Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1998
Multiple Streams Synchronization in Collaborative
Multimedia Systems

Emilia Stoica
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience etds

b Part of the Digital Communications and Networking Commons, and the Software Engineering

Commons

Recommended Citation

Stoica, Emilia. "Multiple Streams Synchronization in Collaborative Multimedia Systems" (1998). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/fmg6-1216
https://digitalcommons.odu.edu/computerscience _etds/86

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/86?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Multiple Streams Synchronization in

Collaborative Multimedia Systems

by

Emilia Stoica
M.Sc. Polytechnical University of Buckarest, Romania, 1989

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements of the Degree of

DOCTOR OF PHILOSOPHY
COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
July 1998

Approved by:

Dr. Hussein Abdel*Wahab (Dirgetor)

DL Kuft Maly iﬁe”m‘é%@

Dr. Ravi Mukkamala (Member)

Dr. Stewart Shen (Member)

}(Jea.n—?hilippe Favreau (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Multiple Streams Svnchronization in Collaborative
Multimedia Systems.

Emilia Stoica
Old Dominion University. 1998
Director: Dr. Hussein Abdel-Wahab

With the recent increase of the communication bandwidth and processor
power. new tvpes of applications have emerged. Among them. there are multimedia
applications. in which users are able to control. combine. and manipulate different
types of media. such as text. sound. video. computer graphics. and animation. A kev
requirement in anv multimedia application is to synchronize the delivery of various
media streams to the user. To achieve this. the sender has to provide the tempo-
ral relations between the streams as theyv are captured. Since the receiver uses this
information in streams presentation. its accuracy is very important.

Our main contribution is to provide a suit of synchronization algorithms for
audio. video and X-windows streams that work correctly in the presence of load
variations. First. we propose a mechanism for assigning a correct synchronization
specification to media units that takes into account the workload variation at the
sender: although this issue is critical. it has been largely ignored in previous work.
Second. for detecting the skew between the streams. we propose a synchronization
condition that works in the general case of streams having different media unit dura-
tions. Based on this condition. we develop an adaptive lip-synchronization algorithm.
By estimating the display time of video frames. our algorithm is robust and stable in
the presence of both network and workstation load. To svnchronize the X-windows
stream with the audio/video stream we propose a novel approach that combines drop-

ping X packets with delaying the X client. Finally, we extend our algorithms to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distributed environment. We do this by proposing (1) a mechanism for extracting
the synchronization information from mixed audio streams. and (2) a lightweight

mechanism to achieve global clock svnchronization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright. 1998. by Emilia Stoica. All Rights Reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

To my parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

[would like to thank very much to my advisor. Professor Hussein Abdel-Wahab
for his valuable suggestions. continued guidance and support in the preparation of
this thesis. | am also very much indebt to Professor Kurt Maly. for his permanent
encouragement and for many useful comments he gave me while this work was carried
out.

[want to thank from my heart to my parents who taught me how important
it 1s to learn and to always be as best as [can.

[am verv confident that without the loving support of my husband. lon and

the patience of our son. George. I could have not done this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

“The voyage of discovery is not in seeking new landscapes

but in having new eves.”

Marcel Proust

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

List of Tables
List of Figues

I Introduction
L1 Issues
[.1.I Media Synchronization Specification
[.1.2 Media Display Time
[.1.3 Svnchronization Condition
[.t.4 Lip-Synchronization
[.1.3 Svnchronization of the Shared Windows Stream
[.1.6 Media Synchronization in Distributed Svstems
[.2 Objectives o L
[.3 Experimental Setup L

[.4 Outline

IT Related Work and Motivation
[I.1 Media Synchronization Specification
[[.2 Media Display Time
[L.3 Svnchronmization Condition
[I.4 Lip-Synchronization
IL.5 Synchronization of the Shared Windows

[.6 Synchronization in Distributed Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viil

X1

1X

[I.7 Motivation of Worko oL 27

II1 Effect of Workstation Load 30
[IIl.1 Exploring Real-time Capabilities 31
II1.1.1 Experimental Design. 31

[II.1.2 Measurements 34

[[I.1.3 Results Interpretation 34

[I[.2 Media Synchronization Specification 36
[[[.2.1 Acquisition of Continuous Streams 37

[1I.2.2 The Mechanism of Sharing X-Windows 38

[I[.2.3 Specification for Continuous Streams 39

[I[.2.4 Specification for the Shared Windows Stream 42

[I[.3 Media Display Time 14
[I1.3.1 Estimation for Continuous Streams 16

[f1.3.2 Estimation for the Shared Windows Stream 50

L4 Summaryo 0oL 53

IV Synchronization Algorithms 55
IV.1 Synchronization Condition Between Streams 35
[V.2 The Lip-Synchronization 58
[V.2.1 Implementation [ssues 62

[V.3 Synchronization of the Shared Windows Stream 63
IV.3.1 Kev Considerations 63

[V.3.2 The Synchronization Algorithm 65

IV4 Summary oL 70

V Media Synchronization in Distributed Systems 72

V.1 Extracting the Synchronization Information from Mixed Audio Streams 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V.2 A Common Time System for a Multimedia Application

V.3 Summary e

VI Effect of Network Load
VI.1 Lip-Synchronization
Vi.1.] Experiment Description
VI.1.2 Results and Evaluation
V1.2 Svnchronization of Shared Windows
VI.2.1 Experiment Description
V1.2.2 Results and Evaluation

VI3 Summary

VII Results and Conclusions
VII.1 Media Synchronization Specification
VIL.2 Media Display Time 0.0 o 0oL
VIL.3 Svnchronization Condition
VIL.4 Lip-Synchromization
V.5 Svnchronization of the Shared Windows Stream
VIL.6 Extension to a Distributed System
VILT Future Worko

VILS Impact of Contribution
References
Appendix A Classification of X Requests

Vita

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

97

98

99

110

111

List of Tables

xi

Table Page

[Il.L Variation of the inter-arrival time [ms|.
[[1.2 Effect of real-time scheduling.
[II.3 Notations.

[II.4+4 The RTT time for a Unix socket in the presence of various loads. . .

IV.1 Specification of lip-synchronization protocols.

IV.2 Specification of X-windows synchronization protocols.

V.1 Percentage of audio and video frames successfully delivered at the
destination in the presence of heavy network load.

VI.2 Percentage of video frames skipped with protocols P2 and P3.

VL3 Evaluation of the asvnchrony between audio and video in the presence
of heavy network loads [number of audio frames].

VI[.4 Evaluation of the asynchrony between audio and X windows in the

presence of heavy network loads [number of audio frames].

A.l X Requests that crash the X client if dropped.
A.2 X Requests that crash the X client if dropped (cont.)

A.3 X Requests that freeze the X client if dropped (queries).

A4 X Requests that freeze the X client if dropped (cont.)
A.5 X Requests that affect other X clients if dropped.
A.6 X Requests that can be safely dropped.

A.7 X Requests that can be safely dropped (cont.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

86

Xil

A.8 X Requests that can be safely dropped (cont.) L7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X1il

List of Figures

Figure Page
[.1 A collaborative multimedia application integrating audio. video and
shared windows.o 3

[.2 Effect of mixing audio frames on the temporal synchronization problem. 9

[II.1 The video inter-arrival time variation when video. audio and the

following job was running: (a) none. (b} read from disk. (c) print on

the console. (d) twenty busy processes. (e) random memory write and

(f) Mosaic. move windows on the screen. 33
[II.2 The video inter-arrival time variation in real time when the following

job was running : (a) twenty busy processes (b) Mosaic. move windows

on thescreen. 34
[II.3 The mechanism of sharing X clients using XTV. 38
[[I.4 Effect of load on the display time of a video frame when: (a) no other

load was introduced in the system. (b) the window was sometimes

moved. {c) a busy process was concurrently running, and (d) another

video image was displayed. 0oL L 47

IV.1 Intuitive interpretation of the model (a) ideal case. (b) when video is

ahead. (c) when videoislate. 56

V.l The packet queue and the values of lastDequedAudioPacket and
lastStrearn Packet variables for two audio streams at three time in-

SLANCES. L L e o e e e e e e, 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V.2 The time diagram for evaluating the starting time.

VIl The Network configuration.
V.2 Variation of the skew between audio and video with protocol Pl (no
correction). when a load of (a) 8 Mbps. (b) 8.25 Mbps. (c) 8.5 Mbps
and (d) 38.75 Mbps was put on the network.
VI3 Variation of the skew between audio and video with protocol P2 (skip
a late video frame. delay an early video frame). when a load of (a) 3
Mbps. (b) 8.25 Mbps. (c) 3.5 Mbps and (d) 8.75 Mbps was put on the
network.o
V1.4 Variation of the skew between audio and video with protocol P3
(delay an early video frame. delay audio if it is a trend for video to be
behind. no video skip). when a load of (a) 8 Mbps. (b) 8.25. Mbps. (c)
3.5 Mbps and (d) 8.75 Mbps was put on the network.
VL5 Variation of the skew between audio and video with protocol P4 (no
video skip. delay video if it is behind. delay audio if it is a trend for
video to be behind). when a load of (a) 3 Mbps. (b} 3.25 Mbps. (c) 3.5
Mbps and (d) 3.75 Mbps was put on the network.
V0.6 Variation of the skew between audio and the X windows stream with
protocol X1 ((a). (b). (c)) and with protocol X2 ((d). (e). (f}) when
a load of (a) and (d) 6 Mbps. (b)and (e) 7 Mbps. (c) and (f) 8 Mbps
was put on the network. L.
VLT Variation of the skew between audio and the X windows stream with
protocol X3 ((a). (b). (c)) and with protocol X4 ((d). (e). (f)) when
a load of (a) and (d) 6 Mbps. (b)and (e) 7 Mbps. (c) and (f) 8 Mbps

was put on thenetwork.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xiv

Chapter I

Introduction

“Tell me and I'll forget; show me and | may
remember; involve me and I'll understand”.

Chinese proverb

Recent advances in computer and network technologies have made feasible a
new generation of distributed applications. such as videoconferences, distance learn-
ing, and tele-medicine®. These applications integrate different information media:
audio, video and data; therefore they are called multimedia applications.

Collaborative multimedia applications provide users with more than audio.
video and data; they also provide a shared workspace. which is comiprised of text.
graphics and drawings [31. 32. 34]. Providing audio and video enabhles participants
to communicate verbally and visually on a task. Providing the shared workspace
enables participants to have the same view of the shared windows on their screen.

Figure 1.1 shows the interface of IRI [32]. a collaborative multimedia appli-
cation developed at Old Dominion University. IRl is used for teaching classes when
students are situated geographically apart from each other. In this instance. the

teacher and two students are involved in a discussion regarding an AUTOCAD tool.

*The thesis used as journal model the article “Using Timed CSP for Specification Verification and

Sirnulation of Multimedia Svuchronization™, [EEE Journal of Selected Areas n Communications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure [.1: An instance of IRI multimedia application interface.

The svstem captures the audio and video streams originating from teacher’s and stu-
dents’ machines and presents them on each workstation. Because the teacher has
started auto-cad. the corresponding window appears on every student workstation.
In addition. the teacher’s interaction with auto-cad is visible to each student through
the mechanism of sharing windows.

A critical issue that any multimedia system has to address is how media
streams are synchronized when they are plaved to the end users. In this context.
multimedia synchronization can be defined as the task responsible for the temporal
coordination and presentation of multimedia objects.

At the source. there is a specific temporal relation between the streams. At
the destination. this temporal relation needs to be preserved during the presentation.
As an example consider the IRI application. The teacher’s workstation (source)
establishes the temporal relation between his audio, video and auto-cad interaction.

This temporal relation needs to be preserved by the audio, video and the shared

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure [.2: A collaborative multimedia application integrating audio. video and

shared windows.

windows processes on each student workstation (destination).

Our work focuses on providing fine-grain svanchronization of audio. video and
shared windows streams in a collaborative multimedia system. To ensure portability.
we design our synchronization algorithms to work on top of the existing transport
protocols such as UDP or RTP [39].

Although previous related work {17, 23] used real-time networks and operating
svstemns as a solution to achieve high-quality presentations. in our work we concen-
trate on best-effort systems. We made this decision for two reasons: first, algorithms
designed for non real-time systems can also work in real-time ones; second. from our
experience. there are many situations when the real-time extensions of the current
operating systems (e.g., Solaris 2.3) do not offer significantly better performance than

the traditional time-sharing policies [2].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I.1 Issues

Figure [.2 shows the software architecture of a typical multimedia application. Audio
frames are captured by the microphone. queued by the audio device driver. read by
the audio process. sent over the network to the destination application. queued again
by the audio process. and played by the speaker. Similarly. video frames are captured
by the camera. queued by the video device driver and read by the video process. After
that they follow the same path to the destination. Shared windows are generated
by an X client. captured by the data sharing process. sent over the network to the
destination. and then sent to the local X server.

The temporal synchronization problem poses the following issues: (1) assign
the synchronization information. (2) estimate the display time of media units. (3)
assign a synchronization condition. (4) design a lip-synchronization algorithm. (3)
integrate the shared windows stream and (5) extend the solution to a distributed

system. [n the following, we present in detail each of these issues.

I.1.1 Media Synchronization Specification

There is a temporal relation between audio. video and the shared windows media
units’ when they are captured. This temporal relation is called synchronization spec-
tfication. The synchronization specification is used by the destination application
to present the streams. For example. video frame 3. audio frame 2 and the shared
windows packet that displays an image are all generated simultaneously by the mi-
crophone. video camera and the X client. If this synchronization information would
be incorrect. it would be impossible to accurately synchronize the streams at the
receiver.

[deally, the temporal relations between the media units at generation time

'A media unit can be an audio frame. a video frame, or a shared windows packet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Figure [.2. stage 1) are preserved exactly when the media units are transferred to
the source application (Figure [.2. stage 2). In reality. due to the nondeterministic
nature of the today’s mainstream operating systems. the synchronization specifica-
tion perceived at the application level. may be different from the real one. which is
determined when the streams are captured. This is due to the fact that in a general-
purpose operating system. it is fairly difficult to schedule processes at regular time
intervals. as they compete with other processes for CPU.

Existing solutions ignore this issue: they generally determine the synchro-
nization specification based exclusively on the time when media units arrive to the
application [4. 6. 7. 12, 16. 18. 20. 24. 28. 33. 34. 43. 45, 3]. For example. in RTP
[39]. each audio and video packet has a temporal timestamp which indicates the time
the packet has been received by the source audio or video process.

We show how load variation at the source can lead to an incorrect synchro-
nization specification, and describe a robust solution to this problem. Our mechanism
for a svnchronization specification is flexible enough to be incorporated in almost any
temporal synchronization solution. while also substantially improving the quality of
the presentation at the destination.

[n addition. we show that the immediate solution for scheduling multimedia
processes in real-time is not always successful because even if the operating system

1s fully preemptive. the X windows process is not [2].

I.1.2 Media Display Time

To ensure a high quality presentation. the destination application has to schedule
the media units according to the synchronization information. However. merely si-
multaneously transmitting two frames (e.g.. audio and video) to their presentation
devices. does not guarantee that they will be played at the same time. This is due

to various factors. such as kernel buffering and processor scheduling policy, that may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduce a non negligible delay between the time when a media unit is scheduled
by the application and the actual time when it is played by the presentation device
(e.g.. speaker). We call this interval display time.

In the audio case. the display time consists of the queuing delay associated to
the device driver buffer. For video and shared windows. the display time has to take
into account the fact that the video images/shared windows packets are displayved
by another process. i.e.. the X server. The display time consists of both the queuing
delay associated with the X server buffer [46]. and the time interval created while the
X server process waits to be scheduled.

Two media units which are simultaneously sent to their presentation devices
play at the same time if and only if their display times are equal. Since in practice
this is not the case. it is necessary to take into account the media display times in
order to correctly synchronize the media units. The effect of the media units™ display
time on temporal synchronization has been partially considered by Elefteriadis [16].
and Owezarski [42]. While Elefteriadis accounts for only the display time of audio
frames. and neglects the display time of video frames. Owezarski assumes that the
display time is the same for both audio and video frames. which greatly simplifies
the problem.

In Chapter [II we show the importance of differentiating between the audio.
video and shared windows display times and propose a set of algorithms that take

into account these times.

I.1.3 Synchronization Condition

Usually. a synchronization algorithm defines a condition that streams should meet
in order to be synchronized. This is called synchronization condition. Examples
of synchronization conditions are: (1) media units with the same sequence number

should play simultaneously [11], (2) the difference between the acquisition timestamps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the master and the slave* frames should be smaller than the accepted asynchrony
between the streams [12. 13. 16. 24. 43. 45. 49. 3], and (3) streams should all reach
a synchronization point in order to play [33].

Note that in these examples. the second condition requires timestamps. which
represent redundant information since frames are already assigned sequence numbers
in order to detect network losses. The first condition assumes that the streams to be
svanchronized have media units with the same duration®. Similarly. the third condition
assumes that the frame durations have a common divisor. These restrictions make
the solutions based on these conditions quite inflexible. For example. using these
svnchronization conditions makes it very difficult. if not impossible. to arbitrarily
change the audio frame sizes at run-time in order to optimize the transport protocol
(see [23] for such optimization).

We address these problems in Chapter IV. where we propose a new synchro-
nization condition that can handle streams with arbitrary media unit duration. and

vet not waste the network bandwidth.

I.1.4 Lip-Synchronization

The purpose of a lip-synchronizationY mechanism is to overcome the delavs in-
troduced by the network and the operating system. This is usually achieved by
relving on interprocess communication mechanisms to coordinate media unit presen-
tation based on the relative progress of the streams. The two streams are synchro-
nized by dropping video frames if video is late or pausing the video stream if it is

ahead [4. 6. 7.8.9. 11, 12, 13. 16, 18. 20, 24, 28, 43, 49. 60].

‘A master stream is usually played without any of its frames to be delayed or dropped: on the
other hand. the frames of the slave sireamn are delayed or dropped if needed in order to match master

strearn frames.
3For periodic streams. the media unit duration is equal to the stream period.

YThe synchronization of audio and video is called lip-synchronization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From our experience, the “drop-delay video™ approach works fine for 320 x 240
pixels. 24 bits depth windows. but it does not always work for 640 x 480 windows.
when the display of a video frame takes up to 250 ms. When the “drop-delay video™
approach is used. the image freezes frequently as a result of many video frames being
dropped.

Our lip-synchronization algorithm does not drop any video frame. The syn-
chronization is achieved by estimating the display time of video frames and delaying
audio when silence periods are detected.

Obviously more hardware resources such as memory. better video boards and
faster machines may significantly improve the behavior of the algorithms. For ex-
ample. from our experience in the [RI project. in fall of 1997. while running I[RI
without any synchronization mechanism. there was an average of 250 ms skew be-
tween audio and video and the presentation was visibly annoving. After the machines
were upgraded from 75 MHz to 100 MHz. under the same conditions. there was no
observable skew between the streams. Does this mean that we need to ignore the
lip-synchronization issues and consider them to be problems which can be solved

by new or better hardware ?

In our opinion simply increasing hardware resources
is not an acceptable solution. There are still cases of transient overload, such as
when a large postscript file is displaved, that needs to be handled correctly. In ad-
dition. a complete algorithm would permit the use of old workstations with good

results. Thus. our approach is to identify the key issues for lip-synchronization and

to develop mechanisms that efficiently utilize any existing resources.

I.1.5 Synchronization of the Shared Windows Stream

Audio is a periodic, stateless stream. Video is a periodic, stateful stream, because it
explores temporal redundancy and models a picture as a translation of the picture at

a previous time (e.g. in CellB the current picture is expressed as pixels difference from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the previous one). However. even if a video frame is dropped. the video application
does not crash. On the other hand. the shared windows stream is a stateful and
aperiodic stream. A request usually depends on the previous requests. For example.
a request to create a window is related to the previous request which creates the
parent window. If audio and video media units can be dropped in order to keep the
streams synchronized. a shared windows request can be dropped only if we are sure
that no subsequent request will refer to it: otherwise the application may crash.

The difficulties in synchronizing the shared windows stream are due to both
(1) its stateful character. and (2) the large display times of some requests!l. which
require putting an image or filling a rectangle. In addition. the type of a request does
not necessarily say how long its display time is. For example. the display time for
the request that displays an image (Put/mage [46]) on the screen is around 13 ms for
the maximize/minimize/close window bitmap. and up to 475 ms for a three square
inches color picture.

So far. the existing solutions either delay audio when the shared windows
stream tends to be behind [35]. or change the rate of the shared windows stream
to catch up with the other streams [33]. From our experience. in a real-time video
conference where the shared X clients load pages with heavy graphics. the shared
X windows stream is far behind the audio stream (6-7 seconds). This is due to the
cumulative effect of large display times of the shared windows packets. In this situ-
ation. delaying audio makes the presentation very annoying. Adapting the sending
rate of the shared windows stream is somewhat ineffective given that the rate of play-
ing the shared windows requests depends on the X server processing rate. In many
cases. such as performing heavy window updates. this rate lags significantly behind
the audio. As a result. these solutions are not adequate under heavy shared windows

traffic.

'We assume that each media unit corresponds to exactly one shared windows request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Source 1 Source 2
Teacher Destination Mary
24 Jobn
25
26 Auadio Audio frames it contains
played [Tegcher Mary
b2) b} -
5 25 -
6 26 1

Figure [.3: Effect of mixing audio frames on the temporal svnchronization problem.

Our solution to synchronize the shared windows stream with continuous streams.
such as audio and video. is to identify the requests that can be dropped and to drop
them when the shared windows stream is behind. In addition. if this is not enough.
we can delay the X client that generates the requests until the receiver’s X server
catches up. In practice. this algorithm proved to be robust in the presence of very

heavv shared windows traffic.

[.1.6 Media Synchronization in Distributed Systems

[n the case of a multiparty application. an additional problem is caused by the fact
that when more than one participant speaks at one time. incoming audio streams need
to be mixed at the destination before they are plaved. As a result. the svnchronization
information is lost.

To better understand this problem. consider the example of a session with
one teacher and two students. John and Mary (see Figure [.3). Initially, assume
that only the teacher speaks. Consequently. the audio process on John’s workstation
will receive the teacher’s audio frames and send them to the audio device. The
audio device maintains a counter of the frames played so far. As long as the teacher

15 the only one who is talking. there will be a one-to-one correspondence between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

the sequence number assigned by the teacher to his audio frames and the sequence
numbers assigned by John's audio device to the frames it plays.

Assume that after 25 audio frames from the teacher are played. Mary starts
to speak too. Then the 26 audio frame played by John's audio device will now
contain the 26* teacher’s audio frame and Mary's first audio frame. Video and audio
streams originating from each sender (the teacher and Mary in our case) should be
svinchronized among themselves. In the teacher’s case this is quite easy. since a
request to the audio device will give the correct sequence number 26 of the frame
which is currently playing. However. this is not true for Mary. When her first video
frame plays. a request to the speaker returns audio frame 26 as the current playing
audio frame. [f this is interpreted as her current audio frame. that is audio frame 26.
then all of the video frames coming from Mary will be dropped.

Our literature search indicates that the issue of maintaining the correct syn-
chronization information of mixed audio streams has been ignored in previous work.
We address this issue in Chapter V. where we propose a simple mechanism which
maintains the list of the audio frames sequence numbers that are mixed in each au-
dio frame sent to the audio device. This way the synchronization information from
multiple sources is preserved.

A side issue that needs to be addressed in the context of a distributed system is
the common time at all workstations. This is useful if the application is recorded and
played back. since it provides a global order of events in the system. Our motivation
to investigate this issue was the requirement that [RI application needs to be recorded
and played back. There are numerous solutions in literature for this problem. among
of which are the following. One solution is to use the service provided by the U.S.
National Institute of Standards and Technology (NIST) [61]. Unfortunately. although
this service is accessible through a regular modem. it is not suitable for a large

population of clients trying to access it simultaneously. Another solution is to use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

the Unix time daemon timed. which is based on an elected master host to measure
offsets of slave hosts and to send periodic corrections to them {[19]. Similarly. the
solutions proposed in {36]. [45] and [3] assume a master workstation that provides
the time. A drawback of these solutions is that the master workstation represents a
single point of failure. In addition it can be a bottleneck in the presence of a large
number of workstations. As an alternative. we propose a lightweight scheme that
assumes no dedicated time servers and no dedicated hardware. We note that at the
time we developed this solution [56]. we have learned that a similar one is used by

the OSF Distributed Computing Environment [47].

I.2 Objectives

[n this thesis we study and develop a set of mechanisms that ensure synchronization
support for distributed multimedia applications which integrate audio. video and the
shared X-windows stream.

Our objectives are the following:

l. provide a correct synchronization specification at the sender

(S

. account for the display time at the receiver

3. design a synchronization condition

4. design the synchronization algorithms

1)

. extend our algorithms to a distributed system. To achieve this we need to

e extract the synchronization information from mixed audio streams

e provide a common time for a distributed multimedia application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
1.3 Experimental Setup

To verify and validate our algorithms. we used the Interactive Remote Instruction

(IRI) project [32]. developed at the Computer Science department of Old Dominion
University. [R/[requires synchronization support in a distance learning multimedia
application where parties use best-effort operating systems and networks.

The experiments in this thesis used SPARC 5 workstations. with 32 NMb
of memory. running Solaris 2.5 and equipped with Sun audio and video devices.
The workstations are interconnected by a Switched Ethernet (3ComLinkSwitch1000)
which basically creates a dedicated 10 Mbps link between any two workstations. We
captured the audio and video of the teacher sitting at a workstation and played the
streams on another workstation. Video frames (640 x 430 pixels) were CellB [59]
hardware compressed. software decompressed and displaved in an 8-bit depth win-
dow. The media unit duration of an audio frame was 64 ms. while the media unit

duration of a video frame was 100 ms.

I.4 Outline

The thesis is organized as follows. Chapter II describes work related to each of the
issues under consideration. In Chapter Il we show why real-time is not a suitable
solution for the temporal synchronization problem. We also introduce our synchro-
nization specification and mechanisms for estimating the display time of audio. video
and shared windows streams. In Chapter [V we describe our lip-synchronization algo-
rithms. while in Chapter V we introduce a complete solution for svnchronizing audio.
video and the shared windows stream. Chapter VI presents experimental results and
the evaluation of our protocols. Finally. Chapter VII summarizes the contributions

and applications of our work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Chapter II

Related Work and Motivation

“The important thing is not to stop questioning”.

Albert Einstein

During the past few vears. a large number of services. protocols and mecha-
nisms have been developed to meet the synchronization requirements in both local
and distributed networks. Our work relates to research in {1) media svnchroniza-
tion specification. (2) media display time. (3) svnchronization condition. (4) lip-
svnchronization. (3) svnchronization of the shared windows stream. and (6) extension
to a distributed system.

In this chapter we describe the most representative work in the temporal
synchronization field and the motivation of our work. We begin by presenting a
solution for assigning a correct synchronization specification to media units and two
solutions for estimating the display time. Next. we describe the synchronization
conditions widely used in literature and the lip-synchronization solutions that use
them. We continue by presenting two algorithms that synchronize the shared windows
stream with audio and video. Finally, we describe two synchronization algorithms

that achieve a global clock in a multimedia system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I1.1 Media Synchronization Specification

A multimedia process timestamps each frame. [deally. the timestamps assigned by
the source application reflect the same temporal relation between the streams as the
temporal relation when the streams were captured. In the presence of workstation
load. the times when media units arrive at the application greatly vary and conse-
quently the synchronization specification assigned by the application may be wrong.
As this is used by the destination application to synchronize the streams. the whole
presentation may be annoying.

A solution to this problem is to discard every frame that arrives after its
deadline {13]. For example, for a 30 frames/sec video rate. the deadline is 33 ms
after the deadline of the previous frame. In this situation. even if two temporally
related audio and video frames arrive late at the source application. they are both
discarded. As frames may also be discarded by routers while being sent over the
network. the approach may result in too many and unnecessarv discarded frames.
Our policy is that only the destination application discards frames in order to achieve
synchronization. Therefore. in our work. we assign a synchronization specification by

estimating the correct time a media unit has been generated.

II.2 Media Display Time

After media units arrive at the destination. the application presents them to the user.
The variable delays caused by the operating syvstem and the presentation devices may
lead to situations that two media units sent at the same time to their presentation
device. actually end up playving at different times. Depending on the difference be-
tween the times the media units are actually visible to the user. the presentation may
be in sync or not.

Elefteriadis [16] proposes a mechanism that estimates the display time of an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

audio frame based on audio device buffer occupancy. To find the sequence number of
the currently playing audio frame. the system keeps a finite history of received audio

frames. The audio frame k that currently plays. satisfies the condition

{

{
Y Lla) 20(t.,)> Y L(a) (IL.1)

t=k t=k+1

where L(a,) denotes the length of the ~-th audio frame in samples. [is the
most recent audio frame received and O(¢,) is the kernel audio buffer occupancy
(in samples) when video frame j was received. The display time of a video frame is
ignored. Owezarski [42] assumes that the display time is the same for both audio
and video frames, which greatly simplifies the solution.

In our work we show how important it is to account for the display times of

video and the shared windows streams and we provide appropriate solutions.

I1.3 Synchronization Condition

The synchronization condition is the condition for presenting the media units to
the user. If the synchronization condition is satisfied. a media unit is played. if not.
resvnchronization is required.

Widely used in literature are the timestamps [4. 6. 7. 12. 16. 13. 20. 24. 28, 35,
34. 43. 45. 3]. sequence numbers (if media units have the same duration) [L1. 13. 49].
and synchronization events [8. 9. 60]. For the timestamps and the sequence numbers.
the synchronization condition requires that two media units with the same timestamp
or sequence number to be presented at the same time. In the case of synchronization
events. the synchronization condition states that two media units are presented when
they both reach the same synchronization event. There are also approaches that
use Petri nets [21, 30]. dedicated languages. like Smil [22] and Esterel [14]. and

grammars [44]. where special constructs state the conditions the streams need to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

satisfv in order to be synchronized.

Both the approaches based on sequence numbers and synchronization events
restrict the streams to be in a special relation. precisely. their media unit durations
to have a common divisor. For example. for a 30 frames/sec video stream. the
media unit duration of the audio stream should be a multiple of 33 ms. in order
to assign synchronization events. or 33 ms in order to assign sequence numbers.
with the existing solutions. This restricts very much the application. as usually
audio has a higher rate than video. in order to minimize delays. The solutions that
use timestamps. waste network bandwidth. as packets are already assigned sequence
numbers in order to detect network losses.

[n our work we suggest a simple mechanism that allows streams with different
media durations to be synchronized. uses sequence numbers in order not to waste
network bandwidth and does not require any special language or grammar construct.

thus making it easy to be integrated with any other application.

I1.4 Lip-Synchronization

Audio and video streams impose tight temporal constraints. A presentation is con-
sidered to be in the user desirable range as long as the skew between the two streams
ts within (-80. +80) ms [54]. However. a skew between (-160. +160) ms. although
visible. is not annoying. There have been many synchronization proposals in the last

few vears. The most representative are as follows:

ACME Server [1] developed at the Massachussets [nstitute of Technology assumes
a real-time operating system. The algorithm uses a logical time system (LTS) that
can be device. connection. or clock driven. For example. in a multimedia conferencing
system. the LTS is connection driven: each stream maintains its LTS and its current

time. For a multimedia document browser. the LTS is device driven: each stream

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I8

keeps track of its current time. but there is only one LTS for all the streams. driven
by the device of the master stream (e.g.. the audio device). The LTS is incremented
every time period of the stream (if device or connection driven) or of the clock (if
clock driven). For example. for a 30 frames/sec video rate. it is incremented every
33 ms. The current time is incremented when a frame has arrived. To keep the LTS

and the current time in sync. frames mav be dropped or duplicated.

Athena Muse [20] developed at the Massachussets Institute of Technology uses a
time dimension where streams are attached to. No two components are tied to each
other. making easv to add. remove channels. A time dimension has a current position
in its range. updated by signals. User-interface controls (scroll-bars and command
buttons) or the system clock can generate the signals. Interstream svnchronization is
achieved by keeping each stream in sync with the time dimension (making an analogy
with the ACME Sever [4]. we can view the time dimension as an LTS which is device

driven.)

Xphone [16] is a multimedia communication system developed at Columbia Univer-
sity. [t provides synchronized playback of audio and video locally or across a network.
At the sender. audio and video frames are timestamped. At the destination. an audio
frame is immediately playved. while a video frame is played if the following condition

1s satisfied:

2, Str o<t (11.2)

k-1 — Y,

where ¢ is the acquisition time of audio frame & (that is currently plaving)

and ¢} is the acquisition time of video frame j (the last one received). If ts, < tq

A —1 "

then the video frame is dropped. If ts, <t . then the video frame is queued.

Continuous Media Player [49], developed at Berkeley University is a system that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

plays audio and video on UNIX workstations. Audio frames have higher priority and
are played as soon as they arrive at the destination. Video frames have associated
an earliest start time and a latest start time. Frames that arrive within these two
times are played. A late video frame is dropped. an early frame is delaved. The
plaver uses an adaptive feedback algorithm to match packet flow to the available
resources. Every 300 ms, it computes a penalty of 10 points if a video frame is
dropped or lost in the network. If two consecutive frames are dropped. the penalty
is still 10 points. The player uses the penalty to adjust the current frame rate as
follows: currentgs.. = currentpg.(l — penalty/100) + rning,,. x penalty/100. If the
penalty is 0. no adjustment is made. If the penalty is between 0 and 100, the current

rate is reduced. If the penalty is 100. the current rate is set to a minimum rate.

Recently. Qiao and Nahrsted [43] from the University of [llinois at Urbana-
Champaign. have designed a fine-grain lip-synchronization algorithm for best-efforts
environments. At the end of the decoding time of an audio frame. the decoding time
of the corresponding MPEG video frame is estimated. by averaging over previous
values. The video frame is decoded only if its decoding time is smaller than the
difference between the play time of the video frame and the play time of the audio
frame (+80ms). An [type frame is decoded and played even if late. unless only [type
frames are left in the down stream. A P type frame is decoded and played unless it is
the last one before the next [frame. After late [or P frames are played. subsequent

B frames are skipped to catch up.

The MultiSync model [12] developed at National Taiwan University assigns higher
priority to most important media (e.g.. audio) and lower priority to other media
(e.g. video. text). The highest priority stream is played continuously. while the lower
priority streams adopt a delay-or-drop policy. Interstream synchronization is ensured

by an absolute synchronization of each media with a time axis. The video process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

uses three timestamps — start time. end time and current time — to check whether
a frame should be played or not (start time and end time represent the beginning
and the end play times for the video frame. while current time is the time at which
the frame has been received by the video process). If the current time is between the
start and end times. the video frame is played. If it is greater than the end time. the

frame is dropped and if it smaller than the start time. the frame is delaved.

Fujikawa et al. [13] from the University of Taiwan. suggest a mechanism based on
streams rate monitoring. The presentation consists of a group of objects. where each
object may comprise audio. video and text. The play time of each media unit of an
object is an offset from the time the object started. For example. assume that an
object consisting of audio and video starts at 5:00. The offset for the first audio frame
1s 0 and the offset for the first video frame is 2 minutes. Audio will start plaving
at 5:00 and video will start playing at 5:02. The presentation may be delaved or
accelerated by modifying the start time of the streams. and thus the absolute playing
time of its units. Using the previous example. if the video stream is 2 seconds late.
then. its start time is modified to be 1:58. If video stream is 2 seconds early. its start

time is modified to 5:02.

Blair et al. [3] have designed an object-oriented platform that can be used for both
intra and interstream synchronization. using the parallel programming language Es-
terel and a modified version of the Chorus real-time microkernel. An Esterel program
consists of a set of parallel processes that execute svnchronously and communicate
with each other by signals. As an application of the platform. they present how syn-
chronization for audio and video can be achieved. There are three objects : audio
(A). video (V') and a coordinator (R). Whenever an audio/video frame arrives from
the audio/video device. 4/V" sends a signal to R and waits for a signal from R that

tells when to play the audio/video. A also sends to R a signal a,.,4 which encapsu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.)1

lates a hardware interrupt when the requested audio data presentation is over. When
R receives an a,.,q signal from A. it computes the next ideal time for an audio frame
and signals - to play an audio frame as soon as it comes. Thus. audio will play
continuously. while video checks for interstream synchronization. When R receives
a signal from V indicating that a frame has arrived. it computes the ideal time for
that frame and if the time difference between the ideal time for the last audio frame
and the ideal time for the video frame is greater than 100 ms. it emits a signal. The

application may react to this signal by lowering the transmission rate.

Correia and Pinto [13] from the University of Portugal. have done the only work
we are aware of that takes into consideration the effect of workload variation at the
transmitter on streams syvnchronization. Their solution is to drop a frame that has
arrived late at the application. The next frame will carry an indication of this action.
The interstream svnchronization mechanisms assumes that the streams have the same
media unit duration. Each media unit has associated a reception timestamp. If the
difference between the reception time of master unit n and the reception time of
slave unit n i1s greater than a threshold. then the master stream is delayed. This

mechanism is implemented for each master-slave pair.

Biersak et al. [7] from Institut Eurecom. France, have developed a scheme for the
continuous and synchronous delivery of stored multimedia streams. when a stream
is distributed over multiple server nodes. Each media stream is partitioned into n
equal size parts. called sub-frames. that are stored on the n different servers. First.
the round trip delay between the client and each server is computed. Based on it.
the starting time for each server is calculated and transmitted back to the servers.
To guarantee the timely presentation of a single stream subject to jitter, for each

sub-stream k. a total buffer b; is provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bk = I_2 X Alv: + Amcu: - -Xk-{»‘[([['3)

where \; is the jitter for substream k. A, is the maximum jitter for all the
substreams and A, is the maximum standard deviation of the propagation delay
from the server to the client. for stream k. For each substream buffer. a lower water
mark and an upper water mark are defined. When the buffer level falls outside of

this range. then each server is notified to either skip some media units or pause.

Baqai ¢t al. [6] from Purdue University propose five synchronization schemes for
media units arriving from a server through a set of channels. assuming that the net-
work uses a static reservation scheme and provides multiple channels with guaranteed
bandwidth and delay bounds. All algorithms try to preschedule the transmission of
the media units at the servers. so that they arrive at the destination before their
play-out deadlines. Algorithm A makes a list of media units ordered by their play-
out deadlines. The media units are then scheduled to be transmitted one by one on
the earliest available channels. In algorithm B. media units are again scheduled in
the order of their deadlines. and the scheduling time for transmission is computed
such that the media unit is available at the client before its play-out deadline. Al-
gorithm C also takes into consideration the size of the media units. favoring smaller
size frames. Algorithm D forms the schedule as follows. Media units are scheduled
for transmission according to their play-out deadlines. To account for the maximum
jitter. the actual schedule is constructed by reducing all the schedule times by the
maximum jitter. Algorithm E is identical to algorithm D. except that the initial list
of media units is ordered by a combination of sizes and deadlines. Algorithms D
and E are suited when destination buffers are severely limited and media units lost
due to buffer overflow and deadline misses are tolerable. Algorithms B and C are
most effective when the destination buffer is not severely limited and fewer deadline

misses are desired. Algorithm A is most suitable when the destination buffer is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a concern.

Little [29. 30| from Boston University. uses Petri nets for expressing temporal de-
pendencies between streams. Each multimedia object has associated a start time
and a duration. An object is associated with a stream and can contain one or more
frames (for continuous streams) or one or more text/images. Based on this. a plavout
schedule for all streams can be computed and modeled by a Petri net. Each stream
is also assumed to have a queue from which a frame is selected to be presented. In-
trastream synchronization is done by controlling the queue level of each stream. If
the queue level for the stream k is greater than nominal. frames are dropped. If it
is lower than nominal, frames are duplicating. The workload variation is not taken
into consideration.

These techniques are suited for creating multimedia presentations and would
inquire overhead if used in live synchronization or record and playback of multimedia
applications. In a live synchronization. they are not suited because the temporal
relations between streams are not known in advance. [f applied to record and play-
back of applications. then a program should convert the timing information between
streams from one format (timestamps. synchronization events) into a Petri Net or

another specific language format which adds unnecessary overhead.

I1.5 Synchronization of the Shared Windows

To the best of our knowledge there is only one group at the University of Michigan.
that studies the synchronization of audio. video and the shared windows stream. In

this section we describe their results.

Mathur and Prakash [35] propose a protocol for synchronizing shared X windows
and real-time audio in computer supported environments. They assume that the

workstations have synchronized clocks. Since audio has stringent jitter and latency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

requirements. audio is the master stream. while the windows stream is the slave.
Audio packets arriving after their playback times are dropped. If a windows packet
is received. it is put into a stack. When an audio packet arrives. it is plaved back
along with the windows events from the stack that satisfy the condition tw,., <
(taseginrec + 0.5ARECT [ME). where tw,,, is the timestamp when the window event
was received by the application at the sender. tas.gnr.. is the time the last played
audio packet was recorded at the sender and ARECTIVE is the time it takes to
record an audio packet. The protocol bounds how far the window-event stream can
get ahead of the audio stream. [t also adapts to situations where audio is ahead. by
monitoring the asynchrony for a given number of window packets over a period of
time. Asynchrony is defined as ASY.VNC = (twpq,, ~ taglay,) — (LWyen, = tdheginrec,)
where twp,,, is the time the i** window event is played. tapiay, is the time the last
audio packet jis played. tw,.,, is the time the i** window event was generated and
t@beginrec, 15 the time the last audio packet j began recorded. If the asynchrony is
greater than a maximum value (100 ms). over a time interval longer than 500 ms and
there are sufficient window events (more than 10). the protocol adapts by delayving
the audio stream.

The protocol does not consider the effect of the load variation at the trans-
mitter on the correctness of timestamps assignment. Also the use of synchronized
clocks may restrict activities. Finally. it does not provide an extension for more than

two streams.

Manohar and Prakash [33. 34] introduced the concept of replayable workspaces
and propose a protocol that synchronizes time dependent and time independent
(shared windows) streams. Synchronization uses a master/slave model. During the
capture of the session. a synchronization event is posted at a well defined point of the
master stream (e.g.. end of an audio frame) and is also inserted into all slave streams

(e.g. the windows. video streams). During the replay of the session, the scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

of a synchronization event attempts to reset inter-stream asynchrony to zero. For
any two streams (e.g.. audio and windows). the svnchronization algorithm proceeds
as follows : if a window event is ahead of audio. it waits for matching audio frame.
If this is a trend for the window stream (to be ahead), the algorithm compensates
by decreasing the replay speed of window stream. If a window event is behind audio

and this is a trend (to be behind). its replay speed is increased.

I1.6 Synchronization in Distributed Systems

Son and Agarwal [3] from the University of Virginia present a synchronization
model for recording and playback of distributed multimedia applications over ATM
networks. The architecture suggested is the following. All workstations are connected
to a multimedia server (MMS). When the session is recorded. every packet sent by
a source is timestamped with the local time and sent to the WMS. In turn. MMS
assigns to the packet a relative timestamps (RTS). At playback. synchronization is
based on the relative timestamps. Frames that have the same RTS have to be played
simultaneously.

RTS are assigned using a relation between the clocks of the source and the

WMS. This relation is periodically determined. as follows. A session with very low
jitter is established. A trigger packet is sent from the WMS to a site and after time ¢
another trigger packet is sent. Upon receiving a trigger packet. the site timestamps
it and sends it back to WMS. Let ry. ro + t be the instances at the source and y,.
Yo +t+ w be the corresponding instances at the MVS. Then any instant r at a source
will correspond to the MMS instant y = ((¢t + w)/t)(z — ry) + yYo. with a maximum
error e = 2 x mazrd(r — zry)/t. where meazrd is the maximum jitter from MMS to
each source. After establishing the clocks offsets. the session is terminated.

At playback. when the destination receives a packet. it sends to the MMS the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

time when the media data was displayed. Using the above relation. M.MS normalizes
the time and can detect with an error e if packets with the same RTS have been
displayed at the same time. If = and z; are the times (according to the W.MS clock)
when two media units are displayed. then synchronization is guaranteed if |z, — z| <
lal — {e]. where a is the asynchrony and € is a threshold. The streams are out of
svnchrony if |z; — z| > |a] + |e|. In all the other cases. the synchronization between
streams 1s not known. MMS adapts the rate of the slave streams. based on the
detected asynchronies. The model may be extended also to sequential relations. For
example, for a temporal relation A meets B. the timestamps for both the rear of A
and the front of B are sent to WMS. For the relation A overlaps B. the timestamps
of the rears of both A and B are sent to WMS.

This architecture can be also applied to real-time conferences. where data
storage is not involved. Media data are first sent to a server (5S) which timestamps
and sends them to the destination. The total error that may be introduced in detect-
ing the asynchrony is 2e. Since SS may become a bottleneck. more than one machine
may be designated as 5S5. However. the streams that need to be svnchronized have

to use the same SS.

Rangan ¢/ al. [45] from the University of California at San Diego. address the
problem of media storage and retrieval in a distributed system using a relative time
svstemn (RTS) kept by a server. Each media unit generated by a site is associated a
RTS. The first media unit of the master stream starts the RTS and the successive
units increment it. In order to associate a RTS to a slave stream unit. the server
determines the RTS of the master media unit that is generated at about the same
time as the slave media unit. If ¢, and ¢, are the arrival times of media units n,,
(master stream unit) and n, (slave stream unit) at the server. their earliest and
latest possible generation times are e,(nm) = tm — Myeiay, €s(ns) = t; — Miciay.

ln(nm) = tm — Myea, and l(n,) = t, — Myetay, where My.a, and my.., are the
y Yy y y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
=1

maximum and minimum communication delavs. Media units n,, and n, have the
same RTSif mar(lp(nm)—eyns). lyny)—€em(nm)) < Emar. where £, is a threshold
value. Using the above relations. the server assigns a RTS to each media unit. The
RTS is used later at playback. Everv stream sends feedback units to the server. A
feedback unit contains the RTS of the media unit that is currently scheduled for
plavback. Applying the above formulae to feedback units. the server detects which
feedback units have been generated at the same time. Using this information. it finds
the media units that are displayed simultaneously. Asynchrony at plavback can be
detected by comparing the RTS of a master media unit with the TS of a slave media

unit.

I1.7 Motivation of Work

The temporal svnchronization problem is a very important area of research in dis-
tributed multimedia systems. Consequently many solutions have been proposed in
the last few vears. Existing lip-synchronization solutions [4. 11. 6. 20. 43. 49] take
into consideration the effect of the network. but they ignore the effect of workstation
load on the svnchronization specification and on the display time. The load on the
sender machine may lead to an incorrect svnchronization specification. which in turn
may lead to an annoyving presentation. The load on the destination workstation may
determine variable display times of the media units which again may cause an an-
noving presentation. In this context. the main motivation of our lip-synchronization
research is to address these problems. More precisely. our goal is to provide a lip-
synchronization solution that dynamically adapts to both workstation and network
load variations.

The solutions for synchronizing continuous and stateless discrete streams

(other than the shared windows) [8, 9. 12, 13, 18, 24, 28. 45, 3, 60] also neglect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

the effect of workstation load on the synchronization specification and on the dis-
play time. These algorithms cannot be directly applied to stateful discrete streams
anyway. as thev drop every discrete media unit that is late.

[n Section 2.5 we have presented two solutions for svnchronizing audio. video
and the shared windows streams: one that addresses the synchronization between
audio and the shared windows streams {35] and the other one which performs the
svnchronization of audio. video and the shared windows streams [33]. While the
first solution delayvs audio when the shared windows stream tends to be behind. the
second one changes the rate of the shared windows stream to catch up with the audio
stream. From our experience. in a real-time video conference where the shared X
client loads pages with heavy graphics. the shared windows stream is far behind the
audio stream (6-7 seconds) due to the cumulative effect of large display times of
the shared windows packets. In this situation. delaying audio as the first solution
does. makes the presentation annoving. The second approach adapts the rate of
sending shared windows packets to the X server. As the rate of plaving these packets
depends on the X server processing rate. this solution may also not work well for
heavy windows updates.

The solutions existing so far [4.38. 9. I1. 12, 13. 16. 13. 20. 24. 28. 43. 45. 49.
3. 60] ignore the issue of mixing audio streams while preserving the svnchronization
information. In this respect. they are limited to applications where only one user
can speak at a time. In addition. all of them except [45, 3] consider only the
case when the streams have a single origin. thus avoiding the issue of providing a
common time for the application. Regarding this last issue. the solutions we have
investigated. either have a link bottleneck [61]. as the time is accessible through a
modem connection to a mainframe, or have a workstation bottleneck. as they use a
workstation to provide the time [43. 3, 19] which is a single point of failure. VTP [36],

which assumes dedicated time servers that clients can access to adjust their times

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

creates a bottleneck in accessing the servers. too. As an alternative. we provide a

scheme that assumes no dedicated time servers and no dedicated hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Chapter III

Effect of Workstation Load

“A journev of thousand miles must begin
with a single step.”

Lao-Tsu

A multimedia application has to be scheduled at regular intervals. At the
source. this ensures a correct synchronization specification (no device driver queue
overtlow for continuous streams. and no delays in delivering shared windows packets
to the application). At the destination. this ensures that the display time of media
units is constant and that the playout deadlines of media units are satisfied.

A best-effort operating system cannot guarantee these times. as no operation
bound is ensured by the time-shared scheduling policy. A straight solution is to use
a preemptive operating system that gives to multimedia processes higher priorities
than the rest of the processes running on the host. Some operating systems offer real-
time extensions that satisfy these requirements (e.g.. Solaris 2.5). In this chapter we
present some experiments we performed in order to see if real-time is a solution
for having a correct synchronization specification and a constant display time. If
this was the case. then we could run the multimedia processes in real-time and our
concern would be just the synchronization of the X-windows stream. As this was not

the case. later in this chapter we introduce our model for a correct synchronization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

specification and for estimating the display time of media units.

II1.1 Exploring Real-time Capabilities

The real-time capabilities of currently used operating systems allow a user to specify
the scheduling class of a particular process. This by default is time-sharing class. If
real-time class is used. the process is given a high priority which may be even higher
than the priority of system processes. Under this condition. one would expect that
by scheduling audio and video in real-time. their stringent time requirements will be
satisfied.

Next we present some experiments we performed to see if the real-time ex-
tensions of the currently used operating svstems can guarantee the deadlines of mul-

timedia processes.

II1.1.1 Experimental Design

Using the experimental setup described in Section [.3. we have tested both scheduling
policies for multimedia processes: time-sharing and real-time.

The audio process was initialized with the following parameters: SKHz sam-
pling rate. 8 bit precision. mono channel and p-law encoding. The video board was
initialized with a skip factor of 2. which results in 10 frames/sec rate (at the appli-
cation}).

We measured the time difference between two consecutive reads from the
audio device (ideally this should be 125ms) and two consecutive captured frames
from video board (ideally. this should be 100 ms). We call these times the audio and
video inter-arrival times. respectively.

In order to investigate how other processes influence the inter-arrival time for

audio and video, while running the audio/video process we run typical activities for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table III.1: Variation of the inter-arrival time [ms].

Audio Video
Concurrent Standard | Concurrent Standard
activity deviation | activity deviation
none 0.744 | none 3.353
read from disk 1.094 | read from disk 14.334
print on the console 3.636 | print on the console (179
20 busy processes 55.914 | 20 busy processes 18.623
random memory write 3.950 | random memory write 10.390
Mosaic 54.96 | Mosaic 12.509
video 9.688 | audio 4.990
video. read from disk 12.065 | audio. read from disk 8.892
video. print on the console 15.068 | audio. print on the console 14.340
video. 20 busy processes 93.952 | audio. 20 busy processes 113.187
video. random memory write 14.590 | audio. random memory write 12.131
video. Mosaic 107.085 | audio. Mosaic 122.295
Table [11.2: Effect of real-time scheduling.
Audio (RT) Video (RT)
Concurrent Standard | Concurrent Standard
activity deviation (msec) | activity deviation (msec)

20 busy processes

video(RT). Mosaic

0.093

6.046

20 busy processes

audio(RT). Mosaic

0.117

7.057

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a workstation usage :

e [/O bound - a process repeatedly reads a 3 Mbytes file from a server disk. In

another experiment. a process just prints at the console

o CPU computation - a process initializes a variable in an infinite loop. To see
the effect of increasing CPU workload we run one. two up to twenty copies of

this process.

¢ memory bound - a process randomly writes in a 1000 x 1000 matrix to simulate

page faults.

e interaction with X Server - run Mosaic™ and move windows on the screen while

loading pixmaps.

I11.1.2 Measurements

Table [II.1 shows the standard deviation of the audio and video inter-arrival times in
the presence of the corresponding load. Figure III.1 shows the variation of the video
inter-arrival time in each of the experiments. The graphics for audio experiments
show a similar behavior. so we do not present them here. Moreover. since the video
process requires more time to process a frame than the audio process needs for reading
audio data. after each run. the priority of the video process decreases with a greater
value than the audio process priority and hence the inter-arrival time for video shows
larger variations than the inter-arrival time for audio [62].

We have repeated the experiments using the real-time scheduling capabilities
of Solaris. As expected. the results improved. so we show here only the values for

the experiments where the behavior in non-real time was worst (running twenty busy

*At the time we conducted these experiments, Netscape was not widely available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

00
900 voof -
900~ ook -

4 o~ 1 grwv -

£ 13 i

.
00r | .

g gm i

. H

z so0- p € so0 .

H 3

3

£ 0 £ w0

.

f o § o

L4 <
00~ 1 200

:
H

3 500 1000 1500 2000 2600 2000) 500 1000 1500 2000 2300 3000
Number of fames MNurder of frames
(a) (d)
1000
w0o- 1 s0ob .
00r 1 soof -
3 o0~ 3
$ 00 ! ~oah .
2 w0 z
€ r 1 £ soof N
2 2
r -
¢ 500~ 1 £ soof B
3 . '
» 400~ 3 .
: £ oo} |
H g
2 wor S 00}
-
20~ 1 200
.WMMH_WW oo

G

3 500 1000 ts:‘o 2000 2500 3000 e s00 1000 u:om 2000 300 000
(b) (e)
o -
0001 -
mr -
. Tob - 200f .
3 oot -
; famt -
i -
é <00} §'”"F °
& soob .E
Q00
200¢ -
oot tedipdo-inoiitil. ‘
) 500 1000 's:o 2000 :;oo 3000 F) 500 1000 '?m- 2000 200 3000
(c) (f)
Figure [II.1: The video inter-arrival time variation when video. audio and the

following job was running: (a) none. (b) read from disk. (c) print on the console. (d)
twenty busy processes. (e) random memory write and (f) Mosaic. move windows on

the screen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

900 — v r
900+ MP
o 200>
i ro0- 00~
g H
- &
£ %00~ a 6oor
3 z
3 3
Z s00- 3 %00
: T
3 wa- E “@or
S < ook
E -
2 w0 1 00 '
200~ 200r
00 100 - “ur)
3 3=)
) 500 1000 1500 2000 2500 3000 " 500 1000 1500 20G¢ 2500 J0OC 1500 4000 4500 5000
Number of fames Nusmber of Yames.

(a) (b)

Figure [[[.2: The video inter-arrival time variation in reai time when the following

job was running : (a) twenty busy processes (b} Mosaic. move windows on the screen.

processes and running Mosaic). Table [II.2 shows the standard deviation in each

case. Figure [IL.2 shows the variation of video inter-arrival time.

ITI.1.3 Results Interpretation

From these experiments we see that both audio and video are most influenced when
twenty busy processes were running or when we run Mosaic and move windows on
the screen. Even though the standard deviation is small in all of the experiments.
and one might conclude that on the average. the behavior is very good. this is a
result of a mix of very small and large inter — arrival times. If the inter — arrival
time 1s greater than the time required to fill the kernel audio/video device drivers
queues. this will result in an overflow and data losses. This fact has to be taken into
account by the synchronization specification. since it directly affects the interstream
synchronization.

When running video and Mosaic. the highest spike in the video inter-arrival

time was 3 seconds. Similar values were obtained for audio. Twenty busy processes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

introduce many spikes around 0.7 seconds. When running video. audio and Mosaic,
the highest spike for video inter-arrival time was 3.3 seconds. Again. spikes around
0.7 seconds appear when twenty busy processes run. As expected. the greater the
number of busy processes. the more the performance of the video/audio processes
degrades.

Although busy processes affect audio and video. the worst inter-arrival time
variation for both audio and video was obtained when Mosaic was running and win-
dows were moved on the screen. Since Mosaic involves not only interaction with
the window system but also communication. we wanted to isolate the effect of com-
munication. To do so. while running the video process we run a process that was
continuously executing “ftp” from a remote site. [n this experiment. the variations
were small. [n another experiment. we run Mosaic to load pixmaps and move almost
all the time the windows on the screen so as to emulate high interaction with the X
Server. In this experiment we obtained high variations. Therefore. we conclude that
the large variation of the inter-arrival time of video when Mosaic is run is due to the
interaction with the windows system which sometimes consumes too much time and
deprives the video process to be scheduled at the required intervals.

The other remaining experiments showed very small inter-arrival time varia-
tion. Random memory operations introduce variations only at the beginning. when
pages are loaded into memory (compulsory misses). Reading from disk does not have
much influence on multimedia performance. because a buffer is allocated at the begin-
ning and since the program just reads from disk into this buffer, no other page faults
occur. Printing on the console has negligible influence for both audio and video.

Real time eliminates the inter-arrival time variation in case of twenty busy
processes. but not in the case of Mosaic and windows movements. This is because
the X windows system is not fully-preemptive and thus the deadlines of real-time

processes may be missed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

We did not perform any experiments with the data sharing process. as X
requests are generated in bursts. so XTV does not need to be scheduled at regular
intervals.

From the experiments we presented. we see that the real-time scheduling
class is not always capable of ensuring the time constraints associated with the audio
and video processes. This is the reason why in our work we study the temporal

svnchronization problem in best-effort systems.

II1.2 Media Synchronization Specification

Ideally. the existing temporal relations between media units when the streams are
captured. are exactly preserved when they are playved. Unfortunately. due to the
best-effort nature of the current networks and operating systems. achieving this goal
is challenging. Media units arrive at the source application at various times. and
thus the svnchronization specification assigned by the application may be different
than the real temporal relation between the media units when they are captured.
As the destination application uses the synchronization specification to present the
streams. a wrong svnchronization specification triggers an erroneous presentation.
To better understand the requirement for a correct synchronization specification. we
give a brief overview of the functionality of multimedia devices and the mechanism

of sharing X-windows used in our research.

II1.2.1 Acquisition of Continuous Streams

Continuous streams. audio and video are captured by audio and video devices. The
two basic functions of an audio device (e.g.. Sun Audio) is to record and play audio
data. To minimize delays. whenever the device driver has accumulated a buffer of

data (the size of the buffer can be defined by the user), it takes the data and puts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

it into a kernel queue. When the audio process is scheduled. it reads one buffer
from the kernel queue. If the queue is full. the audio driver will no longer put data
into the queue. Next recorded audio is lost until the application reads data from the
kernel queue. Note that even if the application flushes the kernel queue at every read.
overflow may still happen if the time between two consecutive scheduling intervals
of the application is larger than the time it takes the audio driver to fill the kernel
queue.

A video device (e.g.. SunVideo) can capture a maximum of 30 frames/sec.
However. the application can program the video device to provide frames at a smaller
rate. by specifving a skip factor. In this case. the video device still captures 30
frames/sec. but compresses and stores in a local queue. every skip factor + [frame.
For example. if the skip factor is 0. it stores every frame (the rate is 30 frames/sec).
whereas if the skip factor is 2. every third frame will be compressed and stored in the
queue {the rate is 10 frames/sec). When the video process is scheduled. it gets one
frame from the video board queue. I[f the queue is full. the video device overwrites
the oldest frames. Even if the video process flushes the queue everv time. the queue
may overflow if the time between two consecutive scheduling intervals of the video
process 1s larger than the time to fill the queue. Note that the smaller the queue size.
the smaller the latency [59]. and the larger the queue. the smaller the number of
frames lost. The optimum size of the queue is 2-4 buffers [59] and in this case the

queue is filled in 400 ms (for 10 frames/sec frame rate).

Note that basically. the data acquisition of audio and video devices is the
same. with one difference. When the video queue overflows. old frames are lost.

while in case of audio queue overflow. new data are lost.

II1.2.2 The Mechanism of Sharing X-Windows

In our thesis we use .XT'V'[2] as the mechanism to create a shared workspace on top

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. X requests
- — P X events

Figure [1[.3: The mechanism of sharing X clients using XTV"

of X windows. .XTV runs on every host the videoconference application runs (see
Figure [I1.3). An X client runs only on one host. Once the X client (e.g. Netscape)
is started. X'T'V" captures the output of the X client (shared windows packets or X
requests [46]) and sends it to the local X server and to the remote XTV processes. A
remote .\ TV process receives the X client output and sends it to the local X server.
At one moment only one user can interact with the X client. His interaction (X
events [46]) is sent to the XTV process where the X client runs. This XTV process
sends these X events to the X client.

[t is worth mentioning that the output of the X client is not sent immediately
to the X server. but it is buffered by .Xlib. a layer that implements the X protocol
(46]. This is done in order to minimize the waiting time to gain access to the network.
Also. the X server implements a round-robin policy in serving its X clients, so requests
coming from X clients are queued and served only when the X client is scheduled.

Also, the shared windows stream has a history (e.g.. a request to create a
window is related to the previous request which creates the parent window) and

thus. if audio and video media units can be dropped in order to keep the streams

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

synchronized. an X request can only be selectively dropped (e.g.. an X request asking

the X Server to draw a line may be dropped).

IT1.2.3 Specification for Continuous Streams

Our synchronization specification model uses numerical timestamps (frames sequence
numbers). Our goal is to assign to each frame its correct sequence number with
respect to the order in which it is captured by the device driver. and not to the
order in which it is delivered to the application. As we have shown in the previous
section. the lost frames (due to the device driver buffer overflow) introduce gaps in
the sequence numbers of the frames delivered to the application. In this section. we
show how these sequence numbers can be actually computed.

The frame sequence number depends on the policy implemented by the device
driver when its queue overflows. Further we consider two of the most common policies:
(1) the device driver overwrites the old frames (in a circular fashion). and (2) the
device driver discards the new frames. An example of a device driver that implements
the first policy is the Sun video device. while an example of a device driver that
implements the second policy i1s the Sun audio device. Next. we show how these two
policies affect the frame timestamping.

In both cases we make the following two assumptions: (1) no buffer overflow
occurs before the process reads the queue for the first time. and (2) once the process
is scheduled. it reads all the buffers from the queue’. For a stream a. we denote by
lost, the number of frames lost while the process waits to be scheduled. Let dif f,
be the time difference between the last two read operations. let n, be the number of

buffers of the device driver. and let d, be the frame duration of stream «. For all

TIn our implementation. we try to enforce the first assumption by reading data from the queue
inunediately after the device driver is opened. To enforce the second assumption. we use a special

thread to read the buffers from the queue and deliver them to the application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table [[1.3: Notations.

41

the sequence number of the { — th frame received by the application

the sequence number of the frame of stream « that is currently playving

duration of a frame of the stream a

number of buffers in the device driver queue of stream o

the time difference between the last two consecutive read operations a

number of frames of stream a that are lost between the last two read

operations. due to device driver queue overflow

o]

starting time for stream a

AL

maximum acceptable asvnchrony between streams a and J

tolerance (maximum acceptable asynchrony between streams a and J

expressed in number of frames)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these notations see Table I[[[.3. Then the number of frames which are lost is:

[dblaznaxda] i diff, —n, xdy >0

(IIL1)

lost, =
0 otherwise

Our solution for assigning a frame sequence number (a.) is based on the device
queue type. Tvpel queue is when the device driver overwrites the oldest frames (e.g.
Sun video device driver) and tvpe2 queue is when the device driver no longer puts
data into a full queue (e.g. Sun audio device driver). With these considerations. our

algorithm of assigning sequence numbers is as follows :

when process is scheduled {
getFrame(fr): /™ read frame from queue */
if (TypelQueue)
a.=a. + | +lost,: /™ compute next sequence number */

starnpFrarme(fr.a.). /= assign seq. num. to current frame */
while (queue # Q) {

get Frame(fr):

a.=a.+ |:

stampFrame(fr.a.):
}
if (Tvpe2Queue)

a. = a. + | + lost,: /* compute next sequence number */

As an illustration. consider the following example. Assume a Typel queue
with three buffers (i.e.. n, = 3). and that at time tq. when the process is scheduled
for the first time. the queue contains exactly two frames: | and 2. Then. after the

process reads both frames (assigning to them the sequence numbers a; = 1, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

a; = 2. respectively). assume that the next time when the process is scheduled is
t, =ty +diff,. where diff, = 3 x d,. Since between t, and ¢;. the device driver
has written five frames in the queue (i.e.. frames 3. 4. 5. 6. and 7. respectivelyv). and
since the queue has only three buffers. the content of the queue at time ¢, will be
5. 6. and 7. When the process reads the first frame at time ¢,. then it assigns the
timestamp asz = a; + | + lost,. where lost,, = f—l-i&—;f'-‘iﬁT = 2. which finally gives
us the correct value a3 =2+ 1 +2 = 3. Following the next two frames will receive
the sequence numbers ay = a3+ 1| = 6. and as = ay + 1 = 7. respectively.

As an example for a Type2 queue. consider again a queue with three buffers
(t.e. n, = 3). Similarly to the previous example. assume that at time to. when the
process is scheduled for the first time the queue contains two frames: 1 and 2. Thus.
according to the algorithm. the sequence numbers assigned to these frames will be
ay = L. and a; = 2. respectively. Next. assume that the next time ¢, when the
process is scheduled is again after dif f, = 5 x d,. However. since in this case. when
the queue is full the new frames are lost. the content of the queue at time ¢; will be
3. 4. and 5. Then. when the process reads all the frames from the queue at time ¢,.
it assigns the sequence numbers a3 = 3. oy = 4. and a5 = 5. respectively. Moreover.
after the buffer is empty. the process computes the sequence number for the first
frame that will be read nezt time.ie..ag = a5 + 1 + [ﬁﬂ"—r&x—iﬂ] =5+2+1=8
Note that this is the correct sequence number since frames 6 and 7 have already been

lost (due to the buffer overtiow).

II1.2.4 Specification for the Shared Windows Stream

In assigning correct sequence numbers to audio and video media units. we took
advantage of the fact that the streams are periodic. On the other hand. the X
windows stream is aperiodic and the X requests do not contain any time information.

As a result we cannot apply the same procedure for computing the correct timestamps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

in the X windows case.

The timestamp of an X request is the moment of time the X request has been
generated by the X client. Qur goal is to estimate this time. Let Tx.n: be the time
when the request is initiated by the X client. T,,, be the time when the request is
received by XTV (the data sharing process). and Propx iient->app be the time interval

needed to deliver the request from the X client to XTV. Thus. we have:

TXclxr.nt = Tapp - Prop,\':{zr.nt—>rxpp (H[-)-)

T.pp can be simply computed by calling gettimeofday when XTV receives the X re-
quest. To estimate Propxctient—>app W€ have implemented a producer-consumer ap-
plication based on UNIX sockets. as they are used to communicate between the X
client and XTV on the same machine.

The producer sends variable size packets (power of 2) to the consumer. When-
ever the consumer receives a packet. it sends the packet back to the producer. Table
[I1.4 shows the total time elapsed (RTT) from the moment the producer has sent a
packet until it receives the packet back (note that here RTT = 2 X Propx ient—>app)-
We have repeated the experiment in the presence of various loads. by running con-
currently up to three busy processes.

For packets smaller than 8192 byvtes. the RTT time is less than | ms. i.e..
Propyx cient—>app is less than 0.5 ms. As expected. for larger packet sizes. the RTT
increases both with the packet size and with the load introduced in the svstem.
Since excepting Put/mage. all the other X requests consist of several bytes. we
neglect Propx iient—>app- In the case of Putlmage. using the experimental data in
Table [IL.4 we estimate Propxciienc—>app based on the image size (packet size) and
we assume that there is one busy process in the system (corresponding to the first
column in the table). This choice is supported by our experiments in which we have

found that the activity generated by the [RI processes is approximately equivalent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the activity generated by one busy process.

Though using gettirneofday in estimating T,,, introduces certain measure-
ment errors. and estimating Propyx .ient—>app for Putlmage is not very accurate. in
practice computing Tx...n: based on these values works reasonable well. One of the
main reasons for this is that the accepted asynchrony between X windows and audio
is within the range (-300. +750) ms [54]. i.e.. one order of magnitude larger than the
accepted asvnchrony between audio and video (+/- 80) ms.

For uniformity we use a sequence number to stamp the X request. instead
of time. The sequence number is computed as the sequence number of the audio
frame that was captured when the X request was initiated by the X client. If there
is no such audio frame. the X request is stamped with the sequence number of the
corresponding video frame. If no video stream is captured. then the sequence number
of the X request is —1. meaning that X windows will not be synchronized at the

destination with any stream.

II1.3 Media Display Time

When a media unit arrives at the destination application. it is sent to the presen-
tation device according to the timings specified by the synchronization specification.
However. the user sees the effect of playing the media unit only at the end of its dis-
play time. Usually the display time of audio frames is very short (negligible). but the
display time of video frames is large (e.g.. an average of 243 ms for a 24 bits depth.
640 x 480 pixels windows) and even larger for some X-windows media units (e.g..
475 ms to put an image in Netscape). Moreover. due to workstation load variation.
even for the same media unit. the display time may vary. In this situation, we need
an estimation of the display time for each tvpe of media unit so that the destination

knows when to send each media unit to its presentation device.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table I11.4: The RTT time for a Unix socket in the presence of various loads.

Packet size | RTT [ms] | RTT [ms] RTT [ms] RTT [ms]
(bytes] (no load) | | busy process | 2 busy processes | 3 busy processes

2 0.15 0.17 0.17 0.17
4 0.15 0.17 0.17 0.17
\] 0.15 0.17 0.17 0.18
16 0.15 0.18 0.18 0.18
32 0.16 0.18 0.18 0.18
64 0.16 0.13 0.18 0.18
128 0.16 0.19 0.19 0.18
256 0.17 0.19 0.19 0.19
512 0.19 0.21 0.21 0.21
1024 0.24 0.24 0.25 0.25
20438 0.26 0.27 0.27 0.29
1096 0.39 0.38 0.39 0.34
S192 0.68 0.57 0.58 0.58
16384 2.4 2.3 11.81 21.26
32768 4.46 6.05 27.16 27.16
65536 38.75 10.20 57.19 149.65
131072 22.39 55.61 128.52 265.65
262144 46.43 146.62 278.45 307.25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

47

The display time of a media unit is given by the following relation

DisplayTime = Propapp—spresp-v + ProcessTimepr.yp.. (TIL.3)

where Prop,yp—>pr-sDev 1s the time it takes to send the media unit from the application
to the corresponding device and ProcessTirmey, . ;.. is the time it takes the device
to process the media unit. Video frames and X-windows requests are sent to the X
server (as presentation device) via Unix socket connections. An audio packet is sent

to the audio device (as presentation device) by copving the audio frame to a system

buffer.

II1.3.1 Estimation for Continuous Streams

To estimate the display time for the video stream. first. on the testbed described
in Section .3 . we have conducted experiments to see how various jobs influence the
display time. Video frames (320 x 240 pixels) were CellB [39] hardware compressed.
software decompressed and displayed in a 24 bits depth window. We measured the
display time as the time difference between the moment the video process calls the
display function (.XShmPutlmage) until the X Server sends back the event meaning
that the display function has completed (ShmCompletion). We also measured the
total processing time of a video frame (which includes both the decompressing and
display times). Concurrently with the video process we run tvpical activities for a

workstation usage :
e none - the video process runs alone on an idle workstation.

o X server bound - the application window is moved while the video stream is
displayed. This puts additional load on the X server process which may delay

the display of the frame in order to repaint other portions of the screen,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

il X0
14 IdL
12 2}
z g
- <
g 1o 1 £t
& &
- -
g., g..
3 -3
2 of 2 s
. Y
£ 3
- -
o o
2 2k
“ T R p)
) — e — o = = =i
3 e ne 300 400 500 400 00 °«©e 900 1000 [:] 100 200 300 400 500 00 700 [] 900 1000
Numbder of Frunes Numper of Frames
(a) (b)
L x10® L x10}
[N "
12 12
H H
5‘0' 2rop !
< -
- -
> IF » b
i i
& 3
28 3 sy
. s
£ H

Figure [[[.4: Effect of load on the display time of a video frame when: (a) no other
load was introduced in the system. (b) the window was sometimes moved. (c) a busy

process was concurrently running. and (d) another video image was displayed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

o CPl bound - besides the video process. we run a simple computation bounded

process (that initializes a variable in an infinite loop).

e moderately increase both CPL and X server activity - two video streams are

concurrently displayed.

We measured the display time and the total processing time for 1000 frames.
Experiments showed that on the average 34.28% of the total processing time was
spend by displaying the frame and only 15.72% of the time was spend on decom-
pressing the frame. Since the curve of the variation of the total processing time and
the curve of the variation of the display time are close. we show here only the vari-
ation of the display time. Figure I[[[.4 shows the variation of the display time of a
video frame in the each of the experiments mentioned above. When no additional
load was put on the system. the average time to software decompress a frame was
3ms. while the average time to display a frame was 46 ms. In the presence of another
process (video or busy process). the display time average almost doubles (33 ms).

The display time of a 24 bits depth. 640 x 430 pixels window follows the same
variation. with an average of 243 ms. If an audio and video frames are to be played
at the same time. and they are sent at the same time to their presentation devices.
assuming audio plays immediately (like [43]). there is 243 ms skew between the frames
when they are visible to the user. As the desired skew range is (—80.80) ms. and the
acceptable skew range is (—160. 160) ms. the two frames are actually completely out
of svnc at the end of the video display time. This is the reason why in the case of
large size windows (640 x 480) and even for medium size windows (320 x 240 pixels) in
the presence of workstation load. the application needs to estimate the video display
time in order to keep the streams synchronized.

After collecting the data, we processed them off-line. Basically. we take the

total time to process a video frame to be the time interval from the moment the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

video frame was sent to the X server until an acknowledgement is received from the

X server:

TotalTime = Propapp->Xserver + ProcessTimex shmpPutimageReq + (I111.4)

PrOPX Jerver—2>app

where Prop,pp—>Xserver 1s the propagation delay from the video process to the X
server. ProcessTime x shmPutImageRey 1S the processing time of the X request to display
the frame. and Propx server—>app is the time it takes to send the acknowledgment from
the X server to the application. As the acknowledgment is a 32 bits packet. in which
case the propagation delay is around 0.8 ms. we will ignore it (see Table [Il.4: as the
RTT for 32 bits packets is 0.16 ms. the propagation time in one direction is 0.8 ms).

With this consideration. the display time of the video frame is

DisplayTime = Prop,pp_s xserver + ProcessTime x shmPutlmageReq (I1L.5)

and it equals our measured time (T otalT:ime).

To estimate this time we use exponential averaging:

Ek = C.\f[k_x + (l. - C)Ek_l (1“6)

where £} is the estimated display time of frame k. while V/;_; is the measured display
rime of frame & - 1.

The criteria we used in determining ¢ was to minimize the standard deviation.
For this we varied c in the range [0.05. 0.95] in steps of 0.05. We observed that for
all the experiments the estimated value of the display time depends mostly on the
previous estimated value. When the additional job was to move windows. this is

mainly because moving a window generates spikes which have practically no impact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2l

on the display times of the frames once the movement stops. For the other additional
jobs. the explanation of this behavior is that increasing the CPU and the X server
load and keeping it constant for some time increases the value of the display time.
This results in relatively small variations between the old estimated display time
and the currently measured displav time. which makes the computation of the new
estimated display time to be little influenced by the value of ¢ over a large range*
However. to account for the case when windows are moved on the screen. we give a
higher weight to the old estimated time. In our experiments. the standard deviation
was minimized when ¢ was between 0.2 and 0.3. Therefore. in our implementation
we choose ¢ = 0.25.

Finally. in estimating the display time of the audio frame we make the same
assumption as Elefteriadis [16] and Nahrstedt [43]. i.e.. we assume that the audio
stream plays continuously. To estimate the display time of frame a,. we query the
audio device for the sequence number of the currently playing audio frame. ap,,.
Then a; will play after a time interval equal to (@, — a,)/timesd,. where d, is the

media unit duration of the audio stream.

I11.3.2 Estimation for the Shared Windows Stream

While for estimating the display time of a video frame we used the acknowledge-
ment generated by the X server. we cannot relv on this mechanism to estimate the
processing time of all X requests. This is simply because not all X requests generate
acknowledgments.

We address this problem by sending a probe request (Get A’ eyboard M apping [46])
that forces an acknowledgment after each such an X request. When we get the reply

back. since the X server processes the requests in a first-come first-served order. we

‘Note that. at the limit. when the old estimated value is equal to the current measured value,

the new estimated value is independent of c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ut
N

know that the request of our interest has also been processed. We measured the total
time elapsed from the moment we sent the request to the server until we receive back
the reply corresponding to Get A'eyboard Mapping request. The total measured time

can be divided as follows:

TotalTimex equess = TimeAtXlibLayer + Propxiis—s xserver + (LIL.7)
ProcessTimex ., +

Process’rlrneprobeﬂeq + Prosttrur;r~)app

where TimeAtXlibLayer is the time spent by the X request at the Xlib layer [46],
Propxiip—> Xserver 1s the time it takes the X request to be delivered to the X server. and
Propyx,.rer—>app 15 the time it takes to send the reply back to the application. In ad-
dition. ProcessTimey,, and ProcessTime, ,b.pe, are the times the X server processes
the X request and respectively the probe request.

[f only the probe request were sent to the X server. then the total time mea-
sured from the moment the probe request has been sent to the X server until its reply

1s received by the application is given by

TUtalTirnCpr’)beReq = Prop-\’lib—);\'seruer + Process’rimeprcbtﬂequcst + ([[[-8)

Propx.seruer— >app

Substituting the right hand side of ([I1.8) into (IIL.7). we obtain

TotalTimex, equese = TimeAtXlibLayer + ProcessTimex e, + (I11.9)

TotalTimeprobeReq

The display time of an X request is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DisplayTime = Propxiis—>Xserver + ProcessTimey,., (IT1.10)

Substituting ProcessTimey,., from (I11.9) into ([I1.10) we have

DisplayTime = Propxiib—>xserver + LotalTimex,., — (IIL.11)

TimeAtXlibLlayer — TotalT ey, h.peq

Since the probe request causes the Xlib to send immediately all previous re-
quests to the X server. we will neglect TimeAtXlibLayer. In addition. since the ma-
jority of the X requests have less than 32 bits. we will also neglect Propyxiip—>Xserver-
(Recall from Section II[.2 that this time is less than 0.8 ms.) However. for the
Putlmage request where a packet can have a large size. we estimate the propagation
time using Table [II.4. first column.

With these considerations. the relation to compute the display time when we

negIECt [ht" Prop.v[:b-—).\'sr:rurr time iS:

DuisplayTime = TotalTimey,., — TotalT imeyro5.R.q (IT1.12)

and the relation to compute the display time for Put[mage request is:

Di.s.playTime = = Propx1:b—>.\’seruer + TOt(llTime.\'req - ([1[13)

TotalTimeyropepey

To measure the display time of an Xrequest. we first measured off-line the
total time it takes to send the probe request to the X server and to receive back the
reply from the X server (Total Time,robeReques:)- Whenever we send an X request that

does not ask for a reply. we also send a probe request. Then we measure the total

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

time it takes from the moment the X request has been sent to the X server until
the reply for the probe request is received back. i.e.. (TotalTimexrequese)- The display
time of the X request is computed then as the difference between TotalTimex gy, and
Total TimepropeReques: - [N the case of the Put[mage request. we add the Propxiis—> xserver
time to this difference.

[n our measurements we found that the most expensive requests are the ones
which result in window creation and updating {a complete list is given in Appendix
A). For example. Create Window takes around 220 ms. and Configure Window takes
around 175 ms. Some of these requests, such as Put/mage. are highly variable. as
they depend on their content. For example. it takes only 13 ms to load the maxi-
mize/minimize/close icon. while it takes up to 475 ms to load a 3 square inches image
in Netscape. Similarly. the PolyFillRectangle request takes 73 ms to fill the xterm’s
scroll bar. while it takes 210 ms to fill a 2 square inches rectangle with a special
pattern.

The next most expensive requests are queries (requests that ask for a reply
from the X server) like QueryColors. which take on the average 47 ms. Following are
the requests that create resources other than windows (e.g.. Create Pirmap) which take
between 10 ms and 30 ms. The remaining requests. such as the ones that destroy re-
sources (e.g.. FreePirmap). change resource properties (e.g.. ChangePointerControl),

and map/unmap windows (e.g..WapWindow) take less than 15 ms.

II1.4 Summary

Current distributed multimedia applications are mostly designed. implemented and
used on top of general-purpose operating systems (e.g. UNIX) and I[nternet pro-
tocol stacks. Within this best-effort environment. to achieve user acceptance for a

synchronized presentation. the distributed application must balance the nondetermin-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(9]]
34}

istic behavior of the underlying operating system and network. From the temporal
svnchronization point of view. this may cause two things. The first one is that the
synchronization specification assigned by the source application may be wrong. This
is because media units may not arrive at the same time to the source application.
The second one is that the display time of media units may vary. This is because the
process that displays the media unit has to compete with other processes for a CPU
share. Under these conditions. two media units with considerable different display
times may be out of sync. even if they both have been sent at the same time to their
presentation devices.

Traditional existing solutions ignore the effect of workstation load on the
temporal synchronization and focus only on the effect of network. To address this
problem. we first study if the real-time capabilities of existing general purpose oper-
ating systems can schedule multimedia processes at regular intervals. Practically we
have shown that although in many situation this is the case. in the case of high X
windows interaction. the processes are scheduled again at irregular intervals. because
X windows is not fully preemptive.

As real-time does not eliminate the time variability in scheduling multimedia
processes. we have presented our mechanism that provides a correct synchronization
specification. Also. we have provided extensive analysis of the display time of media
units and we have described suitable solutions for estimating the display time for

each tyvpe of stream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter IV

Synchronization Algorithms

“Discovery consists in seeing what evervone else has
seen and thinking what no one else has thought.”

Albert Szent-Gyorki

To achieve a continuous presentation under a time-sharing multiprocessing
operating system. the svnchronization quality of traditional synchronization mech-
anisms may vary according to the workload of the system. When the system en-
counters an overload situation. the synchronization usually fails. In order to achieve
our objective of synchronizing audio. video and shared windows we first introduce
in Section [V.1 our synchronization condition. Next. Section [V.2 describes our lip-
svnchronization algorithms. and section [V.3 describes our algorithms for synchro-

nizing audio. video and the shared windows streams.

1 2 3 q S 1 2 3 4 1 2 3 4 5
augio L4 4 4 4 audo § 4 4 4 audio 4 4 44
1 2 3 4 1 2 3 3 1 23
d L ‘ ‘ ‘ video L__L._’ — video L———-“
deiay play drop play
a) b) c)

Figure IV.1: Intuitive interpretation of the model (a) ideal case, (b) when video is

ahead. (c¢) when video is late.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1

(M)

IV.1 Synchronization Condition Between Streams

Usually. any synchronization algorithm defines certain conditions that streams should

meet in order to be svnchronized. Examples of such svnchronization conditions are:
(1) frames with the same sequence number should play simultaneouslv [L1]. {2) the
difference between the acquisition timestamps of the master and the slave frames
should be smaller than the accepted asyvnchrony between the streams [12. 13. 16. 24,
43.45.49. 3]. and (3) streams should all reach a synchronization point in order to play
[33]. Let us assume that the synchronization specification assigns correct sequence
numbers or timestamps to the frames. as explained in the previous chapter. Then.
the first and the third conditions restrict the streamns to have either the same frame
duration (first condition), or the frame durations to have a common divisor (third
condition). On the other hand. the second condition requires timestamps to be used
for the synchronization specification. which may waste valuable network bandwidth.
Moreover. this information may be redundant. since the frames need to have anyway
sequence numbers in order to detect losses. if the transport protocol does not provide
reliability (e.g.. UDP). For these reasons. our objective is to define a svnchronization
condition based on sequence numbers. and which can handle streams with arbitrarily
frame durations.

Consider two streams. one is the master. the other is the slave [54]. Our
objective is to find the sequence number of the frame of the master stream that
should play if a certain frame of the slave stream would start. The utility of our
model is intuitive. Figure [V.l. shows the case when one audio stream and one video
streamn have to be synchronized. Audio is the master stream. Whenever a video frame
is to be displayed. we compute the sequence number of the audio frame that should
ideally play if this video frame would start. [f the sequence number of the currently

playing audio frame. matches the computed value. then the frame plays immediately

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

(Figure IV.1(a). If the plaving audio frame has a smaller sequence number. then the
video frame waits (Figure IV.1(b)). If the playing audio frame has a larger sequence
number. then the video frame is dropped.

Next. we compute the sequence numbers {a,) of the frames of the master
stream that should play while a frame (3,) of the slave stream plavs. Note that there
may be more than one frame of the master stream that plays while frame J3, plays.
but it can be only one frame a; that plays when frame J, starts. Then. the following

relations hold (see Table I[II.3 for notations):

t-too pe
“‘"[4, J V-1
t —tg
4 = 3 (IV.2

Replacing time ¢ from ([V.2) in relation ([V.l). we have:

3 tU d[j tU - tU dd 4
J—+ —>—1 < S, — 4 2 — [V.:
jdq + du < a;, < Jda + da T da (3)

Using the following notations

d to, — t
== and T=-2_""

D —_— "
4 o (IV.4)

and since a, is an integer. we obtain the following relation for the frames a; of the

master stream that should play while frame 3, of the slave stream plays

(4, D+T. 3,D+T+ D - 1] ifD.TeZ .
a, € (IV.5)
([3,D+T~1]. [3;D+T+ D|] otherwise
Relation ([V.5) gives the sequence numbers of the master stream frames that

should play while frame 3, of the slave stream plays. In order to find the sequence

number of the master stream frame during which 3; starts playing (as this was our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

objective). among the frames computed with relation (IV.5). we take the one with
the smallest sequence number.
3D+T ifD.TeZ .
a, = (IV.6)
[3,D+T—-1] otherwise
To guarantee the maximum acceptable skew between the two streams. we
compute the tolerance (see Table [{l.3) as
2| fi2eZ

1

tas = (IV.0)
[%J otherwise
Therefore. frame J; can start playing if the sequence number of the master

stream frame currently plaving. a,,,. satisfies the condition

a; — g < QAplay Sa; + ity ([\'8)

where q, is computed using relation ([V.6).

As an example. assume that d, = 350 ms. d3 = 66 ms. the slave stream
started 132 ms after the master stream and the maximum asvnchrony between the
two streams is [00ms. In this case. D = 0.76. T = —132/66 = —2. The currently
plaving master frame is 7. We want to know if frame 3 of the slave stream can start.
Using relations ([V.6) and ([V.7) we find that the master frame 7 should plav and
the tolerance is L. Since 7 is also the currently playing master frame. condition ([V.8)

1s satisfied. so slave frame 5 can play.

IV.2 The Lip-Synchronization

The network and hosts load variations may cause sertous asvnchrony between audio
and video streams. In this section we propose and implement generic synchronization

algorithms that take into account network and host load variations. We compare their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

performances with the classical “drop-delay™ algorithms [L1. 12, 16. 20. 49]. widely
used in multimedia applications.

[n the past. this problem has been studied in the context of record and playback
of videoconferences which use medium-size windows (320 x 240 pixels) [11. 16. 43,
49]. In contrast. we consider real-time videoconferences that display video images
in large-size windows (640 x 480 pixels). Though the challenges posed by real-time
and record/playback applications in achieving synchronization are similar. there are

several subtle differences.

l. Even in the absence of network and host load. for a 640 x 480 window. we have
routinely measured a skew of 256 ms. which is significantly larger than the

maxXimum acceptable value of +/— 160 ms recommended by Steinmetz [54]".

2. The time to display a video frame in a large window can be significant. For
example. from our experience. for 24 bits depth windows. all of the algorithms
described in literature (see Chapter [I) worked for 320 x 240 pixels windows,
but did not work properly for 640 x 430 windows. This is because they do not
estimate the display time of a video frame which in this situation is around 243

ms. again much larger than the acceptable skew.

With these observations we give our lip-svnc algorithm (for notations see

Table 1IL.3):

testimatea = [nitialV'alue: [~ initialize the display time estimation =/
while(1){
getFrame (v): /™ get video frame v from the application buffer=/
ty = decompressFrame(v): /= decompress the frame

and measure the time */

“Our experimental setup was described in Section [.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

aplay = getCurrentlyPlayingAudio() + [&‘“z““dj /® compute
the audio frame that will play at the end of the
display time of the video frame = [
a, = computedudioShouldPlay(v): /= compute the audio frame
that should play if this video frame would start =/
if(a, < dapay — t..): /™ video frame is behind */
case V'ideoTrash : /™ a late frame is dropped */
continue:
case | idevTrashAudioDelay : /* a late frame is dropped:
if (TrendVideoBehind) [*delay audio if this is a trend */
delay Audio():
continue:
case VideoNoTrash AudioDelay : /™ no frame is dropped:*/
if(TrendV'ideoBehind) /*delay audio if a trend */
delayAudio():
ifia, > ap, + t,,) /*video frame ahead.sleep */
sleepl{a, — apay) x d,):
t, = play(v)/™ video frame on time. play .measure display time */
Lestimated = 0.25 x £, + 0.75 X t.ogtimated: /[“compute a new estimation

for the display time =/

t t
- [<d+

T J: /“compute the sequence number of the next

playving video frame */

We initialize the estimation of the video display time with a value off-line
measured for that workstation. If such a value is not available. then we give it an

arbitrary value (for example, 10 ms). To schedule a video frame for display. we do the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

followings. First. we compute the sequence number of the audio frame that plays at
the end of the video display time (@pi,). We assume that audio plays continuously.
SO @pe, has a sequence number which is ['—’—‘-‘;’:‘L’J‘J greater than the currently plaving
audio frame. This assumption proved to be valid in our experiments as the audio
process requires small computation times and it is scheduled more often that the
video process. In the above formula. ¢.,:maced 1s the estimation of the display time
computed after the previous frame has been displaved. (using the regression function
[1.6). and d, is the duration of an audio frame. After that. we compute the sequence
number of the audio frame that should play (a,) if this video frame would start (using
relation [V.6).

If a, and apqy match (within the tolerated asynchrony). then the video frame
is displayed and the display time is updated. If a; and ap,, do not match. then the
video stream is either ahead or behind. If the video stream is ahead. then it sleeps for
the time by which it is ahead and then it is displaved. If the video frame is behind.
then the action we take depends on the protocol type.

We have evaluated four protocols. described in table [V.I. We compare these
protocols by the way they handle the synchronization condition. Protocol Pl does
not do anything when video and audio are out of sync. Protocol P2 (above. case
Video Trash) is the classical approach used in literature [il. 12. 16. 20. 19] for lip-
synchronization: delay a video frame that is ahead and drop a video frame that is
late. Protocol P3 (above. case VideoTrashAudioDelay) is our first protocol and it
derives from P2. with the addition that it delays the audio stream if video tends to
be behind. We estimate the asynchrony between audio and video by exponentially
averaging with a smoothing factor of 0.9. When the estimated average asynchrony
exceeds 160 ms. we delay audio. Protocol P4 (case VideoNo TrashAudioDelay) is our
second protocol. Unlike P3 in this protocol we do not drop a video frame when it is

late. However. similarly to P3 we delay audio if video tends to be behind.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Table [V.1: Specification of lip-synchronization protocols.

Protocol | Video Behind Audio Correction | Video Ahead Audio Correction

Pl do nothing do nothing
P2 drop video wait for matching audio
P3 (1) drop video wait for matching audio

(2) if this s a trend.delay audio

P4 if this is a trend.delay audio wait for matching audio

From the user perceptive point of view. with P1l. the skew is visible and the
presentation is annoyving. As we start skipping video frames. with protocol P2. the
streams are svnchronized. but the quality of the image is verv bad. almost no motion.
When we both skip video frames and delay audio {protocol P3). the quality of the
image is better. but sometimes the image freezes for 3-4 seconds. With P4. where no
video frames are dropped. the streams are synchronized and the quality of the image

is very good.

IV.2.1 Implementation Issues

The receiver audio and video processes are implemented using two threads per pro-
cess. with one thread as the producer (which receives and buffers frames arriving
from the network) and the other one as the consumer (which plays the frames). This
avoids internal UDP buffer overflow which may happen if a frame arrives early and
the process sleeps. The two processes communicate with each other through a shared
memory where the video process periodically writes the average asynchrony between
audio and video. The audio process uses this information to know how long to delay

an audio frame. We want to mention that we delay only audio frames that are the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

first after a silence period.

IV.3 Synchronization of the Shared Windows Stream

In this section we describe protocols for integrating real-time audio. video and X-
window streams in computer-supported cooperative environments. The X requests
{shared windows packets) generated by an X client are sent to the local and remote
X servers. ldeally. all the X servers receive and play the X requests at the same time.
while the audio and video devices receive and play the audio and video frames at the
same time. [n practice. due to the best-effort nature of the current operating syvstems
and networks. and due to the heterogeneity in workstations performances. there can

be large skews between audio. video and X windows.

IV.3.1 Key Considerations

While audio and video streams are stateless. periodical and continuous. the X win-
dows stream is stateful. aperodical. and discrete. Due to these differences we cannot
apply directly the synchronization protocols we have developed for audio and video.
More precisely. due to the stateful nature of the X-windows stream dropping or/and
duplicating an X-request is usually not permitted.

The main challenge in synchronizing the X windows stream is the large
amount of time it takes the X server to process some X requests. For example.
it takes almost 395 ms to create and configure a window. and around 473 ms to
display a 3 square inches image in Netscape. A simple correction like dropping X
requests in the case of asvnchrony. is not always enough as not all X requests can
be dropped (e.g.. FreePirmap can be dropped. but Create Window cannot). For this
reason. our protocols gradually increase the number and type of corrections applied

to the streams in order to keep them synchronized. If the streams are not synchro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

nized. we first drop as many X requests as we can. [f this is not enough to keep the
streams svnchronized. then we also delay the X client.

Our svnchronization protocols use a master/slave model. When audio is
present. X windows is svnchronized after audio (the same is true for video). i.e..
audio is the master stream. When there i1s no audio. we svnchronize video after the
X windows stream. In this situation. X windows is the master stream. We choose to
svichronize the X windows stream after the audio stream because audio has stringent
jitter and latency requirements and delaying audio more than necessary will result
in noticeable discontinuities. The X windows stream. on the other hand. tvpically
does not have such temporal requirements and can be delaved for synchronization
purposes. When no audio stream is present. we synchronize video after the X win-
dows stream. as it is easier for video to catch up after X windows than it is for
X windows to catch up after video. This is because video frames can be dropped.
The synchronization algorithm between video and the X windows is similar with the
lip-svnchronization one.

According to Steinmetz [34]. the user acceptable skew between audio and
video is (-160. +160) ms. while the user acceptable skew range for audio and X
windows is (-300. +750) ms. On the other hand. there is no accurate measurement
of the user acceptable skew between X windows and video. mainly because the two
streams are uncorellated. unless the video image captures the image on the X server.
[n this situation. from our experience. unless it is a very specialized video camera
that allows to set its vertical scan rate to match the monitor. vou will see the monitor
at the destination leading scan lines as the image is drawn on the screen. so it would
be impossible to follow up the synchronization between the streams. With these
considerations. we assume that video and the X windows are uncorrelated. When all
three streams. i.e.. audio, video and X windows are present. we take audio to be the

master for the other two streams. When audio is not present. we synchronize video

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

after X windows.
To establish the tolerance range of the asynchrony between video and X-

windows. we use the relations experimentally determined by Steinmetz [34]:

—160rns < async,,. < +160ms (IV.9)

—500ms < async,, < +730ms (IV.10)

where async,, is the asvnchrony between audio and video and async,, is the asyn-
chrony between audio and X-windows. Consequently. the asvnchrony between video

and X-windows has to be within the range [-660. +910] ms.

IV.3.2 The Synchronization Algorithm

Our first goal is to identify the X requests that can be dropped. Clearly. it is not
possible to drop any request that creates a resource. since future requests may try
to refer that resource. On the other hand. it seems reasonable to be able to drop
requests that just draw on the screen. To identify what other types of requests can be
dropped we have tested the effect caused by dropping them on the following typical
applications: xterm. emacs and Netscape. Based on the application behavior. we

have identified the following categories of X requests (see Appendir A):

1. Requests that crash the X client if dropped. This category consists of (1)
requests that create resources (windows. pixmaps. cursor. e.g. CreateW indow.
Create Picrrnap. CreateCursor). (2) modify the properties of existing resources
(e.g. ChangeWindowProperties. ChangeGC). (3) change window position in
the X-server hierarchy (e.g. ReparentWindow), and (4) requests that grab the

pointer and the kevboard (GrabButton,GrabR ey).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

2. Requests that freeze the X client if dropped. These are the requests that
query the X server and wait for an answer back. The X client is not doing
further processing until the answer gets back. Thus if the query is not sent to
the X server. no answer is received and the X client blocks. Examples of such

requests are GetWindows Attributes. QueryTree. TranslateCoordinates.

3. Requests that affect other X clients if dropped. For example. if {'ngrabPointer
request is dropped. the user cannot move the mouse in a window different than
the one which grabbed the pointer. [f ChangeHosts request is dropped. and
the request adds a host to the access list, then that host cannot connect to the

X server.

4. Requests that can be safely dropped. [n this category enter the requests
that (1) destroy resources (e.g. DestroyWindow. FreeGC. FreePizmap).
(2) manipulate windows by the X client (e.g. MWapWindow. ['nmapW indow).
(3) draw graphics (e.g. PolySegment. Poly Rectangle. Poly Fill Rectangle). (4)

print text (e.g. PolyTertS. PolyTertl6. and (5) put images (Put[mage).

Out of the 120 requests documented by the X Consortium [46]. 21 are requests
that crash the X client if dropped. 43 are requests that freeze the X client if dropped.
nine are requests that affect other X clients if dropped and 47 are requests that can
be safely dropped. Our policy is to drop only the requests that do not affect in any
way other applications. Consequently. we drop only the requests in the last category.
1.e.. a total of 47 requests.

With these considerations. the synchronization algorithm between the X win-

dows. audio and video streams is the following.

while(1){

get Packet (r): /™ get X packet from the application buffer: =/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table [V.2: Specification of X-windows svnchronization protocols.

68

Protocol | Windows Behind Audio Correction | Windows Ahead Audio Correction

X1 do nothing do nothing

X2 drop X request. if possible wait for matching audio
X3 if this is a trend. delay the X client | wait for matching audio
X4 (l)drop X request. if possible wait for matching audio

(2) and delay the X client

case \'rnaster : /™ audio not present. X windows is master™/
play X packet(). /™ video is svnchronized after X windows™/
case Xslave : /™ X windows and video are synchronized after audio =/
aplay = getCurrentlyPlayingAudio():
a, = computeAudioShouldPlay(r):
if(a; < @play — tar):/*X windows is behind™/
case Skip\Nreq: /™ drop the request. if possible */
if(request ArnongDrop):
continue:
case DelayXClient :/* if during the last M [NreguEsTs packets
audio and video are out of sync. send a delay message
to X client to stop sending packets */
if(packets > M [Npequests)
send DELAYy.n message to sender
packets = 0:
else

packets + +;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

case SkipXreqDelay XClient: /= drop a request. if possible:

if the asynchrony is larger than ASY VCyax
for more than W [Npgoi-gsts packets
delay the X client™/

if (request AmongDrop):

drop it:
if(async > ASY NCyayx)
if (packets > VI NrequesTs)

send DE LAY jiene message to X sender:

packets = 0:
else
packets + +:

if(a, > apay + t.,) /™X windows ahead. sleep */

sleep((a, — apiay) x dq):

When an X request arrives. first we retrieve the sequence number of the
current playing audio frame. @, . from the audio device. Then we use relation
(IV.6) to compute the sequence number. a,;. of the audio frame that should be
plaved when the X request starts. If the X request is ahead. then the process sleeps
for a duration of time equal to the current asvnchrony between audio and X windows.
If the X windows is behind. the action depends on the protocol type.

We have investigated four synchronization protocols for audio and X windows
(see Table [V.2). Protocol X1 does not perform any synchronization. and therefore
we use it as a baseline comparison. In X2 (above. case SkipXreq). if an X request
is late and it can be safely dropped. then it is ignored. In all the other cases the

request is served?. On the other hand. if an X request is ahead, it is delayed until

'Since the image may get very fuzzy due to many packets being dropped, we force an X expose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the corresponding audio arrives.

In X3 (above. case DelayXClient). no X request is dropped. However. if the
host processor cannot keep pace with processing the X stream. i.e.. the X stream
is consistently behind audio. then the sender is asked to slow down. To accomplish
this. if the asvnchrony is persistent the receiver sends a special message DE LAYy ien:
containing the current asynchronyv to the sender. In turn. the sender uses this value
to compute an estimated asynchrony (bv exponential averaging). [f the estimated
value 1s larger than the acceptable asynchrony the X client sleeps. We say that the
asynchrony is persistent if for more than W[Ngpgugsts. the asynchrony is greater
than a certain threshold ASY V(... Finally. protocol X4 (above. case Skip.XreqDe-
layXclient) combines both techniques used in protocols X2 and X3. We note that we
also tried to delay audio when X-windows lags behind. (similar with our approach
for video. see Section [V.2. but the results were not encouraging. The main reason is
that the skews between X stream and audio are much larger than between video and
audio. and delaying audio for such a long interval makes the presentation annoying.

Unlike the lip-synchronization algorithm presented in Section [V.2. for X-
windows we ignore the display time of an X windows request. Although we have
determined that the display time of some X requests is fairly large. e.g.. Put/mage
may take 475 ms. the main reason for this strategy is the fact that the display time
of the same X request varies so much according to the parameters of the request
(see Section [I[.3 which makes it impossible to predict. Instead. our approach is to
measure the asynchrony between X windows and the other streams after the request
has been served and apply corrections. such that within a short time interval streams

will be in sync again.

event periodically when there is no X activity. Also if the dropped request is within the categories
DestroyResourres. Neyboard and Pownter except WarpPainter, or Miscellaneous (see Appendix A).

at this tiine we send it to the X server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV.4 Summary

The multimedia synchronization task always arises when a variety of media with dif-
ferent temporal characteristics are brought together and integrated into a multimedia
svstem. In order to synchronize the streams. the first requirement is to establish a
svnchronization condition. Existing svnchronization conditions restrict media units
to have the same duration. or durations that have a common divisor. which lim-
its flexibility. Approaches that use temporal timestamps waste network bandwidth.
Moreover media units already have sequence numbers as thev use the services of un-
reliable transport protocols. We propose a simple synchronization condition based
on sequence numbers which allows streams to have different media unit durations.

Based on our synchronization condition. we introduce our algorithm for lip-
svnchronization. Our algorithm works for large size video windows. a case when
existing solutions fail due to the fact that they do not estimate the display time of a
video frame.

In this chapter we have also introduced our algorithms for synchronizing the
shared windows stream. Existing solutions. either delay audio stream when the shared
windows stream is behind. or modify the rate of sending shared windows packets to
the X server. From our experience. in the case of heavy user interaction with the X
application. there is a very large skew between audio and X windows and delaying
audio with such a long interval. introduces sensible discontinuities in the audio stream.
Modifyving the rate of sending shared windows packets to the X server may also not
achieve the syvnchronization purpose. as the rate of processing X requests depends
on the processing rate of the X server. [n the case of high user interaction. this lags
far behind audio. Our synchronization algorithm combines both skipping X requests
with delaying the X client and achieves synchronization even in the cases of high user

interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter V

Media Synchronization in Distributed Systems

=All truths are easy to understand once they are

discovered: the point is to discover them.”

Galileo Galilel

[t is often the case that multimedia applications involve more than two users
at the same time. For example. in a distance learning application. usually there is
a teacher and a number of students. Media synchronization in this situation poses
two additional problems: (1) to extract the svnchronization information from mixed
audio streams and (2) to provide a global order of events.

The first problem appears when audio streams originating from different users
arrive at the destination at the same time (e.g.. if two students speak at the same
time). Since every workstation has only one audio device. the audio streams need
to be mixed before they are played. Unfortunately. by mixing the audio streams.
the synchronization information is lost (see Chapter I for an example). Therefore. at
the destination. we need not only to mix the audio streams. but also to extract the
svnchronization information from mixed audio streams.

The second problem arises when the multimedia application needs to be
recorded and played back. In this situation. a mechanism that provides a global

order of events in the system is necessary. At record time, this mechanism ensures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

that the order of events occurring on different workstations is correctly stored in the
record file. At plavback time. events are plaved using the information in the record
file.

Existing solutions to the temporal synchronization problem consider that only
one audio stream arrives at the destination. at one time. In this chapter. in Section
V.1 we present the mechanism of extracting the synchronization information from
mixed audio streams. This mechanism provides the required extension of our algo-
rithms to work in a distributed syvstem. Next. in Section V.2 we describe a simple
algorithm that achieves a common time for a distributed multimedia application.
Existing solutions create a single point of failure. and thus they are more limited (see

Chapter [I).

V.1 Extracting the Synchronization Information from Mixed

Audio Streams

The problem that we want to address derives from the fact that incoming audio
streams need to be mixed before being plaved (see Chapter I for a detailed description
of the problem and an example). Unfortunately. by doing so we lose the synchro-
nization information between indexes of a particular audio and video streams. More
precisely. for each video frame we need to know the index of the corresponding audio
packet that is plaving. However. after mixing. the sequence number of the playving
andio packet may no longer match the sequence number of the audio frame of the
stream we are interested. Furthermore. the audio packet that is currently playing
may not contain any data from that stream. Bellow we describe our solution to this
problem.

Every audio and video packet is described by the following format: (user/d.

streamld. seqNumber. data). where userld represents the user identifier which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Audio Queue Audic Queue Audic Queue

27

aser il 3

s2reania

segNumpDer 1t D]

=3

e

.as”leguedAudicPacken

La¥nitseamPacker

Teacher = 1))

wle b

CASTIwueiA Al ST AT Rer

LaAsT LT rTeamFacker

Student = 1)

Time | Time 2 Time 3

Figure V.1: The packet queue and the values of lastDequed AudioPacket and

lastStrearn Packet variables for two audio streams at three time instances.

unique with respect to an application. strearn/d represents an identifier assigned to
each stream originated from that particular user. and seq.Number represents the se-
quence number assigned at the sender by our algorithm. stream/d is unique with
respect to all audio streams originated from the same sender=.

At the receiver. the mixed audio packets are stored in a special purpose queue.
With each entry in the queue we associate a list containing information about the
audio streams whose packets were mixed in that entry. More precisely. each element
in the list contains the same information as the corresponding packet. excepting audio
data. i.e.. (userld. strearnld. seq.Number). In addition. associated with each audio
stream we maintain two variables: last Dequed.AudioPacket and lastStream Packet.
where last Dequed Audio Packet indicates the sequence number of the last packet from
the queue that has been sent to the device and contains the packet with the sequence

number lastStream Packet of that audio stream.

*Here we assume underlying transport protocols that do not carry the userld. streamld. segNum-
ber information (e.g.. UDP). [f the transport protocol provides this information (e.g., RTP), we no

longer need to store it in audio/video headers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~1
(V)]

For clarity. consider the following example: assume a session with one teacher
and one student. Both the teacher’s user/d and his audio stream[d are 0. Similarly.
the user/d of the student and his audio stream/d are 1. Figure V.1 shows the state
of the queue and the value of the last Dequeud AudioPacket and lastStrearn Packet
variables at three consecutive instances of time. Initiallv. assume that the queue
contains two packets: the first packet consisting of frame 100 of teacher’s audio.
and the audio packet 99 of the student. and the second packet consisting of the
teacher’s 101 packet only. Also. assume that so far the audio process has sent 25
packets to the audio device. Thus. the corresponding indices of the two packets
in the queue are 26. and 27. At the next instance of time assume that the au-
dio process sends the next packet (with index 26) to be played. Consequently. the
last Dequed Audio Packet variables of both the teacher’s and student’s audio streams
are set both to 26. while their lastStrearn Packet variables are set to 100 and 99
respectively. Next. at the second instance of time. when the packet 27 is sent to the
audio device. only last Dequed AudioPacket of the teacher’s audio stream is changed
to 27 and its lastStream Packet is set to 101: the corresponding variables associated
to the student’s audio stream remain unchanged since none of its packets is mixed in
packet 27.

Further. given an audio stream it is straightforward to determine the sequence

number of its current playing frame seqp,,. More precisely. we have:

$€qplay = lastStreamn Packet — (last Dequeued AudioPacket — (V.1)

getCurrently PlayingAudio()).

where obviously lastStream Packet and last Dequeued AudioPacket are the variables

associated to the current audio stream. Consider again the example in Figure V.I.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Assume that at the third instance of time we want to get the current playing audio
packet of the student’s stream. Assume that getCurrently PlayingAudio() returns
24." Then. by using the above equation we have: seqpa, = 99 — (26 — 24) = 97. It
1s worth noting that a more accurate solution would be to remove the entries from
the queue only after that packet has been plaved by the audio device. However.
this will complicate the algorithm and will increase the buffer requirements. while.
as we have observed in our experiments. improving little the accuracv. Another
variation of the algorithm would be simply to set the last DequeuedAudioPacket
and lastStream Packet as soon as the packet is mixed. Although this results in a
much simpler data structure (we no longer need lists associated to each packet). the
potential inaccuracy generated by the eventual audio device buffer overflow can be
quite large. Therefore. the solution we chose can be viewed as a tradeoff between the
complexity and accuracy.

With these considerations. to extend our lip-synchronization solution to a

distributed environment. we need to do the followings:
. In the shared memory between audio and video. we also store:

o lastPlayedAudioPacket. the sequence number of the last audio frame sent

to the audio device.
e lastStreamPacket[id], the sequence number of the last frame sent to the

audio device for the audio stream coming from user id.

2. The sequence number of the audio frame that will play when the video frame

starts i1s given by

t.stimate .
Aplay = S€Qplay + [;?LEJ . (\/2)

"This means that the queue of the audio device stores at this point the packets 25, 26. and 27.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where seqpa, is computed with relation (V.1). and ¢t.,.imateq is the estimated

display time of the video frame. computed with relation (II[.4).

V.2 A Common Time System for a Multimedia Application

To achieve a common time system. our approach uses the concept of “time frame”
introduced by Li and Ofek [25]. The time is divided into discrete time units referred
to as time frames. Each workstation has a local counter which is incremented at the
start of each new frame. l[deally. we would like that all workstations to start the
first time frame (local frame counter 0) at the same time. A straightforward solution
would be to use a global clock mechanism. such as NTP [36]. Unfortunately. this
imposes a high overhead. In addition. since the accuracy of our synchronization
algorithm is of the order of a frame duration. an algorithm that svnchronizes the
staring times with an accuracy of 10-20 ms would be acceptable. In the remaining of
this section we propose a simple distributed algorithm to achieve this goal. In short.
when a new workstation joins the group. it asks the other members in the group. if
any. about their starting times. Upon receiving a certain number of "good™ replies. it
averages over the resulting values and compute its starting time (a “good™ reply is a
reply with a low round-trip time). Note that our algorithm is totally decentralized in
the sense that it does not assume a master workstation that keeps the reference time.
This is in order to increase both the robustness and the generality of our solution.
The averaging mechanism to compute the starting time is intended to avoid the error
propagation as more and more workstations becomes active.! Following we give the

algorithm details.

!Consider the case of n workstations that become active sequentiallv, and assume that each of
them gets the starting time from the previous workstation that has became active. In this way
the error between the first workstation that became active and the last one is proportional to the

number of active workstations, which for a large n would be unacceptable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t GET_START_TIME (ver) ;
>‘ ¢
v START_TIME(ver, T}, t%)

originator workstation t

Figure V.2: The time diagram for evaluating the starting time.

When a workstation joins the conference. it multicasts a GET START_TIME
message. (In the remaining of this section this workstation is also called originator.)
Let ¢ be the time when this message is sent. Upon receiving such a message. every
machine i replies with a START_TIME message containing the start time 7 of that
machine. and the time ¢! when the reply was sent. [f the starting time of a machine is
not set vet. then the GET START_TIME message is simply ignored. Upon receiving
a reply. the originator first compute the time ¢* when the message has been received.

Then. it uses the following formula to compute its local starting time T/ based on

the information received from the :-th machine:

14

t—t .
T;‘:T;-f--T-{-t—t;. (V.3)

Figure V.2 shows the time diagram used in deriving the above equation. Simi-
larly to V.2 we assume that the latency for both GET START_TIME and START.TIME
messages i1s the same. More precisely. let \, denote the time slack between the orig-
inator and machine (. That is. when the time at the originator is ¢. the time at
workstation ¢ is £ + \,. Since the message latency is assumed to be symmetric we
have:

t—t, .
t+ —— =t +A. (V.4)

From the above equation and the fact that 7 = T! + A,. Eq. (V.3) results imme-

diately. In order to minimize the effect of network latency and CPU load variations,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

the originator computes its starting time by averaging over multiple T* values. In
addition. to eliminate the effect of packet losses. only the replies for which the round
trip time (i.e.. t, — t) do not exceed a certain threshold are considered. To achieve a
reasonable accuracy the originator waits for .V “good” replies before computing the
average. [f after sending the first GET START_TIME message. the originator does not
receive .V replies. it keeps resending it until it eventually receives .V replies. To differ-
entiate between a new reply and a late reply to a previous GET START_TIME. each
message has a version number that is incremented every time the originator sends a
GET START_TIME message. To break the eventual “synchronization™ hetween two
workstations that may join an “empty” group simultaneously, the time-out value
ts uniformly distributed between TOSTART_TIME and 2x TOSTART.TIME. In our
experiments we use .V = 0. TOSTART_TIME = 30. and a 20 ms threshold for ¢ —¢,.
which proved to be large enough for our extended LAN setting. This guarantees that
the eventual errors in determining the starting time will be several times smaller than

the duration of a video or an audio frame.

variables:

ver =1. T, = 0. ctirne = 0. msg_cnt = 0. ¢:

on joining conference:
GET START_TIME.ver = ver:
t = getC'rtTime():
multicast(GET START.TIME):

setTimeOut(TOSTART.TIME):

on recelving message :
case GET START_TIME:
if (T, > 0) {

/™ the local machine has computed T: send a reply */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

START.TIME.ver =GET START_TIME.ver:
START_TIME.t. = getCrtTime():
START_TIME.T, = T,:
sendReply(START _TIME):

} else if (msg_cnt = 0)
restart algorithm:

case START.TIME:

if (T, > 0 or ver #TART_TIME.ver)
/= if starting time already computed or this is a late reply. ignore it */
break:

ty = getCrtTime():

if (¢ — ¢t < MAX_RTT) {
/™ compute starting time using Eq. (V.3) =/
T =START.TIME.T, + (¢t + ¢,)/2—START_TIME.¢,.:
ctime = ctirne + T
msg_cnt++;
if (rmsg-ent == V)

T, = ctime/msg_cnt: /= compute starting time =/

return:

on TOSTART_TIME time-out:
ver = ver + I:
if (ver >MAX_VER)
if (msg-cnt == 0) /= this is the first workstation joining the group =/
Ty = getCrtTime():

else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T, = ctime/msg-cnt: /= compute starting time */
return:
}
} else {
/= re-send GET START_TIME message =/
GETSTART.TIME.ver = ver:
t = getC'rtTime():

multicast{ GET START_TIME):

To determine the constant values in the above algorithm we have conducted
several experiments over an extended LAN consisting of 20 computers located in two
sites (Norfolk and Virginia Beach) 20 miles one of each other. We measured the
round-trip time at the application level among the workstations at the same site. as
well as between workstations at different sites (for a description of our testbed. see
Chapter I). To get realistic data. all the experiments were conducted during class time
with all workstations running the IRI software. Between two workstations situated
at the same location we have measured an average round-trip of 3.35 ms with the
coefficient of variation 1.08. Similarly. the average of the round-trip time between
two workstations situated at different locations was 9.93 ms with the coefficient of
variation 0.78. For obtaining these data we have conducted over 1500 individual
measurements. Based on these results we have chosen the threshold MAX_RTT to be
20 ms. and TOSTART_TIME to be 40 ms.

Let T, be the start time computed by originator. Then each workstation will
keep a virtual clock that starts at time T, and which is incremented every A real time

units. The common time can be viewed as a stream with frame duration A, that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

plays on all workstations and that has started simultaneously on all workstations.
Therefore. we call it clock streamn. After the clock stream has started. all the events
in the system are related to it. as follows.
Every X request is timestamped with the sequence number of the clock stream.
To relate the sequence numbers of the continuous streams to the clock stream se-
quence numbers. we divide a sequence number computed with the above algorithm.
to the clock stream frame duration.
a. = l%J (V.5)
We note that by relating the sequence numbers to the clock stream sequence numbers.

all the streams have the same frame duration. which equals A.

V.3 Summary

In this chapter. the objective was to extend our synchronization algorithms to work
in a distributed system. We achieve this by providing (1) a mechanism that extracts
the synchronization information from mixed audio streams and (2) a protocol that
creates a lightweight common time in a distributed system.

To extract the synchronization information. for each stream we keep two vari-
ables. lastDequed A udio Packet. and lastStrearn Packet. where last Dequed Audio Packet
indicates the sequence number of the last packet from the audio queue that has been
sent to the device and contains the packet with the sequence number lastStream Packet
of that audio stream. Then. for each audio stream. the sequence number of its
frame mixed in a particular audio packet can be obtained by subtracting from the
lastStrearn Packet variable. the last Dequened AudioPacket variable and the current
playving audio packet obtained by polling the audio device.

To achieve a common time in a distributed system. our approach is as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

When a new workstation joins the group, it asks the other members in the group. if
any. about their starting times. Upon receiving a certain number of ~good™ replies.
it averages over the resulting values and compute its starting time (a “good” reply
is a reply with a low round-trip time). Qur algorithm is totally decentralized in the
sense that it does not assume a master workstation that keeps the reference time.

This is in order to increase both the robustness and the generality of our solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Chapter VI

Effect of Network Load

~There are three principal means of acquiring knowledge...
observation of nature. reflection and experimentation.
Observation collects facts: reflection combines them:
experimentation verifies the result of that combination.”

Denis Diderot

An important factor that influences users’ perception of a multimedia ap-
plication is the network load variation. High load on the network determines an
increase in the end-to-end latency of communication between participants. an in-
crease in the number of discontinuities (i.e.. frames are either never plaved or plaved
multiple times) and a deviation from the exact synchronization between audio. video
and X-windows.

In this chapter we present the experiments we performed in order to validate
our syvnchronization protocals in the presence of network load. The network configu-
ration used for experiments is showed in Figure VI.1. [t consists of an extended LAN
with 20 Sun computers located in two sites. Norfolk and Virginia Beach. 20 miles
away one from each other (see Chapter | for a detailed description of the testbed).
To put load on the network. on a workstation we run a program that periodically

(every 40 ms) sent packets to another workstation. The program takes as argument

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

- 10 Mbps Ethernet
] - P Cox Cable (10 Mbps)

Figure VI.I: The Network configuration.

the load to be put on the network. Based on this. it computes the packet size °.
In Section VI.1 we present experimental results and evaluation of our lip-
svnchronization algorithms. After that. in Section VI.2 we describe the experiments

that evaluate the svnchronization of the shared windows stream with audio.

VI.1 Lip-Synchronization

For the lip-synchronization we have evaluated four protocols. described in detail in
the previous chapter. Just to remind here. protocol Pl does not do anything when
video and audio are out of sync. Protocol P2 delays a video frame that is ahead and
drops a video frame that is late. Protocol P3 is similar with P2. with the addition

that it delays the audio stream if video tends to be behind. In protocol P4, we do

*For example. for a 1 Mbps load, the packet size is 5,000 bytes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Table VI.1:

Percentage of audio and video frames successfully delivered at the

destination in the presence of heavy network load.

Network load [Mbps]

Audio frames

Video frames

S 95% 95 %

3.25 94 % 94 %

3.5 37T % 56 %

8.73 34 % 52 %
Table VI.2: Percentage of video frames skipped with protocols P2 and P3.
Network load [Mbps] in the case of P2 in the case of P3

3 84.6% 17.03 %

8.25 35.3 % 129 %

8.5 349 % 154 %

38.75 36.1 % 183.2 %

not drop any video frame that is late and we delay audio if video tends to be behind.

VI.1.1 Experiment Description

For each protocol we put on the network loads varving from | Mbps to 8.75 Mbps.
We stopped at 8.75 Mbps. as for higher loads. the quality of the image became
extremely poor and we were getting many NFS errors. From | to 8 Mbps loads. we
increased the load by | Mbps each time. As we were getting significant difference in
performance for loads larger than 8 Mbps. we also performed experiments with 8.25

and 3.5 Mbps loads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Table VI.3: Evaluation of the asyvnchrony between audio and video in the presence

of heavy network loads [number of audio frames].

Protocol Network Medium | Standard | Variance | Skew out
load [Mbps] | value deviation of range
Pl S -4.97 0.38 0.78 95.70%
(do nothing) | 8.25 -4.91 1.20 1.46 33.78%
8.5 -3.61 3.31 14.56 63.16%
3.75 -0.52 5.21 27.22 59.13%
P2 3 -2.02 0.79 0.62 0%
(skip/delay 3.25 -2.01 0.36 0.75 0%
video) 3.5 -0.95 1.92 3.69 0%
.73 -0.09 2.34 5.51 0%
| P3 3 -0.63 0.83 0.70 0%
(skip/delay | 8.25 055 | 1.8 3.4 0.5%
video 3.5 -0.38 2.14 4.60 2.36%
delay audio) 3.73 -0.27 2.31 5.31 1.78%
P4 3 -1.80 0.63 0.407 0%
(delay video | 8.25 -1.75 1.21 1.48 4.57%
delay audio 3.5 -0.91 2.44 5.96 9.25%
no video skip) | 8.75 -0.41 2.62 6.91 1.11%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38
V1.1.2 Results and Evaluation

For each protocol. the evaluation metrics are:

1. The skew between audio and video after the X function that displays the video
frame (.XShm PutImage) has completed. as this gives the correct skew between

audio and video streams.

2. The number of video frames. as a percentage of the total video frames received

at the destination. that have skews out of the accepted range.

3. The number of video frames skipped. as a percentage of the total number of

video frames received at the destination.

In addition to these measurements. we also determined the number of audio
and video frames received by the destination as a percentage of the total number of
frames sent by the source. This quantifies how much the quality of the application
degrades due to packet loses in the presence of high load.

As mentioned. we measure the skew (asynchrony) between audio and video
after the video frame has been displaved (at the end of the video display time). We
do this by subtracting from the corresponding sequence number of the audio frame
that should have playved (using relation IV.6). the sequence number of the currently
playing audio frame (obtained from the audio device). A negative skew indicates that
video is behind. while a positive skew indicates that video is ahead. Throughout this
chapter. we present the skew measured only in number of audio frames. If desired.
the skew measured in milliseconds can be computed by multiplying the previous value
by the audio period (64 ms). Like Steinmetz [54] we consider the skew acceptable
as longs as it falls within the range (-2.5. 2.5) or (-160. 160) ms.

Since we did not notice any difference in these parameters for loads smaller

than 8 Mbps. we present here the results for 8, 8.25, 8.5 and 8.75 Mbps loads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Figures V1.2 - VL.5 show the results for each protocol. Tables VI.1 and V1.2 show the
percentages of audio and video frames arriving at the destination. and the percentage
of video frames skipped with protocols P2 and P3. Table V1.3 shows the average
skew. its standard deviation and variance and the number of times the skew falls out
of the accepted range in the presence of various network loads.

At 3 Mbps. with P1 we measured an average skew of —4.97 (318 ms) caused
by the fact that audio is ahead of video. From the user perceptive point of view. the
skew is visible and the presentation is annoyving. As we start skipping video frames
(with protocol P2). video catches up and the skew decreases to an average of —2.02
(128 ms). The streams are synchronized. but the quality of the image is very bad.
almost no motion. When we both skip video frames and delay audio (protocol P3).
the average skew becomes -0.63 (40 ms). The quality of the image is better. but
sometimes the image freezes for 3-4 seconds. With P4. where no video frames are
dropped. the skew is around -1.80 (115 ms) and the quality of the image is very good.

As load is introduced in the network. the cases when audio is ahead of video
and behind of video. alternate. As practically there is a dedicate link between the
two machines we run experiments on (see Figure VI.l). we believe that this happens
due to the fact that both audio and video are queued in the switch before theyv are
sent to the destination. The standard deviation and the variance increase with the
load. but the average asynchrony decreases as the number of instances with negative
skews offsets the one with positive skews.

Surprisingly. in the case of P1. the number of instances in which the skew is
out of range decreases with the load. More precisely, it decreases from 95.70%. when
the load is 8 Mbps to 59.13 %. when the load is 8.75 Mbps. This behavior is probably
a result of the extra time spend by the audio and video frames in the switch buffers.

As expected. the more load is put on the network, the more frames are dropped

by the switch. For 8 and 8.25 Mbps loads. almost the same percentages of frames are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

_W"wwwawmw "M‘WMW{W‘V‘W« i

% e — -~ ry - ;' = s

(a) (b)
;‘ . I
|t TR ,f*.:"f T
i NE PR I A
BT T
LTI I L

(d)

Figure V[.2: Variation of the skew between audio and video with protocol P1 (no

correction). when a load of (a) 8 Mbps. (b) 8.25 Mbps. (c) 8.5 Mbps and (d) 8.75

Mbps was put on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

R LT R R VW U g
T] b :
(a) (b)

- W " » R~ we I}

—@-_._

=

=
;MM:_;;,_*

=

=

=

X<

==

Figure VI.3: Variation of the skew between audio and video with protocol P2 (skip
a late video frame. delay an early video frame). when a load of (a) 8 Mbps. (b) 8.25

Mbps. (¢) 8.5 Mbps and (d) 8.75 Mbps was put on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PR

Figure V[.4:

)\ﬂ\ i 'I;L
! !

V“' w,lj M ﬁ/\w

.
[
A

R IR

(d)

Variation of the skew between audio and video with protocol P3 (delay

an early video frame. delay audio if it is a trend for video to be behind. no video

skip). when a load of (a) 8 Mbps. {b) 8.25. Mbps.

was put on the network.

(c) 8.5 Mbps and (d) 8.75 Mbps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

. w
§ e i p“fﬁm%
N - /W !
€4 j . 1
(a) | (b)
g])

Avptoony

|
Sl e

P e e e e
T T T Ty

Figure V[.3: Variation of the skew between audio and video with protocol P4 (no
video skip. delay video if it is behind. delay audio if it is a trend for video to be
behind). when a load of (a) 8 Mbps. (b) 8.25 Mbps. (c) 8.5 Mbps and (d) 8.75 Mbps

was put on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

received by the audio and video processes. However. for higher loads. the number
of video frames decreases significantly due to the fact that the size of a video frame
(varving from around 1KB up to 8.5 KB) is larger than the size of an audio frame (312
bvtes). As the maximum Ethernet packet size is 1.5 KB. a video frames is usually
divided in packets and sent over the network. Assuming that the probability to lose
a packet is p it follows that an audio frame is lost with probability p (because it fits
in one packet). while a video frame that is divided over n packets is corrupted with
probability | — {1 — p)™. which for small p can be approximated to np (we consider
that a video frame is corrupted if one of its packets is lost). If we assume that a
corrupted video frame is not displaved. it follows that at the same packet loss rate
the video signal perceived by the receiver degrades much more than the audio.
Table V1.2 shows the percentage of video frames that are skipped at the
destination in order to keep the streams svnchronized. This is basically constant for
both P2 and P3 protocols due to the fact that as the load increases. fewer video

frames arrive at the destination and need to be processed.

VI.2 Synchronization of Shared Windows

[n this section we present the experiments we performed in order to test the behavior
of our shared windows synchronization algorithms in the presence of various network
lvads. In the previous chapter we described in detail the synchronization algorithms.
Briefly. the four protocols that we have evaluated. are as follows. Protocol X1 does
not perform any synchronization. In protocol X2. if an X request is late. we drop
it if it is in class of X requests that can be dropped. If the X request is ahead. it
is delayed until the corresponding audio arrives. In protocol X3. no X request is
dropped. However. if the X windows stream is consistently behind audio. then the X

client is delayed. Protocol X4 combines techniques used in protocols X2 and X3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table VI.4: Evaluation of the asynchrony between audio and X windows in the

presence of heavy network loads [number of audio frames}.

Protocol Network Medium | Standard | Variance | Skew out
load [Mbps] | value deviation of range
X1 6 -16.54 1218 143.54 T1.12%
(do nothing) | 7 -17.25 13.39 179.40 73.830%
3 -23.49 16.26 264.47 TTT%
X2 6 -14.04 10.81 116.95 60.15%
{skip N -14.70 9.58 91.78 63.63%
X requests) | S -13.35 11.45 131.29 62.03%
X3 6 -3.41 12.34 152.50 31.43%
(delav N -14.09 18.334 336.13 11.95%
X requests) | 8 -9.45 13.39 179.54 34.17%
X4 6 -4.12 9.43 88.95 11.37%
iskip/delay | 7 -4.18 7.90 62.50 11.53%
X requests) | 3 -5.64 11.09 122.99 18.533%

VI1.2.1 Experiment Description

For each syvnchronization protocol we put on the network loads varying from | Mbps
to 8 Mbs. increasing the load by 1 Mbps in each experiment. We stopped at § Mbps.
as for higher loads. we were getting many NFS errors and the system basically stoped
functioning. As we did not see any difference in performance for loads smaller than 6

Mbps. we present here the results we obtained in the case of 6, 7 and 8 Mbps loads.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P
—ﬁg—r
e
P ———
——— T T
e —
- ad
——
S sl
-

Figure VL.6:

Variation of the skew between audio and the X windows stream with
protocol X1 ((a). (b). (c)) and with protocol X2 ((d). (e). (f)) when a load of (a) and
(d) 6 Mbps. (b)and (e) 7 Mbps. (c) and (f) 8 Mbps was put on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

97

i
- ‘
(c) (F)
Figure VL.7: Variation of the skew between audio and the X windows stream with

protocol X3 ((a). (b). (¢)) and with protocol X4 ((d). (e). (f)) when a load of (a) and

(d) 6 Mbps. (b)and (e) 7 Mbps. (c) and (f) 8 Mbps was put on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98
V1.2.2 Results and Evaluation

[n each experiment. we measured the skew between audio and X-windows before an

X-windows packet was sent to the X server. Figures V.6 and V1.7 show the variation
of the skew. Table VI.4 presents the medium value. the standard deviation. the
variance of the skew and the percentage of skews that are out of range. [deally the
asvnchrony between audio and X windows should be within [-8. 12] audio frames.
which corresponds to (-300. 750) ms. A negative skew means audio is ahead of X
windows. A positive skew means audio is behind X windows.

With protocol X1. for a 6 Mbps load. the average asynchrony between audio
and X windows was -16.54 (1058 ms). In addition. in 71.02 % of the cases the skews
are larger than the maximum accepted values. This is due to the large display time
of some X requests. which makes the X-windows stream to consistently lag behind
audio. The presentation is annoying and the skew is visible to the user. With protocol
X2. the average skew decreases to -14.04 (898.56 ms). The number of skews that are
out of range decreases to 60.15 %. Although the streams are better synchronized. the
image quality degrades because some X requests are dropped. With protocol X3. the
average asvnchrony has decreased to -3.41 (5338.24 ms). The number of skews that
are out of range is now 31.48 %. The best solution proved to be protocol X4 which
basically combines protocols X2 and X3 (it skips the X requests and it delays the X
client). As a result. the average skew is around -4.12 (263.68 ms) and the number of
skews out of sync is 11.37 %.

The average asynchrony. variance and standard deviation are surprisingly
stable as the network load increases. We attribute this to the fact that the increase

in the load introduces similar delays to both X windows and audio packets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99
VI.3 Summary

In this chapter we have evaluated our synchronization protocols for audio. video
and X-windows. First. we have presented the results for the four protocols for lip-
svnchronization. studied for 640 x 430 pixels windows. The best performance in
terms of image quality and lip-svnchronization was obtained with P4. the protocol
which does not drop anyv video frame that is late. but delays audio if it is a trend
for video to be behind. For 8 Mbps loads. there is no out-of-range skew. while for
8.75 Mbps loads. 11.11% of the skews are out of range. Protocols P2 (which drops
video frames that are late) and P3 (which drops video frames that are late. while
also delaying audio). keep audio and video svnchronized. but do not ensure a good
video image.

For the synchronization of the X-windows stream with audio. the best perfor-
mance was obtained with protocol X4 (drop X requests and delay the X client if the
asynchrony is persistent). An average of 11.37 % of the skews are out-of-svnc in case
of 6 Mbps loads and 18.53 % in the case of 8 Mbps loads. Only delaying the X client
(protocol X3). or only dropping X requests (protocol X2) proved not be enough to

keep the streams synchronized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Chapter VII

Results and Conclusions

"On the mountains of truth vou can never climb in vain:
either you will reach a point higher up today. or yvou
will be training vour powers so that vou will be able
to climb higher tomorrow.”

Friedrich Nietzsche

Multimedia svnchronization is one of the keyv technologies for the successful
delivery of distributed multimedia applications. [n this thesis. we have proposed a
set of algorithms that achieve the synchronization of audio. video and the X-windows
streams in a distributed. collaborative multimedia application. Experimental results
show that our algorithms outperform the previous algorithms in the presence of both
network and hosts load variations. [n this chapter we describe how we have achieved
the thesis objectives presented in Chapter [. We also propose directions for future

work.

VII.1 Media Synchronization Specification

While most of the existing solutions for the temporal synchronization problem take
into account the network load. they largely ignore the effect of workstation load. For

this reason. we started our research by studying how the workstation load variation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

affects the stream synchronization.

To satisfv audio and video time constraints. multimedia processes should be
scheduled periodicallv. This avoids audio and video device drivers queue overflow
and provides a correct svnchronization specification. The first question we tried to
answer was whether the real-time capabilities of the current general purpose operating
svstemns are sufficient. While in many situations the answer is ves. there are cases such
as high X windows interaction. in which multimedia processes fail to be scheduled at
regular time intervals.

As real-time does not eliminate the time variability when scheduling multi-
media processes. we developed a new mechanism to provide a correct synchronization
specification. For audio/video. we associate to each packet a sequence number based
on (1) the difference between the last two scheduling times of the audio/video pro-
cess. (2) the period of the stream. and (3) the number of buffers in the device driver
queue. [n the case of the X windows stream we simply timestamp the packet with the
time when the packet arrives at the data sharing process {rtv). The is because from
our measurements it turned out that the propagation time of an X request from the
X client to rtv is significantly smaller than the tolerable asvnchrony between audio

and X windows and therefore it can be neglected.

VII.2 Media Display Time

The workstation load variation affects not only the correctness of the synchronization
specification. but also the display time of media units. Two media units which are
simultaneously sent to their presentation devices will play simultaneously only if
their display times are identical. This is rarely the case. While audio has basically
negligible display time. video has a fairly large display time, depending on the size

and depth of the window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

The display time of media units is an issue that has been generally ignored
by existing solutions. Based on experimental results. we also neglect the display time
of an audio frame. However. to estimate the display time of a video frame we use
an exponential averaging relation that adds the previous measured value (with 0.75
weight) to the previous measured value (with 0.25 weight).

For the X windows stream we have conducted experiments to see how long it
takes to the X server to process each of the 127 types of X requests. This experiments
confirmed the intuition that the X requests that update windows (e.g.. Put/mage)
have a fairly large display time. However. to estimate the display time of an X
windows packet is basically impossible. as the display time varies so much with the
parameters of the request. In this situation. our synchronization algorithms ignore
the display time of X windows. but apply corrections (drop X requests and delayv the

X client) such that within a short interval. the streams are in sync again.

VI1I.3 Synchronization Condition

After studying the effect of workstation load variation on the temporal synchroniza-
tion problem we have studied the svnchronization conditions widely used in literature
{see Chapter [l). Among these. we note that the conditions based on sequence num-
bers and synchronization points require the streams to have the same period. or a
period that is 2 common divisor. On the other hand. the conditions based on times-
tamps waste valuable network bandwidth (see Chapter I for a numerical example).
To address the above problems. we proposed a novel synchronization condition based

on sequence numbers that can handle streams with arbitrary periods.

VII.4 Lip-Synchronization

The requirement of a synchronization mechanism between audio and video is a well

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

determined issue. There are numerous solutions suggested in literature for this prob-
lem (see Chapter II). Since the topic of our research is the synchronization of audio.
video and X windows. we have implemented and tested first. the classical “drop-
delay video™ lip-svnchronization algorithm. This approach proved to be inadequate
for large window sizes. where the display time of a video frames is fairly large. For
this reason. we have investigated two solutions. In the first one. we augment the
classical ~drop-delay video™ solution. by delayving the audio stream whenever there is
a trend of video frames being late. With this approach the two streams are svnchro-
nized. but the image freezes sometimes because of the dropped video frames. The
second solution is similar with the first one. with the difference that no video frame
is dropped. This solution proved to provide a synchronized presentation and a good

image quality in the presence of hosts and network load variation.

VII.5 Synchronization of the Shared Windows Stream

The shared windows stream poses additional problems to the temporal svnchroniza-
tion. This is mainly because. unlike video and audio. the X windows is an aperiodic
statefull stream that has a history and randomly dropping X requests can make the
application to crash. To integrate the shared windows stream. we have proposed a
mechanism that increases the number of corrections applied to the system. depending
on the magnitude of the asynchrony. The first correction is to drop X requests. if
this is possible. We have experimentally determined that 47 out of 127 X requests
can be dropped. If this is not sufficient to get the streams back in sync. we delay the
X client. This solution proved to work well in the case of various host and network

loads. as well as in the case of high user interaction with the X client.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

VII1.6 Extension to a Distributed System

After designing the synchronization algorithms for audio. video and X windows we
wanted to extend our solution to a distributed system. Media synchronization in a
distributed svstem poses two additional issues: (1) to extract the svnchronization
information from mixed audio streams. and (2) to provide a global clock for all
workstations.

[n Chapter VI, we illustrate the first issue in the context of multiple users that
speak simultaneously. and propose a solution to address it. To achieve a common time
in a distributed system. we propose a statistical averaging technique which requests
the starting times from the other members in the group. Our algorithm is totally
decentralized in the sense that it does not assume a master workstation that keeps

the reference time. As a result our algorithm is both efficient and robust.

VI1I1.7 Future Work

Our algorithms achieve fine-grain synchronization of audio. video (CellB compressed)
and shared windows. in collaborative environments that are subject to timing variabil-
ity. As a future work it would be interesting to study the behavior of our algorithms
when other compression techniques. like MPEG. H.261 or H.263. are used. A related
question would be to determine which encoding scheme works best with audio and
X windows streams. Another research direction would be to extend our algorithms
to work in applications that provide VCR facilities. In this case. streams need to be
played forward/backward. paused and resumed which requires buffers control both

at the server and client sides.

VII.8 Impact of Contribution

The contribution of our work is the following. First, it demonstrates that not only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

the network. but also the workstation load has to be considered by a correct and
complete temporal synchronization solution. Recognizing the importance of this
issue will hopefullv prompt researchers to extend their algorithms to work well in
the presence of both network and workstation load variations. Second. it proves that
the synchronization of the shared windows stream in a multimedia application can
be achieved most of the time in a time-sharing environment. This will hopefully
encourage other multimedia applications to integrate the shared windows stream.

creating more versatile and powerful shared workspaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

References

[1] H. Abdel-Wahab and M. Feit. “XTV: a Framework for sharing X window clients
in remote syuchronous collaboration™. Proc. TriComm "91: Communications for

Distributed Applications & Systems. New York. pp. 159-167. January 1991.

[2] H. Abdel-Wahab. K. Maly and E. Stoica. “Multimedia integration into a distance
learning environment”. Proc. of Third International Conference on Vultimedia

Modelling. Toulouse. France. pp.69-35. November 1996.

[3] N. Agarwal and S.H. Son. “Synchronization of distributed multimedia data in an
application-specific manner”. Proc. ACM Multimedia "94. San Francisco. Cali-

fornia. pp. 141-148. October 1994.

[4] D.P. Anderson and G. Homsky. “A continuous media [/O server and its syn-

chronization mechanism™. [EEE Computer. Vol. 1. pp. 51-38. October. 1991.

[5] B. Bailey and J. Konstan. "NSync - a constraint based toolkit for multimedia™.

Proceedings of Tel Workshop. Boston. Massachustetts. pp. 169-177. June 1997.

[6] S. Baqai. M. Farrukh Khan. M. Woo. S. Shinkai. A. Khokhar and A. Ghafoor.
“Quality based evaluation of multimedia synchronization protocols for dis-
tributed Multimedia information systems”™. [EEE Journal of Selected Areas in

Communications Vol. 14. No. 7. pp. 1388-1403. September. 1996.

(7] E. Biersak. W. Geyer and C. Bernhardt. “Intra- and inter-stream synchronization

for stored multimedia streams”™. Proceedings of [EEE I[nternational Conference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107
on Multimedia Computing and Systems. Hiroshima. Japan. pp. 372-381. June

1996.

(8] G.S. Blair. G. Coulson. M. Papathocmas. P. Robin. J.-B. Stefani. F. Horn and L.
Hazard. ~A programming model and system infrastructure for real time synchro-
nization in distributed multimedia systems ". [EEF .Journal of Selected Areas in

Communications. Vol.14. No.l. pp. 249-263. January 1996.

[9] G.Blakowski. J. Hubel. U. Langrehr and M. Mulhauser. “Tool support for the
synchronization and presentation of distributed multimedia ™. Computer Com-

munecations. Vol.15. No.10. pp. 611-618. November 1992.

[10] J. Bolot and P. Hoschka. “Sound and video on the Web”. Proceedings of 3th

WWW Conference. Paris. France. pp. 154-172. May 1996.

(11} S. Cen. C. Pu. R. Staehli. C. Cowan and J. Walpole. ~A distributed real-time
MPEG video audio player™. Proc. of the 5th International Workshop on Network
and OS Support for Digital Audio and Video, Durham. New Hampshire. pp. 50-

61. April 1995.

[12] H.-Y. Chen and J.-L. Wu . “MultiSync: a synchronization model for multimedia
svstems . [FEE Journal of Selected Areas in Communications. Vol.l4. No.l.

pp.238-243. January 1996.

[13] M. Correia and P. Pinto. “Low-level multimedia synchronization algorithms on
broadband networks™. ACM Multimedia '95. San Francisco. California. pp.423-

434. November 1995.

[14] J.-P. Courtiat. R. C. de Oliveira and F.R. da Costa Carmo. “Towards a new
multimedia synchronization mechanism and its formal specification”. ACM Mul-

timedia "94. San Francisco. California. pp.133-140. October 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

[15] D.J. Duke. D.A. Duce. [. Herman and G. Faconti. = Specifving the PREMO
svnchronization objects. ERCIM Technical Report. ERCIM-01/97-R048. Jan-

uary 1997.

[16] A. Eleftheriadis. S. Pejhan and D. Anastassiou. ~“Algorithms and performance
evaluation of the Xphone multimedia communication system”™. Proc. of ACMW

Multimedia "93. Anaheim. California. pp. 401-415. August 1993.

[17] D. Ferrari. “Delay jitter control scheme for packet-switching internetwoks”. Com-

puter Communications, Vol.15. No.6. pp. 367-373. July/August 1992.

(18] K. Fujikawa. S. Shimojo. T. Matsuura. S. Nishio and H. Miyahara “The synchro-
nization mechanisms of multimedia information in the distributed hypermedia
system harmony”. Technical Report [SE-TR-93-006. Faculty of Engineering, De-

partment of Information and Computer Science. Osaka. Japan. September 1993.

9] Gusella R. and S. Zatti. “Tempo - a network time controller for a dis-
tributed Berkelev UNIX system™. [FEE Distributed Procesing Technical Com-

mittee Newsletter 6. NoSI-2. pp T-15. June 1984.

[20] M. Hodges. R. Sassnett and M. Ackerman. “Athena Muse: a construction set for

multimedia applications™. [EEE Software. \Vol.6. No.1. pp. 37-43. January 1989.

[21] P. Hoepner. "Synchronizing the presentation of multimedia objects™. Computer

Cormnmunications. Vol.15. No.9. pp. 5357-564. November 1992.

[22] P.Hoscha. "Synchronized multimedia integration language (SMIL) 1.0 Specifica-

tion” . available at http://www.w3.org/TR/REC-smil.

[23] K. Jeffay. D.L. Stone and F.D. Smith. “Transport and display mechanisms for
multimedia conferencing across packet-switched networks”, Comp. Networks and

ISDN Systems, Vol.26, No.10. pp.1281-1304, July 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/REC-smil

109

[24] L.Lamont and N.D. Georganas. “Synchronization architecture and protocols for
a multimedia news service application™. [EEE Intl. Conf. on Multimedia Com-

puting and Systemns. Boston. Massachusetts. pp. 309-320. May 1994.

[25] C.-S. Li and Y. Ofek. ~Distributed source-destination synchronization using in-
band clock distribution™. [EEE Journal of Selected Areas in Communications.

Vol.l4. No.l. pp.1533-161. January 1996.

i26] W. Liao and V.O.K. Li. "Synchronization of distributed multimedia systems
with user interactions”. Proc. of Third [nternational Conference on Multimedia

Modelling. Toulouse. France. pp.237-252. November 1996.

[27] C.C. Lin. S.K. Chang and T. Znati. "QoS message directed adapted distributed
multimedia systems™. [997 Pacific Workshop on Distributed Multimedia Sys-

tems. Pittsburgh. Pennsylvania. pp. 186-194. July 1997.

28] C. J. Lindblad and D. L. Tennenhouse. "The VuSystem: a programming syvstem
for compute-intensive multimedia™. [EEE Journal of Selected Areas in Commu-

nications. Vol.l.4, No.7. pp.1501-1523. July 1996.

[29] T.D.C. Little and A. Grafoor. “Scheduling of bandwidth-costrained multimedia

traffic™. Computer Communications. Vol.15. No.6. pp. 381-387. August 1992.

[30] T.D.C. Little. "A framework for synchronous delivery of time-dependent multi-

media data”. Wultimedia Systems. Vol.1. No.2. pp. 87-94. 1993.

[31] K. Maly. H. Abdel-Wahab. R. Mukkamala. A. Gupta. A. Prabhu. H. Syed and
C.S. Vemuru. "Mosaic + XTV = CoReview”. Proceedings of 3rd [nternational

WWW Conference. Darmstadt. Germany. pp. 234-265. April 1994.

(32] K. Maly. H. Abdel-Wahab. C.M. Overstreet, C. Wild. A. Gupta. A. Youssef,

E. Stoica and E. Al-Shaer. “Interactive distance learning over Intranets”. [EEE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Journal of Internet Computing. Vol. 1. No. L, pp. 60-71. February 1997.

[33] N. Manohar and A. Prakash. “Dealing with synchronization and timing variabil-
ity in the plavback of session recordings™. Proc. of ACM Multimedia "95. San

Francisco. California. pp. 43-36. November 1995.

[34] N. Manohar and A. Prakash. “Tool coordination and media integration
on asynchronously shared computer supported workspaces™. Technical Re-
port CSE-TR-284-96. Department of Electrical Engineering and Computer
Science University of Michigan at Ann Arbor, February 1996. URL page:

http://www.eecs.umich.edu/” nelsonr/postcript-docs/techrpt96.ps.

[35] A. Mathur and A. Prakash. “Protocols for integrated audio and shared windows
in collaborative systems™. Proceedings. ACM Multimedia "94. San Francisco. Cal-

ifornia. pp. 331-383. October 1994.

[36] D.L. Mills. ~Network time protocol (Version 3) specification. implementation
and analyvsis™. DARPA Network Working Group Report RFC-1305. University

of Delaware. March 1992.

[37] S. Minneman. Steve Harrison. Bill Janssen. Gordon Kurtenbach. Thomas Moran.
lan Smith and Bill van Melle. “A confederation of tools for capturing and ac-
cessing collborative activity™. Proceedings., ACM Multirmedia "95. San Francisco.

(California. pp. 523-533. November 1995.
[33] S. Mullender. ~Distributed Systems~. ACM Press. 1993.

[39] Network Working Group. "RTP:A transport protocol for real-time applications”.

January 1996. available at ftp://ftp.ds.internic.net/rfc/rfc1889.txt.

[40] C. Nicolau. “An architecture for real time multimedia communication systems”,

[EEE Journal on Selected Areas in Communications, Vol. 8, No.3, pp. 391-400.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.umich.edu/'
ftp://ftp.ds.internic.net/rfc/rfcl889.txt

(43

(44

[46]

(+7]

[43]

April 1990.

| J. Nieh. J.G. Hanko. J.D. Northcutt and G. A. Wall. “*SVR4 UNIX scheduler un-

nacceptable for multimedia applications™. Proceedings {th I[nternational Work-
shop on Network and OS Support for Digital Audio and Video. Lancaster. United

Kingdom. pp. 192-203. November 1993.

P. Owezarski and M. Diaz. ~Models for enforcing multimedia synchronization

in visioconference applications”™. Proc. of the Third [nternational Conference on

Multimedia Modelling. Toulouse. France. pp.33-100. November 1996.

L. Qio and K. Nahrtedt. "Lip svnchonization within an adaptive VOD system”
Proc. of International Conference on Multimedia Computing and Networking .

San Jose. California. pp. 206-215. February 1997.

S.V. Raghavan. B. Prabhakaran and S.K. Tripathi. "Synchronization represen-
tation and traffic source modelling in orchestrated presentations™. ACM Multi-

media 96 Conference. Boston. Massachussetts, pp. 362-379. November 1996.

P.V. Rangan. S. Ramanathan. H.M. Vin and T. Kaeppner. ~Techniques for
multimedia synchronization in network file systems”. Computer Communications

Journal. March 1993. pp. 1203-1217.

O'Reilly & Associates. Inc. "X Protocol reference manual™. O’Reilley Press.

Vol.0. June 1993.

W. Rosenberry. D. Kenney and G. Fisher. “Understanding DCE”. Annales des

Telecornmunications. October 1996.

K. Rothermel and T. Helbig. “Clock hierarchies: An abstraction for grouping and
controlling media streams”. [EEE Journal of Selected Areas in Communications.

Vol.14. No.l. pp.174-134. January 1996.

I

Reproduced with

permission of the copyright owner. FL;ther reproduction prohibited without permission.

112

[49] L.A. Rowe and B.C. Smith. ""A continuous media plaver”. Proc. of the 3rd In-
ternational Workshop on Network and OS Support for Digital Audio and Video.

San Diego. California. pp. 101-116. November 1992.

{30] D. Rubine. R.B. Dannenberg and D.B. Anderson. “Low latency interraction
through choice-points. buffering and cuts in Tactus™. Proceedings of the Inter-
national Conference on Multimedia Computing and Systems. Los Alamitos. Cal-

ifornia. pp.224-233. Mayv 1994.

[51] L. Rutledge and J. van Ossenbruggen. L. Hardman and D. Bulterman. " A frame-
work for generating adaptable hypermedia documents”™. ACM Multimedia 97.

Seattle. Washington. pp. 105-135. Mayv 1997.

{52] B.K. Smith. J.D. Northcutt and M.S. Lam. “A method and apparatus for mea-
suring media synchronization ~. Proceedings 5th International Workshop on Net-
work and QS Support for Digital Audio and Video. Durham. New Hampshire.

pp.203-214. April 1995.

(53] R. Steinmetz. "Synchronization properties in multimedia systems” . [EEE Jour-

nal of Selected Areas in Commaunications. Vol.8. No.3. pp.401-412, April 1990.

[54] R. Steinmetz and K. Nahrstedt. Multimedia: computing. communications & ap-

plications. Prentice-Hall. 1995.

[55] E. Stoica. H. Abdel-Wahab and K. Maly. “Application embedded algorithms
for multiple streams synchronization in distributed multimedia systems™. Pro-
ceedings of CSEI'9T: Third International Conference on Computer Science &

Informatics Durham, New Hampshire. pp.207-227. March 1997.

[36] E. Stoica. H. Abdel-Wahab and K. Maly, “Synchronization of multimedia

streams in distributed environments”, Proceedings of [EEE [nternational Con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

ference on Multimedia Computing and Systems Ottawa. Canada. pp.301-316.

June 1997.

[57] E. Stoica. H. Abdel-Wahab and K. Maly. “Synchronization algorithms for the
plavback of multiple distributed streams™. Proceedings of [EEE Fourth [nter-
national Conference on Multimedia Modelling Singapore.pp. 627-636. November

1997.

(58] D. Stone and K. Jeffay. “An empirical study of delay jitter management policies”.

Multimedia Systems. Vol.2. No.6. pp.267-279. January 1995.
(39] Sun Microsystems. Inc. “SunVideo 1.0 user’s guide™. October 1993.

(60] J.P. Thomas. "Pseudo-tree data structure for content-based composition and
synchronization of multimedia presentation™. Proc. of Third International Con-

ference on Multimedia Modelling. Toulouse. France. pp.253-268. November 1996.

(61] U.S. Department of Commerce. “Automated computer time service (ACTS)

NBS Research Material 3101. 1981.
[62] U. Vahalia. "UNIX internals. The new frontiers™. Prentice Hall. 1996.

[63] D. K. Y. Yau and Simon S. Lam. = Adaptive rate-controlled scheduling for multi-
media applications™. Proceedings of ACM Multimedia '96. Boston. Massachusetts.

pp- 129-140. November 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Classification of X requests

Table A.l: X Requests that crash the X client if dropped.

114

Code Description
a) Create resources
l CreateWindow
45 OpenFont
53 CreatePixmap
35 CreateGC
57 CopyGC
62 CopyvAtrea
63 CopyPlane
T8 CreateColormap
30 CopvColormapAndFree
93 CreateCursor
94 CreateGlyphCursor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.2: X Requests that crash the X client if dropped (cont.)

Code Description
b) Window manipulation by the window manager
T ReparentWindow
12 ConfigureWindow
c) Change resources characteristics
2 ChangeWindow Attributes
L8 ChangeProperty
24 ConvertSelection
30 (ChangeActivePointerGrab
56 ChangeGC
114 RotateProperties
d) Khevboard and Pointer
2% GrabButton
33 GrabKkey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.3: X Requests that freeze the X client if dropped {queries).

116

Code Description Code Description
3 GetWindowAttributes 52 GetFontPath
14 GetGeometry 3 GetImage
15 QuervTree 33 ListInstalledColormaps
16 [nternAtom 34 AllocColor
Ly GetAtomName 85 AllocNamedColor
20 GetProperty 36 AllocColorCells
21 ListProperties 37 AllocColorPlanes
23 GetSelectionOwner 91 QueryvColors
26 GrabPointer 92 LookupColor
31 GrabKevboard 97 QueryBestSize
35 AllowEvents 93 QueryExtenssion
36 GrabServer 99 ListExtenssions
38 QueryPointer 101 GetKkevboardMapping
39 GetMotionEvents 103 GetKeyboardControl
40 TranslateCoordinates 106 GetPointerControl |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.4: X Requests that freeze the X client if dropped (cont.)

Code Description Code Description
42 SetlnputFocus 108 GetScreenSaver
43 GetlnputFocus 110 ListHosts
44 QuervRevmap 116 SetPointerMapping
47 QueryFont 117 GetPointerMapping
438 QueryTextExtensions 118 SetModifier Mapping
49 ListFonts 119 GetModifierMapping
50 ListFontWithInfo

Table A.3: X Requests that affect other X clients if dropped.

Code Description Effect on other X clients
25 SendEvent an X client may be blocked waiting for the event
27 UngrabPointer user cannot point in any other window

Ly UngrabButton user cannot use the button in another window

32 Ungrabkeyboard | user cannot type in other window
34 UngrabKey user cannot use the key in another window
37 UngrabServer X server cannot process other connections
109 ChangeHosts a host may not be able to connect to local server
111 SetAccessControl | enable/disable access control list
115 ForceScreenSaver | reset/activate screen saving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.6: X Requests that can be safely dropped.

118

[Code Description
a) Destroy resources
4 DestrovWindow
3 DestroySubWindows
19 DeleteProperty
16 CloseFont
54 FreePixmap
60 FreeGC
9 FreeColormap
32 UninstallColormap
33 FreeColors
95 FreeCursor
107 SetScreenSaver
12 SetCloseDownMode
113 KillClient
b) Window manipulation by the X client
3 MapWindow
9 MapSubWindows
10 UnmapWindow
L1 UnmapSubWindows
13 CirculateWindow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.7: X Requests that can be safelv dropped (cont.)

119

Code Description
c) Draw graphics
61 ClearArea
64 PolvPoint
65 PolvLine
66 PolySegment
67 PolvRectangle
63 PolyArc
69 FillPoly
70 PolyFillRectangle
Tl PolvFillArc
d) Put text
: T4 PolvText3
b) PolvText16
76 [mageText3
07 ImgeText16
e) Put image
2 PutImage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.3: X Requests that can be safely dropped (cont.)

120

Code Description
f) Kevboard and Pointer
41 WarpPointer
Y6 RecolorCursor
100 ChangekevboardMapping
102 ChangeKevboardControl
104 Bell
105 ChangePointerControl
g) Miscellaneous
6 ChangeSaveSet
22 SetSelectionOwner
51 SetFontPath
58 SetDashes
39 SetClipRectangles
31 [nstallColormap
39 StoreColors
90 StoredNamedColors
107 SetScreenSaver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Vita

Emilia Stoica was born in Bucharest. Romania on May 23. 1966. She received her
Master degree in Computer Science and Engineering from Polytechnical Institute of
Bucharest. Romania. in June 1989. She worked as a Software Engineer for [IRUC.
Bucharest. Romania. from October 1989 until June 1993. From June 1993 until
January 1994, she worked as a Systems Engineer for International Computer Limited
(ICL). Bucharest. Romania headquarters. In May 1994, she started working on her
Ph.D Degree in Computer Science at Old Dominion University. Norfolk. Virginia.
Mrs. Stoica is currently Systems Designer at the Research Department of Claritech

Corporation. Pittsburgh. PA.

Permanent address: Department of Computer Science
Old Dominion University
Norfolk. VA 23529
USA

This dissertation was typeset with BTEX' by the author.

"TETEX is a document preparation system developed by Leslie Lamport as a special version of

Donald Knuth's TEX Program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sy
N
V4
27 .
=S FEERE citt |
= - 1
25 ddas g HIR
Wm E E EEEFPTTR: d | .n_m o ..________m_____ m
o 2f =0 sl 3 |
< il =0l J
< = = = g
=0 :
—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Summer 1998

	Multiple Streams Synchronization in Collaborative Multimedia Systems
	Emilia Stoica
	Recommended Citation

	tmp.1550587703.pdf.UPVBu

