
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 1996

Scalability in Real-Time Systems
Ramesh Yerraballi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Yerraballi, Ramesh. "Scalability in Real-Time Systems" (1996). Doctor of Philosophy (PhD), dissertation, Computer Science, Old
Dominion University, DOI: 10.25777/8gjd-0b49
https://digitalcommons.odu.edu/computerscience_etds/84

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/84?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

S C A L A B IL IT Y IN R E A L -T IM E SY ST E M S

by

R A M E S H Y E R R A B A L L I

B.E June 1991, Osm ania University

Computer Science Departm ent, College of Engineering

A Thesis (or Dissertation) subm itted to the Faculty of

Old Dominion University in Partia l Fulfillment of the

Requirement for the Degree of

D O C T O R OF PH IL O SO PH Y

C O M PU T ER SC IE N C E

OLD D O M IN IO N U N IV E R SIT Y

August 1996

Approved by:

Supervisor:
(D r. Ravi_ MukkamaLsf) ,

(Dr. K urt J

(Dr. H ussein Abdel-Wahab)

a r ry W j/iiilson^

(Dr. John W. S toughton)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SCALABILITY IN REAL-TIM E SYSTEM S

Ram esh Yerraballi, Ph .D .
The Old Dom inion University, 1996

Supervisor: Ravi M ukkamala

The number and complexity of applications tha t run in real-time environments

have posed demanding requirements on the part of the real-time system de

signer. It has now become im portant to accommodate the application com

plexity at early stages of the design cycle. Further, the stringent demands to

guarantee task deadlines (particularly in a hard real-time environment, which

is the assumed environment in this thesis) have motivated both practioners

and researchers to look a t ways to analyze systems prior to run-time. This

thesis reports a new perspective to analyzing real-tim e systems that in addi

tion to ascertaining the ability of a system to meet task deadlines also qualifies

these guarantees. The guarantees are qualified by a measure (called the scaling

factor) of the systems ability to continue to provide these guarantees under

possible changes to the tasks. This measure is shown to have many applica-

i : o _ ~ i . --------- i : —^: „ — j ; — \ ,1 (
t i u n o 111 o n e UC&lgll ^LdbJA CACbUtlUU UlillC C OLill iablO ll^ , UCVCiUplllCllb (p u i t a u i i l bj'

and fault tolerance) and maintenance (scalability) of real-time systems. The

m easure is shown to bear relevance in both uniprocessor and distributed (more

generally referred to as end-to-end) real-time systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the derivation of this measure in end-to-end systems requires

tha t we solve a fundamental (very im portant, yet unsolved) problem—the end-

to-end schedulability problem. The thesis reports a solution to the end-to-end

schedulability problem which is based on a solution to another fundamental

problem relevant to single-component real-tim e systems (a uniprocessor system

is a special instance of such a system). The problem of interest here is the

schedulability of a set of tasks with arbitrary arrival times, that run on a single

component. The thesis presents an optimal solution to this problem. One

im portan t consequence of this result (besides serving as a basis for the end-

to-end schedulability problem) is its applicability to the classical approach to

real-tim e scheduling, viz., static scheduling. The final contribution of the thesis

comes as an application of the results to the area of real-time communication.

More specifically, we report a heuristic approach to the problem of admission

control in real-time traffic networks. The heuristic is based on the scaling factor

measure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright

by

Ramesh Yerraballi

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my Parents

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ck n o w led g em en ts

First and foremost I owe this thesis to the part of me that persisted inspite

of the frustrations of pursuing a seemingly never ending goal, tha t is a PhD

thesis. I ’d like to thank my advisor Dr. Ravi Mukkamala for believing in my

abilities and constantly reminding me of what little was left for m e to finish my

thesis. Though it was never “little” , I am glad I took his advice. I would like

to acknowledge the financial support I received from NASA Langley Research

Center for pursuing my thesis. I thank Mr. Wayne H. Bryant, Assitant Division

Chief, Flight Electronics Technology Division, NASA LaRC, for approving and

funding my thesis proposal under the grant NAG-1-1114.

I would like to thank my com m ittee - Dr. Kurt Maly, Dr. Hussein

Abdel-Wahab, Dr. Larry Wilson and Dr. John Stoughton for their support

and approval of my work. Both Dr. Maly and Dr. Wahab have tolerantly

guided me through the preliminary stages of my PhD. I’d like to acknowledge

Dr. Stoughton’s valuable comments on the final thesis. Among other faculty,

Dr. Stephan Olariu and Dr. Chester Grosch have contributed significantly in

making my stay at. ODTT academically worthwhile. T’d also like to acknowledge

the arrival of Sameera (who has since become my wife) into my life in August

of 1994 which also overlapped with my finding most of the results reported in

this thesis. In a sense, this presents a case against the popular french saying

“The first sigh of love is the last sign of wisdom”. I would like to thank all my

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

colleagues in the Computer Science departm ent for giving me company through

the travails of graduate life. In particular I’d like to thank Dharmavani for her

prodding me not to quit my PhD. Lastly, I’d like to thank my high school

tu tor, Mr. Gopalan, to whom I owe dearly for my academic achievements. He

built in me a fascination for logical reasoning and thought.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T ab le o f C o n te n ts

A bstract ii

A cknow ledgem ents vi

List o f Tables xi

List o f Figures xii

C hapter 1. Introduction 1
1.1 Issues in Real-Time S y s te m s ... 3
1.2 Issues Addressed in this T h es is ... 4
1.3 Summary of R e su lts .. 8

1.4 Organization of the T h e s i s .. 10

C hapter 2. System M odel 12
2.1 Uniprocessor System Model ... 12

2.1.1 Systems with Independent T a s k s .. 16
2.1.2 Systems with Dependent T a s k s .. 17

2.2 End-to-End System M o d e l .. 19
2.3 Real-Time Channel M o d e l .. 20
2.4 Glossary of N o t a t i o n .. 2 1

C hapter 3. M otivation and Relevant Background 23
3.1 Scheduling Theory ... 28

3.1.1 Static versus Dynamic S c h e d u lin g .. 28
3.1.2 Relationship between deadline and p e r io d 31
3.1.3 Precedence Constraints and Resource S h a rin g 32

3.2 Uniprocessor Schedulability .. 33
3.3 O ther Relevant W o r k .. 34

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4. Problem Statem ent and D escription 36
4.1 Scalability of Uniprocessor S y s te m s ... 36
4.2 Scalability of End-to-End S y s te m s .. 36

4.2.1 Component C h a n g e ... 37
4.2.2 Task Changes .. 38

4.3 Admission Control of RT C h a n n e l s ... 45

C hapter 5. Scalability in U ni-processor Environm ents 47
5.1 Problem S ta te m e n t ... 47
5.2 Discussion of Possible Solution A p p ro ach es...................................... 48
5.3 Details of the Approach T a k e n ... 52
5.4 Proof for the Presented S o lu tio n ... 59
5.5 Examples D em onstrating the S o lu tion ... 62

Chapter 6. Schedulability o f Task-Sets w ith Arrivals 66
6.1 Phase A d ju s tm e n t... 6 6

6.2 Problem Statem ent and S o lu tio n .. 69
6.3 Exam ple D em onstrating the S o lu t io n .. 76
6.4 Discussion of the Result ... 78

6.4.1 Periodic flow sh o p s .. 80
6.4.2 Ordered A ccess... 81
6.4.3 A rbitrary order with no r e v i s i t .. 82

C hapter 7. Scalability in End-to-End System s 83
7.1 Problem Statem ent and S o lu tio n .. 85
7.2 Exam ple D em onstrating the S o lu t io n .. 96

C hapter 8. A dm ission Control for R eal-T im e Com m unication 98
Q 1 Qcl^nrliilmrr nf T?rP or>r̂ r>1c 1 0 1
U.o. j l i u i n i o u o i i w u u i i i i ^ v/j. x v i v _ / i r u i i i i x o io ... x o x

8.2 Fixed Priority Scheduling of RT Channels ..104

Chapter 9. Sum m ary o f R esults 115
9.1 Scalability in Uniprocessor S y s te m s .. 116
9.2 Schedulability of Task-Sets with A r r iv a ls .. 118
9.3 Scalability in End-to-End S y s te m s ..1 2 1

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10. Conclusions 126

Bibliography 132

A ppendices

A ppendix A . Sim ulation R esults for A dm ission Control 140

A ppendix B . The Olym pus A ttitude and Orbital Control Sys
tem 153

V ita 157

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f T ables

2.1 Glossary of N o ta t io n ... 22

5.1 Example Task T a b l e ... 62
5.2 Example 2 ... 64
5.3 Example 3 ... 64

6.1 Example t a s k - s e t ... 76

7.1 Example Task T a b l e ... 97

5.1 Admission Control T e s t .. 102

9.1 Task Table with Scaling F a c to rs ... 117
9.2 Response times of T a s k s ...119
9.3 Decomposition of t a s k s .. 120
9.4 Analysis of Component R \ ... 121
9.5 Analysis of Component R 2 ... 121
9.6 Analysis of Component R 3 ...122
9.7 Analysis of Component R 4 ... 122
9.8 Schedulability of the End-to-End T a s k s ..123
9.9 Task Table with Scaling F a c to rs ...124
9.10 Scaling on Component R 4 ...124
9.11 Scaling on Component R 2 ...125
9.12 Scaling on Component R 3 ...125
9.13 Scaling on Component f ? 4 ...12-5

B .l Periodic T a sk s ...154
B.2 Periodic Tasks - c o n tin u e d ... 155
B.3 Sporadic Tasks ... 156

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ist o f F igu res

5.1 Task T;’s Execution P ro file .. 55
5.2 Effect of Scaling by s f i .. 60
5.3 Operation of Task Set in Example 1 .. 63
5.4 Operation of Task Set in Example 2 .. 63
■5.5 Operation of Task Set in Example 3 .. 65

6.1 A task-set’s execution between the start and L 71
6.2 A task-set’s execution between the s ta rt and L 75
6.3 Operation of exam ple task s e t .. 78
6.4 End-to-End sc e n a rio s ... 79

7.1 Execution Profile Task TVs First In s tan ce S7
7.2 Figure 7.1 assuming q = 2 ... 8 8

7.3 Execution Profile of the / ’th instance of T i 95
7.4 Operation of exam ple task s e t .. 97

A .l n = 4 and k = 0 .5 ... 141
A.2 n = S and k — 0 .5 ... 141
A.3 n = 1 2 and k = 0 . 5 ... 142
A.4 n = 16 and k = 0 . 5 ... 142
A.5 n = 4 and k — 0 .6 ... 143
A . 6 n — 8 and k — 0 .6 ... 143
A.7 n = 12 and k = 0 . 6 ... 144
A. 8 n = 12 and a = 0 . 6 ... 144
A.9 n = 4 and k = 0 .7 ...145
A.10 n — 8 and k = 0 .7 ...145
A.11 n = 12 and k — 0 . 7 ... 146
A.12 n = 16 and k — 0 . 7 ... 146
A. 13 n = 4 and k = 0 .8 ...147

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. 14 n.....= 8 and k — 0 .8 ... 147
A.15 n.= 12 and k = 0 . 8 ... 148
A .16 n.— 16 and k = 0 . 8 ...148
A .17 n.....= 4 and k = 0 .9 ...149
A .18 n.....— 8 and k = 0 .9 ...149
A .19 n — 12 and k = 0 . 9 ...150
A.20 n — 16 and k = 0 . 9 ...150
A.21 n — 4 and k = 1 .0 ...151
A.22 ii — 8 and k = 1 .0 ...151
A.23 n = 12 and k = 1 . 0 ...152
A.24 n = 16 and k = 1 . 0 ...152

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 1

In tro d u ctio n

The scope of real-time systems has expanded over the last two decades to en

compass a wide array of applications such as industrial process control systems,

nuclear power plants, air traffic control systems, aircraft navigation, robot nav

igation and automobile control. While, in the past these systems were predom

inantly centralized, most current approaches tend to be distributed in nature.

Further, the complexity of these systems (in addition to tha t added by its

d istributed nature) has grown rapidly to a point where the dependability (or

determ inism) of the system as a whole has become an im portant issue. Real

tim e systems are prim arily categorized into two types, hard real-tim e systems

and soft real-time systems. In hard real-time systems, the missing of task dead

lines can lead to severe consequences and hence there is a strict need to meet

these deadlines. In contrast, soft real-time systems are characterized by the

fact th a t they can tolerate tem porary deadline misses. Soft real-tim e systems

continue to operate even after missing deadlines, and the only consequence

being a tem porary decline in performance and an increase in response time.

For example, a robot operating in a hazardous terrain would be a hard real

tim e system and a system th a t periodically generates a weather report can be

considered a soft real-tim e system.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The stringent need to m eet deadlines in hard real-time systems implies

tha t there is a need to analyze the system pre-runtim e, to ascertain its ability

to guarantee performance (that is meeting deadlines). Therefore, this has mo

tivated enormous efforts from practioners to investigate the system behavior

prior to its actual installation. In other words, though the system is said to

function in real-time, the guarantees it provides in meeting the timing require

ments of the various tasks have to be ascertained a priori. This thesis presents

issues and finds solutions tha t we believe will aid practioners in guaranteeing

system behavior prior to run-tim e in hard real-tim e systems. The issues in

soft real-time systems overlap significantly w ith those in conventional systems

where the prim ary performance metrics are throughput and response time (an

average measure unlike deadline that is an absolute measure). These systems

have been well-studied and the results (pertinent to these systems) are directly

applicable to soft real-tim e systems.

A real-time system can be characterized by two im portant components:

the environment in which the system is operating and the computer system

th a t controls/m onitors the environment. The main issues in the design of the

first component concern interfacing with the environment [41]. Solutions in this

area are prim arily d ic tated by the technology. There are many issues of concern

in the design of the second component, the com puter system. The com puter

system involves both the hardware and the software that runs on them. The

choice of hardware is d ictated primarily by such param eters as cost, availability

and the application a t hand. The primary issue in software design is not so

much the particular choice of language or programming paradigm as it is the

mechanism by which the various tasks are scheduled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Issues in R eal-T im e S ystem s

We observe tha t only the last issue (mentioned above) can be speculated over

because the others are more or less dictated by the environment and the ap

plication at hand. This is the reason why we have efforts from numerous

researchers [40, 48] on the problem of scheduling in real-time systems. There

have been two im portant fronts of research: On one front there have been

efforts [2, 20, 22, 24] to find scheduling mechanisms that could guarantee per

formance under different assumptions about the system. On a second front,

researchers [46, 19, 3] have tried to answer questions posed by schedulability

analysis. Both these are inter-related in the sense th a t schedulability analysis

is a mechanism to evaluate the effectiveness of a scheduler. To this end, in the

following discussion when we refer to schedulability we implicitly assume that

the tasks are being scheduled by an arbitrary scheduler (where appropriate,

we give a more detailed description of the scheduler assumed). If a scheduler

is built on a strong theoretical basis then its schedulability analysis can be a

trivial comparison. For example, a dynamic scheduling mechanism, the earli

est deadline first (EDF) scheduler, has the theoretical property that, provided

the sum of the utilizations1 of the tasks in a task-set is less than 1 , the EDF

scheduler guarantees to meet their deadlines (schedulable). Clearly, in this

case the schedulability test is a simple one. There are other cases where the

schedulability test is non-trivial [19, 50].

A common assumption tha t distinguishes one scheduling mechanism

(and thus the corresponding schedulability analysis) from another is the oper

^ h e utilization o f a periodic task is given by the ratio of its execution tim e requirement
to its periodicity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ational environment of the real-tim e system. If the environment is completely

known a priori, then we can use a static approach to design a scheduler. The

schedule can be practically pre-computed (as a list), with the scheduler be

ing a simple mechanism to pick the next task in the list. On the other hand,

if the environment is dynam ic by nature and no a priori knowledge can be

assumed about the environm ent then the scheduling mechanism must be dy

namic, adapting to the changing needs of the system. Clearly, a dynamic

scheduler is more expensive (in term s of overhead) to implement compared to

a static scheduler.

The use of dynamic approaches are perfectly justified in systems where

the various internal (system) and external (environment) tasks characteristics

are not known a priori [40]. However, we observed th a t such systems are far

outnum bered by those where the environment is well understood, deterministic

(in the sense tha t the worst possible scenarios can be identified), and with tasks

whose timing, resource, communication and other requirements are known a

priori [49]. This thesis addresses a host of related problems tha t concentrate

on such static environments.

1.2 Issues A dd ressed in th is T hesis

The problems of interest to us in this study are m otivated by the evolutionary

nature of real-time system software. As real-time systems continue to grow

in size and scope there is a need to build portable standard software tha t

would be guaranteed to operate correctly both in the logical and the temporal

sense. By correctness in the logical sense, we are referring to the domain

of proving the correctness of a piece of software with regards to generating a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

correct ou tpu t for any given input (The traditional program correctness issues).

The emphasis of research in real-tim e systems has been not so m uch to prove

logical correctness as it has been to show tha t the output is produced in a

timely manner. Therefore, a logically valid output generated beyond a specified

tim e lim it is deemed incorrect. In this thesis, we concentrate prim arily on the

tem poral correctness.

This notion of correctness (tem poral tha t is) of a task in real-tim e sys

tem s has been captured by the concept of schedulability [46] of tasks. A task

is prim arily characterized by the following param eters: the arrival tim e, the

execution time, the periodicity and the deadline. Schedulability analysis there

fore attem pts to ascertain whether or not each task will be able to complete

its required execution before its deadline for all its instances when scheduled

by an assumed scheduler. Tasks being periodic, they occur repeatedly a t an

interval given by their period. Various such occurrences of tasks are referred to

as instances. The basic approach taken in schedulability analysis is to use the

inform ation about tasks’ arrival times, execution times and periodicities and

com pute their worst-case completion times assuming tha t they are scheduled

by a given scheduler. The worst-case task completion times so com puted are

com pared against their deadlines to determ ine if the tasks will be schedula-

i . i„ i i ._ x i „ i ! _ „ i ! x .. x: _ • 4i, ~ ~ ruic. -LiiciciOic, me wui&u-cd&c completion time com putation la tnc caacntc oi

schedulability analysis.

We are not interested in deriving new schedulability tests but rather in

extending the guarantees m ade by schedulability analysis as a system undergoes

changes. The types of changes we are m ainly interested in, manifest themselves

as changes in execution tim es of tasks. In Chapter 3 we discuss sources of such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changes pertinent to the design, development and m aintenance of real-time

systems. More specifically, we are interested in the effects on the guarantees

made by schedulability analysis when some or all of the tasks’ execution times

are scaled (up or down)2. We refer to this problem as scalability of real-time

systems. There are two im portant scenarios in which the factor has relevance:

(i) Uniprocessor systems and (ii) end-to-end systems.

The problem of scalability in uniprocessor systems can be informally

defined as follows:

Given a task-set T, determine the maximum scaling factor with which

a subset (S) of these task-set’s execution times can be scaled without

affecting th e schedulability of the task-set.

If a task-set is not-schedulable3 to s ta rt with then scaling a subset of

the task will in no way improve the situation and this case is of no interest to

us. On the other hand, if a task-set is schedulable to s tart with, then we are

guaranteed the existence of a scaling factor (possibly 1 , in the case tha t the task-

set requirements are tight) that does not affect the task-set’s schedulability.

The first step therefore is to find whether the given task-set is schedulable.

In the context of uniprocessor systems, Lehoczky’s [19] schedulability test can

be used for this purpose. Finding the scaling factor now can be viewed as

extending this schedulability test to accommodate for changes in task execution

times. There are two possible approaches here: (i) using an approximation

2Scaling down o f task execution times can be trivially handled, therefore from here on
wards when we refer to scaling we mean scaling up

3That is, at least one of the tasks misses its deadline when scheduled by the assumed
scheduler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technique by making small increments to the scaling factor (starting from 1)

and repeatedly performing the schedulability test, or (ii) embedding the scaling

factor computation into the schedulability test. We have taken the second

approach for performance reasons that will be described in detail in chapter 4.

As opposed to uniprocessor systems where we have a single schedulable

resource, end-to-end systems (e.g., a distributed system) have more than one

schedulable resource. Therefore an end-to-end system can be characterized by

tasks tha t do not necessarily execute on a single component4. Typically, a task

would comprise of a sequence5 of sub-tasks that each execute on a different

component (e.g., processors, network) in the system. The requirements of

period, deadline and arrival tim e are specified for the task as a whole with the

execution times being specified a t the sub-task level. The problem of finding

the schedulability (worst-case completion tim e computation) of a task (T,) in

such a scenario can be reduced to solving the schedulability of the m (number

of sub-tasks in task 7)) sub-tasks in turn, provided we are able to compute

the characteristics (period and arrival time) of the sub-tasks (T,*, 1 < i <

ra; 1 < k < m). For reasons th a t will become clear in chapter 3, we cannot

use Lehoczky’s schedulability test for the sub-tasks running on these individual

components.

The scalability problem in the context of end-to-end systems takes two

forms depending on whether we view the scaling to occur as a result of a

change in one or more of the components or a change to a subset of the sub

tasks. Solving either of these two forms requires th a t we first find whether the

4We use the term component to indicate any schedulable entity in the system.
5The treatment in this study is restricted to sequential tasks, however, it can be extended

to more complex tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given task-set (of end-to-end tasks) is schedulable to start with (we call this

end-to-end schedulability). Secondly, we have to extend this schedulability test

to accommodate component and/or task changes.

We have investigated the applicability of the scalability problem in other

areas of real-tim e systems. Particularly, in the area of real-time communica

tion. The application of interest to us is admission control in real-time (RT)

channels [9, 8]. The role of real-tim e channels in communication is analogous to

end-to-end tasks in distributed systems. Admission control poses the question:

“Having guaranteed the performance requirem ents of n — 1 real-time channels,

is it possible to adm it a new real-time channel, while continuing to honor the

guarantees already m ade?” The problem of admission control is analogous to:

“Given a schedulable task-set of n — 1 end-to-end tasks, is it possible to ac

com m odate a new task w ithout violating the schedulability of the n — 1 prior

tasks?”

1.3 Sum m ary o f R esu lts

The prim ary contribution of this thesis to the area of real-time systems is

in presenting solutions to the following two fundam ental problems related to

schedulability analysis. The first of these problems involves schedulability anal

ysis of task-sets where tasks have non-zero arbitrary arrival times. The second

involves extending schedulability analysis to accommodate scaling up of task

execution times. The im pact these problems (and their solutions) have on

the current state-of-the-art of real-time system research can be summarized as

follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Helps real-tim e system designers in doing a precise analysis of task-sets.

Such a precise analysis, as opposed to the pessimistic analysis approach

tha t was popularized by the RMA [6] (Rate M onotonic Approach) group

at SEI helps prevent under-utilization of system resources.

• The thesis identifies many im portant issues in real-tim e systems th a t mo

tivate the need for using the arrival time inform ation of tasks in schedu

lability analysis. Prominently, the issues of d a ta and resource sharing

among tasks, precedence constraints between tasks, controlling task j i t

ter can be addressed naturally by the use of task arrival times.

• The use of static schedules was popular in practice in real-time systems till

the late 70s. The approach however, suffered from the inability to guar

antee task schedulability a priori as opposed to RMA, which was based

on the critical instant argument. As a by-product of doing a schedulabil

ity analysis of task-sets with arrival times (reported here), we are able to

build static schedules whose ability to guarantee task schedulability can

be ascertained a priori.

• There is no known schedulability analysis approach in the context of dis

tributed real-tim e systems (or more generally end-to-end real-tim e sys

tems). Using the smgle-compoiient schedulability analysis of tasks with

arbitrary arrivals, we are able to perform an end-to-end schedulability

analysis.

• The thesis reports the first effort in addressing th e issues of scalability

and portability in real-tim e systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The scaling problem is shown to help address issues of concern to de

signers in the design, development and maintenance real-time systems.

In the design phase it allows us in analyzing the task-set by assuming

an arbitrary target environment which can be later adapted to a specific

target environment. In the development phase it allows us to add new

tasks or enhance the existing task’s functionality. In the maintenance

phase it helps address the ability of the system to tolerate faults.

• The scalability problem is also solved in the context of distributed sys

tems.

• Lastly, we report a heuristic approach to the problem of admission control

in real-time traffic networks. The heuristic used is based on the study of

the scaling factor problem.

1.4 O rganization o f th e T hesis

The rest of the chapters of the thesis are organized as follows. Chapter 2 lays

down the framework and terminology used through the rest of the paper. We

describe the uniprocessor system model and task characteristics of interest to

us. The special sense attributed to the arrival tim e param eter leads to the

consideration of dependent and independent task-sets. The end-to-end system

model is defined both in a restricted flow-shop sense and also a more generalized

sense. Finally, the real-time channel model used in the study of admission

control in real-time traffic networks is described.

In Chapter 3, we give a brief discussion on some theoretical background

in scheduling th a t is pertinent to this thesis. In particular we discuss the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work of Lehoczky in the context of schedulability analysis of fixed priority

schedulers. The use of the critical instant argument and its consequences in

both uniprocessor and end-to-end systems is critiqued. We also discuss the

lim ited work reported in the areas of end-to-end scheduling and admission

control.

In Chapter 4, the problems of interest in this thesis are formally stated

and their solutions are shown to reduce to solving three fundamental problems

tha t are the subject of the next four chapters. Chapter 5 presents the problem

of uniprocessor scalability. A pre-requisite to solving the end-to-end scalabil

ity problem is the end-to-end schedulability problem which is the subject of

C hapter 6 . Chapter 7 considers the end-to-end scalability problem from two

different perspectives viz., component change and task change.

The problem of admission control of real-tim e channels is the subject of

C hapter 8 . Here, we discuss a simulation study to compare two heuristics to

solve the admission control problem.

Finally in Chapter 9, we describe a detailed example that puts the

reported results in perspective and also concludes this thesis. The chosen ex

am ple is derived from the case study of the “Olympus A ttitude and Orbital

Control System”(AOCS). This case study was performed by Alan Burns and

his colleagues a t University of York in association with British Aerospace Space

Systems Ltd. for ESTEC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p ter 2

S y ste m M o d e l

In this chapter, we introduce the modeling assumptions and establish the no

tation and terminology used in the rest of the thesis. We identify three models

relevant to the thesis viz., uniprocessor system model, end-to-end system model

and real-time channel model.

2.1 U niprocessor System M odel

The uniprocessor system model is characterized by the fact th a t there is only

one allocatable component in the system, viz., the processor. More generally,

this model can be referred to as “single component model . ” 1 The role of the

processor is to m onitor/control the target environment. For example, if the en

vironment is th a t of a chemical experiment, then the processor interacts with

the environment through sensors and actuators. The sensors serve to convey

the current information about the experiment as inputs to the processor. These

inputs together w ith locally (local to the processor) m aintained state informa

tion capture the s ta te of the experiment. The processor performs predetermined

^ h e term component is used to refer to any independently schedulable resource. Ex
amples include, processors, communication medium, input/output processors,disk storage
etc.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operations on these inputs (along with the information) and generates outputs

that are then conveyed to the experiment through the actuators. Therefore,

the interaction of the processor with the environment in which it operates can

be captured by the inputs and outputs.

The operations which process the inputs to com pute the outputs are

contained in the tasks. In addition, to tasks that operate on the external inputs,

we can also have tasks that are triggered solely by internal events or timed

events. The operation of the complete system can be captured by specifying

the characteristics of its tasks. There is one distinguishing characteristic about

tasks that affect the complexity of the system, viz., task dependence. We

therefore identify the following two cases separately. The following description

applies for both these scenarios:

Here, n independent tasks, {Ti, T2 , . . . , Tn}, capture the activity per

formed on a processor. Each task T; (i is called the identifier of the task Ti) is

characterized by th e following param eters:

• e,-: The execution tim e requirement of a task. Note th a t if we look at the

model as a “single component model” then this param eter could mean

the service tim e requirement of the task from the component in question.

• ap. The arrival tim e of the first instance of a task. This param eter is also

referred to as the offset of the task. Given a task-set T we can assume

that the task th a t is the earliest to arrive (say am,„) does so a t time t = 0

(Qmin — 0). Therefore all other task arrival tim es are relative to this

reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• pp. The periodicity of a task. Consistent with the assumptions of re

searchers in real-tim e systems, we assume tha t tasks are of a periodic

nature. This param eter implies tha t a task would be ready for execution

every pi units of time. We refer to successive occurrences of a task as its

instances or jobs. Therefore the j ih instance of task T; will be referred

to as T- . As opposed to periodic tasks, aperiodic tasks are characterized

by the fact tha t they are not strictly periodic. However, the minimum

inter-arrival tim e between successive occurrences of an aperiodic task is

assumed to be known. Note tha t in case the task is an aperiodic task we

treat this param eter (p i) to be the m inimum inter-arrival tim e between

the task ’s successive instances.

• dj-: The deadline of a task. Every instance of a task is required to complete

its execution before the task deadline. Therefore, if the first instance of

a task Ti arrives at tim e t — 0 then its deadline is at tim e t = d{.

Subsequently, the j th instance will arrive at tim e t = a,- + (j — 1) x pi

and will have its deadline at tim e i — a,- + (j — 1) x p,- + d{. Throughout

the study, we assume this param eter of a task to be less than or equal

to its period. In other words, the completion of a task’s instance can be

delayed at most till its next instance arrival. In this study we assume

this to be a hard deadline. This assum ption can be justified as follows:

The problems we are interested in, involve schedulability analysis which

is typically done offline and before the actual system is built. If the

offline analysis would show that a task ’s deadline cannot be met, then

the factors tha t the analysis failed to account for (compared to the real

system) would make the task’s chances of meeting its deadline only worse.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Therefore it would seem only logical to assume the deadline to be a hard

deadline.

• Pr,-: The relative priority of the task in the system. We assume tha t every

task has a priority assigned to it. The priority could be dictated either by

the scheduler (e.g., the ra te monotonic scheduler assigns priorities to tasks

based on their periods) or by the inherent im portance of the task relative

to other tasks in the system. Unless specified otherwise, we assume that

the tasks are ordered in the non-increasing order of their priorities. A

simple transform ation can convert this non-increasing order to a strictly

decreasing order. For example consider a task-set, T containing 5 tasks

with priorities, P r\ = 9, P r 2 = 8 , Pr^ = 8 , P r 4 — 4, P r 5 = 2. Tasks

T 2 and T3 have the same priority. Since equal priorities are arbitrarily

broken, we can reassign T ^s priority, (say to 6) to be smaller than T2’s

(we use task identifiers to break conflicts between tasks). Note th a t if P r 5

was equal to 7 and the priorities had to be integers then we cannot assign

a new priority to I 3 . In such a case we can reassign new priorities to T4

and T$ in order to make room for T3. In other words, the transformation

guarantees tha t the first task Ti is the highest priority task and the

priority of task Tj is g reater than T) if and only if j < i.

® W i‘. The worst-case response time. This is also referred to as the worst-

case completion tim e of task 7). This term gives the worst possible time

elapsed between an instance of the task T)’s arrival and its corresponding

completion. Clearly, if the response tim e of the j th instance of the task

Ti was W- then, is given by the m axim um W ■ V).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The characteristic th a t distinguishes the two scenarios of independent

and dependent tasks arise from assumptions about the arrival time param eter.

2.1 .1 S y s te m s w ith In d e p e n d e n t T asks

The arrival tim e a,- is the arrival of the first instance of a task. Task indepen

dence is primarily captured by assuming tha t the arrival times of tasks do not

have any interdependence. Therefore leading to the assumption that the arrival

times of all tasks are equal to zero. This assumption has a significant im pact

on the study of task schedulability. It allows us to use the critical instant ar

gument. The critical instant argument is used in finding the schedulability of

the i ’th task among n tasks scheduled by a fixed priority scheduler. It can be

briefly summarized as follows:

A task Ti suffers its worst-case completion tim e (or response time) when

its arrival coincides with the arrival of every other higher priority task

Tj (i < j < 1)- Such an arrival is called a critical instant for the task Ti.

It is im portant to understand that the occurrence of the critical instant

for a task T) is not mandatory, in the sense tha t given a task-set (of tasks with

arbitrary arrivals) a task is not guaranteed to encounter its critical instant. To

this end, we assume tha t the arrival times of tasks are given to be zero, thus

forcing the occurrence of the critical instant. Therefore, the critical instant

argum ent is sometimes referred to as the critical instant assumption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 .1 .2 S y s tem s w ith D e p e n d e n t T asks

T he case for considering task dependence has been addressed by many re

searchers in different contexts [49]. Krithi Ram am rithm , in his discussion [41]

on the complex nature of real-tim e environments states tha t, task interdepen

dence contributes significantly to the complexity. Alan Burns makes similar ob

servations in the context of the case study on the O rbital Control System [5].

Here, we briefly list some situations tha t impose task dependence. We also

identify how these different situations can be addressed by incorporating the

offset (arrival time) param eter defined in the previous subsection.

• D ata and Resource Sharing: It is im portant to regulate the accesses of

multiple tasks to a shared data item or resource. A costly solution to this

problem is to im plem ent a concurrency control mechanism (such as the

priority ceiling protocol [33]). As an alternative to using a concurrency

control mechanism, we observe tha t by inhibiting two or more tasks from

accessing a resource simultaneously we can regulate their access [45]. Such

an inhibition can be achieved by deriving suitable arrival times (offsets)

for tasks. For example, if two tasks, T) and T j , access a common resource

(or data item) then with the knowledge about their expected duration of

use of this shared resource one can arrive at their relative arrival times.

These arrival times can be computed such th a t the request by Tj always

follows the release by T). In other words, we can impose constraints on

the tasks to the effect th a t their accesses to the shared entity are ordered.

This situation can be described as an exclusion constraint that was solved

by imposing a precedence order on the tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Precedence Constraint: If the tasks inherently possess a precedence con

strain t, then it would directly manifest itself as an ofTset in each task.

For example, if the partial results (outputs) generated by a task 2] are

used (as inputs) by a second task Tj, then we are forced to impose the

condition th a t the task T j will be ready to execute only after 7) com

pletes. Therefore, there is an inherent precedence constraint on Tj. The

conveyance of these partial results can be done either through shared

memory or through communication. Thus, inter-task communication can

also impose precedence constraints.

• Controlling Task Jitte r: The irregularity in the response times (different

instances) of a task 7) can hurt the schedulability of tasks that depend

upon its ou tpu t [27]. This entails an output j i t te r bounded (from above)

by the difference of the worst-case response tim e and the task’s execution

time. The output ji t te r of a given task 7) can be reduced by dividing

it into two tasks T j and 7*. T j performs the bulk of the execution and

writes the results to a buffer shared by Tj and Tu ; 7* is released at an

offset from task Tj th a t is large enough to ensure th a t the data is always

available. This approach can also be used to bound jitte r on input [45].

From the above discussions it is clear th a t, task dependence can be

captured by the notion of tim ing offsets for tasks. Further, given a task-set

and the details of inter-task dependencies, we can arrive at individual task

arrival times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 E nd-to-E nd S y stem M odel

This model differs from the uniprocessor system model (single component

model) in tha t it considers more than one independently allocatable compo

nent in the system. A task in such a system can require execution on multiple

components. Hence, a task is no longer viewed as an indivisible entity but as

a sequence of sub-tasks. We assume tha t each sub-task of a task is associated

with a component. Therefore a task tha t uses r components is decomposed into

r sub-tasks, one corresponding to each component. A discussion of reasons and

guidelines for task-decomposition can be found in [49].

We assume tha t the components in the system are ordered. The tra

ditional flow-shop model [4] is based on the assumption tha t all tasks in the

task-set access all resources and th a t they do so in the same order. A more gen

eral view to flow shops would be to relax the requirement about tasks having to

access all resources but still m aintaining the order constraint. This model will

be referred to as the ordered flow shop model. If there are m components in

the system, i?i, R 2 , . . . , R m, then a task I) can be considered to be a sequence

of sub-tasks T, 1 —>• T) 2 —► . . . —> T,m. In the case of traditional flow-shop model,

each sub-task Tik is required to have a non-zero execution tim e requirement on

the component it runs. Ordered flow shop model relaxes this constraint.

A sub-task T,-* of task T,- is characterized primarily by its execution time

requirement on the component (Rk) it runs. In the case of the ordered flow

shop model, if a component k is not used by a task T{ then the execution

time requirement of the task Tik is assumed to be zero. The param eters of

periodicity and deadline are characteristics of a task and not that of the sub

tasks. Since these param eters apply to the task as a whole (from the start

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the first sub-task to the end-of the last sub-task) we refer to these as the

end-to-end parameters of the task. The last param eter associated with the task

is its priority Pr,- which may be inherited by its sub-tasks. Alternatively, we

can allow individual sub-tasks of a task to be assigned priorities independently.

Unless otherwise specified, throughout this study, we assume that sub-tasks of

a task inherit its priority.

2.3 R eal-T im e C hannel M od el

The two models described above are com putational models. The real-tim e (RT)

channel model however is a communication model that abstracts th e commu

nication activity in real-tim e packet switched networks [42, 38]. A real-time

channel is uni-directional2. An entity (say a process) wishing to communicate

w ith another entity on a remote machine does so by establishing a real-time

channel that has certain characteristic tim ing and buffer space requirements.

A real-time (RT) channel timing requirement can be defined by the

following parameters:

• The minimum message inter-generation time

• A maximum message size

• An end-to-end deadline for the RT channel

It is reasonable to assume prior knowledge of these param eters for

many applications such as real-tim e tim ing control and monitoring, interac

2A bi-directional R-T channel can be created by combining two uni-directional RT-
channels [54]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tive voice/video transm ission and many other multim edia applications. In ap

plications where these param eters are less predictable, estimates can be used.

Note th a t any guarantees th a t the underlying communication subsystem pro

vides to the application is sensitive to the ability of the application to correctly

specify its requirements. In this thesis, we are not interested in how such a

correct specification is achieved, but given such a specification, how does the

underlying system guarantee its being met.

Formally, an RT channel can be defined as follows [53]:

D e fin itio n 2.3.1 A real-time channel Ci described by a tuple (g , m , d) is a

connection between two nodes and require that every message at the source be

delivered to the destination in duration of time no longer than d, under the

conditions that the message inter-generation time is g, and the message size is

m.

This definition of an RT channel helps in network management and also

provides a convenient means of charging users for their connection requests. For

example, a user will pay lower connection fee for a voice channel than a video

channel since the former uses less bandwidth. A connection that demands a

low end-to-end delay (or deadline) is likely to cost more than one th a t tolerates

a higher end-to-end delay (or deadline).

2.4 G lossary o f N o ta tio n

The following table summarizes the notation used throughout the thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: Glossary of Notation

N otation Description
t Time
T A task-set
T The i tk task in a task-set T
a,- The arrival tim e of the first instance of task Ti

Execution tim e of task Ti
Pi Period of task T;
(h Deadline of task Ti
P n Priority of task T
Wi Worst-case response time of task Ti
TP The j th instance of task Ti
a\ Arrival tim e of the j th instance of task Ti
d\ Deadline of the j th instance of task Ti
W? The response tim e of the j th instance of task T
Tik The k th sub-task of task T
Oik Arrival tim e of the first instance of task T k
Gik Execution tim e of the sub-task T k
Pik Period of sub-task T k , if known
dik Deadline of sub-task Tk, if known
Prik Priority of sub-task T k
Wik Worst-case response time of sub-task Tk
Rr The component with an assigned index r in the system
Ci Real-tim e channel i

9i The inter-message generation tim e of RT channel Ci
rrii The m axim um message size of RT channel Ci
di The end-to-end deadline of RT channel Ci

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p ter 3

M o tiv a tio n an d R e lev a n t B ack grou n d

We are interested in extending the current schedulability analysis to accommo

date changes in task execution time. It is only befitting to spend some time

in describing the principles and assumptions tha t underlie this analysis. Most

schedulability results [24, 19, 44, 46] are based on the critical instant argument,

which defines a worst-case condition for a task. Clearly, a task suffers its worst

completion tim e when it has to compete for the processor (or component in

question) with every higher priority task in the system. T hat is, when it ar

rives at a time when all other higher priority tasks also arrive. This instant is

called the critical instant. Therefore, it is sufficient to look a t the completion

tim e of this one instant in order to ascertain the task schedulability. But does

this com putation really give us the worst-case completion tim e of a task? In

other words, given a task’s characteristics, will it ever suffer this completion in

reality?

Notice tha t the critical instant argum ent clearly ignores the arrival in

formation of tasks and makes the assum ption tha t, sooner or later at least

one of the instances of a task will face a critical instant. It can be seen,

however, that this is not necessarily true and therefore, the actual worst-case

completion time of a task can be less than or equal to the completion time

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computed by the critical instant assumption. A simple example will clarify

this point: Consider a task-set with two tasks, Ti and T2 whose characteristics

are, Gq = 0 ,ei = 2,pj = 12, d\ — 10 and a 2 = 3 ,e 2 = l ,p 2 = 12,c/ 2 = 9 respec

tively. Further assume tha t T\ is the task with the higher priority. Clearly,

task T2 will never encounter a critical instant because, its every instance will

be ready only 3 units of tim e after the arrival of T\. Further, T\ needing only

2 units of execution time will complete before T2’s instance is ready. In this

scenario, the worst-case response tim e of task Ti will be 2 and that of T2 will

be 1. Ignoring the arrivals and using the critical instant argument will result

in T2’s worst-case completion tim e being computed as 3 and not 1 . Therefore,

ignoring the arrival times of tasks and using the critical instant argument leads

to a pessimistic computation.

Can we tolerate the pessimism inherent to this computation? The an

swer to this question depends on the environment under consideration, viz., a

uniprocessor or a distributed (more generally end-to-end) system. In unipro

cessor systems, depending on the assumptions (task independence for example)

m ade, practioners [6] have argued tha t the cost of finding a more precise mea

sure of the task completion time far outweighs the benefit gained (say, in terms

of saved resource utilization). However, there are convincing arguments to the

contrary Tmdell in [d5j He discusses scenarios th 3 . 1 show the im portance of

considering the task arrival information in schedulability analysis1. We believe

tha t the im portance can be really felt in end-to-end systems and in unipro

cessor systems with dependent tasks and not so much in uniprocessor systems

with independent tasks.

JLook at the discussion in Chapter 2 about dependent and independent tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Now, let us look at the problem of schedulability analysis in end-to-

end systems. The schedulability of a task in an end-to-end system can be

reduced to a sequence of uniprocessor schedulability problems provided we are

able to compute the characteristics (period and arrival time) of the sub-tasks.

Let us assume for now tha t we have a mechanism to compute the sub-task

periodicities (the mechanism will be described in detail later). We don’t require

the arrival tim e information if we follow the critical instant argument, since

we are going to ignore it anyway. We can use the critical instant argument

(ignoring the arrival time a,-*,) to find the worst-case completion times of all

sub-tasks T k (1 < k < m). Clearly, the worst-case completion tim e of the task

T{ is given by the sum of the worst-case completion times computed above.

Observe th a t we have a cum ulative measure of pessimistic computations tha t

is bound to be more pessimistic. Therefore, we can see tha t even if one can

tolerate the pessimism inherent in the critical instant argument, in the context

of uniprocessor systems, we cannot do so in the context of end-to-end systems.

Before we give a description of the problem we are interested in address

ing in this study, we would like to m otivate the reader by briefly discussing the

source of the problem. In the chapter 1, we mentioned tha t the kinds of changes

(that interest us) that systems undergo, manifest themselves as task execution

laiiiO a ujLi^i u io v u o b iv ^ ii iv^iiv^ vvo.

Note th a t, the task param eters, deadline and periodicity are dictated

primarily by the environment. T he arrival time of a task is governed by the

environment and the inter-dependence between the tasks. The execution tim e

of a task on the other hand is governed among other things by: (i) the pro

gramming language chosen, (ii) the compiler, (iii) the operating system, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(iv) the processor architecture (e.g., pipeline, cache). Therefore, finding the

execution times of tasks is complex and involved [31, 23, 1]. In most cases it

is almost impossible to com pute a deterministic measure of the execution tim e

of a task. Most research efforts use the worst-case task execution tim e and not

the mean execution tim e. W hile this choice can be justified by the fact tha t

th e analysis is based on th e worst-case scenario, it nevertheless results in an

over-design of the system. Also, this assumption can result in poor resource

utilization.

Using mean task execution times in the computation does reduce the

pessimism but unfortunately we could have cases where the guarantees provided

by the schedulability analysis could be invalid (The number of such cases being

determ ined directly by th e variance in the com puted mean execution time).

Therefore, it is necessary to accommodate the variance information along with

th e mean (for task execution times). For example, if the mean execution tim e

of a task is e and the variance of this mean is a then it implies th a t the actual

execution tim e is most likely to lie in the interval (e — cr, e + <r). Schedulability

analysis done using the m ean execution tim e will rem ain valid even when the

actual execution time falls between (e — <7 , e). However, the same does not

hold for the interval (e, e + a). Assuming, the variance is expressed in term s

*■ 1 * 0 : c ^ c w —
W 1 LiA X *^ I X l ^ C L X l ^ VV X l l ^ X X i b CL V ^ X X X X X X V /X X p X C L ^ L X V ^ y , YV Y _CLX i X ^ j - Z X l^O V ^X X V L / C I O J L L O / \

where f a c is a constant. If we can extend the analysis done by using the mean

execution time to accom m odate the possibility of the execution tim e being

scaled by a factor s f then , it can be seen that this is equivalent to: allowing a

variance of fa c x e. W here, s f — 1 + fac .

As a system evolves the functionalities of tasks expand, reflecting in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

terms of improvement in the d a ta handling of tasks. For example, as an air

traffic control system adapts to new traffic (say from monitoring 8 flights to 1 2

flights) though the tasks themselves (their code th a t is) might not change the

data handled by the tasks can change, resulting in an increase in the execution

times of the tasks. This increase does affect the schedulability guarantees made

using the previous execution times. Therefore, what we are interested in is,

finding a factor s f by which the execution times can be scaled (capturing the

data handling change) without invalidating the schedulability guarantees.

A more direct scenario th a t affects the completion tim e computation

occurs when the target platform changes. Any analysis performed (to guaran

tee performance) assuming particular values of task execution times becomes

invalid once the target platform changes. For example, a faster processor could

result in a lower execution tim e (not invalidating the analysis), bu t a slower

processor would surely have an adverse affect on the schedulability analysis. As

a system evolves, though in general the overall system is likely to improve, the

performance of individual components (some processors for example) might not

always improve. Another instance where a target platform is in general slower,

arises in the case of prototype building and testing [51].

A last case where we observe the need to do schedulability analysis for

a t least two target platforms arises in the area of fauit tolerance. It is common

practice to provide fault-tolerant operation by the use of redundant components

(often a t least one secondary com ponent). In general, secondary components

provide only a minimal functionality (sufficient to keep the system operational

till the prim ary is fixed) and therefore tend to be slower. Any schedulability

analysis guarantees provided with the prim ary component as the target will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

invalid once the system falls back onto the secondary.

From the above discussion we note that, what we need is a measure

(will be referred to as the scaling factor for obvious reasons) th a t in some sense

qualifies the schedulability analysis. Provided the task execution times (as a

result of the changes described above) satisfy a bound dictated by this measure

the schedulability analysis remains valid.

We now discuss the underlying theory derived from past results in the

area of real-time systems tha t is used in this study.

3.1 Scheduling T h eory

Research in schedulability analysis has been focused mainly on uniprocessor

systems. In recent years the original fixed priority analysis [24] has been consid

erably extended, relaxing many of the assumptions of the original computation

model. Lehoczky et. aV s [20] efforts to find the worst-case timing behavior of

rate-monotonic tasks was the first in this direction. They have subsequently

extended this result further, to accommodate any fixed priority task assign

m ent [19]. In this thesis we make extensive use of this result.

The following, is a brief discussion of scheduling under different assump

tions about the environment and tasks. A good source of related discussion

can be found in [48] and [40].

3 .1 .1 S ta t ic v e rsu s D y n a m ic S chedu ling

Static scheduling mechanisms assume complete a priori knowledge about the

task characteristics including inter-task dependencies. Such assumptions are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

valid in many of today’s practical real-tim e systems [39]. For example, real

tim e control of a process control application might have a fixed set of sensors

and actuators, and a well defined environment whose processing requirements

are all known a priori. The operation of the static scheduling algorithm in such

a system involves producing a fixed schedule for what is called a hyperperiod.

The fixed schedule repeats every hyperperiod [48]. For example if the arrival

tim es of all tasks in a task-set are 0 then the hyperperiod is given by the least

common multiple (LCM) of the task periods. A static scheduling algorithm

assigns a fixed priority to each task tha t remains unchanged for the lifetime of

the task.

It has been shown by Liu and Layland in their very well known pa

per [24] tha t the rate monotonic priority assignment (RMS) guarantees the

schedulability of a task-set (of n tasks), if the utilization of the task-set is less

than or equal to n(2 1 ! 71 — 1). For large n this bound tends to 0.693. Further,

the RMS was shown to be an optimal static fixed priority assignment when the

deadlines of tasks coincide with their periods. O ther significant results in this

direction were, Leung’s [21, 22] formulation of an alternative (static fixed) pri

ority assignment to accommodate tasks whose deadlines are less than or equal

to their periodicities. Audsley et. al. [2] allowed the addition of guaranteed

r- t*. /—>•*' *-> /-11 r> ^ t-> /-) 1 I 111-< /-I /-»11 /- 4 n 1 T n e l ' n [0 6 0 7 1 n r i r c ’ K i l i l - T *
U .U 1 V - L U O IV O U X X U X XXXUUXX l /X . U/X. U X X U 4“' ‘ J ' ' ' - ' i l b x u o - x ^ u c ix v ^ j y o / o o i o / x x x x j 1

of tasks having a release jitte r.

If a real-tim e system operates in a dynamic environment where it is

im practical to assume com plete knowledge of the processing requirements of

tasks (and their interactions) we use a dynamic scheduling mechanism. In such

a case the chosen dynam ic scheduling algorithm is analyzed off-line using the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

expected requirements of the dynamic environment. The same algorithm is

then used a t run-tim e w ith the assumption that the run-tim e behavior of th e

system does not depart m arkedly from the expected behavior for which th e

scheduling mechanism was tested. A static or dynam ic scheduling algorithm

can be applied in either of the cases, viz., th e environm ent is known or changes

dynamically. However, w hat distinguishes the two is th e performance guaran

tees tha t can be made abou t the scheduling mechanism. For example, if th e

assumption of complete a priori knowledge about th e system does not hold

then, while a static scheduling algorithm can be used bu t it will not be able to

make any schedulability guarantees.

The earliest deadline first (EDF) scheduling mechanism [24] is the most

widely used dynamic scheduling mechanism. EDF runs th a t task among th e

task-set tha t is ready to run and is closest to its deadline. Therefore, as a

task nears its deadline its priority relative to other tasks increases. The ED F

scheduler was shown to be an optim al dynamic scheduler in the sense that, if

there exists a scheduler th a t can guarantee th a t all the tasks would meet their

deadlines then, so will ED F. A drawback of the ED F scheduler is tha t in its

comparison of tasks, T , T j , w ith deadlines, d;, dj , there is no regard for their

execution times, e,-, ej. Therefore, even if the two tasks’ deadlines differ by a

«“»1 1 •*« tv> ah / //. /•/. (̂ /•/. Vn 4 a i*nn i r> pf /-I n f /■/. i-f
O l i l U X J l U n i O U U l i U j | C. J 2 U 2 > « 1 1 1 O i l W O O i l U W i U l i m o V I U j ^ V \ _ - i l I X

their execution times differ by a large am ount (e,- < < ej). The least laxity first

(LLF) scheduler [29] uses a different basis for priority assignment th a t partly

answers the need to accommodate the execution tim es of tasks. The laxity of

a task, Ti is the difference (d; — e,-), between the deadline and the execution

tim e of a task. I t essentially captures the room for m eeting the deadline of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

task. LLF scheduler has also been shown to be an optimal dynamic scheduler.

In summary, the choice of a particular scheduling mechanism is governed

by such considerations as: (i) The assumptions th a t can be made about the

environment (static vs. dynam ic), (ii) the guarantees provided by the sched

uler being considered, (iii) the cost in terms of com putational overhead of the

scheduler and (iv) the constraints on the task characteristics (e.g., deadline <

period of tasks).

3 .1 .2 R e la tio n sh ip b e tw e e n d ead lin e a n d p e r io d

The classical scheduling result by Liu and Layland [24] is built on the assump

tion that the deadlines of tasks are equal to the periods of tasks. In other

words, an instance of a task is required to be completed before its next in

stance is ready. As already mentioned, the rate-monotonic priority assignment

(RMS) gives an optim al fixed priority scheduling mechanism for this scenario.

However, if the deadlines of tasks are allowed to be less than or equal

to their periods (i.e., d,- < pi VT[) then the optim ality of RMS does not hold.

As shown by Leung and W hitehead in [22], the deadline monotonic scheduling

(DMS) mechanism is an optim al for this scenario. The DMS assigns the highest

priority to the task with the shortest deadline. This DMS scheme is optimal in

the sense tha t if any fixed priority scheme can schedule a task-set then so can

the DMS scheme. One should not confuse the deadline monotonic scheduler

with the EDF which is a dynam ic scheduling mechanism where a task’s assigned

priority can change dynamically. A special case of this scenario occurs when

the deadlines of tasks are a constant factor of their periods. In other words,

VT,- ,d{ = K X pi, where k < 1. Note that both RMS and DMS would end up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being the same in this case.

The third scenario occurs less commonly in real-time applications (more

common in imprecise com putation [25, 36, 37]), where the deadlines of tasks

can be beyond the end of their periods. This scenario was first studied by

Lehoczky [20], where he considered the possibility of k (in the formulation of

the previous paragraph) being greater than 1. He showed that for a value of

k = 2 the utilization bound of RMS increases from 0.693 to 0.811. He reported

simulation studies tha t show a more promising (close to 1 .0 0 0) increase in the

achievable utilization.

3 .1 .3 P re c e d e n c e C o n s tra in ts an d R e so u rc e S h a rin g

An inherent characteristic that governs current complex real-time systems is

the cooperation of tasks to achieve the goal of an application. Such cooperation

can be captured by various types of communication semantics. Depending upon

the chosen semantics, tasks experience precedence constraints or blocking or

both. Blocking occurs due to the use of a synchronization mechanism (like

priority inheritance protocol [33]) to regulated resource sharing. Similarly the

use of critical sections to achieve concurrency control (Sha et. al. [34]) can

result in blocking. An alternative to using a concurrency control mechanism

for regulating resource accesses is to impose strict order on these accesses.

Such an order can be captured by imposing precedence constraints on tasks

th a t share the same resource. As was shown by Tindell et. al. in [45] and will

be explained in more detail in chapter 5 of this thesis, these two scenarios can

be captured by considering tasks to have arrival tim e characteristic in addition

to execution tim e, period and deadline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 U niprocessor Schedulab ility

Most schedulability results [24, 19, 46] are based on the critical instant argu

m ent, which defines a worst-case condition for a task. As noted before, worst-

case completion tim e com putation is the crux of schedulability analysis. The

critical instant argum ent gives us a situation under which a task will undergo

its worst possible completion:

L e m m a 3 .2 .1 The worst-case completion time for task Ti occurs when it ar

rives at a critical instant, ai — . . . = a,- = 0 .

This lemma tells us that any instance of a task tha t arrives a t a point

in time when all higher priority tasks also arrive suffers the worst completion

tim e. We still have to compute this completion time. The following equation

gives a mechanism for this computation:

X
Wiis — the smallest X f o r ivhich(V] ej[—] + e,) < X

j = \ t o i - l Pi

The above equation can be viewed in term s of demand and supply. The

term Z]j=noj'-i ej ["jrl caPtures the demand for processor tim e from all instances

of tasks with priority higher than i over X units of time. Therefore, the fraction

in the above formula gives the ratio of the dem and to the supply. The shortest

supply X for which the demand is met, i.e., supply > dem and , gives the

completion tim e of the task = W{. Further, if this value W, is less than or

equal to the deadline of the task (D,), then the task meets its deadline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 O ther R elevant Work

The area of end-to-end scheduling is a relatively new are in real-tim e systems.

Prom inent work in th is area has been reported by B ettati in his thesis [4]. As

he showed in [4], the problem of finding an optim al scheduler for scheduling

end-to-end tasks is NP-complete [13]. To this end, he proposed and analyzed

heuristic approaches to solving this problem. The schedulability test he uses to

test his heuristic schedulers is based on the critical instant argument. As was

discussed before, this results in a pessimistic evaluation of the scheduler. It is

therefore possible tha t he rejected heuristics th a t did not perform well under the

pessimistic test but would in fact have been able to guarantee schedulability.

O ther ongoing research on this problem was reported by E tam adi in [7].

He proposes to enhance the analyzability of end-to-end systems w ithout mak

ing constraining assumptions th a t restrict resource utilization. Further, he pro

poses building robust application models tha t would allow enhancements like

synchronization, communication. Related work can also be found in [14, 30].

Finally, on the problem of admission control of RT channels [28, 9]. The

Tenet group’s Ferrari et. al. were the first to deal with this problem extensively.

The principle they followed [8 , 9] in the design of an admission control scheme

is based on verifying, whether the resources available on the path of the newly

requested RT channel are sufficient even in the worst possible case, to

1 . provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to all the existing RT channels to continue

being satisfied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above verification depends upon the kinds of QoS param eters al

lowed. The most im portant QoS param eter of concern to real-tim e system

designers is meeting a latency bound (deadline). We restrict our interest to

this param eter. There are two tests that are relevant in this context:

• Schedulability Test: Does the addition of the new channel to the already

established channels using this link cause either the new channel or one

of the already established channels to miss their deadline?

• Buffer Space Test: Is the available buffer space at the link sufficient to

allow the messages of the new channel to be stored for a length of time

equal to the delay faced by the channel at this link?

Different approaches to the admission control problem (in real-tim e sys

tem s) will differ in th e way the above two questions are answered. Therefore, a

study in admission control reduces to the study of these tests. The buffer space

test has been successfully addressed by the Tenet group [9]. We concentrate

mainly on the schedulability test because it is our belief that there is room for

im provement here. In particular, there are many situations that have not been

considered in this context.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p ter 4

P r o b le m S ta tem en t an d D escr ip tio n

4.1 S calab ility of U niprocessor S ystem s

The uniprocessor scalability problem can be formally defined as follows:

P ro b le m D e fin itio n 4 .1 .1 Given a task-set T consisting of n tasks, and a

subset S o f T . Find the maximum common scaling factor by which the execution

times o f each o f the tasks in the subset S can be scaled, without affecting the

schedulability o f the task-set T .

As described in the previous chapter, the schedulability of tasks running

on a uniprocessor can be determined by lehoczky’s [19] schedulability test. The

scalability problem now involves extending this test to compute the scaling

factor.

4.2 S calab ility o f E nd-to-E nd S y stem s

T U r x ^ + 4-U ^ ^ U J1 t 4 . . „ f K . l . 4~ _1
jl j^ iv /c /i\-iii k s i . i n t c i v o o i i u t io c ii^ u c -a .ic tu in x>y u i i n c n u - t u _C iiU 1 c a t "

tim e systems”. The problem can be looked at from two different viewpoints:

(i) The first viewpoint stems from assuming the scaling to occur as a result

of a change in one or some of the components in the system; (ii) The second

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viewpoint stems from assuming the scaling to occur as a result of a change in

the functionality of some or all of the sub-tasks in the system.

4.2.1 Com ponent Change

A change in a component R r can result in a gain or a loss in the speed of

processing for the sub-tasks running on it. Clearly, if there is a gain in speed

of a component then this will not have any adverse affect on the completion

times of sub-tasks running on it. However, if the component is replaced by a

slower one then it will affect the completion times and hence the schedulability

of the sub-tasks running on it. The problem of interest therefore is, to find the

maximum factor by which all the sub-tasks on a particular component Rr can

be scaled such that the schedulability of the task-set (comprising all n tasks

tha t is) is unaffected.

In the following formulation we assume th a t a ‘single component is un

dergoing a change. We can however, generalize it to a sub-set of components.

The problem of scaling occurring as a result of a component change can now

be formally posed as:

Problem Definition 4.2.1 Given a task-set T o fn end-to-end tasks executing

in a snsfem o f m . t m > 1 1 romnnvevts, find the nnfimat srnjivo fqrfnr 1 I s f rv / V — / 1) J 1 ' ' O J ' ~ ' f J ~

(corresponding to a maximum s f c) with which the processing speed of a given

component r can be scaled (down), without affecting the schedulability of the

task-set.

In other words, we are interested in the m axim al component change

the task-set can survive. The reason for representing the scaling factor as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

reciprocal will become obvious once we realize tha t a lowering in processing

speed of a component will reflect as an increase in the execution times of sub

tasks running on the component. For example, if the speed of the component

is S (instructions per unit time) then an execution tim e requirement of a sub

task Tik being e,-*, (tim e units) implies tha t the number of instructions that the

sub-task requires to execute are S x e^.. If the processing speed is scaled down

by l / s / c (implying tha t s f c > 1) then, we have the new speed S' — S x 1 /s /c .

Therefore, the am ount of tim e it would take to execute S x t{k instructions1 is

given by:

/ S x eik
&ik ~ S'

_ S x eik
S x 1 / s / c

= s f c x eik

In this formulation, we assume tha t all sub-tasks that execute on com

ponent r will be equally affected. T hat is for all sub-tasks Tjt (1 < j < n)

running on component r their execution times as a result of the change would

become s f c X ej r . The next perspective to the scaling problem however, allows

for the possibility th a t only a subset of the sub-tasks running on a component

are affected as opposed to all sub-tasks being affected.

4 .2 .2 T ask C h an g es

As opposed to a change in one or more components, we can envision one or

more sub-tasks being affected by a change. For example as a system evolves,

1 Assuming that a change in the component is such that the same code is able to run on
the new component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

to encompass more functionality, some of the sub-tasks (their code tha t is)

need to be modified (enhanced), resulting in an increase in their execution

times. Alternatively, enhancements could come in the form of increased data

handling, manifesting as an increase in the execution times of tasks (as before

we do not consider decreases because they do not violate prior schedulability

guarantees). The problem of scaling occurring as a result of task changes can

now be formally posed as:

P ro b le m D e fin itio n 4 .2 .2 Given a task-set T o fn end-to-end tasks executing

in a system o f m, (m > 1) components, find the maximum scaling factor, s f t

with which a subset o f the sub-tasks (say S : {Tik, where 1 < i < n; 1 <

k < m }) execution times can be scaled, so that the task-set T ’s schedulability

remains unaffected.

As it will be clear from the following discussion, solving the end-to-

end schedulability problem can be reduced to solving m independent (deemed

independent by an im portant transform ation to be described later) single com

ponent schedulability problems. In other words, solving the above formulated

scalability problem for a subset S will become equivalent to solving m single

component scalability problems on each of the subsets S\, S2 , • ■ •, S m. A subset

o -< ~ „ u „..u i m t u ; \ 1, c i f r „ _______ -------------------
c-uiibcxino m i \ v t J v ' c i G i i g m g 1 u . 11 t u t a pew. on_uicti

r , there are no sub-tasks (Vi) in S then we set the corresponding set S r — <f>

(null set).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

We can observe one step tha t is common to the above two formulations, viz.,

determining the schedulability of the given task-set T . This is the initial step

to be done in solving both these problems. Note th a t, if a task-set T is un-

schedulable to s tart with then, any adverse change either to a component or

to a subset of the sub-tasks is only bound to make the situation worse. The

problem of interest can therefore be posed as:

P ro b le m D e fin itio n 4 .2 .3 Given a task-set T of n end-to-end tasks executing

in a system o f m components, find if the task-set is schedulable.

In order to find the schedulability of end-to-end task-set, we have to find

if each end-to-end task in turn will be schedulable, i.e., meet its deadline when

the individual sub-tasks compete for processing on their respective components.

Therefore, for each task we have to find its worst-case completion time which

can then be compared against its deadline. The worst-case completion time of a

task T, can be com puted by assuming th a t all its sub-tasks simultaneously suffer

their worst-case completions. The worst-case completion tim e of the task (T,),

is then given by the sum of the worst-case completion times of the individual

sub-tasks (TU). For a given sub-task T, .̂, executing on the component /?*, the

information we need to find its worst-case completion tim e is:

• The arrival tim e of all sub-tasks Tjh {j < *)2> which are of higher priority

than Tik and are running on the same component, R^.

2Unless otherwise specified, the arrival tim e of a sub-task Th implies the arrival o f its
first instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The periodicity of all sub-tasks Tjk (j 5 : i), which are of higher priority

than Tiu and are running on the same component R k.

Notice that when, i — n we have to find the arrival time and periodici

ties of all sub-tasks in the system to determine the schedulability of the task Tn.

Therefore, we need a mechanism by which we can derive these two parameters

(since these are not given a priori). Note tha t, only the first sub-task of any

task is truly periodic. The arrivals of the consecutive instances of any sub-task

Tik, (1 < i < n ' , 1 < k < m) are dictated by the completion times of the sub

task preceding it, i.e., These completions are obviously non-periodic

and so are the arrivals of sub-task Tik- We however can impose a periodicity

on these sub-tasks by a proper justification. The p h a se a d ju s tm e n t mecha

nism [51], is one such mechanism that derives sub-task arrival times and also

their periodicities. The term phase here is used to denote arrival time.

Imposing a period on the arrivals (of consecutive instances tha t is) of a

sub-task Tik (1 < k < m), implies that, even if the preceding sub-task

does finish at a particular tim e 3 (say Fitk- i), the sub-task T{k will not be ready

immediately. A finite am ount of time (say W i^ - i — F{tk - i) 4 has to elapse before

the sub-task T{k is ready to execute. It is necessary to limit this finite amount

of wait tim e in the sense tha t, if it is too large then it could hurt the utilization

of the component R k. This is due to the fact tha t, while the sub-task is being

intentionally delayed, the component Rk could be idle. On the other hand

this delay must be large enough to be able to accommodate all possible finish

3All references to tim e are relative to t — 0, unless otherwise specified
4Here, is a constant for the task therefore, the delay is a variable for each

instance of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

tim es (of its various instances) of task T{:k~i- Clearly therefore, in the limiting

condition (delay = 0) VK’.a— i m ust be given by the worst-case completion tim e

of the sub-task

An effect of this adjustm ent is tha t a sub-task Tik will always be ready

(or arrive) after a constant am ount of tim e from the arrival of the preceding

sub-task Ti k—\ • Therefore, knowing the arrival tim e of the sub-task Tn, we can

find the arrival of the sub-task Tl2, knowing which we can find the arrival of

T{3 and so on. It should be clear to the reader tha t the above adjustm ent also

allows all sub-tasks belonging to a task to inherit its period.

W hat the above adjustm ent has afforded us is, the ability to treat

each of the components independently, provided we are able to find the terms

Iki'/t (Vi, k). Observe that we have all the information about sub-tasks Tn (1 <

i < n), running on the first component, R\ (That is, we have their arrival times,

periods and execution tim es). Now the problem we wish to solve is finding the

worst-case completion tim es of these tasks. Once we find these worst-case

completion times we have all the information about sub-tasks T)2 (1 < i < n),

running on the second com ponent, R 2 and so on. The problem of interest can

therefore be formally posed as:

"Oy*r\Vv1(QTV* Y"\ n fl r* 1 1- ■* r> v» A O A i i 'm rr -f rt C'l* or/ ’ f ' r t f n f n o/’C r nr> r rt o i-f- o r* rr rt -v> rr o-i'V* rtl r
JL A. V/MAVJLJ.1 U/ J. K / J t V C ! tt_* L/U.-C- C« UuV C t C f j I S I C U/ OU

component, find the worst-case completion times o f all tasks in the task-set.

Observe that this problem is similar in sense to the schedulability prob

lem solved by Lehoczky [19] (refer to Chapter 3). However, while his solution

using the critical instant argum ent can be used in the context of uniprocessor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems, we cannot use it here (in the context of end-to-end systems th a t is).

Finding a solution to this problem is one of the results of this thesis.

Now that we described a mechanism to test whether a given task-set is

schedulable, we have answered the question of whether there exists a scaling

factor as defined by the two problems, 4.2.1 and 4.2.2. Clearly, if the tasks are

so stringent tha t any increase in the execution times of the sub-tasks cannot

be tolerated, then the scaling factors s f c (as defined in problem 4.2.1) and s f t

(as defined in problem 4.2.2) will both be equal to 1.0.

The end-to-end schedulability problem has been reduced to m single

component worst-case completion tim e computation problems and not m single

component schedulability problems. Therefore, we cannot talk about extending

a single component’s schedulability, unless we derive the sub-task deadlines. A

m ajor research issue in end-to-end scheduling has been the derivation of sub

task deadlines. Given an end-to-end task’s deadline the problem of finding an

optim al5 division of this deadline among the sub-tasks is intractable [15] (N P-

complete [12]). This result has prom pted a heuristic approach [4, 15, 30], two

such heuristics being: (i) divide the task ’s slack6 equally among the sub-tasks;

(ii) divide the task’s slack among its sub-tasks in a weighted proportion of th e ir

execution times.

The above two heuristics vary mainly in their sensitivity to the execution

times of tasks. For example, the second heuristic is built on the assum ption

tha t the shorter a task ’s execution tim e requirement, th e more likely it will have

5In the sense that, if there exists a division that would help the task meet its deadline
then the mechanism should find it

®The slack of a task is given by the difference between its deadline and its execution tim e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its requirem ent m et and therefore the lower is the slack assigned to it. The

first heuristic is built on the assum ption tha t the priority inherited by a sub

task has a greater impact on its ability to meet its execution time requirement

than its execution time itself. Thus the slack is divided equally among all sub

tasks. This allows us to reduce the end-to-end scalability problem to m single

component scalability problems.

Now, finding the common scaling factor is a simple m atter of finding

the m inim um of the m scaling factors (each corresponding to one component).

The problem of interest therefore is the single component scalability problem,

which can be formally defined as follows:

P ro b le m D e fin itio n 4 .2 .5 Given a schedulable task-set T o f n tasks execut

ing on a single component and a subset S o fT , find the maximum scaling factor

s f with which all tasks in S can be scaled without violating the schedulability

of any o f the tasks in T .

Now, we can observe th a t solving the two problems 4.2.1 and 4.2.2

am ount respectively to:

a Solving the single component scalability problem (4.2.5) with S = T.

Solving the m single component scalability problems and taking the min

im um among these scaling factors.

We can now summarize this discussion on end-to-end scalability by not

ing th a t, solving this problem entails finding solutions to the two problems,

4.2.4 and 4.2.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 A dm ission C ontrol o f RT C hannels

The problem of admission control of real-time (RT) channels was first inves

tigated by Ferrari et. al. [9] at the Tenet group. Admission control is the

m echanism by which multiple real-tim e connections can simultaneously share

the resources of a packet switching network without resulting in congestion.

Further, the connections are guaranteed a particular quality of service (QoS)

th a t is initially (at connection set up) agreed upon. Admission control comes

into play when a new RT channel is being requested. An RT channel (or

a connection request) is accompanied with a QoS list tha t describes the re

quirem ents of this connection. Popular QoS requirements in the literature of

d istributed real-time systems are - throughput, latency (or deadline), packet

loss tolerance [28, 10, 35] etc.

The mechanism used to determ ine the admissibility of a real-time chan

nel involves verifying at each interm ediate link (along the path) in turn whether

the RT channel’s QoS requirements can be guaranteed. If a channel’s require

m ents can be met at each of the interm ediate links then we can accept the

channel. If however, the channel’s requirements cannot be met at any of the

in term ediate link then we can reject the channel. In fact the first such link tha t

deem s the channel inadmissible is sufficient to confirm tha t the channel would

not be admissible.

In order to test whether a channel’s requirements will be met at an inter

m ediate link we have to know its deadline and its period at tha t link. Finding

the period is straightforward according to the phase adjustm ent mechanism.

However we do have to derive the deadline of the RT channel at interm ediate

links. Since the service time of the channel on each of the links is the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one way to derive the deadlines would be to divide the slack of the RT chan

nel equally among the intermediate links. However, if one wishes, one can use

a more sophisticated heuristic [15, 4] to derive these deadlines. This reduces

the problem of finding the admissibility of an RT channel to be equivalent to

solving the admissibility a t each of the interm ediate link. From here onwards

when we refer to the admissibility of an RT channel we mean its admissibility

at an interm ediate link.

Now, the question tha t admission control has to answer when accepting

a new connection can be broadly phrased as:

P ro b le m D e fin itio n 4 .3 .1 Given the QoS requirements o j a new R T channel

is it possible to accept this channel without violating the QoS guarantees made

to R T channels that have already been accepted?

To summarize this chapter, we have defined four problems of interest:

• The uniprocessor scalability problem (4.1.1),

• The single com ponent schedulability problem (4.2.4),

• The single com ponent scalability problem (4.2.5), and

• The problem of admission control of RT channels (4.3.1).

The next chapter discusses the first of these problems. Note that, the third

problem in the above list is different from the first in th a t, it involves tasks

whose arrival times cannot be assumed to be zero (as in the critical instant

assumption).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 5

S ca la b ility in U n i-p ro cesso r E n v iro n m en ts

As discussed in Chapter 1, a host of schedulability related issues translate into

a more general problem called the scaling problem. Observe tha t the scaling

factor as defined in the problem statem ent attem pts to capture a common factor

by which a sub-set of tasks belonging to a task-set can be scaled together. In

our first a ttem pt at this problem we made an assumption tha t the sub-set S is

the sam e as the task-set T. T hat is, we were interested in scaling the complete

task-set as opposed to a sub-set of tasks. A solution to this problem can be

found in [52]. The following discussion however considers the general scaling

problem as stated in Problem 4.1. The model assumed is the uniprocessor

model described in chapter 2. We repeat the problem statem ent here and

give a discussion about the possible approaches to the solution followed by the

details of the solution approach we have taken.

5.1 P rob lem S ta tem en t

• Given a task-set T consisting of n tasks, and a subset S of T . Find

the maximum common scaling factor by which the execution times of

each of the tasks in the subset S can be scaled, without affecting the

schedulability of the task-set T.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The particulars about the scheduling algorithm used to schedule these

tasks have not been specified in order to keep the problem general. The choice

of scheduler can be either a dynamic scheduler (like earliest deadline first) or a

fixed priority static scheduling algorithm. If the chosen scheduler is the la tter

then the tasks are assumed to be numbered (decreasing order) according to

their priorities as d ictated by the scheduler. The term , scaling factor is used

to refer to a scale up in the execution tim es and not a scale down. It can be

shown tha t if the execution tim e of a task is reduced then the schedulability of

th e task (and other lower tasks) will remain unaffected.

The use of th e term , “maximum” needs some explanation here. The

scaling factor we desire is one that cannot be improved upon. In other words,

given that s f is the m axim al scaling factor and e is an infinitesimally small

quantity. Using s f to scale the tasks in S would not affect the schedulability

of the task set whereas using s f + e as the scaling factor results in at least one

of the tasks in T being unschedulable.

5 .2 D iscu ssion o f P ossib le S o lu tion A pproaches

We concern ourselves mainly with a static fixed priority scheduling mechanisms

because the above problem has a rather trivial solution when we assume a

dynam ic preemptive scheduling algorithm (say EDF). It is possible to find a

feasible schedule using a dynamic scheduling mechanism provided the following

condition holds for th e utilization [24]:

n e ■
" = E ^ < i

V j 6 T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

If the utilization of the task-set is greater than 1, then clearly the task-

set is not schedulable by any dynamic scheduling mechanism and further the

question of scaling the tasks is not relevant anymore. The above condition is

both a necessary and sufficient condition for EDF to be able to guarantee the

schedulability of the task-set. Therefore, m eeting the above condition ensures

the existence of a scaling factor. Now, given such a task-set we can scale the

tasks in the sub-set such tha t the new utilization U' = 1.

E E ‘A
v? e s f t / \vj e (T-s) f t /

= v w x (e ^) + " - (e I
\vj 6 s f t / \y? e s f t

= (*/«<f-l)x (£ + u
\Vj e s f t /

The scaling factor of interest therefore is when U' = 1, given by:

1 - U
S J e d f — g - “ h i

E iVj' 6 S f t

This factor is not valid in the case of static fixed priority preemptive

scheduling algorithm s because the above condition on utilization (i.e., U <

1) does not necessarily guarantee the existence of a fixed priority scheduling

algorithm. A similar bound does exist for the rate monotonic scheduler (RMS: a

fixed priority scheduling mechanism), under the assumption tha t the deadlines

are equal to periods: n(21/ 71 — 1). The rate monotonic priority assignment is

known to be optim al in this case [20]. Further, the to tal utilization of the

task-set being less than or equal to n(21/71 — 1) is a sufficient (not necessary)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

condition for optimality. In other words the above condition guarantees that a

rate monotonic priority assignment will result in the task-set being schedulable.

Therefore, one can say that a scaling factor s f rms (following the same derivation

as above but replacing the utilization bound n(21/" — 1) for 1) given by the

following equation does not violate the schedulability of the task-set.

n(2 ■/»-l)-t/
0 J r m s — ____________ _____. p ' T J-s p

v jT s Pi

The above computation of the scaling factor does give us a valid factor

in the sense th a t using this factor to scale tasks does not violate the schedula

bility of the task-set. However, it is not necessarily optimal in the sense that

the resulting utilization bound is not a tight bound. In order to understand

why this bound is not tight one has to look more carefully a t the meaning of the

schedulability bound, n (21/" — 1). This bound is only a sufficient and not a nec

essary condition for the task-set to be schedulable by the RMS mechanism [20].

Therefore it is possible tha t a task-set does not meet this schedulability bound

and yet is schedulable by the RMS mechanism. Therefore we observe that a

more precise analysis is necessary to get the maximal scaling factor.

A second observation one has to make about the above scaling factor

computation is tha t, the computation derives its validity from the fact that the

rate monotonic priority assignment is optim al when deadlines and periods of

tasks coincide. If this condition (deadlines equal periods) does not hold then,

we can no longer use the above result. If the deadlines of tasks are known to be

less than their periods, then the deadline monotonic priority assignment (DMS)

is known to be optim al [22]. However, there is no known sufficient condition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on th e to tal utilization. Therefore, in order to com pute the scaling factor we

have to do a more precise analysis of the task-set.

As a special case of the scaling problem, if the sub-set S is same as T

then the scaling factor would be a simple reciprocal of the utilization in the

case of EDF (i.e., s f ed/ = jj). Similarly, in the case of RMS, the scaling factor

using the approach above would be, s f Tms = "f2 f (this is not optimal, as

already discussed above).

In the following, we give the algorithm to find the maximal scaling

factor when an arbitrary (RMS and DMS being two instances) fixed priority

assignment is used. Before the details of the mechanism are presented we would

like to intuitively motivate the idea behind it. We consider the case of scaling

all tasks to present the motivation. Since we are interested in the common

scaling factor, one approach would be to consider a successive approximation

technique as taken by [6]. Incremental factors are used to scale tasks and

perform a schedulability analysis to confirm if the increment is acceptable.

Clearly, such a technique would be expensive.

An alternative approach would be to incorporate the scaling factor com

putation into the schedulability test. This is the approach we have taken. The

schedulability test we use is the one proposed by Lehoczky in (refer to Chapter

2). T he idea behind Lehoczky’s schedulability test is to ascertain the schedula

bility of each task in turn starting from the highest priority task. The schedu

lability of each task involves considering all tasks th a t are of higher priority

than itself. Therefore, the schedulability test of a task T; can be interpreted as

follows: To ascertain w hether task T) will meet its deadline while continuing to

honor the tim ing requirements of all higher priority tasks. Note tha t the test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

does not consider whether the higher priority task meets its deadline. It only

makes sure th a t any higher priority task will not wait for the processor while a

lower priority task is using it. In other words, it ensures that in every pj (j < i)

tim e units the task corresponding task Tj would get ej units of the processor’s

tim e. It is possible for example th a t, a higher priority task Tj gets its last unit

of required execution tim e between dj and pj (note dj < pj 1 < j < n), thus

m eeting its dem and1 but not its deadline.

On the same lines our approach to finding th e scaling factor a ttem p ts to

find the scaling factor for each task in turn starting from the highest priority

task. The scaling factor {s f ') obtained with respect to a task T,- therefore

guarantees th a t the task T; would meet its deadline continuing to honor the

scaled (scaled by s f ') requirem ents of all higher priority tasks. In o ther words,

s f ' is the factor with which the execution times of all tasks with priority greater

than Ti and including T{ can be scaled without T{ missing its deadline even after

accom m odating all the scaled higher priority tasks. The required scaling is then

the m inim um of all com puted scaling factors s fj . A more detailed treatm ent

of the solution follows.

5.3 D eta ils o f th e A pproach Taken

An analogy can be drawn between the com putation of the scaling factor s f ' and

assessing the schedulability of the task Tj. In order to assess the schedulability

of task Ti we compute the worst-case completion tim e of task Ti and com pare it

against its deadline. This com putation takes into account the execution time

JIt will not wait for the processor while a lower priority task is using it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demands of higher priority tasks (but is independent of the higher priority

tasks’ ability to meet their deadlines). Similarly in the com putation of the

scaling factor w ith respect to task T;, we only account for the execution tim e

(scaled) demands of the higher priority tasks and not the ability of these tasks

to meet their deadlines.

We find such scaling factors for all tasks and the required scaling factor

is the minimum among these, i.e., s f = M in im u m (s / ') . Note tha t each of the

scaling factors 5f 1 only considers the schedulability of task Ti and any scaling

factor tha t is less than s f 1 will continue to guarantee its schedulability. Since

we are interested in a common scaling factor, the lowest of the scaling factors

s f 1 h < i < n (The index h is defined below). In the following paragraphs,

we present the details of the technique for the general scaling problem and a

proof of its operation.

We make use of the schedulability test described in [19, 6] to find the

worst-case response times of tasks.

Note tha t in the previous section we assumed th a t T = S 2 in order to

simplify the explanation of the solution. In this context we gave a definition

of s f 1 tha t needs a slight refinement to adapt to the case th a t the set S is not

necessarily equal to T. The scaling factor s f 1 is the factor w ith which the tasks

in the set S with priorities higher than Ti can be scaled w ithout affecting Tj-’s

schedulability, while continuing to honor the demands of all tasks with priority

higher than T,. The requirements of higher priority tasks include both: (i)

the requirements of higher priority tasks tha t are not included in S and (ii)

2 We assume that the tasks in S are sorted in a non-increasing order of their priority

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the scaled (scaled by s f ' th a t is) requirements of higher priority tasks that are

included in S. There are two im portant observations to be made:

• In the computation of the scaling factor s f ' the task T,- is not necessarily

a member of S. This is because there are tasks in T tha t do not belong

to S whose schedulability could be affected by the scaling of tasks in S.

And we cannot ignore them in computing the desired scaling factor.

• The number of scaling factors to be computed is equal to n — h. The

num ber of tasks in T of priority less than the highest priority task in S.

Clearly from the definition of s f ' in the above paragraph, we see that for

all tasks 7* whose priority is greater than the any in S, s f ' is undefined.

The given sub-set S is assumed to be sorted by the decreasing order of

priorities. Let Tk be the highest priority task (first task) in 5 3. For each task

Ti where h < i < n (starting from i = h and counting up), we find the scaling

factor by which all tasks in S whose index is < i can be scaled, while continuing

to m aintain T i s schedulability (i.e., meeting its deadline and the demands of

all tasks with priority higher than T) are honored).

Since we make the critical instant assumption, only the first task in-

c + o r . ™ , m . +OC-1- T . A ; + Q h O l T \ T ^ f „
O tU ilV V C/i U i l l j J. } IIVV/UU O t j W HJ1 H O U lU -U ll i v j i i o t u

tha t only higher priority tasks affect the schedulability of a task, because lower

priority tasks will be preempted. We consider the execution profile of task

T (i > h) along with all higher priority tasks Tj where j < i. In Figure 1, the

first continuous block (no idle tim e in between) of used tim e is represented as

3Task 7/, is the highest priority task that needs to be scaled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U \ . The notation U \ is also used to represent the length of this block. The j th

such used time block is represented as U j . Further, U j tL and UjyR represent the

left and right boundaries of the block U j (i.e., U j = Uj,R — U j ^) respectively,

relative to the start tim e of consideration (i.e., U\,l , which can be assumed

w ithout loss of generality to be zero). The first task instance of T (refer to

Figure 5.1) completes a t a point U \ units of tim e after it has arrived, with

all higher priority tasks also arriving at U \,l , the sam e instant as T; arrives -

critical instant.

L
U'i

Completion o f Ti

U i U->

^ U ' j U 'k \h
L,-, 't L

Uk

UlL

W orst-casc phasing forTj
(critical instant)

$ U i r U iL U i r U 3l U 3r UkL UkR

U2I

’ Used Time Used Time

Figure 5.1: Task TVs Execution Profile

The blocks of execution between the points U \ , r (The earliest point in

tim e after the completion of task T,- at which the processor becomes idle) and </,•

(deadline of T1,) are : £/2, U5 , • • •, Uk (There are k used tim e blocks in all). These

blocks represent the higher priority tasks tha t would have to be accommodated

if we want to push th e completion tim e of Ti towards d;. Each block of used

tim e is divided into m arked and unmarked sub-blocks. A sub-block of block U j

is said to be marked if the execution tha t spans it belongs to a task (or tasks)

tha t belong to the sub-set S. A marked sub-block, denoted as Uf, indicates the

p ’th marked sub-block in U j . There are k such marked sub-blocks in all.The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

way the scaling factor, s f l for task Ti is computed is as follows:

s f 1 = m ax s f m
J l<m<k- 1

where

Sfm = 1- ' -

E f(E u'j) + (uj+1.L-uij,))
l < j < m \ VI /

E £ uj
l < j < m V /

3 f m in the equation above is the factor which when used to scale the

execution times of all tasks in S of higher priority than T,-, will be able to

stretch the completion time of task T a t most till Um+itL- The first term in

the num erator (same as the denom inator) is the total of the execution times of

tasks in S th a t are considered for scaling at this point (i.e., tasks in S whose

priority is higher than T,). The second term in the num erator is the to tal idle

tim e th a t these tasks are being scaled to consume. Therefore the right hand

side of this equation in a simplified sense can be viewed as usedtime+?dIetime _
~ 1 u s e d t i m e

Observe th a t, each s /,„ is a valid scaling factor in the sense tha t it does not

result in T missing its deadline. Since we are interested in the m aximum scaling

factor, the maximum among these valid factors is the required solution. The

resultant scaling factor s f ‘ is therefore the maximum scaling factor w .r.t task

T{. However, from the definition of s f ! one can see tha t the possibility of a

higher priority task missing its deadline is not accounted for in this factor (only

its dem and is accounted for). Therefore, this scaling factor is valid only in the

context of task T,-. In order to find a common scaling factor for the sub-set S

now, we have to find the minimum among all s f 1 (h < i < n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To understand why the minimum has to be taken, note th a t w .r.t task

T{ (h < i < n) any scaling factor value less than s f ' will still continue to be

valid. However, w .r.t some other task Tj (h < i < n), where s / J < s f 1, s f 1

will not serve as a valid scaling factor. Observe th a t s f J will surely serve as a

valid scaling factor w .r.t both T, and Tj. If we generalize this observation, it is

clear why the minimum is the required solution.

The complete algorithm to com pute maximal scaling factor is given

below.

1 Algorithm Scale_Factor(T, S’)

Param eters: T is the given task-set which is schedulable. S is the

sub-set whose scaling factor is desired. S is assumed to be sorted in

the increasing order of their priorities. Assume tha t is the highest

priority task in the sub-set S.

Step 1: For (f = h.\ i < n;i + +)

Step 1.1: Compute first approxim ation for the completion time

of task Ti s first job:

complo = ^ ej
j=\toi

Step 1.2: Calculate the next approximation for completion time:

com.plt
complt+1 = e; + > | ---------- 1 ej

j=l to t'-i Pi

Step 1.3: I f (complt+i > di) th en The job missed its deadline:

Exit(-l);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

S te p 1.4: I f (complt+i complt) th e n we have not arrived at the

completion tim e of the task, so, g o to S tep 1.2;

S te p 1.5: The completion tim e for the job is complt \

S te p 1.6: F it higher priority task instances tha t would arrive

between the points complt and d;. The scheduling points are

U2 L, U3 L, - • •, UkL\ where, Um = UmR — UmL denotes the m th used

tim e block (refer to Figure 5.1). Further we identify each used

block as a sequence of marked and unmarked sub-blocks where a

sub-block of block Um is marked (referred to as , if it is the j ’th

marked sub_block of Um) if it belongs to the sub-set S and if its

priority is greater than th a t of task 7). unmarked otherwise

S te p 1.7: Compute the maximum possible scaling factor s f ‘:

o f used time, Uk, does not overlap with the deadline d,-, i.e., of,- < Uk,L then we set Uk,L — di

max s f rl<m<k- 1

where

E E u ‘ j
1 < j < m VI

S te p 2: s f — Minimum (s / !) Vt

S te p 3: s f is the required m axim al factor.

4Uk is the used block of tim e that overlaps with the deadline d,-. However, if the last block

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

end

The fact that the above algorithm returns an maximal scaling factor is

confirmed by the following proof:

5 .4 P ro o f for th e P resen ted Solution

Following are the observations about the Solution that would help us prove

th a t the derived scaling factor is in fact maximal.

• There is no idle time in the interval because if there were any

idle tim e then it would have been used by T) resulting in Tt- completing

before the point UitR.

• Blocks of execution Ui(i > 2) belong to only higher priority tasks. This is

true because we have not taken any lower priority tasks into consideration

here.

® The scaling factor we are trying to find for task T only guarantees that

the task 7) will meet its deadline, by using the processor a t tim es when its

free (i.e., not executing any higher priority tasks). It is possible tha t the

scaling factor derived can cause a higher priority task to miss its deadline.

However, if a higher priority task does miss its deadline, it is not because

of task T{ but due to its own execution time and the execution times

of tasks higher than itself being scaled (this point is explained using an

example later).

To see the effect of scaling the tasks by a factor, we look at the first scal

ing factor considered, namely s f i — (refer to Figure 5.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

New Completion o f T j

Old Completion o f T j

Marked
Used Time

Unmarked
Used Time

Worst-case phasing fo rT j
(critical instant)

Figure 5.2: Effect of Scaling by 5f i

Since, this scaling does not affect the periods of tasks, if there were I j instances

of a task Tj(j < i) in the interval before the scaling, there will still

be the same num ber of instances and further they will arrive at the same points

as before.

U\ = U \ yR — U i }L - E Jj x eJ w ^ er e 1
1 < j < i

The processing requirem ent of task Tj(Vj < i), after scaling would become

e'j — sf i x ej, if (j £ S), or e'- = ej, if (j $ S). However, So long as the

following condition holds true, task Tj would complete by U2 , l ’■

£ U i x 4) =
l < j <)

We can confirm th a t this is in fact true:

E (Ji x e ' j) = E (h x -s/i x e i)
1 < j < i (1<J<0&(JG5)

+ 5 Z { I j * e j)(i < j < i) W i t S)

= s f i x E (7t x ei)

+ E x ei)
(l< 7 < f)& (j f? S)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

(E u[) + u2,l - ultR
v/ x (E vl)(E vl) v,

V (

+ E (-0 x ej)
= (E) + u 2,l - u hR

V i

+ E (̂7 x ej)
(1<j<i)&(jgS)

— U i tR + U2,l — U\ , r

= U2,L

While the above shows th a t the scaling factor is valid in the sense that it

moves (forwards) the completion tim e of T) to the point U2,l (this argument can

be extended to show th a t a factor s f m will forward the completion tim e of task

T{ at most till Um+i,L), it does not necessarily guarantee to be the maximal

scaling factor. The m axim al scaling factor is the largest such scaling factor

among all s f m where 1 < m < k. In order to see why this is so, observe that

any factor s f m would result in the task T; finishing before its deadline, therefore

all s f m are valid, however, the one th a t is th e largest (say s f max = s f l) is the

desired result. To see why this is maximal, we note tha t any larger a factor

would result in T,- finishing beyond Umax+i ,l and any smaller would leave more

room for scaling the tasks in question.

Observe tha t com putation of scaling factor w.r.t task J 1,- only guarantees

th a t Ti will meet its deadline honoring the processing requirements of all higher

priority tasks. The scaling factor thus obtained does not guarantee against

higher priority tasks missing their deadlines. If any higher priority task misses

its deadline as a result of this scaling, then obviously, it would miss its deadline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

in spite of T; and therefore a prior scaling factor would prevail (an example

below demonstrates this). In this way we compute the scaling factor s f ' . We

perform this computation for all values of i from h to n and find the minimum

of them , which is the desired final result.

5.5 E xam ples D em on stra tin g th e S olu tion

The following examples dem onstrate the various aspects of the technique. The

first example involves three tasks, whose characteristics are given in Table 5.1

and the sub-set S has only one task {X2 }.

Table 5.1: Example Task Table

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 150
3 350 35 280

Figure 5.3 gives a pictorial description of how the technique works on

this example. The required m axim al scaling factor is 1.5625. There are a few

im portant points to note, th a t are not evident through this example. The next

two examples are used to show these.

,1 1 „ A _____________________, 4 _ - i l . , i ...1 i* , j 1 1*
J.11C &CLU11U CActlllplC UCllUJllSbidieO LllCtb, W11C11 c u n i p u u i l ^ t i l e SCctllllg

factor w .r.t a given task T,-, it is not necessarily true that the last of the com

puted scaling factors, viz., s f k is the m aximum of all s f m. To see an example

of this case, consider the following task-set:

The task-set T has two tasks and the sub-set S contains both of them.

The com putation of s f 2 would be M a.r(100/80 = 1.25,145/120 = 1.20) = 1.25.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ti

di1
sf1 = Max(100/40) = 2.50

'
T;

'
completes

Tt t2 Ti

d|' d2'
U ' i

sf2 = Max(60/40,70/40) = 1.75

1 completes at 195

ir
T| t2 # ■It I T2 Tt

t d,l d2' f d,2 d3'd,21 - S 1 - sf3 = Max (85/80, 125/80) = 1.5625
U 1, U 2 , d '

100 200

Time ’

300 400

□ =T, □ =T2 §f] =Tj

Figure 5.3: Operation of Task Set in Example 1

sf1 = Max(100/40) = 2.50

T2 completes
*

T| t2 T|

y ~ " — L-,T ? d 2>
U'l u'2

J

sf2 = Max(100/80, 145/120)= 1.25

0 100 145 200

Time '

300 400

□ =T, D = T 2

Figure 5.4: Operation of Task Set in Example 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Table 5.2: Example 2

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 145

Note tha t the scaling factor s f 2 is not determined by the second s / 2 (last)

com puted scaling factor but by tha t factor which is the maximum. In this case

the factor s f i . This same variation on the example also gives us a case for the

point we made before, i.e., when computing the scaling factor w.r.t task 7),

the maximum of all the factors s / m, 1 < m < k is to be taken. Clearly, if we

were to take s f 2 to be 1.20 (145/120) rather than 1.25 then there would still

be some room for scaling.

In example 1, we see tha t the scaling factors are decreasing as we go

form task i = 2 (s f 2 = 1.75) to task i = 3 (s f 3 — 1.5625). This however, is not

true in general. A simple variation on the example will show us why. Consider

the task-set in Table 5.3 with S — { I 2 }.

Table 5.3: Example 3

Task Id Period Exec Time Deadline
1 100 40 100
2 150 40 150
3 350 35 300

We now have s f 3 = M g.t(S5/80, 145/80) = 1.8125. Thus illustrating

th a t the scaling factors don’t have to follow a decreasing trend as we add more

tasks. This example also illustrates tha t the desired maximal scaling factor is

the minimum s f ' , i.e., 1.75 and not 1.8125.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d,'
sf1 =Max(100/40) = 2.50

>
T-> completes

r

Ti t 2 Ti

d j1 d2'
U1, sf2 = Max(60/40,70/40) = 1.75

T3 1 completes at 195

1 _■ « t 2
t iTl 1 T2 Ti

I ® :

J
U 1,

V d2‘J T d r

U2,
d ,3
d22
d3>

sf3 = Max (85/80, 145/80) = 1.8125

100 200

Time ‘

300 400

□ =T, □ =T2 g g =T,

Figure 5.5: Operation of Task Set in Example 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 6

S ch ed u la b ility o f T ask -S ets w ith A rrivals

The source of this problem as discussed in Chapter 4 stems from the first stage

of solving the end-to-end schedulability problem. To recall, the problem of

interest here is the schedulability of tasks which have end-to-end schedulability

constraints, i.e., a task is a sequence of sub-tasks that execute on indepen

dent components. However, the task as a whole has an arrival tim e, period

specification and a deadline requirement.

We showed in Chapter 4 tha t a solution to the problem of end-to-end

schedulability (and subsequently scalability) requires tha t we are able to solve

the single component schedulability of a set of tasks whose arrival times are

non-zero. The reduction was facilitated by an im portant transform ation, viz.,

p h a se a d ju s tm e n t . Phase adjustment is a technique tha t allows us to derive

the param eters of arrival and periodicity of sub-tasks of a task. The princi

ple behind the technique was briefly described in Chapter 4, a more detailed

description follows

6.1 P hase A djustm ent

Clearly, the param eters of arrival and periodicity of the first subtask of any task

are known a priori (inherited from the task). However, subsequent sub-tasks

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Tij (j > 1) of task Ti are not necessarily periodic in nature. Therefore, their

arrivals and their periodicities do not correspond directly to that of the tasks.

We have to account for this unpredictability in tim ing behavior of sub-tasks fol

lowing the first sub-task. The first sub-task Tn has the same periodicity as the

original task 7), therefore, it always arrives (or is ready to execute) at the start

of the period p;. However, the subsequent sub-task arrival times are dependent

upon the completion tim e of the previous sub-task, i.e., if T j —)• T j + i , j > 1,

then the arrival time of a particular instance I of T j +i is dependent upon the

completion tim e of the Ith instance of sub-task Tij. Further, the completion

tim e of a sub-task instance is a function of its priority among the other ready

tasks on the component. Therefore, we observe tha t there is a dependency

between successive sub-tasks tha t has to be taken care of.

Phase adjustm ent is a mechanism tha t allows us to remove this depen

dence. Since a,- is the arrival time or phase of task T , sub-task Tn inherits the

phase of th e task I), i.e, an — a,-. The Ith job instance of sub-task Tn arrives

at ai + (I — 1)pi. Let the worst-case completion tim e (or response time) of

sub-task Tn be W C n, i.e., any instance of Tn (call it the Ith) would complete

no later th an an + {I — 1)pi + W Cn. We use the term W Cn to adjust the

phase of th e next sub-task T,-2. Therefore, th e phase of T,^, 2 is given by

n . I T J / ' V’V> 1 r* m i n + n n p 4- Tv 'i + m n n / - i ^ n + iT T i + »>■»-, /-\ T * « 1-, 4- »-»1 - ' I ' m»?11
1 I »» J L in o i u o o u iic to o v u o c o u i j i v o i i i o o o n v ^ o v i o u o t t t a i v •* - 1 '2

repeat periodically at an interval of p,- tim e units.

This can be further generalized to find th e phase a ,j,o f the sub-task Tij

as d ; j - i + W C ij - \ . Also all sub-tasks of task Ti are now guaranteed to directly

inherit its period. We have the following a recurrence relation tha t captures

the arrival tim e of a sub-task Tj:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

0,{j 1 -)- W C j’J —J

In order to find a closed-form solution to this recurrence relation we have

to know the base values, an and W Cn. We already showed how to obtain an

from a,-. The worst-case completion time W C n of sub-task Tn can be obtained

if we solve the problem of schedulability of tasks running on the component that

Tn runs. A solution to this problem is the subject of this chapter. Assuming

for now tha t we do have a solution to this problem and hence are able to find

the worst-case completion time of Tn, we complete the requirements to convert

this to the following closed form:

j - i
aij — az -f- ^ ' W Cn

i=i

Having obtained the value of W C n we can now use it to find the arrival

tim e and hence the worst-case completion tim e of task Again, we are

assuming th a t we know how to compute the worst-case completion times of

subtasks running on a single component with non-zero arrivals. Note tha t the

schedulability test for the end-to-end task Tj- would now be a trivial comparison:

i f J2i<j<r W Cij < D{ then the task Ti is schedulable.

In the above discussion we have assumed th a t we have a mechanism tha t

computes the worst-case completion times of subtasks given their arrival times,

periodicities and priorities. This is the subject of the following discussion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

6.2 P roblem S ta tem en t and S o lu tion

We recall from Chapter 4, the formal statem ent of the problem (Problem 4.2.2)

of interest to us here:

Given a task-set T o f n tasks executing on a single component, find the

worst-case completion times of all tasks in the task-set.

The solution to this problem is based on the following observations:

1. Is there a period L for the task-set such th a t, looking at the behavior

of a task T, during the interval «; and L is sufficient to determine the

worst-case response tim e of the task Tfi N ote tha t, if a,- = 0, Vi, then L

is given by the LCM of the task periods. The worst-case response tim e

of a task T) is the maximum response tim e of all instances of T, in this

interval.

2. For arbitrary arrival phasings of tasks, the repetition of the initial phasing

pa tte rn1 occurs at a point L units later (where L is given by the L C M

of the periods). The state of the scheduler (defined later) is not the same

at these two points. Therefore, repetition of phasing pattern does not

necessarily guarantee th a t the task-set behavior will repeat itself.

3. If the task arrival times are inverse monotonically increasing with the

priority, i.e., the highest priority task is the earliest to arrive (a,- < aj if

i < j) , then the repetition of the phasing pattern is an indication tha t

the task-set would repeat its behavior.

1The phasing pattern is the relative arrivals of the various tasks under consideration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Given an arbitrary task phasing a, we can derive an alternate phasing a'

which has the characteristic th a t the arrival times monotonically increase

w ith the priority. Further, th is phasing can be used to determine the

worst-case response tim e of the tasks in task-set.

T he following theorem is the basis for the approach.

T h e o re m 6.2 .1 : Given that the arrival times o f tasks in a task-set are inverse

monotonic with priority (a{ < aj if priority ofTi is greater than priority ofTj ,

i.e, j > i), the worst-case response time instance of a task T belongs to the

interval [a,-, a; + LC M (T \ , . . . , T;)].

P ro o f . For task, T), the only tasks tha t it would have to compete with, are

the higher priority tasks T i,T 2,. . . , Ti. We are therefore interested in finding

tha t point in tim e at which, the phasing of task T,- (given by a,- + .t,- x p,-, for

the x \h instance) with respect to other higher priority tasks is same as that at

tim e a{. Further, this point m ust be such tha t the state of the scheduler must

be same as it was a t a;.

T he relative phasing of task Ti with respect to the task T can be cap

tured as: Task T comes a; — ai units of tim e after task 7\. Assuming the

existence of a point where this phasing repeats, and further that there are

£ 1 and xi instances respectively of T and Tt- before this point, we have the

following condition:

(ai -f Xi x pi) - (a x + xi x px) = at- - a x

=> X i X P i = Xi X Pi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

We can derive similar conditions for task Ti w.r.t other tasks. The

resu ltan t condition is:

aq x p i = x 2 x p 2 = . . . = X{ x pi = L

where a; -f L is the desired point. Clearly the L C M of pj is solution for

th e above equation if we assume integral values of pi.

Tn

I = R e a d y T i m e

□ = U se d T i m e

Figure 6.1: A task-set’s execution between the start and L

Next, we have to show th a t the sta te of the scheduler with respect to

th e task Ti is the same a t both points a,- and ai -f L. We use the m ethod of

m athem atical induction to show this.

D e f in it io n 6.2.1 : The state o f the scheduler w.r.t task Ti at the time of

arrival o f the k ’th instance o f task T is given by S (= {S'*,-,. . . , S f l j <?*,■}.

The term S j t i, is the amount o f time that the task Tj executed for, before the

point ai + (k — 1) x p,- and since its first invocation (taken modulo its period).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that, since the state of the lower priority tasks T j , j > i do not

affect the schedulability of the task T), they don’t figure in the system state

with respect to task 7). Also note that, we are concerned only with the state of

scheduler at points that are arrival times of tasks because we seek to show tha t

the s ta te at these points repeats. Further, 5*,- = 0, because, the last invocation

of task T{, viz., k — l ’th should have completed before the arrival of the fc’th

instance (otherwise we would have declared that the task missed its deadline

and tha ts the end of it).

Basis: Consider the point a,- + L where we have already shown that the

phasing of the task Ti is the same as it was at a,-. The highest priority task,

T\ has an arrival at ai + .Tj x pi and acquires the processor (being the highest

priority ready task). The duration of time between this completion and the

arrival of the task, T2 at a2 + x 2 x p2 (refer to Figure 6.1), can be used by any

of the tasks 7}(2 < j < i). Note that this same duration a t the beginning, i.e.,

when the first instance of 7\ completes and the first instance of T2 is ready was

necessarily idle. However, the s ta te of the processor with respect to task T2 at

the point a2 + x 2 x p2 is exactly the same as at the point a2, because, the lower

priority tasks would not affect the completion times of the instances of task T\

and further the latest instance of task T2 would have completed. Therefore,

o n e o o c o o c \ j i o n e o u i c u u i c i v v n . o t c t o i v jl 2 t n c p o i n t U 2 T 2 * P'Z i 0 c t o 10

was a t a2, viz., {5j 2, 5 2 ,2)-

In d u c tiv e H y p o th e s is : Let us assume that the result holds for the

i — l ’th task, i.e., the state of the scheduler w.r.t. task T;_i at a,-_i +£,-_i xp,-_i,

viz.,{5'iX;!T1i, • • • as it was at viz., , . . . }

Note tha t between the points a,_j + i X p,-! and a,- + x ,• x p,-, the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

of tasks of priority higher than task T) th a t would arrive are the same as in

the interval a,_i and a,-. Further, since the task 7) has to complete before its

deadline (which is less than its period; If it does not then we just report so and

thats the end of it), each of the higher priority tasks would have gotten the

same amount of execution tim e in these two intervals, implying that:

S % - S J & = S l i - V ? < z ' - l

Note that, when j = i — 1, the term s and 5/_j are both 0.

Now, since the result we are trying to prove, holds for the task 7 j _ i , we have:

S j f r = 4 - 1 Vi < * - 1

Therefore,

S j ‘i = S li Vj < i 2

Which implies th a t the state of the scheduler at the point a,- + Xi x pi

is the same as th a t a t a,-. Therefore, the result holds for the task T). □

Having shown tha t both, the phasing repeats after L units of tim e and

also that the sta te of the scheduler is same when this repetition occurs, the

result follows.D

In deriving the result in theorem u.2.1 we have assumed that the arrival

times of tasks are such th a t the highest priority task is the earliest to arrive and

the arrival times increase with priority. However, in reality, this assumption

restricts the practicality of the result. In the following, we describe a mechanism

by which we can get rid of this assumption w ithout hurting the result.

2The last term when j = i has been conveniently added because = Ŝ L] , - i — 0-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Given an arbitrary arrival phasing of tasks the following algorithm con

verts it into an alternate phasing where the arrival times increase with the

priorities.

2 Algorithm Arb_to_Incr

P a ra m e te r s : cti, a2, . . . an, and p i,p 2 , ■ ■ -Pn the arrival times and pe

riodicities of tasks Ti, T2 , . . . Tn respectively.

R e su lt: a[,a '2, . . . , a'n,

In it ia liz e : a ' = a ;

The first task arrival is unchanged,

for (i — 2 to n) do

If (a,- < a<_j)

y = 1 ; while (a,- + y x p{ < a'-_x)

y ♦- y+i;
end

a'i <— ai + y x pi;

end

end

end

We take an exam ple to dem onstrate the operation of the above algo

rithm . Consider a task-set with four tasks (Ti, T2 , T3 , T4), with the following

values for arrival times and periodicities: (ax = 5, a 2 = 3 , 0 3 = 4, a4 = 0),

(pi — 10, p2 = 10, P3 = 16, p4 = 12). The first task ’s arrival time remains un

changed, however since the task T2’s arrival is before T\ s, its new arrival time,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Ti
I ,

■<.......................
Pi >

0

T2

2 3 4 5 9
a i = a 1

<?-2-

10 15 20 25 30

0 2 3 4 5

32
10 , >5

32
20 25 30

t3
1 1

<
P3 ---------->

. . 1 .
0 1 2 3 4 5

33
10 15 20

3*3
25 30

14 r ,
P4

t
->

0
a 4

2 3 4 5 10 15 20 , 25
34

30

Figure 6.2: A task-set’s execution between the start and L

a2, is computed to be 0 2 + P2 which is 13. Now task I 3 ’s arrival tim e a3 — 4

is less than a'2 = 13, therefore its new arrival tim e a'3 is a 3 + p3 which is 20.

Task T4 arrives at a 4 = 0 which is less than a'3 = 20, therefore its new arrival

tim e « 4 is a 4 + 2 x p4 which is 24. Now the new arrival times of the tasks in

the task-set are (g^ = 5, a2 = 13, CZ3 = 20, a'4 — 24).

Before we discuss the mechanism in detail, it is im portant to ascertain

the relationship between th e original arrival phasing and the modified arrival

phasing. Since, the modified arrival pattern guarantees the repetition of the

task-set behavior, in order to find the worst-case response tim e of any task,

we only have to look for its instances between its original arrival tim e and the

point at which the new phasing repeats itself.

The algorithm for th e complete mechanism follows:

3 Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P a ra m e te rs : ai,ct2 , .. .an, and p i,p 2 , ■ • -Pn the arrival times and pe

riodicities of tasks Ti, T2 1 • • • Tn respectively.

—Find the modified arrival times, a ', for tasks by invoking the pro

cedure A rb_ to_Incr.

—Repeat for each task T,- in turn:

^Determine if the task meets all its deadlines assuming a worst-

case phasing (i.e., ignoring arrivals). If it does not then, report

so and Q U IT .

*Find the completion tim e of all task instances of 7) occurring

during the interval a, and a'{ + L C M { T j , j < f}.

*Find the maximum and report it as the worst-case response

tim e of the task T).

end

6.3 E xam ple D em onstratin g th e Solution

Consider the task-set in Table 6.1 below.

Table 6.1: Example task-set

Task Prio Arrival Period Exec Tim e Deadline W C C W C T
i U 2 1 2 1 2 •J 2

2 2 4 24 24 6 4

3 3 3 16 16 9 6

4 5 4 24 24 15 10

The com putation of the response times of tasks in this task-set using

th e mechanism described above is given in Figure 6.3. In the Table 6.1, the last

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

two columns give respectively the worst-case response times of the tasks using

the critical instant assum ption and our approach. It is clear tha t the critical

instan t assumption has resulted in the com putation of a higher response tim e in

the case of the last three tasks. In order to best appreciate the merit of finding

the worst-case com pletion tim e of a task using the precise test described in

this chapter as opposed to using the critical instant assumption, we introduce

a couple of new measures of comparison, viz., apparent slack and slack savings.

Note that though both these worst-case response times are still within

the deadline bound, there is a difference in the apparent slack of tasks. We

define the apparent slack of a task 3 to be the difference between the deadline

of a task and its worst-case completion tim e. Note that a. positive apparent

slack for a task guarantees its meeting its deadline. However, a larger apparent

slack signifies th a t a task is more capable w ith regards to, accommodating task

interdependence (eg., precedence), w ithstanding temporary overloads, accom

m odating aperiodics in the system, restricting jitte r in end-to-end systems.

We define a m easure called the slack savings, ss; for a task T; as the

ratio of the gain in the apparent slack per unit real slack:

W C f - W C f
SS i — ---------------- --------------------------------

di - &i

iw ov; unctt 1 1 1 uuO o w v c c-A.<xiilpic wc n a v e uihj&cii biic ucc tu im ca u i tu uc

equal to their periods. However, in general the deadlines can be less than or

greater than the periods. Also note tha t the example shows th a t the arrival

tim es are monotonic w ith priority, however, this need not be the case in general.

3as opposed to the original slack of the task which is independent o f other tasks it has
to com pete with and is defined to be the difference between the deadline and the execution
tim e o f the task

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

53

1

20 24 3 2 36 40 4 4 5228 4 8

□ =T| □ =T; (®1=T,Time

Figure 6.3: Operation of exam ple task set

In the above example we achieve the following slack savings: ss t = 0%, ss2 —

10%, ss3 = 23%, ss4 = 25%.

6.4 D iscussion o f th e R esu lt

The reader will observe th a t the above trea tm en t of the end-to-end schedula

bility problem assumes tha t all tasks access the components in the same order.

This scenario is similar to the classical periodic flow shop model [4]. However,

as will become clear in the following discussion, this assumption can be relaxed.

We consider the following scenarios for the order in which the tasks use

th e various components:

• Case 1: Periodic flow shops [15, 4]: All tasks execute on the same com

ponents in the same order. Every task Ti has exactly r (the number of

components) sub-tasks, Tn —» T{2 — . . . , —► Ti>, where each sub-task T,j

executes on component j . This case is a special instance of the next case,

however, we trea t it separately because of its practical significance.

• Case 2: The use of components by the tasks are ordered but the tasks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T i
T T , ,

< ® > —

T , 2
- ► C s 2 >—

t 1 3

—
T 1 4

— » * < s >

C a s e 1

t 2

T 2 ,

C s >> —

T 2 2 T 2 3

—
T 2 4

— * ► (© >

t 3

t 3 i

® —

T 3 2 t 3 3

—

T 3 4
— 3 » (R ^)

" T i i T T i 2 T i 3 T i 4

T l @ ----- >■ < R 3 >----------------- » (^ 4)

T 2 1 T 2 2

t 2 Q r ^) ----- > @

TT 3 1 T 3 2 r 3 3

t 3 C r 7) — **Cs^>

T , , t 12 T 13
C R z> —

T 2 1 T 2 2 T 23 T 2 4

— — —► < s>

t 31 T 32 T 33
< E > ——»"CS3>—

Figure 6.4: End-to-End scenarios

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

don’t necessarily access the same resources: We assume that any two

tasks T{,Tj tha t have subtasks th a t run on two components R k ,R i , do

so in the same order in both tasks. Further, the component used by a

sub-task Tij is not used by any other sub-task of T .

• Case 3: Arbitrary order flow shops: The order in which the components

are used by a task can be arbitrary (as opposed to ordered access in

Case 2). There are two possibilities under this case, one which disallows

components from being reused and the second where components are

allowed to be reused.

6.4.1 Periodic flow shops

If we assume an ordering of the r components in use to be in numerical order

then the function R e s (T j) can be taken to be equal to j (i.e., the j th compo

nent). Therefore we now have n tasks with each task consisting of r subtasks

where the j th subtask of every task T (Vi) runs on component number j .

In order to determ ine the schedulability of the task-set we have to study

the schedulability of each task in turn. Phase adjustm ent guarantees tha t sub

tasks of a task inherit its periodicity and further they are independent of each

other. Therefore the schedulability test for a task Tj- is given by:

at +]T WCij < Di
j = 1

Where, W Cjj is the worst-case completion tim e of the subtask Tij. In

order to find the worst-case completion of the subtask T j which runs on the

component j we have to consider all the subtasks tha t run on the component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j . Starting from j = 1, we see tha t for the first component we know the arrival

times, periods and priorities (note that the subtask priority can be explicitly

given or the subtask can inherit the original task ’s priority) of all subtasks

tha t run on it. T hat is, for a given subtask Tn, its arrival time is a; and its

period is p;. We can find its worst-case completion tim e by the mechanism

described in the previous section. Let W Cn be the worst-case completion time

thus determined (Note th a t this worst-case completion time is the tim e taken

by the subtask to complete after its arrival).

We now fix the arrival tim e of the second subtask of T) (i.e., T 2) as a,- +

W C n ■ This fixing of the arrival is a result of the phase adjustm ent mechanism

described before. Further it ensures that the second subtask will be periodic

with period, p,. We now know all the parameters (viz., arrival phasing, period

and priority) we need to determ ine the worst-case completion time of the second

subtasks of all the tasks. Knowing the value of W C i 2 (Vi) we are able to find

the timing parameters of the third subtasks and so on.

6.4.2 Ordered A ccess

This a more general case than the periodic flow shop case in that tasks don’t

necessarily access all the components. However, when they do access a particu

lar component its relative order w ith respect to other components is honored in

all tasks. We once again assume tha t the components are numbered in order.

We do the following modification to the formal specification of this case:

We assume that each task T) is a sequence of subtasks Tn —* Ti2 —*

T{t . However, if th e task T) does not have a subtask running on com

ponent j then the corresponding subtask Tij has an execution time, = 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

By specifying the model in this way we are able to treat this case sim ilar to the

previous case. However, note that for all subtasks that have a zero execution

tim e their worst-case completion times are also zero.

6.4 .3 Arbitrary order w ith no revisit

The m ajor problem with this ordering scenario is that it is not always possible to

find the timing param eters of all subtasks th a t run on a particular component.

For example in Figure 6.4 we see tha t task T\ uses the components in the order

R2 —> i?4 —> i? l, task T 2 uses components R1 —► RS —»• R2 —* R4 and task

T3 uses components R2 —> R3 —> R l . Determining the param eters (mainly

arrival times) of subtasks th a t run on component R l , T3 3 involves

finding the worst-case completion times of subtasks T\ti ,T \^ iT 3<iandT3t2 - It

can be seen tha t this is not possible without addressing the schedulability on

the components R2, RZandR'l.

An alternative approach to this case would be to ignore the arrival

information of tasks (and subtasks). Note however that the penalty of ignoring

arrival information is th a t we end up doing a pessimistic schedulability analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h a p ter 7

S ca la b ility in E n d -to -E n d S y ste m s

As shown in Chapter 4, the problem of scalability of tasks in end-to-end systems

manifest itself in two forms, viz., (i) Changes to components and, (ii) Changes

to Tasks. We have also shown th a t solving this problem in either of these two

flavors reduces to solving the following two problems 4.2.4 and 4.2.5.

4.2.4: Given a task-set T of n tasks (with non-zero arrival times) exe

cuting on a single component, find the worst-case completion times of all

tasks in the task-set.

4.2.5: Given a schedulable task-set T of n tasks executing on a single

component and a subset S of T , find the maximum scaling factor s f with

which all tasks in S can be scaled without violating the schedulability of

any of the tasks in T.

T h e first of the two problem s was the subject of the previous chapter.

This chapter is devoted to presenting a. solution to the second. As shown in

the previous Chapter 4, the problem of schedulability in end-to-end systems

can be reduced to a series of single component schedulability problems. How

ever, the single component schedulability problem has to accommodate task

arrival tim es. Similarly, the problem of scalability in end-to-end systems can

S3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be reduced to a series of single component scalability problems provided we

accommodate task arrival information into the com putation. Further, to find

the scalability of a sub-task we have to know its deadline and also the deadlines

of all other sub-tasks involved in its analysis. There is no straightforward way

to derive the sub-task deadlines.

A m ajor research issue in end-to-end scheduling has been the derivation

of sub-task deadlines. Given an end-to-end task’s deadline the problem of find

ing an optim al1 division of this deadline among the sub-tasks is intractable [15]

(NP-complete [12]). This result has prompted a heuristic approach [4, 15], two

such heuristics being: (i) divide the task’s slack2 equally among the sub-tasks;

(ii) divide the task’s slack among its sub-tasks in a weighted proportion of their

execution times;

The above two heuristics vary mainly in their sensitivity to the execution

times of tasks. For example, the second heuristic is built on the assumption

that the shorter a task ’s execution tim e requirement, the more likely it will have

its requirem ent met and therefore the lower is the slack assigned to it. The

first heuristic is built on the assumption tha t the priority inherited by a sub

task has a greater impact on its ability to meet its execution tim e requirement

than its execution tim e itself. Thus the slack is divided equally among all sub

tasks. This allows us to reduce the end-to-end scalability problem to m single

component scalability problems.

'in the sense that, if there exists a division that would help the task meet its deadline
then the mechanism should find it

2The slack o f a task is given by the difference between its deadline and its execution time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our research, we have chosen the second heuristic because it is more

general of the two. The intuition behind the heuristic is to divide the slack of

the task proportionally among its sub-tasks. We can find the total slack of the

task Ti as s /t- = d,- —]T)vj e,j. We divide this among the sub-tasks in the ratio

of their execution times, e^-. Therefore,

d{j — Cij T ~ ~ x sl{
Evj d j

The following section describes a mechanism for finding the scaling fac

tor th a t incorporates the arrivals of tasks. We also give an informal proof for

its correctness. In order to simplify the presentation we assume th a t the scaling

factor we desire is a common scaling factor for all tasks in the task-set. Note

that the case of general scaling (sub-set scaling) can be easily derived on the

same lines.

7.1 P rob lem Statem ent and Solution

As we did when we dealt with the problem of schedulability using arbitrary

task arrivals in the previous chapter, we assume that the arrival times of task

are in increasing order of their priorities. Therefore, the highest priority task

T\ is the first to arrive (tim e t = 0) and Ti arrives prior to T, if i < j .

The procedure for finding the common scaling factor of a task set, pro

ceeds on the same lines as that for arrival times being all equal to 0. We

find the scaling factor s f \ with respect to each task i (I < i < N) and take

the minimum as the required result. Any scaling factor s f 1 has the following

sense: This is the maximum factor by which all task execution times can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scaled such th a t the task T; will meet its deadline while continuing to honor all

higher priority task requirements (not necessarily their deadlines). However,

th e difference comes in the fact that when we are finding the scaling factor with

respect to a particular task T), we no longer can settle by considering only one

instance (the worst-case instance, which is the first instance using the critical

instant argument) but we have to consider all instances of this task between

the points a; and a,- + L (refer Chapter 6).

Following are some of the distinguishing characteristics of the problem

when compared to the treatm ent in Chapter 5.

• It would seem tha t it is sufficient to consider the worst-case execution

instance (of a task Ti) and apply the same technique as before (as in

Chapter 4) to find the scaling factor. However, this is not true for the

following reason: the scaling factor is determ ined by both the completion

and the idle tim e left before the deadline; the worst case-completion of

a task instance does not necessarily guarantee th a t the idle tim e left be

tween its completion and its deadline after accommodating higher priority

tasks is a minimum.

• The critical instant assumption, in addition to restricting our considera

tion to a single instance, has also allowed us to conveniently ignore any

higher priority tasks tha t would arrive prior to task T,’s arrival. The pos

sibility of the following scenario (refer to Figure 7.1) has to be taken into

account for arbitrary arrivals: In com puting the scaling factor for the first

instance of task T,, we cannot ignore th e blocks of execution that precede

the point a,- (i.e., U\, Û -, • • •, Uq- 1). This is so because, it is likely tha t a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

factor com puted ignoring these could cause the used blocks of execution

before at- to be scaled in such a way th a t the begin tim e of tasks in the

block that a, belongs to, could be affected by tasks other than the ones

within. This results in the computed factor being invalid.

U| U2

Completion ofT j

 _jL
U q t l Uk

U | . L 0 U , , r U 2.L U 2 .R U q J U q.R U q t l .L U q + |.R U k.L U k.R

Oj = Arrival of task T| □ == Used Time

Figure 7.1: Execution Profile Task TVs First Instance

We now discuss the mechanism along with an explanation of why the

mechanism works. We are interested in com puting the scaling factor s f \ with

respect to a particular task 7). We once again note th a t this factor does not

guarantee tha t all higher priority tasks would m eet their deadlines, it only

ensures tha t the task T) will meet its deadline in spite of honoring the require

ments of higher priority tasks.

Let us consider th e first task instance of task 7). Assume th a t there

is only one block of execution before the arrival of task I) at a,- and there

are a number of blocks after the completion and before the deadline (refer to

Figure 7.2). We are interested in stretching the deadline as far as possible while

honoring the requirem ents of higher priority tasks. The only way this can be

accomplished is by stretching the completion a step at a time with each step

attem pting to consume th e next available idle tim e (Refer to C hapter 5 for

reasoning). The required result (the scaling factor w ith respect to this instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of task Ti) would then be obtained by taking the m axim um (because all these

factors are valid and we are interested in finding the optim al one) among such

com puted factors.

Completion o f Tj

 _1 _
U2 U3 Uk

U i .L 0 U |,R U 2. U 2 .R C j . L U 3 .R U k .L U k .R

aj = Arrival o f task Tj □ = Used Time

Figure 7.2: Figure 7.1 assuming q — 2

We now look a t how we can stretch the completion time to achieve the

motive described above. Since we assumed that there is only one block of

execution (obviously comprises of at least one instance of every higher priority

task), following are the points to note while trying to stretch the completion

tim e of the first instance of the task J) to consume the first slot of idle time:

o If we ignore the block of execution before the arrival of task T,- then the

scaling factor would be / = ^3 ,LJ ^ 2,L. However, it is possible tha t this

factor could result in the ignored block (i.e., Ui) being scaled beyond the

point £/2,l (we call this the unfavorable event for this choice of scaling

factor, N F E 1), thus invalidating the factor. On the contrary, in the event

th a t this scaling factor does not scale U\ beyond the point U2 ,l (we call

this the favorable event for this choice of scaling factor, F E l) , this factor

is clearly valid and effective in stretching the task completion time till

U3,L-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• If instead, we use the scaling factor to be / ' = C/3̂ ~ ^ ||L, it is possible

th a t the resultant factor does not scale U\ to occupy the whole of the idle

tim e between (Ui ,r ,U z,l)i resulting in Uz being stretched beyond I ^ l

and consequently the completion time being stretched beyond Uz,l (we

call this the unfavorable event for this choice of scaling factor N F E 2).

Note that this possibility has come up because the task T,- is not ready

to use the idle tim e between (CA.fi? ^ 2 ,1 ,). On the contrary, in the event

th a t this factor causes U\ to be scaled beyond the point Uz,l (we call this

the favorable event for this choice of scaling factor, FE2) then clearly the

completion tim e of task 7) will be within Uz,l (in fact it will be exactly

Us,l).

We note tha t there are two possibilities (or events) in favor of each of the

above choices and two th a t are not in favor. However, we will show tha t the

true answer lies in finding the minimum of these two possible factors. T hat is,

picking the minimum of these two factors as the solution leads us to realize that

the unfavorable possibility is actually not possible. An explanation follows:

We have two possibilities to consider:

• / < / ' : The favorable event (FE1) corresponding to this choice of the

factor is valid in giving us the desired result. However, we have to show

th a t unfavorable event, N F E l will not occur. We show this by contra

diction:

Let us say U\ gets scaled beyond the point U z ,l (he, the event N F E l does

occur). / ' , being the larger of the two, using it as the scaling factor would

scale Ui beyond U z ,l too. But, since / ' has been derived to stretch both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

U\ and Ui over (0, U3 ,£,), if it does s tretch U\ into the s ta rt of Ui, then

there would be no idle time between th e points (0 , 1/ 3 ,l) - This implies

th a t f < f because, the bumped tim e3, say S (— f x U\ — Ui,l) and the

scaled Ui (= f x Ui — Ui) together fitted within the interval between

{Ui,R,UztU)i whereas / scaled only Ui to occupy the same interval. The

conclusion tha t, f < f contradicts our assumption tha t / is the smaller

of the two factors. Hence the result.

• f > / ' : The favorable event (FE2) corresponding to this choice of the

factor is valid in giving us the desired result. However, we have to show

th a t unfavorable event, N F E 2 will no t occur. We show this by contra

diction:

Lets say U\ does not get scaled beyond the point Ui,l when scaled by / '

(i.e., the event N F E 2 does occur). Since, / > / ' , U2 does not go beyond

when scaled by / ' . However, the very definition of N F E 2 says that

/ stretches U2 beyond Uz,l- This is a contradiction. Hence the result.

Observe tha t the favorable events in both choices of scaling factors

achieve the following: The completion time of the task T; is stretched to the

point 1/ 3 ,1 ,. We now extend this to the case th a t the number of blocks of ex-

 t „ . , 0 t „
ciyU tjv/ii v \ j t u t o-iiivcu v i t n ^ m o t n iiO tctiic^ taoiv ± j 10 tiic tii m

fact, we wish to extend this argument to the case that there are q — 1 blocks

of execution before the arrival of the first instance of T,-. The generalization is

straightforward. If there is more than one block of execution then the scenario

would be as in Figure 7.1. The scaling factor associated with stretching the

3the excess scaled time that was carried from scaling U\ beyond the point 1A>,l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completion time of the first instance of task Ti to consume the first idle interval

beyond its completion would be given by:

Where q is the index of the block th a t contains the arrival of the first

instance of T; (from the fact that there are q — 1 blocks of execution before

its arrival). Note tha t this is also the index of the block tha t contains the

completion of 7), because, there cannot be any (processor) idle tim e between

a ta sk ’s arrival and its completion. We represent this factor by Fq to signify

tha t this is the factor with which all Tj (j < = i) must be scaled to fill the

first idle interval after the completion (known to overlap with the block Uq)

of this instance (the first th a t is) of task T). The subscript q here is only to

identify the block which overlaps with the completion of this instance of 7j.

The representation will become clear when we proceed to the next stage of

derivation, i.e., the scaling factor for an arbitrary instance of T,- (not just the

first th a t is).

Now consider the point corresponding to the deadline of this instance

of Ti, a,i + di. Our aim is to try to extend the completion of this instance

a t most till this point. Clearly, if this point overlaps with a used block (call

it Cfc+i,L), then we cannot possibly extend I ’/ ’s completion beyond the start

of this interval. This is obvious from the fact th a t the overlapped block in

question contains executions of higher priority tasks that cannot be preem pted

by Ti. On the other hand if the point in question does not overlap with any used

block then we can consider filling only part of the idle interval that contains this

point, viz., the idle interval between the right end of the used-block preceding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e deadline point and the deadline point itself. In this second case, we set

Uk+\,L = di + di — Uk+i,R, i.e., we create a zero sized used block tha t overlaps

w ith the deadline. Here k is the index of the used-block tha t precedes the

deadline.

Therefore, if we assum e tha t there are k — q such idle intervals beyond

Ug and before the deadline of this instance at d • then we have to find k — q

such scaling factors Fm (th a t is q < m < k). Accordingly, k is the index of the

used-block that precedes th e deadline point a,- + d{. Now, the general formula

for Fm is given by:

ffm+l.L U 2 ,L U m + 1 ,L U g ,L
X ^ r = l to m U r S r = 2 to m U r Y ^r= q to m U r

The scaling factor for the first-instance of Ti is the maximum among all

com puted factors for accom m odating the next idle interval. Clearly, each of

these factors is a valid factor in the sense tha t it does not extend the completion

tim e of the first instance beyond its deadline. Therefore, the required factor is

th e maximum among such valid factors given by:

s f — Fm

We now have to generalize the above formula for any arbitrary instance

of Ti (say the Tth). Clearly there are Xi (refer to C hapter 6 instances of T{ tha t

have to be considered. Therefore, I ranges from 1 to x t. If we find the scaling

factors s f l1 for each of th e x t- instances of Ti then we can obtain the scaling

factor s J l as the m inimum am ong all these. This is clear from the fact that

picking a factor larger than the minimum results in a t least one of the instances

missing its deadline. So, we have:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

s f l = M m i< ;<x, s f tl

Before, we find the general scaling factor s f l1 of an arbitrary instance of

Ti, it is im portant to notice some im portant considerations in dealing with the

second instance (which will easily extend to arbitrary instances). The second

instance of T; is ready a t tim e a ,+ p ,. Its ability to s ta rt (i.e., get the processor)

is affected by higher priority tasks arriving beyond the point a,- + pt- and, also

those tasks executing between the deadline of its previous instance a t a,-+d; and

the point a, + p;. Note tha t, we have already taken care of tasks arriving before

the point a, + r/t- in finding the scaling factor of the first instance. Therefore, the

point cii+di for task TVs second instance is equivalent to the point a\ (assuming

that the task arrivals are in increasing order; further this point can be taken

to be t = 0). In finding the scaling factor for this instance, we have to consider

used-blocks from th a t which overlaps a,- + d,- (if this is a, zero-sized block then

consider the next block), to the block th a t contains the arrival a,- + p; on one

side. On the other side, we have to consider used-blocks between the block

that contains a:- + p,- to the block that contains the deadline of this instance

at a; + pi + di (rem em ber th a t if there is no such block that overlaps with the

V̂CAUV_- tx UOV_-VJ.“ UVU1 ICtp 11J .

Now in the general case, tha t is, when we wish to find the scaling factor

for an arbitrary instance / we define the following notation (refer to Figure 7.3):

• v: Uv is the used-block th a t contains the deadline of the (/— l) ’th instance

of Ti. If however, Uv is a zero-sized block then v is the index of the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

block following the deadline of the (/— l) ’th instance at a,- + (/ —1) xp,-)-c/;.

As a special case, for the first instance v — 1.

• q: Is the block tha t overlaps with the arrival of the /’th instance of task T,-.

This is also the block that contains the completion of the / ’th instance.

• k: Uk+ 1 is the block that contains the deadline of the /’th instance at

di + (/ — 1) x pi + (l{. Note that, if the deadline does not overlap with a

used block then we create a zero-sized used-block at a,••+(/—1) xp;-fie/,-. k

is then given by the used-block tha t precedes this newly created zero-sized

block.

The formula for the scaling factor of an arbitrary instance (say /) of T;

(represented as s f ‘l) is now given by:

s f — M a x q< m < k F m

where Fm is given by:

. r . I U m + 1 , L UVtL U-m+i'L fA;+l,L U m + 1 ,L
I'm — A' i n I — , . . . ,

\ L ^ t —x) to in kjt A ^ r = v + 1 to m iJ r <L^T=q to m

We now have the scaling factor (s / !) with respect to a task T;. In

order to find the final common scaling factor s f we follow the same lines as in

Chapter 5. Therefore, the required scaling factor s f is given by:

s f = s f !

The complete algorithm to find the scaling factor for task T; follows:

4 Algorithm S c a le -F a c to r (TJ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

u. Uv+I

C o m p le tio n o f l ' t h in s tance o f la sk T j

 1 .
U k + l . l = d i = U k + l .R

Uq+! • uk
U v .L U v . R U v t l . L U,.|,r U , < Jq ,R Uqtl.L Uqt |,R Uki. Uk.R

ai + (1-1)*p i= A rrival o f l ’th in s ta n ce o f ta sk T j □ == U sed T im e

Figure 7.3: Execution Profile of the /’th instance of T;

Variables:

/ = 0 : task instance

s f ' 1: the scaling factor for task i instance I.

Step 0: Initialization, s f 1 — oo

Step 1: For each task instance / of Ti between a; and a; + L Repeat

Step 1.1 : Find the completion tim e for the job I = c o m p l y

Step 1.2:

F it equal and higher priority task instances tha t would arrive be

tween the points G and a; + (/ + 1) x </;. The point G is ai for the

first instance, I = 1 and for subsequent instances, / > 1 it is given

by the deadline of the previous instance, a2- + / x </;.

T he scheduling points are, /7i,£, U2 ,l, • • •, t4,L- where, Um = Um^R—

U m,L denotes the m tn used tim e block (refer to Figure 7.1).

T he used interval among these blocks which overlaps with a; + / x

Pi is = q (note tha t this is also the block tha t contains c o m p l t ,

because there can be no idle tim e between the instances arrival and

it completion).

Step 1.3:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Compute the scaling factor s f ' 1 for job 1:

M & X l^m

where:

t-i T,r- I U m + \ ,L U \ L t^m +l,L U2 L f^m +l,L U m ,Lt m — M m 1
U r = l to m U T 2 to m U T U ,

Step 1.4: if (s f tl < s f ') then s f ' = s f ' 1.

Step 2: s f ' is the desired scaling factor for task T{.

end

Having obtained the scaling factor s f ' for each i in turn we can now

determ ine th e optimal scaling factor, s f for the task set, which is the minimum

of

7.2 E xam p le D em on stratin g th e Solu tion

To dem onstrate the solution we take an example with three tasks whose char

acteristics are given in Table 7.1. The timing analysis is shown in Figure 7.4.

The scaling factor derivation for the first task is straightforward. The deriva

tion for the other two tasks is shown in the figure. The common scaling factor

for this exam ple task-set is 1.6363.

We compare the scaling factors obtained by taking the approach in

this chapter as opposed to the critical instant approach followed in chapter 5

to appreciate the benefits. If this task-set was subjected to the approach in

chapter 5 then the common scaling factor would be 1.3636. Using the approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Table 7.1: Example Task Table

Task Id Period Arrival Exec Time Deadline
1 1 2 0 2 1 2

2 24 4 4 24
3 16 3 3 15

described in this chapter we get a scaling factor of 1.6363. This is a huge gain

considering that it is a m ultiplicative factor and not additive. This will become

more evident if we express the improvement in execution times as percentages.

sf2 = 3.0

sf3= 1.6363
UlD Up:UinD

U11L 2L

20 24 28 32 40 44 48 52 56 60 64 68

Tim e

Figure 7.4: O peration of example task set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hap ter 8

A d m iss io n C ontrol for R ea l-T im e
C om m u n ica tion

The model assumptions in this chapter are based on the Real Time Chan

nel model described in Chapter 2. Admission control is the mechanism by

which multiple real-tim e connections can simultaneously share the resources of

a packet switching network without resulting in congestion. Further, the con

nections are guaranteed a particular quality of service (QoS) th a t is initially

(at connection set up) agreed upon. Admission control comes into play when a

new RT channel is being requested. An RT channel (or a connection request) is

accompanied with a QoS list tha t describes the requirements of this connection.

Popular QoS requirements in the literature of distributed real-tim e systems are

- throughput, latency (or deadline), packet loss tolerance [17, 28, 10, 35, 32]

etc.

The mechanism used to determine the admissibility of a real-tim e chan

nel involves verifying at each interm ediate link (along the path) in turn whether

the RT channel’s QoS requirements can be guaranteed. If a channel’s require

m ents can be met at each of the interm ediate links then we can accept the

channel. If however, the channel’s requirements cannot be met a t any of the

interm ediate link then we can reject the channel. In fact the first such link tha t

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deems the channel inadmissible is sufficient to confirm that the channel would

not be admissible.

In order to test whether a channel’s requirements will be m et at an

interm ediate link we have to know its deadline and its period at each of that

link. Finding the period is straightforward according to the phase adjustm ent

mechanism. However we do have to derive the deadline of the RT channel at

interm ediate links. Since the service tim e of the channel on each of the links

is the same one way to derive the deadlines would be to divide the slack of

the RT channel equally among the interm ediate links. However, if one wishes,

one can use a more sophisticated heuristic [15, 4, 47] to derive these deadlines.

This reduces the problem of finding the admissibility of an RT channel to be

equivalent to solving the admissibility at each of the intermediate link [1 1 , 18].

From here onwards when we refer to the admissibility of an RT channel we

mean its admissibility a t an interm ediate link.

Now, the question th a t admission control has to answer when accepting

a new connection can be broadly phrased as:

• Given the QoS requirements of a new RT channel is it possible to accept

this channel without violating the QoS guarantees made to RT channels

tha t h PV0 already been accepted?

The principle followed by researchers (for example Tenet [8 , 9]) in the

design of an admission control scheme is based on verifying, whether the re

sources available on the path of the newly requested RT channel are sufficient

even in the worst possible case, to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. provide the new RT channel with the QoS it needs and,

2. allow the guarantees offered to all the existing RT channels to continue

being satisfied.

T he above verification depends upon the kinds of QoS param eters al

lowed. The m ost im portant QoS param eter of concern to real-tim e system

designers is th e meeting a latency bound (deadline). We restrict our interest

to this param eter. There are two tests th a t are relevant in this context:

• Schedulability Test: Does the addition of the new channel to the already

established channels using this link cause either the new channel or one

of th e already established channels to miss their deadline?

• Buffer Space Test: Is the available buffer space at the link sufficient to

allow the messages of the new channel to be stored for a length of time

equal to the delay faced by the channel at this link?

Different approaches to the admission control problem (in real-tim e sys

tems) will differ in the way the above two questions are answered. Therefore, a

study in admission control reduces to the study of these tests. The buffer space

test has been successfully addressed by the Tenet group [9]. We concentrate

mainly on the schedulability test because it is our belief tha t there is room

for im provement here. In particular, there are many situations th a t have not

been considered in this context. We broadly classify two situations which differ

in term s of the assumptions made about the scheduling mechanism used to

schedule channels on the interm ediate links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 D ynam ic Scheduling o f RT C hannels

The Tenet schedulability te st involves a determ inistic test at each intervening

link along the path. An assumption is made th a t the scheduling mechanism

used at an interm ediate link is based on the EDD [9] (earliest due date or pop

ularly referred to as the earliest deadline first). T he test is based on extending

the fundamental task scheduling result by Liu and Layland [24] to message

communication. It can be summarized as follows: A given set of RT-channels

(at a particular link) is schedulable1 by the EDD policy if the sum of the u ti

lizations of the RT channels is less than one. The utilization of the ith RT

channel whose characteristics are a message service time of m* and a message

inter-arrival tim e of <7; is given by, U{ = rrii/gi. If the current to ta l utilization

a t a link is Udet then the utilization as a result of accepting the new connection

(i th) would be Udet = Udet + m-i/lli, and the schedulability te st would be to

check whether Udet < 1 -

We have taken a different approach to the schedulability test tha t is

based on the scaling problem defined in Chapter 4. The principle involved

in the test can be described as follows. At each interm ediate link an admit

tance measure is com puted tha t essentially captures the tightness of the traffic

already passing through th e link. A new connection request is allowed or dis

allowed depending upon w hether a specific relationship between this measure

and the new connection’s characteristics is satisfied. The com putation of the

adm ittance measure is dependent upon the choice of the scheduling mechanism

and the characteristics of th e connections already accepted. Further the tested

1 all the RT channel deadlines will be guaranteed to be met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relationship referred to above, is a heuristic comparison between the current

adm ittance measure and the new connection’s characteristics.

The adm ittance measure we use is the scaling factor (refer to Chapter

4) with which the message service times of channels already accepted can be

multiplied by, so tha t the channels’ requirem ents can still be guaranteed. The

new connections characteristics are captured by its utilization demand. The

heuristic used can be explained as follows. Intuitively, the greater the scaling

factor greater is the potential to allow a new connection. Further, the room for

accommodating new connections is intuitively captured by the term , •

This expression, can be viewed as the percentage improvement possible in the

utilization of the existing channels. The expression can be simplified into the

form, 1 — ■ We show later, how this heuristic turns out to be equivalent

to the deterministic test of Tenet (in the context of EDD th a t is).

The following table, shows a comparison of our approach (using the

scaling factor) and Tenet’s approach. The scheduling mechanism chosen at a

link is assumed to be the EDD. We later show how the two approaches are

equivalent.

Table 8.1: Admission Control Test

Approach Computation Test
Tenet Un <- Cn_! + a i 9n Un < 1
Scaling s fn —i (precomputed) m„ s' I 1

.Qn sfn — i

The second column in the table gives the computation tha t has to be

done in order to test for the admissibility of a new channel. This test can either

be done at the tim e the new connection is made (Tenet’s approach) or it can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

precom puted (our approach). The advantage of completing this computation

before the channel is requested is tha t it will cause minimal delay in ascertaining

admissibility. Further, it affords the designer to a ttem p t a more sophisticated

com putation because it is done prior to the actual channel admission test. The

third column gives the test performed when a new connection is requested.

We now show how the two approaches given in the table are equiva

lent. In the case of Tenet, the admissibility test can be viewed as a simple

comparison to check if the to tal utilization resulting from the addition of the

new channel is above the allowed bound (1). Observe that the computation

in the second column involves the characteristics of the new connection, thus

m aking it a com putation th a t has to be performed when the new connection is

requested. We can however, modify Tenet’s approach so tha t the computation

(just com pute Un- \) is independent of the new channel characteristics and can

thus be done before hand. Further, this modification would result in the test

changing to: y 2- < 1 — Un- 1 -

The reader is referred to Chapter 5 for a discussion of the scaling factor

problem. More specifically, in section 5.2, a special instance of this problem

is identified when the subset to be scaled S is the sam e as the given task-set

T. It was shown th a t the common scaling factor (in the case of EDF) is then

given by the reciprocal of the total utilization of the RT channels.

s fn - i = E m,

Vn-

The test in th ird column can therefore be interpreted as the y 2- <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 — U n-i■ Therefore, we see tha t the two approaches reduce to be the same.

Observe that, the com putation of the scaling factor, s / n_j is m ore involved

if the scheduling mechanism is not EDF. This is the subject of th e following

section.

8.2 F ixed P rior ity Scheduling o f RT C hannels

O ur next concern is to extend the approach described in the previous section

to , general fixed priority preemptive scheduling mechanisms. Note that the

Tenet approach is only valid for dynam ic preem ptive scheduling. We use the

sam e approach to admissibility as described in the previous section, except

th a t we have to pay special attention to the com putation of the scaling factor.

We concentrate our atten tion to extending our approach to incorporate the

R ate Monotonic Scheduling (RMS) mechanism (a particular instance of the

fixed priority preem ptive scheduling mechanism). An extension of th e approach

to Deadline Monotonic Scheduling and more generally to any arb itrary fixed

priority scheduling mechanism is straightforward.

As we already have seen in C hapter 4, there is no straightforward way to

com pute the scaling factor of a set of tasks (read as RT channels in the present

context) scheduled by a general fixed priority scheduling mechanism. However,

in the particular case of RMS, we can find a non-optimal scaling factor tha t is

given by:
(« - l) (2 1/(» -1) - 1)

SJn- 1 — tj (8-1)On—1

This factor is not optim al in the sense th a t it is possible to improve it further.

Unlike task schedulability where we were interested in an optim al scaling factor,

in the current context (admission control tha t is) the above com putation does

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

carry a certain m erit as will be dem onstrated shortly. Though the heuristic

used in the admissibility test reduced to the determ inistic test in the context of

EDD, this is not necessarily true in the current context. In other words, failing

to pass the heuristic test does not necessarily imply that the new channel will

interfere with the schedulability of the already existing channels. This implies

th a t, using the heuristic it is possible tha t a new channel request is rejected

even though it could have been accommodated.

An alternative to the above com putation is to use a more precise com

puta tion , one which would help us obtain an optim al scaling factor. We have

shown in Chapter 4, how such a computation works. This alternative is ap

pealing in its ability to reduce the number of rejections (as described in the

previous paragraph). However, it does not necessarily guarantee 100% admis

sibility. 1 0 0 % admissibility is said to be achieved if the test never rejects a new

channel tha t would have not interfered with already accepted channels. The

failure of this alternative to ensure 1 0 0 % admissibility is due to the fact that

though the scaling factor com putation is precise, the comparison in which it is

used is a heuristic.

It is im portant to observe that, the scaling factor computation is not

perform ed at the tim e of a channel request and therefore we can afford the cost

involved in finding an optim al scaling factor. However, if the benefit (reducing

th e num ber of rejections) obtained by using the optimal scaling factor is not

large enough (compared to using the non-optimal computation), we cannot

justify it. Since, the basis of the test is a heuristic, the only way one can

confirm the benefits is to perform a simulation study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation Study

The goal of this study was to compare the two alternatives for admission control

(described above) when the underlying mechanism used to schedule the RT

channels is the R ate Monotonic Scheduling. An RT channel is characterized,

among other param eters by the source and destination of the channel. This

information is used to find the route of the RT channel. As already described

the admissibility test of an RT channel th a t traces a route of, say k links,

reduces to ascertaining its admissibility a t each of the k links in turn. Therefore,

we restrict our study to admissibility at a single link. From here onwards when

we refer to the characteristics of an RT channel we don’t mean its end-to-end

characteristics b u t its characteristics at an interm ediate link.

We use the following notation in the following discussion:

x ~ U(a,b) to indicate tha t the random variable x is uniformly dis

tributed over the interval from a to b.

x ~ N{fi; a) to indicate that the random variable x has a normal distri

bution with mean /.i and standard deviation a.

There are two m ajor steps to the simulation study:

1. The workload generation. The workload of interest to us is the generation

of characteristics of n RT channels a t a link. We would like to characterize

the workload with a set of param eters th a t capture its essence. We use

the following two parameters to characterize (and distinguish between)

workloads:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) The utilization £/, of the set of RT channels is used to identify the

cum ulative demand of the workload.

(b) The laxity factor k, dictates in addition the closeness of the deadline

to the end of the period of the RT channels.

2. The simulation of the alternatives and their comparison. The two al

ternatives of concern to us are, using the non-optimal scaling factor vs.

using the optim al scaling factor in the admissibility test. The details of

the comparison are explained later.

Before we explain the generation process, it is im portant to understand

what we are attem pting to generate. We are interested in generating a workload

of n RT channels with a total utilization of U. For each RT channel C;, we

wish to know its service tim e m,-, its inter-message generation tim e </,- and its

deadline d{.

The following parameters were used in the generation process.

n : The num ber of RT channels in the link.

m: The mean service time of an RT channel.

U: The to tal utilization of the n RT channels. The utilization of an RT

channel C; with service time m,- and and inter-generation tim e of <7; is

given by m ,-/#.

/c(0 < k < 1): Is the laxity factor.

/j/(0 < fii < 1): This param eter controls the laxity of an RT channel. The

deadline of an RT channel C,- with a laxity of I is given by rrii+l x (g,—m.i).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Therefore, greater the value of I (directly controlled by /i/), closer is the

deadline to the period and more is the room for meeting its deadline.

<7 ;: The standard deviation of the normal distribution of the laxities of

the channels. We constrain this param eter so that following conditions

hold:

mui - 3 x <7 | > 0 and

mui + 3 x at < 1

The above two conditions guarantee [16] that the m ajority (w 99.98%)

of the samples derived from the distribution, N(iii,a i) are within the

bounds (0 and 1).

The approach taken for workload (n RT channels) generation can be

described as follows. We generate the characteristics of each RT channel C i in

turn.

1. The service time m, of channel C,- is derived from a uniform distribution

over the range [1 , 2 x m]:

mi ~ U(1 ; 2 x m)

2. The utilization of U{ of channel Ci is derived from a uniform distribution

4-1.„ — —, rn o w i / i .
u v q t u t : i a a g v ^ [^ 5 ^ ^

Ui ~ U{0; 2 x —)
n

3. The inter-generation tim e (or period) <7,-, of channel C; is obtained by

using its service time and utilization already generated above, as:

m,-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Channel C2-’s deadline d{ is obtained as:

d{ - m.i + k x (gi — mi)

where k ~ N(/j,1;cti)

A special case of interest in the simulation (discussed below) we need a

workload where the laxity factor of the RT channels is a constant. We can

generate a workload with such a characteristic by assigning the param eter

<7 / to be equal to zero and the param eter m to equal the constant desired.

Having generated the workload we are now in a position to compare

the two heuristic alternatives against the generated workload. As explained

before the test mechanism we use to determ ine whether a new RT channel

Cn(mn,gn,dn) can be adm itted at a link, having already accepted n — 1 RT

channels is given by:
m n 1

— < 1 - - ? ----
Qn Sjn—1

W here the term s i is the factor by which the n — 1 (already accepted) channel

service tim es can be scaled without violating their schedulability requirements.

The two alternatives we are interested in comparing differ in the way this

scaling factor is arrived at.

• 71: Uses the non-optimal computation of s i given by Equation 8.1.

• <5: Uses a precise (optimal) com putation of the s / n_i described in Chap

ter 4.

In order to explain the criteria th a t were chosen for the comparison it

is im portant to understand th a t the workload generated (of n RT channels)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is arbitrary in the sense tha t they can be either admissible (together) or not.

For a given workload however, we can test whether it is schedulable or not. In

other words, whether all the RT channels can be accommodated together or

not. We refer to the outcome of this test as the admissibility (denoted by .4)

of the workload.

Observe th a t the above test finds the admissibility of a workload whereas,

the heuristics are designed to test whether a given RT channel can be adm itted

to an already existing list of RT channels at a link. In other words, the out

come A can be either, A yes'- the workload can be adm itted together, or A no:

the workload is not admissible together. On the other hand, the outcome of

the heuristic Ti (7Z or S) test can be either, 7iyes: adm it the new channel, or

Tino do not adm it the new channel. However, the heuristic TFs decision can be

compared against A by defining the following criteria:

1. If the heuristic arrives at the decision 7i yes when the workload is in

fact admissible (-4yes) 5 then we say th a t the heuristic has succeeded on a

Y E S m atch.

2. If the heuristic Ti arrives at the decision 7ino when the workload is in

fact inadmissible (A no), then we say th a t the heuristic has succeeded on
- T\T/“\ , i .,1
a l i ic ttc ii.

3. If neither criterion 1 nor criterion 2 are m et then we say tha t the heuristic

has failed.

Note th a t the reason for having two criteria for a match is because the

generated workload was arbitrary in the sense th a t it could either be feasible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

or not. While we are primarily interested in a heuristic’s ability to adm it

(reach a YES match tha t is) an RT channel, we cannot ignore the impact of

an incorrect decision. The ability of a heuristic to reject infeasible workloads

(captured by criterion 2) is im portant in that it gives us an idea about the

heuristic’s sensitivity. For example, it is possible tha t the heuristic admits a

new channel to only realize later th a t it would result in one or more of the

channels’ guarantees being violated.

For a given total utilization U and number of channels n (input param e

ters), the simulation involves generating workloads of n RT channels and testing

the admissibility of each of them. Before we use one of the two heuristics (71

or S) to determine whether they adm it a given channel, we first ascertain the

admissibility of the workload (A described before). Next, for each RT channel

(say Ci) in turn we test its admissibility (using a heuristic) assuming tha t the

n — 1 other channels have already been accepted. The test is repeated with the

two heuristics we are attem pting to compare. If the heuristic we are testing is

say TZ, then the outcome of the test can be one of 7Zyes (adm it the channel Ci)

or 7Zno (don’t admit the channel Ci). We now compare this outcome against

the outcome from the admissibility test for the workload A which was already

computed. The comparison follows the criteria explained before. W ith respect

+uir. u „ . _________ i , 1... „uw oiiio »v_ i u . luvj iicuiioiit auucvcu a. u ta tu i (cuuiu uc a

Y E S or NO) or has failed. The simulation records the same for each channel

in turn and obtains the heuristic’s performance on this particular workload

(This is repeated for the other heuristic also).

The performance of a heuristic for a given workload is characterized by

three parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

1. The percentage of (the total n admissibility tests) tests th a t result in a

YES match.

2. The percentage of (the total n admissibility tests) tests th a t result in a

NO match.

3. The percentage of (the total n admissibility tests) tests tha t result in

failure.

Observe tha t, the generated workload is only one of an almost infinite

possible workloads with the same input param eters. Therefore we repeat the

above experiment for a large number of workloads and take an average perfor

mance. Further we repeat this for different values of k (or fit and sigmai). The

results of the simulation are presented in Appendix A.

Simulation Results

The performance m easure of primary interest to us is the admissibility of a

heuristic. And, we are interested in comparing the two heuristics to see which

of the two is better at adm itting channels. Therefore, the graphs we present

here compare the performance using the percentage YES m atch (see above).

Recollect tha t, the heuristic 1Z assumes th a t the underlying scheduling

mechanism is the ra te monotonic scheduling. It has been shown tha t the RMS

is an optim al scheduling mechanism [2 0] if the deadlines of tasks are a constant

factor of their periods. Therefore, we assume tha t the param eter n is a constant

and not derived from a distribution. This assumption was made in order to

choose a scenario th a t is favorable to both heuristics (and not biased to either).

This assumption however has no impact on the second heuristic S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each graph is identified by the number of channels considered and the

param eter k. The x-axis gives the total utilization of the workload and the

y-axis gives the success of th e heuristic. For low utilizations (less than 50%)

there is no need to do a complex test because the dem and can be easily met.

We chose four different values of the number of channels (4, 8 , 12, 16) and

varied the param eter k between 0.5 to 1.0. It was observed tha t values of k

less than 0.5 resulted in too many channels missing the ir deadlines.

Observations

• For low utilizations (less than 0.7) we observe th a t both the heuristics

have a similar admissibility. Given th a t the heuristic 7Z is less expensive

(com putation time-wise) than <S, under conditions of low utilizations one

can choose the heuristic 7Z.

• For a given value of n and k we observe tha t the adm issibility of heuristic

71 falls abruptly beyond a point on the rr-axis given by the utilization

bound. For example, in Figure A . 6 we can see th a t the heuristic 7Z

begins to reject channels when the to tal utilization crosses beyond 0.72.

• The performance of S degrades gracefully beyond the utilization bound.

For exam ple, in Figure A . 6 we can see th a t the heuristic S continues

to adm it channels up to a total utilization of 0.92. The probability of

acceptance decreases gradually (and steadily) however. This implies that

the heuristic has a b e tte r ability to adapt to tem porary overloads [43, 26]

(increased dem and from one of the channels) in th e network traffic.

• As the number of channels increases, the performance degradation beyond

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the utilization bound is slower in the case of heuristic S . This goes on

to support the ability of the heuristic to adapt to tem porary overloads

(increase in the number of channels). The two sources of overload have

been successfully handled by the heuristic S.

• As the number of channels increases the success of the heuristic <S im

proves compared to the heuristic 7Z.

• In conclusion we can say tha t for low utilizations both heuristics have

similar performance (however one should prefer the heuristic 7Z due it

com putational ease) but, at high utilizations <5 far outperforms 7Z. Fur

ther, we can justify the cost of computation involved in <5 by noting tha t

the com putation can be done before the actual channel request is made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 9

S u m m ary o f R e su lts

As an example to dem onstrate the results reported in this thesis, we choose

the “Olympus A ttitude and Orbital Control System”(AOCS). A detailed case

study of this real-time system can be found in [5, 46]. The AOCS subsystem of

the Olympus satellite1 acquires and maintains spacecraft positions as desired.

A detailed analysis of this system was performed by A. Burns and his colleagues,

as a result of which they have summarized a list of tasks (Appendix B, Figures

B .l, B.2 and B.3) that capture the system ’s functionality. They have identified

mainly two classes of tasks viz., periodic (Figures B .l, B.2) and sporadic tasks

(Figure B.3).

The class of periodic tasks in the AOCS case-study are consistent with

our definition and treatm ent of periodic tasks in this thesis. Sporadic tasks

on the other hand are tasks whose periodicity and arrival tim e are not known.

However, there is a known minimum interval between successive arrivals of

these tasks. Also the arrival time param eter of a sporadic task is not known a

priori due to the nature of these tasks. Sporadic tasks typically occur due to

events such as exceptions and interrupts which are triggered by a logical state

!The Olympus satellite was launched in July 1989 as the world’s largest and most powerful
civil three-axis-stabilized communications satellite. It provides direct broadcast TV and
’distance learning’ experiments to Italy and Northern Europe.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the system or an external event. These events are therefore a function of the

run-tim e characteristic of the system.

T he treatm ent in this thesis has been restricted to handling only pe

riodic tasks, however we can accommodate sporadic tasks by making a few

observations about their behavior. The minimum inter-arrival time param eter

associated with a sporadic task is a lower bound on its periodicity. For the

purpose of this chapter we choose the periods of sporadic tasks to have values

ranging from the minimum to the average periods of periodic tasks. Accord

ingly th e chosen values of periods for sporadic tasks have been listed in the

tables. Further, we have chosen the arrival times of these tasks to be zero, in

other words th a t the first occurrence of these tasks is at tim e t = 0. Clearly,

this is only one of the many possibilities but is sufficient to dem onstrate our

point o f interest here.

T he following sections use this task-set to dem onstrate the results re

ported in chapters 5 to 7.

9.1 Sca lab ility in U niprocessor System s

The above task-set (say T) is given for a uniprocessor system, where all the

tasks are known to execute on a central control computer. In order to apply

the result given in Chapter 5 we have to choose a subset (say S) of tasks in the

task-set th a t are to undergo scaling. For a lack of better knowledge about the

tasks we pick S = T , i.e., we are interested in finding the maximum common

scaling factor for all tasks in the task-set. Table 9.1 gives the results of this

analysis:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Table 9.1: Task Table with Scaling Factors

Task Name Priority Period Arrival Exec Deadline Scale Factor

B U S J N T E R R U P T 62 50 0.00 0.18 1.00 5.5556

R E A L .T IM E .C L O C K 27 50 0.00 0.28 9.00 19.5652

R E A D .B U S J P 23 10 0.00 1.76 10.00 4.5045

CO M M A N D _A C U TU A TO R S 20 200 50.00 2.13 14.00 2.2989

R E Q U E ST .D SS .D A T A 19 200 150.00 1.43 17.00 2.2546

R E Q U E ST .W H E E L J3PE E D S 18 200 0.00 1.43 22.00 2.2296

R E Q U E ST JR E S .D A T A 17 100 0.00 1.43 24.00 1.9736

T E L E M E T R Y .R E SPO N SE 15 200 0.00 3.19 30.00 1.9543

PROCESS_IRES_DATA 14 100 50.00 8.21 50.00 1.8463

R E A D .Y A W .G Y R O 12 500 0.00 4.08 100.00 2.4740

CONTROL_LAW 8 200 50.00 22.84 200.00 2.18770

P R O C E SS.D SS.D A T A 6 1000 200.00 5.16 400.00 2.1748

CA L IB R A T E .G Y R O 5 1000 200.00 6.91 900.00 2.1645

TELEC O M M A N D S 4 500 0.00 2.50 187.00 1.7941

Scaling Factor for S = 1.7941

The mechanism used to find the scaling factor in the uniprocessor sce

nario is based on the critical instan t assumption. This result can be easily

improved by using a more precise mechanism tha t is based on the results in

chapter 7. However, as discussed in chapter 4 the critical instant assum ption

is more suitable in uniprocessor systems. Further, it makes the scaling factor

com putation more efficient and cheaper (in term s of processing time).

Another perspective of th e scaling factor can be expressed in term s of

the utilization. The utilization of a task T,- is given by the ratio of its execution

tim e to its periodicity, The to ta l utilization of the task-set before scaling is

given by:

£7 = £ l + £ i + . . . + £ i
Pi P2 Pn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the task-set in our case study this is given by: 0.4619. The utiliza

tion of the task-set after the scaling is performed is given by:

U' = s / x J 2 J + Y f .
ies r i j e T - S r j

Where, s f is the maximum common scaling factor for the task in S.

In our example, S = T , therefore the second term in the above equation is

zero. The new utilization is now given by 1.7941 x 0.4619 = 0.S2S7. This

achievable improvement in utilization is promising for the application with re

gards to, scalability, execution time estimation, portability and fault-tolerance

as described in chapter 3.

9.2 Schedulab ility o f Task-Sets w ith Arrivals

As described in chapter 4, solving the problem of scalability in end-to-end real

tim e systems involves solving the two problems of (i) schedulability of tasks

on a single component without ignoring arrival times and, (ii) scalability of

tasks with non-zero arrival times. The first of these problems was discussed in

chapter 6 .

This section discusses this result by applying it the AOCS case-study.

Our first example involves, treating the AOCS as an end-to-end task system

with each task comprising only one sub-task which runs on the only component

in the system, i.e., the processor. Now, the determining the schedulability of

the tasks involves com puting their worst-case response times. For comparison

purposes, the following table (9.2) gives the worst-case response times using

two different mechanisms, i,e., the critical instant approach (W C °) and, the

approach described in chapter 6 (W C r). The th ird column gives the percentage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

improvement in the response time obtained by using our precise approach as

opposed to the critical instant approach. The fourth column gives the slack

savings achieved by using our approach. Slack savings (in percentage) is given

by the formula:

W C ? - W C [innssi = ----- x 100
di - t l

While the percentage improvement obtained does have some merit in

explaining the need for a more precise approach, the slack savings param eter

qualifies the ability of a task to accommodate task interdependence (e.g., prece

dence), withstand tem porary overloads, accommodate aperiodics in the system

and restrict jitte r in end-to-end systems.

Table 9.2: Response times of Tasks

Task Name Resp Tim e % Improvement Slack Savings (in %)

w c c \'V C r
B U S J N T E R R U P T 0.18 0.18 0.0 0.0

RE A L .T IM E.CLO CK 0.46 0.46 0.0 0.0

R E A D .B U S J P 2.22 2.22 0.0 0.0

C O M M A N D .A C U T U A T O R S 4.35 4.35 0.0 0.0

REQ U E ST -D SS .D ATA 5.78 3.65 36.85 13.60

R E Q U E ST .W H E E L -SPE E D S 7.21 3.65 49.37 17.30

R E Q U E S T JR E S .D A T A 8.64 5.08 41.20 15.77

T E L E M E T R Y .R E SPO N SE 13.59 8.27 39.14 19.84

PR O C ESS-IR E S-D A TA 23.56 14.32 39.21 22.11

R E A D . YAW .GYRO 27.64 14.11 48.95 13.06

CO NTR O L.LAW 56.22 42.44 24.51 7.77

P R O C E SS-D SS.D A T A 63.14 15.19 75.94 12.14

CALIBRA TE-G Y RO 71.81 23.86 66.77 5.36

TELEC O M M A N D S 74.31 16.61 77.64 31.27

As a second dem onstration of the results in Chapter 6, we consider an

actual decomposition of the task-set into sub-tasks. The chosen decomposition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

is only one of the possible decompositions obtained by arbitrarily dividing and

assigning tasks to four components. The decomposed task-set is given in Figure

9.3.

Table 9.3: Decomposition of tasks

T a s k N a m e R e s o u r c e (s)

B U S . I N T E R R U P T Ri
R E A L . T I M E . C L O C K R2
R E A D J B U S J P R3
C O M M A N D _ A C U T U A T O R S Ri —> R 4

R E Q U E S T - D S S . D A T A R x - * R 2
R E Q U E S T . W H E E L - S P E E D S Ri — *• R 3
R E Q U E S T . I R E S . D A T A R4
T E L E M E T R Y . R E S P O N S E R4
P R O C E S S . I R E S . D A T A R x — >■ R 2 — > R 3
R E A D . Y A W . G Y R O Ri — > R 3
C O N T R O L _ L A W R x - > R 2 — > R 4
P R O C E S S . D S S . D A T A R x — > R 3
C A L I B R A T E . G Y R O R2 —> R 4
T E L E C O M M A N D S R x R 2

The following tables (9.4, 9.5, 9.6, 9.7) give details of the analysis of

each component in turn . The param eter of the sub-tasks th a t run on the first

component R 4, are directly inherited from the parent. Further, the deadline

param eter is not required in this problem since we are only interested in finding

the worst-case response times of tasks, which are given by the sum of the

response times of their individual sub-tasks. T he arrival time param eter of

sub-tasks on component R 2 (and subsequently R 3 and R 4) are obtained by the

phase adjustm ent mechanism.

The following table (9.8) compares the resulting worst-case response

times of tasks with the ir deadlines. Clearly, all tasks meet their deadlines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Table 9.4: Analysis of Component Ri

Task Nam e Priority Period Arrival Exec Response Tim e

B U S .IN T E R R U P T 62 50 0.00 0.18 0.18

C O M M A N D .A C U T U A T O R S 20 200 50.00 1.13 1.31

R E Q U E ST .D SS.D A T A 19 200 150.00 0.43 0.61

R E Q U E ST .W H E E L _SPE E D S 18 200 0.00 0.70 1.88

PR O C ESS-IR E S.D A TA 14 100 50.00 3.21 4.52

R EA D .Y A W .G Y R O 12 500 0.00 1.08 2.96

CO NTROL.LAW 8 200 50.00 5.00 9.52

P R O C E SS.D SS.D A T A 6 1000 200.00 2.10 3.98

TELEC O M M A NDS 4 500 0.00 1.00 3.96

Table 9.5: Analysi s of Component R 2

Task Name Priority Period Arrival Exec Resp Tim e

REA L-TIM E.C LO C K 27 50 0.00 0.28 0.28

REQ UEST JD SS.D A T A 19 200 150.61 1.00 1.00

PROCESS JR E S .D A T A 14 100 54.82 3.00 3.00

CONTROL-LAW 8 200 59.52 5.00 5.00

C A LIBR A TE.G Y R O 5 1000 200.00 3.0 3.28

TELEC O M M A N D S 4 500 3.96 1.50 1.50

Further, by comparing these response times against those in table 9.2 we ob

serve the enormous improvement in response times of tasks.

9=3 Scalab ility in E-nd-to-IDnci S ystem s

As mentioned in the previous section, the second issue to be addressed in solving

the scalability problem in end-to-end systems is: scalability of tasks on a single

component with non-zero arrival times. This was the subject of Chapter 7. In

this section, we first com pare the scaling factor obtained by incorporating task

arrival times against, th a t obtained by using the critical instant assumption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9.6: Analysis of Component R$

Task Name Priority Period Arrival Exec Resp T im e

R E A D .B U S J P 23 10 0.00 1.76 1.76

R E Q U E ST -W H E E L .SPE E D S 18 200 1.88 0.73 0.73

P R O C E SS.IR E S.D A T A 14 100 57.82 2.00 2.00

R E A D .Y A W .G Y R O 12 500 2.96 3.00 3.00

PR O C E SS.D SS.D A T A 6 1000 203.98 3.06 3.06

Table 9.7: Analysis of Component R,\

Task Nam e Priority Period Arrival Exec Resp T im e

C O M M A N D -A C U T U A T O R S 20 200 51.31 1.0 1.0

R E Q U E ST JR E S-D A T A 17 100 0.00 1.43 1.43

T ELEM ETR Y .R E SP O N SE 15 200 0.00 3.19 4.62

C O NTROL.LAW 8 200 64.52 7.84 7.84

C A LIBR A TE.G Y R O 5 1000 203.28 3.91 4.68

(chapter 5). Table 9.9 gives the summary of this comparison. The maximum

common scaling factor by the precise approach is under the second column

(s f (actual)) and tha t obtained by the critical instan t assumption in chapter 5

is under the third column (s f(orig)). The task-set is assumed to run on a

single component and accordingly each task has a single sub-task. The subset

S th a t has to be scaled is sam e as T. The common scaling factor s f (actual) is

2.1295 which is clearly greater than 1.7941 obtained by the other mechanism. In

term s of utilization the resu ltan t task-set utilization is 0.9836 or 98.36%. Note

th a t, ideally one would expect to be able to obtain 100% utilization on scaling,

however, this is not achievable in the case of static fixed priority schedulers.

Recall tha t in chapter 4 problem of scalability of task-sets in end-to-end

real-tim es systems comes in two different forms: task changes and component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Table 9.8: Schedulability of the End-to-End Tasks

Task Nam e R esponse T im e Deadline

B U S J N T E R R U P T 0.18 1.00

R E A L .T IM E .C L O C K 0.28 9.00

R E A D .B U S J P 1.76 10.00

C O M M A N D .A C U T U A T O R S 2.31 14.00

R E Q U E ST JDSS.DATA 1.61 17.00

R E Q U E ST .W H E E L .SP E E D S 2.61 22.00

R E Q U E ST JR E S-D A T A 1.43 24.00

T E L E M E T R Y .R E SPO N SE 4.62 30.00

P R O C E SS.IR E S.D A T A 9.52 50.00

R E A D .Y A W .G Y R O 5.96 100.00

C O N T R O L .L A W 22.36 200.00

PR O C E SS.D SS .D A T A 7.04 400.00

C A L IB R A T E .G Y R O 9.68 900.00

T E L E C O M M A N D S 5.46 187.00

changes. The following modification of the case study dem onstrates how our

approach to finding the precise scaling factor can be applied in an end-to-end

scenario where component changes can occur. The same decomposition used

in the previous is used here. The following tables (9.10, 9.11, 9.12 and 9.13)

give the details of the scaling factor com putation for each of the components.

The deadline param eter for each sub-task is obtained by using a heuristic tha t

divides the slack of a task among its sub-tasks in a weighted proportion of their

i a m r-r-1 o <*■ ,-,u » T 7 r \ l n i f 4- V* /-« <->/'-> 4- f /“* /-> yv*> n n o n t o 11 r i r l n i 'fT Au n i i v o . a ’i w v , jl _/i v / i c t m ix o n e o t t v w a i p w i i i / i i t o o n c t o u n u u i ^ a

change are {i?2 , l? 4 } then the scaling factor is m in {5.3949, 6.4935} which is

5.3949.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9.9: Task Table with Scaling Factors

Task Name Scaling Factor

s f (actual) sf(orig)
B U S JN T E R R U P T 5.5556 5.5556

REA L.TIM E.CLO CK 19.5652 19.5652

R E A D .B U S JP 4.5045 4.5045

C O M M A N D .A C U T U A T O R S 2.2989 2.2988

REQUEST JDSS.DATA 3.1423 2.2546

R E Q U E ST .W H E E L .SPE E D S 3.6969 2.2296

R E Q U E ST JR E S.D A T A 2.9240 1.9736

TELEM ETRY .R E SP O N SE 2.5445 1.9543

PROCESS J R E S .D A T A 2.5510 1.8463

REA D .Y A W .G Y R O 2.5786 2.4740

CONTROL.LAW 2.1877 2.1877

PRO CESS-DSS.D ATA 2.2119 2.1748

CA LIBRA TE.G YR O 2.1885 2.1645

TELECOM M ANDS 2.1295 1.7941

C om m onS ceding Factor 2.1295 1.7941

Table 9.10: Scaling on Component R\

Task Nam e Priority Period Arrival Exec Deadline SF

B U S JN T E R R U P T 62 50 0.00 0.18 1.00 5.5556

CO M M A N D .A C U TU A TO R S 20 200 50.00 1.13 7.43 5.6696

REQ UEST.D SS-DATA 19 200 150.00 0.43 5.11 8.3800

R E Q U EST-W H EEL.SPEED S 18 200 0.00 0.70 10.77 5.7283

PR O C ESSJR ES-D A TA 14 100 50.00 3.21 19.55 4.3251

REA D.YAW .G Y RO 12 500 0.00 1.08 26.47 8.9427

CO N T R O L X A W 8 200 50.00 5.00 43.78 4.5990

PRO CESS-DSS.D ATA 6 1000 200.00 2.10 162.79 11.4286

TELECOM M ANDS 4 500 0.00 1.00 74.80 8.4890

Common Scaling Factor = 4.3251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9.11: Scaling on Component R2

Task Name Priority Period Arrival Exec Deadline SF

REA L.TIM E.C LO C K 27 50 0.00 0.28 9.00 32.1429

R E Q U E ST -D SS.D A T A 19 200 150.61 1.00 11.89 9.7641

PROCESS J R E S .D A T A 14 100 54.82 3.00 18.27 5.3949

CO NTROL.LAW 8 200 59.52 5.00 43.78 5.8554

C A LIBRA TE.G YR O 5 1000 200.00 3.0 390.73 13.6799

TELEC O M M A NDS 4 500 3.96 1.50 112.20 11.2510

Com m on Scaling Factor = 5.3949

Table 9.12: Scaling on Component R 3

Task Name Priority Period Arrival Exec Deadline SF

R E A D .B U S J P 23 10 0.00 1.76 10.00 5.6818

R E Q U E ST .W H E E L .SP E E D S 18 200 1.88 0.73 11.23 4.0161

PRO CESS JR E S .D A T A 14 100 57.82 2.00 12.18 3.2394

R E A D .Y A W .G Y R O 12 500 2.96 3.00 73.53 4.0462

PRO C ESS-D SS.D A TA 6 1000 203.98 3.06 237.21 4.6894

Com m on Scaling Factor = 3.2394

Table 9.13: Scaling on Component R 4

T ask Name Priority Period Arrival Exec Deadline SF

C O M M A N D .A C U T U A T O R S 20 200 51.31 1.0 6.57 6.5727

R E Q U E ST JR E S.D A T A 17 100 0.00 1.43 24.00 16.7832

TELEM ETRY JtE S P O N S E 15 200 0.00 3.19 30.00 6.4935

CO NTROL.LAW 8 200 64.52 7.84 112.43 9.0236

CA LIBRA TE.G YR O 5 1000 203.28 3.91 509.26 12.3508

Com m on Scaling Factor = 6.4935

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C h ap ter 10

C on clu sion s

The significant contributions of this thesis can be broadly summarized as fol

lows:

• We have addressed the need to handle complexity in real-time systems in

all phases of system design, viz., design, development and maintenance.

9 We have presented a novel perspective to analyzing real-tim e systems th a t

in addition to ascertaining the ability of a system to m eet task deadlines

also qualifies these guarantees.

• The need to qualify guarantees was shown to arise from the following

scenarios pertinent in the design, development and maintenance of real

tim e systems:

— Scaling application requirements: As a system evolves the function

alities of tasks expand, reflecting in term s of increase in code size

and/or im provement m data fiandlm^ of tasLis. Tins increase af-

fects the schedulability guarantees made using the previous execu

tion times. Therefore, what we are interested in is, finding a factor

by which the execution times can be scaled (capturing the d a ta han

dling change) w ithout invalidating the schedulability guarantees.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

— Task execution time estimation: Using mean task execution times

as opposed to worst-case execution times in schedulability analysis

reduces the pessimism (leading to over design and under-utilization

of resources) inherent in the com putation. Unfortunately however,

using the mean could lead to cases where the guarantees provided

by the schedulability analysis could be invalid (The number of such

cases being determined directly by the variance in the computed

mean execution tim e). Therefore, it is necessary to accommodate

the variance information along with the mean (for task execution

times).

— Porting applications: Any analysis performed (to guarantee perfor

mance) assuming particular values of task execution times becomes

invalid once the target platform changes. For example, a faster pro

cessor could result in a lower execution tim e (not invalidating the

analysis), but a slower processor would surely have an adverse af

fect on the schedulability analysis. As a system evolves, though

in general the overall system is likely to improve, the performance

of individual components (some processors for example) might not

always improve. A nother instance where a target platform is in gen-

e l a i T * n r i r e n i »-* +!■>/** e e e n t ' n f s~\ 4* t - -ta / a 1*< 11 i 1 r l i r > / r r i 1 e n f 1 *-«* f 1 1
UU1 IMiOV/O iax 011V., Ot U U iiU lllg txiivx

— Fault Tolerance: It is common practice to provide fault-tolerant op

eration by the use of redundant components (often at least one sec

ondary component). In general, secondary components provide only

a minimal functionality (sufficient to keep the system operational till

the prim ary is fixed) and therefore tend to be slower. Any schedu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lability analysis guarantees provided with the primary component

as the target will be invalid once the system falls back onto the

secondary.

• The scaling factor problem (refer to Chapter 4) defines a quantitative

measure that in essence captures the above mentioned scenarios under a

uniform framework. The problem is generic in the sense tha t it leaves

such particulars as:

— the scheduling mechanism,

— deadline to period relationship, and,

— arrival information,

open. For example an instance of the problem could be to find the scal

ing factor when the assumed scheduling mechanism is a static fixed rate

monotonic priority assignment, the task deadlines are less than or equal

to their periods, and, the task arrivals are arbitrary.

• The scaling factor problem was first formulated in the context of uni

processor real-time systems. This scenario can be more generally re

ferred to as the single component scenario. The tasks running on the

Qincrln r n m n n n p n f in nii/a<3+inn arr» + wifVi rnrmrrlc !r> + r>Ki1_
“ * “ O'" ̂ W—• — *** A — ^ ..A*AA ^ W X U V l l * .̂~AA

ity to meet their requirements (processing and deadline). Further, we

compute a measure tha t gives us the ability of these tasks to scale-up

without violating their guarantees. One im portant assumption made in

this context was th a t the arrival times of the various tasks can be as

sumed to be zero. This assumption has helped us in using the critical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instant argum ent to ascertain task schedulability and also in finding the

scaling factor. We dem onstrated some justifications for the use of this

argument, particularly in the context of single component systems with

independent tasks.

• Unlike uniprocessor systems, in end-to-end systems, the scaling factor

problem appears in two diiferent scenarios, viz., component changes and

task changes. We showed how both these scenarios arise and how they

can be reduced to solving the following fundamental problems:

— Compute sub-task param eters of periodicity and deadline.

— Given a task-set T of n tasks (with non-zero arrivals) executing on a

single com ponent, find the worst-case completion times of all tasks

in the task-set.

— Solve the scaling problem when the tasks have arbitrary non-zero

arrivals.

The first of the above problems involved finding sub-task periodicities

by a technique called phase adjustm ent and sub-task deadlines by using

a heuristic based on proportional division of the to tal slack of a task

among its sub-tasks. Our solution to the second problem is the subject

of Chapter 6. This problem has been observed to be relevant in many

other contexts in real-tim e systems, and a discussion to this end can be

found in the same Chapter. Chapter 7 presents a solution to the third

problem listed above. The complexity is introduced mainly by having to

accommodate task arrivals into the analysis. However, this consideration

adds validity to our work and also bridges the gap between theory and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practice by better modeling the behavior of current complex real-tim e

systems.

• Finally we presented an application of the scaling factor problem in the

context of real-tim e communication. The problem considered is the ad

mission control of real-tim e channels (Ferrari et. al. [9]). Admission

control is the mechanism by which multiple real-tim e connections can si

multaneously share the resources of a packet switching network without

resulting in congestion. The mechanism used to determ ine the admissi

bility of a real-tim e channel involves verifying a t each interm ediate link

(along the path) in tu rn whether the RT channel’s QoS requirements can

be guaranteed. If a channel’s requirements can be met a t each of the

interm ediate links then we can accept the channel. If however, the chan

nel’s requirements cannot be m et at any of th e interm ediate link then we

can reject the channel. In fact the first such link th a t deems the chan

nel inadmissible is sufficient to confirm th a t the channel would not be

admissible.

This problem is shown to be analogous to th e end-to-end schedulability

problem with the exception tha t the solution cannot be based on evalu

ating a channels adm issibility by doing a com plete (expensive) schedula

bility test. To this end, we proposed a heuristic approach tha t is based

on the scaling factor computation. The room for accommodating a new

channel into a system is expressed in term s of the maximum scaling fac

tor with which the requirements of the channels already in the system

can be scaled w ithout violating their guarantees. This expression is then

compared against the requirements of the new channel that is to be con

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sidered for admission. The expression being of a heuristic nature, we

resorted to a simulation study (details in C hapter 8), the results of which

have dem onstrated the effectiveness of our approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ib lio g ra p h y

[1] R. Arnold, F Mueller, D. B. Whalley, and M. Harmon. Bounding Worst-

case Instruction Cache Performance. Proceedings o f IEEE Real Time Sys

tem s Symposium , pages 172-181, December 1994.

[2] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard Real-

T im e Scheduling:The Deadline Monotonic Approach. Proceedings of the

8th IE E E Workshop on Real-Time Operating Systems and Software, 1991.

[3] N. C. Audsley, R. I. Davis, and A. Burns. Mechanisms for Enhancing the

Flexibility and U tility of Hard Real-Time Systems. Proceedings o f the Real

Tim e System s Symposium , pages 12-22, December 1994.

[4] Ricardo B ettati. End-To-End Scheduling to meet Deadlines in Distributed

Systems. PhD thesis, Department o f Computer Science, University of

Illinois at Urbana-Champaign, 1994.

[5] A. Burns, A. J. Wellings, C. M. Bailey, and E. Fyfe. The Olympus At

titude and Orbital Control System: A Case Study in Hard Real-Time

System Design. Technical Report YCSI90, Department o f Computer Sci

ence, University o f York, 1993.

[6] M. H. Klien et. al. A Practitioners Handbook fo r Real-Time Analysis.

Kluwer Academic Publishers, 1993.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] Reza Etemadi. End-To-End Scheduling in Hard Real-Time M ultiproces

sor Systems. Candidacy Report, Department o f Computer Systems and

Engineering, Carleton University, Canada, 1995.

[8] D. Ferrari. Real-Time Communication in an Internetwork. Journal o f

High Speed Networks, 1(1):79—103, 1992.

[9] D. Ferrari. A New Admission Control Method for Real-Time Communi

cation in an Internetwork. S. Son, Ed., Advances in Real-Time Systems,

Prentice Hall Englewood Cliffs, NJ, pages 105-116, 1995.

[10] D. Ferrari. Real-Time Communication in an Internetwork. Technical Re

port TR-92-072, International Computer Science Institute, Berkeley CA,

January 1992.

[11] D. Ferrari and C. C. Verma. A scheme for Real-Time Channel Establish

ment in Wide-area Networks. IEEE Journal on Selected areas in Commu

nications, SAC-8(3):368-379, 1990.

[12] M. Garey and D. Johnson. Complexity Results for Multiprocessor

Scheduling with Resource Constraints. SIA M Journal o f Computing,

4(4):396-411, 1975.

[13] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman

and Co., San Francisco, 1979.

[14] R. Gerber, S. Hong, and M. Saksena. Guaranteeing End-to-End Tim

ing Constraints by Calibrating Interm ediate Processes. Proceedings o f the

Real-Time Systems Symposium, pages 192-205, December 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] T. Gonzales and S. Sahni. Flowshop and Jobshop scheduling: Complexity

and Approximation. Operations Research, 26(l):220-244, 1978.

[16] R. Jain. The A rt o f Computer Systems Performance Analysis. John Wiley

and Sons, Inc; W iley Professional Computing, 1991.

[17] D. D. Kandlur. Networking in Distributed Real-Time Systems. PhD thesis,

University of Michigan, 1991.

[18] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-Time Communication in

Multi-hop Networks. Proceedings of the 11th International Conference on

Distributed Computing Systems, 1(2): 184-194, May 1991.

[19] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbi

trary Deadlines. Proceedings o f the IE E E Real-Time Systems Symposium ,

pages 201-209, 1990.

[20] J. P. Lehoczky, L. Sha, and Y Ding. Rate Monotonic Scheduling Algo

rithm : Exact Characterization and Average Case. Proceedings o f the IEEE

Real-Time System s Symposium , pages 166-171, 19S9.

[21] J. Y. Leung and M. L. Merill. A Note Preem ptive Scheduling of Periodic,

Real-Time Tasks. Information Processing Letters, 11 (3): 115—1 IS, Novem

ber 1980.

[22] J. Y. Leung and J . W hitehead. On Complexity of Fixed-Priority Schedul

ing of Periodic, Real-Tim e Tasks. Performance Evaluation, 2(4):237-250,

19S2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park,

H. Shin, Iv. Park, and C. S. Kim. An Accurate Worst-case Timing Analysis

for RISC Processors. Proceedings o f IE E E Real Time Systems Symposium ,

pages 97-108, December 1994.

[24] C. L. Liu and J. W . Layland. Scheduling Algorithms for M ultiprogram

ming in a Hard Real-Tim e Environment. Journal of ACM , 20(1):46—61,

1973.

[25] J. W. S. Liu, K. J. Lin, W . K. Smith, A. C. Yu, J. Y. Chung, and W. Zhao.

Algorithms for Scheduling Imprecise Computations. IEEE Computer,

pages 58-68, May 1991.

[26] C. D. Locke. Best-effort Decision Making fo r Real-Time Scheduling. PhD

thesis, Carnegie-Mellon University, 1986.

[27] C. D. Locke. Software Architecture for Hard Real-Time Applications:

Cyclic Executives vs. F ixed Priority Executives. Real Time System s,

4(1):37—53, March 1992.

[2S] Nicholas Malcolm and Wei Zhao. Advances in Hard Real-Time Commu

nication with Local Area Networks. IE E E Trans on Computers, pages

548-557, 1992.

[29] A. K. Mok. Fundamental Design Problems o f Distributed Systems fo r the

Hard Real-Time Environment. PhD thesis, M IT., 1983.

[30] M. Di Natale and J. A. Stankovic. Dynamic End-to-End Guarantees in

Distributed Real-Time Systems. Proceedings o f the Real Time Systems

Symposium , pages 216-227, December 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] C. Y. Park. Predicting Deterministic Execution Times of Real-Tim e Pro

grams. Technical Report 92-08-02, Department of Computer Science and

Engineering, University o f Washington, 1992.

[32] D. Picker and R. D. Fellman. Scaling and Performance of a Packet Queue

for Real-Time Applications. Proceedings o f the Real-Time System s Sym

posium , pages 56-62, December 1994.

[33] R. Rajkum ar. Synchronization in Real-Time Systems: A Priority Inheri

tance Approach. Kluwer Academic Publishers, 1991.

[34] L. Sha, R. R ajkum ar, and J. P. Lehoczky. Priority Inheritance Protocols:

An Approach to Real-Time Synchronization. IEEE Trans on Computers,

39(9): 1175-1184, September 1990.

[35] L. Sha and S. S. Sathaye. A Systematic Approach to Designing D istributed

Real-Time Systems. IE E E Computer, pages 68-78, September 1993.

[36] Wei-Kuan Shih. Scheduling in Real-Time Systems to Ensure Graceful

Degradation: The Imprecise Com putation and the Deferred-Deadline A p

proaches. PhD thesis, Department o f Computer Science, University of

Illinois at Urbana-Champaign, 1992.

[37] Wei-Kuan Shih and J . W. S. Liu. On-line Scheduling of Imprecise Com

putations to Minimize Error. Proceedings o f the Real-Time Systems S ym

posium, pages 280-289, December 1992.

[38] W. Stallings. Data and Computer Communications. Macmillan Publish

ing Company, New York, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[39] J. A. Stankovic, M. Di N atale M. Spuri, and G. C. Buttazo. Implications

of Classical Scheduling Results for Real-Time Systems. Department o f CS,

University o f Massachussetts: Technical Report 95-23, June 1994.

[40] J. A. Stankovic, M. Di N atale M. Spuri, and G. C. Buttazo. Implications

of Classical Scheduling Results for Real-Time Systems. IEEE Computer,

2S(6):16—25, June 1995.

[41] J. A. Stankovic and K. Ram am ritham . Advances in Real-Time Analysis.

IEEE Computer Society Press, 1992.

[42] A. Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs,

N .J., 1989.

[43] P. Tham bidurai and K. S. Trivedi. Transient Overloads in Fault-Tolerant

Real-Time Systems. Proceedings o f the Real-Time Systems Symposium,

pages 126-133, December 1989.

[44] S. R. Thuel and J. P. Lehoczky. On-Line Scheduling of Hard Deadline

Aperiodic tasks in Fixed Priority Systems. Proceedings o f the Real-Time

System s Symposium , pages 160-171, December 1993.

[45] K. Tindell. Adding Timing Offsets to Schedulability Analysis. Technical

Report YCS221, Department o f Computer Science, University of York,

January 1994.

[46] K. Tindell. Holistic Schedulability Analysis for Distributed Hard Real-

Tim e Systems. Technical Report YCS197, Department o f Computer Sci

ence, University o f York, January 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[47] C. Venkatramani and T. C. Chiueh. Supporting Real-Time Traffic on

E thernet. Proceedings o f IE E E Real Time Systems Symposium, pages

282-286, December 1994.

[48] J. Xu. On Satisfying Tim ing Constraints in Hard Real Time Systems.

IE E E Trans on Software Engg, 19(l):70-84, January 1993.

[49] R. Yerraballi. Replication in D istributed Real-Time Systems: Candidacy

Report. Department o f CS, Old Dominion University, 1994.

[50] R. Yerraballi and R. M ukkamala. Scalability of Real-Time Systems. Sub

mitted to the Special Issue o f the Euromicro Journal on Real-Time Sys

tems: Journal o f System Architecture, February 1995.

[51] R. Yerraballi and R. Mukkamala. Schedulability Related Issues in End-

to-End Systems. Proceedings o f the First International Conference on

Engineering o f Complex Computer Systems, November 1995.

[52] R. Yerraballi, R. M ukkamala, K. Maly, and H. Abdel-Wahab. Issues in

Schedulability Analysis of Real-Time Systems. Proceedings o f the 7th Eu

romicro Workshop on Real Time Systems, pages 87-92, June 1995.

[53] Q. Zheng. Real-Time Fault-Tolerant Communication in Computer Net

works. PhD thesis, Electi'ical Engineering: Systems, University of Michi

gan, 1993.

[54] Q. Zheng and K.G. Shin. Fault-tolerant real-time communication in dis

tribu ted computing systems. Proceedings o f 22nd Annual International

Symposium on Fault-tolerant Computing, pages 86-93, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A pp en d ices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p e n d ix A

S im u la tio n R e su lts for A d m iss io n C ontrol

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA O -
SCAL ■+• - ‘100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .l: n = 4 and k = 0.5

RMA 'O '—
SCAL + - “100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.2: n = 8 and k = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA -O—
SCAL ■+■ - “100

80

60

40

20

i.o

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.3: n — 12 and k = 0.5

RMA O -
SCAL •+• - “100

80

60
+ +

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.4: n — 16 and k = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA -O -
SCAL •+■ - ~100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.5: n — 4 and a — 0.6

RMA
SCAL ■+■ - "100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.6: n — 8 and n = 0.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EMA
SCAL •+■ - "+ + .+100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.7: n = 12 and k = 0.6

RMA
SCAL + - '100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.8: n = 12 and k = 0.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA O -
SCAL •+• -100

80

60

40

20
+ ' +

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.9: n = 4 and k = 0.7

RMA - 0 -
SCAL ■+■ - "100

80

60

40

20

0 0 0 0 0 <><1> <?><!>0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .10: n = 8 and k = 0.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .11: n — 12 and k — 0.7

100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .12: n = 16 and k = 0.7

1 1 1 1 1 1 1 1 1
, , RMA -O -

+ ' ■+• ■ , SCAL •+■ - “

+ +

A A A A A A A A ' A A A

1 1 1 1 1 1 1 1 1 i

RMA
SCAL + -+ '+ • ■+.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA O -
SCAL ■+• - "100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .13: n = 4 and k = 0.8

RMA O -
SCAL •+• - “100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .14: n = 8 and k = 0.S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA O -
SCAL ■+• - “■+■ ■ + • ■+.100

80

60

40

20

o <b- <I> <t>0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.15: n = 12 and k = 0.8

RMA ^
SCAL ■+■ - “100

+ • • +

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.16: n = 16 and k = 0.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA
SCAL •+■ ■ "100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .17: n = 4 and k = 0.9

1 I 1 — 1 i i i i i

R M A
+ " + • • _ | _ . . + S C A L + - ~

\ / \ / \ / N / \ / \ / \ > k

i i i i i i i i i 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.IS: n = 8 and k — 0.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
1

1
1

1 f
" - 1 1 1 1 1

R M A Q -
•+ • •+• ■+■ •+ .. S C A L + - “

+ .

+

+

+ •
v s / s / ' v ' v ' v v ’ s ^ v s y

1 1 1 1 1 I 1 1 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A .19: n = 12 and k = 0.9

RMA O -
SCAL •+• - “100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.20: n = 16 and k = 0.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA
SCAL ■+■ - “100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.21: n = 4 and k = 1.0

1 1 1 1

<!><!><[>

i i i i i
, , RMA O -

+ ' '+■ •+• •+ SCAL ■+■ - ‘

+

+•\ / \ / \ / \ / \ / \ /V / \ / \ /Tv

i i i i i i i i i

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.22: n = 8 and k — 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RMA -O -
SCAL •+ - “

.+ . + — j-100

80

60

40

20

0

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.23: n = 12 and k — 1.0

I I 1 1

<i> <i> o <i>

1 1 1 1 1
RMA

S C A L + - "

' + +

+

+■

1 1 ! 1 I 1 1 1 1
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure A.24: n = 16 and k = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p e n d ix B

T h e O ly m p u s A tt itu d e an d O rb ita l C ontrol
S y ste m

The first two tables list the periodic tasks in the system and the last table lists

the sporadic tasks. T he param eter of periodicity of sporadic tasks is a derived

param eter chosen for our study and not specified in th e original study. The

first param eter, critical level, is not used in our study, but essentially adds to

the priority inform ation of tasks. In general we could have had HARD, SOFT

or FIRM categories of criticality and a special category called INTERRUPT,

tha t implies th a t the corresponding task should be executed non-preemptively.

In this case study there is only one task tha t is not categorized as HARD. Since

this task (BUS JN T E R R U PT) is assigned the highest priority, it is guaranteed

to run un-preem pted, satisfying the requirement of tasks that are categorized

as IN TERRRU PT.

The periodicity of sporadic tasks was chosen randomly to lie between

the m inim um inter-arrival and the average periodicity of periodic tasks. The

m inim um inter-arrival tim e param eter of sporadic tasks gives a lower bound on

successive arrivals and is very rarely encountered in practice. Therefore, even if

two successive arrivals of a sporadic task do occur a t this minimum interval the

probability of the next instance also occurring at this interval is very remote.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B .l: Periodic Tasks

Task Name Characteristic Value
REAL_TIME_CLOCK Critical Level HARD

Priority 27
Period 50.00
Arrival Time 0.00
Execution Time 0.28
Deadline 9.00

R EA D J3U SJP Critical Level HARD
Priority 23
Period 10.00
Arrival Time 0.00
Execution Time 1.76
Deadline 10.00

COMMAND_ACUTUATORS Critical Level HARD
Priority 20
Period 200.00
Arrival Time 50.00
Execution Time 2.13
Deadline 14.00

REQUEST J3SS.DATA Critical Level HARD
Priority 19
Period 200.00
Arrival Time 150.00
Execution Time 1.43
Deadline 17.00

REQUEST_WHEEL_SPEEDS Critical Level HARD
Priority 18
Period 200
Arrival Time 0.00
Execution Time 1.43
Deadline 22.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Table B.2: Periodic Tasks - continued

Task Name Characteristic Value
REQUEST_IRES_DATA Critical Level HARD

Priority 17
Period 100.00
Arrival Time 0.00
Execution Time 1.43
Deadline 24.00

PROCESSJRES-DATA Critical Level LIARD
Priority 14
Period 100.00
Arrival Time 50.00
Execution Time 8.21
Deadline 50.0

CONTROL_LAW Critical Level HARD
Priority 8
Period 200.00
Arrival Time 50.00
Execution Tim e 22.84
Deadline 200.00

PROCESSJDSS-DATA Critical Level HARD
Priority 6
Period 1000.00
Arrival Time 200.00
Execution Tim e 5.16
Deadline 400.00

CALIBRATE.GYRO Critical Level HARD
Priority 5
Period 1000.00
Arrival Time 200.00
Execution Tim e 6.91
Deadline 900.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.3: Sporadic Tasks

Task Name Characteristic Value
B U SJN TER R U PT Critical Level INTERRUPT

Priority 62
Min Inter-arrival 10.00
Period 50.00
Arrival Time 0.0
Execution Tim e 0.18
Deadline 0.63

TELEM ETRYJRESPONSE Critical Level HARD
Priority 15
Min Inter-arrival 100.00
Period 200
Arrival Time 0.00
Execution T im e 3.19
Deadline 30.00

READ_YAW_GYRO Critical Level HARD
Priority 12
Min Inter-arrival 100.00
Period 500.00
Arrival Time 0.00
Execution T im e 4.08
Deadline 100.0

TELECOMMANDS Critical Level HARD
Priority 4
Min Inter-arrival 200.00
Period 500.00
Arrival Time 0.00
Execution T im e 2.50
Deadline 200.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V ita

Ramesh Yerraballi was born in 1970 in Hyderabad, India. He aquired his

Bachelors in Computer Science and Engineering from Osmania University, Hy

derabad, India, in 1991. He is due to receive his PhD degree in Computer

Science from Old Dominion University, Norfolk, VA, in August 1996. Starting

from the Fall of 96 he will be an A ssistant Professor at Midwestern State Uni

versity, W ichita Falls, TX. Dr. Y erraballi’s research interests include real-time

systems, distributed systems, high speed networks and performance issues in

operating systems and network protocols. His teaching interests encompass all

areas of Com puter Science.

Perm anent address: D epartm ent of Com puter Science
Old Dominion University
Norfolk, VA 23529
U.S.A.

This dissertation was typeset w ith lATgX* by the author.

% TgX is a document preparation system developed by Leslie Lamport as a special version
of Donald K nuth’s TpX Program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Summer 1996

	Scalability in Real-Time Systems
	Ramesh Yerraballi
	Recommended Citation

	tmp.1550588415.pdf.vGsT7

