarized electrons in closely and equally spaced bunches. These bunches are further 
grouped into “buckets” according to their helicity states, which are alternated pseudo- 
randomly at the injector with a frequency of 30 Hz. The information on the helicity state 
of each of the buckets and the total integrated charge contained in it is injected into the 
DAQ data stream immediately after the helicity flip. Using a combination o f different 
types of sequence control signals sent from the injector (see Fig. 29), it is possible to 

determine which helicity state a particular event belonged to, which then can be used to 
label the helicity state of the event in the data stream, together with the total beam charge 

of the state.

4.4 DATA QUALITY AND STABILITY CHECKS

With an available set of good event/electron selection cuts, beam charge (measured by 
Faraday cup) normalized total event counts (sometimes also known as event “yield”), as 
well as polarization dependent differences, were calculated for each of the data files for all 

the runs and then plotted against the run number to study the data quality and stability as 

shown by Figs. 30, 31 and 32.
If nothing unusual happened or if the experimental conditions are not changed, then it 

is expected that the event yield as well as the count differences remain constant over time. 
Therefore, the graphs of these event counts plotted versus time or run number (which 
also roughly reflect the flow of time) should indicate the stability and quality o f the data 
collected. For example, Fig. 30 shows such a total yield plot for all the data files from
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the 2.0 GeV beam energy data set on deuteron target. We can see that these data runs 
display some features of instability over the full period of time, but stability over short time 
periods. For example, all the data with run numbers below about 51610 show significantly 
higher event yield than the runs after that run (possibly due to beam-target misalignment 
as indicated by raster magnet ADC values in Fig 32.
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FIG. 30. Total normalized yield (=  /rgy+ffig-) for 2.0 GeV ND3  runs.
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Likewise, the stability of the polarized count differences in the elastic region (0.9 GeV 
<  W < 1.0 GeV) as well as separately in the delta (A) resonance region were studied 
by plotting them versus the same run numbers (here the elastic and A-resonance regions 

are considered separately, because the spin spin asymmetries in these two regions have 
opposite signs, which would have decreased the observed difference if combined. To 

further enhance the sensitivity of the observation, the difference of the count differences 
measured in the elastic and A-resonance regions as given by

el as tic A A (\ —
1

PbPt
V  N + N~ \  
\ F C + F C ~ ) t

f  N + N~ \  
VFC+ F C ~ ) l

(103)
elastic V /  A -

were plotted (see Fig. 31). It was observed that this elastic normalized count difference 
(which is what really matters to our analysis, in the end) was much more stable than the 

total yield.
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FIG. 31. Polarized yield differences (Eq. 103) normalized with Pt,Pt and BPM/F-cup for 

elastic peak minus that for the A peak for the 2.0 GeV ND3 runs.

The same was also repeated for the other variables such as the root-mean-square of the 
ADC values (see Fig. 32) which carry information on the X and Y coordinates o f the beam 
at the interaction vertex, thus their plots giving us somewhat more direct information on 

whether there was any misalignment between the beam and the target.
Based on the studies of these quality and stability plots, the data runs were divided into 

subgroups with each beam energy data set. In each subgroup, the data showed more stabil
ity than over the whole run period for the given beam energy. For example, in case of the 

2.0 GeV deuteron data, the runs were divided into four distinct sub groups corresponding 
to the four separate bands as seen in the Fig. 30. These subgroups were later treated and 

analyzed separately to get the corresponding normalized polarized count differences (with 
all data runs from each subgroup combined together). After the initial combination within 

the subgroups, they were again combined into the grand total by properly considering the 

half-wave-plate status, and the target polarization directions.
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FIG. 32. Root-mean-square of the ADC values for the raster magnet currents in the di
rections X and Y. The distributions show a larger raster size in the y-direction for the first 

group o f runs, indicating that the beam may have been hitting the edges and the walls of 
the target or other more dense structure support materials, thus explaining the higher total 

yield for the corresponding runs as shown by the Fig. 30. This does not affect our final 
analysis because these off-target materials are not polarized and, hence, do not contribute 
to the polarization dependent count difference (AN) used in the final analysis.
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4.5 KINEMATIC CORRECTIONS

Particle 4-momenta and event vertices as detected by CLAS and reconstructed by REC- 

SIS are not accurate enough for various reasons. First, RECSIS does not take into account 
the fact that the beam is rastered in polarized target experiments. Next, any imperfections 

and mis-alignments of detectors and other components of the experimental set-up are not 
accounted for. Also, the torus field map is not known precisely. In addition, the effects 

of multiple-scattering and particle energy losses are not considered in RECSIS. Therefore, 
to get more accurate results from the data analysis, the data quality must be improved by 

applying various kinematic corrections. Following is the list of the corrections that were 

applied for analysis:

1. Incoming (beam) energy loss correction (due to ionization)

2. Raster correction

3. Drift chamber dependent momentum correction

4. Z-vertex correction

5. Solenoid axis tilt correction

6 . Solenoid axis offset correction

7. Multiple scattering correction

8 . Outgoing energy loss correction (due to ionization after scattering)

The first correction listed above considers the loss o f beam energy due to atomic col

lisions before the actual nuclear scattering takes place. A good estimate for this loss is 
2 MeV [63, 79], which is subtracted from the nominal beam energy. This correction is 
applied during the analysis whenever the beam energy is involved, and therefore it is not 

included in the correction package described below.

4.5.1 RASTER CORRECTION

The polarized electron beam coming from CEBAF to Hall B is rastered in polarized 
target experiments. This is done to minimize radiation damage (depolarizing effects) to 

the polarized target and also to make maximum use of the target material (effective beam 
size increases and, therefore, the overall volume of exposed target increases). The beam
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is periodically spiraled covering a circular region of the target cross-section by using two 

raster magnets - one for the horizontal (X) direction and the other for the vertical direction 
(Y). The currents driving the two magnets are continuously recorded by analog-to-digital 
converters (ADCs).

Projection onto x-y CLAS plane (z-axis = beam axis points into plane of figure)
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FIG. 33. Raster correction geometry illustration (Figure courtesy o f S. Kuhn)

The ADC values thus recorded can be translated to the coordinates (x,y) of the exact 
beam position at the target. The values of x,y can then be used to make corrections to 

the original track by RECSIS (which assumes x and y were zero), allowing better z-vertex 
and azimuthal angle (</>) reconstruction. The better z-vertex reconstruction allows better 

selection o f events from the target proper, rejecting events from upstream and downstream 
windows (especially for particles at small angles), and can also be used to reduce accidental 
coincidences in multi-particle final states (or to look for offset decays such as from A). 

Correction of 0 improves missing mass resolution for multi-particle final states which 
is very important in exclusive channel analysis. In addition, plotting a two-dimensional
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histogram of events as a function of the raster information x and y, one can look for mis- 

steered beam that might have hit the target cup edges.

Projection onto scattering plane
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ZCOrr =  z 0 + =  ^ 0  + ta n ^

FIG. 34. Raster correction geometry illustration (Figure courtesy - S. Kuhn)

A procedure was developed by R Bosted et al. [80] to translate the raster ADC values 

into the beam coordinates x, y and then use them to improve the z-vertex and <f> reconstruc
tion. This procedure was successfully applied in previous CLAS experiments and EG4 has 

also embraced it to do the needed raster correction.
In short, the procedure for this correction is as follows:

1. Translates raster-ADC values to beam coordinates x and y.

2. Corrects the event vertex z-coordinate (represented as vz in the data).

3. Corrects the azimuthal angle <j> o f each particle in the event.

This correction is applied before the momentum correction. So, the partially corrected 
<f> and vz will be a part o f the input fed into the next stage of the kinematic correction
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which, henceforth, will be termed “momentum correction”. 

Procedure to translate ADCs to centimeters
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FIG. 35. Beam coordinates x and y calculated with the raster correction procedure.

The procedure assumes that a linear relation holds between the raster currents and the 
beam coordinates x and y (displacements in cm produced by the field of the currents) as 
follows:

X—(Xadc *offset )Gt, (104a)

y —iXadc Yoffset)Cy, (104b)

where, X0f f set, Y0f f set, Cx, and Cy are the parameters to be determined by the procedure. 
These parameters are determined by selecting reasonably well reconstructed events each
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consisting of more than one charged particles tracks originating reasonably close to the 
nominal target center (vz 101.0 cm) and using them in TMinuit (ROOT Minuit program)
to minimize the %2, defined as

Z 2  =  £ ( ( w ) , - z 0)2, (105)
» = 1

where zq is the 5th parameter that defines the center of the target and is to be determined 

from the minimization. Likewise, z corr is the trial value of the corrected z-vertex (a func
tion of trial values of the first four fit parameters, as will be evident below). TMinuit will 

give us those values of the parameters which gives the x 2 a minimum value.
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FIG. 36. Vertex Z-coordinates (in cm) o f scattered electrons from an 3.0 GeV empty-cell- 
target run before (black) and after (red) the raster corrections. It is clear that the correction 
improves the resolution, thus revealing the positions of the empty target cells (the first two 
peaks near -101.0 cm) and the heat shield (around -93.0 cm).

From a simple geometry consideration (as illustrated in Figs. 33 and 34), an expression
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for correction to the z-vertex in terms of x, y and angles o f a particle track is arrived at as 
follows:

zcorr =  zrecsis + x '/ta n (9 ), (106)

where z reCsis, and z corr are the z-vertex measured by the tracking code and the raster- 
corrected z-vertex respectively, and

x' = (x cosfa + y  sin<j)s)/ cos(<j> -  $*), (107)

is the distance in cm along the track length that was not considered in tracking (because 
the tracking code assumes that the track started from x  =  0 , y  =  0 ); <j)s is the sector angle 
defined as the azimuthal angle of the sector mid-plane (equal to (s — 1 ■ 60 degrees, where 
s is the sector number from 1 to 6 ), and <j> is the azimuthal angle of the particle (in the 

lab-coordinate system) defined as <j> = arctcm{cy/cx), where cx and cy are the x- and y- 
direction cosines of the track.

Due to the difference of the actual track length (through the 50 kG magnetic field 
of the target) from what is assumed by the tracking software, the azimuthal angle <f) is 
reconstructed incorrectly. The angle 0 can now be corrected by adding a correction term 

—50^(x//100)/33.356//?, to the reconstructed value <j>recsis as follows:

tycorr = Qrecsis ~  50^(x'/100)/33.356/p(, (108)

where <j)recsis and (j)corr are the reconstructed and corrected values of <j) respectively, q is 
the particle charge in units of e, the factor 50 is the target field expressed in kG, the factor 
100 is to convert the unit cm of x! to m, the factor 33.356 is the inverse speed of light in 

the appropriate units and p t =  psin(B) is the particle’s transverse momentum expressed in 

GeV [80],
For our analysis, all the four parameters Xaf f set, Y0f f set, Cx, and Cy were determined 

separately for each beam energy by selecting a set of good electrons and using the method 

of x2 minimization (see Eq. 105). With the parameters known, we can use Eqs. 104a and 
104 to convert the X- and Y- ADC values into beam positions (at the target location) in 
centimeters as shown in Fig. 35 for 1.3 GeV data. Likewise, v z  and <p can be corrected by 
calculating the correction terms x' /tan(0)  and —50q(x!/100)/33.356/p t and adding them 
to the respective reconstructed values (see Eqs. 106, 108). For example, Fig. 36 shows 
the distribution of electron Z-vertex distribution (from 3 GeV proton data) before and after 

the corrections. It is evident from the figure that the corrections improves the resolution



86

as expected in addition to shifting (towards left) the average position of the distribution by 
some amount.

4.5.2 DRIFT CHAMBER (DC) DEPENDENT MOMENTUM CORRECTION

Different DC related factors contribute to the biggest part o f the systematic deviations 
of particle momenta as reconstructed by RECSIS. The drift chambers could be misaligned 

relative to their nominal positions or the survey results that is used by RECSIS could be 
inaccurate or out-of-date. The effects o f physical deformations (due to thermal and stress 
distortions) of the chamber including wire-sag, incorrect wire positions may not have bee 
incorporated properly. The torus field map used by the reconstruction software may not 

have been accurate and complete enough [81]. To address issues like these, a general 
approach as described in [81 ] which makes corrections to p  and G was followed to develop 
the corrections.

The ratio of the correction to the magnitude of the momentum could be expressed as:

where,

A p
—  =  PcorrX +  Pcorrl + PatchCorr (109)

PcorrX =  ( (E + F<j>)^^~ + (G + H $)sm G ) (110)
V sinty J qBtorus

Pcorrl =  (JcosG +  KsinG) + (McosG +Nsind)<j> (111)

PatchCorr = 0 m ( p + ( Q  + R ^ ) ( ^ - ) ^  (112)

The quantity Btor stands for f  B \d l  along the track length multiplied by the speed of 
light in the units o f m/ns (c = 0.29979 m/ns) and is given by

d a nJtorSin2{4G) n
S"r = °'76 337557^5 f°r 9 < 8 (" 3)

B- = ° - 76337^  f° r e > ~» ( U 4 )
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In all these equations, sector number, 0, 0, Odeg, and 0 ^  come from the angle infor
mation measured at DC1. The direction cosine variables tll_cx, tl 1 _cy, tll.cz  (from passl 
ntuples) are used to derive these quantities. C++ standard functions acos() and atan2() are 
used to evaluate 0, 0  (w.r.t the sector mid plane).

All these total of eleven unknown parameters were determined separately by fitting 
above mentioned momentum offsets (in combination with ionization energy loss correction 
for electrons) to the correction function given by the Eq. 109.

Unlike for sector-6 , both p- and 6 were subjected to correction if a given particle track 
was detected by the drift-chamber in any of the other 5 sectors. This time, the PatchCorr 
component was not considered in the expression (Eq. 109) for p-correction. On the other 

hand, following expression was used to parameterize the correction to the polar angle 0.

A 0 = ( A + B f ) ? ^  + (C + Dt)sinO  (115)
cosfp

A total of 12 ( 8  for p-correction and 4 for 0 correction) parameters for each o f these 

five sectors were determined (from a fit procedure to be described below) to account for 
the DC contribution to the corrections.

4.5.3 SOLENOID CORRECTION

If the axis of the target solenoid field is not aligned exactly along the beam line, then 
the 0 reconstruction is skewed. To correct for that, the following changes are made to the 
reconstructed angles:

CXtrue — CXini + a jp  (116a)

cytrue = cytni +  b /p  (116b)

where cx and cy are the x- and y- direction cosines, p  is the particle momentum and a and
b are the parameters to be determined by the fit (described in 4.5.6). It’s clear that cx and
cy and therefore 0  =  arctan{cy/ cx) is changed by this part of the correction.

The target field may also have an overall displacement or offset w.r.t the beam line and 
so the following correction to the angles is used in addition to the other corrections:
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. _ i i d Scostyini-Tsintyini
ft rue — fini-rqo solenoid---------- — ---------psmOini

(117a)

@true — +  qBsolenoid (117b)

Here, S, T, U and V are the additional parameters to be determined by the method of 
X2 minimization (see Sec. 4.5.6) for the overall correction.

RECSIS evaluates the vertex assuming that it lies on the intersection o f the track and 
the plane perpendicular to the sector mid-plane that contains the beam axis [82], So, REC
SIS backtracks the DC-reconstructed particle track and finds the point where the track 
meets this plane to determine the vertex. As a consequence, while doing the raster correc
tion, we correct Z in addition to 0. Since the track itself is subject to further corrections 
even after the raster correction, the vertex should also be corrected further. The following 

expression is used to further correct the z-component o f the vertex.

where 0 /w, is the polar angle (in radians) at the start, Q is the one after all the previous 
corrections and ’ Y’ is the new fitting parameter to be determined whose physical meaning 
is the distance from the vertex to the first region of DC (about 150 cm) [83].

4.5.4 MULTIPLE SCATTERING CORRECTION

As a particle travels away from the reaction vertex, it encounters additional scattering 
centers (within the target material as well as outside) before being registered by the CLAS 
detector. That means, even if the detectors record the track perfectly, its angles most likely 
would not be the same as the ones at the vertex. Since the vertex position is reconstructed 

based on the angle information, the reconstructed vertex would also be shifted from the 

real one by some amount (see Fig. 37).
This effect is common in all CLAS experiments and a simulation study (using GSIM 

(see Sec. gsim)) ) on this issue was done by the collaborators of the CLAS EG lb and 
EGldvcs experiments [84], The study indicated that tracks could be corrected for this 
effect if  there are multiple track in an event, with the corrections to the angles given by 
simple parameterized formulas. These corrections are based on the assumption that the 

real z-vertex of all the coincident particles in an event is close to the average z-vertex for

(118)
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FIG. 37. An exaggerated figure showing the effect of multiple scattering.

the event, and that the angles should be modified accordingly. The average z-vertex is 

calculated as:

Z m  =  <Z) =  ^ " 2 <‘ l9> 
L ' feres

where the sums are over all the well-identified charged particles from the event, zpart is the 

z position of each o f the particles (with all of the previous corrections applied), and zres is 
the resolution in z which is given by

Zres = - ^  ( 1 2 0 )
P±P

where p±  is the transverse component of the 3-momentum given by p  sind and /3 is the 

particle speed in the units of the speed of light.
After finding the weighted average of the z-vertex, all the particles from the event are

’forced’ to originate from that vertex and the angles are corrected as follows:

Qtrue — @ini ~ (z ~ zave) {L@ini "F M/p)  (121a)

tytrue — fyni zave)Nj p ( 1 2 1 b)
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where L, M, and N are the three more parameters to be determined from the fit (see Sec. 
4.5.6).

4.5.5 OUTGOING IONIZATION LOSS CORRECTION

After all the previous corrections are made, the energy o f each of the particles is calcu
lated as E = \ / p 2 + m2rest and a correction for ionization loss is added to it: Ecor = E + AE 

with AE = where the factor x is the total effective mass thickness traversed by the 
particle and

d E jd X  «  2.8 MeV/ (g cm-2 ) for electrons (122a)

and, for hadrons [85]

0.5 (  (  f l V
d E / d X ^ O . m x - p r  [In  2.0 x 511 .0 £ -^ -  - j 3 2  MeV (122b)

p z \  \  0 .090/

which is an approximation of the Bethe-Block formula [85]:

p  dx (.23)

This quantity is calculated as follows:

•  t  =  T||/cosO if 0 < — zr/4

•  T =  X\\/cos(n/4) if  0 > n / 4 

where T|| is calculated as:

•  T|| =  Az x 0 .6 +  0.4 if  Az >  0.0 and Az <  1.0

•  T|| =  0.6 +  0.4 i fA z>1 .0

•  T|| =  0.4 if Az < 0.0

with Az =  ztargetcenter -  Zave Ltarget/2  =  (-101.0  cm - z ^  +  0.5) cm being the physi
cal distance (along the target length) traveled by the particle through the polarized target 
material (e.g. the EG4 ND3 target has length 1 . 0  cm and is positioned at z = - 1 0 1 . 0  cm). 
The factor 0.6 is the effective mass thickness of N D 3  (density o f N D 3  (~  1 g/cm 3) multi
plied by the packing fraction which is roughly 0.6 [61], whereas 0.4 is the sum of the mass 
thicknesses of He (~  0.3) and that of window foils (~  0.1) [35].
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Using the ionization loss corrected energy and the rest mass of the particle, momentum 
is recalculated as pcor =  y/E}or — m2 (where m is the mass of the particle). Finally, this 
new p is used along with the previously corrected angles to evaluate the three cartesian 
components px, py and pz of the momentum.

4.5.6 PROCEDURE TO DETERMINE THE PARAMETERS

As is clear from above sections, all together, there are 81 parameters to be determined 
for the various corrections. These are:

• 11 parameters for 6 th sector DC dependent momentum correction (corresponding to 
Eqs. (110), (111), and (112))

• 60 (=  12 x 5) parameters for the same type of correction corresponding to other five 
sectors (corresponding to Eqs. (110), (111) and (115)).

•  one parameter for the z-vertex correction (corresponding to Eq. (118))

•  6  parameters for solenoid tilt and offset corrections (corresponding to Eqs. (116) 
and (117))

• 3 parameters for the multiple-scattering correction (corresponding to Eq. (121))

Out of these, the first eleven parameters for the sector- 6  correction are determined from 
one procedure and the rest are determined from a different procedure.

Procedure to determine the first 11 parameters

The procedure involved dividing the covered kinematic space into a number of bins, find
ing in them the magnitude of shifts of the inclusive elastic peaks w.r.t. the expected posi

tion and use that to fit to a function to get an analytical expression for the correction. The 
following angular bins were used:

•  Six ddcX bins: (0,8),(8,10),(10,12),(12,15),(15,20),(20,30) degrees

•  Five (pdci bins: (-10,-6 ),(-6 ,-2), (-2,2), (2,6), (6,10) degrees

where the angles used are the ones measured at the first drift chamber and <j)dcj is measured 
w.r.t the sector mid-plane (thus the maximum range allowed is (-30.0,30.0)).
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elastic
1 +  ^ ^ s in H Q e /2)

(124)

In each of these kinematic bins, the quantity AE =  E'elastic—p  is histogrammed for both 
NH3 and C 1 2  data separately. Next, the carbon histogram is cross-normalized with the am
monia histogram and subtracted from the latter one to remove the nuclear background. 
The difference gives histogram for the elastic events (as shown by the dashed green his

togram in Fig. 38. A Gaussian fit to the extracted elastic histogram gives the position and 
width of the distribution. The offset or shift of average position of the peak with respect 
to the expected tsE =  0 gives us the needed correction on energy E  «  p  for the electron. 
This process is repeated for all of the bins listed above and the corresponding Ae offsets 
or the corrections are determined for each of them. Finally, these values of corrections 
for different average values of Qjc\ and <j>dc 1 are used into Eq. 109 and then used in the 
^-minimization based on four momentum conservation (as described below) in order to 

determine the 1 1  fit parameters.

Procedure to determine the rest of the parameters

This procedure uses the technique of x 2-minimization, where the X2 is constructed from 
the 4-momentum conservation requirement in exclusive reactions for which sufficient 
statistics is available. Two types of events (from NH3 target runs) in which all parti

cles in the final states are detected are chosen for this purpose, so that both higher and 
lower momenta are covered. Fully reconstructed elastic events p(e, e'p) are used to cover 
higher momenta and exclusive p(e,e>p n +K~) events are used to cover lower momenta for 

different types of hadrons. The x 2 t 0  be minimized is calculated as follows:

X Xp—miss X w  Xz Xpar (125a)

where,

Xp-miss
all .

E 2(miss) +  pl{miss) pl(m iss) -I- p2{miss)
(0.020GeV) (0.014 GeV)

(125b)

X w  — H  ( (0.020GeV)2
( W - M p )2 ,

(125c)
ep—events

L* v 2
all particles res

(125d)
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FIG. 38. Plots showing background removal from the AE counts from NH3 (shown 
by “NH3 ” line) data (by subtracting cross-normalized counts from 12C data (shown by 

“1 2 CS caied '  line)) to separate the elastic peak (shown by “NH3 - l2Cscaled”  line) in one of 
the kinematic bins, thereby getting the momentum offset for that bin.

I  <^> <125e)
all parameters Par

where zcor and zave are evaluated using Eq. 118 and 119 respectively after applying the DC 

dependent corrections.
Event Selection

For all events, the usual fiducial, preliminary vertex and electron ID cuts are applied (see 
later). Protons and pions are selected using time-of-flight (TOF) cuts, in addition to other 

simple common cuts. Finally, cuts on all four components of missing 4-momenta are ap
plied to exclude events where not all produced particles were detected or where there were 

accidental co-incidences. These missing momentum cuts also serve to suppress nuclear
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background (from various sources such as from 15 A nuclei in the ammonia target, from 
target windows etc.). The cuts used in the initial data skimming required that each of the 
four missing components be less than 0.1 GeV. Later during the fit, tighter cuts (up to 0.03 

GeV for the x- and y- components and up to 0.04 for z- and E- components) were used. 
The cut on EmjSS also serves to remove events where the radiative (internal or external) loss 
in electron energy could be large enough to skew the momentum corrections. For elastic 
events, the three more cuts (on W, A0, and A(j>) were applied.

After the desired sample of the two types of exclusive events were selected, raster 
correction was applied to each of the particles from the sample, modifying/correcting the 

z-vertex and the azimuthal angle <p by some degree. Then the sample was subjected to the 
above mentioned -minimization to optimize all the remaining free parameters for our 

momentum and angle corrections.
Once the minimization were complete, all the unknown parameters were determined 

and they were used to apply the corrections to p  and 6. For example, Figs. 39, 40 and 
41 show the effects of corrections on various quantities in different type o f events. We 

can see that the corrections have not only shifted and improved the positions of various 
distributions but also improved their resolutions (narrowed distributions relative to the 

distributions before the corrections).



95

Missing pMissing Energy

- f -

Missing p Missing p

-oJ * ®
p (miss)

(W - Mp) for ep events

- t

la s r ^ iMmti OHM
AG = 0q - 6pr of ep events

450

 Mo-con*.400

350 Corrected
300

250

200

150

100

FIG. 39. Effects of kinematic corrections on ep-elastic events. In the 6  panels the distribu

tions of missing energy, missing momentum components (px, py, and p z), the difference 
AfV = W — Mp and A9 = 6q — Qp of ep-elastic events respectively. The distributions before 
the corrections are shown by black continuous lines and the ones after the corrections are 
shown by the red dotted lines. Here, Mp is the proton mass in GeV. Likewise, 6q and 

6P are the expected and measured angles of the recoil proton (or the exchanged virtual 

photon) respectively.
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FIG. 40. Effects of kinematic corrections on ep2pi i.e. p(e ,e 'n+ it~)X  events. The four 
panels show the distributions of missing energy, and the three components o f missing 
momenta for the events before (black) and after (red) the corrections.
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the kinematic corrections of semi-inclusive events of type p(e,efn +X )  from four different 

Eb run sets.
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4.6 EVENT SELECTION CUTS

In CLAS electron-scattering experiments, the scattered electron defines the timing of 

each event. In addition, in inclusive measurements, the scattered electron is the only parti
cle to be detected and measured. So, it is particularly important to make sure that electrons 
are well measured and properly identified and are not contaminated with other misidenti- 
fied particles such as negative pions (k ~) or lost by being misidentified as something else, 

thus affecting the accurate measurement of cross sections. In particular, 7C~and electrons 
give rather similar detector signals and, therefore, are difficult to discriminate in some 

kinematic regions. In each event the electron candidate is the negative track that triggered 
the event. The trigger condition is ensured by choosing the first entry in the event and 
also requiring that the track has hit matches in CC, DC, EC and SC and is also time-based 
(positive DC status word in DCPB).

All four layers o f detectors are important in identifying electrons. For example, track
ing by DC decides the charge of a candidate, SC records the time of flight, which is im

portant in the time-matching criteria as mentioned below. The following list shows crite
ria/cuts defining a good electron starting from a candidate electron.

In addition to the electron ID cuts, we also make further cuts to select only those events 
that originated from the polarized target and also only those that were detected within the 

fiducial region of the detector. In other words, one may divide the cuts into two categories 
- electron ID (or good electron) cuts and good event cuts. Following are the cuts used to 
select good electrons and good events:

1. Good Electron Cuts

(a) Cut on Particle charge: q=-l

(b) Detector Status cuts:

i. DC status: dc>0; dc_part>0

ii. SC status: sc>0; sc_part>0

iii. EC status: ec>0; ec_part>0

iv. CC status: cc>0; cc.part>0
(For simulated data, all of the above except those on CC variables are 
used.)

(c) Electromagnetic Calorimeter Cuts (see Sec. 4.6.1)
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(d) Osipenko cuts Cuts on CC angle 9 , <j> and time matching between CC and 
other detectors, (see Sec. 4.6.2)

(e) Cut on Minimum Number of Photoelectrons (see Sec. 4,6.3)

2. Good Event Cuts

(a) Cut on Minimum number of particles detected and reconstructed in the 
event: gpart> 0

(b) Minimum/Maximum Momentum cuts (see Sec. 4.6.4)

(c) Sector cut dc_sect = 6 ; cc_sect = 6  (to select electrons from the sector where 

the low momentum Cherenkov detector was installed)

(d) Scattering Vertex-Z cuts (see Sec. 4.6.5)

(e) Fiducial Cuts (see Sec. 4.6.6)

Data analysis method of this thesis relies on comparing the experimental data with a 

data set produced from a Monte-Carlo simulation that was as realistic as possible. The 
simulation process involves first the simulation of the physics process of inclusive electron 
scattering, then simulation of the CLAS detector response when the scattered electrons 

passed through it and finally reconstructing the events from the simulated detector re
sponses using the same reconstruction software as used for the real data. So, we also have 
to analyze the simulated data in the same way as the experimental data requiring similar 

event selection cuts of their own. In the ideal situation, all cuts would be the same for 
both types of data. But, despite our efforts, we could not make our simulation match with 
our experimental data to the expected level - mainly due to some previously unseen issues 
with the reconstruction software (RECSIS). So, some o f the data selection cuts are defined 

separately for the two cases and sometimes even for different Q1 bins (to make sure we 
have the same fractions of events in corresponding kinematic bins for

4.6.1 ELECTROMAGNETIC CALORIMETER CUTS

The EC cuts basically consist of three different cuts applied together. One o f these is 
on the sampling fraction (which is the fraction of the energy deposited in the calorimeter), 
another on the energy fraction deposited in the inner part of the calorimeter and the last is 
based on the correlation between the inner and outer energies recorded by the calorimeter.
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Cuts on sampling fraction

While moving through the EC, charged pions are minimum ionizing particles in the mo
mentum range detectable by CLAS. On the other hand, each electron deposits its total 
energy Etot in the EC2  by producing electromagnetic showers (Etot «  p  for electrons that 
have high energies). Therefore, the sampling fraction Etot / p  should be independent of the 
momentum for electrons (in reality there is a slight dependence).

0.4

0.35

0.3

0.25

0 . 2

0.15

0 . 1

0.05

FIG. 42. An example of the cut on the EC sampling fraction (2.0 GeV data). The plots 
shows the distribution of the sampling fraction (in Y-axis) plotted against the particle mo
mentum (in X-axis). The brighter stripe above about 0.2 in the energy fraction are due to 
the electrons whereas those below are the pions.

For the EC in CLAS, the electron sampling fraction is about 0.25 and pions give signals 
that are mostly below 0.2 as is evident in Fig. 42 or others that follow. Therefore, usually a

2Because some of the deposited energy is in the lead part o f the EC rather than the scintillator, only a 

fraction o f th electron energy is detected in the EC.

Entries 420347 
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universal lower cut of 0 . 2  is chosen to reject most of the pions without significantly losing 
good electrons. In our experiment, with its low beam energy, even less pions are produced 
and the electron peaks are even cleaner in lower kinematic bins as can be seen in the low 

Q2 bins of Fig. 43. Therefore, in order to have fewer good electrons rejected, the sampling 
fraction cut was relaxed to 0.15 for the first fourteen o f our Q2 bins and 0 . 2  was kept for 
the higher bins.

In case o f the corresponding simulation data, however, the cuts were not that simple 
because the EC performance simulation does not match the experimentally observed data 
well. As we can notice by comparing figures 43 and 44, the mean positions and widths 

(represented by the cr of a Gaussian fit) of the sampling fraction in different Q2 bins are 
not exactly the same for data and simulation, which means that if we were to use the same 

rigid cuts of 0.15 or 0 .2 , then we would have different fractions of events selected for 
simulated compared to experimental data. To avoid this situation, Q^-bm dependent cuts 
were determined for the simulation based on the Gaussian fit parameters of both data and 
simulation as well as the above mentioned cuts used on the data. In a given Q2 bin of 

simulated data, the cut on the left side of the electron peak is chosen that is at the same 
distance in terms of its a  from its peak as the cut values 0.15 or 0.2 are from the peak in 
the experimental data in terms of its own a . For example, suppose we are considering one 

of the first fourteen Q2 bins, and fiexp, <*exp, Psim, and oSjm are the Gaussian fit parameters 
for the electron peaks in the experimental data and simulation respectively, then the cut on 
the simulation would be equal to usim — ^nr̂ ~° 15 x asim.&exp

In short, only two numbers 0.15 and 0.2 define the cuts on the experimental data, but 
the cuts for simulation data are all different, yet they are at the same relative distance 

from the electron peaks as in the experimental data and, therefore, include about the same 
fraction of good electrons.

Cuts on Em

Pions, which do not shower and are minimum ionizing particles in the momentum range 

detected in CLAS, deposit only a (small) amount o f energy in the inner part of the EC 
independent of their momentum. When Ejn is histogrammed, the tiny pion signal peak at 

about 0.03 clearly stands out from the huge electron sample with little overlap in between. 
So, a universal cut o f E,„=0.06 on both data and simulation (as shown by figures 45, 46 
and 47) safely rejects most of the pions from the electron candidate sample.
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FIG. 43. The Q2 dependent cuts on the EC sampling fraction for 2.0 GeV experimental
data. Events below the red lines are rejected.
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FIG. 45. Energy deposited (GeV) in the inner EC and the cut (red line) used to reject pions 
(seen as a peak at about 0.03 GeV) from a sample of electron candidates of 2.0 GeV data.

Cuts on Eou,

In addition to the two EC-cuts above, one more cut based on the correlation between EC- 
outer and EC-inner (as shown by fig. 48) was used which helps further to clean up the 
electron sample.

4.6.2 OSIPENKO (CC GEOMETRY AND TIME MATCHING) CUTS

As discussed in chapter 3 the new EG4 dedicated CC is made up o f 11 modules each 
consisting of a pair of mirrors and PMTs. The segments are placed along the CLAS polar 

angle covering 15 to 45 degrees, i.e., the segments are at different polar angular positions. 

During normal operation, the PMTs of these segments produce noise that is equivalent to 
that produced by one photo-electron passing through it. As a result, when a noise pulse in 

the CC and a pion track measured by DC coincides within the trigger window of the CLAS 
detector, the track gets registered as an electron candidate by the event reconstruction pro

gram, thus contributing to the contamination of electron candidates with the misidentified 
pion tracks. In fact, this turns out to be the biggest source of pion contamination. In 

order to minimize such contamination and help better identify electrons from pions, CC
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FIG. 46. The EC-inner cut on a sample of 2.0 GeV experimental data in various Q2 bins.
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FIG. 48. Energy detected in EC outer as a function of EC inner, both normalized with the 
particle momentum, for the 2 GeV data. The brown line shows the EC cut to reject pions 

(which fall below that line).

geometric and time matching cuts are applied.

The cuts in this category were worked out for this experiment by X. Zheng - one of the 
collaborators of the experiment. Her work, in turn, was mostly based on a similar analysis 
done for another CLAS experiment by M. Osipenko [8 6 ] in order to study the CC response 

and thereby develop a method to better discriminate electrons from pions.
The first requirement in the CC-matching is for the electron candidate track (as recon

structed by DC) to have a corresponding signal in CC. In addition, the track needs to meet 
several matching conditions to be acceptable as described in the next sections.
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CC 6 Matching

As said above, the CC segments are at different average polar angle positions (between 
15 and 45 degrees), so in principle, one can expect a one-to-one correspondence between 
the polar angle of the track (as measured at the vertex) and the CC-segment. However, 
the torus magnetic field bends the particles towards or away from the beamline, so it’s 
more convenient to use the CC projected polar angle 6proj  rather than the vertex angle 
6, where Bproj  is defined as the polar angle of the position vector defined'by the point of 

intersection of the track with the CC plane (another projected angle <f>proj  is the azimuthal 
angle of the same vector). These projected angles can be uniquely calculated for each 
track based on the DC signals of the track as well as the CC geometry information. To 
simplify the later analysis process, these projected angles for each track were calcuated 

during the final data reconstruction process and then saved in the output files just like the 
all other information for the events and particles. Finally, for the actual electrons a one- 
to-one correspondence between Qproj  and the segment number can be established, which 
discriminates against background noise and the accidental pions (or any other negative 
charge candidates). For each segment, the 0prOj  distribution is fitted with a gaussian to 
determine its mean (/i) and width (a ) and then saved for future use in cuts. These fit 
parameters are then used during the data analysis to define these CC-d -matching cuts. 
The events that have /i — 3 a  <  6proj < [i +  3 a  pass this cut, and the others are rejected as 

not genuinely being electrons.

CC <j> Matching

One can also have a one to one correspondence between the other CC-projected angle 
fyproj and the left or right PMT in the corresponding CC-segment, because when the track 

is on the right side of the CC, the right PMT should fire and vice versa. However, there are 
some exceptional cases of events which fire both PMTs. That happens when <pproj of the 
track is less than 4 degrees (when measured relative to the sector mid-plane), in which case 

the Cerenkov light hits both PMTs but with less efficiency (because the energy is shared 

between the two).

CC Time Matching

The difference AT  between the track time recorded on a CC segment and the corresponding 
time recorded on the TOF, corrected for the path length from the CC to the TOF, is used to
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define one of the time-matching cuts. Likewise, the time between CC and EC is also used 
to define another cut.

4.6.3 CUT ON MINUMUM NUMBER OF PHOTOELECTRONS

The “nphe” variable in the data ntuple which represents the ADC signal from the CC 
converted to “number of photoelectrons” and multiplied by 1 0  is also to discriminate elec

trons from pions and electronic noise. The number of photoelectrons produced in CC by 
an electron is typically between 5 and 25 or between 50 and 250 in the units o f nphe, 

where the electronic background and negative pions produce signals equivalent to one 
photo-electron (or 1 0  in nphe units) and so a cut is determined somewhere between these 

two regions based on the shapes and sizes of the electron and pion peaks. In our case, we 
chose to have the cut at nphe = 25 as depicted by the straight line in Fig. 49.
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FIG. 49. The cut (the red straight line at 25) on the number o f photo-electrons produced 

in CC times 10 (from 2.0 GeV data). The signals below the red line are mostly pions and 
noise and above the line are mostly electrons.
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4.6.4 MINIMUM/MAXIMUM MOMENTUM CUTS

A study [87] of the inclusive cross section at various beam energies in CLAS developed 
a parametrization of the low momentum cut p mj„ as a function of the calorimeter low 
trigger threshold (in milli-Volts)

Pmin (MeV) =  214 +  2.47 x ECthreshold (mV) (126)

The low threshold for EC-total energy for EG4 was 65 mV [8 8 ], so, the minimum 
momentum cut was determined to be at: p mj„ = 0.37 «  0.4 GeV. In addition, another 

minimum cut of p mm =  0 . 2  * Ebeam was added, so the actual minimum cut amounted to the 
larger of those two. Likewise, the momentum cannot be more than that of the beam energy 

(in natural units), therefore, the upper cut on the momentum is: p max =  Ebeam-

Fig. 50 shows the momentum distribution of the electron candidates for the 2 GeV data 
and the minimum and maximum cuts.
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FIG. 50. The maximumum and minimum momentum cuts (on 2.0 GeV ND3 data).
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4.6.5 VERTEX-Z CUTS

In the EG4 experiment, the ND3  polarized target was of 1 cm long and was placed at 

(x= 0, y = 0, z = -100.93 cm) in the CLAS coordinate system. Since the beam electrons 
have to go through a few foils before reaching the target as well as the detector, we want to 
reject electron tracks with vertices outside the target volume. For this purpose, use a cut on 
the reconstructed vertex co-ordinate “vz”. However the vertex resolution demands reson- 

ably wide “vz” cuts so as not to loose too many good events. That is why the distribution 
of “vz” was studied and based on the position and width of the distribution as well as our 

knowledge of the location of various foils and target materials, the cuts on “vz” were de
cided. It was seen (see Figs. 51 and 52) that the resolutions get worse and the distributions 
get wider as we go to lower g 2  values, so again Q2 dependent cuts were chosen for both 

data and simulation with the cuts tightening as (^increases.
As in the case of EC variables, the reconstructed “vz” distribution in the simulation 

does not come out quite the same as in the experimental data . To have the same fraction 
of events in the corresponding Q2 bins as in the experimental data, a separate set of cuts 
(determined based on the distributions of both types of data) had to be used for simulation. 
For this purpose, the Gaussian fit parameters fi and a  (representing the mean and standard 
deviation) for all the Q2 bins were tabulated separately for both data and simulation and 

separate sets of ±3cr cuts were determined for all bins. For example, if  Hq and aq were 
the two Gaussian fit parameters for the qth Q2 bin of either data or simulation, then the 

lower and upper cuts for “v2” for that data set in the given Q2 bin would be flq — 3aq and 
Hq + 3oq respectively (as shown by the magenta vertical lines in Figs. 51 and 52.

4.6.6 FIDUCIAL CUTS

Similar to the cuts discussed so far, we also had to match the region of good efficiency 
of the physical detector with the corresponding region from the simulation. For the experi

mental and simulation data to be comparable, they must have the same detector acceptance. 
Two event variables polar angle (9vtx) measured at the vertex and the azimuthal angle <t>oc 1 
measured at the drift chamber layer 1 are chosen to define the good efficiency regions of 
the detector. The reason for the choice o f the variable 0vtx should be obvious because it is 

directly related with the kinematic variables Q2 and W used in the analysis. However, due 
to the momentum dependent rotational effect of the magnetic field on the reconstructed
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FIG. 51. 2.0 GeV data showing the Q1 dependent vz-cuts (the magenta lines on the left 
and right of the peaks) in some of the Q2 bins. The continuous black line represents events 
before applying all the other event selection cuts (except on vz) and the thicker dotted red 
line are the events after the cuts. The blue lines are the centers of the distributions, from 
which the cuts are 3 times a  away on each side, where a  is the standard deviation for the 

distribution in the given Q2 bin (both the central value and the a  are determined during the 
cut development studies).
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azimuthal angle ((jhtx) at the vertex, the angle (poci is preferred over (j>vtx to define the fidu
cial region because that allows the easy selection (rejection) of the events which passed 
through and got detected by the more (less) reliable central (marginal) regions o f the drift 

chambers. After a careful and extensive study of the event distributions on both data and 
simulation, we arrived at the fiducial cuts in terms of the two variables 6y,x and (j>oc\ as 
shown by the magenta lines in Fig. 54.

In addition, the data and simulation were also directly compared with each other by 
taking the ratio of their distributions in a two dimensional space defined in terms of two 
variables Bvtx and the torus current normalized inverse momentum (i.e. Itorus/(2250p). 
In one case, the ratio was taken between the regular experimental data and the ”EC-only” 
experimental data (with CC-signal not required in the event trigger) (see Fig. 55) and in the 
other case, the ratio was o f the experimental deuteron data (after background subtraction) 
to the simulated deuteron data (see Fig. 56). From these comparisons, some of the regions 
that showed big CC-inefficiencies or big discrepancies between data and simulation were 

selected and removed from the fiducial region as indicated by various straight lines in the 
two plots.
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(pos) vs 0 for ltor/(p*2250)=(0.7,1.0) phOCposvthvH2lp2
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FIG. 53. Distribution of experimental data as a function of vertex angle 6 and azimuthal 

angle <I>d c i as measured by the track position at the first drift chamber layer (angles in 
degrees). The magenta lines indicate the fiducial cuts for accepting good electrons.
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FIG. 54. Distribution o f simulated data as a function of vertex angle 6 and azimuthal 
angle <f>oci as measured by the track position at the first drift chamber layer (angles in 
degrees). The magenta lines indicate the fiducial cuts for accepting good electrons.
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ltor/(p*2250) vs 6DC1 IpVthOclCtO 
Entrim 2449235

FIG. 55. Ratio of Regular to EC-only proton target data for 2.256 GeV beam energy show
ing regions of varying CC-efficiencies in the 2D kinematic space defined by the scattering 
angle 9 along x-axis and the inverse momentum variable invP = I to r j(2250p) along y- 

axis.
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Exp(D)/Sim(D) in lt/(p*2250) v s  0 ^ iPvThvRD2D2 
Entries 4201738

FIG. 56. Ratio of background subtracted ND3 (thus equivalent to deuteron) experimental 
data to simulated deuteron data (for 2.0 GeV beam energy) as a function of I,orMS/2250p vs 
0 at the vertex. The red and magenta lines indicate additional excluded regions.



119

4.7 CERENKOV COUNTER (CC) EFFICIENCY

In the EG4 experiment, the Cherenkov Counter (CC) signal plays a major part in form
ing the event trigger for the data-acquisition system (DAQ). As stated earlier (see 3.4.4), 
for the purpose of achieving low Q2  measurements with high detector efficiency3, a new 
dedicated CC was designed and placed in the sixth sector. Even though the new CC was 
designed to have a very high and uniform detection efficiency, some variation occurs over 

the covered kinematic range and therefore the knowledge of the detector efficiency as a 
function of the kinematics is required by our “method of absolute cross-section differ
ence”. Therefore, a study was done to determine the CC efficiency as follows.

4.7.1 PROCEDURE

It is assumed that the efficiency for some specific kinematic bin depends on the average 

number of photoelectrons produced by electrons in that bin which, in turn, is determined 
by the hit location on the Cerenkov PMT-projected plane as well as the angle with which 

the electron hits (or intersects) the plane. In the following, we describe how we determined 
the efficiency as a function of kinematic variables.

1 . First, we define a torus-current normalized inverse-momentum variable ip =  (Itor/ 2250) / p  
(see above), and divide the whole kinematic space into 1 2  bins in “ip” as follows:
(0.3,0.4,0.5,0.6, 0.7, 0.85, 1.0,1.25,1.5, 1.75,2.0,2.25,2.53). (For example, a 0.5 
GeV electron during a 2 GeV run, which used 2250 A for torus current, would have

ip = 2.0 GeV"1)

2. Next, for each bin in “ip”, a 2D map of the average number o f photoelectrons is 

produced in a kinematic space defined by 0 ^* (scattering angle measured at the 
event vertex) and <poc] (azimuthal angle as measured at DC1). For this step, some 
data from NH3 production runs4  are used with the standard electron selection cuts.

One of these average-nphe maps is shown in the Fig. 57.

3. Next, using the “EC-only-trigger” data runs, good electron candidates are selected

3High detection efficiency is crucial for achieving smaller systematic uncertainties in the extracted 

physics quantities.
4This method relies on the use o f two different sets o f data. One is the regular NH3  target data and another 

is the “EC-only” data runs which were collected without using CC in the trigger. Since the latter type of data 

were collected with NH 3  as target, to be consistent, NH3  production data was chosen rather than the ND3  

ones to make the Nph-maps.
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FIG. 57. Average photoelectron number (color-coded) produced in the 6 th sector CC as a 

function of 6vU and <j>DC\ in the second bin o f the variable ip = (Ilor/2250)/p  (from the 
2.3 GeV NH3 data).

using the same cuts as before but without any CC-related cuts. For each of the 

selected electrons, the expected number of photoelectrons in the CC is determined 
in a look-up from the above average A^-maps based on its momentum and angles. 
This expected Npf, is then histogrammed in two ways - one histogram for those 
electrons which either didn’t trigger CC or didn’t pass all of the CC related cuts 

and another histogram for all electrons. The ratio of these two histograms (shown 
in the top-right and top-left panels of Fig. 58 respectively) gives us the inefficiency 
of the CC-detector as a function of Npf, (as shown by the bottom two panels of the 
same figure). (Errors in the inefficiencies have not been drawn (for the purpose of

h2avoNph*TTtvPhOcP04

Entries 4043748
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cleaning) in the figures but they were calculated using the fact that the error in a ratio 
N2/N1 is ^/N2{\ — N 2 /N l) /N l) .

4. The ideally expected CC intrinsic inefficiency is given by the Poisson distribution, 
since we require more than 2  photoelectrons, the theoretical prediction for the inef
ficiency is actually (1 + Nph + 1/2 N*h)*exp(-Nph). However, we found empirically 
that if  we calculate Nph only with electrons that exceed the threshold of 2.5, then 
we find that the functional form is pretty close to the formy =  po + p i ■ exp(—p 2x), 

where x represents Nph > , and y represents the inefficiency. This form was used 
to fit with the above measured inefficiency and the result of the fit is shown in Fig. 

58. We find that the inefficiency agrees very well with the expectation at low nphe, 
but remains at a very small constant value of around 0 . 0 1  (we call it the “constant 

background”) at higher nphe.

5. Finally we use the inefficiency fit just developed to evaluate the corresponding ef

ficiencies and transform the 2D map of Nph into the corresponding efficiency maps 
(see Fig. 59 for such a map in one momentum bin.). These maps are later used to 
apply the efficiency correction on an event by event basis in the simulation.

From this study, we see that the CC is very efficient in most of the kinematic region (see 

Fig. 59). Once, the CC-(in)efficiency was estimated, we use the calculated CC efficiency 
to multiply our simulation (i.e., for each simulated event, we look up the CC efficiency 

and weigh the event with it.
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FIG. 58. EC detected good electrons (for all momenta) as a function o f < Nph > (top 
left). Similar distribution (top right) for those good electrons that were detected by the EC 

but were rejected by the standard set of event selection cuts which includes CC-dependent 
cuts. By dividing the latter with the former, one gets the calculated CC inefficiency. The 
bottom two plots show the inefficiency distribution and a fit (red continuous line) in both 
linear (in third panel) and logarithmic (fourth panel) scales. Looking at the first plot, it can 

be seen that most electrons are above Nph =  15 where the inefficiency is at most 1 - 2  %.
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FIG. 59. CC-efficiency in a momentum bin .
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4.8 PION CONTAMINATION CORRECTIONS

One of the two major sources of backgrounds in the measured EG4 electron rates 

comes from misidentified negatively charged pions (it~) that produce similar set of signals 
as electrons in various detector components and thus pass the electron ID cuts. In the EG4 
experiment, signals from the electromagnetic calorimeter (EC) and Cherenkov counter 
(CC) are used to discriminate electrons from pions, but even with stringent conditions on 

these signals, some of the pions get misidentified as electrons. To avoid limiting statistics 
too much in order to minimize the final statistical error in a given kinematic bin, a trade
off in purity versus efficiency (statistics) is made by quantifying the amount o f this kind of 

contamination.

4.8.1 METHOD

First, the whole kinematic space covered by EG4 is divided into 90 two-dimensional 

bins - 9 in p and 10 in 0 5.
For each kinematic bin, a histogram of the number o f photo-electrons (variable ‘Ap/,/ 

in the data ntuple) produced by the electron candidates (selected using the standard particle 
selection conditions (cuts) except that no cut on lNphe’ is included is made (see Fig. 4.8.1). 
Likewise, using a very stringent set of cuts, a similar histogram is made for the cleanest 

possible sample o f pion candidates in the same kinematic bin.

•  Estimating the contamination in each bin: A 7th order polynomial is fit to the Npf,e 
histogram for electrons in the Nphe range extending from Nphe = 1. 8  to Npi,e=l0. The 

fit is then extrapolated down to Nphe = 0 (see Fig. 4.8.1). Subtracting the extrapolated 
fit from the impure electron distribution results in the extraction of the contaminating 
pion peak6. Rescaling the pure pion sample to the extracted peak gives us the distri

bution of the actual pion contamination over the complete range oiN phe. Finally, the

5For 2 GeV or higher beam energy data sets, the p-bin boundaries are chosen as (0.30,0.60, 0.90,1.20, 

1.50,1.80,2.20,2.60, 3.00) and (0 .30,0.45,0.60,0.75,0.9,1.1,1.4) for others. And, for 0, the boundaries 

are (5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.0, 15.0, 19.0, 25, 49). The choice o f the binning was rather arbitrary. 
Nevertheless higher statistics region was divided into relatively finer bins (event population peaks around 6= 

10 degrees).
6Beyond Np/,e =1.8, the electron sample is nearly pure except for a tiny fraction due to the pion tail, so any 

function that fits that section of the VpAe-distribution is supposed to represent the pure electron distribution. 

In order to simplify the situation, we chose to fit only from 1.8 to 7.0 rather than covering the full range 

beyond 7.0.
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counts corresponding to this rescaled pure sample in the region above the standard 
cut Nphe >  2-5 is calculated. Then the ratio of this count to the impure electron count 
in the same standard Npf,e range gives the measured contamination for the bin.

•  The contaminations thus evaluated for different momentum bins belonging to a par
ticular 0-bin are then plotted against the corresponding momenta. Then, this is fit to 
an exponential function.

•  The parameters pari and par2 of the exponential fit performed in different theta bins 

are next graphed together to see the presumed linear dependence.

•  Finally, a global fit is performed on all the contaminations in different 9- and p- bins 

(not on the fit parameters). The fit parameters from the earlier two fits only give 
us a hint to the type of the dependence, thus allowing us decide the form of the fit 
function.
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(a) For the first in momentum and seventh in 9  bin. (b) For the first in momentum and eighth in 6  bin.

FIG. 60. Number of photo-electrons produced in CC by clean pion and contaminated 
electron samples (3.0 GeV data)

From the study, it is found that the typically pion contamination is less than 1 %.



126

hi Elites j Raw El
EIFIt<1.8,7.0) Ih1 Elites
Unscalad PI

 Raw El - Fit
 Scalad PI

22000

20000

18000
16000
14000
12000 Contamln(2&25,0.7 57)%
10000

El: 16068668000
6000 PI: 12078
4000
2000

1 10 Nphe

E_beam: 1339 Me

2.5

1.5

0.5

0.8
P

(a) For the first bin in momentum and seventh bin in 

0 .

psCont(%) vs p (8: 9.5)

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

i !

U'

Raw El 
El Flt(1.8*7.0) 
Unseated PI 
Raw E l-F it 
Scalad PI

'Contamftj(7.106,2.^09)% 

El: 789683\

Pi: 17069

10 Nphe

(b) For the first bin in momentum and eighth bin in 

0 .

psCont(%) vs p (8: 9.5)

2256

2.5

1.5

0.5

0.2 0.4 0.1
P

(c) Fits in the 0(9.0,10.0) bin for 1.339 GeV data. (d) Fits in the 0(9.0,10.0) bin for 2.0 GeV data.

FIG. 61. The top row plots show the calculation of pion contamination of electrons for the 

given kinematic bins of 3.0 GeV data. The dotted black line indicated by the label “Raw 
El” in the legends of each of the two plots are the contaminated electrons. Likewise, the 
line labeled “El Fit” is a polynomial fit to the electron distribution (in this case fitted from 
Nphe=l . 8  to 7.0, but extrapolated down to Nphe=0). The line labeled “Unsealed Pi’ is the 

pure pion distribution obtained with stringent set of cuts. “Raw El - Fit” is the difference 
between the contaminated electron sample and the polynomial fit and finally “Scaled Pi” 

is the pure pion-sample but after its scaled to match with the “Raw El - Fit” at the pion 
peak position (around 1 Nphe). The bottom row plots show the fits of the contaminations 

as a functions of momentum (p ) in a given 6 bin.
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4.9 <?+e -PAIR SYMMETRIC CONTAMINATION CORRECTIONS

The next major source of background is the secondary electrons from various e+e~ 

pair production processes. When an electron originating from such a pair passes through 
the detector, the detector has no way to distinguish it from the electrons that actually 
scattered off the target. Therefore, the detector simply accepts it as a true scattered electron 
candidate, thus producing a contamination that has to be estimated and corrected for. The 

first such source is the wide-angle e+e~ pair production from bremsstrahlung photons 
generated in the target. The other major source is hadron decay such as the Dalitz decay 

(7C° —>e+e y), 7T°—» yy and then conversion of these photons into e+e pairs. Likewise, 
the pseudoscalar particle rj, and the vector mesons p , 0),<j> also decay to e+e~, but they are 
not major contributors because of their very small decay probabilities as well as the small 

population compared to the n° and photons. Of all these sources, the biggest contributor 
to the secondary electrons is the tt0—> yy with y conversion to e+e~ [89].

The amount of contamination from this type of process can be estimated by monitor
ing the amount of positrons that were recorded under the same experimental and kinematic 
conditions. Because of the symmetry in the amount o f electrons and positrons produced 
from these sources, the positron to electron ratio gives us the amount of the pair-symmetric 
contamination. However, due to the presence of the strong magnetic field inside the detec

tor and the fact that the positrons have opposite charges, their detector acceptance would 
be different in a given setting. By reversing the magnetic field while keeping everything 

else the same, it is possible to estimate the contamination. For some of the beam energies 
used for the NH3 data f  the EG4 experiment, some data were collected with identical ex

perimental setting but with the torus field reversed. The data from those runs were used to 
estimate the amount of positrons in somewhat the same fashion as pion contamination. For 

example, Fig. 62 shows one estimate (both data points and the fit) of the contamination in 
EG4 compared with those determined for the EG lb experiment [35].

For this analysis, both the pion and e+e“ pair symmetric contaminations are small 
enough to be ignored. This leads to only a slight increase in the systematic error in the 

final physics results.
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FIG. 62. Pair-symmetric contamination Fits (%) as a function of electron momentum.

4.10 STUDY OF NH3 CONTAMINATION OF EG4 ND3 TARGET

In equation (102), it is assumed that the ammonia target is 100% pure i.e. composed 
of only 1 5 ND3 molecules and that the contribution from the slightly polarized nitrogen is 
negligible. But, in practice, the standard ND3 sample is not a 100% pure material. Rather, 

it contains one or two percent of 1 4ND3 , 1 5 NH3 [90], and some traces of other isotopic 
species of ammonia. It was reported by the EG1-DVCS experiment at Jlab [91] [92] that a 
higher than usual amount of NH3 (about 10%) was observed in the ND3 target, indicating 

that an inadvertent mix-up of NH3 and ND3 materials could have happened during the
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experimental run. Wondering if the EG4 experiment had a similar incident, we decided to 
investigate and estimate the amount of NH3 contamination o f our ND3 target by looking 
at the data from the ND3 run period of the experiment as described below.

4.10.1 PROCEDURE

The method involves using ep elastic (or quasi-elastic in the case of non-proton target) 

events and comparing the width in some quantity that reflects the correlation between the 
scattered electron (e) and the recoiling proton (p) due to the kinematic constraints of such 
events. The most suitable correlation is the one between the polar angles of the electron 
and the proton. That is because of the better angular resolution in CLAS than that for 
momentum, and also due to the fact that polar angle (0 ) resolution is much better than that 

of the azimuthal angle (0 ) because of the rotational effect (on <j>) of the polarized target 
field as well as the drift chamber resolutions [91].

The 0-correlation can be studied mainly in two ways. The first way is to reconstruct 

and histogram the beam energy using the measured polar angles and the known target 
mass and then compare the histogram from the ND3 target ran with that from a pure 
NH3  target run. The other equivalent way is to predict the proton polar angles (using the 
measured electron angles, known target mass and the beam energy) and then histogram 

the deviation of the measured proton angles from the expected values. We chose to use 
a slightly modified version of the latter approach in which we histogram the following 
quantity7:

where p p is the measured proton momentum, Bp is the measured polar angle of the proton, 
and dq is the expected polar angle o f the recoiling proton (which is also the angle of the 
exchanged virtual photon (q)) given by:

The method exploits the fact that the width of the quantity A from data with deuteron 
target decreases because the Fermi motion of the protons in the deuteron nuclei gives 
a spread of the order of 50 MeV in transverse momentum, and for longitudinal particle 
momenta of order of a few GeV, we obtain a polar angle spread about 20 mr, which is 
much larger than the intrinsic CLAS resolution of about 2 mr.

7We chose this quantity A rather than the simple angle difference (Qq-6 P) because the former is more 

directly interpretable in terms of transverse missing momentum for the case of quasi-elastic scattering.

A =  jop - (sinQq — sinOp) (127)

farrt(0 / 2 ) • {Ebeam-\-Mp)
(128)



130

4.10.2 EVENT SELECTION

F i r s t ,  f o r  e a c h  d a t a  s e t  ( c o r r e s p o n d i n g  e i t h e r  t o  N H 3 ,  N D 3  o r  12C  r u n s ) ,  u s i n g  s t a n 

d a r d  e l e c t r o n  a n d  p r o t o n  i d e n t i f i c a t i o n  c u t s  e v e n t s  e a c h  w i t h  a  w e l l  r e c o n s t r u c t e d  s c a t t e r e d  

e l e c t r o n  a n d  a  s i m i l a r l y  w e l l  r e c o n s t r u c t e d  c a n d i d a t e  f o r  p r o t o n  a r e  s e l e c t e d .  W e  a c c e p t  

o n l y  e v e n t s  e a c h  o f  w h i c h  h a v e  o n e  e l e c t r o n ,  o n e  p r o t o n  a n d  a t  m o s t  o n e  n e u t r a l  p a r t i c l e  

c a n d i d a t e  ( e x p e c t e d  t o  b e  a  n e u t r o n  c o m i n g  o f f  f r o m  t h e  d e u t e r o n  t a r g e t  b r e a k - u p ) .  I f  t h e  

e v e n t  i s  o n e  o f  t h e  a b o v e  t w o  t y p e s ,  f o l l o w i n g  a d d i t i o n a l  c u t s  a r e  a p p l i e d  t o  m a k e  s u r e  i t  

i s  e l a s t i c  o r  q u a s i - e l a s t i c  e v e n t :

•  Ex <  0.15  G e V  w i t h  Ex  =  Mp +  Ee — Eg> — Ep =  Mp + v  — Ep

•  Px <  0.5  G e V / c  w i t h  Px =  0^  + P e — — Ppi =  Pe — — Pp>

• 0.88GeV <M X < 1.04GeV

• 0q < 49.0°

•  | |0 e  — 0 p| — 180.0°| <  2 .0 °

w h e r e  X  i n d i c a t e s  t h e  m i s s i n g  e n t i t y  i n  t h e  d ( e , e ’p ) X  c h a n n e l ,  w h i c h  i s  e x p e c t e d  t o  b e  

n e u t r o n  i n  t h e  c a s e  o f  t h e  q u a s i - e l a s t i c  c h a n n e l ,  t h u s  Ex  i s  t h e  m i s s i n g  e n e r g y  a n d  s o  o n .

I f  i t  p a s s e s  t h e s e  c u t s ,  t h e  q u a n t i t y  A  i s  c a l c u l a t e d  f o r  t h e  e v e n t  a n d  t h e n  h i s t o g r a m m e d  

a s  s h o w n  b y  t h e  r e d  c u r v e s  i n  t h e  t o p - l e f t  ( f r o m  12C  r u n s ) ,  t o p - r i g h t  ( f r o m  N H 3  r u n s ) ,  a n d  

b o t t o m - r i g h t  ( f r o m  N D 3  r u n s )  p a n e l s  o f  F i g .  63.

A f t e r  g e t t i n g  t h e  h i s t o g r a m s  f o r  t h e  q u a n t i t y  A  f o r  t h e  e p - e l a s t i c  o r  q u a s i - e l a s t i c  e v e n t s  

f r o m  t h e  N H 3 ,  N D 3  a n d  l2 C  t a r g e t  d a t a  s e t s ,  w e  f i r s t  r e m o v e  t h e  c o n t r i b u t i o n  f r o m  t h e  n o n 

h y d r o g e n  c o m p o n e n t  o f  N H 3  a n d  N D 3  t a r g e t s  b y  s u b t r a c t i n g  t h e  c o r r e s p o n d i n g  c a r b o n  

h i s t o g r a m  ( p r o p e r l y  s c a l e d  t o  m a t c h  w i t h  t h e  s h o u l d e r s  f r o m  t h e  b a c k g r o u n d  i n  e a c h  o f  

t h e  a m m o n i a  d a t a ) .  S i n c e  t h e  c a r b o n  d a t a  i s  t o o  l o w  i n  c o u n t s  ( h e n c e  t h e  r a g g e d n e s s  i n  

t h e  h i s t o g r a m ) ,  a  f i t  ( a  ’g a u s s i a n ’ t i m e s  a  ’l i n e a r ’ f u n c t i o n )  t o  t h e  c a r b o n  d a t a  i s  o b t a i n e d ,  

a n d  t h a t  f i t  ( s h o w n  a s  t h e  b l u e  l i n e  i n  t h e  f i r s t  p a n e l  i n  F i g .  63 i s  u s e d  i n s t e a d  o f  t h e  

h i s t o g r a m  i t s e l f  t o  r e m o v e  t h e  b a c k g r o u n d .  T h e  b l u e  l i n e  i n  t h e  s e c o n d  ( t o p - r i g h t )  p a n e l  

a n d  t h e  c y a n  l i n e  i n  t h e  l a s t  ( b o t t o m - r i g h t )  p a n e l  s h o w  t h e  p r o p e r l y  s c a l e d  c a r b o n  f i t s  

w h i c h  a r e  s u b t r a c t e d  f r o m  t h e  N H 3  a n d  N D 3  h i s t o g r a m s  ( s h o w n  b y  r e d  l i n e s )  r e s p e c t i v e l y .  

A f t e r  t h e  s u b t r a c t i o n ,  w e  g e t  n e w  h i s t o g r a m s  t h a t  r e p r e s e n t  ’p u r e ’ e l a s t i c  o r  q u a s i - e l a s t i c  

d a t a  f r o m  p r o t o n s  a n d  d e u t e r o n s  ( s h o w n  b y  t h e  m a g e n t a  l i n e s  i n  t h e  t h i r d  a n d  l a s t  p a n e l s  

r e s p e c t i v e l y ) .
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4.10.3 EXTRACTING THE CONTAMINATION

After we have the ’pure’ elastic or quasi-elastic data from NH3 and ND3 runs, we get 
the mean and the spread (standard deviation a  ) of the proton elastic peak by fitting the 
NH3  data to a Gaussian function f p(x) (the blue line in the third panel with parameters 
p0=height, pl=mean and p2= 0  ). After we have the fit for the proton elastic peak, we fit 
the background subtracted deuteron data to a function f(x) that is a linear combination of 

the pure proton fit and a pure deuteron fit (the latter with the form of a quadratic function 
x a Gaussian8) as follows:

/(* )  =  />o •//>(*)+  (pi +P 2 -x+p->,-xL)-e~ (i'5'("'s4) (129)

where pi (i = 0, 2, .. ,5 )  are the free parameters which are determined by fitting of f(x) 
to the deuteron data. The first term po ■ f p(x) in f(x) represents the contribution from the 

contaminant (i.e., protons in ND3 ) and the rest of the term in f(x) represents the contribu
tion from the deuterons in ND3 . The total fit function f(x), the proton contribution and the 
deuteron part are shown by the blue, green and black lines in the fourth panel. The ratio of 
the area under the green line to that under the blue line gives us the relative amount o f the 
NH3  contamination in the ND3 target.

4.10.4 RESULTS AND CONCLUSION

From the calculation as described above, the estimate for the ND3 contamination came 
out to be 4.4% It was not possible to do a similar analysis on the 1.3 GeV ND3 data, 
because the CLAS acceptance constraints did not allow for the coincident detection o f e 
and p from the exclusive (quasi-)elastic events. The basic conclusion is that at 2 GeV, we 
cannot get a ’pure’ Gaussian spectrum for deuteron, and therefore, there is no way to un

ambiguously separate deuteron from proton in ND3 . The fact that the fit looks reasonably 

well (with contamination coming out to be only a few percent) and that we clearly do not 
see a narrow peak on top of a wider one (unlike in EG1-DVCS) should be sufficient to 
ascertain that EG4 did NOT have the same contamination problem as EG1-DVCS (which 
still has not been explained yet) [63]. To accommodate the fact that the contamination 

measurement is not reliably unambiguous, we will assume a rather generous systematic 
error due to the contamination.

8  A pure Gaussian and other forms for the deuteron spectrum were tried but the overall fit was not as good.
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F I G .  6 3 . H i s t o g r a m s  s h o w i n g  t h e  q u a n t i t y  A = p p - (sinQq — sindp )  f o r  e l a s t i c  o r  q u a s i 

e l a s t i c  e v e n t s  f r o m  c a r b o n - 12 ( t o p - l e f t ) ,  N H 3  ( t o p - r i g h t )  a n d  N D 3  ( b o t t o m - r i g h t )  t a r g e t  

r u n s  r e s p e c t i v e l y .  T h e  t h i r d  ( b o t t o m - l e f t )  p a n e l  s h o w s  t h e  b a c k g r o u n d  r e m o v e d  e l a s t i c  

e v e n t s  f r o m  t h e  N H 3  d a t a .  I n  t h e  f o u r t h  p a n e l ,  v a r i o u s  A  a r e  s h o w n  -  r e d  i s  t h e  r a w  

N D 3 ,  l i g h t  g r e e n  i s  t h e  s c a l e d - 12C  f o r  t h e  n u c l e a r  b a c k g r o u n d ,  b r o w n  i s  f o r  t h e  d i f f e r e n c e  

b e t w e e n  t h e  t w o .
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4.11 SIMULATION AND APPROACH TO ANALYSIS

T h e  E G 4  d a t a  c o n s i s t  o f  a  t a b l e  n u m b e r s  o f  e l e c t r o n s  r e c o n s t r u c t e d  w i t h i n  v a r i o u s  

(W, Q2) b i n s  t h a t  a r e  s c a t t e r e d  o f f  p o l a r i z e d  h y d r o g e n  ( N H 3 )  o r  d e u t e r o n  ( N D 3 ) ,  d i v i d e d  b y  

t h e  ( l i f e - t i m e  g a t e d )  i n t e g r a t e d  c h a r g e ,  f o r  t w o  d i f f e r e n t  c o m b i n a t i o n s  o f  t a r g e t  p o l a r i z a t i o n  

a n d  b e a m  h e l i c i t y :

n± = N ± /F C ± , (130)

w h e r e  “ + ”  r e f e r s  t o  b e a m  h e l i c i t y  a n d  t a r g e t  p o l a r i z a t i o n  a n t i - p a r a l l e l ,  w h i l e  ”  r e f e r s  t o  

t h e  p a r a l l e l  c a s e .  T h e  d i f f e r e n c e  b e t w e e n  t h e s e  t w o  n o r m a l i z e d  c o u n t s  i s  g i v e n  b y

An(}V, Q2) = n+(fV, Q2) -  #T(W, ( f )  = Sfr • • Ao(W, Q2) •A ccE ff(W , Q2) + Bg
(131)

w h e r e  t h e  “ r e l a t i v e  l u m i n o s i t y ”  ££r i s  a  c o n s t a n t  f a c t o r  c o n t a i n i n g  t h e  d e n s i t y  o f  p o l a r i z e d  

t a r g e t  n u c l e i  p e r  u n i t  a r e a  a n d  t h e  c o n v e r s i o n  f a c t o r  f r o m  F a r a d a y  c u p  c o u n t s  t o  i n t e g r a t e d  

n u m b e r  o f  e l e c t r o n s  i n c i d e n t  o n  t h e  t a r g e t ;  Pb a n d  Pt a r e  t h e  b e a m  a n d  t a r g e t  p o l a r i z a t i o n ,  

Acc a n d  E f f  a r e  t h e  g e o m e t r i c  a c c e p t a n c e  a n d  d e t e c t i o n  e f f i c i e n c y  o f  C L A S  f o r  e l e c 

t r o n s  w i t h i n  t h e  k i n e m a t i c  b i n  i n  q u e s t i o n  ( i n c l u d i n g  c u t s  a n d  t r i g g e r  e f f i c i e n c y ) ,  a n d  t h e  

b a c k g r o u n d  Bg c o m e s  f r o m  s e v e r a l  s o u r c e s ,  i n c l u d i n g  p i o n s  m i s i d e n t i f i e d  a s  e l e c t r o n s ,  

e l e c t r o n s  f r o m  e+e~ p a i r  p r o d u c t i o n ,  a n d  e l e c t r o n s  s c a t t e r e d  o f f  ( p a r t i a l l y )  p o l a r i z e d  t a r 

g e t  n u c l e o n s  a n d  n u c l e i  t h a t  a r e  n o t  t h e  i n t e n d e d  s p e c i e s  ( e .g . ,  b o u n d  p r o t o n s  i n  1 5N, f r e e  

p r o t o n  c o n t a m i n a t i o n  i n  n o m i n a l  N D 3  t a r g e t s ,  a n d  b o u n d  p r o t o n - n e u t r o n  p a i r s  i n  a n y  14N  

c o n t a m i n a t i o n  p r e s e n t ) 9 .

O u r  m a i n  g o a l  i s  t o  e x t r a c t  t h e  s p i n  s t r u c t u r e  f u n c t i o n  g i  a n d  c a l c u l a t e  i t s  m o m e n t s .  

T h e  c r o s s  s e c t i o n  d i f f e r e n c e  Ao(W, Q2) o n  t h e  r i g h t  s i d e  o f  t h e  a b o v e  e q u a t i o n  i s  w h a t  c o n 

t a i n s  t h e  i n f o r m a t i o n  o n  g\ (fV,Q2) a l o n g  w i t h  v a r i o u s  o t h e r  c o n t r i b u t i o n s . 10 T h i s  m e a n s  

w e  c a n ,  i n  p r i n c i p l e ,  c a l c u l a t e  t h e  c r o s s  s e c t i o n  ( a n d  t h e n  u s e  t h a t  t o  e x t r a c t  g i ) ,  f r o m  t h e  

b a c k g r o u n d  c o r r e c t e d  m e a s u r e d  q u a n t i t y  An(fV, Q2) b y  p u t t i n g  i n  t h e  v a l u e s  f o r  a l l  t h e  r e s t  

o f  t h e  q u a n t i t i e s  i n v o l v e d  i n  E q .  131. B u t ,  i n  r e a l i t y ,  h a v i n g  a n  a c c u r a t e  k n o w l e d g e  o f  Acc 

a n d  E f f  i s  c h a l l e n g i n g  a n d  t h e  a v a i l a b l e  m e a s u r e m e n t s  o f  p o l a r i z a t i o n s  a n d  l u m i n o s i t i e s  

a r e  n o t  r e l i a b l e  e n o u g h .  S o ,  e x p e r i m e n t e r s  u s u a l l y  r e s o r t  t o  M o n t e - C a r l o  s i m u l a t i o n  t o

9While this background is a small correction for hydrogen targets, in the case of deuteron targets, it must 

be corrected for (see Sec. 4.16.1).
l0Ao(fV,Q2) also has contributions from the unmeasured g i or, equivalently, from the product A2p\.

Moreover, the cross section receives modifications and tails from radiative effects (both internal and external

radiation) and kinematic resolution smearing.
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determine some or all of those factors that are involved in the relation between the counts 
and cross-section differences.

A standard way to extract the sought-after Physics quantities from these kinds of mea

surements proceeds along the following steps [93]:

1. Use a full simulation of CLAS with a “realistic” event generator, detector simulation 
and event reconstruction including cuts to obtain the product AccE f f  as the ratio o f 

events reconstructed in a particular bin, divided by events thrown in that same bin.

2. Extract the product S£r ■ PbPt from the ratio of the acceptance and efficiency corrected 
An in the (quasi-)elastic region (0.9 < W <  1.0) to the well-known theoretical cross 
section difference for elastic (or quasi-elastic) scattering off the proton (deuteron).

3. Estimate and correct for fig.

4. Apply radiative corrections, which use a model of the unradiated Bom cross section 

and a calculation of the radiated cross section based on programs like RCSLACPOL 
(see below). There is some ambiguity in how to apply these corrections; e.g., one 
can attempt to separate the effect of the (quasi-)elastic (or other) tail which should be 
simply subtracted from the measured cross section difference, and a multiplicative 

factor that accounts for vertex corrections and all other effects not accounted for in 
the tail. In practice, one has to repeat the calculation o f these radiative corrections 
several times with different model input and assumptions about the target, to assess 

systematic uncertainties.

5. Express the extracted Bom cross section difference in terms of the desired quantity 
(here: g i) and additional input (e.g., AiF\). Use a model for the latter to extract g\ 
only. Vary the model (concurrently with the model input to the previous step) to 

assess systematic uncertainties.

One conceivable problem with this approach lies in the first step, and in particular with 
the choice of the “realistic event generator”. This choice would not matter at all if two 

conditions are fulfilled [93]:

1. The kinematic bins are chosen so small that the variation of the cross section over 
the bin (and/or the corresponding variation of the acceptance times efficiency) do not 
lead to any significant deviations for the average A ccE f f  between the simulation 

and the real detector.
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2. The counts reconstructed within any one bin are directly proportional to the number 
of initial electrons generated within that same bin (the proportionality constant being 
A ccE f f) ,  without any “bin migration” from other kinematic bins. (Otherwise, the 
ratio reconstructed/generated depends on those “migration tails”, and the simulation 
will give different results from the “true value” if the overall cross section model of 
the generator is not accurate enough.)

Unfortunately, assumption 1 tends to directly contradict assumption 2 because 1 favors 

small bins and 2 favors large bins! For most precision experiments , bin migration effects 
are significant. This is aggravated by the difficulty of making a clean separation between 
bin migration due to detector resolution alone and the contribution from radiative effects. 
For instance, GEANT and therefore GSIM includes (at least by default) photon radiation as 
part of the simulation of outgoing electron tracks throughout the gas and building materials 
of all detectors. It is very important not to “double count” when simulating an experiment; 

the radiative calculations in step 4 above should not include any “after” radiation beyond 
the limit of the target itself (which, in turn, should then NOT be included in the GSIM 
simulation as material to be traversed).

This is a problem for all CLAS experiments attempting to extract absolute cross sec
tions (or, here, cross section differences); however, the problem is magnified for our case: 
Since the cross section difference itself is not required to be positive, one can have both 
positive and negative tails migrating into adjacent bins. In any case, it is clear that using 
the average, unpolarized cross section as a model for the generator is not really appropri

ate (unless one is confident that the asymmetry is fairly constant or slowly-varying -  not 
a good assumption in the resonance region where the A(1232) with negative asymmetry is 
adjacent to the SI 1 with positive asymmetry). Using a (hopefully realistic) model of the 
cross section difference instead would be much better, but this causes two new problems 

[93]:

1. Prima facie it is unclear how to simulate a negative cross section (difference). This 
problem can be circumvented fairly easily (see below), albeit at extra cost in terms 
of simulation effort.

2. It obviously becomes impossible to extract A ccE f f  from a simple ratio of recon
structed divided by generated events; both of these quantities could be positive, neg

ative (even different sign under extreme circumstances), or - particularly bad for the 
denominator - zero. From this discussion, it is also clear that such a ratio would
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depend very sensitively on the cross section model and bin migration tails and be a 
very poor indicator of the actual product AccE f  f .

For this reason, we decided to try a different approach outlined in the following. The 
basic idea is to study the dependence of the reconstructed count difference on the model 
input (in particular g i) directly through the whole chain o f simulation and reconstruction, 
and then use tables of Bom and radiated cross section differences for various model inputs 
as estimates of systematic uncertainties11.

4.11.1 OUTLINE OF THE METHOD

The basic idea is the following: If we already had a perfect model o f gi and all other 

ingredients that go into An (including a perfect simulation of CLAS), a simulation o f An 
would agree 100% with the data (within statistical errors). Any (larger than statistical) 
deviation between such a simulation of An and the data can only be due to the following 
possible sources:

1. The model for gi must be adjusted to reflect the “true” g \. This is the default as
sumption which we will use to extract gi from the data. This will be done by finding 
the proportionality factor between small changes in gi and the reconstructed An and 
then adjusting g\ to fully account for the observed An.

2. There could be a systematic error on this proportionality factor (which, after all, will 

come from simulation); for instance, there could be systematic deviations from the 
simulated results for acceptance and efficiency (in particular efficiencies of the CC, 
EC, or tracking, that are not perfectly simulated by GSIM). This is a multiplicative 
uncertainty that must be carefully estimated and applied to the final data.

3. Any imperfect simulation of the “background” due to all events not originating in 
the bin in question (migration, radiation), or due to undesired target components (hy

drogen, bound polarized nucleons in nitrogen), or from misidentified pions or e+e~ 
pairs, or due to contributions to Act from A i can lead to an additive systematic devia

tion that would then be misinterpreted as a change in g i. This systematic uncertainty 
must be studied by varying model inputs, parameters etc. in the simulation.

1 1 We developed this method for the case of an ND3  target; however, it could, of course, easily be adopted 

toNFL, as well
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4.12 RADIATIVE CORRECTIONS

The physics quantities that we seek to extract from measurements are theoretically de
fined or interpreted and calculated in terms of the cross-section of the so called “Bom” 
scattering process, which is represented by the simplest possible Feynman diagram i.e., 

by the lowest order approximation of a single photon exchange process. However, the 
measured cross-sections also contain contributions from higher order electromagnetic pro

cesses, which must be accounted for before extracting the quantities o f our interest. These 
additional contributions are grouped into two categories - internal and external radiative 
corrections.

The internal corrections are the contributions from the higher order QED processes 
(higher order Feynmann diagrams) which occur during the interaction. These include the 
correction for the internal Bremsstrahlung (i.e., the emission of a real photon while a vir
tual photon is being exchanged with the target) by the incoming or the scattered electron), 
the vertex correction (in which a photon is exchanged between the incoming and the scat
tered electron), and the correction for the vacuum polarization of the exchanged virual 
photon (e+e~ loops).

External corrections include those that account for the energy loss (mainly by the 
Bremsstrahlung process) of electrons well before or after the interaction while passing 

through the target material and the detector.
If the beam electron radiates a photon before the scattering, the kinematics of the ac

tual process will be different from the the one calculated with the nominal beam energy. 
Likewise, if  the radiation occurs after the scattering, the actual energy and momentum of 
the scattered electron will be different from what is calculated normally (i.e., without any 
radiation). The effect can be quite large for elastic scattering.

4.13 “STANDARD” SIMULATION

The simulation process consists of mainly three parts - generating events similar to 
the ones as produced in the double polarization scattering process, simulating the CLAS 
detector response, and finally the event reconstruction from the simulated detector signals.

The first part is accomplished by using a program that is made by combining the es
sential elements of an updated version o f the “RCSLACPOL” program (for cross section 
generation) and some parts of the “STEG” event generator (see sections 4.13.1 and 4.13.2).
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The second part is done by two standard CLAS software packages running in succession 
- “GSIM” and “GPP”(see sections 4.13.3 and 4.13.4). And, finally, the standard CLAS 
package “RECSIS” is used to reconstruct the events in the same way as for the real data.

4.13.1 RCSLACPOL

The simulation for the standard model cross sections proceeds as follows. We use 
the code “RCSLACPOL” [94] that can generate polarized and unpolarized cross sections 

(both Bom and radiated) based on the approach by Shumeiko and Kuhto [95] as well as 
Mo and Tsai [96], including external radiation in the target. This code has been extensively 
tested and used for the analysis o f SLAC experiments E142, E143, E154, E155 and E155x 

as well as Jefferson Lab experiments like EG la and EG lb. It has been updated with 
the most recent models on polarized and unpolarized structure functions (F\,F2 ,A\ and 
A2 ) [97, 94, 98, 99] and an implementation of the folding algorithm developed by W. 
Melnitchouk and Y. Kahn [54] for structure functions of the deuteron. The models have 

been fitted to and tested with data from EG 1 b as well as world data on both A \ and A2 over 
a wide range of Q2 and W, including the resonance region and the DIS region.

For EG4, we have “married” the “RCSLACPOL” code with that of the event generator 
“STEG”. This generator uses a grid of (radiated) cross sections generated by our modified 

version of RCSLACPOL to generate events that are distributed according to these cross 
sections (i.e., the number of events generated in a given bin is proportional to the cross 
section integrated over this bin).

4.13.2 EVENT GENERATOR

The concept and some part of the generator skeleton was inherited from the STEG 

(SimplesT Event Generator) program obtained from INFN, in Genova, Italy. The old 

event sampling part (which made the program run extremely slow) of the code was re
placed by a new one developed by myself which made the event generation process much 

faster. The cross section calculating part was replaced by codes from an updated version 
of RCSLACPOL (see Sec. 4.13.1).

The generator works in two stages. In the first stage, it generates two two-dimensional 

maps or tables of radiated inclusive polarized cross differences (for the scattering of po
larized electrons from a longitudinally polarized deuteron target, by using RCSLACPOL) 
in various kinematic bins encompassing the kinematic region covered by EG4 data. These
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cross section maps (and the corresponding events later on) were generated in the follow
ing angular and momentum ranges: 5.0-45.0 degrees for 6 , 250.0-325.0 degrees for (f> (to 
ensure the CLAS 6 th sector is completely covered) and (0.2 JLbeam) GeV for the momenta, 
where the beam energy Ebeam took values of 1.337 and 1.993 GeV, corresponding to the 
two ND3 data sets o f EG4. In our case, the map was created by dividing the kinematic 
phase space into a grid of small rectangles and then calculating the differential cross- 
section at the geometric center of each of those squares (such as ABCD in Fig. 64). For our 
application, we need to generate two such maps (because of the impossibility of generating 
events according to negative cross-sections) and run the program twice - once correspond
ing to positive polarization and the next for the negative one. For all bins in which the 
integrated cross section Act > 0, we fill the first table (“positive map”) which is therefore 

positive-definite. For all bins in which this cross section is below 0, we fill a second table 
(“negative map”) , but with the absolute (i.e. negative) value o f this cross section.

In the second stage, events are thrown according to the cross section maps produced in 
the first stage. The events are given the vertex coordinates that are uniformly distributed 
over the volume of a 1 cm long cylinder with radius 0 . 0 1  cm around the beam line - with 
the center of this volume being at the EG4 target position of (0,0,-100.93 cm). Nearly 

equal numbers of events are generated for each polarization, they are finally normalized 
according to their total cross sections (integrals of the corresponding maps).

The kinematic and other information (positions, momenta, charge) of these generated 
events are recorded and saved in the BOS format12 output files which organizes data into 
banks. In our case, HEAD, MCEV, MCTK, and MCVX banks are used for the generator 
output. The generator is also capable of producing output in the hbook format which 

makes it possible to study the Monte Carlo data using PAW (or ROOT because the h2root 
program easily converts “hbook” files into “root” files).

4.13.3 GS1M - CLAS DETECTOR SIMULATION

The Monte Carlo events thus generated are next fed into GSIM - the CLAS Monte 
Carlo simulation program using GEANT 3.21 libraries from CERN [100]. It simulates 
the CLAS detector response by implementing a complete model of the detector as well 
as the propagation of particles through different materials including all physics processes, 
such as multiple scattering, energy loss, pair production, and nuclear interactions. The

12Existing versions o f GSIM, GPP and RECSIS accept only BOS format for input files.
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FIG. 64. Comers of a typical bin highlighted in the kinematic space covered by the event 
generator.

program takes the input event particles and then, based on their types, momenta and po
sitions, “swims” (traces) them through all volumes of different materials that are defined 

using various library routines and the detector parameters. Charged particles are also sub
jected to the effects of the toms and target magnetic fields of the same strength as in the 

actual experiment (for this the same field maps are used as in the track reconstruction 
process using RECSIS). All the ingredients of the program (field maps, active detection 
volumes, passive volumes of detector support structures etc) are modeled as accurately as 
possible with the help o f engineering designs and actual detector measurements. Special 

subroutines corresponding to various active parts of the detector produce outputs resem

bling the real detector signals which can then be reconstructed and analyzed just as the real 

experimental data [73][101]. GSIM is configured to match with the conditions of a given 
experiment by giving it proper values of input parameters via a command line input file 

which contains various “ffread cards” some o f which are listed in table- 2  along with their 
values that were used in our simulation.

4.13.4 GSIM POST PROCESSOR (GPP)

The GSIM output is next passed onto GPP - another standard CLAS software package
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- to process the simulated data further so that the detector response is accounted for more 
accurately. This package improves the response by smearing the detector signals and re
moving them if there are dead regions (determined by querying a data base which in turn 

is made by looking at the raw data of the experiment).

A lot of known, unknown, quantified, and unquantified factors such as temperature, 
alignment, dead channels, electronic malfunction etc affect the performance of the CLAS 
detector. But, GSIM does not include all these effects and, hence, the efficiency of the 
detector is always less than what the simulation provides us. To make the simulation more 
realistic by taking into account some of those effects, another CLAS software called GSIM 
Post Processor (GPP) is used to process the GSIM output. The GPP can change the DC, 

SC, CC and EC signals produced in the simulation. The DC signals can be changed by (a) 
accounting for the dead wires according to the calibration database, (b) shifting the DOCA 
mean value, and (3) smearing the hit signals according to the resolution determined by the 
calibration database or according to the command line input. Likewise, SC signals can be 
changed with a parameter input for smearing the time resolution. And, for the CC and EC 
signals, the GPP can use the hardware thresholds[102].

As the experimental conditions and detector configurations can change from one ex
periment to another, in order to run the GPP, we must have our own experiment specific 
calibration constants and parameters such as the run number (R), the DC smearing scale 

values for regions 1, 2 and 3 (a, b, c) and the SC smearing scale value (f). Even for a 
given experiment, these constants and parameters are determined to be different for differ
ent data sets (corresponding to a given beam energy, for example). The value for R can 
be any run number belonging to a specific data set. This number is used to identify the 
entry o f the calibration constants in the database that corresponds to the given data set. 

In order to simplify the job, we decided to use the timing resolutions determined by the 
calibration database assuming that they are good enough and need only to determine new 

values for the DC smearing. To further simplify the job, we assumed that the three DC 
Regions had identical resolutions, so the DC smear parameters a, b, and c would have the 
same values, and the common DC-smear value is what is determined from the procedure 

described below.
In order to determine the DC-smear, we generated a statistically significant number 

(about half million) of elastic-electron events distributed according to the elastic cross 

section and then ran them through GSIM, GPP and RECSIS. The pure proton target events,
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turning off the radiative effects are generated using the existing STEG event generator.
The simulated elastic events are then fed into GSIM, GPP and RECSIS, with GSIM 

and RECSIS used in the same configuration as when processing the CLAS data during 

the “pass-1” phase, and GPP run with different values of DC-smear scales as inputs. The 
reconstructed data coming out of RECSIS corresponding to a given value o f DC-smear is 
then histogrammed in AE again and fitted to a Gaussian to get its a  (characterizing width) 
of and mean (characterizing position). As we can see in figures 4.65(a) and 4.65(b), the 
width o f the elastic peak increases with the DC-smear but the position stays more or less 
the same as expected. In fact, when the two are plotted against DC-smear (as in figures 

4.66(a) and 4.66(b)) the width shows a linear dependance.
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FIG. 65. AE of 2.3 GeV simulated elastic-only proton-target events passing through GSIM, 

GPP (with two different Dc-smear scales), and RECSIS.

4.13.5 FINDING THE WIDTH OF THE REAL CLAS DATA ELASTIC PEAK.

With the knowledge of the DC-smear dependence o f energy resolution (Fig. 4.66(a)), 
if we also know the resolution in the real data, we can determine the right value of DC- 
smear which would make make the resolution in the simulation comparable with that in 
the real data. So, the next step is to find the resolution in the real CLAS data, which 

is done again by measuring the width of the elastic peak in the real data. But, because
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FIG. 6 6 . Graphs showing the dependence of width and position (obtained from the Gaus
sian fits as shown in the fig (4.13.4) of the elastic peaks on the DC-smear applied to GPP.

the real data is a very complex mixture of events coming from various reaction channels, 
we must first have a way to separate the elastic data from the rest. One method entails 
histogramming AE from both the NH3 and 12C target data (for a given beam energy) 
and subtracting the latter (after the cross-normalization) from the former (as in fig (67)) to 

effectively remove the contribution from nitrogen component of the NH3  target leaving the 
contribution coming only (mostly) from the proton component. Another method consists 
of using only the NH3  data but this time calculating the helicity dependent cross-section 
difference in the elastic region Fig. (6 8 ). In the latter method, the difference removes 
the contribution from the unpolarized nuclear background because they have the same 

contribution to the opposite helicity state cross-sections. After the elastic data is separated, 

its AE distribution is fitted to a Gaussian as with the simulation data and we arrive at the 

experimental energy resolution.
Using the first of the two methods mentioned above, the real data resolutions were 

evaluated for three different polar angle (6) cuts - all 6 (in fact 6 > 7°), 0 > 15°, and 
0 > 20°. The dependence of these experimental resolutions on the beam energy for these 
cases are shown together in the Fig. 69, along with the resolution for the case “all 0”, but 

determined from the cross-section difference method. Likewise, as described above, the 
DC-smear dependence of the simulated resolution were determined separately for all these 
three cases of angle cuts, so that we could compare the experimental resolutions with the



144

“  ^ e x p  "  ^ m e s dEthAII
EntrtM 3.49191te*07

X 1 (T

NHI Fit: Wean = |-0.001S49 
r  Sigma = b.0107$9160

140

1 2 0

scalec
1 0 0

2 0

FIG. 67. Histograms illustrating the extraction o f elastic peak for 2.3 GeV by using carbon- 

1 2  data for background removal from the total-cross section (all good electrons with 8 > 1 
used).

simulations correspondingly. One such comparison is illustrated in the figure 70, where 

we show resolutions evaluated for the case of “all 8 ” - first two for the experimental data 
and the rest for the simulated data.

Looking at Fig. 69, it is obvious that the resolution is 9-dependent as expected. When 
the experimental and simulated resolutions are compared for the three different cases of 

8 cuts, we realize that the GPP asks for the 8 dependent DC-smearing, which makes 
the simulation work very complicated with the current version of GPP. To simplify the 
situation, we decide to have a global (8 independent) value o f DC-smearing (for a given 
beam energy) by comparing the experimental and simulated resolutions corresponding to 

the case of “all 8 ” cut. That should be good enough for practical purposes. By taking 
into account the fact that there seems to be an inherent uncertainty in the measurement of
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right one zoomed in around the elastic region (all good electrons with Q > 7  used).

the resolutions (evident from the discrepancy o f the experimental resolutions determined 
from the two different methods) and comparing the experimental and simulated results, 
the values as listed in Table. 1 are chosen for the DC-smearing scales for the GPP.
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experimental and simulated data) on the beam energy (GeV).



148

TABLE 1. DC-smearing scales determined for different beam energies.

1 o < 'w
' 1.054 1.339 1.989 2.256 2.999

DC-smear 2 . 6 2 . 0 2 . 0 2 . 0 1.7

4.14 COMPARISON OF DATA AND SIMULATION

Using our final values for the smear parameters, the simulated data were passed through 

GPP and then reconstructed with RECSIS. Finally, all applicable cuts and corrections were 
applied to both sets of polarized simulation data. Because the CC was turned o f in GSIM 

for the simulation, all experimental data cuts except those depending on CC were applied 
to the simulated data. However, the cuts were modified (see Sec. 4.6) to account for 
differences between simulation and data.

In the end, we had two sets of simulated events (for the two cases of Acr > 0 and 
A ct < 0) in each kinematic bin. The number o f these two type of events in each bin were 
then cross-normalized with respect to each other by their respective cross-section map 

integrals and the number of generated Monte-Carlo events and then combined to make 
the simulated polarized count difference An. To do that, the number of simulated event 

counts in a kinematic bin corresponding to the positive polarization was kept unchanged 
but the one corresponding to the negative polarization was multiplied with the following 
normalization factor:

< T ~  A / +
norm~ =  x —— (132)

where and N +! are the total integral of the cross section map and the corresponding 

number o f Monte-Carlo events generated for each of the polarization cases (+/-).

The next step was to properly cross-normalize the simulated events to the data, as 
outlined in the introduction. For this, we found the scale factor SF necessary to have the 
same An in the quasi-elastic region (e.g., 0.9 <  W <  1.0). This factor represents the ratio

— n~
S F = a ( . ,v (133)Anysimul)

since we assume that the simulation for the cross section difference in this region is reliable 
and all other factors are common to the simulation and the data. In fact, we chose one Q2 

bin (the 20fh one - for which the agreement between the data and simulation was among
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the best) and calculated above ratio to get the global preliminary value of the scaling factor 
SF2 0 . The simulated An was then multiplied with this factor to get our best “prediction” o f 
the real data in all the kinematic bins, in order to directly compare it with the real data (see 
Figs. 71 and 72).

After this normalization, the ratios (n+ — n~)/An(simul) in the quasi-elastic region for 

all Q2  bins were calculated and plotted versus Q2 as well as 0 (see Figs. 4.73(a) - 4.76(a)) 
along with the corresponding statistical errors as given by y /(n + + n~) /  An(simul), As the 
figures show, the ratio in the quasi-elastic region drops off rapidly at small Q2. The fall-off 
is likely due to CC inefficiencies for very high momenta and very forward angles. Also, 

our simple cross section model for the deuteron is less accurate at low Q2. Figs. 4.73(b) - 
4.76(b) show that the A-resonance region does not suffer from similar problems.

The final normalization was obtained by calculating the error weighted average SFaverage 
of above ratios in the quasi-elastic region. The average was calculated using only those Q2 
bins which had ratios reasonably stable and closer to each other. Because, the ratios are 
reasonably stable only above (72  «  0.045 GeV2  and Q2 ~  0.09 GeV2  in the 1.337 and 2.0 
GeV data sets respectively (as can be seen from Figs. 4.73(a) and 4.75(a)), only those Q2 

bins above these two limits were used in calculating the weighted average of these ratios. 
In addition, even above those two limits, some of those which had too large ratios - greater 
than 2.0 (or 2.5) for 1.337 (or 2.0) GeV data set- were not used in the weighted average. 
However, it should be noted that the bins not used in the average ratio calculations were 

not entirely discarded from the final analysis. Only those below Q2 — 0.02 GeV2  were 
completely thrown out from the final analysis because they did not cover the resonance 
(particularly the A) region very well. The resulting simulated data in the form of count dif
ferences An in various Q2 bins are shown in Figs. 71 and 72 along with the corresponding 

experimental data.
A complete systematic error analysis was done to study the effect of the overall scaling 

factor SF  on the extracted g\ (see below) and to estimate its statistical (due to the number 

of counts) and systematic (due to model uncertainties and backgrounds) error.
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(a) Data/Sim ratio vs g 2  in 1.3 GeV quasi-elastic data.
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(b) Data/Sim ratio vs Q1 in A-resonance region o f 1.3 GeV data.

FIG. 73. Q1 dependence of ratios of 1.3 GeV data and simulation in the quasi-elastic and

A-resonance regions.
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(a) Data/Sim ratio vs 0 in 1.3 GeV quasi-elastic data.
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(b) Data/Sim ratio vs 9 in A-resonance region o f  1.3 GeV data.

FIG. 74. The same data as in Fig. 73, but plotted versus average scattering angle (0).
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(a) Data/Sim ratio vs Q2 in 2.0 GeV quasi-elastic data.

Data/Sim for W(1.15,15T1
(0 2 
O

1.8

1.6

1.4

1.2 

1 

0.8 

0.6 

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Q2

(b) Data/Sim ratio vs Q2 in A-resonance region o f  2.0 GeV data.

FIG. 75. Q2 dependence of ratios of 2.0 GeV data and simulation in the quasi-elastic and
A-resonance regions.



155

Data/Sim for W(0.9,1.05) 1
1.4

1 .2

1

0 .8

0 .6

0.4

15 2 0 25 30 355 1 0
e

(a) Data/Sim ratio vs 9 in 2.0 GeV quasi-elastic data.
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(b) Data/Sim ratio vs 9  in A-resonance region of 2.0 GeV data.

FIG. 76. The same data as in Fig. 75, but plotted versus average scattering angle (6).
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4.15 METHOD TO EXTRACT g x AND/liFj

4.15.1 ‘VARIATION” OF THE STANDARD SIMULATION

The whole chain of steps outlined in the previous sections for the standard simulation 

is repeated with just one major difference: the model input for the asymmetries A j for both 
the proton and the neutron are increased by a constant value13 o f 0.1. With all other model 
ingredients being kept constant, this change leads to a change of the spin structure function 
g\ that can be straightforwardly calculated for each kinematic bin within the model:

Correspondingly, the simulated count difference An(W, Q2) will change to a new value 
An'. This “non-standard” simulation with A \ =  A \ {standard) +  0.1 is performed gener

ating an about equal number of Monte-Carlo events. The final reconstructed data is then 
multiplied with the same overall scaling factor SF as for the standard simulation and then 
further (cross-)normalized by one additional factor SFext = {o%/ 0 %)/(N\ / N j) to account 
for the change in cross section map and the (slight) difference in the number of the gener

ated events between the standard and non-standard simulations. Here, o f  and o f  are the 
total cross sections for the positive Ao maps used for the standard and non-standard sim

ulations and, N\ and N2 are the corresponding numbers of generated events. See Fig. (77) 
to see how the polarized count differences look (in one particular Q2 bin) in experimental 
and simulated data after such normalizations (for all other Q2 bins, see Figs. 71 and 72).

This change of the simulated An(W, Q2) to a new value An' can be correlated to the 
increase in gi by solving for the two parameters A and B  of the linear equation,

where A(fV, Q2) is the result for the simulated An for the standard set of model inputs i.e., 
A(W, Q2) =  Anstandard(W, Q2), and B(W, Q2) is the proportionality factor representing the 

change in An(sim) per unit change in g \ , as given by:

The proportionality factor B(fV, Q2) is then determined for each o f the kinematic bins

13We arbitrarily chose 0.1 in the inelastic region, but could also have used any other value (not too big, 
however).

(134)

An(simul) =  A +  B • 8g \ , (135)

(136)



157

nwWc2q14(n*-n)/FC for Q2(0.092,0.110) 14"'Q

- Exp. Data
2 0 6 0 0 —  StdSim

Non-Std Sim

15000

10000

5000

-5000
0 . 8 1.2 1.4 1.6 1.8

W

FIG. 77. An o f experimental data and two versions of simulations in one particular Q1 bin 
for 1.3 GeV case (for data on more (T2  bins, see Fig. 71).

(in (fV,Q2 ))  in which the experimental data has been histogrammed. For this purpose, 
using the RCSLACPOL program, we produce two values of structure function gi in each 
kinematic bin - one (g^tandard) corresponding to the standard simulation and the other 
^ton-standard^ C0 rresp0n(iing to the non-standard simulation. By, dividing the above change 

in the count difference with the difference <5gi o f the two structure functions, we get the 
proportionality factor for the bin.

In principle (and ignoring the other enumerated possible sources of disagreement be

tween data and simulation), we can then easily find the “amount of change” 8gi to be 
added to the standard model g\ to get perfect agreement:

^  0 ^ + ( 1 3 7 )
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(a) gi for standard and non-standard simulation (b) Difference o f the two gi

FIG. 78. Plots showing the change in model gi due to the change o fA \ to A \ + 0.1.

where the values of Andaia and t±rftandard come from the polarized count differences An in 
the experimental data and the standard simulation respectively (as shown, for example, by 
the red points and black histograms in Fig. 77 for one particular Q2 bin).

It is also straightforward to propagate the statistical error to the extracted g i . The 
statistical error in this extracted quantity totally comes from the error in the experimental 
counts Andata (assuming there is no error in the model quantities involved and also in the 

simulation counts because we did our simulation with large enough statistics to warrant 
ignoring the errors) as follows:

< T t e f ■ (138)

The values of gi and its errors thus extracted from 1.3 GeV data for one Q1 bin is 

shown in Fig. (4.80(b)). Similar results for all the bins from two beam energy data sets in 
different kinematic bins can be seen in Fig. 90 (next chapter).

Because we are also interested in measuring the forward spin polarizability and the 
extended GDH integral, we also extract the product A \F\ which enter these integrals. We 
followed the exact same procedure for gi as outlined above. We determined new pro
portionality factors in each kinematic bin, again using Eq. 140 as before but with the 

denominator replaced, this time, with the corresponding change in A \F\ (instead of the 
change in gi). Then we can use the following expression (similar to equation 137) to
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(a) Change in An(sim) simulated count difference (b) Proportionality factor (1 /B(W ,Q 1)) for 1.3 

i.e. AN  = An'(A\ +0 .1) —An(A\) due to the change GeV case. Black is the originial values. Red is the 

o f  A] to A\ +0.1 (for 1.3 GeV case). ones kept after discarding the first or last few (low

statistics bins) that had unreasonably high (sud

denly changing) ratios.

FIG. 79. Plots for An(sim) and the corresponding proportionality factors.

extract A\F\(W ,Q2) :

A e 2) =  ' g 2) (,39)
B a xf x\ w  ,Q r )

where
-k An' — An

=  040)
And, the errors on A \F\ can also be dealt in the same way as on g i .
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case).

FIG. 80. Plots for An and the corresponding extracted g i .

4.16 SYSTEMATIC ERROR ESTIMATIONS IN g\ AND A\F\

The following systematic error contributions on the final extracted gi (IF, Q2) can be 
separated into two categories [93]:

1. Overall scale errors (see Sec. 4.16.1). These are errors that affect the proportionality 
constant B defined in Sec. 4.15.1 equally in all bins and are mostly due to uncer
tainties in P/,Pt and target thickness. The total scale uncertainty should be evaluated 
separate from the remaining systematic errors and quoted as a percent error in the 
final presentation of the data.

2. Point-to-point uncorrelated errors. These are mostly additive errors, although there 

may be some kinematic-dependent uncertainty in quantities like the CC, EC and 
tracking efficiency. These errors are evaluated in sequence, as additional uncertain
ties on gi bin by bin, and added in quadrature to get the overall uncertainty. For 

integrals over g i, these errors are added incoherently (in quadrature) with the appro
priate weights; e.g., for ^ ( Q 2) = L(gi(x,Q 1)x2Ax) the corresponding systematic 
error would be 5 T3 (0 2) =  \L (8 g \(x ,^ )x 2Ax)2\ [̂ 1.

3. Model errors which vary point to point but are correlated.
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4.16.1 CROSS NORMALIZATION SIMULATION / DATA

Since the normalization factor SF  comes from a comparison of data and simulation in 
the quasi-elastic region 0.9 < W < 1.0, one has to evaluate all systematic effects that can 
influence either one of these ingredients. The first and most important systematic error due 

to this factor is simply the statistical error described at the end of Sec. 4.13. The remaining 
systematic errors are listed below and have to be added in quadrature to the statistical one. 

One should check if the overall x 2 f°r the comparison over all Q1 bins is compatible with 
the combined statistical and systematic error on SF; otherwise, it may be necessary to 
increase the total error accordingly.

On the simulation side, one has to account for the following:

1. The calculated cross section difference depends most sensitively on the beam energy 
and the scattering angle. Since radiative effects are a second order effect here, it suf
fices to calculate the theoretical Bom cross section differences for both the standard 
beam energy and average angle for each Q2 bin, and then repeat the calculation for 
i) a beam energy increased by 5 MeV and ii) a decrease of the scattered electron en
ergy by 5 MeV and iii) a scattering angle increased by 1 mrad. The relative change 

in S o  contributes to the total error for each bin.

2. To a lesser extent, the model input for the form factors G#, Gm  for both proton and 

neutron also contribute to the simulated uncertainty. Therefore, the model Bom 
asymmetry also has to be recalculated with the following changes: i) use the simple 
dipole fit for G ^ ii) use the dipole fit for GnM iii) use the dipole fit for G£ and iv) use

GnE = 0.

3. Vary the scale factor within the uncertainty for the kinematics-dependent part of the 
CC, EC and tracking efficiencies in the quasi-elastic region (an overall trigger and 

tracking efficiency will drop out).

4. The main effect of radiation is to decrease the measured cross section difference 
in the quasi-elastic region (”out”-radiation). Any discrepancy between simulated 

and “true” depletion due to that effect yields a systematic error on the scale factor. 
By looking at various models of radiative effects (e.g., a simple-minded ’’equivalent 
radiator” model vs. the full-blown RCSLACPOL code) one can quantify this uncer
tainty. However, we did not do this in the end. Instead, we just assumed an overall
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error consistent with the observed fluctuation by Q1 bin of 10% on the overall scale 
factor.

For the data, one has to vary the possible background contributions within their sys

tematic uncertainties: Contributions to Sn in the quasi-elastic region due to possible con
tributions from bound and free polarized protons (contributions from bound deuterons are 
minimal and cancel mostly), and contributions from mis-identified pions and pair symmet
ric electrons.

In the present analysis, we considered ten distinct contributions to the systematic error 
in the measured gi (and similarly to A\F\) as follows:

1. Possible Error in the overall scaling factor

2. Effect due to the contaminations of polarized H in the target and 7T~in the scattered 
electrons.

3. Possible error in the beam energy measurement

4. Possible error in the CC-inefficiency estimation

5. Effect due to the e+e~pair symmetric contamination

6 . Possible error in the estimation of radiation lengths (especially RADA)

7. Model variation using preliminary version (v 1) o f A i model by Guler/Kuhn (2008-9)

8 . Model variation using old version of ,4 2  resonance model

9. Model variation of Fj (and proportionally of F\)

10. Model variation of R (F2  changed)

For the ease of description later on, these ten components will be referred to by the index 

”k” with its value indicating the position in the list. So, the error due to scaling factor will 
be identified with k=l and so on.

Possible E rror due to the overall scaling factor This error is due to the uncertainties 
in the overall scaling factor (SF) (see Sec. 4.16.1). This contribution is estimated by 
assuming that the uncertainties in SF is not more than 10%. Thus considering the worst 
case scenario of 10% error in SF, we estimate the corresponding error in gi as follows:

( .4 .)



163

with “std” shorthand used for “standard” model or the corresponding simulation.

Error from Polarized H in target and n~  contaminations This contribution from po
larized H in target and it~ contamination is evaluated as follows,

where we assume that the contamination is not more than 2.5%.

Possible error in the beam energy measurement This contribution is evaluated as
suming the error in beam energy measurement is not more than 10 MeV, so the either the 
experimental data or the standard-simulation data can be analyzed assuming the beam en
ergy was different by 10 MeV. In this analysis, the the energy was increased by 10 MeV in 
the simulated data.

where Artgf+ is now the simulated Ar ftd obtained by analyzing the data from the standard 
simulation as usual but with a beam energy that was 10 MeV more than the standard value.

Possible error in the CC-inefficiency estimation This contribution is estimated by as
suming a maximum of 50% error in the estimated inefficiency as follows:

where ArffdCCi is now the simulated Ar ftd obtained after applying 50% more inefficiency 
instead of the actually estimated value.

Possible error due to e + e  pair symmetric contamination The contribution due to 
e+e- pair symmetric contamination is calculated as follows:

A&ont{W,QL) = f?{d{W,Ql ) +

(142)

4 g f ( » r, 0 2) = g f / ( » r, 0 2 ) +
Andata{W, Q2) -  Arf<.d+{W, Q2) 

B(W,Q2) t t f ^ W Q 2) (143)

&gfb(W ,< ? )= £ ,d(W,Q1) +
Andat\ W , & ) - A 4 dCCi(W ,& )  

B(W,Q 2 )
(144)

where f(e+e ) is the e+e fraction from the EGlb fit by N. Guler [35] (used the closest 

available energies).
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Radiative correction uncertainty Here, we need to change the parameter that most in
fluences radiative corrections, the number of radiation lengths before (RADB) and after 
(RADA) the scattering. By increasing both numbers by 10%, we should have a safe up

per limit on practically all uncertainties coming from the radiative procedure itself. But, 
to simplify the situation, we increased the RADA parameter in RCSLACPOL by 20% 
and repeated the full-statistic simulation. As a result the simulated count difference in 
each kinematic bin changed from /\jflandard to a new value Anrad. This change can be 

converted to the corresponding inferred change in gi by using the same proportionality 
factors B(W,Q2) as used earlier in thegi (o r ^ F i)  extraction/calculation. In other words, 
for a given kinematic bin this particular contribution to the systematic error is calculated 

as:

(146)

where the proportionality factor B(W,Q1) for the bin is exactly the same as that used to 

calculate gi earlier.

4.16.2 MODEL UNCERTAINTIES

The remaining four components in the total systematic uncertainty (the last four in the 

list 4.16.1) account for the model uncertainty contributions. For this purpose, we changed 
the values of two of the model parameters “AsymChoice” and “SFchoice” (each takes 

value of 1 1 , in the standard case)
We repeated the full statistics simulation four more times by changing the values of 

two RCSLACPOL parameters “AsymChoice” and “SFchoice” (which controls the values 
of model asymmetries and the structure functions, with each taking a value of 1 1  in the 

standard case) one by one corresponding to the following four model variations:

1. Variation-1: AsymChoice=12, SFchoic=l 1

2. Variation-2: AsymChoice=15, SFchoic=l 1

3. Variation-3: AsymChoice=l 1, SFchoic=12

4. Variation-4: AsymChoice=l 1, SFchoic=13

where, the different values of the two RCSLACPOL parameters correspond to the follow

ing model choices:

1. AsymChoice values are used to determine specific A 1/A2 models used in the RC
SLACPOL program
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(a) 11: Standard Resonance Model 2008-9 Guler/Kuhn (Used for standard sim
ulation)

(b) 12: Variation of A\ model

(c) 15: Variation of Ai resonance model: Vary the virtual photon asymmetry Az in 
the resonance region within its fit errors.

2. SFchoice values are used to determine specific F\!Fz models.

(a) 11: 2009 version of F”IF \IF f by Peter Bosted/Eric Christie 2009, HERMES 
(Used for standard simulation) (with d in F f  denoting a deuteron).

(b) 12: Same version as 11, but with fit errors added to Fz (and proportionally F\)

(c) 13: Same version as 11, but with fit errors subtracted from R (Fz unchanged)

After the simulation data for the above four cases were available, four more data tables 

(TM1 ,TM2,TM3 and TM4) were produced for the corresponding model values o f g \ , A i , 
F\ etc. Then, the contributions to the systematic error from each of these four cases of 
model variation were given as follows:

Asi W  e 2) =  Sf'M IW, Qt ) - g l (W,Ql ) + (J47)

with “i” indicating any of the four cases of model variation, being the model prediction 
for the ith case as obtained from the corresponding data table “TMi” and the proportionality 
factor B(IV, Q2) again being exactly the same as used to calculate gi as earlier.

Figs. (82 and 83) show, for example, the different components of the systematic er
rors (along with the grand total) on gi (from 1.3 GeV data) evaluated in the manner just 

outlined. Likewise, Figs. (84 and 85) show similar plots for the 2.0 GeV data.

These ten different components of systematic errors on gi (and similarly on A\F\) thus 
calculated separately for both beam energies are later combined as follows:

4.16.3 COMBINING DATA FROM THE TWO BEAM ENERGIES

Once the datagi and A i F\ and their corresponding errors are evaluated from each beam 
energy data set, they are combined as follows [63] (to make the description simple, only 
procedure is described only for g \ , but, in the end, the exact same procedure is followed 

for A\F\ as well):
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1. First a table is made, separately for each beam energy, o f all (Q1, W) bins with with 
calculated values of g i , their statistical errors and each of the ten components of the 
systematic errors (making sure to keep the correct signs of the systematic changes) 
in separate columns (one row is for one bin in (Q2, W).

2. Then another table is made for the combined values o f gi, which are evaluated as 
follows:

(a) If for a given (fV, Q2) bin, gi comes only from one beam energy, then all the 
entries from that energy go into the ’’combined” table

(b) If gi has measurements from both beam energies, we combine them with sta
tistical weights as follows:

g\(combined) = Suml/Sum2 og\ (combined) =  y / \ / Sum2{\A9)

where the index ’i’ represents two beam energy (1.3 and 2.0 GeV) data sets, 
and Agi indicates the statistical error in g i .

3. In principle, each o f the individual contributions to the systematic error can also be 
combined using the same equations. However, we must be careful to distinguish 
between correlated and uncorrelated errors.

(a) The variations due to scale factor (k=l), beam energy (k=3) and CC-efficiency 

(k=4) are all un-correlated and, therefore, added in quadrature as follows:

where, 8 represents the k?h component of the systematic error, whereas, ’Sum2’, 
’i ’ and A have the same meanings as before.

(b) while all other variations are correlated between the two beam energies and 
should be averaged linearly (WITH sign):

(148)

5gi (k=8 ,1 0 ,l 1 , combined) (150)

8g\ (other k, combined) =  I (151)
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4. Once each o f the kth component o f the systematic errors are combined between the 
two beam energies, we then proceed to combine them all to get a grand total. This is 
done by simply adding the ten combined systematic errors in quadrature and taking 
the square-root of the sum.

The figures 8 6  and 8 8  show the breakdown of the total contribution to the systematic 
error from different sources. We can see that the dominant contribution comes from the 
uncertainties in the overall scale factor (the cyan band indicated with SF-err in the legend) 

which is used to normalize the simulated data to make them comparable with data. This 
uncertainty comes mainly from those in P\,Pt and target size measurements. Next big con

tributions seem to come from the model and radiative corrections. Near the A-resonance 
region, the effect o f beam energy uncertainty also seems to be very pronounced. The 
breakdown of the different components (but combined between the two beam energies) of 
the total systematic errors are also shown separately in the figures 8 6  and 8 8
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FIG. 81. Various components of systematic error (see Secs. 4.16 and 4.16.1) ongi plotted 
against W in a Q1 bin (1.3 GeV data). The band width represents the size o f the errors. 

The vertical position of each band has no physical meaning (arbitrarily chosen for the 
convenience of display). The first five (blue) bands are the contributions due to e+e~- 
contamination (see Sec. 4.16.1), CC-inefficiency (see Sec. 4.16.1), errors in beam energy 
measurement (see Sec. 4.16.1), polarized background (H, 7T~etc - see Sec. 4.16.1) and 
scaling factor uncertainties (see Sec. 4.16.1) respectively. The first (top) magenta band is 
the contribution due to the uncertainties in the radiative corrections (see Sec. 4.16.1), next 

four (magenta) are due to model uncertainties (see Sec. 4.16.2) and the last (green) one is 
the total error after properly combining all components. For similar plots in other Q1 bins 

see Figs. 82 and 83.
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FIG. 82. Plots like that shown in Fig. 81 showing various components of systematic error 
on g\ plotted against W in different Q1 bins for 1.3 GeV data.
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CHAPTER 5

RESULTS

5.1 THE EXTRACTED VALUES OF g, AND/1,/-,

With the methods outlined in the previous chapter, g \,A \F \ , and and their uncertainties 
were determined from the EG4 deuteron target data. These data were divided into 21 Q2 
bins (between about 0.02 and 0.7 GeV2  in Q2) and within each Q2 bin, they were further 

divided into W bins of size 20 MeV each. The results on g, and A\F\ that came from two 
beam energy data sets were further combined into a single set of energy independent data 

points. Finally, within each Q2 bin, the newly extracted gi and A , F\ values were used to 
evaluate three integrals. All of these results are shown and described below.

5.2 EXTRACTED gi AND/l, /-’,

Figures 90 and 91 show the extracted values of gi and their errors from two different 
beam energies (1.337 GeV and 1.989 GeV).It can be seen that the two energies give results 
that are in good agreement (in the overlapping kinematic regions).

These results from low Q2 measurements clearly show the resonant structure in the 
region W <  2.0. Especially, the A-resonance stands out through its strongly negative sig

nal. In addition, in the second resonance region around W=1.5 GeV where V*(1520) and 
/V*(1535) (also denoted by Du and S13 respectively) overlap, we see a drastic transition 
o f gi (or cross section) from strongly negative values (not well described by the model 
because it is unconstrained there due to the lack of experimental data) at low Q2 to clearly 

positive values at high Q2 indicating that the dominance of the spin-flip helicity amplitude
A; on cross section drastically diminishes with Q2 and the non-flip amplitude A \  becomes 

2 3
stronger (see Eq. 35). We have pushed the lower limit on Q2 in the resonance region
with reduced systematic and statistical errors that will contribute greatly to the world data
set. Our data will help MAID and other phenomenological models to better constrain their
parameters enabling them to make better predictions in the future.



178

Likewise, Figs. 92 and 93 shows the extracted values o f A\F\ and their errors from 
two different beam energies (1.337 GeV and 1.989 GeV).These values also show similar 
behavior as g i .

Figs. 94, 95, 96 and 97 show the values of giand /f iFiand their errors after combining 
the corresponding results from the two different beam energies as described in the previous 

chapter.
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FIG. 90. Extracted g\ for deuteron (in the first 12 Q2 bins) from the two different beam 
energy data sets. The statistical errors are indicated by error bars, while the systematic 
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5.3 MOMENTS OF DEUTERON SPIN STRUCTURE FUNCTIONS

Using the measured values of gi and A\F\, three integrals were evaluated for each 
of the Q2 bins in which these data were measured. These integrals have been calculated 
in two ways - using only the new EG4 measurements, and adding model contributions 

to the data for regions not covered by our measurements. The integrals with the model 
contributions were calculated from x = 0 . 0 0 1  to the onset of the resonance region (i.e. to 
the pion production threshold o f W & 1.08 GeV), dividing the sum into three parts for each 
Q2 bin. For example, T[ was evaluated by adding up the product g\ Ax over the following 
three kinematic regions:

tx { W d a ta )~ data) -
Fi (g 2) =  /  g x {x ,tf)d x  model (152)

A=o.ooi
rW=\.\5

+  /  g\(x,Q 1)dx data (or model for gaps) (153)
Jx{Wda,a) 

f W =  1.08
+  /  g \ ( x ,^ ) d x  model (154)

J W = l . l 5

where W^ata indicates the upper edge of the last W bin in which the EG4 data is available 
in a given Q1 bin (the W variable was divided into 70 bins o f size 20 MeV in the range 
W=(0.7,2.1) GeV). The first part of the integral as given by Eq. 152 is evaluated by using 
the model values of g\ and using Ax corresponding to a W bin of size 10.0 MeV (The 

AW is converted to Ax by using x =  0 2 / (Q2 +  W2 — M 2) to evaluate x at the two edges 
of each W bin and taking the difference.). The second part given by Eq. 153 is evaluated 

similarly but using the EG4 results for gi if there is no measurement gap in between. If 
there is any gap, the same method as in the first part is used to get a model contribution 
for the gap and added to the data contribution. Lastly, the the third contribution given by 
Eq. 153 again were evaluated from from model values (quasi-elastic part turned off from 

the model in all of these cases) but with finer W bins (1 MeV) because the integrals are 

very sensitive to the region near the A resonance due to the fact that the structure functions 
show rapid changes in this region. The reason to calculate the third integral using model 
values rather than data values is to avoid having contributions in the integrals from the 
quasi-elastic contamination.

The statistical errors are evaluated by adding the statistical error contribution in each 
IF or x bin in quadrature. For example, if the integral is evaluated in a Q2 bin by cal

culating the sum I £  gi • Ax ), then the corresponding statistical error is evaluated by
bins J
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calculating /  £  gi-Ax. Because, the model contribution is assumed to have no statis-
V  W bins

tical uncertainties, the statistical errors in the integrals come solely from the propagation 
of the statistical error of the measured g\ or A \F\.

The other two integrals and their errors are evaluated in the same manner, with g\ 
replaced by their corresponding integrands and again calculating the three parts of the 
integrals separately.

These integrals are then compared with the latest available predictions from different 
theories (mainly ^PT) and phenomenological calculations along with EG lb or DIS data 
whenever applicable.

5.3.1 FIRST MOMENT OF gi (T,)

The first integral of interest is the first moment of gi i.e., T  \ (see Eq. 61) , which was 
calculated for all Q2 bins for which the new data are available. Figs. 98 and 99 show 

the two calculations (with and without model input) along with EG lb data and several 
^PT and model predictions. One important observation here is that our measurements 

provide the only data points in the very low Q2 region (i.e for Q2 <  0.05 GeV2) where 
%PT is thought to be able to make rigorous calculations. Therefore, our data will provide 
important benchmarks for the future calculations in this kinematics. Particularly, the latest 
^PT prediction by Bernard et al. [37] seems to agree remarkably well in the very low Q2 
region.

While all other higher Q2 predictions, except that of Ji et a l, seem to be within the 

uncertainties of our measurements, it can be seen that the phenomenological predictions 
of Soffer et al. compare slightly better with data than others (excluding, of course, the 
Bernard et al. prediction).

5.3.2 THE EXTENDED GDH INTEGRAL I T T

Using the measured values o f^ iF i, the generalized GDH integral I t t  =  2 A /2/ 0 2 J  A\F\ (x, Q2)dx 
was also calculated and compared (see Figs. 100 and 101) with the latest ^PT calculation 
from Bernard et al. [37]. We can see that at the very low Q2, the #PT prediction and the 
measurement get very close. The ^PT methods determine the higher powers of Q2 in the 
Taylor expansion of the integral around the photon point Q2 =  0, beyond the prediction 
of the GDH sum rule which determines the lowest order term. Our data seem indeed to 
converge towards the GDH sum rule at our lowest Q2. However, only one or two higher or

der terms can be calculated confidently, since higher orders require additional (unknown)
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FIG. 98. Extracted T i for deuteron compared with some of the past measurements and 

various theoretical predictions with a linear scale used for Q2.

constants. Therefore, #PT predictions do reasonably well at ultra-low Q1 but cannot be 

expected to work at the higher Q2, where the data show a turn-around and a transition 

towards positive values.

5.3.3 THE GENERALIZED FORWARD SPIN POLARIZABILITY %

Finally, the generalized forward polarizability (as given by Eq. 65) for the deuteron 
was also calculated using the measured values of A \F\ and then compared with various 
predictions as shown in Figs. 102 and 103. The comparison shows that both £PT calcula

tions by Bernard et al. and Kao et al. converge with data at the lowest Q2 bins. The MAID 
prediction is shown for reference but seems to be somewhat off the current results.
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various theoretical predictions with a logarithmic scale used for Q2.



195

CHAPTER 6

CONCLUSION

The EG4 experiment collected a large amount of very low momentum transfer (Q2) 
data for the helicity dependent inclusive cross section (difference) for the scattering of 
longitudinally polarized electrons off longitudinally polarized protons and deuterons (from 
DNP polarized NH3 and ND3 targets respectively). The use of low beam energies (1.0 — 
3.0 GeV) (from CEBAF accelerator) and the modified CLAS detector optimized for low 

scattering angle measurements (down to 6  degrees), allowed data collection at an unprece
dented level of precision and low Q2 coverage. The deuteron data (collected using 1.337 

and 2.0 GeV beam energies) which is the subject of this thesis has the kinematic coverage 
of (0.02 GeV2  <  Q2 < 0.7 GeV2) and (1.08 GeV < W < 2.0 GeV2). Although, past 
measurements from EGlb go as low as 0.05 GeV2  in Q2, the new measurements have 
higher precision (due to higher statistics and better detection efficiency) in the overlap
ping region in addition to new high precision data in the previously unmeasured lower Q2 
region.

The new deuteron data were used to extract the deuteron’s spin structure function gi by 
comparing the experimental data with simulated data produced by using a realistic cross 
section model for the deuteron under similar kinematic conditions. The newly extracted 
data pushes the lower limit on Q2 in the resonance region with reduced systematic and 
statistical uncertainties that will contribute greatly to the world data set. It is observed 

that the data from two beam energies give results that are in good agreement. The low Q2 
results clearly show resonance structure in the region W < 2.0 which smooths out as Q2 
becomes larger. In particular, the A-resonance shows a strongly and consistently negative 
signal at all Q2, but the second resonance region (around W=1.5 GeV) shows a rather 
unexpected rapid transition of g\ (or cross section) from strongly negative values at low 
Q2 to clearly positive values at high Q2. is not well described by the model because it is 
not constrained in the region due to the lack of experimental data and indicates that the 

spin-flip helicity amplitude A f  dominates the cross section at low g 2  while the non-flip 

amplitude A \  becomes stronger at higher Q2.
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The product A\F\ o f the virtual photon asymmetry A\ and the unpolarized structure 
function F\ was also extracted from the same data and method. The extracted results 
on gi and A\F\ were then used to evaluate the following three important moments - the 
first moment V( of g i , the generalized GDH integral l f T and the generalized forward 
spin polarizability - in each of the Q2 bins in which the new gi and A\F\ have been 

extracted. The new low Q2 measurements of the moments evaluated both with and without 
model inputs for the unmeasured kinematic regions were then compared with various ^PT 
calculations, phenomenological predictions and past measurements, particularly the EG lb 
or DIS data whenever applicable.

The EG4 results provide the only data points in the very low Q2 region (i.e for Q2 < 
0.05 GeV2) where #PT is thought to be able to make rigorous calculations. The high preci

sion data will provide important benchmarks for the future calculations in this kinematics. 
In the case of the first moment r f , the EG4 results show remarkable agreement with the 
latest #PT prediction by Bernard et al. [37] in the very low Q2 region. The phenomeno
logical predictions which have much larger Q2 coverage also seem to agree within the 
uncertainties of our measurements, with the predictions of Soffer et al. showing slightly 
better comparison than others. Likewise, the very low Q2 results of the generalized GDH 

integral Itt are indeed observed to converge towards the GDH sum rule and thus getting 
very close to the ^PT predictions by Bernard et al. [37]. Finally, the generalized forward 
polarizability (y^) for the deuteron calculated from the EG4 data and the #PT calculations 
by Bernard et al. and Kao et al. seem to converge at the lowest Q2 bins. The MAID 
prediction, however, seems to be somewhat off the current results.

The deuteron data in combination with the EG4 proton data taken under similar condi

tions (currently being analyzed by another collaborator and results expected to come very 
soon) will be useful in extracting neutron quantities in near future, which is valuable be

cause of the unavailability of the free neutron targets. Moreover, due to the complexities of 
the nuclear medium effects, neutron data from deuteron will be very important to enhance 

confidence in similar neutron results extracted from other nuclear targets particularly3 He.
The new data on spin structure functions will help MAID and other phenomenologi

cal models to better constrain their parameters enabling them to make better predictions 
in the future. With the availability o f the high precision data in the previously (largely) 
unmeasured region that has the potential to help constrain the theories and models, it is 
hoped that a unified description of spin structure functions over all kinematic regions will 

be possible in future.
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APPENDIX A

DERIVATION OF THE GDH SUM RULE

The real photon Gerasimov-Drell-Heam (GDH) sum rule is derived [25,26] using the gen

eral assumptions of Lorentz and Gauge invariance (in the form of low energy theorem), 
unitarity (in the form of optical theorem) and causality (in the form of an unsubtracted 
dispersion relation for the forward Compton scattering, also assuming crossing symmetry)
[32]. For the forward Compton scattering of a real photon on a nucleon, the scattering am

plitude T( v, 6 =  0) is given as follows in terms of the spin-independent and spin dependent 
amplitudes / ( v )  andg(v):

T(v) = e* -e /(v )  +  id- (e* x e)g(v) (155)

where e and e* are the polarization vectors o f the incident and scattered photons respec
tively. In order for the crossing symmetry to hold true, the T-matrix must be symmetric 
under the exchange of the incoming and the outgoing photons, £*<->■£ and v -» — v, im
plying that the amplitudes f  and g are an even and odd functions of v respectively. These 
amplitudes can be separately determined by scattering circularly polarized photons off 
a longitudinally polarized nucleon, with f  and g obtained from the cases of parallel or 

anti-parallel target polarization with respect to the photon momentum q. The polarization 
vectors for a left-handed (+ 1 ) and right-handed (-1 ) circularly polarized photons moving 

along z-axis are given by:

e± =  ± ^ = ( 3 t±  ie'y) ( 156)

with the transverse gauge (e q =  0) used and photon 4-momentum and polarization defined 

as q =  (v, q) and £ = (0 , £ with the condition q ■ q.
Unitarity of scattering matrix means that the imaginary parts of the forward amplitudes 

f  and g are connected to the total photoabsorption cross sections via the optical theorem as 

follows:

W ( v )  =  ^ ( < x , ( v )  +  <7,(v)) = ^ < r r  (157)

and

/ '» * (v) =  ^ (< 7 i( v ) - < 7 §M )  =  ^ < J r r  (158)
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with the helicity dependent cross-sections as defined earlier in section.
At small photon energies, the amplitudes can be expanded in powers of v with the low 

energy theorem (LET) resulting in

where Z is the charge of the target (in units of ”e”). In the expansion for the spin- 
independent amplitude / ( v ) ,  the leading term f(0) is the classical Thomson scattering 
result, the 0 ( v 2 term describes Raleigh scattering in terms of the electric and magnetic 
dipole polarizabilities a  and J3 respectively. On the other hand, in the expansion of the 

spin-flip amplitude g, the leading term is associated with he anomalous magnetic moment 
(fc), and the next 0 (v3) term is related to the forward spin polarizability yo, which carries 
the information on the spin structure.

Finally, the dispersion relations for the two forward amplitudes / ( v )  and g(v) are 
derived using the analytic properties of the forward Compton scattering amplitudes with 
unitarity and crossing symmetry. For the spin-averaged amplitude / ( v ) ,  the Kramers- 
Kronig relation from optics, which connects the real part of f  with an integral over the 

imaginary part of f:

Where &  denotes the principal value o f the integral. The imaginary part is next replaced 

by the total cross-section using the optical theorem, so the dispersion relation becomes:

with /(0 )  being the Thomson limit of eq. 159. Because the total cross section rises in 
a slow logarithmic manner above the resonance region, a subtraction is made at v =  0  to 

ensure the integral converges.
Applying through the same method, an unsubtracted dispersion relation is derived for 

the spin-dependent amplitude as follows:

/ ( v) =  4^ + ( a  +  /3)y2 +  ^ ( v 4) (159)

S(V) =  8 ^ V +  ) t ) V 3  +  ^ (v5)
(160)

(161)

(162)

/teg(v) (163)
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where, now the optical theorem is used to replace the imaginary part o f the amplitude 
with the helicity dependent cross-section difference. In this spin-dependent case, the non
subtraction hypothesis is used because unlike the total cross-section the helicity dependent 
cross-section difference does not rise at large v', but decreases fast enough to ensure the 
convergence of the integral without any subtraction.

Finally, by comparing the first order i.e. 0(v )  terms in Eq.160 and Eq.163, we arrive 
at the GDH sum rule as follows:

(164)

where a  = |^ . One can similarly derive the sum rules for the electric and magnetic polar- 
izabilities and the forward spin polarizability.
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APPENDIX B

FFREAD CARDS USED BY GSIM

TABLE 2. Some o f the ffread cards & their values which are used as GSIM input parame
ters. _______________________

Cards Values

MAGTYPE 2

MAGSCALE -0.5829 0.0 (for 1.337 GeV)

MAGSCALE -0.3886 0.0 (for 1.993 GeV)

GEOM ’ALL’

NOMC ’EC’ ’SC’ ’CC’ ’DC’
NOGEOM ’MINI’ ’ST’ ’TG2’ ’TG’ ’SOL’

NOGEOM ’PTG’ ’FOIL’
NOMATE ’PTG’ ’FOIL’

PTGIFIELD 1

TMGIFIELD 1

TMGIFIELDM 1

TMGFIELDM 51.0

TMGSCALE 0.979

PTGMAXRAD 300.0

MGPOS 0.0 0.0-100.93

BAFF 3. 9. 165.3 9. 180.5 9. 195.8

RUNG 50556
AUTO 1

KINE 1
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