
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1998

Multiple Streams Synchronization in Collaborative
Multimedia Systems
Emilia Stoica
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Digital Communications and Networking Commons, and the Software Engineering
Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Stoica, Emilia. "Multiple Streams Synchronization in Collaborative Multimedia Systems" (1998). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/fmg6-1z16
https://digitalcommons.odu.edu/computerscience_etds/86

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/86?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

M u ltip le S tream s S yn ch ron iza tion in

C ollab ora tive M u ltim e d ia S ystem s

by

Emilia Stoica
M.Sc. Polytechnical University of Bucharest, Romania, 1989

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements of the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
July 1998

Approved by:

Dr. Hussein

(M emfiepp^D E^TCuft^M aly

Dr. RavTMukkamala (Member)

Dr. Stewart Shen (Member)

Jean-Philippe Favreau (Member)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A b stract

M ultip le S tream s Synchronization in Collaborative
M ultim edia System s.

Emilia Stoica
Old Dominion University, 1998

Director: Dr. Hussein Abdel-YVahab

W ith the recent increase of the com m unica tion bandw idth an d processor

power, new types of applications have emerged. A m ong them , there a re m ultim edia

applications, in which users are able to control, com bine, and m a n ip u la te different

types of media, such as tex t, sound, video, c o m p u te r graphics, and a n im a tio n . A key

requirement in any m ultim ed ia application is to synchronize the delivery of various

media s tream s to the user. To achieve this, the sender has to provide th e tem po

ral relations between the s tream s as they are cap tu red . Since the receiver uses this

information in s tream s presen ta tion , its accuracy is very im portan t.

O ur main con tribu tion is to provide a suit o f synchronization a lgorithm s for

audio, video and X-windov\'s s tream s th a t work correctly in the presence of load

variations. F irst, we propose a mechanism for assigning a correct synchronization

specification to m edia units th a t takes into account the workload variation at the

sender: although this issue is critical, it has been largely ignored in previous work.

Second, for detecting the skew between the s tream s, we propose a synchronization

condition th a t works in the general case of s tream s having different m ed ia un it dura

tions. Based on this condition, we develop an adap t ive lip-synchronization algorithm .

By estim ating the display t im e of video frames, o u r a lgorithm is robust an d stable in

the presence of bo th network and workstation load. To synchronize th e X-windows

stream with the aud io /v ideo s tream we propose a novel approach th a t com bines drop

ping X packets with delaying th e X client. Finally, we extend our a lgo ri thm s to a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

d is tr ib u ted environm ent. W e do this by proposing (1) a m echan ism for e x tra c t in g

th e synchronization in form ation from m ixed aud io s tream s, and (2) a lightweight

m echan ism to achieve global clock synchroniza tion .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Copyrigh t. I99S. by Em ilia Stoica. All R ights Reserved.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V

To m y parents.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ck n o w led g m en ts

I would like to thank very m uch to my advisor. Professor Hussein A bdel-W ahab

for his valuable suggestions, con tinued guidance a n d support in the p repara tion of

this thesis. I am also very m uch indebt to Professor K urt Maly, for his pe rm anen t

encouragement and for m any useful com ments he gave m e while this work was carried

out.

I want to th an k from m y heart to my p a ren ts who taught m e how im p o r tan t

it is to learn and to always be as best as I can.

I am very confident t h a t w ithou t the loving su p p o r t of my husband . Ion and

the patience of our son. George. I could have not d one this work.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

“T h e voyage o f d iscovery is not in seeking new landscapes

bu t in having new eyes."

M arcel Proust

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

VIII

T able o f C ontents

List o f Tables xi

List o f F igues xiii

I In trod u ction 1

f.l I s s u e s ... 3

1.1.1 M edia Synchronization S p e c i f ic a t io n .. 3

1.1.2 M edia Display T i m e .. 5

1.1.3 Synchronization C o n d i t i o n .. 6

1.1.4 L ip -S v n c h ro n iz a t io n .. 7

1.1.5 Synchronization o f the Shared Windows S t r e a m 8

1.1.6 M edia Synchronization in Distributed S y s t e m s 9

1.2 O b jec tives .. 11

1.3 E x p er im en ta l S e t u p .. 12

1.4 O u t l i n e ... 12

II R elated W ork and M otivation 14

11.1 M edia Synchronization S p e c i f i c a t io n ... 15

11.2 M edia Display T i m e .. 15

11.3 Synchroniza tion Condition ... 16

11.4 L ip -S y n c h ro n iz a t io n .. 17

11.5 Synchron iza tion of the Shared W i n d o w s ... 23

11.6 Synchron iza tion in D is tr ibu ted S y s t e m s ... 25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

II.7 M otivation of W o r k ... 27

III Effect o f W orkstation Load 30

[ILL Exploring Real-tim e C a p a b i l i t i e s .. 31

111.1. 1 E xperim en ta l D esign .. 31

111.1.2 M e a s u r e m e n t s ... 34

III. 1.3 Results I n te r p r e ta t i o n ... 34

III.2 Media Synchronization S p e c i f i c a t io n ... 36

111.2 .1 Acquisition of Continuous S t r e a m s .. 37

111.2.2 T he M echanism of Sharing X - W i n d o w s .. 38

111.2.3 Specification for Continuous S t r e a m s ... 39

111.2.4 Specification for the Shared W indows S t r e a m 42

111.3 Media Display T i m e ... 44

111.3.1 E s tim ation for Continuous S t r e a m s ... 46

111.3.2 E s tim ation for the Shared W indows S t r e a m -50

111.4 S u m m a r y ... 53

IV Synchronization A lgorithm s 55

IV. 1 Synchronization Condition Between S tream s .. 55

IV.2 T he Lip-Synchronization .. 58

IV.2.1 Im plem entation I s s u e s ... 62

IV.3 Synchronization of the Shared W indows S t r e a m ... 63

IV.3.1 Key C o n s i d e r a t i o n s .. 63

IV.3.2 T h e Synchronization A lg o r i th m ... 65

IV.4 S u m m a r y ... 70

V M edia Synchronization in D istrib u ted System s 72

V. 1 E xtrac ting th e Synchronization Inform ation from Mixed Audio S tream s 73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

X

V .2 A C o m m o n T im e S ystem for a M ultim edia A p p l i c a t i o n 77

V.3 S u m m a r y .. 82

VI Effect o f N etw ork Load 84

VI. I L ip -S y n c h ro n iz a t io n .. 85

V I.1 .1 E xperim ent D e s c r i p t i o n ... 85

VI. 1.2 Results and E v a l u a t i o n ... 88

VI.2 Synchroniza tion of Shared W i n d o w s ... 92

V I.2.1 E xperim ent D e s c r i p t i o n ... 92

VI.2.2 Results and E v a l u a t i o n ... 93

VI.3 S u m m a r y .. 95

VII R esu lts and C onclusions 97

V II.1 Media Synchronization S p e c i f i c a t io n .. 97

VII.2 Media Display T i m e ... 98

VI 1.3 Synchronization C o n d i t i o n ... 99

VII.4 L ip - S y n c h ro n iz a t io n ... 100

VI 1.5 Synchronization of th e Shared Windows S t r e a m 100

VII.6 Extension to a D is tr ibu ted S y s t e m .. 101

V II.7 F uture W o r k .. 101

VI 1.8 Im pact of C ontribution ... 102

R eferences 103

A ppendix A C lassification o f X R equests 110

V ita 111

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

x i

List o f T ables

Table P age

111.1 Variation of the inter-arrival t im e [ms].. 32

111.2 Effect of real-tim e scheduling... 32

111.3 N o ta t io n s ... 40

111.4 The R T T tim e for a Unix socket in the presence of various loads. . . 45

IV. 1 Specification of lip-synchronization protocols................................. 62

IV.2 Specification of X-vvindovvs synchronization p ro toco ls 67

VI. 1 Percentage of audio and video frames successfully delivered at th e

destina tion in th e presence of heavy network load .. 86

VI.2 Percen tage of video frames skipped with protocols P2 and P3. . . . 86

V I.3 Evaluation of th e asynchronv between audio and video in the presence

of heavy netw ork loads [number of audio frames]... 87

VI.4 Evaluation of the asynchronv between audio an d X windows in th e

presence o f heavy network loads [num ber of audio fram es]....................... 93

A .I X Requests th a t crash the X client if d ropped .. I l l

A.2 X Requests th a t crash the X client if d ropped (c o n t .) 112

A.3 X Requests th a t freeze the X client if dropped (qu er ie s)113

A.4 X Requests th a t freeze the X client if dropped (c o n t .) 114

A.5 X Requests th a t affect other X clients if d ro p p ed ... 114

A .6 X Requests th a t can be safely d ro p p ed .. 115

A.7 X Requests th a t can be safely d ropped (c o n t .) .. 116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A.8 X Requests th a t can be safely dropped (cont.)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XI II

List o f F igu res

I.L A collaborative m ultim edia app lication in tegrating audio, video and

shared windows... 3

1.2 Effect of mixing audio frames on th e tem poral synchronization problem. 9

111.1 The video inter-arrival t im e variation when video, audio and the

following job was running: (a) none, (b) read from disk, (c) print on

the console, (d) tw enty busy processes, (e) random m em ory write and

(f) Mosaic, move windows on the screen ... 33

111.2 T he video inter-arrival tim e varia tion in real t im e when the following

job was running : (a) twenty busy processes (b) Mosaic, move windows

on the screen.. 34

111.3 The m echanism of sharing X clients using X T V 38

111.4 Effect of load on the display t im e of a video frame when: (a) no o ther

load was in troduced in the system , (b) the window was sometimes

moved, (c) a busy process was concurren tly running, and (d) another

video image was displayed.. 47

I V .1 Intuitive in te rp re ta t ion of the m odel (a) ideal case, (b) when video is

ahead, (c) when video is la te ... 56

V .l The packet q u eu e and the values of la s t D equed A u d io Packet and

la s t S tr e a m P a c k e t variables for two audio s tream s a t th ree tim e in

stances... 74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XI V

V.2 T h e t im e d iagram for eva lua ting th e s ta r t in g t im e 78

VI. 1 T h e N etw ork configuration... 85

VI.2 V aria tion of the skew between audio an d video with protocol P i (no

correc tion), when a load of (a) 8 M bps, (b) 8.25 Mbps, (c) S.5 Mbps

and (d) 8.75 Mbps was put on th e ne tw ork .. 89

VI.3 V ariation of the skew between audio an d video with protocol P2 (skip

a la te video frame, delay an ear ly video fram e), when a load of (a) 8

M bps, (b) 8.25 Mbps, (c) 3.5 M bps and (d) 3.75 Mbps was p u t on the

n e tw o rk .. 90

VI.4 V aria tion of the skew betw een audio and video with pro tocol P3

(delay an early video frame, de lay audio if it is a trend for video to be

beh ind , no video skip), when a load of (a) 8 Mbps, (b) 8.25. M bps, (c)

8.5 M bps and (d) 8.75 Mbps was pu t on th e network................................. 90

VI.5 V ariation of the skew between audio and video with protocol P4 (no

video skip, delay video if it is beh ind , delay audio if it is a t ren d for

video to be behind), when a load of (a) 8 M bps, (b) 8.25 M bps, (c) 8.5

Mbps and (d) 8.75 Mbps was p u t on the ne tw ork ... 91

VI.6 V ariation of the skew between audio and th e X windows s tre a m with

protocol XI ((a), (b). (c)) and w ith protocol X2 ((d). (e). (f)) when

a load of (a) and (d) 6 Mbps, (b)a n d (e) 7 Mbps, (c) and (f) 8 Mbps

was pu t on th e network.. 94

VI.7 V aria tion of the skew between aud io and th e X windows s tre a m with

protocol X3 ((a), (b). (c)) and w ith protocol X4 ((d). (e). (f)) when

a load of (a) and (d) 6 Mbps, (b)an d (e) 7 Mbps, (c) and (f) 8 Mbps

was p u t on th e network.. 94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

C h ap ter I

In trod u ction

“Tell m e and I'll forget; show m e and I may

rem em ber; involve me and I’ll u n d e rs ta n d ” .

C hinese proverb

Recent advances in co m p u te r and network technologies have made feasible a

new generation of d is t r ib u te d applications, such as videoconferences, distance learn

ing, and te le-m edicine’. T h e se applications integrate different information media:

audio, video and data; the re fo re they are called m ultim edia applications.

Collaborative m u l t im ed ia applications provide users w ith m ore than audio,

video and da ta ; they also provide a shared workspace, which is comprised of tex t,

graphics and drawings [31. 32. 34]. Providing audio and video enables partic ipants

to com m unica te verbally an d visually on a task. Providing th e shared workspace

enables partic ipan ts to hav e th e sam e view of the shared windows on their screen.

F igure 1.1 shows th e in terface of IRI [32]. a co llaborative m ultim edia app li

cation developed at Old D om inion University. IRI is used for teach ing classes when

s tuden ts are s ituated geographically apart from each o ther. In th is instance, the

teacher and two s tuden ts a re involved in a discussion regard ing an A U TO CA D tool.

‘ T h e thesis used as jo u rn a l m odel th e artic le “Using T im ed C SP for Specification Verification and

S im ula tion o f M ultim edia S y n ch ro n iza tio n " . IE E E Journal o f Selected Areas tn Com m unications

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 1.1: An instance o f IRI m ultim ed ia application interface.

The system cap tu res the audio an d video s tream s originating from teacher 's and s tu

den ts’ m achines and presents th e m on each w orkstation . Because the teacher has

s tarted au to-cad . the corresponding window appears on every s tu d en t workstation.

In addition , th e teacher’s in teraction with au to -cad is visible to each s tuden t through

the m echanism of sharing windows.

A critica l issue th a t any m ultim edia system has to address is how m edia

streams are synchronized when they are played to the end users. In this context,

multim edia synchronization can be defined as th e task responsible for the tem poral

coordination and presentation of m ultim edia objects .

At th e source, there is a specific tem p o ra l re la tion between th e stream s. At

the destination , this tem poral re la tion needs to be preserved during th e presentation.

As an ex am ple consider the IRI application. T he teacher’s w orkstation (source)

establishes th e tem poral relation between his audio , video and au to-cad interaction.

This tem pora l relation needs to be preserved by th e audio, video and the shared

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

\
iLUJ

-lEr

*anr

Figure 1.2: A collaborative m ultim ed ia application in teg ra ting audio, video a n d

shared windows.

windows processes on each s tuden t w orkstation (destination).

O ur work focuses on providing fine-grain synchronization of audio, video an d

shared windows stream s in a co llaborative m ultim edia system . To ensure portab ili ty ,

we design our synchronization a lgorithm s to work on top of th e existing t ra n sp o r t

protocols such as T D P or RTP [39].

A lthough previous rela ted work [17. 23] used real-tim e networks and o p era t in g

system s as a solution to achieve high-quality presentations, in o u r work we concen

t r a te on best-effort systems. We m ade th is decision for two reasons: first, a lgorithm s

designed for non real-time system s can also work in real-tim e ones; second, from o u r

experience, there are m any s itua tions when the real-time extensions of the current

o pera ting systems (e.g., Solaris 2.5) do not offer significantly b e t te r perform ance th a n

the trad itional time-sharing policies [2].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4

1.1 Issues

Figure 1.2 shows th e software a rch i tec tu re o f a typical m u lt im ed ia app lica tion . Audio

fram es are cap tu red by th e m icrophone, queued by th e audio device driver, read by

th e audio process, sen t over th e netw ork to the des tina tion app lica tion , queued again

by the audio process, and played by th e speaker. Similarly, video fram es are cap tu red

by the cam era, queued by the video device driver and read by th e video process. A fter

th a t they follow the sam e p a th to th e destination . Shared windows are genera ted

by an X client, cap tu red by the d a ta sharing process, sent over th e netw ork to the

destination, and then sent to th e local X server.

The tem pora l synchroniza tion p roblem poses the following issues: (I) assign

th e synchronization in form ation . (2) e s t im a te th e display t im e o f m ed ia units . (3)

assign a synchroniza tion condition. (4) design a lip -synchronization a lgori thm . (5)

in tegra te the shared windows s tre a m an d (5) ex tend the solution to a d is tr ibu ted

system . In th e following, we present in deta il each of these issues.

1.1.1 M edia Synchronization Specification

T h ere is a tem pora l relation betw een audio , video and th e shared windows m edia

units* when they are cap tu red . T h is tem pora l relation is called synchron iza tion spec

ification. T he synchroniza tion specification is used by th e d es tina tion application

to present the s tream s. For exam ple , video frame 3. audio f ram e 3 and th e shared

windows packet th a t displays an im age are all genera ted s im ultaneously by th e m i

crophone. video cam era and th e X client. If this synchroniza tion in form ation would

be incorrect, it would be im possible to accura te ly synchronize th e s tream s a t the

receiver.

Ideally, the tem p o ra l rela tions between th e m edia un its a t genera tion tim e

* A m edia u n it can be an aud io fram e, a video fram e, or a shared w indow s packet.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(F igure 1.2. stage 1) are preserved exac tly when th e media units are transferred to

the source application (F igure 1.2. s tage 2). In reality, due to the nondeterm in istic

n a tu re of the today 's m a in s tream opera t ing system s, the synchronization specifica

tion perceived at the app lication level, m ay be different from the real one. which is

de term ined when the s tream s are cap tu red . This is due to the fact th a t in a general-

purpose operating system , it is fairly difficult to schedule processes at regular t im e

intervals, as they com pete w ith o the r processes for C P I ’.

Existing solutions ignore this issue: they generally de term ine the synchro

nization specification based exclusively on th e t im e when m edia units arrive to the

application [4. 6. 7. 12. 16. 18. 20. 24. 28. 35. 34. 43. 45. 3]. For exam ple, in RTP

[39], each audio and video packet has a te m p o ra l t im es tam p which indicates th e t im e

the packet has been received by the source audio or video process.

VV’e show how load varia tion a t th e source can lead to an incorrect synchro

nization specification, and describe a robust solution to this problem. O ur m echanism

for a synchronization specification is flexible enough to be incorporated in a lm ost any

tem pora l synchronization solution, while also substan tia lly improving the qua lity of

the presenta tion a t the destina tion .

In addition, we show th a t the im m ed ia te solution for scheduling m u ltim ed ia

processes in real-time is not always successful because even if th e operating system

is fully preem ptive, the X windows process is not [2].

1.1.2 M edia D isplay T im e

To ensure a high quality p resen ta tion , th e des tina tion application has to schedule

the m edia units according to th e synchroniza tion information. However, m ere ly si

m ultaneously tran sm itt ing tw o frames (e.g.. audio and video) to their p resen ta tion

devices, does not guaran tee t h a t they will be played a t the sam e time. This is due

to various factors, such as kernel buffering and processor scheduling policy, th a t m ay

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6

in troduce a non negligible delay between the tim e when a m edia unit is scheduled

by th e application and the ac tua l t im e when it is played by th e presenta tion device

(e.g.. speaker). VVe call this interval display time.

In the audio case, th e display t im e consists of th e queuing delay associated to

the device driver buffer. For video and shared windows, th e display t im e has to take

into account the fact th a t the video im ages/shared windows packets are displayed

by ano the r process, i.e.. th e X server. T he display t im e consists of both the queuing

delay associated with the X server buffer [46], and the t im e interval created while the

X server process waits to be scheduled.

Two media units which a re simultaneously sent to the ir presenta tion devices

play a t the same t im e if and only if the ir display tim es a re equal. Since in practice

this is not the case, it is necessary to take into account th e m edia display times in

order to correctly synchronize th e m edia units. T he effect of th e media un its ' display

tim e on temporal synchronization has been partially considered by Elefteriadis [16],

and Owezarski [42]. While Elefteriadis accounts for only th e display t im e of audio

frames, and neglects the display t im e of video frames. Owezarski assumes th a t the

display t im e is th e sam e for bo th audio and video frames, which greatly simplifies

the problem.

In C hap te r III we show th e im portance of differentiating between the audio,

video and shared windows display times and propose a set of algorithm s th a t take

into account these times.

1.1.3 Synchronization C ondition

L sually. a synchronization a lgorithm defines a condition th a t s tream s should meet

in o rder to be synchronized. T h is is called synchronization condition. Examples

of synchronization conditions are: (1) m edia units w ith th e sam e sequence num ber

should play sim ultaneously [11], (2) the difference between th e acquisition tim estam ps

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of the m aste r and the slave1 fram es should be sm alle r than th e accep ted asynchronv

between the stream s [12. 13. 16. 24, 43. 45. 49. 3], and (3) s tream s should all reach

a synchronization point in o rder to play [33].

Note th a t in these exam ples , the second condition requires t im e s ta m p s , which

represent redundant inform ation since frames are a lready assigned sequence numbers

in order to detect network losses. T h e first condition assumes th a t th e s tream s to be

synchronized have media units w ith th e sam e d u ra t io n 5. Similarly, th e th i rd condition

assumes th a t the frame d u ra t io n s have a com m on divisor. These res tr ic tions make

the solutions based on these conditions quite inflexible. For exam ple , using these

synchronization conditions m akes it very difficult, if not im possible, to a rb itrarily

change th e audio frame sizes a t run -t im e in o rder to optim ize th e t ra n s p o r t protocol

(see [23] for such op tim ization).

We address these problem s in C hap te r IV'. where we propose a new synchro

nization condition tha t can han d le s tream s with a rb i t ra ry m edia unit du ra tion , and

yet not waste the network ban d w id th .

1.1.4 L ip-Synchronization

The purpose of a lip-synchronization^ m echanism is to overcom e th e delays in

troduced by the network and th e opera ting system . This is usually achieved by

relying on interprocess com m un ica tion m echanism s to coordinate m ed ia unit presen

ta tion based on the relative progress of the s tream s. T he two s tream s are synchro

nized by dropping video frames if video is late or pausing the video s tream if it is

ahead [4. 6. 7. 8. 9. 11, 12. 13. 16, 18. 20. 24. 28. 43, 49. 60],

-A m aste r s tream is usually played w ith o u t any of its fram es to be delayed o r d ropped : on the

other hand , th e fram es of th e slave s tre a m are delayed or d ropped if needed in o rd er to m atch m aster

stream fram es.

’ For periodic stream s, th e m ed ia u n it d u ra tio n is equal to th e stream period .
*T he synchronization of audio an d video is called lip-synchronization.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8

From our experience, th e "drop-delay videon approach works fine for 320 x 240

pixels. 24 bits dep th w indows, but it does not always work for 640 x 480 windows,

when th e display of a video frame takes up to 250 ms. W hen th e “drop-delay video"

approach is used, th e im age freezes frequently as a result of m any video frames being

d ropped .

O ur lip-synchronization algorithm does not drop any video frame. T h e syn

chronization is achieved by es tim ating th e display time of video fram es and delaying

audio when silence periods a re detected.

Obviously m ore hardw are resources such as memory, b e t te r video boards and

faster machines m ay significantly im prove th e behavior of the a lgorithm s. For ex

am ple . from our experience in the [RI p ro jec t, in fall of 1997. while runn ing IRI

w ithou t any synchroniza tion mechanism, th e re was an average o f 250 ms skew be

tw een audio and video a n d th e presenta tion was visibly annoying. A fter the m achines

were upgraded from 75 M Hz to 100 MHz. under the same conditions, there was no

observable skew betw een the stream s. Does this mean th a t we need to ignore the

lip-synchronization issues and consider th e m to be problems w'hich can be solved

by new or better hard w are ? In our opinion simply increasing hardw are resources

is not an acceptable so lution. There are still cases of trans ien t overload, such as

w hen a large postscript file is displayed, th a t needs to be hand led correctly. In ad

d it ion . a complete a lgo ri thm would p e rm it th e use of old w orksta tions with good

results. Thus, our approach is to identify th e key issues for lip-synchronization and

to develop mechanisms th a t efficiently u ti lize any existing resources.

1.1.5 Synchronization o f th e Shared W indow s Stream

A udio is a periodic, s ta te less s tream . Video is a periodic, s ta tefu l s tream , because it

explores tem poral re d u n d an c y and models a p ic tu re as a trans la tion of th e p ic tu re a t

a previous tim e (e.g. in CellB th e current p ic tu re is expressed as pixels difference from

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

th e previous one). However, even if a video frame is dropped , the video application

does not crash. O n the o the r hand , the shared windows stream is a s ta te fu l and

aperiodic s tream . A request usually depends on the previous requests. For exam ple,

a request to c rea te a window is related to th e previous request which creates the

paren t window. If audio and video media units can be dropped in o rder to keep the

s tream s synchronized, a shared windows request can be dropped only if we a re sure

th a t no subsequent request will refer to it: otherwise th e application m ay crash.

The difficulties in synchronizing the shared windows stream are due to both

(1) its stateful character, and (2) the large display tim es of some requests^, which

require pu tt ing an image or filling a rectangle. In add ition , the type of a request does

not necessarily say how long its display tim e is. For exam ple, the display t im e for

the request th a t displays an im age (Putfrnage [46]) on th e screen is a round 13 ms for

th e m axim ize/m inim ize/c lose window bitm ap, and up to 475 ms for a th ree square

inches color picture.

So far. th e existing solutions either delay audio when the shared windows

s tream tends to be behind [35], or change the ra te of the shared windows stream

to catch up with the other s tream s [33]. From our experience, in a rea l- t im e video

conference where the shared X clients load pages w ith heavy graphics, the shared

X windows s tream is far behind th e audio s tream (6-7 seconds). This is due to the

cum ulative effect of large display tim es of the shared windows packets. In this situ

ation . delaying audio makes th e presentation very annoying. A dapting th e sending

ra te of the shared windows s tream is somewhat ineffective given that the ra te o f play

ing th e shared windows requests depends on the X server processing ra te . In many

cases, such as performing heavy window updates, th is ra te lags significantly behind

th e audio. As a result, these solutions are not ad eq u a te under heavy shared windows

traffic.

II We assum e th a t each m edia u n it corresponds to exactly one shared windows request.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

Destination

Audio fram es it contains

Figure 1.3: Effect of mixing audio frames on th e tem pora l synchronization problem.

O u r solution to synchronize the shared windows s tream with continuous s tream s,

such as audio and video, is to identify the requests th a t can be d ropped and to drop

them w hen the shared windows stream is beh ind . In addition, if th is is not enough,

we can delay the X client th a t generates th e requests until the receiver's X server

catches up. In practice, this algorithm proved to be robust in th e presence of very

heavy shared windows traffic.

1.1.6 M ed ia Synchronization in D istrib u ted System s

In th e case of a m u lt ip a r ty application, an add itional problem is caused by the fact

th a t when more than one partic ipant speaks a t one t im e , incoming audio stream s need

to be m ixed at the destination before they are played. As a result, th e synchronization

inform ation is lost.

To be tte r u n ders tand this problem, consider th e exam ple of a session with

one teacher and two s tuden ts . John and M arv (see Figure 1.3). Initially, assume

tha t only th e teacher speaks. Consequently, th e audio process on Jo h n s workstation

will receive the teacher’s audio frames and send th e m to the aud io device. T h e

audio device maintains a counter of the frames played so far. As long as the teacher

is the only one who is ta lking, there will be a one-to-one correspondence between

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

the sequence n u m b e r assigned by th e teacher to his aud io frames a n d th e sequence

numbers assigned by John 's audio device to the fram es it plays.

A ssum e th a t after "25 audio frames from th e teach e r are played. M ary starts

to speak too. T h en the 26th audio fram e played by Jo h n 's audio device will now

contain the 26th teacher s audio fram e and Mary's first aud io frame. Video and audio

stream s orig ina ting from each sender (th e teacher an d M ary in our case) should be

synchronized am o n g themselves. In th e teacher's case this is q u i te easy, since a

request to th e aud io device will give th e correct sequence num ber 26 of th e frame

which is cu rren t ly playing. However, this is not t ru e for Mary. W hen her first video

frame plavs. a request to the speaker re turns audio fram e 26 as th e curren t playing

audio frame. If th is is interpreted as her current audio frame, th a t is aud io frame 26.

then all of th e video frames com ing from Mary will be dropped.

O ur l i te ra tu re search indicates th a t the issue o f m ain ta in ing th e correct syn

chronization in form ation of m ixed audio streams has been ignored in previous work.

We address th is issue in C hap ter V. where we propose a simple m echan ism which

maintains the list of the audio frames sequence num bers th a t are m ixed in each au

dio frame sent to th e audio device. This way th e synchroniza tion in form ation from

multiple sources is preserved.

A side issue th a t needs to be addressed in the con tex t of a d is tr ib u ted system is

the common t im e a t all workstations. This is useful if th e application is recorded and

played back, since it provides a global o rder of events in th e system. O u r motivation

to investigate th is issue was the requ irem ent tha t IRI app lica tion needs to be recorded

and played back. T h e re are num erous solutions in l i te ra tu re for this prob lem , among

of which are th e following. One so lution is to use th e service provided by the U.S.

National In s t i tu te of S tandards and Technology (N IST) [61]. U nfortunate ly , although

this service is accessible through a regular m odem , it is not su itab le for a large

population of c lien ts trying to access it simultaneously. A nother solution is to use

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 2

the I 'n ix tim e daem o n timed, which is based on an elected m a s te r host to m easure

offsets of slave hosts and to send periodic corrections to th e m [19]. Similarly, th e

solutions proposed in [36], [45] and [3] assum e a m aster w orksta tion that provides

the time. A d raw back o f these solutions is th a t the m aste r w orksta tion represents a

single point of failure. In addition it can be a bottleneck in th e presence of a large

num ber of w orksta tions. As an a l te rna t ive , we propose a lightweight scheme th a t

assumes no ded ica ted t im e servers and no dedicated hardw are . We note tha t a t th e

tim e we developed th is solution [56]. we have learned th a t a s im ila r one is used by

the OSF D istr ibu ted C om puting E nv ironm en t [47].

1.2 Objectives

In this thesis we s tu d y and develop a set of mechanisms th a t ensure synchronization

support for d is t r ib u te d m ultim edia applications which in teg ra te audio, video and th e

shared X-windows s tream .

Our ob jectives are the following:

1. provide a correct synchronization specification at th e sender

2. account for th e display time a t th e receiver

3. design a synchroniza tion condition

4. design the synchronization a lgorithm s

5. extend our a lgo ri thm s to a d is tr ib u ted system. To ach ieve this we need to

• ex trac t th e synchronization inform ation from m ixed audio streams

• provide a com m on tim e for a d is tr ibu ted m u ltim ed ia application

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

1.3 Experimental Setup

To verify and validate our a lgo ri thm s, we used th e Interactive R em o te Instruction

(IR[) project [32]. developed a t th e C om puter Science departm en t of O ld Dominion

University. I R I requires synchroniza tion support in a distance learning m ultim edia

application where parties use best-etfort operating system s and networks.

T he experim ents in th is thesis used SPA R C 5 workstations, w ith 32 Mb

of memory, runn ing Solaris 2.5 and equipped w ith Sun audio and video devices.

The workstations are in terconnected by a Switched E therne t (3Com LinkSwitch 1000)

which basically creates a d ed ica ted 10 Mbps link betw een any two w orksta tions. VVe

captured the audio and video of th e teacher s i t t ing a t a workstation a n d played the

streams on ano ther workstation. Video frames (640 x 480 pixels) were CellB [59]

hardware compressed, software decompressed and displayed in an 8-bit d ep th win

dow. The media unit du ra tion o f an audio frame was 64 ms. while th e m edia unit

duration of a video frame was 100 ms.

1.4 Outline

The thesis is organized as follows. C hapter II describes work related to each of the

issues under consideration. In C h ap te r III we show why real-time is not a suitable

solution for the temporal synchronization problem. We also in troduce o u r synchro

nization specification and m echan ism s for es tim ating th e display tim e o f audio, video

and shared windows streams. In C h a p te r IV we describe our lip-synchronization algo

rithms. while in C hap ter V we in troduce a com plete solution for synchronizing audio,

video and the shared windows s tream . C hapter VI presents experim enta l results and

the evaluation of our protocols. Finally. C hap ter V II sum m arizes the contributions

and applications of our work.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

C hapter II

R e la te d W ork and M o tiv a tio n

“T h e im portan t th ing is not to stop questioning".

A lbert E instein

During the past few years, a large num ber of services, protocols and m ech a

nisms have been developed to meet the synchronization requirem ents in bo th local

and d is tr ibu ted networks. O ur work relates to research in (1) m edia synchroniza

tion specification. (2) m ed ia display tim e. (3) synchronization condition. (4) lip-

synchronization. (5) synchronization of the shared windows s tream , and (6) ex tension

to a d is tr ibu ted system .

In this ch ap te r we describe the most represen ta tive work in the te m p o ra l

synchronization field and the motivation of our work. We begin by presenting a

solution for assigning a correct synchronization specification to m edia units and tw o

solutions for e s tim ating th e display tim e. Next, we describe th e synchronization

conditions widely used in literature and the lip-svnchronization solutions th a t use

them . We continue by presenting two algorithm s th a t synchronize th e shared windows

s tream w ith audio a n d video. Finally, we describe two synchronization a lgori thm s

tha t achieve a global clock in a m ultim edia system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

II. 1 Media Synchronization Specification

A m ultim ed ia process t im es ta m p s each fram e. Ideally, the t im es tam p s assigned by

the source application reflect th e sam e te m p o ra l re la tion between the s tream s as th e

tem poral re la tion when th e s tream s were c a p tu re d . In the presence of w orksta tion

load, the tim es when m ed ia units arrive at th e application greatly vary and conse

quently the synchronization specification assigned by th e application m ay be wrong.

As this is used by the des tina tion application to synchronize the s tream s, the whole

presentation m ay be annoying.

A solution to this problem is to d iscard every frame th a t arrives a fte r its

deadline [13]. For exam ple , for a 30 fram es/sec video rate, the deadline is 33 m s

after the dead line of th e previous frame. In th is s itua tion , even if two tem pora lly

related audio and video fram es arrive late a t th e source application, they are b o th

discarded. As frames m ay also be discarded by routers while being sent over th e

network, th e approach m ay result in too m a n y an d unnecessary discarded fram es.

O ur policy is th a t only th e destination app lica tion discards frames in o rder to achieve

synchronization. Therefore, in our work, we assign a synchronization specification by

es tim ating the correct t im e a m edia unit has been generated.

II.2 Media Display Time

After media units arrive a t th e destination, th e app lica tion presents th e m to the user.

T he variable delays caused by the operating sy s te m and the presenta tion devices m ay

lead to s itua tions th a t two m edia units sent a t th e sam e tim e to the ir p resen ta tion

device, ac tua lly end up playing a t different t im es . Depending on the difference be

tween the tim es the m edia un its are actually v isib le to th e user, th e p resen ta tion m a y

be in sync or not.

Elefteriadis [16] proposes a mechanism th a t es tim ates the display t im e of an

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

audio fram e based on audio device buffer occupancy. To find th e sequence num ber of

th e curren tly playing audio frame, th e system keeps a finite history of received audio

frames. T he audio fram e (c th a t cu rren t ly plavs. satisfies the condition

> 0 (t V}) > £ L(a t) (I I . l)
t = k t = f c + l

where L(at) denotes the length of the i-th audio fram e in samples. / is the

most recent audio fram e received an d 0 (t v) is the kernel audio buffer occupancy

(in samples) when video fram e j was received. The display tim e of a video fram e is

ignored. Owezarski [42] assumes th a t th e display t im e is the sam e for both audio

and video frames, which greatly simplifies the solution.

In our work we show how im p o r ta n t it is to account for th e display tim es of

video and the shared windows s tream s and we provide ap p ro p r ia te solutions.

II.3 Synchronization Condition

T he synchronization condition is th e condition for presenting th e media units to

the user. If the synchronization condition is satisfied, a m ed ia unit is played, if not.

resynchronization is required.

W idely used in l i te ra tu re are th e tim estam ps [4. 6. 7. 12. 16. 18. 20. 24. 28, 35,

34. 43. 45. 3]. sequence num bers (if m ed ia units have the sam e dura tion) [11. 13. 49].

and synchronization events [8, 9. 60]. For the t im estam ps and th e sequence num bers,

the synchronization condition requires th a t two m edia un its w ith the same t im es tam p

or sequence num ber to be presented a t th e same tim e. In th e case of synchronization

events, the synchronization condition s ta tes th a t two m ed ia units are presented when

they both reach th e sam e synchronization event. T h e re are also approaches th a t

use Petri nets [21, 30], dedicated languages, like Smil [22] and Esterel [14]. and

g ram m ars [44], where special cons truc ts s ta te the conditions th e stream s need to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

satisfy in o rd e r to be synchronized.

Both th e approaches based on sequence num bers and synchroniza tion events

restrict the s tream s to be in a special relation, precisely, their m ed ia unit durations

to have a com m on divisor. For example, for a 30 frames/sec video s tream , the

media unit du ra tion of the aud io s tream should be a m ultiple o f 33 ms. in order

to assign synchronization events, or 33 ms in o rder to assign sequence numbers,

with the existing solutions. T h is restricts very much the app lica tion , as usually

audio has a higher rate th a n video, in order to m inim ize delays. T h e solutions tha t

use tim estam ps, waste network bandw id th , as packets are a lready assigned sequence

numbers in o rd e r to detect ne tw ork losses.

In o u r work we suggest a s im ple m echanism th a t allows s tream s with different

media dura tions to be synchronized, uses sequence numbers in o rd e r not to waste

network bandw id th and does not require any special language or g ra m m a r construct,

thus making it easy to be in teg ra ted with any o th e r application.

II.4 Lip-Synchronization

Audio and video streams im pose tigh t tem poral constraints. A presen ta tion is con

sidered to be in the user desirable range as long as the skew between th e two streams

is within (-80. +80) ms [54]. However, a skew between (-160. + 160) ms. although

visible. is not annoying. T here have been m any synchronization proposals in the last

few years. T h e most represen ta tive are as follows:

A C M E S e r v e r [4] developed a t th e M assachussets Institu te of Technology assumes

a real-time opera t ing system. T h e algorithm uses a logical tim e sys tem (LTS) that

can be device, connection, or clock driven. For exam ple , in a m ult im ed ia conferencing

system, the LTS is connection driven: each s tream m aintains its LTS and its current

time. For a m ultim edia d ocum en t browser, th e LTS is device driven: each stream

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

keeps track of its cu rren t time, bu t th e re is only one LTS for all th e s tream s, driven

by the device of th e m aste r s tream (e.g.. th e audio device). T h e LTS is inc rem en ted

every time period o f th e s tream (if device or connection driven) or of the clock (if

clock driven). For exam ple , for a 30 f ram es/sec video ra te , it is increm ented every

33 ms. The cu rren t t im e is increm ented when a frame has arrived . To keep th e LTS

and the current t im e in sync, frames m ay be dropped or dup lica ted .

A t h e n a M u s e [20] developed at the Massachussets In s t i tu te of Technology uses a

tim e dimension w here s tream s are a t tach e d to. No two com ponen ts are tied to each

other, making easy to add. remove channels. A time dim ension has a current position

in its range, u p d a te d by signals. U ser-interface controls (scroll-bars and c o m m a n d

buttons) or the sy s tem clock can genera te the signals. In te rs tre am synchroniza tion is

achieved by keeping each s tream in sync w ith the time d im ension (m aking an analogy

with the ACM E Sever [4]. we can view th e t im e dimension as an LTS which is device

d r iven .)

X p h o n e [16] is a m u ltim ed ia com m unica tion system developed a t Columbia L’niver-

sity. It provides synchronized playback of audio and video locally or across a network.

At the sender, audio and video frames are tim estam ped . At the destination, an audio

frame is im m ediate ly played, while a video fram e is played if the following condition

is satisfied:

where t \ k is th e acquisition t im e of audio frame k (th a t is currently playing)

and is the acquisition tim e of video fram e j (the last one received). If £“ < f “fc_r

then the video fram e is dropped. If < tau . then the video fram e is queued.

C o n t i n u o u s M e d i a P l a y e r [49], developed a t Berkeley U niversity is a sy stem th a t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

plays audio a n d video on UNIX w orksta tions. A udio frames have h igher priority and

are played as soon as they arrive a t the d es tin a tio n . Video fram es have associated

an earliest s ta r t time and a latest start tim e . Frames th a t a rr ive w ith in these two

times are played. A late video fram e is d ro p p ed , an early f ram e is delayed. T he

player uses an adaptive feedback a lgori thm to m a tch packet flow' to th e available

resources. E very 300 ms. it com putes a p e n a l ty of 10 points if a video frame is

dropped or lost in the network. If two consecu tive frames are d ro p p e d , the penalty

is still 10 points. T h e player uses the p e n a l ty to adjust th e c u r re n t fram e ra te as

follows: c u r r e n t Ratr = curren t Ratl.(1 — p e n a l t y / 100) - |-m in/ja£r x p e n a l ty 1100. If the

penalty is 0. no ad justm en t is m ade . If the p e n a l ty is between 0 a n d 100, the curren t

rate is reduced. If the penalty is 100, the c u r re n t ra te is set to a m in im u m rate.

Recently. Q i a o a n d N a h r s t e d [43] from th e University o f Illinois at Urbana-

C ham paign. have designed a fine-grain lip-synchronization a lg o ri th m for best-efforts

environm ents. At the end of th e decoding t im e of an audio frame, th e decoding t im e

of the corresponding M PEG video frame is e s t im a ted , by averag ing over previous

values. T he video frame is decoded only if its decoding t im e is sm aller than the

difference betw een the play tim e of the video fram e and the play t im e o f the audio

frame (-{-80ms). An I type frame is decoded a n d played even if la te , unless only I ty p e

frames are left in the down s tream . A P ty p e fram e is decoded an d p layed unless it is

the last one before the next I fram e. After la te I or P frames are p layed , subsequent

B frames are sk ipped to catch up.

The M u l t i S y n c m o d e l [12] developed a t N a tiona l Taiwan U niversity assigns higher

priority to m ost im portan t m ed ia (e.g.. aud io) and lower p r io r i ty to o th e r media

(e.g. video, te x t) . T h e highest p rio ri ty s t re a m is played continuously, while the lower

priority s tream s adop t a delay-or-drop policy. In ters tream synchron iza tion is ensured

by an absolu te synchronization o f each m e d ia with a time axis. T h e video process

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 0

uses three tim estam ps — start tim e , end time and curren t time — to check w hether

a frame should be played or not (s tar t time and end tim e represent the beginning

and the end play tim es for the video frame, while current tim e is the tim e a t which

th e frame has been received by th e video process). If th e cu rren t time is between the

start and end times, the video fram e is played. If it is g re a te r th an the end tim e, the

fram e is dropped and if it sm aller than th e start time, t h e fram e is delayed.

F u j ik a w a et al. [IS] from the U niversity of Taiwan, suggest a mechanism based on

s tream s rate monitoring. T he p resen ta tion consists of a g roup of objects, w here each

ob ject may comprise audio, video and tex t. The plav t im e of each media u n it of an

object is an offset from the t im e th e ob ject s ta r ted . For exam ple, assume th a t an

object consisting of audio and video s ta r ts at 5:00. T h e offset for the first aud io frame

is 0 and the offset for the first video frame is 2 m inu tes . Audio will s ta r t playing

a t 5:00 and video will s ta r t playing at 5:02. T he p resen ta tion may be delayed or

accelerated by modifying the s ta r t t im e of the s tream s, a n d thus the absolute playing

tim e of its units. Using the previous exam ple, if th e video s tream is 2 seconds late,

then , its s tart tim e is modified to be 4:58. If video s t re a m is 2 seconds early, its s ta r t

t im e is modified to 5:02.

B l a i r e t al. [8] have designed an object-orien ted p la tfo rm th a t can be used for both

in tra and in terstream synchronization, using the parallel p rogram m ing language Es-

terel and a modified version of th e Chorus real-time m icrokernel. An Esterel program

consists of a set of parallel processes th a t execute synchronously and com m unica te

with each other by signals. As an application of the p la tfo rm , they present how syn

chronization for audio and video can be achieved. T h e re are th ree objects : audio

(.4). video (V) and a coordinator (R) . W henever an a u d io /v id eo frame arrives from

th e audio/video device. A / V sends a signal to R and w aits for a signal from R th a t

tells when to play the aud io /v ideo . .4 also sends to R a signal a re, j which encapsu

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

lates a hardw are in terrupt when th e requested audio d a ta presenta tion is over. W hen

R receives an arrqci signal from .4. it computes the nex t ideal t im e for an audio frame

and signals .4 to play an audio frame as soon as it comes. Thus , audio will play

continuously, while video checks for interstream synchronization. W hen R receives

a signal from V indicating th a t a frame has arrived, it computes th e ideal time for

that frame and if the tim e difference between the ideal time for th e last audio frame

and the ideal t im e for the video frame is greater th a n 100 ms. it em its a signal. The

application m ay react to this signal by lowering th e transmission ra te .

C o r r e ia a n d P i n t o [13] from th e University of Portugal , have done the only work

we are aware of th a t takes into consideration th e effect of workload variation at the

transm itte r on stream s synchronization. Their solution is to drop a frame tha t has

arrived la te a t the application. T h e next frame will ca rry an indication of this action.

The in ters tream synchronization mechanisms assum es th a t the s tream s have the same

media unit du ra tion . Each m ed ia unit has associated a reception t im estam p . If the

difference between the reception tim e of master un it n and the reception time of

slave unit n is greater than a threshold, then th e m aste r s tream is delayed. This

mechanism is im plem ented for each master-slave pair.

B ie r s a k e t a l . [7] from In s t i tu t Eurecom. France, have developed a scheme for the

continuous an d synchronous delivery of stored m ultim ed ia s tream s, when a s tream

is d is tr ibu ted over multiple server nodes. Each m e d ia stream is parti t ioned into n

equal size p a r ts , called sub-fram es, th a t are stored on the n different servers. First,

the round t r ip delay between th e client and each server is com puted . Based on it.

the s ta r t ing t im e for each server is calculated and transm itted back to the servers.

To guaran tee the timely p resen ta tion of a single s tre a m subject to j i t te r , for each

sub-stream k. a to ta l buffer bk is provided

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 2

6fc = [2 x A*, + A max — A*:+ J (II.3)

where A t is the j i t t e r for su b s tream k. A mar is the m a x im u m j i t te r for all the

substream s and Afc+ is th e m ax im um s tan d ard deviation o f th e propagation delay

from the server to th e client, for s t re a m k. For each su b s tre a m buffer, a lower w ater

m ark and an upper w ate r m ark are defined. When the buffer level falls ou ts ide of

this range, then each server is notified to e i ther skip som e m e d ia units or pause.

B a q a i et al. [6j from P u rd u e U niversity propose five synchron iza tion schem es for

media units arriving from a server th ro u g h a set of channels , assum ing th a t th e net

work uses a static reservation scheme and provides m ultip le channels with guaran teed

bandw idth and delay bounds. All a lgo ri thm s try to preschedule the transm ission of

the m edia units a t th e servers, so th a t they arrive a t th e destina tion before their

play-out deadlines. A lgorithm A m akes a list of m edia u n its ordered by th e ir plav-

out deadlines. The m ed ia units are then scheduled to be t r a n s m i t t e d one by one on

the earliest available channels. In a lgo ri thm B. media u n its are again scheduled in

the order of their deadlines, and th e scheduling tim e for transm ission is com pu ted

such th a t the m edia un it is available at th e client before its plav-out deadline. Al

gorithm C also takes in to consideration th e size of th e m ed ia un its , favoring sm aller

size frames. Algorithm D forms th e schedule as follows. M ed ia units are scheduled

for transmission according to their p lav-out deadlines. To accoun t for the m ax im um

j i t te r , the actual schedule is construc ted by reducing all th e schedule tim es by the

m ax im um jitte r . A lgorithm E is identical to algorithm D. excep t th a t the initia l list

of m edia units is o rdered by a com bination of sizes and deadlines. A lgorithm s D

and E are suited when destination buffers are severely l im ited an d media units lost

due to buffer overflow and deadline misses are tolerable. A lgorithm s B and C are

most effective when th e destination buffer is not severely l im ited and fewer deadline

misses are desired. A lgorithm A is m o s t su itab le when th e destina tion buffer is not

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 3

a concern.

L i t t l e [29. 30] from Boston University. uses Petri nets for expressing tem pora l de

pendencies between stream s. Each m ultim edia ob jec t has associated a s ta r t tim e

and a duration . An object is associated with a s t re a m and can contain one or more

frames (for continuous s tream s) o r one or more te x t / im a g e s . Based on this, a plavout

schedule for ail s t ream s can be com puted and m odeled by a Petri net. Each stream

is also assum ed to have a queue from which a fram e is selected to be presented. In

tras tream synchronization is done by controlling th e queue level of each stream . If

th e queue level for th e s tream k is greater than nom inal, frames are dropped. If it

is lower th an nom inal, frames are duplicating. T h e workload variation is not taken

into consideration.

These techniques are su ited for creating m ultim ed ia presenta tions an d would

inquire overhead if used in live synchronization or record and playback of m ultim edia

applications. In a live synchronization, they are not suited because the tem poral

relations between s tream s are not known in advance. If applied to record and play

back of applications, then a p rogram should convert th e tim ing inform ation between

stream s from one form at (t im es tam p s , synchronization events) into a Petri Net or

ano ther specific language form at which adds unnecessary overhead.

II.5 Synchronization o f the Shared Windows

To the best of o u r knowledge th e re is only one group a t th e University of Michigan,

th a t studies the synchron iza tion of audio, video an d th e shared windows stream . In

this section we describe their results.

M a t h u r a n d P r a k a s h [35] propose a protocol for synchronizing shared X windows

and real-tim e aud io in c o m p u te r supported env ironm ents . T hey assum e th a t the

workstations have synchronized clocks. Since audio has s tr ingen t j i t t e r and latency

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 4

requirem ents, audio is th e m a s te r s tream , while the windows s tream is th e slave.

A udio packets arriving afte r the ir playback tim es are dropped. If a windows packet

is received, it is put into a stack. W hen an audio packet arrives, it is played back

along w ith the windows events from th e s tack tha t satisfy th e condition tw 3rn <

(tai„.g,nrrc + O.0 A R E C T I X I E) . where tw grn is the tim estam p w hen the window event

was received by the application at the sender. tai,egtnr,c is th e t im e the last played

audio packet was recorded a t the sender and A R E C T IX IE is the t im e it takes to

record an audio packet. T he protocol bounds how far the window-event s tream can

get ahead of the audio s tream . It also ad ap ts to situations w here audio is ahead , by

m onito ring the asynchronv for a given num ber of window packets over a period of

tim e. Asynchronv is defined as A S Y N C = (t wplayt - t aptayj) - (tw <jrnt - tahf,gtnr.Cj),

w here tw piayt is the t im e th e i th window event is played. tapiayj is the tim e th e last

audio packet j is played, tw gKnt is the t im e th e i th window event was generated and

tcLhr.ginrt-.c, ls the t im e the last audio packet j began recorded. If the asynchronv is

g rea te r than a m axim um value (100 ms), over a tim e interval longer than 500 ms and

the re are sufficient window events (more than 10). the protocol ad ap ts by delaying

th e audio stream.

T he protocol does not consider th e effect of the load varia tion at the t r a n s

m i t te r on the correctness of tim estam ps assignment. Also th e use of synchronized

clocks m ay restrict activities. Finally, it does not provide an ex tension for more th a n

two stream s.

M a n o h a r a n d P r a k a s h [33. 34] in troduced the concept of replavable workspaces

and propose a protocol th a t synchronizes tim e dependent an d t im e independent

(shared windows) s tream s. Synchronization uses a m aster/s lave model. During th e

c a p tu re of the session, a synchronization event is posted a t a well defined point o f the

m a s te r s tream (e.g.. end of an audio frame) and is also inserted in to all slave s tream s

(e.g. th e windows, video s tream s). During the replay of the session, th e scheduling

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 5

of a synchronization event a t te m p ts to reset in ter-stream asynchronv to zero. For

any two s tream s (e.g.. audio and windows), th e synchronization algorithm proceeds

as follows : if a window event is ahead of audio, it waits for m a tch in g audio frame.

If this is a trend for th e window s tream (to be ahead), the a lgo ri thm compensates

by decreasing the replay speed of window stream . If a window even t is behind audio

and this is a trend (to be behind), its replay speed is increased.

II.6 Synchronization in Distributed Systems

S o n a n d A g a r w a l [3] from the University o f Virginia p resen t a synchronization

model for recording and playback of d is tribu ted m ultim edia app lications over ATM

networks. The a rch itec tu re suggested is the following. All w orksta tions are connected

to a m ultim edia server (M M S). W hen the session is recorded, every packet sent by

a source is t im es ta m p ed with the local tim e and sent to the M M S. In tu rn . M M S

assigns to the packet a relative t im estam ps (RTS) . At p layback, synchronization is

based on the relative tim estam ps. Frames tha t have th e sam e R T S have to be played

simultaneously.

R T S are assigned using a relation between the clocks o f the source and the

MMS. This relation is periodically determ ined, as follows. A session with very low

j i t te r is established. A trigger packet is sent from the M M S to a s ite and after time t

another trigger packet is sent. Upon receiving a trigger packet, th e site t im estam ps

it and sends it back t,o M M S. Let x u. x 0 + t be the instances a t the source and yo.

Uo + t + iv be the corresponding instances at the M M S. Then any in s ta n t r a t a source

will correspond to the M M S instan t y = ((t + w) / t) (x — x0) + yo- w ith a maxim um

error e = 2 x m a x r d (x — x 0)/ t . where rnaxrd is the m ax im um j i t t e r from M M S to

each source. After establishing the clocks offsets, the session is te rm in a ted .

At playback, when the destination receives a packet, it sends to th e M M S the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 6

t im e when the m edia d a ta was displayed. Using the above re la tion . M M S normalizes

th e t im e and can de tec t w ith an error e if packets with th e sam e R T S have been

displayed a t the sam e tim e. If r an d cq are th e times (according to th e M M S clock)

when two media units are d isplayed, then synchronization is g u a ran teed if (r t — z\ <

jaj — !fc|. where a is th e asynchronv and e is a threshold. T h e s tream s are ou t of

synchrony if — c(> |a| + je |. In all the o the r cases, th e synchron iza tion between

s tream s is not known. M M S a d a p ts the ra te of the slave s t re a m s , based on the

de tec ted asynchronies. T he m odel m ay be ex tended also to sequen tia l relations. For

exam ple, for a tem pora l relation A m eets B. the tim estam ps for b o th th e rear o f A

and th e front of B are sent to M M S. For th e relation A overlaps B. th e t im es ta m p s

of the rears of both A and B are sen t to M M S.

This arch itec tu re can be also applied to real-time conferences, where d a ta

s torage is not involved. Media d a ta are first sent to a server (SS) which t im es tam p s

and sends them to th e destination . T he to ta l error tha t m ay be in troduced in d e te c t

ing th e asynchronv is 2e. Since S S m ay becom e a bottleneck, m ore th a n one m achine

m ay be designated as S’5 . However, the s tream s that need to be synchronized have

to use the sam e SS.

R a n g a n t t al. [45] from the University of California at San Diego, address the

problem of media s torage and retrieval in a d is tribu ted system using a relative t im e

system (RTS] kept by a server. Each m edia unit generated by a site is associated a

RTS. T he first media unit of the m aste r s tream starts th e R T S and the successive

units increm ent it. In order to associate a R T S to a slave s t re a m un it , the server

determ ines the R T S of the m a s te r m edia unit th a t is genera ted a t abou t the sam e

t im e as the slave m edia unit. If t m and t 3 are the arrival t im es of m edia units n m

(m as te r s tream unit) and n3 (slave s tream unit) at th e server, th e ir earliest and

latest possible generation tim es a re em(nm) = tm - M delay, es (ns) = t s - M dciay

= t m — m deiay and l3{n3) = t3 — m deiay, where M deiay an d m deiay are th e

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

m axim um and m in im um com m unica tion delays. M edia un its nm and n , have the

sam e R T S if) — es(n s). /3(n 3) —em(n m)) < E m ax. w here Emax is a threshold

value, Using the above rela tions, the server assigns a R T S to each m edia unit. The

R T S is used la ter at p layback . Every stream sends feedback units to the server. A

feedback unit contains th e R T S of the media unit th a t is curren tly scheduled for

playback. Applying th e above formulae to feedback un its , th e server detects which

feedback units have been g enera ted at the same tim e. Using th is information, it finds

the media units th a t are displayed simultaneously. A synchronv at playback can be

detected by com paring th e R T S of a m aster m edia un it w ith th e R T S of a slave media

unit.

II.7 Motivation of Work

T he temporal synchroniza tion problem is a very im p o r ta n t area of research in dis

tr ibu ted m ultim edia system s. Consequently m any so lutions have been proposed in

the last few years. Existing lip-svnchronization so lutions [4. 1L. 16. 20. 43. 49] take

into consideration the effect o f the network, but th ey ignore th e effect of workstation

load on the synchronization specification and on th e d isp lay tim e. T he load on the

sender machine m ay lead to an incorrect synchronization specification, which in turn

may lead to an annoying presen ta tion . T he load on th e d es tina tion w orkstation may

determ ine variable display t im es of the media units w hich again may cause an an

noying presentation. In th is con tex t, the main m otiva tion of ou r lip-synchronization

research is to address these problem s. More precisely, ou r goal is to provide a lip-

synchronization solution th a t dynam ically adapts to b o th w orkstation and network

load variations.

The solutions for synchronizing continuous an d s ta te less discrete stream s

(o ther than the shared windows) [8. 9. 12. 13, 18, 24, 28. 45, 3, 60] also neglect

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 8

the effect o f w orkstation load on the synchronization specification and on th e dis

play time. These a lgorithm s cannot be directly applied to s ta te fu l discrete s tream s

anyway, as they drop every discrete media unit th a t is late.

In Section 2.5 we have presented two solutions for synchronizing audio, video

and the shared windows s tream s: one th a t addresses th e synchronization between

audio and th e shared windows stream s [35] and the o th e r one which performs the

synchronization of audio, video and the shared windows s tream s [33]. W hile the

first solution delays audio when the shared windows s tream tends to be behind , the

second one changes the ra te of th e shared windows s tream to catch up with th e audio

stream. From our experience, in a real-time video conference where the shared X

client loads pages with heavy graphics, the shared windows s tream is far behind th e

audio s tream (6-7 seconds) due to the cum ulative effect of large display tim es of

the shared windows packets. In this situation, delaying aud io as the first solution

does, makes th e p resen ta tion annoying. The second approach adapts th e ra te of

sending shared windows packets to the X server. As the ra te o f playing these packets

depends on th e X server processing rate, this solution m ay also not work well for

heavy windows updates.

The solutions existing so far [4. 8. 9. 11. 12. 13. 16. IS. 20. 24. 2S. 43. 45. 49.

3. 60] ignore the issue of m ixing audio s tream s while preserving the synchronization

information. In this respect, they are limited to applications where only one user

can speak a t a tim e. In addition , all of them except [45, 3] consider only th e

case when th e s tream s have a single origin, thus avoiding th e issue of providing a

common t im e for the application. Regarding this last issue, the solutions we have

investigated, e i ther have a link bottleneck [61], as the t im e is accessible th rough a

modem connection to a m ainfram e, or have a w orkstation bottleneck , as they use a

workstation to provide th e t im e [45. 3, 19] which is a single poin t of failure. N T P [36],

which assumes dedicated t im e servers th a t clients can access to adjust th e ir tim es

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

creates a bo ttleneck in accessing th e servers, too. As an alternative, we provide a

scheme th a t assumes no dedicated t im e servers and no dedicated hardw are.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 0

C h ap ter III

E ffect o f W ork sta tion Load

“A journey of th o u san d miles m ust begin

with a single s tep ."

Lao-Tsu

A m u ltim ed ia application has to be scheduled a t regular intervals. At the

source, this ensures a correct synchroniza tion specification (no device driver queue

overflow for continuous s tream s, and no delays in delivering shared windows packets

to the application). At the destination, th is ensures th a t the d isp lay t im e of m edia

units is constan t an d th a t the plavout deadlines of media units a re satisfied.

A best-effort opera ting system canno t guaran tee these t im es , as no operation

bound is ensured by th e time-shared scheduling policy. A s tra igh t solution is to use

a preem ptive o p era t in g system tha t gives to m ultim edia processes higher priorities

than the rest of th e processes running on th e host. Some opera ting system s offer real

time extensions th a t satisfy these requ irem en ts (e.g., Solaris 2.5). In this chap ter we

present som e exp er im en ts we performed in o rder to see if rea l- t im e is a solution

for having a correct synchronization specification and a cons tan t display time. If

this was th e case, th e n we could run the m u l t im ed ia processes in real-tim e and our

concern would be ju s t th e synchronization o f th e X-windows s tream . As this was not

the case, la ter in th is ch ap te r we in troduce o u r model for a correct synchronization

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

specification a n d for es tim ating th e d isp lay tim e of m ed ia units.

111.1 Exploring Real-time Capabilities

T h e real-tim e capabili ties of cu rren tly used opera ting systems allow a user to specify

the scheduling class of a particular process. This by default is tim e-sharing class. If

real-time class is used, the process is given a high p rio rity which m ay be even higher

than the p r io r i ty of system processes. U nder this condition, one would expect tha t

by scheduling aud io and video in rea l- tim e, the ir s tr ingen t time requ irem ents will be

satisfied.

Next we present some experim en ts we perform ed to see if th e rea l- t im e ex

tensions of the cu rren t ly used opera t ing system s can guaran tee the deadlines of mul

tim edia processes.

111.1.1 E xp erim en ta l Design

Using the ex p e r im en ta l setup described in Section 1.3. we have tested b o th scheduling

policies for m u l t im ed ia processes: tim e-sharing and real-tim e.

T h e a u d io process was initia lized w ith the following param eters: 8KHz sam

pling rate. 8 b it precision, mono channel and /^-law encoding. The video board was

initialized w ith a skip factor of 2. which results in 10 fram es/sec ra te (a t the appli

cation).

We m easu red th e tim e difference between tw o consecutive reads from the

audio device (idea lly this should be 125ms) and tw o consecutive c a p tu red frames

from video board (ideally, this should be 100 ms). W e call these times th e audio and

video in tcr-arrival tim es, respectively.

In o rder to investigate how o th e r processes influence the in ter-arrival t im e for

audio and video, while running the aud io /v ideo process we run typical ac tiv it ies for

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 111.1: Variation o f th e inter-arrival t im e [ms].

.4 udio Video

Concurrent S tandard Concurrent S tandard

activ ity deviation activity deviation

none 0.744 none 3.853

read from disk 1.094 read from disk 4.334

print on the console 3.636 print on the console 7.179

20 busy processes 55.9L4 20 busy processes 78.623

random m em ory write S.950 random m em ory w rite 10.390

Mosaic 54.96 Mosaic 72.509

video 9.688 audio 4.990

video, read from disk 12.065 audio, read from disk 8.892

video, prin t on the console 15.068 audio, print on th e console 14.340

video. 20 busy processes 93.952 audio. 20 busy processes 113.187

video, ran d o m m em ory write 14.590 audio, random m em ory write 12.131

video. Mosaic 107.085 audio. Mosaic 122.295

Table III.2: Effect o f real-time scheduling.

Audio (RT) V ideo (RT)

Concurrent S tandard Concurrent Standard

activity devia tion (msec) ac tiv ity devia tion (msec)

20 busy processes 0.093 20 busy processes 0.117

video(RT), Mosaic 6.046 audio(R T). Mosaic 7.057

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 3

a workstation usage :

• I /O bound - a process repeatedly reads a 3 M bytes file from a server disk. In

ano the r experim ent, a process just prints a t the console

• CPU com puta tion - a process initializes a variable in an infinite loop. To see

the effect of increasing C P U workload we run one. two up to tw enty copies of

this process.

• m em ory bound - a process randomly writes in a 1000 x 1000 m a tr ix to s im u la te

page faults.

• in teraction with X Server - run Mosaic* and move windows on th e screen while

loading pixmaps.

III. 1.2 M easurem ents

Table III. 1 shows the s ta n d a rd deviation of the aud io and video inter-arrival tim es in

the presence of the corresponding load. Figure III. 1 shows the variation of the video

inter-arrival t im e in each o f the experiments. T h e graphics for audio experim en ts

show a s im ilar behavior, so we do not present th e m here. Moreover, since th e video

process requires more t im e to process a frame th a n th e audio process needs for reading

audio da ta , a f te r each run. th e priority of the video process decreases w ith a g rea te r

value than th e audio process priority and hence th e inter-arrival t im e for video shows

larger variations than the inter-arrival time for aud io [62].

VVe have repeated th e experim ents using th e real-tim e scheduling capabilities

of Solaris. As expected, th e results improved, so we show here only th e values for

the experim ents where th e behav ior in non-real t im e was worst (runn ing tw enty busy

'A t the tim e we conducted these experim ents, N etscape was not widely available.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 4

Figure III.l: The video in ter-arr ival t im e varia tion when video, audio and the

following job was running: (a) none, (b) read from disk, (c) prin t on th e console, (d)

tw enty busy processes, (e) random m e m o ry write an d (f) Mosaic, move windows on

th e screen.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 111.2: The video in ter-arrival tim e variation in reai t im e when the following

job was runn ing : (a) tw enty busy processes (b) Mosaic, m ove windows on the screen.

processes a n d running Mosaic). Table III.2 shows th e s ta n d a rd deviation in each

case. F igure 111.2 shows the variation of video inter-arrival time.

III .1.3 R esu lts Interpretation

From these experim ents we see th a t both audio and video are most influenced when

tw enty busy processes were run n in g or when we run Mosaic and move windows on

the screen. Even though the s ta n d a rd devia tion is sm all in all of the experim ents ,

and one m igh t conclude th a t on the average, th e behavior is very good, this is a

result of a m ix ot very small an d large in te r — a rr iv a l t im es. If the in ter — a r r iv a l

tim e is g re a te r than the tim e required to fill th e kernel aud io /v ideo device drivers

queues, th is will result in an overflow and d a ta losses. T h is fact has to be taken into

account by th e synchronization specification, since it d irec tly affects the in ters tream

synchronization .

W hen running video an d Mosaic, the highest spike in th e video inter-arrival

tim e was 3 seconds. S imilar values were ob ta in ed for audio . T w enty busy processes

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

introduce m any spikes around 0.7 seconds. When runn ing video, aud io and Mosaic,

the highest spike for video inter-arrival t im e was 3.3 seconds. Again, spikes around

0.7 seconds a p p e a r when tw enty busy processes run. As expected, th e greater the

number of busy processes, the m ore the performance of the v ideo /aud io processes

degrades.

A lthough busy processes affect audio and video, the worst inter-arrivai time

variation for bo th audio and video was obtained when Mosaic was running and win

dows were m oved on the screen. Since Mosaic involves not only in teraction with

the window' sy s tem but also com m unica tion , we w anted to isolate th e effect of com

munication. To do so. while runn ing the video process we run a process th a t was

continuously execu ting “ftp" from a rem ote site. In th is experim ent, th e variations

were small. In an o th e r experim ent, we run Mosaic to load pixmaps a n d move almost

all the t im e th e windows on the screen so as to em ula te high in teraction with the X

Server. In this experim ent we o b ta ined high variations. Therefore, we conclude tha t

the large varia tion o f the inter-arrival tim e of video when Mosaic is run is due to the

interaction w ith th e windows system which sometimes consumes too much tim e and

deprives the video process to be scheduled at the required intervals.

T he o th e r remaining experim ents showed very small inter-arrival tim e varia

tion. Random m em ory operations in troduce variations only at the beginning, when

pages are loaded into memory (com pulsory misses). Reading from disk does not have

much influence on multim edia perform ance, because a buffer is a llocated at the begin

ning and since th e program jus t reads from disk into this buffer, no o th e r page faults

occur. P rin ting on th e console has negligible influence for both audio and video.

Real t im e eliminates the inter-arrival time variation in case o f tw enty busy

processes, but not in the case of Mosaic and windows movements. T h is is because

the X windows system is not fu lly-preem ptive and thus the deadlines of real-time

processes m ay be missed.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

We did not perform any ex p er im en ts w ith the d a t a sharing process, as X

requests are g enera ted in bursts, so XTY' does not need to be scheduled at regular

intervals.

From the exp er im en ts we presen ted , we see th a t th e real-tim e scheduling

class is not always cap ab le of ensuring th e t im e constrain ts assoc ia ted with the audio

and video processes. This is the reason why in our work we s tu d y the tem poral

synchronization p rob lem in best-effort system s.

III.2 Media Synchronization Specification

Ideally, the existing tem p o ra l relations betw een media un its when the s tream s are

captured, a re exac tly preserved when th e y are played. U nfortunate ly , due to the

best-effort n a tu re of th e curren t networks and operating sys tem s, achieving this goal

is challenging. M edia units arrive a t th e source application a t various times, and

thus the synchroniza tion specification assigned by the app lica tion may be different

than the real te m p o ra l relation between th e m edia units w hen they are captured .

As the destination app lica tion uses the synchronization specification to present the

streams, a wrong synchroniza tion specification triggers an erroneous presentation.

To be t te r u n d e rs tan d th e requirem ent for a correct synchroniza tion specification, we

give a brief overview o f th e functionality of m ultim edia devices and the mechanism

of sharing X-windows used in our research.

III.2.1 A cq u isition o f Continuous S tream s

Continuous s tream s, aud io and video are c a p tu red by audio a n d video devices. The

two basic functions of an audio device (e.g.. Sun Audio) is to record and play audio

data. To m inim ize delays, w'henever th e device driver has accu m u la ted a buffer of

data (the size of th e buffer can be defined by th e user), it tak es th e da ta and puts

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 8

it into a kernel queue. W h en th e audio process is scheduled, it reads one buffer

from the kernel queue. If t h e queue is full, th e audio driver will no longer p u t d a ta

into the queue . Next recorded audio is lost un til the application reads d a ta from th e

kernel queue. Note th a t even if th e application flushes the kernel queue a t every read,

overflow m a y still happen if th e t im e between two consecutive scheduling intervals

of the app lica tion is larger th a n the time it takes th e audio driver to fill the kernel

queue.

A video device (e.g.. Sun Video) can c a p tu re a m axim um of 30 fram es/sec .

However, th e application can program the video device to provide frames at a sm alle r

ra te , by specifying a skip fac tor. In this case, th e video device still cap tu res 30

fram es/sec. b u t compresses and stores in a local queue, every skip fa c to r + I fram e.

For exam ple , if the skip fac to r is 0, it stores every fram e (the ra te is 30 fram es/sec) ,

whereas if th e skip factor is 2. every third fram e will be compressed an d stored in the

queue (th e r a te is 10 fram es/sec) . When the video process is scheduled, it gets one

frame from th e video board queue. If the queue is full, the video device overw rites

the oldest fram es. Even if th e video process flushes th e queue every t im e, the queue

may overflow if the t im e betw een two consecutive scheduling intervals of the video

process is la rge r than th e t im e to fill the queue. N ote tha t the sm aller the queue size,

the sm aller th e latency [59]. and the larger th e queue, the sm aller the n u m b er of

frames lost. T h e op tim um size of the queue is 2-4 buffers [59] and in this case the

queue is filled in 400 ms (for 10 frames/sec f ram e ra te).

N ote th a t basically, th e d a ta acquisition of audio and video devices is the

same, w ith one difference. W hen the video queue overflows, old frames are lost,

while in case of audio q ueue overflow, new d a ta a re lost.

III.2.2 T h e M echanism o f Sharing X -W indow s

In our thesis we use X T V [2] as th e mechanism to crea te a shared workspace on top

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 9

mm*/Ssifll

X requests

X events

Figure III.3: The m echanism of sharing X clients using X T V .

of X windows. X T V runs on every host the videoconference application runs (see

Figure III.3). An X client runs only on one host. Once th e X client (e.g. N etscape)

is s tarted . X T V cap tu res the o u tpu t of the X client (shared windows packets or X

requests [46]) a n d sends it to the local X server and to th e rem ote X T V processes. A

remote A TV* process receives the X client ou tput and sends it to the local X server.

At one m om ent on ly one user can in terac t with the X client. His in terac tion (X

events [46]) is sen t to the .VT V process where the X client runs. This X T V process

sends these X even ts to the X client.

It is worth mentioning th a t the o u tp u t of the X client is not sent im m edia te ly

to the X server, b u t it is bufFered by Xlib. a layer th a t im plem ents th e X protocol

[46], This is done in o rder to minimize th e waiting tim e to gain access to th e network.

Also, the X server im plem ents a round-robin policy in serving its X clients, so requests

coming from X clients are queued and served only when th e X client is scheduled.

Also, the shared windows s tream has a history (e.g.. a request to c rea te a

window is rela ted to th e previous request which creates th e parent window) and

thus, if audio and video media units can be dropped in o rder to keep th e s tream s

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 0

synchronized, an X request can only be selectively dropped (e.g.. a n X request asking

the X Server to draw a line m ay be dropped).

III.2.3 Specification for Continuous Stream s

O ur synchronization specification model uses numer ical t imestamps (fram es sequence

num bers). O ur goal is to assign to each fram e its correct sequence num ber with

respect to th e order in which it is captured by th e device driver, and not to the

order in which it is delivered to the application. As we have shown in the previous

section, th e lost frames (due to th e device d river buffer overflow) in troduce gaps in

the sequence numbers of th e frames delivered to th e application. In this section, we

show how these sequence num bers can be ac tua lly computed.

T h e frame sequence nu m b er depends on th e policy im plem ented by the device

driver when its queue overflows. Further we consider two of the m ost com m on policies:

(1) the device driver overwrites the old frames (in a circular fashion), and (2) the

device d river discards the new frames. An exam ple o f a device d river th a t implements

the first policy is the Sun video device, while an exam ple of a device driver tha t

im plem ents the second policy is th e Sun audio device. Next, we show how these two

policies affect the frame tim estam ping .

In both cases we m ake th e following two assumptions: (L) no buffer overflow

occurs before the process reads the queue for th e first time, and (2) once the process

is scheduled, it reads all the buffers from the queue*. For a s tream a . we denote by

lost.j the num ber of frames lost while the process waits to be scheduled. Let d i f

be the t im e difference between th e last two read operations, let be th e num ber of

buffers of th e device driver, and let da be the f ram e duration of s t ream a . For all

r In our im plem entation , we try to enforce the first a ssu m p tio n by reading d a ta from the queue

im m ediately after the device d river is opened. To enforce th e second assum ption , we use a special

thread to read the buffers from th e queue and deliver th em to the application.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

Table III.3: N otations .

the sequence n u m b e r of the i — th f ram e received by the application

Qplay the sequence n u m b e r of the frame o f s tream a th a t is currently playing

d., duration of a f ram e of the s tream a

num ber of buffers in the device d r iver queue of s t ream a

di f fa the tim e difference between the last two consecutive read operations a

lo^t.z num ber of fram es of stream a th a t a re lost between the last two read

operations, due to device driver q u eu e overflow

'on start ing t im e for s tream a

m axim um accep tab le asvnchronv betw een s tream s a and J

t tolerance (m a x im u m acceptable asvnchronv between s tream s a and J

expressed in n u m b e r of frames)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

these n o ta tions see Table III.3. T h e n the n u m b er of frames which a re lost is:

lust.-, =
I- * / /„ -» . , x* ,.1 jf d l jrf _ x d > o
1 ' (l l l . I)
0 o therw ise

O ur so lu tion for assigning a fram e sequence n um ber (a c) is based on th e device

queue type. T y p e l queue is when th e device d r iver overwrites th e o ldest frames (e.g.

Sun video dev ice driver) and tvpe2 queue is when th e device d river no longer puts

da ta into a full queue (e.g. Sun aud io device driver) . W ith these considerations, our

algorithm of assigning sequence num bers is as follows :

w h e n process is scheduled {

get F r a m e (f r) : /* read fram e from queue */

if (T y p e lQ u e u e)

a, = a., -f- 1 4- l o s t /* c o m p u te next sequence num ber x/

stampFrarr ie i fr .a , .) ; /* assign seq. num. to cu rren t frame “/

w h i le (q u eu e ^ 0) {

get Frarne{ f r):

q ,. = ctr -r 1 :

s tarnpFrarr ie (f r . ctc):

}

if (T ype 2 Q ueue)

a c = a.. + 1 4 - l o s t r , : /* c o m p u te next sequence num ber */

}

As an illustration, consider th e following exam ple . Assume a TvpeL queue

with three buffers (i.e.. na = 3). an d th a t at t im e f0- when the process is scheduled

for the first t im e , the queue con ta ins exactly tw o frames: 1 and 2. T h en , after the

process reads bo th frames (assigning to them th e sequence num bers = 1 , and

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 3

a 2 = 2 . respectively), assum e th a t the nex t t im e when th e process is scheduled is

= t0 -f d i f f tJ. where d i f f a = 5 x d.y. Since between to an d t x. th e device driver

has w ritten five fram es in the queue (i.e.. frames 3. 4. 5. 6 . a n d 7. respectively), and

since the queue has only three buffers, th e content of the queue a t tim e t t will be

5. fi. and 7. W hen th e process reads the first frame at t im e 1 then it assigns th e

t im estam p a 3 = a 2 + I + where lostj, = | ~] = 2 . which finally gives

us the correct value q 3 = 2 4- I + 2 = 5. Following the next two frames will receive

the sequence num bers c*4 = a 3 + 1 = fi. and q 5 = a 4 1 = 7. respectively.

As an ex am p le for a Type2 queue, consider again a queue w ith three buffers

(i.e. n.t = 3). S im ilarly to the previous exam ple , assume th a t a t t im e tQ. when th e

process is scheduled for th e first t im e the queue contains two fram es: 1 and 2. T hus,

according to th e a lgo ri thm , the sequence num bers assigned to these frames will be

oi = L and a 2 = 2. respectively. Next, assum e tha t the next t im e t\ when th e

process is scheduled is again after d i f f = 5 x da . However, s ince in this case, when

the queue is full th e new frames are lost, th e content of the q u eu e a t tim e t x will be

•'5. 4. and 5. T hen , when the process reads all the frames from th e queue at tim e t \ .

it assigns the sequence num bers a 3 = 3. a 4 = 4. and q 5 = 5. respectively. Moreover,

after the buffer is em pty , the process com putes the sequence n u m b e r for the first

frame th a t will be read next time. i.e.. a 6 = a 5 + 1 -f 1 = 5 + 2 + I = S.

Note th a t this is th e correct sequence nu m b er since frames 6 a n d 7 have already been

lost (due to the buffer overflow).

III.2.4 Specification for the Shared W indow s Stream

In assigning correct sequence numbers to audio and video m e d ia units, we took

advantage of th e fact th a t the s tream s a re periodic. On th e o th e r hand, th e X

windows s tream is aperiodic and th e X requests do not contain an y t im e information.

As a result we cannot app ly the same procedure for com puting th e correct tim estam ps

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 4

in the X windows case.

The t im es tam p of a n X request is the m om ent o f t im e th e X request has been

generated by the X client. O u r goal is to es tim ate th is tim e. Let T x d i m t be the time

when the request is in i t ia ted by the X client. T.lpp be th e tim e when th e request is

received by X TV (the d a ta sh a r in g process), and P r o p x cUrm.t->app be th e t im e interval

needed to deliver the reques t from the X client to XTV'. Thus, we have:

T x c l i e n t — P ' l p p P r o p X c l i e n t —> a p p (III- —)

Tapp can be simply c o m p u ted by calling gettimeofday w hen XTV' receives th e X re

quest. To es tim ate Propxclient->app we have im plem en ted a producer-consum er ap

plication based on UNIX sockets, as they are used to com m unica te between the X

client and X TV on th e sam e machine.

The producer sends variable size packets (power of 2) to the consum er. W hen

ever the consumer receives a packet, it sends the packet back to the producer. Table

III.4 shows the total t im e elapsed (R TT) from the m o m en t the p roducer has sent a

packet until it receives th e packe t back (note th a t here R T T = 2 x Propxchent->*pp)-

We have repeated the ex p e r im en t in the presence of various loads, by running con

currently up to three busy processes.

For packets sm aller than 8192 bytes, the R T T tim e is less th an 1 ms. i.e..

Propxditnt-><ipp is less th a n 0.5 ms. As expected, for larger packet sizes, the RTT

increases both with th e packe t size and with the load in troduced in th e system.

Since excepting P u t [m a g e „ all the o ther X requests consist of several bytes, we

neglect Propxclient—̂ app * In th e case of Put Im age , using the experim en ta l da ta in

Table III.4 we es t im a te Propxdtent->app based on th e im age size (packet size) and

we assume tha t there is o n e busy process in the system (corresponding to the first

column in the table). T h is choice is supported by our experim en ts in which we have

found th a t the activ ity g en e ra ted by the IRI processes is approx im ate ly equivalent

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

45

to th e activ ity generated by one busy process.

Though using g e t t i m e o f d a y in e s t im a t in g Tapp in troduces ce r ta in m easure

m en t errors, and e s t im a tin g P r o p x d ,ent->app for Put Im a g e is not very acc u ra te , in

p ractice computing TxcUent based on the se values works reasonable well. O n e of th e

main reasons for this is th a t th e accepted asvnchronv between X w indows an d audio

is w ithin the range (-500. + 750) ms [54], i.e.. one order of m a g n itu d e larger th a n the

accep ted asvnchronv betw een audio and video (+ / - 80) ms.

For uniformity we use a sequence num ber to s tam p th e X reques t, ins tead

of tim e. The sequence n u m b e r is co m p u ted as the sequence n u m b e r of th e audio

fram e th a t was cap tu red w hen the X reques t was initia ted by th e X client. If the re

is no such audio frame, th e X request is s ta m p e d with the sequence n u m b e r of the

corresponding video frame. If no video s tre a m is captured, then th e sequence num ber

of th e X request is —I. m ean ing th a t X windows will not be synchron ized a t the

des tina tion with any s tream .

III.3 Media Display Time

W hen a media unit arrives a t th e des t ina tion application, it is sen t to th e presen

ta t io n device according to th e tim ings specified by the synchroniza tion specification.

However, the user sees th e effect of playing th e m edia unit only a t th e end o f its dis

play tim e. Usually the d isp lay t im e of aud io frames is very short (negligible), bu t the

display tim e of video frames is large (e.g.. an average of 243 ms for a 24 b its dep th .

640 x 480 pixels windows) and even larger for some X-windows m e d ia u n its (e.g..

475 ms to put an image in N etscape). M oreover, due to w orkstation load varia tion ,

even for the same m edia un it , th e display t im e m ay vary. In this s i tu a t io n , we need

an es tim ation of the display t im e for each ty p e of media unit so th a t th e des t in a tio n

knows when to send each m ed ia unit to its presenta tion device.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 6

Table III .4: T h e RTT time for a Unix socket in the presence of various loads.

Packet size

[bytes]

R T T [ms]

(no load)

RTT [ms]

1 busy process

R T T [ms]

2 busy processes

RTT [ms]

3 busy processes

2 0.15 0.17 0.17 0.17

4 0.15 0.17 0.17 0.17

8 0.15 0.17 0.17 0.18

16 0.15 0.18 0.18 0.18

32 0.16 0.18 0.18 0.18

64 0.16 0.18 0.18 0.18

128 0.16 0.19 0.19 0.18

256 0.17 0.19 0.19 0.19

512 0.19 0 .21 0 .2 1 0 .2 1

1024 0.24 0.24 0.25 0.25

2048 0.26 0.27 0.27 0.29

4096 0.39 0.38 0.39 0.34

8192 0 .6 8 0.57 0.58 0.58

16384 2.4 2 .8 11.81 21.26

3276S 4.46 6.05 27.16 27.16

65536 8.75 10.20 57.19 149.65

131072 22.39 55.61 128.52 265.65

262144 46.43 146.62 278.45 307.25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 7

T he display t im e o f a media unit is given by the following relation

D i s p l a y T i m e = Prupapp_ >pre3Drv + P r o c e s s T i m t pr^D^v (I I I . 3)

where Propapp- >prr3Dr_v is th e tim e it takes to send th e media unit from the application

to the corresponding device and ProcessT irnepT, 3oKV is the tim e it takes the device

to process the m ed ia unit. Video frames a n d X-windows requests are sent to the X

server (as p resen ta tion device) via L'nix socket connections. An audio packet is sent

to the audio device (as presentation device) by copying the audio frame to a system

buffer.

III.3.1 E stim ation for Continuous S tream s

To es tim ate the display tim e for the video s tream , first, on the testbed described

in Section 1.3 . we have conducted experim ents to see how various jobs influence the

display tim e. Video frames (320 x 240 pixels) were CellB [59] hardware com pressed,

software decom pressed and displayed in a 24 bits dep th window. We m easured the

display t im e as th e t im e difference between th e m om ent the video process calls the

display function (X S h m P u t l m a g e) until the X Server sends back the event m eaning

that the display function has completed (S h m C o m p le t io n). We also m easured the

total processing t im e of a video frame (which includes both the decompressing and

display times). C oncu rren tly with the video process we run tvpical activities for a

workstation usage :

• riorit - the video process runs alone on an idle workstation.

• .V server bound - th e application window is moved while the video s tream is

displayed. T h is pu ts additional load on th e X server process which m ay delay

the display o f th e fram e in order to repa in t o th e r portions of the screen.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48

29Q 700 tQO 900WO 500 «00Nun6«r of FrwnM

|to.
s

1
<52 9

>00 200 300 400 SOO 900Numo«r «f Frtmas
Ht-HHi—t—in

700 000 900 1000

Figure [[1.4: Effect of load on th e display tim e of a video fram e when: (a) no o ther

load was in troduced in th e system , (b) the window was som etim es moved, (c) a busy

process was concurrently running , and (d) another video im age was d isplayed.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 9

• C P C bound - besides th e video process, we run a s im p le com puta tion bounded

process (th a t in itia lizes a variable in an infinite loop).

• moderately increase both C P C and X server act ivi ty - two video s tream s are

concurrently d isplayed.

We measured th e display tim e and th e to ta l processing tim e for 100 0 frames.

Experim ents showed th a t on the average 84.28% of the to ta l processing t im e was

spend by displaying th e fram e and only 15.72% of the t im e was spend on decom

pressing the frame. S ince th e curve of th e variation of the to ta l processing t im e and

th e curve of the varia tion of th e display t im e are close, we show here only th e vari

ation of the display t im e . Figure III.4 shows the variation of th e display t im e of a

video frame in the each of th e experim ents m entioned above. W hen no additional

load was put on the sy s tem , the average t im e to software decom press a f ram e was

Sms. while the average t im e to display a fram e was 46 ms. In th e presence of an o th e r

process (video or busy process), the display t im e average a lm os t doubles (83 ms).

T he display t im e of a 24 bits d ep th . 640 x 480 pixels window follows th e sam e

variation, with an average of 243 ms. If an audio and video frames are to be played

at the sam e time, and they are sent at th e sam e t im e to th e i r presenta tion devices,

assum ing audio plays im m ed ia te ly (like [43]). the re is 243 ms skew between th e frames

when they are visible to th e user. As th e desired skew range is (—80.80) ms. an d the

accep tab le skew range is (— 160.160) ms. th e two frames a re ac tua lly com plete ly out

of s ync at the end of th e video display t im e . This is the reason why in the case of

large size windows (640 x 480) and even for m e d iu m size windows (320 x 240 pixels) in

the presence of w orksta tion load, the app lica tion needs to e s t im a te the video display

t im e in order to keep th e s tream s synchronized.

After collecting th e d a ta , we processed th e m off-line. Basically, we ta k e the

to ta l t im e to process a video frame to be th e t im e interval from the m om en t the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 0

video frame was sent to th e X server until an acknow ledgem ent is received from the

X server:

T oto.IT I TYie — —>.Y Jfrt/rr "f "f (HI-4)

P r o p x s e r v r i— > a p p

where Propapp_ >x 3trv*r is the p ropagation delay from the video process to the X

server. P r o c e s s T i r n e \ shm.Putim.agr.Rci is th e processing t im e of the X request to display

the frame, and P r a p x 3̂ rvr.r->app is t h e t im e it takes to send the acknowledgment from

the X server to the application . As th e acknow ledgm ent is a 32 bits packet, in which

case the propagation delay is a round 0.8 ms. we will ignore it (see Table III .4: as the

RTT for 32 bits packets is 0.L6 ms. th e propagation t im e in one direction is 0.8 ms).

W ith this consideration, th e display tim e of the video frame is

DisplaijT irnt = Prop,ipp_> XsrrUKr + ProcessT irnt xshmPutlmagrRrg (I I I . 5)

and it equals our m easured tim e (To ta lT i rne) .

To es tim ate this t im e we use exponentia l averaging:

Ek = c.Vfjt_, + (L — c)E k - \ (111.6)

where Ek is the e s t im a ted display t im e of frame k. while Xlk-\ is the m easured display

tim e of frame k -I.

T he criteria we used in d e te rm in ing c was to m inim ize the s tandard deviation.

For this we varied c in the range [0.05. 0.95] in s teps of 0.05. We observed th a t for

all the experim ents th e es tim ated value of the d isplay tim e depends m ostly on the

previous es tim ated value. W hen th e additional jo b was to move windows, th is is

mainly because moving a window genera tes spikes which have practically no im pact

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51

on the display times o f the frames once th e m ovem ent stops. For the o th e r additional

jobs, the explanation of this behavior is th a t increasing the C PU and th e X server

load and keeping it constan t for some t im e increases the value of the d isp lay time.

This results in relatively small variations between the old es tim ated d isp lay tim e

and th e curren tly measured display tim e, which makes the com puta tion of th e new

estim ated display t im e to be little influenced by th e value of c over a large range1

However, to account for the case when windows are moved on the screen, we give a

higher weight to the old estim ated tim e. In our experiments, the s ta n d a rd deviation

was m inim ized when c was between 0.2 an d 0.3. Therefore, in our im p lem en ta tion

we choose c = 0.25.

Finally, in es tim ating the display t im e of th e audio frame we m ake th e sam e

assum ption as Elefteriadis [16] and N ah rs ted t [43]. i.e.. we assume th a t th e audio

stream plays continuously. To estim ate th e display tim e of frame a,, we query the

audio device for the sequence num ber of th e curren tly playing audio fram e. apiay.

Then a t will play after a tim e interval equal to (apu y — a ,) / t im e s d a. w here is the

media unit duration o f the audio stream .

III.3.2 E stim ation for the Shared W indow s Stream

While for e s tim ating the display tim e of a video frame we used the acknowledge

ment genera ted by the X server, we cannot rely on this mechanism to e s t im a te the

processing t im e of all X requests. This is s im ply because not all X requests genera te

acknowledgments.

We address this problem by sending a probe request [G e tK e y b o a r d M a p p in g [46])

tha t forces an acknowledgment after each such an X request. W hen we get th e reply-

back. since th e X server processes the requests in a first-come first-served order, we

•N ote th a t, a t the lim it, when the old e stim a ted value is equal to the curren t m easured value,

the new estim a ted value is independent of c.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

know th a t the request of o u r interest has also been processed. We m easured th e total

tim e elapsed from the m o m en t we sent the request to th e server un til we receive back

the reply corresponding to G e tK e y b o a r d M a p p i n y request. T he to ta l m easured time

can be divided as follows:

T o ta lT i r n e x request = T im e A t X l i b L a y e r + Propxiib->x server + (III .7)

Process! ' irne x req +

P r o c e S s T i m e probr Req " f" P^^PXservei— > a pp

where Tim eAtXl ibLayer is th e t im e spent by th e X request at th e Xlib layer [46].

P™Pxiib->X3erver is the t im e it takes the X request to be delivered to th e X server, and

P roPXservtr->«pp is the t im e it takes to send th e rep ly back to the app lication . In ad

dition. Process Timexrcq and Process Tirn£probeRtq a re th e times the X server processes

the X request and respectively the probe request.

If only the probe request were sent to th e X server, then th e to ta l t im e mea

sured from the m om ent th e probe request has been sent to the X server until its reply

is received by th e app lication is given by

T otcii Pirrieprol>f,pif.q Pl'^PXlib— >Xserver ProCCSsJ1 4” (III.8)

P rop X server — >app

S ubstitu ting th e right hand side of (III.8) into (I I I .7). we obtain

TotalTimexrequest = T im e A t X l i b L a y er + P r o ces s T irnexreq + (III .9)

P o ta lT ITTieprobefieq

The display t im e of an X request is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 3

D i s p l a y T i m e = Propxub->x^rvrr + P r ocessT im exrrq (III. 10)

Substitu ting P r u c e s s T imexrrq from (III.9) into (I I I .10) we have

D i s p l a y T i m e = Propxhb->X3crvrr + T o t a l T im e Xr-.q ~ (I I I .11)

T i r n e A t X l ibLayer — T o t a l T i m e prratsr.RKq

Since the p robe request causes the Xlib to send immediately all previous re

quests to the X server, we will neglect TimeAtXlibLayer. In addition, since th e m a

jo ri ty of the X requests have less th a n 32 bits, we will also neglect Propxi,b->xserver ■

(Recall from Section III.2 th a t th is t im e is less th a n 0 .8 ms.) However, for the

P u t [mage request w here a packet can have a large size, we es tim ate the p ropagation

tim e using Table III.4. first colum n.

W ith these considerations, the relation to c o m p u te the display tim e when we

neglect the P ro p .v/1fc-> .v .im rr t im e is:

D i s p l a y T ime = T o t a l T im e x rrq — T o t a l T i m e prob,fiKq (111.12)

and the relation to com pute th e display tim e for P u t [m a g e request is:

D is p la yT ir n e = = Propxub-yXsrrvrr + T o t a l T im e w , 7 — (111.13)

T o ta lT l

To m easure th e display t im e of an Xrequest. we first m easured off-line the

to tal tim e it takes to send the p robe request to the X server and to receive back the

reply from the X server (TotalTimeprof,rf{cque3t). W henever we send an X request th a t

does not ask for a reply, we also send a probe request. T h en we measure th e to ta l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54

time it takes from the m o m en t the X request has been sent to th e X server until

the reply for the probe request is received back. i.e.. (TotalTimeXrrqueat)- The display

time of the X request is co m p u ted then as the difference between TotalTimexrrquest and

TotalTimtprvbeRcquest ■ In th e case of the Put [m a g e request, we add th e Propxub->Xs-rv.r

time to this difference.

In our m easurem ents we found tha t th e most expensive reques ts are the ones

which result in window crea tion and updating (a complete list is given in Appendix

A). For exam ple. Create W indow takes around 220 ms. and Configure Window takes

around 175 ms. Some of these requests, such as Putlmage. are highly variable, as

they depend on their con ten t. For example, it takes only 13 ms to load the maxi

m ize/m inim ize/close icon, while it takes up to 475 ms to load a 3 sq u a re inches image

in Netscape. Similarly, th e PolyFillRectangle request takes 73 m s to fill the x term 's

scroll bar. while it takes 2 1 0 ms to fill a 2 square inches rec tang le w ith a special

pattern.

T he next most expensive requests are queries (requests t h a t ask for a reply

from the X server) like QueryColors. which ta k e on the average 47 ms. Following are

the requests th a t create resources other than windows (e.g.. CreatePixmap) which take

between 10 ms and 50 ms. T h e remaining requests, such as the ones th a t destroy re

sources (e.g.. FreePixmap). change resource properties (e.g.. ChangePointerControP).

and m a p /u n m a p windows (e.g . . \ fapWindow) take less than 15 ms.

III.4 Summary

Current d is tr ibu ted m ultim ed ia applications are mostly designed, im plem ented and

used on top of general-purpose operating system s (e.g. UNIX) a n d Internet pro

tocol stacks. W ithin th is best-effort environm ent, to achieve user acceptance for a

synchronized presenta tion, th e distributed application must balance th e nondetermin-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

istic behavior of th e underlying opera t ing system and network. From the tem poral

synchronization poin t of view, this m ay cause two th ings. T he first one is th a t the

synchronization specification assigned by th e source app lica tion may be wrong. This

is because m edia units may not a rrive at the same t im e to the source application.

T h e second one is th a t the display t im e of media units m a y vary. This is because the

process tha t displays the media unit has to compete w ith o ther processes for a C P F

share. Under these conditions, two m edia units with considerable different display

tim es may be out of sync, even if they both have been sen t at th e same tim e to their

presenta tion devices.

Traditional existing solutions ignore the effect o f workstation load on the

tem pora l synchronization and focus only on the effect o f network. To address this

problem , we first s tudy if the real- tim e capabilities of ex isting general purpose oper

a ting systems can schedule m ultim edia processes at regu la r intervals. P ractically we

have shown th a t a lthough in m any s i tua tion this is th e case, in the case of high X

windows in teraction, the processes a re scheduled again a t irregular intervals, because

X windows is not fully preemptive.

As real-tim e does not e l im inate the time variability in scheduling m ultim edia

processes, we have presented our m echanism that provides a correct synchronization

specification. Also, we have provided extensive analysis o f the display t im e of media

units and we have described su itab le solutions for e s t im a t in g the display t im e for

each type of s tream .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 6

C hapter IV

S yn ch ron iza tion A lg o r ith m s

“Discovery consists in seeing what everyone else has

seen and thinking w hat no one else has though t."

A lbert Szent-G yorki

To achieve a continuous presentation u nder a tim e-sharing multiprocessing

opera ting system , th e synchronization quality of trad itional synchroniza tion m ech

anisms m ay vary according to the workload o f th e system. W hen th e system en

counters an overload s itua tion , the synchronization usually fails. In o rder to achieve

our ob jec tive of synchronizing audio, video a n d shared windows we first in troduce

in Section IV. I our synchronization condition. N ext. Section IV .2 describes our lip-

svnchronization a lgorithm s, and section IV.3 describes our a lgo ri thm s for synchro

nizing audio , video an d th e shared windows s tream s.

1 2 3 4 5 1 2 3 4 1 2 3 4 5

audlo L t 1 1 . 1 .ud,o 1 1 1 _ f audlo 1 1 l . l {
1 2 3 4 1 2 3 3 1 2 3

v id e o 1 1 1 1 v id eo v ideo 1_________________ 1 1
d e la y p la y d ro p p lay

a) b) c)

Figure IV .1: Intuitive in terpreta tion of th e m ode l (a) ideal case, (b) when video is

ahead, (c) when video is late.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IV. 1 Synchronization Condition Between Streams

Usually, any synchron iza tion a lgorithm defines ce r ta in conditions th a t s t re a m s should

meet in order to be synchronized . Examples of such synchronization conditions are:

(I) frames with th e sam e sequence num ber should p lay simultaneously [1 1], (2) the

difference between th e acquisition tim estam ps of th e m aster and th e slave frames

should be sm aller th a n the accep ted asvnchronv be tw een the s tream s [12. 13. 16. 24.

43. 45. 49. 3]. and (3) s tream s should all reach a synchroniza tion point in o rd e r to play

[33]. Let us assum e th a t the synchronization specification assigns correct sequence

numbers or t im e s ta m p s to the frames, as expla ined in th e previous chap te r . Then,

the first and th e th i rd conditions restric t the s t ream s to have either th e sam e frame

duration (first cond ition), or th e frame durations to have a common div isor (third

condition). On th e o th e r hand , the second condition requires t im es tam ps to be used

for the synchronization specification, which may w as te valuable network bandw idth .

Moreover, this in form ation m ay be redundant, since th e frames need to have anyway

sequence num bers in o rder to de tec t losses, if the t r a n s p o r t protocol does not provide

reliability (e.g.. L’D P). For these reasons, our ob jec tiv e is to define a synchronization

condition based on sequence num bers , and which can handle streams w ith a rb itrarilv

frame durations.

Consider two s tream s, one is the m aster, th e o th e r is the slave [54], Our

objective is to find th e sequence num ber of the f ram e of the m aster s t ream that

should play if a ce r ta in fram e of the slave s tream would start . T h e u ti l i ty of our

model is intuitive. F igure IV. 1, shows the case w hen one audio s tream an d one video

stream have to be synchronized . Audio is the m a s te r s tream . W henever a video frame

is to be displayed, we co m p u te th e sequence n u m b e r of th e audio fram e th a t should

ideally play if this video fram e would s ta r t . If th e sequence number of th e currentlv

playing audio frame, m a tches th e com puted value, th e n the frame plays im m ediately

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 8

(F igure IVM(a). If th e playing audio fram e has a smaller sequence num ber, th en th e

video fram e waits (F igu re IV. 1(b)). If th e playing audio fram e has a larger sequence

num ber, then the video fram e is dropped.

Next, we c o m p u te the sequence num bers (q.) of th e frames of th e m aste r

s tream th a t should play while a frame (3}) of the slave s tream plays. Note th a t the re

may be more than one fram e of the m a s te r s tream tha t plays while fram e 3} plays,

but it can be only one fram e a , th a t plays when frame 3} s ta r ts . Then , th e following

relations hold (see T ab le III.3 for nota tions):

q , = IV. 1]

3: =
t — tp5

d a

Replacing time t from (IV.2) in relation (IV .I) , we have:

J — 4 . ~ ^
1 dr, ds d0

I sing th e following no ta tions

n d j t 0a — t 0n
L) = — a n d I = -----------

dr, d„

(IV'.2)

IV.3)

(IV.4)

and since a , is an integer, we obtain th e following relation for the frames a , of the

m aster stream th a t should play while f ram e 3j of the slave s tream plays

Q. (IV .5)
[3j D + T. 3j D + T + D - I] if D. T £ Z

[f3j D + T — l] . [3 j D + T + DJ] otherw ise

Relation (IV.5) gives the sequence num bers of the m a s te r s tream fram es th a t

should play while f ram e 3} of the slave s tream plays. In o rder to find the sequence

num ber of the m aster s tream frame during which 3j starts playing (as th is was our

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 9

objective), am ong th e frames com puted with relation (IV .5). we take th e one with

the smallest sequence num ber.

3 . D + T if D. T e Z
a , = { (IV.6)

\ 3} D + T — 1] otherwise

To guaran tee th e m ax im um acceptable skew between th e two streams, we

compute the tolerance (see Table HI.3) as

=

^ - i if ± ^ € 2
(IV.7)

otherwise

Therefore, fram e 3j can start playing if th e sequence n u m b e r of th e master

stream frame curren tly playing. a vu y. satisfies th e condition

t t ^ j ^ ^ (1̂ -^)

where q, is com puted using relation (IV.6).

As an exam ple, assum e th a t da = 50 ms. dj = 6 6 m s. th e slave stream

started 152 ms after th e m aste r s tream and th e m axim um asvnchrony between the

two streams is lOOms. In this case. D = 0.76. T = —132/66 = —2. T he currently

playing m aster frame is 7. We want to know if fram e 5 of the slave s tream can start.

I'sing relations (IV.6) and (IV .7) we find tha t th e m aster f ram e 7 should play and

the tolerance is I. Since 7 is also th e currently playing master fram e, condition (IV.S)

is satisfied, so slave fram e 5 can plav.

IV .2 The Lip-Synchronization

The network and hosts load variations may cause serious asvnchrony between audio

and video stream s. In th is section we propose and im plem ent generic synchronization

algorithms tha t take into account network and host load variations. We com pare their

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 0

performances with th e classical “drop-delav" algorithm s [11. 12. 16. 20. 49]. widely

used in m ultim edia applications.

In the past, th is problem has been s tud ied in the con tex t of record and playback

of videoconferences which use medium-s ize windows (320 x 240 pixels) [11. 16. 43.

49]. In contrast, we consider real-time videoconferences th a t display video images

in large-size windows (640 x 480 pixels). T hough the challenges posed by rea l- t im e

and record /p layback applications in achieving synchronization are similar, th e re are

several subtle differences.

1. Even in the absence of network a n d host load, for a 640 x 480 window, we have

routinely m easured a skew of 256 ms. which is significantly larger th a n th e

m axim um accep tab le value of + / — 160 ms recom m ended by S te inm etz [54]*.

2 . The time to d isp lay a video fram e in a large window can be significant. For

example, from o u r experience, for 24 bits dep th windows, all of th e a lg o ri th m s

described in l i te ra tu re (see C h a p te r II) worked for 320 x 240 pixels w indows,

but did not work properly for 640 x 480 windows. T his is because th e y do not

es tim ate the d isp lay tim e of a video fram e which in th is s ituation is a ro u n d 243

ms. again m uch larger than th e accep tab le skew.

W ith these observations we give o u r lip-svnc a lgori thm (for n o ta t io n s see

Table III.3):

I-stimatrd = I n i t i a l V a l u e : /* initia lize th e display t im e es tim ation * /

while(1){

get F r a m e (v): /* get video fram e v from the application buffer*/

t d = decom press F ram e(v) : /* decom press the fram e

and m easu re th e t im e */

'O u r experim ental se tu p was described in Section I.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

}

Opiay = g e t C urren tly P l a y i n g Audio() + ĵ mmatcrfj ■ j * c o m p u te

the audio f r a m e th a t wil l play at the en d o f the

d i s p la y t ime o f the video f r a m e * /

a, = co m p u te A u d io S h o u ld P la y (v) : /* com pute the aud io fram e

th a t should play if th is video frame would s ta r t */

if(a , < aptay — t^.): /* video frame is behind ' /

case V ideoT rash : /* a late frame is dropped “/

c on t inue :

case V i d e o T r a s h A u d io D e la y : /* a late fram e is d ropped :

i f (T re ndY ideo B e h i n d) / ’“delay audio if this is a t r e n d */

delay Audi o():

cont inue :

case V ideo A oT rash A u d io D e la y : /* no fram e is d ro p p e d :* /

i f (T r e n d V ideo B e h i n d) / “delay audio if a trend “ /

de layAudio ():

i f (a t > apt,iy + t,lv) / “video frame ahead.sleep “ /

s l eep((a t - aplay) x d ,) :

t p = p l ay (v) / ~ video fram e on tim e, play .m easure display t im e “ /

Irstimattzd = 0.25 x tp + 0.75 x testimated- /"“com pu te a new es t im a tio n

for th e display t im e “ /

r _ |l£d_±£2l j . / ‘ com pu te the sequence num ber of the nex t

p laying video frame “/

We in itia lize the e s tim ation of the video display tim e w ith a value off-line

measured for th a t workstation. If such a value is not available, then we give it an

a rb itra ry value (for example, 10 m s). To schedule a video frame for display, we do th e

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 2

followings. F irs t, we com pu te the sequence num ber of th e audio frame th a t plays at

the end of the video display time (apiay). We assum e th a t audio plays continuously,

so apiay has a sequence num ber which is j g rea te r th a n the currently playing

audio frame. This assum ption proved to be valid in o u r experiments as the audio

process requires small com putation tim es and it is scheduled more often th a t the

video process. In th e above formula. t r3timatrA is th e es tim ation of the display tim e

com puted a fte r the previous frame has been displayed, (using the regression function

III.6). and d,x is the dura tion of an audio frame. A fter th a t , we com pute the sequence

num ber of th e audio frame th a t should play (a,) if th is video fram e would s ta r t (using

relation IV .6).

If a, and apiay m a tch (within th e tolerated asvnchrony). then the video frame

is displayed and the display tim e is up d a ted . If a, and apiay do not match, then the

video s tream is e i ther ahead or behind. If the video s tream is ahead, then it sleeps for

the t im e by which it is ahead and then it is displayed. If the video frame is behind,

then the action we take depends on th e protocol type .

YVe have evaluated four protocols, described in ta b le IV. 1. YVe com pare these

protocols by the way they handle th e synchronization condition. Protocol P i does

not do any th in g when video and aud io are out of sync. Protocol P2 (above, case

Vid.toTra.sh) is the classical approach used in l i te ra tu re [i i . 12. 16. 20. 49] for lip-

synchronization: delay a video frame th a t is ahead a n d drop a video frame th a t is

late. Protocol P3 (above, case Video Trash Audio Delay) is our first protocol and it

derives from P 2 . w ith the addition th a t it delays th e audio s tream if video tends to

be behind. YVe es t im a te th e asvnchrony between audio and video by exponentially

averaging w ith a sm ooth ing factor of 0.9. YYTien th e e s t im a ted average asvnchrony

exceeds 160 ms. we delay audio. Protocol P4 (case Video NoTrash Audio Delay) is our

second protocol. I 'n like P3 in this protocol we do not d rop a video frame w'hen it is

late. However, s im ilarly to P3 we delay audio if video tends to be behind.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 3

Table IV. 1 : Specification of lip-synchronization protocols.

Protocol Video Behind A udio Correction Video A head Audio C orrec tion

PI do nothing do no th ing

P2 drop video wait for m a tch ing audio

P3 (1) d rop video

(2) if this is a trend .de lay audio

wait for m a tch ing audio

P4 if this is a trend .de lay audio wait for m a tch ing audio

From th e user perceptive point of view, w ith P I . the skew is visible and the

presenta tion is annoying. As we s ta r t skipping video frames, w ith protocol P2. the

stream s are synchronized, bu t th e quality of the im age is very bad . a lm ost no motion.

When we b o th skip video frames and delay audio (protocol P3). th e quality of the

image is b e t te r , bu t sometimes th e image freezes for 3-4 seconds. W ith P4. where no

video frames are dropped, the s tream s are synchronized and the quality of the image

is verv a;ood.- O

IV .2.1 Im plem entation Issues

The receiver audio and video processes are im plem en ted using two th rea d s per pro

cess. with one th read as the p roducer (which receives and buffers frames arriving

from th e network) and the o th e r one as the consumer (which plays th e frames). This

avoids in ternal U D P buffer overflow which may happen if a frame arrives early and

the process sleeps. The two processes com m unicate w ith each o the r th rough a shared

memory w here the video process periodically writes th e average asvnchrony between

audio and video. T he audio process uses this inform ation to know how long to delay

an audio frame. We want to m ention th a t we delay only audio fram es th a t are the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 4

first af te r a silence period.

IV .3 Synchronization o f the Shared W in dow s Stream

In this section we describe protocols for in tegrating re a l - t im e audio, video and X-

windovv streams in co m p u te r-su p p o r ted cooperative env iro n m en ts . The X requests

(shared windows packets) gen era ted by an X client are sent to th e local and rem ote

X servers. Ideally, all the X servers receive and play th e X requests a t the sam e tim e,

while the audio and video devices receive and play the au d io and video frames at the

sam e tim e. In practice, d u e to th e best-effort n a tu re of th e cu rren t operating systems

and networks, and due to th e heterogeneity in w orksta tions performances, there can

be large skews between aud io , video and X windows.

IV .3 .1 K e y C o n s i d e r a t i o n s

W hile audio and video s tre a m s are stateless, periodical an d continuous, the X win

dows s tream is s ta teful, aperod ica l. and discrete. Due to these differences we cannot

apply directly the synchron iza tion protocols we have developed for audio and video.

More precisely, due to the s ta te fu l na tu re of the X-windows s t re a m dropping o r /a n d

duplicating an X-request is usually not pe rm itted .

T he main challenge in synchronizing th e X window's s tream is the large

am oun t of time it takes th e X server to process som e X requests . For example,

it takes almost .195 ms to c rea te and configure a w indow , an d around 475 ms to

display a 3 square inches im age in Netscape. A s im ple correction like dropping X

requests in the case o f asvnchrony. is not always enough as not all X requests can

be dropped (e.g.. FreePixmap can be dropped, bu t Create Window cannot). For this

reason, our protocols g radua l ly increase the num ber a n d ty p e o f corrections applied

to th e s tream s in o rder to keep th e m synchronized. If th e s t ream s are not synchro

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 5

nized. we first drop as m a n y X requests as we can. If th is is not enough to keep the

stream s synchronized, th e n we also delay the X client.

Our synchronization protocols use a m a s te r /s lav e model. W hen audio is

present. X windows is synchronized after audio (th e sam e is true for video), i.e..

audio is the m aster s t ream . W hen there is no audio, we synchronize video after the

X windows stream . In this s itua tion . X windows is th e m aste r s tream . We choose to

synchronize the X windows s tream afte r the audio s tream because audio has stringent

j i t te r and latency requ irem en ts and delaying audio m ore th a n necessary will result

in noticeable d iscontinuities . T he X windows s tream , on th e other h and , typically

does not have such te m p o ra l requirem ents and can be delayed for synchronization

purposes. W hen no audio s t ream is present, we synchronize video a f te r the X win

dows stream, as it is easier for video to catch up after X windows th a n it is for

X windows to catch up af te r video. This is because video frames can be dropped.

T he synchronization a lgo ri thm between video and th e X windows is s im ilar with the

lip-synchronization one.

According to S te in m etz [54]. the user accep tab le skew between audio and

video is (-160. +160) ms. while the user acceptable skew range for audio and X

windows is (-500. +750) ms. On the other hand, th e re is no accurate m easurem ent

of the user acceptable skew betw een X windows and video, mainly because the two

stream s are uncorellated . unless th e video image cap tu res the image on th e X server.

In this situation, from o u r experience, unless it is a very specialized video camera

th a t allows to set its vertical scan ra te to m atch the m onito r , you will see th e monitor

at the destination leading scan lines as the image is draw n on the screen, so it would

be impossible to follow up th e synchronization between the stream s. W ith these

considerations, we assum e th a t video and the X windows are uncorrelated . When all

th ree streams, i.e.. audio, video and X windows are present, we take aud io to be the

m aster for the o ther two s tream s. W hen audio is not present, we synchronize video

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 6

after X windows.

To establish the to lerance range of the asvnchrony between video and X-

windows. we use the relations experim enta lly determ ined by S te inm etz [54]:

— 160ms < a s y n c ai. < 4-l60ms (IV .9)

—500ms < async,ir < -(-750ms (IV. 10)

where async, lv is the asvnchrony between audio and video and a s y n c rix is the asvn-

chrony between audio and X-windows. Consequently, the asvnchrony between video

and X-windows has to be w ithin the range [-660. -1-910] ms.

I V . 3 .2 T h e S y n c h r o n i z a t i o n A l g o r i t h m

O ur first goal is to identify the X requests tha t can be d ropped . Clearly, it is not

possible to drop any request th a t creates a resource, since fu tu re requests m ay try

to refer tha t resource. On th e other hand, it seems reasonable to be able to drop

requests that jus t draw on the screen. To identify what o the r types of requests can be

dropped we have tested the effect caused by dropping them on the following typical

applications: x term . emacs and Netscape. Based on the application behavior, we

have identified the following categories of X requests (see Appendix .4):

1. R e q u e s t s t h a t c r a s h t h e X c l i e n t i f d r o p p e d . This category consists of (1)

requests tha t create resources (windows, pixmaps. cursor, e.g. C r e a t e W i n d o w .

CreatePixrriap . C r e a t e C ursor) . (2) modify the properties of existing resources

(e.g. C h a n g t W i n d o w P r o p e r t i e s . C h a n g e G C) . (3) change window position in

the X-server hierarchy (e.g. R e p a r e n t W indow). and (4) requests tha t grab the

pointer and the keyboard (Grab B u t to n . Grab Key) .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 7

2. R equests th a t freeze the X client if d rop p ed . These are th e requests tha t

query the X server and wait for an answ er back. The X client is not doing

further processing until the answer gets back . T hus if the query is not sent to

the X server, no answer is received and th e X client blocks. E xam ples of such

requests are G e t W i n d o w s A t t r i b u t e s . Q u e r y T r e e . T ra n s la te C o o r d in a te s .

3. R equests th a t affect other X clien ts if dropped . For exam ple , if L’ngrabPoin ter

request is d ro p p ed , the user cannot m ove th e m ouse in a window different than

the one which g rabbed the pointer. If C h a n g e H o s t s request is d ropped , and

the request a d d s a host to the access list, th e n th a t host cannot connect to the

X server.

4. R equests th a t can be safely dropped. In this category e n te r the requests

tha t (L) des troy resources (e.g. D e s t r o y W i n d o w . F reeG C . FreePixrriap) .

(2) m a n ip u la te windows by the X client (e.g. M a p W in d o w , C n r r ia p W in d o w) .

(3) draw g raph ics (e.g. P o ly S e g m e n t . Po ly Rec tang le . Poly Fi l l Rec tang le) . (4)

print text (e.g. P o l y T e x tS . P o l y T e x t 16. and (5) put images [P u t Im a g e) .

O ut of th e 120 requests docum ented by th e X Consortium [46]. 21 are requests

tha t crash the X clien t if d ropped. 43 are requests th a t freeze the X client if dropped,

nine are requests t h a t affect o ther X clients if d ro p p ed and 47 are requests th a t can

be safely dropped. O u r policy is to drop only th e requests tha t do no t affect in any

way other app lications . Consequently, we drop only th e requests in th e last category,

i.e.. a total of 47 requests .

W ith these considerations, the synchron iza tion algorithm between th e X win

dows. audio and video s tream s is the following.

while(I){

ge tP acke t (x) : /* get X packet from th e app lica tion buffer; * /

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

Table IV.2: Specification of X-windows synchronization protocols.

Protocol W indows Behind Audio C orrection Windows A head Audio C orrection

XI do no th ing do no th ing

X2 drop X reques t, if possible wait for m a tch in g audio

X3 if this is a t rend , delay the X client wait for m a tch in g audio

X4 I l)d rop X request, if possible

(2) and delay the X client

wait for m a tch in g audio

c a s e X m a s t e r : /* audio not present. X windows is m a s te r* /

playXpacket)) : /* video is synchronized after X w indow s’'/'

c a s e .Vslave : , / * X windows and video are synchronized afte r audio * /

tipiay = g e t C urrently Playing Audio)):

a , = compute AudioShouldPlay)x):

if(a, < a pia y ~ âx)• /* X windows is behind*/

c a s e S k i p X r e q : / “ drop th e request, if possible * /

if (re q u e s t A m o n g Drop):

cont inue:

c a s e Del ayXCl i en t :/* if d u ring the last .V// .Vr e q u e s t s packets

audio and video a re out of sync, send a delay message

to X client to s top sending packets * /

if (packets > M I X reques ts)

s e n d D ELAY\d iem m e ss a g e to sender

packets = 0:

e l s e

packe t s + +;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 9

c a s e S k i p X r e q D e l a y X C l i e n t : / * drop a request, if possible:

if th e asvnchrony is larger th a n A S Y X C ' m a x

for m ore th a n M I X r e q u e s t s packets

delay the X client*/

if (request A m o n g Drop):

dr up it:

if (a sync > A S Y X C m a x)

i f (packets > \ I I A r e q l e s t s)

send D E L A Y x d i m m essage to X sender:

packets = 0:

e lse

packets + + :

i f (a, > aptay + t,ltl) /* X windows ahead , sleep */

s leep ((a t - aplay) x da):

}

When an X request arrives, first we retrieve th e sequence n u m b e r of the

current playing audio frame. ap[ay . from the audio device. Then we use relation

(IV.6) to co m p u te the sequence num ber, a,, of the audio frame th a t should be

played when the X request s tarts . If th e X request is ahead, then the process sleeps

for a duration of t im e equal to the cu rren t asvnchrony between audio a n d X windows.

If the X windows is behind, the action depends on th e protocol type.

We have investigated four synchronization protocols for audio an d X windows

(see Table IV.2). Protocol XI does not perform any synchronization, an d therefore

we use it as a baseline comparison. In X2 (above, case SkipXreq). if an X request

is late and it can be safely d ropped , then it is ignored. In all the o th e r cases the

request is served1’. On the o the r hand , if an X request is ahead, it is delayed until

fSince the im age m ay get very fuzzy du e to m any packets being dropped, we force an X expose

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 0

the corresponding audio arrives.

In X3 (above, case DelayXClient) . no X request is d ropped. However, if the

host processor cannot keep pace w ith processing the X s tream , i.e.. the X s tream

is consistently behind audio, then th e sender is asked to slow down. To accomplish

this, if the asvnchrony is persistent th e receiver sends a special message D E L A Y x client

containing the current asvnchrony to th e sender. In tu rn , the sender uses this value

to com pute an es tim ated asvnchrony (by exponential averaging). If the es t im a ted

value is larger than the acceptable asvnchrony the X client sleeps. We say th a t the

asvnchrony is persistent if for m ore than .V// .\ ' r e q u e s t s - the asvnchrony is g rea te r

than a certain threshold A S Y X C max- Finally, protocol X4 (above, case SkipXreqDe-

layXclient) combines both techniques used in protocols X2 and X3. We note th a t we

also tried to delay audio when X-windows lags behind, (s im ilar with our approach

for video, see Section IV .2. but th e results were not encouraging. The main reason is

th a t the skews between X s tream and aud io are much larger th a n between video and

audio, and delaying audio for such a long interval makes th e presentation annoying.

L’nlike the lip-svnchronization a lgorithm presented in Section IV'.2. for X-

windows we ignore the display t im e of an X windows request. Although we have

determ ined that the display tim e of som e X requests is fairly large, e.g.. Put lmage

may take 475 ms. the main reason for this s tra tegy is the fact th a t the display t im e

of the same X request varies so m uch according to the p aram eters of the request

(see Section III.3 which makes it im possible to predict. Instead, our approach is to

m easure the asvnchrony between X windows and the o ther s tream s after the request

has been served and apply corrections, such th a t within a short t im e interval s tream s

will be in sync again.

event periodically when there is no X activ ity . Also if the dropped request is w ithin the categories

Dest royResourres. Keyboard and P o in ter except W arpPom ter. or M iscellaneous (see A ppendix A),

at th is tim e we send it to the X server.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

IV.4 Summary

The m u ltim ed ia synchronization task always arises when a varie ty of media w ith dif

ferent te m p o ra l characteristics are brought to ge ther and in tegra ted into a m ultim ed ia

system. In o rder to synchronize th e s tream s, th e first requirem ent is to establish a

synchronization condition. Existing synchronization conditions restric t media un its

to have th e sam e duration, or durations th a t have a com m on divisor, which lim

its flexibility. Approaches th a t use tem poral t im e s ta m p s waste network bandw id th .

Moreover m ed ia units a lready have sequence num bers as they use th e services of u n

reliable t r a n s p o r t protocols. We propose a s im ple synchroniza tion condition based

on sequence num bers which allows stream s to have different m ed ia unit durations.

Based on our synchronization condition, we in troduce ou r algorithm for lip-

synchronization . Our a lgori thm works for large size video windows, a case when

existing solutions fail due to th e fact th a t they do not e s t im a te th e display t im e of a

video frame.

In th is chapter we have also introduced o u r a lgorithm s for synchronizing th e

shared windows stream . Existing solutions, e i ther delay audio s tream when the shared

windows s t re a m is behind, or m odify the ra te of sending shared windows packets to

the X server. From our experience, in the case of heavy user in teraction with the X

application, the re is a very large skew between aud io and X windows and delaying

audio with such a long interval, introduces sensible d iscontinuities in the audio s tream .

Modifying th e ra te of sending shared windows packets to the X server may also not

achieve th e synchronization purpose, as the ra te o f processing X requests depends

on th e processing rate of th e X server. In the case of high user interaction, this lags

far behind audio. O ur synchronization algorithm com bines bo th skipping X requests

with delaying th e X client and achieves synchroniza tion even in th e cases of high user

interaction.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

C h ap ter V

M ed ia S y n ch ro n iza tio n in D is tr ib u ted S y stem s

“All t r u th s are easy to unders tand once th e y are

discovered: the point is to discover th em ."

G alileo G alile i

It is often th e case th a t m u lt im ed ia app lications involve more th a n two users

at the same tim e . For example, in a d is tance learn ing application, usually there is

a teacher and a nu m b er of s tu d en ts . Media synchron iza tion in this s i tu a tio n poses

two additional problem s: (I) to e x t ra c t the synchron iza tion information from mixed

audio stream s an d (2) to provide a global order of events.

The first p roblem appears w hen audio s tream s originating from different users

arrive at the des tina tion at the sam e t im e (e.g.. if two students speak a t the same

tim e). Since every w orkstation has only one aud io device, the audio s tream s need

to be mixed before they are played. U nfortunate ly , by mixing the aud io stream s,

the synchronization information is lost (see C h ap te r I for an example). Therefore , at

the destination, we need not only to m ix the audio s t ream s, but also to ex tra c t the

synchronization inform ation from m ixed audio s tream s.

T he second problem arises when the m u l t im ed ia application needs to be

recorded and played back. In th is s itua tion , a m echan ism that provides a global

o rder of events in th e system is necessary. At record tim e , this m echanism ensures

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

th a t the o rder o f even ts occurring on different workstations is correctly stored in the

record file. At p layback time, events are played using th e inform ation in the record

file.

Existing solutions to the tem pora l synchronization prob lem consider th a t only

one audio s tream arrives at the des tina tion , a t one tim e. In this chapter, in Section

Y .l we present th e mechanism of ex trac tin g the synchroniza tion inform ation from

mixed audio s tream s. This m echanism provides the requ ired extension of o u r algo

r ithm s to work in a d istribu ted system . Next, in Section V.2 we describe a s im ple

algorithm th a t achieves a common t im e for a d is tr ibu ted m ultim edia application .

Existing solutions c rea te a single poin t of failure, and thus they are more l im ited (see

C hap te r II).

V .l Extracting the Synchronization Information from Mixed

Audio Streams

T he problem th a t we want to address derives from th e fact th a t incoming audio

stream s need to be m ixed before being played (see C hapter I for a detailed descrip tion

of the problem an d an example). U nfortunate ly , bv doing so we lose the synchro

nization inform ation between indexes of a particu lar audio and video stream s. More

precisely, for each video frame we need to know the index o f th e corresponding audio

packet tha t is playing. However, af te r mixing, the sequence num ber of the playing

audio packet m ay no longer m atch th e sequence num ber o f th e audio frame o f the

s tream we are in teres ted . Furtherm ore , the audio packet th a t is currently playing

may not contain any d a ta from th a t s tream . Bellow we describe our solution to this

problem.

Every aud io and video packet is described by th e following format: (user id .

streamld. seq.Xumber. data), where userfd represents th e user identifier which is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

Audio Queue Audio Queue

27

Time I

- a a r L - q ’jwdA’i f l i c p * c * * r

. r 'w a iF 'i o c e r .

■Teacher = 0)

. .?«•-*«?*■
r f a m F t c k # * ' '

■Siudenc = I)

Tim e I

Audio Queue

Time 3

Figure V.L: T h e packet queue and the values of last Dequed A ud io Packet and

last S t r e a m P a c k e t variables for two audio s tream s a t th ree tim e instances.

unique with respect to an application , streamld represents an identifier assigned to

each s tream orig inated from th a t particular user, and s e q N u m b e r represents th e se

quence num ber assigned at th e sender bv our a lgori thm , s t r e a r n ld is unique w ith

respect to all audio stream s orig ina ted from the sam e sender".

At th e receiver, the m ixed audio packets are s to red in a special purpose queue.

With each en try in the queue we associate a list containing inform ation about the

audio s tream s whose packets were mixed in th a t entry. More precisely, each elem ent

in the list contains the sam e inform ation as th e corresponding packet, excepting aud io

data. i.e.. (u s e r Id. s t rearn ld . seq N um ber) . In add i tion , associated with each aud io

stream we m ain ta in two variables: las t Dequed A u d i o Packe t and l a s tS t r e a r n P a c k e t .

where last D equed Audio P acke t indicates the sequence num ber of the last packet from

the queue th a t has been sent to th e device and con ta ins the packet w ith the sequence

number l a s t S t r e a m P a c k e t of th a t audio stream .

‘ Here we assum e underlying tra n sp o rt protocols th a t do not carry the userid, streamld. seqN um -

ber inform ation (e.g.. U D P). If th e tra n sp o rt protocol provides th is inform ation (e.g., RTP). we no

longer need to s to re it in au d io /v ideo headers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

For clarity, consider th e following example: a s su m e a session w ith one teacher

and one s tu d en t . Both the teach er 's u s e r i d and his aud io s t r e a m l d a re 0. Similarly,

the u s e r i d of th e s tuden t a n d his audio s t r e a m l d a re I. Figure V .1 shows th e s ta te

of the queue and th e value o f th e la s t Dequeud A u d io P a c k e t and l a s t S t r earn Packet

variables at th ree consecutive instances of time. Initially , assum e th a t the queue

contains two packets: the first packet consisting o f f ram e 100 of te ach er 's audio,

and the audio packet 99 of th e s tuden t, and the second packet consis ting of the

teacher 's 101 packet only. Also, assum e tha t so far th e audio process has sent 25

packets to the audio device. T hus, the corresponding indices of th e two packets

in the queue are 26. and 27. At th e next in s tance o f t im e assum e th a t th e au

dio process sends the next packet (with index 26) to be played. C onsequently , the

last Dequed A u d io Packet variables of both the teacher 's and s tu d en t 's aud io stream s

are set both to 26. while th e i r la s t S t r e a m Packe t variables are set to 100 and 99

respectively. .Next, at the second instance of tim e, w hen th e packet 27 is sen t to the

audio device, only las t D equed A u d i o Packet of th e te ach er 's audio s t re a m is changed

to 27 and its l a s t S t r e a m P a c k e t is set to 101: the corresponding variables associated

to the s tu d en t 's audio s tream rem ain unchanged since none of its packets is mixed in

packet 27.

Further, given an aud io s t ream it is s tra igh tfo rw ard to de te rm ine th e sequence

num ber of its cu rren t playing fram e seqplay. More precisely, we have:

= la s t S t r e a m P a ck e t — [last D equeued A u d i o Packet — (V .l)

ge tC u r r e n t l y P l a y i n g Audio()) .

where obviously la s t S t r e a m P a c k e t and last D equeued A u d i o Packe t a re th e variables

associated to the current aud io s tream . Consider again th e exam ple in F igure V .l.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 6

A ssum e th a t a t th e th ird instance of t im e we want to get the curren t playing audio

packet o f th e s tu d e n t 's s tream . A ssume th a t g e t C u r r e n t l y P la y in g Audio() re tu rns

24.* T hen , by using th e above equation we have: seqpiay = 99 — (26 — 24) = 97. It

is w orth noting th a t a more accurate solution would be to remove th e en tries from

the queue only after th a t packet has been played by th e audio device. However,

this will com plica te th e algorithm and will increase th e buffer requirem ents, while,

as we have observed in our experim ents, im proving li t t le th e accuracy. A n o th e r

variation of the a lgori thm would be s im ply to set th e la s t D equeued A u d i a P acke t

and l a s tS t re a rn P acke t as soon as the packet is m ixed . A lthough this resu lts in a

much s im pler d a ta s tru c tu re (we no longer need lists associa ted to each packe t) , the

po ten tia l inaccuracy generated bv the eventual audio device buffer overflow can be

qu ite large. Therefore , the solution we chose can be viewed as a tradeoff betw een the

com plexity and accuracy.

W ith these considerations, to ex tend our lip-synchronization so lution to a

d is tr ib u ted env ironm en t, we need to do the followings:

1. In the shared m em ory between audio and video, we also store:

• lastP layedA udioPacket. the sequence num ber of the last audio fram e sent

to th e audio device.

• lastStream Packet[fd], the sequence num ber o f th e last frame sent to the

audio device for the audio s tream coming from user id.

2. T he sequence num ber of the audio frame th a t will play when the video fram e

s ta r ts is given by

^ p l a y S e q p l a y ""F
I c a t i m a t u d I

' I '
(V.2)

fT h is m eans th a t th e queue o f the audio device stores a t th is p o in t th e packets 25. 26. an d 27.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

where seqpiay is com puted w ith relation (V .l) . and t f3tl7natrii is the es t im a ted

display t im e of the video fram e, com puted with relation (III .4).

V.2 A Common Time System for a Multimedia Application

To achieve a com m on time system , our approach uses the concept of " tim e frame"

introduced by Li and Ofek [25]. T h e tim e is div ided into discrete tim e units referred

to as t im e frames. Each w orkstation has a local counter which is increm ented at the

s tart of each new frame. Ideally, we would like th a t all workstations to s ta r t the

first tim e fram e (local frame coun te r 0) at the sam e tim e. A straightforward solution

would be to use a global clock m echanism , such as N T P [36]. L’nfortunately. this

imposes a high overhead. In add ition , since the accuracy of our synchronization

algorithm is of th e order of a f ram e dura tion , an algorithm th a t synchronizes the

staring tim es w ith an accuracy o f 10-20 ms would be acceptable. In the rem aining of

this section we propose a simple d is tr ibu ted a lgori thm to achieve this goal. In short,

when a new w orkstation joins th e group, it asks the o ther members in the group, if

any. about the ir s ta r t in g times. L’pon receiving a certain number of "good" replies, it

averages over th e resulting values and com pute its s ta r t ing time (a "good" reply is a

reply with a low round-trip t im e). Note tha t ou r algorithm is totally decentralized in

the sense th a t it does not assum e a m aster w orkstation th a t keeps the reference tim e.

This is in o rder to increase bo th th e robustness and th e generality of our solution.

The averaging m echanism to c o m p u te the s ta r t in g t im e is intended to avoid the error

propagation as m ore and more w orkstations becom es active.1 Following we give th e

algorithm details .

l Consider the case o f n w orkstations th a t becom e active sequentially, and assum e th a t each of

them gets the s ta r tin g tim e from the previous w orksta tion th a t has became active. In th is way

the error between th e first w orkstation th a t becam e active and th e last one is p roportional to the

num ber of active w orkstations, w'hich for a large n w ould be unacceptable.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

originator w orkstation t

Figure V.2: The t im e d iag ram for evalua ting th e s ta r t ing tim e.

When a workstation joins th e conference, it m u lt icas ts a GET-START-TIME

message. (In the remaining of this section this w orksta tion is also called originator.)

Let t be the t im e when this message is sent. Upon receiving such a message, every

machine i replies w ith a START-TIME message con ta in ing th e s tart t im e T ls o f th a t

machine, and the t im e t \ when th e reply was sent. If th e s ta r t in g tim e of a m ach ine is

not set vet. then the GETJSTART-TIME message is s im p ly ignored. Upon receiving

a reply, the orig inator first co m p u te the t im e t ‘ when th e message has been received.

T hen , it uses the following form ula to com pute its local s ta r t in g tim e T ' 1 based on

the information received from the /- th machine:

t ': = + + (v .3)

Figure V.2 shows the t im e d iag ram used in deriv ing the above equ a t io n . Simi

larly to V.2 we assum e th a t the la tency for both GET-START-TIM E and START-TIME

messages is the same. More precisely, let A, denote th e t im e slack between the orig

ina tor and machine i. That is. w hen the time at the orig inator is t. th e t im e at

workstation i is t + A ,. Since th e message latency is assum ed to be sy m m e tr ic we

have:

t + t- ^ - = t lc + x . (V.4)

From the above equation and the fact th a t T '* = T l3 -1- A t . Eq. (V.3) resu lts im m e

diately. In order to minimize the effect of network la tency and CPU load varia tions,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 9

the o r ig ina to r com putes its s ta r t in g tim e by averag ing over m ultip le T'' values. In

addition, to e l im inate th e effect o f packet losses, on ly the replies for which the round

trip t im e (i.e.. t, — t) do not exceed a certain th resho ld are considered. To achieve a

reasonable accuracy the o r ig ina to r waits for .V “good” replies before com puting the

average. If a f te r sending th e first GET.START-TIM E message, th e originator does not

receive .V replies, it keeps resending it until it even tua lly receives .V replies. To differ

en tia te be tw een a new reply and a late reply to a previous GET-START-TIME, each

message has a version n u m b e r th a t is inc rem en ted every tim e th e originator sends a

GET-START-TIME message. To break the ev en tu a l "synchronization" between two

w orkstations th a t may jo in an “em pty" g roup sim ultaneously , the time-out value

is uniform ly d is tr ibu ted betw een TO-START-TIME and 2 x TO-START-TIME. In our

experim ents we use .V = 10. TO-START-TIME = 30. and a 20 m s threshold for t — f,.

which proved to be large enough for our ex ten d ed LAN setting. This guarantees th a t

the even tua l errors in d e te rm in in g the s ta r t ing t im e will be several times smaller th a n

the du ra tio n of a video or an aud io frame.

v a r ia b le s :

c t r — I. Ta = 0. ctirne = 0. m sg jcn t = 0. t:

on jo in ing conference:

G E T -S T A R T .T lM E .cer = t-er:

t = getC'rtTirrie{)\

m iilticast{ G ET -ST A RT-TIME);

s e t T i m e O u t (TO-START-TIME):

on receiving message :

c a s e GET-START-TIM E:

i f (Ts > 0) {

/* th e local m ach ine has com puted T , : send a reply * /

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

START _TI.ME.yer = G ET .START-TIME, ver:

S T A R T - T I M E . = g e t C r t T ime{):

START-TIME. Ts = Ts;

sen d R e p ly (START-TIME):

} e l s e i f (msg-cnt = 0)

r e s t a r t algorithm:

c a s e START-TIME:

i f (T, > 0 o r ver ^S T A R T .T IM E .re r)

/ ' if s ta r t in g tim e a lready com puted or this is a la te reply, ignore it

b r e a k :

ti = g e t C r t T i m e () :

i f (/ , _ * < MAX.RTT) {

/* co m p u te s ta r t ing t im e using Eq. (V .3) “ /

r ; =STA RT_TIM E.ra + (t +) /2 —START-TIME.f,.;

d i m e = d i m e + T':

r n s g j c n t -\—

i f (rnsg-cnt = = . V)

7V = d i m e / m s g j c n t : /* com pute starting t im e */

r e t u r n :

}

o n TO-START_TIME time-out:

ver = ver + 1:

i f (ver >MAX_VER)

i f (mag.cri t = = 0) /* this is the first workstation joining th e group */

Ts = g e t C r tT im e() :

e l s e {

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SI

Ta = c t i m e / m s g - c n t : /* com pute s ta r t in g t im e */

r e t u r n :

}

} e lse {

/* re-send GET-START-TIME message */

GETJ5TART.TIM E.yer = eer:

t = g t t t ' r tT i r n e () :

m ulticast(G ET -STA RT _T IM E):

}

}

To determ ine the cons tan t values in the above algorithm we have conducted

several experim en ts over an ex tended LAN consisting of 20 com puters located in tw o

sites (Norfolk and Virginia Beach) 20 miles one of each other. We measured th e

round-trip t im e at the app lication level among th e workstations at th e same site, as

well as between workstations at different sites (for a description of ou r testbed , see

C hapter I). To get. realistic d a ta , all the experim ents were conducted during class t im e

with all w orkstations running th e IRI software. Between two w orkstations s i tu a te d

at the sam e location we have m easured an average round-trip of 3.55 ms with th e

coefficient of variation LOS. Similarly, the average of the round-trip tim e betw een

two workstations situa ted a t different locations was 9.93 ms with th e coefficient o f

variation 0.7S. For obta in ing these data we have conducted over 1500 individual

m easurem ents. Based on these results we have chosen the threshold MAX-RTT to be

20 ms. and TO-START-TIME to be 40 ms.

Let T3 be the s ta r t t im e com puted by originator. Then each w orkstation will

keep a v irtual clock tha t s ta r ts a t t im e Ts, and which is incremented every A real t im e

units. T he com m on tim e can be viewed as a s t re a m w ith frame dura tion A . th a t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8 2

plays on all w orksta tions and th a t has s ta r te d s im ultaneously on all w orksta tions.

Therefore, we call it clock stream. A fter the clock s tream has s tarted , all th e events

in th e system are rela ted to it. as follows.

Every X request is t im es ta m p ed w ith th e sequence num ber of the clock s tream .

To relate the sequence numbers of th e continuous s tream s to the clock s t r e a m se

quence numbers, we divide a sequence n u m b e r com puted with the above a lgori thm ,

to th e clock s tream fram e duration.

a.- =
Q x d.a l p h a

(V . 5)
A

We note tha t by re la ting the sequence num bers to the clock s tream sequence num bers ,

all the stream s have th e sam e fram e d u ra tio n , which equals A.

V.3 Summary

Irt this chapter, th e objective was to ex ten d our synchronization algorithm s to work

in a d istribu ted system . We achieve th is by providing (1) a mechanism th a t ex trac ts

the synchronization information from m ixed audio s tream s and (2) a pro tocol th a t

creates a lightweight common t im e in a d is tr ibu ted system .

To ex trac t the synchronization inform ation, for each stream we keep two vari

ables. lastDtqued Audio Packet, and la s t S t r e a m Packet , w here last D e q u ed A u d io P a cke t

indicates the sequence num ber of th e las t packet from th e audio queue th a t has been

sent to the device an d contains the packet w ith the sequence num ber l a s tS t r e a r n Packe t

of th a t audio s tream . Then, for each audio stream , th e sequence n u m b e r of its

fram e mixed in a par ticu la r audio packet can be ob ta ined by sub trac ting from the

l a s t S trearn P a c k e t variable, the la s t D e q u e u e d A ud io P a ck e t variable and th e cu rren t

playing audio packet ob ta ined by polling the audio device.

To achieve a com m on tim e in a d is tr ib u ted system , our approach is as follows.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

S3

W hen a new workstation jo ins th e group, it asks the o the r m em b ers in the group, if

any. ab o u t th e i r s tarting tim es . L pon receiving a certain n u m b e r of “goodr replies,

it averages over the resulting values and com pute its s ta r t in g t im e (a "goodr reply

is a reply w ith a low round-trip t im e). Our algorithm is to ta lly decentralized in the

sense th a t it does not assum e a m aste r workstation th a t keeps th e reference time.

This is in o rd e r to increase b o th th e robustness and the genera lity of our solution.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

C hapter VI

E ffect o f N etw ork L oad

"T here are three principal means o f acquiring knowledge...

observation of natu re , reflection an d experim en ta tion .

Observation collects facts: reflection com bines them:

experim en ta tion verifies the result o f th a t com bination."

D e n i s D i d e r o t

An im portan t factor th a t influences users' percep tion of a m ultim edia ap

plication is the network load variation. High load on th e network determ ines an

increase in the end-to-end latency of com m unication betw een partic ipants , an in

crease in the num ber of discontinuities (i.e.. frames are e i the r never played o r played

multip le times) and a deviation from the exact synchronization between audio, video

and X-windows.

In this chap ter we present the experim ents we perfo rm ed in order to validate

our synchronization protocols in the presence of network load. T h e network configu

ration used for experim ents is showed in Figure V I.1. It consists o f an ex tended LAN

with 20 Sun com puters located in two sites. Norfolk and V irginia Beach. 20 miles

away one from each o ther (see C hap te r L for a detailed descrip tion of the te s tb ed) .

To put load on the network, on a w orkstation we run a p ro g ram th a t periodically

(every 40 ms) sent packets to ano ther workstation. T h e p ro g ram takes as a rgum en t

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

Norfolk

Sun
Server To Internet

Virginia Beach

Sun

SunSwitch

Sun

10 Mbps Ethernet

Cox Cable (10 Mbps)

Figure VI. 1: The Network configuration.

the load to he pu t on the network. Based on this, it com putes th e packet size ' .

In Section VI. 1 we present experim ental results and evaluation of our lip-

svnchronization algorithm s. After th a t , in Section VI.2 we describe the experiments

that evaluate the synchronization of the shared windows s tream with audio.

VI.1 Lip-Synchronization

For the lip-svnchronization we have evaluated four protocols, described in detail in

the previous chap ter . Ju s t to rem ind here, protocol PL does not do anyth ing when

video and audio are out of sync. Protocol P2 delays a video fram e th a t is ahead and

drops a video fram e th a t is late. Protocol P3 is sim ilar with P2. w ith the addition

that it delays th e audio s tream if video tends to be behind. In protocol P4, we do

‘ For exam ple, for a 1 Mbps load, th e packet size is 5,000 bytes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86

Table VI. 1: Percen tage of audio and video fram es successfully delivered a t the

destination in the presence of heavy network load.

Network load [Mbps] Audio frames Video frames

8 95% 95 %

8.25 94 7c 94 7c

8.5 87 7c 56 %

8.75 84 7c 52 7c

Table VI.2: Percen tage of video frames sk ipped w ith protocols P2 and P3.

Network load [Mbps] in the case of P2 in the case of P3

8 84.67c 17.03 7c

8.25 85.3 7c 12.9 7c

8.5 84.9 % 15.4 7c

8.75 86.1 % 18.2 7c

not drop any video fram e th a t is late and we delay aud io if video tends to be beh ind .

V I . 1.1 E x p e r i m e n t D e s c r i p t i o n

For each protocol we pu t on th e network loads varying from 1 Mbps to 8.75 M bps.

We stopped at 8.75 M bps, as for higher loads, th e quality of the image b ecam e

ex trem ely poor and we were getting m any NFS errors. From I to 8 Mbps loads, we

increased the load by I M bps each time. As we were g e t t in g significant difference in

performance for loads larger th a n 8 M bps, we also perfo rm ed experim ents w ith 8.25

an d 8.5 Mbps loads.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8 7

Table Vl.3: Evaluation of the asvnchronv betw een audio and video in th e presence

of heavy ne tw ork loads [num ber of audio fram es].

Protocol Network

load [Mbps]

Medium

value

S ta n d a rd

dev ia tion

Variance Skew out

o f range

PI

(do nothing)

8 -4.97 0.88 0.78 95.70%

8.25 -4.91 1.20 1.46 88.78%

8.5 -3.61 3.81 14.56 68.16%

8.75 -0.52 5.21 27.22 59.13%,

P2

(skip/delay

video)

8 -2.02 0.79 0.62 0%

8.25 -2.01 0.86 0.75 0%

8.5 -0.95 1.92 3.69 0%

8.75 -0.09 2.34 5.51 0%

P3

(skip/delay

video

delay audio)

8 -0.63 0.83 0.70 0%

8.25 -0.55 1.85 3.44 0.5%

8.5 -0.38 2.14 4.60 2.36%

S. 75 -0.27 2.31 5.31 4.78%

P4

(delay video

delay audio

no video skip)

8 -1.80 0.63 0.407 0%

8.25 -1.75 1.21 1.48 4.57%

8.5 -0.91 2.44 5.96 9.25%

8.75 -0.41 2.62 6.91 11.11%

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

88

V I. 1.2 R esults and Evaluation

For each protocol, th e evaluation m etrics are:

1. The skew betw een audio and video after the X function th a t displays th e video

frame (X Shm P ut lm age) has com ple ted , as this gives the correct skew between

audio and video streams.

2. The number o f video frames, as a percentage of th e to ta l video frames received

at the des tina tion , tha t have skews ou t of the accep ted range.

3. The num ber o f video frames sk ipped , as a percen tage of the total num ber of

video frames received at the destina tion .

In addition to these m easurem ents , we also de te rm in ed th e number of audio

an d video frames received by the des tina tion as a percen tage of the total num ber of

frames sent by the source. This quantifies how much th e quality of the application

degrades due to packet loses in the presence of high load.

As mentioned, we measure th e skew (asynchronv) between audio and video

after the video fram e has been displayed (a t the end of th e video display tim e). We

do this by sub trac ting from the corresponding sequence num ber of the audio frame

th a t should have played (using relation IV .6). the sequence num ber of the curren tly

playing audio frame (obtained from th e audio device). A negative skew indicates th a t

video is behind, while a positive skew indicates that video is ahead. Throughout this

chap te r , we present th e skew m easured only in num ber o f audio frames. If desired,

th e skew measured in milliseconds can be com puted by m ultip ly ing the previous value

by the audio period (64 ms). Like S te inm etz [54] we consider th e skew acceptable

as longs as it falls w ith in the range (-2.5. 2.5) or (-160. L60) ms.

Since we did not notice any difference in these p a ram ete rs for loads sm aller

th a n 8 Mbps, we presen t here the results for 8, 8.25, 8.5 and 8.75 Mbps loads.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89

Figures VI.2 - V I.5 show th e results for each protocol. Tables VI. 1 and VI.2 show th e

percentages of audio and video frames a rr iv ing at the des tina tion , and the percentage

of video frames skipped with protocols P2 and P3. Table V I.3 shows the average

skew, its s tan d a rd deviation and variance and the num ber of tim es th e skew falls ou t

of the accep ted range in the presence o f various network loads.

A t 8 Mbps, with PL we m easured an average skew of —4.97 (318 ms) caused

by the fact th a t audio is ahead of video. From the user percep tive point of view, th e

skew is visible and the presenta tion is annoying. As we s ta r t sk ipping video frames

(with protocol P2). video catches up an d th e skew decreases to an average of —2.02

(128 ms). The stream s are synchronized, bu t the quality of th e image is very bad.

almost no motion. When we both skip video frames and delay audio (protocol P3).

the average skew becomes -0.63 (40 m s). T h e quality of th e im age is better, bu t

sometimes the image freezes for 3-4 seconds. W ith P4. where no video frames are

dropped, th e skew is around -L.80 (L15 ms) and the quality of th e image is very good.

As load is introduced in the network, the cases when aud io is ahead of video

and behind of video, a lternate . As p ractica lly there is a ded ica te link between th e

two m achines we run experim ents on (see Figure VI. 1). we believe th a t this happens

due to th e fact th a t both audio and video are queued in th e sw itch before they are

sent to th e destination. The s tandard dev ia tion and the variance increase with the

load, but th e average asvnchronv decreases as the num ber of instances with negative

skews offsets the one with positive skews.

Surprisingly, in the case of P i . th e num ber of instances in which the skew is

out of range decreases with the load. More precisely, it decreases from 95.70%. when

the load is 8 Mbps to 59.13 %. when the load is 8.75 Mbps. T h is behavior is probably

a result o f th e ex tra tim e spend by the aud io and video fram es in th e switch buffers.

As expected , the more load is put on th e network, th e m ore frames are dropped

by the switch. For 8 and 8.25 Mbps loads, a lm ost the sam e percentages of frames are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 0

(a) (b)

s

tv

f

(c) (d)

Figure \ 1.2: Variation of the skew between audio an d video with protocol P I (no

correction), w hen a load of (a) S M bps, (b) S.25 M bps, (c) 8.5 Mbps an d (d) 8.75

Mbps was put on the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91

z v me no

(a) (b)

r
i

v*

(d)

Figure V 1.3: Variation of th e skew between audio and video w ith protocol P2 (skip

a la te video frame, delay an early video frame), when a load of (a) 8 M bps, (b) 8.25

M bps. (c) 8.5 Mbps and (d) 8.75 Mbps was put on the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 2

i

v

(a) (b)

ion

(c) (d)

Figure VI.4: V ariation of th e skew between audio and video with protocol P3 (delay

an early video frame, delay aud io if it is a t re n d for video to be behind, no video

skip), when a load of (a) 8 M bps, (b) 8.25. M bps, (c) 8.5 Mbps and (d) 8.75 M bps

was put on the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

93

: ii 1

T '

•«*> .*» r« ■»

(a)

V ••■i • -t • vs re ;v wo weJ t>nn>

(b)

i !

J
S

E
-

................r
^

.
....

(c) (d)

Figure \ 1.5: V ariation of the skew between audio and video with pro tocol P4 (no

video skip, delay video if it is behind, delay audio if it is a trend for video to be

behind), when a load of (a) 8 Mbps, (b) 8.25 Mbps, (c) 8.5 M bps and (d) 8.75 M bps

was pu t on the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

received by th e audio a n d video processes. However, for h igher loads, the n u m b e r

of video fram es decreases significantly due to th e fact th a t th e size of a video fram e

I varying from a ro u n d LKB up to 8.5 KB) is larger than the size o f an audio frame (512

bytes). As th e m a x im u m Ethernet packet size is 1.5 KB. a video frames is usually

divided in packe ts an d sent over the netw ork . Assuming th a t th e probability to lose

a packet is p it follows th a t an audio fram e is lost with p robab il i ty p (because it fits

in one packe t) , while a video frame th a t is d iv ided over n packe ts is corrupted w ith

probability I — (I — p)n . which for small p can be app rox im ated to rip (we consider

tha t a video f ram e is co rrup ted if one of its packets is lost). If we assume th a t a

corrupted video fram e is not displayed, it follows that a t th e sam e packet loss ra te

the video signal perce ived by the receiver degrades much m o re th a n the audio.

Table V I.2 shows the percentage o f video frames th a t are skipped a t th e

destination in o rder to keep th e s tream s synchronized. T h is is basically constant for

both P'l and P 8 protocols due to the fact th a t as the load increases, fewer video

frames arrive a t th e des tina tion and need to be processed.

V I.2 Synchronization o f Shared W indow s

In this section we presen t the experim ents we performed in o rd e r to test the behavior

of our shared windows synchronization a lgo ri thm s in the presence of various network

loads. In the previous ch ap te r we described in deta il the synchroniza tion algorithm s.

Briefly, the four protocols th a t we have eva lua ted , are as follows. Protocol XI does

not perform an y synchroniza tion . In pro tocol X2. if an X request is late, we drop

it if it is in class of X requests tha t can b e d ropped . If th e X request is ahead , it

is delayed until th e corresponding audio arrives. In protocol X3. no X request is

dropped. However, if th e X windows s tream is consistently beh ind audio, then th e X

client is delayed. P ro tocol X4 combines techn iques used in pro tocols X2 and X3.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 5

Table V I.4: Evaluation o f th e asvnchrony between audio an d X windows in the

presence of heavy network loads [number of audio frames].

Protocol Network

load [Mbps]

Medium

value

S tandard

deviation

Variance Skew out

o f range

XI 6 -16.54 12.18 148.54 71.12%

(do nothing) 1 -17.25 13.39 179.40 73.30%

s -23.49 16.26 264.47 i i . i i %

X2 6 -14.04 10.81 116.95 60.15%

(skip t -14.70 9.58 91.7S 63.63%

X requests) 8 -13.85 11.45 131.29 62.03%

X3 6 -8.41 12.34 152.50 31.48%.

(delay 1 -14.09 18.334 336.13 41.95%

X requests) 8 -9.45 13.39 179.54 34.17%

X4 6 -4.12 9.43 88.95 11.37%

Is kip/'delay • -4.18 7.90 62.50 11.53%

A requests) 8 -5.64 11.09 122.99
-

IS.53%

V I.2.1 E xperim ent D escrip tion

For each synchronization protocol we put on the network loads vary ing from 1 Mbps

to 8 Mbs. increasing the load by 1 Mbps in each experim ent. We s to p p ed at 8 Mbps,

as for higher loads, we were g e t t in g many NFS errors and the sy s tem basically stoped

functioning. As we did not see any difference in perform ance for loads smaller than 6

Mbps, we present here th e resu lts we obtained in th e case of 6. 7 an d 8 Mbps loads.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96

(a)

(b)

x

10

X

n

(d)

(e)

D

IT)

Figure \ 1.6: Variation of the skew between audio and the X windows s t re a m with

protocol XI ((a), (b). (c)) and with protocol X2 ((d). (e). (f)) when a load of (a) and

(d) 6 Mbps, (b)and (e) 7 Mbps, (c) and (f) 8 Mbps was put on the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 7

e

'MDT

(a)

r

-«ooc

(b)

(d)

(e)

•*adc •wow

i

(c) (0

Figure V I.<: Variation o f th e skew between aud io and the X windows s tream with

protocol X3 ((a), (b). (c)) and with protocol X4 ((d) . (e). (f)) when a load of (a) and

(d) 6 Mbps, (b)and (e) 7 M bps, (c) and (f) 8 M bps was put on th e network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 8

V I.2.2 R esu lts and Evaluation

In each ex p er im en t , we measured th e skew between aud io and X-windows before an

X-windows packet was sent to the X server. Figures V I.6 and V I.7 show th e variation

of the skew. T ab le VI.4 presents the medium value, th e s tandard dev ia tion , the

variance of th e skew and the percen tage of skews th a t are out of range. Ideally the

asvnchrony betw een audio and X windows should be w ithin [-8. 12} aud io frames,

which corresponds to (-500. 750) ms. A negative skew m eans audio is a h e a d o f X

windows. A positive skew means aud io is behind X windows.

W ith protocol X L for a 6 M bps load, the average asvnchrony betw een audio

and X windows was -16.54 (1058 m s). In addition, in 71.02 % of the cases th e skews

are larger th a n th e m axim um accep ted values. This is due to the large d isp lay tim e

of some X requests , which makes th e X-windows s t re a m to consistently lag behind

audio. T he p resen ta tion is annoying and th e skew is visible to the user. W ith protocol

X2. the average skew decreases to -14.04 (898.56 ms). T h e num ber of skews th a t are

out of range decreases to 60.15 %. A lthough the s tream s are b e t te r synchronized, the

image quality degrades because som e X requests are d ropped . W ith protocol X3. the

average asvnchrony has decreased to -8.41 (538.24 m s). T he num ber of skews th a t

are out of range is now 31.48 %. T h e best solution proved to be protocol X4 which

basically com bines protocols X2 an d X3 (it skips the X requests and it delays th e X

client). As a resu lt , th e average skew is around -4.12 (263.68 ms) and the n u m b e r of

skews out of sync is 11.37 %.

The average asvnchrony. variance and s ta n d a rd deviation are su rpris ing ly

stab le as th e ne tw ork load increases. We a t tr ib u te th is to th e fact th a t th e increase

in the load in troduces similar delays to both X windows and audio packets.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9 9

VI.3 Summary

In this chap te r we have evaluated our synchronization protocols for audio, video

and X-windows. First, we have presented th e results for the four protocols for lip-

svnchronization. studied for 640 x 480 pixels windows. T h e best performance in

terms of im age quality and lip-svnchronization was obta ined w ith P4. the protocol

which does not drop any video frame th a t is late, but delays audio if it is a tren d

for video to be behind. For S Mbps loads, the re is no out-of-range skew, while for

8.75 M bps loads. 11.11% of th e skews a re out of range. P rotocols P2 (which drops

video frames th a t are late) and P3 (which drops video fram es th a t are late, while

also delaying audio), keep audio and video synchronized, bu t do not ensure a good

video image.

For the synchronization of the X-windows stream with audio , the best perfor

mance was obtained with protocol X4 (d rop X requests and de lay the X client if th e

asvnchrony is persistent). An average of 11.37 % of the skews a re out-of-svnc in case

of 6 M bps loads and 18.53 % in the case o f S Mbps loads. O n ly delaying the X client

(protocol X3). or only d ropping X requests (protocol X2) proved not be enough to

keep the s tream s synchronized.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100

C hapter V II

R e su lts and C on clu sion s

"On th e mountains of t ru th you can never climb in vain:

e i th e r you will reach a point higher up today, or you

will be tra in ing your powers so th a t you will be able

to clim b higher tomorrow."

F r ie d r i c h N i e t z s c h e

M ultim edia synchronization is one of the key technologies for the successful

delivery of d is tr ibu ted m ultim ed ia applications. In this thesis, we have proposed a

set of algorithms th a t achieve th e synchronization o f audio, video and the X-windows

streams in a d is tr ibu ted , co llaborative m ultim edia application. E xperim ental results

show that our algorithm s ou tpe rfo rm the previous a lgorithm s in the presence of both

network and hosts load variations. In this chap ter we describe how we have achieved

the thesis objectives presented in C hap te r I. VVe also propose directions for fu ture

work.

VII. 1 Media Synchronization Specification

While most of th e existing solutions for the tem pora l synchronization problem take

into account the network load, they largely ignore th e effect of workstation load. For

this reason, we s ta r ted our research by studying how th e workstation load variation

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 1

affects the stream synchroniza tion .

To satisfy audio an d video time constra in ts , m ultim edia processes should be

scheduled periodically. T h is avoids audio an d video device d rivers queue overflow

and provides a correct synchronization specification. The first question we tr ied to

answ er was whether the rea l- t im e capabilities of th e current genera l purpose o pe ra t ing

system s are sufficient. W hile in m any s i tua tions th e answer is yes. the re are cases such

as high X windows in terac tion , in which m u lt im ed ia processes fail to be scheduled at

regular t im e intervals.

As real-time does not e lim inate th e t im e variability w hen scheduling m ulti-

m edia processes, we developed a new m echanism to provide a co rrec t synchronization

specification. For aud io /v ideo , we associate to each packet a sequence num ber based

on (I) the difference between th e last two scheduling times of th e aud io /v ideo pro

cess. (2) the period of th e s t ream , and (3) th e num ber of buffers in th e device d river

queue. In the case of the X windows s tream we simply t im es ta m p th e packet w ith the

t im e when the packet arrives a t th e da ta sha r ing process (itu). T h e is because from

our m easurem ents it tu rn ed out th a t the p ropagation time of an X request from the

X client to xtv is significantly sm aller than th e tolerable asvnchrony between aud io

and X windows and therefore it can be neglected.

VII.2 Media Display Time

T he w orkstation load varia tion affects not on ly th e correctness o f th e synchronization

specification, but also th e d isp lay tim e of m ed ia units. Two m e d ia units which are

sim ultaneously sent to th e ir presenta tion devices will play s im ultaneously on ly if

the ir display times are identical. This is ra re ly th e case. W hile aud io has basically

negligible display time, video has a fairly large display tim e, dep en d in g on the size

and d e p th of the window.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102

T he display t im e of m e d ia units is an issue th a t has been generally ignored

by existing solutions. Based on experim en ta l results, we also neglect th e display t im e

of an audio fram e. However, to es t im a te the display t im e of a video fram e we use

an exponential averaging re la tion th a t adds the previous measured value (w ith 0.75

weight) to th e previous m easured value (with 0.25 weight).

For th e X windows s tre a m we have conducted experim ents to see how long it

takes to the X server to process each of the 127 types o f X requests. This experim ents

confirmed th e in tu ition tha t th e X requests th a t u p d a te windows (e.g.. P utlm ag t)

have a fairly large display t im e . However, to e s t im a te the display t im e of an X

windows packet is basically im possible, as the display t im e varies so m uch with the

param eters o f th e request. In th is s itua tion , our synchronization a lgorithm s ignore

the display t im e of X windows, b u t apply corrections (drop X requests an d delay the

X client) such th a t w ithin a sho rt interval, the s tream s are in sync again.

VII.3 Synchronization Condition

After s tudy ing th e effect of w orksta tion load variation on the temporal synchroniza

tion problem we have studied th e synchronization conditions widely used in li te ra tu re

(see C hap te r II). A m ong these, we no te th a t th e conditions based on sequence num

bers and synchroniza tion points require the s tream s to have the sam e period, or a

period th a t is a com m on divisor. On the o ther hand, th e conditions based on tim es

tam ps waste valuable network bandw id th (see C h a p te r I for a numerical exam ple).

To address th e above problems, we proposed a novel synchronization condition based

on sequence num bers th a t can hand le s tream s with a rb i t r a ry periods.

VII.4 Lip-Synchronization

The requ irem ent of a synchronization mechanism betw een audio and video is a well

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 3

d e te rm in ed issue. T h ere are numerous solutions suggested in li terature for th is p rob

lem (see C hapter II). Since th e topic o f our research is the synchronization of audio,

video and X windows, we have im plem ented and tested first, the classical "drop-

delav video” lip-svnchronization a lgorithm . This approach proved to be inadequa te

for large window sizes, where the display t im e of a video frames is fairly large. For

this reason, we have investigated two solutions. In the first one. we augm ent th e

classical “drop-delay video” solution, by delaying th e audio s tream whenever th e re is

a tren d of video frames being late. W ith this approach the two streams are synchro

nized. bu t the image freezes som etim es because of the d ropped video frames. T h e

second solution is sim ilar with the first one. w ith th e difference tha t no video fram e

is d ropped . This solution proved to provide a synchronized presentation and a good

im age quality in the presence of hosts a n d network load variation.

VII.5 Synchronization of the Shared Windows Stream

T he shared windows s tream poses additional problem s to the temporal synchroniza

tion. T h is is mainly because, unlike video and audio, the X windows is an aperiodic

s tatefull stream th a t has a history and random ly dropping X requests can m ake th e

application to crash. To in tegrate the shared windows s tream , we have proposed a

m echanism tha t increases the num ber of corrections applied to the system, depending

on th e m agnitude of th e asvnchrony. T h e first correction is to drop X requests, if

this is possible. We have experim entally de te rm ined th a t 47 out of 127 X requests

can be dropped. If this is not sufficient to get th e s tream s back in sync, we delay th e

X client. This solution proved to work well in the case of various host and netw ork

loads, as well as in the case of high user in teraction with the X client.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 4

VII.6 Extension to a Distributed System

A fter designing the synchronization a lgorithm s for audio, video and X windows we

w anted to ex ten d our solution to a d is tr ibu ted system . Media synchronization in a

d is tr ibu ted system poses two add itional issues: (1) to ex tract the synchroniza tion

inform ation from mixed audio s tream s, and (2) to provide a global clock for all

workstations.

In C h a p te r VI. we il lus tra te th e first issue in th e context of m ultip le users th a t

speak simultaneously, and propose a solution to address it. To achieve a com m on t im e

in a d is tr ib u ted system, we propose a s ta t is t ica l averaging technique which requests

the s ta r t in g tim es from the o the r m em bers in the group. O ur a lgorithm is to ta lly

decentralized in the sense th a t it does not assum e a m aster w orkstation th a t keeps

the reference tim e. As a result o u r a lgorithm is bo th efficient and robust.

VII.7 Future Work

O ur a lgorithm s achieve fine-grain synchronization of audio, video (CellB com pressed)

and shared windows, in collaborative env ironm ents th a t are subject to tim ing variabil

ity. As a fu tu re work it would be in teresting to s tu d y the behavior of our a lgorithm s

when o the r compression techniques, like M P E G . H.261 or H.263. are used. A related

question would be to determ ine which encoding schem e works best w ith audio and

X windows s tream s. Another research direction would be to ex tend our algorithm s

to work in applications th a t provide V CR facilities. In this case, s tream s need to be

played forw ard/backw ard, paused and resum ed w'hich requires buffers control bo th

at the server and client sides.

VII.8 Impact of Contribution

T he con tribu tion of our work is th e following. F irs t, it dem onstrates t h a t not only

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 5

th e network, bu t also th e workstation load has to be considered by a correct and

com ple te tem pora l synchronization solution. Recognizing the im portance o f th is

issue will hopefully p ro m p t researchers to ex ten d th e ir algorithm s to work well in

th e presence of b o th network and w orkstation load varia tions. Second, it proves th a t

th e synchronization of th e shared windows s tre a m in a m ultim ed ia app lication can

be achieved most of th e tim e in a tim e-sharing en v iro n m en t. This will hopefully

encourage other m u lt im ed ia applications to in te g ra te th e shared windows s tream ,

crea ting more versati le and powerful shared workspaces.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 06

R eferen ces

[1] H. Abdel-W ahab and M. Feit. “X TV : a Framework for sharing X window clients

in rem ote synchronous co l labo ra t ion" . Proc. T n C o m m 91: C om m un ica tions fo r

D istributtd Applications & Sys tem s. New York. pp. 159-167. J a n u a ry 1991.

[2] H. A bdel-W ahab. K. M aly and E. Stoica. “M ultim edia in tegration into a d is tance

learning environm ent". Proc. o f Third International Conference on M ultimedia

Modelling. Toulouse. France, p p .69-85. November 1996.

[3] N. Agarwal and S.H. Son. "Synchronization o f d is tribu ted m u ltim ed ia d a ta in an

application-specific m anner" . Proc. A C M Multimedia '94. San Francisco. Cali

fornia. pp. 141-148. O ctober 1994.

[4] D.P. Anderson and G. Homsky. “A continuous media I /O server and its syn

chronization mechanism". IE E E Computer. Vol. L. pp. 51-58. O c tober . 1991.

[5] B. Bailey and J. K onstan. “N’Sync - a constrain t based toolkit for m ultim ed ia" .

Proceedings o f Tel Workshop. Boston. M assachustetts. pp. 169-177, Ju n e 1997.

[6] S. Baqai. M. Farrukh Khan. M. Woo. S. Shinkai. A. K hokhar an d A. Ghafoor.

"Q uality based evaluation of m ultim edia synchronization protocols for dis

tr ibu ted M ultimedia inform ation system s". IE E E Journa l o f Selected Areas in

C om munications Vol. 14. No. 7. pp. 1388-1403. Septem ber. 1996.

[7] E. Biersak. W. Geyer and C. B ern h ard t , " In tra- and in ter-s tream synchroniza tion

for stored multim edia s tre a m s” . Proceedings o f IE E E In terna tiona l Conference

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 0 7

on Multimedia Com puting and Systems. Hiroshima. Jap an , pp. 372-381. Ju n e

1996.

[8] Cl.S. Blair. G. Coulson. M. Papa thom as . P. Robin, J .-B . Stefani. F. Horn and L.

Hazard. "A p rogram m ing model and system in fras truc tu re for real t im e synchro

nization in d is tr ib u ted m ultim ed ia systems ". IE E E Journal o f Selected Areas in

Communications. Vol. 14. N o .l . pp. 249-263. Jan u a ry 1996.

[9] G.Blakovvski. J. Hubei. I '. Langrehr and VI. Vlulhauser. "Tool support for the

synchronization and presenta tion of d is tribu ted m u l t im e d ia " . C om pu ter C om

munications. V ol.1-5. N o .10. pp. 611-618. November 1992.

[10] J. Bolot and P. Hoschka. "Sound and video on th e Web". Proceedings o f 5th

W W W Conference. Paris. France, pp. 154-172. VIay 1996.

[11] S. Cen. C. Pu. R. Staehli. C. Cowan and J. Walpole. "A d is tr ibu ted real-tim e

VIPEG video audio player". Proc. o f the 5th In ternational Workshop on Network

and OS Support fo r Digital Audio and Video. D urham . New Hampshire, pp. 50-

61. April 1995.

[12] H.-Y. Chen and J .-L . Wu . “VlultiS vnc: a synchronization model for m ult im ed ia

systems ". IE E E Journal o f Selected Areas in Communications. Vol.14. N o .l .

pp.238-24S. J a n u a ry 1996.

[13] VI. Correia and P. Pinto. “ Low-level multim edia synchronization a lgori thm s on

broadband netw orks" . A C M M ultimedia '95. San Francisco, California, p p .423-

434. November 1995.

[14] J.-P. C ourtia t . R. C. de O liveira and F.R. da C osta Carmo. "Towards a new

m ultim edia synchronization m echanism and its formal specification". A C M M ul

timedia '94. San Francisco. California, pp. 133-140. O ctober 1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[15] D..J. Duke. D.A. Duce. I. H erm an and G. Faconti. " Specifying th e P R E M O

synchronization objects. ER C IM Technical R eport . ER CIM -01/97-R048. J a n

uary 1997.

[16] A. Eleftheriadis. S. Pejhan a n d D. Anastassiou. "A lgorithm s and perfo rm ance

evaluation of the X phone m ult im ed ia com m unica tion system ". Proc. o f A C M

Multimedia '93. A naheim . California, pp. 401-415. A ugust 1993.

[17] D. Ferrari. "Delay j i t te r control schem e for packet-sw itching in terne tw oks" . C om

puter Communications. Vol.15. N o.6. pp. 367-373. J u lv /A u g u s t 1992.

[18] K. Fujikawa. S. Shimojo. T . M a tsu u ra . S. Nishio and H. M iyahara "T he synchro

nization mechanisms of m ult im ed ia information in th e d is tr ibu ted h y p e rm e d ia

system harm ony” . Technical R epo rt ISE-TR-93-006. Faculty of Engineering. De

p a r tm en t of Information and C o m p u te r Science, Osaka. J a p a n . S ep tem b er 1993.

[19] G usella R. and S. Zatti . "T em po - a network t im e controller for a dis

tr ibu ted Berkeley UNIX s y s t e m ’ . IE E E Distributed Procesing Technical C om

mittee Xtmsletter 6. .Vo.S’/-2. pp 7-15. June 1984.

[20] M. Hodges. R. Sassnett and M. A ckerm an. "A thena Muse: a construction set for

m ultim edia applications". IE E E Software. Vol.6. N o .l . pp. 37-43. J a n u a ry 1989.

[21] P. Hoepner. "Synchronizing th e presenta tion of m u lt im ed ia objects" . C om pu ter

Communications. Vol. 15. No.9. pp. 557-564. N ovem ber 1992.

[22] P.Hoscha. "Synchronized m u ltim ed ia integration language (SMIL) 1.0 Specifica

tion". available at h t tp : / /w w w .w 3 .o rg /T R /R E C -sm i l .

[23] K. Jeffav. D.L. Stone and F.D. S m ith . "Transport an d display m echan ism s for

m ultim edia conferencing across packet-switched ne tw orks” . Comp. N etw orks and

IS D N Systems. Vol.26, No.10. p p . 1281-1304, Ju ly 1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.w3.org/TR/REC-smil

109

[24] L .L am ont and N.D. G eorganas. “Synchroniza tion architecture an d protocols for

a m u l t im ed ia news service application"'. I E E E Intl. Conf. on M ultim edia Com

puting and System s. Boston, M assachusetts , pp. 309-320. May 1994.

[25] C.-S. Li an d V. Ofek. "D is tr ibu ted source-destination synchronization using in-

band clock d is tr ibu tion ' . I E E E Journal o f Selected Areas in Com munications.

Vol.L4. N'o.l. pp. 153-16L. Ja n u a ry 1996.

126] VV. Liao and V.O.K. Li. "Synchronization o f d is tributed m ult im ed ia systems

with user in teractions". Proc. o f Third In terna tiona l Conference on Multimedia

Modelling. Toulouse. France, pp .237-252, N ovem ber 1996.

[27] C.C. Lin. S.K. Chang a n d T . Znati. "QoS m essage directed a d a p te d distributed

m u l t im ed ia system s". 19.97 Pacific W orkshop on Distributed M ultimedia Sys

tems. P i t tsb u rg h . P ennsylvania , pp. 186-194. J u ly 1997.

[28] C. J. L indblad and D. L. Tennenhouse. "’T h e VuSystem: a p rogram m ing system

for com pute-in tens ive m u l t im e d ia " . IE E E J o u rn a l o f Selected Areas in C om m u

nications. Vol.14. N o.7. pp. 1501-1523. Ju ly 1996.

[29] T .D .C . L itt le and A. G rafoor. "Scheduling o f bandw idth-costrained m ultim edia

traffic". C om puter C om m unica tions. Vol. 15. N o.6. pp. 381-387. A ugust 1992.

[30] T .D .C . L ittle . “A fram ew ork for synchronous delivery of tim e-dependen t multi-

m edia d a t a ’ . M ultimedia Sys tem s. Vol.I. N o.2. pp. 87-94. 1993.

[31] k . Maly. H. Abdel-VVahab. R. M ukkam ala. A. G u p ta . A. P rabhu . H. Sved and

C.S. V em uru . “Mosaic + X T V = CoReview ” . Proceedings o f :3rd International

IF VV 14 Conference. D a rm s ta d t . Germany, pp . 234-265. April 1994.

[32] K. Maly. H. Abdel-VVahab. C .M . O vers tree t , C’. Wild. A. G u p ta . A. Youssef,

E. S to ica and E. A l-Shaer, "In terac tive d is ta n ce learning over In tran e ts" . IE E E

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1L0

Journal o f In te rn e t Computing. Vol. I. No. L. pp. 60-71. February 1997.

[33] N. M anohar a n d A. Prakash. “Dealing w ith synchronization and tim ing variabil

ity in the p layback of session recordings". Proc. o f A C M Multimedia '95. San

Francisco. C alifornia , pp. 45-56. N ovem ber 1995.

[34] N. M anohar a n d A. Prakash. “Tool coordination and m edia integration

on asynchronously shared c o m p u te r supported workspaces". Technical Re

port CSE-TR-2S4-96. D epartm ent of Electrical Engineering and C om puter

Science U niversity of Michigan a t Ann Arbor, February 1996. URL page:

h t tp : / /w w w .e e c s .u m ic h .e d u / ' nelsonr/postcrip t-docs/tech rp t96 .ps .

[35] A. M athur and A. Prakash. "Protocols for integrated audio and shared windows

in collaborative system s .Proceedings. A C M Multimedia 9^. San Francisco. Cal

ifornia. pp. 381-388. O ctober 1994.

[36] D.L. Mills. "N etw ork time protocol (Version 3) specification, im plem entation

and analysis". D A R PA Network W orking Group Report RFC-1305. University

of Delaware. Vlarch 1992.

[37] S. M innem an. S teve Harrison. Bill Janssen . Gordon K urtenbach. T hom as Moran.

Ian Smith and Bill van Melle. “A confederation of tools for cap tu ring and ac

cessing co llborative activity". Proceedings. A C M Multimedia '95. San Francisco.

California, pp. 523-533. November 1995.

[38] S. Mullender. “Distributed S y s t e m s '. ACVI Press. 1993.

[39] Network W orking G roup. “RTP:A tra n sp o r t protocol for real-tim e applications".

January 1996. available at f tp : / / f tp .d s . in te rn ic .n e t / r fc / r fc l8 8 9 . tx t .

[40] C. Nicolau. “An arch itec tu re for real t im e m ultim edia com m unication system s",

IE E E Journal on Selected Areas in Communications, Vol. 8. No.3, pp. 391-400.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.eecs.umich.edu/'
ftp://ftp.ds.internic.net/rfc/rfcl889.txt

April 1990.

[41] J. Nieh. J .G . Hanko. J .D . N orthcutt an d G. A. Wall. ‘‘SV R 4 UNIX scheduler un

a c c e p ta b l e for m ultim ed ia applications'*. Proceedings Jth International Work

shop on Network and O S Support fo r Digital Audio and Video. Lancaster. I 'n ited

Kingdom, pp. 192-203. November 1993.

[42] P. Owezarski an d M. Diaz. “Models for enforcing m u ltim ed ia synchronization

in visioconference applications". Proc. o f the Third In terna tiona l Conference on

Multimedia Modelling. Toulouse. France, pp.So-100. N ovem ber 1996.

[43] L. Qio and K. X a h r te d t . 'Lip svnchonization within an a d a p t iv e VOD system"

Proc. o f In ternational Conference on M ultimedia C om puting and Networking .

San .Jose. California, pp. 206-215. February 1997.

[44] S.V. Raghavan. B. P rabhakaran and S.K . Tripathi. "Synchronization represen

tation and traffic source modelling in o rchestra ted p resen ta tions" . A C M Multi-

media 96 Conference. Boston. M assachussetts , pp. 562-579, November 1996.

[45] PA'. Rangan. S. R am ana than . H.M. Vin and T. K aeppner. "Techniques for

multim edia synchronization in network file system s". C om pu ter Communications

Journal. March 1993. pp. 1203-1217.

[46] O 'Reilly Associates. Inc. “X Protocol reference m anual ". O 'Reillev Press.

Vol.0. .June 1993.

[47] W. Rosenberrv. D. Kenney and G. Fisher. "Understanding D C E ". Annales des

Telecommunications. O ctober 1996.

[48] K. Rothermel and T . Helbig. “Clock hierarchies: An abs trac tion for grouping and

controlling media s t ream s . IE E E Journa l o f Selected Areas in Communications.

Vol.14. N o .l . p p .174-184. January 1996.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 2

[49] L.A. Rowe and B.C. S m ith . "” A continuous m ed ia player". Proc. o f the 3rd. In

ternational Workshop on N etw ork and O S Support fo r Digital Audio and Video.

San Diego. California, pp. 101-116. November 1992.

[50] D. Rubine. R.B. D an n en b erg and D.B. A nderson . “Low latency in te rrac tion

through choice-points. buffering and cuts in T ac tu s" . Proceedings o f the In ter

national Conference on M ultim edia Computing and System s. Los A lam itos . Cal

ifornia. pp .224-233. M ay 1994.

[51] L. Rutledge and J. van O ssenbruggen. L. H ard m an and D. Bulterm an. “ A fram e

work for genera ting a d a p ta b le hyperm edia d o cu m en ts" . ACM M u ltim ed ia 97.

Seattle . W ashington, pp . 105-135. May 1997.

[52] B.K. S m ith . J .D . N o r th c u t t and M.S. Lam. “A m e thod and appara tu s for m ea

suring m edia synchron iza tion ". Proceedings 5th International Workshop on N et

work and O S Support f o r Digital Audio and Video. D urham . New H am psh ire ,

pp.203-214. April 1995.

[53] R. S te inm etz . "Synchron iza tion properties in m u lt im ed ia systems" . IE E E Jo u r

nal o f Selected Areas in C om m unica tions . V ol.S. N o.3. pp .401-412. A pril 1990.

[54] R. S te inm etz and K. N a h rs te d t . Multimedia: computing, com m unications & ap

plications. P rentice-H all. 1995.

[55] E. Stoica. H. A bdel-W ahab and K. Malv. “A pplication em bedded a lgori thm s

for m ultip le s tream s synchron iza tion in d is tr ib u ted m ultim edia sy s tem s" . Pro

ceedings o f CS&E97: Third International Conference on Com puter Science &

Inform atics D urham , New H am pshire , pp .207-227. M arch 1997.

[56] E. Stoica. H. Abdel-YVahab and K. Maly, “Synchronization of m u l t im ed ia

s tream s in d is tr ibu ted environm ents*’. Proceedings o f IE E E International Con

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113

ference on Multimedia C om pu ting and S ys tem s O tta w a . Canada, p p .301-316.

June 1997.

[57] E. Stoica. H. Abdel-VV’ahab and K. Maly. "Synchronization a lgori thm s for the

playback of m ultip le d is tr ib u ted s tream s". Proceedings o f IE E E Fourth In ter

national Conference on M ultim edia Modelling S ingapore.pp . 627-636. N ovem ber

1997.

[58] D. Stone and K. Jeffav. "An em pirica l study of delay j i t t e r m anagem en t policies'*.

Multimedia System s. Vol.2. N o.6. pp .267-279. J a n u a ry 1995.

[59] Sun Microsystems. Inc. "SunV ideo 1.0 user's g u id e” . O ctober 1993.

[60] J .P . Thom as. " Pseudo-tree d a ta s truc tu re for con ten t-based com position and

synchronization of m u ltim ed ia presentation ". Proc. o f Third In terna tiona l Con

ference on M ultimedia Modelling. Toulouse. France, p p .253-268. N ovem ber 1996.

[61] C.S. D epartm ent of Com m erce. "A utom ated c o m p u te r tim e service (A CTS)'" .

NBS Research M aterial 8101. 1981.

[62] I", \a h a l ia . "l.'NIX internals. T h e new frontiers” . Prentice Hall. 1996.

[63] D. K. Y. Yau and Simon S. Lam . " A daptive ra te -contro lled scheduling for multi-

m edia applications ". Proceedings o f A C M M ultim edia '96. Boston. M assachuse tts ,

pp. 129-140. N ovem ber 1996.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 4

A p p e n d ix A

C lassification o f X req u ests

Table A .l : X Requests th a t crash the X client if d ropped .

Code Description

a) C rea te resources

L C rea te W indow

45 O penFont

53 C rea teP ix m a p

55 C rea teG C

57 CopvG C

62 C'opyAtrea

63 Copy P lane

78 C reateC olorm ap

80 C opvColorm apA ndFree

03 C reateC urso r

94 C reateG lvphC ursor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

L15

Table A.2: X R equests th a t crash the X client if dropped (cont.)

Code Description

b) Window m anipu la tion by th e window manager

1 Reparent Window

12 Configure W indow

c) C h an g e resources characteris tics

2 C'hangeWindow A ttr ib u te s

18 C hangePropertv

24 Con vert Select ion

30 C hangeA ctivePo in terG rab

■56 ChangeG C

IL4 Rot a te P ropert ies

d) Keyboard and Po in ter

28 G rabB u tton

33 Grab Key

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 6

Table A.3: X Requests that freeze the X client if dropped (queries).

Code Description Code Description

3 Get Window A ttr ibu tes 52 G et Font P a th

14 G etG eom etrv 73 G et Im age

1-5 QuervTree 83 List InstalledColorm aps

16 InternA tom 84 AllocColor

17 G etA tom N am e 85 A Hoc N am edColor

20 Get P roperty 86 AllocColorCells

21 List Properties 87 A llocColor Planes

Get Select ionO w ner 91 Q uervC olors

26 G rabPoin ter 92 LookupColor

31 Grab K eyboard 97 Q u ery BestSize

35 AllowEvents 98 Q u ery Extenssion

36 GrabServer 99 ListExtenssions

38 Q uervPointer 101 G etK eyboardM app ing

39 Get Mot ion Events 103 G etK eyboardC on tro l

40 Transla teCoordinates 106 G etP o in te rC ’ontrol

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 7

Table A.4: X R eques ts tha t freeze th e X client if d ropped (cont.)

Code D escrip tion C ode Description

42 Setlnpu t Focus I OS GetScreenSaver

43 Get Input Focus 110 ListHosts

44 Q uervK evm ap 116 Set Poin terM apping

47 Query Font 117 G etP o in terM app ing

48 QueryText E x tensions 1 IS Set.ModifierMapping

49 List Fonts 119 G etM odifierM apping

50 List Font W ith Info

Table A.5: X R equests that affect o the r X clients if d ropped .

Code Description Effect on other X clients

25 SendEvent an X client m a y be blocked w aiting for the event

27 L’ngrabP o in ter user cannot point in any other window

29 I ’ngrabB uttori user cannot, use the button in an o th e r window

32 C ngrab K eyboard user cannot ty p e in other window

34 CngrabKev user cannot use the key in an o th e r window

37 CngrabServer X server can n o t process other connections

109 ChangeHosts a host m ay no t be able to connect to local server

I I I SetAccessControI enab le /d isab le access control list

115 ForceScreenSaver rese t/ac t iv a te screen saving

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

US

Table A.6: X Requests tha t can be safely dropped.

Code Description

a) Destroy resources

4 D es t roy W i n dovv

5 D estrovSub Windows

19 D eletePropertv

46 CloseFont

54 FreeP ixm ap

60 FreeGC

79 FreeColorm ap

82 U ninsta llColorm ap

88 FreeC’olors

95 FreeCursor

LOT SetScreenSaver

L12 Set Close Down Mode

LL3 KillClient

b) Window m an ipu la t ion by th e X client

8 M ap W indow

9 M apSub Windows

L0 U nm ap Window

11 U nm apSub Windows

13 CirculateW indow

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 9

Table A.7: X Requests that can be safely dropped (cont.)

Code D escrip tion

c) Draw graphics

C’learA rea

64 PolvPoin t

65 PolvLine

66 PolvSegm ent

67 Poly R ectangle

68 PolyA rc

69 Fill Poly

70 Poly Fill R ectangle

71 PolvF illA rc

d) Put tex t

74 PolyTextS

75 P o lv T e x tl6

76 Im ageTextS

i i Im g eT ex tl6

e) P u t im age

72 P u t Im age

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

L20

Table A.S: X Requests that can be safely dropped (cont.)

Code Description

f) K eyboard and P oin te r

41 W arp Pointer

96 RecolorCursor

100 C hangeK evboardM app ing

102 C hangeK evboardC ontro l

104 Bell

105 C 'hangePointerControl

g) Miscellaneous

6 C'hangeSaveSet

22 SetSelectionO w ner

51 Set Font Path

58 Set Dashes

59 Set Clip Rectangles

81 InstallC olorm ap

89 StoreColors

90 S toredN am edC olors

107 SetScreenSaver

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

V ita

Emilia S toica was born in Bucharest. Rom ania on M ay 23. 1966. She received her

M aster degree in C o m p u te r Science and Engineering from Polvtechnical In s t i tu te of

Bucharest. R om ania , in J u n e L989. She worked as a Softw are Engineer for IIR C C .

Bucharest. R om ania, from O ctober 1989 until .June 1993. From Ju n e 1993 until

January 1994. she worked as a Systems Engineer for In te rn a tio n a l C om puter L im ited

lICL). B ucharest. R om ania headquarters. In May 1994, she s ta r ted working on her

Ph.D Degree in C o m p u te r Science at Old Dominion L’niversity. Norfolk. Virginia.

Mrs. S toica is cu rren tly System s Designer at the Research D epartm ent of C laritech

Corporation. P it tsb u rg h . PA.

Perm anent address: D ep ar tm en t of C om pu ter Science

Old Dominion l ’niversity

Norfolk. VA 23529

CSA

This d isserta tion was typeset with DTgX* by the au thor.

T ETfeX is a docum ent p rep ara tio n system developed by Leslie L am p o rt as a special version of

Donald K n u th 's "I^rX P rog ram .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

>> -V/

IMAGE EVALUATION
TEST TARGET (Q A -3)

|T b '<;

/

<iJ

'V v ■̂

7 -

150mm

IIVMGE. Inc
1653 E ast Main S treet
Rochester. NY 14609 USA
Phone: 716/482-0300
Pax: 716/288-5989

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Old Dominion University
	ODU Digital Commons
	Summer 1998

	Multiple Streams Synchronization in Collaborative Multimedia Systems
	Emilia Stoica
	Recommended Citation

	tmp.1550587703.pdf.UPVBu

