
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2002

Federating Heterogeneous Digital Libraries by
Metadata Harvesting
Xiaoming Liu
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Databases and Information Systems Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Liu, Xiaoming. "Federating Heterogeneous Digital Libraries by Metadata Harvesting" (2002). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/06m4-2f88
https://digitalcommons.odu.edu/computerscience_etds/75

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/75?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

FEDERATING HETEROGENEOUS DIGITAL
LIBRARIES BY METADATA HARVESTING

B.S. July 1994, ShanDong University
M.S. March 1997, Shanghai Jiaotong University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2002

Xiaoming Liu

Approved b y

Kurt Maly (Co-Director'

Mohammad Zubair (Co-Director)

nhris WilH

Steven J. Zeil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

FEDERATING HETEROGENEOUS DIGITAL
LIBRARIES BY METADATA HARVESTING

Xiaoming Liu
Old Dominion University, 2002

Co-Director: Dr. Kurt Maly
Co-Director: Dr. Mohammad Zubair

This dissertation studies the challenges and issues faced in federating heterogeneous
digital libraries (DLs) by metadata harvesting. The objective of federation is to
provide high-level services (e.g. transparent search across all DLs) on the collective
metadata from different digital libraries. There are two main approaches to federate
DLs: distributed searching approach and harvesting approach. As the distributed
searching approach replies on executing queries to digital libraries in real time, it has
problems with scalability. The difficulty of creating a distributed searching service
for a large federation is the motivation behind Open Archives Initiatives Protocols for
Metadata Harvesting (OAI-PMH). OAI-PMH supports both data providers (reposi­
tories, archives) and service providers. Service providers develop value-added services
based on the information collected from data providers. Data providers are simply
collections of harvestable metadata. This dissertation examines the application of
the metadata harvesting approach in DL federations. It addresses the following
problems:

• Whether or not metadata harvesting provides a realistic and scalable solution
for DL federation.

• What is the status of and problems with current data provider implementations,
and how to solve these problems.

• How to synchronize data providers and service providers.

• How to build different types of federation services over harvested metadata.

• How to create a scalable and reliable infrastructure to support federation ser­
vices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The work done in this dissertation is based on OAI-PMH, and the results have influ­
enced the evolution of OAI-PMH. However, the results are not limited to the scope of
OAI-PMH. Our approach is to design and build key services for metadata harvesting
and to deploy them on the Web. Implementing a publicly available service allows us
to demonstrate how these approaches are practical. The problems posed above are
evaluated by performing experiments over these services.

To summarize the results of this thesis, we conclude that the metadata harvest­
ing approach is a realistic and scalable approach to federate heterogeneous DLs. We
present two models of building federation services: a centralized model and a repli­
cated model. Our experiments also demonstrate that the repository synchronization
problem can be addressed by push, pull, and hybrid push/pull models; each model
has its strengths and weaknesses and fits a specific scenario. Finally, we present a
scalable and reliable infrastructure to support the applications of metadata harvest­
ing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGMENTS

This thesis would not be possible were it not for the love and support of a great
many people. First, I would like to thank my co-advisors, Kurt Maly and Moham­
mad Zubair. Through their support, care, and patience, they have transformed a
struggling graduate student into an experienced researcher. Their insight and ideas
formed the foundation of this dissertation as much as mine did, and their guidance
and care helped me get over various hurdles during my graduate years. I would also
like to thank Michael Nelson, who gave me many valuable insights into the world of
digital libraries. I would also like to thank Frank C. Thames, Chris Wild, and Steven
Zeil for being the readers of my thesis. After reading a draft, they provided helpful
comments on various aspects of my thesis. These comments made my thesis much
better, and I learned a lot from their comments.

I would also like to thank other members of the digital library research group, in­
cluding Rong Shi, Yang Zhao, Jianfeng Tang, Shanmuganand Naidu, Hesham Anan,
Mohamed Kholief, Rong Tang, Dun Tan, Satish Kumar. They have made design or
coding suggestions, developed supporting technologies, and helped tremendously in
keeping our system running smoothly.

A number of people outside Old Dominion University played significant roles in
supporting my work. Among these people are: Rick Luce and Herbert Van de Sompel
(Los Alamos National Laboratory), Stevan Hamad and Tim Brody (Southampton
University).

Finally, I would like to thank my wife, Susu Shi, and my parents for all their love
and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

TABLE OF CONTENTS

Page
List of T a b le s viii
List of Figures ... ix

CHAPTERS

1 Introduction.. 1
1.1 M otivation... 1
1.2 O b je c t iv e 3
1.3 Approach and I s s u e s ... 5
1.4 Organization of D isserta tion .. 6

2 B ackground.. 8
2.1 The DL Federation P ro b le m .. 8
2.2 Distributed Searching and Real-time P rocessing 9
2.3 H arvesting..................................... 11
2.4 Open Archives Initiative Protocol for M etadata H arvesting 13
2.5 D isscusion.. 14

3 Metadata Harvesting System A rch itec tu re .. 17
3.1 In troduction ... 17
3.2 Data P ro v id e rs 18

3.2.1 Architecture of a Data P ro v id e r .. 19
3.2.2 Quality of Data P ro v id e rs .. 20
3.2.3 Implementation of Resumption T oken.. 21
3.2.4 Parallel M etadata F o r m a t .. 21

3.3 H a rv e s te r .. 23
3.3.1 Robust H a rv e s tin g ... 25
3.3.2 Hierarchical Harvesting.. 26

3.4 Registration Service.. 26
3.5 End-User S e rv ic e ... 28
3.6 Proxy, Cache, and Gateway Services .. 29
3.7 T e s tb e d .. 30
3.8 D iscussion.. 32

4 Repository Synchronization ... 34
4.1 In troduction ... 34
4.2 Metrics for Update Frequency and F reshness... 35
4.3 Update Frequency of Data P ro v id e rs ... 38
4.4 Synchronization Algorithm for H arv es te r .. 41

4.4.1 Fixed-list Policy.. 42
4.4.2 Adaptive-List P o l ic y .. 42

4.5 Syndication Container for Update Frequency.. 43
4.6 Related W o rk ... 44
4.7 D iscussion...................... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

5 Centralized Federation Service... 47
5.1 Introduction... 47
5.2 Metadata V ariability .. 49
5.3 A pproaches... 53

5.3.1 Keyword Search... 54
5.3.2 Advanced S e a rc h .. 55
5.3.3 Interactive A pproach... 55
5.3.4 Displaying the Search Result... 57

5.4 Im plementation... 58
5.4.1 Database Schem a... 58
5.4.2 Search Server Implementation.. 59

5.5 Related W o rk .. 60
5.6 Discussion.. 60

6 Replicated Federation S erv ice .. . 62
6.1 Introduction................................. 62
6.2 System A rch itec tu re .. 63
6.3 Local R eposito ry .. 64
6.4 Case S t u d y ... 66

6.4.1 Requirement... 66
6.4.2 Typical Workflow.. 66
6.4.3 Mapping Metadata F o rm ats ... 67
6.4.4 Subject M apping .. 68
6.4.5 Integration with Native Library 69
6.4.6 Initial R esults.. 70

6.5 Related W o rk .. 70
6.6 Discussion... 71

7 Kepler Service 72
7.1 Introduction... 72
7.2 Conceptual Model of Kepler Service... 73
7.3 Architecture... 74
7.4 Operational U s a g e ... 77
7.5 Synchronization Problem in the Kepler Service..................................... 78
7.6 Synchronization Approach for Kepler Service.. 80

7.6.1 Add a F r ie n d .. 81
7.6.2 N o tify .. 82
7.6.3 Push M e ta d a ta 83

7.7 Im plementation... 83
7.8 Related W o rk .. 85
7.9 Discussion . . * .. 86

8 Proxy, Gateway and Cache Service .. 87
8.1 Introduction........................ 87
8.2 Overview.................. 89
8.3 OAI-PMH P r o x y .. 89
8.4 OAI-PMH Aggregation and C a c h in g ... 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

8.4.1 Caching Data P ro v id e rs ... 91
8.4.2 Aggregation................. 91
8.4.3 Advantages Over HTTP C ach ing ... 92
8.4.4 Datestam ping... 92
8.4.5 Identifiers... 92
8.4.6 Identifier Collisions....................... 93

8.5 OAI-PMH Gateway, Value-Added Services.. 94
8.6 Case S t u d y ... 95

8.6.1 OAI-PMH P r o x y ... 95
8.6.2 OAI-PMH Aggregation/Caching/Filtering............................... 95
8.6.3 DP9 Gateway Service 96
8.6.4 Other Gateway S erv ices.. 101
8.6.5 End-User Services...101

8.7 Related W o rk .. 102
8.7.1 Caching and Replication.. 102
8.7.2 Hierarchical Harvesting..103
8.7.3 Unique Identifiers...103
8.7.4 Citation L in k in g ...104

8.8 Discussion ... 104
9 Conclusions and Future W o rk ..105

9.1 Conclusions..105
9.2 Future W ork.................... 106

BIBLIOGRAPHY... 108

APPENDICES

A Metadata Variability of OAI Repositories.. 121
B Usage of Parallel Metadata ... 124
C Records Update Rate (Monthly) 129
D Update Interval (Daily) ..133
E Query Logs of Arc and N C S T R L .. 136

V I T A ...138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

LIST OF TABLES

Page
2.1 Six OAI-PMH verbs 15
3.1 Harvester error logs (from 08/13/2001 to 07/29/2002)......................... 20
3.2 Parallel metadata sets usage in OAI-PMH (08-02-2002).................. . 21
4.1 Monthly records update rate (i?(r,-; £y), At = 1 month) of E-Prints

archives (from 2002-01 to 2002-09), the complete table is available at
Appendix C.. 39

4.2 Repository update interval (09/30/3001-09/30/2002) 40
5.1 Sample data of subject, format, language and date fields in four

archives (excerpt) 51
5.2 Metadata variability in Arc (to April 3, 2002). The full table is avail­

able in Appendix A... 52
5.3 Number of matched archives and subjects using interactive search . . 58
6.1 Native metadata formats and library systems 66
6.2 LaRC MARC to DC mapping(Excerpt).. 67
6.3 DC to Sandia m apping............................ 68
6.4 Subject mapping: LANL UC-414 maps to NASA SCAN 77 69
8.1 OAI-PMH-specific style proxy req u ests ... 90
A.l Metadata variability of OAI-PMH-compliant repositories (to April 3,

2002) 121
B.l Usage of parallel metadata in OAI-PMH repositories (to August, 2002) 124
C.l Monthly records update rate of OAI-PMH repositories (from 2002-01

to 2002-09) ... 129
D.l Repository update interval of OAI-PMH repositories (09/30/3001-

09/30/2002)... 133
E.l Number of queries of Arc (from 2001-03 to 2002-07)............................. 136
E.2 Number of queries in NCSTRL (from 2001-10 to 2002-08).................. 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

LIST OF FIGURES

Page
1.1 Architecture of a metadata harvesting s y s te m 3
3.1 Architecture of the basic OAI-PMH m o d e l... 18
3.2 Architecture of an optimized metadata harvesting m o d e l 19
3.3 Architecture of an OAI-PMH data provider 19
3.4 Algorithm for stateless resumption to k e n 22
3.5 Usage of parallel metadata s e t s ... 23
3.6 The number of usage of each metadata fo rm a t................................. . 24
3.7 XSLT processing to support parallel metadata format in OAI-PMH . 25
3.8 Hierarchical harvesting... 27
3.9 Centralized federation se rv ic e .. 29
3.10 Replicated federation service.. 29
3.11 Monthly changes in Arc’s holdings... 31
3.12 Architecture of A r c ... 32
4.1 Average repository update interval of OAI-PMH repositories............. 40
4.2 Algorithm of fixed-list synchronization policy.. 42
4.3 Algorithm of adaptive-list synchronization policy 43
4.4 XML schema for syndication.. 44
4.5 Example of syndication con ta iner................. 45
5.1 Controlled m e ta d a ta ... 53
5.2 Building a search interface based on harvested m e ta d a ta 54
5.3 Advanced search in te rface .. 56
5.4 Interactive subject selection in terface.. 57
5.5 Arc search result p a g e .. 58
5.6 Search engine implementation in A r c .. 59
6.1 A typical workflow - LANL shares documents from LaRC 67
7.1 Framework of Kepler service.. 75
7.2 Kepler service and Peer-to-Peer network model..................................... 75
7.3 Kepler architecture... 76
7.4 Archivelet registration process ... 78
7.5 Kepler process using cache... 79
7.6 Push, push and hybrid m o d e l ... 81
7.7 Cached document in Kepler se rv ice .. 84
8.1 Hierarchical harvesting m o d e l... 90
8.2 Identifier conflict in hierarchical harvesting 93
8.3 DP9 arch itectu re .. 98
8.4 The search log of Arc and DP9, most hits are directed from general

web search engine (May-2002)... 99
8.5 The robot visitors to DP9 (May-2002) 100
8.6 Cross archive citation l i n k .. 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

With the recent growth of the Internet and the World Wide Web, there has been
an exponential growth of online resources l . Some examples of online resources are:
pre-prints, including technical reports; tutorials, posters, and demonstrations from
conferences; student projects; theses and dissertations; and working papers. However,
a variety of obstacles (such as dispersion over the Web and lack of metadata) hamper
discovery of such materials and hinder their widespread use. Digital Libraries provide
an efficient means of managing, discovering, and distributing digital information
[5, 63]. Consequently, a number of very good digital libraries, as described in NSDL
(National Science, mathematics, engineering, and technology Digital Library) and
DLI-2 (Digital Libraries Initiative phase 2) [62, 56, 43], have been built to address the
need for information management and distribution. However, most of these libraries
have been built in isolation utilizing different technologies, protocols, and metadata
in terms of both syntax and semantics. These differences hinder the development of
digital library services that will enable users to discover information from multiple
libraries through a single unified interface. In the article of Paepcke, the objective of
digital library interoperability is:

Interoperability is a central concern when building digital libraries as
collections of independently developed components that rely on each other
to accomplish larger tasks. The ultimate goal for such systems is for the
components to evolve independently yet be able to call on one another
efficiently and conveniently. [106]

As identified by the NSDL community:

Interoperability requires cooperation at three levels: technical, content,
and organizational. Technical agreements cover formats, protocols, and
security systems so that messages can be exchanged, etc. Content agree­
ments cover the data and metadata, and include semantic agreements on
the interpretation of the messages. Organizational agreements cover the

lThis dissertation follows the style of The Physical Review

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

ground rules for access, for changing collections and services, payment,
authentication, etc. [98]

From the technical point of view, there are basically two ways to implement digital
services across heterogeneous digital libraries: a distributed searching approach and
a harvesting approach [57, 115]. The former would require archives to implement a
joint protocol to handle queries and other services over distributed libraries in real
time. Such an approach has important problems of scalability, in view of the possible
emergence of thousands of institutional and/or subject-oriented archives worldwide
[44, 45].

The difficulty of creating a large distributed searching service is the motivation
behind recent efforts to build federation services based on the concept of metadata
harvesting. The key idea here is to harvest metadata from different collections at one
location, and provide high-level services on the collected metadata set. One result of
these efforts has been the Universal Preprint Service (UPS) Prototype [126], which
was developed as a proof-of-concept of a multi-discipline digital library of publicly
available scholarly material. The Prototype harvested nearly 200,000 records from
several different archives and created an attractive end-user environment. The UPS
service is partially based on the SODA [91], NCSTRL+ [93] and Buckets concept
[90, 81] introduced at Old Dominion University, and the RePEc model introduced
by Krichel [23]. The motivation of this thesis came from the promises of the UPS
service.

Experience developed during the creation of the UPS prototype was one of the
foundations of the concepts brought forward in the Santa Fe Convention [128], and,
lately, the OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
[57]. The objective of the OAI-PMH is to develop a framework to facilitate the
discovery of content stored in distributed archives. OAI-PMH is becoming widely
accepted, and many archives are currently or soon-to-be OAI-PMH-compliant. OAI-
PMH 1.0 was released in 2000 [127], and after worldwide experiments, OAI-PMH 2.0
was released in 2002 as a stable specification [58, 129].

While the OAI-PMH solves one very important set of problems, there are many
open questions not well understood and which require considerable research and
experimentation to allow the development of a body of design knowledge and com­
munity practice. For this thesis, we are especially interested in usability, scalability,
and practical issues involved in implementing a large scale of metadata harvesting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Our work focuses on more general views of metadata harvesting instead of protocol
details of OAI-PMH. Our work has influenced the evolution of OAI-PMH, and is
based on the large base of existing OAI-PMH compliant repositories.

1.2 O B JE C T IV E

End-User Service

8

Centralized
Search Service

Replication
Service Kepler Service

2
£ Web Search Reference

I Service Linking Service 8

CD
O

at
CO
c

a>-5
CD

o

Harvesting Service
1

r
CL Data Providers

£

FIG. 1.1: Architecture of a metadata harvesting system

The objective of this thesis is to demonstrate the feasibility of the harvesting ap­
proach for federating digital libraries. To achieve this objective, we develop, deploy,
and evaluate data providers and key services on collective metadata in real environ­
ment. The interactions between data providers and services are illustrated in Figure
1.1.

D a ta P rov ider The data provider maintains one repository for metadata harvest­
ing. We study a series of performance criteria for data providers, includ­
ing server availability, reliability, metadata variability, and update frequency.
These criteria influences the implementation of harvesting and other services.

H arvesting Service The harvesting service is the key service, which maintains data
coherency between data providers and service providers. The harvesting ser­
vice should maintain data freshness (that is keep the harvested metadata in
synchronization with data providers), and at the same time it needs to mini­
mize the impact on data providers. In our work, we study methods of reaching
better freshness with limited resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

E nd-U ser Service Above the harvester, various services, such as centralized fed­
eration services, replication services, and citation linking services, can be built
for end-users. The centralized federation service harvests metadata to a cen­
tral database and provides a unified interface to search all the collections. The
replication service can be viewed as mirrored OAI-PMH-compliant repositories,
where every participant has its own user interface providing federation service
over harvested metadata.

R eg istra tion Service The OAI-PMH raises the “awareness” question, namely how
service providers can find out the existence of data providers, and how data
providers can find out the appropriate service providers to register. In addi­
tion, different data/service providers can be aware of and linked to each other
by using OAI-PMH unique identifiers. A distributed service model could be
accomplished by sharing different services.

Proxy, Cache, an d G atew ay Service The proxy, cache, and gateway services op­
timize the functioning of the model underlying the OAI-PMH. They provide an
infrastructure that can be used by all other components to achieve interoper­
ability, scalability and reliability. Various applications and services can exploit
the services included in this infrastructure. An OAI-PMH proxy dynamically
forwards OAI requests to data providers. For example, it can dynamically fix
common XML encoding errors and translate between different OAI-PMH ver­
sions. An OAI-PMH cache caches metadata and can filter and refine them
before exposing them to service providers. It also serves as a simple cache that
reduces the load on source data providers and improves server availability. An
OAI-PMH gateway can convert the OAI-PMH to other protocols and applica­
tions. For example, the gateway could convert between different protocols and
OAI-PMH.

In Figure 1.1 the bold boxes represent the original OAI framework that partitions
the world into data providers and service providers. In our view, we layer the service
providers by providing a fundamental service of harvesting that will provide a clean,
validated set of metadata to all other services. The vertical boxes represent services
that cut across the layers of service providers and data providers and are accessed
by any one of them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

1.3 A PPR O A C H AND ISSUES

Our approach is to design and build several services and to deploy them on the Web.
Implementing and. observing a publicly available service allows us to demonstrate
that our approach is practical since we have no control over the user community.
By performing various experiments, we are able to verify the concept of metadata
harvesting, answer open questions, and demonstrate the feasibility of our approach.

T he feasibility o f m e tad a ta harvesting for DL federation This problem is
demonstrated in the Arc federation search service, the first OAI-PMH com­
pliant service provider [71, 69, 70]. Arc has been operational as a public search
service at Old Dominion University since October, 2000. It has harvested
more than 1M records from over 100 OAI-PMH-compliant repositories and
has heavily influenced the model for building an OAI-PMH service provider.
Lately, the technology of Arc has been used in local projects as well as outside
researchers, for example, NCSTRL [2], Archon [82], metaArchive [86], and the
OLAC project [101].

T he arch itec tu re of build ing federation service We develop and analyze both
a centralized approach and a replicated approach. The centralized approach
is demonstrated by Arc; the replicated approach is demonstrated by the TRI
(Technical Report Interchange) project among four national laboratories that
allows them to share technical report collection through the native DL interfaces
[73]. We compare the efficiency of the two approaches.

T he quality of d a ta providers an d m etrics Through the running of Arc over a
large number of data providers and the experience of implementing OAI-PMH
data providers, we are able to define several metrics of quality of data providers
and measure data providers against these qualities.

Freshness and reposito ry synchronization The OAI-PMH is based on a service
provider “pulling” model. However, there are additional approaches such as
“push” and “push/pull” hybrid model. The “pulling” model itself can also be
improved by supplying parameters in the data provider side to notify the service
provider of its update frequency. For this thesis, we implemented the Kepler
service - an OAI compliant data provider for individual publishers [80, 68]. It Is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

a broker-based, peer-to-peer network that focuses on repository synchronization
problems and a registration service.

Service bu ild ing The usefulness of the metadata harvesting approach is based on
the quality of metadata and how these metadata from heterogeneous sources
can be built into a unified search interface. We demonstrate our approach of
building rich cross archive search and linking service in Arc, TRI, and Archon
[82],

Scalability and R eliability We propose and implement a series of software com­
ponents to build a scalable and reliable infrastructure for metadata harvesting
applications [67]. In cooperation with Southampton University, several services,
such as OAI aggregator [15], DP9 [72], and OAI proxy, have been deployed [67].

1.4 O RG A N IZA TIO N OP DISSERTATION

In this dissertation, we present the challenges and issues that we encountered during
the design, development, and implementation of these systems and then describe
our experimental solutions that address the challenges. To that end, the rest of this
dissertation is organized as follows:

C h ap te r 2: B ackground We start by discussing various DL federation techniques.
There are basically two ways to implement these: a distributed searching ap­
proach and a harvesting approach. We present both approaches and typical
systems. We also highlight the recent efforts of OAI-PMH and its relationship
with our work.

C h ap te r 3: M etad a ta H arvesting System A rch itectu re Chapter 3 presents
an architecture of a metadata harvesting system. This chapter is a general­
ization that presents the three major components in a metadata harvesting
system: the data provider, the harvester, and the service provider. We also
present a survey of current data provider implementations and their problems,
including server availability and metadata variability.

C h ap te r 4: R eposito ry Synchronization In Chapter 4, we investigate the up­
date frequency of typical OAI-PMH-compliant repositories. A series of met­
rics are proposed to measure the update frequency of data providers and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

freshness of harvesters. An algorithm is presented to optimize the repository
synchronization.

C h ap te r 5: C entra lized Federation Service Chapter 5 discusses the approach
to implementing federation through a centralized approach. We then address
how we built a unified search interface over heterogeneous repositories with a
user-focused approach.

C h ap te r 6: R ep lica ted Federation Service The metadata harvesting system
described in Chapter 3 is flexible enough to build federation service based
on a replicated approach as well. This approach can be viewed as mirrored
OAI repositories, where every digital library has its own federation service.
The consistency between these services is maintained using OAI-PMH. In ad­
dition, this approach supports several levels of redundancy, thereby improving
the availability of the whole system.

C h ap te r 7: K epler Service The Kepler service supports the concept of an
archivelet, which is a self-contained, self-installing software package that eas­
ily allows a researcher to create and maintain a small, OAI-PMH-compliant
archive. The Kepler service poses a series of new challenges to metadata har­
vesting. The OAI-PMH is insufficient in such a scenario, and we extend the
harvest model to a “push” and hybrid “push/pull” model to support the dy­
namic application scenario of Kepler.

C h ap te r 8: A Scalable A rch itecture for M e tad a ta H arvesting Chapter
8 discusses the requirements of current and emerging applications based on
metadata harvesting and emphasizes the need for a common infrastructure to
support them. Inspired by HTTP proxy, cache, gateway and web service con­
cepts, a design for a scalable and reliable infrastructure that aims at satisfying
these requirements is presented. Moreover, it is shown how various applications
can exploit the services included in the proposed infrastructure.

C h ap te r 9: Conclusion and F u tu re w ork Finally, Chapter 9 summarizes the
results presented and provides suggested directions for future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

CHAPTER 2

BACKGROUND

The DL federation problem is the problem of building a coherent set of digital library
services that will enable users to discover information from multiple libraries through
a single, unified interface. This chapter highlights previous work done to address the
DL federation problem. This chapter is organized as follows:

• We begin this chapter with a definition of DL federation problem.

• In Section 2.2, we discuss the distributed search approach to addressing the
DL federation problem and highlight a selection of the key works.

• Next, in Section 2.3, we describe the harvesting approach to addressing the DL
federation problem.

• Finally, we introduce the OAI-PMH approach in Section 2.4.

2.1 THE DL FEDERATION PROBLEM

Most digital libraries have been built in isolation utilizing different technologies, pro­
tocols, and metadata in terms of both syntax and semantics. This situation hinders
interoperability, which is essential for building a coherent set of digital library ser­
vices that will enable users to discover information from multiple libraries through a
single unified interface [106]. There are basically two ways to implement DL federa­
tion: a distributed searching approach and a harvesting approach. The distributed
searching service, or metasearching service, is a service that provides unified query
interfaces to multiple search engines. It requires each search engine to implement a
joint distributed search protocol; moreover, as it needs post-process search results in
real time, it has important problems of scalability [115, 57]. A distributed searching
system may provide other services based on real-time processing of query results from
participating search engines as well.

A harvesting approach collects data from heterogeneous sources in advance, there­
fore, it is more realistic in dealing with large number of digital libraries. Harvesting
approaches have the additional attractive property that they allow data enhancing
procedures to be rim on the collected data. Enhancements such as normalization,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

augmentation and restructuring are applied to data originating from different sources
in order to create consistent end-user services. In a harvesting scenario, these ac­
tivities can be dealt with in a batch manner. The harvesting approach requires a
protocol to synchronize database and a mechanism to ensure interoperability of data.

2.2 DISTRIBUTED SEARCHING AND REAL-TIME PROCESSING

In the distributed searching approach of DL interoperability, each archive maintains
its own search service; a metasearcher provides unified query interfaces to multiple
search engines. Thus, users have the illusion of a single, combined document source.
The distributed searching approach has three kinds of typical models: (1) distributed
searching based on same software deployed, like Dienst [57]; (2) distributed searching
based on protocol agreement between search engines, like the STARTS protocol [41,
83], SDLIP [105], and Z39.50 [135]; (3) distributed searching without individual
search engine involvement, like general metacrawler [116] in the Web, the Lyceum
project to federate selected digital libraries [76], and InterOp project [117]. The
limitations and advantages of these models are described below.

Dienst is a protocol and software for distributed digital libraries developed as part
of the Computer Science Technical Reports Project (CSTR), which is the foundation
for historical NCSTRL [24, 27], the Networked Computer Science Technical Reference
Library. Dienst specifies the operational characteristics of core digital library services
and mandates an open extensible protocol for communicating with digital library
services and accessing documents [55]. The interoperability of Dienst is implemented
by using the same protocol or software suite. The historical NCSTRL encountered
a number of technical and social problems, including metadata quality, connectivity,
and server quality, as specified by Powell in a study of NCSTRL:

Reliability of the distributed system is low. ... shows that many servers
are highly available, specifically 23 of 38 (61%) are up 90% of the time. ...
we see that the system had at least one server failure 100% of the time. ...
Our measurements indicate that engineering reliable, distributed digital
libraries will be a challenge. A federated system is vulnerable to its
weakest component. Strong institutional commitment will be necessary
for success. [109]

The historical NCSTRL was developed and maintained by Cornell University from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1994 to 2001. In 2001, NCSTRL moved to an OAI-PMH based architecture mainly
due to its scalability problem [2].

Perhaps the most widely known search middleware is the Z39.50 standard. It de­
fines a broad range of facilities, such as a standard machine representation of queries
and an extensible collection of document attributes that may be used both in queries
and for the retrieval of document fragments. The Z39.50 is a comprehensive, of­
ten complex approach and generally does not fit well with light-weight approaches
typical in the design of web related protocols. The Simple Digital Library Interop­
erability Protocol (SDLIP) defines a layered, uniform interface to query and retrieve
the results from each searchable collection through a common interface. SDLIP also
supports an interface to access source metadata.

The Stanford protocol proposal for Internet retrieval and search (STARTS) is a
protocol for Internet retrieval and search that facilitates the task of querying multi­
ple document sources. STARTS is a group effort coordinated by Stanford’s Digital
Library project and involving over 11 companies and organizations. The goal of
STARTS is to facilitate the main three tasks that a meta searcher performs: (1)
Choosing the best sources to evaluate a query; (2) evaluating the query at these
sources; (3) Merging the query results from these sources. STARTS tries to solve
the interoperability problem by reaching a simple but expressive agreement between
search engine vendors. However, the details about the workings of most search en­
gines are proprietary, and it is becoming complicated to frilly describe any useful
search engine. STARTS also has the scalability problem with increased numbers of
search engines. Lately SDARTS [42] has been designed to combine STARTS and
SDLIP. It can be viewed as an instantiation of SDLIP with metasearch-specific ele­
ments from STARTS.

The MetaCrawler [116] is a parallel web search service at the University of Wash­
ington and is now part of Go2Net. It provides users with a single interface with which
they can query popular general-purpose web search services, and has some sophis­
ticated features that allow results of much higher quality than simply regurgitating
the output from each search service. The MetaCrawler provides a single central in­
terface for web document searching. Upon receiving a query, the MetaCrawler posts
the query to multiple search services in parallel, collates the returned references,
and loads those references to verify their existence and to ensure that they contain
relevant information. MetaCrawler’s major advantage is that it does not require

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

individual search engines’ involvement. MetaCrawler, however, has the problem of
performance. A naive implementation would wait until all search services return
results and then wait again until each reference has been downloaded. In addition,
MetaCrawler does not cover the source-metadata problem, so its query is sent in
parallel to all search engines.

The InterOp project proposes an LFDL (Lightweight Federated Digital Library)
system [117]. In LFDL, a universal search interface is defined as the basic interop­
eration middle layer. A DL definition language is defined to describe the rules of
query mapping between universal interface and native interface. This approach has
the advantage of supporting a number of heterogeneous digital libraries without prior
coordination.

The distributed searching approach without prior coordination is also used by
a number of automated brokerage services (e.g. shopping agents) in the Web [31].
The main advantage is that it does not require any changes in individual search
engine, however, the format in any participants may change format overnight, and
the automatic broker would be confused [10]. Moreover, the distributed searching
approach has important problem of scalability because it needs to merge search
results in real time.

2.3 HARVESTING

The harvesting approach for accommodating diversity is to collect data from a set
of underlying repositories and combine it into a homogeneous whole. The harvesting
approach collects data into a centralized collection, and it can pre-build various
services (e.g. indexing, normalization), thus it has better scalability. However, it has
the problems of repository synchronization and data duplication. The harvesting can
be based on structured or non-structured data. In the digital library domain, we axe
especially interested in structured data such as metadata that exploits the semantics
of existing digital resources and potentially provides richer service. The structured
data requires agreement algorithms for correlating information. We now highlight
several representative techniques that use the general harvesting approach.

A web robot is a program that automatically traverses the Web’s hypertext struc­
ture by retrieving a document, and recursively retrieving all documents that are ref­
erenced. These programs are sometimes called “spiders,” “web wanderers,” or “web

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

worins” [53]. Robots can be used to perform, a number of useful tasks such as: sta­
tistical analysis, maintenance, mirroring, and resource discovery. Although robots
for resource discovery are widely used in search engines such as Lycos, Google, and
Infoseek, robots have the important problem of updating overhead as identified by
Koster:

There is no efficient change control mechanism in the Web; there is no sin­
gle request that can determine which of a set of URL’s has been removed,
moved, or modified. [54]

Again, keeping synchronization between the centralized server and the joined web
site is difficult and resource consuming; several research projects have been done to
increase the freshness of web search engines by speculating the update frequency of
web pages [19, 20, 107].

Robots are also used to build focused digital libraries, such as Researchlndex (for­
merly CiteSeer) [61]. Researchlndex is a scientific literature digital library built by
selectively harvesting the Web. Researchlndex uses web search engines and heuris­
tics to locate good starting points for crawling the Web. Researchlndex downloads
Postscript or PDF files, which are then converted into text. Researchlndex checks
to verify that the document is a research document by testing for the existence of a
reference or bibliography section. In the NSDL project, Bergmark [9] uses crawlers to
synthesize document collections on various topics in science, mathematics, engineer­
ing, and technology; it is based on matching document similarity between harvested
data and a pre-defined dictionary for selected subject.

Some projects try to relieve the update overhead problem by introducing addi­
tional protocols or software modules. Harvest [12] is a research project at University
of Colorado - Boulder, portions of it have found its way into various commercial
products, including the Netscape Catalog Server and @Home Network. Harvest fo­
cuses on providing a framework for indexing and querying multiple document sources
and includes a set of tools for gathering and accessing information on the Internet.
The Harvest gatherers collect and extract indexing information from one or more
sources. Then, the brokers retrieve this information from one or more gatherers, or
from other brokers. The brokers provide a querying interface to the gathered infor­
mation. The Harvest architecture can reduce both server load and network traffic.
However, Harvest is a combination of different tools and is complex, focuses on un­
structured web documents, which are different from structured document in DLs,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

and has only basic increment update methodology based on file-access time.
The above approaches are useful applications of the harvesting approach; how­

ever, they deal with non-structured or semi-structured data. A more advanced ser­
vice needs richer metadata and since the coordination between data providers and
harvesters is minimal (at most times it is just the robots.txt file), it is difficult to im­
plement efficient repository synchronization. These problems inspire the introduction
of the emerging standard OAI-PMH in the digital library community.

2.4 OPEN ARCHIVES INITIATIVE PROTOCOL FOR METADATA
HARVESTING

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) presents
a technical and organizational metadata harvesting framework designed to facilitate
the discovery of content stored in distributed archives. The OAI-PMH is becoming
widely accepted and many archives are currently or soon-to-be OAI-PMH-compliant.
OAI-PMH 1.0 was released in 2000, after worldwide experiments, OAI-PMH 2.0 was
released in 2002 as a stable specification.

The OAI framework is the most important short-range interoperability effort
that we are aware of in the DL community. OAI-PMH is based on a model that puts
a very clean divide between data-providers (entities which expose metadata) and
service-providers (entities which harvest metadata, presumably with the intention
of providing some service). OAI-PMH thus defines a protocol to synchronize data
providers and service providers by selective harvesting and a mechanism for metadata
interoperability and validation. As specified by Lagoze and Van de Sompel:

The technical framework of the Open Archives Initiative is intended to
provide a low-barrier approach to interoperability. Nevertheless, there are
functional limitations to such a low-barrier framework and other inter­
operability standards. For example, Z39.50 addresses a number of issues
in a more complete manner. However, as noted by Bill Arms, interoper-

. ability strategies generally increase in cost (difficulty of implementation)
with an increase in functionality [5]. The OAI technical framework Is not
intended to replace other approaches but to provide an easy-to-implement
and easy-to-deploy alternative for different constituencies or different pur­
poses than those addressed by existing interoperability solutions. [57]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

The OAI technical framework addresses two well-known metadata requirements:
interoperability and extensibility. The metadata interoperability is addressed by re­
quiring that all OAI data providers supply metadata in a common format called
the Dublin Core Metadata Element Set [131]. Community-specific description, or
metadata specificity, is addressed in the technical framework by support for paral­
lel metadata sets. The technical framework places no limitations on the nature of
such parallel sets, other than that the metadata records be structured as XML [14]
documents, which have a corresponding XML schema for validation [123].

OAI-PMH supports the concept of selective harvesting, which makes it possible
to specify a subset of records to be harvested. OAI-PMH opted for two relatively
simple criteria for selective harvesting: datestamps and sets. Datestamp is defined
as the date of creation, deletion, or latest modification of a record, and sets are
mechanisms to group records in a repository for the purpose of selective harvesting.

OAI-PMH is based on a pull-only interaction via HTTP [33] using XML. Service
providers make requests to data providers; there is no support for data-provider-
driven interaction. All requests and replies occur using the HTTP protocol. Re­
quests may be made using either the HTTP GET or POST methods. All success­
ful replies are encoded in XML. OAI-PMH protocol requests are made using one
of six verbs: Identify, GetRecord, Listldentifiers, ListRecords, ListSets, and List-
MetadataFormats. Some of these verbs accept or require additional parameters to
completely specify the request (Table 2.1). The correctness of the protocol request
and response are verified by XML schema.

2.5 DISSCUSION

Clearly, although we are focusing on federation service in digital libraries community,
other communities face similar problems. One important initiative is Semantic Web
- “ a web of data that can be processed directly or indirectly by machines” [10, 11]
and underlying RDF (Resource Description Framework) [60]. Intelligent agents can
collect machine-readable web data and apply logic to conduct deduction, in which
both distributed searching and harvesting will play significant roles.

OAI-PMH is originated from eprints service. There is a broad movement now
well established within the scholarly publishing world such as BOAI [102] and Public
Library of Science [108], championed by people like Stevan Hamad at the University
of Southampton, to enhance public access to scholarly journal articles through the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

TABLE 2.1: Six OAI-PMH verbs
Verb Arguments Summary
GetRecord identifier, meta-

dataPrefix
This verb is used to retrieve an individual
metadata record from a repository.

Identify This verb is used to retrieve information
about a repository.

Listldentifiers from, until, meta-
dataPrefix, set,
resumptionToken

This verb is an abbreviated form of
ListRecords, retrieving only headers rather
than records. Optional arguments permit
selective harvesting of headers based on set
membership and/or datestamp.

ListMetadata-
Formats

identifier This verb is used to retrieve the metadata
formats available from a repository. An op­
tional argument restricts the request to the
formats available for a specific item.

List Records from, until, meta-
dataPrefix, set,
resumptionToken

This verb is used to harvest records from a
repository. Optional arguments permit se­
lective harvesting of records based on set
membership and/or datestamp.

ListSets resumptionToken This verb is used to retrieve the set structure
of a repository, useful for selective harvest­
ing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

use of eprint servers [46]. Clifford Lynch pointed out:

OAI-PMH grew out of an effort to solve some of the problems that were
emerging as eprints servers became more widely deployed. However, as
work on the protocol advanced it became clear that it provided a very
general-purpose mechanism that could address a surprisingly wide range
of urgent needs. [74]

The most obvious applications that are enabled by OAI-PMH are repository
synchronization and federated search. Besides that, it also focuses attention on a
number of other issues, such as registration and metadata schema, that will have to
be addressed as applications proliferate. This thesis contributes to the development
of OAI-PMH protocol and applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

CHAPTER 3

METADATA HARVESTING SYSTEM ARCHITECTURE

In the previous chapter, we highlighted the key techniques to solve the digital libraries
federation problem. The metadata harvesting approach is one way to implement the
digital libraries federation system. This chapter defines architecture of the metadata
harvesting system. The remainder of this chapter is organized as follows:

• Section 3.1 presents a layered architecture of the metadata harvesting system
and its major components.

• A data provider maintains one repository that supports the OAI-PMH as a
means of exposing metadata. In Section 3.2, we summarize the features of
OAI-PMH-compliant data providers.

• A harvesting service traverses the data providers automatically and extracts
metadata. It exploits the incremental, selective harvesting defined by the OAI-
PMH. The harvesting service is presented in Section 3.3.

• A registration service is essential for the metadata harvesting system. We
introduce the issues of the registration service in Section 3.4.

• Value-added services such as cross archive searching can be built over harvested
metadata. We discuss end-user service in Section 3.5.

• We briefly introduce the proxy, cache, and gateway service to achieve interop­
erability, scalability, and reliability of services in Section 3.6.

• In Section 3.7, we introduce Arc, the first OAI-PMH service provider. Arc
implemented the model defined in this chapter.

3.1 INTRODUCTION

The basic structure of OAI-PMH supports two roles: the service provider and the
data provider, which can be seen in Figure 3.1. Data providers administer systems
that support the OAI-PMH as a means of exposing metadata; and service providers
use metadata harvested via the OAI-PMH as a basis for building value-added services.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Service ProviderService Provider

Data ProviderData Provider

Service Provider

Data Provider

FIG. 3.1: Architecture of the basic OAI-PMH model

The OAI-PMH protocol focuses on the clear interface between data providers and
services providers. Many other issues, such as the registration service, are essen­
tial to support a large scale of distributed and replicated services. In Figure 3.2,
we define a model for metadata harvesting which addresses many of these issues.
The data provider maintains one repository for metadata harvesting. The harvester
is the key service which uses OAI-PMH to maintain the synchronization between
data providers and various services. Above the harvester, various services, such as
centralized federation services, replication services, and citation linking services, can
be built for end-users. In addition, we introduce the OAI-PMH proxy, cache, and
gateway services to optimize the functioning of the model underlying the OAI-PMH,
they provide an infrastructure that can be used by all other components to achieve
interoperability, scalability and reliability. A registration service is essential if the
number of OAI-PMH compliant repositories keeps growing, it addresses the resource
discovery and identifier resolution problem within the highly replicated environment
of OAI-PMH.

3.2 DATA PROVIDERS

A data provider maintains one repository that supports the OAI-PMH as a means of
exposing metadata. There are more than 100 registered OAI-PMH-compliant repos­
itories. The design of a good data provider presents many challenges. After running
a metadata harvesting system for nearly two years, we have discovered a number of
problems. These include metadata quality, server availability, service quality, and
implementation of resumption token. In OAI-PMH, community-specific description,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

’£

3
I0)
«3
of
■5
COO

ta.

End-User Service

Harvesting Service

Data Providers

Centralized
Search Service

Replication
Service

Web Search
Service

Reference
Linking Service

Kepler Service

2
3
§
I
i

FIG. 3.2: Architecture of an optimized metadata harvesting model

or metadata specificity, is addressed in the technical framework by support for par­
allel metadata sets. We study current metadata format variability in OAI-PMH and
present a solution to support multiple metadata formats in service providers.

3.2.1 Architecture of a Data Provider

Figure 3.3 shows the major components of a data provider. It includes three major
modules. First, a request processor accepts OAI-PMH requests and validates the
correctness of the request, then sends it to a record factory. Next, the record factory
fetches metadata from data sources and converts them if necessary. The matched
records are then encoded into XML format in the XML encoder and responded in
an HTTP response. The harvester may issue further requests based on the replies it
receives.

OAI request v
processor ------ ►c^Validate ----- ► RecordFactory

(CGI,Servlet...)
N

XML Encoder

Data Source
(database, file)

FIG. 3.3: Architecture of an OAI-PMH data provider

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

3.2.2 Quality of D ata Providers

The quality of data providers has been a significant problem since the release of
SFC in 2000. During the testing of data harvesting from OAI-PMH data providers,
numerous problems were found. Alan Kent reported that 36 out of 76 data providers
could not be harvested in March, 2002 [51]. In July, 2002, a review of the Celestial
Service [15] showed that 31 out of 96 data providers have problems in harvesting. We
discovered that not all archives strictly follow the OAI-PMH; many have XML syntax
and encoding problems, and some data providers are periodically unavailable. Many
responses were not well-formatted XML files. Sometimes foreign language and other
special characters were not correctly encoded. XML syntax errors and character-
encoding problems were surprisingly common and could invalidate entire large data
sets. Incremental harvesting proved beneficial as a work-around. In Table 3.1, we
summarize the error logs of harvester for nearly one year. In summary, we experienced
errors in 77 of 103 repositories; 2539 of 20952 rounds of harvesting have errors. In our
harvester, one round of harvesting usually includes a series of OAI-PMH requests:
Identify, ListSets, and ListRecords. OAI-PMH is based on an incremental harvesting
model, The first round of harvesting collects all available metadata records and is
error-prone; after that, only new published data is harvested and the problem occurs
less.

TABLE 3.1: Harvester error logs (from 08/13/2001 to 07/29/2002
Type Total Any Error XML Error Server Error
Number of Repositories 103 77 18 73
Round of Harvest 20952 2549 433 2116

The OAI website in Cornell university validates registered data providers for
protocol compliance. It uses XML schemas to verify the standard conformance [119].
However, this verification is not complete; it does not cover the entire harvesting
scenario and does not verify the entire data set. Additionally, such verification cannot
detect semantic errors in the protocol implementation, such as misunderstanding of
DC fields. For certain XML encoding errors, an XML parser can help avoid common
syntax and encoding errors. If the data provider builds quality control and data
cleaning into its local accession policy [121], the service provider will have significantly
less work to do and will have to discard fewer dirty data records. These errors can
also be partially addressed on the service provider side. The approach adopted by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

our harvester is presented in Section 3.3.

3.2.3 Im plem entation o f R esum ption Token

When a harvester issues a request to an archive that will result in a large amount of
data, the archive may provide part of the data and then offer a resumption token as
placeholder for the rest. If more is desired, that token is sent, and another batch of
results is returned. OAI-PMH leaves the resumption token format up to developers.

There are two ways to implement a resumption token: stateful and stateless. A
stateful implementation follows the direction of SQL-style transactions and cursors
[29]; it is complicated and usually not robust in error recovery. In a test conducted
by our harvester in February, 2002, five repositories could not be harvested due to
the error in the resumption token.

To solve the problem, we design a stateless resumption token for data providers.
The request parameters and cursor are encoded in the resumption token; the cursor
includes the information of datestamp and identifier. The state information is thus
saved in the resumption token, and the data provider does not need to keep the state
information. Whenever a request with a resumption token comes, the data provider
can decode the resumption token and re-build the query ordered by datestamp. By
this way, a repository will be guaranteed to be harvested completely even if it has
frequently changed data. The algorithm is described in Figure 3.4.

3.2.4 Paralle l M e tad a ta Form at

For a digital library to be OAI-PMH-compliant, it must expose its metadata in DC
and use the OAI-PMH protocol. That is, a DL community may use its own richer
metadata set intra-community, but must have a second set of DC metadata exposed
in order to be OAI-PMH-compliant.

TABLE 3.2: Parallel metadata sets usage in OAI-PMH (08-02-2002)
Number of Archives Total number of

metadata formats used
Total number of unique
metadata formats

92 149 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Algorithm 3.1 Stateless ResumptionTokenforDataProvider
In pu t: OAI — PM H ListRecords, Listldentifiers, ListSets request
Procedure:
while(TRUE){

wait(request);
i f (request has resumptionToken) {

parameters, cursor = decode(resumptionToken);
}else{

parameters = decode(request);
cursor = nuZZ;

}
Select from database where (parameters is true) and (datestamp
+■identifier > cursor)order by (datestamp + identifier);
Assemble replied records till lastrecord;
newcursor = datestamp(lastrecord) + identifier (lastrecord);
new-resumptionToken = encode(parameters + newcursor);
response (resultset +newjresumptionToken);

FIG. 3.4: Algorithm for stateless resumption token

The use of unqualified DC as a common metadata format in OAI-PMH proves to be
very helpful for building a quick prototype. However, richer metadata formats are
essential for building a richer service. The current usage of parallel metadata set is
listed in Table 3.2. In total, 21 different metadata formats are used in 92 repositories.
Figure 3.5 shows how many metadata formats are used in each repository. The
majority of them (53) use unqualified DC only, 28 repositories use two metadata
formats, four repositories use three metadata formats, and seven use four metadata
formats. Figure 3.6 shows the number of usage each metadata format except oaLdc
(oai.dc is mandatory and every repository uses it). The OLAC metadata set is a
standard defined by the OLAC community [101]; OALRFC1807 [59] and OALMARC
[99] are standard metadata formats and recognized in the OAI-PMH. The other 16
kinds of metadata format are local formats; it is very difficult to implement richer
service over these metadata without individually studying each format.

Since OAI-PMH is XML based, if a data provider supports a stylesheet file for lo­
cally defined XML metadata formats, the service provider can automatically present
the harvested records without knowing the semantic meaning. Figure 3.7 shows how

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Usage o f Parallel Metadata Sets

s 20

2 3
Number o f Metadata Formats

FIG. 3.5: Usage of parallel metadata sets

we support parallel metadata presentation by XSLT [21] processing. Data providers
will export their metadata (by OAI-PMH) and presentation format (by XSLT). A
service provider harvests the metadata and builds a search interface. The resource
discovery is performed by the service provider, and the final presentation of the data
is accomplished by the data provider’s XSLT. With this mechanism, data providers
may define an explicit method for presenting the metadata format, which is espe­
cially useful for rarely used or repository-specific metadata formats. OAI-PMH 2.0
introduces a “branding” mechanism for the service provider to render the metadata
in the stylesheet specified by the data provider. The branding mechanism supports
the model defined in Figure 3.7.

3.3 HARVESTER

Similar to a web crawler, the OAI-PMH harvester traverses the data providers auto­
matically and extracts metadata. The significant differences between the OAI-PMH
harvester and a web crawler are that the OAI-PMH harvester normalizes the meta­
data, thus producing more complete and accurate results, and exploits the incremen­
tal, selective harvesting defined by the OAI-PMH.

Data providers are different in data volume, partition definition, service imple­
mentation quality, and network connection quality. All these factors influence the
harvesting procedure. Historical and newly published data harvesting have different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Usage o f Each Metadata Format

OLAC OALRFC1807 OAI.MARC OAI_ETDMS Total of Others

FIG. 3.6: The number of usage of each metadata format

requirements. When a service provider harvests a data provider for the first time,
all past data (historical data) needs to be harvested, followed by periodic harvesting
to keep the data current. Historical data harvests are high-volume and more stable.
The harvesting process can run once, or as is usually preferred by large archives, as
a sequence of chunk-based harvests to reduce data provider overhead. To harvest
newly published data, data size is not a major problem, but the scheduler must be
able to harvest new data as soon as possible and guarantee completeness - even if
data providers provide incomplete data for the current date. The OAI-PMH provides
flexibility in choosing the harvesting strategy; theoretically, one data provider can
be harvested in one simple transaction, or one can be harvested as many times as
the number of records in its collection. But in reality, only a subset of this range is
possible; choosing an appropriate harvesting method has not yet been made into a
formal process. We defined four harvesting types:

• bulk-harvest of historical data

• bulk-harvest of new data

• one-by-one-harvest of historical data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Search

i i

XML Data Parallel XML
Data XSLT

Harvest

Service Provider Presentation

Data Provider

FIG. 3.7: XSLT processing to support parallel metadata format in OAI-PMH

• one-by-one-harvest of new data

Bulk harvesting is ideal because of its simplicity for both the service provider
and data provider. It collects the entire data set through a single HTTP connection,
thus avoiding a great deal of network traffic. However, bulk harvesting has two prob­
lems. First, the data provider may not implement the resumption token flow control
mechanism of the OAI-PMH, and thus may not be able to correctly process large
(but partied) data requests. Secondly, XML syntax errors and character-encoding
problems - these were surprisingly common - can invalidate entire large data sets.

One-by-one harvesting is used when bulk harvesting is infeasible. However, this
approach imposes significant network traffic overhead for both the service and data
providers since every document requires a separate HTTP connection.

The default harvesting method for every data provider begins as bulk harvest.
We keep track of all harvesting transactions, and if errors are reported, we determine
the cause and manually tune the best harvesting approach for that data provider.

3.3.1 Robust Harvesting

There are two common problems that a robust harvester should deal with: unstable
servers and XML encoding errors.

There are various problems that the network or data provider may experience.
As we specified before, the cost of an interrupted resumption token can be expensive.
In response, a robust harvester should try several times to improve the efficiency in
case the interruption is short-term. The harvester can simply re-try after a random

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

period of time, or period calculated by the exponential backoff algorithm.
XML syntax errors and character-encoding problems are surprisingly common.

They can invalidate entire large data sets. Besides the efforts on the data provider
side to avoid this problem, a robust harvester can be designed to handle XML en­
coding errors. This mechanism is implemented by using specific features of SAX
parser [114]. A SAX parser will report the precise position (line number and column
number) of the first XML encoding error. Based on position information, the first
bad record is detected and removed. The remaining data is validated again. The
process runs iteratively until all bad records are removed; only good records are saved
for further processing. This harvester manages to harvest most OAI-PMH-compliant
repositories despite common XML encoding errors.

3.3.2 Hierarchical Harvesting

We have also implemented an OAI-PMH layer over the harvested metadata that al­
lows our service provider to act as a data provider, disseminating metadata harvested
from other data providers (Figure 3.8). This allows for the hierarchical harvesting of
content, similar to the system of gatherers and brokers defined in Harvest. This struc­
ture has a great deal of flexibility in how information is filtered and interconnected
between data providers and service providers. For example, one service provider
might index papers in computer science, while another could build a general sci­
entific service by harvesting the existing computer science harvester. Hierarchical
harvesting also could provide the mechanism for caching and replication services.

A service provider normalizes harvested data. Thus, the re-exposed data might
not be the same data harvested from the data providers. This situation can introduce
both intellectual property and provenance issues. The document identifier is the one
unique metadata item that should be kept in all locations to allow for tracking the
source of the document.

3.4 REGISTRATION SERVICE

The OAI-PMH raises the “awareness” question, namely how service providers can
find out the existence of data providers and vice versa. In addition, different
data/service providers can be aware of and link to each other by using OAI-PMH
unique identifiers. A distributed service model could be accomplished by sharing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Data Provider Data Provider Other Data
Providers

Service Provider

Computer Science Focused
Service Provider

FIG. 3.8: Hierarchical harvesting

different services.
We believe there are two levels of registration process in the environment of

OAI-PMH: repository-level and record level. The repository-level registration needs
support three mechanisms:

1. The data provider registers and updates its status in a service provider. A basic
registration service allows the registration of base URL of a data provider; an
advanced registration service allows the data provider to notify service provider
when its status (such as server availability and update schedule) changes.

2. The service provider automatically discovers appropriate data providers for har­
vesting. For example, a central OAI registration service for data providers [100]
is provided by Cornell University. Service providers can periodically harvest
base URLs of registered data providers.

3. The service provider exposes information about its harvested repositories. An
OAI-PMH layer can be supported to describe the archives from which it har­
vests. That is, instead of the records corresponding to records from the data
providers, the records returned from this interface describe the actual archives
themselves. This interface was implemented to provide a dynam ic and machine-
readable mechanism for discovering the data providers from which a service
provider harvests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

The record-level procedure needs to support two mechanisms:

1. Identifier Resolver: Given an oai-identifier, the resolver is able to return the
corresponding XML records. The identifier resolver maintains the mapping
relationship between the oai-identifier and its base URL. It provides a single
source from which other services can fetch record instead of keeping a local list
of correspondences between identifiers and base URLs.

2. Service Linking: In OAI-PMH, data providers may be harvested by many ser­
vice providers, each providing different services for the same record. All these
services potentially could link to a broker page, the broker page dynamically
checks whether or not a service exists for a specific record. If so, it adds a
link to the corresponding service provider. In order to know which records are
available in advance, the broker issues an OAI-PMH GetRecord lookup to the
target service (which has an OAI-PMH export). Based on the reply, the broker
knows whether a record is harvested.

3.5 END-USER SERVICE

Many services become possible with the adoption of OAI-PMH, the federated search
service and repository synchronization are most obvious applications. The OAI-
PMH also provides an interface which exposes the “hidden” information to general
web search engines. Other services such as cross-archive citation linking are also
emerging.

Based on the OAI-PMH, there are two approaches to building a federated dig­
ital library that allow users to access contents in all the libraries through a single
interface: centralized and replicated. In the centralized approach (Figure 3.9), a fed­
eration service harvests metadata from the OAI-PMH-enabled libraries and provides
a unified interface to search all the collections. This approach has been adopted
by Arc and other OAI-PMH service providers [84, 45, 120]. However, a centralized
search service is not a suitable approach if the primary objective is to use native
library interfaces. Besides this limitation, the centralized approach suffers from the
organizational logistics of maintaining a centralized federation service and having a
single point of failure. The replicated approach addresses these problems (Figure
3.10). This approach can be viewed as mirrored OAI-PMH-compliant repositories,
where every participant has its own federation service. The consistency between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

these services is maintained using OAI-PMH. As a federation service is locally avail­
able, it becomes easy to push other participants’ metadata into the native library. In
addition, this approach supports several levels of redundancy, thereby improving the
availability of the whole system. For example, a failure of a system at one repository
would not severely impact users at other repositories. In fact, users at the affected
repositories would continue to search and discover reports from other repositories,
though they may not be able to see reports that are added to the system at other
repositories during the down time. The centralized approach is further discussed in
Chapter 4, and replicated approach is discussed in Chapter 5.

Users from all participating libraries

Centralized Database

Harvest

Native
Library 2

Native
Library I

Native
Library 3

FIG. 3.9: Centralized federation service

User from library I User from library 2 User from library 3

Translation process between native lib rary and OAI repository

OAI repository |OAI repository

Native library 3

OAI repository

Native library 2Native library I

Synchronized by OAI-PMH

FIG. 3.10: Replicated federation service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

3.6 PROXY, CACHE, AND GATEWAY SERVICES

The current and emerging applications based on metadata harvesting require a scal­
able and reliable infrastructure to support them. We introduce the concepts of OAI-
PMH proxies, OAI-PMH caches, and OAI-PMH gateways as tools for the optimiza­
tion of the functioning of the data provider/service provider model underlying the
OAI-PMH. The goal is to achieve interoperability, scalability, and reliability of OAI-
PMH services. Various applications and services can exploit the services included in
this infrastructure. An OAI-PMH proxy dynamically forwards OAI requests to data
providers. For example, it can dynamically fix common XML encoding errors and
translate between different OAI-PMH versions. An OAI-PMH cache caches meta­
data and can filter and refine them before exposing them to service providers. It
also serves as a simple cache that reduces the load on source data providers and
improves server availability. An OAI-PMH gateway can convert the OAI-PMH to
other protocols and applications. For example, the gateway could convert between
different protocols (e.g. SOAP [13]) and OAI-PMH.

3.7 TESTBED

Arc is designed as a testing system to study the challenges in metadata harvesting. It
implemented the model presented in this Chapter. Arc harvests all open OAI-PMH
data providers regardless of their contents. Arc includes a harvester and a search
engine built over harvested metadata. As of August 2002, there were more than
100 data providers with over 1M metadata records. The number of records keeps
growing with more OAI-PMH-compliant data providers (Figure 3.11), the spike in
Figure 3.11 is usually caused by newly added collections.

In Arc, we also implement an experimental OAI-PMH layer over harvested data.
Thus, one service provider can collect information from both data providers and
service providers. By retrieving information from other service providers, service
providers can also cascade indexed views from one another — using the service
provider’s query interface to filter or refine the information from one service provider
to the next.

We encountered a number of problems in developing Arc. Different archives have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Monthly Changes in Arc's holdings

250000

<2 200000S©
| 150000

J 100000
I
Z 50000

/ > # # V ̂ ̂ ̂ / • ' f s f # #
Month

FIG. 3.11: Monthly changes in Arc’s holdings

different format/naming conventions for specific metadata contents, thus necessitat­
ing data normalization. Arbitrary harvesting can overload the data provider making
it unusable for normal purposes. The data providers’ security protection can block
the crawler and make harvesting difficult to implement. Initial harvesting when a
data provider joins a service provider requires a different technical approach than
periodical harvesting that keeps the data current.

The Arc architecture is based on the Java servlets-based [87] search service that
was developed for the Joint Training, Analysis and Simulation Center (JTASC) [79].
This architecture is platform-independent and can work with any web server. More­
over, the changes required to work with different databases are m inim al. Our cur­
rent implementation supports two relational databases, one is commercial (Oracle
[103]), and the other is open source (MySQL [88]). The architecture improves per­
formance by employing a three-level caching scheme. Figure 3.12 outlines the major
components: Search Engine, Harvester, and an OAI layer over Arc for hierarchical
harvesting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Harvester

Metadata
Normalize

JDBC

Data
Provider

Data
ProviderDatabase

OAI LayerUser Interface

Cache

Search Engine Scheduler

FIG. 3.12: Architecture of Arc

The Arc harvester is implemented as a daemon written in Java. At the initial­
ization stage, it reads the system configuration file, which includes properties such
as user-agent name, interval between harvests, data provider URL, and harvesting
method. The harvester then starts a scheduler, which periodically checks and starts
the appropriate task.

3.8 DISCUSSION

Little is known about the long-term implications of a harvest-based DL. The pre­
sented architecture motivates studies on naming service, repository synchronization
problem, metadata quality, and scalability. We summarize this chapter and further
studies are introduced in later chapters in this dissertation.

D a ta P rov ider and Service Q uality During the testing of harvesting from data
providers, numerous problems were found. We have presented how to imple­
ment a robust harvester in this chapter. An OAI-PMH proxy or cache service
can dynamically resolve these problems, these are further discussed in Chapter
8.

U pdate Frequency, P u sh M odel, and Security The OAI harvesting model is
built on service providers “pulling” metadata from a set of data providers. It
is interesting to study the update frequency of data providers and to design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

the optimal harvester to reach better freshness with minimal cost. We discuss
more about the repository synchronization problem in Chapter 7.

C ontrolled V ocabulary Some normalization was necessary to achieve a minimum
presentation of query results. A controlled vocabulary will be of great help for
a cross-archive search service to define such metadata fields as “subject.” We
discuss how to build a federation service with existing controlled vocabulary in
Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

CHAPTER 4

REPOSITORY SYNCHRONIZATION

Because data providers constantly change, a harvester should periodically contact
data providers for newly added and changed data, so that the contents are main­
tained up to date. The OAI-PMH harvesting model is built on service providers
“pulling1’ metadata from a set of data providers. It is designed with the intention
of stable traditional publishing mediums (journal, e-prints, etc.). However, the syn­
chronization problem is quite different in an author self-archiving environment such
as the Kepler service. The synchronization problem of OAI-PMH is studied in this
chapter. The synchronization problem in Kepler is studied in Chapter 7.

The remainder of this chapter is organized as follows:

• Section 4.1 introduces the repository synchronization problem in OAI-PMH
and outlines our approach.

• We formally study the repository synchronization problem in Section 4.2. Sev­
eral metrics such as update frequency and freshness are defined.

• The frequency of new or modified records available through the data provider
plays a maj'or role in determining the harvesting frequency. We study the
update frequency of OAI-PMH-compliant data providers in Section 4.3.

• Section 4.4 presents two algorithms to implement repository synchronization
in the OAI-PMH framework.

• Section 4.5 presents a syndication container by which the data provider can
identify its update rate.

• Section 4.6 summarizes the related work in synchronization and freshness prob­
lem.

4.1 INTRODUCTION

The synchronization problem — how to keep the metadata records of data providers
and service providers consistent — is a problem that can distort the results a user
obtains from a search. The user must trust that the service provider has an accurate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

assessment of the contents of the data providers that it harvests. The OAI-PMH
supports selective, incremental harvests, and the synchronization is maintained by
periodic re-harvesting. Service providers are expected to exploit these properties in
order to limit the load imposed on the data providers while still maintaining fresh
data for their services.

To study this problem, it is imperative to understand the requirement of the
application. For example, maintaining freshness in seconds for the market value
of a stock could be critical; a news aggregator need to maintain hourly freshness
for a satisfactory service; a web service engine may re-harvest its indexed page in
several months. We define I as the acceptable latency at which the harvester should
be synchronized with data providers. The OAI-PMH 1.x only supports granularity
of day, the OAI-PMH 2.0 starts to support granularity of second. However, the
granularity of the protocol is not likely change the nature of update frequency of a
repository.

The OAI-PMH harvesting model is built on service providers “pulling” metadata
from a set of data providers. After studying data and the harvest log of Arc, we con­
clude that most data providers have a steady change rate, but different data providers
present significantly different rates. For the traditional publishing medium, the OAI-
PMH harvesting model works well. However, freshness can be further improved if
the harvester can dynamically adjust the “pulling” rate based on the change rate of
data providers. Motivated by the work in RSS (RDF Site Syndication Format) [6]
and other applications such as news syndication, we define an optional container in
which a data provider can describe its update rate.

4.2 METRICS FOR UPDATE FREQUENCY AND FRESHNESS

The OAI-PMH is based on a coordinated model that a harvester can issue a request
to get all updated records in a repository after a specific date. This model is superior
to the model of web crawlers, which have to discover the update time of each record
individually.

We formally define several metrics to measure the update frequency of data
providers. Let {ri,...,rAf} be the M data providers we axe going to monitor. We
assume that n observations are made of each repository, the observations being made
at regular intervals. The choice of interval, At, will be made appropriate to the la­
tency of the repositories involved and is lagely irrelevant to the metrics that follow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

We will therefore denote the observation times as { t i , t n}> where tJ+l = t3- + At.
R eposito ry U pda te S tatus: The update status of a repository r,- at time tj-.

updated, at time tj
otherwise

R ecord U p d a te R ate: Let R(r,; tj) denote the number of updated records of
a repository r,- observed at time tj.

R eposito ry U pdate Interval: We define the update interval at time t f

J(r(; *-,) = (° if S (r" ti) = = <) (2)
[j — k tk is last updatetime before tj

A verage R eposito ry U pdate Interval: In the period of observance
{ t i , t n}, the average update interval of a repository r,- is

E
U(n) = (3)

E 5(r,;ty)
j=l

A verage R eposito ry U pdate Frequency: The average update frequency of
a repository rt- is:

FRQ(r‘^ m (4)
A verage R ecord U pdate R ate : The average records update rate of repository

r,- is
E R{ri\tj)

AVG(n) = ^ ----------- (5)
E 5(rx-;ty)
j=t

Freshness o f a D a ta Provider: The freshness of a data provider r t- in harvester
side at time tj is

 ̂ ̂ _ . - i f rj is up —to — date at time tj
0 otherwise

Freshness o f H arvester: The freshness of the harvester H at time tj is

F (f f ; (, -) = l /M 2 F (r , ; t i) (7)
t=l

Using these metrics we are able to measure the freshness of service providers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

U p d a te C ost for D a ta Provider: Let C<* denote the update cost for a data
provider.

U pda te C ost for H arvester: Let C, denote the update cost for harvester.
In the observance period of T, the harvester issues requests to each data provider

in an interval of I, and I is the acceptable latency at which the harvester should be
synchronized with data providers. This latency could range from several seconds to
several months, depending on different applications.

In a basic model, the harvester issues requests every I interval to each data
provider:

C <(n) = j (8)

C. = ™ (9)

In an optimal model, we assume that the harvester knows when the data provider
is updated in advance, and it issues requests right after the data provider is updated.

C,(r,) = ^ = T * FRQfn) (10)

M rp M

C. = 'E m = ?.T*FRQ Cn) (11)

From formula (9) and (11), we can derive that the acceptable latency, number of
data providers, and repository update frequency play important roles in caculating
the update cost. We illustrate these metrics by two examples.

Exam ple 4.1 In a typical digital library application, such as researchers discover
the existence of a paper or technical report, a daily latency should satisfy most
requirements, if the observance period of T equals one day, from formula (9) we can
derive Cs = M.

Exam ple 4.2 In a news aggregator, the acceptable interval is at the minute level;
each participating news agency updates its site every hour. If the observation period
is one day, in the basic model, Cs = 1440 * M, the basic model will not scale. In
contrast, in the optimal model, C, = 24 * M, it promises better efficiency.

In the optimal model, the harvester essentially allocates more resources to active
data providers; the prerequisite is that harvester must know the update interval of
the data providers. There are four approaches:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

B est E stim ation The harvester estimates the record update frequency by learning
the harvest history. However, this requires the data provider must present a
constant update frequency. After studying the harvest log of Arc, we conclude
in Section 4.3 that many current OAI-PMH compliant data providers present
a constant update rate.

Syndication A data provider may describe its update frequency explicitly; this is
described in Section 4.5.

S ubscribe/N otify Best estimation and syndication are compliant with the OAI-
PMH framework, but it relies on a constant update rate of data providers,
which may not be true in some applications. A data provider may notify a
service provider whenever its content is changed. This model is an extension
of OAI-PMH and is described in Chapter 7, the Kepler framework.

P u sh M odel Data providers may directly push updates to service provider side,
this is also demonstrated in Chapter 7.

4.3 U PD A TE FR EQ U EN CY OF DATA PR O V ID ERS

The frequency of new or modified records available through the data provider plays a
major role in determining the balance between harvesting too often and not enough.
The nature of the data provider can influence how often records are modified or
updated. E-print type data providers are likely to have a small but steady stream
of ongoing daily or weekly updates. Museum or historically oriented archives will
have an initial burst period of accession (perhaps all at once), but then are likely
to trickle down to just infrequent error corrections or edits. Although not currently
implemented by any data providers, if a data provider allowed the metadata to change
based on usage, annotations, or reviews as specified in the NSDL project [56], the
required harvesting would likely become significant.

In this Section, we present our experimental results that show how OAI-PMH-
compliant data providers change. We try to answer the following questions: (1) does
the data provider change at a constant rate? (2) How often does a data provider
change? We run the Arc harvester once a day to harvest approximately 100 OAI-
PMH-compliant data providers. The datestamp of harvested record is kept in a
database. The change rate covers new data, modified data, and deleted data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Table 4.1 lists the monthly average update rate of records in selected e-print
archives. They are randomly selected from stable OAI-PMH compliant e-print ser­
vices (We consider stable services demonstrate a more reliable trend), the complete
table is available at Appendix C. This table shows that in long term many e-print
services have steady records update rate. This can be explained that e-print services
have a relatively stable user base.

TABLE 4.1: Monthly records update rate (R (ri;tj),A t = 1 month) of E-Prints
archives (from 2002-01 to 2002-09), the complete table is available at Appendix C.

archive J-02 F-02 M-
02

A-02 M-
02

J-02 J-02 A-02 S-02

CPS 28 10 9 2 11 15 2 1 6
VTETD 16 25 10 84 115 52 51 78 45
arXiv 7744 3198 3874 3089 3605 3672 4462 4181 4505
bmc 50 20 5 11 68 3 0 0 5
cogprints 13 19 10 11 8 40 15 41 11
in2p3 180 140 276 57 90 110 108 52 141
ltrs.larc.nasa 12 40 31 22 42 35 71 31 24
mathpreprints 5 6 3 3 20 40 12 7 12
mit.etheses 46 86 142 119 189 63 75 124 82

Based on the data we collected, we can analyze how long it takes for a data provider to
change. For example, if a data provider changes 5 times in 5 months, we may estimate
that the average update interval of the data provider is 5 months/5 =1 month. Note
that the granularity of the estimated change interval is one day, because OAI-PMH
1.x uses day as the unit of datestamp. In Table 4.2, we list the daily average update
interval, average update rate, standard deviation of update interval, and Cofficient
of Variation (C.O.V.). The complete table is in Appendix D. It shows that most of
them have a relatively small C.O.V. In Figure 4.1, we summarize the result of this
analysis. In the figure, the horizontal axis represents the average update interval of
data providers, and the vertical axis shows the fraction of data providers changed at
the given average interval. We can observe that less than 10% of the data providers
change daily, while about 70% of the data providers change monthly or longer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

TABLE 4.2: Repository update interval (09/30/3001-09/30/2002)
archive AVGin) Uin) stdv(I(ri)) C.O.V.(/(r,))
arxiv.org 145.32 1 0 0
bmc 3.19 3.25 11.93 3.67
cogprints 20.07 3.8 4.13 1.09
CPS 1.58 3.7 7.15 1.93
in2p3 7.89 1.71 2.92 1.71
LTRS 2.36 2.81 7.12 2.53
mi t.e theses 7.33 2.03 3.3 1.62
VTETD 3.5 2.11 56.5 26.77

At = 1 day
A VG fc): Average Update Elate
U{ri): Average Update Interval
stdv(I(ri)): Standard Deviation of Update Interval
C.O.V.(I(ri))i Coefficient of Variation of Update Interval

Avenge Repos ioay t$d*n buzvel

0.6
G.5
0.4
0.3
0.2
0.1

daily weekly monthly >month

Average repository update interval

FIG. 4.1: Average repository update interval of OAI-PMH repositories

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

In summary, OAI-PMH data providers (especially E-prints archives) change at
a steady rate overall, and the rates vary dramatically from site to site. Although
it is difficult to precisely predict update time of one specific repository. However,
a harvester may not necessarily provide 100% freshness at any time, for example,
a harvester may harvest repositories with higher average update frequency more
frequently, and harvest all other repositories once a week, it will still save a significant
percentage of update cost. Typically, the requirement of freshness is decided by the
application.

Because OAI-PMH supports the features of incremental harvesting, the imple­
mentation of a harvester with good freshness is not very difficult. For example, in
the current configuration, Arc, a single thread-based harvester, takes less than one
day to complete a harvesting cycle over all participating data providers.

4.4 SYNCHRONIZATION ALGORITHM FOR HARVESTER

In Section 4.3, we conclude that the OAI-PMH model of synchronization works well
for current OAI-PMH data providers (out of about 100 data providers, most of them
are e-prints archives or other digital library applications). However, there are some
scenarios that require better synchronization.

• If the OAI-PMH becomes more popular and there are a large number of repos­
itories available.

• If the annotation or review services are widely used, such as the NSDL project
[56].

• If the OAI-PMH is used in some applications which require rapid dissemination
in the unit of minute or hour, such as news or mailing lists.

We define two synchronization policies: fixed-list policy and adaptive-list policy. The
fixed-list policy is implemented in the Arc harvester. The adaptive policy is based
on the features that most data providers change at a constant but different rate.
The change rate can be observed by the harvester, or it can be defined by the data
provider, so we define an optional container to specify the change rate in the spirit
of RSS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

4.4.1 Fixed-list Policy

Under the fixed-list policy, we synchronize the repositories in the same order repeat­
edly. We describe the fixed-order policy more formally in Figure 4.2. Here, each
archive is historically harvested first, and a fresh harvest is repeated forever. Note
that the last harvested time is fetched from the response of data providers in order to
avoid clock skew. To contain any updates that happen during the harvesting period,
the last harvested time is recorded before each harvest.

Algorithm 4.4.1 Fixed — list synchronization
In pu t: ArchiveList = {g ,̂ a-i, ..., an}
LastHarvestTime — {ti, t2, ..., £n} = null
Procedure
for(i = 1; i < n; i -f -(-){

U = getresponsetime(ai);
historicaLharvest(a.i);

}
while(true){

for[i = 1; i < n; i + -F) {
responsetime = getresponsetime(a,i)',
fresh Jiarvest(a{, t*);
ti = responsetime;

}
sleep(jrrejdefined-interval);

}

FIG. 4.2: Algorithm of fixed-list synchronization policy

4.4.2 Adaptive-List Policy

In this policy, the harvester changes its synchronization rate based on the average
repository update interval. The average repository update interval can be learned
from the previous harvest, or be defined by an optional container in the data provider
as we describe in the next section (Figure 4.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Algorithm 4.4.2 Adaptive — list Harvesting
In pu t: ArchiveList = (ai, a2, ..., On}
AverageUpdatelnterval = {tit, u2, ..., un}(sitc/i os 1 day, 90 days, etc,.)
LastHarvestTime = {ti, £2, *••) = null
Procedure
far(i = 1; i < n; i + +){

ti = getresponsetime(ai);
historical Jiarvest(ai);

}
while(true){

for(i = 1; i < n; i + +){
i f (currenttime — t,- > u,){

responsetime = getresponsetime(ai);
freshJiarvest(ai, U);
ti = responsetime;

}
}
sleep(pre-definedJnterval);

}

FIG. 4.3: Algorithm of adaptive-list synchronization policy

4.5 SY N D ICA TIO N CO N TA IN ER F O R U PD A TE FR E Q U E N C Y

In OAI-PMH, the response to an Identify request may contain locally defined de­
scription containers that can be used to express properties of the repository. We
define am optional container that identifies the update frequency of a data provider.
The information provides an alternate way to build the algorithm in Figure 4.3.

The RSS (Rich Site Summary) syndication module provides syndication hints to
aggregators and others picking up RSS feed regarding how often it is updated. For
example, if a file was updated twice an hour, the update Period would be “hourly”
and the updateFrequency would be “2.”

U pda teP eriod Describes the period over which the data provider is updated. Ac­
ceptable values are: hourly, daily, weekly, monthly, yearly. If omitted, daily is
assumed.

U pdateFrequency Used to describe the frequency of updates in relation to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

update period. A positive integer indicates how many times in that period
the data provider is updated. For example, an updatePeriod of daily, and an
updateFrequency of 2 indicates the data provider is updated twice daily. It
omitted a value of I is assumed.

U pdateB ase Defines a base date to be used in concert with updatePeriod and
updateFrequency to calculate the publishing schedule. The date format takes
the form: yyyy-mm-ddThh:mm.

The XML schema is defined in Figure 4.4, and an example is shown in Figure 4.5.

<?xnL wersion«"1.0" encoding-"UTF-8"?>
<schena targetNanespace*"h t tp : / /p u r l . o rg /rss /1 . O/nodules/syndication/"

xnlns-"h t t p : / / imw. w3 .org/2001/XHLSchena"
xn lns:synd ication-"l)ttp ://purl. o rg /rss /1 . O/nodules/sy ndication/'*
elenentFamOeFault«,’qualiFied'* attributeFornOeFault-”unqualiFied">

<elenent nane-"syndication">
<complexType>

<sequence>
<elenent nane-"updatePeriod" min0ccurs-"8" nax0ccurs-'*1'a

type-"syndication:updatePeriodTypea,/>
<elenent nane->aupdateFrequency*a nin0ccurs«aa8aa nax0ccurs="1aa

type«aaintegeraa/>
<elem nt nane-aaupdateBasea> ninOccurs-“Qaa «ax0ccurs»aa1aa

type»aadateTinea7>
</sequence>

</co*plexType>
</element>

<sinpleType nane-"updatePeriodTypeaa>
R e s tr ic tio n base-"stringaa>

<enuneration ualue»a,hourlyaa/>
<enuneration ualue-”d a ilya>/>
<enuneration ualue-aaweekly“/>
<enuneration ualue»aanonthly,a/>
<enuneration ualue-”yearly”/>

< /res tric tio n >
</sinpleType>

</schena>

FIG. 4.4: XML schema for syndication

4.6 RELA TED W O R K

Cho and Garcia-Molina [19, 20] gathered data from 270 web sites over a four months
period and analyzed it by defining age and freshness metrics and by modeling the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://purl.org/rss/1.O/nodules/syndication/
http://imw.w3.org/2001/XHLSchena

45

<description>
(syndication xnlns-"h ttp : //p u r l.o rg /rs s /1 .l/nodules/syndication/**
xnlns:xsi«"h ttp ://w *w .w3.org/2M1/XHLSchena-instance"
xsi:schenaLocation-"h ttp : //p u r l.o rg /r s s /1 . l/nodules/syndication /
h ttp ://d lib .cs .o du .ed u /O A I/2 .(/syn d icatio n .xsd ”>

<updatePeriod>hourly</updatePeriod>
<updateFrequency>2</updateFrequency>
<updateBase>1999-12-01T M : 00</updateBase>

</syndication>
</description>

FIG. 4.5: Example of syndication container

individual elements of a database as well as the database in its entirety. They then
looked at synchronization frequency and compared synchronization order and re­
source allocation policies. However, they were dealing with un-coordinated changes
of web pages, which is different from the incremental harvesting concept of OAI-PMH.
They tried to maximize the harvested data in a very large collection (the entire Web)
with limited resources, while we focus on improving freshness in a selected number
of repositories.

The RSS syndication module provides hints to aggregators and others picking up
this RSS feed regarding how often it is updated [6]. The RSS is widely used in news
aggregation services.

The proposed “HTTP Distribution and Replication Protocol” (DRP) [130] creates
an index page based on content digests to avoid unnecessary data transmission in
deliberate replication over HTTP. After the initial download, a client can keep the
data up-to-date using the DRP protocol. Using DRP the client can download only
the data that has changed since the last time it checked. DRP is based on the
Message Digest algorithm, such as MD5 [112], to identify the changes of content.

4.7 DISCUSSION

The harvesting service and repository synchronization are the key problems that
OAI-PMH tries to solve. OAI-PMH optimizes the repository synchronization by
supporting the incremental and selective harvesting. The model of OAI-PMH is
sufficient for most typical digital libraries applications. However, it can be further
enhanced to support a wide range of applications with the support of syndication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://purl.org/rss/1
http://w*w.w3.org/2M1/XHLSchena-instance
http://purl.org/rss/1.l/nodules/syndication/
http://dlib.cs.odu.edu/OAI/2.(/syndication.xsd%e2%80%9d

47

CHAPTER 5

CENTRALIZED FEDERATION SERVICE

One major objective of digital library interoperability is to provide a unified search
interface across heterogeneous collections. This chapter introduces the effort of build­
ing a search interface based on structured metadata in heterogeneous OAI-PMH
repositories. To solve this problem, we first study the structured metadata usage
in OAI-PMH repositories. The analysis indicates that controlled vocabularies and
values are widely used in most repositories. Usage is extremely variable however.
We then implement an advanced searching interface that allows users to search and
select in specific fields with data we construct from the harvested metadata, and also
by an interactive search for the subject field.

The remainder of this chapter is organized as follows:

• Section 5.1 introduces the problem of building a unified interface over hetero­
geneous structured metadata.

• Section 5.2 analyzes the metadata variability in OAI-PMH repositories.

• In Section 5.3, we discuss the advanced search and interactive search approach
to build the federated interface over heterogeneous metadata. In metadata har­
vesting, the metadata records are incrementally harvested, and the search in­
terface adaptively adjusts with frequently-added new collections and harvested
data.

• Section 5.4 discusses related work.

• Section 5.5 analyzes the initial experiences and discusses future work.

5.1 INTRODUCTION

One major objective of digital library interoperability is to provide a unified search
interface. For the purpose of this thesis, a unified search interface is defined as an
interface that can seamlessly search across multiple repositories. Many repositories
have significant investment in controlled metadata fields. This includes controlled vo­
cabularies (thesauri, subject heading lists, etc.), controlled values (a type of encoded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

schema, usually a string formatted in accordance with a formal notation or pars­
ing rules), and other locally controlled value or text. This chapter discusses several
metadata fields used in DC while emphasizing controlled vocabularies and values.
Controlled metadata is crucial for effective search and retrieval of Internet resources
[25]; French et al. [34] point out that controlled metadata is of little use if it is not
used effectively in query formulations. Our focus is how to build a rich, unified search
interface that can exploit the controlled metadata across heterogeneous collections.
The problem is solved by an advanced searching interface that allows users to search
and select in specific fields with data we construct from the harvested metadata, and
also by an interactive search for the subject field.

In the harvesting approach, the data are usually harvested on the service provider
side, so we have the luxury of pre-building advanced services without relying on
real-time interactive access to the remote archives. However, building a rich uni­
fied search interface over harvested metadata brings about new challenges. Many
information-rich repositories have major investments in detailed metadata, which
frequently includes some forms of controlled vocabularies and/or controlled values.
To build better services, we need to understand how metadata control is used in these
repositories, and to determine if we can exploit them in a unified interface. Further­
more, we need to know how easily new collections and freshly harvested metadata
can be built into the unified interface.

One straightforward approach is to build a keyword search similar to typical web
search engines. Web search engines represent a well-proven, successful technology
based on harvesting and keyword searching. Keyword searching is a useful way
to assume little about the semantics of a document, which works well for the het­
erogeneous, unstructured data sources that make up the Web. Nevertheless, when
structured metadata is available, it fails to exploit the additional semantics.

Another approach to address the lack of a unified controlled metadata is to create
a standard and map each repository’s controlled metadata to the standard [52]. For
controlled vocabularies, this approach can be improved by a meta-thesaurus based
solution like UMLS (Unified Medical Language System), which

preserves the meanings, hierarchical connections, and other relationships
between terms present in its source vocabularies, while adding certain
basic information about each of its concepts and establishing new rela­
tionships between concepts and terms from different source vocabularies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

[66]

Both approaches introduce significant human effort to maintain the relationships.
Adding new collections to the federation leads to the complexity of updating rela­
tionships. Therefore, neither is feasible in our scenario that the federation service is
maintained with limited resources.

In order to verify our approaches, we collect data from several different commu­
nities, ranging from museum to eprint collections. As participating archives add new
records to their collections, their metadata records are also incrementally harvested.
Analysis of these heterogeneous collections indicates that metadata control is widely
used in most repositories, especially in certain metadata fields. Usage is extremely
variable, however. From our study, it is clear that no single approach would allow
effective use of the manifold metadata control we encountered. We solve the problem
by implementing an advanced searching interface that allows users to search and
select in specific fields with data we construct from the harvested metadata, and also
by an interactive search for the subject field. As the metadata records are incremen­
tally harvested, we address how to build these services over frequently-added new
collections and harvested data.

We must point out that we are building a demonstration service to study the issues
of metadata harvesting. It harvests all OAI-PMH-compliant repositories regardless
of their subject or contents. In a specific community such as OLAC, a standard about
how to use controlled vocabulary may be designed. If such a standard is successfully
used across the community, it can reduce the integration works done on the service
provider side.

5.2 METADATA VARIABILITY

A metadata field can be based on either controlled or free text. We consider three
types of metadata control: controlled vocabularies, controlled values, and other lo­
cally defined metadata. Controlled vocabularies are typically used for subject access
and can control synonyms, variant spellings, as well as providing broad term, narrow
term, and other subject relationships. Controlled vocabularies include thesauri and
classification schema. Controlled values are usually a string formatted in accordance
with a formal notation or parsing rules (e.g. “2000-01-01” as the standard expres­
sion of a date). These controlled values include values of a “fixed or set length” (e.g.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

“eng” or “en” as the standard expression of ISO 639-2 three-character vs ISO 639-1
two-character language code for “English”). Locally defined metadata may contain
a mix of locally controlled text strings or values for a given metadata field/element
used in records from a given repository, and an “encoded schema” may be implied
but is not clearly identified and available for public use.

OAI-PMH uses unqualified DC as the default metadata set to enable minimal
interoperability. Although OAI-PMH supports other metadata formats, our discus­
sions are based on DC because it is the common metadata set supported by all
OAI-PMH compliant repositories. Over the past several years, DC has developed
as a de facto standard for simple cross-discipline metadata. It defines 15 metadata
elements: creator, title, subject, description, publisher, contributor, date, type, for­
mat, identifier, source, language, relation, coverage, and rights. DC does not specify
anything about syntax in any of these fields. From our observance, among the 15 DC
fields, some, such as description, are most likely free-text based. The subject field
tends to be based on controlled vocabularies, and other fields, such as type, date,
format, and language may be based on either controlled values or locally defined
values. In contrast to qualified DC, unqualified DC does not include an encoding
scheme to aid in the interpretation of an element, so there is no definite way to decide
whether a metadata field is controlled without consulting the original data providers.
However, by studying the harvested metadata, in most cases the difference between
controlled and free text input is obvious, so we consider the tendency be correct. We
manually examined the subject, language, format, date, and type fields for further
study of metadata variability. The meaning of “subject,” “date,” and “language” are
fairly straightforward; the definition of “type” is “The nature or genre of the content
of the resource,” and of “format” is “The physical or digital manifestation of the
resource.” [131]

To understand how metadata fields are used, consider Table 5.1, which has been
constructed based on the collections in Arc. Table 5.1 contains an excerpt from our
analysis of how metadata is used in four archives. The complete data are available
at Arc’s website [3]. Table 5.2 lists the number of records harvested and the number
of distinct subject, type, format, and language fields used in each archive. Table 5.2
also lists whether consistent formatting is used in the date field. In columns 4-7, a
“zero” value means this metadata field is not used, either because the metadata is
not available in the repository, or because the repository simply ignores it because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

TABLE 5.1: Sample data of subject, format, language and date fields in four archives
(excerpt)___

CogPrints MIT etheses NCSTRL
Subject Complexity-Theory

Computationai-Linguistics
Computational-Neuroscience

Computer-animation
Computer- architecture
Computer-composition

N/A

Format N/A application/pdf
image/gif

N/A

Language N/A N/A English
French
German

Date 1950-01-01
1953-01-01
1954-01-01

1900-01-01
1903-01-01
1921-01-01

1958-12-01
1959-03-01
1959-12-01

Type Book Chapter
Conference Paper
Conference Poster

Thesis Proceeding
Proceedings

it is constant across all records (e.g. English language archives may simply leave the
DC language field empty). In column 3, dealing with date field formatting, the value
“Y” means consistent formatting is used; “N” means free input is used; “N/A” means
this field is never used. In Table 5.2, if the number of records is significantly larger
than the number of distinct values in one metadata field, it suggests that a controlled
metadata is used. This is not always true, however, so we manually verified these
results.

Figure 5.1 shows the percentage of archives that use controlled values in each
metadata field. It indicates that metadata control is widely used among archives,
especially in the type, format, language, and date fields. As we can see, about half use
controlled vocabularies in the subject field. In the archives labeled “without metadata
in specific field,” many use a constant value (e.g. “English” in the LANGUAGE
field based on other factors such as an assumption that records in “English-based”
repositories represent only publications in the English language.)

In many circumstances, even if controlled metadata are used, each archive may
employ its own semantics for these fields. Archives may have different semantics for
the same field, and they frequently use different standards, such as subject classifica­
tion methods. However, data providers have invested significant human and machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

TABLE 5.2: Metadata variability in Arc (to April 3, 2002). The full table is available
in Appendix A.__

Archive No of Records date subject type format language
8657690236 798 Y 53 1 0 0
AIM25 3962 N 2424 1 1 0
anlc 5 Y 2 1 2 0
anu 114 Y 22 6 0 0
aps 422 N/A 5 0 180 0
arXiv 182996 Y 121 1 0 12
bmc 220 Y 0 13 0 1
caltechCSTR 504 Y 8 2 0 0
caltecheerl 140 N 1 1 0 0
caltechETD 30 Y 10 1 4 1
cav2001 111 Y 103 1 0 0
CBOLD 89 Y 136 1 20 3
CCSDthesis 99 Y 16 1 0 0
CDLCIAS 36 Y 9 4 0 0

resources to use controlled metadata, and service providers should try to re-use these
rich metadata.

One straightforward approach is to use a standard and map the controlled meta­
data from an individual archive to the standard. We could then reflect this approach
in the search interface by showing the standard as a selectable option. This approach
has three major limitations:

1. The standard may differ in terms of levels and semantics from that of an indi­
vidual archive, leading to low-precision searches.

2. Adding a new collection to the federation leads to complexity in updating
mapping tables.

3. Significant manual effort may be required to define the standard and the map­
ping tables. Moreover, any new archive may differ significantly from the stan­
dard, necessitating an update to the unified scheme.

Table 5.2 demonstrates that while the number of subject fields is large, the number
of different language, type and format fields is limited in most archives. This leads
directly to our design decision to create a browse interface for language, type, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Usage of Controlled Vocabulary

■ Percentage o f DL which use
Controlled Vocabulary

■ Percentage o f DL which use free
format user input

□ Percentage o f DL without
metadata in specific field

Subject Type Format Language Date

Metadata Field

FIG. 5.1: Controlled metadata

format fields. An interactive search interface is designed for subject search. Because
most date fields follow strict controlled values, we implement the date field as a free
input with restricted format.

Our solution to solve these problems is based on the user-centric approach where
users engage in a series of interactions with the federation service to communicate
their queries. There are two phases of interactions. In the first stage, a user searches
the controlled value, and in the second stage, the user continues resource discovery
based on the results from the first stage. We built browse capacity and interactive
search interfaces based on this user-centric approach.

In the metadata harvesting approach, there are no pre-defined authority files
available and the unified interface has to be built over harvested data that are added
on a regular basis, so the search interface has to be adaptive to the frequently chang­
ing metadata. Figure 5.2 shows the components of the system and how it works.
The harvester keeps harvesting data from sources. Another process periodically col­
lects key metadata fields from harvested metadata, builds an index, and refreshes the
search interface. Users interact with the search interface to identify their preferred
controlled metadata and then execute a search.

5.3 APPROACHES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Indexed key
metadata

fields

Harvested
Metadata

I.Harvest
Metadata 2. Collect key metadata field and

build index

3. Create search interfaceS. Execute search based on the
selected options

4. Identify all the collections to be

Harvester

Interactive
InterfaceEnd User

searched and with what options

FIG. 5.2: Building a search interface based on harvested metadata

In the metadata harvesting approach, synchronization between data provider and
service provider is very important. In our case, since the search interface is built over
harvested data, it must be adaptive to the frequently changed data. We implemented
an interface builder for this objective. The interface builder is responsible for creating
a new interface when new archives and records are added. The interface builder is
resource-expensive and cannot run just-in-time. Instead, it periodically builds a
cached interface on the server side, and the user always sees this cached version.
This interface builder does not change the layout of the interface nor the type of
fields the user can choose to interact with; rather, it creates values the user can
choose Grom when selecting a field for queries.

5.3.1 Keyword Search

Keyword search allows users to search all metadata fields across archives. It is imple­
mented by accumulating and indexing all metadata fields together. Keyword search
provides a simple and familiar way to conduct search across all archives, and the
input can include Boolean operators. It is probably the only way to search across ex­
tremely variable sources without major work, but it cannot exploit the rich metadata
set defined by source archives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

5.3.2 Advanced Search

Advanced search (Figure 5.3) provides a way for a user interactively to pick up the
controlled values defined by specific archives via the search interface. The searcher
picks an interesting archive, then the system creates a series of selectable options for
each metadata field, and the user selects the exact controlled value and executes the
precise search. Author, title, and abstract searches are based on user input, and the
input can include Boolean operators. Archive, set, type, language and subject fields
use controlled vocabularies. For search results sorting, there is a pull down menu for
either type of searching that allows specifying the sorting of search results. Search
results can be sorted by rank, datestamp, or archive. For the search result group,
there is a pull down menu for choosing the grouping of results. Search results may
be grouped according to archive, year of datestamp and subject.

In the implementation, the metadata fields are accumulated from the archives’
source data. One background process periodically checks the harvested data and
recreates the browse list. The advanced search capacity fits the user who is familiar
with specific archives, but it does not scale well for a large number of archives because
the browse list becomes too large to use.

5.3.3 Interactive Approach

In this approach, the users provide some simple initial descriptions of their queries by
means of a series of keywords. The system will then present the user with contextual
metadata information from those archives that have relevant records. Users can
then opt to add to the search query with richer metadata elements chosen from
those presented by the system. The key to this approach lies in the interaction
between the user and the system. This interaction provides increasing detail to
the user by obtaining detailed values from the harvested metadata. Consider the
example of the subject classification maintained by arXiv for physics and a subject
classification maintained by the Human Development collection. Assume that the
user types “accelerator” , the system would find this term in the arXiv classification
under “high-energy-physics: proton accelerator,” and in the Human development
collection under: “university education: science: accelerated learning.” Users can
then choose which more closely fits their view of the subject.

Based on the user-centric approach, we have implemented an interactive interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

A d v a n c e d S e a r c h

Search specific bibliographic fields

m

Author

Title

Abstract

Search fo r Records
Containing

Filter Options

Archive

Archive Set

Subject

Date Stamp

Disco very Date

*

® All the specified terms

C Any of the specified terms

All
ENUMERATE
EarlyMandarirt
Form ations
Form osan
G enericEPrints
HKUTO
HUBerlin

Type in o r S e le c t In te

 I (yyyy/m m /dd)

: (yvrv /m m /dd i
| | - " " - H - l g

FIG. 5.3: Advanced search interface

to help users select the subject category. The interface is illustrated in Figure 5.4
(note that Figure 5.4 only shows the subject selection interface; the rest of the
interface is similar to Figure 5.3). To view subject categories available in different
archives, a user enters a subject keyword that closely matches the desired subject
category. The input can include Boolean operators (AND, OR, NOT). Next, the
user is shown matched subject categories from different archives. The user either
selects one or more of the matched categories or further refines the matching list by
typing more words in the field. This way, a user is able to select the desired subject
categories, which are then used to construct the search query for the Arc database.

To support the interactive subject selection interface, we created a subject table
in the database. The subject table is constructed by extracting the subject field(s)
from each archive. The table consists of two fields: archive and subject. Once the
user enters a keyword and hits enter in the subject selection interface, the keyword
is sent to a servlet at the back-end. The servlet then connects to the database
using JDBC [110] and searches the subject table for the keyword using an Oracle
full-text search. The matched records are returned to the user and displayed in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

* Cross Archive Searching Service

To view subject categories available in different archives of your interest,
enter a subject keyword that matches to the desired subject category.

Subject Category: | com puter Hit ENTER alter typing the keyword

Matched Subject Categories:
(NOTE: P t« * s « M l« c t o n e o r m or* s u b je c t c a te g o r ie s .
The d ls p le y fo r m e tf o r e s u b je c t c a te g o ry I s " a rc h iv e ||s u b je e t" .)

physdoc|] computer
cdlibl || computer software
cogprints|| Computer Sdence: Artificial Intelligence l | |
cogprintsjj Computer Sdence: Complexity Theory
cogprintsjj Computer Sdence: Dynamical Systems
cogprintsji Computer Sdence: Language___________________ __ _____ J i

BtlMI

FIG. 5.4: Interactive subject selection interface

multi-selection list. The interactive subject selection interface improves the search
precision by giving users the flexibility of selecting the archive and subject category
of their choice.

We show the effectiveness of our approach by considering a few test cases, which
demonstrate that the interactive subject selection interface improves the search pre­
cision by giving the user the flexibility to select the archive and subject category of
choice. In Table 5.3, once the user searches for the subject keyword “science,” the
interactive subject selection interface returns 613 matched subject categories in 39
archives whose subjects include the word “science.” If the user refines the query to
“computer science,” the search interface matches 60 subject categories in 19 archives.
Next, the user selects the archives and subjects of choice.

5.3.4 Displaying the Search Result

Our experience proves that rich metadata sets not only provide a way to build a
powerful search interface, but also help users to review the search results. Users have
the flexibility of sorting and grouping by rank, date stamp, subject, or archive. In
Figure 5.5, we see that in the result display page, the left frame shows all groups and
hit numbers, and the right frame shows summary information about each document

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

TABLE 5.3: Number o: matched archives and subjects using interactive search
Keyword typed by user # of matched archives # of matched subjects
science 39 613
computer science 19 60
computer science or
computer engineering

20 68

computer network 4 19
physics 27 215
nuclear physics 6 32

in the selected group. Users can also traverse different pages if multiple search pages
exist. When users are interested in a document, they can view the detail page and
follow the link to the full-text document that resides in the data provider’s repository.

A-E F-J
K-O P-U
V-Z ALL

Archtva C r o u p s

ACL (2149^
AIM25 f4891^
C B P L D .,(a«
C C S D JeanN icnd rB61
CCSDarchiveSIC W
CCSOthesis-fl621
"OLCIAS 7371
CDLDERM 751
CPLTCtUgps.ĉ aa
CSTC 7711
OLCommons f4601
DUETT (356-)
EKUTuebihaen 76501
ENUMERATE 7821
EarluMandarin 711

i Home • Simple Search • Advanced Search • BrowsejSl
• Administration • OAI • Help • _

M eta d a ta R ecord s G rouped By A rchive : ACL SUm™ 7ail ^

Q uery : G ar All R e c o rd s

P a g e t I 2 3 A 5 6 7 B 9 10 II 12 13 M 15 16 17 18 19 20 fNext » 1

A flexible distributed architecture for NLP system development and use
Freddy Y. Y. Choi (author)

oai:acl:P99tl082
Modeling Filled Pauses in Medical Dictations
Sergey V. Pakhomov (author)

oai:acl:P99:lQ93
Theoretical rssu av in Natural Language Proeesslnp-2

oaitacltT78tl0Q0
Testing The Psveholoaical Reality oF a Representational Model
Dedre Gentner (author)

___ oairacltT78:1001 1

FIG. 5.5: Arc search result page

5.4 IMPLEMENTATION

5.4.1 Database Schema

OAI-PMH uses unqualified DC as the default metadata set, and all Arc services are
implemented on the data provided in the DC fields. All DC attributes are saved in the
database as separate fields. The archive name and sets information are also treated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

as separate fields in the database for supporting search and browse functionality. In
order to improve system efficiency, most fields are indexed using full-text properties
of the database, such as the Oracle InterMedia Server [103] and MySQL full-text
search [88]. The search engine communicates with the database using JDBC and
Connection Pool [110].

5.4.2 Search Server Implementation

The search server is implemented in Java using Servlets. The components of the
search server are shown in Figure 5.6.

Grouper Session manager

i Local Query Cache /
I Session Related Data

Searcher

Database (Metadata andTnde!

Displayer

FIG. 5.6: Search engine implementation in Arc

The session manager maintains one session per user per query. It is responsible for
creating new sessions for new queries (or for queries for which a session has expired).
Sessions are used because queries can return a large number of results that cannot
be displayed on one page. Thus, sessions are used to cache results in order to make
browsing through the hits faster. The session manager receives two types of requests
from the client: either a request to process a new query; or a request to retrieve
another page of results for a previously submitted query. For a search request, the
session manager calls the index searcher that formulates a query based on the search
parameter, and submits it to the database server using JDBC, then retrieves the
search results. The session manager then calls the result displayer to display the first
page. For a browsing request, the session manager checks the existence of a previous
session (sessions expire after a specific time of inactivity). If an expired session is
referenced, a new session is created, the search re-executed, and the required page
displayed. In the case where the previous session still exists, the required page is
displayed based on the cached data (which may require additional access to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

database).

5.5 RELATED W ORK

Although many projects, including Information Manifold [64], STARTS [41], InterOp
[136], Lyceum [76], FlashPoint [77], and NCSTRL [24], have tried to provide uni­
form access to heterogeneous collections, almost all such systems use a distributed
searching approach. These systems differ from the metadata harvesting approach.
A method introduced in [40] is an interactive system for semi-structured data that
helps the inexperienced user by focusing on a semi-structured graph-based database
for web data. Entry Vocabulary [36] is another technology that enhances search­
ing by mapping from the user’s ordinary language to the metadata of the digital
sources. French et al. [34] demonstrates a technique for mapping user queries into
a controlled indexing vocabulary with the potential to radically improve document
retrieval performance. Both of these methods, however, assume the existence of one
unique classification scheme, which does not exist in our scenario.

5.6 DISCUSSION

We built the Arc search interface based on the approaches described above and the
initial results are promising. Working with over 1M records in Arc, the advanced
search interface html page is automatically daily refreshed. This interface can be
accessed quickly with the speed of a conventional home Internet connection. For the
interactive search, the user has the flexibility of continually refining queries so the
system will scale to a larger number of data providers. After removing test queries
from our own site, we found that 8053 queries were conducted in five months: among
them, 6137, or 76%, were keyword searches; another 1916, or 24%, were advanced
searches, indicating that users still prefer to use keyword search. In the NCSTRL
project, which is based on Arc, a usability evaluation from Virginia Tech indicated:

The interface is easy to understand and not difficult to use. The system
functionality seems appropriate and the user interface is aesthetically
pleasing. [118]

This study also addressed some potential usability problems that could aid future
redesign and development. In another study, a focus group at Los Alamos National

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Laboratory indicated that the interactive interface holds promise. The benefits of
immediate feedback to the user hold great promise in enhancing the search experience
as well as increasing the precision of the user’s search. Making this interface more
intuitive will be part of our future study. The code of Arc is released open source
through SourceForge [4], and is used by metaArchive [86], NCSTRL [2], OLAC [101],
and Archon [82] projects to build community-based digital libraries.

It is clear from our experiment that most archives tend to use controlled meta­
data, but the metadata are extremely variable from archive to archive. We have
implemented two user-centric search interfaces, advanced searching and interactive
searching, providing a unified search interface across heterogeneous collections and
exploiting the rich controlled metadata.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

CHAPTER 6

REPLICATED FEDERATION SERVICE

In the previous chapter, we demonstrated a centralized search service over harvested
metadata. However, many institutions already have specific native library systems,
and they would like to take advantage of metadata harvesting. Doing so would help
them to integrate other data sources into their native library systems, and to share
their institutional collections with third-parties.

In this chapter, we discuss the replicated approach to building federation service.
This approach can be viewed as mirrored OAI-PMH repositories, where every dig­
ital library integrates harvested metadata into its native library. The consistency
between these services is maintained using OAI-PMH. The replicated approach is
demonstrated in the TRI (Technical Report Interchange) project taking place among
several national laboratories.

The remainder of this chapter is organized as follows: We begin with a com­
parison of the centralized model and the replicated model. Section 6.2 presents the
architecture of a system based on the replication model. Section 6.3 discusses the
issues of integrating the metadata harvesting system with a native library. In Section
6.4, we present the TRI project, which is based on the replication approach.

6.1 INTRODUCTION

A replication model enables the sharing of documents housed in disparate digital
libraries that have unique interfaces and search capabilities designed for their user
communities. This allows a native digital library to export and ingest information
from other digital libraries in a manner transparent to its user community. That
is, the users access information from other digital libraries through the same native
library interface the users are accustomed to using. The importance of this approach
is that:

• A library may have significant investment and built-in service for its user com­
munity; it may not be realistic to change the native library system;

• It not only allows for one-time historical sharing of a corpus amongst partic­
ipating libraries, it also provides for continuous updating of a native library’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

collection with new documents when other OAI-PMH-compliant repositories
add to their collections.

• Additionally, all libraries will always (with some tunable time delay) be con­
sistent in having the totality of all holdings available within their own library.

There are many challenges in the replicated approach:

• Since each repository has its own DL management system and native search
interface, the metadata harvesting system must be seamlessly integrated into
the native DL system;

• Because each DL uses different native metadata format, we need to use a stan­
dard metadata format and there must be translation between the native and
standard metadata formats in order to enable interoperability;

• The system must support new participants with limited effort, and any new
participant should not adversely impact the existing installations;

• Metadata is duplicated in each DL, so when add/update/delete operations
occur in one native library, the changes must be propagated to other libraries.

6.2 SYSTEM ARCHITECTURE

In the replication approach, each participant has its own user com m unity and a
local search interface allowing users to retrieve data from other library systems. A
translation process in each DL is responsible for translating native metadata format
to a standard metadata format and vice versa, i.e., MARC [95] tags are converted
into DC and DC into MARC. The standard metadata format is saved in an OAI-
PMH compliant repository, which can selectively serve metadata when an external
OAI harvesting request arrives.

Since each library has its own data format and. management system that is main­
tained by local librarians/information specialists, a file-system-based solution is a
simple and flexible way for each library to import/export native metadata. The last
modification time of records provides a basic mechanism to detect newly added or
changed metadata. The exported native metadata is translated into unqualified DC
format, which is the default used by OAI-PMH to support minimal interoperability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

The richer metadata formats such as MARC or Qualified DC provide richer seman­
tics and support greater “precision” in search results; however, the unqualified DC
is appropriate for a rapid prototype implementation.

The software that has been developed is highly modularized and can easily sup­
port new participants with minimal effort. Such software modules include:

Scheduler A tool manages and schedules various tasks in the replication system;

OAI reposito ry A database-based system makes each library OAI-PMH-
compliant;

H arvester An application issues OAI-PMH requests and collects metadata;

T ranslator A tool translates native metadata format in each library to a standard
metadata and vice versa.

These modules are the same for all repositories. The translator requires some cus­
tomization for particular libraries because its local metadata format needs to be
mapped into a standard format. This can be accomplished by creating a mapping
table between the metadata and the standard.

6.3 LOCAL R E PO SITO R Y

While each site shares similar repository and harvester modules, they also have spe­
cific DL management systems and native metadata formats. We follow several guide­
lines in designing the local repository management in replication model:

• Each library should maintain its own management system; an identical one is
not feasible or possible;

• Considering the different software/hardware environments in each library, the
interface between the native library and metadata harvesting system should be
portable across platforms and should be simple;

• The effort to add a new participant should be minimal.

Based on these requirements, we defined a file-system-based interface between native
library and metadata harvesting system. Each library exports its native format to
a configurable directory (“native” directory), and the changed/added document is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

automatically marked by last modified time. A local reader periodically polls this
directory and any file whose modified date is newer than the last harvesting time is
translated into unqualified DC format and inserted into the OAI repository. Addi­
tionally, there is a “harvested” directory in each library; a local writer periodically
checks whether any new/changed metadata is harvested from a remote repository,
translates it into local format, and writes it to the “harvested” directory. Each site
may have its own program that exports metadata from the local library system and
a loader that reads the “harvested” directory. Such a mechanism is highly inte­
grated with a given local repository, so its implementation is out of the control of
the common modules.

The participating repositories may use different metadata formats. While it is
possible to implement a one-to-one mapping for each metadata pair, the mapping
complexity dramatically increases with the number of participants (n libraries would
require n(n — 1) mappings). With a common intermediate metadata format, only 2n
mappings are necessary. For this reason, we chose unqualified DC as the common
intermediate metadata format and mapped each native metadata format to unqual­
ified DC. With a common metadata format, however, the rich metadata element in
each library may be lost, as the common metadata format is the minimal subset of
all libraries. This problem can be alleviated if we adopt a richer common metadata
format in the future, such as MARCXML [94] or qualified DC.

Finally, there are several approaches to address the lack of unified subject access.
One way is to use a standard terminology and map each library’s controlled metadata
to the standard [52]. However, the granularity of subjects/keywords is significantly
different among participating libraries; a unified standard is difficult to define, and
two-step mapping may cause more inconsistencies. Another way is to perform an
individual mapping for each subject category pair. This alternative approach is more
accurate because only one-step mapping is used. Nevertheless, both approaches may
introduce significant human effort to maintain the relationships. A third approach is
to use an automatic classification algorithm, but the precision of this mapping is low,
as we are dealing with limited metadata. The easiest approach, which is also used in
our implementation, is to map all numeric subject codes into text strings using the
mapping provided by the contributing organization; using this approach, the subject
mapping is done only once in the source library, thus adding a new library will not
influence the existing installations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

6.4 CASE STUDY

The Technical Report Interchange (TRI) project allows integration of technical report
digital libraries at NASA Langley Research Center (LaRC), Los Alamos National
Laboratory (LANL), Air Force Research Laboratory (AFRL), and Sandia National
Laboratory (Sandia). TRI is based on the replication model as presented above.

6.4.1 Requirement

LaRC, LANL, AFRL, and Sandia all have thousands of “unclassified, unlimited”
technical reports that have been scanned from paper documents or “born digital.”
Although these reports frequently cover complementary or collaborative research ar­
eas, it has not always been easy for one laboratory to have full access to another
laboratory’s reports. The laboratories would like to share access to metadata with
links to full text documents initially, and eventually replicate the document collec­
tions. Each laboratory has its own report publication tracking, management, and
search/retrieval systems, with varying levels of interoperability with each other. Since
the libraries at these laboratories have evolved independently, they differ in the syn­
tax and semantics of the metadata they use. In addition, the database management
systems used to implement these libraries are different (Table 6.1).

TABLE 6.1: Native metadata formats and ibrary systems
Laboratory Native Metadata

Format
Native Library
System - Source

Native Library
System - Desti­
nation

LaRC MARC BASIS+ TBD
LANL USMARC+ Local

Fields
Geac ADVANCE Science Server

AFRL COSATI Sirsi STILAS Sirsi STILAS
Sandia MARC Horizon Verity

6.4.2 Typical Workflow

Figure 6.1 illustrates typical workflow in the TRI system. The MARC records in
the LaRC library are exported in flat file format, translated into DC format, and
deposited into the database server. The data are now OAI-PMH-compliant and
are harvested by the LANL harvester. Then a local write module reads the newly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

harvested data and converts them into LANL native file format. Finally, these files
are loaded into the LANL native digital library.

Native and
general
modules
Interface

NASA native document
(MARC)

NASA

OAI Layer

Harvester

LANL

D atabase!

LANL native file
format(XML)

TranslatorNASA file
export

NASA native
Library

Translator
File

Loader

LANL Native
Search

Interface

FIG. 6.1: A typical workflow - LANL shares documents from LaRC

6.4.3 Mapping M etadata Formats

Of the current four TRI participants, three (LANL, LaRC, and Sandia) use MARC
in their local libraries, each with its own extensions or profiles. AFRL, on the other
hand, supports COSATI. Each library exports its metadata in its own most conve­
nient way and also defines a bi-directional mapping table (See samples in Table 6.2
and Table 6.3).

TABLE 6.2: LaRC MARC to DC mapping(Excerpt)
LaRC MARC Metadata Set Dublin Core
D245a, D245d, D245e, D245n, D245p, D245s Title
D513a, D513b coverage
D520b description
D072a,D072b(001), D650a,D659a subject
D090a(000), D013a, D020a, D088a, D856q, 856w identifier

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

TABLE 6.3: DC to Sandia mapping
Dublin Core element Sandia Metadata Field
identifier report numbers
identifier - URI URL
subject subject category codes
title title
subject keywords
creator personal names
creator corporate names
date date
format - extent extent
description notes
rights classification Sc dissemination

In Table 6.2, the mapping table follows the structure of the Library of Congress’s
MARC to DC crosswalk [96] with additional features from LaRC. In the MARC to
DC mapping, the MARC file is parsed and corresponding fields are mapped to DC.
In this process, some information may be lost; for example, the identifier field may
be an ISSN number, technical report number, or URL. Information like ISSN and
URL is clearly defined in MARC, but it will map to the undistinguished “identifier”
field in unqualified DC, losing the distinctions between metadata fields.

6.4.4 Subject Mapping

In the TRI project, each library may use a different subject thesaurus and/or clas­
sification scheme. For example, LANL uses a combination of Library of Congress
Subject Headings (LCSH) and subject terms from other relevant thesauri (includ­
ing International Energy: Subject Thesaurus (ETDE/PUB—2) and its revisions).
The metadata for a given LANL technical report may also include numerical subject
categories or alpha-numerical report distribution codes representing a broad subject
concept. Subject category code sources used by LANL include: Energy Data Base:
Subject Categories and Scope (DOE/TIC-4584-R#) and its succeeding publication
and revisions, International Energy: Subject Categories and Scope (ETDE/PUB—1).
Report distribution category code sources include various revisions of Program Dis­
tribution for Unclassified Scientific and Technical Reports: Instructions and Category
Scope Notes (DOE/OSTI-4500).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

LaRC uses its own. subject thesaurus and the NASA-SCAN system. The local
library may organize the information by subject classification, making it necessary
to do a subject classification mapping, such as, mapping the NASA subject code
“77 Physics of Elementary Particles” to the Los Alamos report distribution code
“UC-414” (Table 6.4). Subject metadata is an area where generically grouping the
various subject-related metadata into a single unqualified DC data element results in
loss of the source information for a given thesaurus or classification scheme, thereby
complicating the subject metadata mapping.

TABLE 6.4: Subject mapping: LANL UC-414 maps to NASA SCAN 77
Digital Library Subject Schema Sample Subject Format

LANL

UC Report Distro Category UC-414 sddoeur
ETDE Subject Category 430100 edbsc
INIS Subject Category (old) E1610 inissc
INIS Subject Category (new) S43 inissc
Text (LCSH) Controlled formatted text
Text (other thesauri) Controlled formatted text
Text (local subject heading) Locally controlled text

NASA SCAN 77
Text PHYSICS ELEMENTARY

PARTICLES AND FIELDS

6.4.5 Integration w ith Native Library

The procedure of integrating the TRI system with a local library is highly dependent
on the library’s existing system. Here we describe the experience in LANL. LANL
discussed various options for making TRI metadata available to local library users.
One of the first suggestions, importing TRI metadata records from other institutions
into the library’s online catalog (the original source of exported LANL technical
reports metadata), was ultimately rejected due to concerns about data mapping
from the “lowest common denominator” DC format of TRI records to the MARC
format required for the online catalog. It was decided to make TRI metadata records
available through the library’s Science Server software as a proof-of-concept test.

Science Server, a locally modified version of software provided by Science Server
LLC, enables simple content management while delivering electronic journals and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

IEEE Conference and Standards records directly to the desktop. At LANL, Science
Server was ultimately selected for integration of and access to TRI records for the
following reasons:

• It provides a unified, familiar search interface to library users;

• It offers robust indexing and searching capabilities with support for full text
links (hyperlinks to technical reports);

• It permits the definition of “collections” for each harvested site, with appropri­
ate access restrictions for the collections as needed.

Since the Science Server product was originally designed for access to journal lit­
erature, the “journal paradigm” was adapted for technical reports - with the TRI
database becoming one collection within Science Server, each TRI archive institu­
tion treated as a “title,” individual report years handled as volumes/issues, and the
individual reports handled as “articles.”

With the above paradigm in mind, it was a simple matter to design a loader
for Science Server that mapped the TRI DC fields into Science Server fields. TRI’s
configuration tables were updated to perform “local writes,” exporting the records
from each archive to DC XML flat-file format. These records were then copied to
test version of the Science Server system, converted from DC, and indexed. At this
point, approximately 72,000 TRI metadata records are locally searchable through
the test Science Server system.

6.4.6 Initial Results

In the first stage of the TRI project, LaRC and LANL installed TRI systems and
each site had shared approximately 30K technical reports with each other. Both were
able to automatically harvest newly published metadata from each other on a daily
basis. LANL also loaded the harvested records into its native library, the Science
Server, a system external to the TRI project repositories.

6.5 RELATED WORK

Web caches have been widely used to distribute load and reduce network traffic.
Mirror software is designed to duplicate a directory hierarchy between two machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

It avoids copying files unnecessarily by comparing the file timestamps and file sizes
before transferring [85]. Recently, the Content Delivery Network (CDN)[75] has been
widely used. However, a typical library system usually customizes data from a large
scale of heterogeneous sources with authentication, thus the general Web cache may
not fit well with the specific requirements of library community.

In the digital library domain, the replicated approach to build federation service
has been validated by the experience within the library community in building and
operating very large-scale (centralized) union catalog databases. However, this pro­
cess has traditionally been done with human intervention, a typical process would
involve periodic FTP downloads and/or CD-ROM delivery.

6.6 DISCUSSION

The replicated model enables the sharing of documents housed in disparate digital
libraries that have unique interfaces and search capabilities designed for their user
communities. It is fault-tolerant with the cost of data duplication in each repository.

During the implementation, one of the most significant problems was that un­
qualified DC does not match well with the sophisticated metadata formats used by
the participants. The mappings, especially the subject mapping, is also difficult, and
in many circumstances the semantics of original data is lost. This could be partially
solved by defining a richer standard, such as qualified DC profile.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

CHAPTER 7

KEPLER SERVICE

Kepler 1 service supports the concept of archivelet, which is a self-contained, self-
installing software package that easily allows a researcher to create and maintain
a small, OAI-PMH-compliant archive. The Kepler service poses a series of new
challenges to metadata harvesting. The OAI-PMH is insufficient in such a scenario
and we extend the harvest model to a “push” and hybrid “push/pull” model to
support the dynamic application scenario of Kepler.

This chapter is organized as follows: From Section 7.1 to Section 7.4, we introduce
the concept, architecture of the Kepler service. In Section 7.5, we discuss the repos­
itory synchronization problem using the metrics introduced in Chapter 4. Section
7.6 presents the “push” and hybrid “push/pull” models that improve the freshness
and reduce update overhead in the Kepler service. In Section 7.7 we discuss the
implementation.

7.1 INTRODUCTION

The Kepler service is based on OAI-PMH to support what we call “personal data
providers” or “archivelets.” The objectives of the Kepler service are to:

• Satisfy the need for researchers to publish results and disseminate them to a
wide audience quickly, conveniently, and under the researchers’ control, and
possibly have the research results annotated and reviewed by peers outside the
traditional and lengthy journal review process;

• Let the general public have seamless access to the totality of all such published
material.

An archivelet is a self-contained, self-installing software package that easily allows a
researcher to create and maintain a small, OAI-PMH-compliant archive. An OAI-
PMH-compliant service provider harvests metadata from all existing archivelets and
makes them available to the general public. In this vision, we see tens of thousands

LThe Kepler service is named after the great theoretician, Johannes Kepler. According to Carl
Sagan in his book Cosmos, Kepler struggled to get data from his sponsoring colleague, Tycho Brahe,
the great observationalist. Only when. Brahe was on his deathbed did he finally give Kepler access
to all his data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

of researchers creating their own personal archives housed on a variety of machines in
different network environments ranging from the sophisticated direct Internet access
at the university to a home computer connected only by a modem during certain
times. One or more service providers will make all these archivelets available seam­
lessly to any user as if they were all one large digital library.

7.2 CONCEPTUAL MODEL OF KEPLER SERVICE

We believe that two factors are critical to the success of any digital library effort:
simplicity of use and control. Hence, we strongly feel that the publication tools to
create an archivelet should be a downloadable, platform-independent software pack­
age that can be installed on individual workstations and PCs, rather than software
that is installed by an organizational system staff. For example, the eprints.org soft­
ware package exists, but its heavy footprint reflects its intended institutional-level
use [30]. The archivelet needs to have an extremely easy-to-use GUI for publishing
and needs to be an OAI-PMH-compliant data provider. Since we want to be as inde­
pendent as possible of other software and we expect the archivelet to store relatively
few objects, we shall use the native file system to store the objects rather than, for
example, a database system. In supporting archivelets, the registration service takes
on a bigger role than the registration server plays in regular data providers. The
number of archivelets is expected to be on the order of tens of thousands, and their
state in terms of availability will show great variation. Currently, the OAI registra­
tion service keeps track of OAI-PMH-compliant archives and the current registration
process is mostly manual. In contrast to data providers at an organizational level,
archivelets will switch more frequently between active and non-active states (e.g. a
user connects with dial-up network). It will be necessary for the registration ser­
vice to keep track of the state of the registered archivelets in support of higher-level
services. For this, we borrow from Napster and the instant-messenger model the
concept where the central server keeps track of active clients.

The current OAI-PMH framework is targeted for large data providers (at the
organizational level). We propose the Kepler service based on the OAI-PMH to
support archivelets that are meant for many personal publishers. The Kepler service
promotes fast dissemination of technical articles by individual publishers. Moreover,
it is based on interoperability standards that make it flexible so as to build higher-
level services for communities sharing specific interests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Figure 7.1 shows the four components of the Kepler service: OAI-PMH-compliant
repository, publishing tool, registration service, and service provider. The OAI-
PMH-compliant repository, along with the publishing tool, is targeted for individual
publishers. The registration service keeps track of registered archivelets, including
their state of availability. The service provider provides high-level services such as
a discovery service that allows users to search for a published document among all
registered archivelets.

The Kepler service supports two types of users: individual publishers using the
archivelet publishing tool, and general users interested in retrieving published docu­
ments. The individual publishers interact with the publishing tool and the general
users interact with a service provider and an OAI-PMH-compliant repository using
a browser. In a way, the Kepler service looks very similar to a broker based Peer-
to-Peer (P2P) network model (Figure 7.2). Typically, a user is both a data provider
and a discovery user that accesses a service provider. Thus, the primary mode of
operation might be construed as one of exchanging documents.

One key issue we needed to address in the Kepler service was the issue of scale.
The intention of OAI has been to support a contributing audience consisting of few
data providers, each representing a digital library with a large holding (on the order
of a hundred thousand to a million objects). In the Kepler service, the opposite is
true: each data provider has only a few objects (e.g., an order of a hundred) but there
may be, if the Kepler service is successful, tens of thousands (or if extended to all
interested persons, maybe millions) of such archivelets. The second issue we faced,
normally not present in the regular OAI environment, was the issue of unreliable
up-time of the machine that houses the archive(let).

7.3 ARCHITECTURE

In Figure 7.3, we show how we are addressing these issues at an architectural level.
A registration server allows new archivelets to register, and the server is also used to
keep track of the archivelets’ active/inactive time. That is, each archivelet lets the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Service Service Service
Provider Provider • • • Provider

r
Registration

Service

V OAI-PMH
Compliant
Repository

Publishing
Tool

OAI-PMH
Compliant
Repository

Publishing
Tool

• • •

OAI-PMH
Compliant
Repository

Publishing
Tool

FIG. 7.1: Framework of Kepler service

Broker

Registration
Service

Service
Provider

Where is "QoS Issues..
paper by John Doe? Carol has it

Bob Carl

Retrieving "QoS Issues...'
paper by John Doe

FIG. 7.2: Kepler service and Peer-to-Peer network model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

User

4. Query

r
ARC

V }

Service
Providerv J

Service
Provider

3. Metadata Harvesting

5. Fulltex do ument fetch

2. Data provider locate

Registration Server

mapping
table

v ▲---------

Identifier Address Active

Identifier Address Active

I. Register/Nofiy

Self contained httpd server

OAI Layer

File based
Repository

Personal
editor

Archivelet Archivelet

Archivelet

FIG. 7.3: Kepler axchitecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

registration server know when it goes off-line. The registration service needs to be
able to handle tens of thousands of entries. A service provider uses the registration
server to locate all Kepler archivelets for whatever service it wants to provide. For
example, the one labeled “Arc” is a discovery service that harvests metadata from all
known archivelets on a daily basis for updates and changes. Some of these services
may also need to know when an archivelet is active. The information we need to
keep in the mapping table of the registration for each unique archivelet identifier is
its current IP address and its state.

The archivelet combines the OAI-PMH-compliant repository and the publication
tool in a downloadable and self-installable component. We provide http transport as
specified in the protocol, but only OAI-PMH requests are supported, not any other
http actions. The basic service part of Kepler is the discovery service. Here, we
want to address the issue of unreliability specific to Kepler. When a discovery user
poses a query to service provider, we need to return not just the metadata of the hits
matching the query, but we also need to get the state of the archivelets that contain
the hits. Right now, we cache archivelets before they go off-line.

7.4 OPERATIONAL USAGE

In Figure 7.4, we show the process an archivelet must go through to register and then
notify the server of its state of availability (e.g., being on- or off-line). In Figure 7.5,
we have shown the flow of activities as they occur in the model, where the service
provider caches the documents of the archivelets when needed so it can provide
full-text fetch when a query comes for the document even though the archivelet is
off-line. Notice step 6 where the service provider, and not the discovery user, fetches
the document and caches it based on some historical information of the archivelet’s
behavior. In step 10, the service provider still goes to the archivelet to fetch the
document, when a hit has been made, to make sure it has the latest version; only
when the archivelet is off-line will it use the cached copy.

If we did not use caching, the process would consist of steps 1, 2, 3, 5, 7, 8,
9 and 10 from Figure 7.5. A third model can be realized by making the last step
(get full-text document) consist of the following: if the document is in the cache at
the service provider, return it to the discovery user; in either case record the usage
pattern and, if indicated, cache it at the service provider.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Time

Archivelet Registration Server

1. Registration

2. Notify Live

3. Notify Updates

4. Notify Shutdown

FIG. 7.4: Archivelet registration process

7.5 SYNCHRONIZATION PROBLEM IN THE KEPLER SERVICE

In Chapter 4 we discussed the update frequency in organizational level repositories,
which are the designed objective of OAI-PMH. However, the synchronization model
of OAI-PMH is “pull” model based; it does not fit well with a large number of
unreliable repositories like archivelets in the Kepler service.

One key issue we needed to address in the Kepler service was the issue of scale.
In the Kepler service, each data provider has only a few objects (e.g., an order of a
hundred) but there may be, if the Kepler service is successful, tens of thousands (or
if extended to all interested persons, maybe millions) of such archivelets. The second
issue we faced, normally not present in the regular OAI environment, is the issue of
unreliable up-time of the machine that houses the archivelet. The sparse updates
must be reflected into the service provider immediately because the archivelet can
be available for very short periods of time.

In Section 4.2, we define the basic model for update cost. If a harvester periodi­
cally checks all the data providers in the same frequency, the cost is:

Cs =
T M

(12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

3. Get Archive List
4. Calculate Stability

5TGet

Fetch Fulltext document

Metadata

md cache based on stability

8. Search
9. Get Metadata

10. Get Full text document
11. Or, Get Full text document if archivelet is net available

Archivelet End UserService Provider

FIG. 7.5: Kepler process using cache.

In the optimal model, the harvester issues a request if and only if the data provider
updates its content. In this case, the update cost is:

M rp

C ’ = ^ U (r i) (13)

In the Kepler service, since the archivelet might be available for a very short
period of time, the harvester must frequently issue requests to archivelets to discover
new published data. For this reason, we expect a lower desired update latency (I),
and we expect a large number of archivelets (M), each of which usually update in a
very low update frequency. The basic model will not scale, but the optimal model
provides much better performance. This is illustrated in Example 7.1.

E xam ple 7.1. Assume 10,000 archivelets exist, and each one is active 30
minutes every day on the average. One archivelet publishes one new document every
month. In order to keep data fresh, the harvester shall harvest each archivelet every
30 minutes. Using the basic model, the update cost per day is:

_ 24 • 60 -10000Cs = -------—-------- = 480,000

Using the optimal model, the update cost per day is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

24 - 60 • 10000
---------------- = 33330 • 24 • 60

The optimal model’s performance is better than that of the basic model. However,

a pull/push hybrid model to improve synchronization in the Kepler service.

7.6 SY NCH RONIZATION A PPR O A C H FO R K E PL E R SERVICE

In this section, we summarize the synchronization models in a systematic way in the
Kepler service. There are three content delivery models to implement synchronization
between data providers and service providers.

P u ll Retrieval without prior coordination (e.g., as used by current robots and OAI-
PMH)

H ybrid P u sh /P u ll Retrieval after notification

P u sh Notification followed by a provider push.

In the pull model, a service provider requests immediate, synchronous delivery.
The pull model is widely used in harvesting solutions such as Web Robots and OAI-
PMH. The push and hybrid models require that a service provider actively listen
for the notification, which adds implementation complexity to the service provider.
Both models also require that a data provider keep a record of subscribed service
providers and send replies in an asynchronous fashion. All three models individually
can fulfill the metadata harvest task.

The major problem of the pull model is that service providers instead of data
providers drive the harvest. This leads to a serious “Update Overhead” problem.
Frequent crawling has to be done to synchronize the data providers and service
providers. It is inefficient if the data providers seldom change during a harvest
interval. On the other hand, without frequent crawling, service providers may become
inconsistent with data providers. In the Kepler service, the number of archivelets
potentially is very large and update frequency is very low. Sparse updates should be
reflected on the service providers’ side immediately because of the unstable nature
of archivelets.

it is difficult to predict up and update time of individual data providers. We propose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

From our experiments, we conclude that a pull model is not suitable to implement
the Kepler concepts built around the federation of individual archivelets. We propose
to use asynchronous models for metadata harvesting. We believe the “Hybrid” and
“Push” models will result in more efficient synchronization in the Kepler.

We extend the OAI-PMH with two additional verbs on the service provider side
and one verb on the data provider side as a way to optimize the functioning of
the OAI-PMH. The AddFriend and Notify verbs support push/pull hybrid model
(Figure 7.6). The AddFriend verb informs the service provider of the existence of
a data provider. The service provider then responds whether or not it will accept
a push request. The Notify verb informs the service provider that a data provider
is up/down or some new data is available. In addition, a PushMetadata verb is
added to support the push model and to allow the data provider to push metadata
directly to the service provider side. The process of pushing metadata does not rely
on OAI-PMH.

G*D QpDChD GD
OAI-PMH addfriend addfriend

notify notify^

OAI-PMH OAI-PMH ----------- >
W f I \f r if

Pull Hybrid Push

FIG. 7.6: Push, push and hybrid model

The syntax of the three added verbs follows the same HTTP request/XML response
model as OAI-PMH, the request is restricted to HTTP POST to implement the
metadata push.

7.6.1 Add a Friend

Summary: Request to be added as a Mend

Request:
Zverb ~ AddFriendkid = kbaseURL =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Arguments:
id: Identifier of the archivelet.
baseURL: the baseURL to which the OAI-PMH requests are issued.

Response:
< success > yes [no < /success >
< push > yes/no < /push >

Explanation: The objective is to let the service provider know of the archivelet’s
existence. The service provider should decide whether or not to accept a push-based
request based on whether (1) it has enough resources; and (2) the data provider is
behind a firewall or NAT. This could be done by checking whether an HTTP request
has the same IP address as the hostname in the baseURL. The service provider can
later issue OAI-PMH requests to a registered archivelet or accept metadata pushed
from it.

7.6.2 Notify

Summary: Notify is used for major events of an archivelet, including startup, shut­
down and document update.

Request:
Iverb = Notify&cevent = [start/stop/update]kid = kbaseURL =

Arguments:
event: the event to be notified
id: identifier of the archivelet.
baseURL: baseURL at the time of notification

Response:
< success > yes /no < fsuccess >

Explanation: The archivelet should notify all registered service providers about its
status when it starts, stops, or new documents are added and existing documents are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

changed/deleted. The baseURL is re-submitted because the archivelet is inherently
unstable and it may listen to different IP addresses and ports at each startup, as
when an archivelet is connected by a dial-up network.

7.6.3 Push Metadata

Summary: Push Metadata

Request:

?verb = PushMetadata&ccontents =

Parameters:
Contents: the pushed metadata.

Response:
< success > yes/no < f success >

Explanation: The archivelet pushes metadata to the service provider. The whole
metadata set is identical to the GetRecord response in OAI-PMH and is put in the
contents field. This way, the metadata exchanges could bypass the firewall and/or
NAT.

7.7 IMPLEMENTATION

The prototype system we have implemented as a first feasibility step uses an LDAP-
based registration system [134]. For the service provider, we have used a modified
Arc. Arc uses an Oracle database to create the index for the harvested metadata.
Using the OAI-PMH, the service provider harvests daily, asking for updates from
the last successful harvest. It keeps a list of successful harvests with the registration
service. The location of all registered archivelets is made available upon request from
the registration service.

The publication tools consist of a simple display of the archive and a tool to
specify metadata and upload files into the archivelet. The publication tools, together

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

S o u rc e DL: Stanford DLI2
Id e n t i f ie r h ttp ://1 7 1 .64.75.199:2048/SIDL-WP-20Ql-0151.pdf

c a c h e d Qa {_ keD)er Stanford. DLI2. SIDL-WP-200l-0151.pdf
versio n : ------------ —

T itle : Multicasting a Web Repository
C reator: Wang Lam
C reator: Hector Garcia-MoI ina
S u b je c t: Computer Science

D escrip tio n : Web crawlers generate significant loads on Web
servers, and are difficult to operate.

C ontribu tor: Multicasting a Web Repository
D iscovery: 2001-02-01

T yp e: submission to publication / working draft
Language; en

R ig h ts : reserved

ID : o ai:kepler/Stanford DLI2:SIDL-WP-2001-0151
D a te S ta m p : 2001-05-07

FIG. 7.7: Cached document in Kepler service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://171.64.75.199:2048/SIDL-WP-20Ql-0151.pdf

85

with the client for the automatic registration process and for the interaction with
the service provider (the OAI-PMH layer and the simplified web server), have been
packaged together with the Java virtual machine (and necessary Swing classes) into
a self-installing file that can be downloaded from the Kepler home page. Finally,
in Figure 7.7, we show the display of one particular object found through Kepler
service provider. The display shows selected metadata together with the URL of
the document in the archivelet that will be either served by the web server of the
archivelet if it is on-line, or by the service provider otherwise. However, in the latter
case it will only be a cached copy and may not be the most recent one.

7.8 RELATED WORK

The driving force behind the development of Kepler was the need for author self­
archiving. The resulting distributed archives can be federated into global “virtual”
archives, citation-linked, and freely navigable by all. The author self-archiving could
take the form of subject-, institution-, personal- , and publisher-based. ArXiv.org is
a very successful subject-based self-archiving service. Since its inception in 1991, it
has become a major forum for dissemination of results in physics and mathematics.
The-total number of submissions received during the first 10 years of operation is
roughly 170,000. The submission rate continues to increase. ArXiv.org is based on a
centralized server to which authors submit documents [39]. In contrast, e-Prints.org
software package is an open source software created to support the institution-based
self-archiving. It supports OAI-PMH and can be harvested by federation services [30].
Another widely-adopted self-archiving model is through a personal or institutional
web site. A service such as Researchlndex [38] retrieves research articles from these
web sites and automatically builds the bibliographic and reference data from the
articles. There is no interoperability or structured model underlying Researchlndex,
so the completeness of the collection is not guaranteed. The precision of search
engines not aware of metadata is generally not as good as that of metadata-aware
search engines. We believe all these methods are likely to remain in simultaneous
use. Kepler provides another possible implementation to the vision of author self­
archiving.

Peer-to-Peer networks represent a style of networking in which a group of com­
puters can communicate directly with one another rather than through a central
server. File sharing P2P networks such as Napster, Gnutella, Freenet and Fasttrack

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

have been widely used [104], In the digital library domain, the LOCKSS (Lots Of
Copies Keep Stuff Safe) is a prototype of a P2P network designed to preserve access
to scientific journals published on the Web by coordinating libraries and publishers
[113], the EDUTELLA [89, 1] uses JXTA framework [65] to exchange RDF meta­
data. While earlier P2P frameworks like Gnutella suffer from scalability problems
due to their whole decentralized architecture [111], the recent arrival of FastTrack
and openFT improves scalability by the introduction of a 2-tier system [37]. The first
tier, referred to as SuperNodes, consists of fast connections to the network, and the
second tier, referred to as Nodes consists of slower connections to the network. The
SuperNodes index information distributed in Nodes, and they also provide routing
and query services. This implements both a more scalable and reliable service.

Microsoft Channel Definition Format (CDF) allows web publishers to personalize
and streamline the delivery of information to their customers [28]. The synchro­
nization problem in web crawling is also discussed in report of the W3C Distributed
Indexing/Searching Workshop [115].

7.9 DISCUSSION

The Kepler service is significantly different from other file sharing P2P networks,
it is based on the OAI-PMH and provides more efficient repository synchronization
mechanism and better data freshness. The Kepler service has been deployed for more
than one year at the Old Dominion University. Until May 2002, there have been 1181
downloads of the Kepler software. Kepler service provides a novel way to support
author self-archiving, a number of services, such as peer-review, recommendation,
and annotation services, can be built over the Kepler service.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

CHAPTER 8

PROXY, GATEWAY AND CACHE SERVICE

The current and emerging applications based on metadata harvesting require a scal­
able and reliable infrastructure to support them. This chapter introduces the con­
cepts of OAI-PMH proxies, OAI-PMH caches, and OAI-PMH gateways as tools for
the optimization of the functioning of the data provider/service provider model un­
derlying the OAI-PMH. The goal is to achieve interoperability, scalability, and reli­
ability of OAI-PMH services. It also shows how various applications can exploit the
services included in the proposed infrastructure. The concept of OAI-PMH proxy,
cache, and gateway service is developed and refined by the author in cooperation with
Tim Brody in the IAM (Intelligence, Agents, and Multimedia) group at Southampton
University. The remainder of this chapter is organized as follows:

• Section 8.1 summarizes the problems faced in the metadata harvesting system.

• In Section 8.2, we present an overview of the optimized model and introduce
the concept of OAI-PMH proxy, cache, and gateway.

• We discuss each of the subsystems in Sections 8.3-8.5.

• In Section 8.6, we discuss several working applications.

• Section 8.7 summarizes related works.

8.1 INTRODUCTION

The OAI-PMH uses HTTP-based request-response communication between a data
provider and a service provider. The XML-formatted metadata is encoded in the
HTTP response, which makes on-demand services possible. Using OAI-PMH, one
data provider may be harvested by any number of service providers, each possibly
implementing different services. These service providers can interoperate using the
multiple-resolution capability (one identifier is resolved to multiple instances) based
on unique identifiers. In OAI-PMH, the metadata is distributed and replicated in
many different places and potentially provides a highly redundant and fault-tolerant
system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

In the development of OAI-PMH based applications, we notice several challenges
faced by OAI-PMH based applications, namely:

D a ta P rov ider and M e tad a ta Q uality During the testing of data providers, nu­
merous problems were found. Not all archives strictly follow the OAI-PMH;
many have XML syntax and encoding problems. With OAI-PMH, syntax for
metadata is strictly defined (XML schema validation), and problems still ap­
pear. This problem has been discussed, and one solution is a robust harvester
as described in Chapter 3.

Server A vailability The stability and service from data providers are difficult to
predict since many factors may influence data provider availability and effi­
ciency [92]. If a large data provider is periodically unavailable, this can be a
serious problem for harvesting. As also discussed in Chapter 3, recent research
points out that a significant number of data providers could not be harvested
[51].

Scalability OAI-PMH harvesting is resource-expensive to data providers, partially
because the HTTP responses are dynamically generated, and data providers
may need to keep current harvest sessions (harvesting may take several days for
a large data set). Besides steps taken by individual data providers to improve
services, a general infrastructure is required.

L inking Across Service Prov iders In OAI-PMH, data providers may be har­
vested by many service providers, each providing different services for the same
record. Cross-service linking and data sharing can be achieved by using the
unique OAI identifiers. Unique identifiers also allow the detection of record
duplication.

In this Chapter we discuss an effort that addresses these problems using a variety
of techniques. We present an architecture to achieve interoperability, scalability, and
reliability by optimizing dataflow in the OAI-PMH model. This architecture intro­
duces an OAI-PMH proxy concept that could improve data provider quality by fixing
implementation problems just in time. An OAI-PMH cache service improves data
availability and avoids bottlenecks through hierarchical harvesting. An OAI-PMH
gateway translates operations from other resource discovery systems into operations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

in OAI-PMH and vice versa. We also discuss how to build a series of services such
as cross-archive linking based on the suggested architecture.

8.2 OVERVIEW

The need for an optimized model is motivated by the major challenges faced in
the basic OAI-PMH model. The basic structure of OAI-PMH supports two roles:
the service provider and the data provider. Multiple service providers may harvest
multiple data providers at the same time. If one data provider has implementation
problems (e.g., XML encoding), all service providers have to address these problems.
If one data provider is unavailable, all service providers have to wait until the data
provider comes up again, even if some service providers have already cached the data
from the data provider.

Figure 8.1 illustrates the optimized model based on hierarchical harvesting. An
OAI-PMH proxy dynamically forwards OAI requests to data providers. For example,
it can dynamically fix common XML encoding errors and translate between different
OAI-PMH versions. An OAI-PMH cache caches metadata and can filter and refine
them before exposing them to service providers. It also serves as a simple cache
that reduces the load on source data providers and improves server availability. An
OAI-PMH gateway can convert the OAI-PMH to other protocols and applications.
For example, the gateway could provide value-added services like automatic citation
extraction, or conversion between different protocols (e.g. SOAP [13]) and OAI-
PMH. An end-user service will present various services such as search and citation
linking. Figure 8.1 illustrates how each layer may fetch data from any of its lower
layers, depending on availability and service type.

8.3 OAI-PMH PROXY

From a harvester’s point of view, the most convenient solution to incorrectly imple­
mented data providers is to place a layer (i.e. a proxy) over source repositories that
can be trusted to provide correct responses to the harvester’s requests. The proxy
can protect the network from erroneous and malicious clients, for example, a proxy
can serve as the single access point for the outside world to data providers inside a
firewall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

User
i i

Application
(e.g. webcrawler)

i
Harvester

Data Provider

FIG. 8.1: Hierarchical harvesting model

An OAI-PMH proxy can either act as an HTTP proxy or be OAI-PMH-specific.
As an HTTP proxy, it effectively becomes a transparent layer accepting HTTP re­
quests and responding with HTTP responses. As an OAI-PMH-specific proxy, it
must re-write request URLs; for an example of mapping a given subdirectory to a
source base URL, see Table 8.1.

Service
Provider

z ► Search Engine/Service

t
* Gateway Service

; r* OAIA/Cacher/Filter

■ OAI Proxy

TABLE 8.1: OAI-PMH-specific style proxy requests
Request URL Wrapped URL
Oai-proxy/ cgi / proxy/cogprints cogprints.soton.ac.uk/ perl/oai
Oai-proxy/ cgi/proxy/bmc www.biomedcentral.com/oai/l.l/bmcoai.asp

An OAI-PMH proxy will fix the following errors:

C harac te r Encoding OAI-PMH uses the Unicode’s UTF-8 character encoding to
support international character sets by using multiple bytes for non-English
characters. As an OAI-PMH response is received from a repository, the proxy
can replace any faulty character encoding that would normally cause an XML
parser to fail.

XM L Encoding The mark-up characters used in XML must be encoded when used
in string data. Similar to recent web browsers, the proxy can use heuristics to
determine whether a mark-up character is actually part of mark-up, or should
be encoded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.biomedcentral.com/oai/l.l/bmcoai.asp

92

how often the service provider should check that repository for updates.
A hierarchical OAIA structure can reduce this problem by avoiding duplication

of the efforts of many service providers. For example, a service provider may want
to provide an index of all the music manuscript repositories of a given country. That
service provider can then expose the aggregated collection to an international service
provider, saving the international service provider the effort of harvesting from every
repository in every country.

8.4.3 Advantages Over HTTP Caching

An OAIA is similar to an HTTP cache; specifically, they both distribute load away
from the server (the data provider) and closer to the client (the service provider).

An OAIA is, however, an active cache - it requests new records from the known
repositories in advance. This means a repository’s records will always be available
from the cache to downstream harvesters, even if the repository itself is unavailable.

An important role for an aggregator is providing quick access to many smaller
collections. By prefetching records from its source repositories, an OAIA can provide
a downstream harvester with all the aggregated records in one session.

8.4.4 Datestamping

Incremental harvesting in OAI-PMH uses datestamping; that is, a harvester only
needs to request records that are new or have changed since the last time it checked
the repository.

With hierarchical harvesting, the OAIA must update the datestamp when it
harvests a record - because the record is “new” to the OAIA. When a downstream
harvester harvests from the OAIA, it will receive all the new records in the OAIA,
even if the original datestamp of the record was before the date of harvest.

8.4.5 Identifiers

An OAIA can either maintain or change the oai-identifiers for records that it harvests
(and re-exports).

By maintaining the record’s oai-identifier, the OAIA can become a nearly trans­
parent layer in a hierarchical system (nearly transparent, because it introduces a
delay between a record being created by data providers, and it being harvested from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

the OAIA). Maintaining oai-identifiers allows a harvester to change sources without
causing inconsistent records.

OAI-PMH 2.0 introduces a provenance schema for use in the optional “about”
field of records (“about fields” are for things that describe the metadata record).
This schema allows the history of the record to be recorded: it stores the details of
each OAI-PMH service that the record passes through as it goes down the hierarchy,
from repository to eventual end-user service.

Provenance can be used to check the originality of the record, identify the change
history of the record when it travels around the system, and extract the original
datestamp.

8.4.6 Identifier Collisions

oai:x:00t Ioai:x:00l

a+x
OAfA

L w a r i t t l I Conflictoai:x:00l

b+x
OAfA

DPDPDP

FIG. 8.2: Identifier conflict in hierarchical harvesting

When there is more than one path from a data provider to a service provider, the
service provider may need to resolve a collision between two or more records with
the same oai-identifier.

Figure 8.2 shows how one record (with a unique oai-identifier) may appear twice
to a harvester. Three repositories, a, b, and x, are being harvested by two aggrega­
tors, a+x and b+x. When the service provider a+b+x harvests from a+x and b+x,
it will get duplicates for every record from the data provider x.

To resolve collisions, a service provider can either store both records or attempt
to discard one. The following are some possible policies for record discarding:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

D uplicate R ecords If colliding records axe the same, or similar, the duplicates
could be safely discarded.

T ru sted Sources The service provider in Figure 8.2 may, for example, trust OAIA
b+x more than OAIA a+x, in which case the service provider could discard or
overwrite any colliding records harvested from OAIA a+x.

M ost R ecent It may be possible to distinguish the most recent (and hence most au­
thoritative) record using the datestamps given by the aggregator’s provenance
data (e.g., OAIAs a+x and b+x in Figure 8.2).

8.5 O A I-PM H GATEWAY, VALUE-ADDED SERVICES

A gateway between two resource discovery systems translates operations from one
system into operations in another system. An OAI-PMH gateway is responsible for
converting OAI-PMH for use by other applications and vice-versa. Unlike the OAI-
PMH cache and proxy, the gateway service does not necessarily retain the original
data or OAI-PMH interface. The objective of a gateway is to extend OAI-PMH-
compliant repositories to other protocols or applications; for example:

P ro toco l B roker A protocol broker could convert HTTP-based OAI-PMH requests
to SOAP messages or extend OAI-PMH to a Web Service model.

G atew ay for Crawlers A gateway for web crawlers could translate OAI-PMH-
compliant repositories to a series of linked web pages, which allows web search
engines that do not support the OAI-PMH to index the “Deep Web” contained
within OAI-PMH-compliant repositories.

V alue-A dded Services A gateway could cache the full-text document and then
provide value-added services, such as citation extraction, which can then be
re-exposed through its own OAI-PMH interface.

Subject G atew ay A subject gateway could help build a topic-specific service by
harvesting records and then exposing them by subject criteria.

A gateway service may create a large overhead for data providers, especially if the
gateway is designed to serve machine-based applications (e.g., web crawlers). This
situation is where the OAI-PMH cache is relevant because the hierarchical structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

of the OAI-PMH cache will reduce the overhead for the source data providers to
a minimum. At the same time, the gateway service itself could use flow control
mechanisms, such as HTTP-throttle software, to reduce the overhead.

8.6 CASE STUDY

Several systems have been built to demonstrate the concepts of OAI-PMH proxy,
cache, gateway services, and end-user services.

8.6.1 OAI-PMH Proxy

Our first experiment is an OAI-PMH-specific proxy that takes a URL of the format:
http: / /foo.org/OAIProxy/{repositoryid} ?{oai verb}
Its function is to filter XML encoding errors. This proxy relies on a preexisting

mapping table between an OAI-PMH repository ID and a base URL. When an OAI-
PMH request is issued, the proxy forwards the request to the corresponding data
provider. The XML response is parsed by a DOM parser [133]; if any XML encoding
errors exist, the proxy tries to delete bad records based on the detailed error message
from the DOM parser. The proxy then returns the corrected XML response.

8.6.2 OAI-PMH Aggregation/Caching/Filtering

An OAI-PMH cache service has been explored in several experiments, including
OAI Aggregator, Arc, and CiteBase. Both Arc and Gitebase act as data providers
disseminating Dublin Core metadata harvested from other data providers.

OAIA is specially designed to mirror OAI-PMH repositories. OAIA creates a
duplicate of all available data from the source repositories, excluding the set hierarchy
(with OAI-PMH 1.x, the set hierarchy can only be ascertained through exhaustive
querying of each set).

OAIA is designed to facilitate OAI-PMH gateway services, which rely on fast, reli­
able access to OAI-PMH repositories. OAIA also acts as a gateway from legacy OAI-
PMH implementations (1.x) to the most recent version of the OAI-PMH (2.0). As
well as being able to harvest from any repository that has been OAI-PMH-compliant,
OAIA converts the required Dublin Core metadata format to the most recent OAI-
PMH version.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Given a new repository URL, OAIA issues an Identify request. The Identify
response is stored so a service provider can retrieve from OAIA the source reposi­
tory’s data policies, etc. A ListMetadataFormats request is issued to find out which
metadata formats are supported. Each record is then requested for each metadata
format (either using the batch command ListRecords, or GetRecord, depending on
the repository’s reliability). The metadata is stored as it was received from the source
repository, ready for a service provider to harvest. The record’s datestamp is changed
to the time the record was harvested by OAIA.

OAIA provides two views to harvesters of the records it has collected: a view
of the aggregated collection, or a view of the individual repositories produced by a
wrapped URL.

When an aggregated OAIA collection receives a ListMetadataFormats request, it
lists all the metadata formats used by any of the harvested repositories (which may
include variants of the same metadata format). When the same request is made to a
wrapped repository, it lists only the metadata formats supported by that repository.

8.6.3 DP9 Gateway Service

DP9 is a gateway service that allows general search engines, (e.g. Google, Inktomi)
to index OAI-PMH-compliant archives. DP9 does this by providing persistent URLs
for records and converting them to OAI-PMH queries against the appropriate repos­
itory when the URL is requested. This service allows search engines that do not sup­
port the OAI-PMH to index the “deep Web” contained within OAI-PMH-compliant
repositories.

Many DLs and databases are closed to general-purpose Web crawlers. The “deep
Web” or “invisible Web” refers to vast repositories of content, such as documents in
online databases, that general-purpose Web crawlers cannot reach. The deep Web
content is estimated at 500 times that of the surface Web, yet has remained mostly
untapped due to the limitations of traditional search engines [7]. On the other hand,
many researchers use general-purpose search engines to locate research papers more
frequently than they use specific DLs. A study about Researchlndex query logs
showed that only about 6% of the total number of sessions started with a search
query from Researchlndex itself, the majority of the sessions have been initiated by
linking through a search engine such as Altavista or Google [78].

DP9 [26] is an open source gateway service that allows general search engines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

(e.g. Google, Inktomi) to index OAI-PMH-compliant archives. DP9 does this by-
providing consistent URLs for repository records, and converting them to OAI-PMH
queries against the appropriate repository when the URL is requested. This allows
search engines that do not support the OAI-PMH to index the “deep Web” contained
within OAI-PMH-compliant repositories.

Internet search engines cannot index OAI-PMH collections since they are not
aware of the OAI-PMH. We introduce an OAI-PMH gateway architecture to address
this problem. Typically, a Web crawler indexes a web site by starting with a base
HTML page and by following the links on this page to retrieve deeper pages on
the Web site. To support this for an OAI-PMH collection, which only responds to
OAI-PMH requests (and only in XML), we begin by dynamically creating a starting
HTML page for an OAI-PMH collection. Although an individual data provider may
have its own mechanism of creating this page, DP9 provides a general solution that
fits all OAI-PMH compliant data providers. In DP9, the starting page for a data
provider would be constructed by issuing an OAI-PMH Listldentifier request and
translating the response into a HTML format containing a series of links. A link
on this HTML page, when invoked, would result in another OAI-PMH GetRecord
request for a specific identifier. Again, the response for such a request would be
translated into an HTML page with appropriate links. In other words, an HTML
page presented to a Web crawler is a result of an OAI-PMH request, and the links on
the Web page lead to other OAI-PMH requests. DP9 supports the resumption token
and HTTP 503 status code “retry-after” and thus provides a basic flow control for
large data providers. Note that the flexibility in the OAI-PMH allows different ways
of constructing the HTML pages to expose an OAI-PMH collection. For example, the
starting page could have been constructed using the OAI-PMH request ListRecords.
The sequence of OAI-PMH requests we have used in our design was driven by what
would be useful for crawlers.

DP9 uses links on Web pages that have the following format:
http://{hostname}/dp9/getrecord/{MetadataFormat} / { OAIJD}
An example is:
http://arc. cs. odu. edu:8080/dp9/getrecord/oaiAc/oai:NA CA:1917:naca-report~l 0

DP9 creates a series of Listldentifiers pages for each archive with links to all
individual records. These URLs are static and will be only activated when a HTTP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%7bhostname%7d/dp9/getrecord/%7bMetadataFormat%7d
http://arc

98

*.,-?
~ v - ■*

■/•sT

[*£ URL ^T iarisla te^ i c n / c —

End-User m i, .* • * Wrapper ■

■V ' Call
Retun. ■■ .1 rt-- ■:

Web Crawler HTML XSLT Call' OAI
Processor Handler .

; Send OAI

.1
■ I :

. request/Get
"'XML reply

OAI Repository

OAI Repository

FIG. 8.3: DP9 architecture

request is received. DP9 provides an entry page and if a Web crawler finds this entry
page, it may follow the links on this page and send requests to DP9. DP9 will then
forward the request to corresponding data providers and process the returned XML
records. Depending on the depth a crawler follows, it can index all records in a data
provider.

DP9 consists of three main components (Figure 8.3): an URL wrapper, an OAI-
PMH handler and an XSLT processor. The URL wrapper accepts the persistent
URL and calls internal JSP/Servlet applications. The OAI-PMH handler issues
OAI-PMH requests on behalf of a Web crawler. The XSLT processor transforms the
XML content returned by the OAI-PMH archive to an HTML format suitable for a
Web crawler. XSLT allows DP9 to support any XML metadata format simply by
adding an XSL file. DP9 is based on Tomcat/Xalan/Xtag technology from Apache
[50).

Some crawlers use the HTML meta tags to index a Web pages; so in addition
to creating the user friendly HTML page, DP9 also maps Dublin Core metadata to
corresponding HTML meta tags. For pages that are designed exclusively for robots
navigation, a noindex robots meta tag is used.

Initial Results

We have collected 70 repositories with well over one million records. Considering
Parallel Metadata Sets axe supported by OAI-PMH leading to more references, po­
tentially several millions of pages could be indexed by Web search engines. With
DP9 now being deployed, thousands of documents in OAI-PMH collections have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

been indexed by search engine such as Inktomi and Google. Web logs show that
more than 1000 queries are issued from popular Web search engines each day. Figure
8.4 shows how the DP9 service is visited by users through general web search engine
like Google; Figure 8.5 shows how the web robots that have visited the DP9 service
in May 2002.

Origin B1IB 1 aHEBMi B M M H

Direct address /Bookmarks: 12282 2 2 % 12644 12 .2%

Links from an Internet Search Engine: 31994 57.3 % 32053 31 %
- Google 31585
• O ther se a rch eng ines 230
-Y ahoo 123
-W eb .de 47
-MSN 29
-VIrgilfo .
- N etscape *5

9
7

- Meta Miner 7
- E uroseek 6
- Lycos 4
- Voila 4
- M etaGer 1
- Excite 1

Links from an external page (other web sites except search 3163 5 .6 % 3821 3.6 %
engines):
- http://arc.cs.odu.edu/sim ple.htm l 1511
- http://arc.cs.odu.edu/mytop.html 510

FIG. 8.4: The search log of Arc and DP9, most hits are directed from general web
search engine (May-2002)

DP9 is a gateway service, it does not cache the OAI-PMH records and only forwards
requests to corresponding data providers. This insures DP9’s records are always
up-to-date; however, its quality of service is highly dependent on the availability of
data providers. On the other hand, an- aggressive crawler using DP9 can rapidly
send requests without regard for the load they are placing on the data providers.
The robot exclusion protocol [53] at the data provider site will not be observed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://arc.cs.odu.edu/simple.html
http://arc.cs.odu.edu/mytop.html

100

R obots f l G B H L ast visit

G ooglebot 29768 31 May 2002 - 03:39

larbin 7716 23 May 2002 -0 7 :3 9

M ercator (Not referenced robot) 7257 30 May 2002 -0 1 :0 3

W ISENutbot (Not referenced robot) 4706 31 May 2 0 0 2 -2 3 :4 9

ia_archiver (Not referenced robot) 1774 31 May 2 0 0 2 -0 3 :5 3

Voila (Not referenced robot) 758 23 May 2 0 0 2 -1 4 :2 6

Unknown robot (Not referenced robot) 257 30 May 2 0 0 2 -1 9 :0 3

W get 116 12 May 2 0 0 2 -1 9 :1 4

S cooter 112 21 May 2 0 0 2 -0 5 :3 3

Inktomi Slurp 43 31 May 2 0 0 2 -1 9 :5 9

lBM_Planetwide 18 24 May 2 0 0 2 -0 8 :2 7

TclW 3 Robot 12 27 May 2 0 0 2 -1 4 :4 4

R oad R u n n e r " J i e Im ag eS cap e Robot 10 22 May 2 0 0 2 -1 9 :4 4

Com putingSite Robi/1.0 6 28 May 2 0 0 2 -0 9 :0 7

Calif 6 18 May 2 0 0 2 -1 7 :2 0

Internet Shinchakubin 3 19 May 2 0 0 2 -0 6 :3 3

Fish sea rch 3 03 May 2 0 0 2 -0 4 :5 3

P ioneer 3 25 May 200 2 -1 0 :0 1

ARIADNE 2 27 May 2 0 0 2 -0 8 :5 2

H aivest 1 06 May 2002 -0 8 :3 9

FIG. 8.5: The robot visitors to DP9 (May-2002)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

because the requests come from DP9, an OAI-PMH service provider. We are studying
the possibility of using an OAI-PMH mirror/caching mechanism such as OAI-PMH
Aggregator [15] and HTTP throttle software [48] to relieve the overhead on data
providers.

DP9 also provides an easy way to build services for OAI-PMH-compliant reposi­
tories. Indexing tools such as HtDig [49] and GreenStone [132] are designed to index
websites, they could be used to build searching services for OAI-PMH collections
with DP9 support.

8.6.4 Other Gateway Services

Another gateway service is the reference extraction module in CiteBase. CiteBase
extracts the bibliography from arXiv.org documents and exposes them by an addi­
tional OAI-PMH interface. These data are then harvested by ODU to build its own
citation service.

CiteBase adds reference data by harvesting new records from a repository’s OAI-
PMH interface, then separately downloading the full text for parsing. The parsed
bibliography is added to the existing metadata and is used by CiteBase or harvested
by other services.

The CiteBase concept could be extended from the current supported repository
arXiv to a general service for any full-text scientific repository - assuming tools can
be developed to parse the bibliography.

8.6.5 End>User Services

Both Archon and CiteBase implement a cross-archive search interface; Archon focuses
more on harvesting heterogeneous collections and builds an interactive search inter­
face based on harvested metadata, and CiteBase concentrates on automatic reference
extraction. Both applications may harvest from the same repository (e.g. arXiv.org)
and implement different services for the same record. With the quick adoption of
OAI-PMH, we believe this will become a common situation. We implemented two
prototypes for cross-linking between Archon and CiteBase (Figure 8.6).

The first approach is to re-expose value-added metadata through an OAI-PMH
interface. Using this method, Archon harvests citation data from CiteBase, APS,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Data Provider
S \

with citation Normalize
information V J

Data Provider
without citation

information

Automatic
citation extraction

Citation
database

Citation
gateway

OAI
layer

Cross archive
linking

End-User service

Service provider with citation support

FIG. 8.6: Cross archive citation link

CERN, and other sources. It then builds a cross archive linking service, for example,
a citation in APS may lead to a document in CiteBase and vice-versa. Another
prototype is based on dynamic linking: both services link to a broker page, and the
broker page dynamically checks whether or not a service exists for a specific record.
If so, it adds a link to the corresponding service provider. In order to know which
records are available in advance, the broker issues an OAI-PMH GetRecord lookup
to the target service (which has an OAI-PMH export). Based on the reply, the broker
knows whether a record is harvested. We envision that a DP may also link to this
broker page for additional services for its data.

8.7 RELATED W ORK

8.7.1 Caching and Replication

HTTP proxy and cache distribute load, reduce network traffic and access latency,
and protect the network from erroneous clients. There axe two basic approaches for
web cache implementation: a passive cache and an active cache. The passive cache
only loads a data object as a result of a client’s request to access that object; the
active cache employs some mechanism to prefetch data in advance of a request by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

client [17].
Mirror software is designed to duplicate a directory hierarchy between two ma­

chines. It avoids copying files unnecessarily by comparing the file timestamps and
file sizes before transferring.

8.7.2 Hierarchical Harvesting

The earlier Harvest project explored the concept of the hierarchical arrangement
of object caches and focused on the content extraction for general web documents
[12]. After the OAI-PMH was released, both Arc and CiteBase explored the issues
of hierarchical harvesting in OAI-PMH service providers. The Open Digital Library
project [120] uses the OAI-PMH sets concept for OAI-PMH metadata filtering.

8.7.3 Unique Identifiers

Identifier is a powerful tool for communication within and between communities. For
example, the Handle system [122] and DOI (Digital Object Identifier) [97] provide
a mechanism for implementing naming systems for arbitrary digital objects. The
multiple-resolution capability becomes important in the OAI-PMH community, as
metadata may be widely replicated and modified, and many different services will
be implemented on the same metadata records. An “intelligent” resolution service
should be able to deliver different outcomes to a resolution request dependent on
user-specified requirements.

In OAI-PMH, a unique identifier unambiguously identifies an item within a reposi­
tory. The format of the unique identifier must correspond to that of the URI syntax.
Individual communities may develop community-specific URI schemes for coordi­
nated use across repositories. However, the unique identifiers may conform to a
recognized URI scheme with greater scope. The oai-identifier schema, especially,
describes a specific, recommended implementation of unique identifiers which repos­
itories may adhere to; oai-identifiers should have global scope and guaranteed global
'uniqueness. The oai-identifier has been widely accepted in implementation of OAI-
PMH 1.x and is further refined in the version 2.0 of the protocol by introducing a
globally unique OAI URN. All our implementations use the oai-identifier schema
and rely on its uniqueness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

8.7.4 Citation Linking

Citation linking is the general term for hypertext linking the reference lists (the bibli­
ography) in research articles to the cited articles. In recent years, citation linking has
been extensively developed in Open Citation Project, OpenURL and other projects
[47, 16, 8, 125, 124]. With the wide acceptance of OAI-PMH, new challenges are
raised about cross-archive (i.e. cross collection) linking and cross-service linking.
With various data providers providing metadata of different qualities and formats,
cross-archive linking is necessary to integrate them into one unique linking environ­
ment. Similarly, the distributed and highly redundant OAI-PMH architecture allows
different services to be built which, with context sensitive and dynamic cross-service
linking, could potentially be integrated. Such integrated services might provide cita­
tion analysis for forward links (to articles that have referenced the current article),
impact factors, co-citation analysis, and novel navigation methods [18].

8.8 DISCUSSION

OAI-PMH proxies, OAI-PMH caches, and OAI-PMH gateways optimize the func­
tioning of the data provider/service provider model underlying the OAI-PMH. To
demonstrate the usability of this framework, we have built several prototype ser­
vices. These demonstration systems and source codes are available at the web sites
of both ODU and the Southampton group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 CONCLUSIONS

Digital library interoperability is essential for building services that will enable users
to discover information from multiple libraries through a single unified interface. The
difficulty of creating a large distributed searching service is the motivation behind the
OAI-PMH to create federated digital libraries based around the concept of metadata
harvesting. This dissertation examines the application of the metadata harvesting
approach in DL federation. It answers the following questions: Whether or not meta­
data harvesting provide a realistic and scalable solution for DL federation; How to
synchronize data providers with service providers; How to build services over har­
vested metadata; and how to create a scalable and reliable infrastructure to support
metadata harvesting-based applications.

This research has successfully met the objectives as stated in Chapter 2. First, we
present a layered architecture of metadata harvesting system and its major compo­
nents. We introduce the concept of harvesting service, centralized federation service,
replicated federation service, registration service, proxy, cache, and gateway service.
Secondly, a series of systems, including Arc, Kepler, TRI, Archon, DP9, NCSTRL,
Celestial, and OAI-PMH proxy, are developed based on the proposed architecture.
We also present major issues involved in constructing a metadata harvesting system.
Thirdly, these services are deployed on the Web, implementing publicly available
services allows us to demonstrate that metadata harvesting is a realistic approach to
implementing digital library federation, and our approach is practical since we have
no control over the user community. The developed software are used in a variety
of applications and DL deployments. Finally, by performing various experiments
and evaluating results, we are able to verify the concept of metadata harvesting, an­
swer open questions, and address major issues in metadata harvesting approach. We
study a series of performance criteria, including server availability, reliability, meta­
data variability, parallel metadata implementation, and update frequency. These
criteria are useful for building both data providers and services in metadata harvest­
ing applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

9.2 FUTURE WORK

We now briefly discuss potential areas for future work. In Chapter 2, we introduced
the OAI-PMH protocol, it fits well with the REST (REpresentational State Trans­
fer), a phrase coined by Roy Fielding in his dissertation attempting to describe the
Web’s architectural style in a rigorous enough fashion to make the principles both
comprehensible and extensible [32]. The most important contrast model is RPC
[22], in particular, SOAP is the de-facto standard for XML based protocol. There
has been some discussion about the desirability of implementing the OAI-PMH in
the direction of SOAP or REST, but there are not enough supporting experiments
and experiences on this topic to make the OAI community assured about this move.

In Chapter 3, we study the features of current OAI-PMH compliant repositories.
This study is preliminary and further study is essential with more digital libraries
becoming OAI-PMH compliant. A major contribution of OAI-PMH is to enable
digital libraries to expose their metadata for public study, and a richer service requires
richer metadata set out of the scope of basic Dublin Core. A more extensive study
over parallel metadata formats will improve the standardization of complex metadata
sets across digital libraries.

In Chapter 3, we also discuss the registration service. A registration service plays
an essential role for a large number of data providers and service providers. OAI-
PMH tries to re-use the DNS name to avoid a centralized registration service, and
it suggests a “list-friends” model to discover interesting data providers by chatting
among neighbors.

• In OAI-PMH 2.0, organizations are asked to choose namespace-identifier values
which correspond to a domain-name that they have registered and are commit­
ted to maintaining. Domain name registration is used to avoid the need for
any additional registration service for oai-identifiers. DNS-based identifiers
guarantee global uniqueness without the need for OAI registration.

• A decentralized “list-friends” model is introduced in OAI-PMH 2.0. Data
providers keep an optional up-to-date list of befriended data providers, i.e.
pointing at other data providers. That list-of-friends would then be made
accessible to service providers via the OAI-PMH. In this approach, service
providers would have to find an (some) initial point (s) of access (some initial
data providers), and could then hop from data provider to data provider to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

collect locations of additional data providers. Because the approach relies on
data providers pointing at others, it is likely that it would result in unreachable
data providers, just like the URL-concept leads to unreachable pages on the
web. It is not clear how well or how reliably this model will work.

In Chapter 4, we study the repository synchronization. However, our study was
based mainly on experiments rather than theoretical proofs. One interesting research
direction would be to formalize the repository synchronization with a strict mathe­
matical model and design an optimal synchronization metric based on that model.

In Chapter 5, we study how to build a federated search interface over hetero­
geneous repositories. Our approach still makes individual archives visible to the
searcher, but from our study it is becoming evident that one unified interface, which
exploits rich source metadata and is transparent to participating archives, is feasible.
Controlled values are widely used in many archives, and for fields such as type and
language, we could map the data to a standard without significant manual effort, by
using approximate word matching and other algorithms [35]. The interactive search
can also be improved by using reverse-engineered text categorization [36] that is used
to supply mappings from an ordinary language vocabulary to a specialist vocabulary.

In chapter 7, we discuss the Kepler framework for individual publishers. Kepler
shows promise in changing the current publication model. The Kepler framework
can be further developed to cover the annotation services, recommendation services,
and peer-review services. It is a challenging issue to encourage authors to use Kepler
software and exploit its potential.

In Chapter 8, we discuss the OAI-PMH gateway service. The DP9 service is
promising in making the “hidden Web” [7] visible to general web crawlers. The gate­
way service could be improved with flow-control [48] and the “robot bait” concept,
and similar gateway services for other protocols will make a wide range of resources
interoperable with the Web. On the other hand, general web search engines also
suffer serious freshness and update frequency problems. The fresh and incremental
harvesting concept can also be used by the search engine community to create a
crawler-friendly Web.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

BIBLIOGRAPHY

[1] B. Ahlbom, W. Nejdl, and W. Siberski. OAI-P2P: A peer-to-peer network for
open archives. In Workshop on Distributed Computing Architectures for Digital
Libraries. ICPP 2002, pages 462-468, Vancouver Canada, August 18-21 2002.

[2] H. Anan, X. Liu, K. Maly, M. L. Nelson, M. Zubair, J. French, E. Fox, and
P. Shivakumar. Preservation and transition of NCSTRL using an OAI-based
architecture. In the Proceedings of the Second ACM/IEEE Joint Conference
on Digital Libraries, pages 181-182, Portland OR, July 14-18 2002.

[3] Statistics metadata variablity in OAI-PMH repositories, h t tp : / / a r c . c s . odu.
e d u /s ta t.

[4] Source code of Arc available by SourceForge. h t tp :/ /o a ia rc .so u rc e fo rg e .
net.

[5] W. Arms. Digital libraries. MIT Press, Cambridge, MA, 1999.

[6] G. Beged-Dov, D. Brickley, R. Domfest, I. Davis, L. Dodds, J. Eisenzopf,
D. Galbraith, R. Guha, K. MacLeod, E. Miller, A. Swartz, and E. van der
Vlist. RDF Site Summary 1.0 Modules: Syndication, 2000. h t tp : / /p u r l ,
o r g / r s s /1.0/m odules/syndication/.

[7] M. K. Bergman. The deep web: Surfacing hidden value. Journal of Electronic
Publishing, 7(1), 2001. http://w w w .press.um ich.edu/jep/07-01/bergm an.
html.

[8] D. Bergmark. Automatic extraction of reference linking information from on­
line documents. Technical Report 2000-1821, Computer Science Department,
Cornell University, 2000.

[9] D. Bergmark. Collection synthesis. In Proceedings of the Second ACM/IEEE
Joint Conference on Digital Libraries, pages 253—262, Portland OR, July 14-18
2002.

[10] T. Bemers-Lee. Weaving the Web: The Original Design and Ultimate Destiny
of the World Wide Web by Its Inventor. HarperCollins, New York, NY, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://oaiarc.sourceforge
http://purl
http://www.press.umich.edu/jep/07-01/bergman

109

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web: A new form of
web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, May, 2001.

[12] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz.
The Harvest information discovery and access system. Computer Networks
and ISDN Systems, 28(1-2):119-125, 1995. h ttp :/ /c ite se e r .n j.n e c .c o m /
article/bowman95harvest.html.

[13] D. Box, D. Ehnebuske, K. G., A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. Technical
Report NOTE-SOAP-20000508, W3C, 2000. http://www.w3.org/TR/S0AP/.

[14] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0 - W3C recommendation 10-February-1998. Techni­
cal Report REC-xml-19980210, W3C, 1998. http://www.w3.org/TR/2000/
REC-xml-20001006.

[15] T. Brody. Celestial aggregator service, 2002. h t tp : / / c e l e s t i a l .e p r in t s .
org/.

[16] P. Caplan and W. Y. Arms. Reference linking for journal articles. D-Lib Mag­
azine, 5(7/8), 1999. h ttp ://w w w .d lib .o rg /d lib /ju ly99 /cap lan /07cap lan .
html.

[17] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell. A hierarchical internet object cache. In USENIX Annual Technical
Conference, pages 153-164, 1996.

[18] C. Chen and L. Carr. Trailblazing the literature of hypertext: Author co­
citation analysis (1989-1998). In Hypertext ’99. The Association for Computing
Machinery, 1999. h ttp ://w w w .ecs.so ton .ac .uk /~ lac/h t99 .pdf.

[19] J. Cho. Crawling the Web: Discovery and maintenance of large-scale web data.
PhD thesis, Department of Computer Science, Stanford University, 2001.

[20] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 117—128, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.nj.nec.com/
http://www.w3.org/TR/S0AP/
http://www.w3.org/TR/2000/
http://celestial.eprints
http://www.dlib.org/dlib/july99/caplan/07caplan
http://www.ecs.soton.ac.uk/~lac/ht99.pdf

110

[21] J. Clark. XSL Transformations (XSLT) version 1.0. Technical Report REC-
xml-19980210, W3C, 1998. http://www.w3.org/TR/xslt.

[22] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design (3rd Edition). Addison-Wesley Publication Corporation, 2000.

[23] J. M. B. Cruz and T. Krichel. Cataloging economics preprints: an introduction
to the RePEc project. Journal of Internet Cataloging, 3(2/3), 1999.

[24] J. Davis and C. Lagoze. NCSTRL: Design and deployment of a globally dis­
tributed digital library. Journal of the American Society of Information Sci­
ence, 51(3):273-280, 2000.

[25] B. Desai. Supporting discovery in virtual libraries. Journal of the American
Society for Information Science, 48(3):190-204, 1997.

[26] DP9 service, h ttp ://d lib .c s .o d u .ed u /d p 9 .

[27] N. Dushay, J. C. French, and C. Lagoze. A characterization study of NC­
STRL distributed searching. Technical Report TR99-1725, Cornell University
Computer Science Department, 1999.

[28] C. Ellerman. Channel Definition Format (CDF). Technical report, W3C, 1997.
h t tp : //www.w3.org/TR/NOTE-CDFsubmit.html.

[29] R. Elmasri and S. Navathe. Foundamentals of database systems. Addison-
Wesley Publishing Company, 1994.

[30] Eprints.org self-archiving software, h ttp ://w w w .ep rin ts .o rg /.

[31] O. Etzioni. The World Wide Web: Quagmire or gold mine? Communications
of the ACM, 39(11):65-68, 1996.

[32] R. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

[33] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Bemers-Lee. Hypertext Transfer Protocol - HTTP/1.1. Technical Report
Internet RFC 2616, IETF, 1998. h ttp ://w w w .ie tf .o rg /rfc /rfc 2 6 1 6 .tx t.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xslt
http://dlib.cs.odu.edu/dp9
http://www.w3.org/TR/NOTE-CDFsubmit.html
http://www.eprints.org/
http://www.ietf.org/rfc/rfc2616.txt

I l l

[34] J. C. French, A. L. Powell, F. Gey, and N. Perelman. Exploiting a controlled
vocabulary to improve collection selection and retrieval effectiveness. In Pro­
ceedings of the Tenth International Conference on Information and Knowledge
Management, pages 199-206, Atlanta, Georgia, USA, 2001.

[35] J. C. French, A. L. Powell, E. Schulman, and J. L. Pfaltz. Automating the
construction of authority files in digital libraries: a case study. In Proceedings of
research and advanced technology for digital libraries, first European conference,
pages 55-71, Pisa, Italy, 1997.

[36] F. C. Gey, M. Buckland, A. Chen, and R. Larson. Entry vocabulary - a
technology to enhance digital search. In Proceedings of the First International
Conference on Human Language Technology, San Diego, USA, 2001.

[37] Gift. giFT interface protocol documentation, 2002. h t t p : / / g i f t ,
sourceforge.net/docs/?docum ent=interface.htm l.

[38] C. L. Giles, K. Bollacker, and S. Lawrence. CiteSeer: An automatic citation
indexing system. In I. Witten, R. Akscyn, and F. M. Shipman III, editors,
Digital Libraries 98 - The Third ACM Conference on Digital Libraries, pages
89-98, Pittsburgh, PA, June 23-26 1998. ACM Press.

[39] P. Ginsparg. Creating a global knowledge network. In Proceedings of Second
Joint ICSU Press - UNESCO Expert Conference on Electronic Publishing in
Science, Paris, 2001.

[40] R. Goldman and J. Widom. Interactive query and search in semistructured
databases. In Proceedings of the International Workshop on the Web and
Databases, 1998.

[41] L. Gravano, K. Chang, H. Garcia-Molina, C. Lagoze, and A. Paepcke.
STARTS :stanford proposal for internet meta-searching. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 207-
218, 1997.

[42] N. Green, P. Ipeirotis, and L. Gravano. SDLIP STARTS = SDARTS: A
protocol and toolkit for metasearching. In Proceedings of the First ACM-t-IEEE
Joint Conference on Digital Libraries, pages 207—214, Roanoke VA, June 24-28
2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://gift

112

[43] S. Griffin. NSF/DARPA/NASA digital libraries initiative -a program man­
ager’s perspective. D-Lib Magazine, 5(7/8), 1998. h ttp ://w w w .dlib .org /
d lib /ju ly 9 8 /0 7 g riffin .h tm l.

[44] S. Hamad. The self-archiving initiative. Nature, 410:1024-1025, 2001.

[45] S. Hamad and L. Carr. Integrating, navigating and analyzing eprint archives
through open citation linking (the OpCit project). Current Science (special
issue honour of Eugene Garfield), (79):629-638, 2000.

[46] S. Hamad, L. Carr, and T. Brody. How and why to free all refereed research
from access- and impact-barriers online, now. High Energy Physics Libraries
Webzine, 4, June 2001. h t tp : / / l ib r a r y .c e r n .ch/HEPLW/4/papers/l/.

[47] S. Hitchcock, L. Carr, Z. Jiao, W. Hall, C. Lagoze, and S. Hamad. Developing
services for open eprint archives: globalisation, integration and the impact of
links. In Proceedings of the 5th ACM Conference on Digital Libraries. The
Association for Computing Machinery, 2000. h t tp : / /o p c i t .e p r in ts .o rg /
dlOO/dlOO.html.

[48] A. Howe. Apache mod_throttle/3.1.2. http://w w w .snert.com /Softw are/
m od_thro ttle /index . shtml.

[49] Htdig www search engine software, http ://w w w .htdig .org .

[50] Apache jarkata project, h t tp : / / ja rk a ta . apache. org.

[51] A. Kent. OAI harvester crawling status, 2002. http://w ww.m ds.rm it.edu.
au /“a jk / oai/interop/summ ary .htm.

[52] T. Koch, H. Neuroth, and M. Day. Renardus: Cross-browsing european subject
gateways via a common classification system (DDC). In IFLA satellite meeting:
Subject Retrieval in a Networked Environment, OCLC, Dublin, Ohio, USA,
2001. h t tp : / /www. lu b . l u . s e / 't r a u g o t t /d r a f t s /p r e i f l a - f in a l .html.

[53] M. Koster. The web robots page, h ttp ://w w w .robotstx t.o rg /w c/robots.
html.

[54] M. Koster. Robots in the Web: threat or treat? Connexions, 9(4), April 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dlib.org/
http://library.cern.ch/HEPLW/4/papers/l/
http://opcit.eprints.org/
http://www.snert.com/Software/
http://www.htdig.org
http://www.mds.rmit.edu
http://www.robotstxt.org/wc/robots

113

[55] C. Lagoze and J. R. Davis. Dienst - an architecture for distributed document
libraries. Communications of the ACM, 38(4):47, April 1995.

[56] C. Lagoze, W. Hoehn, D. Millman, W. Arms, S. Gan, D. Hillmann, C. Ingram,
D. Krafft, R. Marisa, J. Phipps, J. Saylor, C. Terrizzi, J. Allan, S. Guzman-
Lara, and T. Kalt. Core services in the architecture of the National Science
Digital Library (NSDL). In Proceedings of the Second ACM/IEEE Joint Con­
ference on Digital Libraries, pages 201-209, Portland OR, July 14-18 2002.

[57] C. Lagoze and H. Vian de Sompel. The Open Archives Initiative: Building a
low-barrier interoperability framework. In Proceedings of.the ACM/IEEE Joint
Conference on Digtial Libraries, pages 54-62, Roanoke VA, 2001.

[58] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner. The Open
Archives Initiative Protocol for Metadata Harvesting, version 2.0. h ttp :
//www. openar ch ives. org/QA.1/openar chive sp ro t ocol .html.

[59] R. Lasher and D. Cohen. A format for bibliographic records. Technical Report
Internet RFC 1807, IETF, 1995. h ttp ://w w w .fa q s .o rg /ftp /rfc /rfc i8 0 7 .
tx t .

[60] O. Lassila and R. Swick. Resource Description Framework (RDF) model and
syntax specification. Technical Report REC-rdf-syntax-19990222, W3C, 1999.
h t tp : / / www.w3.org/TR/REC-rdf-syntax/.

[61] S. Lawrence, G. L., and K. Bollacker. Digital libraries and autonomous citation
indexing. IEEE Computer, 32(6):67-71, 1999.

[62] Z. Lee. The NSF National Science, Technology, Engineering, and Mathematics
Education Digital Library (NSDL) program. D-Lib Magazine, 7(11), 2001.
h t tp : / / www.d l ib . org / dlib/november01/z i a / l l z i a .html.

[63] M. Lesk. Practical Digital Libraries: Books, Bytes and Bucks. Morgan Kauf-
mann, July 1997.

[64] A. Y. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proceedings of the 22nd International
Conference on Very Large Data Bases, pages 251-262, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.faqs.org/ftp/rfc/rfci807
http://www.w3.org/TR/REC-rdf-syntax/
http://www.dlib.org/

115

[74] C. Lynch. Metadata harvesting and the Open Archives Initiative. ARL Monthly
Report, 217, 2001. h ttp://w w w .arl.org/new sltr/217/m hp.htm l.

[75] W. Ma, B. Shen, and J. Brassil. Content services networks: The architecture
and protocol. In Proceedings of the WCW’01, Boston, MA, 2001.

[76] M.-H. Maa, S. L. Esler, and M. L. Nelson. Lyceum: A multi-protocol digital
library gateway. Technical Report NASA TM-112871, NASA, 1997.

[77] D. Mahoney and M. D. Giacomo. Flashpoint @ LANL.gov: A simple smart
search interface. Issues in Science and Technology Librarianship, 2001. h t tp :
//www. lib ra ry .ucsb . edu /istl/01-sum m er/art ic le 2 .html.

[78] M. Mahoui and S. J. Cunningham. Search behavior in a research-oriented digi­
tal library. In Proceedings of the Fifth European Conference on Digital Libraries
- ECDL2001, LNCS 2163, pages 13-24, Darmstadt, Germany, September 4-9
2001.

[79] K. Maly, M. Zubair, H. Anan, D. Tan, and Y. Zhang. Scalable digital libraries
based on NCSTRL/ Dienst. In Proceedings of the Fourth European Conference
on Digital Libraries - ECDL 2000, pages 169- 179, Lisbon, Portugal, 2000.

[80] K. Maly, M. Zubair, and X. Liu. Kepler - an OAI data/service provider for
the individual. D-Lib Magazine, 7(4), 2001. h ttp ://w w w .d lib .o rg /d lib /
april01/m aly/04m aly.html.

[81] K. Maly, M. Zubair, X. Liu, M. Nelson, and S. Zeil. Structured course objects
in a digital library. In Proceedings of the Third International Symposium on
Digital Libraries (ISDL 99), pages 89-96, Tsukuba, Japan, September 28-29
1999.

[82] K. Maly, M. Zubair, M. L. Nelson, X. Liu, H. Anan, J. Gao, J. Tang, and
Y. Zhao. Archon - a digital library that federates physics collections. In DC-
2002: Metadata for e-Communities: Supporting Diversity and Convergence,
October 13-17 2002.

[83] M.Baldonado, C. Chang, L.Gravano, and A.Paepcke. The Stanford digital
library metadata architecture. International Journal of Digital Libraries, 1(2),
1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.arl.org/newsltr/217/mhp.html
http://www.dlib.org/dlib/

116

[84] M. McClelland, D. McArthur, S. Giersch, and G. G. Challenges for
service providers when importing metadata in digital libraries. D-Lib
Magazine, 8(4), 2002. h ttp ://w w w .d lib .o rg /d lib /ap ril02 /m ccle lland /
04mcclelland.html.

[85] L. McLoughlin. Mirror software, h ttp ://s im s ite .d o c .ic .a c .u k /p a c k a g e s /
m irror/.

[86] Emory university: Metaarchive service, http://w ww.m etaarchive.org.

[87] K. Moss. Java Servlets. McGraw-Hill Companies, Inc, Boston, MA, 1999.

[88] MySQL reference manual, http://www.mysql.com/doc/home.html.

[89] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. Edutella: A p2p networking infrastructure based
on RDF. In Proceedings of the 11th World Wide Web Conference, Hawaii,
USA, 2002.

[90] M. L. Nelson. Buckets: Smart Objects for Digital Libraries. PhD thesis, Com­
puter Science Dept, Old Dominion University, August 2000.

[91] M. L. Nelson. Smart objects and dumb archives: Insuring the long term in­
tegrity of digital information. In Proceedings of Exploration 2000, pages 247-
261, Philadelphia, PA, December 12-15 2000.

[92] M. L. Nelson and B. D. Allen. Object persistence and availability in dig­
ital libraries. D-Lib Magazine, 8(1), 2002. h ttp ://w w w .d lib .o rg /d lib /
j anuary 02/nelson/0 ln e ls on. html.

[93] M. L. Nelson, K. Maly, S. Shen, and M. Zubair. NCSTRL-H Adding multi­
discipline and multi-genre support to the Dienst protocol using clusters and
buckets. In Proceedings of Advances in Digital Libraries 98, pages 128-136,
April 22-24 1998.

[94] Network Development and MARC Standards Office, Library of Congress.
MARC in XML. http://www.loc.gov/marc/marcxml.html.

[95] Network Development and MARC Standards Office, Library of Congress.
MARC standard, http://w w w .loc.gov/m arc/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dlib.org/dlib/april02/mcclelland/
http://simsite.doc.ic.ac.uk/packages/
http://www.metaarchive.org
http://www.mysql.com/doc/home.html
http://www.dlib.org/dlib/
http://www.loc.gov/marc/marcxml.html
http://www.loc.gov/marc/

117

[96] Network Development and MARC Standards Office, Library of Congress.
MARC to Dublin Core crosswalk. http://Hww.loc.gov/marc/marc2dc .html.

[97] N.Paskin. DOI: Current status and outlook. D-Lib Magazine, 5(5), 1999.
h t tp ://wwv.d l ib . org/dlib/m ay99/05paskin.html.

[98] NSDL. Technical infrastructure white paper, version 2.0, 2002. http://www.
smete.org /nsdl/w orkgroups/technical/nsdl_ tech_arch2.0 .doc.

[99] An XML schema to represent MARC records, http://www.openarchi.ves.
org/O A I/2.0/guidelines-oai_m arc.htm .

[100] OAI-PMH registration page in Cornell, http://w w w .openarchives.org/
d a ta /re g is te ra sp ro v id e r .html.

[101] OLAC: Open Language Archives Community. http://www.
language-arch ives.o rg /.

[102] Budapest open access initiative, http://w w w .soros.org/openaccess/.

[103] Oracle InterMedia server reference manual, h ttp ://o tn .o ra c le .c o m /d o c s /
products/o racle8 i/doc_ index .htm.

[104] A. Oram. Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology.
O’Reilly & Associates, 2001.

[105] A. Paepcke, R. Brandriff, G. Janee, R. Larson, B. Ludaescher, S. Melnik, and
S. Raghaven. Search middleware and the simple digital library interoperability
protocol. D-Lib Magazine, 6(3), 2000. h ttp ://w w w .dlib .org /d lib /m arch00/
paepcke/03paepcke .html.

[106] A. Paepcke, C. K. Chang, T. Winograd, and H. Garcia-Molina. Interoperability
for digital libraries worldwide. Communications of the ACM, 41(4):33-43, April
1998.

[107] L. Page and S. Brin. The anatomy of a large-scale hypertextual web search en­
gine. In Proceedings of the Seventh International World-Wide Web Conference,
April 1998.

[108] Public library of science, h ttp ://w w w .pub liclib raryofsc ience.o rg .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://Hww.loc.gov/marc/marc2dc
http://wwv.dlib.org/dlib/may99/05paskin.html
http://www
http://www.openarchi.ves
http://www.openarchives.org/
http://www
http://www.soros.org/openaccess/
http://otn.oracle.com/docs/
http://www.dlib.org/dlib/march00/
http://www.publiclibraryofscience.org

118

[109] A. Powell and J. C. French. Growth and server availability of the NCSTRL
digital library. In Proceedings of 5th ACM International Conference on Digital
Libraries (DL 2000), pages 264-265, San Antonio, TX, June 2-7 2000.

[110] G. Reese. Database programming with JDBC and Java. O’Reilly &; Associates,
Sebastopol, CA, 2000.

[111] J. Ritter. Why GNUtella can’t scale, no, really, h ttp ://uvw .darkridge.com /
”jp r5 /doc/gnu te lla .h tm l.

[112] R. Rivest. The MD5 message-digest algorithm. Technical Report Internet
RFC-1321, IETF, 1992. h t tp :/ /w w w .ie tf .o rg /r fc /r fc l3 2 1 .tx t.

[113] D. S. H. Rosenthal and V. R. Herbert. Permanent web publishing. In Pro­
ceedings of USENIX Annual Technical Conference, 2000. http://lockss.
Stanford.edu/freenix2000/freenix2000.html/.

[114] SAX: Simple API for XML. h ttp ://w w w .saxpro jec t.o rg /.

[115] M. Schwartz. Report of W3C distributed indexing and searching workshop,
1996. h t tp : / /veb3. w3.org/Search/9605-Indexing-Workshop/.

[116] E. W. Selberg. Towards Comprehensive Web Search. PhD thesis, Computer
Science Department, University of Washington, 1999.

[117] R. Shi, K. Maly, and M. Zubair. ynamic interoperation of non-cooperating
digital libraries. In Proceedings of Digital Library - IT Opportunities and Chal­
lenges in the New Millennium, Beijing, China, 2002.

[118] P. Shivakumar. Sample NCSTRL usability evaluation report. Technical Report
TR02-08, Virginia Tech Computer Science Technical Report, 2002.

[119] H. Suleman. Enforcing interoperability with the Open Archives Initiative repos­
itory explorer. In Proceedings of the ACM/IEEE Joint Conference on Digtial
Libraries, pages 63-64, Roanoke VA, June 24-28 2001.

[120] H. Suleman and E. A. Fox. A framework for building open digital libraries.
D-Lib Magazine, 7(12), 2001. h ttp ://w w w .dlib .org/dlib/decem ber01/
suleman/12suleman. html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://uvw.darkridge.com/
http://www.ietf.org/rfc/rfcl321.txt
http://lockss
http://www.saxproject.org/
http://www.dlib.org/dlib/december01/

119

[121] H. Suleman, E. A. Fox, and M. Abrams. Building quality into a digital library.
In Proceedings of the Fifth ACM Conference on Digital Libraries, pages 228-
229, San Antonio, TX, 2000.

[122] S. X. Sun and L. Lannom. Handle system overview. Technical Report Internet
Draft, draft-sun-handle-system-09.txt, IETF, 2002. h ttp ://w w .h a n d le .n e t/
overview -current.htm l.

[123] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema 1.1.
Technical report, W3C, 2001. http://w w.w3.org/TR/xm lschem a-0/.

[124] H. Van de Sompel and O. Beit-Arie. Generalizing the OpenURL frame­
work beyond references to scholarly works- the Bison-Fut model. D-Lib
Magazine, 7(7/8), 2001. h ttp ://w w .d lib .o rg /d lib /ju ly 0 1 /v an d eso m p e l/
07vandesompel .html.

[125] H. Van de Sompel and O. Beit-Arie. Open linking in the scholarly information
environment using the OpenURL framework. D-Lib Magazine, 7(3), 2001.
http://w w .dlib.org/dlib/m arch01/vandesom pel/03vandesom pel.htm l.

[126] H. Van de Sompel, T. Krichel, M. L. Nelson, P. Hochstenbach, V. Lyapunov,
K. Maly, M. Zubair, M. Kholief, X. Liu, and H. O’Connell. The UPS prototype:
An experimental end-user service across El-Print archives. D-Lib Magazine,
6(2), February 2000.

[127] H. Van de Sompel and C. Lagoze. The Open Archives Initiative Protocol for
Metadata Harvesting, version 1.1. h ttp ://w w .o p en a rch iv es .O rg /0 A I/l.l/
openarchivesprotocol.htm.

[128] H. Van de Sompel and C. Lagoze. The Santa Fe Convention of the Open
Archives Initiative. D-Lib Magazine, 6(2), 2000.

[129] H. Van de Sompel and C. Lagoze. Notes from the interoperability front: A
progress report on the Open Archives Initiative”. In Proceedings of 6th Euro­
pean Conference on Research and Advanced Technology for Digital Libraries,
pages 144-157, Rome, Italy, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ww.handle.net/
http://ww.w3.org/TR/xmlschema-0/
http://ww.dlib.org/dlib/july01/vandesompel/
http://ww.dlib.org/dlib/march01/vandesompel/03vandesompel.html
http://ww.openarchives.Org/0AI/l.l/

120

[130] A. Van Hoff, J. Giannandrea, M. Hapner, S. Carter, and M. M. The HTTP
distribution and replication protocol. Technical Report NOTE-DRP, World
Wide Web Consortium, 1997. http://www.w3.org/TR/N0TE-drp.

[131] S. Weibel, J. Kunze, C. Lagoze, and M. Wolfe. Dublin Core metadata for
resource discovery. Technical Report Internet RFC-2413, IETF, 1998. h ttp :
/ / www.ie tf .o rg /r fc /r fc 2 4 1 3 .t r t .

[132] I. H. Witten, D. Bainbridge, and S. J. Boddie. Greenstone open-source digital
library software. D-Lib Magazine, 7(10), October 2001. h ttp ://w w w .dlib .
org /d lib /october01/w itten /lO w itten .h tm l.

[133] L. Wood, V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors,
G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood. Document Object Model
(DOM) level 1 specification. Technical Report REC-DOM-Level-1-19981001,
W3C Recommendation, 1998. http://www.w3.org/TR/REC-D0M-Level-l/.

[134] W.Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol.
Technical Report Internet RFC-1777, IETF, 1995. h ttp ://w w w .ie tf.o rg /
r f c / r f c l777 .tx t.

[135] International standard, ISO 23950: ’’Information Retrieval (Z39.50): Appli­
cation service definition and protocol specification”, h ttp ://lc w e b .lo c .g o v /
z3950/agency/markup/markup.html.

[136] M. Zubair, K. Maly, I. Ameerally, and M. L. Nelson. Dynamic construction of
federated digital libraries. In Proceeding of WWW9 Conference, Amsterdam,
The Netherlands, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/N0TE-drp
http://www.ietf.org/rfc/rfc2413.trt
http://www.dlib
http://www.w3.org/TR/REC-D0M-Level-l/
http://www.ietf.org/
http://lcweb.loc.gov/

121

APPENDIX A

METADATA VARIABILITY OF OAI REPOSITORIES

This appendix lists the number of records harvested and the number of distinct sub­
ject, type, format, and language fields used in each archive. The complete explanation
is in Section 5.2.

TABLE A.l: Metadata variability of OAI-PMH-compliant repositories (to April 3,
2002)__

Archive No of Records Date Subject Type Format Language
8657690236 798 Y 53 1 0 0
AIM25 3962 N 2424 1 1 0
anlc 5 Y 2 1 2 0
anu 114 Y 22 6 0 0
aps 422 N/A 5 0 180 0
arXiv 182996 Y 121 1 0 12
bmc 220 Y 0 13 0 1
caltechCSTR 504 Y 8 2 0 0
caltecheerl 140 N 1 1 0 0
caltechETD 30 Y 10 1 4 1
cav2001 111 Y 103 1 0 0
CBOLD 89 Y 136 1 20 3
CCSDthesis 99 Y 16 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Archive No of Records Date Subject Type Format Language
LTRS 2629 N 70 117 0 0
mathpreprints 76 N/A 0 0 0 0
mit.etheses 6288 Y 1339 1 5 0
MONARCH 490 Y 471 11 0 6
NACA 7492 N 0 7483 0 0
NCSTRL 21213 N 0 60 0 7
ndltd 6 Y 4 2 0 0
Nottingham 41 Y 9 5 0 0
NSDL-DEV-CU 2559 N 1735 8 857 9
OpenVideo 1658 Y 389 1 3 2
ota 1245 Y 0 1 44 52
perseus 1394 N/A 0 1 0 0
physdoc 407 Y 397 1 8 13
rdn 387 N/A 674 0 0 24
RIACS 35 Y 5 1 0 0
sammelpunkt 109 Y 29 11 116 0
sceti 47 N 130 0 0 1
scout 50 N 175 0 0 0
SUUB 125 N 97 1 0 2
tkn 321 N 401 25 2 0
Tropicos 517400 Y 0 0 0 0
UBC 2 Y 3 3 1 2
UDLAthesis 95 Y 59 2 1 3
uiLib 29443 N 3353 5 688 4
UKETD 26 Y 9 1 1 0
UKOLN-ejoumals 113 N/A 0 0 0 1
USF 28 Y 13 1 2 1
UUdiva 1536 Y 7387 1 2 6
VTETD 3138 Y 170 1 1 1
yea 86 V

I *■ 279 2 32 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

APPENDIX B

USAGE OF PARALLEL METADATA

This appendix lists parallel metadata usage in OAI-PMH repositories, the complete
explanation is in Section 3.2.4.

TABLE B.l: Usage of parallel metadata in OAI-PMH repositories (to August, 2002)
Archive Metadata Format
1111 oai.dc
ackarch oai-dc
AIM25 oai_rfcl807
AIM25 oai.dc
AlanTest olac
AlanTest oai.dc
anlc olac
anlc oai-dc
ans oai.vracore
ans oai.dc
anu oai.dc
applebytest olac
applebytest oai_dc
ArchiveLyon2 oai_dc
arXiv oai-dc
arXiv oai_rfcl807

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Archive Metadata Format
arXiv arXiv
arXiv arXiv _01d
bmc bmc_article
bmc bmc_bibl
bmc oai.dc
caltechcstr oai-dc
caltechEERL oai.de
caltechETD oai_rfcl807
caltechETD oai-marc
caltechETD oai.etdms
caltechETD oai_dc
cav2001 oai-dc
cbold oai-olac
cbold oai-dc
CCSDarchiveSIC oai_dc
CCSDJeanNicod oai-dc
CCSDthesis ccsd_tel
CCSDthesis oai.dc
CDLCLAS oai-dc
CDLDERM oai-dc
cdlibl oai-dc
CDLTC oai-dc
celebration oai-dc
cogdata olac
cogdata oai-dc
cogprints oai-dc
conoze oai-dc
CPS oai-dc
CSTC imsl_2_l
CSTC imsl_L
CSTC oai-cstc
CSTC oai-dc
CyberTheses oai-dc
DavidRumseyCollection oai.dc
DLCommons oai-dc
dlpscoll dlxs_bib
dlpscoll oai-dc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Archive Metadata Format
DUETT oai_rfcl807
DUETT oai_marc
DUETT oai.etdms
DUETT oai_dc
EarlyMandarin olac
EarlyMandarin oai_dc
EKUTuebingen oai-dc
eldorado oai_dc
ELibBSU oai_dc
epsilondiss oai_dc
epubWU oai-dc
ETDIndividuals oai.etdms
ETDIndividuals oai-dc
ethnologue olac
ethnologue oai-dc
Formosan olac
Formosan oai-dc
GenericEPrints oai-dc
hofprints oai_dc
hsss oai-dc
ibiblio oai-dc
in2p3 oaiJn2p3
in2p3 oai-dc
jhjhjh olac
jhjhjh oai_dc
JTRS oai-dc
lacito olac
lacito oai-dc
lcoal oai-marc
lcoal oai-dc
LSUETD oai_rfcl807
LSUETD oai-marc
LSUETD oaLetdms
LSUETD oai-dc
LTRS oai_dc
MathPreprints oai-dc
mit oai_rfcl807
mit oai_dc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Archive Metadata Format
MONARCH oai-dc
NACA oai-dc
ncstrlh oai.rfcl807
ncstrlh oai-dc
NUIM oai-dc
OpenVideo oai-dc
pastel oai-dc
perseus olac
perseus perseus
perseus oai-dc
physdoc oai-dc
PKP oai_rfcl807
PKP oai-marc
PKP oai-dc
RIACS oai_dc
RUGNL oai-dc
sammelpunkt oai-dc
sceti oai-marc
sceti oai-dc
scoil olac
scoil oai-dc
sil olac
sil oai-dc
SinicaCorpus olac
SinicaCorpus oai_dc
stevenbird olac
stevenbird oai-dc
SUUB oai-dc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Archive Metadata Format
TalkBank olac
TalkBank oai.de
tkn oai.dc
tropicos oai-darwin_core
tropicos oai-dc
UBC oai_rfcl807
UBC oai-marc
UBC oai-etdms
UBC oai-dc
uiLib uiuc_dcq_rdf
uiLib oai-dc
UMIMAGES oai-dc
UniversityOfNottingham oai-dc
UnivOldenburgBIS oai-dc
UUdiva oai-dc
VTETD oai_rfcl807
VTETD oai-marc
VTETD oai-etdms
VTETD oai-dc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

APPENDIX C

RECORDS UPDATE RATE (MONTHLY)

This appendix lists monthly records update rate of OAI-PMH Repositories
(R(rt; tj), A t = 1 month). The complete explanation is in Section 4.3.

TABLE C.l: Monthly records update rate of OAI-PMH repositories (from 2002-01
to 2002-09)_________________________________
archive J-02 F-02 M-

02
A-02 M-

02
J-02 J-02 A-02 S-02

ACL N/A N/A N/A 2149 0 0 0 0 0
AIM25 26 81 617 151 223 134 11 341 122
CCSDJeanNicod N/A N/A N/A N/A 3 52 9 2 37
CCSDarchiveSIC N/A N/A N/A N/A 9 16 4 0 4
CCSDthesis 21 26 23 10 12 44 6 20 24
CDLCIAS 0 1 1 1 0 0 0 0 0
CPS 28 10 9 2 11 15 2 1 6
CSTC 0 2 3 4 6 0 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

archive J-02 F-02 M-
02

A-02 M-
02

J-02 J-02 A-02 S-02

DLCommons 0 2 7 25 3 1 1 0 1
DUETT 8 10 5 5 28 2 83 31 22
EKUTuebingen 1 8 37 429 44 46 38 47 17
EarlyMandarin N/A N/A N/A N/A 1 0 0 0 0
Formosan N/A N/A N/A N/A 1 0 0 0 0
GenericEPrints N/A 1 0 0 0 0 0 0 0
HKUTO 270 81 76 89 89 29 4 8 1
HUBerlin 16 6 1 2 1 2 0 0 3
HUBerlin.de 21 8 19 17 10 6 18 0 5
JTRS 0 2 1 2 1 0 0 0 0
LSUETD 28 2 3 141 6 40 72 9 15
LTRS 12 39 13 12 26 35 39 4 21
MONARCH 5 8 12 8 1 2 1 1 1
NACA 4 6 2 0 2 0 0 0 0
NCSTRL 0 0 0 0 0 0 0 0 0
NSDL-DEV-
CU

1 2 5 0 1 0 2 2 2

NUIM N/A N/A N/A N/A 5 2 3 1 0
Nottingham 0 1 0 1 0 0 0 0 0
Open Video 0 603 217 182 192 258 0 0 147
PKP 3 2 0 0 4 0 65 0 0
RIACS 0 1 0 0 1 0 0 0 2
RUGNL N/A N/A N/A 7 7 2 0 3 0
RePEc N/A N/A N/A N/A N/A N/A N/A N/A 2E+05
Rnmsey N/A N/A N/A N/A N/A 6571 0 0 704
SUUB 0 10 87 161 127 57 77 30 52
SinicaCorpus N/A N/A N/A N/A 1 0 0 0 0
UBC N/A 2 0 0 0 0 0 0 0
UDLAthesis 0 0 0 0 0 0 0 0 0
UKOLN-
ejoumals

0 0 0 0 0 0 0 0 0

UMIMAGES N/A N/A N/A 6025 24 20 16202 749 5898
UUdiva N/A N/A N/A N/A N/A N/A 1 0 1714
VTETD 16 25 10 84 115 52 51 78 45
anlc 4137 0 0 0 0 0 0 0 0
anu 49 41 1 15 70 51 1 1 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

archive J-02 F-02 M-
02

A-02 M-
02

J-02 J-02 A-02 S-02

arXiv 7744 3198 3874 3089 3605 3672 4462 4181 4505
artiste N/A 1159 0 0 0 0 0 0 0
arxiv.org N/A N/A N/A N/A N/A 2E+05 4282 4345 4583
bmc 50 20 5 11 68 3 0 0 5
caltechCSTR 0 0 1 3 1 1 44 47 3
caltechETD 4 2 1 1 9 10 1 5 76
caltecheerl 3 1 5 0 28 34 20 0 1
cdlibl 3 3 4 6 0 4 79 78 1
cds.cern.ch N/A N/A N/A N/A N/A N/A N/A 19647 469
cogdata N/A N/A N/A N/A N/A 1 0 0 0
cogprints 1370 19 10 11 8 40 15 41 11
conoze 37 29 21 9 27 12 5 4 0
dispute 0 0 94 0 0 0 64 0 0
dlpscoll 1621 12 0 629 1386 0 109 0 11221
eldorado 99 20 12 45 2 17 17 5 2
epsilondiss N/A N/A N/A 13 12 3 0 3 1
epubwu N/A N/A N/A N/A 1 1 0 0 0
glasgow 3 1 0 2 8 1 0 0 0
hopprints 6 2 13 1 0 0 0 0 4
hsss 0 4 0 0 7 1 0 0 0
ibiblio N/A N/A N/A N/A N/A N/A 1 380 1
in2p3 180 140 276 57 90 110 108 52 141
informedia 71 0 0 0 0 0 0 0 0
iofFe N/A N/A 337 0 0 0 0 0 0
lacito 0 31 0 0 1 0 2 0 0
lcoal 0 7756 0 0 0 0 1 522 2
lcoal.loc.gov N/A N/A N/A N/A N/A 1E+05 4417 193 15772
lib.umich.edu 1621 0 48995 4099 730 0 45665 0 11221
ltrs.larc.nasa 12 40 31 22 42 35 71 31 24
mathpreprints 5 6 3 3 20 40 12 7 12
mit.etheses 46 86 142 119 189 63 75 124 82
naca.larc.nasa 4 6 3 0 2 0 0 0 0
ndltd 1 0 0 0 0 0 0 0 0
oai.library.uiuc 0 0 0 96853 0 0 0 0 0
oai.sunsite.utk N/A N/A N/A N/A N/A N/A 2 351 94
ota 0 0 0 0 0 0 0 0 0
pastel N/A N/A 16 18 29 3 0 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

archive J-02 F-02 M-
02

A-02 M-
02

J-02 J-02 A-02 S-02

perseus 0 0 0 0 0 0 0 0 0
sammelpunkt N/A 1 25 0 0 0 17 0 12
scielo 781 321 488 420 225 571 168 258 198
scoil N/A N/A N/A N/A 1552 0 0 0 0
tkn 0 0 0 55 2 0 0 0 0
uiLib 1086 0 27564 96149 0 0 0 0 0
unimelb.edu.au N/A N/A N/A N/A N/A N/A 1 46 32
xtcat.oclc.org N/A 1E+06 0 0 0 0 0 0 0
yea 0 0 0 0 0 0 0 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

APPENDIX D

UPDATE INTERVAL (DAILY)

This appendix lists update interval of OAI-PMH repositories, the complete explana­
tion is in Section 4.2 and Section 4.3. The observance interval is day, or ,Ai = 1 day
AVG(ri): Average Update Rate
U(r,-): Average Update Interval
stdv(I(ri)): Standard Deviation of Update Interval
C.O.V.(I(ri)): Coefficient of Variation of Update Interval

TABLE D.l: Repository update interval of OAI-PMH repositories (09/30/3001-
09/30/2002)

archive AVGfo) U{rt) stdv(I(ri))
AIM25 39.43 6.16 10.2 1.66
anlc 912.75 67.5 64.53 0.96
anu 5.19 6.06 12.12 2
arxiv.org 145.32 1 0 0
bmc 3.19 3.25 11.93 3.67
caltechCSTR 5.18 13.77 24.47 1.78
caltecheerl 6 13.22 17.78 1.34
caltechETD 3.25 9.53 14.1 1.48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

archive AVG{ri) U{Ti) stdv(I(ri)) ao.v.iKri))
CCSDarchiveSIC 1.58 7.16 17.2 2.4
CCSDJeanNicod 3.57 4.5 5.53 1.23
CCSDthesis 1.85 3.12 6.38 2.04
CDLCIAS 3 73 92.05 1.26
cdlibl 6.52 12.55 111.91 8.92
cds.cern.ch 873.43 2.35 3.42 1.46
cogprints 20.07 3.8 4.13 1.09
conoze 3.51 6.8 8.59 1.26
CPS 1.58 3.7 7.15 1.93
CSTC 1.4 22.33 106.93 4.79
dispute 22.57 30.29 93.5 3.09
DLCommons 3.78 19.67 30.18 1.53
dlpscoll 1737 32.33 111.86 3.46
DUETT 3.18 4.59 4.7 1.02
EKUTuebingen 7.33 3.73 9.28 2.49
eldorado 7.93 5.04 9.48 1.88
epsilondiss 2.07 10.73 18.1 1.69
epubwu 1 134 105.76 0.79
glasgow 1.79 22.29 24.68 1.11
HKUTO 5.23 2.65 62272.87 23462.58
hopprints 2.42 29.08 42.32 1.46
hsss 1.09 21.36 219.99 10.3
HUBerlin 1.68 6.87 1438.23 209.41
HUBerlin.de 1.95 4.32 4871.18 1127.22
ibiblio 63.5 12.33 11.35 0.92
in2p3 7.89 1.71 2.92 1.71
informedia 23.14 49.43 571.92 11.57
ioffe 66.5 94.5 93 0.98
JTRS 1.4 60.4 173.98 2.88
lacito 8.5 60 90.31 1.51
lcoal 1037.12 44.38 47.74 1.08
lcoal.loc.gov 7648.2 11.6 8.53 0.74
lib.umich.edu 8640.85 19.31 108.76 5.63
LSUETD 4.08 4.09 8.14 1.99
LTRS 2.36 2.81 7.12 2.53
ltrs.larc.nasa.gov 2.43 2.15 5.41 2.52
mathpreprints 1.54 4.33 5.82 1.34
mit.etheses 7.33 2.03 3.3 1.62
MONARCH 1.25 6.55 36.03 5.51
NACA 24.61 19.44 18.55 0.95
naca.larc.nasa.gov 24.37 18.42 17.79 0.97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

archive AVG(n) U{n) stdv(l(n)) C.O.V.(l(n))
NCSTRL 2723.25 84.5 70.06 0.83
Nottingham 1.6 35.5 55.9 1.57
NSDL-DEV-CU 2.15 18.05 2531.85 140.27
NUIM 1.25 16.5 10.75 0.65
oai.Iibrary.uiuc.edu 24481.5 82 74.39 0.91
oai.sunsite.utk.edu 74.17 12.83 13.97 1.09
OpenVideo 69.65 13.19 23.5 1.78
ota 2.06 36.88 81.07 2.2
pastel 2.36 7.57 17.58 2.32
perseus 2 364 5454.73 14.99
PKP 18.5 67.75 365438.63 5393.93
RePEc 44 2.38 1.29 0.54
RIACS 1.56 40.22 55.48 1.38
RUGNL 1.89 19.44 18.26 0.94
Rumsey 704 110 25 0.23
sammelpunkt 4.15 16.54 33.75 2.04
scielo 411.08 30.33 100.93 3.33
SUUB 7.46 4.46 13.25 2.97
tkn 14.25 43.25 111.57 2.58
torc9.cs.utk.edu 1.67 2 0.82 0.41
UDLAthesis 3.67 119 1891.9 15.9
uiLib 41237.67 80.67 60.23 0.75
UKOLN-
ejoumals

25 364 502.53 1.38

UMIMAGES 1526.2 10.6 9.07 0.86
unimelb.edu.au 4.59 5.29 10.97 2.07
UUdiva 857 43.5 71.92 1.65
VTETD 3.5 2.11 56.5 26.77
www.open-
video.org

45.75 8.4 14.22 1.69

yea 49 341 563.75 1.65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX E

QUERY LOGS OF ARC AND NCSTRL

r ?ABLE E.l: Number
Month Number of queries
2001-03 897
2001-04 1201
2001-07 891
2001-08 1271
2001-09 1549
2001-10 1773
2001-11 1642
2001-12 1827
2002-01 1654
2002-02 2324
2002-03 2404
2002-04 2627
2002-05 2206
2002-06 1809
2002-07 1694

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

TABLE E.2: Number of queries in NCSTRL (from 2001-10 to 2002-08)
Month Number of queries
2001-10 1897
2001-11 2340
2001-12 6196
2002-01 8212
2002-02 3636
2002-03 7691
2002-04 7939
2002-05 7411
2002-06 6755
2002-07 6020
2002-08 6480

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Xiaoming Liu
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

ADDRESS
814 Westmoreland Ave, APT 80,
norfolk, VA, 23508

EDUCATION
B.S. Computer Science, July 1994, ShanDong University
M.S. Computer Engineering, March 1997, Shanghai Jiaotong University
Ph.D Computer Science, December, 2002, Old Dominion University

Typeset using ETfcjX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 2002

	Federating Heterogeneous Digital Libraries by Metadata Harvesting
	Xiaoming Liu
	Recommended Citation

	tmp.1550586679.pdf.wG1Yi

