
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 1995

Software Reliability Issues: An Experimental
Approach
Mary Ann Hoppa
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Software Engineering Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Hoppa, Mary A.. "Software Reliability Issues: An Experimental Approach" (1995). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/015h-mp72
https://digitalcommons.odu.edu/computerscience_etds/77

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/77?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SOFTWARE RELIABILITY ISSUES: AN EXPERIMENTAL APPROACH

by

Mary Ann Hoppa
B.S., B.A., June 1981, Auburn University, Auburn, Alabama

M.S., January 1986, George Mason University, Fairfax, Virginia

A Dissertation submitted to the Faculty of Old Dominion University in
Partial Fulfillment o f the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December, 1995

Approved by:

Dr. Lapf^W. Wilson (Advisor)

Dr. Michael D<^jfak

Dr. C. Michael Overstreet

Dr. (X Christian Wild

Dr. Steven J. Zeil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright by Mary Ann Hoppa 1995
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

SOFTWARE RELIABILITY ISSUES: AN EXPERIMENTAL APPROACH

Mary Ann Hoppa

Old Dominion University

Advisor: Dr. Larry W. Wilson

In this thesis, we present methodologies involving a data structure called the

debugging graph whereby the predictive performance of software reliability models can be

analyzed and improved under laboratory conditions. This procedure substitutes the

averages o f large sample sets for the single point samples normally used as inputs to these

models and thus supports scrutiny o f their performances with less random input data.

Initially, we describe the construction o f an extensive database of empirical

reliability data which we derived by testing each partially debugged version of subject

software represented by complete or partial debugging graphs. We demonstrate how

these data can be used to assign relative sizes to known bugs and to simulate multiple

debugging sessions. We then present the results from a series of proof-of-concept

experiments.

We show that controlling fault recovery order as represented by the data input to

some well-known reliability models can enable them to produce more accurate predictions

and can mitigate anomalous effects we attribute to manifestations of the fault interaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

phenomenon. Since limited testing resources are common in the real world, we

demonstrate the use of two approximation techniques, the surrogate oracle and path

truncations, to render the application o f our methodologies computationally feasible

outside a laboratory setting. We report results which support the assertion that reliability

data collected from just a partial debugging graph and subject to these approximations

qualitatively agrees with those collected under ideal laboratory conditions, provided one

accounts for optimistic bias introduced by the surrogate in later prediction stages. We

outline an algorithmic approach for using data derived from a partial debugging graph to

improve software reliability predictions, and show its complexity to be no worse than

0(n2). We summarize some outstanding questions as areas for future investigations of and

improvements to the software reliability prediction process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

The author gratefully recognizes the support o f family, faculty, friends and colleagues

during the seven years invested in attaining this goal.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Page

List of Tables...viii

List of Figures... x

1 Introduction..1

1.1 Purpose... 2

1.2 Overview of Paper.. 4

1.3 Notational Conventions...5

2 Background and Related Research... 6

2.1 Terminology.. 6

2.2 Historical Context of Reliability... 7

2.3 The Software Reliability Problem..10

2.3.1 As a Prediction System.. 10

2.3.2 Obstacles to Effective Modeling.. 11

2.3.2.1 Inability to Quantify Reliability...12

2.3.2.2 Lack o f A Universal Software Reliability M odel......................12

2.3.2.3 Inherent Complexity of Software..13

2.3.2.4 Randomness o f Debugging Data...13

2.3.3 Four Well-Known M odels.. 14

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

2.3.3.1 Jelinski-Moranda.. 14

2.3.3.2 Geometric De-Eutrophication... 16

2.3.3.3 Basic M usa...17

2.3.3.4 Logarithmic Poisson...18

2.4 Focus of Research..19

2.5 Related Work... 20

2.5.1 Replicated Debugging...20

2.5.2 Fault Interactions..21

2.5.3 Data Aging..21

2.5.4 Recalibration.. 23

2.5.5 Preliminary Debugging Graph Investigations..26

3 The Debugging Graph.. 30

3.1 Description...30

3.2 Construction.. 32

3.2.1 Generic Approach..32

3.2.2 Subject Software Details.. 34

3.2.2.1 Launch Interceptor Condition...34

3.2.2.2 Control Program Development...35

3.2.2.3 Test Environment Design... 36

3.2.2.4 Data Collection Component... 37

3.3 Conclusions... 38

4 Fault Sizing...39

4.1 Experiment Description.. 39

4.1.1 Static Relative Size Ranking at Levels 1 and 9 ... 40

4.1.2 Delta R Study at Levels 1 and 9... 41

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

4.1.3 Static Relative Size Ranking at Levels 2 and 8 ...42

4.1.4 Delta R Study at Levels 2 and 8... 45

4.1.5 Relative Size Determinations... 45

4.1.6 Some Debugging Path Inspections...47

4.2 Analysis... 47

4.3 Conclusions...49

5 Fault Interactions..51

5.1 Dynamic Relative Size Ranking... 52

5.1.1 The “Greedy” Path.. 52

5.1.2 The “Not-So-Greedy” P ath ..53

5.2 Bugs 7 and 9 .. 54

5.2.1 Repair Anomalies.. 55

5.2.2 Fail Set Study...56

5.3 Bugs 9 and 10..57

5.3.1 Repair Anomalies.. 57

5.3.2 Fail Set Study...58

5.4 Analysis..59

5.5 Conclusions...61

6 Fault Recovery Order...63

6.1 Experiment Description.. 63

6.1.1 Path Selection Criteria.. 63

6.1.2 Comparison Path Data.. 65

6.1.3 Comparing Models’ Performance..65

6.1.3.1 Iterative Prediction Process..67

6.1.3.2 Normalized Comparison Data.. 67

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

6.2 Analysis.. 71

6.3 Conclusions..74

7 Surrogate Oracle... 77

7.1 Experiment Description..77

7.1.1 Path Selection Criteria..78

7.1.2 Comparison Path Data..78

7.1.3 Comparing Models’ Performance.. 80

7.1.3.1 Iterative Prediction Process.. 80

7.1.3.2 Normalized Comparison Data... 80

7.2 Analysis...87

7.3 Conclusions..95

8 Truncated Paths... 97

8.1 Experiment Description... 98

8.2 Analysis...103

8.3 Conclusions.. 120

9 New Methodologies... 122

9.1 Software Reliability Engineering Applications..122

9.2 An Approach to Using a Partial Debugging Graph... 124

9.2.1 Initial Prediction..128

9.2.2 Subsequent Iterations...124

9.3 Complexity Analysis... 127

9.3.1 Oracle Complexity.. 128

9.3.2 Model Complexity...129

9.3.3 Process Complexity.. 129

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

9.4 Wall-Clock Analysis..131

9.5 Fault Interaction Concerns...133

10 Conclusion.. 136

10.1 Summary...136

10.2 Contribution to Current Practice...137

10.3 Future Directions.. 138

References..140

Appendices...145

A Porting the LIC Test Environment..145

B Description o f the LICCtrl Program Interface..157

C Test Environment Configuration... 164

D Validation of Software Reliability Model Implementations.................................... 172

Glossary... 180

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table Page

1. Static Relative Size Ranking at Levels 1 and 9 .. 40

2. Delta Reliabilities at Levels 1 and 9 ..41

3. Static Relative Size Rankings at Levels 1 and 2 ... 43

4. Static Relative Size Rankings at Levels 8 and 9 ... 44

5. Some Delta Reliabilities at Levels 2 and 8..44

6. Some Bug Sizes..46

7. Fail Sets Associated with Bug 7 and Bug.9... 56

8. Fail Sets Associated with Bug 9 and Bug 10... 58

9. Description of Debugging Paths...64

10. Repair Numbers and R values for Comparison Paths (Gold Oracle)...................... 66

11. Jelinski-Moranda Prediction Ratios (Gold / Gold)...69

12. Geometric De-Eutrophication Prediction Ratios (Gold / G old)69

13. Basic Musa Prediction Ratios (Gold / Gold)... 70

14. Logarithmic Poisson Prediction Ratios (Gold / G old)..70

15. Repair Numbers and R Values for Comparison Paths (Surrogate Oracle)..............79

16a. Jelinski-Moranda Prediction Ratios (Surrogate / Surrogate).................................. 83

16b. Jelinski-Moranda Prediction Ratios (Surrogate / Gold)..83

17a. Geometric De-Eutrophication Prediction Ratios (Surrogate / Surrogate)84

17b. Geometric De-Eutrophication Prediction Ratios (Surrogate / Gold)84

18a. Basic Musa Prediction Ratios (Surrogate / Surrogate)...85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Page

18b. Basic Musa Prediction Ratios (Surrogate / Gold)..85

19a. Logarithmic Poisson Prediction Ratios (Surrogate / Surrogate)............................. 86

19b. Logarithmic Poisson Prediction Ratios (Surrogate / Gold)...................................... 86

20. Jelinski-Moranda Aged Prediction Ratios (Gold / Gold)..99

21. Geometric De-Eutrophication Aged Prediction Ratios (Gold / Gold) 100

22. Basic Musa Aged Prediction Ratios (Gold / Gold)..101

23. Logarithmic Poisson Aged Prediction Ratios (Gold / Gold).................................. 102

24a. Jelinski-Moranda Aged Prediction Ratios (Surrogate / Surrogate)....................... 108

24b. Jelinski-Moranda Aged Prediction Ratios (Surrogate / Gold)...............................109

25a. Geometric De-Eutrophication Aged Prediction Ratios

(Surrogate / Surrogate) ..110

25b. Geometric De-Eutrophication Aged Prediction Ratios

(Surrogate / G old) .. I l l

26a. Basic Musa Aged Prediction Ratios (Surrogate / Surrogate)................................112

26b. Basic Musa AgedPrediction Ratios (Surrogate / G old)..113

27a. Logarithmic Poisson AgedPrediction Ratios (Surrogate / Surrogate)...................114

27b. Logarithmic Poisson Aged Prediction Ratios (Surrogate / Gold)......................... 115

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure Page

1. Typical Bathtub Curve of Failure Rate Versus Time... 9

2. Some Graphical Depictions of Failure Rate Versus Execution Time........................15

3. Example u-plot Recalibration Function.. 25

4. Debugging Graph for n = 4 ... 31

5. Empirical Reliability Calculation Procedure...33

6. Overall LICCtrl Program Logic...35

7. Largest-to-Smallest Paths.. 48

8. “Greedy” Path Attempts...53

9. A “Not-So-Greedy” P ath ...54

10. MTTF Comparison Procedure...65

11. Predictive Performance Continuum..68

12. Prediction Ratios Compared Along a “Largest-to-Smallest” Path73

13. Prediction Ratios Compared Along Three Paths... 75

14. R Value Differences Along Some Paths (Surrogate - Gold).....................................81

15. Geometric De-Eutrophication Prediction Ratios Comparisons................................ 91

16. Basic Musa Prediction Ratios Comparisons...92

17. Logarithmic Poisson Prediction Ratios Comparisons..93

18. Cumulative Versus Aged Prediction Ratio Comparisons

for Path 1 (G old/G old)..106

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure Page

19. Cumulative Versus Aged Prediction Ratio Comparisons

for Path 4 (Gold / Gold).. 107

20. Cumulative Versus Aged Prediction Ratio Comparisons

for Path 1 (Surrogate / Surrogate)..118

21. Cumulative Versus Aged Prediction Ratio Comparisons

for Path 4 (Surrogate / Surrogate)..119

22. Making a Single Reliability Prediction...124

23. Making Subsequent Predictions..126

24. Algorithmic Complexity Analysis..130

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One

Introduction

The development of robust models for estimating the reliability of software and for

predicting achievable reliability remains one o f the foremost computer science research

areas. It has been observed that measuring the reliability of a program has proved to be an

unexpectedly challenging task for over two decades [4], Despite persistent research

activity, software reliability assessment and prediction continue to be elusive problems.

While many predictive software reliability models have been proposed, no one model has

yet emerged as universally applicable; nor is it clear if such robustness can be realized.

Feedback gained from controlled, repeatable experiments is particularly needed to

determine the efficacy o f existing models and to devise the means to assess their suitability

for a given project.

Typically, predictive software reliability models use a single debugging pass,

resulting in one sequence o f times to failure as inputs to stochastically predict reliability

and the related quantities of failure rate and mean time to next failure. This fails to

recognize that, had a different stream of inputs or different testing techniques been used,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the order in which the faults are discovered, and hence the sequences o f times to failure,

might vary radically. Uncertainty about the order o f fault recovery is further compounded

in that a sample of size one is used to represent the failure rate o f the software for each

stage o f the fault removal process.

When an observed process remains the same over a long period of time, then a

great deal or all o f the data derived from that process should be used to model it. If,

however, there is significant change in the process, it may be possible to more accurately

represent it by excluding or weighting some observations. Although such data aging

techniques as the moving average and exponential smoothing are frequently used in other

fields, it has been only recently that similar approaches for filtering failure data to display

trends in accordance with various reliability growth models’ assumptions have been

addressed [28], This process is further complicated since, while it is now widely accepted

that individual faults fail with different rates, to date little work has been done in

examining changes in reliability trends that could be caused by interdependency of faults.

1.1 Purpose

The concerns discussed above initially motivated us to consider the fact that the

failure data used in software reliability models are derived from only one of many possible

repair processes. Assume data from n failures are being used, and that once a failure has

occurred, its repair is installed before proceeding to the next debugging iteration. Then

there are //! possible orders in which those faults could be individually identified and

repaired — any one of the n faults on the first debugging iteration, followed by any one of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(//-I) remaining faults on the second iteration, and so on until the last known fault is

removed.

We address this issue by experimentally considering multiple orders for fault

removal. We mitigate the potential for a sequence o f single time to failure observations to

induce randomness in an algorithm’s predictive accuracy by using an average observed

failure rate for each iteration rather than a sample o f size one. Our approach to choosing

specific fault recovery orders is based on a relative fault size criterion rooted in observing

the failure rate attributable to each known fault. We experimentally consider the potential

for the presence o f various combinations of other faults, both known and unknown, to

affect the relative fault sizes and size ordering.

While laboratory investigations are useful to evaluate a model’s performance and

to compare various models, the means must exist for translating the lessons learned into

techniques applicable to the domain of software development. This motivated two further

efforts. First, we propose and evaluate an alternative way to study models’ predictive

accuracy when a perfectly reliable benchmark is not available. We go on to study a data

aging criterion, path truncation, which controls the computational complexity o f the

proposed methodologies. Our overall goal is to determine ways for improving software

reliability predictions from existing models, and to assist practitioners in choosing

model(s) applicable to their project.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Overview of Paper

In this paper we present results from a number of experiments designed to

investigate the issues sketched above. In Chapter 2 we provide background and

summarize related work to establish a basis for subsequent discussions. In Chapter 3 we

describe the debugging graph data structure which we used as a testbed for our

experiments. Chapters 4 through 8 detail the specific experiments we conducted on the

following topics:

• establishing relative fault sizes;

• investigating faults whose failure behavior appears to change in the presence of

other faults;

• studying the effects o f varying the fault recovery order on models’ predictive

accuracy;

• using a substitute for the gold version program in empirical reliability

measurement; and

• choosing subsets of the known failure data to limit the computational effort of

debugging graph applications.

Chapter 9 outlines some practical methodologies for real-world application based on the

experimental results. Finally, Chapter 10 summarizes our findings and recommends

possible avenues o f future research.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Notational Conventions

Subsequent to this chapter, the initial use o f any term or acronym listed in the

glossary is given in boldface italic type (e.g., Mean Time to Failure (MTTF)), while

program and file names are printed in boldface type (e.g., LICCtrl). Per standard

practice, italic type is used throughout the paper for emphasis.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Two

Background and Related Research

In this chapter, we define the software reliability problem. After establishing a

consistent terminology to be used throughout the thesis, we describe the general software

reliability problem from an historical viewpoint as well as its contemporary definition as a

prediction system. We cite significant factors that continue to make a generic software

reliability model so elusive. We describe the essentials of the four well-known software

reliability models used in our experiments. We summarize the focus of this thesis and

previous research which led to the concepts it explores.

2.1 Terminology

Let P be a program of finite length which has been written to satisfy a particular

set o f specifications including a pre-defined execution time deadline. We define failure as

a departure of the external results o f P’s execution from its requirements on a particular

run. A run consists of a single execution instance of P involving the transformation of an

input case to an output (or abnormal termination). A fault or bug, then, is defective,

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

missing or extra code that is the cause of one or more failures for the program. The

collection o f input cases for which failures are observed due to some fault is commonly

called its fa il set.

Sofhvare reliability (R) is the probability o f a software product operating for a

given period of time in a particular environment without exhibiting any failures. In many

instances, the number of input cases is proportional to the execution time. We will assume

this to be true for the remainder of the thesis. This will allow us to use the average time of

computation for an input case as the given time period, and R becomes the probability of

success per input. The failure rate (F = 1 - R) expresses the probability that a software

product will exhibit a failure during a given time period in its specified environment.

Assuming an exponential distribution, the mean time to failure (MTTF) is 1/F.

We use the term fault recovery to mean the identification of faults and the

implementation o f suitable code repairs whose installation removes those faults from the

program. For purposes of discussing this preliminary material, a debugging session

consists o f the recovery of some collection o f n known faults from a program.

2.2 Historical Context of Reliability

Conventional hardware reliability theory is concerned with determining the

probability that physical components perform their required function under controlled

conditions for a specific period of time. Progress has been achieved in this discipline

through a concentration on the random processes o f physical failures and statistical

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methodologies for capturing how the reliability of a complex hardware system depends on

the reliability of its constituent components.

The general failure pattern of hardware has been naturally categorized by three

periods of operation:

• the early failure period, in which failures are observed in inherently weak parts

that were improperly designed, manufactured or used;

• the constant failure period, or useful life of a system, in which failures occur

infrequently, at a random and uniform rate; and

• the wear-out failure period, during which components rapidly deteriorate.

It was found that the reliability function of an entire hardware system can be represented

by the product of the individual reliability functions for each component, each obeying the

so-called bathtub curve shown in Figure 1 [30],

Such success in the hardware arena encouraged concurrent and at times analogous

research into determining the reliability of software. This newer problem is concerned

with how well a given program or software system functions with respect to customer

requirements. In classical reliability terms, software reliability can be described as the

probability that at a specified time T, the system is operating and will continue to work

without failure over a subsequent time interval [19]. A software failure is defined broadly

as “not meeting some user requirement.” Notwithstanding many significant strides in our

understanding of the qualitative behavior of software failures, some experts feel that we

still lack the means to definitively quantify them [5],

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FAILURE
RATE

i Wear-Out Failure PeriodEarly Failure Period Constant Failure Period

TIME

Figure 1. Typical Bathtub Curve of Failure Rate Versus Time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 The Software Reliability Problem

In its simplest form, the software reliability problem has two themes:

• How to make predictions about the future performance of a piece of software, or

to assert that some pre-defined level of reliability has been achieved; and

• How to know that any such statements are trustworthy.

Reliability growth models attempt to quantify the operational “goodness” of software

based on data gathered during some phase(s) of the software lifecycle.

Although different models vary considerably in the details of their mathematical

structure, the basics of the problem can be summarized as follows. The user has available

some raw data that are — or can be used to derive — a sequence of execution times ti, tz,

..., tn between successive software failures. These times are the realizations of random

variables Ti, T2, ..., T;.i. The objective is to use these past observations to predict the

future unobserved realizations of Tj, Tj+i, ... and so on. That is, at stage i, when the first

(/-l) failures have already been repaired, the goal is to predict the future failure behavior.

Details can be found in the literature [2, 5, 6, 13, 15, 16, 17, 18, 19, 20, 22, 26, 29] and

later in this paper of various attempts to model these processes.

2.3.1 As a Prediction System

In many cases, the user will be satisfied simply to know the current reliability of the

software. Alternatively, the user may wish to predict when a target realiability will be

achieved, perhaps to mark a satisfactory end to software debugging. The predictive

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

element of the software reliability problem is sometimes overlooked, even in the technical

literature. Authors often “validate” a model by showing it accurately explains past failure

behavior. But the ability to capture the past accurately does not necessarily imply an

ability to predict accurately [8, 21]. In either case, the software reliability problem can

really be regarded as the specification of a prediction system that allows the estimation of

future Ti, Tj+i, ... from the past times ti, t2, ..., tu. The system consists of three

components:

• the probabilistic model o f the Tj’s in terms of one or more (unknown)

parameters;

• a statistical inference procedure for estimating the parameters based on the

known realizations o f (past) Ti’s; and

• a prediction procedure that uses the probabilistic model and the inference

procedure for making probability statements about future T j’s [2].

2.3.2 Obstacles to Effective Modeling

A generic, universally applicable software reliability model has yet to emerge.

Likewise, no one has yet succeeded in formulating positive criteria for selecting the use of

any of the existing software reliability models in particular cases. Negative criteria exist

for disqualifying certain models against a given set of observed data based on numerical

nonconvergence [35], The existing software reliability models fail to account for

reliability improvement variance introduced by potentially different debugging orders.

Therefore, understanding the nature o f debugging variability merits further research to

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determine whether controlling or accounting for this variability can be used to improve

reliability predictions and to identify appropriate software reliability models.

2.3.2.1 Inability to Quantify Reliability of Software

While we can assert with a high level o f confidence that every software system of

more than trivial complexity contains errors, such faults may lay dormant for arbitrary

lengths of time, and we can never affirm that the last design or implementation flaw in the

software has been found [1]. Considerable effort has been spent in developing techniques

for measuring the number of software faults in a program and predicting how long before

the next failure manifests itself under given operational scenarios. As pointed out in

Section 2.3, this has resulted in an abundance o f mathematical software reliability models.

2.3.2.2 Lack of a Universal Software Reliability Model

Unlike hardware, software failures do not result from aging components. They

arise from errors in the specifications of desired functionalities for the subject system,

conceptual design errors and implementation inaccuracies such as incorrect combinations

of computer language instructions. Despite the large number o f models available, still no

universally applicable software reliability model exists that can be recommended as giving

accurate predictions in all circumstances; nor are we equipped with the knowledge to

decide in any given context which of the existing models, if any, would be most

appropriate to use [5],

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2.3 Inherent Complexity o f Software

The complexity of software is an inherent and essential property [9], Some of the

difficulties o f software reliability modeling, then, may be attributed to the nature of

software itself. Another factor to consider is that every change to a software system, such

as code repairs to fix operational failures, creates a new system having different properties

from the original one [32], In our zeal to correct software flaws as we find them, we may

be mutating many of the characteristics one might think to use as a basis for, or as

selection criteria of, software reliability models.

2.3.2.4 Randomness of Debugging Data

Another difficulty in reliability modeling is the randomness present in data

generated by the debugging process. Debugging activity can be regarded as the recovery

o f n software faults in some arbitrary order. Suppose one starts with multiple copies of

the same undebugged piece of software and applies a different collection o f test input

cases — or a unique series of random inputs — to each copy. Assume that once a failure

is encountered, repairs are made to correct it before debugging continues. It would not be

surprising to find a different recovery ordering of the n bugs in each replicate, as well as

variance in the reliability improvement after the /,th bug is removed in each replicate.

It has been conjectured that such variance fails to be adequately accounted for in

existing reliability models, which make predictions based on a single debugging session.

Additionally, at each predictive stage, a single realization of time to failure is typically used

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to formulate the next input to the model, rather than the average of many trials. It has

been shown that variance resulting from these practices can play a large role in the poor

performance of two well-known software reliability models in the general case [34],

2.3.3 Four Well-Known Models

The models examined in the experiments documented in subsequent chapters are

Jelinski-Moranda [17], Geometric De-Eutrophication [23], Basic Musa [22], and

Logarithmic Poisson [24], whose assumptions and algorithms are well known from the

literature. Their characteristics are summarized here for the sake of completeness, and

plots of failure rate versus execution time, which originally appeared in [23, page 327] and

[22, page 42], are shown in Figure 2. The models’ fundamental formulae for maximum

likelihood parameter estimates are also provided. We validated our C programming

language implementations of these four models prior to data collection. This analysis is

given in Appendix D.

2.3.3.1 Jelinski-Moranda

The Jelinski-Moranda model assumes that all faults contribute equally to the

unreliability of the program, so that the plot of failure rate versus time is a step function in

which each step essentially represents one “error’s worth” o f hazard. The model estimates

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f(t)

t

f(t) h

t
Jelinski-Moranda Geometric De-Eutrophication

Failure Rate Versus Time

t t
Basic Musa Logarithmic Poisson

Failure Intensity Versus Time, TipA > ^pB_______

Figure 2. Some Graphical Depictions of Failure Rate Versus Execution Time

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the total number o f errors in a program, TV, by determining a value of TV for which the

following two functions are equal:

E, = i,„[l / (N - (/ - l))] and /; / (TV- (I , . (/-l) • Xt)]) / T)

In these equations:

TV represents the total number of errors in the program;

// represents the number of failures observed;

X(represents the time at which the /th failure was observed;

Tis the sum of all A7 s.

A proportionality constant, <j), is then estimated by using the estimator for N in the

following formula:

<}> = / / / ((TV- 7) - 1, = i,n[(M) • Xj])

Thus, after the /lh error has been found, the residual number of errors in the software is

estimated to be (TV- //), while the failure rate F is (TV- /)•<)>.

2.33.2 Geometric De-Eutrophication

In an attempt to describe testing in which an accumulated group of faults is

corrected simultaneously or the hazard contributions of faults are not equal, the Geometric

De-Eutrophication model instead assumes a plot of failure rate versus time in which the

step size decreases in a geometric sequence with each subsequent fault removal. D

represents the initial detection rate. It holds until the first error is found, at which time the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rate becomes k • D, where 0 < k < 1. In general, the detection rate is kf • D after the z01

error has been found, with the detection rates forming a converging geometric series.

The model estimates a value for the proportionality constant k for which the

following two functions are equal:

(i i + l) / 2 and (E,= i,B[i • k' • Xj }) / (L, = i>n[A* • Ai])

In these equations:

n represents the number o f failures observed;

X(represents the time at which the z'th failure was observed.

D can then be estimated by using k’s estimate in the following formula:

D = n / (l i=hn[ki-l -X i])

F is easily estimated using the formula D • k".

2.3.33 Basic Musa

The Basic Musa model, the continuous analogue to Jelinski-Moranda, assumes

that failure intensity decreases by a constant amount regardless o f which failure is

repaired, with the physical interpretation that all errors are equally likely to occur, but are

embedded in a continuous rather than a stepwise function. A value bt, which represents

the ratio of initial failure intensity over the total number of bugs in the program, is

estimated by solving the following:

me / bi - me ■ te / (exp{b, • te) -1) - Zi= ^ [t ,] = 0

In this equation:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

me represents the number o f bugs removed;

U represents the time the f 1 bug was removed;

te represents the time at which testing ended.

An estimator for b0, the total number o f bugs in the software, is obtained by using bi s

estimator in the following formula:

b0 = me l (1 - exp(- br te))

The number of bugs removed by time t is then given by the function:

u(0 = b0 ■ (1 - exp(- b i - t))

The failure rate is estimated using the function:

X(t) = bo-bj • exp(- b r t)

2.3.3.4 Logarithmic Poisson

The Logarithmic Poisson model, as the continuous counterpart to Geometric De-

Eutrophication, exhibits a failure intensity decrement which becomes exponentially smaller

with subsequent fault removals, so that the first repair yields substantial improvement,

while the effects of later repairs are much smaller. A value bi, which estimates the

product of the initial failure intensity and an intensity decay parameter, is obtained by

solving the following:

1 / b, • (Si = i ,̂e[1/ (1 + b, ■ t i)]) - m e - t j ((1 + b, ■ te) • ln(l + b , - t e)) = 0

In this equation:

me represents the number o f bugs removed;

ti represents the time the /'th bug was removed;

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

te represents the time at which testing ended.

An estimator for b0, the inverse of the intensity decay parameter, is obtained by using b /’s

estimator in the following formula:

b0 = me / ln(l + bi • te)

The number o f bugs removed by time t is then given by the function:

u(0 = b0 • ln(l + b] ■ t)

The failure rate is estimated using the function:

W) = bo - bi / (1 + bi • t)

2.4 Focus of Research

Our contribution is two-fold. First, we present new methodologies for improving

predictions from existing software reliability models, and for assisting practitioners in

choosing relevent model(s) for their project. We approach this problem in the laboratory,

where a perfect version of the tested program can be used to assess the failure rates o f

known bugs. Our experiments control the presentation order of fault recovery data to the

models and investigate the potential for observed failure rates to change based on the

current debugging state o f the software. These methodologies use a data structure called

the debugging graph as an analysis aid. Second, we propose means for translating these

laboratory approaches into real-world methods by demonstrating the utility o f an

alternative to using the perfect program to assess reliability and by applying data aging

techniques.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Related Work

Here we detail previous experiments and published research which motivated our

investigations.

2.5.1 Replicated Debugging

The idea o f repetitively debugging a software module was first advocated by Nagel

and Skrivan [25] to provide better estimates of program error rates as well as the error

rates associated with individual faults. In this repetitive run modeling approach, the first

debugging replication proceeds until n faults are recovered using randomly generated

inputs based on a program usage distribution. The repair corresponding to each fault is

identified and saved. On subsequent replications, the software is returned to its initial

faulty state and debugged again — using the known repairs — with a different set of

randomly generated inputs. The goal is to repeatedly debug the software in order to

obtain multiple instances of the sequence of interfailure times. By conducting many

replications, Nagel and Skrivan determined, among other things, that faults occur with

unequal error rates.

The significance of recovering bugs in different orders on separate replications

inspired Wilson and Shen’s debugging graph model discussed later in this paper [33],

Wilson and Shen also studied the effects of collecting and averaging multiple observations

o f the current time to next failure at each debugging stage via simulated replications, in

which multiple times to failure for a given debugging stage were randomly drawn from the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumed underlying distributions o f some well-known models. Their observation of

improved predictive behavior as the sample size increased at each stage motivated our

interest in the potential effects of the single sample convention now practiced [34],

2.5.2 Fault Interactions

Dunham [11] reported some preliminary investigations of one kind of fault

interaction called compensation. Two faults are compensatory if certain failures occur

when either fault is in the program, but not when boths faults are present. The interaction

can range from partial compensation, in which some of the respective faults’ failures still

can be observed, to fu ll compensation, in which none of the respective faults’ failures are

manifested, when the faults are simultaneously present. Based on these investigations, the

interaction phenomenon was advanced as a possible explanation for apparent changes in

reliability improvement seen when installing certain repairs in the context of different bug

sets, as well as for the varying quality of predictions given by existing software reliability

models.

2.5.3 Data Aging

Data aging techniques are based on the assumption that older data may not be as

representative of a current and future process as more recent data. Although methods

such as the moving average and exponential smoothing are frequently used in other fields,

only recently have reliability researchers begun investigating ways to choose a subset of all

observed data for modeling the software failure process. Schneidewind reasoned that

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changes in reliability trends could be caused by such factors as fault dependencies and

variation in the time between failure occurrence and fault correction; so by excluding or

giving lower weight to earlier failures it might be possible to obtain more accurate

predictions of future failures [28],

Using his Non-Homogeneous Poisson Process software reliability model and the

Space Shuttle on-board flight software as case studies, Schneidewind examined three ways

to determine an optimal value o fs, an index in the range 1 < 5 < /, which is the starting

value of equal-length failure count intervals:

• Choose all the failures in the execution intervals from 1 to I. This method is used

if it is assumed that all historical failure counts from 1 through / are

representative of the future failure process.

• Exclude counts from 1 to 5-1. This method is used if it is assumed that only the

historical failure counts from s through t are representative of the future failure

process.

• Use an aggregate count from 1 to 5-1 and individual counts from s to t. This

method is used if it is assumed that the historical cumulative failure count from 1

through 5-1 and the individual failure counts from s through t are representative

of the future failure process.

Schneidewind investigated the application o f various criteria for estimating an

optimal value of s which produces the most accurate predictions. For example, he treated

the failure count interval index as a parameter by substituting model functions for data

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vectors and optimizing on functions derived from maximum likelihood estimation

techniques. Alternatively, he used weighted least squares to maintain constant variance in

the presence of the decreasing failure rate assumed by his model, as well as the familiar

mean square error test. His investigations found that all proposed aging criteria produced

better predictions for the Space Shuttle software than using all the failure data, whether

those predictions were cumulative failures or times to next failure, and he suggested that

other software reliability models could benefit from using data aging. Our experiments

examine whether data aging is applicable to keeping the computational complexity o f the

debugging graph methodologies reasonable.

2.5.4 Recalibration

By allowing the user to estimate the relationship between the software reliability

predicted by a model and the tme reliability figure, the process of recalibration offers a

very general way by which predictions can be improved. Much of the work in this area

has taken place at the Centre for Software Reliability in London. Brocklehurst et al.

subsumed some preliminary model adaptation work and proposed a systematic model

recalibration approach to analyze and improve models’ predictions by estimating the

relationship between predicted and true accuracy. The fundamental technique is

summarized here; details and mathematical justifications can be found in [5],

Having observed tj, t2, ..., tn , a good estimate of Fj(t) is sought; i.e., P(Ti < t).

The equivalent reliability statement o f the preceding is Rj(t) = 1 - Fj(t). An existing

reliability model is used to calculate an estimate or a predictor of Fj(t), denoted here as

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F;(t)*. The difficulty of analyzing “how close” F;(t)* is to the true Fj(t) lies in the fact that

F;(t) will always be an unknown. The deviations between the estimated and true values

are viewed as two varieties: bias, consistent deviation between prediction and reality; and

noise, large variability in the difference between prediction and reality [2], The only

information available to assess and account for these differences are the single samples of

each o f the random variables T whenever the software fails.

The informal approach to this analysis is that the user inspects the pairs { F;(t)*, ti}

to see if there is any evidence the the tj’s are not realizations of random variables from the

F;(t)*’s, since such a departure would suggest that there are significant differences between

the predicted and actual behavior. The assessment is done by drawing a u-plot, an

example is shown in Figure 3. For this graph, n previously calculated predictor Fj(t)*’s —

possibly relabeled to be non-decreasing — each with a value between 0 and 1, are

located on the x-axis. The corresponding y values start at 0 and increase by 1 / (/z+1) for

each subsequent data point. The maximum absolute vertical difference between the

plotted points and the line of unit slope can be used to make statements about the

percentage level significance of the departure o f the predicted values from reality. The

relative amounts of plotted points above and below the line of unit slope can be used to

make general statements about how optimistic or pessimistic the predictor tends to be.

A key assumption in the recalibration technique is that the relationship between the

estimated F;(t)*’s and the true F;(t) of the random variable Tj’s can be represented by a

sequence o f functions which change only slowly in most cases. Graphical techniques may

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1/ (n+1)
►

n = 5

Figure 3. Example u-plot Recalibration Function

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be used to increase confidence in this assumption by examining the u-plot data for trend.

The simplest form of the recalibration function is then realized by using the u-plot with

steps joined up to form a polygon. Various smoothing techniques may also be applied to

assure continuity of the estimator plot’s derivative.

After the basic prediction system is used to make a “raw” prediction of F;(t)*, this

value is then located on the x-axis o f the estimator u-plot and projected up to the polygon

to interpolate the value needed to recalibrate the raw prediction. As information about the

actual failure history increases, the estimator plot is suitably modified. Brockelhurst et al.

used simulated data to validate their approach, and they also discuss techniques for

choosing the best of available prediction systems for a given data source.

The recalibration approach exhibits several concepts we likewise have addressed in

our studies. The technique supports an implicit reordering of the failure data to construct

the recalibration function, which we address explicitly. Further, as failure history

increases, the predictor function adapts to account for the effects of long-term trends and

localized behaviors, which we address through a combination of failure data reordering

and aging.

2.5.5 Preliminary Debugging Graph Investigations

The construction o f two levels of a partial debugging graph (see Figure 4), then

called an error graph, was the subject of a 1990 Master’s Degree project by two students

in the Computer Science Department at ODU, White and Harbison [31]. Their

investigations were intentionally limited so the project could be completed within a six-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

month time frame, and it was intended to lead to further research. Although they did not

advance any formal hypotheses about the kinds of information from the graph that might

be useful, they alluded to a desire to determine a unique path through the graph to use for

standardizing data for existing reliability models. They also hoped to find a substitute for

the oracle or gold version program (see Section 3.2.1) that is required for replicated

debugging. This would represent a significant step forward since, outside the laboratory,

one is not guaranteed the existence o f a highly reliable, independently developed version

of the software under test.

To constrain the size of the data collection problem, White and Harbison selected

one of three independently developed versions of a software solution to a well-known

launch interceptor problem having 12 known bugs. One of the bugs with a nearly 100%

failure rate was repaired prior to data collection, and another bug with an extremely low

incidence o f detection was ignored, resulting in a total of ten significant bugs in the study.

Data were collected using an existing oracle and instrumentation developed specifically for

the subject software. A partial debugging graph was constructed by estimating reliability

figures for variants of the program having either just one of the ten repairs installed, or

nine of the ten repairs installed, using either 100,000 or 1,000,000 test cases.

White and Harbison then examined the potential application o f delta graphs and

surrogate oracles to eliminate to need for the oracle. Both techniques involve substituting

a partially debugged software version for the independently developed, highly reliable

baseline or “gold” program typically used to assess the performance o f the software under

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test. The surrogate oracle refers to an arrangement in which the substitute program

consists o f the software under test with all known repairs installed. The delta graph is

used to approximate the debugging graph and to show incremental improvement of the

tested software. For example, when the bug subsets of the substitute oracle and the tested

variant differ by just one element, this provides a technique for approximating the size of

the bug represented by the difference of the subsets.

In inspecting their partial debugging graph, White and Harbison advanced several

conjectures. They proposed that data derived from the debugging graph could be used to

rank the bugs in a size order based on their relative reliability growth figures. They felt

that some numerical relationship may exist between the deltas calculated for the delta

graph and the reliability growth figures calculated in the debugging graph; however, as

statistical analysis was beyond the scope of their research, they did not attempt to derive

such a relationship. The reliability figures calculated using the surrogate oracle versus the

gold version program were close enough to merit futher investigation, but appeared to

contain some unexpected discrepancies which prevented any firm conclusions.

White and Harbison also noted an unexpected lack of correspondence in the

changes in reliability produced by isolating the installation of a single repair at the start of

debugging versus the removal of that same repair at the end o f the debugging process.

Although they suspected fault interactions (see 2.5.2), some errant effects in the test

environment could not be discounted as possible sources of this behavior. By

implementing a new test environment with all extraneous instrumentation from past

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experiments removed, a goal of our experiments is to definitively determine the utility of

sizing the bugs, using the surrogate oracle and possible evidence of fault interactions.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Three

The Debugging Graph

In the following paragraphs, we describe the debugging graph, a data structure we

used as the basis for studying the effects of various fault recovery orders on the predictive

accuracy of software reliability models. We outline the general approach to building such

a graph, then provide specific details for the subject software of our experiments.

3.1 Description

Suppose a program contains n known faults labeled 1.../? respectively. There are n!

possible orders in which the n faults could have been individually located and repaired.

The debugging graph, as shown in Figure 4, is useful for representing these n! orders [25,

33], The rows, or levels, of the debugging graph are labeled from 0 to //, with row i

representing stage / of a debugging process where / of the n bugs have been repaired. The

term variant references any version of the original program with some subset o f the

known repairs installed. Each graph node represents a variant and is labeled

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level 0

Level 1

I Level 2
1,4 J 3,42,3

Level 31,2,3, 1,3,41,2,4

Level 4,2,3,4

Figure 4. Debugging Graph for n = 4
With One Debugging Session Indicated

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with P subscripted by the subset of {1,2,...,/;} corresponding to the faults repaired in that

variant.

Level 0 consists of a single node, labeled P, which represents the variant with no

repairs installed. Likewise, level n constains a single node, labeled Pi...„, which represents

the software with all n known repairs installed. In general, at level m, 1 < m < n, there are

m! / (n! ■ (n-m)\) nodes and a total of 2” nodes in the debugging graph. An edge in the

graph represents a repair for one fault and connects one node to another one level lower,

where the subscripts of the adjacent nodes differ in exactly one element. In general, at

level m, 1 < m < //, each node has (/;-///) edges joining it to nodes at level (m + l). This

results in a total of 2(n+l) edges in the debugging graph. A debugging session removes all

known bugs and is represented by a path in the debugging graph from P to Pi...„ that

follows edges through exactly one node at each o f the levels 0 through n. Graph nodes

and edges can also be labeled with significant quantities, as we will describe below.

3.2 Construction

3.2.1 Generic Approach

To physically realize the debugging graph, variants of the original software must

be created containing subsets of the known repairs, and organized in such a way as to be

amenable to testing. As described in 3.2.2.3, a directory structure may be set up to hold

the program variants and to enable easy navigation among them. UNIX shell scripts as

described in Appendix C can be used to automate the construction of the program variants

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by assembling “flawed” and “repaired” pieces o f code. A suitable means for subjecting the

variants to test cases must also be devised.

As an example, a control program is described in 3.2.2.2 which subjects variants

to a random, but repeatable, input stream and tests their outputs for correctness via a

process illustrated in Figure 5. To obtain empirical reliability estimates, the control

program subjects each variant to a large set of inputs, generated randomly according to

the prescribed usage distribution. In a laboratory setting, the number of inputs producing

expected outputs can be determined by using an error detector which is implemented by

comparing a variant’s outputs to those produced by a gold version of the program when

both are subjected to the same input stream. Since the gold version always produces the

correct outputs, a variant’s reliability can be estimated via such an error detector using the

following calculation:

R = (number of “expected” outputs) / (total number of inputs).

Here, “expected” behavior means the variant’s outputs agree with the gold version’s

outputs for the same input case. Thus each node in the debugging graph can be labeled

with the empirically determined reliability of its corresponding variant. To motivate later

r*- “Test” Version correct++

Random Input
Generator

R = correct I
(correct +
incorrect)

Agree

incorrect++
Gold” Version

Figure 5. Empirical Reliability Calculation Procedure

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

notational conventions, we will refer to the error detector constructed using the gold

version program as the gold oracle.

3.2.2 Subject Software Details

We set out to construct a debugging graph for software developed under realistic,

although controlled laboratory, conditions. We identified a body o f code commonly called

the Lauch Interceptor Condition (LIC) application. This software has been the subject

of prior NASA-sponsored research projects [11, 12, 25, 27] as well as some preliminary

investigations of the debugging graph [10,31],

3.2.2.1 Launch Interceptor Condition (LIC)

LIC simulates part of a radar tracking system that generates a launch interceptor

signal based on input tracking coordinates. The interceptor launch key is normally

considered locked. Input parameters determine which combinations o f 15 individual

launch interceptor conditions are relevant and which are satisfied. Only if all relevant

conditions are met will the unlocking signal be issued [11], LIC exists in three

independently developed FORTRAN code versions of between 400 and 600 SLOC in

length created by experienced, professional programmers. There are documented

debugging histories for each version as well as a gold version whose reliability is assumed

to be perfect.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2.2 Control Program Development

The LIC software was ported from the NASA Langley Research Center's

AIRLAB facility in Hampton, Virginia to the ODU Sun network. A new testing

environment was set up to eliminate features of the LIC instrumentation which had been

added in previous years to satisfy experimental criteria deemed orthogonal to our interests,

and to allow exploitation o f new operating system features for execution time speedup.

A simplified view of the so-called control program logic, LICCtrl, is shown in

Figure 6. The control program in essence directs the generation of a large, random but

repeatable input stream, performs the empirical R calculation described above and records

and tallies results. The program is designed to run two separate subroutines: the gold

version LIC solution; and a selected LIC test variant containing some combination of

known bugs and repairs. On each iteration, both subroutines are exercised using the same

input values. The subroutines’ output values can easily be compared for equality. Output

read runtime parameters;
for(desired number of runs) {

generate next set of input values;
load common block;
call gold subroutine;
load common block;
call test subroutine;
compare gold and test results;
tally & record;

}
output summary statistics;
exit(O);___________________________

Figure 6. Overall LICCtrl Program Logic

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agreement corresponds to a successful or “expected” outcome; while output disagreement

and/or abnormal terminations of the subroutines denote a failing or “unexpected”

outcome. Results are recorded and tallied over the total number of runs specified. Fail

sets and output data can also be recorded. The LICCtrl implementation is discussed in

more detail in Appendices A and B.

By using the same random input stream for each gold-test pair, empirical reliability

figures and fail sets can be calculated for each debugging graph node. For this preliminary

experiment, we chose a LIC variant with 12 known bugs. We found that two of the bugs

were actually artifacts of the previous LIC test environment and for that reason were not

interesting to study. So those repairs were installed prior to collecting any data, leaving

10 known faults of interest for debugging graph analysis. We constructed a debugging

graph for n = 10 using 1 million input cases to estimate R for each o f the 1024 nodes, in

addition to capturing fail sets and erroneous output cases for all variants.

3.2.2.3 Test Environment Design

It is probably apparent at this point that the debugging graph testbed (intentionally)

produced a substantial amount o f data which, without adequate preparation and

forethought, might overwhelm the analysis component of the experiments. The

organization of this data was fundamental to enabling its location and access to become

relatively minor aspects of these and future investigations.

We designed a UNIX directory structure which mirrored the debugging graph

structure and enabled easy navigation through the “graph.” This consisted of a minimal

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collection o f “hard” directories and subdirectories, as well as “soft links” which made the

directory structure react as though it were completely connected. Special directories were

created to contain universally accessed shell scripts and code fragments. Automated

scripts were developed to create not only the directory structure, but also to assemble,

compile, link and run each test variant, and to later examine the contents of files

containing the collected data. To optimize execution speed, runs were distributed across

the ODU Sun network to processors which had their own local disk. A high “nice” level

and “off” computing hours were used to minimize disruption to other system clients. The

test environment configuration is described in Appendix C.

3.2.2.4 Data Collection Component

In its initial FORTRAN implementation as ported from NASA, LICCtrl required

approximately 30 wall-clock hours to complete a single, 100,000 trial run. Considering

that 1024 nodes were needed for the LIC debugging graph, and 1 million trials were

considered minimal, this was unacceptably slow. Appendix A describes how we reduced

the LICCtrl runtime to approximately four wall-clock hours per node, thereby supporting

a massive data collection effort in a reasonable amount of time. We include this

information to suggest ways in which similar debugging graph data collection

environments could be set up for other software specimens.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Conclusions

In subsequent chapters, we describe various experiments using data derived from

the debugging graph database. The experiments were designed to address various issues

in software reliability prediction as cited in the previous chapter. For purposes of this

laboratory work, a complete debugging graph was constructed for the subject software

and we extensively explore and analyze its data. The reader should note, however, that a

primary goal o f the later experiments is controlling computational complexity. Chapter 8

describes one technique for doing so, while Chapter 9 discusses a methodology based on

the partial debugging graph whose expense is polynomial in the worst case.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Four

Fault Sizing

In planning an experiment to study the effects of various fault recovery orders (see

Chapter 6), we first needed to establish criteria for selecting interesting debugging paths to

examine. We formulated path construction criteria (enumerated in Table 9) based on

various fault “size” arrangements (e.g., largest-to-smallest, smallest-to-largest, etc.). This

chapter describes our efforts to consistently “size” known faults, a necessary preprequisite

to conducting the later experiment.

4.1 Experiment Description

We applied a criterion used in earlier experiments which estimates relative fault

sizes according to their observed failure rates (i.e., estimated fail set size) [10]. This was

accomplished by using data from fixed levels in the debugging graph in a procedure we

call static relative size ranking.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1. Static Relative Size Rankings at Levels 1 and 9

Level 1 Level 9
Reliability Bug Ordering Bug Ordering Reliability

94.9859 1 1 45.3771
44.1205 2 2 97.2267
43.2728 5 4 98.8365
43.1036 4 5 98.9915
42.8039 3 3 99.8519
42.6722 6 6 99.9705
42.6674 8 8 99.9987
42.6672 10 99.9990
42.6671 7 10 99.9990
42.6671 9 7 99.9991

4.1.1 Static Relative Size Ranking at Levels 1 and 9

As shown in Table 1, we used data from level 1 in the debugging graph to arrange

the faults in order of non-increasing size based on their failure rates. The rates were

inferred based on the R values associated with each o f the program variants containing a

single repair, with a largest-to-smallest fault size order corresponding to a non-increasing

sequence o f the variants’ R values. We avoided any special handling when the R values are

equal, such as bugs 7 and 9, and simply used the original debugging order in such cases

(e g-, 7, 9).

To validate the level 1 ordering, we repeated this process using the level 9

program variants, this time achieving a largest-to-smallest fault size order with a non

decreasing sequence of their R values. As shown in the highlighted region of the table

body, the ordinal placement of five of the bugs could change depending on the level at

which they were considered.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2. Delta Reliabilities at Levels 1 and 9

Level 1
RfPd-RfP)

Repair
i

Level 9
R(Pi...ie) - R(P{i...m- at)

51.3188 1 54.6220
1.4534 2 2.7724
0.1368 3 0.1472
0.4365 4 1.1626
0.6057 5 1.0076
0.0051 6 0.0286
0.0000 7 0.0000
0.0003 8 0.0004
0.0000 9 0.0001
0.0001 10 0.0001

4.1.2 Delta R Study at Levels 1 and 9

To investigate this interesting result further, Table 2 illustrates the reliability

changes, or deltas, realized by installing each of the ten known repairs in the initial

program P (level 1) versus removing only one of the known repairs from Pi...i0 (level 9).

At level 1, the observed failure behavior for a given fault — inferred by observing the

effects of installing its repair — is subject to the influence of all other faults, both known

and unknown, in the program. At level 9, the observed failure behavior for a given fault —

inferred by observing the effects of removing its repair — is not subject to the influence of

other known faults, but is influenced by as yet undiscovered faults in the program as well

as the other installed repairs. Based on Table 2, the only faults which appear to behave

identically at both levels are 7 and 10, with 8 and 9 exhibiting not much difference. This

was surprising; we had expected that the overall size rankings would be the same at the

two levels, with perhaps some minor differences in the specific deltas.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A further unexpected outcome of this analysis was the magnitude of the

differences in several cases. Intuitively, we expected that installing a repair in the (as yet)

unrepaired program would result in an analogous delta as instead installing that same

repair at some later time during the debugging process. This is the situation we simulated

by looking at the two debugging graph levels; but the observed outcome did not meet our

intuitive expectations. As examples, Table 2 shows that the repairs numbered 2, 4 and 6

exhibit reliability changes at level 9 which are respectively about two, three and five times

those which occur at level 1. So for the subject software, we are getting far less reliability

improvement when any of these repairs is installed in the presence o f all other faults, both

known and unknown, than when we install that repair in the presence o f only the unknown

faults.

4.1.3 Static Relative Size Ranking at Levels 2 and 8

We repeated static relative size ranking at two more graph levels to verify that the

conflicting rankings observed at levels 1 and 9 were not just exceptional cases. We

assumed that during the course o f a normal debugging session bug 1 would most likely be

discovered and repaired first, corresponding to its overwhelming ranking as the “largest”

of the known faults. We examined the reliability figures of appropriate variants in the

debugging graph database to determine the relative sizes of the nine remaining faults at

level 2, given that the repair associated with bug 1 had already been installed. These

results are presented together with the level 1 data in Table 3.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3. Static Relative Size Rankings at Levels 1 and 2

Level 1 Level 2, with Repair 1 installed
Reliability Bug Ordering Bug Ordering Reliability

94.9859 1

44.1205 2 2 97.6960
43.2728 5 4 96.0921
43.1036 4 5 95.9302
42.8039 3 3 95.1160
42.6722 6 6 94.9966
42.6674 8 8 94.9862
42.6672 1 0 1 0 94.9860
42.6671 7 7 94.9859
42.6671 9 9 94.9859

This time only the size rankings of bugs 4 and 5 were reversed between the two

levels. Still, this indicated that at least some of the remaining known faults changed

relative size ranks. We inferred from this that the absence o f bug 1 — that is, the

installation of its repair — has side effects on the failure behavior associated with bugs 4

and 5, since their failure behavior changed between the two adjacent levels of the

debugging graph.

Next, we juxtaposed size rankings between levels 8 and 9. As previously

explained, the level 9 data cites the reliability figures of the variants containing repairs for

all but one known fault. At level 8 , we looked at variants having all but two known faults

repaired, one of them bug 1. The comparison figures are shown in Table 4. From these

data it appears that the presence of bug 1 — that is, the absence o f its repair — has side

effects on the failure behavior associated with bugs 7, 9 and 10 as well as bugs 4 and 5, all

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4. Static Relative Size Rankings at Levels 8 and 9

Level 8, with Bug 1 installed Level 9
Reliability Bug Ordering Bug Ordering Reliability

1 45.3771
43.8760 2 2 97.2267
44.7166 5 4 98.8365
44.9167 4 5 98.9915
45.2299 3 3 99.8519
45.3641 6 6 99.9705
45.3767 8 8 99.9987
45.3770 1 0 9 99.9990
45.3771 T 1 0 99.9990
45.3772 9 7 99.9991

Table 5. Some Delta Reliabilities at Levels 2 and 8

Level 2
R(Pi J - R(Pi)

Repair
i

jLeve/ 8
R(Pi .io) - R(Pl2...10l- lit)

1

2.7101 2 1.5011
0.1301 3 0.0781
1.1062 4 0.4604
0.9443 5 0.6605
0.0107 6 0.0130
0.0000 7 0.0000
0.0003 8 0.0004
0.0000 9 0 . 0 0 0 1

0 . 0 0 0 1 1 0 0 . 0 0 0 1

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of whose relative rankings potentially changed at level 8 from those observed at the

adjacent level 9.

4.1.4 Delta R Study at Levels 2 and 8

In a manner analogous to the level 1 and 9 comparisons, Table 5 presents the

deltas realized by installing two repairs at a time in the initial program P — specifically,

the repair for bug 1 along with each of the remaining repairs (level 2) — versus removing

two repairs — the repair for bug 1 along with each of the other repairs (level 8). We

expected to see similar relative rankings and magnitudes of these values at the inspected

levels o f the debugging graph. While our expectations about relative size rankings were

fulfilled — evaluation at levels 2 and 8 ordered the bugs identically — the magnitudes of

the deltas were still quite different in several cases. In particular, bugs 2, 3 and 4 were

measured as roughly twice as large at level 2 versus level 8 .

4.1.5 Relative Size Determinations

At this point we have determined four different relative sizes and corresponding

rankings for the bugs at each of the debugging graph levels 1, 2, 8 and 9. These data are

coalesced in Table 6 . Shown this way, it is easy to see that the size rankings are slightly

different at the four levels. Further, although bugs 7 and 10 are alone in being assigned

the same “absolute” sizes at all four levels, nearly half the bugs — namely 1, 2, 3 and 6 —

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6. Some Bug Sizes

bug Level 1 Rank Level 2 Rank Level 8 Rank Level 9 Rank
1 51.3188 1 WKKKk 1 1 54.6220 1
2 1.4534 2 2.7101 2 1.5011 2 2.7724 2
3 0.1368 5 0.1301 5 0.0781 5 0.1472 5
4 0.4365 4 1.1062 3 0.4604 4 1.1626 3
5 0.6057 3 0.9443 4 0.6605 3 1.0076 4
6 0.0051 6 0.0107 6 0.0130 6 0.0286 6
7 0.0000 9 0.0000 9 0.0000 10 0.0000 10
8 0.0003 7 0.0003 7 0.0004 7 0.0004 7
9 0.0000 10 0.0000 10 0.0001 9 0.0001 8
10 0.0001 8 0.0001 8 0.0001 8 0.0001 9

appear in the same relative ranks at all four levels despite rather large differences in the

magnitude o f their associated deltas in each case.

The varying measurement of bug size at different levels of the debugging graph

impacts our experiments in the following sense: having chosen a particular size-based

fault recovery criterion to construct a path through the graph, the specific order in which

the faults are removed will vary depending on which graph level was used to make the

relative size determinations. A question is whether predictive accuracy would be skewed

enough to affect our evaluation conclusions by differences in the exact R values in a given

type of path’s sequence (i.e., largest-to-smallest, smallest-to-largest, and so on). In

subsequent experiments, we will address this concern by constructing paths using two size

orderings — level 1 and level 9 — to conduct our studies.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.6 Path Inspections

Finally, we inspected the paths through the debugging graph that would be

followed by iteratively installing repairs using the largest-to-smallest size rankings o f the

faults as calculated at both levels 1 and 9. For each path, this determined a sequence o f

reliability figures associated with program variants resulting from iteratively inserting into

the software the repairs corresponding to the size-ordered faults. Two paths resulted from

each o f the two fault orders, because we considered inserting in both possible orders the

repairs for fault pairs whose corresponding program variants have equal reliability figures

(i.e., bugs 7 and 9 at level 1, and bugs 9 and 10 at level 9).

The data are shown in Figure 7. We note that none of these paths produces a

sequence o f reliability figures that exhibits no negative reliability growth. It is interesting

that omitting the repairs for bugs 7 and 9, when they appear as the last two installations in

any of these paths, actually results in a higher overall reliability figure than installing all the

known repairs. We find this to be an interesting pathology, since all the known repairs are

presumed to be correct and we therefore expect the insertion of any one to produce at

least some R growth.

4.2 Analysis

In the past, such anomalous behaviors as those pointed out above have been

attributed to partial or incorrectly done repairs. But the LIC repairs are presumed to be

the “correct” ones, having been validated in previous experiments and checked again in

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level l-Based Paths
Initial R: 42.6671

1 2 5 4 3 6 8 10 7 9
94.9859 97.6960 98.6781 99.8228 99.9700 99.9987 99.9991 99.9992 99.9990 99.9991

1 2 5 4 3 6 8 10 9 7
94.9859 97.6960 98.6781 99.8228 99.9700 99.9987 99.9991 99.9992 99.9991 99.9991

Level 9-Based Paths
Initial R: 42.6671

1 2 4 5 3 6 8 9 1 0 7
94.9859 97.6960 98.8260 99.8228 99.9700 99.9987 99.9991 99.9990 99.9990 99.9991

1 2 4 5 3 6 8 10 9 7
94.9859 97.6960 98.8260 99.8228 99.9700 99.9987 99.9991 99.9992 99.9991 99.9991

F igu re 7. Largest-to-Sm allest P aths

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this one. So the inconsistencies in these data lead us to alternative conclusions. Individual

faults do appear to fail with different rates [25]; but the standard view that the failure rate

is somewhat a “given” characteristic for each fault within a particular program is perhaps

misleading. We find that the rate experimentally associated with a given fault can be

subject to the program’s debugging state at the time the assessment is made. We believe

this phenomenon is a physical manifestation of interaction effects that needs to be taken

into account during software reliability modeling.

Why should fault sizing anomalies be a concern? Besides complicating our efforts

to construct debugging paths based on a size criterion, this behavior means that even when

considering a repair which is known to be “correct,” one cannot always expect it to have

the same reliability growth effect, since that effect depends on when the repair is installed

during the debugging process. As we noted above, there may even be a subset of the

known repairs which, when installed, results in a higher reliability figure than installing all

known repairs. The obvious question is how existing models can produce accurate

predictions while remaining “fuzzy enough” to account for such variance when only one

realization o f the debugging process is used to make predictions — and we have no

assurance as to which o f the n\ possible paths will be presented as input.

4.3 Conclusions

Examination of various levels of the debugging graph and attempts to “size-rank”

the software’s known faults revealed that not only do individual faults fail with different

rates, but the rate experimentally associated with a given fault is a function of the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program’s debugging state at the time assessment is made. We attribute this effect to

interactions among faults, both known and unknown, which may result in unexpected

changes in the failure behavior of the considered program variants. We conjecture that

these effects occur dynamically during the debugging process and explore this assumption

further in the next chapter.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Five

Fault Interactions

In the previous chapter, we explained how to relatively size rank faults based on

the changes in reliability caused by installing single faults and/or single repairs in isolation.

We found that size ranking, while seemingly straightforward, was complicated by

unexpected inconsistencies in these changes, which we attributed to the debugging state of

the software at the time the analysis was performed. Further experimentation to study this

phenomenon certainly seems warranted, since there is documented interest in so-called

fault interactions elsewhere in the research literature.

As a starting point for future work in this area, we present some preliminary ways

that we examined suspected fault interactions more closely in the context of the debugging

graph database. To construct the most probable debugging path, we tried to construct a

path using a greedy, largest-remaining-bug-next criterion which dynamically re-evaluated

relative fault sizes. We subsequently performed some detailed investigations of the bug

pairs 7, 9 and 9, 10 since their anomalous behaviors during size rankings in this and the

previous chapter lead us to believe they are interacting in some manner.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Dynamic Relative Size Ranking

It seems apparent from the previous chapters that the behavior of a fault may vary

according to which other faults and repairs are present in the software. This observation,

as summarized in 4.1.5, implies that each fault has the potential to appear larger or smaller

depending on the program’s debugging state when the size assessment is made. We

conjecture that this is due to interaction effects. As an alternative to relying on the static

relative size ranking approach at a fixed level in the debugging graph, we used our

database derived from the ten bugs of interest to incrementally step through the debugging

graph. At each level, we chose a program variant that resulted in the maximum positive

growth in R upon the installation of any one o f the remaining repairs. We then added that

bug’s number to the path — a “greedy” path construction algorithm.

This process corresponds to iteratively removing the ilh bug with the greatest

failure rate, with that assessment performed at debugging graph level i. Since the relative

size rankings of the remaining bugs were in this manner recalculated with each iteration —

a process we call dynamic relative size ranking — we conjectured the greedy algorithm

could produce a path that would result in more accurate predictions from the models,

since it is the most probable path.

5.1.1 The “Greedy” Path

We encountered difficulty in carrying out the seemingly straightforward greedy

path construction approach. The algorithm proceeded smoothly through the first eight

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iterations, adding fixes 1, 2, 4, 3, 5, 6 , 8 and 10 to the path. Then only two known bugs

remained — 7 and 9 — and installing neither repair would result in positive reliability

growth. This process is illustrated in Figure 8 .

5.1.2 The “Not-So-Greedy” Path

As an alternative to the greedy path algorithm, which we were unable to execute to

successful completion, we used the database derived from ten bugs o f interest to explore

the debugging graph in search o f a path that at least exhibited no negative reliability

growth—that is, a non-decreasing R path. The algorithm basically followed a “not-so-

greedy” approach, using dynamic relative size ranking to add on each iteration the first

repair which resulted in no negative reliability growth, until no such choices remained.

Then, backtracking was pursued, trying different path alternatives at previous steps in the

algorithm until a non-decreasing R path was successfully created, or no alternative sub-

R Next Fix
42.6671 initial R
94.9859 1

97.6960 2

98.8260 4
98.9628 3
99.9700 5
99.9987 6

99.9991 8

99.9992 1 0

Next Fix Choices
R Next Fix

99.9990 7
99.9991 9

Figure 8 . “Greedy” Path Attempt

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

paths remained, whichever occurred first.

We conjectured that two factors would help us to account for unforeseen effects

o f bug interactions at subsequent levels of the graph: providing for backtracking; and

relaxing the requirement for positive R growth with each path increment—only no

negative growth would be sought. Additionally, the non-decreasing R path would be a

practical approximation of the theoretical view o f MTTFs as increasing through time.

The non-decreasing R path algorithm in fact proceeded smoothly; the fourth path

attempted using this algorithm was successful. The sequence in which repairs were

inserted and the corresponding R values o f the program variants along this path are shown

in Figure 9. Although an exhaustive search was not conducted, further exploration of the

debugging graph revealed that many other non-decreasing R paths exist.

In the remainder of this chapter we detail some deeper analysis of the bug pairs 7,

9 and 9, 10 whose failure behavior appear to be afflicted by interaction phenomena.

5.2 Bugs 7 and 9

First we consider the programatic nature of bugs 7 and 9. Bug 7 is related to the

calculation of one bit of the conditions met matrix in LIC. The programmner used an

incorrect formula to compute the distance between two points. Bug 9 is related to the

calculation o f another bit of the same matrix. In this case, the programmer had forgotten

InitialR: 42.6671
1 2 4 3 5 6 7 1 0 8 9

94.9859 97.6960 98.8260 98.9628 99.9700 99.9987 99.9987 99.9988 99.9990 99.9991

Figure 9. A “Not-So-Greedy” Path

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to check for a special vector relationship.

Elements of the conditions met matrix are logically combined by LIC to determine

a “launch” or “no launch” output according to a specific unlocking sequence, in which a

particular combination of significant conditions as represented in the matrix is assessed.

The logical connectors used in this calculation are part of the (random) input to the

problem, so that either or both of the conditions represented by the repaired code

fragments might not even have any effect on the output calculation, let alone each other.

From this we conclude that, while both involve part o f the matrix calculation, failures

associated with bugs 7 and 9 are not logically linked.

The reliability figures associated with variants containing various combinations o f

bugs 7 and 9 and their repairs were examined for anomalies. Fail sets were also inspected

for unexpected occurrences. The results o f this analysis are explored in the next two

sections.

5.2.1 Repair Anomalies

We noted from the debugging graph database that adding the repair for bug 7 at

level 2 — that is, after repairing any one of the other remaining known bugs — produced

no improvement in the respective reliability figures. That is, in general, R(P„) = R(P„i7)

whenever n is chosen from {1,. . . ,6 , 8, . ..10}. The effects of bug 7’s repair were in effect

hidden by any other single repair together with all the other faults, both known and

unknown. The same relationship held when repairing bug 9 at level 2 in all but one case:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7. Fail Sets Associated with Bugs 7 and 9

Known Bugs Present
Bug 7 Bug 9 Bugs 7 & 9 None
57636 57636 57636 57636
63454 63454 63454 63454
189981 189981 189981 189981
191909 191909 191909 191909
237569 237569 237569
792841 792841 792841 792841
823542 823542 823542 823542

839343
898202 898202 898202 898202
900157 900157 900157 900157

repairing bug 9 after bug 6 resulted in negative R growth. Hence, we deduce that bug 9’s

repair “broke” certain input cases that had previously (appeared to) perform correctly.

5.2.2 Fail Set Study

At levels 8 and 9, we used the debugging graph database to determine the specific

random input case numbers on which failures occurred (i.e., disagreement between the

outputs of the oracle and the variant under test). As mentioned in the background

material, such collections are commonly called fail sets. Table 7 shows some interesting

failure anomalies, and leads us to offer some conjectures:

• The software has precisely the same fail set regardless of whether bug 7 is

repaired, in the presence o f all remaining repairs (i.e., the leftmost and rightmost

columns in the table are identical). This may indicate interactions of bug 7 with

as yet undiscovered faults in the program, producing “coincidentally correct”

results for some of these input cases.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Installing bugs 7 and 9 simultaneously in the presence of all remaining repairs

produces a fail set that is smaller than the fail set associated with either bug 7 or

bug 9 individually. In fact, the installation of bug 7 appeared to repair two of

bug 9’s bad cases (237569 and 839343). This may indicate that the two bugs

compensate for each other and/or interact with other faults which remain to be

found.

5.3 Bugs 9 and 10

Turning to the second pair of bugs we investigated, we note once again that bug 9

is related to the calculation of one bit of the conditions met matrix (see 5.2). Bug 10

occurred because the programmer had incorrectly specified a value o f 3.1414927 for the

parameter PI; the correct value is 3.1415927. There is a logical relationship between these

bugs, however, since the portion o f the code involving bug 9 uses PI in its calculation. On

the surface, this leads us to suspect that even if bug 9 is repaired, whenever bug 10 is still

present at least some o f the calculations involving PI will be significantly enough incorrect

to observe as failures. Similar analysis as that described above was conducted for bugs 9

and 1 0 to see if some of the same observed effects manifested themselves, or if the logical

relationship of this bug pair made it distinctly different from the former case.

5.3.1 Repair Anomalies

First, recall we previously noted that adding the repair for bug 9 after repairing any

one of the remaining known bugs produced no change in the respective reliability figures

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8. Fail Sets Associated with Bug 9 and Bug 10

Known Bugs Present
Bug 9 Bug 10 Bugs 9 & 10 None
57636 57636 57636 57636
63454 63454 63454 63454
189981 189981 189981 189981
191909 191909 191909 191909
237569 237569 237569
792841 792841 792841 792841
823542 823542 823542 823542
839343 839343 839343
898202 898202 898202 898202
900157 900157 900157 900157

at level 2, in all but one case: repairing bug 9 after bug 6 produced negative reliability

growth. By contrast, installing the repair for bug 10 after any one of the remaining known

bugs produced equal growth in all cases; specifically, R(Pn,io) - R (Pn) = 0 .0 0 0 1 %

whenever n is chosen from {1,...,9}. This is consistent with our expectations; at least some

of the failures present at both levels 1 and 2 may be attributable to PI having the wrong

value, while repairing the value produces consistent improvement.

5.3.2 Fail Set Study

At levels 8 and 9, we again used the debugging database to determine the specific

random input case numbers on which failures occurred, as shown in Table 8 . Since bugs 9

and 1 0 are logically related in the code, we saw interesting interactions taking place, and

we conjecture the following:

• In the presence of all other known repairs, the software has precisely the same

fail set regardless of whether bug 9 or bug 10 is present, (i.e., the two leftmost

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

columns are identical in the table). This may indicate that the repairs must be

installed simultaneously for either to show positive effect.

• In the presence o f all other known repairs, when both bugs 9 and 10 are

simultaneously present, one input case (237569) appears to be repaired which

had previously failed when either bug was individually present. This may

indicate compensation between the two bugs, or perhaps interactions o f these

bugs with as yet undiscovered faults in the code.

• In the presence of all other known repairs, installing the repairs for bugs 9 and 10

— as shown in the column labeled “None” — once again “broke” the software

for the previously mentioned input case (237569); but it repaired another case

(839343) which had failed for the other fault/repair combinations considered.

Installing the repairs simultaneously, “as they should be,” may be revealing that

the anomalous input case (237569) produced the correct output only

coincidentally in the other program variants considered.

5.4 Analysis

We observed some interesting manifestations o f fault interactions, with unexpected

positive and negative effects. Sometimes, the removal of a repair (bug installation) has no

effect, or even improves, the software’s observed behavior, given a particular combination

of other repair and/or bug installations. The presence of the bug, in effect, repairs or

compensates for the erroneous behavior associated with certain inputs for another.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Viewed another way, the insertion of a given repair (bug removal) can make no difference,

or even degrade, the software’s empirically determined reliability along a given path —

despite the perceived size of the bug it repairs. We could say that a bug whose presence

improves performance (i.e., a repair whose installation degrades performance) behaves as

though it has “negative” size, since repairing it produces the opposite of the expected

effect.

Unexpected behaviors in the R values observed in the debugging graph provides a

hint of interaction potential. The ability to use the debugging graph data collection

environment to inspect fail sets enables us to penetrate to a deeper level of analysis than

simply looking at raw reliability numbers. We looked at two pairs of faults we thought

were interacting; bugs 7 and 9 did not appear to be explicitly related in the code, while

bugs 9 and 10 did. Both exhibited anomalies in observed R values at specific level of the

debugging graph, as well as in the fail sets associated with various fault/repair

combinations.

We advanced some conjectures about what the anomalies observed in the R values

and the fail sets might imply about these faults’ interaction potential; unfortunately, our

ability to make stronger conjectures based on the LIC experiment is complicated by the

fact that as yet undiagnosed faults remain in the code. There may be other interacting

faults in the LIC software. It is unclear at the present time how best to identify them,

although some o f the above observations might offer starting points for future work.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We found it significant that the “greedy” path — which was constructed to near

completion according to the maximum R growth criterion and dynamic re-evaluation of

relative bug size — and the “not-so-greedy” path both ranked the faults in yet different

orders than those produced by static relative size ranking at level 1 and level 9. We

believe this observation to be symptomatic o f the effects of bug interactions on the

empirically determined failure rates. Further, subject to the effects o f data accuracy and

bug interactions, clearly it is not always be possible to construct a “greedy” path that

reflects maximum positive reliability growth between adjacent graph levels o f the

debugging graph; it was not successful and we will therefore not include such a path in the

experiments subsequently described in this thesis.

5.5 Conclusions

Software reliability modeling is an abstraction of the failure process in that a

sequence of MTTFs (and the associated sequence of R values) is used for predictions,

with no inspection of the underlying fail sets. Zero, low or negative reliability growth,

perhaps attributable to interactions, is not explicitly accounted for in existing models; yet it

is unclear that any o f them are “fuzzy” enough to implicitly account for some o f the

unexpected behaviors we observed in the LIC failure data, behaviors attributed not just to

inherent randomness in the data but also to fault interactions.

Contradictory results when inspecting fail sets when the bugs are considered both

in isolation or in the presence o f some or all o f the other bugs, both known and unknown,

should probably not be too surprising, considering earlier indications o f the apparent

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effects of bug interactions. During the early to middle stages of the debugging process, a

possibly significant number of bugs remain unrepaired and may influence our attempts to

capture the failure behavior of known faults. Similarly, in many cases a perfect end

product is not an achievable goal, so that some faults will always remain undiscovered in

the tested software. The debugging graph, constructed using an appropriately

instrumented control program, offers many opportunities for further study o f interaction

phenomena.

Some researchers have claimed that interaction effects are negligible, and that in

most cases faults which mask one another would have been discovered and eliminated in

the earlier software development stages [22], The analysis presented in this chapter points

out that this is not necessarily the case; perhaps further work is needed in this area. At

least one remaining challenge is determining whether the debugging graph model offers a

means for distinguishing how logically related and unrelated faults/repairs can be

represented to the prediction process to better account for their side effects on empirically

observed reliability changes. We note that the methodologies described later in this thesis

mitigate interaction effects by controlling debugging order.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Six

Fault Recovery Order

Since intuitively the debugging process is most likely to recover bugs in a largest-

to-smallest order, we conjectured that recovering the faults in various “size” orders would

yield an appropriate basis for comparing the models’ predictive performance.

6.1 Experiment Description

The debugging graph was used as a basis for formulating input data for the

predictive models along selected debugging paths. The models’ predictive performances

were compared along these paths.

6.1.1 Path Selection Criteria

For model comparison purposes, we formulated fault recovery criteria as

enumerated in Table 9 to simulate various debugging sessions. As noted in 4.1.1, the size

rankings o f the bugs differed at the two graph levels we used to analyze them, thus, where

path pairs are specified in the table, the second path number and the alternative graph level

used for size ranking are shown in parentheses.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9. Description o f Debugging Paths

Paths Construction Method
1(3) largest-to-smallest order using level 1 (9) size rankings
2(4) smallest-to-largest order using level 1 (9) size rankings

5 five largest repairs in non-increasing size order using level 1 size rankings,
followed by the remaining five repairs in non-increasing size order using level 9
size rankings

6 five smallest repairs in non-decreasing size order using level 1 size rankings,
followed by the remaining five repairs in non-decreasing size order using level 9
size rankings

7(9) alternate the largest remaining repair followed by the smallest remaining repair
using level 1 (9) size rankings

8 (1 0) alternate the smallest remaining repair followed by the largest remaining repair
using level 1 (9) size rankings

H (1 2)_ medium, small and large repairs in mixed order using level 1 (9) size rankings
13 original repair order (1, 2, 3, etc.)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Paths using Iargest-to-smallest construction criteria (e.g., 1 , 3, 5) are considered

intuitive path examples; whereas those using a smallest-to-largest approach (e.g., 2 , 4 , 6)

are considered counter-intuitive paths. Paths 7 through 10 were included to stress the

predictive models by making the incremental reliability improvements oscillate between

relatively large and small changes. Paths 11 and 12 recover faults in mixed size orders,

while path 13 represents faults repaired in the original recovery order.

6.1.2 Comparison Path Data

Table 10 enumerates the debugging paths o f interest based on the fault recovery

criteria discussed in 6 .1.1. The paths were constructed by reading the corresponding R

values from the debugging graph based on the gold oracle, whose construction was

described in 3.2.

6.1.3 Comparing Models’ Performance

The four models of interest — Jelinski-Moranda, Geometric De-Eutrophication,

Basic Musa and Logarithmic Poisson — were implemented in the C programming

language and executed on Sun SparcStations. The basic formulae and implementation

validations are discussed in Appendix D. The comparison procedure explained in 6 .1.3.1

and 6 .1.3.2 is illustrated in Figure 10.

Empirical Data

MTTFq MTTFj . . . MTTFj Compare

Model

Predicted

Figure 10. MTTF Comparison Procedure

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10. Repair Numbers and R Values for Comparison Paths (Gold Oracle)

InitialR: 42.6671
Path 1

1 2 5 4 3 6 8 10 7 9
94.9859 97.6960 98.6781 99.8228 99.9700 99.9987 99.9991 99.9992 99.9990 99.9991
Path 2

9 7 10 8 6 3 4 5 2 1
42.6671 42.6671 42.6672 42.6675 42.6725 42.8093 43.2533 43.8760 45.3771 99.9991
Path 3

1 2 4 5 3 6 8 10 9 7
94.9859 97.6960 98.8260 99.8228 99.9700 99.9987 99.9991 99.9992 99.9991 99.9991
Path 4

7 9 10 8 6 3 5 4 2 1
42.6671 42.6671 42.6672 42.6675 42.6725 42.8093 43.4255 43.8760 45.3771 99.9991
P a th s

1 2 5 4 3 6 8 10 9 7
94.9859 97.6960 98.6781 99.8228 99.9700 99.9987 99.9991 99.9992 99.9991 99.9991
Path 6

9 7 10 8 6 3 5 4 2 1
42.6671 42.6671 42.6672 42.6675 42.6725 42.8093 43.4255 43.8760 45.3771 99.9991
P a th ?

1 9 2 7 5 10 4 8 3 6
94.9859 94.9859 97.6960 97.6960 98.6781 98.6782 99.8229 99.8233 99.9705 99.9991
P a th s

9 1 7 2 10 5 8 4 6 3
42.6671 94.9859 94.9859 97.6960 97.6961 98.6782 98.6786 99.8233 99.8519 99.9991
Path 9

1 7 2 9 4 10 5 8 3 6
94.9859 94.9859 97.6960 97.6960 98.8260 98.8261 99.8229 99.8233 99.9705 99.9991
Path 10

7 1 9 2 10 4 8 5 6 3
42.6671 94.9859 94.9859 97.6960 97.6961 98.8261 98.8264 99.8233 99.9705 99.9991
P ath U

3 6 4 8 5 10 2 7 1 9
42.8039 42.8090 43.2530 43.2533 43.8760 43.8761 45.3772 45.3772 99.9990 99.9991
Path 12

3 6 5 8 4 10 2 9 1 7
42.8039 42.8090 42.8093 43.4255 43.8760 43.8761 45.3772 45.3771 99.9991 99.9991
Path 13

1 2 3 4 5 6 7 8 9 10
94.9859 97.6960 97.8328 98.9628 99.9700 99.9987 99.9987 99.9991 99.9990 99.9991

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.3.1 Iterative Prediction Process

We used the relationship MTTF = 1 / (1 - R) to generate input sequences for each

path of interest using the empirically calculated R values for its variants as shown in Table

10. These sequences were input to each model, so that along a chosen debugging path, the

experimentally generated consecutive MTTFs enumerated 0 through / were used to

predict the (/+l)st failure time for each /' from 1 to 10. (Note: The 0th MTTF is derived

using the R value for the unrepaired program, labeled in Table 10 as “Initial /?.”) As an

example, data for MTTF Prediction Stage 4 are based on using MTTF0 through MTTF3 as

inputs to predict MTTF4 .

6.1.3.2 Normalized Comparison Data

As a measure of a model’s predictive accuracy at each MTTF Prediction Stage of

the iteration, we performed a normalized comparison by taking the ratio o f each estimated

MTTF as predicted by a model to the empirical MTTF calculated from an appropriate

variant’s R value (i.e., predicted MTTF / empirical MTTF). In a sense, the denominator

of the comparison ratio serves as the true “reliability basis” against which the predicted

values are compared, and we will so refer to it in the remainder of this thesis.

Additionally, the resulting ratios, which fall in the range (0 , + 00) , were subjected to the

logio function to map them into the interval (- 00, + 00).

The intuitive appeal o f these converted ratios can be summarized as follows. A

ratio close in value to one is coverted by logio to a value close to zero and is interpreted as

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicating an accurate prediction. Ratios greater than one are mapped to positive values

by logio, and those between zero and one are mapped to negative values; they respectively

indicate optimistic and pessimistic predictions. The ratio continuum and its interpretation

are illustrated in Figure 11.

As an example, a predicted MTTF that is nearly an order of magnitude greater

than the actual MTTF (i.e., the true reliability basis) produces a ratio value near ten, which

logio converts to a value near one. This implies that the software would probably fa il ten

times (or one order o f magitude) sooner than expected based on the estimated MTTF

value; hence the model’s prediction is optimistic.

The prediction ratios for the four models, as mapped into the interval (- 0 0 , +0 0),

are shown in Tables 11 through 14. To establish a consistent labeling convention that will

make later discussions easier, we have added parenthetically to the graph titles the

notation “(Gold / Gold).” This is meant to indicate that both the input values to the

models and the denominator o f the normalized comparison ratios, which serves as the true

reliability basis, were derived from the table containing the gold oracle’s assessment of the

variants’ reliability values (i.e., Table 10).

Pessimistic________________________Accurate________________________ Optimistic
- 0 0 0 + 0 0

Figure 11. Predictive Performance Continuum
fo r logio(Estimated MTTF /Actual MTTF)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 11. Jelinski-Moranda Prediction Ratios (Gold / Gold)
? no solution; N is infinite or no R growth present

?? no solution; N is finite

Path
#

MTTF Prediction Stage
2 3 4 5 6 7 8 9 10

1 7 77 77 77 7? 7? 7? 7? 77
2 ? 7 7 7 7 7 -6.577e-3 -0.01495 -4.791
3 ? 7? 77 77 7? 7? 7? 7? 77
4 7 7 7 7 7 7 -5.9IC-3 -0.01447 -4.791
5 7 7? 7? 7? 7? 7? 77 7? 7?
6 ? 7 7 7 7 7 -5.910c-3 -0.01447 -4.791
7 7 7 7? 7? 7? 0.6335 7? 7? 7?
8 7 7? 77 7? 7? 7? 77 7? 7?
9 ? 7 7? 7? 7? 7? 7? 7? 7?
10 ? 7? 7? 7? 7? 7? 7? 7? 77
11 1.002e-3 -2.68e-3 5.512e-4 -3.328C-3 1.65e-4 -9.96 le-3 -3.116C-3 -4.736 7?
12 1.002c-3 7.03e-4 -4.166e-3 -3.957e-3 -1.125c-4 -0.01006 -3.1 le-3 -4.782 7?
13 7 7? 7? 7? 7? 7? 7? 7? 7?

Table 12. Geometric De-Eutrophication Prediction Ratios (Gold / Gold)

Path
n

MTTF Prediction Stage
2 3 4 5 6 7 8 9 10

l 0.7205 0.6122 -0.1848 -0.2794 -0.8821 0.2363 0.8131 1.421 1.809
2 0 -8.686e-7 -2.171e-6 -3.822e-5 -1.05e-3 -3.828e-3 -6.584e-3 -0.015 -4.796
3 0.7205 0.5607 -0.1373 -0.2639 -0.8757 0.2385 0.8144 1.375 1.81
4 0 -8.686e-7 -2.171e-6 -3.822e-5 -1.05e-3 -5.148e-3 -5.92 lc-3 -0.01451 -4.796
5 0.7205 0.6122 -0.1848 -0.2794 -0.8821 0.2363 0.8131 1.375 1.81
6 0 -8.686e-7 -2.171e-6 -3.822e-5 -1.05e-3 -5.148e-3 -5.921e-3 -0.01451 -4.796
7 1.058 0.4452 0.4771 0.2191 0.3271 -0.5004 0.04236 -0.4995 -1.498
8 -1.058 0.4129 0.266 0.4891 0.3285 0.4445 -0.3728 0.01902 -1.934
9 1.058 0.4452 0.4771 0.1675 0.3109 -0.4469 0.06136 -0.486 -1.491
10 -1.058 0.4129 0.266 0.4891 0.2769 0.4197 -0.3283 -0.6629 -1.512
11 9.986e-4 -2.68e-3 5.373e-4 -3.342e-3 1.229e-4 -0.01001 -3.282e-3 -4.745 -0.2057
12 9.986e-4 7.026e-4 -4.167e-3 -3.973e-3 -1.616e-4 -O.OIOU -3.287c-3 -4.77 -0.1552
13 0.7205 0.8269 0.3964 -1.058 -1.058 0.3514 0.7884 1.3433 1.732

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13. Basic Musa Prediction Ratios (Gold / Gold)
* indicates software predicted to be perfect

Path
n

MTTF Prediction State
2 3 4 S 6 7 8 9 10

i -0.6387 -0.7177 -0.2023 10.71 * 2.31 0.5342 -0.318 -0.7588
2 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8485 -0.9079 -0.966 -5.783
3 -0.6387 -0.7692 0.4839 10.54 * 2.31 0.5341 -0.2486 -0.6554
4 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8498 -0.9066 -0.966 -5.783
5 -0.6387 -0.7177 -0.2023 7.186 * 2.31 0.5342 -0.2486 -0.6554
6 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8498 -0.9066 -0.966 -5.783
7 -0.301 -0.8148 -0.5752 -0.9403 -0.6394 -1.718 0.6391 5.754 «
8 -1.359 -0.1545 -0.9398 -0.4044 -1.019 -0.5121 -0.4968 1.26 *
9 -0.301 -0.8148 -0.5752 -0.9918 -0.5429 -1.667 0.5925 5.586 *
10 -1.359 -0.1545 -0.9398 -0.4044 -1.07 -0.4112 0.19 12.52 *
11 -0.3011 -0.4805 -0.6021 -0.7038 -0.7782 -0.8569 -0.903 -5.692 2.777
12 -0.3011 -0.4771 -0.6068 -0.7024 -0.7782 -0.8569 -0.903 -5.737 2.341
13 -0.6387 -0.5034 -0.9221 10.22 * 1.213 0.5632 -0.1732 -0.5603

Table 14. Logarithmic Poisson Prediction Ratios (Gold / Gold)
? indicates no solution for desired precision

Path MTTF Prediction State
2 3 4 5 6 7 8 9 10
1 -0.0777 -0.7139 -0.5969 -2.276c-3 0.07112 0.1829 0.1315 0.07551 7.594e-3
2 -0.301 -0.4771 -0.6021 7 -0.7792 7 -0.9079 -0.966 7
3 -0.0777 -0.7647 -0.4151 -3.892C-3 0.07037 0.1826 0.1311 0.07507 0.01262
4 -0.301 -0.4771 -0.6021 7 -0.7792 7 -0.9066 -0.96601 ?
S -0.0777 -0.7139 -0.5969 -2.276e-3 0.07112 0.1829 0.1315 0.07551 0.01318
6 -0.3010 -0.4771 -0.6021 7 -0.7792 7 -0.9066 -0.966 7
7 -0.02012 7 -0.5602 7 7 7 -0.2565 7 -0.19
8 -1.359 -0.04593 -0.3787 -0.2889 -1.0144 7 -0.8971 -0.2283 -0.2793
9 -0.02012 7 -0.5602 7 -0.5578 7 -0.2594 7 -0.1915
10 -1.359 -0.04593 -0.3787 -0.2889 -1.065 -0.4138 -0.7157 -0.2309 -0.1244
11 ? -0.4805 -0.6021 -0.7038 -0.7782 -0.8569 -0.9031 -5.605 7
12 7 -0.4771 7 -0.7024 -0.7782 -0.8569 -0.9031 7 7
13 -0.0777 -0.5017 7 -0.6354 0.07882 0.1863 0.1176 0.07434 0.01353

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each row in a table represents predictions along the debugging path cited in its

left-most column. Six significant digits were carried in the calculations to reflect the

precision o f the MTTF values input to the models; converted ratio values were rounded to

four significant digits to enhance the tables’ readability. We marked exceptional cases

with symbols and annotated them in the captions. It should be noted that, were a model

predicting perfectly along a given path, the corresponding row of table entries would

contain all zeros. Paths that result in pessimistic predictions contain predominately

negative values; whereas predominately positive values indicate predictive optimism..

6.2 Analysis

Despite its assumption that “all bugs are created equal,” — which often causes it

to be dismissed an impractical for realistic applications — the Jelinski-Moranda model’s

predictions were initially quite good for the mixed recovery order paths (11, 12). Although

it otherwise generally failed at prediction, the algorithm performed consistently over the

intuitive paths, assessing a finite number o f bugs after the first few iterations; whereas

counter-intuitive paths proved to be more challenging, probably due to low-to-no

reliability growth.

For several counter-intuitive paths (2, 4, 6), the Geometric De-Eutrophication

algorithm provided the most accurate overall predictions, possibly since the effects of

inconsistent changes were postponed in those cases. It also gave good predictions for

mixed recovery order paths (11,12) until the last two predictive stages, again possibly due

to latent numerical effects from the largest fault. Along the remaining paths, the model

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

appeared to try and correct itself at some point; but unfortunately the predictions tended

to grow either increasingly optimistic or pessimistic thereafter.

The behavior of the Basic Musa model was inconsistent from path to path as well

as along any given path. Its predictions were either very optimistic or pessimistic, and it

often incorrectly predicted perfect software after an early, large reliability improvement

step. Interestingly, however, the influence o f the very large repair (i.e., the fix for bug 1)

appeared to be mitigated if it were inserted early.

The primary challenge in using the Logarithmic Poisson model was determining

parametric values which “fit” the functions, given the input data precision and host

computer accuracy; this problem was particularly evident for counter-intuitive and mixed

paths. However this model performed extremely well on the intuitive paths (1, 3, 5) — it

was the only model which did so — and the overall performance on the original order path

(13), unlike that of the other models, was quite respectable. Another general

characteristic observed was close coincidence o f portions of some paths with the Basic

Musa model’s corresponding predictions (e.g., paths 11 and 12).

The data derived from comparing the four reliability models clearly show that

along a given debugging path, the predictive performance of these models can vary

greatly. As an example, Figure 12 plots the comparison ratios along path 1 for the four

models. We also note that, despite differences in specific prediction ratios at each stage,

paths constructed using the same criteria (e.g., 1 and 3, 2 and 4), exhibit similar predictive

accuracy overall for any given model. That is, the selection of a criterion for path

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jelinski-Moranda found
no solutions but

determined N is finite

Geometric De-Eutrophication

0 .5

Basic Musa Log Poisson

Figure 12. Prediction Ratios Compared Along a “Largest-to-Smallest” Path
X indicates “outlier” (value off scale)

* indicates software predicted to be perfect

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

construction appears to be more important than the specific methodology used to assess

the relative fault sizes.

Additionally, just because a model appears to “fit” a given path’s data well in terms

of its predictive performance, there is no guarantee that the model would still appear as

appropriate had those faults been recovered in a different order. Figure 13 markedly

contrasts the performance of the Geometric De-Eutrophication model along paths 1, 4 and

7. In other words, if the practitioner evaluates models based on a single realization of the

debugging process, with the faults recovered and corrected in a single order, (s)he might

reject a model that could perform quite well using data from a different recovery order.

6.3 Conclusions

Based on the data presented in this chapter, we conclude that the Basic Musa

model would probably not perform well as a predictor for the LIC software. Although the

Jelinski-Moranda and Geometric De-Eutrophication models performed extremely well

along certain paths, this appears to be an artifact o f the models expoiting some aberration

in a particular path’s data, such as the postponement of effects from a large repair. When

presented with “largest-to-smallest” data which comply with our intuitive interpretation of

the fault recovery process and the model’s underlying assumptions, the Logarithmic

Poisson model featured quite accurate predictions once several data points accumulated.

In this experiment we also observed that recovery order is an important factor in

general which influences the potential performance of the tested software reliability

models. Based on this work it appears that, when using the average of large samples for

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

largest-to-smallest
smallest-to-largest
alternating large & small

#4
#7

0.5

- 0.5

Figure 13. Prediction Ratios Compared Along Three Paths
for Geometric De-Eutrophication Model

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the interfailure times, if we can control the recovery order, then we can expect more

accurate predictions from these models. Further, it appears that the choice o f a fault

recovery criterion (e.g., largest-to-smallest, smallest-to-largest) is more important than the

specific debugging graph level at which relative fault sizes are measured. This supports

our conjecture that controlling fault recovery order helps to mitigate some of the failure

data’s noise and bias which in part may be attributable to randomness and/or interaction

effects.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Seven

Surrogate Oracle

In 6.3 we concluded that fault recovery order is a significant effect which needs to

be accounted for in the predictive modeling process. To make use of this information in

software development, we need a means for moving our methodologies out of the realm

of controlled laboratory experiments and into the production process. To this end, we

investigated a potential substitute for the gold version program used for error detection.

We repeated selected parts o f the previous experiment using a surrogate error detector

constructed using the test program with all known repairs installed.

7.1 Experiment Description

We conjectured that predictive results consistent with using data based on a gold

oracle could be obtained using data based on a surrogate oracle. We therefore

substituted the program with all known faults repaired, for the gold version program

in the error detector. To test the feasibility of the surrogate oracle approach, we

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compared predictive results based on data collected using a gold oracle versus those

collected using this revised error detector.

Earlier, we described the construction of a debugging graph for the ten significant

LIC bugs (// = 10) using one million input cases to estimate R via the gold oracle for each

of the 1024 nodes (see 3.2). For this new experiment, we performed another data

collection by constructing part of a second debugging graph based on the surrogate oracle.

This required running each LIC test variant which appears on one of the 13 paths of

interest described in the previous experiment in tandem with to empirically calculate

the required reliability figures.

7.1.1 Path Selection Criteria

To evaluate the performance of the surrogate oracle, we compared the predictive

results based on it versus those based on the gold oracle. Hence, we used the same paths

formulated for the previous experiment as described in Table 9.

7.1.2 Comparison Path Data

Table 15 shows the R values for these 13 paths as measured using the surrogate

oracle. We compared sequences of R values associated with corresponding gold- and

surrogate-oracle-based data collections (i.e., Tables 10 and 15) and found them to agree

quite closely. To illustrate their close coincidence graphically, we chose four

representative paths — 1,4, 11 and 13 — which respectively illustrate intuitive, counter

intuitive, mixed and original repair orders. Since the granularity of plotting the actual R

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 15. Repair Numbers and R Values for Comparison Paths (Surrogate Oracle)

Initial R: 42.6673
P a th 1

1 2 5 4 3 6 8 10 7 9
94.9866 97.6968 98.6789 99.8236 99.9708 99.9994 99.9998 99.9999 99.9999 100.
P a th 2

9 7 10 8 6 3 4 5 2 1
42.6673 42.6673 42.6674 42.6677 42.6728 42.8096 43.2536 43.8763 45.3775 100.
P a th 3

1 2 4 5 3 6 8 10 9 7
94.9866 97.6968 98.8268 99.8236 99.9708 99.9994 99.9998 99.9999 100. 100.
P a th 4

7 9 10 8 6 3 5 4 2 1
42.6673 42.6673 42.6674 42.6677 42.6728 42.8096 43.4258 43.8763 45.3775 100.
P a t h :

1 2 5 4 3 6 8 10 9 7
94.9866 97.6968 98.6789 99.8236 99.9708 99.9994 99.9998 99.9999 100. 100.
P a th 6

9 7 10 8 6 3 5 4 2 1
42.6673 42.6673 42.6674 42.6677 42.6728 42.8096 43.4258 43.8763 45.3775 100.
P a th 7

1 9 2 7 5 10 4 8 3 6
94.9866 94.9866 97.6968 97.6968 98.6789 98.6790 99.8237 99.8241 99.9713 100.
P a th 8

9 1 7 2 10 5 8 4 6 3
42.6673 94.9866 94.9866 97.6968 97.6969 98.6790 98.6794 99.8241 99.8528 100.
P a th 9

l 7 2 9 4 10 5 8 3 6
94.9866 94.9866 97.6968 97.6968 98.8268 98.8269 99.8237 99.8241 99.9713 100.
P a th 10

7 1 9 2 10 4 8 5 6 3
42.6673 94.9866 94.9866 97.6968 97.6969 98.8269 98.8272 99.8241 99.8528 100.
P a th 11

3 6 4 8 5 10 2 7 1 9
42.8041 42.8091 43.2531 43.2534 43.8761 43.8762 45.3774 45.3774 99.9999 100.
P a th 12

3 6 5 8 4 10 2 9 1 7
42.8041 42.8091 43.4252 43.4256 43.8761 43.8762 45.3774 45.3775 100. 100.
P a th 13

1 2 3 4 5 6 7 8 9 10
94.9866 97.6968 97.8336 98.9636 99.9708 99.9994 99.9994 99.9998 99.9999 100.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values would obscure any differences between the gold and surrogate paths, we instead

plotted the paths’ R value differences (surrogate - gold) in Figure 14. These plots show

that the differences between the gold- and surrogate-oracle-based data range between 10'3

to 10"4 percent.

7.1.3 Comparing Models’ Performance

In this experiment we considered the predictive accuracy of the four models of

interest when using input data derived from the partial debugging graph based on the

surrogate oracle. The accuracy was assessed against two empirical reliability measures:

one using the gold oracle and the second using the surrogate oracle.

7.1.3.1 Iterative Prediction Process

We repeated the iterative prediction process described in 6.1.3.1. This time we

used the empirical R values shown in Table 15 to generate input sequences for each path

of interest.

7.1.3.2 Normalized Comparison Data

As a measure o f each model’s predictive accuracy, we again performed a

normalized comparison as described in 6.1.3.2 by iteratively taking the ratio of each

estimated MTTF as predicted by a model to an empirical MTTF calculated from the

appropriate variant’s R value, and rescaling the resulting values by applying the logio

function. The logarithms of the prediction ratios for the four models are shown in Tables

16 through 19, with exceptional cases indicated by symbols and annotated in the captions.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001 - t K-

1
-t-
8 10

Path I
H 1--------1

0.001
0.0009 •
0.0008 • •
0.0007 • ■

0.0005 ■ •
0.0004-
0.0003 ■

Path 4
0.0001

7 9 10 8 6 3 5 2

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

Path 11
I 1---------1

0.001
0.0009 •
0.0008 - -
0.0007
0.0006 •
0.0005 ■
0.0004
0.0003
0.0002
0.0001

Path 13
H-----1----1
8 9 10

Figure 14. R Value Differences Along Some Paths (Surrogate - Gold)

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From this experiment, two series o f tables resulted corresponding to the two

reliability measures mentioned above. We labeled the two groups of tables “a” and “b”

(e.g., Table 16a, Table 16b) and also added parenthetically the information concerning the

source of the input data to the models and the reliability basis for each data set as we

discussed them in 6.1.3.2. In both sets o f tables, the input data to the models were

derived from the partial debugging graph based on the surrogate oracle (i.e., Table 15), so

the first part of the parenthetical label lists “Surrogate.”

The “a” series tables are marked as “(Surrogate / Surrogate),” since for them we

also used the surrogate oracle as the “reliability basis” in calculating the denominator of

the normalized comparison ratios. The “b” series tables are instead marked “(Surrogate /

Gold)” since the gold oracle data (i.e., Table 10) were used as the reliability basis in the

ratios. Thus, the “a” series tables provide a measure of the internal consistency of the

models’ predictions when only a surrogate oracle is used; whereas the “b” series tables

measure how well the surrogate figures support predictions which are consistent with

those based on the gold oracle.

Several observations should be noted before assessing these data.

• A value of zero at any Prediction Stage in the “a” series tables implies that the

surrogate oracle’s data produce consistent predictions as measured against its

empirical approximation of the software’s reliability.

• In the “b” series tables, when zero appears as an entry, it denotes perfect

predictive accuracy based on the gold version.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 16a. Jelinski-Moranda Prediction Ratios (Surrogate / Surrogate)
? no solution; N is infinite or no R growth present

?? no solution; N is finite

Pallt
#

MTTF Prediction Stage
2 3 4 S 6 7 8 9 10

1 ? 7? 7? 7? 7? 77 7? 7? 7?
2 7 7 7 7 7 7 - 6.577e-3 -0.01496
3 ? 7? 7? 77 7? 7? 77 77 7
4 ? 7 7 7 7 7 -5.9 le-3 -0.01447
5 7 7? 7? 7? 7? 7? 77 7? 7
6 7 7 7 7 7 7 -5.91C-3 -0.01447
7 7 7 77 7? 77 0.6362 7? 7? 7?
8 7 7? 77 7? ? 77 7? 7? 7?
9 7 7 77 7? 7? 7? 7? 7? 7?
10 7 77 7? 7? 7? 7? 7? 7? 7?
11 1.002e-3 -2.68e-3 5.512e-4 -3.329e-3 1.65e-4 -9.963e-3 -3.117e-3 -5.736 7?
12 1.002e-3 -3.999C-3 5.642e-4 -1.602e-3 1.132e-3 -9.40 le-3 -2.798e-3 * 7
13 7 7? 7? 7? 7? 77 7? 7? 7?

Table 16b. Jelinski-Moranda Prediction Ratios (Surrogate / Gold)
? no solution; N is infinite or no R growth present

?? no solution; N is finite

Path
»

MTTF Prediction Stage
2 3 4 5 6 7 8 9 10

1 7 7? 77 7? 7? 7? 99 7? 77
2 7 7 7 7 7 7 -6.575e-3 -0.01495 -4.791
3 7 77 7? 7? 7? 77 7? 7? 7
4 7 7 7 7 7 7 -5.908c-3 -0.01447 -4.791
5 7 ?? 7? 7? 7? 7? 99 7? 7
6 7 7 7 7 ? 7 -5.908e-3 -0.01447 -4.791
7 7 9 7? 7? 7? 0.6382 7? 7? 7?
8 7 7? 7? 7? 9 7? 99 77 7?
9 7 7 7? 7? 7? 7? 7? 7? 7?
10 7 7? 7? 7? 7? 7? 7? 7? 77
11 1.002c-3 -2.679e-3 5.512e-4 -3.328c-3 1.65e-4 -9.96 le-3 -3.115e-3 -4.736 77
12 1.002e-3 7.03e-4 5.642e-4 -1.60 le-3 1.132e-3 -9.399e-3 -2.794c-3 -4.782 7
13 ? 77 7? 7? 7? 77 7? 7? 7?

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 17a. Geometric De-Eutrophication Prediction Ratios (Surrogate / Surrogate)
* indicates software predicted to be perfect

Path
tt

MTTF Prediction Stage
2 3 4 5 6 7 8 9 10

1 0.7205 0.6122 -0.1865 -0.2891 -1.207 -0.08122 0.4241 1.081 i f f M i P
2 0 -8.686e-7 -2.17U-6 -3.865e-5 -1.05e-3 -3.828e-3 -6.584 le-3 -0.01499
3 0.7205 0.5606 -0.1389 -0.2736 -1.201 -0.07949 0.4251 -oo *
4 0 -8.686e-7 -2.17U-6 -3.865e-5 -1.05e-3 -5.148e-3 -5.921C-3 -0.01451 m whm
5 0.7205 0.6122 -0.1865 -0.2891 -1.207 -0.08122 0.4241 -OO *
6 0 -8.686e-7 -2.171c-6 -3.865e-5 -1.05e-3 -5.148e-3 -5.92 le-3 -0.01451
7 1.058 0.4451 0.4771 0.2190 0.3271 -0.502 0.04208 -0.5094 Wmmrn.
8 -1.058 0.4129 0.266 0.4891 0.3284 0.4445 -0.3744 0.01792
9
10
11

1.058
-1.058
9.995e-4

0.4451
0.4129
-2.68e-3

0.4771
0.266
5.369e-4

0.1674
0.4891
-3.342e-3

0.3109
0.2768
1.225e-4

-0.4485
0.4197
-0.01001

0.06105
0.3299
-3.28 le-3

-0.4958
0.03666
-5.699

sans
12 9.995e-4 -4.0e-3 5.3776e-4 -1.626e-3 1.089e-3 -9.445C-3 -2.953C-3 -OO *
13 0.7205 0.827 0.3963 -1.07 -1.381 0.3657 0.5444 0.8491

Table 17b. Geometric De-Eutrophication Prediction Ratios (Surrogate / Gold)
* indicates software predicted to be perfect

Path
a

MTTF Prediction Stage
2 3 4 5 6 7 8 9 10

i 0.7206 0.6125 -0.1845 -0.2773 -0.8715 0.572 1.327 2.081 2.602
2 1.3029e-6 8.686e-7 -8.686e-7 -3.648e-5 -1.047e-3 -3.826c-3 -6.58 le-3 -0.01498 -4.796
3 0.7206 0.5609 -0.1369 -0.2618 -0.8652 0.5737 1.328 2.036 *
4 1.3029e-6 8.686e-7 -8.686e-7 -3.648e-5 -1.047e-3 -5.146e-3 -5.919c-3 -0.01451 -4.796
5 0.7206 0.6125 -0.1845 -0.2773 -0.8715 0.572 1.327 2.035 *
6 1.3029e-6 8.686e-7 -8.686e-7 -3.648e-5 -1.047e-3 -5.146c-3 -5.919e-3 -0.01451 -4.796
7 1.058 0.4453 0.4773 0.2193 0.3273 -0.5001 0.04405 -0.4975 -1.489
8 -1.058 0.413 0.2661 0.4892 0.3287 0.4448 -0.3725 0.02056 -1.934
9 1.058 0.4453 0.4773 0.1677 0.3112 -0.4466 0.06302 -0.4839 -1.482
10 -1.058 0.413 0.2661 0.4892 0.2771 0.42 -0.3279 -0.6614 -1.92
11 1.0e-3 -2.68e-3 5.378C-4 -3.341e-3 1.233e-4 -0.01001 -3.28c-3 -4.745 0.9012
12 1.0e-3 7.03e-4 5.386e-4 -1.625e-3 1.089e-3 -9.443e-3 -2.95e-3 -4.77 *
13 0.7206 0.8272 0.3967 -1.058 -1.045 0.7014 1.198 1.849 2.346

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 18a. Basic Musa Prediction Ratios (Surrogate / Surrogate)
* indicates software predicted to be perfect

Path
#

MTTF Prediction Staee
2 3 4 5 6 7 8 9 10

1 -0.6388 -0.7176 -0.196 7.397 * 6.677 3.119 0.5983 *
2 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8485 -0.9079 -0.966 *
3 -0.6388 -0.769 0.4927 7.223 * 6.676 3.119 • •
4 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
5 -0.6388 -0.7176 -0.196 7.397 * 6.677 3.119 * *
6 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
7 -0.301 -0.8149 -0.5751 -0.9404 -0.6392 -1.72 0.6419 5.94 *
8 -1.359 -0.1544 -0.9399 -0.4043 -1.019 -0.5118 -0.4905 1.268 *
9 -0.301 -0.8149 -0.5751 -0.9919 -0.5426 -1.668 0.5954 5.769 *
10 -1.359 -0.1544 -0.9399 -0.4043 -1.075 -0.4109 0.1989 1.205 *
11 -0.3011 -0.4805 -0.6021 -0.7038 -0.7782 -0.8569 -0.9031 -6.691 *
12 -0.3011 -0.4818 -0.6021 -0.7024 -0.7782 -0.8569 -0.9031 * *
13 -0.6388 -0.5033 -0.9223 1.562 * 1.275 2.667 2.562 *

Table 18b. Basic Musa Prediction Ratios (Surrogate / Gold)
* indicates software predicted to be perfect

rath
H

MTTF Prediction Staee
2 3 4 5 6 7 8 9 10

I -0.6387 -0.7174 -0.1941 7.409 * 7.33 4.022 1.598 *

2 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8485 -0.908 -0.966 *

3 -0.6387 -0.7687 0.4947 7.235 * 7.33 4.022 * *

4 -0.301 -0.4771 -0.6021 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *

5 -0.6387 -0.7174 -0.1941 7.409 * 7.33 4.022 * *

6 -0.301 -0.4771 -0.602 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *

7 -0.301 -0.8148 -0.5749 -0.9401 -0.6389 -1.718 0.6439 5.952 *

8 -1.359 -0.1544 -0.9397 -0.4041 -1.018 -0.5116 -0.4885 1.271 *

9 -0.301 -0.8148 -0.5749 -0.9916 -0.5423 -1.666 0.5974 5.781 *

10 -1.359 -0.1544 -0.9397 -0.4041 -1.07 -0.4106 0.2009 0.5071 *

11 -0.3011 -0.4805 -0.6021 -0.7038 -0.7782 -0.8569 -0.9031 -5.691 *

12 -0.3011 -0.4771 -0.6021 -0.7024 -0.7782 -0.8569 -0.9031 * *

13 -0.6387 -0.5031 -0.9219 10.57 * 1.61 3.321 3.562 *

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 19a. Logarithmic Poisson Prediction Ratios (Surrogate / Surrogate)
? indicates no solution for desired precision
* indicates software predicted to be perfect

Path MTTF Prediction Stage
H 2 3 4 S 6 7 8 9 10
1 -0.0778 -0.7125 -0.5962 -1.668c-3 0.07336 0.2184 0.197 0.165 *
2 -0.301 -0.4771 ? -0.699 -0.7792 -0.8485 -0.9079 -0.966 *
3 -0.0778 -0.763 -0.4146 -3.278e-3 0.07261 0.2181 0.1967 * 7
4 -0.301 -0.4771 ? -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
5 -0.0778 -0.7125 -0.5962 -1.668c-3 0.07336 0.2184 0.197 * 7
6 -0.301 -0.4771 7 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
7 -0.02018 ? -0.56 ? 7 7 -0.2559 7 *
8 -1.359 -0.0459 -0.3788 -0.2887 -1.013 7 -0.8964 -0.2278 *
9 -0.02018 ? -0.56 9 -0.5576 7 -0.2588 7 *
10 -1.359 -0.0459 -0.3788 -0.2887 -1.063 -0.4136 -0.7153 -0.2289 *
11 -0.3011 -0.4805 -0.6021 ? -0.7782 -0.8569 -0.9031 -6.078 7
12 -0.3011 -0.4818 -0.6021 -0.7024 -0.7782 -0.8569 -0.9031 * 7
13 -0.0778 -0.501 ? -0.6349 0.08095 0 .2 2 1 2 0.1538 0.1409 *

Table 19b. Logarithmic Poisson Prediction Ratios (Surrogate / Gold)
? indicates no solution for desired precision
* indicates software predicted to be perfect

Path MTTF Prediction Stage
» 2 3 4 5 6 7 8 9 10
1 -0.07765 -0.7122 -0.5943 0.01007 0.4091 0.8716 1.1 1.165 *
2 -0.301 -0.4771 7 -0.699 -0.7792 -0.8485 -0.9079 -0.966 *
3 -0.07765 -0.7627 -0.4127 8.46e-3 0.4084 0.8713 1.1 * 7
4 -0.301 -0.4771 ? -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
5 -0.07765 -0.7122 -0.5943 0.01007 0.4091 0.8716 1.1 * 7
6 -0.301 -0.4771 7 -0.699 -0.7792 -0.8498 -0.9066 -0.966 *
7 -0.02012 7 -0.5598 7 7 7 -0.2539 7 *
8 -1.359 -0.04584 -0.3787 -0.2886 -1.013 7 -0.8945 -0.2252 *
9 -0.02012 7 -0.5598 7 -0.5573 7 -0.2568 7 *
10 -1.359 -0.04584 -0.3787 -0.2886 -1.063 -0.4133 -0.7133 -0.927 *
11 -0.3011 -0.4805 -0.6021 7 -0.7781 -0.8569 -0.9031 -5.078 7
12 -0.3011 -0.4771 -0.6021 -0.7024 -0.7781 -0.8569 -0.9031 * 7
13 -0.07765 -0.5008 7 -0.6231 0.4167 0.557 0.8071 1.141 *

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• In producing the “a” series tables, the variant at the end of each path is

indistinguishable from the surrogate. It should be noted, then, that the 10th

Prediction Stage in these tables is meaningless in the following sense: the use of

the surrogate oracle results in a “known” MTTF equal to + qo, so the ratio of

predicted to actual MTTF is zero. In some cases, the algorithms reached

alternative conclusions (e.g., “no solution”), which are recorded in the tables to

reflect the implementations’ robustness (or lack of it); otherwise, we simply

shaded the data position in this column. This notation does not imply a bad

prediction was made by the model; rather the lack of a significant entry is due to

the lack of a useful empirical value to use for comparison.

• In the “b” series tables, there were no such problems calculating the comparison

ratios at the 10th Prediction Stage.

7.2 Analysis

Since our goal was to see how closely predictive performance based on surrogate

oracle derived data resembles that based on gold oracle derived data, we do not at this

time critique the individual models for their applicability to the specimen software; nor do

we discuss the fault recovery order issues previously presented in 6.2. Comparing the

prediction ratios based on data derived using the gold and surrogate oracles along a given

path for a given model involves juxtaposing corresponding rows in Tables 11 through 14

with those in the “a” and “b” series o f Tables 16 through 19.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should be noted that since both the “a” and “b” series tables were produced

using “surrogate” data as inputs to the models, these two sets o f tables identically flag any

special cases (i.e., “no solutions” or “perfect software”). So along a given path, just the

magnitudes of the comparison ratios may differ due to the difference in the reliability

measures in a corresponding “a-b” pairings.

First we analyze the “a” series data, which illustrate the quality o f the models’

predictions using the surrogate oracle as the source for both model inputs and the

reliability measure. The models produced more “perfect software” reports in later stages

when using data derived from the surrogate oracle. This can be attributed to the fact that

the variant at the end of each path is indistinguishable from the surrogate oracle (i.e., the

last measured R value is in fact 10 percent). Another general observation is that the

“surrogate” data agree qualitatively with the “gold” data for all four models and along

every path. This is seen even when the data are sparse, as with the Jelinski-Moranda

model. In that particular case, the juxtaposed data are nearly identical to one another; the

“gold” and “surrogate” data in both Tables 14 and 16b agree exactly along at least two

paths (e.g., 1 and 13), and generally to within 10-6 along the others (e.g., 4 and 11).

The “b” series tables measure how well the models predict with respect to

reliabilities as measured by the gold oracle when the models’ input data are based on the

surrogate oracle. The “surrogate” data under this comparison basis prove to agree quite

well with the “gold” data for all the models and along all paths until the 6th or 7th

Prediction Stage; thereafter, they become increasingly optimistic, much more so than the

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“gold” data. A notable exception once again is the Jelinski-Moranda model, whose ratios

are similar in both Tables 14 and 16b.

In addition to the general observations mentioned above, the following trends are

notable for the four models across the three data sets:

• The Jelinski-Moranda continued to surprise us with its accurate predictions

along paths 11 and 12, as well as the later stages of paths 2, 4 and 6. This

behavior is consistent for all three combinations of data conditions.

• Use of the surrogate oracle’s input data produced a few “false perfect”

assessments in the Geometric De-Eutrophication model’s predictions; none

appeared when only gold data were used. Use of the surrogate oracle as the

reliability basis made the model appear to be less “wildly” optimistic in the later

predictive stages, but had little effect elsewhere on any of the paths.

• Basic Musa predictions are generally at the extremes o f the prediction

continuum; that is, they are either very pessimistic or very optimistic regardless

o f the data combinations used. The model on the whole is a poor performer

along all the paths. Use o f the surrogate oracle’s data as either inputs to the

model or as the reliability basis injected predictive optimism a stage earlier than

what we saw with the other models along some paths, and also caused more

“false perfect” assessments to appear near the end of the prediction iterations.

• The Log Poisson model was more successful at making prediction attempts (i.e.,

fewer “no solutions”) whenever the surrogate data were involved versus using

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the gold data. Although in general corresponding paths’ data agree quite closely

through the 6th Prediction Stage, the model became overly optimistic later on, as

is evident comparing the total number o f “perfect software” predictions at the 9th

and 10 th Stages in the three data sets.

To illustrate the similarity of the predictions in the data based on the two different

oracles, Figures 15 through 17 use bar graphs to depict comparison ratios along the four

representative paths (i.e., 1, 4, 11, 13) used earlier (see 7.1.2) for all models except

Jelinski-Moranda, due to the lack of significant numbers to plot in this case. The graph

legends use the labeling convention we explained earlier (see 7.1.3.2) and report the

“(input basis) / (reliability basis)” of the three data sets. Thus the first of the three cases

used the gold oracle both to generate inputs to the models and as the reliability basis in the

comparison ratios, as discussed in 6.1.3.2; the second and third cases correspond to the

“a” and “b” series data discussed above. Also note in some cases the largest data values

have been “cropped” to fit in these figures, but this should not affect the overall qualitative

comparison of the paths.

In interpreting the bar graphs, keep in mind that positive bars indicate predictive

optimism, negative bars indicate predictive pessimism, and the “zero-line” plot indicates

predictive accuracy. Since plotted values much smaller than 0.001 are not discernable in

these plots, we have enhanced the visibility o f the near-zero data by darkening the x-axis

in the corresponding data regions wherever such values occur. As an example, the plot

for Path 4 in Figure 15 reveals that all three data cases produce extremely accurate

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Path I
3

■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

2 3 4 S> 6 7 8 9 10S ta g e

3--

2 • •

1

0-

-1 ■■

- 2 -

Path 4

■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

.1— it.

2 3 4 w « 7 8 9 10

Path 113.00E+00
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

2.00E+00 ■ •

1.00E+00 • •

-1.00E+00 ■ ■

-2.00E+00

2 3 4 w 6 7 8 9 10

Path 13
3 t

■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

2--

-1 • •

-2
2 3 4 5< 6 8 9 107

Figure 15. Geometric De-Eutrophication Prediction Ratios Comparisons

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Path 1
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

-2 1
94 5, 6 7 8 102 3 S ta g e

3 t

2

I ■■

0 |

-1 ■■

- 2 - -

Path 4
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

MHODI
2 3 4 Ssugt 6 7 8 9 10

3 ■■

2 ■■

1

0

-1

-2

Path 11
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

'ED

3 T

2--

1 ■■

0

-1 • •

-2 • ■

Path 13
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

2 3 4 Ss,age 6 7 8 9 10

Figure 16. Basic Musa Prediction Ratios Comparisons
* indicates software predicted to be perfect

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Path I3
■Gold/Gold
□ Surr/Surr
□ Surr/Gold

2 ■ •

-1

-2
4 5, 62 3 7 8 9 10S l o j e

3 t

2

1 +

0

-1 • •

-2

Path 4
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

??.? . .? ? * *I*-1--- 1

Path II
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

??. T-lt]

-1

-2
2 3 4 ^ , 6 7 8 9 10 2 3 4 5S,^ 6 7 8 9 10

Path 13
■ Gold/Gold
□ Surr/Surr
□ Surr/Gold

.???, juIU — i

Figure 17. Logarithmic Poisson Prediction Ratios Comparisons
? indicates no solution fo r desired precision
* indicates software predicted to be perfect

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictions except at the final Prediction Stage; here in two cases the model predicted

failure times more than two orders of magnitude smaller than they “should” be.

The figures show that these three models’ predictive performance data are quite

similar in all three scenarios, although there are some observable differences. Similarity is

to be expected, since the “(Surrogate / Surrogate)” and “(Surrogate / Gold)” data are by

design approximations to the ideal laboratory data labeled “(Gold / Gold)” The models

predict rather consistently on the counter-intuitive (4) and mixed recovery order (11)

paths under all three combinations of data conditions. For the intuitive (1) and original

recovery order (13) paths, all three models’ data show some regions where predictions are

respectable (i.e., the bar data are very small), but there is a general trend toward increasing

optimism, magnified by the use of the surrogate data, as the Prediction Stage increases.

To summarize, in the first half of the iterative prediction and evaluation process,

using the surrogate oracle to generate the models’ inputs and/or as the reliability basis

produced results consistent with those realized using the gold oracle to both generate

model inputs and as the reliability basis. The primary effect of using the surrogate oracle

as the reliability basis in the comparison ratios vice the gold oracle is to mask the relatively

wild predictive optimism resulting from the surrogate input data after the 6th or 7th

Prediction Stages. This predictive optimism is clearly evident in much greater magnitude

when the predictions are assessed against the gold oracle, the “true” reliability basis.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Conclusions

To move the performance analysis methodologies described in 6.1.3 into the

production process, we proposed the use o f a surrogate oracle — constructed by

instrumenting the specimen software with all known repairs — as a useful alternative to a

gold oracle when a perfect version of the tested program is unavailable. Based on our

experiments, it appears that using a surrogate oracle is feasible for generating and

comparing the predictive performance data o f software reliability models, provided one

judiciously interprets the comparison data.

Our analysis shows that for the studied models and specimen software, using this

surrogate error detector as a basis for creating the models’ input data produces predictive

results similar to and consistent with those obtained using a gold oracle. The predictions,

however, grow increasingly optimistic after the 6th or 7th Prediction Stage, and need to be

viewed with caution as we near Stage n. The results of our experiment also suggest that

one’s confidence in the predictions should probably decrease as more and more data are

added to the input set, so that controlling the number of input data points may be

recommendable. We will address this consideration in the next chapter.

We saw in the prediction assessment component of this study the effect of not

being able to distinguish the program Pi i0 from the surrogate oracle; i.e., the last

program variant along the surrogate debugging paths is assigned a reliability of 100

percent. In most cases, this did not cause the models to completely fail to make

predictions at the later stages; but there was a higher incidence of incorrect “perfect”

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictions at and near the final stage. This is an inconvenient artifact o f using the

surrogate oracle when some number of bugs remain in the program.

Under these conditions, approximation techniques may be useful to correct the R

sequence along the debugging path from the inflated values measured by the surrogate

oracle. For example, a biasing factor could be derived from the prediction ratios assessed

earlier along the debugging path and used to lower the later reliability figures to more

realistic values, before predictions to Stage n+1 and beyond are performed. Future

experiments should address this general problem as it applies to using a surrogate oracle

when predictions are required.

Finally, this experiment revealed that our laboratory work on bug sizes and fault

recovery order could have been conducted using just the surrogate oracle, and we would

have reached similar conclusions as those based on the gold oracle. Thus the surrogate

oracle has immediate uses in laboratory experiments and some potential also exists for

further applications.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Eight

Truncated Paths

A legitimate concern in using the debugging graph as a basis for manipulating

software reliability prediction data is that, as the number of known faults increases, the

breadth of the graph and the number of levels — that is, the length of the debugging paths

— increases. The computational component o f the problem grows commensurately, as do

storage requirements if failure data are tracked. The notion of data aging offers a means

o f “trimming” the graph by enabling one to intelligently eliminate from consideration some

portion of the known failure data, with an attendant reduction in time and space needs for

data collection and subsequent predictive performance analysis.

Further, in 7.3 we mentioned the possible need to control the size o f the data set

input to the predictive models as a means of mitigating potential skewing o f the data due

to latent effects in the failure history. In this chapter we describe an experiment in which

the models’ predictive performance is studied along four representative debugging paths

whose data were subjected to an aging criterion.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 Experim ent Description

We chose four representative paths from those described in Table 9 to use in this

experiment: an intutitive path (1); a counter-intuitive path (4); a mixed recovery order

path (11); and the original repair order path (13). For each of the four models, we applied

the iterative prediction process to predict M TTF; at each stage / (see 6 .1.3.1); only instead

of using MTTFo through M TTFi.i to formulate each prediction, a window of size w was

used to limit the number o f inputs to w values consisting of MTTFi.w through M TTFi-i.

(Note: This is the second of Schneidewind’s aging approaches as described in 2.5.3.) For

example, if w = 4, then predicting MTTF9 involves using MTTF5 through MTTFg.

We allowed w to range from 2 through 10 for each path; these values are shown in

the column labeled “# Pts” in Tables 20 through 23. The shaded regions o f the tables

denote where predictions were not made due to the combination of w and Prediction

Stage; since in general, when limiting the inputs to the last w MTTF values, the first

possible prediction occurs at stage w. As before, exceptional cases are labeled with

symbols and annotated in the captions. The tables are also labeled parenthetically as

“(Gold / Gold)” to indicate that the source of both the input data to the models and the

reliability basis are data derived from the gold oracle.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 20. Jelinski-Moranda Aged Prediction Ratios (Gold / Gold)
? no solution; N is infinite or no R growth present

?? no solution; N is finite
Path 1

tt MTTF Prediction Staee
Pis 2 “ " ' 3 4 5 6 7 8 9 10
2 ? 7 ? 7 ? ? ? 0.1549 ?
3
4
5
6
7
8
9
10

WWMM ?? 7 77 7? 7? ?? 0.265 7
0.06168
0.46288

77
77
7?
7?
77

Path 4
M TTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 7 7 7 7 ? -3.665e-3 1.284c-3 -8.274e-3 -4.771
3
4
5
6
7
8
9
10

WMmM 7 7 7 7 -4.332e-3 -1.17U-3 -7.419e-3
mrn^m. ? ? ? -4.683 -2.902c-3 -8.833e-3

-4.777
-4.779
-4.781
-4.784
-4.786
-4.788
-4.789
-4.79

Path 11
MTTF Prediction Staee

Tin 2 3 4 5 6 7 8 9 10
2 I.002c-3 ? 3.409e-3 ? 4.846c-3 ? 0.0121 7 7
3
4
5
6
7
8
9
10

'WMWM -2.68c-3 1.167e-3 -2.528e-3 1.63e-3 -8.564e-3 4.124e-3
5.512e-4 -3.069e-3 1.734c-3 -9.354e-3 2.598e-3

-3.328e-3 7.94C-4 -8.946e-3 2.301c-4

-4.729
-4.731
-4.732
-4.733
-4.734
-4.735
-4.736

7?
7?
7?
7?
7?
7?
77
7?

Path 13
MTTF Prediction Stage

•0.2917
0.04854 0.1445 0.05112

-0.2434 0.05043
0.4882

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 21. Geometric De-Eutrophication Aged Prediction Ratios (Gold / Gold)

Path 1
» MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 0.7205 0.09643 -0.6315 0.1014 -0.5918 1.203 0.1085 0.1481 -0.1427
3
4
5
6
7
8
9
10

W/Mmm. 0.6122 -0.5666 -0.2964 -0.5236 0.8294 1.011 0.2212
l l l l l l l l l l -0.1848 -0.43 -0.8065 0.7078 1.228 0.7815

-0.2794 -0.9609 0.4115 1.258 1.379

-0.04253
0.0654
0.4775
1.054
1.69
1.823
1.726
1.809

Path 4
a MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 0 -8.686e-7 -1.303e-6 -3.561c-5 -9.996e-4 -3.667e-3 1.233e-3 -8.302e-3 -4.77
3
4
5
6
7
8
9
10

W M M , -8.686e-7 -2.171e-6 -3.648e-5
-3.735c-5
-3.822e-5

.....

l , . . m........

-1.024e-3
-1.036e-3
-1.044e-3

...........

-4.334e-3
-4.684e-3
-4.899e-3
-5.044e-3
-5.148e-3

m

-1.21 lc-3
-2.932e-3
-4.078e-3
-4.88c-3
-5.47-3
-5.92 lc-3

m

-7.48e-3
-8,903c-3
-0.01052
-0.01187
-0.01294
-0.01381
-0.01451

w m aw M m '/,

-4.77
-4.77
-4.77
-4.796
-4.796
-4.796
-4.796
-4.796

Path 11
MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 9.986e-4 -3.346e-3 3.383e-3 -4.79e-3 4.791e-3 -0.01177 0.01178 -4.745 4.692
3
4
5
6
7
8
9
10

'W M M M i -2.68e-3 1.152e-3 -2.534e-3 1.6e-3 -8.578e-3 3.934e-3 -4.721
W m m m /M M M Z M , 5.373e-4 -3.08e-3 1.695c-3 -9.375e-3 2.414c-3 -4.721

-3.342C-3 7.515e-4 -8.98e-3 6.297e-5 -4.721

2.148
1.239
0.7479
0.4336
0.2094
0.03989
-0.0951
-0.2057

Path 13
a MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 0.7205 0.3111 -0.2935 -1.219 0.1756 1.363 -0.1597 0.2055 -0.09152
3
4
5
6
7
8
9
10

'W M M k 0.8269 -0.07962 -1.409 -0.5595 1.482 0.8775 0.1006
0.3964 -1.353 -0.9766 0.9404 1.75 0.6059

0.04822
0.03774
0.394
0.9829
1.805
1.8
1.657
1.732

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 22. Basic Musa Aged Prediction Ratios (Gold / Gold)
* indicates software predicted to be perfect

Path 1
MTTF Prediction Stage

Pis
-0.3468-0.2041-0.3522-0.4607-1.072 -1.664-1.174-0.5423-0.6387
-0.5229-0.38020.2074 -0.52831.554 10.59-1.35-0.7177

-0.5052 -0.64780.7916 -0.41644.566-0.2023
-0.7447-0.60211.314 -0.14767.186

-0.5427 -0.82391.815 0.09126
-0.4694 -0.89090.31612.31

-0.9488-0.39440.5342
-0.318 -0.8796

-0.7588

Path 4
MTTF Prediction Slag

-0.3045 0.3128-0.301 0.3011 -0.302 -0.3057
-0.4772 -0.4782 -0.4818 -0.4806 0.48890.4771 -0.4771

0.602 -0.6021 0.603 -0.6068 -0.6055 -0.6138
-0.6997 -0.7037 -0.7024 0.7107

-0.7792 -0.7829 -0.7816 0.7899
0.8486 0.8569

-0.9066 0.9149

^ ‘{’/ / / / / / / / / / / / / / / / / s Y / / / / / / / / / / / / / / / / ,

Path 11
MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.301 -0.3044 -0.301 -0.3058 -0.301 -0.3128 -0.301 -5.038 -0.3468
3 -0.4805 -0.4771 -0.4819 -0.4771 -0.4889 -0.4771 -5.214 0.128
4 W m lm MilP -0.6021 -0.6069 -0.6021 -0.6138 -0.6021 -5.339 0.5185
5 m m M rnM rm . . . / x . t L e U 1 -0.7107 -0.7 -5.436 0.8869
6 W M m m m m //W -0.7899 -0.7782 -5.515 1.252
7 9mm. -0.8569 -0.8451 -5.582 1.622
8 mm (mi . y u r n r , , , ,

-0.9031 -5.64 1.999
9
10 * Wm\ / / / am M B

-5.692 2.384
2.777

Path 13
MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.6387 -0.3276 -0.6211 -1.84 -1.664 -0.301 -0.4607 -0.2553 -0.3468
3 -0.5034 -0.7972 -2.016 * 7.99 le-3 -0.6368 -0.4314 -0.5229
4 m m m w. -0.9221 -2.141 * 0.3176 -0.7618 -0.5563 -0.6478
5 'M////////////M i n i i o • f \ £. \ A -0.3795 -0.6172 -0.7447
6J„ , -0.02983 -0.4991 -0.8239
7 Mm,Wm , 0.2782 -0.3877 -0.8909
8 f /L : , / , . . . < 0.5632 -0.2797 -0.8188
9
10 mm! ■ ■ ■ mm■ * -0.1732mm -0.6837

-0.5603

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 23. Logarithmic Poisson Aged Prediction Ratios (Gold / Gold)
? indicates no solution for desired precision

Path 1
MTTF I'redictiott Stagt

Pts
0.1523-0.0777
0.23260.02478-0.1268-0.7139

-0.09896 0.04831 0.2526-0.5969
-0.059470.2118-2.276e-3 0.02724

0.1396 0.056890.07112
-0.069140.1829 0.1143 0.06503
-0.024640.1315 0.05223
-0.022950.07551
7.594e-3

Path 4
MTTF ftediction Stagi

fts
-0.301-0.301 -0.3021 -0.3045-0.301
-0.4771-0.4771 -0.4782 -0.4806

-0.6031 -0.6055 -0.6138
-0.7 -0.7024 -0.7107
-0.7792 -0.7816 -0.7899

-0.8486 -0.8569
-0.9066 -0.9149

-0.966

Path 11
MTTF ftediction Stagi

Pts.
-0.301-0.3044 -0.3128 -0.301 -4.952-0.3058

-0.4889 -0.4771 -5.128
-0.6021 -0.6138 -0.6021 -5.253
-0.699 -0.7107 -5.349-0.699
-0.7782 -0.7899 -0.7782 -5.429

-0.8569 -0.8451 -5.496
-0.9031 -5.554

-5.605

Path 13
MTTF ftediction Stage

Pts
-0.0777 0.1613-0.8989

-0.5017 0.2 0.3728
0.1113 0.3141 0.1998

0.1967 0.07829
0.1464 0.1234

1863 0.08904 0.02956
0.1176 0.01248

-5.529e-30.07434
0.01353

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Analysis

To assess the effects of data aging on the predictive process, we contrasted the

sequence of ratios of predicted to known MTTFs, transformed using logio, for a given

model and path as obtained when using the cumulative approach — all known data up to

a current predictive stage (see 6.1.3.2) — versus the nine sequences for different w values

calculated during this experiment. We made the following observations:

• Data aging allowed the Jelinski-Moranda model to attempt a few more

predictions on the original repair order path (13). Otherwise, using even the

smallest data window produced results consistent with the original predictive

performance along these four paths as previously examined. That is, the

algorithm assessed a finite number of bugs along the intutitive path (1) after the

first few stages, the counter-intuitive path (4) did well only in the later stages,

and the mixed recovery order path (11) did well until the last two stages.

• Once again, for the counter-intuitive (4) and the mixed order (11) paths, the

Geometric De-Eutrophication model produced extremely accurate overall

predictions. Using data aging did nothing to eliminate the later skewing along

these paths, but neither did it unreasonably worsen it. Along the other two paths

(1, 13), with cumulative data the model appeared to try to make a correction at

one point and then grew increasingly optimistic in its predictions. Applying data

aging made the accuracy of the predictions result in an oscillating pattern of

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimistic and pessimistic predictions, as though the model were continually

trying to make corrections. This resulted in inconsistent predictive performance

across the stages regardless of the window size.

• The overall performance of the Basic Musa model remained relatively poor even

using data aging, although it was somewhat less wildly optimistic. One

observable difference was the increased incidence of “false perfect” predictions

when data aging was applied.

• The predictive accuracy of the Logarithmic Poisson model appeared to degrade

somewhat when applying the data aging criterion. That is, we saw an increased

incidence of “no solutions,” indicating an inability to find parametric values

which “fit” the functions to the truncated data. The model still did well during

the middle and late predictive stages along the intuitive path (1), and respectably

along the original order path (13). Unlike when cumulative data were used,

along paths 4 and 11, for a given window size the comparison ratios were

consistent across the stages. This suggests that a simple correction factor might

be useful in realigning the predictions along some paths.

An interesting general observation is that along all four representative paths, given

a window size as small as 2, the models perform quite well. In fact, the models generally

predict as well or better using a smaller window versus a larger one. That is, at any

Prediction Stage, the first few ratios listed in each column are respectably close to the

remaining ratios in the column — and this is consistent across a fixed row. To illustrate

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this point, Figures 18 and 19 show the prediction ratios resulting for paths 1 and 4 based

on the gold oracle for all four models, using both the cumulative approach and the aging

criterion with w = 2 and with a “medium” sized window, w = 5. Note that while we have

once again enchanced the visibility of the near-zero data by darkening the x-axis in the

corresponding regions, the w = 5 ratio data do not start until Stage 5.

The path 1 results are somewhat inconsistent among the four models. But in

general one can see that windowing in many cases pulls the predictions into better

agreement with the empirically measured reliability (i.e., the plotted ratios are closer to

zero), and many times better performance is gained using the smaller window. A notable

exception is the Logarithmic Poisson model, which has the best aged performance along

this path, and with the medium sized window. For path 4, it is evident that the Jelinski-

Moranda and Geometric De-Eutrophication cumulative and aged data align quite nicely.

The aged Basic Musa and Logarithmic Poisson predictions are more optimistic than their

cumulative counterparts, but this actually results in greater predictive accuracy in many

cases, with w = 2 approaching better accuracy than w = 5.

To investigate the combined effects o f windowing and the surrogate oracle, we ran

the data for the four representative paths derived ffom the surrogate oracle through the

models using the various w values; the results are shown in Tables 24 through 27. Once

again, there are two series of tables, labeled “a” and “b.” Using the convention “(input

basis / reliability measure),” the “a” tables are also labeled “(Surrogate / Surrogate)” and

correspond to using the surrogate oracle as the source for the model’s input data as well

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 • ■

2 • •

1

0

-1 ■■

-2 • •

Geom etric De-Eutrophication

■ Cumul * = inf N or
Path 1

■ Cuniul
□ w = 2 no R growth 2 • □ w = 2
□ w = 5 7 = finite N □w = 5

?* ?* ?*??*??*??*?? ??*nH 1-----1-----1-----1-----1-----1 I M 0

-1

-2

2 3 4 W 6 7 8 9 10

I il 1 „

2 3 4 W 6 7 8 9 10

3 Path I
■ Cuniul

2 • E3w = 2
□w = 5

Basic Musa

1

0

-1

-2

= predicted
perfect

■

2 3 4 W 6 7 8 9 10

3 Path 1
■ Cuniul

2 • 0w = 2
□ w= 5

1 ■ 7 = no sol'n

? . ?

1 1
-1 ■

-2 •

Path } Logarithmic Poisson

a - * 1 w n - ?? ? ??■ — *1— I— L-ll 1

2 3 4 w 6 7 8 9 10

Figure 18. Cumulative Versus Aged Prediction Ratio Comparisons for Path 1
(Gold/Gold)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 -

2 •

1 •

0-

-1 •

- 2 -

3 ■

2

1

0

-1

Path 4 Jelinski-Moranda 3 Path 4
■ Cuniul * = inf N or ■ Cuniul
0 w = 2 no R growth 2 • E3w = 2
□ w = 5 □w = 5

H 1--------- 1---------1-------- 1 i il»

Geometric De-Eutrophication

I I

3 4 W 6 7 8 9 10 2 3 4

Path 4 Basic Musa 3 Path 4
■ Cuniul ■ Cuniul

0 w = 2 2 • □ w = 2

□ w= 5 □ w = 5

W 6 7 8 9 10

i n fT |r

-2 -*■

1 +

0

-1 +

-2

? = no sol'n

? ?? ? ? ? ? ? ? ?
H t a n i i» , t .I— ■ .I 1

U

2 3 * W 6 7 8 9 10 2 3 4 W 6 7 8 9 10

Figure 19. Cumulative Versus Aged Prediction Ratio Comparisons for Path 4
(Gold /Gold)

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 24a. Jelinski-Moranda Aged Prediction Ratios (Surrogate / Surrogate)
? no solution; N is infinite or no R growth present

?? no solution; N is finite
* software predicted to be perfect

Path 1
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 7 ? -0.2837 7 7 7 7 * 7
3
4
5
6
7
8
9
10

W/////////M ?? ? 7? ?? 7? 77 7

7?
??
77
7?
7?
7?

Path 4
U MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2
3
4
5
6
7
8
9
10

7 7 7 7 7 -3.665e-3 1.284e-3 -8.275e-3 W H M M .
WMMM 7 7 7 7 -4.33 le-3 -1.171e-3 -7.42e-3 m M M m .
m M m , W M M tfc. 7 7 7 -4.683e-3 -2.902c-3 -8.834c-3 m m M m

Path 11
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 1.002e-3 7 3.409e-3 7 4.846e-3 7 0.0121 7 7
3
4
5
6
7
8
9
10

W M M m -2.68e-3 1.167e-3 -2.528e-3 1.63e-3 -8.565e-3 4.124e-3 -5.729
5.512e-4 -3.069c-3 1.734e-3 -9.355e-3 2.598e-3 -5.731

-3.329e-3 7.897e-4 -8.947e-3 2.301e-4 -5.732

7?
7?
7?
7?
7?
7?
7?
7?

Path 13
MTTF Prediction Stage

2 3 4 5 6 7 8 9 10
2 ? 7 -0.2919 7 7 7 ? ? *
3
4
5
6
7
8
9
10

U

7? 0.04853
7?

u

-1.076
-0.2488

77

■ H i

7?
7?
7?
7?

7?
7?
7?
7?
77

?
7?
77
??
7?
7?

illlllll

?
7?
7?
7?
7?
7?
7?

'M rnw M .

7
77
7?
7?
7?
7?
7?
7?

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 24b. Jelinski-Moranda Aged Prediction Ratios (Surrogate / Gold)
? no solution; N is infinite or no R growth present

?? no solution; N is finite
* software predicted to be perfect

Path 1
MTTF Prediction Stage

Pis 2 3 4 5 6 7 8 9 10
2 ? 7 -0.2817 ? ? 7 ? * 7
3
4
5
6
7
8
9
10

WMM. 77 7 77 7? 77 77 7 llllll! yMM M . 7? ?? ?? ?7 77 7?
1.229
2.314

7?
77
7?
7?
7?
7?

Path 4
it MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 7 7 7 7 ? -3.662e-3 1.288e-3 -8.271e-3 -4.771
3
4
5
6
7
8
9
10

WMM. 7 7 7 7 -4.329e-3 -1.169e-3 -7.416e-3
7 7 7 -4.68le-3 -2.899e-3 -8.831e-3

? ? -4.896e-3 -4.053e-3 -0.01045

-4.777
-4.779
-4.781
-4.784
-4.786
-4.788
-4.789
-4.791

Path 11
MTTF Prediction Stage

Pis 2 3 4 5 6 7 8 9 10
2 1.002c-3 7 3.409e-3 ? 4.846c-3 7 0.0121 7 7
3 m m m rn •» t 1 1 ’.63e-3 -8.563C-3 4.124e-3 -4.729 7?
4 /• 1 .734e-3 -9.354e-3 2.602C-3 -4.731 7?
5 . /f....../X... * ^8 * ,94e-4 -8.945e-3 2.301e-4 -4.732 7?
6

/ ' /
l.65e-4 -9.499e-3 -6.841e-4 -4.733 77

7
8
9
10

---- 4U
.....

i i i i

....h|

m m i
m

-9.96 le-3 -2.022c-3
-3.115e-3

-4.734
-4.735
-4.736

HUif

7?
77
7?
7?

Path 13
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 ? 7 -0.2915 ? 7 7 9 7 *
3
4
5
6
7
8
9
10

■

7? 0.04887
7?

-1.065
-0.2371

7?

7?
7?
7?
77

7?
7?
7?
7?
7?

7
7?
7?
7?
7?
7?

iiillll

7
77
7?
7?
77
77

H H R H I

7
7?
7?
7?
7?
7?
7?
7?

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 25a. Geometric De-Eutrophication Aged Prediction Ratios (Surrogate / Surrogate)

Path 1
MTTF Prediction Stage

0.0964 0.09332 -0.90610.7205 0.1761
0.6122 -0.5682 0.3054 -0.8433 0.6514 0.4205

0.4394-0. 865 0.4529
-0.2891 - .285 0.1246 0.9861

-0.07594 0.6542
-0.08122 0.43 6

0.4241

Path 4
MTTFPredMMnSta^e

8.686e-7 1.303c-6 3.648e-5 9.992e-4 3.667e-3 1.233e-3 8.303e-3
8.686e-7 2.171e-6 3.735e-5 1.023e-3 -4.333e-3 -1.21 le-3 7.48 le-3

2.171e-6 3.822e-5 1.036e-3 -4.684e-3 2.93 le-3 8.904e-3
3.865e-5 1.044e-3 -4.899e-3 4.077e-3 0.01052

1.05e-3 5.045e-3 4.88e-3 0.0 187
5. 48e-3 5.47e-3 0.01294

5.92 le-3 0.0 381
-0.0 451

Path 11
MTTFJredMwnStage

9.995e-4 3.347e-3 3.383e-3 -4.79e-3 4.791e-3 0.01178 0.01177 -5.699
2.68e-3 1.152e-3 2.534e-3 1.6e-3 8.578e-3 3.934e-3 -5.699

5.369e-4 3.08c-3 1.695e-3 9.376e-3 2.414e-3 -5.699
3.342e-3 7.515e-4 8.98e-3 6.253e-5 -5.699

1.225e-4 9.541e-3 8.56e-4 -5.699
-2. 91e-3 -5.699
-3.281e-3

Path 13
0 MTTF Prediction Stone

Pts 2 3 4 S 6 7 8 9 10
2
3
4
5
6
7
8
9
10

0.7205

JL...... ...

. i ~ i

- t f L t

.....................................

0.3112
0.827

m m m im

....

-0.2936
-0.07973
f t 7 1 3 / 1

-1.23
-1.42

1 ' i f A

1 J

...........

y

-0.1371
-0.8784

I I

.....*—
........ 4 . . .

1.687
1.597
"9941

5691
3735

i 3657

*

-0.4771
0.8425
1.776
1.307
0.786
0.5465
0.5444

*

0.1761
-0.1284
0.3555
1.329
1.569
1.087
0.8378
0.8491

M M M M B

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 25b. Geometric De-Eutrophication Aged Prediction Ratios (Surrogate / Gold)

Path 1
» MTTF Prediction Stage

Pis 2 3 4 5 6 7 8 9 10
2 0.7206 0.09667 -0.6311 0.1051 -0.5703 1.863 1.079 1.301 0.9542
3
4
5
6
7
8
9
10

0.6125 -0.5662 -0.2937 -0.5075 1.305 1.987 1.42
m m m k W M M M . -0.1845 -0.4277 -0.7934 1.106 1.989 2.011

-0.2773 -0.9492 0.7778 1.889 2.472

1.161
1.366
1.85
2.445
2.899
2.784
2.577
2.602

Path 4
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 1.303e-6 8.686e-7 0 -3.388e-5 -9.965e-4 -3.665e-3 1.235e-3 -8.3e-3 -4.77
3 W M M M . 8.686c-7 -4.343e-7 -3.518e-5 -1.021e-3 -4.331e-3 -1.209c-3 -7.477c-3 -4.77
4
5
6
7
8
9
10

m m m m . 'M M ftM fo . -8.686e-7 -3.605e-5 -1.034e-3 -4.682e-3 -2.929e-3 -8.901e-3 Iplllpjl -3.648e-5 -1.042e-3 -4.897e-3 -4.075c-3 -0.01052
-4.77
-4.77
-4.77
-4.796
-4.796
-4.796
-4.796

Path 11
n MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 1.0e-3 -3.346c-3 3.383e-3 -4.789e-3 4.792e-3 -0.01177 0.01178 -4.745 6.692
3
4
5
6
7
8
9
10

'MMW/, -2.68e-3 1.153e-3 -2.533e-3 1.6e-3 -8.577e-3
m m m . 5.378e-4 -3.079e-3 1.696e-3 -9.3748e-3

3.936c-3
2.415e-3
6.427C-5
-8.547e-4
-2.198e-3
-3.28e-3

1

-4.721
-4.721
-4.721
-4.745
-4.745
-4.745
-4.745

3.647
2.571
1.996
1.631
1.373
1.179
1.026
0.9012

Path 13
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 0.7206 0.3114 -0.2933 -1.218 0.1987 2.023 0.1761 1.176 1.255
3
4
5
6
7
8
9
10

‘W M M . 0.8272 -0.0794 -1.409 -0.5426 1.933 1.496 0.8716
0,3967 ' 1'352 -°-9618 1 33 2.429 1.355

■1-058 •1-109 °-9049 , -961 2-329

1.375
1.19
1.492
2.011
2.697
2.517
2.308
2.346

1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 26a. Basic Musa Aged Prediction Ratios (Surrogate / Surrogate)
* indicates software predicted to be perfect

Path 1 ____ _________________
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 -0.6388 -0.5424 -1.175 -1.082 -1.988 -0.7782 -0.6021 -0.301 *

3
4
5
6
7
8
9
10

'W m Z M k, -0.7176 -1.352 1.622 * 1.324 -0.3514 -0.4771
-0.1961 4.711 * 2.887 0.5561 -0.3654

*
*
*
*
*
*
*
*

Path 4
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 -0.301 -0.301 -0.301 -0.3011 -0.3021 -0.3057 -0.3045 -0.3128 *

3 W M k i -0.4771 -0.4771 -0.4772 -0.4782 -0.4818 -0.4806 -0.4889 *
4
5
6
7
8
9
10

W m rn /m m k m . .0.6021 -0.6021 -0.6031 -0.6068 -0.6055 -0.6138
-0.699 -0.7 -0.7037 -0.7024 -0.7107

*
*
*
*
*
*
*

Path 11
MTTF Prediction Stage

-0.3011
m om m sm

-0.3044 -0.30 -0.3058 -0.30 -0.3128 -0.30 -6.038
0.4889 -0.4771 -6.2 4
0.6138 -0.602 -6.339

-0.7107 -6.436
-0.7899 0.7782 -6.5 5
-0.8569 -0.8451 -6.582

-0.9031
-6.69

Path 13
tt MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 -0.6388 -0.3276 -0.6212 -1.851 -1.988 -0.301 -0.7782 -0.6021 •
3 ... 33 -0.7973 -2.027 * 0.04021 -0.9542 -0.7782 *
4
5
6
7
8
9
10 m m m m

M

U . . J 1

-0.9223

*

-2.152
10.56

*
*
*

0.3555
0.659
0.9636
1.275

-1.079
0.1241
1.097
1.924
2.667

-0.2368
0.4655
1.054
1.584
2.082
2.562

WMMfr,

*
*
*
*
*
*
*

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 26b. Basic Musa Aged Prediction Ratios (Surrogate / Gold)
* indicates software predicted to be perfect

Path 1 __________________________________
MTTF Prediction Stage

Pis 2 3 4 5 6 7 8 9 10
2 -0.6388 -0.5424 -1.175 -1.082 -1.988 -0.7782 -0.6021 -0.301 *

3
4
5
6
7
8
9
10

H H H t 41.7176 -1.352 1.622 * 1.324 41.3514 -0.4771
Jliill -0.196 4.711 * 2.887 0.5561 -0.3654

7.397 * 4.226 1.28 -0.1552

*
*
*
*
*
*
*
*

Path 4
SnTFPrediOwnSlage

-0.3021 -0.3057 -0.3045 0.3 28-0.301 -0.301 -0.3011
0.4772 -0.4782 -0.4818 -0.4806 0.4889-0.4771 -0.4771

0.6138-0.6021 -0.6021 -0.6031 -0.6068 -0.6055
-0.7024 0.7107-0.699 -0.7037
-0.7816 0.7899-0.7792 -0.7829

0.8569-0.8498 -0.8486
-0.9066 0.9149

0.966

Path 11
MTTF Prediction Stage

Pts 2 3 4 5 6 7 8 9 10
2 -0.3011 -0.3044 -0.301 -0.3058 -0.301 -0.3128 -0.301 -6.038 *
3 WMMM -0.4805 -0.4771 -0.4819 -0.4771 -0.4889 -0.4771 -6.214 *
4
5
6
7
8
9
10

-0.6021 -0.6069 41.6021 -0.6138 -0.6021 -6.339
-0.7038 41.699 -0.7107 -0.699 -6.436

*
*
*
*
*
*
*

Path 13
MTTF Prediction Stage

0.6388 0.3276 -0.6212 -0.301 -0.7782 -0.602
0.5033 0.7973 0.04021 -0.9542 -0.7782

-0.23680.9223 0.3555 -1.0792
i n 0.659 0.1241 0.4655

iflHMfllt
0.96363

 An

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 27a. Logarithmic Poisson Aged Prediction Ratios (Surrogate / Surrogate)
? indicates no solution for desired precision
* indicates software predicted to be perfect

Path 1
tt AITTFPrediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.0778 ? ? 7 ? 0.306 ? ? ?
3
4
5
6
7
8
9
10

WMMM. -0.7125 ? -0.1256 0.0308 0.3108 0.1822 ?
■mmm/MMMM. -0.5962 -0.09812 0.0519 0.3072 0.2424 0.03685
wM mm. mMmim. -I.668e-3 0.03011 0.2581 0.257 0.1707

7
7
7
7
7
*
*
*

Path 4
tt MTTF Prediction Staee

Pts 2 3 4 S 6 7 8 9 10
2 -0.301 -0.301 7 -0.3011 -0.3021 -0.3057 -0.3045 -0.3128 *
3
4
5
6
7
8
9
10

-0.4771 7 -0.4772 -0.4782 -0.4818 -0.4806 -0.4889
7 -0.6021 -0.6031 -0.6O68 -0.6055 -0 .6138

-0.699 -0.7 -0.7037 -0.7024 -0.7107

*
*
*
*
*
*
*
*

Path 11
tt

Pts
MTTF Prediction Staee

2 3 4 5 6 7 8 9 10
2 -0.3011 -0.3044 -0.301 ? -0.301 -0.3128 -0.301 -5.425 ?
3
4
5
6
7
8
9
10

-0.4805 -0.4771 ? -0.4771 -0.4889 -0.4771 -5.601 ?
-0.6021 ? -0.6021 -0.6138 -0.6021 -5.726 ?

Path 13
tt

Pts
MTTF Prediction Staee

2 3 4 5 6 7 8 9 10
2 -0.0778 7 7 7 -0.94859 0.3112 7 7 7
3
4
5
6
7
8
9
10

iM fiIf -0.501 7 7 0.2033 0.4284 7 7
U p M ® 7 7 0.1142 0.3595 7 -0.2621

7
7
*
*
*
*
?
*

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 27b. Logarithmic Poisson Aged Prediction Ratios (Surrogate / Gold)
? indicates no solution for desired precision
* indicates software predicted to be perfect

Path 1
tt MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.0776 ? 7 ? ? 0.9592 7 ? ?
3 W/MMk. -0.7122 ? -0.1139 0.3666 0.964 1.085 ? 7
4
5
6
7
8
9
10

-0.5943 -0.0864 0.3877 0.96044 1.145 1.037
0.01007 0.3659 0.9113 1.16 1.171

7
7
7
7
*
•
•

Path 4
tt MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.301 -0.301 ? -0.3011 -0.3021 -0.3057 -0.3045 -0.3128 *

3
4
5
6
7
8
9
10

WMMa -0.4771 7 -0.4772 -0.4782 -0.4818 -0.4806 -0.4889
m tm By/dm m ttfm . ? -0.6021 -0.6031 -0.6068 -0.6055 -0.6138

-0.699 -0.7 -0.70371 -0.7024 -0.7107

«
*
*
*
*
*
*
*

Path 11
tt MTTF Prediction Staee

Pts 2 3 4 5 6 7 8 9 10
2 -0.3011 -0.3044 -0.301 ? -0.301 -0.3128 -0.301 -4.425 7
3
4
5
6
7
8
9
10

'W fM M , -0.4805 -0.4771 ? -0.4771 -0.4889 -0.4771 -4.601
-0.6021 7 -0.6021 -0.6138 -0.6021 -4.726

‘ (82 -0.7899 -0.7781 -4.902

7
7
7
7
7
7
7
7

Path 13
MjjFPrediationStape

0.6127 0.647
5008 0.5391 0.7642

0.6953 0.7379
-0.623 0.8985

0.4167 0.5615 0.844

0.8071

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the reliability basis in the comparison ratios. The “b” series tables instead use the gold

oracle data as the reliability basis and are labeled “(Surrogate / Gold)”.Recall that at the

10th Prediction Stage, unless the model reached an alternative conclusion, the “a” series

table entries are shaded, since the fully instrumented test version is indistinguishable from

the surrogate oracle. The idea here is to see how data produced using data windows

along with data from the surrogate oracle compares with our previous conjectures: that

results based on surrogate oracle data are consistent with those based on the gold oracle,

and that less data can be as good, if not better, than more data in many cases.

When assessing the models’ predictive abilities using the surrogate data as the

reliability basis (i.e., the “a” series tables), these data generally appear to support the

conjectures. We also noted the following:

• The Jelinski-Moranda model made fewer prediction attempts — but those made

are quite good ones according to the ratios — using surrogate data.

Interestingly, the choice of w appears to be less important than the path

selection.

The Geometric De-Eutrophication model made some overly optimistic

predictions at the later stages and with the larger w values. The surrogate data

on the whole were consistent in magnitude with the gold data. Notable

exceptions were the extremely pessimistic predictions at the 9th Stage along the

mixed order path, which nonetheless exhibited good agreement for all window

sizes at each fixed stage.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The primary effect of data aging on the surrogate data for the Basic Musa model

was to degrade performance as w increased; data based on the smaller w values

are slightly more pessimistic than we had seen using the gold oracle.

The Logarithmic Poisson model’s aged surrogate data are consistent with the

aged gold data, though slightly more optimistic, with the smaller w values

resulting in better performance than the larger values.

Assessing the models using the gold oracle as the reliability basis (i.e., the “b”

series tables) reveals results which are consistent for all models. On paths 1 and 13, the

predictions are generally very optimistic after the 7th Prediction Stage; performance along

paths 4 and 11 was generally good. Once again, the range of values down a given column

in any of these tables leads us to conclude that smaller window sizes result in performance

consistent with that derived from larger window values. Again, for comparison purposes,

Figures 20 and 21 graphically depicts the prediction ratios resulting for paths 1 and 4

based on the surrogate oracle for all four models, using both the cumulative approach and

the aging criterion for w = 2 and w = 5. In this case, we have used the surrogate oracle as

the reliability basis for both the cumulative and the aged data, since our previous

experiments as reported in Section 7 revealed that these data are consistent with those

using the gold oracle. Recall that for w = 5, the ratio data do not start until the 5th Stage.

For either window size, where differences exist between the aged and cumulative

path 1 data sets, it is apparent that use of the surrogate data introduced optimistic bias into

the predictions. Likewise, the plots for path 4 are nearly indistinguishable from those

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-2

Path I Jelinski-Moranda
■ Cumul * = inf N or no R growth

. . 0w = 2 ? = finite N
□ w = 5 1 = predicted perfect
= perfect

* • ?* ? ? * ? ? * ? ? * ? ? * ? ? ! ? ? * ?
■ (i ■

Geometric De-Eutrophication
•£OitULm

2 3 4 W 6 7 8 9 10

Cumul
Q w = 2

□ w = 5

3 Path 1
■ Cumul

2 ■ 0 w = 2
□ w = 5

1 ■
• — predicted

Basic Musa

perfect

V

3

2

1

H 0

2 3 4 W 6 7 8 9 10

T Path 1
■ Cumul

Logarithmic Poisson

0 w = 2
□ w = 5

* = predicted perfect
? = no sol'n

7 . ?

1 1

2 3 4 W 6 7 8 9 10

Figure 20. Cumulative Versus Aged Prediction Ratio Comparisons for Path 1
(Surrogate / Surrogate)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Path 4 Jelinski-M oranda 3 •, Path 4
■ Cumul ■ Cumul

2 • IS)
1!

U

E3
□ 2 • □ w = 2

Dw = 5

1 •
* = inf N or

no R growth 1 ‘

-1 • -1 ■

-2 ■ -2-
2 3 4 w 6 7 8 9 10 2 3 4

Path 4 Geometric De-Eutrophication

'S t a g e

J La,!fAn Basic M usa
I Cumul

Pa,l‘4 Logarithmic Poisson
Cumul

E3w = 2
□ w = S

* = predicted perfect
? = no sol'n

□ w = 2

□ w=S
predicted perfect

Figure 21. Cumulative Versus Aged Prediction Ratio Comparisons for Path 4
(Surrogate / Surrogate)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shown in Figures 18 and 19, when the gold oracle was used to both generate the inputs to

the models and as the reliability basis. Thus, the observations made above based on using

the gold oracle can probably be translated to this application of aging, provided one is

cautious regarding the potential for predictive optimism once the surrogate data are

introduced.

8.3 Conclusions

For the specimen software and the representative debugging paths, data aging —

or path truncation as we call it — appears to be a viable avenue for controlling the

computational component of debugging graph applications. Under path truncation, poor

performance was observed to persist for models and paths which performed badly when

all known data were used; although sometimes improvements (e.g., more and/or better

predictions) were seen using the aged data. For models and paths which performed well

in the presence o f all known data, aging the data did not greatly change their performance.

A surprising result of this experiment is the observation that in many cases “less is

better;” that is, a relatively small window size produces respectable, sometimes even

better, predictions for a model observed to have done well using more data. Thus, if

controlled fault recovery orders are intelligently simulated using the debugging graph

model, eliminating some of the “older” data in the resulting MTTF sequences can help to

keep the computational expense small. The practitioner can thus choose model(s) and

path(s) which produce more accurate predictions whether a gold or surrogate oracle is

used as the reliability basis.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The general utility of data aging is somewhat complicated, however, when a

surrogate oracle is used. As we noted in 7.3, the surrogate oracle’s inflated assessments

o f reliability during the later debugging stages results in predictive optimism in the later

prediction stages when cumulative data are used. Use of data aging limits the model’s

focus to these inflated values and can inject extreme predictive optimism, as reflected in

the prediction ratios for the “Surrogate / Gold” aged data presented in this chapter. This

effect can be particularly problematic when trying to predict as we near Stage n as

discussed in the previous chapter’s conclusions.

Thus where applying data aging to software reliability prediction is concerned, our

experiments endorse it as a useful technique when a gold oracle is used. Further we can

state that it is a promising methodology for use with the surrogate oracle, provided we can

find means to compensate for the optimistic bias in the surrogate’s reliability

measurements towards the end of the debugging path.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Nine

New Methodologies

In this chapter, we use what we have learned from our laboratory work to propose

some methodologies for applying the techniques described in this thesis outside a

laboratory setting.

9.1 Softw are Reliability E ngineering Applications

An obvious goal of the debugging graph research is to produce means for

obtaining better predictions from existing software reliability models. In a controlled

laboratory setting, when a gold version program is available, the experiments we described

in this thesis enable one to determine the “best” fault recovery order which can be used to

establish a measurable upper bound on predictive models’ accuracy. Further, we can

select a model and a path to improve predictions. We looked in particular at one version

of the LIC software and, after studying it in great detail, we would probably recommend

using the Logarithmic Poisson model for making its predictions with an intuitive fault

recovery path derived using replicated failure data.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In attempting to move laboratory methodologies into the domain o f software

development, we applied shortcuts — such as the surrogate oracle and path truncation.

Typically, approximations degrade our ability to attain an optimal level o f performance as

compared to laboratory results; but occasionally, improvements are observed. For the

LIC software, we found that using data derived using a surrogate oracle led us to

conclusions that were consistent with those based on the gold oracle. However, our

ability to analyze predictive performance in the laboratory revealed that the models

became increasingly optimistic in the later stages as the program variants towards the end

of the debugging path became increasingly indistinguishable from the surrogate. We also

found that limiting our attention to the last four or five data points along a path produces

predictions as good or better than using all the historical data when a gold oracle is

available. The technique holds promise in the context of the surrogate oracle, provided

we can devise means to compensate for the surrogate oracle’s optimistic bias in the latter

reliability measurement phases.

Some challenges remain, such as: validating the conclusions reached in this thesis

using other LIC versions; investigating the methods’ applicability to similar, then different,

categories of software; determining whether the aged data window size can be set to a

small constant such as four or five, or a percentage of the known failure data, such as one-

half; devising methods to account for the surrogate oracle’s measurement bias; and

quantifying the computational cost versus predictive improvement benefits of debugging

graph techniques in general. The ultimate goal, o f course, is to refine the techniques into a

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unified methodology applicable to any category of software, consisting of a single model,

a single type of fault recoveiy path produced from replicated data based on a surrogate

oracle, and a small, fixed-sized data window.

In the subsequent paragraphs, we presume that this goal is attainable and discuss

the implications of this contribution in terms of its use by the practioner.

9.2 An Approach to Using a Partial Debugging Graph

We begin by describing how one would go about making a single prediction

assuming that n faults are known thus far. We then address subsequent iterations of the

prediction process as new faults are found.

9.2.1 Initial Prediction

A computationally efficient way to make a more accurate software reliability

prediction based on the premise in 9.1 is summarized in Figure 22. When n faults are

known thus far, one would start by constructing the variants Pi through P„ as a basis for

determining a single, standardized, size-based fault recovery order (e.g., largest-to-

smallest). The n known faults would be ranked according to relative sizes as determined

by this collection of variants’ R values. We assume a surrogate oracle would be used for

calculate R(P)
construct P i . . . Pn
calculate R(Pi) . . . R(P„)
sort R values
construct program variants comprising standardized path
calculate R values for the path’s program variants
input path’s R values to model to make a prediction_____________

Figure 22. Making a Single Reliability Prediction

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measuring the variants’ R values and to size-rank the faults, since in most cases a gold

version program does not exist.

Although we intend to apply a data window w (with w ultimately much smaller

than //) to reduce the computational complexity of the predictive procedure, to simplify

this basic discussion of the methodology we will assume that initially n equals w. So the

program variants corresponding to the standardized path would be constructed next. That

is, suppose the size-ranked ordering of the known faults is represented by the sequence /'/

through /„. The standardized path is represented by the sequence o f variants P, P,7, Pu<a,

■ - - , P il,i2,... ,in-

The R values of this sequence o f variants, as measured by the surrogate oracle,

formulate the inputs to the predictive model. A single prediction can be made using all

known data. Alternatively, an iterative prediction procedure might be followed as

described in 6.1.3.1 if the practitioner would like to use the model’s past performance

along this path to assess any bias in the current prediction.

9.2.2 Subsequent Iterations

Figure 23 shows an approach to making subsequent predictions once the algorithm

outlined above has been followed. When a new fault is found and corrected, several

effects must be considered. The information pool of single-repair variants should be

updated to reflect the newly discovered fault’s size. To do this by measuring the reliability

of the program variant with only the new repair installed, first the new repair also should

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n = n+1
find / correct bug n
add repair n to the surrogate oracle
construct P„
calculate R(P„)
recalculate R(P), R(Pi) . . . R(Pn) if desired
sort R values
choose “most recent” w+d R values
construct any new program variants for standardized path
calculate R values for any new program variants along the path
input “most recent” w+d R values to model to make a prediction

Figure 23. Making Subsequent Predictions

be added to the surrogate oracle. But changing the surrogate oracle implies that the sizes

assessed for the previously known faults may change, although probably not by much.

Since we advocate applying a data window w in the predictive procedure, a

reasonable alternative to recalculating all the single-repair reliability data at this point is to

“discard” some historical data for the first n-w faults. Concerns over potential re-ordering

of older faults (i.e., Are we really throwing away the “oldest” data along the standardized

path?) may be addressed by re-measuring the corresponding single-repair variants on each

iteration with the improved surrogate oracle, and re-ordering the faults prior to discarding

any data. A more computationally efficient alternative is to track data for the “most

recent” w+d faults along the standardized path, where d is a small “buffer factor” to

account for any minor re-ordering. The issue of re-measuring the previous single-repair

variants can be ignored altogether, or they may be re-measured at discrete intervals as time

permits.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So when a new fault is found and corrected, its repair would be added to the

surrogate oracle. The R value o f the variant containing just the new repair would be

measured by the improved surrogate oracle, and this data would be added to the

information pool of fault size data. As we discussed above, the ordering of existing faults

is unlikely to change very much if they are re-measured at this point by the improved

oracle, so re-measuring the other single-repair variants is optional. All known faults

would be re-ordered as needed to compose the standardized path, with some of the data

“discarded” to maintain the fixed window size before the data are fed to the model to

make a prediction.

Depending on where a newly discovered fault relatively ranks with respect to the

older faults’ sizes, the number o f program variants one needs to construct and measure to

present the standardized path’s data to the predictive model will vary, as will the amount

of additional computation required. That is, if a newly found fault is the smallest yet

discovered, and a largest-to-smallest path construction criterion is being used, just one

additional program variant’s data needs to be calculated to represent the new standardized

path.

9.3 Complexity A nalysis

The algorithms sketched above contain several components contributing to the

computational complexity of the proposed method; among them are the oracle runs and

the reliability model implementation. Other factors to consider include the construction of

the program variants and sorting the R values. Each algorithm aspect has time and space

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements that must be addressed in implementation. We will for this analysis assume

that space is not a problem, since storage media are cheap and it is not difficult to back up

incremental data on tape. The input size for the functions involved in the “b ig -0 ”

notation calculations, then, is the number o f observed failures, //.

9.3.1 Oracle Complexity

The computational complexity of the oracle, whether it is gold or surrogate, is

driven by the tested software, as well as the number of test cases used, rather than n. The

computational cost of the tested software will vary from case to case, so we cannot

address it definitively here beyond stating that it is a real factor that needs to be considered

in running the empirical reliability calculations. The number o f test cases required in

performing these calculations is constrained by the accuracy to which we desire each

variant’s reliability to be determined, and the size o f the smallest fault we wish to be able

to observe. This is true because we must exercise the software with enough input cases

for the empirical reliability calculations to carry the desired decimal place accuracy, and to

capture the occurrence(s) o f (presumably) infrequently occurring failures.

There may exist some functional relationship between n and the number of input

cases needed — if we know, for example, that the sizes of subsequent bugs are falling off

by an order of magnitude — but we cannot state this in the general case. Thus we will

represent the time required for one execution of the oracle — i.e., the calculation of R for

one program variant — as a constant T0, with the understanding that the precise value

may be empirically observed and improved as needed.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9.3.2 Model Complexity

The complexity of the reliability model implementation is a function o f the number

of observed failures n. The fundamental implementations of the four reliability models we

used are o f linear time in n. But because we further explored an incremental prediction

procedure, in which we start with two known times to failure and add an additional one at

each predictive stage, the complexity o f the algorithms discussed in Appendix D, as we

implemented them, is actually 0(n2). For the present analysis, we will estimate the

computational complexity of executing a single predictive model with a single path’s

worth o f data as O(n), and as 0(n2) if iterative predictions are considered.

9.3.3 Process Complexity

It is easy to automate the construction of program variants using a collection of

faulty and repaired code fragments. We mention how to accomplish this with simple shell

scripts in Appendix C; or, many source code revision control systems are available that

provide canned procedures for doing so. In general, the piecing together of the required

code to represent one variant would be o f linear time in n. It is well known that 0(n log

n) comparisons are necessary and sufficient to sort a sequence of n elements [3, page 77],

so this is the worst-case cost of sorting the R values to support path construction. Finally,

in Figure 24 we have combined the two procedures described above into a single iterative

algorithm, and augmented each significant step with a worst-case

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculate R(P)
construct P j . . . Pn
calculate R(Pi) . . . R(P„)
loop: sort Rvalues
choose “most recent” w+d R values
construct any new program variants for path
calculate R values for any new program variants
input path’s “most recent” w R values to model & predict
n = n+1
find & correct bug n
add repair n to the surrogate oracle
construct P„
calculate R(P„)
recalculate R(P), R(Pi) . . . R(Pn) if desired
go to loop___

Figure 24. Algorithmic Complexity Analysis

130

To
n ■ 0(n)
n ■ To
0(n log n)

n • 0(n)
n • To
0(n2)

0(n)
0(n)
To
n ■ To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity estimate. One can easily conclude that the cost o f this kind of predictive

procedure is dominated by 0(n2) time.

9.4 W all-Clock Analysis

While complexity analysis is a useful tool for comparing the relative performance

of algorithms in an objective way, a more pressing concern to the practitioner is how long

in terms of wall-clock time it actually takes to run a piece of software or to perform a

particular procedure. For the proposed methodology, some start-up time would be

required to set up the data collection environment; we estimate no more than a few days’

effort would be needed if the configuration and scripting techniques described in this thesis

are applied.

For each run of the LIC software oracle used to determine an R value, we used

one million test cases, and each one-million-run execution of the oracle required

approximately four hours of wall-clock time to complete. This figure obviously varies per

subject software and host environment. Optimizations may need to be addressed to

improve the oracle’s execution time for some other piece of software. It should be noted

that the oracle runs can take place as a background process, overnight, and/or be

distributed across network nodes to minimize the impact of this part of the methodology

on the practitioner’s other tasks.

Additionally, the reification of the software reliability models is a critical

component of the problem, since real-world difficulties must be faced in the parametric

approximation schemes required by the algorithms. We found in early versions of our

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modeling software, for example, that straightforward iterations often decayed into endless

loops or aborts in the face of real numbers versus textbook examples. Such

implementation challenges could often be attributed to limits in representational accuracy

on the host system, the consistent comparison problem [7] and over- and underflow. So

although the predictive runs o f the models required a negligible amount of time when

compared to the oracle, we caution the implementor o f alternative reliablity models to

provide “escape hatches” in the iterative loops typically used to fit the models’ parameters

— such as fixing the maximum number of iterations, or testing for “no further change” in

the approximated values — to limit the contribution of these loops to a constant factor in

the worst case.

We will now use the LIC software as an example to calculate the real-world time

to execute the proposed methodology; for simplification, path truncation will not be

applied. To make an initial prediction for the LIC software using the algorithm sketched

in Figure 22 as a guide would require approximately 4 • [(/?+l) + (//-l)] = 8n hours. This

is how long it would take to run the oracle for each of the n single-repair variants as well

as the original unrepaired program, plus the time required to run the oracle for each of the

variants along the standardized path (noting that the R values for the first two variants

along this path have already been calculated in the previous step). We have ignored the

time needed to sort the R values and to run the predictive model as they are negligible

compared to the oracle’s execution time.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each subsequent iteration of the procedure as depicted in Figure 23 requires

roughly half the time of the initial run. Assuming that the existing single-repair variants

are not re-measured once a new fault is found, just one additional run o f the oracle is

required to measure the new fault’s size, which contributes 4 hours. In the worst case,

generating the data representing the standardized path would require (w-1) additional

oracle runs, if the new fault must be inserted “first” in the sequence o f size-ranked faults.

Thus, each subsequent iteration of the algorithm requires 4n hours.

Again, it should be noted that the times provided here assume performing the

oracle runs sequentially on a single processor; distributing the work across a network can

reduce the time to just a few hours depending on the number of processors available.

9.5 Fault Interaction Concerns

One point of concern is how serious might be latent fault interaction effects.

Would assessing the faults’ sizes at each of two or more graph levels, and using those data

to construct multiple realizations of the standardized path result in significantly different

predictions from the model? Recall that we used two different size orders for the LIC

faults when we discovered discrepancies between the apparent fault sizes at two different

levels of the debugging graph (see 4.1.1).

We mentioned in Chapter 6 that predictive performances along paths constructed

using a particular sizing criterion (e.g., largest-to-smallest) appeared similar despite

differences in the levels used to perform static relative size ranking. The performance

along a largest-to-smallest path constructed with respect to level 1 of the LIC debugging

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph, for example, was analogous to that along the level-9-based largest-to-smallest

path. Thus it is our hypothesis that by controlling the fault recovery order by some

consistent means, we are mitigating fault interaction effects; whereas, if one simply uses

the fault recovery data in whichever order it is naturally encountered, then the models’

performance is stressed and degraded not only by randomness in the recovery process, but

also by latent interaction effects.

It may be instructive to measure the program variants each containing only one

known fault as a redundancy check on the level- 1-based fault size ordering we proposed in

the practitioner’s approach above. If the number of known faults is n, this will always

require constructing and testing //+1 additional program variants on each debugging

iteration, since the new repair must be added to each of the previously existing program

variants at debugging graph level //-l. It should be recognized, however, that the

computational expense of this procedure each time a new fault is repaired may not be

worthwhile, unless computing resources are plentiful, debugging time maximal, and we

can thereby derive some information useful to improve the prediction process.

An alternative approach we proposed in 5.1.3 is dynamic relative size ranking,

which assesses the sizes of the faults at progressively higher levels in the debugging graph.

This presumably would account better for localized interaction effects given the repairs

installed so far in an iterative fault recovery scheme. Although we were unsuccessful in

constructing a “greedy” path using this method (see 5.1), such an approach may be useful

with other software specimens.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We note that the primary computational cost difference between using static and

dynamic relative size ranking is the number o f program variants which must be

constructed and run through the oracle in order to dynamically re-assess the relative fault

sizes. With a little additional thought, it should be obvious that the dynamic approach

requires

1 + n + (» - l) + (m-2) + . . . + («- (« - 2)) + 1 = [n • (« + l) / 2] + 1

program variants to measure the relative fault sizes, where n is the number o f known

faults. That is, after determining the empirical reliability of the completely unrepaired

variant, the first addition to the path requires inspecting n program variants, one

containing each of the n known repairs. The second addition to the path requires

examining variants for each of the n-l remaining known repairs, paired with the fix

corresponding to the fault previously chosen, and so on through to the final addition to the

path. Thus this approach is more costly than using static relative size ranking, and may

not successfully yield a recovery path in every case.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Ten

Conclusion

In this chapter, we summarize the results reported in this thesis and our

contribution to state-of-the-art software reliability prediction technology. We also

propose some future investigations using the debugging graph database.

10.1 Summary

In this thesis, we described the use of a data model called the debugging graph to

investigate the potential for fault recovery order to affect the predictive accuracy of

existing software reliability models. Our laboratory experiments led us to conclude that if

one can choose a predictive model, control the fault recovery order and use the average of

large samples for interfailure times, then one can derive more accurate predictions from

existing algorithms.

We validated the use o f the surrogate oracle and path truncation (i.e., data aging)

techniques to make the data collection component of our investigations more feasible and

manageable. In doing so, we acknowledged some limitations of using the surrogate oracle

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that need further investigation, but still provided a tentative avenue for moving our

methodologies out of the laboratory and into the domain of software reliability engineering

applications. Such a transition will enable further investigations involving new software

specimens.

We showed evidence o f the fault interaction phenomenon as it occurred naturally

in data derived from our subject software. We advocated further investigations of this

effect using the debugging graph as the basis for a data collection environment, in the

hope of increasing our understanding of the phenomenon and supporting further

improvements in the software reliability prediction process.

10.2 Contribution to Current Practice

The approach to predictive modeling we described differs in several significant

ways from current practice. Engineers presently compare models’ performance based on

the ambient data — that is, single observations of time to failure are fed to the predictive

models simply in whichever order the faults have been recovered during debugging. Using

the averages of many failure trials and a standardized, size-based fault recovery order

mitigates the variance and noise inherent in this ad-hoc approach, thereby helping us to

intelligently choose a model and a path for improved predictive accuracy. The

methodology proposed in this thesis in fact is independent of how faults are located; any

combination of debugging techniques could be used and produce the same predictive

results.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.3 Future D irections

It is our hope that future studies at ODU and other research facilities will exploit

the voluminous data now available for the LIC specimen to study fault interactions as

another possible avenue for improvement to the software reliability prediction process. We

suspect that the detection o f discrepancies in the apparent failure rates attributable to

known faults at multiple debugging graph levels is a “first-cut” indication of interaction

effects. We also believe that by delving deeper into the collected data — to study, for

example, how particular inputs produce oscillating patterns of successful and unsuccessful

outcomes along a given debugging path through the graph — may enable progress in

some of the following areas:

• determining which faults (repairs) are interactive;

• determining whether interaction types exist other than those directly attributable

to logical code dependencies;

• establishing how to distinguish other types of interaction if they exist; and

• demonstrating how best to account for interaction “fiizziness” in the failure data.

The surrogate oracle is clearly useful in assessing relative bug sizes. Its primary

limitation in the context of the prediction methodologies we propose is its assessment of

perfect reliability at the end o f the debugging path, regardless of how unreliable the

program actually remains. We suggested some possible means for correcting the later

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reliability figures to account for optimistic bias prior to making predictions, but clearly

further investigation of the surrogate oracle tool is a future research path.

We advanced some conjectures about the utility of data aging. Our experiments

with the LIC software showed that often less data produces better predictions than using

the cumulative failure history. Further studies should be conducted to see if this

conjecture is justified and not just a coincidence or an artifact of the experimental data set.

The associated issue is to determine if a small, fixed-sized window or some percentage of

the known failure history recommends itself.

When software supports the random generation of input test cases and a robust

gold or surrogate oracle can be constructed, as with LIC, the debugging graph data

collection environment provides unique opportunities to study fail sets for anomalous

behaviors. A control program similar to LICCtrl is easy to implement and facilitates the

collection of failure data for further fail set analysis and validation of our methodologies

with alternative specimen programs. We advocate validating the conclusions and

conjectures advanced in this thesis with other LIC specimens as well as other bodies of

software to incrementally advance towards the unified prediction methodology discussed

in the previous chapter.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] Russell J. Abbott, “Resourceful Systems for Fault Tolerance, Reliability and

Safety,” ACM Computing Surveys, vol. 22, no. 1, March 1990, pp. 35-68.

[2] Abdalla A. Abdel-Ghaly, P. Y. Chan and Bev Littlewood, “Evaluation of

Competing Software Reliability Predictions,” IEEE Transactions on Software

Engineering, vol. SE-12, no. 9, September 1986, pp. 950-967.

[3] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman. The Design and

Analysis of Computer Algorithms. Reading, Massachusetts: Addison-Wesley

Publishing Company, 1974.

[4] Farokh Bastani, “Foreward: Software Reliability,” IEEE Transactions on

Software Engineering, vol. 19, no. 11, November 1993, pp. 1013-1014.

[5] Sarah Brocklehurst, P.Y. Chan, Bev Littlewood and John Snell, “Recalibrating

Software Reliability Models,” IEEE Transactions on Software Engineering,

vol. 16, no. 4, April 1990, pp. 458-469.

[6] G. Becker and L. Camarinopoulos, “A Bayesian Estimation Method for the

Failure Rate of a Possibly Correct Program,” IEEE Transactions on Software

Engineering, vol. 16, no. 11, November 1990, pp. 1307-1310.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] Susan S. Brilliant, John C. Knight and Nancy G. Leveson, "The Consistent

Comparison Problem in N-Version Software," IEEE Transactions on Software

Engineering, vol. 15, no. 11, November 1989, pp. 1481-1485.

[8] Sarah Brocklehurst and Bev Littlewood, “New Ways to Get Accurate

Reliability Measures,” IEEE Software, July 1992, pp. 34-42.

[9] Fred Brooks, “No Silver Bullet: Essence and Accidents o f Software

Engineering,” Computer, vol. 20, no. 4, April 1987, pp. 10-20.

[10] Christopher Cowles, “Measuring Software Reliability Models,” Master’s

Degree Project Report (unpublished), Department of Computer Science, Old

Dominion University, Norfolk, Virginia, 1991.

[11] Janet R. Dunham, “Experiments in Software Reliability: Life-Critical

Applications,” IEEE Transactions on Software Engineering, vol. 12, no. 1,

January 1986, pp. 110-123.

[12] Janet R. Dunham and John L. Pierce, “An Experiment in Software Reliability,”

NASA Contractor Report 172553, Software Research and Development

Center for Digital Systems Research, Research Triangle Park, North Carolina,

1985.

[13] Narasimhaiah Gorla, Alan C. Benander and Barbara A. Benander, “Debugging

Effort Estimation Using Software Metrics,” IEEE Transactions on Software

Engineering, vol. 16, no. 2, February 1990, pp. 223-231.

[14] A. L. Goel and F.B. Bastani (eds.), IEEE Transactions on Software

Engineering (Special Issue on Software Reliability, Part I), vol. SE-11, no.

12, December 1985.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] A. L. Goel, “Software Reliability Models: Assumptions, Limitations, and

Applicability,” IEEE Transactions on Software Engineering, vol. SE-11, no.

12, December 1985.

[16] Herbert Hecht, “Measurement, Estimation and Prediction of Software

Reliability,” under Contract NAS 1-14392, NASA Langley Research Center,

Hampton, Virginia, 1976.

[17] Z. Jelinski and P. Moranda, “Software Reliability Research,” in Statistical

Computer Performance Evaluation. Walter Freiberger (ed.). New York:

Academic Press, 1972, pp. 465-483.

[18] B. Littlewood and P.A. Keiller, “Adaptive Software Reliability Modelling,”

Proceedings o f the 14th International Conference on Fault-Tolerant

Computing, 1984, pp. 108-113.

[19] Bev Littlewood, “How to Measure Software Reliability and How Not To,”

IEEE Transactions on Software Engineering, vol. R-28, no. 2, June 1979, pp.

103-110.

[20] Douglas R. Miller, “Exponential Order Statistic Models o f Software Reliability

Growth,” CR-3909, NASA Langley Research Center, Hampton, Virginia, July

1985.

[21] Douglas R. Miller, “Making Statistical Inferences About Sfotware Reliability,”

CR-4197, NASA Langley Research Center, Hampton, Virginia, December

1988.

[22] John D. Musa, Anthony Iannino and Kazuhira Okumoto, Software Reliability:

Measurement. Prediction. Application. New York: McGraw-Hill Book

Company, 1987.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] P. B. Moranda, “Prediction of Software Reliability During Debugging,”

Proceedings of the Annual Reliability and Maintainability Symposium, 1975,

pp. 327-332.

[24] J. D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time Model

for Software Reliability Measurement,” 7th IEEE International Conference on

Software Engineering, 1984, pp. 230-238.

[25] Phyllis M. Nagel and James A. Skrivan, “Software Reliability: Repetitive Run

Experimentation and Modeling,” CR-165836, NASA Langley Research

Center, Hampton, Virginia, February 1982.

[26] Eldred Nelson, “Estimating Software Reliability From Test Data,”

Microelectronics and Reliability, vol. 17, no. 1, January 1978, pp. 67-74.

[27] P. M. Nagel, F. W. Scholz and J. A. Skrivan, “Software Reliability: Additional

Investigations Into Modeling with Replicated Experiments,” NASA Contractor

Report 172378, NASA Langley Research Center, Hampton, Virginia, June

1984.

[28] Normal F. Schneidewind, “Software Reliability Model with Optimal Selection

of Failure Data,” IEEE Transactions on Software Engineering, vol. 19, no. 11,

November 1993, pp. 1095-1104.

[29] R. S. Swarz, “Methodology for Software Reliability Prediction,” WP-29170,

The MITRE Corporation, Bedford, Massachusetts, 1990.

[30] Wing N. Toy, “Fault-Tolerant Computing,” in Advances in Computers.

Marshall Yovits (ed.)., vol. 26. New York: Academic Press, 1987, pp. 335—

391.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31] Richard L. White and Christine F. Harbison, “The Error Graph: Research in

Software Reliability,” Master’s Degree Project Report (unpublished),

Department o f Computer Science, Old Dominion University, Norfolk, Virginia,

1987.

[32] Lee J. White, “Software Testing and Verification,” in Advances in Computers.

Marshall Yovits (ed.). vol. 26. New York: Academic Press, 1987, pp. 335—

391.

[33] Larry Wilson and Wenhui Shen, “Software Reliability Perspectives,”

TR-87-035, Old Dominion University, Norfolk, Virginia, 1987.

[34] Larry Wilson and Wenhui Shen, “Simulation Studies o f Software Models,”

TR-89-10, Old Dominion University, Norfolk, Virginia, 1987.

[35] Huang Xizi, “The Limit Conditions of Some Time Between Failure Models of

Software Reliability,” Microelectronics and Reliability, vol. 30, no. 3, May

1990, pp. 481-485.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Porting the LIC Test Environment

This appendix describes the work involved in porting the LIC test enviroment from
NASA to the ODU Sun network, and eventually rewriting the basic control program. It is
included for background information and instructive value to future data collection efforts.

A .l Background

An initial problem faced in collecting the experimental data was porting the LIC
test environment from NASA’s AIRLAB to the ODU Computer Science Department Sun
network. The body of code included: the control program, the main FORTRAN routine
that executed test versions of the LIC software as subroutines and collected failure
statistics; the gold version of LIC, which is believed to have perfect reliability; and several
partially debugged versions of LIC, which are independently developed LIC software
implementations with debugging histories. There were compelling motivations for us to
carry through with this work despite the time and risk inherent in any porting task.

By porting the software to local Suns, we could exercise much greater control
over scheduling data collection runs, disk space, etc.. Another attractive feature o f the
port was re-hosting the software onto the much faster Sun platform; this hopefully would
enable us to accelerate the data collection and analysis work, which had proven to be
cumbersome during some preliminary studies. Potential for increased data throughput
likewise existed in that locally, it would be possible to spawn multiple collection and
analysis processes and distribute them to idle machines on the network.

Perhaps the overriding concern in porting the software, however, lay in the
realization that the AIRLAB LIC test environment had been modified a number o f times
over the past ten years to suit sometimes divergent goals o f various research projects. The
resulting software thus featured an inflexible, monolithic design with many undocumented
features, as well as extensions that had tied it very closely to the VMS operating system,

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the AIRLAB environment, or particular researchers’ specific data collection needs. We
felt that in the process o f porting the code, we would have the opportunity to wipe the
slate clean and devise a much simpler, more portable UNIX-based test environment under
SunOS whose behavior we understood completely. Furthermore, useful system
documentation could be developed from the ground up to serve our own, as well as
future, research needs.

A.2 Re-Hosting the Original Test Environment

Our initial concerns were three-fold: to physically relocate the software; to
understand the software’s current functionalities; and to identify suitable substitutes for
VMS-specific features o f the LIC test environment that would be needed even in a
simplified test scenario in the new environment.

A.2.1 Recompiling the Software

Copies of all pertinent LIC software were moved via the file transfer protocol (ftp)
from AIRLAB to ODU. Our next tactic was to see whether it were possible on the Sun
host to recreate the same test environment that existed at NASA. Thus we sought to
recompile the code into an executable module using the Sun FORTRAN 77 compiler, f77.

The gold version o f LIC as well as the partially debugged versions were written in
“standard” FORTRAN and thus could be recompiled easily using f77. The main routine,
which we call the control program (LICCtrl), however, would not yield so easily. Part of
this difficulty lay in the fact that a number of “canned” library routines were used in the
control program that were unavailable at ODU. Another problem was that some VMS
FORTRAN extensions and system calls were integral to the operation of the code.

A.2.2 Library Dependencies

The control program relied on a number o f FORTRAN subroutines from the
1MSL Statistical Library to generate uniformly distributed pseudorandom numbers in
the range [0,1], The underlying uniform generator used in IMSL is the multiplicative
congruential method, which has the form:

xj = c * xj_i mod(232- 1)

IMSL offers the choice of various values for c which maximize the period for the
generator cycle and result in a close approximation of a true uniform distribution.

The particular IMSL routines accessed from the control program were:

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• RNOPT
• RNSET
• RNGET
• RNUN

selects one of 3 possible c values;
initializes the seed used in the generator;
retrieves the current seed value; and
retrieves a block of random values in sequence

Unfortunately, the IMSL package was not available on ODU’s Sun network, so a suitable
alternative approach had to be identified.

The FORTRAN Library Routines on the Sun offer a function called rand that
returns real values in the range [0,1]. This is done via a non-linear feedback random
number generator which, in the form used in the library, claims to produce a uniformly
distributed sequence of random values having a period greater than 269. Calling rand with
any argument greater than 1 supplies a new seed for the random number generator along
with the first random value; this functionality is nearly the same as RNSET. Calling rand
with an argument o f 0 returns the next random value in the sequence, which could be used
to mimic the loading of an array of values by RNUN.

The purpose of using RNGET was to ensure that a run could be resumed at some
intermediate place in a particular random number sequence. This could be emulated
through rand only by knowing the initial seed of that random sequence and the position of
the desired element in the resulting sequence. One could then reinitialize rand with the
appropriate seed and “skip over” the intermediate values to get back to the same place in
the sequence. The invocations o f the IMSL routines were replaced with equivalent rand
calls before continuing the porting effort further.

A.2.2 VMS Dependencies

A.2.2.1 Syntax Problems

Some VMS-specific problems were merely syntactic extensions. For example, in
the following expression:

attaching the “/list” extension is a VMS-ism disallowed by standard FORTRAN 77. This
could be filtered out by using a VMS-tolerant switch, “-xl,” on the f77 compile line.

Other VMS-isms could be tolerated by the compiler with the VMS switch on, yet
caused runtime errors. One such feature is underlined in the following file open
statement:

open(lout2, organization = ‘relative’, access = ‘direct’, status = ‘new’,reel = reslen)

include ‘param.for/list’

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The organization option is not available as part o f standard FORTRAN 77. So even
though the f77 compiler would tolerate such statements when the VMS switch was used,
the first attempt to open a relative file from an executable caused the process to abort.

The other atypical aspect to each open statement used in the LIC control program
was that the file to which the logical unit number (“lout2” in the above example) should
attach was not explicitly named. The appropriate file names were provided under VMS as
environment variables that were established prior to invoking the program. Although the
latter behavior could be mimicked under SunOS using setenv and ioinit calls to the
FORTRAN Library Routines, there did not appear to be any easy way to eliminate the
use o f relative file organization without substantially rewriting certain portions of the
code.

A.2.2.2 System Calls

The final VMS dependencies in the LIC test environment involved system calls to
routines named ESTABLISH and UNWIND. In the existing LIC data collection
scenario, one or more gold version LIC programs and one or more partially debugged
versions o f LIC were iteratively run as subroutines o f the control program. Any o f these
subroutines, some of which were specifically intended to be “buggy,” could result in an
abnormal termination of the control program. This was handled under VMS by having the
control program call ESTABLISH to assert a general purpose, user-defined exception
handling routine prior to running any of the test subroutines.

Once ESTABLISH had been called, any raised exception resulted in the
invocation of the user-defined handler in front o f the native VMS error handler(s) that
normally would be triggered by the exception(s). In the LIC test environment, if any
subroutine failed, the handler it defined would set a status variable for the control program
to examine later indicating that the subroutine had aborted. The handler would then
disable any pending native exception handler invocations and use UNWIND to remove
frames from the stack. This had the effect o f poising the controller to talley that
subroutine execution as an abort case and to move on to the the next gold or partially
debugged subroutine call upon returning from the handler.

N o direct counterparts of ESTABLISH and UNWIND exist under SunOS,
although similar behaviors can be emulated. Using multiple invocations o f the system
library function signal, it is possible to enumerate an exception handler for individual
signal (exception) types. Naming the same handler for all signal types would result in the
same net effect as the VMS ESTABLISH call. A signal interface is provided in the Sun’s
FORTRAN Library Routines. To effect the same results as the handler written for the
LIC controller on VMS would involve using two system library functions, setjm p and
longjmp. These functions respectively retain a given program context and allow returning
to that context from an arbitrary location elsewhere in the program. Thus, setjm p could

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be called at a reasonable point before invoking a subroutine. In case of subroutine failure,
the user-defmed handler could, as its last action, perform a longjmp back to the saved
location. Unfortunately, neither interface is provided in the Sun’s FORTRAN Library
Routines.

A.3 A N ew Experim ent Scenario

A.3.1 Goals

After identifying the essential characteristics required in the LIC data collection
environment and the areas of the NASA code that were more challenging to port, we
changed our focus to creating new control program instrumentation. We had three
primary goals in mind for the new software:

• a clean, simple data collection program that could be run with human interaction
or as an unattended process;

• support for partitioning the data collection and analysis work into smaller tasks
that could be distributed to various processors on the network, thereby reducing
the calendar time required to complete the study; and

• economy of statistics in initial runs, coupled with run repeatability at a later time
to collect more detailed data if needed.

The original test and gold programs were written to run as FORTRAN subroutines
which would read their input values from a common block and write their calculated
output values to another common block. To avoid modifying the actual test software in
any way, we decided to implement the control program again in FORTRAN 77, although
it was not our language of preference. We hoped this would help to avoid any potential
data alignment or language incompatibility problems that might have resulted had we
implemented the control program in C, for example, and “faked” the manipulation of the
common blocks prior to and after calling the subroutines. Certainly an easy conversion to
another programming language from FORTRAN could be made in the future.

We formulated a simplified view of the desired control program process as
follows:

read runtime parameters;
for(desired number of cases) {

generate next set o f input values;
load common block;

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

call gold subroutine;
load common block;
call test subroutine;
compare gold and test results;
talley;

}
output summary statistics;
exit(O);

A.3.2 Initial LICCtrl Implementation

The most technically interesting aspect to the control program was allowing for
and detecting disagreements between the gold and test version programs. Especially
critical was the fact that previous studies had detected actual aborts of the test and/or gold
subroutines, which we wished to intercept and talley. As explained above, under the
system calls ESTABLISH and UNWIND had been used under VMS for this purpose by
enabling the control program to return to a saved context after unexpected failures of the
subroutines. Since the similar pair o f C library system calls named setjmp and longjmp
were not directly available in Sun’s FORTRAN library, we initially tried to implement the
control program under SunOS by using the available system calls fork, signal and wait to
detect such failures.

A.3.2.1 Implementation Description

An invocation of fork creates a new process, called the child, which is more or
less an exact copy o f the creating process, called the parent. A successful call to fork
returns the value zero to the child process, and the (positive, non-zero) process identifier
of the child to the parent. After forking, the two processes continue to run concurrently
from that common point of execution. In this way, a block o f code was included in the
control program around each critical subroutine call — in this case, the gold and the test
subroutines — which specified certain actions to be taken by the child process (when fork
returned 0) and others to be taken by the parent process (when fork returned a positive
value).

The basic behavior of the child portion of the code was to call either the gold or
the test subroutine and, if successful, return the calculated output values to the parent
process. On the other hand, if the subroutine terminated abnormally, via prior invocations
of the system routine signal we arranged that a simple signal handler would cause a non
zero return status from the child to the parent process. By iteratively calling the system
routine wait, the parent portion o f the code could poll the system for the termination of
the child process. The return status could then be examined to determine if the subroutine

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

had failed — that is, the exception handler had been invoked. In this case, the parent
could talley that iteration as an abort for either the gold or the test version of the program
as appropriate. Otherwise, the parent could obtain the output values from the invoked
subroutine for comparison against the corresponding test or gold version outputs.

A.3.2.2 Implementation Limitations

An unfortunate limitation o f the fork mechanism is that, although the state of the
parent process is known to the child at the time of its birth, any changes subsequently
made to state variables by the child are unknown to the parent. Thus, data that the test or
gold subroutines loaded into common blocks as calculated output values were inaccessible
to the parent process. A normal mode of communication between parent and child is to
establish a pipe, which is an i/o mechanism for creating a private, interprocess
communication (ipc) channel into which the child can dump data for subsequent
processing by the parent, or vice versa. However, the pipe mechanism was not available
in Sun’s FORTRAN library, so a pipe was not an immediate option for the child to
communicate its calcuated output values to the parent. Thus we resorted to using a
simple data file into which the child wrote its results prior to exiting and from which the
parent read the child’s results after the child’s death.

The overall logic of this approach can be summarized as follows:

read runtime parameters;
enable signal handler;
for(desired number o f cases) {

generate next set of input values;
load common block;
fork a child process;
ifi[child_process) {

call gold subroutine;
output results to file;
exit(O);

}
else if(parent_process) {

wait for child process to terminate;
ifi[! terminationnormal)

talley as gold abort;
else

read gold results from file;
}
else {

error — fork failed;

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exit(-l);
}
load common block;
fork a child process;
ifl[child_process) {

call test subroutine
output results to file;
exit(O);

}
else if(parentjjrocess) {

wait for child process to terminate;
if(! termination_normal)

talley as test abort;
else

read test results from file;
}
else {

error — fork failed;
exit(-l);

}
compare gold and test results;
talley;

}
output summary statistics;
exit(O);

A.3.2.3 Observations

We successfully implemented a new control program using this approach.
Unfortunately, it was very slow, requiring nearly 30 hours (wall-clock time) to collect
comparisons o f 100,000 cases of a single test and gold version subroutine. The projected
time for 1 million cases was therefore over 12.5 days. We felt these run times were
unacceptable for two reasons. First o f all, they were slower than the run times of the
control program at NASA on much slower hardware. Secondly, it seemed unlikely that
we could expect nothing to go wrong with the host network during such a long period of
time, implying that collecting 1 million cases would require numerous restarts of the
control program and substantial data management effort.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.3 Modified Experiment Procedures

To ameliorate this situation, the software was moved onto a processor that had the
fastest available CPU on ODU’s Sun network and a large amount of local memory — an
ideal host for the computation-intensive LIC process. Two simple optimizing strategies
were exploited on this host.

First of all, the small file that LICCtrl was using to mimic the piping mechanism
between a parent and child process was moved to the /tmp directory to keep it in faster
RAM, thereby avoiding costly disk accesses. Secondly, publicly accessible disk space on
the host enabled running the software and recording statistical data locally on the host
rather than in a temporarily mounted directory across the network file service. In this
way, the run time of a 100,000 iteration process on the machine with local disk was
reduced to about eight hours under ideal conditions (i.e., no other processes competing
for CPU time), and to approximately 20 hours on machines with non-local disk

We also tried generating the gold program outputs in advance and reading them
into the LICCtrl program in lieu of calculating them in real time. This offered virtually no
run time improvement, implying that the time to do a disk access to obtain the previously
generated gold program outputs was roughly equal to the time required to run the gold
subroutine, output its results to RAM, and read them back into the control program. We
concluded that the cumbersome interprocess communication and the context switching
between the parent and child processes were consuming most of the control program’s
execution time.

We performed some baseline runs, and found that the new statistical data
compared favorably with those collected in the previous experiments. No LICCtrl aborts
were observed, and runs were found to be repeatable; that is, the same partially debugged
LIC version produced the same failure cases each time it was run against the gold version
with the same input stream. Thus, we felt reasonably confident that our instrumentation,
although slow, was working properly and we could confidently continue with
optimization.

A.3.4 Code Optimization Areas

While benchmarking the code, we noted that the new control program
instrumentation detected no aborts for either the gold or the test subroutines. This
observation led us to more thoroughly investigate floating point exceptions and signal
handling under SunOS. We also felt that the speed improvements that we were gaining
from manipulating the run time environment were relatively small and limiting us to a
small number of specially configured host machines. For that reason, we realized that
some code changes would be necessary to reduce the software’s execution time to within
reasonable bounds.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.3.4.1 Floating Point Exception Handling

Although the newly calculated reliablity figures were in line with previously
observed data, the absence o f unrecoverable errors (aborts) in the tested software seemed
counter-intuitive. That is, disagreements were being detected, but none were due to
outright failures o f test program variants that had been intentionally seeded with known
bugs, some of which involved substantial numerical errors. Through some additional
research, we found that Sun makes a distinction between the occurrence of a floating point
exception (such as divide by zero, overflow, underflow, etc.) and the physical generation
of the floating point signal SIGFPE.

Sun’s basic philosophy is that most users are not interested in most signals and, in
particular, the floating point exception signal will only be generated if it has been explicitly
enabled by invoking ieee_handler. The simple signal handler we wrote for the new
LICCtrl software had defined a behavior on detecting SIGFPE, but, because we naively
failed to enable that signal using ieeejhandler, such problems were never being detected.
In this circumstance, the test subroutine was clearly running to completion and simply
“getting the wrong answer.” No aborts (i.e., SIGFPEs) were being detected because the
operating system was ignoring floating point exceptions. Fortunately, interfaces to the
IEEE mechanisms were available in Sun’s FORTRAN library to remedy the problem
through invoking the ieee_handler function.

A.3.4.2 Ipc Bottleneck

Our second concern was the required execution times for the control program.
The potential to talley 100,000 cases in eight hours by the “improved” control program
was more attractive than the 30 hours required of the “initial” version, yet the projected
time for 1 million cases was still untenable. Several documented bugs in the test software
were known to require at least 1 million cases to get an adequate reliability estimate. Only
one computer was available on the host network with locally writeable disk. Even running
continuously, data could be collected using that single platform at the rate of only three
nodes per day (24 hours / 1 day * 1 node / 8 hours). Given a collection of ten known
bugs, the debugging graph we wished to investigate contained 1024 nodes (see 3.2.2.2).
This would require nearly a year of collection time — 341.3 days (1 day / 3 nodes * 1024
nodes) — for just a minimum of 100,000 cases per node. Adding additional, slower
machines would improve this figure somewhat, but at the increased effort to monitor and
restart jobs that died due to network failure.

Clearly we needed substantial improvement in the control program’s execution
times. In particular, we needed to focus on eliminating the clumsy ipc required by the
forking mechanism we were using to detect subroutine failures. This led us to investigate

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

means of accessing some of the other SunOS system functions for coordinating signal
detection and exception recovery from FORTRAN. Such interfaces are available by using
the PRAGMA directive to the f77 compiler.

A.3.4.3 The PRAGMA Directive

PRAGMA allows a FORTRAN module to interface to library functions written in
other programming languages, such as C or PASCAL. We initially used PRAGMA to
interface to the pipe mechanism in the C library in an attempt to avoid the awkward file-
based ipc between the parent and child control programs. This proved to be a blind alley.
When a pipe is instantiated, the operating system returns two file pointers — unit numbers
in FORTRAN jargon — to the invoking program. One o f these pointers references the
“read” end of the pipe, while the other references the “write” end of the pipe, but both
reference the same i/o unit. However, when FORTRAN is provided with two distinct unit
numbers, in this case associated with an unnamed, private channel, it creates two physical
files called “fort.x” and “fort.y,” where x and y are the unit numbers. Now suppose the
child process writes to the pipe using the appropriate unit number, say y. The effect is to
write to a file called “fort.y.” Then when the parent attempts to read the child’s output
using the unit number x, it is actually accessing a completely different file called “fort.x,”
which is empty. Thus, the pipe mechanism could not be used from FORTRAN to suit the
purposes o f LICCtrl.

We were successful, however, in designing a way to eliminate reliance on the
sluggish fork mechanism and the file-based pipe by using PRAGMAs to access the setjmp
and longjmp C library routines. The ieeejiandler can be used to nominate an exception
handler routine that intercepts raised floating point exceptions and returns to a known
program context by using a combination of setjmp and longjmp. The effect of setjmp is
to save a current program context into a buffer. A normal call to setjmp returns zero to
the invoking program; non-zero is returned otherwise. Thus, a call to a critical section o f
code can be surrounded by an if block involving “normal” actions to be taken when
setjmp returns zero, and “recovery” actions to take when setjmp returns non-zero. If
something abormal occurs in the critical section o f code, the exception handler routine is
invoked. It is intentionally encoded to do a longjmp back to the context saved by setjmp
and to activate the recovery actions. Because a single process can be used, the main
routine and subroutines all share the same data space; interprocess communication is no
longer an issue.

A.3.5 Optimized LICCtrl Implementation

In the case o f the control program, a signal handler was written that logged to a
journal file the type o f floating point exception raised, and returned control to a known

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program context. This signal handler was nominated using ieee_handler. The setjmp
function was used to surround the calls to the gold and test subroutines. The setjmp-
reiurns-zero block o f the statement handled the case that the test or gold subroutine was
called and no exceptions were raised. The calculated output values were simply read from
the designated common block in which the subroutine stored them. The setjmp-returns-
non-zero block o f the statement handled subroutine failures by talleying them as aborts.
This portion of code was activated only if the gold or the test subroutine failed, implying
the exception handler had been invoked. As its last action, the handler was designed to
call longjmp to restore the program context that had been previously saved by setjmp
just prior to the test or subroutine call. This caused the return to the control program to
look as though that same call to setjmp had returned a non-zero value, thereby activating
the recovery actions. The overall implementation logic used in the optimized LICCtrl
software can be summarized as follows:

read runtime parameters;
use ieee_handler to nominate “handler” as the SIGFPE handling routine;
for(desired number of cases) {

generate next set of input values;
load common block;
i f (! setjm p) call gold subroutine;
else talley as gold abort;
load common block;
i f (! setjm p) call test subroutine;
else talley as test abort;
compare gold and test results;
talley;

}
output summary statistics;
exit(O);

handler {
log signal raised;
longjmp;

}

In this way, we reduced the LICCtrl execution time on a machine with no local
disk to approximately four hours for 1 million cases. By comparison, when previously
using the fork mechanism, this same sized run would have required 80 hours (8 hours /
100,000 cases * 10) on a machine with local disk, or 50 times as long (20 hours / 100,000
cases * 10 = 200 hours /1 million cases * 1 million cases / 4 hours) on a machine with no
local disk — an order of magnitude improvement. At this point, we felt the LICCtrl
executable was running fast enough to start massive data collection.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Description of the LICCtrl Program
Interface

This appendix describes the functionality of the control program, LICCtrl, used in
the experiments reported in the thesis.

B .l LICCtrl Capabilities

LICCtrl, the control program used in our experiments, was designed to serve
several purposes. While its primary function is to run a gold version o f LIC and a partially
debugged version o f LIC in tandem to calculate a reliability figure on the latter, a number
of additional capabilities seemed desirable. In particular, when disk space is not a
problem, it is possible to use LICCtrl to produce “canned” results to be reused in
subsequent runs o f the program. For example, the user may wish to can the gold outputs
to avoid having to execute the gold version over and over again in tandem with different
partially debugged programs using the same input data sets. Or, the input data sets may
be saved to a file to avoid having to recalculate them in later runs, or to allow examining
them for statistical analysis.

Among the functionalities of LICCtrl are the following:

• generate // sets of randomized input values for (x,y) coordinates, the logical
connector matrix and the preliminary unlocking matrix diagonal according to
value distributions defined in the LIC problem specification;

• generate // compressed output values from the gold version o f LIC;

• generate n compressed output values from a partially debugged version of LIC;

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• produce summary and/or detailed statistics from running the gold version and
partially debugged version in tandem;

• run in silent, unattended mode or verbose, interactive mode.

B.2 LICCtrl Lim itations

B.2.1 Compilation Requirements

A limitation of the LICCtrl program is that it is necessary to create a new
executable of the program for each distinct partially debugged LIC implementation that
one wishes to run in tandem with the gold version. This is done by putting a FORTRAN
subroutine wrapper called “TESTPGM” around the partially debugged LIC
implementation and one called “GOLDPGM” around the gold implementation. The
corresponding source files are then included on the f77 compile/link line with the other
LICCtrl modules. This process is repeated for each different partially debugged version
subroutine, presumably using the same gold version subroutine in each case.

This limitation is an artifact o f two original requirements of the LIC program; first,
that it be encoded in FORTRAN; and secondly, that its input data be loaded into a
COMMON block prior to a run and its outputs be available from a COMMON block after
the run. In order to protect the integrity of the LIC module, it is minimally necessary to
supply some kind of additional code — the wrapper — around the gold or partially
debugged version to load data into and read data from the COMMON. This purpose is
served in FORTRAN by running the LIC versions as SUBROUTINES, while the
PROGRAM routine we call LICCtrl does, among other things, the common block
accesses prior to and after each gold or partially debugged subroutine run.

It is therefore necessary to explicitly link two subroutines with known, declared
names into the LICCtrl program so that they may be executed during the runs. To
simplify matters, we decided to fix the names of the two subroutines since we would have
to apply the subroutine wrapper around the code to be tested anyway. This avoids
potentially having to edit the subroutine CALL statements in each LICCtrl version, which
would have to be done if arbitrary subroutine wrapper names were used. Creation of the
various LICCtrl instantiations and subsequent executions can be managed quite easily by
makefiles and shell scripts.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2.2 Input Data

In its current configuration, an execution of the LICCtrl program that generates
input data sets for immediate or later use invokes a native UNIX random number
generator, rand. The function rand will produce the identical sequence of values on
distinct LICCtrl invocations, provided the same initial seed is used. This is desirable,
since it supports repeatability in the testing process. Additional LIC inputs, called runtime
parameters, were provided in the problem specification and are passed to the executable
via an input file.

The default behavior of LICCtrl is to use the same initial random seed (1) anytime
that rand is needed. However, LICCtrl does allow the specification of an alternate seed
via a command line argument (“-s” discussed below). Likewise, the user of LICCtrl
supplies the name of the runtime parameter file as part of the LICCtrl command
sequence. The flexibility of this interface, while convenient, can cause problems if the
analyst is not careful.

When comparing data collected during separate LICCtrl program invocations, the
analyst must be assured that the same input data were used. This ultimately traces back to
the same initial seed to rand and the same runtime parameters. One way of assuring this
is by canning the input data sets and then using the command line arguments “-i” and “-p”
(discussed below) to make sure the same data are used in all the collections.

As an additional safety measure, LICCtrl records, as part o f the statistical output
of a tandem run, the seed that was used in the original random sequence that gave rise to
the input data sets. The name o f the runtime parameter file is also logged. Canned gold
outputs, partially debugged outputs and input data sets are likewise labelled with the
information used in their generation. Although LICCtrl attempts to ensure integrity of
the runs by verifying that the use o f seeds and runtime parameters is consistent, the analyst
should still carefully verify that only outputs and statistics from LICCtrl invocations using
the same input data are compared.

B.3 LICCtrl Runtim e O ptions

Following UNIX conventions, eleven different command line arguments may be
used to select combinations of the various LICCtrl functionalities. These single character
commands preceded by a dash (‘-’) are known as switches. One or more switches are
supplied on the command line after the executable name to direct the LICCtrl processing
activity. The meaning of a switch may depend on which other switches have been
simultaneously specified. General descriptions of their uses are enumerated in the
following list:

• Run Mode: -d

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifying the “-d” switch (for “debug”) causes LICCtrl to run in verbose,
interactive mode. Silent, unattended mode is the default behavior. In interactive mode,
certain error conditions that might otherwise cause LICCtrl to abort may be overriden.
For example, if the attempt to create a new output file for recording run statistics reveals
that the file already exists, interactive mode will offer the opportunity to overwrite the
existing file or supply a new file name; whereas in silent mode, the execution will fail at
this point with an appropriate error message and status. Interactive mode also echoes
output to the screen at various checkpoints throughout the execution, which is not done
when LICCtrl runs unattended.

• Gold O utput File: -g <filename>

Used to name a file from which compressed outputs from the gold version of LIC
may be read or a file into which such outputs should be written.

• Input Data File: -i <filename>

Used to name a file from which sets of randomized input data for LIC may be read
or a file into which generated input data sets should be written.

• Run Label: -1 <string>

Used to supply a user-defined title to label output file contents. Note that if the
<string> contains blanks, it should be enclosed in quotation marks.

• Run Size: -n <cases>

Used to specify the number of runs to perform or the number o f data sets to
generate. Note that the value o f <cases> should be a positive, non-zero integer.

• Run Output File: -o <filename>

Used to name the file into which output statistics from tandem LICCtrl runs
should be written.

• Runtime Parameters File: -p <filename>

Use of this switch is mandatory, unless LICCtrl is only being used to “can” input
data sets. The file referenced by the argument contains the LIC runtime parameters as
described in the problem specification.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Resume Run: -r <case>

Supply an integer case number that specifies the number of cases in the input data
set sequence that should be skipped during this execution of the control program. That is,
if “-r 100” is specified, then the first 100 input data sets are skipped over; the 101st input
data set is the input for the first case executed.

• Random Number Generator Seed: -s <seed>

Supply an integer seed whose value is greater than 1 and less than MAXINT. The
seed is used to initialize the UNIX random number generator rand that is used by the
input data set generation routine. I f no seed is supplied on the command line, a seed of
“1” is used by default. It should be noted that the same seed (i.e., same input data sets)
must be used across all tandem runs if the analyst wishes to conduct fail set studies.

• Partially Debugged O utput File: -t <filename>

Used to name a file containing compressed outputs from the partially debugged (or
“test”) version of LIC or a file into which such outputs should be written.

• Detailed Statistics: -v <increment>

Specifying the “-v” switch (for “verbose”) causes detailed statistics to be
calculated and included in the output during tandem runs. The integer increment supplied
determines how often intermediate summary results are posted. Useful runs typically
involve tens of thousands of cases. The executing control program may die for any variety
of reasons, including network failure, accidental process termination by an outsider, etc.
Thus, information about specific bit-wise disagreements between gold and partially
debugged output data, which case numbers aborted, and so on, is recorded for each
disagreement or abort during the execution. Posting intermediate summary results at
specific intervals allows partial results from a run that terminates prematurely to be
retained. These can then be collated with results from a resumed run (see “-r” above) that
completes the data for the remainder of cases after the last data posting.

B.4 Command Line Exam ples

A basic rule of thumb for using the LICCtrl command line arguments is the
following:

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The presence o f the “-o” switch implies that a tandem run of
gold and partially debugged LIC versions will ultimately
take place, subject to successful combinations of other
command line arguments. Use of the “-g” and/or “-i”
options in the absence of the “-o” switch implies the
creation of canned gold output and/or canned input data
sets, respectively.

The following examples interpret the command line arguments for several different
invocations of LICCtrl.

• LICCtrl -n 1000 -i lic.dat -I “Standard 1000 Run”

Create a file called lic.dat, and write into it the first 1000 generated input data
sets. Label the output file contents as “Standard 1000 Run.” If a file named Iic.dat
already exists, the program invocation fails.

• LICCtrl -n 1000 -i lic.dat -d -s 12345

Nearly the same as the previous example, except that if lic.dat already exists, the
user may optionally overwrite it or supply a new file name. Also, the value 12345 is used
to seed the random number generator in lieu of the default seed value.

• LICCtrl -i lic.dat -g gold.out -p runparam.dat

If a file called lic.dat does not exist, or the file runparam.dat does not exist, or
the file gold.out already exists, the program invocation fails. Otherwise, run the gold
version of LIC on each input data set contained in lic.dat. Write the compressed output
from each gold run into the file gold.out.

• LICCtrl -i lic.dat -g gold.out -p runparam.dat -d

Same as the previous example, except that if there are problems with the existence
o f any of the files, the user will be offered the opportunity to overwrite existing files or
provide alternate file names as appropriate.

• LICCtrl -n 1000 -i lic.dat -o summary.dat -p runparam.dat

If a file called summary.dat already exists, or runparam.dat does not exist, the
program invocation fails. Otherwise, summary.dat is created, and one of the following
interpretations is implied for the remaining switches:

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If a file called lic.dat already exists, it is presumed to contain previously generated
input data sets. Run the gold and partially debugged programs in tandem, using the
lic.dat file contents as input. Do 1000 runs, or continue running until the contents of
lic.dat are exhaused, whichever occurs first. Write summary statistics to file
summary.dat.

If a file called lic.dat does not exist, create one. Then make 1000 tandem runs,
saving the generated input data sets to the file lic.dat. Write summary statistics to file
summary.dat.

• LICCtrl -n 1000 -i lic.dat -o summary.dat -p runparam.dat -v

Same as above, only along with the summary statistics, include detailed statistics in
the output file summary.dat.

• LICCtrl -i lic.dat -g gold.out -t test.out -o summary.dat -p runparam.dat

If a file called summary.dat already exists, the program invocation fails;
otherwise, the file is created. Several interpretations are possible from this point:

If both gold.out and test.out exist and were generated from the same input data,
no further LIC executions are needed. Just calculate and write summary statistics to file
summary.dat. The files lic.dat and runparam.dat are effectively ignored in this case.

If one of the files, say gold.out, exists, and lic.dat contains the same data that
generated gold.out, then the partially debugged version is mn using lic.dat as input. Its
results are compared to those in gold.out and summarized in summary.dat.

If one of the files, say test.out, exists, and lic.dat was not used to generate
test.out, then lic.dat is ignored. Provided a suitable runtime parameter file is available —
either the one specified on the command line or the one named in test.out — the random
input data sets used to generate test.out are recreated in real time as inputs for the gold
version. Results from the gold and partially debugged versions are then are compared and
summarized in summary.dat.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Test Environment Configuration

This appendix explains some conventions we adopted with respect to the
automation aspects o f the study. We also describe instrumentation we developed to assist
with the generation and management of the partially debugged program variants and the
results of running the control software. This includes shell scripts for contructing and
navigating through the test environment, as well as the gold and faulty versions of LIC
(bbgold.for and Probla.for, respectively) used in the experiments.

C .l Terminology

The rows, or levels, o f the debugging graph can be numbered from 0 to //, where n
is the number of bugs in the software for which repairs, or fixes, are known.

C.2 Bug Identification

To construct a debugging graph for experimental purposes, we needed to identify
a suite of known bugs and fixes for the LIC solution named Probla. The debugged
version of Probla, which contained annotations of the twelve fixes identified during an
earlier study, was examined along with the original unrepaired Probla source code.
Analysis of the identified bugs revealed that two of them, those labeled bug 1 and bug 7,
were side-effects of the original control program test environment rather than flaws in the
LIC programming solution studied during past reliability experiments.

The control program was designed to run the gold and partially debugged
programs as subroutines. Input values to run these subroutines were passed to them from
the control program through common blocks. In the original control program
instrumentation, a common block was incorrectly used, resulting in a failure rate of over

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fifty percent. In fact, during a 100,000 case run of the original, unrepaired software with
an early version of LICCtrl, we found that 57,017 cases failed, resulting in a reliability
figure of only 42.9830%. This bug was designated as bug 1. The fix used for bug 1 was
an imperfectly done repair. We found that installing its corresponding fix in the original
Probla source code caused the reliability of the software to degrade to 42.6390% for a
100,000 case run.

A second bug designated as bug 7 was actually the correction of bug l ’s incorrect
fix. Installing fix 7 in addition to fix 1 improved the reliability of the software to
42.9930% for a 100,000 case run. Since bugs 1 and 7 were actually artifacts of the
original test environment, we decided that they were uninteresting for the purposes of our
study. Thus, we considered the program variant at level 0 of this debugging graph to be
Probla with both fixes 1 and 7 installed. We then re-numbered the remaining bugs
identified in the earlier study as shown in Table C-l. These are the bug numbers that we
will use in the remainder o f the discussion and data collections for Probla.

C.3 Nam ing Conventions

An orderly scheme was needed to keep track of the numerous program variants
and the data generated during the many runs of the control program.

Table C -l. Revised Bug Numbers for Probla

Original Number Revised Number
1 *

2 1
3 2
4 3
5 4
6 5
7 *

8 6
9 7
10 8
11 9
12 10

* denotes fix pre-installed at level 0

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.3.1 Program Variants

The naming conventions we adopted for the partially debugged program variants
were directed by the following rules: use the name “fix” or “bug,” followed by an
enumeration o f the fixes or bugs installed in the source code in ascending integer order,
separated by underscore characters Of course, all module names ended in the “.for”
suffix.

We chose two possible name formulations for the partially debugged software
modules in order to have the option of keeping the names of the program variants short
but still meaningful. For example, suppose there is a pool o f ten known bug fixes. Then
for a program variant in which all fixes except those for bug 2 and bug 5 were installed,
we might want to use the name

bug2_5.for

instead of the longer name

fix 1_3_4_6_7_8_9_10.for

although, under our naming conventions, the two modules would contain the same source
code. In practice, we adhered to the “fix” naming convention since future studies may try
to expand the pool o f known bug fixes.

The gold version LIC module used in the study was called bbgold.for, the name it
was given during a previous research effort. The failure data for each program variant —
that is, the case numbers that showed disagreement between the gold and the tested
software versions — were stored in files called LlCmonitor.tmp, while the summary
statistics detailing run times and the calculated reliability figures were stored in files called
test.dat. A small number o f runtime parameters needed to initialize data used in LIC
calculations were stored in a file called runparam .dat. These values were taken from the
previous studies and were held constant for all cases.

C.3.2 Directory Organization

The initial stage o f our study was targeted at generating a small but significant
debugging graph in its entirety. For Probla, with the ten known bugs we felt were
significant to study, this meant a minimum of 1024 (210) program variants would have to
be created and run against the gold version program. Pertinent information about failure
behavior also would have to be retained for later analysis in such a way that they could be
traced to the appropriate program variants and cases run. We decided initially to use a

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directory-naming convention to keep track o f the data for corresponding program
variants.

A root directory called FIX was created for representing level 0 o f the debugging
graph — that is, the software with none o f the ten (revised) fixes installed. We created
and moved to this directory the following code:

• fixO.for: source code equivalent to the original Probla module (with the original
fixes 1 and 7 installed);

• bbgold.for: the gold version LIC module;

• other FORTRAN code needed to create the executable control program;

• fortLC: a shell script used to compile all the FORTRAN code except fixO.for;

• loadLC: a shell script used to compile fixO.for and link it with the other
FORTRAN object modules (see below);

• LICCtrl: the executable control program;

After running the data collection for the control program for this program variant, the two
files LlCmonitor.tmp and test.dat as described above were present in this directory.

For subsequent levels o f the graph, we created subdirectories for representing the
various graph nodes. For example, in the ten-bug case, the FIX directory had ten
subdirectories:

F1X1, FIX2, FIX3, FIX4, FIX5, FIX6, FIX7, FIX8, FIX9, FIX10

Taken together, directories FIX/FIX1, FIX /FIX 2,, . , , FIX/FIX10 represented level 1 of
the debugging graph. Each one contained a partially debugged program variant with
exactly one fix installed — fix 1 in the case o f FIX/FIX 1, fix 2 in the case o f FIX/FIX2,
and so on. After running the collection effort for these variants, the corresponding data in
LlCmonitor.tmp and test.dat were stored in the appropriate corresponding
subdirectories.

Subsequent subdirectories for representing levels 2 through 10 did not have to be
so extensively subdivided. That is, with N known bugs, a directory name ending in FIXn,
1 < n < N , needed only to contain subdirectories named FIXm, where //+1 < m <N, that
is, subdirectories for the fixes having numbers higher than it. In this manner, data about
the combinations of fixes that would have otherwise been represented in subdirectories
named FIXp, where 1 < p < m , would already have been represented in previously created
subdirectories at the same level.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, look at Figure C-l, a small example directory structure for n = 4
known bugs. The directory representation is the traditional top-down, tree. As one
moves from top to bottom down a column representing one level in the directory
structure, it is easy to see that subdirectories towards the top of the level column have
already captured the representation for some of the fix combinations that might otherwise
have (redundantly) appeared as subdirectories towards the bottom of the column at the
same level. For example, there is no need to create a directory FIX/FIX2/FIX1, since
FIX/FIX1/FIX2 has already been included to contain data about the variant having both
fixes 1 and 2 present.

So that the directory structure appeared complete for subsequent navigation
requirements o f various tools, however, we used the In system command to create
symbolic links within levels from subdirectories that “actually were” there to
subdirectories “could have been” there, but would have held redundant data. This implies,
for example, that FIX/FIX2 had a symbolic subdirectory called FIX1, which was linked to
the physical occurrence of directory FIX/FIX1/FIX2. Figure C-2 is the augmentation of
Figure C-l with these symbolic subdirectories included. A symbolic directory is
represented as an italic named joined to a parent directory with a dashed line. In each
case, the “imaginary” directory is actually just a pointer to the directory with the
cumulative fix numbers listed in ascending order.

C.4 Shell Scripts

C.4.1 Source Code Creation

From the original Probla source code and an annotated version identifying
appropriate fixes for all the known bugs, we extracted interchangeable “buggy” and
“fixed” segments of the code. These source code partitions were respectively called
“bugn” and “fixn” for all bugs n, 1 < n < 10. An “a” or “b” was also added to the names
of some partitions, since in a few cases the bug fix appeared at two non-contiguous
locations in the source code. These “bug” and “fix” segments could be concatenated in a
specific order to instantiate a legitimate version o f a partially debugged source code
version of Probla. (Note: For the two bugs from the original experiment that we
discounted, the corresponding “fix” partitions were “force installed” in the program
variants and were given “ orig” as an extension to their partition name.)

A shell script called builder was developed to automate the creation of source
code for the LIC solution Probla with various combinations of fixes installed. Command
line arguments to builder enabled us to provide a unique name for the program variant
being created using the naming conventions discussed above, followed by an enumeration
of the fix numbers that were to be installed — that is, integers in the range of 1 to 10 in
ascending order for Probla. For any integer listed on the command line, builder was

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIX

FIX1 FIX2 FIX3 FIX4

FIX4FIX2 FIX3 FIX4 FIX3 FIX4

FIX3 FIX4 FIX4 FIX4

FIX4

Figure C-l. Directory Structure for n=4 Known Bugs

Figure C-2. Augmented Directory Structure for n=4 Known Bugs

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

designed to install the corresponding “fixed” lines of code; otherwise the corresponding
“buggy” lines of code would be used during the concatenation process. Thus, the
command

builder fixO.for

would result in the creation of the a module called fixO.for, with no (revised) fixes
installed, thereby equivalent to the level 0 program variant, while

builder fix2_7.for 2 7

resulted in the creation of a module called fix2_7.for with (revised) bugs 2 and 7 repaired,
but bugs 1, 3 through 6 and 8 through 10 still present in the code. Each module could
then be stored in its appropriate FIX subdirectory for subsequent data collection purposes.

C.4.2 Executable Generation

A shell script called buildLoad was also used. It accepts as its command line
argument a FORTRAN module name which it inserts into a template o f a second “canned”
script called loadLC (for “load ZJCCtrl”). This second script contains the f77 command
line arguments to compile the test version subroutine and link it together with the
appropriate modules of the control software and the gold version to create an executable
LICCtrl program. Thus it is possible to run loadLC, specifying the name of each
partially debugged program variant module to be tested, and store the generated loadLC
script in the directory in which the corresponding source code for the partially debugged
program variant is stored. The loadLC scripts can then be run in those directories to
create each executable LICCtrl program.

C.4.3 Level-Wise Graph Construction

To relieve the manual effort involved in creating the executable programs, a shell
script called buildLvl was encoded. Given a level number and a few other command line
arguments for navigation purposes, this script automatically creates the appropriate FIX
subdirectories, the partially debugged program variants, the loadLC script and the
executable LICCtrl program for each node of the level. It installs in each subdirectory
virtually everything that is needed to collect data for that program variant. The buildLvl
script was eventually run to create every level of the debugging graph in the FIX directory
structure.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.5 Data Collection

Due to the possibility o f network failure and other unforseen problems, we still felt
it was necessary to exert a certain amount of manual control over the actual data
collection effort. Operating from left to right across a level of the directory structure, we
used the operating system command “at” to schedule a number of data collection jobs to
take place back-to-back on each of four or five machines on the Sun network. We tried to
keep jobs running 24 hours a day, but some down time was necessary to accommodate
system backups and partial data analysis

Although we had measured the LICCtrl execution at approximately four hours of
wall-clock time, we allowed each job five hours to complete, thereby accounting for
competition with other processes on the system. We ran the executables with a “nice
level” of +19 to avoid hindering other system users. As jobs completed, we ran a shell
script called cleanLIC to delete unnecessary files in its subdirectory and to compress the
generated output to conserve disk space. If any jobs were found to have terminated
prematurely, they were restarted at a later time, and the subsequent outputs concatenated
to the earlier results.

As data collection was completed for an entire level, shell scripts called cleanLvI
and trimLvl were run to ensure that all unnecessary files in each subdirectory had been
deleted and all output compressed. This process was repeated until all subdirectories for
each of the ten graph levels were processed. The overall collection effort required
approximately two months.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Validation of Software Reliability Model
Implementations

We performed a “sanity check” on the C programming language implementations
of the four software reliability models included in our study: Jelinski-Moranda, Geometric
De-Eutrophication, Basic Musa and Logarithmic Poisson. This was accomplished by
using “canned” data, whose expected outputs were known or could be manually
calculated, to input to the models. Each algorithm’s behavior, given sanity data as inputs,
was compared against expected outputs to validate its correct performance. We discuss
the basic parameter estimation and validation procedures for each o f the four models
below, and provide their C programming language implementations.

D .l Jelinski-M oranda

D.1.1 Formulae

The model estimates the total number of errors in a program by determining a
value of N for which the following two functions are equal:

Si = i,n[l / (N - (i - l))] and n / (N - (I i = u [(i - l) - X i)]) / T)

In these equations:

N represents the total number of errors in the program;
n represents the number of failures observed;
X; represents the time at which the i111 failure was observed;
T is the sum of all Xj’s.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table D -1. Sanity Data for Jelinski-Moranda Model
rounded to nearest 1/1000000

/ R F MTTF
0 0.000000 1.000000 1.

1 0.200000 0.800000 1.25
2 0.400000 0.600000 1.666667
3 0.600000 0.400000 2.5
4 0.800000 0.200000 5.
5 1.00000 0.00000 Infinite

A proportionality constant, <J), is then estimated by using the estimator for N in the
following formula:

(j) = n / ((N • T) - 1* = i>n[(i-1) • X j])

Thus, after the i ^ error has been found, the residual number o f errors in the software is
estimated to be (N - n), while the failure rate F is (N - i) • <j>. R and MTTF are estimated
using the relationships R = 1 - F and MTTF = 1 / F.

D.1.2 Sanity Check

We generated input values for the model using <J> = 0.2 and N = 5. Applying these
values iteratively as i ranged from 0 to 5 in the failure figure formula, and using known
relationships of F = (N - i) ■ <J> to R and MTTF, we obtained the data shown in Table D-l.

Using these data as inputs, our Jelinski-Moranda program correctly estimated the
total number of errors and § value for the predictive stages 1 through 4; for example, at
stage 1, the 0 ^ and 1st sets of values were used to interpolate the parameter estimates. It
also correctly predicted the next MTTF in all 4 cases, including an extremely large
(essentially infinite) MTTF at stage 4, which is consistent with the expected outputs.

At the 5th predictive stage, the model correctly detected it could produce no
solution. At this point, Littlewood’s test was applied, which states that finite N and
non-zero exist if and only if the following is true:

2i=l,n[(i~l)' XJ > (Zj = i;I1[Xj]) / n

where n is the number o f failures observed thus far. The test failed, indicating that either
an infinite number o f bugs remained—which we knew to be false—or <j) was equal to
zero—which is reasonable, since all 5 canned failures had been accounted for. Thus we
believe our Jelinski-Moranda implementation is a valid one.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D.2 Geometric D e-Eutrophication

D.2.1 Formulae

D represents the initial detection rate. It holds until the first error is found, at
which time the rate becomes k • D, where 0 < k < 1. In general, the detection rate is ki • D
after the ith error has been found, with the detection rates forming a converging geometric
series.

The model estimates a value for the proportionality constant k for which the
following two functions are equal:

(n + l) / 2 and (I i= i,n[i • ki • X j]) / (Xi= i,n[ki • Xj])

In these equations:

n represents the number o f failures observed;
Xj represents the time at which the ith failure was observed.

D can then be estimated by using k ’s estimate in the following formula:

D = n /' (Sj = i n[ki-1 • Xj])

F is easily estimated using the formula D • kn, while R and MTTF can be estimated using
the relationships R = 1 - F and MTTF = 1 / F.

D.2.2 Sanity Check

We generated input values for the model using k = 0.2 and D = 1. Applying these
values iteratively as i ranged from 0 to 5 in the failure figure formula, and using known
relationships of F = D • k1 to R and MTTF, we obtained the data shown in Table D-2.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table D-2. Sanity Data for Geometric De-Eutrophication Model
rounded to nearest 1/1000000

i R F MTTF
0 0.000000 1.000000 1.
1 0.900000 0.100000 10.
2 0.990000 0.010000 100.
3 0.999000 0.001000 1000.
4 0.999900 0.000100 10000.
5 0.999990 0.000010 100000.

Using the calculated sequence of reliability figures as inputs, our Geometric
De-Eutrophication program correctly estimated the initial detection rate and
proportionality constant for all 5 predictive stages; for example, at stage 1, the 0 ^ and 1st
sets of values were used to interpolate the parameter estimates. It also correctly predicted
the next MTTF in all observed cases, although at the 5 ^ stage some representational error
was beginning to manifest itself in the 1/1000000 decimal place. Thus we believe our
Geometric De-Eutrophication implementation is a valid one.

D.3 Basic M usa

D.3.1 Formulae

This model is the continuous counterpart to Jelinski-Moranda. A value b], which
represents the ratio o f initial failure intensity over the total number of bugs in the program,
is estimated for which the following holds:

me / bj - me • te / (exp(bi • te) - 1) - Zj= i,nie[tj] = 0

In this equation:

me represents the number of bugs removed;
tj represents the time the i^ bug was removed;
te represents the time at which testing ended.

An estimator for bo, the total number of bugs in the software, is obtained by using b j ’s
estimator in the following formula:

b0 = me / (l -exp(-bi - t e))

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The number o f bugs removed by time t is then given by the function:

u(t) = b0 • (1 - exp(-bj • t))

The failure rate is estimated using the function:

Mt) = bo • b j ■ exp(-b] • t)

For a given failure rate F, R and MTTF can be estimated using the relationships R = 1 - F
and MTTF = 1/F.

D.3.2 Sanity Check

We generated input data for the model using failure time data provided in [22,
Table 12.1, page 305]. Using the known relationships among R, F and MTTF, where in
this case MTTFs are approximated using observed failure times, we obtained the empirical
data shown in Table D-3. According to the authors’ example [22, page 324], the model’s
parameters should be approximated as bo = 142 failures (rounded to the nearest integer)
and bj = 0.0000348/CPU sec at the final predictive stage when Musa’s data are provided
as inputs. We considered how well our implementation matched these known bo and bj
values to validate our model. We ignored for the moment how predicted MTTFs
compared with empirical ones.

Our program matched the authors’ parameters quite well at the 136^ predictive
stage, using the time of the last failure (88682) as the time testing ended. That is, when all
input data were considered, the interpolated parameters were bo « 142.881 and bj «
0000342. If instead we used the true end of test time (91208), as did the authors, our
parameter estimates matched theirs identically, with bo * 141.933 and bj « .0000348.
Thus we believe our Basic Musa implementation is a valid one.

D.4 Logarithm ic Poisson

D.4.1 Formulae

This model is the continuous counterpart of Geometric De-Eutrophication. A
value b j, which represents the product of the initial failure intensity and an intensity decay
parameter, is estimated for which the following holds:

1 / bj • (Ej = i,me[1 / (1 + bj • t j)]) - me • tg/ ((1 + b] • te) • ln (l + bj • te)) = 0

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this equation:

me represents the number o f bugs removed;
tj represents the time the i111 bug was removed;
te represents the time at which testing ended.

An estimator for bg, the inverse of the intensity decay parameter, is obtained by using b j ’s
estimator in the following formula:

bo = me / ln(l + bj - te)

The number of bugs removed by time t is then given by the function:

u(t) = bo • ln(l + bj • t)

The failure rate is estimated using the function:

A,(t) = bo • b i / (1 + bi ■ t)

For a given failure rate F, R and MTTF can be estimated using the relationships R = 1 - F
and MTTF = 1 / F.

D.4.2 Sanity Check

We generated input data for the model using failure time data provided in [22] (see
Table 12.1, page 305). Using the known relationships among R, F and MTTF, where in
this case MTTFs are approximated using observed failure times, we obtained the empirical
data shown in Table D-3. According to the authors’ example (see page 326), the model’s
parameters should be estimated as bo = 42.3 failures and b] = 0.000262/CPU sec at the
final predictive stage when Musa’s data are provided as inputs. We considered how well
our implementation matched these known bo and bj values to validate our model. We
ignored for the moment how predicted MTTFs compared with empirical ones.

Our program matched the authors’ parameters quite well at the 136^ predictive
stage, using the time of the last failure (88682) as the time testing ended. That is, when all
input data were considered, the interpolated parameters were bp * 43.1 and bj « 000253.
If instead we used the true end o f test time (91208), as did the authors, our parameter
estimates matched theirs identically, with bo * 42.3 and bj * .000262. Thus we believe
our Basic Musa implementation is a valid one.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table D-3. Sanity Data Derived from Musa’s Failure Time Data
rounded to nearest 1/1000000

i R F M T T F

6 9 . 9 9 9 9 3 7 . 0 0 0 0 6 3 1 5 8 0 6

7 0 . 9 9 9 9 3 8 . 0 0 0 0 6 2 1 6 1 8 5

7 1 . 9 9 9 9 3 8 . 0 0 0 0 6 2 1 6 2 2 9

7 2 . 9 9 9 9 3 9 . 0 0 0 0 6 1 1 6 3 5 8

7 3 . 9 9 9 9 4 2 . 0 0 0 0 5 8 1 7 1 6 8

7 4 . 9 9 9 9 4 3 . 0 0 0 0 5 7 1 7 4 5 8

7 5 . 9 9 9 9 4 4 . 0 0 0 0 5 6 1 7 7 5 8

7 6 . 9 9 9 9 4 5 j . 0 0 0 0 5 5 1 8 2 8 7

7 7 . 9 9 9 9 4 6 . 0 0 0 0 5 4 1 8 5 6 8

7 8 . 9 9 9 9 4 7 . 0 0 0 0 5 3 1 8 7 2 8

7 9 . 9 9 9 9 4 9 . 0 0 0 0 5 1 1 9 5 5 6

8 0 . 9 9 9 9 5 1 . 0 0 0 0 4 9 2 0 5 6 7

8 1 . 9 9 9 9 5 2 . 0 0 0 0 4 8 2 1 0 1 2

8 2 . 9 9 9 9 5 3 . 0 0 0 0 4 7 2 1 3 0 8

8 3 . 9 9 9 9 5 7 . 0 0 0 0 4 3 2 3 0 6 3

8 4 . 9 9 9 9 5 9 . 0 0 0 0 4 1 2 4 1 2 7

8 5 . 9 9 9 9 6 1 . 0 0 0 0 3 9 2 5 9 1 0

8 6 . 9 9 9 9 6 3 . 0 0 0 0 3 7 2 6 7 7 0

8 7 . 9 9 9 9 6 4 . 0 0 0 0 3 6 2 7 7 5 3

8 8 . 9 9 9 9 6 5 . 0 0 0 0 3 5 2 8 4 6 0

8 9 . 9 9 9 9 6 5 . 0 0 0 0 3 5 2 8 4 9 3

9 0 . 9 9 9 9 6 6 . 0 0 0 0 3 4 2 9 3 6 1

9 1 . 9 9 9 9 6 7 . 0 0 0 0 3 3 3 0 0 8 5

9 2 . 9 9 9 9 6 9 . 0 0 0 0 3 1 3 2 4 0 8

9 3 . 9 9 9 9 7 2 . 0 0 0 0 2 8 3 5 3 3 8

9 4 . 9 9 9 9 7 3 . 0 0 0 0 2 7 3 6 7 9 9

9 5 . 9 9 9 9 7 3 . 0 0 0 0 2 7 3 7 6 4 2

9 6 . 9 9 9 9 7 3 . 0 0 0 0 2 7 3 7 6 5 4

9 7 . 9 9 9 9 7 3 . 0 0 0 0 2 7 3 7 9 1 5

9 8 . 9 9 9 9 7 5 . 0 0 0 0 2 5 3 9 7 1 5

9 9 . 9 9 9 9 7 5 . 0 0 0 0 2 5 4 0 5 8 0

1 0 0 . 9 9 9 9 7 6 . 0 0 0 0 2 4 4 2 0 1 5

1 0 1 . 9 9 9 9 7 6 . 0 0 0 0 2 4 4 2 0 4 5

1 0 2 . 9 9 9 9 7 6 . 0 0 0 0 2 4 4 2 1 8 8

< R F M TTF

1 . 6 6 6 6 6 7 . 3 3 3 3 3 3 3

2 . 9 6 9 6 9 7 . 0 3 0 3 0 3 3 3

3 . 9 9 3 1 5 1 . 0 0 6 8 4 9 1 4 6

4 . 9 9 5 5 9 5 . 0 0 4 4 0 5 2 2 7

5 . 9 9 7 0 7 6 . 0 0 2 9 2 4 3 4 2

6 . 9 9 7 1 5 1 . 0 0 2 8 4 9 3 5 1

7 . 9 9 7 1 6 7 . 0 0 2 8 3 3 3 5 3

8 . 9 9 7 7 4 8 . 0 0 2 2 5 2 4 4 4

9 . 9 9 8 2 0 1 . 0 0 1 7 9 9 5 5 6

1 0 . 9 9 8 2 4 9 . 0 0 1 7 5 1 5 7 1

1 1 . 9 9 8 5 9 0 . 0 0 1 4 1 0 7 0 9

1 2 . 9 9 8 6 8 2 . 0 0 1 3 1 8 7 5 9

1 3 . 9 9 8 8 0 4 . 0 0 1 1 9 6 8 3 6

1 4 . 9 9 8 8 3 7 . 0 0 1 1 6 3 8 6 0

1 5 . 9 9 8 9 6 7 . 0 0 1 0 3 3 9 6 8

1 6 . 9 9 9 0 5 3 . 0 0 0 9 4 7 1 0 5 6

1 7 . 9 9 9 4 2 1 . 0 0 0 5 7 9 1 7 2 6

1 8 . 9 9 9 4 5 8 . 0 0 0 5 4 2 1 8 4 6

1 9 . 9 9 9 4 6 6 . 0 0 0 5 3 4 1 8 7 2

2 0 . 9 9 9 4 9 7 . 0 0 0 5 0 3 1 9 8 6

2 1 . 9 9 9 5 6 7 . 0 0 0 4 3 3 2 3 1 1

2 2 . 9 9 9 5 7 7 . 0 0 0 4 2 3 2 3 6 6

2 3 . 9 9 9 6 1 7 . 0 0 0 3 8 3 2 6 0 8

2 4 . 9 9 9 6 2 6 . 0 0 0 3 7 4 2 6 7 6

2 5 . 9 9 9 6 7 7 . 0 0 0 3 2 3 3 0 9 8

2 6 . 9 9 9 6 9 5 . 0 0 0 3 0 5 3 2 7 8

2 7 . 9 9 9 6 9 6 . 0 0 0 3 0 4 3 2 8 8

2 8 . 9 9 9 7 7 4 . 0 0 0 2 2 6 4 4 3 4

2 9 . 9 9 9 8 0 1 . 0 0 0 1 9 9 5 0 3 4

3 0 . 9 9 9 8 0 2 . 0 0 0 1 9 8 5 0 4 9

3 1 . 9 9 9 8 0 3 . 0 0 0 1 9 7 5 0 8 5

3 2 . 9 9 9 8 0 3 . 0 0 0 1 9 7 5 0 8 9

3 3 . 9 9 9 8 0 3 . 0 0 0 1 9 7 5 0 8 9

3 4 . 9 9 9 8 0 4 . 0 0 0 1 9 6 5 0 9 7

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table D-3 (concluded). Sanity Data Derived from Musa’s Failure Time Data
rounded to nearest 1/1000000

3 5 . 9 9 9 8 1 2 . 0 0 0 1 8 8 5 3 2 4 1 0 3 . 9 9 9 9 7 6 . 0 0 0 0 2 4 4 2 2 9 6
3 6 . 9 9 9 8 1 4 . 0 0 0 1 8 6 5 3 8 9 1 0 4 . 9 9 9 9 7 6 . 0 0 0 0 2 4 4 2 2 9 6
3 7 . 9 9 9 8 2 0 . 0 0 0 1 8 0 5 5 6 5 1 0 5 . 9 9 9 9 7 8 . 0 0 0 0 2 2 4 5 4 0 6
3 8 . 9 9 9 8 2 2 . 0 0 0 1 7 8 5 6 2 3 1 0 6 . 9 9 9 9 7 9 . 0 0 0 0 2 1 4 6 6 5 3
3 9 . 9 9 9 8 3 6 . 0 0 0 1 6 4 6 0 8 0 1 0 7 . 9 9 9 9 7 9 . 0 0 0 0 2 1 4 7 5 9 6
4 0 . 9 9 9 8 4 3 . 0 0 0 1 5 7 6 3 8 0 1 0 8 . 9 9 9 9 7 9 . 0 0 0 0 2 1 4 8 2 9 6
4 1 . 9 9 9 8 4 6 . 0 0 0 1 5 4 6 4 7 7 1 0 9 . 9 9 9 9 8 0 . 0 0 0 0 2 0 4 9 1 7 1
4 2 . 9 9 9 8 5 2 . 0 0 0 1 4 8 6 7 4 0 1 1 0 . 9 9 9 9 8 0 . 0 0 0 0 2 0 4 9 4 1 6
4 3 . 9 9 9 8 6 1 . 0 0 0 1 3 9 7 1 9 2 1 1 1 . 9 9 9 9 8 0 . 0 0 0 0 2 0 5 0 1 4 5
4 4 . 9 9 9 8 6 6 . 0 0 0 1 3 4 7 4 4 7 1 1 2 . 9 9 9 9 8 1 . 0 0 0 0 1 9 5 2 0 4 2
4 5 . 9 9 9 8 6 9 . 0 0 0 1 3 1 7 6 4 4 1 1 3 . 9 9 9 9 8 1 . 0 0 0 0 1 9 5 2 4 8 9
4 6 . 9 9 9 8 7 2 . 0 0 0 1 2 8 7 8 3 7 1 1 4 . 9 9 9 9 8 1 . 0 0 0 0 1 9 5 2 8 7 5
4 7 . 9 9 9 8 7 2 . 0 0 0 1 2 8 7 8 4 3 1 1 5 . 9 9 9 9 8 1 . 0 0 0 0 1 9 5 3 3 2 1
4 8 . 9 9 9 8 7 4 . 0 0 0 1 2 6 7 9 2 2 1 1 6 . 9 9 9 9 8 1 . 0 0 0 0 1 9 5 3 4 4 3
4 9 . 9 9 9 8 8 6 . 0 0 0 1 1 4 8 7 3 8 1 1 7 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 4 4 3 3
5 0 . 9 9 9 9 0 1 . 0 0 0 0 9 9 1 0 0 8 9 1 1 8 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 5 3 8 1
5 1 . 9 9 9 9 0 2 . 0 0 0 0 9 8 1 0 2 3 7 1 1 9 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 6 4 6 3
5 2 . 9 9 9 9 0 3 . 0 0 0 0 9 7 1 0 2 5 8 1 2 0 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 6 4 8 5
5 3 . 9 9 9 9 0 5 . 0 0 0 0 9 5 1 0 4 9 1 1 2 1 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 6 5 6 0
5 4 . 9 9 9 9 0 6 . 0 0 0 0 9 4 1 0 6 2 5 1 2 2 . 9 9 9 9 8 2 . 0 0 0 0 1 8 5 7 0 4 2
5 5 . 9 9 9 9 0 9 . 0 0 0 0 9 1 1 0 9 8 2 1 2 3 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 2 5 5 1
5 6 . 9 9 9 9 1 1 . 0 0 0 0 8 9 1 1 1 7 5 1 2 4 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 2 6 5 1
5 7 . 9 9 9 9 1 2 . 0 0 0 0 8 8 1 1 4 1 1 1 2 5 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 2 6 6 1
5 8 . 9 9 9 9 1 2 . 0 0 0 0 8 8 1 1 4 4 2 1 2 6 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 3 7 3 2
5 9 . 9 9 9 9 1 5 . 0 0 0 0 8 5 1 1 8 1 1 1 2 7 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 4 1 0 3
6 0 . 9 9 9 9 2 0 . 0 0 0 0 8 0 1 2 5 5 9 1 2 8 . 9 9 9 9 8 4 . 0 0 0 0 1 6 6 4 8 9 3
6 1 . 9 9 9 9 2 0 . 0 0 0 0 8 0 1 2 5 5 9 1 2 9 . 9 9 9 9 8 6 . 0 0 0 0 1 4 7 1 0 4 3
6 2 . 9 9 9 9 2 2 . 0 0 0 0 7 8 1 2 7 9 1 1 3 0 . 9 9 9 9 8 7 . 0 0 0 0 1 3 7 4 3 6 4
6 3 . 9 9 9 9 2 4 . 0 0 0 0 7 6 1 3 1 2 1 1 3 1 . 9 9 9 9 8 7 . 0 0 0 0 1 3 7 5 4 0 9
6 4 . 9 9 9 9 2 6 . 0 0 0 0 7 4 1 3 4 8 6 1 3 2 . 9 9 9 9 8 7 . 0 0 0 0 1 3 7 6 0 5 7
6 5 . 9 9 9 9 3 2 . 0 0 0 0 6 8 1 4 7 0 8 1 3 3 . 9 9 9 9 8 8 . 0 0 0 0 1 2 8 1 5 4 2
6 6 . 9 9 9 9 3 4 . 0 0 0 0 6 6 1 5 2 5 1 1 3 4 . 9 9 9 9 8 8 . 0 0 0 0 1 2 8 2 7 0 2
6 7 . 9 9 9 9 3 4 . 0 0 0 0 6 6 1 5 2 6 1 1 3 5 . 9 9 9 9 8 8 . 0 0 0 0 1 2 8 4 5 6 6
6 8 . 9 9 9 9 3 5 . 0 0 0 0 6 5 1 5 2 7 7 1 3 6 . 9 9 9 9 8 9 . 0 0 0 0 1 1 8 8 6 8 2

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary

Acronyms

F Failure Rate

MTTF Mean Time to Failure

NASA National Aeronautics and Space Administration

ODU Old Dominion University

R Reliability

Terms

ambient data: Information collected and used in its natural state, with no pre-processing.

bathtub curve: The functional plot of failure rate versus time that describes the expected
life of hardware components.

bias: Consistent deviation between prediction and reality.

“big O” notation: The asymptotic order of magnitude of the time complexity o f an
algorithm as size increases; for example, an algorithm that processes inputs o f size n in
time cn2 for some constant c is said to have time complexity 0(n2), read “order w2.”

bug: A colloquial term for fault.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compensation: A kind of fault interaction originally reported by Dunham in which certain
failures occur when either of two faults is in a program, but not when boths faults are
simultaneously present.

conditions met matrix: Part of the LIC output; a column matrix containing a zero for
any LIC condition which has not been met, and a one for any condition which has been
met.

consistent comparison problem: An observed effect of fmite-precision arithmetic in
which two sets of different computations, which should produce the same output,
arrive at very different values due to slight deviations in intermediate calculations
attributable to the order of comparisons and the particular arithmetic algorithms used
by the hardware.

control program: The software implementation of an algorithm for performing an
empirical reliability estimation for a test program against a gold version.

counter-intuititve path: A debugging session which recovers faults in a smallest-to-
largest size order.

data aging: The selection of a subset o f the failure data based on the assumption that
older data may not be as representative o f the current and future failure process as
more recent data.

debugging graph: A pictoral representation o f the n\ orders in which a collection of n
faults can be removed from a program.

debugging session: The recovery of acollection of n known faults from a program; a path
in the debugging graph from P to Pi...n that follows edges through exactly one node at
each o f the levels 0 through // and represents the removal of all known bugs from the
program.

debugging state: The combination of faults and repairs known to be present in a program
at a particular point in time during the debugging process.

delta: A relative change in reliability produced by installing a repair in the program.

delta graph: A debugging graph constructed using a partially debugged variant instead of
an oracle, and whose edges are labeled with delta values.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamic relative size ranking: Constructing a non-decreasing or non-increasing
sequence of failure rates associated with program variants at progressively higher level
in the debugging graph for the purpose of arranging the program’s faults in a smallest-
to-largest or largest-to-smallest order.

error graph: Former terminology for debugging graph.

177: The name of the standard FORTRAN compiler on the ODU Sun network.

fail set: The collection of input cases for which failures are observed and attributed to
some fault.

failure: A departure of the external results of a program’s execution from its
requirements on a particular run.

failure rate: An expression for the probability that a software product will exhibit a
failure during a given time period in its specified environment.

fault: Defective, missing or extra code that is the cause of one or more failures for a
program.

fault recovery: The identification of faults and the implementation of suitable code
repairs to remove them from the program.

full compensation: A kind of fault interaction originally reported by Dunham in which
neither of two faults’ associated failures are manifested when the faults are
simultaneously present in a program.

gold oracle: An error detector constructed using a gold version of the software being
tested.

gold version: An independently developed version of the software being tested, whose
reliability is believed to be perfect.

intuititve path: A debugging session which recovers faults in a largest-to-smallest size
order.

Launch Interceptor Condition: A simulation o f part of a radar tracking system that
generates a launch interceptor signal based on input tracking coordinates; the subject
software of the experiments documented in this thesis.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level: One row in the debugging graph consisting of variants having same-sized subsets of
known repairs (e.g., Pi through P„).

LICCtrl: The name of the control program used in the experiments reported in this
thesis.

mean time to failure: The expected value o f time between failures.

negative interaction: The insertion of a correct repair which makes no difference, or
degrades, the program’s performance during certain debugging states.

noise: Large variability in the difference between prediction and reality.

oracle: An error detector constructed by running the tested software in tandem with a
highly reliability, independently developed solution to the same problem whose outputs
are used as the performance baseline.

partial compensation: A kind of fault interaction originally reported by Dunham in
which only some of two faults’ associated failures still can be observed when the faults
are simultaneously present in a program.

path truncation: A kind of data aging applied to debugging graph data in which only the
last w MTTF values representing a given debugging session are used in the predictive
process.

pipe: An i/o mechanism for creating a private, interprocess communication channel for
data sharing.

positive interaction: The removal of a correct repair which has no effect on, or
degrades, the program’s performance during certain debugging states.

recalibration: A graphical technique for adjusting a model’s predictions based on past
performance.

reification: In software design, the conversion of an abstract conceptualization of
functionalities into the mechanisms necessary to implement them given a set of
constraining requirements, such as host machine architecture and programming
language features.

repair: Code whose installation removes a fault from the program.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repetitive run modeling: An approach to replicated debugging devised by Nagel and
Skrivan to study error rates.

run: A single execution instance of a program involving the transformation of an input
case to an output (or abnormal termination).

software reliability: The probability of a software product operating for a given period
of time in a particular environment without exhibiting any failures.

stage: An iteration of the debugging process; at stage the first M failures have already
been observed and corrected.

static relative size ranking: Constructing a non-decreasing or non-increasing sequence
of failure rates associated with program variants at a fixed level in the debugging graph
for the purpose of arranging the program’s faults in a smallest-to-largest or largest-to-
smallest order.

surrogate oracle: An error detector constructed using the software being tested with all
known repairs installed.

switch: An input argument, signaled by a dash (‘-’) and commonly supplied after the
program name on the command line invocation, in the UNIX environment.

time complexity: The computation time needed by an algorithm expressed as a function
of problem size.

u-plot: A graph of previously predicted failure rates arranged so that they appear to be a
random sample from the uniform probability distribution which is used to recalibrate
prediction systems.

UNIX: A highly portable, rich and productive programming environment written in the C
programming language at Bell Laboratories in the later 1960’s that has grown to
world-wide use; UNIX is not an acronym, but a weak pun on the name of the
operating system (MULTICS) on which its originators worked prior to UNIX.

VMS: The name of the VAX operating system.

variant: Any version of the original program with some subset of the known repairs
installed.

wrapper: Additional code added to a module — usually both before and after its original
text — to ease its integration into a larger system.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AUTOBIOGRAPHICAL STATEMENT

Mary Ann Hoppa was born in Pittsburgh, Pennsylvania on October 24, 1959. She

graduated Magna Cum Laude, with both a B.S. in Applied Mathematics and a B.A. in

French, from Auburn University, Alabama in June 1981. In January 1986, Ms. Hoppa

completed an M.S. in Computer Science at George Mason University, Virginia, where she

concentrated on complexity analysis and public key encryption algorithms. She began her

doctoral studies at Old Dominion University, Virginia in January 1988 and was later

inducted into Phi Kappa Phi.

Ms. Hoppa has 15 years experience as a professional software engineer for various

contractors to the U.S. government, specializing in defense applications. She is currently

a task engineer with The MITRE Corporation, where she supports the development of

object-oriented solutions to tactical message handling problems for the U.S. Air Force.

Her publications include the following: “Some Effects o f Fault Recovery Order on

Software Reliability Models,” co-authored with L. W. Wilson, which appeared in

Proceedings of the Fifth International Symposium on Software Reliability Engineering

(ISSRE94)\ “An Empirical Assessment of Interface Changes for an Object-Oriented, ‘Not-

So-Rapid’ Prototype,” which appeared in Proceedings o f the 11th International

Technology of Object-Oriented Languages & Systems (TOOLS 11) Conference; and “The

Application of Object-Oriented Techniques to Processing United States Message Text

Formats,” which appeared in Proceedings of the 3rd International Technology of Object-

Oriented Languages & Systems (TOOLS3) Conference.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 1995

	Software Reliability Issues: An Experimental Approach
	Mary Ann Hoppa
	Recommended Citation

	tmp.1550586060.pdf.Gg9vh

