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ABSTRACT 

LIGHT SCATTERING IN ULTRACOLD HIGH DENSITY 
RUBIDIUM VAPOR 

Salim Balik 

Old Dominion University, 2009 

Director: Dr. Mark D. Havey 

Recent developments in laser cooling and trapping opened the door to a world full 

of new opportunities for research in atomic, molecular and optical physics as well 

as condensed matter physics. It became possible to do experiments under condi

tions that are hard to achieve in condensed matter systems but recently have been 

observed in atomic systems. Bose Einstein Condensation, the Mott insulator tran

sition, and superfluidity are examples of such achievements. Another considerable 

interest to both condensed matter and atomic physics is Anderson localization of 

light. The localization phenomenon is named after P. W. Anderson who suggested 

the possibility of localization of electrons in a disordered medium. Localization of 

light is an interference effect in a disordered medium and there have been a number 

of observations in different types of media. It has still not been observed in atomic 

systems in three dimensions. We report experimental results obtained from an ultra-

cold 87Rb gas of atoms near the localization limit from the F=2 to F=3 transition. 

I will discuss the sample formation, characterization of the sample and the progress 

made towards achievement of light localization in an ultracold atomic gas, including 

difficulties which so far have frustrated observation. 
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CHAPTER I 

INTRODUCTION 

1.1 LIGHT SCATTERING 

Light scattering is observed in many different aspects of life. Light scattering occurs 

when light passes through solids, liquids or gases. For example Rayleigh scattering, 

which is named after the English physicist Lord Rayleigh, is the quasi-elastic scat

tering of light that is responsible for the blue sky during the day and red-yellow-blue 

color gradient during the sunrise and the sunset. Rayleigh predicted the A-4 wave

length dependence of light scattering which causes the shorter wavelength blue color 

to be scattered more than other colors that results in the richly colored views of the 

sky. People also use light scattering as a tool in art, medical imaging, photography, 

radars and in spectacular laser shows. 

In the context of this thesis, light scattering is a fundamental physical process 

which has attracted scientists' attention for centuries. Many physicists, including 

Planck, Einstein, Compton, Bragg, Rayleigh, Raman and Mie in the early days 

of quantum mechanics studied light-matter interactions and contributed to current 

understanding of light scattering. For example Max Planck in 1899 indicated first 

that light might be quantized and he modeled the blackbody radiation. Later, in 

1905 Albert Einstein published his famous theory of the photoelectric effect which 

introduced the "photon", a discrete quantum of light. Another example is from the 

21st century, as Roy J. Glauber won the Nobel prize in 2005 for his contributions 

to the quantum theory of optical coherence. One might think that light scattering 

would be fully understood by now but this is not the case. There are still mysteries 

in the field of light scattering waiting for the right time to be discovered. 

In Rodney Loudon's "The Quantum Theory of Light" light scattering is expressed 

as a second order process in which the destruction of a photon of energy hw from the 

incident beam is followed by the creation of a photon of energy hwsc in the scattered 

beam. The scattering process takes place for all frequency values of the incident 

beam but it is strongest for the frequencies closer to the resonance frequency of the 

particular atomic transition [1]. 

The scattered light is divided into two broad categories; quasi-elastic and inelastic. 

This disertation follows the style of The Physical Review 
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The elastic component, or the Rayleigh contribution to the scattered field, comes 

from the light where the frequency wsc essentially equals the incident frequency w. 

The inelastic contributions include all of the remaining components of wsc different 

from the incident frequency w. If, after the light scattering process, the atom is left 

in a different state than before the scattering, the process is called inelastic Raman 

scattering. In this thesis we are mostly dealing with quasi-elastic light scattering 

from the 87Rb D2 F = 2 —> F' = 3 closed transition and inelastic contribution of the 

components of the scattered light are usually minimal. 

1.2 MULTIPLE SCATTERING 

This thesis specifically deals with the multiple scattering of light in a medium of 

spatially random atomic scatterers where light propagation involves many free prop

agation and scattering events. Usually multiple scattering from such disordered sys

tems is a difficult problem, especially if the complex internal quantum mechanical 

nature of the atomic gases is involved. Early studies of multiple scattering of light 

mostly were in the area of "radiation trapping", and directed toward the study of 

radiation transport in stellar atmospheres. The name radiation trapping comes from 

the fact that the light spends a lot more time in the medium than the ballistic propa

gation time for leaving the medium. This is because light performs, in many cases, a 

random walk inside a disordered medium rather than ballistically escaping through 

the boundaries of the sample. The time frame that the light is "trapped" inside 

the medium is usually much longer for atomic systems because light scattering from 

atoms is scattering dominated in contrast to other media where it is free propagation 

dominated [2]. 

Multiple scattering of light in a disordered medium is generally considered to be 

equivalent to diffusion of light. The language that is used to describe the diffusion 

and multiple scattering is largely interchangeable in the context of this thesis. The 

dynamics of the radiation in the medium is characterized by the mean free path £, 

the average distance between two scattering events, which for a dilute gas depends 

only on the light scattering cross section a and the density of the medium n as given 

by I = 1/na. When the mean free path is much larger than the wavelength of the 

light A divided by 2ir, I ^> \/2ir, the motion of light satisfies the diffusion equation 

DVJ=-J (1) 
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where 

D = ±vtrL (2) 

Here D is defined as the diffusion coefficient, vtr is the transport velocity and J is the 

average current of radiation which satisfies the continuity equation [3], 

£~v..r. P) 
One important point in Eq. 2 is that the transport velocity vtr (sometimes it is 

referred to as VE in the literature [2]) is much smaller than the phase velocity due to 

the fact that the Wigner time delay [4], the time spent by the light inside the single 

scattering region, is much longer than the time it takes for light to travel from one 

scattering site to another with group velocity vg ~ c. Here c is the speed of light 

in vacuum. The diffusion coefficient decreases as the transport velocity vtr and the 

mean free path £ decreases. 

This approach clearly neglects all of the interference effects between multiply 

scattered waves. These interference effects increase the probability of recurrent scat

tering, in which scattering paths form closed loops and interferometrically decrease 

the diffusion coefficient D. When the amount of disorder in the system reaches a crit

ical level the diffusion coefficient becomes zero and the diffusion of light stops, this 

effect is called the localization of light. Note that localization is purely an interfer

ence effect and in this regime the diffusion theory is inadequate to describe radiative 

transport in the system. 

1.3 LOCALIZATION OF LIGHT 

The term localization is generally used in two contexts of research among those of the 

atomic, molecular and optical physics (AMO) and condensed matter physics commu

nity who study light scattering. One is called weak localization of light, which occurs 

in a medium where the mean free path £ is much larger than the wavelength of the 

light. The name weak localization comes from the fact that interference effects, which 

are considered the building blocks of the light localization, reveal themselves in a 

fascinating phenomenon called coherent backscattering of light. Coherent backseat -

tering can be observed when light scatters many times in a disordered medium. 

Because of time-reversal symmetry every path of light has a counter-propagating 

partner. When the phase accumulation along these two paths are equal they usually 
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constructively interfere. One spatial zone where these paths constructively interfere 

is the backwards direction. This interference effect leads to a cone shaped intensity 

enhancement in the backwards direction. The coherent backscattering event has been 

observed in many systems from solid state samples to ultracold samples. Coherent 

backscattering of light was first reported in 1984 in the condensed matter commu

nity [5-7]. First reports of measurements of coherent backscattering from ultracold 

atomic samples were made by the Kaiser group in 1999 [8,9]. Since then many the

oretical and experimental studies have been done to investigate the magnetic field, 

spectral variations, polarization, optical saturation and time dependence of coherent 

backscattering of light [10-21]. 

Even though coherent backscattering is termed weak localization of light, it is 

not a real localization effect in the sense that was first proposed by P.W. Anderson 

et al (1958) [22]. In his famous article of "Absence of Diffusion in Certain Random, 

Lattices" he suggested that beyond a critical amount of impurity scattering, electron 

diffusion in conductors will come to a halt and the material becomes an insulator. 

Last year was the 50th anniversary of his theory of localization, from which all 

general localization phenomenon caused through interference are termed Anderson 

localization. 

The transition to Anderson localization, as formulated by Ioffe and Regel [23], 

is expected to happen when the dimensionless parameter k£ is approximately equal 

to one, where the wavevector k is given by k = 2n/\. According to this criteria, 

localization happens in a regime where the mean free path £ is smaller than a char

acteristic wavelength. This may be the optical wavelength in the medium, sound 

wavelength or the de Broglie wavelength in the case of matter waves. 

Anderson's paper on localization of electrons stimulated a great amount of the

oretical and experimental studies, especially in solid state physics. In the theory of 

Anderson localization of electrons, the repulsive electron-electron interactions are ne

glected. Inclusion of these lead to another type of phase transition, the Mott-insulator 

transition [24]. Since electromagnetic waves do not interact with each other, light 

propagation in a disordered medium becomes an ideal candidate for localization stud

ies. Since the 1980s there has been great amount of effort to experimentally observe 

Anderson localization of light. Initial experiments looked for a faster decay of the 

transmission of light than oc 1/L, the rate in a diffusive medium. Here L is the 
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thickness of the medium. First experimental results in three-dimensional localiza

tion of light came from the condensed matter physics community. Wiersma et al. 

claimed in a Nature article the first experimental observation of light localization 

in semiconductor GaAs powders [25]. The results that they presented as evidence 

for Anderson localization are questioned by some physicists who argue that absorp

tion leads to a similar result as localization. A different approach may be needed 

to observe unambiguously the signatures of Anderson localization. In more recent 

experiments, Maret's group examined the time evolution of transmission of light 

through bulk powders of TiC>2 with k£ values as low as 2.5 [26-28]. Their results ex

hibit a strong deviation from diffusive transmission that can not readily be explained 

by absorption. Other experimental realizations of Anderson localization include the 

transverse localization for a 2D lattice by Schwartz et al. and a ID lattice by Lahini 

et al. [29,30]. Recently Hu et al. reported the Anderson localization of ultrasonic 

waves in a 3D disordered medium [31]. Anderson localization of matter waves in one 

dimension has been recently reported in Bose-Einstein condensates subjected to a 

disordered potential by Roati et al. and Billy et al. [32,33]. 

Recent developments in laser cooling and trapping of atoms have opened new 

opportunities for research in the atomic, molecular and optical physics community. 

It has become became possible to do experiments under conditions that are hard to 

achieve in condensed matter systems but recently have been observed in atomic sys

tems. Bose Einstein Condensation, the Mott insulator transition, and superfluidity 

are examples of such achievements [34-36]. Another considerable interest to both 

condensed and atomic physics is Anderson localization of light. Ultracold atomic 

gases are basically absorption free systems which makes them ideal for localization 

studies. Moreover, ultracold atomic systems provide tunable experimental parame

ters that makes it possible to exert precise control of the physical system. 

In this dissertation we first present basic theoretical aspects of light scattering, 

coherent backscattering, Anderson localization and laser cooling and trapping. Then 

the instrumentation of the experimental apparatus is described in detail in Chapter 

III. Some technical details and drawings related to experimental instrumentation 

are given in the Appendix at the end of this thesis. The sample characterization 

procedures and techniques will be explained in Chapter IV. The results and the 

analysis of the experimental results will be presented Chapter V. The thesis will end 

with discussion and conclusions based on the experimental results. 
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CHAPTER II 

THEORETICAL BACKGROUND 

In this chapter I present some simplified models of results that are needed in analysis 

and interpretation of the experiments. An important approximation made through

out is that the applied radiation is described as a classical field. The interaction with 

the atoms, which are described quantum mechanically, is taken to be electric dipole. 

II . 1 T W O LEVEL ATOM 

To understand the light scattering from a collection of atoms it is first necessary 

to consider the light scattering from a single atom. Let us now consider the near 

resonant light scattering so we can ignore the other transitions and consider the atom 

in a two-level approximation. The time dependent Schrodinger equation is 

H\^) = ih^) (4) 

where H is the Hamiltonian in the existence of a perturbation V, 

H = H0 + V. (5) 

First we expand the wavefunctions, which form a complete set, as 

|V> = 5>(*)l*>e- t o f c t (6) 
k 

where \k) are the eigenstates of the unperturbed Hamiltonian, HQ with Ek = hwk 

are the eigenenergies; 

H0\k) = hwk\k). (7) 

These states are also normalized and orthogonal, 

(k\n) = 5kn (8) 

ak(t) are the time dependent probability amplitudes of the respective states with 

EM*)IJ = 1 (9) 
k 

and |afc(t)|2 is the probability of finding the atom in state \k). Substituting Eq. 6 in 

Eq. 4 gives, 

(H0 + V)\rp) = ih'EiakWWe-™** - iwkak(t)\k)e-
lWkt). (10) 

k 
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This yields 

«*(*) = -^Ea^)(n\v\k)e~iWknt ( n ) 
^ A; 

where 

Wkn = Wk- Wn. (12) 

In the case of an electric dipole interaction between the light and the atom the 

interaction operator is given by 

V = -d- E(t) (13) 

where d is the electric dipole moment operator of the atom, 

d = - e r (14) 

and E is the classical electric field of the light, 

E = E0ecos(kz — wt). (15) 

Here e is the polarization vector of the monochromatic light with an amplitude EQ 

having angular frequency w and traveling in the z direction. Here text in bold rep

resents a vector operator. We will ignore the spatial dependence of the field because 

the size of the atom is much smaller than the wavelength of the light. Spatially dis

tributed collective interactions are thus ignored. The interaction operator can also 

be written as, 
piwt _!_ p—iwt 

V = eEQ( ± )e- r. (16) 

It is important to note here that in first order perturbation treatment of this problem 

because of the odd parity of the V operator, only the off diagonal matrix elements 

in Eq. 11 survive. 

Now if we go back to the case of a two level atom under the influence of the 

light field where the ground state is defined as |0) and the excited state is |1) with 

associated unperturbed energies of E0 = hui0 and E\ = hui, Eq. 11 can be written 

as 

a0(t) = -^eEoai(t)^
e 'T^\e^-^o)t + e~i(w+w10)t^ ^ 

and 

ax{t) = - ^ e E 0 a 0 ( t ) ^ | e r | 0 \ e ^ + " , l o ) i + e-^-^Yy (18) 
ft ZJ 



Now it is useful to introduce the Rabi frequency which is defined as, 

eE0 
&kn — 

h 
-{n\e- r\k). 

If we consider the light field is weak such that 

ai(t) ~ 0 and ao(t) ~ 1 

and 

ai(0) = 0 and ao(0) = 1 

we can solve for a\(t), the excited state probability amplitude as 

ai(t) = 

The result of the integration is 

/ < 
Jo 

e„yw+wio)t _|_ -i(w-wio)t )dt. 

(19) 

(20) 

(21) 

(22) 

ai(t) 
in ei(w+wio)t _ -̂  -i(w—w\o)t 

i(w + w10) -i(w-ww) 
(23) 

For the near resonant light scattering, the light field angular frequency w is close to 

ww and we can make rotating wave approximation (RWA). We assume 

w + ww ;» \w — ww\ 

and the second term dominates the equation. Dropping the first term we get 

(24) 

CLi(t) = ft' 
J(w-wio)t/2 

(w - ww) 

Di(w-wio)t/2 -i(w—wio)t/2 

(25) 

The transition probability of the atom started in the ground state to be found in the 

excited state at time t is then given by 

Pi(t) = |a1(t)r = |fi| 
2 2sin2[(w - Wi0)t/2] 

[w - ww 

(26) 

II.2 LIGHT SHIFT 

In the presence of the light field the energy levels of the atom are shifted. The light 

shift can be found by replacing the probability amplitudes ao(t) and a,i(t) in Eqs. 

17, 18 by 

a0{t) = a0(t) (27) 
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and 

a1(t) = a1(t)e
i(-w-,Vl^t. (28) 

After making the RWA in Eqs. 17, 18, substituting the Rabi frequency ft and defining 

5 = w - wio (29) 

we have 

ao(t) =-iaiit^e™ (30) 

and 

a^t) = -iao(t)^e-i6t. (31) 

Differentiating Eqs. 27, 28 with respect to time gives 

a0(t) = ao(t) (32) 

and 

fii(t) = di(i)ei5t + iSa^tfe™. (33) 

After substituting Eqs. 27, 28, 32 and 33 into Eqs. 30 and 31, we can bring these 

two equations in the following form: 

iM0(t) = —ai ( t ) (34) 

ihdx(t) = — do(t) — hSdi(t). (35) 

The Eqs. 35 and 34 in the matrix form is, 

a \Mt)j \f -M) \Mt)) 
The eigenenergies of the the system are given by 

= \ (-5 ± byjl + W/5^ (37) 

In the limit where O <C |5| the term in the square root can be expanded by utilizing 

the binomial theorem and the energy shift due to the light field becomes, 

E0, = ±*§ (38) 
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In real atoms the energy level structure is more complex than that is described 

here. The generalized multi level atom energy shift of level i without the rotating 

wave approximation is given by [37] 

Ei = -!$Y\{i\i-r\f)\2( + V (39) 
^t^f \wif-w wif + w) V ' 

II.3 SPONTANEOUS EMISSION 

So far in the derivations the damping of the excited state is ignored. In the absence 

of atomic collisions this damping is called the spontaneous emission rate or excited 

state decay rate. Relaxation processes are more properly treated through a density 

matrix approach to the atomic populations and coherence. However, it is sufficient 

here to treat the basic interactions between the electromagnetic field and the atoms 

as explained in a phenomenological theory made by Einstein [1]. According to this 

theory there are three fundamental interactions between light and atoms; absorption, 

stimulated and spontaneous emission. The absorption and the stimulated emission 

coefficients B!2=B2i for the two level atom that is treated quantum mechanically in 

this section. Now we will consider that the light is turned off at time t = 0 and the 

excited state population N2 is allowed to decay to the ground state. Note that in this 

section energy levels are labeled as 0 and 1 but to keep the notation parallel with the 

literature, 1 and 2 will be used to identify the levels when Einstein coefficients and 

rate equations are mentioned. The rate equation for N2 is 

^ = ~N2A21 (40) 

where A2i is the Einstein coefficient for spontaneous emission. The excited state 

population decays as 

N2 = N2(0)e-t/T (41) 

where the time constant r = \/A2\. Here r is called the radiative lifetime of the 

excited state and A2\ = 7 is the natural linewidth of the excited state, 

7 = A* = Ba ( * £ ) . (42) 

We now introduce the mean energy density of radiation of an applied field as (W) 

at frequency w, 

P1{t) = \a1(t)\
2 = Bl2{W)t (43) 
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where (W) = I/c [1]. This equation defines the relation between the excita

tion/absorption rate and probability. Here / is the intensity of the radiation which 

is given for an incident plane wave as 

7 - l^E?=£• ( 4 4 » 
The mean energy density of the radiation (W) becomes 

Then Eq. 42 can be written as, 

\ai(t)\
2 ftuj3\ 

In the derivation of |ai(t)|2 we assumed the Wi0 is an exact value. It does not 

include the statistical spread of the width of the transition, 7. The correct form of 

the excitation probability is 

m=io, Wi»=«» r ™2fm-mit/2^. (47) 
J-oo [W — WW)Z 

To solve the integral we make a change of variables, (w — Wio)t/2 = x. Then with 

dx = t/2dw the integral becomes 

t r+°° sin2x t , . 

Then Eq. 47 can be written as 

MOI^n2^. (49) 

Before writing the excited state population decay 7, we need to average over the 

random spatial orientations of the transition dipole moment. The Rabi frequency 

can then be written as 
2e2 

(tf) = —ro\(l\r\0)\2(W). (50) 
3e0n 

Now we can write the excitation probability as 

where we defined 11 = e(l|r|0). From Eqs. 51 and 46 the excited state population 

decay rate 7 becomes 
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The amplitude of the excited state decays at a rate 7/2 to ensure the population 

decays with 7. Now we can rewrite the amplitude equations Eqs. 30 and 31 by 

adding an additional damping term —ry/2ai(t) to the right side of di(t) equation as 

do(t) = - t a 1 ( t ) " e * 0 - w « * (53) 

and 

0!(t) = -«a0( t)"e- i<w-w«* - lai(t). (54) 

Again we make weak field approximation, a,o(t) ~ 1. To solve these equations let us 

define 

(55) 

(56) 

comparison between Eq. 

5i(t) 

ai(t) 

fli 

ai 

fli 

= aieV 

= aie^
2+ 1-ale^'2 

= ~aie-^-^ai. 

56 and Eq. 54 gives 

= 

= 

_i^e(-i(w-w10)+1/2)t 
2 

fc-rt/2 e 

2 —i(w — w-io) + 7 / 2 
(57) 

where we made an indefinite integration. From Eq. 57 and 55 the amplitude equa

tions become, 

ao(t) ~ 1 (58) 
Q e-i(w-wio)t 

al(*) = 77 7 N 777- (5 9) 
W 2 (w - w10) + i-f/2 v ' 

II.4 LIGHT SCATTERING CROSS SECTION 

Now we turn to a macroscopic electrodynamical treatment of an isotropic, homoge

nous dilute gas of atoms. We will relate the dipole moment of a single atom to 

the polarization of the gas which will be useful in coming sections. The index of 

refraction of the medium is a complex quantity and it is given by 

n = nr + irii. (60) 

For a plane wave 

E = eE0e
l^r-wt) (61) 
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where k = —rik and for k = z we can write E as 
c 

E = tE0e^nre-iwte-^z. (62) 

So the Poynting vector equals 

/ = e0c2(E x B) = - ^ o _ e - ^ n * 2 . (63) 
2/^oc 

This equation describes the attenuation of the initial intensity of the light field IQ = 

EQ/2/J,0C as it travels through the medium. The absorption coefficient of the medium 

is defined as 

K = — r i i (64) 
c 

and the optical depth is defined as b = KZ such that 

/ = I0e-b. (65) 

The relation between the complex dielectric function e(w) and index of refraction 

n is given by 

(nr + irii)2 = e(w) = 1 + x(w) (66) 

where x(w) is the linear susceptibility [1] which is related to the polarization density 

P as 

P = eoX(w)E. (67) 

Now Eq. 66 becomes 

(n2
r - n2) + i2nrrii = 1 + x(w)- (68) 

If we write x(w) = Xr(w) + iXi(w) then the real and imaginary parts of the suscep

tibility are 

Xr(w) = n2
r-n\-\ (69) 

Xi(w) = 2nrni. (70) 

From Eqs. 69 and 70 it follows that 

nr = 1 + -XT(W) (71) 

ni = lpCi{w) (72) 

The total polarization of the medium P{t) is given by the expectation value of the 

dipole moment pit) as 

P(t) = Np(t) = N(il>\ - ee • r|^> (73) 
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where 

\iP) = a0(t)|0)e--o* + a 1 ( i ) | l ) e - - l t . (74) 

Here N is the number density. Then 

<p(i)> = - e (a*(t)(0|e-oi + oI(t)(l|e iMlt) e • r (a0(t)\0)e-
iwot + ai(t)\l)e-ivllt) . (75) 

Again the diagonal matrix elements vanish because of the odd parity of position 

operator and as a result the polarization is 

(p(t)) = -e (a*o(t)ai(t)(0\e • r | l ) e - i w l o t + aj(*)a0(*)<l|e • r|0>eiMlot) . (76) 

If we substitute ai(t) and ao(t) from Eqs. 58 and 59 into Eq. 76 we get 

= 2fte»Kll6T|0)|° / e ^ e - \ 
W ; / 2fr V ^ 1 0 - « ; - i 7 / 2 ^ 0 - ^ + ^ / 2 ^ ' l ; 

With the dipole moment p(t) averaged over all directions the total polarization P(t) 

becomes 

= iV£;oe2|(llr|0)|2l / \ 
V U / 2/i 3 \w10 -w- i-y/2 ww - w + i-f/2) ' { ' 

From Eq. 67, the total polarization can be written as 

(P(t)) = ±e0EoX(w)e~iwt + ±e0EoX*(w)eiwt. (79) 

A comparison of Eqs. 78 and 79 yields 

1 Ne2 1 
XH = x - ^ - | ( l | r | 0 ) | 2 l——. (80) 

3 eoh ww — w — tj/2 

From Eq. 80 the real part of the susceptibility is 

/ ^ l i V e 2 | / i i m\i2 wio-w 
^ W = 3 ^ K 1 | r | 0 > l ( W l o - ^ + (7 /2)2

 ( 8 1 ) 

the imaginary part of the susceptibility is 

*M = \^m\'iwa_^+h/2)1. (82) 

So from the Eqs. 64, 72 and 82 the absorption coefficient K is 

liVe2 , , . . . l9 /ti;\ 7/2 . . 
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The absorption coefficient can be written in this form; 

where we substituted 7, 

and 
H^K'WI' (85) 

into Eq. 83. So far we didn't include the degeneracy of the energy levels in the 

derivations but to get the exact solution the ratio of the degeneracies gi/go should 

be included in the equations. So from K = Na, 

= 9lX2 1 (R7) 
° g0 2TT 1 + (25/7)2 l } 

where a is the light scattering cross section. 

II.5 MULTIPLE LIGHT SCATTERING 

Propagation of light in a dilute atomic gas can be thought of as successive scat

tering of light from randomly distributed scatterers (atoms). The scattered light is 

assumed to have a random probability to propagate in any direction. Because of this 

randomness, multiple scattering of light in atomic medium is generally considered as 

a diffusion process with a Poissonion type statistics. The main parameter to describe 

the diffusive medium is the mean free path L If we consider the light is performing 

a random walk in the medium, the mean free path is the average distance that the 

light travels before it experiences another scattering. The first person to treat light 

propagation with diffusion was Compton in 1922 [38]. Since the time that the light 

spends in the medium is longer than the radiative lifetime of an individual atom r, 

this process is also called "radiation trapping". 

In particle diffusion the density of the diffusing material at location r and time t 

is given by the diffusion equation, 

which is also called the heat flow equation. Here D is defined as the diffusion coeffi

cient [39]. The relation between the diffusion coefficient D and the mean free path 



16 

is given by 

1 £2 

D = ~ (89) 
6rtr 

= \vt4- (90) 

Here rtr is the average transport time per scattering event and vtr is the average 

transport velocity of the scatterers such that 

Vtr = 7JT- (91) 

The solution to the partial differential equation is 

^ = xJ>w^liDt (92) 

for particles start to spread from the origin at t =0 [39]. 

Even though the diffusion model in general describes the light scattering pro

cesses in an atomic medium especially in ultracold samples, there are fundamental 

extensions required. 

Among these is treatment of the quite complex atomic internal energy level struc

ture which can give rise to inelastic scattering, in turn changes the mean free path. 

Another is the role of spectral redistribution of scattered light. For pure elastic 

scattering the step length distribution between two scattering events is given by the 

exponential distribution, 

p{r) - ike(~r/l(w)) (93) 

where £(w) is the frequency dependent mean free path [40]. For incoherent light with 

inelastic spectral distribution F(w), Eq. 93 is given by 

p(r) = / d f f l | y e ( " r M w ) ) ' (94) 

Holstein pointed out that the line broadening mechanisms can give rise to a Levy 

type statistical distribution of the free path distribution [40,41], 

P{r) ~ - ^ . (95) 

In Levy statistics the steps of the random walk can have extremely long jumps which 

are also called Levy nights [42]. 

There are a number of dephasing effects and inelastic processes that are important 

in light scattering from atomic medium. One is the Doppler broadening due to 

file:///vt4-
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the random motion of the atoms. This effect, which completely randomizes the 

phase of the light after a few scattering events for atoms at room temperature, can 

be minimized by cooling the atoms. Even in ultracold atomic samples with high 

scattering orders, it is an important parameter that eventually dephases the light. 

Other related dephasing occurs because of the recoil of the atom after each scat

tering event. In the course of light scattering, because of recoil, the phase shift in the 

frequency of the light performs a random walk which increases the overall phaseshift 

by y/~N with N scattering orders, see Appendix A. In our experiments we can pro

duce samples with optical depth b of ~ 165 (10). The relation between the scattering 

order and optical depth in diffusion theory is given by 

AT = - ^ b 2 (96) 

where a is a geometrical numerical factor 5.35 for inhomogeneous sphere with gaus-

sian density profile) [2]. Here b is the optical depth of the sample which is given 

by 

b = v2inio<jro (97) 

where no is the peak density, TQ is the Gaussian radius of the sample and a is the 

light scattering cross section which is given by 

_ IF' + 1 A2 1 
a~ 2F + 1 2TT 1 + (2<J/7)2 ( ' 

from Eq. 87. The optical depth b of ~ 165 corresponds to N > 1500 scattering 

orders. When we consider a recoil shift of ~ 50 kHz per scattering, the total light 

frequency drift is ~ 2 MHz. This is only for the radial direction of the atomic sample 

that we obtain in our experiments. In the axial direction where the optical depth is 

~ 4000 the results are even more dramatic. 

Some of these dephasing effects can be minimized by cooling the sample to lower 

temperatures but inelastic scattering components from Raman transitions and recoil 

shifts still exist. Under these circumstances ultracold gases with kl -C 1 can be 

treated with diffusion equations. Here k — 2TT/X. This inequality corresponds to a 

mean free path length of the scattering much larger than the wavelength of the light. 

Another difference of light scattering from atomic gases compared to particle 

diffusion is that, in particle diffusion the main contribution to the transport time 

comes from the propagation time between the scattering events. In the atomic case, 
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the transport time is given by 

I . . 
Ttr = TW-\ ~ Tnat (99) 

V9 

where TW is the Wigner time delay for the scattering and £/vg is the free propagation 

time [2]. Here vg is the group velocity of the light in the medium. Since the Wigner 

time delay TW ~ Tnat ~ 27 ns [43] is much larger than the free propagation time 

£/vg ~ £/c ~ 1 ps, the transport time is predicted to be essentially equal to the 

natural lifetime of the atom. 

In the experiments described in this thesis, we are interested in time dependent 

light scattering measurements. This is done by sending a pulse of laser light into the 

sample for a period of time usually longer than the time for the system to reach the 

steady state. Then we look at the dynamics after the laser beam is extinguished. 

The diffusion coefficient in terms of hi is given approximately by 

D « DQ [l - 1/(H)2] (100) 

where DQ is the diffusion coefficient for weak localization regime where fc!<l. In this 

regime where the dynamics is determined by diffusion the decay of the scattered light 

is interpreted as a sum of decaying exponentials each of which are called "Holstein 

modes." At later times, the decay is dominated by the longest lived mode where the 

signal decays with a single exponential time constant To which is given by 

T0 ~ — r n a t 6
2 . (101) 

where a is a numerical factor whose value is 5.35 for an inhomogeneous sphere with 

Gaussian density distribution. From this equation and Eq. 89 it is possible to 

estimate the diffusion coefficient of the medium [2]. 

II.6 WEAK LOCALIZATION 

Up to now we have ignored any interference effects that are possible in multiple 

light scattering. Even though light propagation in dilute atomic gases can be largely 

considered diffusive, interference effects play an important role. For instance, it is 

interference effects that gives rise to a speckle pattern in space as light passes through 

or scatters from a random media. Light scattered from different scatterers interferes 

constructively or destructively, which forms a random interference pattern depending 
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Speckle 
Surface Screen 

FIG. 1: Light scattered from a random surface exhibits a speckle pattern because of 
interference effects. 

on the locations of the scatterers as shown in Fig. 1. As the locations of the scatterers 

are moved, different configurations forms different speckle patterns and the sum of 

the detected field smooths out and gives a nearly angle independent pattern. 

Another manifestation of interference effects is the enhanced backscattering inten

sity as a result of coherent backscattering. As a result of the previous configuration 

averaging the speckle pattern smooths in all direction except in the backwards direc

tion and in a narrow angular region. The enhancement shows up in the backwards 

direction because of constructive interference of light propagated in reverse paths 

that do not depend on the location of the scatterers. This effect is called coherent 

backscattering (CBS), which is also called weak localization of light because it is a 

manifestation of coherent radiative transport [6,7,39,40,44,45]. 

To understand the origin of the CBS effect, we consider two paths for an incoming 

ray that are equally possible as shown in Fig. 2. The blue path has an extra phase 

of —kf • r due to the extra path length at exit and the green path has an extra 

phase oi ki • r due to the extra path length at incidence. It is clear from the picture 

that when ki = —kf, the total phase difference between two paths is zero which 

causes constructive interference in the backwards direction (9 = 0). This result is 

independent of the configuration. The total intensity in the backwards direction 

(at any 6) has other interference terms that depend on configuration but only the 
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FIG. 2: Schematic illustration showing two ray paths in a scattering medium and 
profile of the backscattered intensity around 9 = 0. It has a narrow cone shaped 
profile with a maximum enhancement of 2 over the background. 

interference at 9 = 0 survives configuration averaging. The backscattered intensity 

1(9) can be expressed as a sum of three terms; 

I(9) = Is(9)+IL(9) + Ic(9) (102) 

where Is(6) is the single scattering intensity, IL(9) is called the ladder term which is 

the multiple scattering intensity without interference and Ic{&) is the crossed term 

which is the multiple scattering intensity with interference between direct and reverse 

paths [39]. The enhancement a is defined as the ratio of the intensity at 9 = 0, 1(0) 

to the average background intensity Is{&) + IL{@) at large 9 and is given by, 

Ho) 
a = 1 + (103) 

is(0) + h(ey 
The coherent backscattering intensity for a semi-infinite slab of disordered scattering 

medium has a narrow cone shaped profile given by [39], 

exp[-2\k{ + k{\(z0 + C)}\ J ( k i ; k f ) ^ 3 ( ^ + C) f 1 
h 4TT£ 1 2|ki + k f |(z0 + C) / ' 

Here IQ is the incident intensity and the extrapolation length C is given by 

'21\ (1 + P\ C 

(104) 

(105) 

where p is the reflection coefficient at the sample surface, I is the mean free path and 

z0 = £. The full width at half maximum of the backscattered cone is given by, 

A9*°4 ( 1 ° 6 ) 
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FIG. 3: Schematic illustration showing recurrent scattering of two counter propagat
ing paths in a scattering medium. 

where k is 2TT/X [7,39]. Fig. 2 shows the shape of the cone for an effective medium 

with mean free path of £ = 19.5 nm and for an incident light with wavelength A = 780 

nm. 

II.7 STRONG LOCALIZATION 

Coherent backscattering of light, which is a result of interference of multiply scat

tered waves, has been demonstrated in various systems [6,7,46,47] including ultracold 

gases [8,9,19,21]. Another interference effect that has not been observed yet in a 

three dimensional atomic system is the localization of light. Localization of light is 

considered as a disorder induced second order phase transition or a cross-over from a 

diffusive system to a localized system in the transport properties of the electromag

netic wave in strongly scattering medium [48]. 

In the previous section we mentioned that the interference of the counter prop

agating paths in the sample constructively interfere in the backscattering direction. 

Now let us assume that these two counter propagating paths come together inside 

the sample and form a closed loop as shown in Fig. 3. Here we assume that the scat-

terers are not moving. The two counter propagating paths of the light have the same 

probability amplitude. Since these two reciprocal paths have zero phase difference, 

they constructively interfere at the starting/meeting point. Further, since these two 
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waves are coherent, the relative probability of this event happening is determined 

by P = \A + A*\2 = \A\2 + \A*\2 + 2\AA*\ = 4\A\2. If the interference effects are 

ignored the amplitudes are added incoherently resulting P = |A|2 + \A*\2 = 2\A\2. 

As it can be seen from this example, because of the interference of the two paths, the 

probability to form closed loops is enhanced which in turn decreases the probability 

of diffusion. When the amount of the disorder reaches a critical boundary these 

closed loops lead to a suppression of diffusive transport. This critical boundary was 

parametrized by Ioffe and Regel, when the mean free path £ is less than the wave

length of the light A [23]. The Ioffe-Regel boundary states that localization happens 

when k£ = 1 but Maret et al. observed the onset of localization in his samples around 

k£~4 [26,27]. 

This criteria is a hard one to achieve, especially for ultracold samples, as it re

quires densities greater than 1013 atoms/cm3. Recent developments in laser cool

ing and trapping techniques made it possible to achieve such densities in ultracold 

atomic systems but there are still challenges in the observation of light localization 

phenomenon. 

One such challenge is that, if light localization is possible and the light cannot 

emerge from the sample, how can one put the light in the medium? This problem 

potentially can be solved by using a temporal increase of k£ by implementing a 

quickly switchable far off resonant laser. Application of this laser beam results in a 

shift in energy levels of the atom that decreases the scattering cross section. This 

technique will be explained in detail in the experiment and results chapters. 

Another challenge is: how one can know if the light is localized? What are the 

signatures of localization? Anderson et al. predicted that a conducting electronic 

system becomes an insulator in the localization regime [22]. The electrons normally 

move diffusively in a conductor as described by Ohm's Law. This results in a decrease 

in transmission with sample size as 1/L. When electrons are localized Anderson has 

predicted the transmission to be given by 

T(L) = r0e (-L/z"oc ) (107) 

where L/oc is defined as the localization length [3,49]. In the localized regime the 

diffusion coefficient vanishes and the transmission is suppressed exponentially, as 

only the tails of the probability distribution can escape from the sample [26]. So a 

transmission measurement can reveal if the system is localized or not. This type of 
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measurement is not practical for the samples prepared in our experiments, because 

the sample size is very small, ~ 20 //m, usually much less than the experimental 

spatial resolution. 

Localization experiments can also be done in the time domain. The time depen

dent transmission or fluorescence measurements allows direct determination of the 

diffusion coefficient as given by Eqs. 101 and 89 in a diffusive medium. As was 

mentioned before, the fluorescence emerging from the sample after the light field is 

extinguished decays with a single exponential time constant at long times. This time 

constant allows measurement of the diffusion coefficient. Aegerter et al. used the 

diffusion coefficient dependence to characterize the approach to localization [28]. The 

transition to localization in terms of the localization exponent is given by the ansatz 

D(xt~a 0 < a < 1. (108) 

The limiting cases of a = 1,0 represents the localized and diffusive state respectively. 

Another way to detect localization in principle is by measuring the critical fluctu

ations in the scattered light intensity near the localization threshold. The speckle 

pattern that was discussed in the previous section is expected to show fluctuations 

as recurrent scattering slows the diffusion near the localization regime [50]. 

Finally, all dephasing effects mentioned in the previous sections, such as Doppler 

broadening and recoil shifts, work against localization and remain as a potential 

challenge in light localization experiments in ultracold atomic samples. Even though 

these have deleterious effects on localization in atomic samples, condensed matter 

systems have their own problems. Among those, absorption of the light by the 

medium is an important one. Absorption can show similar results to localization and 

it is not always trivial to differentiate one from another. Atomic samples are nearly 

lossless systems in this sense. Also atomic systems has advantages in terms of control 

and manipulation of the localization parameters while localization is happening. For 

example a far off resonant light can be used to shift the energy levels and the system 

can be switched back and forth between a localized and diffusive state. In condensed 

matter systems this type of control over the sample is very limited. 

II.8 LASER COOLING A N D TRAPPING 

In 1997 Steven Chu, Claude Cohen-Tannoudji and William D. Phillips shared the 

Nobel prize for the development of methods to cool and trap atoms with light. Since 
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the first demonstration of laser cooling and trapping in 1985, research with cold atom 

sample has become very popular in the Atomic Molecular and Optical Physics (AMO) 

community. Now different types of laser cooling and trapping instrumentation have 

become standard equipment in many AMO research lab dealing with atom-atom 

or atom-light interactions. The laser cooling and trapping techniques have been 

developed and improved continuously by the researchers around the world since its 

first demonstration. 

In our experiments the need for a cold atom sample arises from the fact that 

inhomogeneous Doppler broadening in warm atoms causes frequency redistribution of 

the scattered light. As was discussed before, the two parameters that are important 

to describe light scattering from atoms are the transition frequency w0, and the 

transition width T. Because of the Doppler shift associated with the motion of the 

atoms the effective light scattering cross section, 

_ (2F' + 1) A2 1 
a~ ( 2 F + l ) 2 7 ( l + (25/72)) ( 1 ° 9 ) 

decreases where 5 is the detuning of the light from the resonant F —> F' transition 

of the atom and A is the wavelength of the light [51]. Since the frequency of the light 

is Doppler shifted by kv where v is distributed according to the Maxwell-Boltzmann 

law, this shift shows up as a detuning in the cross section equation, Eq. 109. This 

means that scattering events have different strength and introduces a random phase 

shift to the light field. Interference effects are the key in realization of light lo

calization and as the phase of the scattered light randomized the interferences are 

expected to be averaged out. For example, the average phase shift of the light after 

two scattering event is on the order of 

A02 ~ - 5 ^ - i (110) 

where (v2) is the root mean square velocity of the atoms [52]. For Rb with T/k ~ 

5 m/s, to see any interference effects in light scattering from atoms, the atomic 

sample needs to be cooled, with temperatures below one mK. For light scattering 

experiments involving higher order scattering, this requirement is even more severe. 

In this experiment the necessary cooling and trapping of 87Rb atoms is obtained 

by applying a combined Magneto Optical Trap (MOT) and CO2 laser based dipole 

trap; the basic theory of operation will be explained in this chapter. 
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FIG. 4: Doppler broadened absorption spectrum. An atom moving towards the the 
laser beam is closer to resonance among the two counter propagating beams in atom's 
rest frame. 

II.8.1 Magneto Optical Trap 

In this section, general concepts of laser cooling and trapping and magneto optical 

traps (MOT) with details important to the experiment will be discussed. The actual 

MOT formation and instrumentation is explained in detail in the next chapter. The 

method of laser cooling is in principle simple. Since light carries momentum it can 

exert a force on atoms where the momentum kick that the atom experiences in 

scattering a single photon is on the order of hk. The total scattering rate j p of light 

from the light field is given by 

5o7/2 
7 p l + s0 + (25/7)2 

where SQ is the saturation parameter and is given by 

2ft2 

S0 = I/Is 

Y 

( i l l ) 

(112) 

Here 7 is the excited state decay rate and Is is the saturation intensity which is ~ 1.7 

mW/cm 2 for the 8 ' R b cooling transition [43]. So the net force on the atoms is [53] 

F = hk'jp. (113) 

For example, a Rb atom at room temperature has a velocity of ~ 200 m/s . The 

maximum recoil velocity after each momentum kick is given by, 

nk n « / 
vr = — ~ O.o cm/s 

m 

(114) 
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where k = 2TT/\ and m is the mass of Rb atom. With a properly arranged laser this 

atom can be brought close to rest in less than a millisecond. 

The Maxwell-Boltzmann velocity distribution of atoms at temperature T is given 

by [53] 

/ W A = \ / 2 ^ T ^ ( " ^ r f V ( U 5 ) 

Because of the Doppler shift, the atoms moving towards the light with velocity 

« = c(j--l) (116) 

are in resonance with the incident light. On the average this causes broadening of 

the absorption line of the atom which is called Doppler broadening. The width of 

the Doppler broadened absorption line for a gas of Rb atoms at 300 K is ~ 500 MHz. 

By adjusting the frequency of the light one can achieve velocity selective cooling of 

the atoms. An atom moving towards the laser beam tuned A / = / — fL below the 

atomic resonance transition / , scatters more photons than an atom moving in the 

opposite direction. This way atoms moving towards the laser beam are preferentially 

selected and cooled as seen in Fig. 23. 

If laser beams are incident on the atom from all six directions, the movement of 

the atoms in the intersection region can be restricted. This environment, which is 

called optical molasses, is a viscous sea of photons from all directions that limits the 

motion of atoms. It is important to note that optical molasses does not trap the 

atoms. It cools the atoms in the intersection region but it does not exert a position 

dependent force that will collect the atoms at the center or restore the atoms that 

have been displaced from the center. 

The position dependent force comes from the operation of both the inhomoge-

neous magnetic fields and optical molasses. This type of trap is called a magneto 

optical t rap (MOT) and was first demonstrated in 1987 [54]. The optical molasses 

provides the necessary cooling and the magnetic field gradient together with optical 

molasses loads atoms into the trap. 

The magnetic quadrupole field as shown in Fig. 5 is generated by using two 

identical coils with current going in opposite directions. This arrangement of coils 

generates a magnetic field of zero strength at the trap center and increasing in all 

directions away from the center. This magnetic field gradient results in a position 

dependent Zeeman shift of energy levels given by 

AE± = ±n'B (117) 
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FIG. 5: A magnetic field shifts the Zeeman energy levels and together with appro
priate selection of cr_ and a+ polarized light the atoms are cooled and trapped at the 
trap center, where B=0. 
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where / / = (geMe—ggMg)/j,B is the effective magnetic moment for the J, Mg —> J', Me 

transition. Here M6i9 are the magnetic quantum numbers and ge,g is the Lande g-

factor [53]. 

Fig. 5 illustrates a simplified scheme o f a J = 0—> J' = 1 cooling transition of an 

atom in a magneto optical trap. For the atoms in the region where B > 0 the excited 

state m' = +1 Zeeman level is shifted up and m1 = — 1 Zeeman level is shifted down in 

energy. Since left circularly polarized (CT_) light excites m3•, = 0 —• m'- = — 1 transition 

and right circularly polarized (<r+) light excites rrij•, = 0 —»• m'j = +1 transition, in 

the region where B > 0 a er_ polarized laser beam tuned below resonance is closer to 

resonance than a a+ polarized laser beam. As a result more <r_ photons are scattered 

than a+ photons. This is a similar situation to optical molasses, except that the 

force acting on the atoms in the magnetic field gradient is position dependent. In 

the region where B > 0, the atoms are being pushed towards the center of the MOT 

where B = 0. This scenario is the same for all three directions. 

II.8.2 Optical Dipole Trap 

In the previous section we mentioned optical light forces that slow down and cool 

the atoms. This same process also causes heating of the sample because of the 

random recoils of the atom. The competition between these heating and cooling 

processes results in a steady state temperature of the atomic sample. The same 

heating mechanism causes outward radiation pressure that limits the density of the 

atom cloud. 

Optical dipole traps, on the other hand, rely on the dipole force which results 

from the interaction of the atom with the light field. The heating due to scattering 

of this light is kept extremely low by using a far detuned optical dipole trap. 

In this section we will explore the basic concepts behind optical dipole traps by 

using the tools developed in the previous sections. We will first explain the nearly 

conservative dipole force and then we will derive the equations for the induced electric 

dipole interaction potential and the photon scattering rate. The section will end with 

the explanation of the operation of the quasi-electrostatic trap (QUEST). Details of 

the QUEST formation will be described in the chapters on experiment and sample 

characteristics. 

An atom in an electric field E has an induced dipole moment that is given by 

p = a(w)E (118) 
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where a is the complex polarizability of the atom, which depends on the driving 

frequency w. The polarizability of an atom is a measure how well a dipole can be 

induced in the presence of an electric field. This induced dipole then interacts with 

the applied field and the interaction potential of the induced dipole moment is given 

by 

U = -\(p-E) (119) 

where the angular brackets denote the time average of the product. The 1/2 in front 

of the equation indicates that the dipole is induced, not a permanent one. This 

treatment assumes that the field has a linear response to the electric field as aE. 

The resulting dipole force is given by the gradient of the potential U, 

F(r) = - W ( r ) . (120) 

From Eqs. 118 and 119 the potential in terms of the Poynting vector i" is 

U=-^(r,z) (121) 

from which the dipole force can be written as 

F = ^ e ( o O w 

2e0c 

From Eq. 122 we see that the potential is attractive or repulsive depending on the 

sign of the polarizability a. Atoms with positive polarizability are forced towards 

the higher intensity regions and the atoms with negative polarizability are repelled. 

The intensity of a focused Gaussian laser beam in cylindrical coordinates is given 

by 

/(r, z,4>) = I0 ] exp(-2r2/^0
2) (123) 

1 + {Z/ZRY 

where ZUQ is the 1/e2 beam waist at the focus and ZR is called the Rayleigh range 

with ZR = TTWQ/X. Here A wavelength of the laser. This type of trap provides three 

dimensional confinement in the form of an elliptically shaped cloud of atoms. 

The polarizability of the atom can be found from the equations derived in section 

II.4 for the susceptibility of the atom. From Eqs. 67, 73 and 118 we can relate the 

complex polarizability to the total polarization as, 

P = eoxHE 

= Np{t) = N{i)\-ee-r\ip) 

= Na(w)E (124) 
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Then a(w) becomes 
/ x gQX(w) . > 

«M = N • (125) 

A comparison of Eq. 125 and Eq. 80 yields 

e 2 . . , „ > l 0 1 
a(w) = ̂ Klle-rlO)!2 - . (126) 

From Eq. 126 the real part of polarizability Re(a) is 

e 2 | / - . l - l r . \ | 2 WlQ — W 
Ma) = ¥Kl|e.r|0)|-Ko_;)2 + ( 7 / 2 ) 2 (127) 

and the imaginary part of the polarizability Im(a) is 

7 m ( Q ) 4 | ( 1 | e - . r | 0 ) P ( w i o _ ; ) { 2
f ( 7 / 2 ) , (128) 

where we removed the average over random directions as the induced dipole is in 

phase with the field. From Eqs. 127 and 121 we can write the dipole potential as 

U = -~\(l\i-r\0)\^ ^ V ^ r (129) 

4ft IN ' ' n (ww-w)2 + (^/2)2 K J 

Substituting the Rabi frequency in Eq. 129 we get 

hfl2 ww — w 
y = - T K - ^ + (7/2)2' (130) 

where 

n = -^|<i|c.r|o>|. (i3i) 
It is convenient to introduce the detuning 5: 

8 = ww — w (132) 

For large enough detuning, and ignoring the radiative decay, the potential derived 

here agrees with Eq. 38; 

It is also important to derive the scattering rate due to the applied field. A high 

scattering rate in dipole traps heats the atoms and decreases the lifetime of the trap. 

The scattering rate is given by, 

Tsc = hIm{pi)g°' (134) 
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Substituting Im(a) from Eq. 128 into Eq. 134 yields 

r ^ g l d k - . r | 0 ) | - ( w i o _ ^ + ( 7 / 2 ) , (135) 

Simplifying with substituting 5 and tt into Eq. 135 brings the scattering rate Tsc to 

a form of 

r" = T*' + (W (136) 

From the Eqs. 136 and 133 we can write the scattering rate in terms of the potential 

as 
r « = - £ t t (137) 

From comparison of the equations of the scattering rate and the dipole potential 

we can immediately see the advantage of the dipole traps. The scattering rate is 

proportional to 1/S2 and the potential is proportional to 1/5 which allows us to 

decrease the scattering rate without reducing the well depth. The high powered 

CO2 lasers with 10.6 lira wavelength offers extremely low scattering rates and good 

potential well depths. But if the detuning is too big, as in the case of the CO2 laser, 

the rotating wave approximation that is applied up to this point does not hold. This 

case is explained in the next section. 

II.8.3 Quasi-Electrostatic Traps 

As it was mentioned earlier when the frequency of the light field is much smaller 

then the resonance frequency of the first excited state of the atom the light field can 

be considered as a quasi static electric field and the rotating wave approximation 

can not be made. The traps employed by using such light field are called quasi 

electrostatic trap (QUEST). The neglected counter rotating terms should also be 

included in the derivations. Then the susceptibility including the counter rotating 

term can be written from Eq. 80 as 

x ( ^ ) = ^ | ( l | e . r | 0 ) | 2 f — - + 1 . V (138) 

From Eq. 138 the real part of the polarizability Re(a) is 
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and the imaginary part of the susceptibility Im(a) is 

e2 / il2 i/2 \ 
Im(a) = — | ( l |e-r |0) |2 7 ^ 7—7—17 + 7 ^ 7-——r . (140) 

W ftIXI l / ] \ K - ^ ) 2 + (7/2)2
 (WIO + TO)2 + ( 7 / 2 ) V

 V ' 

In the quasi electrostatic limit we can take w —> 0 and u>i0 3> 7. Then the real 

part of the polarizability Re(a) is given by 

e 
2 f ^ ifc«») = ̂ Kl|«.r|0>l'^j (141) 

and the imaginary part of the polarizability Im(a) is 

/m(a) = 4 l ( l | « T | 0 ) | 2 [ H r ! - (M2) J^-r^(l 
The polarizability in Eq. 121 is the static dc polarizability of the atom in the elec

trostatic approximation. Then the dipole potential of the QUEST U is 

U~-^*-. (143) 
2ww

 V } 

The relation between the scattering rate Tsc and the potential U is given by [55] 

Tsc = 2 f — Y ^ - U . (144) 

When this equation is compared with the scattering rate equation of far off resonance 

traps (FORT) in Eq. 137 QUEST scattering rate is less by a factor of 2(w/wi0)
3S/wi0. 
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CHAPTER III 

EXPERIMENTAL INSTRUMENTATION 

111.1 INTRODUCTION 

A main ingredient of this dissertation project was the design and construction of the 

experimental instrumentation. At the initiation of the project to study Anderson 

localization of light in an ultracold atomic gas, there was no experimental apparatus 

or supporting instrumentation to achieve that goal. The aim of this chapter is to 

describe in some detail the experimental apparatus that was constructed, and its 

basic operation. Further, more technical details, are presented in an appendix. In 

addition, the procedures by which the ultracold sample of 87Rb is formed in a magneto 

optical trap, and subsequently compressed into a high density optical dipole atom 

trap, are described. 

The global setup of the instrumentation is shown in Fig. 6. The various ex

perimental zones, as schematically shown there, consist of the vacuum system and 

sample chamber, the various diode lasers and the carbon dioxide laser used, and 

optical arrangement used to route the and control the various laser beams used in 

the various experiments performed. In the following sections, each of these zones, 

and their subsequent operation is described in detail. 

111.2 VACUUM CHAMBER 

The ultrahigh vacuum chamber shown in Fig. 7 consists of 12 viewports, 8 of which 

are 2-3/4" Del-Seal conflat (CF) flanges with antireflection (AR) coating at 780nm. 

Six of these quartz windows are used for MOT beams and 2 of them are used for 

probing and imaging purposes. (MDC part number:450002) The 2 off axis quartz 

viewports that are positioned between detection and MOT windows are 2-1/8" size 

and these are not AR coated to allow detection of fluorescent different than 780 nm. 

These two windows are used for probing and to implement a light shift laser for the 

experiments that are explained in this thesis. The two 4-1/2" windows are made of 

ZnSe and they are AR coated at 10.6 /im. These two windows are purchased from 

Insulator Seal (ISI), Florida(Part Number 9792903). These windows are used for the 

entrance and exit of the CO2 laser beams. ZnSe windows allow transmission of some 
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FIG. 6: Schematic diagram of various experimental zones explained in this chapter. 
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FIG. 7: The vacuum chamber consists of 12 viewports; 8 of 2-3/4" diameter AR 
coated for 780nm, 2 of 2-1/8" diameter and 2 of 4-1/2" diameter ZnSe windows. 
Detailed CAD drawings of this chamber can be found in Appendix A 
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FIG. 8: The complete vacuum assembly consists of the main chamber, a 20 liter/s 
ion pump, SAES getters attached to an electrical feedthrough and valve. 
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FIG. 9: Contamination of ZnSe window 

visible light enabling easier alignment of the C0 2 laser by using 780 nm light or a 

HeNe laser. Because of its low absorptivity at infrared wavelengths ZnSE is used 

in high power CO2 laser applications. I would like to mention one strange problem 

about these windows that we experienced. A few other groups have documented 

the same problem [56]. After 3 years of continuous operation of the apparatus we 

recognized a dramatic drop 75% in laser power transmission through these ZnSe 

windows. After closely examining these two windows we saw a speckled layer on the 

vacuum side of these windows, see Fig. 9. We initially thought this would be Rb 

build up in time inside the chamber and decided to bake the windows to remove the 

layer. Baking the windows up to 150 degrees resulted in no improvement. During 

a vacuum break we tried to clean these windows and we were partially successful in 

that. We were able to restore the transmission of the CO2 laser to 75% after both 

windows. We put the less dirty window on the CO2 entrance side of the chamber. We 

still don't know the source of the contamination but it could be a reaction between 

the coating and Rb vapor. 

The vacuum chamber has ~ 10~9 Torr pressure after three months of baking 

the chamber at 473 K. The change in the vacuum pressure vs current during the 
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FIG. 10: Pressure vs current curve during the vacuum formation. 

whole process is shown in Fig. 10. The sensitivity of the pressure gauge of the ion 

pump goes to a minimum of 10~8 Torr but lower pressures can be measured from 

the current scale of the same gauge. The minimum current read on the gauge is 

0.4 /JA which is estimated to be ~ 9-10-10 torr. The stainless steel chamber came 

cleaned, leak tested and ready for ultrahigh vacuum (UHV) installation from MDC. 

All components of the chamber were washed in a high temperature detergent bath 

followed by multiple tap and deionized water rinses by MDC. After the last rinse, 

parts were also blown dry with dry nitrogen and packaged and sent to us. 

The total vacuum assembly is shown in Fig. 8. The pressure in the chamber is 

achieved and maintained by a 20 liter/s Varian ion pump. The ion pump has large 

magnets attached to it which causes a stray B-Field gradient accross the chamber. 

To overcome this we initially covered the ion pump with Mu-metal. This had little 

effect. The measured magnetic field at the center of the trap is less than 0.3 G 

which can be compensated easily with shim magnetic field coils distributed around 

the chamber. These coils also balance the field not only from the ion pump but 

also from magnetic materials around the chamber and the Earth's field. An ideal 
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configuration would be 6 coils with 2 coils paired in Helmholtz configuration each 

direction but because of geometrical reasons we used 3 coils with 1 for each direction. 

Two additional anti-Helmholtz coils are also installed in the z (vertical) dimension 

to provide the necessary magnetic field for the magneto optical trap. This magnetic 

field can be completely shut off electronically within 1 ms but induced magnetic 

fields are present that arise from induced currents in the MOT quadrupole coils, the 

MOT shim magnetic field coils, and eddy currents in the MOT chamber and other 

conducting or magnetizable materials in the vicinity of the apparatus. 

One component seen in the Fig. 8 sticking out on the left side of the main chamber 

is the electrical feed-through (Kurt J. Lescer CO; part number EFT0044033) that 

provides current to the SAES Rb getter-dispensers (Part number:Rb/NF/3.4/12 FT 

10+10) welded to its pins. Acording to the specifications of these getters the Rb 

should start evaporating around 5 A but running at 3.4 A for our setup was sufficient 

to produce enough flow of Rb in the chamber. We only ran the getters at 5 A during 

the initial loading of the MOT. Then we had to run these getters continuously for a 

few days to achieve enough coating inside the walls of the chamber. Another factor 

in the low current that we use is the MOT quadrupole coils running at 12 A. This 

leads to heating the chamber walls and releasing the Rb into the chamber. Later we 

switched to a technique called LIAD (Light induced atomic desorption) and we only 

used the getters once a week or so to coat the walls of the chamber again with Rb. 

The windows of the chamber are 780 nm coated and have very little transmission 

at 400 nm, the wavelength at which this method is most effective [57]. For that 

reason we used 14 high power Ultra violet (UV) light emitting diodes (LED) each 

of which dissipate about 200 mW. Very little of this power is reaching inside the 

chamber because of the geometry and coated windows. The LEDs are bought from 

www.superbrightleds.com (Part number; XR7090UVV XLamp 1 Watt LED). All of 

these LEDs are distributed around the chamber and directed towards the inside of 

the chamber from the side of the window. Three or four LEDs are placed on each 

window. Lens kits that fit on these LEDs are also used to collimate the beam a little 

so that most of the light can enter the chamber. One other important thing is heat 

dissipation on these LEDs. Initially they were mounted without heat sinks but this 

caused problems like power output loss of the LEDs as they get heated. Later small 

heat sinks were installed behind the individual LEDs or were mounted them on a big 

heat sink and with a hole in the middle to let the MOT beams go through. If the 

http://www.superbrightleds.com
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chamber had a UV coated window that looks inside the chamber one of these LEDs 

would have been sufficient for the experiment. 

Components of the chamber were put together by using silver plated screws with 

plate nuts and copper gaskets. Lint free gloves were worn during the whole process. 

Leak test grooves were aligned and all the bolts were hand tightened initially. The 

complete tightening process was done gradually in 1/4 to 1/2 turn increments in 

an alternating crisscross pattern in order to form an even gasket compression and 

deformation. 

III .3 LASERS 

III.3.1 Diode Lasers 

Diode lasers have became popular within the scientific community during the last 20 

years because of their low cost and ease of use. Especially diode lasers with wave

lengths close to those of diodes used in the CD/DVD players offers great advantage 

with this respect. For example, this encouraged many physicists working on ultracold 

atoms to use Rb atoms which has a cooling transition at 780 nm. For example one 

can buy a 120 mW 780 nm diode for about $20. Other advantages of diode lasers 

include having a narrow linewidth in an external cavity and being tunable within a 

wide range easily via optical feedback, temperature and diode injection current. It 

is also important to note that these diodes can stay stable and locked to a specific 

wavelength for a long time by using proper locking mechanisms. 

Diode lasers are one of the two main optical light sources that are used in this 

experiment. External cavity diode lasers (ECDL) that are designed in Littrow or 

Littman-Metcalf configurations are used to produce necessary beams for formation 

of the magneto optical trap, probing samples and as a light shift laser that will be 

explained in subsequent sections. Fig. 11 and Fig. 12 shows two common con

figurations of ECDLs. The Littrow design offers wider tuning capability without a 

mode hop and higher optical output than the Littman-Metcalf design. On the other 

hand in the Littrow design without additional optics, the beam moves during the 

alignment. The Littman-Metcalf design was used primarily in our labs until this 

problem was solved by adding an additional mirror attached to the same mount that 

holds the grating. This way the grating and the mirror turn in opposite directions 

and as a result the beam only moves laterally which usually is not a problem in our 
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FIG. 11: Littrow Configuration 

experiments. 

The ECDL design that is now primarily used in our experiments is in Littrow 

configuration. A schematic of the design is shown in Fig. 13. The laser diode is 

120 mW maximum power single mode SHARP GH0781JA2C that was purchased 

from Digikey for $20. This diode is put into a collimation tube (Model LT230P-B) 

with a 4.51 mm focal length aspheric lens (C230TME-B) that was purchased from 

Thorlabs. The collimation tube assembly is put into a custom made mount that we 

call a collimation tube holder that is attached with two screws that are premounted 

on the ultra-stable kinematic mirror mount (Thorlabs; model KS1D) to lock the 

actuators. This mirror mount is also further modified to be able to attach a grating 

holder and a correcting mirror holder as shown in Fig. 13. This mirror mount and 

the grating holder is attached to the front plate of the Thorlabs mirror mount that 

is milled and sanded for proper installation. In Littrow configuration the grating is 

adjusted such that the first order reflected beam (m = 1) is injected into the diode for 

tuning the laser frequency. In Littrow configuration the angle of incidence is equal 

to the angle of refraction which reduces the grating equation to this form: 

mX = 2dsin9 (145) 
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FIG. 12: Littman-Metcalf Configuration 

where A is the wavelength of the incident light, 6 is the angle of incidence, m is the 

diffraction order and d the spacing between adjacent grooves on the grating surface. 

For geometrical reasons in our design 9 should be around 45 degrees. A grating 

purchased from Optometries (part number:3-4182) with d = 1800 grooves/mm well 

fits for this job. The zeroth order is the output beam which reflects from another 

mirror (Thorlabs; BB05-E03) that corrects the direction of the beam as the actuator 

controlling the front face is adjusted during the alignment. This assembly is then 

mounted on to a small plate which sits on top of a larger base plate that holds the 

laser assembly. A thermoelectric cooler (TEC) module is installed between these two 

plates to temperature stabilize the plate and the laser diode. (Marlow Industries; 

DT12-6-01L) A 10 kfi thermistor is put onto the small plate as a temperature sensor. 

The temperature is controlled and stabilized with a home built temperature controller 

to about 0.002 °C in this setup. This assembly is also mounted on a 1 inch thick 

heavy base to provide better thermal and vibrational stability to the laser. The laser 

is then put into an aluminum casing with 3 small holes in the back for tuning and 

one in the front to allow beam to exit. The inside walls of this cover is covered with 

Nexus DampTek Noise Absorption Material that is usually used in PCs to absorb 

noise and to have a quiet computer. This material is sold by www.endpcnoise.com. 

http://www.endpcnoise.com
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FIG. 13: Final laser design used in this dissertation research. 

The frequency tuning of the laser is done by a home built current controller, a 

home built temperature controller and with the horizontal actuator of the mirror 

mount. The temperature of the diode is kept around 15 °C below room temperature 

and above the dew point to minimize condensation. The current of the diode is 

always kept below 1.15 Amps to avoid having too much feedback into the diode and 

to keep the diode in single mode running condition for a long period of time. When 

the current is set at 1.15 Amps, the laser has a usable output of about 45 mW. To fine 

tune the laser and also to be able to lock to a reference point generated by a saturated 

absorption and a lock-in amplifier a piezo-electric actuator (Thorlabs;AE0203D04) 

is installed between the tip of the horizontal actuator and the front faceplate of the 

mirror mount. 

The alignment of the laser is done by using the horizontal and vertical actuators 

of the mirror mount. During the alignment process the grating holder is first removed 

and the laser output is collimated by focusing the beam at far field. After carefully 

collimating the beam, the grating holder is replaced and a small card is placed in 

the front of the aspheric lens blocking half of the beam. By using the horizontal and 
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FIG. 14: Laser linewidth measurement is done by using two Littrow design ECDL. 
The figure shows combined FWHM linewidth of these two lasers to be 850 kHz. 

vertical actuators the movement of the first order beam on the card is observed and 

brought closer to the output as much as possible horizontally and vertically. Then 

the small card is removed and another card is put in the output of the laser and the 

current of the laser is adjusted to a value a little less than the free running lasing 

threshold current which is around 30 mA. While adjusting the vertical actuator a flash 

of the laser output should be observed when the first order beam is perfectly injected 

back into the diode. Further fine tuning is done by decreasing current below threshold 

again and aligning the vertical. Once satisfactory vertical alignment is attained, it is 

not touched during the rest of the process. The output of the beam is coupled into 

a Burleigh wavemeter for bringing the laser to the vicinity of the desired spectral 

range. Only the horizantal actuator is moved or current and temperature values are 

changed at this point. A Rb cell is also installed in the beam path and fluorescence 

of the beam is observed as the laser is tuned around resonances. Vertical alignment 

is also checked again at this point in order to make sure the vertical alignment did 

not change during horizontal alignment because of small imperfections in the grating 

holder and the front plate. 

The diode lasers as described here are a modified version of the Sussex/Melbourne 

http://8s0.ee
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Design [58-60]. The lasers built in our lab are usually very stable and they can stay 

locked for days. Since these are short cavity lasers we had doubts about the linewidth 

of the lasers. By using two of the same type of lasers in an optical heterodyne setup 

we measured full width at half maximum (FWHM) linewidth of each laser to be 

about 600 kHz as shown in Fig 14. The figure shows the combined linewidth of two 

lasers. 

III.3.2 C 0 2 Laser 

As it was mentioned before the main goal for building a CO2 based dipole trap is to 

achieve high density atomic sample. At the time when this experiment was proposed 

CO2 dipole traps were promising and successful in achieving such densities. [61,62] 

Even though heating due to optical scattering is minimal in far-off resonant traps 

heating due to position or intensity fluctuations can be a major source for heating 

and subsequent loss of atoms from the trap [63,64]. This will be explained in more 

detail in the parametric heating measurement section of this thesis. In a parametric 

resonance experiment, a known frequency and amplitude of intensity modulation is 

added to the laser. Power stability is the main issue with these lasers and when this 

research started Coherent had developed ultra-stable CO2 lasers. We did not measure 

the power stability of our laser because the power meter used in this experiment 

doesn't have fast enough response to measure these fluctuations but from our loading 

efficiency and trap lifetime measurements we inferred that the intensity noise of our 

laser should be within the specifications. 

The wavelength of the CO2 laser is 10.6 /iW which is far off resonance for 87Rb 

and offers very low scattering rates. It is also important to note that trap depth 

decreases with the detuning but CO2 lasers offer high power outputs that allows us 

to have deep enough traps. We bought Coherent-Deos GEM Select 100 with rf power 

supply. We asked Coherent to remove the DC power supply that they sell with this 

machine to run the rf power supply. Instead we use Agilent 6573A 35V 60A DC power 

supply because of their very low 40mA ripple noise to minimize the noise associated 

with the rf power supply. The laser optical output is about 100 W. The laser requires 

cooling as it generates about 2 kW of heat. The laser was cooled initially by a Neslab 

HX 150 chiller with 25% Dowfrost additive in the water but later we switched to a 

building-level chiller that the university provides when we realized the Neslab chiller 

could not provide enough cooling for the laser. Dowfrost is a product that is sold by 
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DOW Chemical Company. It is a low-toxicity inhibited propylene glycol-based heat 

transfer fluid. The temperature of the fluid is kept around 18 °C. We did not cool it 

further because of the condensation problems. 

Alignment of the CO2 laser is a very difficult and also a dangerous task as the 

beam cannot be seen without special equipment and 100 W is powerful enough to 

cause skin damage if accidentally touched. It is also very easy to ignite clothing 

during the alignment process. Extreme care should be taken for the eye protection 

as scattered beam off the surfaces during alignment could cause serious eye damage. 

For this purpose we used CO2 laser safety goggles whenever the laser switched on. 

Another factor that makes the alignment harder is there is no way of knowing if the 

alignment is good without actually loading atoms into the trap. But trap loading 

depends on other factors that will be explained in the upcoming sections. For this 

reason initial alignment took us about a month. Fig. 15 depicts the general optical 

layout of the CO2 laser beam. 

The shutter that came with the laser does not switch on and off fast enough and 

the output power of the CO2 laser is not controllable. For this purposes an acousto 

optical modulator (AOM) is placed right after the CO2 laser. The AOM allows us 

to shut off the CO2 laser in 1 //s and modulate the beam to do parametric resonance 

measurements and also control the beam intensity to be able to do evaporative cooling 

and other experiments. The AOM diffracts the beam into many orders and by 

adjusting the angle of incidence it is possible to maximize the output on any order. In 

this experimental setup 1st order is used with a ~ 60% efficiency. Zeroth order is the 

non diffracted beam and it is dumped into the beam dump. The AOM (Intraaction 

Corp; AGM-406BIM) used in this setup is a special AOM that is built for C0 2 laser 

application. The rf amplifier and driver of this AOM is also from Intraaction. (GE-

4030) This driver runs at 40 MHz at 30W max power. The power is controlled by a 

0-1V 50f) input terminated analog channel. The AOM is water cooled to remove the 

heat from the crystal that is generated by the rf and by the absorption of ~ 10% of 

the CO2 laser beam. The cooling water is supplied by the same chiller that cools the 

CO2 laser. This AOM is mounted on a rotating mount that allows us to fine tune 

the angular alignment and maximize the diffraction efficiency. The alignment is done 

by placing a power meter in front of the first order diffracted beam and dumping 

the zeroth order. After the installation of the AOM and the beam dump, during 

the alignment the rf power of the AOM is decreased to a minimum level. Once the 
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alignment is finished it is checked at full power and the alignment is corrected for 

possible movement of the beam. At full power the crystal of the AOM is warmer 

and the lenses absorb some of the beam and warm up which causes changes in the 

transmission properties of these optics. This leads to shift in the beams direction 

and a change in the focus spot location. This puts a limit on the hold time of the 

trap and prevents to make accurate hold time measurements. For this experiment 

the CO2 laser was on for 1.2 seconds out of a 4.5 seconds duty cycle which is not too 

long to cause significant heating. 

Our laser has a mechanical shutter that allows us to temporarily block the beam 

without turning off the laser. Later we realized that cooling for the beam dump inside 

the laser that the beam is directed when the shutter is activated is not sufficient. The 

coolant fittings gets hot and causes leak if the shutter is used for long period of time. 

We avoided using this shutter after we had a leak inside the laser. But before the 

leak the alignment was done by using this shutter and by turning the shutter off for 

an instant and letting the beam out for short period of time. During the alignment 

we used the burnmarks on wood and paper formed after these snapshots of the laser. 

Because of the difficulty of this process and having smoke near near the optics is not 

desirable and also to assist in the whole alignment process a HeNe laser is overlapped 

with the CO2 laser. A flip mirror is installed into the system to allow the alignment 

of the optics to be done by using this beam. 

The optics used for the CO2 laser is acquired from II-V, an infrared optics com

pany. The mirrors are made of copper and the lenses are made of ZnSe. They are 

coated at 10.6 /xm for maximum reflectivity or transmission. The Gaussian beam that 

emerges from the laser has 3.8mm 1/e2 diameter. After it passes through the AOM 

first order, the beam is elevated to the chamber center height by using a periscope 

assembly formed by using two copper mirrors. The beam is focused to the trap cen

ter by using two ZnSe lenses. The configuration is shown in Fig. 15 and Fig. 16. 

The combination has an effective focal length of ~ 5.5". The lens combination is 

designed for an incident 6 mm beam to be focused to a diffraction limited spot size 

of 71 ^m diameter. The experimental spot size is 110 //m. Part of this difference 

can be attributed to thermal lensing effect due to the heating of the AOMs crystal. 

The spot size, 2u>o, of a Gaussian beam with wavelength, A, focal length, /, and beam 

diameter, D, is given by 

2u0 = 2.44^- (146) 
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To achieve a tighter focus the beam size should be bigger. Because of the thermal 

lensing effect the size of the beam is smaller than estimated which, as a result, causes 

a bigger spot size. 

The alignment of the CO2 laser to the trap center is done as follows: After 

installing and aligning the AOM and the beam dump, the radio frequency (rf) power 

of the AOM is reduced until the CO2 laser power on the first order is a few watts. 

Then it is easier to align the beam by looking at the burn marks on pieces of paper. 

Irises are placed at various locations along the beam path. Then the CO2 laser is 

switched off and HeNe Laser is turned on by flipping the flip mirror. By using two 

mirrors and the irises, the CO2 laser beam and HeNe laser beam are overlapped. After 

they are overlapped by only using the copper mirrors, the HeNe beam is adjusted to 

go through the both ZnSe window centers. Then the flip mirror is removed from the 

CO2 laser beam path and CO2 laser is turned on. The alignment up to this point is 

only good for low powers but at least it is going roughly through the center of the 

chamber and going into a beam dump or power meter. As it was mentioned before, 

because of the high power beam and it is dangerous, during the alignment process it 

is important to know where the beam is at any time. Then the irises are opened and 

transparent adhesive tapes are used to cover the holes on every iris. The CO2 laser 

laser power is increased to its maximum power, ~ 60 W, and with a quick snapshot 

of the laser the holes on the tapes are examined. Then the HeNe is switched on and 

it is also corrected for the new holes and then the irises are readjusted. This process 

is repeated until no change is observed. At this point we tested the effective focus of 

our lens setup for a fixed distance between the two lenses. The lenses are installed 

on a rail and a paper is placed at the approximate focal spot of the laser. Amazingly 

the laser didn't ignite the paper but made a small hole. As the paper is moved away 

from the focus the paper started burning in flames. With this method we found the 

effective focal point of the lens system within 1 mm. 

To do the fine adjustment of the CO2 laser with the MOT, the HeNe laser is 

replaced with another laser that runs at 780 nm on resonance with the 87Rb F=2 —> 

F'=3 transition. First this laser is overlapped with the CO2 laser with a procedure 

similar to that explained for the HeNe laser. Then the lenses are carefully placed 

in the setup with a fixed distance between them which was found by a previous 

measurement. The convex lens is placed such that the focus is the center of the 

chamber. The concave lens is mounted on a z translater that allows the focal spot 
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FIG. 16: The design is provided by ii-v infrared based on our experimental setup 
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to move vertically. The convex lens is mounted on a xy translater to be able to 

move the beam horizontally. First the 780 nm beam is overlapped with the MOT by 

looking at the pushing of the MOT at higher laser powers. In fact since the beam 

focus is much smaller than the MOT the pushing effect is less when the beam is 

going exactly through the center. Then the CO2 laser is turned on and by using the 

xyz controls on the lenses and by looking at the loading images on the camera any 

signature of loading is looked for. To be able to see any loading first the repumper 

laser intensity and MOT laser detuning is adjusted. First MOT images are examined 

while keeping the CO2 laser on and changing these parameters. As the repumper 

intensity is reduced and MOT laser is detuned, the MOT becomes compressed and 

get cooler and the effect of the CO2 laser starts to appear on the MOT. Once that 

starts these loading parameters and xyz adjustments are optimized to maximize the 

collection of atoms around the CO2 laser focus. Several iterations of this procedure 

are sufficient to maximize atom collection in the QUEST. 

III.3.3 Probe Laser 

In this section different probing schemes for the MOT and the QUEST, how the beam 

is generated and the characteristics of the probe beam important for the experiment 

are described. First of all, the probe beam is not a separate ECDL in the experiments 

done so far with this apparatus. Only two lasers are built and locked to a specific 

frequency. These are called the MOT laser and the repumper laser. Different probe 

lasers are generated by different choices of AOM configurations and the same output 

of the MOT or the repumper laser. The different probing schemes are depicted in 

Fig. 17. 

The F = 2 —> F' = 3 probe laser setup is shown in Fig. 18. Three different 

AOMs are used in this setup. AOM2 (MOT AOM) and AOM3 (Probe AOM) are 

set at fixed frequencies while AOM1 varies for different probing schemes and MOT 

loading. During the initial MOT loading phase of the experiment AOM1 is set at 

+ 104.6 MHz which corresponds to a MOT laser frequency of 2.9 7 below the F = 2 

—• F' = 3 cooling transition. This is experimentally found to be the best value for 

maximum loading. During the MOT loading phase AOM2 is on and set at -93 MHz 

and AOM3 is off and the setup generates the MOT laser. AOM1 is responsible for 

changing the detuning of the probe and the MOT lasers. When AOM2 is on and set 

at -93 MHz and AOM3 is also on and set at +67 MHz the setup produces the probe 
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FIG. 17: Figure shows the three different probing schemes for different purposes (F 
= 1 -> F' = 0, F = 1 -»• F' = 2 and F = 2 -» F' = 3). 

laser. The frequency of the probe laser is changed by changing the AOM1 frequency. 

When AOM1 is set at 79.80 MHz the probe is on resonance with the F = 2 - • F' = 

3 transition. The general equation to determine the MOT or probe laser frequency 

is 

6 = 2(\AOMl\) - (\AOM2\) + (\AOM3\) - 133.6 (147) 

where S is the detuning in MHz from F = 2 —> F' = 3 transition. When both AOMs 

are off both lasers are turned off. When both AOMs are turned on MOT laser is also 

turned on along with the probe laser. To solve this problem mechanical shutters are 

installed to block MOT lasers during probing. To achieve these frequency settings the 

master laser is locked to the 2-3 crossover peak as shown in Fig. 19 in the saturation 

absorption signal, which will be explained later in this thesis. 

The F = 2 —»• F' = 3 probe laser setup is shown in Fig. 20. In this setup two 

AOMs are used. AOM1 is set at 78.6 MHz and also acts as a switch for the repumper 

laser. When this AOM is turned on the repumper is on resonance with the F = 1 —* 

F' = 2 repumping transition. This laser is responsible for pumping back the atoms 

that decay to the lower F = 1 hyperfine ground state level back to F = 2 ground 

state. Turning this AOM off and turning AOM2 on at -150.9 MHz produces the F = 
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FIG. 19: Saturation absorption signal from F = 2 —> F' = 1,2,3 

1 —> F' = 0 probe laser on resonance. This AOM is aligned by using two lenses with 

a focal length large enough to separate the deflected orders. The AOM is placed at 

the focus of the lens setup. This kind of setup allows changing the probe frequency 

without losing coupling into the fiber and also a remarkable turn on/off times for the 

laser (~ 25 ns). The detuning (8) from optical resonance on the F = 1 —> F' = 0 

transition is given by, 

5=150.9-(\AOM2\) (148) 

The probe lasers are coupled into polarization preserving fibers and brought to 

the experiment table where the CO2 dipole trap is produced. The polarization of 

the probe beam is linearly polarized after the fiber with an extinction ratio of ~ 

24 dB. The beam is then expanded to a 3 mm 1/e2 radius and the collimation 

and wavefront distortion is checked by a shear plate interferometer. The beam is 

also imaged onto the CCD camera to make sure that the beam is free of diffraction 

fringes. Then the probe beam is sent to the off axis viewport on the vacuum chamber 
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FIG. 21: Energy levels of a two level atom are shifted in the presence of an electric 
field. 

for fluorescence measurements or from windows orthogonal to the ZnSe windows for 

absorption measurements. The switch between these two is done by a flip mirror. The 

linewidth of the probe is estimated to be ~ 600 kHz from heterodyne measurements 

done by beating the MOT and the repumper lasers against each other by locking 

them to different peaks (1-3 and 2-3 crossover peaks) separated by 78.6 MHz on the 

F = 2 —> F' = 1,2,3 saturated absorption signal, see Fig. 14. 

III.3.4 Light Shift Laser 

Another laser that is used in this experiment is what we call the "light shift laser". It 

is designed in a Littman-Metcalf configuration. A short cavity Littrow design laser 

would have been a better choice because of its higher power output and stability. 

This laser is not locked to a specific frequency during the measurements as it is set 

at -10 GHz off resonance and allowed to drift ~ ± 1 GHz. It is monitored during the 

data taking and whenever it drifted more than allowed the data taking is stopped 

and the laser frequency is tuned back. 

With our experimental setup an optical depth of 160 or greater near the local

ization regime is achieved. At this high optical depth it is extremely difficult for 

light to penetrate to the middle of the sample where the density is the highest and 

localization of light is expected to happen. We use the Stark Shift effect to reduce 
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the optical depth temporarily in which the energy levels are shifted by the external 

electric field, see Fig. 21. The electric field comes from the light shift laser. At first 

we used the CO2 laser for this purpose but the turn on/off time of this laser is ~ 

1 fis which is too slow. The natural decay lifetime of 87Rb D2 (52Si/2 —> 52P3/2) 

transition is ~ 27 ns. The optical excitation escape from the sample the while optical 

depth is increasing during the turn off of the CO2 laser. Instead we use a separate 

diode laser which can be switched on/off in ~ 25 ns with a similar setup used for the 

F = 1 —• F' = 0 probe laser described in the previous section. The total energy shift 

caused by an electric field for a two level atom is given by 

AE=^ (149) 

where Q is called the Rabi oscillation frequency [53] [1]. 

h2 " 2 = T* l<e|er|*/>|2 (150) 

EQ is the amplitude of the laser field and |(e|er|<?)| is the dipole moment that depends 

on the wavefunctions of the ground and the excited states. The effective far detuned 

dipole moment for 87Rb D2 line with linearly (ir) polarized light is 2.069 36(43) • 

10~29 C m [43]. The relation between the amplitude of the light field and the cycle 

averaged intensity is 

I = \eocE2
Q (151) 

To give some representative numbers, the light shift laser is detuned 10 GHz to 

the red of the D2 line and is focused to a spot size of 50 //m radius. With a laser 

power of 11 mW the energy levels are shifted by ~ 20 MHz which reduces the optical 

depth of the trap from 160 to 3.5. Even though this laser is 10 GHz away from 

resonance we still detect a few photons scattered by this laser during data taking but 

they are easily subtracted from the total signal. 

This laser aligned so that it is overlapped with the probe beam. The alignment is 

done by coupling the two beams into the same optical fiber. This way the probe and 

the light shift laser is focused to a same spot on the sample. This allows us to probe 

the highest density region in the trap but also limits us using a collimated beam as 

in no light shift measurements. 
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III.4 SAMPLE FORMATION 

III.4.1 Saturated Absorption 

Since the data acquisition process normally takes many hours it is crucial to have 

stable and locked lasers. The lasers are locked to a reference signal that controls 

the piezo which in turn compensates drifts in laser frequency by tilting the feed

back mirror. This external reference signal is generated via saturated absorption 

spectroscopy. The laser is scanned around saturation absorption peaks by applying 

0-15V ramp to the piezo. In this section the saturated absorption and laser locking 

procedure is explained. First, the laser wavelength is brought close to the Rb reso

nances around 780 nm by using the mechanical horizontal actuator and also checking 

the wavelength with a wavemeter. After the lasers are mechanically tuned onto an 

absorption line fluorescence is observed in the Rb cell when observed with an IR 

viewer. The beam is then sent to the saturated absorption setup as shown in Fig. 

22. The two beams going in the forward direction towards the photodiode detector 

are called probe beams and the strong beam overlapping one of the probe beams 

going in the reverse direction is called the pump beam. Since the cell is at room 

temperature, the Rb atoms have a Maxwell-Boltzmann velocity distribution and the 

Doppler broadening full width at half maximum is ~ 500 MHz. Fig. 23 shows a the

oretical Doppler broadened absorption spectrum of Rb for the D2 (52S!/2 —• 52P3/2) 

transition. The Doppler broadened saturation absorption spectrum does not show 

hyperfine levels of 52S!/2 —* 52P3/2 transition for 87Rb which form a band about 400 

MHz wide. 

As it is shown in Fig. 22, the beam splitter reflects 2% of the incoming laser beam 

from each surface. The pump beam is aligned so that it overlaps one of the reflected 

probe beams. Since the two beams are counter propagating and they have the same 

frequency, only the atoms with vx = 0 (x is the same direction with the laser beams) 

will be at resonance with both beams. Other atoms moving with different velocities 

in the same direction will interact with the probe or the pump beam depending on the 

laser detuning from the atom's resonance frequency and the velocity of the atom. For 

example if the laser is detuned below resonance by A / = / — /x,, only the atoms with 

velocity vx = c(4— 1) going towards the laser beam will be in resonance with the 

laser and absorb the light. The strong pump beam saturates the vx = 0 distribution 

of atoms causing the probe beam going through the cell to have less absorption and 
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FIG. 23: Doppler broadened absorption spectrum of Rb for the D2 (52Si/2 —> 52P3/2) 
transition at room temperature. 

generating greater intensity reading at the photodiode. The other probe beam goes 

to the photodiode with more absorption given by the Doppler broadened profile as 

shown in Fig. 22. If this Doppler broadened absorption signal is subtracted from 

the signal obtained from the saturated probe beam by using a differential amplifier 

we obtain a Doppler-free saturation absorption profile as shown in Fig. 24. This 

figure shows resonance transitions from 87Rb for F = 1 —> F ' = 0,1,2 transitions and 

there are more absorption peaks than expected. Three of them are the expected F ' = 

0,1,2 transitions and the other three are so-called crossover peaks. Crossover peaks 

occur when a velocity distribution of atoms other than vx = 0 are in resonance with 

both pump and probe beams. This can happen when the laser frequency is halfway 

between two transitions. As it is shown in Fig. 25 with a laser frequency //, tuned 

133.3 MHz below the F = 2 -* F ' = 3 transition, / 3 , and 133.3 MHz above the F = 

2 —> F' = 2 transition, / 2 , atoms going towards the pump beam with vx = c(jr — 1) 

are in resonance with the F = 2 —> F' = 3 transition with the pump beam and since 

the same velocity distribution of atoms are going away from the probe beam, they 
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FIG. 24: Saturation absorption signal from the F = 1 —>• F' = 0,1,2 transitions. 

are in resonance with the F = 2 —• F' = 2 transition with the probe beam. In other 

words, for laser frequency /L, the atoms with velocity vx (towards the pump beam) 

see the pump beam Doppler shifted to the red of fs and they see the probe beam 

Doppler shifted to the blue of /2 . 

h c 

h = / L ( 1 - ^ ) c 

Adding both equations gives the crossover resonance condition: 

(152) 

(153) 

(154) 

The requirements to see crossover peaks are that both transitions should share the 

same ground state and the separation between two transition frequencies should not 

be greater than the Doppler width (500 MHz). 

To lock the laser, the necessary error signal is obtained by modulating the laser 

current at 15 kHz. The modulated saturation absorption signal is then sent to a lock-

in amplifier which generates the derivative of the absorption peaks. This dispersive 

signal is integrated and applied to the piezo attached to the horizontal control of the 

ECDL. 
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FIG. 25: Energy spectrum of 87Rb for the D2 (52Si/2 —• 52P3/2) transition. 
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III.4.2 Control System 

During the initial phases of the experiment, hardware based electronics was used 

to control the experiment. The AOMs that switch and tune the lasers, the CCD 

camera and shutters were controlled by TTL pulses generated by 2 four-channel 

pulse generators from Quantum Composers. This setup was capable of producing 

8 channels output without using any multiplexing which is needed for controlling 

the lasers. As the experiment grew, more channels with multiplexing features and 

complex timing sequences that includes digital signals switching between different 

voltage levels were needed. We acquired a PCI-DIO-32-HS digital card from National 

Instruments which is capable of 32 digital high speed outputs; only 16 of these 

channels are used for this experiment. The internal clock of the card is 2 MHz 

which allows us up to timing 500 ns resolution in timing the experiment which is 

sufficient for most of the experiments. When a finer resolution is needed a Quantum 

Composers pulse generator triggered by the PCI-DIO-32-HS is used. This digital 

card is controlled by a Labview program, see Appendix D. 

Every different experiment requires a different timing protocol which is generated 

by simply changing 1 and 0 for a specific time. (1: channel on, 0: channel off) In Fig. 

80 the control interface of the program for QUEST imaging is shown for reference. 

Column 1 is the timing and Column 2 is the status of the channels at any specific 

time in the sequence. 

The frequency tuning of the AOMs are done by voltage controlled oscillators 

(VCO). The output of the VCOs are fed into 800 mW rf amplifiers for most of 

the AOMs. The 200 MHz AOM that is used in light shift laser requires a 1.6 W 

amplifier. During the trap loading, switching the VCOs on/off with a fixed input 

voltage or fixed attenuation on the output of the rf amplifiers is not sufficient as these 

parameters are needed to be changed during the course of a duty cycle a few times. 

To achieve this digital voltage level boxes are built, see Fig. 27 [56]. These circuits 

uses a chip (Maxim REF01) that provides + 10 V voltage reference with 10/iV ripple 

noise. By using these chips multiple times in a circuit produces 10 V, 20V, 30V 

reference voltages. With a proper choice of potentiometers and resistors it is possible 

to make any voltage level needed for the experiment. Adding a digital switch (Maxim 

DG419) to the circuit allows formation of more complex digital outputs. These boxes 

are used to switch the frequency of the double pass AOM that changes the frequency 

of the main MOT beams, to attenuate the MOT and the repumper laser during the 
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FIG. 26: Labview program controlling the Quest imaging. 

cooling phase of the trap loading process. 

To do the parametric heating measurement which will be explained in the next 

chapter, an op-amp voltage adder is combined with the digital voltage level circuit. 

The control for the CO2 laser AOM is a 0-1 V analog input which is provided by 

one of these modified boxes. It allows us to add a known frequency and amplitude 

sinusoidal noise to the IV output to modulate the CO2 laser intensity. 

Frequency tuning is done by a double pass AOM setup before injecting the master 

laser beam into the slave that allows switching to different frequencies of the probe 

and the MOT beams without losing coupling into the fiber. The frequency of the 

double pass is switched to different frequencies ranging from 72 MHz to 104.6 MHz. 

This AOM has the most efficiency around 85 MHz. The AOM efficiency drops 

significantly after 70 MHz and the slave can not follow after that. The AOM is tilted 

so that the injected power to the slave laser is still sufficient at 72 MHz and 104.6 

MHz. 

During the course of an experimental cycle the temperature stability of the AOMs 

is also very important. We realized that turning off an AOM even for 1 s cools the 

AOM crystal, resulting in a change in the direction of the beam which decreases 
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20V 

FIG. 27: Circuit of a sample digital voltage level box. This circuit output is switching 
between voltages on pin 2 and 8 of DG419. 

the coupling efficiency to the fibers. A similar effect is also observed in the CO2 

laser AOM which was described in the previous section. This problem was solved 

by leaving the AOMs on all the time and turn them off for short periods of time 

where needed. To prevent the MOT beams to enter into the chamber during trap 

hold time we installed mechanical shutters from Uniblitz. These shutters have a few 

ms open/close time. Another solution would be switching AOMs with a different 

frequency that has minimal efficiency. This way the AOM would stay at a fixed 

temperature and also would be switched off. We did not try this as the shutter 

solution were sufficient. Also having shutters guarantees that that there is absolutely 

no MOT laser leak into the trap during the hold time that would heat up the sample. 

The MOT is continuously monitored with a Sanyo CCD camera and a TV moni

tor. The B field balancing is done by using this monitor and turning off the current to 

the B field and leaving the MOT lasers on. When the field is balanced this generates 

a uniform diffusion of fluorescence in every direction as seen on the monitor. Three 

shim coils are used to balance the B field. The current supplied to the anti-Helmholtz 

coils is switched on/off in about 1 m. 

III.4.3 MOT Loading 

The last two sections of this chapter are about how to put together all the pieces 

that have been described in the previous sections, to enable formation of the Magneto 

Optical Trap and the QUEST. As was explained in the previous chapter, a MOT 
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requires 6 laser beams at the correct frequency and polarization centered in a good 

vacuum that has enough flow of atoms to be cooled and trapped and a pair of anti-

Helmholtz coils with correct current direction. 

The layout of the required laser setup for the MOT formation was shown in section 

III.3.3 in Fig. 18 and in Fig. 20. The MOT laser is tuned ~ 2.9 7 below resonance to 

F = 2 —> F' = 3 transition of 87Rb where 7 ^ 6 MHz is the natural linewidth of the 

transition. To generate this frequency the master laser saturation absorption signal 

is locked to the 2-3 crossover resonance which is 133.6 MHz below the F = 2 —> F' = 

3 transition. The master laser is then sent through a double pass setup where it picks 

up a 2 x 104.6 MHz frequency shift before being injected into the slave laser. The 

output of the slave laser is ~ 80 mW. The slave laser is directed through a telescope 

that reduces the beam size by one third to decrease the switching times and also to 

minimize the losses when the beam goes through the optical isolator. The first of 

the two AOMs seen in Fig. 18 is the MOT AOM which is set at 93 MHz to bring 

the MOT laser to -2.97 below resonance, a level which is determined experimentally 

to optimize MOT performance. Selection of this value depends on the MOT laser 

intensity. For example, before adding the slave laser into the setup, power available 

for MOT was less and the detuning was set at —2.57. The second AOM is off during 

the MOT loading. The beam is then injected into a polarization preserving optical 

fiber. To ensure a maximum extinction ratio a half wave plate is placed before the 

fiber launcher. If the polarization of the beam is not matched with the slow axis of 

the fiber the polarization of the beam at the output oscillates which causes intensity 

oscillations after the polarizing beamsplitter cube (PBS Cube). A schematic of the 

setup is shown in Fig. 28. 

The laser beam is then carried by the fiber to a different optical table where 

the MOT and the QUEST experiments are executed. The total laser power at this 

end is 24 mW. The beam is expanded to a size of ~10 mm 1/e2 radius with a 5X 

telescope. The polarization of the expanded beam is then rotated by a half wave 

plate such that 2/3 of the beam is reflected and 1/3 is transmitted as seen in Fig. 

28. This setup forms three bidirectional and equal intensity beams. The polarization 

of each of these linearly polarized beams then is transformed to circular polarization 

via quarter wave plates. The beams are then retroreflected and passed through 

another quarter wave plate twice to generate the required setup needed for trapping 

the atoms. Together with the correct current direction in the anti-Helmholtz coils, a 
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FIG. 29: LIAD assisted MOT loading 

bright spot on the TV monitor with a smile on the graduate students' face appears. 

If it doesn't, the current direction is changed or the quarter wave plates are rotated 

by 90°. The retroreflected beam alignment is first done by observing coupling back 

into the fiber. A more stable MOT is attained when the retroreflected beams are 

misaligned a little. This is partly because the MOT scatters most of the incident 

beam causing an imbalance at perfect alignment and partly because the beam that 

is coupled back into the fiber disturbs the frequency lock of the laser. 

The Rb required by the experiment is provided by the getters as explained in the 

first part of this chapter. Getter current is usually kept around 3.5 A. Getters are 

run along with the UV LEDs to improve the rate and quantity of atom loading the 

MOT. Fig. 29 shows the difference between MOT loading with and without LIAD. 

As it can be seen from the measurement almost twice the number of atoms are loaded 

into the MOT with the use of UV LEDs. This LIAD technique also helps in better 

QUEST loading as the background gas pressure, when the LEDs are off, is lower thus 

increasing the lifetime of the trap. 

During the cooling and trapping of the atoms in the MOT an atom, after about 

2000 excitations, decays to the lower hyperfine ground state F = 1. Without pumping 

these atoms back to F = 2 it isn't possible to trap the atoms because eventually all 
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the atoms decay to F = 1 and leave the trap. To solve this problem a separate laser 

called a repumper laser is built as shown in Fig. 20. The setup is similar to the 

MOT laser but simpler. The laser is locked to a 1-2 crossover peak in saturation 

absorption which is 78.55 MHz to the red of F = 1 -> F' = 2 transition. An AOM 

tuned at 78.55 MHz shifts the beams frequency to on-resonance, and also acts as a 

switch for the repumper laser. This repumper beam is combined with the beam at 

the PBS cube. The polarization of the beam is not important so no adjustments are 

needed. 

III.4.4 Quest Loading 

Once the MOT is loaded, the QUEST is loaded by focusing the CO2 laser to the 

middle of the MOT. A brief timing sequence is shown in Fig. 30. After the MOT is 

loaded for 3 seconds, the atom sample has a temperature of about 100 /iK. The CO2 

laser is turned on 200 ms before MOT and repumper lasers are extinguished. We 

studied the CO2 laser overlap time with the laser by itself and we concluded that this 

has little or no effect in QUEST loading. In fact the CO2 laser by itself overlapped 

onto the MOT doesn't seem to load any atoms into the trap. The MOT acts as a 

reservoir for the trap and increasing overlap of the CO2 laser and the MOT greatly 

improves loading. One can achieve this by increasing the spot size which reduces 

the well depth and the density of the trap. Another way is compressing and cooling 

the MOT to increase the flux of atoms through the CO2 laser and also decrease the 

temperature of the atoms for better loading. To achieve this, at 30 ms before the 
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FIG. 31: Modified CO2 laser power control for evaporative cooling 

end of the MOT loading phase the MOT laser is detuned ~ - I 4 7 (84 MHz) below 

resonance and also the laser power is reduced to 2 mW from 24 mW. At the same 

time the repumper laser power is also decreased to ~6 /J,W . This compresses and 

cools the MOT and with the C0 2 laser overlapped the trap enters into a temporal 

dark spot phase. We call this stage of trap loading a cooling phase. At the end of 

this cooling phase, the repumper laser is turned off 1.5 ms before the MOT laser to 

ensure pumping of all the atoms from the F = 2 to F =1 ground state. Then the 

loaded atoms are held by the CO2 laser for 1 second. During this trap hold time the 

atom sample undergoes natural evaporation and rethermalization. Once the atoms 

sample reaches equilibrium the CO2 laser is turned off and the experiments are done. 

The natural evaporation takes place mostly in the first 0.5 second of trap hold 

time. After this for some of the experiments we ramped the CO2 laser power down 

slowly during the last 0.5 second of the trap hold time for forced evaporative cooling. 

This process decreases the well depth slowly, letting the more energetic atoms in 

the Maxwell-Boltzmann distribution escape and rethermalizing to achieve a colder 

sample. One disadvantage of this process is obviously losing atoms from the trap. 

But since the trap gets colder after evaporative cooling the atoms sit on the average 

deep in the potential well, this reducing the size of the sample. So the density of 

the trap is not effected much from this process. The ramp signal seen in Fig. 31 is 

generated by adding half of a low frequency function generator output to the voltage 

controlling the CO2 laser intensity with an op-amp voltage adder. 

Once the QUEST is loaded it is optimized by changing the trap loading pa

rameters. The parameters are from the most effective to the least: Repumper laser 

intensity during cooling phase, MOT laser detuning during cooling phase, MOT laser 

intensity during cooling phase, CO2 laser alignment, cooling phase time, MOT laser 

detuning during MOT loading, repumper laser turn off time with respect to the 

MOT laser and CO2 laser turn on time. The optimization is done by maximizing 
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the total number of atoms transferred to the QUEST. This cycle is iterated until no 

improvement is achieved. The average number of atoms transferred is ~ 10% of the 

number in the MOT. 
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CHAPTER IV 

SAMPLE CHARACTERISTICS 

IV. 1 SAMPLE CHARACTERIZATION 

Once the QUEST is formed and optimized it is necessary to characterize the sample 

before starting the data taking. These characteristics are the sample temperature, 

the number of atoms and the Gaussian radii of the cloud. It is important to know 

the density of the QUEST in order to calculate the Ioffe-Regel parameter (k£). Here 

I is the mean free path and is given by 

£=— (155) 

no

where n is the average density and a the resonance cross-section for light scattering. 

Because the sample is inhomogeneous the mean free path varies spatially throughout 

the sample, with the smallest k£ attained at the trap center where the density is the 

highest. For a Gaussian distribution of atoms in a QUEST given by 
r2 z2 

n(r, z) = n o e x p ( - ^ - ^ 2 ) , (156) 

the peak density at the trap center is 

N 
H0 = (27r)3/V0V ( 1 5 7 ) 

From Eq. 157 it is clearly essential to find the total number of atoms loaded into 

the quest N and also the radial r0 and axial, z0 Gaussian radii of the QUEST. These 

numbers can be obtained by doing an absorption measurement on the QUEST. When 

a laser beam tuned near resonance is overlapped with the QUEST the atoms will cast 

a shadow in the beam due to scattering of light from the QUEST. The intensity of the 

transmitted beam decreases as light travels through the medium, varying according 

to the Beer-Lambert Law, 

!?^yl = exp[-b(x,y)], (158) 

where I0 is the incident intensity and b is the optical depth. The peak optical depth 

through the trap center is 

60 = V2Trn0a0rQ. (159) 
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Here n0 is the peak density at the trap center, UQ is the on resonance light scattering 

cross section. When the shadow of the QUEST is imaged on a CCD camera it 

is possible to measure the IT(X,V)/IO and the peak density, n0 and total number 

of atoms, N can easily be calculated from this measurement. But our experimental 

setup with image resolution of ~ 1 or 2 pixels with pixel size of 24 fim makes it almost 

impossible to make accurate measurements of optical depth of the QUEST, which 

has typical dimensions of ~ 20 fxm by 400 fim. Also diffraction, optical pumping 

and lensing effects produce systematic effects that are not always trivial to correct. 

Even though it is possible to do this measurement by expanding the QUEST to a 

size much bigger than the image resolution, then signal to noise issues appear. But 

these measurements can easily be done on a MOT, which has dimensions of ~ 700 

fj,m by 800 fim, without any signal to noise and resolution issues. Once the total 

number of atoms in the MOT is known, a comparison of total integrated signal of 

the MOT and the QUEST obtained from CCD images gives the transfer efficiency 

from the MOT to the QUEST. From this number the total number of atoms in the 

QUEST is calculated. 

To find the the radial (r0) and axial (z0) Gaussian radii of the QUEST, we need 

to know the spatial shape of the trapping potential formed by focusing the C 0 2 laser. 

In cylindrical coordinates the dipole potential formed by focusing a Gaussian beam 

with intensity 

I(r, z, 0) = / 0 l *, . 2 exp ( -2 r 2 / ^ 0
2 ) (160) 

i + (z/zRy 
equals 

U(r,z,</>) = -U0-—^-—exp(-2r2/w2
0). (161) 

1 + [Z/ZRY 

IQ is the CO2 laser beam peak intensity and it is given by IQ = 2P0/TTWQ where PQ is 

the total CO2 laser power. WQ is called the beam waist which is defined as 1/e2 beam 

radius at the focus of the laser and ZR is called the Rayleigh range with ZR = TTWQ/X. 

A is the wavelength of the CO2 laser, 10.6 /mi. UQ is defined as the well depth of the 

potential. 

The cold atoms that are held in the dipole trap potential sit near the bottom 

of the trap according to their thermal energy, keT. For a typical dipole trap this 

energy is much smaller than the potential well depth, UQ. SO the radial and axial size 

of the sample is much smaller than the beam waist and the Rayleigh range. Then 
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the potential can be well approximated by a harmonic oscillator form, 

2 / \ 2" 

U(r,zA)~-Uo ,4/ \wl. 
(162) 

If we define the radial and axial oscillation frequencies of a trapped atom as uir and 

u)z respectively, the harmonic potential can be written as 

U(r, z, 0) = -U0 + -muj2r2 + -mu2
zz

2. (163) 
4Li Zj 

From Eq. 162 and 163, the harmonic oscillation frequencies of a trapped atom at the 

focus of the CO2 laser are 

wr = \ o a n " Wz = \ T- (164) 
V mwQ y mzz

R 

These oscillation frequencies are measured through parametric resonance measure

ments which will be explained in Section IV. 1.2. 

IV. 1.1 Imaging 

A very important step in sample characterization is imaging of the sample. Two 

different types of imaging are used in characterizing the sample. One is absorption 

imaging and the other is the fluorescence imaging. The latter is used during QUEST 

optimization and to find the transfer efficiency from MOT to the QUEST. Absorption 

imaging is, on the other hand, used to calculate the optical depth, density and the 

total number of atoms in the MOT. 

Fig. 32 shows a schematic diagram of the imaging system for fluorescence imaging. 

The focal length of the first lens that collects the fluorescence from the sample is f 

= 75 mm and it is located at a distance of 2f from the sample. This lens is a 

high quality 2 inch diameter AR coated achromatic doublet. The shutter located 

at the focus of this lens acts as a spatial filter and prevents unwanted background 

signals from entering the charged couple device (CCD) Camera. Two lenses also of 

focal length f are located after the shutter setup and transfer the image to the CCD 

camera. The CCD camera used here is a Princeton Instruments (Roper Scientific) 

LN/CCD,with a Tektronix 512x512 pixel array. Each pixel is 24x24 /xm in size. The 

camera is cooled with liquid Nitrogen to -90 °C to achieve very low thermal noise. 

The timing of the florescence imaging of the MOT and the QUEST are shown in 

Fig. 34 and in Fig. 35. The fluorescence signal is obtained by reflashing the MOT 
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FIG. 33: Sample images of MOT and the QUEST obtained from fluorescence imag
ing. 
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and the repumper lasers for a short period of time (~ 100 to 400 /is) after some 

expansion time. For the MOT the minimum expansion time is 3 ms which is the 

time needed for the camera shutter to open. The camera shutter mentioned here is 

the shutter located at the focus of the collecting lens (Fig. 32). The CCD camera 

itself is equipped with a shutter that is opened 20 ms before the camera shutter and 

stays open for 50 ms overlapping the data acquisition period. The detuning of the 

MOT laser is fixed at -17.4 MHz (~ -2.9 7) for the MOT and the QUEST fluorescence 

imaging. Fig. 33 shows two sample images of the MOT and the QUEST obtained 

via fluorescence imaging under similar conditions. A comparison of these two images 

gives a transfer efficiency of ~ 10 %. 

Fig. 36 shows the absorption imaging setup. A probe laser that is tuned near 

resonance is incident on the MOT and the transmitted beam is imaged with the same 

imaging setup as in fluorescence imaging. The only difference is an iris is placed at 

the focus of the 75 mm lens to block the diffuse fluorescence photons going into the 

CCD; this light otherwise forms a background signal that is difficult to quantify. The 

atoms in the F = 2 ground state are illuminated with a linearly polarized 10 fis probe 

laser which is tuned off resonance enough such that the absorption signal is nearly 

a Gaussian and the peak is not flat and broadened due to the high optical depth. 

The intensity of the probe beam is adjusted to be much smaller than the saturation 

intensity, Is, so as not to cause any power broadening and saturation. The signal 

to noise ratio is not an issue for these measurements as the absorption is quite large 

even after the 3 ms expansion of the MOT and the probe intensity is plenty for the 

camera even at 0.017s and 10 /xs pulse duration. A generalized form of Eq. 159 at 

the trap center is 

b = v2imocrro (165) 

where 

° = 1 + {25 hY
 ( 1 6 6 ) 

and the laser detuning 5 from resonance, LU0 

5 = UJ — UJQ. (167) 

Similarly, 
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From the absorption images as shown in Fig. 36, IT/IQ is obtained. From Eq. 168 

and Eq. 158, the on resonance optical depth b0 for the MOT is 

b0 = -(l + (28/1)
2)lnI-f. (169) 

-<o 

So for a MOT with a Gaussian atom distribution of 

r2 

n{r) = n 0 e x p ( - - ^ ) (170) 

a Gaussian fit of the line scan across the natural logarithm of the absorption image 

gives the radius r0 of the MOT, 

l n ^ = 6 0 e x p ( - ^ ) (171) 

Once the Gaussian radius r0 and the peak density n0 (from Eq. 165) is calculated, 

the total number of atoms in the MOT is 

NMOT = M27r)3/2r0
3. (172) 

The total number of atoms in a typical MOT obtained in our lab is ~ 108 atoms 

with a Gaussian radius of ~ 400 //m after 3 ms expansion. The corresponding peak 

optical depth at 3 ms is ~ 10 and the peak density is 1.4xlOn atoms/cm3. The 

corresponding total number of atoms in the QUEST is found to be ~ 107 with a 10% 

transfer efficiency. 

IV. 1.2 Parametric Resonance Measurement 

Another important parameter to be determined before calculating the peak density 

of the QUEST is the shape of the trapping potential formed by the CO2 laser. 

Measuring the spot size directly is not trivial as the intensity at the focus of the CO2 

laser is ~ 106 W/cm2. An indirect measurement of the spot size comes from so called 

parametric resonance measurements. 

The main heating mechanism in CO2 laser dipole traps comes from the colli

sions with warm background gas, as the spontaneous scattering of photons due to 

CO2 laser is minimal [63,65,66]. In addition to these heating mechanisms, heating 

due to intensity fluctuations and pointing stabilities can be significant in some sys

tems [63]. Adams et al. [64] observed trap lifetimes of 0.8 s. in their Sodium atom 

trap, much lower than they expected. Previous research by the Thomas's group, 
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FIG. 37: Schematic of the timing for the absorption imaging of the MOT. Drawing 
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FIG. 38: Illustration shows the intensity fluctuations in the trap potential which 
leads to parametric heating of the sample. 

at Duke University has shown that Coherent GEM Select laser has very low noise 

characteristics [67-69]. Our experiments confirm that result, as we did not observe 

any unusual heating or trap loss due to laser noise or pointing stabilities in our hold 

time measurements. 

In addition to this unwanted feature, the heating due to intensity fluctuations can 

be employed as a useful tool in finding the harmonic oscillation frequencies of the trap. 

As it can be seen from Eq. 164, fluctuations in the laser potential will cause harmonic 

frequencies to change. Let us consider the case where the laser intensity is changed 

periodically with a modulation frequency of fm as schematically illustrated in Fig. 38. 

Parametric heating occurs because the atoms are confined to a time varying potential 

well. As the atoms are heated, their mean energy increases. Further, since the trap 

has a finite depth they move higher in the potential well and eventually boil out of 

the trap. These instability regions where the sample interaction with the potential is 

larger are called parametric heating resonances. The strongest interaction happens 

when the trap oscillation frequency UJ, is half the intensity modulation frequency, wm 

where wm = 2nfm. Parametric resonances generally occur when wm = 2u/n where 

n = 1, 2, 3, ... [70]. 

Another way of to think about this process is by considering that the spring 

constant, k, of an harmonic oscillator depends on the potential. As the potential 

is periodically modulated with a modulation depth of h, the atoms in the trap will 
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FIG. 39: Modified CO2 laser control signal for parametric heating measurements. 
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FIG. 40: Typical images of parametric heating measurement. The cloud is permitted 
to expand for 3 ms before imaging. The images clearly show the trap loss as the 
modulation frequency is swept across ~ 2.5 kHz, twice the radial harmonic frequency 
of the trap. 

experience a periodic force equal to hkx, where x is the atom's distance from the 

trap center. The modulation depth is defined in terms of intensity as 

h(t) = h(t + D) = 
/o 

(173) 

where I(t) is the peak intensity at time t, IQ is the peak intensity and D is the period 

of the modulation. As the atoms heats up x will increase leading to exponential 

heating of the sample [63]. The parametric heating has been extensively studied by 

many groups [63,65,71-76]. 

The experimental setup and timing for the parametric resonance measurements 

is similar to the fluorescence imaging of the QUEST as shown in Fig. 32 and Fig. 

35. The CO2 laser is modulated for 200 ms at the end of the 1 second hold time 
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of the QUEST. This modulation heats the sample as the modulation frequency is 

tuned through parametric resonances. Modulation is generated by modifying the 

C0 2 control signal as shown in Fig. 39 through changes in the rf power that drives 

the AOM. This modification makes the first order diffraction efficiency of the AOM 

oscillate, which causes in turn the intensity modulation at the focus of the CO2 laser. 

At the end of the modulation time the CO2 laser is turned off and the fluorescence 

images of the quest are taken after 3 ms of free expansion to allow for the trap to 

become optically thin. The fluorescence signal obtained were proportional to the total 

number of atoms in the QUEST. Typical images of the perimetrically heated and 

expanded cloud of atoms are shown in Fig. 40. The traditional method of analyzing 

these data is to measure the total intensity of light scattered from the sample. This 

measures the trap loss which is determined as the frequency of the modulation is 

tuned across the parametric resonances. In this method the modulation depth, h is 

chosen to be 0.15 to cause a loss of atoms that can easily be detected. Modulation 

depths of less than 0.10 do not heat up the sample enough in a 200 ms modulation 

time to cause measurable trap loss. In the second method, the peak intensity of 

the images are recorded. This is an indirect measurement of the cloud temperature 

change after parametric heating and also gives the loss of atoms localized spatially 

in the harmonic region of the trap. This is a more sensitive measurement than the 

one mentioned above. A comparison of both methods is shown in Fig. 42. In these 

graphs two different results from the same measurement are shown. In the first 

one, the total number of atoms remaining in the trap after parametric excitation is 

shown. In the other one, depletion of the atoms from the central part of the trap 

is shown. The difference between the two method is very obvious as the depletion 

method reveals the resonances clearly. In Fig. 42 (b) the axial parametric resonance 

measurement is shown. In this graph the total signal loss graph doesn't even show 

a resonance even for modulation depth of h = 0.20 (2) but the peak intensity signal 

clearly shows the resonance. This axial frequency result of fz = 105 (5) Hz agrees 

with the radial frequency of fr = 2.6 (1) kHz within the experimental uncertainty. 

Once the harmonic oscillation frequencies of the trap are known, from 

A4t7o" , [2Uo , _ 
V muiQ V mzR 

the beam width cu0 and the Rayleigh range ZR of the CO2 laser can be calculated. 

In our experimental setup with 40 W total CO2 power and measured value of radial 
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oscillation frequency of fr = 2.6 (1) kHz, the beam waist of U)Q = 55 (3) fjm and the 

Rayleigh range of zR = 0.96 (0.05) mm is calculated. 

IV. 1.3 Temperature Measurement 

In our experiments we are interested in achieving the highest possible density of 

atoms in the QUEST. According to Eq. 157, ro, z0 and the total number of atoms 

N is required to calculate the density of the QUEST. Knowing the exact shape of 

the Gaussian potential of the trap is not sufficient to calculate the Gaussian radii r0 

and ZQ of the QUEST. In a dipole trap with a potential U(r, z), the thermal density 

distribution n(r, z) is given by, 

, N ( U(r,z)\ . , 
n{r, z) = n0 exp I ^ y 1 „ (175) 

where kB is the Boltzmann's constant and T is the temperature of the atoms [55]. 

When combined with Eq. 163, and Eq. 156 the temperature of the trapped atom 

cloud is 
T ^ ^ l and T = ^ ( 1 ? 6 ) 

from which r0 and z0 of the QUEST can easily be calculated. 

The temperature of the atoms confined in the QUEST are measured via time 

of flight experiments. The experimental configuration is similar to the fluorescence 

imaging setup as described in section IV. 1.1. The temperature of the QUEST is 

inferred from the velocity distribution of atoms in the QUEST. To measure the 

velocity distribution, the cloud of atoms is allowed to expand for different periods of 

time. The Gaussian radii, ro(t) and z0(t) of the cloud vary in time as 

r0(t) = v/r0
2 + (vty (177) 

and 

z0(t) = v^o2 + {vty. (178) 

Here v2 = kBT'/m. Fig. 176 shows the images for up to 4 ms ballistic expansion 

of the QUEST. The measurements done on these images yield r0(t) and z0(t) of the 

cloud for different times. The results are plotted and fitted to Eq. 177 and 178 

as shown in Fig. 43. The result of the temperature measurements depends on the 

experimental parameters especially the well depth, UQ of the trap. As pointed out 

in [67] the expected thermal energy of the cloud, kBT to well depth ratio is ~ 1/10. 
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FIG. 42: Images of a ballistic expansion and free falling of the atomic cloud in time. 
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gives velocity of the cloud v = 11 //m/ms and temperature of ~ 65 //K. CO2 power 
used in this measurement is 50 W. 

The smallest temperature measurement made is ~ 21 JJK after forced evaporative 

cooling of 0.5 s. The temperature shown in Fig. 43 of ~ 65 /iK is obtained with 50 

W CO2 power which corresponds to ~ 0.61 mK well depth. 
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CHAPTER V 

RESULTS 

As was mentioned before, the main goal of this research is to investigate light scat

tering near the localization regime. Light localization is expected to happen when 

the dimensionless quantity k£ ~ 1. This dimensionless quantity is called Ioffe-Regel 

parameter. Here the mean free path is given by I = 1/na, where n is the atomic 

density and a is the light scattering cross section. Thus the density n is the main 

parameter that determines, in our experiments, whether or not we are in the localiza

tion regime. Measurement of the density is critically important in order to accurately 

interpret the experimental results. In this chapter the MOT and the QUEST char

acteristics will be summarized. Derivation of the atomic density from experimental 

measurements will be described. The last section will cover experimental results of 

time dependent light scattering from the 87Rb F = 2 —> F' = 3 transition. 

V. l MOT A N D QUEST OVERVIEW 

In calculating the atomic density distribution of the QUEST the MOT characteristics 

play an important role. The number of atoms in the QUEST is calculated from the 

efficiency of transfer from the MOT as obtained via fluorescent measurements. Table 

1 and Table 2 lists typical characteristics of the MOT and the QUEST, respectively. 

Note that these numbers change within 10% from day to day due to variations of 

laser intensities, vacuum, temperature and other effects over which we have limited 

control. Some of these numbers are purposefully changed from time to time. For 

example after evaporative cooling, colder temperatures are achieved for different final 

CO2 laser powers. 

The values shown in Table 2 are for a maximum density QUEST right after the 

CO2 laser is turned off. The MOT numbers in Table 1 are obtained after letting the 

MOT expand for 3 ms. This is the minimum time required before the MOT can be 

accurately imaged. The MOT characteristics before expansion can be calculated by 

using Eq. 177. The calculated values at t = 0 are: r0 ~ 400 /im, n0 ~ 1.7xlOn 

atoms/cm3 and 60 ~ 12. 



Gaussian Radius, TQ 
Peak Optical Depth, 60 
Peak Density, no 
Number of Atoms, N 
Temperature, T 

440 (40) fim 
10(1) 
1.3 (0.2) xlO1 1 a toms/cm3 

1.7 (0.2)xlO8 atoms 
38 (4) fjK 

TABLE 1: These values are typical MOT characteristics after 3 ms of expansion. 

CO2 Laser Total Power 
CO2 Laser Beam Waist 
CO2 Laser Rayleigh Range 

Potential Well Depth 

Radial Parametric frequency 

Axial Parametric frequency 

Gaussian Radius 

Transfer Efficiency 
Number of Atoms 
Temperature 
Peak Density 

Peak Optical Depth 

Ioffe-Regel Parameter 
mean free path 
n(A/27r)3 

P 
UJQ 

ZR 

U0 

fr 
U3r 

fz 

To 

ZQ 

N 
T 
n0 

b0r 

boz 

k£ 
£ 

40 (2) W 
55 (5) (j,m 
960 (50 (im 
11.8 (1) MHz 
0.56 (0.05) mK 
7.8 (0.8)xlO"2 7 Joules 
1.3 (0.1) kHz 
8.2 (0.8) kHz 
54 (5) Hz 
340 (30) Hz 
9.6 (0.5) ^m 
230 (20) /an 
10 (1) % 
1.7 (0.2)xlO7 atoms 
65 (8) fiK 
3.3 (0.3)xlO13 a toms/cm3 

165 (20) 
3900 (500) 
1.2 (0.1) 
0.15 (0.02) nm 
0.1 (0.01) 

TABLE 2: Typical QUEST characteristics. 
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V.2 A T O M I C D E N S I T Y 

This section of the thesis is dedicated to calculation of the density of the atomic sam

ple by using various experimental parameters that are obtained via fluorescence and 

absorption images, parametric resonance measurements and temperature measure

ments. As described in the previous chapters, temperature T, parametric resonance 

frequencies uir and UJZ, CO2 laser power P, and number of atoms in the QUEST 

N, from Table. 2 are known through such measurements. The peak density of the 

QUEST, n0 is given by 
N 

710 = ( 2 ^ ) 3 / ^ 0 ( 1 7 9 ) 

The first step in the calculation of density is to find the well depth of the potential 

formed by the CO2 laser beam. The potential well depth is given by 

U0 = ^—astatI0, (180) 

where astat is the static polarizibility of the ground state of Rb, c is the speed of 

light, and IQ is the peak intensity of the laser beam at the focus and is given by, 

IP 
/o = — , (181) 

where u>0 is the beam waist of the CO2 laser at the focus. Combining Eqs. 180 and 

181 yields 

U0 = ^ ^ . (182) 

7re0co;^ 

This equation is not enough by itself to find the well depth as wo is not known. But 

we know the parametric resonance frequencies, and by using Eqs. 164 and 182 we 

obtain 
^0 = / ^ ^ , (183) 

where m is the atomic mass. Once UJQ is calculated, the potential well depth can 

easily be calculated from Eq. 182. A simplified version of Eq. 182 obtained by 

substituting fundamental constants and astat is 

960 
U0 = ™P. (184) 

The result is in units of MHz when UOQ is in units of //m. By using 21 MHz = 1 mK 

the well depth in units of mK is obtained. 
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The last piece in calculation of the density is finding the Gaussian radii, TQ and 

ZQ of the QUEST which can easily be calculated from Eq. 176. During the ballistic 

expansion of the QUEST the r0 and z0 changes according to Eqs. 177 and 178. As 

a result peak density of the QUEST varies during the expansion according to 

N 
n0(t) = (185) 

(27T)3/2(r2 + (^)2)^2 + (^)2 

where v, the speed of the atoms is given by, 

v = J — (186) 
V m 

At this point the QUEST is fully characterized: The relevant quantities related to 

the light scattering experiments are given in Table 2. Some fundamental constants 

and some characteristic data of 8 7Rb used in these calculations are given in Ref. [43]. 

V.3 F = 2 - • F' = 3 RESULTS 

V.3 .1 Introduct ion 

The main goal of this dissertation research is to investigate light scattering from 

high density and ultracold atomic 87Rb gas and look for experimental signatures of 

Anderson localization of light. The measurements discussed in this chapter include 

transient hyperfine optical pumping processes, and light scattering of near resonance 

probe radiation on the F = 2 —• F ; = 3 transition. The physics is explored in time 

domain experiments. Atomic density, probe detuning and intensity dependence of 

the signals are also explored in detail in the coming sections. 

Different possible probing schemes were explained in Section III.3.3 and illustrated 

in Fig. 17. Among those probing schemes the smallest Ioffe-Regel parameter, k£ = 

l/n0a0 and highest peak optical depth b0 is obtained in probing with a laser tuned 

on resonance with the F = 2 —> F' = 3 transition. Here a0 is the on resonant light 

scattering cross section that defines both parameters along with the density. Since 

the density is optimized, the biggest chance to see localization effects is on the F = 

2 —> F' = 3 transition. The light scattering cross section a0 is given by 

(2F ' + 1) A2 

ao = W^)^ ( 7) 

which equals 

°° =1 (s) (188) 
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for the F = 2 —> F' = 3 transition. Moreover previous light scattering experimental 

results in a dilute medium (MOT) from F = 1 —> F' = 0 transition indicates that 

the optical pumping of atoms to m = ±1 Zeeman levels of the F = 1 ground state 

greatly decreases the possibility of seeing localization on that transition [77]. 

V.3.2 Experimental Setup 

General experimental instrumentation and sample formation has been mainly de

scribed in the previous chapters. This section of the results will explain the specific 

protocol for the light scattering experiments. A schematic drawing for the experi

mental setup related this chapter is shown in Fig. 44. 

After the QUEST is prepared and characterized, the experiments are carried 

out in different timing and probing configurations depending on the purpose of the 

experiment. A sample timing used in these experiments is shown in Fig. 45. The 

durations or delays with respect to C0 2 laser turn off time of the probe and the 

repumper laser is varied for different data taking protocols as explained in the coming 

sections. All the results covered in this chapter deal with time dependent fluorescence 

data obtained from the QUEST and analysis. The fluorescence collection setup is 

shown in Fig. 44. The fluorescence emerging from the sample is collected by a f = 150 

mm focal length, achromatic lens placed at 1 f away from the sample. A second lens, 

with 75 mm focal length, focuses the fluorescence into a 600 /mi diameter multimode 

fiber. The net magnification of the setup is 1/2 which makes the image of the QUEST 

approximately 20 /mi x 230 /mi in size at the fiber tip. The fiber tip is much bigger 

than the sample size, preventing signal loss during the expansion of the QUEST. 

This is experimentally tested by moving the fiber around a few hundred /mi, from 

which no significant fiber response change is observed. The fiber is mounted on a xyz 

translater to maximize coupling into the fiber. The other end of the fiber is attached 

to a Photomultiplier Tube (PMT) made by Product for Research Incorporated (Part 

number C311034/0076/0588, 16437-89). The tube is installed inside a refrigerated 

housing (Refrigerated Chamber, part number TE210RF) to minimize dark counts. 

The voltage supplied to the tube is kept at -1500 V for all the experiments. To 

condition the photon pulses for counting, the output of the PMT is amplified 125 

times by a fast preamplifier (Stanford Research Systems, part number SR445A). 

The amplifier has a 350 MHz bandwith with a 1 ns fall/rise time. The output of 

of the amplifier is connected to a multichannel scaler (Stanford Research Systems, 
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FIG. 44: Schematic of experimental setup for light scattering experiments. 
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part number SR430). The Multichannel Scaler (MCS) can be thought of as a photon 

counter that counts the incoming current from the PMT as a function of time. The 

MCS is capable of sorting the data in bins with a width from 5 ns to 10 ms. The 

MCS has up to 32000 sequential bins per record allowing a 160 /is window for data 

accumulation for the smallest bin width of 5 ns. The multichannel scaler has a built 

in discriminating feature that allows us to keep the background at very low levels. 

The data explained in this chapter is accumulated in 5 ns bins unless otherwise noted. 

The multichannel scaler is also triggered and kept synchronized with the experiment 

by the master clock as explained in the previous chapters, see Fig. 45. 

V.3.3 Hyperfine Optical Pumping 

Even though MOT cooling occurs at the F = 2 —• F' = 3 transition and atoms leaking 

to the F = 1 ground state are pumped back to the F = 2 transition by a repumper 

laser, we have to minimize hyperfine collision losses by transferring the atoms by 

optically pumping to the F = 1 ground state during QUEST loading [78]. This is 

accomplished by turning off the repumper laser 1.5 ms before the MOT lasers turned 

off. In order to probe the F = 2 —» F' = 3 transition the atoms must be optically 

pumped back to the F = 2 hyperfine ground state. This is done by using the the 

repumper laser which is tuned on resonance with the F = 1 —» F' = 2 transition as 

shown in Fig. 46. 

As it was described in the previous section, the density of the QUEST is varied 

by letting the QUEST expand. The final peak density of the cloud is estimated from 

Eq. 185. Table 3 shows the estimated peak density no, radial and axial Gaussian 

radii of the QUEST TQ and z0, the on resonance transverse optical depth bt of the 

QUEST after different expansion times. The value of bt given is calculated for a laser 

beam tuned on resonance with the F = 2 —> F' = 3 transition. The hyperfine optical 

pumping data in Fig. 47 shows the data taken at these points. 

Data taking time for each density point is about 2 hours. It is important to 

note that for this kind of long data taking, background signal due to dark current is 

around a few counts per bin. The signal that is seen especially in the fast decaying 

lower density data after optical pumping process completed is due to the hot atom 

fluorescence from the repumper laser that is incident on the sample from all six 

directions. The repumper laser beam has about 2 cm2 area with 8 mW total power 

at the trap center. 
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FIG. 46: Diagram of hyperfine optical pumping process: The repumper laser inci
dent on the sample from all 6 directions (vertical directions not shown) is tuned on 
resonance with the F = 1 —> F' = 2 transition. The resulting optical pumping process 
transfers atoms from the F = 1 to the F = 2 ground state hyperfine component. 

Peak bt 

165 
117 
82 
53 
16 
5 

n0 (atoms/cm3) 
5.0 xlO13 

2.5 xlO13 

1.2 xlO13 

5.1 xlO12 

5.2 xlO11 

5.9 xlO10 

r0 {jim) 
9.8 
13.8 
19.5 
30.4 
92.3 
240 

z0 (fj,m) 
248 
248 
248 
249 
264 
345 

TABLE 3: QUEST parameters relating the peak transverse optical depth on the F 
= 2 —> F' = 3 transition to the peak sample density and the Gaussian radii of the 
atomic cloud. 
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FIG. 47: Time evolution of the F = 1 —> F' = 2 optical pumping signal. The values 
shown represents the peak density of the sample for the corresponding data. 

Another point that is immediately realized from the data is that the optical 

pumping signal decays nearly exponentially. The higher density data decays much 

more slowly as expected. The decay rate is well approximated by a single exponential. 

This decay rate can be estimated by considering that the repumper laser saturates 

the F = 1 —> F' = 2 transition. The time associated with pumping an atom from 

the F = 1 ground state to the F = 2 ground state is approximately 2r0, where r0 = 

26 ns is the radiative lifetime of the excited state. When considered the probability 

that an atom ends up in F = 2 in this process is 5/8, we estimate that the repumper 

laser penetrates a distance of one mean free path £ into the sample in ~ 80 ns. From 

Table 2 for the highest density data, for I ~ 0.15 /j,m and ro ~ 10 /tin, it takes about 

60 scattering events for repumper laser to reach the middle of the QUEST. So this 

estimation gives complete optical pumping decay time of ~ 5 //s which is in good 

qualitative agreement with the data shown in Fig. 47. The decay rate analysis of this 

data is shown in Fig. 48b where we see that the exponential decay rate of the optical 

pumping signal depends approximately exponentially on the transverse optical depth 

bt (peak optical depth in radial direction of the QUEST). 

Fig. 48a shows the peak repumper intensity signal dependence as a function of bt. 

The peak intensity is the maximum intensity that the signal reaches right after the 
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FIG. 49: Schematic of hyperfine optical pumping process. Figure shows possible 
Rayleigh and inelastic Raman scatterings during the hyperfine repumping process 
and the mixture of the atoms from the F =1 to the F=2 ground state hyperfine 
component. 

repumper laser is turned on. This figure also shows the integrated signal versus peak 

optical depth bt. In both cases the signal doesn't seem to strongly depend on the 

density and the variations are within the experimental uncertainty. The relatively 

small increase of the peak signal as the density is decreased can be attributed to the 

sample becoming optically thin and the repumper laser penetrating deeper into the 

sample initially and reaching more atoms. The drop in the total signal as the peak 

transverse optical depth b t gets smaller is due to the decrease in the coupling of the 

repumper fluorescence into the fiber. For the very optically thin sample the size of 

the expanded cloud becomes comparable to the fiber tip diameter. 

In all of these analysis, the effect of the inelastic Raman scattering (the diffuse 

photons from F' = 2 —• F = 2 decay) and the effect of multiple scattering are ignored. 

The actual processes that take place are more complicated than it is described here. 

Fig. 49 shows a schematic of the optical pumping process before it is completed and 

depicts the complexity of the system. 
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FIG. 50: Schematic of probe and repumper laser incident on the QUEST at the same 
time. Mixture of F = 1 and F = 2 ground state atoms and scattering of photons near 
resonance with the F = 2 ->• F' = 3, F = 1 -> F' = 2, F' = 2 -»• F = 2 transitions 
are depicted. 

V.3.4 Combined Hyperfine Optical Pumping and Light Scattering on 

the F = 2 -»• F' = 3 Transition 

One big issue in light scattering from high optical depth samples is the difficulty 

of penetrating deep into the sample where the density is the highest and there is 

a better chance of generating localized modes. To overcome this problem different 

techniques have been applied. One is these is overlapping the probe laser that is 

tuned near resonance with the F = 2 —>• F' = 3 transition with the repumper laser 

tuned on resonance with the F = 1 —> F' = 2 transition as shown in Fig. 50. The 

repumper laser configuration is as described as in the previous section. The probe 

laser is incident on the sample as shown in Fig. 44. 

In these measurements the probe laser is tuned on resonance with the F = 2 

—> F' = 3 transition and the probe intensity is varied while keeping the repumper 

intensity fixed. Results are shown in Fig. 51. The maximum density of the sample 

is 5xl01 3 atoms/cm3. As it was shown in the previous section, the optical pumping 

process is completed in ~ 5 //s, where the highest density region of the sample is 
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FIG. 51: Probe intensity dependence of the combined hyperfine repumper laser and 
the probe laser tuned on resonance with the F = 2 —> F' = 3 transition. 

optically pumped last. We see from Fig. 51 that the results strongly depend on the 

probe intensity. For the lower intensity data, the results look similar to the repumper 

laser only data that was discussed in the previous section. As the probe intensity 

is increased the signals reach a steady state value. The sample is initially optically 

thin for the probe laser and optically thick for the repumper laser. These roles are 

switched as the time dependent signal evolves. 

The analysis of the steady state part of the data is presented in Fig. 52. Even 

though the saturation intensity for the F = 2 —>• F' = 3 transition is ~ 1.7 mW/cm2, 

the data shows a linear increase in the signal up to 12 mW/cm2 probe laser intensity. 

This could be because of the decrease in the probe laser intensity as the probe 

penetrates into the optically thick sample. Most of the atoms are deep inside the 

sample and when probe radiation reaches those atoms, the coherent beam intensity 

becomes significantly less than the saturation value. 

When we measure the intensity of fluorescence light after the probe and the 

repumper lasers are turned off simultaneously we do not see any signature of effective 

loading of photons into the highest density region of the QUEST. The reason for this 

would be that the optical pumping is a slow process and starts from the outer edges 

of the sample. By the time the repumper reaches the sample center, the probe is 
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FIG. 52: Steady state signals extracted from the data of Fig. 51 are plotted as a 
function of F = 2 —»• F' = 3 probe laser intensity. The saturation intensity for the F 
= 2 —> F' = 3 probe laser is ~ 1.7 mW/cm2. 

already optically blocked by the outer shell of the QUEST. A better way of loading 

excitations into the middle of the sample is needed. 

As it was mentioned at the end of the previous section, an already complex sys

tems became even more complex by the optical dynamics in this type of experiment. 

This complexity can be seen in Fig. 50. As the repumper laser optically pumps the 

atoms to the F = 2 ground state the outer region of the sample is becoming optically 

thick not only for the F = 2 —> F' = 3 probe but also for the diffuse photons coming 

from the F' = 2 —> F = 2 Raman decay. Quantitative models are needed to describe 

these systems. 

V.3.5 Probe Light Scattering on the F 

Density Dependence 

F' = 3 Transition 

To understand light scattering dynamics at high atomic density, we need to look at 

the case where the optical pumping process is finished before the F = 2 —> F' = 3 

probe laser is incident on the sample. In this case the probe laser is turned on 1 fis 

after all the atoms are optically pumped to the F = 2 ground state. The density of 

the sample is varied as described in section V.3.3. Here, the probe intensity of 630 
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//W/cm2 is weak compared to the saturation intensity. The probe laser has a 20 dB 

turn on/off time of ~ 100 ns. Fig. 53 shows the density dependence of such data. In 

this figure we can see that the fluorescence reaches a steady state level quickly and 

there is a temporal decay of the signal that lasts several hundred nanoseconds after 

the probe laser is turned off. 

The total integrated signal data is analyzed as a function of atomic density in Fig. 

55. Instead of the density we parametrize the dependence in terms of the transverse 

optical depth bt. Recall that the sample has ellipsoidal Gaussian density distribution. 

So naturally the sample has two optical depths associated with the axial and radial 

dimensions. We call the radial optical depth the transverse optical depth bt, and the 

axial optical depth as the longitudinal optical depth b/. The relation between the 

density and the optical depth is given by 

bt = V27rn0a0r0 (189) 

and 

bt = ^/27rn0a0z0, (190) 

where no is the peak density, r0 and z0 are the Gaussian radii of the ellipsoidal sample 

and <7o is the weak field resonant light scattering cross section. o"o is given by 

(2F' + 1) A2 

ao = W^)^ ( } 

As we can see from Fig. 55 the total integrated signal increases as the transverse 

optical depth bt is decreasing. This data can be understood when we consider that 

the sample is very optically thick and the probe beam intensity is greatly reduced by 

absorption at the surface and hardly any of the coherent beam reaches the central 

region of the sample for the highest density data. As the density is reduced the 

probe reaches more atoms deep inside the sample and the signal increases. This also 

explains the almost constant decay rate of the signal after the probe is turned off for 

the higher density data shown in Fig. 53. This could be due to the fact that as the 

optical depth decreases, the penetration ratio increases keeping the total number of 

multiple scattering rate constant. 

To more quantitatively understand these results we consider a simple model of 

light scattering from a sample with a Gaussian atom distribution that is illuminated 

by a uniform intensity probe beam, see Fig. 54. For on resonant incident probe beam 
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FIG. 54: A simple heuristic model of light scattering from a sample with Gaussian 
atom distribution that is illuminated by a uniform intensity plane wave. 

0 20 40 60 80 100 120 140 160 

Peakb> 

FIG. 55: Variations of the integrated signal with peak transverse optical depth as 
extracted from Fig. 53. The signal drops with increasing optical depth. 
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with initial intensity I0, the transmitted intensity I(r)is given by 

Ue(-72r0T 
/ ( r) = /0eV (192) 

as shown in section IV. 1.1. Here 60 is the peak optical depth of the Gaussian sample 

and b0 is given by 

b0 = V2nn0a0r0, (193) 

where no is the peak density, G$ is the on resonant light scattering cross section and 

ro is the Gaussian radius of the atomic cloud. The total scattered light intensity, 

total scattered power Ps, is given by 

Ps = J j{I0-I{r))rdrd<t>. 

Substituting Eq. 192 in Eq. 194 yields 

p.= 
/ / ' • 

rdrdcj). 

If we define x = r /2r%, Ps becomes 

l-e(-boi >—x 
dxdcj). Ps = J27rl0r

2
0 

To solve this integral if we expand the exponential around 0 we get 

l _ c ( -6oO = ! _ g ("M-T 
n=0 n\ 

i -E 
n=0 

( - l ) X e -

n = l 

n! 
(-l)n+165e-nx 

n! 

By using 

I 
oo 1 

e-^da; = -
n 

we reach a general form for the scattered power Ps(b) 

n=\ nn\ 

(194) 

(195) 

(196) 

(197) 

(198) 

(199) 

Here A is number proportional to 2-KIQTI
 anc^ ô is replaced by b to include 

spectral variations of the incident beam. Here we also make the assumption that q 
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is an empirical scaling parameter for the optical depth that describes the effective 

nonuniform spatial density distribution of the QUEST and the limited penetration 

of the probe laser into the atomic sample. This heuristic model describes the density 

dependent data shown in Fig. 55 well with r\ = 0.08 (2) and A = 25 (2) Kcounts. 

The small value of 77 agrees with our previous explanations of the data as the probe 

beam does not significantly penetrate the sample. The solid curve shown in Fig. 55 

is the fit of the Eq. 199 of Ps(b) to the data. Here also note that lower density data 

points needs correction because of the decrease in the coupling of the fluorescence 

into the fiber as it was mentioned before. 

Note that even though this model predicts the effective conditions very well, 

this model is for a Gaussian atom distribution. It does not take into account the 

ellipsoidal Gaussian nature of the QUEST. This model also does not take the angular 

distribution of the scattered intensity into account. 

Detuning Dependence 

Fig. 56 shows the data taken under similar conditions as the density dependent data. 

The repumper and the probe timing is same but now the detuning 5 of the probe 

laser from the F = 2 —• F' = 3 transition is varied in the range ±24 MHz, while 

keeping the density at the highest value. As it can be seen in the figure a temporal 

behavior similar to the density dependent data is seen, as the signal rapidly reaches 

a steady state level. After the probe laser is turned off the signal decays for almost 1 

/is. In the analysis of this data, and similar to density dependent analysis, we extract 

at the total integrated signal. Fig. 57 shows this data as a function of detuning S. 

The response is approximately spectrally symmetric and has a full width at half 

maximum (FWHM) of ~ 24 MHz. The natural linewidth of the F = 2 -> F' = 

3 transition is ~ 6 MHz. This type of broadening is expected because of the high 

optical depth of the sample. 

Now we go back to our heuristic model developed in the density dependent section 

to analyze the detuning dependent data. This time the density is fixed and the optical 

depth varies by changing the detuning as 

HS) =
 1 | ( 2 ( * - A ) ( 2 ° 0 ) 

y 
where b0 is the on resonance optical depth and A is the small shift of about 0.8 MHz 
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FIG. 57: Spectral variation of the temporally-integrated scattered light intensity on 
the F = 2 —»• F' = 3 transition. 

seen in the fit of the data seen in Fig. 57. This shift could be the Lorentz-Lorenz 

(local field) shift but this requires further measurements at higher densities and with 

a spectrally narrower probe laser. The probe laser used in these light scattering 

experiments has a spectral width of about 3 MHz. The smaller width mentioned 

in section III.3.3 is measured after fixing a problem with the current controllers 

that caused the widening of the spectral width of the lasers. Again the agreement 

between the data and this heuristic model with r\ = 0.10 (1) and A = 0.8 MHz is 

quite satisfactory. 

Extended Run 

We close this section by presenting in Fig. 58 data from an extended run of the 

experiment of about 10 hours. The probe duration in this case is 5 fis. The probe 

laser is on resonance with the F = 2 —>• F' = 3 transition. The density is at its 

highest value of 5xl01 3 atoms/cm3 and the transverse optical depth bt is 165. The 

probe is directed toward the sample after the optical pumping process is completed, 

as explained in the previous sections. Both the repumper and the probe signal is 

shown in Fig. 58a. In Fig. 58b we see that there is a significant long time decay after 

the probe laser is extinguished. As it seen in the figure the decaying signals extends 

0 -20 -10 0 10 
Detuning (MHz) 

20 30 
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up to 2 [is. A double exponential fit (dashed line) to this decay signal gives 100 (10) 

ns and 500 (50) ns time constants. For a sample with a peak optical depth of 165, a 

diffusive model predicts a 40 [is decay time constant r given Labeyrie et al, 

where r0 ~ 26 ns is the natural decay time of the excited state [79]. This equation is 

for a spherically symmetric Gaussian atomic cloud. Again we attribute this difference 

to limited penetration of the sample. If we replace b in Eq. 201 with r]bt = 16.5, this 

equation predicts a decay time of 420 ns. The result is in reasonable agreement with 

the measured value of ~ 500 ns in Fig. 58. 

It is important to note here that heating due to probe laser or multiple scattering 

of photons in the medium and effects of frequency redistribution due to multiple 

scattering is considered negligible. But these effects also lead to a shortened decay 

time of the signal and these effects could be significant for high optical depth samples. 

V.3.6 Enhanced Light Penetration by Light Shift Control 

In the previous sections the main explanation of the observations was limited pen

etration of the probe into the higher density regions of the QUEST because of the 

high optical depth. As it was explained in Section III.3.4, by using a separate laser 

it is possible to transiently decrease the transverse optical depth bt from 165 to 3.5. 

The experimental setup is similar to the other experiments explained in this chapter. 

The only difference is now the probe laser is overlapped with the light shift laser and 

focused to the center of the trap as shown in Fig. 59a. An advantage of this scheme, 

in addition to decreasing the optical depth, is that the fluorescence detected is di

rectly coming from the highest density region of the sample. As these experiments 

are still continuing and more detailed studies of light localization using light shift 

laser is underway, we present only preliminary results here. 

One difficulty in this experiment is the alignment of the probe laser and the light 

shift laser beams to the center of the QUEST. As it can be seen from the pictures 

in Fig. 59b and 59c the probe and light shift laser are aligned properly. In Fig. 59b 

the probe laser power is increased so that the atoms are being pushed by the laser. 

As it can be seen from the picture the laser only pushes the atoms in the middle not 

effecting the atoms in the outer regions of the sample. Fig. 59c shows the amount of 
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FIG. 58: Result of an extended experimental run of ~ 10 hours. The probe is tuned 
on resonance with the F = 2 —» F' = 3 transition. In this data the probe is turned 
on ~ 1 /is after the repumping laser is turned off. Both the repumping and the probe 
signals are shown in part (a). The vertical line represents when the probe beam is 
turned off. In part (b) we expand the scales to show the long-time transient after 
the probe beam is turned off. The time scale here starts from where the probe beam 
is turned off. 
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FIG. 59: Schematic of light scattering experiment with light shift laser, (a) Probe 
and the light shift laser are overlapped and focused to the center of the QUEST, (b) 
The alignment of the probe beam is observed in this image, (c) The effect of the light 
shift with detunings of-16 GHz, -9 GHz, -5 GHz, -3.5 GHz from resonance when the 
probe and the light shift lasers are overlapped. 
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light shift for different light shift laser detuning. As expected the probe fluorescence 

emitted from the central part of the sample is decreasing with decreasing detuning. 

The preliminary results of quantitative time resolved measurements are presented 

in Fig. 60. In Fig. 60a the the first signal is from the hyperfine optical repumping 

process. The second one is from the probe and the light shift overlap and the third 

one is from the light shift laser only. The third pulse is applied for two purposes. 

First, the size of the signal determines the amount of fluorescence in the second pulse 

that is from the light shift laser. Second, if there are photons loaded into the optically 

deep sample during the loading process (around t = 8 /xs) that remain trapped at t 

= 14 //s, they will be simultaneously released at that time. The light shift detuning 

used in this experiment is -10 (1) GHz. The long tail of fluorescence decay after 

the probe and the light shift lasers are turned off extends almost up to 2 fis. But 

more importantly there is a suggestive rise in the fluorescence that starts around 2 

fxs after the probe is turned off and lasts up to the light shift second pulse. This is 

what would be expected for the time emergent intensity from the central zone of the 

sample. To quantify this effect more systematically, more detailed experiments need 

to be done and they are in progress. 
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FIG. 60: Preliminary result from experiments done with enhanced light penetration 
by using the light shift laser. The hyperfme optical repumper signal, probe laser 
signal and signal from light shift laser are shown in (a). Transient after probe laser 
is shut off is shown in (b). 
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CHAPTER VI 

CONCLUSIONS 

The light scattering experiments described in this dissertation have shown that the 

results strongly depend on hyperfine optical pumping, detuning from atomic reso

nance, and the density of the sample. The sample that is initially prepared in the 

F = 1 hyperfine ground state is optically pumped to the F = 2 hyperfine ground 

state with a repumper laser tuned on resonance with the F = 1 —» F' = 2 hyper

fine transition of the D2 resonance line of atomic 87Rb. Hyperfine optical pumping 

results alone reveal that the optical pumping time varies with the density of the 

atomic sample. Complete optical pumping in times of up to ~ 5 /is indicates that 

the sample is very optically deep. The agreement between the estimates made by 

using the QUEST parameters and the results are satisfactory. In an effort to try trap

ping probe light in high density regions of the sample, combined hyperfine optical 

pumping and resonant F = 2 —> F' = 3 hyperfine transition probing measurements 

were made. These measurements did not show long time decays of the fluorescence 

signal after the repumper and probe lasers were turned off. We concluded that the 

optical pumping process is slow compared to the natural lifetime of the excited state 

causing the probe to escape before the density of the F = 2 ground state reaches the 

desired level. Also the repumper optically pumps the sample from the outside to the 

inside, thus blocking the probe radiation before it reaches the sample center. The 

probe intensity measurements support this argument as the results show no satura

tion effects even at 12 mW/cm2 where the saturation intensity is ~ 1.7 mW/cm2. 

The intensity of the probe is continuously decreased according to Beer's law as it 

propagates through the sample. 

The density and detuning dependent measurements made with the probe tuned 

near resonance with the F = 2 —>• F' = 3 hyperfine transition indicate that the light 

has minimal penetration into the sample for the maximum density sample. The 

detected fluorescence mainly is coming from a shell of atoms with a thickness of a 

few optical mean free paths. This observation is supported by the shorter diffusive 

lifetime of the fluorescence decay after the probe laser is turned off. A developed 

heuristic model to analyze these data supports these arguments. The model predicts 

an effective Gaussian medium that gives similar results to the data. We conclude 

that the detected fluorescence is coming from the less dense part of the sample and 
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the light propagates in the sample by diffusion. To observe the fluorescence from 

the longest lived mode, other experimental methods are required to excite the atoms 

in the optically deepest part of the sample. The light shift method as described at 

the end of the results chapter looks promising in this sense. This method needs to 

be improved by stabilizing the laser frequency and by increasing the detuning and 

the total power of the light shift laser to minimize the scattering rate while keeping 

the light shift at an acceptable level. This method can also be extended to include 

a region of improved QUEST loading by forming a crossed dipole trap by using the 

light shift laser as explained in [56]. 

During the course of this research a MOT and the QUEST apparatus were built. 

Stable diode lasers that can stay locked for hours were designed and built to supply 

the demand of the long hours of data taking time needed in this experiment. The 

LIAD method was implemented to improve the loading of MOT and the QUEST 

and to decrease the signal background. The LIAD results were satisfactory but since 

none of the chamber viewports were built for ultraviolet light the design still needs 

improvements. The fluorescence coming from the sample needs to accumulate for 

hours before reaching an acceptable signal to noise ratio. This could be improved 

by improving the loading efficiency of the QUEST from the MOT, loading the MOT 

quicker and thus improving the duty cycle of the experiment or improving the detec

tion efficiency. 

Future work on this project should focus on improving the day to day variations of 

the sample by better managing the CO2 laser beam. Even though the Coherent Deos 

CO2 laser beam is of exceptionally high quality, the long term maintenance of the 

laser is not trivial and the supporting documentation that comes with the laser does 

not address possible issues. The laser needs efficient cooling and the laser seems to 

lose power and degrade in time if not efficiently cooled. The built in shutter does not 

get enough cooling because of design flaws and tends to overheat and cause leaking 

if used for longer periods of time. Another suggested improvement is the design of 

the focusing lenses. The current design does not have room for compensating the 

thermal imaging effects caused by the acousto optic modulator (AOM). A better 

design would be to use two telescopes, one for the beam to clear the AOM and one 

for expanding the beam to a desired width before focusing into the chamber. Also 

better mounting schemes are needed for the AOM and the focusing lens to improve 

the alignment of the CO2 laser. 
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We also point out that these experiments suffer from a lack of theoretical studies 

specific to the media discussed in this thesis. In the case of light localization in 

an ultracold atomic medium, the theory is significantly trailing the experiments. 

As more specific theory is made the results would be understood better and the 

experiments would be guided in more systematic directions. 

Finally, the long term aim of this project is experimental demonstration of An

derson localization of light. This dissertation has focused on the multi year effort to 

develop and characterize the instrumentation, sample formation and to study sev

eral techniques for preparing optical excitations in this unusual medium. Subsequent 

projects will build on this effort and explore light localization and other collective 

quantum optical phenomena at high atomic density. 
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APPENDIX A 

RANDOM WALK 

Light propagation in ultracold gases can be thought as a random walk of the light 

wave where each scattering event can be considered as a step with the average step 

size being the mean free path of the light, £. To develop a better understanding of 

the process let us consider a two dimensional random walk problem as shown in Fig. 

61. In this model we will consider a total of N steps each in an arbitrary direction 

with random phase 6. The step size is defined as 

step size = £eie. (202) 

The position of the light z after N scattering events in the complex plane is given by 

N 

z = £j2ei6n. (203) 
n=l 

The distance from the starting point to the last scattering event after N consecutive 

scattering is equal to the modulus of z, \z\: 

I |2 * 
\Z\ = Z • Z 

N N 

n=\ k=\ 

N 

= N + fJ2 e^-e^ n^k. (204) 
n,k=\ 

Then the expectation value of \z\2 is 

/ N 

Z\A = N + e2( 52 SBn~B^ ) n^k. (205) 
\ji,fe=i 

The second term in this equation is clearly equals zero as each displacement is random 

that averages the sum to zero. So the root mean square of the total displacement 

is given by, 

drms = \z\rms = £y/N. ( 206 ) 

file:///z/rms
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J - X 

FIG. 61: Random walk problem in 2D. 
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APPENDIX B 

VACUUM CHAMBER SETUP 
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FIG. 62: The complete vacuum assembly consists of the main chamber, a 20 liter ion 
pump, SAES getters attached to electrical feedthrough and valve. 
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FIG. 63: The vacuum chamber consists of 12 viewports; 8 of 2-3/4" AR coated for 
780nm, 2 of 2-1/8" and 2 of 4-1/2" ZnSe windows. 
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APPENDIX C 

DIODE LASER SETUP 
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FIG. 65: Figure showing the complete diode laser assembly inside the box 
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FIG. 66: ECDL configured in Littrow design. Everything is mounted on a single 
mirror mount. 
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FIG. 67: Collimation tube holder 
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FIG. 69: Grating holder 
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FIG. 71: Mirror holder 
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FIG. 78: Base of the laser box. Also holds the whole laser assembly. 
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APPENDIX D 

LABVIEW PROGRAM FOR PCI-DIO-32-HS 
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FIG. 82: Labview program control panel 
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