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SCALABILITY IN REAL-TIM E SYSTEM S

Ram esh Yerraballi, Ph .D .
The Old Dom inion University, 1996

Supervisor: Ravi M ukkamala

The number and complexity of applications tha t run in real-time environments 

have posed demanding requirements on the part of the real-time system de

signer. It has now become im portant to accommodate the application com

plexity at early stages of the design cycle. Further, the stringent demands to 

guarantee task deadlines (particularly in a hard real-time environment, which 

is the assumed environment in this thesis) have motivated both practioners 

and researchers to look a t ways to analyze systems prior to run-time. This 

thesis reports a new perspective to analyzing real-tim e systems that in addi

tion to ascertaining the ability of a system to meet task deadlines also qualifies 

these guarantees. The guarantees are qualified by a measure (called the scaling 

factor) of the systems ability to continue to provide these guarantees under 

possible changes to the tasks. This measure is shown to have many applica-

i :  o _ ~ i .  --------- i :  —^: „ — j ; —  \ ,1 ......................... (  
t i u n o  111 o n e  UC&lgll ^LdbJA CACbUtlUU UlillC C OLill iablO ll^ , UCVCiUplllCllb ( p u i  t a u i i l  bj'

and fault tolerance) and maintenance (scalability) of real-time systems. The 

m easure is shown to bear relevance in both uniprocessor and distributed (more 

generally referred to as end-to-end) real-time systems.
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However, the derivation of this measure in end-to-end systems requires 

tha t we solve a fundamental (very im portant, yet unsolved) problem—the end- 

to-end schedulability problem. The thesis reports a solution to the end-to-end 

schedulability problem which is based on a solution to another fundamental 

problem relevant to single-component real-tim e systems (a uniprocessor system 

is a special instance of such a system). The problem of interest here is the 

schedulability of a set of tasks with arbitrary arrival times, that run on a single 

component. The thesis presents an optimal solution to this problem. One 

im portan t consequence of this result (besides serving as a  basis for the end- 

to-end schedulability problem) is its applicability to the classical approach to 

real-tim e scheduling, viz., static  scheduling. The final contribution of the thesis 

comes as an application of the  results to the area of real-time communication. 

More specifically, we report a  heuristic approach to the problem of admission 

control in real-time traffic networks. The heuristic is based on the  scaling factor 

measure.
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C h ap ter  1

In tro d u ctio n

The scope of real-time systems has expanded over the last two decades to en

compass a wide array of applications such as industrial process control systems, 

nuclear power plants, air traffic control systems, aircraft navigation, robot nav

igation and automobile control. While, in the past these systems were predom

inantly centralized, most current approaches tend to  be distributed in nature. 

Further, the complexity of these systems (in addition to tha t added by its 

d istributed  nature) has grown rapidly to a point where the dependability (or 

determ inism ) of the system as a whole has become an im portant issue. Real

tim e systems are prim arily categorized into two types, hard real-tim e systems 

and soft real-time systems. In hard real-time systems, the missing of task dead

lines can lead to severe consequences and hence there is a strict need to meet 

these deadlines. In contrast, soft real-time systems are characterized by the 

fact th a t they can tolerate tem porary deadline misses. Soft real-tim e systems 

continue to operate even after missing deadlines, and the only consequence 

being a tem porary decline in performance and an increase in response time. 

For example, a robot operating in a hazardous terrain would be a hard real

tim e system  and a system th a t periodically generates a weather report can be 

considered a soft real-tim e system.

1
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The stringent need to m eet deadlines in hard real-time systems implies 

tha t there is a need to analyze the system pre-runtim e, to ascertain its ability 

to guarantee performance (that is meeting deadlines). Therefore, this has mo

tivated enormous efforts from practioners to  investigate the system behavior 

prior to its actual installation. In other words, though the system is said to 

function in real-time, the guarantees it provides in meeting the timing require

ments of the various tasks have to  be ascertained a priori. This thesis presents 

issues and finds solutions tha t we believe will aid practioners in guaranteeing 

system behavior prior to run-tim e in hard real-tim e systems. The issues in 

soft real-time systems overlap significantly w ith those in conventional systems 

where the prim ary performance metrics are throughput and response time (an 

average measure unlike deadline that is an absolute measure). These systems 

have been well-studied and the results (pertinent to these systems) are directly 

applicable to soft real-tim e systems.

A real-time system  can be characterized by two im portant components: 

the environment in which the system is operating and the computer system 

th a t controls/m onitors the  environment. The main issues in the design of the 

first component concern interfacing with the environment [41]. Solutions in this 

area are prim arily d ic tated  by the technology. There are many issues of concern 

in the design of the second component, the com puter system. The com puter 

system involves both the hardware and the software that runs on them. The 

choice of hardware is d ictated  primarily by such param eters as cost, availability 

and the application a t hand. The primary issue in software design is not so 

much the particular choice of language or programming paradigm as it is the 

mechanism by which the various tasks are scheduled.
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1.1 Issues in  R eal-T im e S ystem s

We observe tha t only the last issue (mentioned above) can be speculated over 

because the others are more or less dictated by the  environment and the ap

plication at hand. This is the reason why we have efforts from numerous 

researchers [40, 48] on the problem of scheduling in real-time systems. There 

have been two im portant fronts of research: On one front there have been 

efforts [2, 20, 22, 24] to find scheduling mechanisms that could guarantee per

formance under different assumptions about the system. On a second front, 

researchers [46, 19, 3] have tried to answer questions posed by schedulability 

analysis. Both these are inter-related in the sense th a t schedulability analysis 

is a mechanism to evaluate the effectiveness of a scheduler. To this end, in the 

following discussion when we refer to schedulability we implicitly assume that 

the tasks are being scheduled by an arbitrary  scheduler (where appropriate, 

we give a more detailed description of the scheduler assumed). If a scheduler 

is built on a strong theoretical basis then its schedulability analysis can be a 

trivial comparison. For example, a dynamic scheduling mechanism, the earli

est deadline first (EDF) scheduler, has the theoretical property that, provided 

the  sum of the utilizations1 of the  tasks in a task-set is less than 1 , the EDF 

scheduler guarantees to meet their deadlines (schedulable). Clearly, in this 

case the schedulability test is a simple one. There are other cases where the 

schedulability test is non-trivial [19, 50].

A common assumption tha t distinguishes one scheduling mechanism 

(and thus the corresponding schedulability analysis) from another is the oper

^ h e  utilization o f a periodic task is given by the ratio of its execution tim e requirement 
to its periodicity
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ational environment of the  real-tim e system. If the environment is completely 

known a  priori, then we can use a static approach to design a scheduler. The 

schedule can be practically pre-computed (as a list), with the scheduler be

ing a simple mechanism to pick the next task in the list. On the other hand, 

if the environment is dynam ic by nature and no a priori knowledge can be 

assumed about the environm ent then the scheduling mechanism must be dy

namic, adapting to the changing needs of the system. Clearly, a dynamic 

scheduler is more expensive (in term s of overhead) to  implement compared to 

a static scheduler.

The use of dynamic approaches are perfectly justified in systems where 

the various internal (system) and external (environment) tasks characteristics 

are not known a priori [40]. However, we observed th a t such systems are far 

outnum bered by those where the environment is well understood, deterministic 

(in the  sense tha t the worst possible scenarios can be identified), and with tasks 

whose timing, resource, communication and other requirements are known a 

priori [49]. This thesis addresses a  host of related problems tha t concentrate 

on such static  environments.

1.2 Issues A dd ressed  in  th is T hesis

The problems of interest to  us in this study are m otivated by the evolutionary 

nature of real-time system software. As real-time systems continue to grow 

in size and scope there is a need to build portable standard software tha t 

would be guaranteed to operate correctly both in the logical and the temporal 

sense. By correctness in the logical sense, we are referring to the domain 

of proving the correctness of a  piece of software with regards to generating a
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correct ou tpu t for any given input (The traditional program correctness issues). 

The emphasis of research in real-tim e systems has been not so m uch to prove 

logical correctness as it has been to show tha t the output is produced in a 

timely manner. Therefore, a logically valid output generated beyond a  specified 

tim e lim it is deemed incorrect. In this thesis, we concentrate prim arily on the 

tem poral correctness.

This notion of correctness (tem poral tha t is) of a task in real-tim e sys

tem s has been captured by the concept of schedulability [46] of tasks. A task 

is prim arily characterized by the following param eters: the arrival tim e, the 

execution time, the periodicity and the deadline. Schedulability analysis there

fore attem pts to ascertain whether or not each task will be able to complete 

its required execution before its deadline for all its instances when scheduled 

by an assumed scheduler. Tasks being periodic, they occur repeatedly a t an 

interval given by their period. Various such occurrences of tasks are referred to 

as instances. The basic approach taken in schedulability analysis is to  use the 

inform ation about tasks’ arrival times, execution times and periodicities and 

com pute their worst-case completion times assuming tha t they are scheduled 

by a given scheduler. The worst-case task completion times so com puted are 

com pared against their deadlines to determ ine if the tasks will be schedula-

i . i„   i i ._  x  i „ i ! _ „ i !   ......... x .. x: _ • 4i, ~     ~ ruic. -LiiciciOic, me wui&u-cd&c completion time com putation la tnc caacntc oi

schedulability analysis.

We are not interested in deriving new schedulability tests but rather in 

extending the guarantees m ade by schedulability analysis as a system undergoes 

changes. The types of changes we are m ainly interested in, manifest themselves 

as changes in execution tim es of tasks. In Chapter 3 we discuss sources of such
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changes pertinent to  the design, development and m aintenance of real-time 

systems. More specifically, we are interested in the effects on the guarantees 

made by schedulability analysis when some or all of the tasks’ execution times 

are scaled (up or down)2. We refer to this problem as scalability of real-time 

systems. There are two im portant scenarios in which the factor has relevance: 

(i) Uniprocessor systems and (ii) end-to-end systems.

The problem of scalability in uniprocessor systems can be informally 

defined as follows:

Given a task-set T, determine the  maximum scaling factor with which 

a subset (S ) of these task-set’s execution times can be scaled without 

affecting th e  schedulability of the task-set.

If a task-set is not-schedulable3  to s ta rt with then scaling a subset of 

the task will in no way improve the situation and this case is of no interest to 

us. On the  other hand, if a task-set is schedulable to  s tart with, then we are 

guaranteed the existence of a scaling factor (possibly 1 , in the case tha t the task- 

set requirements are tight) that does not affect the task-set’s schedulability. 

The first step therefore is to find whether the given task-set is schedulable. 

In the context of uniprocessor systems, Lehoczky’s [19] schedulability test can 

be used for this purpose. Finding the scaling factor now can be viewed as 

extending this schedulability test to accommodate for changes in task execution 

times. There are two possible approaches here: (i) using an approximation

2Scaling down o f task execution times can be trivially handled, therefore from here on
wards when we refer to scaling we mean scaling up

3That is, at least one of the tasks misses its deadline when scheduled by the assumed 
scheduler.
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technique by making small increments to the scaling factor (starting from 1 ) 

and repeatedly performing the schedulability test, or (ii) embedding the scaling 

factor computation into the schedulability test. We have taken the second 

approach for performance reasons that will be described in detail in chapter 4.

As opposed to uniprocessor systems where we have a single schedulable 

resource, end-to-end systems (e.g., a distributed system) have more than one 

schedulable resource. Therefore an end-to-end system can be characterized by 

tasks tha t do not necessarily execute on a single component4. Typically, a task 

would comprise of a sequence5  of sub-tasks that each execute on a different 

component (e.g., processors, network) in the system. The requirements of 

period, deadline and arrival tim e are specified for the task as a whole with the 

execution times being specified a t the sub-task level. The problem of finding 

the schedulability (worst-case completion tim e computation) of a task (T,) in 

such a scenario can be reduced to solving the schedulability of the m  (number 

of sub-tasks in task 7)) sub-tasks in turn, provided we are able to compute 

the characteristics (period and arrival time) of the sub-tasks (T,*, 1  <  i <

ra; 1 <  k < m). For reasons th a t will become clear in chapter 3, we cannot 

use Lehoczky’s schedulability test for the sub-tasks running on these individual 

components.

The scalability problem in the context of end-to-end systems takes two 

forms depending on whether we view the scaling to occur as a result of a 

change in one or more of the components or a change to a subset of the sub

tasks. Solving either of these two forms requires th a t we first find whether the

4We use the term component to indicate any schedulable entity in the system.
5The treatment in this study is restricted to sequential tasks, however, it can be extended 

to more complex tasks.
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given task-set (of end-to-end tasks) is schedulable to start with (we call this 

end-to-end schedulability). Secondly, we have to extend this schedulability test 

to accommodate component and/or task changes.

We have investigated the applicability of the scalability problem in other 

areas of real-tim e systems. Particularly, in the area of real-time communica

tion. The application of interest to us is admission control in real-time (RT) 

channels [9, 8 ]. The role of real-tim e channels in communication is analogous to 

end-to-end tasks in distributed systems. Admission control poses the question: 

“Having guaranteed the performance requirem ents of n  — 1 real-time channels, 

is it possible to adm it a new real-time channel, while continuing to honor the 

guarantees already m ade?” The problem of admission control is analogous to: 

“Given a schedulable task-set of n — 1  end-to-end tasks, is it possible to ac

com m odate a new task w ithout violating the  schedulability of the n — 1  prior 

tasks?”

1.3 Sum m ary o f  R esu lts

The prim ary contribution of this thesis to  the area of real-time systems is 

in presenting solutions to the following two fundam ental problems related to 

schedulability analysis. The first of these problems involves schedulability anal

ysis of task-sets where tasks have non-zero arbitrary  arrival times. The second 

involves extending schedulability analysis to  accommodate scaling up of task 

execution times. The im pact these problems (and their solutions) have on 

the current state-of-the-art of real-time system  research can be summarized as 

follows:
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•  Helps real-tim e system  designers in doing a precise analysis of task-sets. 

Such a precise analysis, as opposed to the pessimistic analysis approach 

tha t was popularized by the RMA [6 ] (Rate M onotonic Approach) group 

at SEI helps prevent under-utilization of system  resources.

•  The thesis identifies many im portant issues in real-tim e systems th a t mo

tivate the need for using the  arrival time inform ation of tasks in schedu

lability analysis. Prominently, the issues of d a ta  and resource sharing 

among tasks, precedence constraints between tasks, controlling task j i t 

ter can be addressed naturally  by the use of task  arrival times.

•  The use of static  schedules was popular in practice in real-time systems till 

the late 70s. The approach however, suffered from  the inability to guar

antee task schedulability a priori as opposed to  RMA, which was based 

on the critical instant argument. As a by-product of doing a  schedulabil

ity analysis of task-sets with arrival times (reported here), we are able to 

build static schedules whose ability to guarantee task schedulability can 

be ascertained a priori.

•  There is no known schedulability analysis approach in the context of dis

tributed real-tim e systems (or more generally end-to-end real-tim e sys

tems). Using the smgle-compoiient schedulability analysis of tasks with 

arbitrary arrivals, we are able to perform an end-to-end schedulability 

analysis.

•  The thesis reports the first effort in addressing th e  issues of scalability 

and portability in real-tim e systems.
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•  The scaling problem is shown to help address issues of concern to de

signers in the design, development and maintenance real-time systems. 

In the design phase it allows us in analyzing the task-set by assuming 

an arbitrary target environment which can be later adapted to a specific 

target environment. In the development phase it allows us to add new 

tasks or enhance the existing task’s functionality. In the maintenance 

phase it helps address the ability of the system to tolerate faults.

•  The scalability problem is also solved in the context of distributed sys

tems.

•  Lastly, we report a heuristic approach to the problem of admission control 

in real-time traffic networks. The heuristic used is based on the study of 

the scaling factor problem.

1.4 O rganization  o f th e  T hesis

The rest of the chapters of the thesis are organized as follows. Chapter 2 lays 

down the  framework and terminology used through the rest of the paper. We 

describe the uniprocessor system model and task characteristics of interest to 

us. The special sense attributed  to the arrival tim e param eter leads to the 

consideration of dependent and independent task-sets. The end-to-end system 

model is defined both in a restricted flow-shop sense and also a more generalized 

sense. Finally, the real-time channel model used in the study of admission 

control in real-time traffic networks is described.

In Chapter 3, we give a brief discussion on some theoretical background 

in scheduling th a t is pertinent to this thesis. In particular we discuss the
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work of Lehoczky in the context of schedulability analysis of fixed priority 

schedulers. The use of the critical instant argument and its consequences in 

both uniprocessor and end-to-end systems is critiqued. We also discuss the 

lim ited work reported in the areas of end-to-end scheduling and admission 

control.

In Chapter 4, the problems of interest in this thesis are formally stated 

and their solutions are shown to reduce to solving three fundamental problems 

tha t are the  subject of the next four chapters. Chapter 5 presents the problem 

of uniprocessor scalability. A pre-requisite to solving the end-to-end scalabil

ity problem  is the end-to-end schedulability problem which is the subject of 

C hapter 6 . Chapter 7 considers the end-to-end scalability problem from two 

different perspectives viz., component change and task change.

The problem of admission control of real-tim e channels is the subject of 

C hapter 8 . Here, we discuss a  simulation study to compare two heuristics to 

solve the admission control problem.

Finally in Chapter 9, we describe a detailed example that puts the 

reported results in perspective and also concludes this thesis. The chosen ex

am ple is derived from the case study of the “Olympus A ttitude and Orbital 

Control System”(AOCS). This case study was performed by Alan Burns and 

his colleagues a t University of York in association with British Aerospace Space 

Systems Ltd. for ESTEC.
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C h a p ter  2

S y ste m  M o d e l

In this chapter, we introduce the modeling assumptions and establish the no

tation and terminology used in the rest of the thesis. We identify three models 

relevant to the thesis viz., uniprocessor system model, end-to-end system model 

and real-time channel model.

2.1 U niprocessor System  M odel

The uniprocessor system model is characterized by the fact th a t there is only 

one allocatable component in the system, viz., the processor. More generally, 

this model can be referred to as “single component model . ” 1 The role of the 

processor is to  m onitor/control the target environment. For example, if the en

vironment is th a t of a chemical experiment, then the processor interacts with 

the environment through sensors and actuators. The sensors serve to  convey 

the current information about the experiment as inputs to the  processor. These 

inputs together w ith locally (local to the processor) m aintained state informa

tion capture the s ta te  of the experiment. The processor performs predetermined

^ h e  term component is used to refer to any independently schedulable resource. Ex
amples include, processors, communication medium, input/output processors,disk storage 
etc.

12
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operations on these inputs (along with the information) and generates outputs 

that are then conveyed to the experiment through the  actuators. Therefore, 

the interaction of the processor with the environment in which it operates can 

be captured by the inputs and outputs.

The operations which process the inputs to com pute the outputs are 

contained in the tasks. In addition, to tasks that operate on the external inputs, 

we can also have tasks that are triggered solely by internal events or timed 

events. The operation of the complete system can be captured by specifying 

the characteristics of its tasks. There is one distinguishing characteristic about 

tasks that affect the complexity of the system, viz., task dependence. We 

therefore identify the following two cases separately. The following description 

applies for both these scenarios:

Here, n independent tasks, {Ti, T2 , . . . , Tn}, capture the activity per

formed on a processor. Each task T; (i is called the identifier of the  task Ti) is 

characterized by th e  following param eters:

• e,-: The execution tim e requirement of a task. Note th a t if we look at the 

model as a “single component model” then this param eter could mean 

the service tim e requirement of the task from the component in question.

•  ap. The arrival tim e of the first instance of a task. This param eter is also 

referred to as the offset of the task. Given a task-set T  we can assume 

that the task th a t is the earliest to arrive (say am,„) does so a t time t =  0  

(Qmin — 0). Therefore all other task arrival tim es are relative to  this 

reference.
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•  pp. The periodicity of a task. Consistent with the assumptions of re

searchers in real-tim e systems, we assume tha t tasks are of a periodic 

nature. This param eter implies tha t a task would be ready for execution 

every pi units of time. We refer to successive occurrences of a task as its 

instances or jobs. Therefore the j ih instance of task T; will be referred 

to as T- . As opposed to periodic tasks, aperiodic tasks are characterized 

by the fact tha t they are not strictly periodic. However, the minimum 

inter-arrival tim e between successive occurrences of an aperiodic task is 

assumed to be known. Note tha t in case the task is an aperiodic task we 

treat this param eter (p i) to be the m inimum inter-arrival tim e between 

the task ’s successive instances.

• dj-: The deadline of a task. Every instance of a task is required to complete 

its execution before the task deadline. Therefore, if the first instance of 

a task Ti arrives at tim e t — 0 then its deadline is at tim e t = d{. 

Subsequently, the  j th instance will arrive at tim e t = a,- +  (j — 1 ) x pi 

and will have its deadline at tim e i  — a,- +  (j — 1 ) x p,- +  d{. Throughout 

the study, we assume this param eter of a task to be less than  or equal 

to its period. In other words, the completion of a task’s instance can be 

delayed at most till its next instance arrival. In this study we assume 

this to  be a  hard deadline. This assum ption can be justified as follows: 

The problems we are interested in, involve schedulability analysis which 

is typically done offline and before the actual system is built. If the 

offline analysis would show that a task ’s deadline cannot be met, then 

the factors tha t the analysis failed to  account for (compared to the real 

system) would make the task’s chances of meeting its deadline only worse.
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Therefore it would seem only logical to  assume the deadline to be a hard 

deadline.

•  Pr,-: The relative priority of the task in the system. We assume tha t every 

task has a priority assigned to it. The priority could be dictated either by 

the scheduler (e.g., the ra te  monotonic scheduler assigns priorities to tasks 

based on their periods) or by the inherent im portance of the task relative 

to other tasks in the system. Unless specified otherwise, we assume that 

the tasks are ordered in the non-increasing order of their priorities. A 

simple transform ation can convert this non-increasing order to a  strictly 

decreasing order. For example consider a task-set, T  containing 5 tasks 

with priorities, P r\ =  9, P r 2 =  8 , Pr^  =  8 , P r 4 — 4, P r 5 =  2. Tasks 

T 2 and T3  have the same priority. Since equal priorities are arbitrarily 

broken, we can reassign T ^s  priority, (say to 6 ) to be smaller than T2’s 

(we use task identifiers to break conflicts between tasks). Note th a t if P r 5  

was equal to 7 and the priorities had to be integers then we cannot assign 

a new priority to I 3 . In such a case we can reassign new priorities to T4  

and T$ in order to  make room for T3. In other words, the transformation 

guarantees tha t the first task Ti is the highest priority task and the 

priority of task Tj is g reater than T) if and only if j  < i.

® W i‘. The worst-case response time. This is also referred to as the worst- 

case completion tim e of task 7). This term  gives the worst possible time 

elapsed between an instance of the task T)’s arrival and its corresponding 

completion. Clearly, if the response tim e of the j th instance of the task 

Ti was W- then, is given by the m axim um  W ■ V).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The characteristic th a t distinguishes the two scenarios of independent 

and dependent tasks arise from assumptions about the arrival time param eter.

2.1 .1  S y s te m s  w ith  In d e p e n d e n t T asks

The arrival tim e a,- is the arrival of the first instance of a  task. Task indepen

dence is primarily captured by assuming tha t the arrival times of tasks do not 

have any interdependence. Therefore leading to the  assumption that the arrival 

times of all tasks are equal to zero. This assumption has a significant im pact 

on the study of task schedulability. It allows us to  use the critical instant ar

gument. The critical instant argument is used in finding the schedulability of 

the i ’th  task among n tasks scheduled by a  fixed priority scheduler. It can be 

briefly summarized as follows:

A task Ti suffers its worst-case completion tim e (or response time) when 

its arrival coincides with the arrival of every other higher priority task 

Tj (i < j  < 1)- Such an arrival is called a critical instant for the task Ti.

It is im portant to understand that the occurrence of the critical instant 

for a task T) is not mandatory, in the sense tha t given a  task-set (of tasks with 

arbitrary arrivals) a task is not guaranteed to encounter its critical instant. To 

this end, we assume tha t the arrival times of tasks are given to be zero, thus 

forcing the occurrence of the critical instant. Therefore, the critical instant 

argum ent is sometimes referred to as the critical instant assumption.
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2 .1 .2  S y s tem s  w ith  D e p e n d e n t T asks

T he case for considering task dependence has been addressed by many re

searchers in different contexts [49]. Krithi Ram am rithm , in his discussion [41] 

on the complex nature of real-tim e environments states tha t, task interdepen

dence contributes significantly to the complexity. Alan Burns makes similar ob

servations in the context of the case study on the O rbital Control System [5]. 

Here, we briefly list some situations tha t impose task dependence. We also 

identify how these different situations can be addressed by incorporating the 

offset (arrival time) param eter defined in the previous subsection.

•  D ata and Resource Sharing: It is im portant to  regulate the accesses of 

multiple tasks to a shared data item or resource. A costly solution to this 

problem is to im plem ent a concurrency control mechanism (such as the 

priority ceiling protocol [33]). As an alternative to using a concurrency 

control mechanism, we observe tha t by inhibiting two or more tasks from 

accessing a resource simultaneously we can regulate their access [45]. Such 

an inhibition can be achieved by deriving suitable arrival times (offsets) 

for tasks. For example, if two tasks, T) and T j , access a common resource 

(or data  item) then with the knowledge about their expected duration of 

use of this shared resource one can arrive at their relative arrival times. 

These arrival times can be computed such th a t the request by Tj  always 

follows the release by T). In other words, we can impose constraints on 

the tasks to the effect th a t their accesses to the shared entity are ordered. 

This situation can be described as an exclusion constraint that was solved 

by imposing a precedence order on the tasks.
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• Precedence Constraint: If the tasks inherently possess a precedence con

strain t, then it would directly manifest itself as an ofTset in each task. 

For example, if the partial results (outputs) generated by a task 2] are 

used (as inputs) by a second task Tj,  then we are forced to impose the 

condition th a t the task T j  will be ready to execute only after 7) com

pletes. Therefore, there is an inherent precedence constraint on Tj.  The 

conveyance of these partial results can be done either through shared 

memory or through communication. Thus, inter-task communication can 

also impose precedence constraints.

•  Controlling Task Jitte r: The irregularity in the response times (different 

instances) of a  task 7) can hurt the schedulability of tasks that depend 

upon its ou tpu t [27]. This entails an output j i t te r  bounded (from above) 

by the difference of the worst-case response tim e and the task’s execution 

time. The output ji t te r  of a given task 7) can be reduced by dividing 

it into two tasks T j  and 7*. T j  performs the bulk of the execution and 

writes the results to a  buffer shared by Tj  and Tu ; 7* is released at an 

offset from task Tj  th a t is large enough to ensure th a t the data is always 

available. This approach can also be used to bound jitte r  on input [45].

From the above discussions it is clear th a t, task dependence can be 

captured by the notion of tim ing offsets for tasks. Further, given a task-set 

and the details of inter-task dependencies, we can arrive at individual task 

arrival times.
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2.2 E nd-to-E nd S y stem  M odel

This model differs from the uniprocessor system model (single component 

model) in tha t it considers more than  one independently allocatable compo

nent in the system. A task in such a system can require execution on multiple 

components. Hence, a task is no longer viewed as an indivisible entity but as 

a sequence of sub-tasks. We assume tha t each sub-task of a task is associated 

with a component. Therefore a task tha t uses r components is decomposed into 

r sub-tasks, one corresponding to  each component. A discussion of reasons and 

guidelines for task-decomposition can be found in [49].

We assume tha t the components in the system are ordered. The tra 

ditional flow-shop model [4] is based on the assumption tha t all tasks in the 

task-set access all resources and th a t they do so in the same order. A more gen

eral view to flow shops would be to relax the requirement about tasks having to 

access all resources but still m aintaining the order constraint. This model will 

be referred to as the ordered flow shop model. If there are m  components in 

the system, i?i, R 2 , . . . ,  R m, then a task I)  can be considered to be a sequence 

of sub-tasks T, 1 —>• T) 2  —► . . .  —> T,m. In the case of traditional flow-shop model, 

each sub-task Tik is required to have a non-zero execution tim e requirement on 

the component it runs. Ordered flow shop model relaxes this constraint.

A sub-task T,-* of task T,- is characterized primarily by its execution time 

requirement on the component (Rk) it runs. In the case of the ordered flow 

shop model, if a component k is not used by a task T{ then the execution 

time requirement of the task Tik is assumed to be zero. The param eters of 

periodicity and deadline are characteristics of a task and not that of the sub

tasks. Since these param eters apply to the task as a whole (from the start
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of the first sub-task to the end-of the last sub-task) we refer to these  as the 

end-to-end parameters of the task. The last param eter associated with the task 

is its priority Pr,- which may be inherited by its sub-tasks. Alternatively, we 

can allow individual sub-tasks of a task to be assigned priorities independently. 

Unless otherwise specified, throughout this study, we assume that sub-tasks of 

a  task inherit its priority.

2.3  R eal-T im e C hannel M od el

The two models described above are com putational models. The real-tim e (RT) 

channel model however is a communication model that abstracts th e  commu

nication activity in real-tim e packet switched networks [42, 38]. A real-time 

channel is uni-directional2. An entity (say a  process) wishing to communicate 

w ith another entity on a  remote machine does so by establishing a  real-time 

channel that has certain characteristic tim ing and buffer space requirements.

A real-time (RT) channel timing requirement can be defined by the 

following parameters:

•  The minimum message inter-generation time

•  A maximum message size

•  An end-to-end deadline for the RT channel

It is reasonable to  assume prior knowledge of these param eters for 

many applications such as real-tim e tim ing control and monitoring, interac

2A bi-directional R-T channel can be created by combining two uni-directional RT- 
channels [54]
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tive voice/video transm ission and many other multim edia applications. In ap

plications where these param eters are less predictable, estimates can be used. 

Note th a t any guarantees th a t the underlying communication subsystem pro

vides to the application is sensitive to the ability of the application to  correctly 

specify its requirements. In this thesis, we are not interested in how such a 

correct specification is achieved, but given such a specification, how does the 

underlying system guarantee its being met.

Formally, an RT channel can be defined as follows [53]:

D e fin itio n  2.3.1 A real-time channel Ci described by a tuple (g , m , d ) is a 

connection between two nodes and require that every message at the source be 

delivered to the destination in duration of time no longer than d, under the 

conditions that the message inter-generation time is g, and the message size is 

m.

This definition of an RT channel helps in network management and also 

provides a  convenient means of charging users for their connection requests. For 

example, a user will pay lower connection fee for a voice channel than  a  video 

channel since the former uses less bandwidth. A connection that demands a 

low end-to-end delay (or deadline) is likely to cost more than one th a t tolerates 

a higher end-to-end delay (or deadline).

2.4 G lossary o f  N o ta tio n

The following table summarizes the notation used throughout the thesis.
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Table 2.1: Glossary of Notation

N otation Description
t Time
T A task-set
T The i tk task in a task-set T
a,- The arrival tim e of the first instance of task Ti

Execution tim e of task Ti
Pi Period of task T;
(h Deadline of task Ti
P n Priority of task T
Wi Worst-case response time of task Ti
TP The j th instance of task Ti
a\ Arrival tim e of the j th instance of task  Ti
d\ Deadline of the  j th instance of task Ti
W? The response tim e of the j th instance of task T
Tik The k th sub-task of task T
Oik Arrival tim e of the first instance of task T k
Gik Execution tim e of the sub-task T k
Pik Period of sub-task T k ,  if known
dik Deadline of sub-task Tk,  if known
Prik Priority of sub-task T k
Wik Worst-case response time of sub-task Tk
Rr The component with an assigned index r  in the system
Ci Real-tim e channel i

9i The inter-message generation tim e of RT channel Ci
rrii The m axim um  message size of RT channel Ci
di The end-to-end deadline of RT channel Ci
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C h a p ter  3

M o tiv a tio n  an d  R e lev a n t B ack grou n d

We are interested in extending the current schedulability analysis to  accommo

date changes in task execution time. It is only befitting to spend some time 

in describing the principles and assumptions tha t underlie this analysis. Most 

schedulability results [24, 19, 44, 46] are based on the critical instant argument, 

which defines a worst-case condition for a task. Clearly, a task suffers its worst 

completion tim e when it has to compete for the processor (or component in 

question) with every higher priority task in the system. T hat is, when it ar

rives at a time when all other higher priority tasks also arrive. This instant is 

called the critical instant. Therefore, it is sufficient to look a t the completion 

tim e of this one instant in order to ascertain the task schedulability. But does 

this com putation really give us the worst-case completion tim e of a task? In 

other words, given a  task’s characteristics, will it ever suffer this completion in 

reality?

Notice tha t the critical instant argum ent clearly ignores the arrival in

formation of tasks and makes the assum ption tha t, sooner or later at least 

one of the instances of a task will face a  critical instant. It can be seen, 

however, that this is not necessarily true and therefore, the actual worst-case 

completion time of a task can be less than or equal to the completion time

23
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computed by the critical instant assumption. A simple example will clarify 

this point: Consider a task-set with two tasks, Ti and T2  whose characteristics 

are, Gq =  0 ,ei =  2,pj =  12, d\ — 10 and a 2  =  3 ,e 2  =  l ,p 2  =  12,c/ 2  =  9 respec

tively. Further assume tha t T\ is the task with the higher priority. Clearly, 

task T2  will never encounter a critical instant because, its every instance will 

be ready only 3 units of tim e after the arrival of T\. Further, T\ needing only 

2 units of execution time will complete before T2’s instance is ready. In this 

scenario, the worst-case response tim e of task Ti will be 2 and that of T2  will 

be 1. Ignoring the arrivals and using the critical instant argument will result 

in T2’s worst-case completion tim e being computed as 3 and not 1 . Therefore, 

ignoring the arrival times of tasks and using the critical instant argument leads 

to a  pessimistic computation.

Can we tolerate the pessimism inherent to this computation? The an

swer to  this question depends on the environment under consideration, viz., a 

uniprocessor or a distributed (more generally end-to-end) system. In unipro

cessor systems, depending on the assumptions (task independence for example) 

m ade, practioners [6 ] have argued tha t the cost of finding a more precise mea

sure of the task completion time far outweighs the benefit gained (say, in terms 

of saved resource utilization). However, there are convincing arguments to  the 

contrary Tmdell in [d5j He discusses scenarios th  3 . 1  show the im portance of 

considering the task arrival information in schedulability analysis1. We believe 

tha t the im portance can be really felt in end-to-end systems and in unipro

cessor systems with dependent tasks and not so much in uniprocessor systems 

with independent tasks.

JLook at the discussion in Chapter 2 about dependent and independent tasks.
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Now, let us look at the problem of schedulability analysis in end-to- 

end systems. The schedulability of a task in an end-to-end system can be 

reduced to  a sequence of uniprocessor schedulability problems provided we are 

able to compute the characteristics (period and arrival time) of the sub-tasks. 

Let us assume for now tha t we have a mechanism to compute the sub-task 

periodicities (the mechanism will be described in detail later). We don’t require 

the arrival tim e information if we follow the critical instant argument, since 

we are going to ignore it anyway. We can use the critical instant argument 

(ignoring the arrival time a,-*,) to find the worst-case completion times of all 

sub-tasks T k  (1 <  k < m). Clearly, the worst-case completion tim e of the task 

T{ is given by the sum of the  worst-case completion times computed above. 

Observe th a t we have a cum ulative measure of pessimistic computations tha t 

is bound to be more pessimistic. Therefore, we can see tha t even if one can 

tolerate the pessimism inherent in the critical instant argument, in the context 

of uniprocessor systems, we cannot do so in the context of end-to-end systems.

Before we give a description of the problem we are interested in address

ing in this study, we would like to m otivate the reader by briefly discussing the 

source of the  problem. In the chapter 1, we mentioned tha t the kinds of changes 

(that interest us) that systems undergo, manifest themselves as task execution

laiiiO  a  ujLi^i u io v u o b iv ^ ii iv^iiv^ vvo.

Note th a t, the task param eters, deadline and periodicity are dictated 

primarily by the environment. T he arrival time of a task is governed by the 

environment and the inter-dependence between the tasks. The execution tim e 

of a task on the other hand is governed among other things by: (i) the pro

gramming language chosen, (ii) the  compiler, (iii) the operating system, and
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(iv) the processor architecture (e.g., pipeline, cache). Therefore, finding the 

execution times of tasks is complex and involved [31, 23, 1]. In most cases it 

is almost impossible to  com pute a deterministic measure of the execution tim e 

of a  task. Most research efforts use the worst-case task execution tim e and not 

the  mean execution tim e. W hile this choice can be justified by the fact tha t 

th e  analysis is based on th e  worst-case scenario, it nevertheless results in an 

over-design of the system. Also, this assumption can result in poor resource 

utilization.

Using mean task execution times in the computation does reduce the 

pessimism but unfortunately we could have cases where the guarantees provided 

by the schedulability analysis could be invalid (The number of such cases being 

determ ined directly by th e  variance in the com puted mean execution time). 

Therefore, it is necessary to  accommodate the variance information along with 

th e  mean (for task execution times). For example, if the mean execution tim e 

of a  task is e and the variance of this mean is a  then it implies th a t the actual 

execution tim e is most likely to  lie in the interval (e — cr, e +  <r). Schedulability 

analysis done using the  m ean execution tim e will rem ain valid even when the 

actual execution time falls between (e — <7 , e). However, the same does not 

hold for the interval (e, e +  a). Assuming, the variance is expressed in term s

*■ 1 * 0  : c  ^  c w  —
W 1  LiA X *^ I X l ^ C L X l  ^  VV X l l ^ X X  i b  CL V ^ X X X X X X V /X X  p X C L ^ L X V ^ y ,  YV Y _CLX i X ^ j - Z X  l^O V ^X X  V  L /  C I O  J  L L O  / \

where f a c  is a constant. If we can extend the analysis done by using the mean 

execution time to accom m odate the possibility of the execution tim e being 

scaled by a  factor s f  then , it can be seen that this is equivalent to: allowing a 

variance of fa c  x e. W here, s f  — 1 +  fac .

As a system evolves the  functionalities of tasks expand, reflecting in
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terms of improvement in the d a ta  handling of tasks. For example, as an air 

traffic control system adapts to new traffic (say from monitoring 8  flights to 1 2  

flights) though the tasks themselves (their code th a t is) might not change the 

data handled by the tasks can change, resulting in an increase in the execution 

times of the tasks. This increase does affect the schedulability guarantees made 

using the previous execution times. Therefore, what we are interested in is, 

finding a factor s f  by which the execution times can be scaled (capturing the 

data handling change) without invalidating the schedulability guarantees.

A more direct scenario th a t affects the completion tim e computation 

occurs when the target platform changes. Any analysis performed (to guaran

tee performance) assuming particular values of task execution times becomes 

invalid once the target platform changes. For example, a faster processor could 

result in a lower execution tim e (not invalidating the analysis), bu t a slower 

processor would surely have an adverse affect on the schedulability analysis. As 

a system evolves, though in general the overall system is likely to improve, the 

performance of individual components (some processors for example) might not 

always improve. Another instance where a target platform is in general slower, 

arises in the case of prototype building and testing [51].

A last case where we observe the  need to do schedulability analysis for 

a t least two target platforms arises in the  area of fauit tolerance. It is common 

practice to provide fault-tolerant operation by the use of redundant components 

(often a t least one secondary com ponent). In general, secondary components 

provide only a minimal functionality (sufficient to keep the system operational 

till the prim ary is fixed) and therefore tend to be slower. Any schedulability 

analysis guarantees provided with the prim ary component as the target will be
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invalid once the system falls back onto the secondary.

From the above discussion we note that, what we need is a measure 

(will be referred to as the scaling factor for obvious reasons) th a t in some sense 

qualifies the schedulability analysis. Provided the task execution times (as a 

result of the changes described above) satisfy a bound dictated by this measure 

the schedulability analysis remains valid.

We now discuss the underlying theory derived from past results in the 

area of real-time systems tha t is used in this study.

3.1 Scheduling T h eory

Research in schedulability analysis has been focused mainly on uniprocessor 

systems. In recent years the original fixed priority analysis [24] has been consid

erably extended, relaxing many of the assumptions of the  original computation 

model. Lehoczky et. aV s [20] efforts to find the worst-case timing behavior of 

rate-monotonic tasks was the first in this direction. They have subsequently 

extended this result further, to  accommodate any fixed priority task assign

m ent [19]. In this thesis we make extensive use of this result.

The following, is a brief discussion of scheduling under different assump

tions about the environment and tasks. A good source of related discussion 

can be found in [48] and [40].

3 .1 .1  S ta t ic  v e rsu s  D y n a m ic  S chedu ling

Static scheduling mechanisms assume complete a priori knowledge about the 

task characteristics including inter-task dependencies. Such assumptions are
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valid in many of today’s practical real-tim e systems [39]. For example, real

tim e control of a process control application might have a fixed set of sensors 

and actuators, and a well defined environment whose processing requirements 

are all known a priori. The operation of the static  scheduling algorithm in such 

a system involves producing a  fixed schedule for what is called a hyperperiod. 

The fixed schedule repeats every hyperperiod [48]. For example if the arrival 

tim es of all tasks in a task-set are 0  then the hyperperiod is given by the least 

common multiple (LCM) of the task periods. A static scheduling algorithm 

assigns a fixed priority to each task tha t remains unchanged for the lifetime of 

the task.

It has been shown by Liu and Layland in their very well known pa

per [24] tha t the rate monotonic priority assignment (RMS) guarantees the 

schedulability of a  task-set (of n tasks), if the utilization of the task-set is less 

than  or equal to n(2 1 ! 71 — 1). For large n this bound tends to 0.693. Further, 

the RMS was shown to be an optimal static fixed priority assignment when the 

deadlines of tasks coincide with their periods. O ther significant results in this 

direction were, Leung’s [21, 22] formulation of an alternative (static fixed) pri

ority assignment to  accommodate tasks whose deadlines are less than or equal 

to their periodicities. Audsley et. al. [2] allowed the addition of guaranteed

r- t*. /—>•*' *-> /-11 r> ^  t-> /-) 1 I 111-< /-I /-»11 /- 4  n 1 T n e l ' n  [ 0 6  0 7 1  n r i r c ’ K i l i l - T *
U .U 1 V - L U O IV O  U X X U  X  XXXUUXX l /X . U/X. U X X U  4“' ‘ J ' ' ' - ' i l b x u o - x ^ u  c ix v ^  j y o / o o i o / x x x x j 1

of tasks having a release jitte r.

If a real-tim e system  operates in a  dynamic environment where it is 

im practical to assume com plete knowledge of the processing requirements of 

tasks (and their interactions) we use a dynamic scheduling mechanism. In such 

a case the chosen dynam ic scheduling algorithm is analyzed off-line using the
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expected requirements of the  dynamic environment. The same algorithm is 

then used a t run-tim e w ith the assumption that the run-tim e behavior of th e  

system does not depart m arkedly from the expected behavior for which th e  

scheduling mechanism was tested. A static or dynam ic scheduling algorithm  

can be applied in either of the  cases, viz., th e  environm ent is known or changes 

dynamically. However, w hat distinguishes the two is th e  performance guaran

tees tha t can be made abou t the scheduling mechanism. For example, if th e  

assumption of complete a priori knowledge about th e  system does not hold 

then, while a  static scheduling algorithm can be used bu t it will not be able to  

make any schedulability guarantees.

The earliest deadline first (EDF) scheduling mechanism [24] is the most 

widely used dynamic scheduling mechanism. EDF runs th a t task among th e  

task-set tha t is ready to  run  and is closest to its deadline. Therefore, as a  

task nears its deadline its priority relative to  other tasks increases. The ED F 

scheduler was shown to be an optim al dynamic scheduler in the sense that, if 

there exists a scheduler th a t can guarantee th a t all the  tasks would meet their 

deadlines then, so will ED F. A drawback of the ED F scheduler is tha t in its 

comparison of tasks, T , T j ,  w ith deadlines, d;, dj , there is no regard for their 

execution times, e,-, ej. Therefore, even if the two tasks’ deadlines differ by a

«“»1 1 •*« tv> ah / //. /•/.   (  ̂ /•/. Vn 4 a i*nn i r> pf /-I n f  /■/. i-f
O l i l U X J l  U n i O U U l i  U j    |  C. J  2 U 2  > « 1 1 1  O i l W O O i l  U W  i  U l i  m o  V I  U j  ^  V \ _ - i l  I X

their execution times differ by a  large am ount (e,- < <  ej). The least laxity first 

(LLF) scheduler [29] uses a  different basis for priority assignment th a t partly  

answers the need to accommodate the execution tim es of tasks. The laxity of 

a  task, Ti is the difference (d; — e,-), between the deadline and the execution 

tim e of a task. I t essentially captures the room for m eeting the deadline of a
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task. LLF scheduler has also been shown to be an optimal dynamic scheduler.

In summary, the choice of a particular scheduling mechanism is governed 

by such considerations as: (i) The assumptions th a t can be made about the 

environment (static vs. dynam ic), (ii) the guarantees provided by the sched

uler being considered, (iii) the  cost in terms of com putational overhead of the 

scheduler and (iv) the constraints on the task characteristics (e.g., deadline <  

period of tasks).

3 .1 .2  R e la tio n sh ip  b e tw e e n  d ead lin e  a n d  p e r io d

The classical scheduling result by Liu and Layland [24] is built on the assump

tion that the deadlines of tasks are equal to the periods of tasks. In other 

words, an instance of a task is required to be completed before its next in

stance is ready. As already mentioned, the rate-monotonic priority assignment 

(RMS) gives an optim al fixed priority scheduling mechanism for this scenario.

However, if the deadlines of tasks are allowed to be less than or equal 

to their periods (i.e., d,- <  pi VT[) then the optim ality of RMS does not hold. 

As shown by Leung and W hitehead in [22], the deadline monotonic scheduling 

(DMS) mechanism is an optim al for this scenario. The DMS assigns the highest 

priority to the task with the  shortest deadline. This DMS scheme is optimal in 

the sense tha t if any fixed priority scheme can schedule a task-set then so can 

the DMS scheme. One should not confuse the deadline monotonic scheduler 

with the EDF which is a dynam ic scheduling mechanism where a task’s assigned 

priority can change dynamically. A special case of this scenario occurs when 

the  deadlines of tasks are a constant factor of their periods. In other words, 

VT,- ,d{ = K X  pi, where k <  1. Note that both RMS and DMS would end up
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being the same in this case.

The third scenario occurs less commonly in real-time applications (more 

common in imprecise com putation [25, 36, 37]), where the deadlines of tasks 

can be beyond the end of their periods. This scenario was first studied by 

Lehoczky [20], where he considered the possibility of k (in the formulation of 

the previous paragraph) being greater than 1. He showed that for a value of 

k = 2 the utilization bound of RMS increases from 0.693 to 0.811. He reported 

simulation studies tha t show a more promising (close to 1 .0 0 0 ) increase in the 

achievable utilization.

3 .1 .3  P re c e d e n c e  C o n s tra in ts  an d  R e so u rc e  S h a rin g

An inherent characteristic that governs current complex real-time systems is 

the  cooperation of tasks to  achieve the goal of an application. Such cooperation 

can be captured by various types of communication semantics. Depending upon 

the chosen semantics, tasks experience precedence constraints or blocking or 

both. Blocking occurs due to the use of a synchronization mechanism (like 

priority inheritance protocol [33]) to regulated resource sharing. Similarly the 

use of critical sections to achieve concurrency control (Sha et. al. [34]) can 

result in blocking. An alternative to using a concurrency control mechanism 

for regulating resource accesses is to impose strict order on these accesses. 

Such an order can be captured by imposing precedence constraints on tasks 

th a t share the same resource. As was shown by Tindell et. al. in [45] and will 

be explained in more detail in chapter 5 of this thesis, these two scenarios can 

be captured by considering tasks to have arrival tim e characteristic in addition 

to execution tim e, period and deadline.
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3.2  U niprocessor Schedulab ility

Most schedulability results [24, 19, 46] are based on the critical instant argu

m ent, which defines a worst-case condition for a task. As noted before, worst- 

case completion tim e com putation is the crux of schedulability analysis. The 

critical instant argum ent gives us a  situation under which a task will undergo 

its worst possible completion:

L e m m a  3 .2 .1  The worst-case completion time for  task Ti occurs when it ar

rives at a critical instant, ai — . . .  =  a,- =  0 .

This lemma tells us that any instance of a  task tha t arrives a t a point 

in time when all higher priority tasks also arrive suffers the worst completion 

tim e. We still have to compute this completion time. The following equation 

gives a mechanism for this computation:

X
Wiis — the smallest X  f o r  ivhich( V] ej[—] +  e,) <  X

j = \ t o i - l  Pi

The above equation can be viewed in term s of demand and supply. The 

term  Z]j=noj'-i ej  ["jrl caPtures the demand for processor tim e from all instances 

of tasks with priority higher than i over X  units of time. Therefore, the fraction 

in the above formula gives the ratio of the dem and  to the supply. The shortest 

supply X  for which the demand is met, i.e., supply > dem and , gives the 

completion tim e of the task =  W{. Further, if this value W, is less than or 

equal to the deadline of the task (D,), then the task meets its deadline.
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3.3  O ther R elevant Work

The area of end-to-end scheduling is a relatively new are in real-tim e systems. 

Prom inent work in th is area has been reported by B ettati in his thesis [4]. As 

he showed in [4], the problem of finding an optim al scheduler for scheduling 

end-to-end tasks is NP-complete [13]. To this end, he proposed and analyzed 

heuristic approaches to solving this problem. The schedulability test he uses to 

test his heuristic schedulers is based on the critical instant argument. As was 

discussed before, this results in a pessimistic evaluation of the scheduler. It is 

therefore possible tha t he rejected heuristics th a t did not perform well under the 

pessimistic test but would in fact have been able to guarantee schedulability.

O ther ongoing research on this problem was reported by E tam adi in [7]. 

He proposes to enhance the analyzability of end-to-end systems w ithout mak

ing constraining assumptions th a t restrict resource utilization. Further, he pro

poses building robust application models tha t would allow enhancements like 

synchronization, communication. Related work can also be found in [14, 30].

Finally, on the problem of admission control of RT channels [28, 9]. The 

Tenet group’s Ferrari et. al. were the first to deal with this problem extensively. 

The principle they followed [8 , 9] in the design of an admission control scheme 

is based on verifying, whether the resources available on the path of the newly 

requested RT channel are sufficient even in the worst possible case, to

1 . provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to  all the existing RT channels to continue 

being satisfied.
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The above verification depends upon the kinds of QoS param eters al

lowed. The most im portant QoS param eter of concern to real-tim e system 

designers is meeting a latency bound (deadline). We restrict our interest to 

this param eter. There are two tests that are relevant in this context:

•  Schedulability Test: Does the addition of the new channel to the already 

established channels using this link cause either the new channel or one 

of the  already established channels to  miss their deadline?

•  Buffer Space Test: Is the available buffer space at the link sufficient to 

allow the messages of the new channel to be stored for a length of time 

equal to the delay faced by the channel at this link?

Different approaches to the  admission control problem (in real-tim e sys

tem s) will differ in th e  way the above two questions are answered. Therefore, a 

study in admission control reduces to the study of these tests. The buffer space 

test has been successfully addressed by the Tenet group [9]. We concentrate 

mainly on the schedulability test because it is our belief that there is room for 

im provement here. In  particular, there are many situations that have not been 

considered in this context.
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C h a p ter  4

P r o b le m  S ta tem en t an d  D escr ip tio n

4.1 S calab ility  of U niprocessor S ystem s

The uniprocessor scalability problem can be formally defined as follows:

P ro b le m  D e fin itio n  4 .1 .1  Given a task-set T  consisting of n tasks, and a 

subset S  o f T .  Find the maximum common scaling factor by which the execution 

times o f each o f the tasks in the subset S  can be scaled, without affecting the 

schedulability o f the task-set T .

As described in the previous chapter, the schedulability of tasks running 

on a uniprocessor can be determined by lehoczky’s [19] schedulability test. The 

scalability problem now involves extending this test to compute the  scaling 

factor.

4.2 S calab ility  o f E nd-to-E nd S y stem s

T U r x  ^  + 4-U ^ ^ U J1 t 4 . .  „ f  K . l .  4~ _1
jl j^ iv /c /i\-iii k s i . i n t c i v o o  i i u t  io  c ii^  u c -a .ic tu in  x>y u i  i n  c n u - t u _C iiU  1 c a t "

tim e systems”. The problem can be looked at from two different viewpoints:

(i) The first viewpoint stems from assuming the scaling to occur as a result 

of a change in one or some of the components in the system; (ii) The second

36
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viewpoint stems from assuming the  scaling to occur as a  result of a change in 

the functionality of some or all of the sub-tasks in the system.

4.2.1 Com ponent Change

A change in a component R r can result in a gain or a  loss in the speed of 

processing for the sub-tasks running on it. Clearly, if there is a gain in speed 

of a  component then this will not have any adverse affect on the completion 

times of sub-tasks running on it. However, if the component is replaced by a 

slower one then it will affect the completion times and hence the schedulability 

of the sub-tasks running on it. The problem of interest therefore is, to find the 

maximum factor by which all the sub-tasks on a  particular component Rr can 

be scaled such that the schedulability of the task-set (comprising all n tasks 

tha t is) is unaffected.

In the following formulation we assume th a t a ‘single component is un

dergoing a change. We can however, generalize it to  a  sub-set of components. 

The problem of scaling occurring as a result of a component change can now 

be formally posed as:

Problem  Definition 4.2.1 Given a task-set T  o fn  end-to-end tasks executing 

in a snsfem o f m . t m  > 1 1  romnnvevts, find the nnfimat srnjivo fqrfnr 1 I s f rv  /  V —  /  1 )  J  1  '  ' O  J  '  ~ '  f  J  ~

(corresponding to a maximum s f c )  with which the processing speed of a given 

component r can be scaled (down), without affecting the schedulability of the 

task-set.

In other words, we are interested in the m axim al component change 

the task-set can survive. The reason for representing the scaling factor as a
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reciprocal will become obvious once we realize tha t a lowering in processing 

speed of a  component will reflect as an increase in the execution times of sub

tasks running on the component. For example, if the speed of the component 

is S  (instructions per unit time) then an execution tim e requirement of a sub

task Tik being e,-*, (tim e units) implies tha t the number of instructions that the 

sub-task requires to execute are S  x e^.. If the processing speed is scaled down 

by l / s / c  (implying tha t s f c  > 1 ) then, we have the new speed S' — S  x 1 /s /c .  

Therefore, the am ount of tim e it would take to execute S  x t{k instructions1 is 

given by:

/ S  x eik
&ik ~  S'

_  S  x eik
S  x 1 / s / c  

=  s f c  x eik

In this formulation, we assume tha t all sub-tasks that execute on com

ponent r will be equally affected. T hat is for all sub-tasks Tjt (1 <  j  <  n) 

running on component r  their execution times as a  result of the change would 

become s f c  X ej r . The next perspective to the scaling problem however, allows 

for the  possibility th a t only a subset of the sub-tasks running on a component 

are affected as opposed to all sub-tasks being affected.

4 .2 .2  T ask  C h an g es

As opposed to a change in one or more components, we can envision one or 

more sub-tasks being affected by a change. For example as a system evolves,

1 Assuming that a change in the component is such that the same code is able to run on 
the new component
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to encompass more functionality, some of the sub-tasks (their code tha t is) 

need to be modified (enhanced), resulting in an increase in their execution 

times. Alternatively, enhancements could come in the form of increased data 

handling, manifesting as an increase in the execution times of tasks (as before 

we do not consider decreases because they do not violate prior schedulability 

guarantees). The problem of scaling occurring as a  result of task changes can 

now be formally posed as:

P ro b le m  D e fin itio n  4 .2 .2  Given a task-set T  o fn  end-to-end tasks executing 

in a system o f  m, (m  > 1 ) components, find the maximum scaling factor, s f t  

with which a subset o f  the sub-tasks (say S  : {Tik, where 1  <  i < n; 1  < 

k <  m } ) execution times can be scaled, so that the task-set T ’s schedulability 

remains unaffected.

As it will be clear from the following discussion, solving the end-to- 

end schedulability problem can be reduced to  solving m  independent (deemed 

independent by an im portant transform ation to be described later) single com

ponent schedulability problems. In other words, solving the above formulated 

scalability problem for a subset S  will become equivalent to solving m  single

component scalability problems on each of the subsets S\,  S2 , • ■ •, S m. A subset 

o  -< ~ „ u  „..u i m  t u ; \  1, c  i f  r „ _______ -------------------
c-uiibcxino m i  \ v t J  v ' c i G i i g m g  1 u . 11 t u t  a  pew. on_uicti

r , there are no sub-tasks (Vi) in S  then we set the corresponding set S r — <f> 

(null set).
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We can observe one step tha t is common to the above two formulations, viz., 

determining the schedulability of the given task-set T .  This is the initial step 

to  be done in solving both these problems. Note th a t, if a task-set T  is un- 

schedulable to s tart with then, any adverse change either to a  component or 

to  a subset of the sub-tasks is only bound to make the situation worse. The 

problem of interest can therefore be posed as:

P ro b le m  D e fin itio n  4 .2 .3  Given a task-set T  of n end-to-end tasks executing 

in a system o f m  components, find if  the task-set is schedulable.

In order to  find the schedulability of end-to-end task-set, we have to find 

if each end-to-end task in turn will be schedulable, i.e., meet its deadline when 

the individual sub-tasks compete for processing on their respective components. 

Therefore, for each task we have to find its worst-case completion time which 

can then be compared against its deadline. The worst-case completion time of a 

task T, can be com puted by assuming th a t all its sub-tasks simultaneously suffer 

their worst-case completions. The worst-case completion tim e of the task (T,), 

is then given by the sum of the worst-case completion times of the individual 

sub-tasks (TU). For a  given sub-task T, .̂, executing on the component /?*, the 

information we need to find its worst-case completion tim e is:

• The arrival tim e of all sub-tasks Tjh {j <  *)2> which are of higher priority 

than Tik and are running on the same component, R^.

2Unless otherwise specified, the arrival tim e of a sub-task Th implies the arrival o f  its 
first instance
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•  The periodicity of all sub-tasks Tjk (j 5 : i), which are of higher priority 

than Tiu and are running on the same component R k.

Notice that when, i — n we have to find the arrival time and periodici

ties of all sub-tasks in the system to determine the schedulability of the task Tn. 

Therefore, we need a  mechanism by which we can derive these two parameters 

(since these are not given a priori). Note tha t, only the first sub-task of any 

task is truly periodic. The arrivals of the consecutive instances of any sub-task 

Tik, ( 1  < i < n ' , 1  < k < m)  are dictated by the completion times of the sub

task preceding it, i.e., These completions are obviously non-periodic

and so are the arrivals of sub-task Tik- We however can impose a periodicity 

on these sub-tasks by a proper justification. The p h a se  a d ju s tm e n t mecha

nism [51], is one such mechanism that derives sub-task arrival times and also 

their periodicities. The term  phase here is used to denote arrival time.

Imposing a period on the arrivals (of consecutive instances tha t is) of a 

sub-task Tik ( 1  <  k  < m ), implies that, even if the preceding sub-task 

does finish at a particular tim e 3  (say Fitk- i), the sub-task T{k will not be ready 

immediately. A finite am ount of time (say W i^ - i  — F{tk - i ) 4  has to elapse before 

the sub-task T{k is ready to  execute. It is necessary to  limit this finite amount 

of wait tim e in the sense tha t, if it is too large then it could hurt the utilization 

of the  component R k. This is due to the fact tha t, while the sub-task is being 

intentionally delayed, the component Rk could be idle. On the other hand 

this delay must be large enough to be able to accommodate all possible finish

3All references to tim e are relative to t — 0, unless otherwise specified
4Here, is a constant for the task therefore, the delay is a variable for each

instance of
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tim es (of its various instances) of task T{:k~i- Clearly therefore, in the limiting 

condition (delay =  0 ) VK’.a— i m ust be given by the worst-case completion tim e 

of the sub-task

An effect of this adjustm ent is tha t a sub-task Tik will always be ready 

(or arrive) after a constant am ount of tim e from the arrival of the preceding 

sub-task Ti k—\ • Therefore, knowing the arrival tim e of the sub-task Tn, we can 

find the arrival of the sub-task Tl2, knowing which we can find the arrival of 

T{3  and so on. It should be clear to the reader tha t the above adjustm ent also 

allows all sub-tasks belonging to a task to inherit its period.

W hat the above adjustm ent has afforded us is, the ability to treat 

each of the components independently, provided we are able to  find the terms 

Iki'/t (Vi, k). Observe that we have all the information about sub-tasks Tn ( 1  < 

i <  n), running on the first component, R\  (That is, we have their arrival times, 

periods and execution tim es). Now the problem we wish to solve is finding the 

worst-case completion tim es of these tasks. Once we find these worst-case 

completion times we have all the  information about sub-tasks T)2 ( 1  <  i < n), 

running on the  second com ponent, R 2 and so on. The problem of interest can 

therefore be formally posed as:

"Oy*r\Vv1(QTV* Y"\ n fl r* 1 1- ■* r> v» A  O A  i i 'm  rr -f rt C'l* or/ ’ f  ' r t f  n f n o/’C r  nr> r  rt o i-f- o r* rr rt -v> rr o-i'V* rtl r
JL A. V/MAVJLJ.1 U/ J. K / J t V  C ! tt_* L/U.-C- C« UuV C t C f j  I S  I C  U/ OU

component, find the worst-case completion times o f all tasks in the task-set.

Observe that this problem  is similar in sense to the schedulability prob

lem solved by Lehoczky [19] (refer to Chapter 3). However, while his solution 

using the critical instant argum ent can be used in the context of uniprocessor
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systems, we cannot use it here (in the context of end-to-end systems th a t is). 

Finding a solution to this problem is one of the results of this thesis.

Now that we described a  mechanism to test whether a given task-set is 

schedulable, we have answered the question of whether there exists a scaling 

factor as defined by the two problems, 4.2.1 and 4.2.2. Clearly, if the tasks are 

so stringent tha t any increase in the execution times of the sub-tasks cannot 

be tolerated, then the scaling factors s f c  (as defined in problem 4.2.1) and s f t  

(as defined in problem 4.2.2) will both be equal to  1.0.

The end-to-end schedulability problem has been reduced to m  single 

component worst-case completion tim e computation problems and not m  single 

component schedulability problems. Therefore, we cannot talk about extending 

a single component’s schedulability, unless we derive the sub-task deadlines. A 

m ajor research issue in end-to-end scheduling has been the derivation of sub 

task deadlines. Given an end-to-end task’s deadline the problem of finding an 

optim al5 division of this deadline among the sub-tasks is intractable [15] (N P- 

complete [12]). This result has prom pted a heuristic approach [4, 15, 30], two 

such heuristics being: (i) divide the task ’s slack6 equally among the sub-tasks;

(ii) divide the task’s slack among its sub-tasks in a  weighted proportion of th e ir 

execution times.

The above two heuristics vary mainly in their sensitivity to the execution 

times of tasks. For example, the second heuristic is built on the assum ption 

tha t the  shorter a task ’s execution tim e requirement, th e  more likely it will have

5In the sense that, if there exists a division that would help the task meet its deadline 
then the mechanism should find it

®The slack of a task is given by the difference between its  deadline and its execution tim e
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its requirem ent m et and therefore the  lower is the slack assigned to it. The 

first heuristic is built on the assum ption tha t the priority inherited by a sub

task has a  greater impact on its ability to meet its execution time requirement 

than its execution time itself. Thus the slack is divided equally among all sub

tasks. This allows us to reduce the end-to-end scalability problem to m  single 

component scalability problems.

Now, finding the common scaling factor is a simple m atter of finding 

the m inim um  of the m  scaling factors (each corresponding to one component). 

The problem  of interest therefore is the single component scalability problem, 

which can be formally defined as follows:

P ro b le m  D e fin itio n  4 .2 .5  Given a schedulable task-set T  o f n tasks execut

ing on a single component and a subset S  o fT ,  find the maximum scaling factor 

s f  with which all tasks in S  can be scaled without violating the schedulability 

of any o f  the tasks in T .

Now, we can observe th a t solving the two problems 4.2.1 and 4.2.2 

am ount respectively to:

a Solving the single component scalability problem (4.2.5) with S  =  T.

# Solving the m  single component scalability problems and taking the min

im um  among these scaling factors.

We can now summarize this discussion on end-to-end scalability by not

ing th a t, solving this problem entails finding solutions to the two problems,

4.2.4 and 4.2.5.
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4.3  A dm ission  C ontrol o f  RT C hannels

The problem of admission control of real-time (RT) channels was first inves

tigated  by Ferrari et. al. [9] at the Tenet group. Admission control is the 

m echanism by which multiple real-tim e connections can simultaneously share 

the  resources of a packet switching network without resulting in congestion. 

Further, the connections are guaranteed a  particular quality of service (QoS) 

th a t is initially (at connection set up) agreed upon. Admission control comes 

into play when a new RT channel is being requested. An RT channel (or 

a connection request) is accompanied with a QoS list tha t describes the re

quirem ents of this connection. Popular QoS requirements in the literature of 

d istributed  real-time systems are - throughput, latency (or deadline), packet 

loss tolerance [28, 10, 35] etc.

The mechanism used to  determ ine the admissibility of a real-time chan

nel involves verifying at each interm ediate link (along the path) in turn whether 

the  RT channel’s QoS requirements can be guaranteed. If a channel’s require

m ents can be met at each of the interm ediate links then we can accept the 

channel. If however, the channel’s requirements cannot be met at any of the 

in term ediate link then we can reject the channel. In fact the first such link tha t 

deem s the channel inadmissible is sufficient to confirm tha t the channel would 

not be admissible.

In order to  test whether a  channel’s requirements will be met at an inter

m ediate link we have to know its deadline and its period at tha t link. Finding 

the  period is straightforward according to the phase adjustm ent mechanism. 

However we do have to derive the deadline of the RT channel at interm ediate 

links. Since the service time of the channel on each of the links is the same
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one way to derive the deadlines would be to divide the slack of the RT chan

nel equally among the intermediate links. However, if one wishes, one can use 

a more sophisticated heuristic [15, 4] to derive these deadlines. This reduces 

the problem of finding the  admissibility of an RT channel to be equivalent to 

solving the admissibility a t each of the interm ediate link. From here onwards 

when we refer to the admissibility of an RT channel we mean its admissibility 

at an interm ediate link.

Now, the question tha t admission control has to answer when accepting 

a new connection can be broadly phrased as:

P ro b le m  D e fin itio n  4 .3 .1  Given the QoS requirements o j a new R T  channel 

is it possible to accept this channel without violating the QoS guarantees made 

to R T  channels that have already been accepted?

To summarize this chapter, we have defined four problems of interest:

• The uniprocessor scalability problem (4.1.1),

•  The single com ponent schedulability problem (4.2.4),

• The single com ponent scalability problem (4.2.5), and

• The problem of admission control of RT channels (4.3.1).

The next chapter discusses the first of these problems. Note that, the third 

problem in the above list is different from the first in th a t, it involves tasks 

whose arrival times cannot be assumed to be zero (as in the critical instant 

assumption).
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C hap ter 5

S ca la b ility  in  U n i-p ro cesso r  E n v iro n m en ts

As discussed in Chapter 1, a host of schedulability related issues translate into 

a more general problem called the scaling problem. Observe tha t the scaling 

factor as defined in the problem statem ent attem pts to capture a common factor 

by which a sub-set of tasks belonging to a task-set can be scaled together. In 

our first a ttem pt at this problem we made an assumption tha t the sub-set S  is 

the sam e as the task-set T. T hat is, we were interested in scaling the complete 

task-set as opposed to  a sub-set of tasks. A solution to this problem can be 

found in [52]. The following discussion however considers the general scaling 

problem as stated in Problem  4.1. The model assumed is the uniprocessor 

model described in chapter 2. We repeat the problem statem ent here and 

give a  discussion about the possible approaches to  the solution followed by the 

details of the solution approach we have taken.

5.1 P rob lem  S ta tem en t

•  Given a task-set T  consisting of n tasks, and a subset S  of T .  Find 

the  maximum common scaling factor by which the execution times of 

each of the tasks in the  subset S  can be scaled, without affecting the 

schedulability of the task-set T.

47
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The particulars about the scheduling algorithm  used to schedule these 

tasks have not been specified in order to keep the problem general. The choice 

of scheduler can be either a  dynamic scheduler (like earliest deadline first) or a 

fixed priority static  scheduling algorithm. If the chosen scheduler is the la tter 

then  the tasks are assumed to be numbered (decreasing order) according to 

their priorities as d ictated by the scheduler. The term , scaling factor is used 

to  refer to a scale up in the execution tim es and not a scale down. It can be 

shown tha t if the  execution tim e of a task is reduced then the schedulability of 

th e  task (and other lower tasks) will remain unaffected.

The use of th e  term , “maximum” needs some explanation here. The 

scaling factor we desire is one that cannot be improved upon. In other words, 

given that s f  is the m axim al scaling factor and e is an infinitesimally small 

quantity. Using s f  to scale the tasks in S  would not affect the schedulability 

of the task set whereas using s f  +  e as the  scaling factor results in at least one 

of the tasks in T  being unschedulable.

5 .2  D iscu ssion  o f P ossib le S o lu tion  A pproaches

We concern ourselves mainly with a static fixed priority scheduling mechanisms 

because the above problem has a rather trivial solution when we assume a 

dynam ic preemptive scheduling algorithm (say EDF). It is possible to  find a 

feasible schedule using a dynamic scheduling mechanism provided the following 

condition holds for th e  utilization [24]:

n e ■
" = E ^ <  i

V j 6 T
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If the utilization of the task-set is greater than 1, then clearly the task- 

set is not schedulable by any dynamic scheduling mechanism and further the 

question of scaling the tasks is not relevant anymore. The above condition is 

both a necessary and sufficient condition for EDF to be able to guarantee the 

schedulability of the task-set. Therefore, m eeting the above condition ensures 

the existence of a  scaling factor. Now, given such a  task-set we can scale the 

tasks in the sub-set such tha t the new utilization U' =  1.

E E ‘A
v? e s f t /  \vj e (T-s) f t /

= v w x ( e  ^ )  + " - ( e  I
\vj 6 s f t  /  \y? e s f t

= (*/«<f-l)x ( £  + u
\Vj e s  f t /

The scaling factor of interest therefore is when U' =  1, given by:

1 -  U  
S J e d f  —    g -  “ h i

E iVj' 6 S f t

This factor is not valid in the case of static fixed priority preemptive 

scheduling algorithm s because the above condition on utilization (i.e., U <

1) does not necessarily guarantee the existence of a  fixed priority scheduling 

algorithm. A similar bound does exist for the rate  monotonic scheduler (RMS: a 

fixed priority scheduling mechanism), under the assumption tha t the deadlines 

are equal to  periods: n(21/ 71 — 1). The rate  monotonic priority assignment is 

known to  be optim al in this case [20]. Further, the to tal utilization of the 

task-set being less than  or equal to  n(21/71 — 1) is a sufficient (not necessary)
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condition for optimality. In other words the above condition guarantees that a 

rate monotonic priority assignment will result in the task-set being schedulable. 

Therefore, one can say that a scaling factor s f rms (following the same derivation 

as above but replacing the utilization bound n(21/" — 1) for 1) given by the 

following equation does not violate the schedulability of the task-set.

n(2 ■/»-l)-t/
0 J r m s  — ____________ _____.  p '  T  J-s p

v jT s  Pi

The above computation of the scaling factor does give us a valid factor 

in the sense th a t using this factor to scale tasks does not violate the schedula

bility of the task-set. However, it is not necessarily optimal in the sense that 

the resulting utilization bound is not a tight bound. In order to understand 

why this bound is not tight one has to look more carefully a t the meaning of the 

schedulability bound, n (21/" — 1). This bound is only a sufficient and not a nec

essary condition for the task-set to be schedulable by the RMS mechanism [20]. 

Therefore it is possible tha t a task-set does not meet this schedulability bound 

and yet is schedulable by the RMS mechanism. Therefore we observe that a 

more precise analysis is necessary to get the maximal scaling factor.

A second observation one has to make about the above scaling factor 

computation is tha t, the computation derives its validity from the fact that the 

rate monotonic priority assignment is optim al when deadlines and periods of 

tasks coincide. If this condition (deadlines equal periods) does not hold then, 

we can no longer use the  above result. If the deadlines of tasks are known to be 

less than their periods, then the deadline monotonic priority assignment (DMS) 

is known to be optim al [22]. However, there is no known sufficient condition
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on th e  to tal utilization. Therefore, in order to com pute the scaling factor we 

have to  do a more precise analysis of the task-set.

As a  special case of the scaling problem, if the sub-set S  is same as T  

then the scaling factor would be a simple reciprocal of the utilization in the 

case of EDF (i.e., s f ed/ = jj). Similarly, in the case of RMS, the scaling factor 

using the approach above would be, s f Tms =  "f2 f (this is not optimal, as 

already discussed above).

In the  following, we give the algorithm to  find the maximal scaling 

factor when an arbitrary (RMS and DMS being two instances) fixed priority 

assignment is used. Before the details of the mechanism are presented we would 

like to  intuitively motivate the idea behind it. We consider the case of scaling 

all tasks to  present the motivation. Since we are interested in the common 

scaling factor, one approach would be to consider a successive approximation 

technique as taken by [6]. Incremental factors are used to scale tasks and 

perform  a schedulability analysis to confirm if the increment is acceptable. 

Clearly, such a technique would be expensive.

An alternative approach would be to incorporate the scaling factor com

putation  into the schedulability test. This is the  approach we have taken. The 

schedulability test we use is the one proposed by Lehoczky in (refer to Chapter

2). T he idea behind Lehoczky’s schedulability test is to ascertain the schedula

bility of each task in turn  starting from the highest priority task. The schedu

lability of each task involves considering all tasks th a t are of higher priority 

than itself. Therefore, the schedulability test of a  task T; can be interpreted as 

follows: To ascertain w hether task T) will meet its deadline while continuing to 

honor the tim ing requirements of all higher priority tasks. Note tha t the test
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does not consider whether the higher priority task meets its deadline. It only 

makes sure th a t any higher priority  task will not wait for the processor while a 

lower priority task is using it. In other words, it ensures that in every pj (j  < i) 

tim e units the  task corresponding task Tj would get ej units of the processor’s 

tim e. It is possible for example th a t, a higher priority task Tj gets its last unit 

of required execution tim e between dj and pj (note dj <  pj 1 <  j  < n), thus 

m eeting its dem and1 but not its deadline.

On the same lines our approach to  finding th e  scaling factor a ttem p ts  to 

find the  scaling factor for each task in turn starting  from the highest priority 

task. The scaling factor {s f ')  obtained with respect to a  task T,- therefore 

guarantees th a t the task T; would meet its deadline continuing to honor the 

scaled (scaled by s f ' )  requirem ents of all higher priority tasks. In o ther words, 

s f '  is the factor with which the execution times of all tasks with priority greater 

than  Ti and including T{ can be scaled without T{ missing its deadline even after 

accom m odating all the scaled higher priority tasks. The required scaling is then 

the m inim um  of all com puted scaling factors s fj .  A more detailed treatm ent 

of the  solution follows.

5.3 D eta ils  o f th e  A pproach  Taken

An analogy can be drawn between the com putation of the  scaling factor s f '  and 

assessing the  schedulability of the task Tj. In order to assess the schedulability 

of task  Ti we compute the worst-case completion tim e of task Ti and com pare it 

against its deadline. This com putation takes into account the execution time

JIt will not wait for the processor while a lower priority task is using it
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demands of higher priority tasks (but is independent of the higher priority 

tasks’ ability to  meet their deadlines). Similarly in the com putation of the 

scaling factor w ith respect to task T;, we only account for the execution tim e 

(scaled) demands of the higher priority tasks and not the ability of these tasks 

to meet their deadlines.

We find such scaling factors for all tasks and the required scaling factor 

is the minimum among these, i.e., s f  = M in im u m (s / ') .  Note tha t each of the 

scaling factors 5f 1 only considers the schedulability of task Ti and any scaling 

factor tha t is less than s f 1 will continue to guarantee its schedulability. Since 

we are interested in a common scaling factor, the lowest of the scaling factors 

s f 1 h <  i <  n (The index h is defined below). In the following paragraphs, 

we present the details of the technique for the general scaling problem and a 

proof of its operation.

We make use of the schedulability test described in [19, 6] to find the 

worst-case response times of tasks.

Note tha t in the previous section we assumed th a t T  =  S 2 in order to 

simplify the explanation of the solution. In this context we gave a definition 

of s f 1 tha t needs a  slight refinement to adapt to the case th a t the set S  is not 

necessarily equal to  T. The scaling factor s f 1 is the factor w ith which the tasks 

in the set S  with priorities higher than Ti can be scaled w ithout affecting Tj-’s 

schedulability, while continuing to honor the demands of all tasks with priority 

higher than T,. The requirements of higher priority tasks include both: (i) 

the  requirements of higher priority tasks tha t are not included in S  and (ii)

2 We assume that the tasks in S  are sorted in a non-increasing order of their priority
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the scaled (scaled by s f '  th a t is) requirements of higher priority tasks that are 

included in S.  There are two im portant observations to be made:

• In the computation of the scaling factor s f '  the task T,- is not necessarily 

a member of S. This is because there are tasks in T  tha t do not belong 

to  S  whose schedulability could be affected by the scaling of tasks in S. 

And we cannot ignore them in computing the desired scaling factor.

• The number of scaling factors to be computed is equal to n — h. The 

num ber of tasks in T  of priority less than the highest priority task in S. 

Clearly from the definition of s f '  in the above paragraph, we see that for 

all tasks 7* whose priority is greater than the any in S, s f '  is undefined.

The given sub-set S  is assumed to be sorted by the decreasing order of 

priorities. Let Tk be the highest priority task (first task) in 5 3. For each task 

Ti where h < i < n  (starting from i = h and counting up), we find the scaling 

factor by which all tasks in S  whose index is <  i can be scaled, while continuing 

to m aintain T i s schedulability (i.e., meeting its deadline and the demands of 

all tasks with priority higher than T) are honored).

Since we make the critical instant assumption, only the first task in-

c + o r . ™  , m .  +OC-1- T .  A  ; + Q h O l  T \ T ^ f „
O tU ilV V  C/i U i l l j  J. } IIVV/UU O t j  W HJ1 H O  U lU -U ll i  v j  i i o t u

tha t only higher priority tasks affect the schedulability of a task, because lower 

priority tasks will be preempted. We consider the execution profile of task 

T ( i  > h) along with all higher priority tasks Tj  where j  < i. In Figure 1, the 

first continuous block (no idle tim e in between) of used tim e is represented as

3Task 7/, is the highest priority task that needs to be scaled.
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U \ . The notation U \ is also used to represent the length of this block. The j th  

such used time block is represented as U j . Further, U j tL and UjyR represent the 

left and right boundaries of the block U j (i.e., U j  = Uj,R — U j ^ )  respectively, 

relative to  the start tim e of consideration (i.e., U\,l , which can be assumed 

w ithout loss of generality to be zero). The first task instance of T  (refer to 

Figure 5.1) completes a t a  point U \ units of tim e after it has arrived, with 

all higher priority tasks also arriving at U \,l , the sam e instant as T; arrives - 

critical instant.

L
U'i

Completion o f Ti

U i U->

^ U ' j  U 'k \h
L,-, 't L

Uk

UlL

W orst-casc phasing forTj 
(critical instant)

$  U  i r  U iL  U i r  U 3l  U 3r  UkL UkR

U2I

’ Used Time Used Time

Figure 5.1: Task TVs Execution Profile

The blocks of execution between the points U \ , r  (The earliest point in 

tim e after the completion of task T,- at which the processor becomes idle) and </,• 

(deadline of T1,) are : £/2, U5 , • • •, Uk (There are k used tim e blocks in all). These 

blocks represent the higher priority tasks tha t would have to  be accommodated 

if we want to push th e  completion tim e of Ti towards d;. Each block of used 

tim e is divided into m arked and unmarked sub-blocks. A sub-block of block U j  

is said to be marked if the  execution tha t spans it belongs to  a task (or tasks) 

tha t belong to the sub-set S.  A marked sub-block, denoted as Uf, indicates the 

p ’th  marked sub-block in  U j . There are k such marked sub-blocks in all.The
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way the scaling factor, s f l for task Ti is computed is as follows:

s f 1 =  m ax s f m 
J l<m<k- 1

where

Sfm =  1- ' -

E f(E u'j) + (uj+1.L-uij,))
l < j < m  \  VI /

E  £  uj
l < j < m  V /

3 f m in the equation above is the factor which when used to  scale the 

execution times of all tasks in S  of higher priority than T,-, will be able to 

stretch the completion time of task T  a t most till Um+itL- The first term  in 

the num erator (same as the denom inator) is the total of the execution times of 

tasks in S  th a t are considered for scaling at this point (i.e., tasks in S  whose 

priority is higher than T,). The second term  in the num erator is the  to tal idle 

tim e th a t these tasks are being scaled to  consume. Therefore the right hand 

side of this equation in a  simplified sense can be viewed as usedtime+?dIetime _
~  1 u s e d t i m e

Observe th a t, each s /,„  is a valid scaling factor in the sense tha t it does not 

result in T  missing its deadline. Since we are interested in the m aximum scaling 

factor, the  maximum among these valid factors is the required solution. The 

resultant scaling factor s f ‘ is therefore the  maximum scaling factor w .r.t task 

T{. However, from the definition of s f ! one can see tha t the possibility of a 

higher priority task missing its deadline is not accounted for in this factor (only 

its dem and is accounted for). Therefore, this scaling factor is valid only in the 

context of task T,-. In order to find a  common scaling factor for the  sub-set S  

now, we have to find the minimum among all s f 1 (h < i < n).
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To understand why the minimum has to  be taken, note th a t w .r.t task 

T{ (h < i < n ) any scaling factor value less than  s f '  will still continue to be 

valid. However, w .r.t some other task Tj (h <  i < n), where s / J <  s f 1, s f 1 

will not serve as a valid scaling factor. Observe th a t s f J will surely serve as a 

valid scaling factor w .r.t both T, and Tj. If we generalize this observation, it is 

clear why the minimum is the required solution.

The complete algorithm to com pute maximal scaling factor is given

below.

1 Algorithm Scale_Factor(T, S’)

Param eters: T  is the given task-set which is schedulable. S  is the 

sub-set whose scaling factor is desired. S  is assumed to  be sorted in 

the increasing order of their priorities. Assume tha t is the highest 

priority task in the sub-set S.

Step 1: For (f =  h.\ i <  n;i  +  + )

Step 1.1: Compute first approxim ation for the completion time 

of task Ti s first job:

complo =  ^  ej
j=\toi

Step 1.2: Calculate the next approximation for completion time:

com.plt
complt+1 =  e; +  > | ---------- 1 ej

j=l to t'-i Pi

Step 1.3: I f  (complt+i > di) th en  The job missed its deadline: 

Exit(-l);
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S te p  1.4: I f  (complt+i complt) th e n  we have not arrived at the

completion tim e of the task, so, g o to  S tep  1.2;

S te p  1.5: The completion tim e for the  job is complt \

S te p  1.6: F it higher priority task instances tha t would arrive 

between the points complt and d;. The scheduling points are 

U2 L, U3 L, - • •, UkL\  where, Um =  UmR — UmL denotes the m th used 

tim e block (refer to Figure 5.1). Further we identify each used 

block as a sequence of marked and unmarked sub-blocks where a 

sub-block of block Um is marked (referred to as , if it is the j ’th 

marked sub_block of Um) if it belongs to the sub-set S  and if its 

priority is greater than th a t of task 7). unmarked otherwise

S te p  1.7: Compute the maximum  possible scaling factor s f ‘:

o f used time, Uk, does not overlap with the deadline d,-, i.e., of,- <  Uk,L then we set Uk,L — di

max s f rl<m<k- 1

where

E E  u ‘ j
1 < j < m  VI

S te p  2: s f  — Minimum ( s / ! ) Vt

S te p  3: s f  is the required m axim al factor.

4Uk is the used block of tim e that overlaps with the deadline d,-. However, if the last block
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end

The fact that the above algorithm  returns an maximal scaling factor is 

confirmed by the following proof:

5 .4  P ro o f for th e P resen ted  Solution

Following are the observations about the Solution that would help us prove 

th a t the derived scaling factor is in fact maximal.

•  There is no idle time in the interval because if there were any 

idle tim e then it would have been used by T) resulting in Tt- completing 

before the point UitR.

•  Blocks of execution Ui(i >  2) belong to  only higher priority tasks. This is 

true  because we have not taken any lower priority tasks into consideration 

here.

® The scaling factor we are trying to find for task T  only guarantees that 

the task 7) will meet its deadline, by using the processor a t tim es when its 

free (i.e., not executing any higher priority tasks). It is possible tha t the 

scaling factor derived can cause a higher priority task to  miss its deadline. 

However, if a higher priority task  does miss its deadline, it is not because 

of task T{ but due to its own execution time and the execution times 

of tasks higher than itself being scaled (this point is explained using an 

example later).

To see the effect of scaling the tasks by a factor, we look at the  first scal

ing factor considered, namely s f i  — (refer to Figure 5.2).
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New Completion o f T j

Old Completion o f  T j

Marked 
Used Time

Unmarked 
Used Time

Worst-case phasing fo rT j 
(critical instant)

Figure 5.2: Effect of Scaling by 5f i

Since, this scaling does not affect the periods of tasks, if there were I j  instances

of a  task Tj( j  <  i) in the interval before the scaling, there will still

be the same num ber of instances and further they will arrive at the same points 

as before.

U\  =  U \ yR — U i }L - E  Jj  x  eJ w ^ er e  1
1 < j < i

The processing requirem ent of task Tj(Vj  <  i), after scaling would become 

e'j — sf i  x ej, if ( j  £ S ), or e'- =  ej, if ( j  $  S ). However, So long as the

following condition holds true, task Tj would complete by U2 , l ’■

£  U i  x  4 )  =
l < j < )

We can confirm th a t this is in fact true:

E (Ji x e ' j )  =  E  ( h x -s/i x  e i )
1 < j < i  (1<J<0&(JG5)

+  5 Z  { I j  *  e j )(i < j < i ) W i t S )

= s f i  x E  (7t x ei)

+ E x ei)
( l< 7 < f )& ( j f? S )
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(E u[) + u2,l -  ultR
v/ x (E vl)(E vl ) v,

V (

+ E (-0 x ej)
= (E ) + u 2,l  -  u hR

V i

+ E (̂7 x ej )
(1<j<i)&(jgS)

— U i tR +  U2,l  — U\ , r  

= U2,L

While the  above shows th a t the scaling factor is valid in the sense that it 

moves (forwards) the completion tim e of T) to  the point U2,l  (this argument can 

be extended to  show th a t a  factor s f m will forward the completion tim e of task 

T{ at most till Um+i,L), it  does not necessarily guarantee to be the maximal 

scaling factor. The m axim al scaling factor is the largest such scaling factor 

among all s f m where 1 <  m  < k. In order to  see why this is so, observe that 

any factor s f m would result in the  task T; finishing before its deadline, therefore 

all s f m are valid, however, the one th a t is th e  largest (say s f max =  s f l) is the 

desired result. To see why this is maximal, we note tha t any larger a factor 

would result in T,- finishing beyond Umax+i ,l  and any smaller would leave more 

room for scaling the tasks in question.

Observe tha t com putation of scaling factor w.r.t task J 1,- only guarantees 

th a t Ti will meet its deadline honoring the processing requirements of all higher 

priority tasks. The scaling factor thus obtained does not guarantee against 

higher priority tasks missing their deadlines. If any higher priority task misses 

its deadline as a  result of this scaling, then obviously, it would miss its deadline
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in spite of T; and therefore a  prior scaling factor would prevail (an example 

below demonstrates this). In this way we compute the scaling factor s f ' .  We 

perform this computation for all values of i from h to  n  and find the minimum 

of them , which is the desired final result.

5.5 E xam ples D em on stra tin g  th e S olu tion

The following examples dem onstrate the various aspects of the technique. The 

first example involves three tasks, whose characteristics are given in Table 5.1 

and the sub-set S  has only one task {X2 }.

Table 5.1: Example Task Table

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 150
3 350 35 280

Figure 5.3 gives a pictorial description of how the technique works on

this example. The required m axim al scaling factor is 1.5625. There are a few

im portant points to note, th a t are not evident through this example. The next

two examples are used to show these.

,1   1 „ A _____________________,  4 _ -  i l .  ,  i ...1  i*  , j 1 1*
J.11C &CLU11U CActlllplC UCllUJllSbidieO LllCtb, W11C11 c u n i p u u i l ^  t i l e  SCctllllg

factor w .r.t a given task T,-, it is not necessarily true that the last of the com

puted scaling factors, viz., s f k  is the m aximum of all s f m. To see an example 

of this case, consider the following task-set:

The task-set T  has two tasks and the sub-set S  contains both of them. 

The com putation of s f 2 would be M a.r(100/80 =  1.25,145/120 =  1.20) =  1.25.
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di1
sf1 = Max( 100/40) = 2.50

'
T;

'
completes

Tt t2 Ti

d|' d2'
U ' i

sf2 = Max(60/40,70/40) = 1.75

1 completes at 195

ir
T| t2 # ■It I T2 Tt

t  d,l d2' f  d,2 d3'd,21 - S  1 - sf3 = Max (85/80, 125/80) = 1.5625
U 1, U 2 , d '

100 200 

Time ’

300 400

□  =T, □  =T2 §f] =Tj

Figure 5.3: Operation of Task Set in Example 1

sf1 = Max( 100/40) = 2.50

T2 completes
*

T| t2 T|

y ~ " — L-,T ? d 2>
U'l u'2

J

sf2 = Max( 100/80, 145/120)= 1.25

0 100 145 200

Time '

300 400

□  =T, D = T 2

Figure 5.4: Operation of Task Set in Example 2
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Table 5.2: Example 2

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 145

Note tha t the scaling factor s f 2 is not determined by the second s / 2  (last) 

com puted scaling factor but by tha t factor which is the maximum. In this case 

the factor s f i .  This same variation on the example also gives us a case for the 

point we made before, i.e., when computing the scaling factor w.r.t task 7), 

the  maximum of all the  factors s / m, 1 <  m < k is to be taken. Clearly, if we 

were to take s f 2 to be 1.20 (145/120) rather than 1.25 then there would still 

be some room for scaling.

In example 1, we see tha t the scaling factors are decreasing as we go 

form task i =  2 ( s f 2 = 1.75) to task i = 3 ( s f 3 — 1.5625). This however, is not 

true  in general. A simple variation on the example will show us why. Consider 

the task-set in Table 5.3 with S  — { I 2 }.

Table 5.3: Example 3

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 150
3 350 35 300

We now have s f 3 =  M g.t(S5/80, 145/80) =  1.8125. Thus illustrating 

th a t the scaling factors don’t have to follow a decreasing trend as we add more 

tasks. This example also illustrates tha t the desired maximal scaling factor is 

the  minimum s f ' ,  i.e., 1.75 and not 1.8125.
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Figure 5.5: Operation of Task Set in Example 3
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C h ap ter  6

S ch ed u la b ility  o f  T ask -S ets  w ith  A rrivals

The source of this problem as discussed in Chapter 4 stems from the first stage 

of solving the end-to-end schedulability problem. To recall, the problem of 

interest here is the schedulability of tasks which have end-to-end schedulability 

constraints, i.e., a task is a sequence of sub-tasks that execute on indepen

dent components. However, the task as a whole has an arrival tim e, period 

specification and a deadline requirement.

We showed in Chapter 4 tha t a solution to the problem of end-to-end 

schedulability (and subsequently scalability) requires tha t we are able to solve 

the single component schedulability of a set of tasks whose arrival times are 

non-zero. The reduction was facilitated by an im portant transform ation, viz., 

p h a se  a d ju s tm e n t .  Phase adjustment is a technique tha t allows us to derive 

the param eters of arrival and periodicity of sub-tasks of a  task. The princi

ple behind the technique was briefly described in Chapter 4, a more detailed 

description follows

6.1 P hase A djustm ent

Clearly, the param eters of arrival and periodicity of the first subtask of any task 

are known a priori (inherited from the task). However, subsequent sub-tasks

66
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Tij (j  > 1) of task Ti are not necessarily periodic in nature. Therefore, their 

arrivals and their periodicities do not correspond directly to that of the tasks. 

We have to  account for this unpredictability in tim ing behavior of sub-tasks fol

lowing the first sub-task. The first sub-task Tn has the same periodicity as the 

original task 7), therefore, it always arrives (or is ready to execute) at the start 

of the period p;. However, the subsequent sub-task arrival times are dependent 

upon the completion tim e of the previous sub-task, i.e., if T j  —)• T j + i , j  >  1, 

then the arrival time of a particular instance I of T j +i is dependent upon the 

completion tim e of the  Ith instance of sub-task Tij. Further, the completion 

tim e of a sub-task instance is a function of its priority among the other ready 

tasks on the component. Therefore, we observe tha t there is a dependency 

between successive sub-tasks tha t has to be taken care of.

Phase adjustm ent is a  mechanism tha t allows us to remove this depen

dence. Since a,- is the arrival time or phase of task T ,  sub-task Tn inherits the 

phase of th e  task I), i.e, an — a,-. The Ith job instance of sub-task Tn arrives 

at ai +  (I — 1 )pi. Let the worst-case completion tim e (or response time) of 

sub-task Tn  be W C n,  i.e., any instance of Tn (call it the Ith) would complete 

no later th an  an +  {I — 1 )pi +  W Cn.  We use the term  W Cn  to adjust the 

phase of th e  next sub-task T,-2. Therefore, th e  phase of T,^, 2  is given by

n  . I T J /  ' V’V> 1 r* m i  n  + n n p  4- Tv 'i + m n n / - i ^ n  + iT T i + »>■»-, /-\ T * « 1-, 4- »-»1 - '  I ' m»?11
1 I »» J L in o  i u o o  u iic to  o v u o c o u i j i  v o  i i i o o o n v ^ o  v i  o u o t t t a i v  •* - 1 '2

repeat periodically at an interval of p,- tim e units.

This can be further generalized to find th e  phase a ,j,o f the sub-task Tij 

as d ; j - i  +  W C ij - \ .  Also all sub-tasks of task Ti are now guaranteed to directly 

inherit its period. We have the following a recurrence relation tha t captures 

the arrival tim e of a sub-task Tj:
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0,{j   1 -)- W  C j’J  —J

In order to find a closed-form solution to this recurrence relation we have 

to know the base values, an and W Cn.  We already showed how to obtain an 

from a,-. The worst-case completion time W C n  of sub-task Tn can be obtained 

if we solve the problem of schedulability of tasks running on the component that 

Tn runs. A solution to this problem is the subject of this chapter. Assuming 

for now tha t we do have a  solution to this problem and hence are able to find 

the worst-case completion time of Tn, we complete the  requirements to convert 

this to the  following closed form:

j - i
aij — az -f- ^  ' W Cn  

i=i

Having obtained the value of W C n  we can now use it to find the arrival 

tim e and hence the worst-case completion tim e of task Again, we are 

assuming th a t we know how to compute the worst-case completion times of 

subtasks running on a  single component with non-zero arrivals. Note tha t the 

schedulability test for the end-to-end task Tj- would now be a trivial comparison: 

i f  J2i<j<r W Cij < D{ then the task Ti is schedulable.

In the above discussion we have assumed th a t we have a mechanism tha t 

computes the worst-case completion times of subtasks given their arrival times, 

periodicities and priorities. This is the subject of the  following discussion.
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6.2 P roblem  S ta tem en t and S o lu tion

We recall from Chapter 4, the formal statem ent of the problem (Problem 4.2.2) 

of interest to us here:

Given a task-set T  o f n tasks executing on a single component, find the 

worst-case completion times of all tasks in the task-set.

The solution to this problem is based on the  following observations:

1. Is there a period L  for the task-set such th a t, looking at the behavior 

of a task T, during the interval «; and L  is sufficient to determine the 

worst-case response tim e of the task Tfi N ote tha t, if a,- =  0, Vi, then L  

is given by the LCM of the task periods. The worst-case response tim e 

of a task T) is the maximum response tim e of all instances of T, in this 

interval.

2. For arbitrary arrival phasings of tasks, the repetition of the initial phasing 

pa tte rn1 occurs at a point L  units later (where L  is given by the L C M  

of the periods). The state of the scheduler (defined later) is not the same 

at these two points. Therefore, repetition of phasing pattern does not 

necessarily guarantee th a t the task-set behavior will repeat itself.

3. If the task arrival times are inverse monotonically increasing with the 

priority, i.e., the highest priority task is the earliest to arrive (a,- <  aj if 

i < j ) ,  then the repetition of the phasing pattern  is an indication tha t 

the task-set would repeat its behavior.

1The phasing pattern is the relative arrivals of the various tasks under consideration
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4. Given an arbitrary task phasing a, we can derive an alternate phasing a' 

which has the characteristic th a t the arrival times monotonically increase 

w ith the priority. Further, th is phasing can be used to determine the 

worst-case response tim e of the  tasks in task-set.

T he following theorem is the basis for the approach.

T h e o re m  6.2 .1  : Given that the arrival times o f tasks in a task-set are inverse 

monotonic with priority (a{ <  aj if  priority ofTi  is greater than priority ofTj ,  

i.e, j  >  i), the worst-case response time instance of a task T  belongs to the 

interval [a,-, a; +  LC  M ( T \ , . . . ,  T;)].

P ro o f . For task, T), the only tasks tha t it would have to compete with, are 

the higher priority tasks T i,T 2,. . . ,  Ti. We are therefore interested in finding 

tha t point in tim e at which, the phasing of task T,- (given by a,- +  .t,- x p,-, for 

the x \h instance) with respect to other higher priority tasks is same as that at 

tim e a{. Further, this point m ust be such tha t the state of the scheduler must 

be same as it was a t a;.

T he relative phasing of task Ti with respect to the task T  can be cap

tured as: Task T  comes a; — ai units of tim e after task 7\. Assuming the 

existence of a point where this phasing repeats, and further that there are 

£ 1  and xi instances respectively of T  and Tt- before this point, we have the 

following condition:

(ai -f Xi x pi) -  (a x +  xi x px) =  at- -  a x

=> X i  X  P i =  Xi  X  Pi
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We can derive similar conditions for task Ti w.r.t other tasks. The 

resu ltan t condition is:

aq x p i  = x 2 x p 2 = . . .  =  X{ x  pi = L

where a; -f L  is the desired point. Clearly the L C M  of pj is solution for 

th e  above equation if we assume integral values of pi.

Tn

I =  R e a d y  T i m e  

□  =  U se d  T i m e

Figure 6.1: A task-set’s execution between the start and L

Next, we have to show th a t the sta te  of the  scheduler with respect to 

th e  task Ti is the same a t both points a,- and ai -f L. We use the m ethod of 

m athem atical induction to  show this.

D e f in it io n  6.2.1 : The state o f the scheduler w.r.t task Ti at the time of 

arrival o f  the k ’th instance o f task T  is given by S (  =  {S'*,-,. . . ,  S f l j <?*,■}. 

The term S j t i,  is the amount o f  time that the task Tj executed for, before the 

point ai +  (k — 1) x p,- and since its first invocation (taken modulo its period).
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Note that, since the state  of the lower priority tasks T j , j  > i do not 

affect the schedulability of the  task T), they don’t figure in the system state 

with respect to task 7). Also note that, we are concerned only with the state  of 

scheduler at points that are arrival times of tasks because we seek to show tha t 

the s ta te  at these points repeats. Further, 5*,- =  0, because, the last invocation 

of task T{, viz., k — l ’th should have completed before the arrival of the fc’th 

instance (otherwise we would have declared that the task missed its deadline 

and tha ts  the end of it).

Basis: Consider the point a,- +  L  where we have already shown that the 

phasing of the task Ti is the same as it was at a,-. The highest priority task,

T\ has an arrival at ai +  .Tj x pi and acquires the processor (being the highest 

priority ready task). The duration of time between this completion and the 

arrival of the task, T2 at a2 +  x 2 x p2 (refer to Figure 6.1), can be used by any 

of the tasks 7}(2 <  j  < i). Note that this same duration a t the beginning, i.e., 

when the first instance of 7\ completes and the first instance of T2 is ready was 

necessarily idle. However, the s ta te  of the processor with respect to task T2 at 

the point a2 + x 2 x p2 is exactly the same as at the point a2, because, the lower 

priority tasks would not affect the completion times of the instances of task T\ 

and further the latest instance of task T2 would have completed. Therefore,

o n e  o o c o o c  \ j i  o n e  o u i c u u i c i  v v n . o  t c t o i v  jl 2  t n c  p o i n t  U 2  T  2  *  P'Z i 0  c t o  10

was a t a2, viz., {5j 2, 5 2 ,2 )-

In d u c tiv e  H y p o th e s is : Let us assume that the result holds for the 

i — l ’th  task, i.e., the state of the scheduler w.r.t. task T;_i at a,-_i +£,-_i xp,-_i, 

viz.,{5'iX;!T1i, • • • as it was at viz., , . . .  }

Note tha t between the points a,_j +  i X p,-! and a,- +  x ,• x p,-, the number
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of tasks of priority higher than task T) th a t would arrive are the same as in 

the interval a,_i and a,-. Further, since the task 7) has to complete before its 

deadline (which is less than its period; If it does not then we just report so and 

thats the end of it), each of the higher priority tasks would have gotten the 

same amount of execution tim e in these two intervals, implying that:

S %  -  S J &  =  S l i  -  V ?  < z ' - l

Note that, when j  =  i — 1, the term s and 5/_j are both 0.

Now, since the result we are trying to prove, holds for the task 7 j _ i ,  we have:

S j f r  =  4 - 1  Vi <  * - 1

Therefore,

S j ‘i = S li  Vj < i 2

Which implies th a t the state of the scheduler at the point a,- +  Xi x pi 

is the same as th a t a t a,-. Therefore, the result holds for the task T). □

Having shown tha t both, the phasing repeats after L units of tim e and 

also that the sta te  of the scheduler is same when this repetition occurs, the 

result follows.D

In deriving the result in theorem u.2.1 we have assumed that the arrival 

times of tasks are such th a t the highest priority task is the earliest to arrive and 

the arrival times increase with priority. However, in reality, this assumption 

restricts the practicality of the result. In the following, we describe a mechanism 

by which we can get rid of this assumption w ithout hurting the result.

2The last term when j  = i has been conveniently added because =  Ŝ L] , - i  — 0-
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Given an arbitrary arrival phasing of tasks the  following algorithm con

verts it into an alternate phasing where the arrival times increase with the 

priorities.

2 Algorithm  Arb_to_Incr

P a ra m e te r s :  cti, a2, . . .  an, and p i,p 2 , ■ ■ -Pn the arrival times and pe

riodicities of tasks Ti, T2 , . . .  Tn respectively.

R e su lt:  a[,a '2, . . .  , a'n,

In it ia liz e : a ' = a ;

The first task arrival is unchanged, 

for (i — 2 to n) do 

If (a,- < a<_j)

y =  1 ; while (a,- +  y x p{ < a'-_x)

y ♦- y+i;
end

a'i <— ai +  y x pi;

end

end

end

We take an exam ple to dem onstrate the  operation of the above algo

rithm . Consider a task-set with four tasks (Ti, T2 , T3 , T4), with the following 

values for arrival times and periodicities: (ax =  5, a 2  =  3 , 0 3  =  4, a4 =  0),

(pi — 10, p2 =  10, P3  =  16, p4 = 12). The first task ’s arrival time remains un

changed, however since the task T2’s arrival is before T\ s, its new arrival time,
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Figure 6.2: A task-set’s execution between the start and L

a2, is computed to be 0 2  +  P2 which is 13. Now task I 3 ’s arrival tim e a3 — 4 

is less than a'2 = 13, therefore its new arrival tim e a'3 is a 3  +  p3 which is 20. 

Task T4  arrives at a 4  =  0 which is less than a'3 =  20, therefore its new arrival 

tim e « 4  is a 4  +  2 x p4  which is 24. Now the new arrival times of the tasks in 

the task-set are (g^ =  5, a2 =  13, CZ3  =  20, a'4 — 24).

Before we discuss the  mechanism in detail, it is im portant to  ascertain 

the relationship between th e  original arrival phasing and the modified arrival 

phasing. Since, the modified arrival pattern  guarantees the repetition of the 

task-set behavior, in order to find the worst-case response tim e of any task, 

we only have to look for its instances between its original arrival tim e and the 

point at which the new phasing repeats itself.

The algorithm for th e  complete mechanism follows:

3 Algorithm
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P a ra m e te rs :  ai,ct2 , .. .an, and p i,p 2 , ■ • -Pn the arrival times and pe

riodicities of tasks Ti, T2 1  • • • Tn respectively.

—Find the modified arrival times, a ', for tasks by invoking the pro

cedure A rb_ to_Incr.

—Repeat for each task T,- in turn:

^Determine if the task meets all its deadlines assuming a worst- 

case phasing (i.e., ignoring arrivals). If it does not then, report 

so and Q U IT .

*Find the completion tim e of all task instances of 7) occurring 

during the interval a, and a'{ +  L C M { T j , j  <  f}.

*Find the maximum and report it as the worst-case response 

tim e of the task T).

end

6.3 E xam ple D em onstratin g  th e  Solution

Consider the task-set in Table 6.1 below.

Table 6.1: Example task-set

Task Prio Arrival Period Exec Tim e Deadline W C C W C T
i U 2 1 2 1 2 •J 2

2 2 4 24 24 6 4

3 3 3 16 16 9 6

4 5 4 24 24 15 10

The com putation of the response times of tasks in this task-set using 

th e  mechanism described above is given in Figure 6.3. In the Table 6.1, the last
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two columns give respectively the worst-case response times of the tasks using 

the critical instant assum ption and our approach. It is clear tha t the critical 

instan t assumption has resulted in the com putation of a higher response tim e in 

the case of the last three tasks. In order to best appreciate the merit of finding 

the  worst-case com pletion tim e of a task using the precise test described in 

this chapter as opposed to  using the critical instant assumption, we introduce 

a  couple of new measures of comparison, viz., apparent slack and slack savings.

Note that though both these worst-case response times are still within 

the  deadline bound, there is a  difference in the apparent slack of tasks. We 

define the apparent slack of a task 3  to be the difference between the deadline 

of a  task and its worst-case completion tim e. Note that a. positive apparent 

slack for a task guarantees its meeting its deadline. However, a  larger apparent 

slack signifies th a t a task is more capable w ith regards to, accommodating task 

interdependence (eg., precedence), w ithstanding temporary overloads, accom

m odating aperiodics in  the system, restricting jitte r  in end-to-end systems.

We define a  m easure called the slack savings, ss; for a task T; as the 

ratio  of the gain in the apparent slack per unit real slack:

W C f -  W C f
SS i  —  ---------------- --------------------------------

di -  &i

iw ov; unctt 1 1 1  uuO o w v c  c-A.<xiilpic wc n a v e  uihj&cii biic ucc tu im ca  u i  tu  uc

equal to their periods. However, in general the deadlines can be less than or 

greater than  the periods. Also note tha t the  example shows th a t the arrival 

tim es are monotonic w ith priority, however, this need not be the case in general.

3as opposed to the original slack of the task which is independent o f other tasks it has 
to com pete with and is defined to be the difference between the deadline and the execution 
tim e o f the task
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Figure 6.3: Operation of exam ple task set

In the  above example we achieve the following slack savings: ss t =  0%, ss2 — 

10%, ss3 = 23%, ss4 = 25%.

6.4 D iscussion  o f  th e  R esu lt

The reader will observe th a t the above trea tm en t of the end-to-end schedula

bility problem assumes tha t all tasks access the components in the same order. 

This scenario is similar to  the classical periodic flow shop model [4]. However, 

as will become clear in the  following discussion, this assumption can be relaxed.

We consider the following scenarios for the order in which the tasks use 

th e  various components:

•  Case 1: Periodic flow shops [15, 4]: All tasks execute on the same com

ponents in the same order. Every task  Ti has exactly r (the number of 

components) sub-tasks, Tn —» T{2 — . . . , —► Ti>, where each sub-task T,j 

executes on component j .  This case is a special instance of the next case, 

however, we trea t it separately because of its practical significance.

• Case 2: The use of components by the tasks are ordered but the tasks
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Figure 6.4: End-to-End scenarios
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don’t necessarily access the same resources: We assume that any two 

tasks T{,Tj tha t have subtasks th a t run on two components R k ,R i , do 

so in the same order in both tasks. Further, the component used by a 

sub-task Tij is not used by any other sub-task of T .

• Case 3: Arbitrary order flow shops: The order in which the components 

are used by a  task can be arbitrary (as opposed to ordered access in 

Case 2). There are two possibilities under this case, one which disallows 

components from being reused and the second where components are 

allowed to be reused.

6.4.1 Periodic flow shops

If we assume an ordering of the r components in use to be in numerical order 

then the function R e s ( T j ) can be taken to be equal to j  (i.e., the j th compo

nent). Therefore we now have n tasks with each task consisting of r  subtasks 

where the j th subtask of every task T  (Vi) runs on component number j .

In order to determ ine the schedulability of the task-set we have to study 

the  schedulability of each task in turn. Phase adjustm ent guarantees tha t sub

tasks of a task inherit its  periodicity and further they are independent of each 

other. Therefore the schedulability test for a task Tj- is given by:

at +  ]T  WCij < Di 
j = 1

Where, W Cjj is the  worst-case completion tim e of the subtask Tij. In 

order to find the worst-case completion of the subtask T j  which runs on the 

component j  we have to  consider all the subtasks tha t run on the component
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j .  Starting from j  = 1, we see tha t for the first component we know the arrival 

times, periods and priorities (note that the subtask priority can be explicitly 

given or the subtask can inherit the original task ’s priority) of all subtasks 

tha t run on it. T hat is, for a given subtask Tn, its arrival time is a; and its 

period is p;. We can find its worst-case completion tim e by the mechanism 

described in the previous section. Let W Cn  be the  worst-case completion time 

thus determined (Note th a t this worst-case completion time is the tim e taken 

by the subtask to complete after its arrival).

We now fix the arrival tim e of the second subtask of T) (i.e., T 2 ) as a,- +  

W C n ■ This fixing of the arrival is a result of the phase adjustm ent mechanism 

described before. Further it ensures that the second subtask will be periodic 

with period, p,. We now know all the parameters (viz., arrival phasing, period 

and priority) we need to determ ine the worst-case completion time of the second 

subtasks of all the tasks. Knowing the value of W C i 2 (Vi) we are able to find 

the timing parameters of the  third subtasks and so on.

6.4.2 Ordered A ccess

This a more general case than  the periodic flow shop case in that tasks don’t 

necessarily access all the components. However, when they do access a  particu

lar component its relative order w ith respect to other components is honored in 

all tasks. We once again assume tha t the components are numbered in order. 

We do the following modification to the formal specification of this case:

We assume that each task T) is a sequence of subtasks Tn —* Ti2  —* 

T{t . However, if th e  task T) does not have a subtask running on com

ponent j  then the corresponding subtask Tij has an execution time, =  0 .
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By specifying the model in this way we are able to treat this case sim ilar to the 

previous case. However, note that for all subtasks that have a zero execution 

tim e their worst-case completion times are also zero.

6.4 .3  Arbitrary order w ith no revisit

The m ajor problem with this ordering scenario is that it is not always possible to 

find the timing param eters of all subtasks th a t run on a particular component. 

For example in Figure 6.4 we see tha t task T\ uses the components in the order 

R2  —> i?4 —> i? l, task T 2  uses components R1 —► RS —»• R2  —* R4  and task

T3  uses components R2  —> R3  —> R l .  Determining the param eters (mainly 

arrival times) of subtasks th a t run on component R l ,  T3 3  involves

finding the worst-case completion times of subtasks T\ti ,T \^ iT 3<iandT3t2 - It 

can be seen tha t this is not possible without addressing the schedulability on 

the  components R2, RZandR'l.

An alternative approach to this case would be to ignore the  arrival 

information of tasks (and subtasks). Note however that the penalty of ignoring 

arrival information is th a t we end up doing a  pessimistic schedulability analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C h a p ter  7

S ca la b ility  in  E n d -to -E n d  S y ste m s

As shown in Chapter 4, the problem of scalability of tasks in end-to-end systems 

manifest itself in two forms, viz., (i) Changes to  components and, (ii) Changes 

to Tasks. We have also shown th a t solving this problem in either of these two 

flavors reduces to solving the following two problems 4.2.4 and 4.2.5.

4.2.4: Given a task-set T  of n  tasks (with non-zero arrival times) exe

cuting on a single component, find the worst-case completion times of all 

tasks in the task-set.

4.2.5: Given a schedulable task-set T  of n tasks executing on a single 

component and a subset S  of T , find the maximum scaling factor s f  with 

which all tasks in S  can be scaled without violating the schedulability of 

any of the tasks in T.

T h e  first of the two problem s was the subject of the previous chapter. 

This chapter is devoted to presenting a. solution to the second. As shown in 

the previous Chapter 4, the problem  of schedulability in end-to-end systems 

can be reduced to a series of single component schedulability problems. How

ever, the single component schedulability problem has to accommodate task 

arrival tim es. Similarly, the problem  of scalability in end-to-end systems can

S3
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be reduced to  a series of single component scalability problems provided we 

accommodate task arrival information into the com putation. Further, to find 

the scalability of a sub-task we have to know its deadline and also the deadlines 

of all other sub-tasks involved in its analysis. There is no straightforward way 

to  derive the sub-task deadlines.

A m ajor research issue in end-to-end scheduling has been the derivation 

of sub-task deadlines. Given an end-to-end task’s deadline the problem of find

ing an optim al1 division of this deadline among the sub-tasks is intractable [15] 

(NP-complete [12]). This result has prompted a heuristic approach [4, 15], two 

such heuristics being: (i) divide the task’s slack2  equally among the sub-tasks; 

(ii) divide the  task’s slack among its sub-tasks in a weighted proportion of their 

execution times;

The above two heuristics vary mainly in their sensitivity to the execution 

times of tasks. For example, the second heuristic is built on the assumption 

that the shorter a task ’s execution tim e requirement, the more likely it will have 

its requirem ent met and therefore the lower is the  slack assigned to it. The 

first heuristic is built on the assumption tha t the priority inherited by a sub

task has a greater impact on its ability to meet its execution tim e requirement 

than its execution tim e itself. Thus the slack is divided equally among all sub

tasks. This allows us to reduce the  end-to-end scalability problem to m  single 

component scalability problems.

'in  the sense that, if there exists a division that would help the task meet its deadline 
then the mechanism should find it

2The slack o f  a task is given by the difference between its deadline and its execution time
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In our research, we have chosen the second heuristic because it is more 

general of the two. The intuition behind the heuristic is to divide the slack of 

the task proportionally among its sub-tasks. We can find the total slack of the 

task Ti as s /t- =  d,- — ]T)vj e,j. We divide this among the sub-tasks in the ratio 

of their execution times, e^-. Therefore,

d{j — Cij T ~  ~ x sl{
Evj d j

The following section describes a mechanism for finding the scaling fac

tor th a t incorporates the arrivals of tasks. We also give an informal proof for 

its correctness. In order to simplify the presentation we assume th a t the scaling 

factor we desire is a common scaling factor for all tasks in the task-set. Note 

that the case of general scaling (sub-set scaling) can be easily derived on the 

same lines.

7.1 P rob lem  Statem ent and Solution

As we did when we dealt with the problem of schedulability using arbitrary 

task arrivals in the previous chapter, we assume that the arrival times of task 

are in increasing order of their priorities. Therefore, the highest priority task 

T\ is the first to arrive (tim e t =  0) and Ti arrives prior to T, if i < j .

The procedure for finding the common scaling factor of a task set, pro

ceeds on the same lines as that for arrival times being all equal to 0. We 

find the scaling factor s f  \  with respect to  each task i (I <  i < N )  and take 

the minimum as the required result. Any scaling factor s f 1 has the following 

sense: This is the maximum factor by which all task execution times can be
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scaled such th a t the task T; will meet its deadline while continuing to honor all 

higher priority task requirements (not necessarily their deadlines). However, 

th e  difference comes in the fact that when we are finding the scaling factor with 

respect to a particular task T), we no longer can settle by considering only one 

instance (the worst-case instance, which is the  first instance using the critical 

instant argument) but we have to consider all instances of this task between 

the points a; and a,- +  L  (refer Chapter 6 ).

Following are some of the distinguishing characteristics of the problem 

when compared to the treatm ent in Chapter 5.

• It would seem tha t it is sufficient to consider the worst-case execution 

instance (of a task Ti) and apply the same technique as before (as in 

Chapter 4) to find the scaling factor. However, this is not true for the 

following reason: the scaling factor is determ ined by both the completion 

and the idle tim e left before the deadline; the worst case-completion of 

a task instance does not necessarily guarantee th a t the idle tim e left be

tween its completion and its deadline after accommodating higher priority 

tasks is a minimum.

•  The critical instant assumption, in addition to restricting our considera

tion to a single instance, has also allowed us to conveniently ignore any 

higher priority tasks tha t would arrive prior to task T,’s arrival. The pos

sibility of the following scenario (refer to  Figure 7.1) has to be taken into 

account for arbitrary  arrivals: In com puting the scaling factor for the first 

instance of task T,, we cannot ignore th e  blocks of execution that precede 

the point a,- (i.e., U\, Û -, • • •, Uq- 1 ). This is so because, it is likely tha t a
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factor com puted ignoring these could cause the  used blocks of execution 

before at- to  be scaled in such a way th a t the  begin tim e of tasks in the 

block that a, belongs to, could be affected by tasks other than the ones 

within. This results in the computed factor being invalid.

U| U2

Completion ofT j

 _jL
U q t l Uk

U | . L 0  U , , r U 2.L U 2 .R  U q J U q.R  U q t l .L  U q + |.R U k.L  U k.R

Oj = Arrival of task T| □  == Used Time

Figure 7.1: Execution Profile Task TVs First Instance

We now discuss the  mechanism along with an explanation of why the 

mechanism works. We are interested in com puting the scaling factor s f  \  with 

respect to a  particular task  7). We once again note th a t this factor does not 

guarantee tha t all higher priority tasks would m eet their deadlines, it only 

ensures tha t the task T) will meet its deadline in spite of honoring the require

ments of higher priority tasks.

Let us consider th e  first task instance of task 7). Assume th a t there 

is only one block of execution before the arrival of task I) at a,- and there 

are a number of blocks after the completion and before the deadline (refer to 

Figure 7.2). We are interested in stretching the  deadline as far as possible while 

honoring the  requirem ents of higher priority tasks. The only way this can be 

accomplished is by stretching the completion a  step at a  time with each step 

attem pting to consume th e  next available idle tim e (Refer to C hapter 5 for 

reasoning). The required result (the scaling factor w ith respect to this instance
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of task Ti) would then be obtained by taking the m axim um  (because all these 

factors are valid and we are interested in finding the optim al one) among such 

com puted factors.

Completion o f Tj 

 _1 _
U2 U3 Uk

U i .L 0  U |,R  U 2. U 2 .R  C j . L  U 3 .R U k .L  U k .R

aj = Arrival o f  task Tj □ = Used Time

Figure 7.2: Figure 7.1 assuming q — 2

We now look a t how we can stretch the completion time to achieve the 

motive described above. Since we assumed that there is only one block of 

execution (obviously comprises of at least one instance of every higher priority 

task), following are the points to  note while trying to  stretch the completion 

tim e of the first instance of the task J) to consume the first slot of idle time:

o If we ignore the block of execution before the arrival of task T,- then the 

scaling factor would be /  =  ^3 ,LJ ^ 2,L. However, it is possible tha t this 

factor could result in the ignored block (i.e., Ui) being scaled beyond the 

point £/2,l (we call this the unfavorable event for this choice of scaling 

factor, N F E 1 ), thus invalidating the factor. On the  contrary, in the event 

th a t this scaling factor does not scale U\ beyond the point U2 ,l (we call 

this the favorable event for this choice of scaling factor, F E l) ,  this factor 

is clearly valid and effective in stretching the task completion time till

U3,L-
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• If instead, we use the scaling factor to  be / '  =  C/3̂ ~ ^ ||L, it is possible 

th a t the resultant factor does not scale U\ to occupy the whole of the idle 

tim e between (Ui ,r ,U z,l )i resulting in Uz being stretched beyond I ^ l 

and consequently the  completion time being stretched beyond Uz,l (we 

call this the unfavorable event for this choice of scaling factor N F E 2). 

Note that this possibility has come up because the task T,- is not ready 

to  use the idle tim e between (CA.fi? ^ 2 ,1 ,). On the contrary, in the event 

th a t this factor causes U\ to be scaled beyond the point Uz,l (we call this 

the favorable event for this choice of scaling factor, FE2) then clearly the 

completion tim e of task 7) will be within Uz,l (in fact it will be exactly 

Us,l ).

We note tha t there are two possibilities (or events) in favor of each of the 

above choices and two th a t are not in favor. However, we will show tha t the 

true  answer lies in finding the  minimum of these two possible factors. T hat is, 

picking the minimum of these two factors as the solution leads us to realize that 

the unfavorable possibility is actually not possible. An explanation follows:

We have two possibilities to consider:

•  / < / ' :  The favorable event (FE1) corresponding to this choice of the 

factor is valid in giving us the desired result. However, we have to show 

th a t unfavorable event, N F E l will not occur. We show this by contra

diction:

Let us say U\ gets scaled beyond the point U z ,l  (he, the event N F E l does 

occur). / ' ,  being the larger of the two, using it as the scaling factor would 

scale Ui beyond U z ,l  too. But, since / '  has been derived to stretch both
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U\ and Ui over (0, U3 ,£,), if it does s tretch  U\ into the s ta rt of Ui, then 

there would be no idle time between th e  points (0 , 1/ 3 ,l) -  This implies 

th a t f  < f  because, the bumped tim e3, say S (— f  x U\ — Ui,l) and the 

scaled Ui (= f  x  Ui — Ui) together fitted  within the interval between 

{Ui,R,UztU)i whereas /  scaled only Ui to occupy the same interval. The 

conclusion tha t, f  < f  contradicts our assumption tha t /  is the smaller 

of the two factors. Hence the result.

• f  > / ' :  The favorable event (FE2) corresponding to this choice of the 

factor is valid in giving us the desired result. However, we have to show 

th a t unfavorable event, N F E 2 will no t occur. We show this by contra

diction:

Lets say U\ does not get scaled beyond the  point Ui,l when scaled by / '  

(i.e., the event N F E 2 does occur). Since, /  >  / ' ,  U2  does not go beyond 

when scaled by / ' .  However, the very  definition of N F E 2 says that 

/  stretches U2 beyond Uz,l- This is a contradiction. Hence the result.

Observe tha t the favorable events in  both choices of scaling factors 

achieve the  following: The completion time of the task T; is stretched to the

point 1/ 3 ,1 ,. We now extend this to the case th a t the number of blocks of ex-

 t  „ . , 0 t „
ciyU tjv/ii v \ j  t u t  o-iiivcu  v i  t n ^  m o t  n iiO tctiic^ taoiv ±  j 10 tiic tii m

fact, we wish to extend this argument to the  case that there are q — 1  blocks 

of execution before the arrival of the first instance of T,-. The generalization is 

straightforward. If there is more than one block of execution then  the scenario 

would be as in Figure 7.1. The scaling factor associated with stretching the

3the excess scaled time that was carried from scaling U\ beyond the point 1A>,l
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completion time of the first instance of task Ti to consume the first idle interval 

beyond its completion would be given by:

Where q is the index of the block th a t contains the arrival of the first 

instance of T; (from the fact that there are q — 1  blocks of execution before 

its arrival). Note tha t this is also the index of the block tha t contains the 

completion of 7), because, there cannot be any (processor) idle tim e between 

a ta sk ’s arrival and its completion. We represent this factor by Fq to signify 

tha t this is the factor with which all Tj (j  < =  i ) must be scaled to fill the 

first idle interval after the completion (known to overlap with the block Uq) 

of this instance (the first th a t is) of task T). The subscript q here is only to 

identify the block which overlaps with the completion of this instance of 7j. 

The representation will become clear when we proceed to the next stage of 

derivation, i.e., the scaling factor for an arbitrary instance of T,- (not just the 

first th a t is).

Now consider the point corresponding to the deadline of this instance 

of Ti, a,i + di. Our aim is to try to extend the completion of this instance 

a t most till this point. Clearly, if this point overlaps with a used block (call 

it Cfc+i,L), then we cannot possibly extend I ’/ ’s completion beyond the start 

of this interval. This is obvious from the fact th a t the overlapped block in 

question contains executions of higher priority tasks that cannot be preem pted 

by Ti. On the other hand if the  point in question does not overlap with any used 

block then we can consider filling only part of the idle interval that contains this 

point, viz., the idle interval between the right end of the used-block preceding
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th e  deadline point and the deadline point itself. In this second case, we set 

Uk+\,L =  di +  di — Uk+i,R, i.e., we create a zero sized used block tha t overlaps 

w ith the deadline. Here k is the index of the used-block tha t precedes the 

deadline.

Therefore, if we assum e tha t there are k — q such idle intervals beyond 

Ug and before the deadline of this instance at d • then we have to find k — q 

such scaling factors Fm ( th a t is q < m  < k). Accordingly, k is the index of the 

used-block that precedes th e  deadline point a,- +  d{. Now, the general formula 

for Fm is given by:

ffm+l.L U 2 ,L U m + 1 ,L  U g ,L
X ^ r = l to m  U r  S r = 2  to m  U r  Y ^r= q  to m  U r

The scaling factor for the first-instance of Ti is the maximum among all 

com puted factors for accom m odating the next idle interval. Clearly, each of 

these factors is a valid factor in the  sense tha t it does not extend the completion 

tim e of the first instance beyond its deadline. Therefore, the required factor is 

th e  maximum among such valid factors given by:

s f  — Fm

We now have to generalize the above formula for any arbitrary instance 

of Ti (say the Tth). Clearly there are Xi (refer to C hapter 6  instances of T{ tha t 

have to be considered. Therefore, I ranges from 1 to  x t. If we find the scaling 

factors s f l1 for each of th e  x t- instances of Ti then we can obtain the scaling 

factor s J l as the m inimum am ong all these. This is clear from the fact that 

picking a factor larger than  the minimum results in a t least one of the instances 

missing its deadline. So, we have:
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s f l = M m i< ;<x, s f tl

Before, we find the general scaling factor s f l1 of an arbitrary instance of 

Ti, it is im portant to notice some im portant considerations in dealing with the 

second instance (which will easily extend to arbitrary instances). The second 

instance of T; is ready a t tim e a ,+ p ,. Its ability to s ta rt (i.e., get the processor) 

is affected by higher priority tasks arriving beyond the point a,- +  pt- and, also 

those tasks executing between the deadline of its previous instance a t a,-+d; and 

the point a, +  p;. Note tha t, we have already taken care of tasks arriving before 

the point a, +  r/t- in finding the scaling factor of the first instance. Therefore, the 

point cii+di for task TVs second instance is equivalent to  the point a\ (assuming 

that the task arrivals are in increasing order; further this point can be taken 

to be t =  0). In finding the scaling factor for this instance, we have to consider 

used-blocks from th a t which overlaps a,- +  d,- (if this is a, zero-sized block then 

consider the next block), to the block th a t contains the arrival a,- +  p; on one 

side. On the other side, we have to consider used-blocks between the block 

that contains a:- +  p,- to  the block that contains the deadline of this instance 

at a; +  pi +  di (rem em ber th a t if there is no such block that overlaps with the

V̂CAUV_- tx UOV_-VJ.“ UVU1 ICtp 11J .

Now in the general case, tha t is, when we wish to  find the scaling factor 

for an arbitrary instance / we define the following notation (refer to  Figure 7.3):

• v: Uv is the used-block th a t contains the deadline of the ( /— l ) ’th  instance 

of Ti. If however, Uv is a zero-sized block then v is the index of the next
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block following the deadline of the ( /— l ) ’th instance at a,- +  (/ —1 ) xp,-)-c/;. 

As a special case, for the first instance v — 1.

• q: Is the block tha t overlaps with the arrival of the /’th  instance of task T,-. 

This is also the block that contains the completion of the / ’th instance.

• k: Uk+ 1  is the block that contains the deadline of the /’th  instance at 

di +  (/ — 1) x pi +  (l{. Note that, if the deadline does not overlap with a 

used block then we create a zero-sized used-block at a,••+(/—1 ) xp;-fie/,-. k 

is then given by the used-block tha t precedes this newly created zero-sized 

block.

The formula for the scaling factor of an arbitrary instance (say /) of T; 

(represented as s f ‘l) is now given by:

s f  — M a x q< m < k  F m

where Fm is given by:

. r .  I U m + 1 , L  UVtL U-m+i'L fA;+l,L U m + 1  ,L
I'm — A' i n  I —  , . . . ,

\  L ^ t —x) to in kjt A ^ r = v + 1 to m  iJ r  <L^T=q to  m

We now have the scaling factor ( s / !) with respect to a task T;. In 

order to find the final common scaling factor s f  we follow the same lines as in 

Chapter 5. Therefore, the required scaling factor s f  is given by:

s f  =  s f !

The complete algorithm to find the scaling factor for task T; follows:

4 Algorithm S c a le -F a c to r  (TJ
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u. Uv+I

C o m p le tio n  o f l ' t h  in s tance  o f  la sk T j 

 1 .
U k + l . l = d i =  U k + l .R

Uq+! • uk
U v .L  U v . R U v t l . L  U,.|,r U , < Jq ,R  Uqtl.L Uqt |,R Uki. Uk.R

ai +  (1-1 )*p i=  A rrival o f l ’th in s ta n ce  o f  ta sk T j □  ==  U sed T im e

Figure 7.3: Execution Profile of the /’th  instance of T;

Variables:

/ =  0 : task instance

s f ' 1: the  scaling factor for task i  instance I.

Step 0: Initialization, s f 1 — oo

Step 1: For each task instance / of Ti between a; and a; +  L  Repeat

Step 1.1 : Find the completion tim e for the job I =  c o m p l y  

Step 1.2:

F it equal and higher priority task instances tha t would arrive be

tween the points G and a; +  (/ +  1 ) x </;. The point G is ai for the 

first instance, I =  1  and for subsequent instances, / > 1  it is given 

by the deadline of the previous instance, a2- +  / x </;.

T he scheduling points are, /7i,£, U2 ,l, • • •, t4,L- where, Um =  Um^R— 

U m,L denotes the m tn used tim e block (refer to Figure 7.1).

T he used interval among these blocks which overlaps with a; +  / x 

Pi is = q (note tha t this is also the block tha t contains c o m p l t , 

because there can be no idle tim e between the  instances arrival and 

it completion).

Step 1.3:
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Compute the scaling factor s f ' 1 for job 1:

M & X  l^m

where:

t-i T,r- I U m + \ ,L  U \ L  t^m +l,L  U2 L  f^m +l,L  U m ,Lt m — M m  1
U r = l  to m  U T 2 to m  U T U ,

Step  1.4: if ( s f tl < s f ' )  then s f '  = s f ' 1.

Step 2: s f '  is the desired scaling factor for task T{.

end

Having obtained the scaling factor s f '  for each i in turn we can now 

determ ine th e  optimal scaling factor, s f  for the task set, which is the minimum 

of

7.2 E xam p le D em on stratin g  th e Solu tion

To dem onstrate the solution we take an example with three tasks whose char

acteristics are given in Table 7.1. The timing analysis is shown in Figure 7.4. 

The scaling factor derivation for the first task is straightforward. The deriva

tion for the  other two tasks is shown in the figure. The common scaling factor 

for this exam ple task-set is 1.6363.

We compare the scaling factors obtained by taking the approach in 

this chapter as opposed to the critical instant approach followed in chapter 5 

to appreciate the benefits. If this task-set was subjected to the approach in 

chapter 5 then  the common scaling factor would be 1.3636. Using the approach
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Table 7.1: Example Task Table

Task Id Period Arrival Exec Time Deadline
1 1 2 0 2 1 2

2 24 4 4 24
3 16 3 3 15

described in this chapter we get a scaling factor of 1.6363. This is a huge gain 

considering that it is a m ultiplicative factor and not additive. This will become 

more evident if we express the improvement in execution times as percentages.

sf2 = 3.0

sf3= 1.6363
UlD Up:UinD

U11L 2L

20 24 28 32 40 44 48 52 56 60 64 68

Tim e

Figure 7.4: O peration of example task set
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C hap ter 8

A d m iss io n  C ontrol for R ea l-T im e  
C om m u n ica tion

The model assumptions in this chapter are based on the Real Time Chan

nel model described in Chapter 2. Admission control is the mechanism by 

which multiple real-tim e connections can simultaneously share the resources of 

a packet switching network without resulting in congestion. Further, the con

nections are guaranteed a  particular quality of service (QoS) th a t is initially 

(at connection set up) agreed upon. Admission control comes into play when a 

new RT channel is being requested. An RT channel (or a connection request) is 

accompanied with a QoS list tha t describes the requirements of this connection. 

Popular QoS requirements in the literature of distributed real-tim e systems are 

- throughput, latency (or deadline), packet loss tolerance [17, 28, 10, 35, 32] 

etc.

The mechanism used to  determine the admissibility of a real-tim e chan

nel involves verifying at each interm ediate link (along the path) in turn whether 

the RT channel’s QoS requirements can be guaranteed. If a channel’s require

m ents can be met at each of the interm ediate links then we can accept the 

channel. If however, the channel’s requirements cannot be met a t any of the 

interm ediate link then we can reject the channel. In fact the first such link tha t

98
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deems the channel inadmissible is sufficient to confirm that the channel would 

not be admissible.

In order to test whether a channel’s requirements will be m et at an 

interm ediate link we have to know its deadline and its period at each of that 

link. Finding the period is straightforward according to the phase adjustm ent 

mechanism. However we do have to derive the deadline of the RT channel at 

interm ediate links. Since the service tim e of the channel on each of the links 

is the same one way to derive the deadlines would be to divide the slack of 

the RT channel equally among the interm ediate links. However, if one wishes, 

one can use a more sophisticated heuristic [15, 4, 47] to derive these deadlines. 

This reduces the problem of finding the admissibility of an RT channel to  be 

equivalent to solving the admissibility at each of the intermediate link [1 1 , 18]. 

From here onwards when we refer to the admissibility of an RT channel we 

mean its admissibility a t an interm ediate link.

Now, the question th a t admission control has to answer when accepting 

a new connection can be broadly phrased as:

• Given the QoS requirements of a  new RT channel is it possible to accept 

this channel without violating the QoS guarantees made to RT channels 

tha t h PV0  already been accepted?

The principle followed by researchers (for example Tenet [8 , 9]) in the 

design of an admission control scheme is based on verifying, whether the  re

sources available on the path of the newly requested RT channel are sufficient 

even in the worst possible case, to
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1. provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to all the existing RT channels to continue 

being satisfied.

T he  above verification depends upon the kinds of QoS param eters al

lowed. The m ost im portant QoS param eter of concern to real-tim e system 

designers is th e  meeting a latency bound (deadline). We restrict our interest 

to this param eter. There are two tests th a t are relevant in this context:

• Schedulability Test: Does the addition of the new channel to  the already 

established channels using this link cause either the new channel or one 

of th e  already established channels to miss their deadline?

• Buffer Space Test: Is the available buffer space at the link sufficient to 

allow the messages of the new channel to be stored for a length of time 

equal to the delay faced by the channel at this link?

Different approaches to the admission control problem (in real-tim e sys

tems) will differ in the way the above two questions are answered. Therefore, a 

study in admission control reduces to the  study of these tests. The buffer space 

test has been successfully addressed by the Tenet group [9]. We concentrate 

mainly on the schedulability test because it is our belief tha t there is room 

for im provement here. In particular, there are many situations th a t have not 

been considered in this context. We broadly classify two situations which differ 

in term s of the assumptions made about the scheduling mechanism used to 

schedule channels on the interm ediate links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.1 D ynam ic Scheduling o f RT C hannels

The Tenet schedulability te st involves a determ inistic test at each intervening 

link along the path. An assumption is made th a t the scheduling mechanism 

used at an interm ediate link is based on the EDD [9] (earliest due date or pop

ularly referred to as the earliest deadline first). T he test is based on extending 

the fundamental task scheduling result by Liu and Layland [24] to message 

communication. It can be summarized as follows: A given set of RT-channels 

(at a particular link) is schedulable1 by the EDD policy if the sum of the u ti

lizations of the RT channels is less than one. The utilization of the ith RT 

channel whose characteristics are a message service time of m* and a message 

inter-arrival tim e of <7; is given by, U{ = rrii/gi. If the current to ta l utilization 

a t a link is Udet then the  utilization as a result of accepting the new connection 

(i th) would be Udet =  Udet +  m-i/lli, and the schedulability te st would be to 

check whether Udet <  1 -

We have taken a different approach to the schedulability test tha t is 

based on the scaling problem  defined in Chapter 4. The principle involved 

in the test can be described as follows. At each interm ediate link an admit

tance measure is com puted tha t essentially captures the tightness of the traffic 

already passing through th e  link. A new connection request is allowed or dis

allowed depending upon w hether a specific relationship between this measure 

and the new connection’s characteristics is satisfied. The com putation of the 

adm ittance measure is dependent upon the choice of the scheduling mechanism 

and the characteristics of th e  connections already accepted. Further the tested

1 all the RT channel deadlines will be guaranteed to be met.
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relationship referred to above, is a heuristic comparison between the current 

adm ittance measure and the new connection’s characteristics.

The adm ittance measure we use is the scaling factor (refer to Chapter 

4) with which the message service times of channels already accepted can be 

multiplied by, so tha t the channels’ requirem ents can still be guaranteed. The 

new connections characteristics are captured by its utilization demand. The 

heuristic used can be explained as follows. Intuitively, the greater the scaling 

factor greater is the potential to allow a new connection. Further, the room for 

accommodating new connections is intuitively captured by the term , •

This expression, can be viewed as the percentage improvement possible in the 

utilization of the existing channels. The expression can be simplified into the 

form, 1  — ■ We show later, how this heuristic turns out to be equivalent

to  the deterministic test of Tenet (in the context of EDD th a t is).

The following table, shows a comparison of our approach (using the 

scaling factor) and Tenet’s approach. The scheduling mechanism chosen at a 

link is assumed to be the EDD. We later show how the two approaches are 

equivalent.

Table 8.1: Admission Control Test

Approach Computation Test
Tenet Un <- Cn_! +  a i  9n Un < 1
Scaling s fn —i (precomputed) m„ s' I 1 

.Qn sfn — i

The second column in the table gives the computation tha t has to be 

done in order to test for the admissibility of a new channel. This test can either 

be done at the tim e the new connection is made (Tenet’s approach) or it can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

precom puted (our approach). The advantage of completing this computation 

before the channel is requested is tha t it will cause minimal delay in ascertaining 

admissibility. Further, it affords the designer to a ttem p t a more sophisticated 

com putation because it is done prior to the actual channel admission test. The 

third column gives the test performed when a new connection is requested.

We now show how the two approaches given in the table are equiva

lent. In the case of Tenet, the admissibility test can be viewed as a simple 

comparison to  check if the to tal utilization resulting from the addition of the 

new channel is above the allowed bound ( 1 ). Observe that the computation 

in the second column involves the characteristics of the  new connection, thus 

m aking it a com putation th a t has to be performed when the new connection is 

requested. We can however, modify Tenet’s approach so tha t the computation 

(just com pute Un- \ )  is independent of the new channel characteristics and can 

thus be done before hand. Further, this modification would result in the test 

changing to: y 2- <  1  — Un- 1 -

The reader is referred to Chapter 5 for a discussion of the scaling factor 

problem. More specifically, in section 5.2, a special instance of this problem 

is identified when the  subset to be scaled S  is the sam e as the given task-set 

T.  It was shown th a t the common scaling factor (in the  case of EDF) is then 

given by the reciprocal of the total utilization of the RT channels.

s fn - i  = E m,

Vn-

The test in th ird  column can therefore be interpreted as the y 2- <
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1  — U n-i■ Therefore, we see tha t the two approaches reduce to be the same. 

Observe that, the com putation of the scaling factor, s / n_j is m ore involved 

if the scheduling mechanism is not EDF. This is the subject of th e  following 

section.

8.2  F ixed  P rior ity  Scheduling o f  RT C hannels

O ur next concern is to  extend the approach described in the previous section 

to , general fixed priority preemptive scheduling mechanisms. Note that the 

Tenet approach is only valid for dynam ic preem ptive scheduling. We use the 

sam e approach to admissibility as described in the previous section, except 

th a t we have to  pay special attention to  the com putation of the scaling factor. 

We concentrate our atten tion  to extending our approach to incorporate the 

R ate  Monotonic Scheduling (RMS) mechanism (a particular instance of the 

fixed priority preem ptive scheduling mechanism). An extension of th e  approach 

to  Deadline Monotonic Scheduling and more generally to any arb itrary  fixed 

priority  scheduling mechanism is straightforward.

As we already have seen in C hapter 4, there is no straightforward way to 

com pute the scaling factor of a set of tasks (read as RT channels in the  present 

context) scheduled by a general fixed priority scheduling mechanism. However, 

in the particular case of RMS, we can find a non-optimal scaling factor tha t is 

given by:
( « - l) (2 1/(» -1) -  1)

SJn- 1 — tj (8-1)On—1

This factor is not optim al in the sense th a t it is possible to improve it further. 

Unlike task schedulability where we were interested in an optim al scaling factor, 

in the current context (admission control tha t is) the above com putation does
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carry a certain m erit as will be dem onstrated shortly. Though the heuristic 

used in the admissibility test reduced to the determ inistic test in the context of 

EDD, this is not necessarily true in the current context. In other words, failing 

to  pass the heuristic test does not necessarily imply that the new channel will 

interfere with the schedulability of the already existing channels. This implies 

th a t, using the heuristic it is possible tha t a new channel request is rejected 

even though it could have been accommodated.

An alternative to  the above com putation is to use a more precise com

puta tion , one which would help us obtain an optim al scaling factor. We have 

shown in Chapter 4, how such a computation works. This alternative is ap

pealing in its ability to reduce the number of rejections (as described in the 

previous paragraph). However, it does not necessarily guarantee 100% admis

sibility. 1 0 0 % admissibility is said to be achieved if the test never rejects a new 

channel tha t would have not interfered with already accepted channels. The 

failure of this alternative to ensure 1 0 0 % admissibility is due to  the fact that 

though the scaling factor com putation is precise, the comparison in which it is 

used is a heuristic.

It is im portant to observe that, the scaling factor computation is not 

perform ed at the tim e of a channel request and therefore we can afford the cost 

involved in finding an optim al scaling factor. However, if the benefit (reducing 

th e  num ber of rejections) obtained by using the optimal scaling factor is not 

large enough (compared to  using the non-optimal computation), we cannot 

justify  it. Since, the basis of the test is a heuristic, the only way one can 

confirm the benefits is to perform a simulation study.
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Simulation Study

The goal of this study was to compare the two alternatives for admission control 

(described above) when the underlying mechanism used to schedule the RT 

channels is the R ate Monotonic Scheduling. An RT channel is characterized, 

among other param eters by the source and destination of the channel. This 

information is used to  find the route of the RT channel. As already described 

the  admissibility test of an RT channel th a t traces a route of, say k links, 

reduces to ascertaining its admissibility a t each of the k  links in turn. Therefore, 

we restrict our study to  admissibility at a  single link. From here onwards when 

we refer to the characteristics of an RT channel we don’t mean its end-to-end 

characteristics b u t its characteristics at an interm ediate link.

We use the  following notation in the following discussion:

x ~  U(a,b) to  indicate tha t the random  variable x  is uniformly dis

tributed over the interval from a to  b.

x ~  N{fi; a) to indicate that the random  variable x has a normal distri

bution with mean /.i and standard deviation a.

There are two m ajor steps to the simulation study:

1. The workload generation. The workload of interest to us is the generation 

of characteristics of n RT channels a t a  link. We would like to characterize 

the workload with a  set of param eters th a t capture its essence. We use 

the following two parameters to characterize (and distinguish between) 

workloads:
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(a) The utilization £/, of the set of RT channels is used to identify the 

cum ulative demand of the workload.

(b) The laxity factor k, dictates in addition the closeness of the deadline 

to the end of the period of the  RT channels.

2. The simulation of the alternatives and their comparison. The two al

ternatives of concern to us are, using the non-optimal scaling factor vs. 

using the optim al scaling factor in the admissibility test. The details of 

the comparison are explained later.

Before we explain the generation process, it is im portant to understand 

what we are attem pting  to generate. We are interested in generating a  workload 

of n RT channels with a total utilization of U. For each RT channel C;, we 

wish to know its service tim e m,-, its inter-message generation tim e </,- and its 

deadline d{.

The following parameters were used in the generation process.

n : The num ber of RT channels in the  link. 

m: The mean service time of an RT channel.

U: The to tal utilization of the n  RT channels. The utilization of an RT 

channel C; with service time m,- and and inter-generation tim e of <7; is 

given by m ,-/#.

/c(0 <  k <  1): Is the laxity factor.

/j/(0 <  fii <  1): This param eter controls the laxity of an RT channel. The 

deadline of an RT channel C,- with a laxity of I is given by rrii+l x  (g,—m.i).
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Therefore, greater the value of I (directly controlled by /i/), closer is the 

deadline to  the period and more is the room for meeting its deadline.

<7 ;: The standard deviation of the normal distribution of the laxities of 

the channels. We constrain this param eter so that following conditions 

hold:

mui -  3 x <7 | > 0 and 

mui +  3 x at <  1

The above two conditions guarantee [16] that the m ajority (w 99.98%) 

of the samples derived from the distribution, N(iii,a i)  are within the 

bounds ( 0  and 1 ).

The approach taken for workload (n RT channels) generation can be 

described as follows. We generate the characteristics of each RT channel C i  in 

turn.

1. The service time m, of channel C,- is derived from a uniform distribution 

over the range [1 , 2  x m]:

mi ~  U( 1 ; 2 x m)

2. The utilization of U{ of channel Ci is derived from a uniform distribution

4-1.„ — —, rn o  w i / i .
u v q  t u t :  i a a g v ^  [ ^ 5 ^  ^

Ui  ~  U{0; 2 x —) 
n

3. The inter-generation tim e (or period) <7,-, of channel C; is obtained by 

using its service time and utilization already generated above, as:

m,-
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4. Channel C2-’s deadline d{ is obtained as:

d{ - m.i +  k x (gi — mi)

where k ~  N(/j,1;cti)

A special case of interest in the simulation (discussed below) we need a 

workload where the laxity factor of the RT channels is a constant. We can 

generate a workload with such a characteristic by assigning the param eter 

<7 / to be equal to zero and the param eter m  to equal the constant desired.

Having generated the workload we are now in a position to compare 

the two heuristic alternatives against the generated workload. As explained 

before the test mechanism we use to determ ine whether a new RT channel 

Cn(mn,gn,dn) can be adm itted  at a link, having already accepted n — 1 RT 

channels is given by:
m n 1

—  < 1 -  - ? ----
Qn Sjn—1

W here the term  s i is the factor by which the n — 1 (already accepted) channel 

service tim es can be scaled without violating their schedulability requirements. 

The two alternatives we are interested in comparing differ in the way this 

scaling factor is arrived at.

•  71: Uses the non-optimal computation of s i  given by Equation 8.1.

•  <5: Uses a precise (optimal) com putation of the s / n_i described in Chap

ter 4.

In order to explain the criteria th a t were chosen for the comparison it 

is im portant to  understand th a t the workload generated (of n RT channels)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is arbitrary in the sense tha t they can be either admissible (together) or not. 

For a given workload however, we can test whether it is schedulable or not. In 

other words, whether all the RT channels can be accommodated together or 

not. We refer to the outcome of this test as the  admissibility (denoted by .4) 

of the workload.

Observe th a t the above test finds the admissibility of a workload whereas, 

the heuristics are designed to test whether a given RT channel can be adm itted 

to an already existing list of RT channels at a link. In other words, the out

come A  can be either, A yes'- the workload can be adm itted together, or A no: 

the workload is not admissible together. On the other hand, the outcome of 

the heuristic Ti (7Z or S )  test can be either, 7iyes: adm it the new channel, or 

Tino do not adm it the new channel. However, the  heuristic TFs decision can be 

compared against A  by defining the following criteria:

1. If the heuristic arrives at the decision 7i yes when the workload is in 

fact admissible (-4yes ) 5 then we say th a t the  heuristic has succeeded on a 

Y E S  m atch.

2. If the heuristic Ti arrives at the decision 7ino when the workload is in 

fact inadmissible (A no), then we say th a t the heuristic has succeeded on
- T\T/“\  , i .,1
a l i ic ttc ii.

3. If neither criterion 1 nor criterion 2 are m et then we say tha t the heuristic 

has failed.

Note th a t the reason for having two criteria for a match is because the 

generated workload was arbitrary  in the sense th a t it could either be feasible
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or not. While we are primarily interested in a heuristic’s ability to adm it 

(reach a YES match tha t is) an RT channel, we cannot ignore the impact of 

an incorrect decision. The ability of a heuristic to reject infeasible workloads 

(captured by criterion 2 ) is im portant in that it gives us an idea about the 

heuristic’s sensitivity. For example, it is possible tha t the heuristic admits a 

new channel to only realize later th a t it would result in one or more of the 

channels’ guarantees being violated.

For a given total utilization U  and number of channels n (input param e

ters), the simulation involves generating workloads of n RT channels and testing 

the admissibility of each of them. Before we use one of the two heuristics (71 

or S )  to determine whether they adm it a given channel, we first ascertain the 

admissibility of the workload ( A  described before). Next, for each RT channel 

(say Ci) in turn we test its admissibility (using a heuristic) assuming tha t the 

n — 1 other channels have already been accepted. The test is repeated with the 

two heuristics we are attem pting to compare. If the heuristic we are testing is 

say TZ, then the outcome of the test can be one of 7Zyes (adm it the channel Ci) 

or 7Zno (don’t admit the channel Ci). We now compare this outcome against 

the outcome from the admissibility test for the workload A  which was already 

computed. The comparison follows the  criteria explained before. W ith respect

+uir. u „ . _________ i , 1... „uw oiiio »v\_ i u .  luvj iicuiioiit auucvcu a. u ta tu i (cuuiu uc a

Y E S  or NO) or has failed. The simulation records the same for each channel 

in turn  and obtains the heuristic’s performance on this particular workload 

(This is repeated for the other heuristic also).

The performance of a heuristic for a given workload is characterized by 

three parameters:
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1. The percentage of (the total n admissibility tests) tests th a t result in a 

YES match.

2. The percentage of (the  total n admissibility tests) tests th a t result in a 

NO match.

3. The percentage of (the total n admissibility tests) tests tha t result in 

failure.

Observe tha t, the generated workload is only one of an almost infinite 

possible workloads with the  same input param eters. Therefore we repeat the 

above experiment for a large number of workloads and take an average perfor

mance. Further we repeat this for different values of k (or fit and sigmai). The 

results of the simulation are presented in Appendix A.

Simulation Results

The performance m easure of primary interest to us is the admissibility of a 

heuristic. And, we are interested in comparing the two heuristics to  see which 

of the two is better at adm itting channels. Therefore, the graphs we present 

here compare the performance using the percentage YES m atch (see above).

Recollect tha t, the heuristic 1Z assumes th a t the underlying scheduling 

mechanism is the ra te  monotonic scheduling. It has been shown tha t the RMS 

is an optim al scheduling mechanism [2 0 ] if the deadlines of tasks are a constant 

factor of their periods. Therefore, we assume tha t the param eter n is a constant 

and not derived from a distribution. This assumption was made in order to 

choose a  scenario th a t is favorable to both heuristics (and not biased to either). 

This assumption however has no impact on the second heuristic S.
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Each graph is identified by the number of channels considered and the 

param eter k. The x-axis gives the total utilization of the workload and the 

y-axis gives the success of th e  heuristic. For low utilizations (less than 50%) 

there is no need to do a complex test because the  dem and can be easily met. 

We chose four different values of the number of channels (4, 8 , 12, 16) and 

varied the param eter k between 0.5 to 1.0. It was observed tha t values of k 

less than 0.5 resulted in too many channels missing the ir deadlines.

Observations

•  For low utilizations (less than 0.7) we observe th a t both the heuristics 

have a similar admissibility. Given th a t the heuristic 7Z is less expensive 

(com putation time-wise) than <S, under conditions of low utilizations one 

can choose the heuristic 7Z.

•  For a  given value of n and  k we observe tha t the adm issibility of heuristic 

71 falls abruptly beyond a point on the rr-axis given by the utilization 

bound. For example, in Figure A . 6  we can see th a t the heuristic 7Z 

begins to  reject channels when the to tal utilization crosses beyond 0.72.

•  The performance of S  degrades gracefully beyond the  utilization bound. 

For exam ple, in Figure A . 6  we can see th a t the  heuristic S  continues 

to  adm it channels up to  a total utilization of 0.92. The probability of 

acceptance decreases gradually (and steadily) however. This implies that 

the  heuristic has a  b e tte r ability to adapt to  tem porary  overloads [43, 26] 

(increased dem and from one of the channels) in th e  network traffic.

•  As the number of channels increases, the performance degradation beyond
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the utilization bound is slower in the case of heuristic S .  This goes on 

to support the ability of the heuristic to adapt to  tem porary overloads 

(increase in the number of channels). The two sources of overload have 

been successfully handled by the heuristic S.

•  As the number of channels increases the success of the heuristic <S im

proves compared to the heuristic 7Z.

•  In conclusion we can say tha t for low utilizations both heuristics have 

similar performance (however one should prefer the heuristic 7Z due it 

com putational ease) but, at high utilizations <5 far outperforms 7Z. Fur

ther, we can justify the cost of computation involved in <5 by noting tha t 

the com putation can be done before the actual channel request is made.
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C h ap ter 9

S u m m ary  o f  R e su lts

As an example to  dem onstrate the results reported in this thesis, we choose 

the “Olympus A ttitude and Orbital Control System”(AOCS). A detailed case 

study of this real-time system can be found in [5, 46]. The AOCS subsystem of 

the Olympus satellite1 acquires and maintains spacecraft positions as desired. 

A detailed analysis of this system was performed by A. Burns and his colleagues, 

as a result of which they have summarized a list of tasks (Appendix B, Figures 

B .l, B.2 and B.3) that capture the system ’s functionality. They have identified 

mainly two classes of tasks viz., periodic (Figures B .l, B.2) and sporadic tasks 

(Figure B.3).

The class of periodic tasks in the AOCS case-study are consistent with 

our definition and treatm ent of periodic tasks in this thesis. Sporadic tasks 

on the other hand are tasks whose periodicity and arrival tim e are not known. 

However, there is a known minimum interval between successive arrivals of 

these tasks. Also the arrival time param eter of a sporadic task is not known a 

priori due to the nature of these tasks. Sporadic tasks typically occur due to 

events such as exceptions and interrupts which are triggered by a logical state

!The Olympus satellite was launched in July 1989 as the world’s largest and most powerful 
civil three-axis-stabilized communications satellite. It provides direct broadcast TV and 
’distance learning’ experiments to Italy and Northern Europe.
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of the system  or an external event. These events are therefore a function of the 

run-tim e characteristic of the system.

T he treatm ent in this thesis has been restricted to  handling only pe

riodic tasks, however we can accommodate sporadic tasks by making a few 

observations about their behavior. The minimum inter-arrival time param eter 

associated with a sporadic task is a  lower bound on its periodicity. For the 

purpose of this chapter we choose the periods of sporadic tasks to have values 

ranging from the minimum to the average periods of periodic tasks. Accord

ingly th e  chosen values of periods for sporadic tasks have been listed in the 

tables. Further, we have chosen the arrival times of these tasks to be zero, in 

other words th a t the first occurrence of these tasks is at tim e t = 0. Clearly, 

this is only one of the many possibilities but is sufficient to  dem onstrate our 

point o f interest here.

T he  following sections use this task-set to dem onstrate the results re

ported in chapters 5 to 7.

9.1 Sca lab ility  in U niprocessor System s

The above task-set (say T ) is given for a uniprocessor system, where all the 

tasks are known to execute on a  central control computer. In order to  apply 

the result given in Chapter 5 we have to choose a subset (say S ) of tasks in the 

task-set th a t are to undergo scaling. For a lack of better knowledge about the 

tasks we pick S  = T ,  i.e., we are interested in finding the maximum common 

scaling factor for all tasks in the  task-set. Table 9.1 gives the results of this 

analysis:
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Table 9.1: Task Table with Scaling Factors

Task Name Priority Period Arrival Exec Deadline Scale Factor

B U S J N T E R R U P T 62 50 0.00 0.18 1.00 5.5556

R E A L .T IM E .C L O C K 27 50 0.00 0.28 9.00 19.5652

R E A D .B U S J P 23 10 0.00 1.76 10.00 4.5045

CO M M A N D _A C U TU A TO R S 20 200 50.00 2.13 14.00 2.2989

R E Q U E ST .D SS .D A T A 19 200 150.00 1.43 17.00 2.2546

R E Q U E ST .W H E E L J3PE E D S 18 200 0.00 1.43 22.00 2.2296

R E Q U E ST  JR E S .D A T A 17 100 0.00 1.43 24.00 1.9736

T E L E M E T R Y .R E SPO N SE 15 200 0.00 3.19 30.00 1.9543

PROCESS_IRES_DATA 14 100 50.00 8.21 50.00 1.8463

R E A D .Y A W .G Y R O 12 500 0.00 4.08 100.00 2.4740

CONTROL_LAW 8 200 50.00 22.84 200.00 2.18770

P R O C E SS.D SS.D A T A 6 1000 200.00 5.16 400.00 2.1748

CA L IB R A T E .G Y R O 5 1000 200.00 6.91 900.00 2.1645

TELEC O M M A N D S 4 500 0.00 2.50 187.00 1.7941

Scaling Factor for S = 1.7941

The mechanism used to find the scaling factor in the uniprocessor sce

nario is based on the critical instan t assumption. This result can be easily 

improved by using a more precise mechanism tha t is based on the results in 

chapter 7. However, as discussed in chapter 4 the critical instant assum ption

is more suitable in uniprocessor systems. Further, it makes the scaling factor

com putation more efficient and cheaper (in term s of processing time).

Another perspective of th e  scaling factor can be expressed in term s of 

the utilization. The utilization of a task T,- is given by the ratio  of its execution 

tim e to  its periodicity, The to ta l utilization of the  task-set before scaling is 

given by:

£7 =  £ l  +  £ i +  . . .  +  £ i  
Pi P2 Pn
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For the task-set in our case study this is given by: 0.4619. The utiliza

tion of the task-set after the scaling is performed is given by:

U' = s / x J 2  J + Y  f .
ies r i  j e T - S  r j  

Where, s f  is the maximum common scaling factor for the task in S.

In our example, S  =  T , therefore the second term  in the above equation is

zero. The new utilization is now given by 1.7941 x 0.4619 =  0.S2S7. This 

achievable improvement in utilization is promising for the application with re

gards to, scalability, execution time estimation, portability and fault-tolerance 

as described in chapter 3.

9.2 Schedulab ility  o f  Task-Sets w ith  Arrivals

As described in chapter 4, solving the problem of scalability in end-to-end real

tim e systems involves solving the two problems of (i) schedulability of tasks 

on a single component without ignoring arrival times and, (ii) scalability of 

tasks with non-zero arrival times. The first of these problems was discussed in 

chapter 6 .

This section discusses this result by applying it the AOCS case-study. 

Our first example involves, treating the AOCS as an end-to-end task system 

with each task comprising only one sub-task which runs on the only component 

in the system, i.e., the processor. Now, the determining the schedulability of 

the tasks involves com puting their worst-case response times. For comparison 

purposes, the following table (9.2) gives the worst-case response times using 

two different mechanisms, i,e., the critical instant approach (W C °) and, the 

approach described in chapter 6  (W C r). The th ird  column gives the percentage
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improvement in the response time obtained by using our precise approach as 

opposed to  the critical instant approach. The fourth column gives the slack 

savings achieved by using our approach. Slack savings (in percentage) is given 

by the formula:

W C ? - W C [  innssi = -----   x 100
di -  t l

While the percentage improvement obtained does have some merit in 

explaining the need for a more precise approach, the slack savings param eter 

qualifies the  ability of a task to  accommodate task interdependence (e.g., prece

dence), withstand tem porary overloads, accommodate aperiodics in the system 

and restrict jitte r  in end-to-end systems.

Table 9.2: Response times of Tasks

Task Name Resp Tim e % Improvement Slack Savings (in %)

w c c \'V C r
B U S J N T E R R U P T 0.18 0.18 0.0 0.0

RE A L .T IM  E.CLO CK 0.46 0.46 0.0 0.0

R E A D .B U S J P 2.22 2.22 0.0 0.0

C O M M A N D .A C U T U A T O R S 4.35 4.35 0.0 0.0

REQ U E ST -D SS .D  ATA 5.78 3.65 36.85 13.60

R E Q U E ST .W H E E L -SPE E D S 7.21 3.65 49.37 17.30

R E Q U E S T JR E S .D A T A 8.64 5.08 41.20 15.77

T E L E M E T R Y .R E SPO N SE 13.59 8.27 39.14 19.84

PR O C ESS-IR E S-D A TA 23.56 14.32 39.21 22.11

R E A D . YAW .GYRO 27.64 14.11 48.95 13.06

CO NTR O L.LAW 56.22 42.44 24.51 7.77

P R O C E SS-D SS.D A T A 63.14 15.19 75.94 12.14

CALIBRA TE-G Y RO 71.81 23.86 66.77 5.36

TELEC O M M A N D S 74.31 16.61 77.64 31.27

As a second dem onstration of the results in Chapter 6, we consider an 

actual decomposition of the task-set into sub-tasks. The chosen decomposition
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is only one of the possible decompositions obtained by arbitrarily dividing and 

assigning tasks to four components. The decomposed task-set is given in Figure 

9.3.

Table 9.3: Decomposition of tasks

T a s k  N a m e  R e s o u r c e ( s )

B U S . I N T E R R U P T  Ri
R E A L . T I M E . C L O C K  R2
R E A D J B U S J P  R3
C O M M A N D _ A C U T U A T O R S  Ri  —> R 4

R E Q U E S T - D S S . D A T A  R x - *  R 2
R E Q U E S T . W H E E L - S P E E D S  Ri  — *• R 3
R E Q U E S T . I R E S . D A T A  R4
T E L E M E T R Y . R E S P O N S E  R4
P R O C E S S . I R E S . D A T A  R x — >■ R 2 — > R 3
R E A D . Y A W . G Y R O  Ri  — >  R 3
C O N T R O L _ L A W  R x - >  R 2 — > R 4
P R O C E S S . D S S . D A T A  R x — > R 3
C A L I B R A T E . G Y R O  R2 —> R 4
T E L E C O M M A N D S  R x R 2

The following tables (9.4, 9.5, 9.6, 9.7) give details of the analysis of 

each component in turn . The param eter of the sub-tasks th a t run on the first 

component R 4, are directly inherited from the parent. Further, the deadline 

param eter is not required in this problem since we are only interested in finding 

the worst-case response times of tasks, which are given by the sum of the 

response times of their individual sub-tasks. T he arrival time param eter of 

sub-tasks on component R 2 (and subsequently R 3  and R 4) are obtained by the 

phase adjustm ent mechanism.

The following table (9.8) compares the resulting worst-case response 

times of tasks with the ir deadlines. Clearly, all tasks meet their deadlines.
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Table 9.4: Analysis of Component Ri

Task Nam e Priority Period Arrival Exec Response Tim e

B U S .IN T E R R U P T 62 50 0.00 0.18 0.18

C O M M A N D .A C U T U A T O R S 20 200 50.00 1.13 1.31

R E Q U E ST .D SS.D A T A 19 200 150.00 0.43 0.61

R E Q U E ST .W H E E L _SPE E D S 18 200 0.00 0.70 1.88

PR O C ESS-IR E S.D A TA 14 100 50.00 3.21 4.52

R EA D .Y A W .G Y R O 12 500 0.00 1.08 2.96

CO NTROL.LAW 8 200 50.00 5.00 9.52

P R O C E SS.D SS.D A T A 6 1000 200.00 2.10 3.98

TELEC O M M A NDS 4 500 0.00 1.00 3.96

Table 9.5: Analysi s of Component R 2

Task Name Priority Period Arrival Exec Resp Tim e

REA L-TIM E.C LO C K 27 50 0.00 0.28 0.28

REQ UEST JD SS.D A T A 19 200 150.61 1.00 1.00

PROCESS JR E S .D A T A 14 100 54.82 3.00 3.00

CONTROL-LAW 8 200 59.52 5.00 5.00

C A LIBR A TE.G Y R O 5 1000 200.00 3.0 3.28

TELEC O M M A N D S 4 500 3.96 1.50 1.50

Further, by comparing these response times against those in table 9.2 we ob

serve the  enormous improvement in response times of tasks.

9=3 Scalab ility  in  E-nd-to-IDnci S ystem s

As mentioned in the previous section, the second issue to be addressed in solving 

the scalability problem in end-to-end systems is: scalability of tasks on a single 

component with non-zero arrival times. This was the  subject of Chapter 7. In 

this section, we first com pare the scaling factor obtained by incorporating task 

arrival times against, th a t obtained by using the critical instant assumption
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Table 9.6: Analysis of Component R$

Task Name Priority Period Arrival Exec Resp T im e

R E A D .B U S J P 23 10 0.00 1.76 1.76

R E Q U E ST -W H E E L .SPE E D S 18 200 1.88 0.73 0.73

P R O C E SS.IR E S.D A T A 14 100 57.82 2.00 2.00

R E A D .Y A W .G Y R O 12 500 2.96 3.00 3.00

PR O C E SS.D SS.D A T A 6 1000 203.98 3.06 3.06

Table 9.7: Analysis of Component R,\

Task Nam e Priority Period Arrival Exec Resp T im e

C O M M A N D -A C U T U A T O R S 20 200 51.31 1.0 1.0

R E Q U E ST  JR E S-D A T A 17 100 0.00 1.43 1.43

T ELEM ETR Y  .R E SP O N SE 15 200 0.00 3.19 4.62

C O NTROL.LAW 8 200 64.52 7.84 7.84

C A LIBR A TE.G Y R O 5 1000 203.28 3.91 4.68

(chapter 5). Table 9.9 gives the summary of this comparison. The maximum 

common scaling factor by the precise approach is under the second column 

( s f  (actual)) and tha t obtained by the critical instan t assumption in chapter 5 

is under the third column (s f(orig)).  The task-set is assumed to run on a 

single component and accordingly each task has a single sub-task. The subset 

S  th a t has to be scaled is sam e as T. The common scaling factor s f  (actual) is 

2.1295 which is clearly greater than 1.7941 obtained by the other mechanism. In 

term s of utilization the resu ltan t task-set utilization is 0.9836 or 98.36%. Note 

th a t, ideally one would expect to be able to obtain 100% utilization on scaling, 

however, this is not achievable in the case of static fixed priority schedulers.

Recall tha t in chapter 4 problem of scalability of task-sets in end-to-end 

real-tim es systems comes in two different forms: task  changes and component
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Table 9.8: Schedulability of the End-to-End Tasks

Task Nam e R esponse T im e Deadline

B U S J N T E R R U P T 0.18 1.00

R E A L .T IM E .C L O C K 0.28 9.00

R E A D .B U S J P 1.76 10.00

C O M M A N D .A C U T U A T O R S 2.31 14.00

R E Q U E ST  JDSS.DATA 1.61 17.00

R E Q U E ST .W H E E L .SP E E D S 2.61 22.00

R E Q U E ST JR E S-D A T A 1.43 24.00

T E L E M E T R Y .R E SPO N SE 4.62 30.00

P R O C E SS.IR E S.D A T A 9.52 50.00

R E A D .Y A W .G Y R O 5.96 100.00

C O N T R O L .L A W 22.36 200.00

PR O C E SS.D SS .D A T A 7.04 400.00

C A L IB R A T E .G Y R O 9.68 900.00

T E L E C O M M A N D S 5.46 187.00

changes. The following modification of the  case study dem onstrates how our 

approach to finding the precise scaling factor can be applied in an end-to-end 

scenario where component changes can occur. The same decomposition used 

in the  previous is used here. The following tables (9.10, 9.11, 9.12 and 9.13) 

give the details of the  scaling factor com putation for each of the components. 

The deadline param eter for each sub-task is obtained by using a heuristic tha t 

divides the slack of a  task among its sub-tasks in a weighted proportion of their

i a m  r-r-1 o  <*■ ,-,u »  T 7 r \ l  n  i f  4- V* /-« <->/'-> 4- f  /“* /-> yv*> n n o n t o  11 r i  r l  n i 'fT Au n i i v o .  a ’i w v ,  jl \_/i  v / i c t m  ix  o n e  o t t  v w a i p w i i i / i i t o  o n c t o  u n u u i ^ a

change are {i?2 , l? 4 } then the scaling factor is m in  {5.3949, 6.4935} which is 

5.3949.
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Table 9.9: Task Table with Scaling Factors

Task Name Scaling Factor

s f  (actual) sf(orig)
B U S JN T E R R U P T 5.5556 5.5556

REA L.TIM E.CLO CK 19.5652 19.5652

R E A D .B U S JP 4.5045 4.5045

C O M M A N D .A C U T U A T O R S 2.2989 2.2988

REQUEST JDSS.DATA 3.1423 2.2546

R E Q U E ST .W H E E L .SPE E D S 3.6969 2.2296

R E Q U E ST JR E S.D A T A 2.9240 1.9736

TELEM ETRY .R E SP O N SE 2.5445 1.9543

PROCESS J R E S .D A T A 2.5510 1.8463

REA D .Y A W .G Y R O 2.5786 2.4740

CONTROL.LAW 2.1877 2.1877

PRO CESS-DSS.D ATA 2.2119 2.1748

CA LIBRA TE.G YR O 2.1885 2.1645

TELECOM M ANDS 2.1295 1.7941

C om m onS ceding Factor 2.1295 1.7941

Table 9.10: Scaling on Component R\

Task Nam e Priority Period Arrival Exec Deadline SF

B U S JN T E R R U P T 62 50 0.00 0.18 1.00 5.5556

CO M M A N D .A C U TU A TO R S 20 200 50.00 1.13 7.43 5.6696

REQ UEST.D SS-DATA 19 200 150.00 0.43 5.11 8.3800

R E Q U EST-W H EEL.SPEED S 18 200 0.00 0.70 10.77 5.7283

PR O C ESSJR ES-D A TA 14 100 50.00 3.21 19.55 4.3251

REA D.YAW .G Y RO 12 500 0.00 1.08 26.47 8.9427

CO N T R O L X A W 8 200 50.00 5.00 43.78 4.5990

PRO CESS-DSS.D ATA 6 1000 200.00 2.10 162.79 11.4286

TELECOM M ANDS 4 500 0.00 1.00 74.80 8.4890

Common Scaling Factor = 4.3251
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Table 9.11: Scaling on Component R2

Task Name Priority Period Arrival Exec Deadline SF

REA L.TIM E.C LO C K 27 50 0.00 0.28 9.00 32.1429

R E Q U E ST -D SS.D A T A 19 200 150.61 1.00 11.89 9.7641

PROCESS J R E S .D A T A 14 100 54.82 3.00 18.27 5.3949

CO NTROL.LAW 8 200 59.52 5.00 43.78 5.8554

C A LIBRA TE.G YR O 5 1000 200.00 3.0 390.73 13.6799

TELEC O M M A NDS 4 500 3.96 1.50 112.20 11.2510

Com m on Scaling Factor = 5.3949

Table 9.12: Scaling on Component R 3

Task Name Priority Period Arrival Exec Deadline SF

R E A D .B U S J P 23 10 0.00 1.76 10.00 5.6818

R E Q U E ST .W H E E L .SP E E D S 18 200 1.88 0.73 11.23 4.0161

PRO CESS JR E S .D A T A 14 100 57.82 2.00 12.18 3.2394

R E A D .Y A W .G Y R O 12 500 2.96 3.00 73.53 4.0462

PRO C ESS-D SS.D A TA 6 1000 203.98 3.06 237.21 4.6894

Com m on Scaling Factor = 3.2394

Table 9.13: Scaling on Component R 4

T ask Name Priority Period Arrival Exec Deadline SF

C O M M A N D .A C U T U A T O R S 20 200 51.31 1.0 6.57 6.5727

R E Q U E ST JR E S.D A T A 17 100 0.00 1.43 24.00 16.7832

TELEM ETRY JtE S P O N S E 15 200 0.00 3.19 30.00 6.4935

CO NTROL.LAW 8 200 64.52 7.84 112.43 9.0236

CA LIBRA TE.G YR O 5 1000 203.28 3.91 509.26 12.3508

Com m on Scaling Factor = 6.4935
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C h ap ter  10

C on clu sion s

The significant contributions of this thesis can be broadly summarized as fol

lows:

• We have addressed the need to handle complexity in real-time systems in 

all phases of system design, viz., design, development and maintenance.

9  We have presented a  novel perspective to  analyzing real-tim e systems th a t 

in addition to ascertaining the ability of a system to m eet task deadlines 

also qualifies these guarantees.

•  The need to  qualify guarantees was shown to arise from the following 

scenarios pertinent in the  design, development and maintenance of real 

tim e systems:

— Scaling application requirements: As a system evolves the function

alities of tasks expand, reflecting in term s of increase in code size 

and/or im provement m data fiandlm^ of tasLis. Tins increase af- 

fects the schedulability guarantees made using the previous execu

tion times. Therefore, what we are interested in is, finding a  factor 

by which the execution times can be scaled (capturing the d a ta  han

dling change) w ithout invalidating the schedulability guarantees.

126
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— Task execution time estimation: Using mean task execution times 

as opposed to worst-case execution times in schedulability analysis 

reduces the pessimism (leading to over design and under-utilization 

of resources) inherent in the com putation. Unfortunately however, 

using the mean could lead to cases where the guarantees provided 

by the schedulability analysis could be invalid (The number of such 

cases being determined directly by the variance in the computed 

mean execution tim e). Therefore, it is necessary to accommodate 

the variance information along with the mean (for task execution 

times).

— Porting applications: Any analysis performed (to guarantee perfor

mance) assuming particular values of task execution times becomes 

invalid once the target platform changes. For example, a faster pro

cessor could result in a lower execution tim e (not invalidating the 

analysis), but a slower processor would surely have an adverse af

fect on the schedulability analysis. As a system evolves, though 

in general the overall system is likely to improve, the performance 

of individual components (some processors for example) might not 

always improve. A nother instance where a target platform is in gen-

e l  a i  T * n r  i  r e n  i  »-* +!■>/** e e e n  t ' n f  s~\ 4* t  -  -ta  / a  1*< 11 i  1 r l  i  r >  / r  r i  1  e n f  1 *-«* f  1  1
UU1 IMiOV/O iax 011V., Ot U U iiU lllg  txiivx

— Fault Tolerance: It is common practice to provide fault-tolerant op

eration by the use of redundant components (often at least one sec

ondary component). In general, secondary components provide only 

a minimal functionality (sufficient to keep the system operational till 

the prim ary is fixed) and therefore tend to be slower. Any schedu-
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lability analysis guarantees provided with the primary component 

as the target will be invalid once the system falls back onto the 

secondary.

• The scaling factor problem (refer to Chapter 4) defines a  quantitative 

measure that in essence captures the above mentioned scenarios under a 

uniform framework. The problem is generic in the sense tha t it leaves 

such particulars as:

— the scheduling mechanism,

— deadline to  period relationship, and,

— arrival information,

open. For example an instance of the problem could be to find the scal

ing factor when the assumed scheduling mechanism is a static fixed rate 

monotonic priority assignment, the task deadlines are less than or equal 

to their periods, and, the task arrivals are arbitrary.

• The scaling factor problem was first formulated in the context of uni

processor real-time systems. This scenario can be more generally re

ferred to as the single component scenario. The tasks running on the

Qincrln r n m n n n p n f  in  nii/a<3+inn arr» + wifVi rnrmrrlc !r> + r>Ki1_
“  * “ O'" ̂  W—• — *** A — ^  ..A*AA ^ W X U V l l  * .̂~AA

ity to meet their requirements (processing and deadline). Further, we 

compute a  measure tha t gives us the ability of these tasks to scale-up 

without violating their guarantees. One im portant assumption made in 

this context was th a t the arrival times of the various tasks can be as

sumed to be zero. This assumption has helped us in using the critical
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instant argum ent to  ascertain task schedulability and also in finding the 

scaling factor. We dem onstrated some justifications for the use of this 

argument, particularly in the context of single component systems with 

independent tasks.

•  Unlike uniprocessor systems, in end-to-end systems, the scaling factor 

problem appears in two diiferent scenarios, viz., component changes and 

task changes. We showed how both these scenarios arise and how they 

can be reduced to  solving the following fundamental problems:

— Compute sub-task param eters of periodicity and deadline.

— Given a task-set T  of n tasks (with non-zero arrivals) executing on a 

single com ponent, find the worst-case completion times of all tasks 

in the task-set.

— Solve the scaling problem when the  tasks have arbitrary non-zero 

arrivals.

The first of the above problems involved finding sub-task periodicities 

by a technique called phase adjustm ent and sub-task deadlines by using 

a heuristic based on proportional division of the to tal slack of a task 

among its sub-tasks. Our solution to the second problem is the subject 

of Chapter 6. This problem has been observed to be relevant in many 

other contexts in real-tim e systems, and a discussion to this end can be 

found in the same Chapter. Chapter 7 presents a solution to the third 

problem listed above. The complexity is introduced mainly by having to 

accommodate task arrivals into the analysis. However, this consideration 

adds validity to our work and also bridges the gap between theory and
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practice by better modeling the behavior of current complex real-tim e 

systems.

• Finally we presented an application of the scaling factor problem in the 

context of real-tim e communication. The problem  considered is the ad

mission control of real-tim e channels (Ferrari et. al. [9]). Admission 

control is the mechanism by which multiple real-tim e connections can si

multaneously share the  resources of a packet switching network without 

resulting in congestion. The mechanism used to determ ine the admissi

bility of a real-tim e channel involves verifying a t each interm ediate link 

(along the path) in tu rn  whether the RT channel’s QoS requirements can 

be guaranteed. If a channel’s requirements can be met a t each of the 

interm ediate links then we can accept the channel. If however, the chan

nel’s requirements cannot be m et at any of th e  interm ediate link then we 

can reject the channel. In fact the first such link th a t deems the chan

nel inadmissible is sufficient to confirm th a t the channel would not be 

admissible.

This problem is shown to be analogous to th e  end-to-end schedulability 

problem with the exception tha t the solution cannot be based on evalu

ating a channels adm issibility by doing a com plete (expensive) schedula

bility test. To this end, we proposed a heuristic approach tha t is based 

on the scaling factor computation. The room for accommodating a  new 

channel into a system is expressed in term s of the maximum scaling fac

tor with which the  requirements of the channels already in the system 

can be scaled w ithout violating their guarantees. This expression is then 

compared against the requirements of the new channel that is to be con
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sidered for admission. The expression being of a heuristic nature, we 

resorted to a simulation study (details in C hapter 8), the results of which 

have dem onstrated the effectiveness of our approach.
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A p p e n d ix  A  

S im u la tio n  R e su lts  for A d m iss io n  C ontrol
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Figure A.3: n — 12 and k =  0.5

RMA O -  
SCAL •+• - “100

80

60
+  +

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
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Figure A.5: n — 4 and a — 0.6

RMA
SCAL ■+■ - "100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.6: n — 8 and n =  0.6
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Figure A.7: n = 12 and k =  0.6
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Figure A.8: n = 12 and k = 0.6
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Figure A.9: n = 4 and k = 0.7
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Figure A .10: n  =  8 and k = 0.7
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Figure A.15: n  = 12 and k =  0.8
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A p p e n d ix  B

T h e  O ly m p u s A tt itu d e  an d  O rb ita l C ontrol 
S y ste m

The first two tables list the periodic tasks in the system and the last table lists 

the sporadic tasks. T he param eter of periodicity of sporadic tasks is a derived 

param eter chosen for our study and not specified in th e  original study. The 

first param eter, critical level, is not used in our study, but essentially adds to 

the priority inform ation of tasks. In general we could have had HARD, SOFT 

or FIRM  categories of criticality and a special category called INTERRUPT, 

tha t implies th a t the corresponding task should be executed non-preemptively. 

In this case study there is only one task tha t is not categorized as HARD. Since 

this task  (BUS JN T E R R U PT ) is assigned the highest priority, it is guaranteed 

to run un-preem pted, satisfying the requirement of tasks that are categorized 

as IN TERRRU PT.

The periodicity of sporadic tasks was chosen randomly to lie between 

the m inim um  inter-arrival and the average periodicity of periodic tasks. The 

m inim um  inter-arrival tim e param eter of sporadic tasks gives a lower bound on 

successive arrivals and is very rarely encountered in practice. Therefore, even if 

two successive arrivals of a sporadic task do occur a t this minimum interval the 

probability of the  next instance also occurring at this interval is very remote.
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Table B .l: Periodic Tasks

Task Name Characteristic Value
REAL_TIME_CLOCK Critical Level HARD 

Priority 27 
Period 50.00 
Arrival Time 0.00 
Execution Time 0.28 
Deadline 9.00

R EA D J3U SJP Critical Level HARD 
Priority 23 
Period 10.00 
Arrival Time 0.00 
Execution Time 1.76 
Deadline 10.00

COMMAND_ACUTUATORS Critical Level HARD 
Priority 20 
Period 200.00 
Arrival Time 50.00 
Execution Time 2.13 
Deadline 14.00

REQUEST J3SS.DATA Critical Level HARD 
Priority 19 
Period 200.00 
Arrival Time 150.00 
Execution Time 1.43 
Deadline 17.00

REQUEST_WHEEL_SPEEDS Critical Level HARD 
Priority 18 
Period 200 
Arrival Time 0.00 
Execution Time 1.43 
Deadline 22.00
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Table B.2: Periodic Tasks - continued

Task Name Characteristic Value
REQUEST_IRES_DATA Critical Level HARD 

Priority 17 
Period 100.00 
Arrival Time 0.00 
Execution Time 1.43 
Deadline 24.00

PROCESSJRES-DATA Critical Level LIARD 
Priority 14 
Period 100.00 
Arrival Time 50.00 
Execution Time 8.21 
Deadline 50.0

CONTROL_LAW Critical Level HARD 
Priority 8 
Period 200.00 
Arrival Time 50.00 
Execution Tim e 22.84 
Deadline 200.00

PROCESSJDSS-DATA Critical Level HARD 
Priority 6 
Period 1000.00 
Arrival Time 200.00 
Execution Tim e 5.16 
Deadline 400.00

CALIBRATE.GYRO Critical Level HARD 
Priority 5 
Period 1000.00 
Arrival Time 200.00 
Execution Tim e 6.91 
Deadline 900.00
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Table B.3: Sporadic Tasks

Task Name Characteristic Value
B U SJN TER R U PT Critical Level INTERRUPT

Priority 62
Min Inter-arrival 10.00
Period 50.00
Arrival Time 0.0
Execution Tim e 0.18
Deadline 0.63

TELEM ETRYJRESPONSE Critical Level HARD
Priority 15
Min Inter-arrival 100.00
Period 200
Arrival Time 0.00
Execution T im e 3.19
Deadline 30.00

READ_YAW_GYRO Critical Level HARD
Priority 12
Min Inter-arrival 100.00
Period 500.00
Arrival Time 0.00
Execution T im e 4.08
Deadline 100.0

TELECOMMANDS Critical Level HARD
Priority 4
Min Inter-arrival 200.00
Period 500.00
Arrival Time 0.00
Execution T im e 2.50
Deadline 200.00
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