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ABSTRACT

EXTENDING TRADITIONAL STATIC ANALYSIS TECHNIQUES TO SUPPORT 
DEVELOPMENT, TESTING AND MAINTENANCE OF COMPONENT-BASED

SOLUTIONS.

Robert D. Cherinka 
Old Dominion University, 2000 
Director. Dr. C. M. Overstreet

Traditional static code analysis encompasses a mature set of techniques for 

helping understand and optimize programs, such as dead code elimination, program 

slicing, and partial evaluation (code specialization). It is well understood that compared 

to other program analysis techniques (e.g., dynamic analysis), static analysis techniques 

do a reasonable job for the cost associated with implementing them. Industry and 

government are moving away from more ‘traditional’ development approaches towards 

component-based approaches as ‘the norm.’ Component-based applications most often 

comprise a collection of distributed object-oriented components such as forms, code 

snippets, reports, modules, databases, objects, containers, and the like. These 

components are glued together by code typically written in a visual language. Some 

industrial experience shows that component-based development and the subsequent use 

of visual development environments, while reducing an application’s total development 

time, actually increase certain maintenance problems. This provides a motivation for 

using automated analysis techniques on such systems. The results of this research show 

that traditional static analysis techniques may not be sufficient for analyzing component- 

based systems. We examine closely the characteristics of a component-based system and 

document many of the issues that we feel make the development, analysis, testing and 

maintenance of such systems more difficult. By analyzing additional summary 

information for the components as well as any available source code for an application, 

we show ways in which traditional static analysis techniques may be augmented, thereby 

increasing the accuracy of static analysis results and ultimately making the maintenance 

of component-based systems a manageable task. We develop a technique to use semantic
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information about component properties obtained from type library and interface 

definition language files, and demonstrate this technique by extending a traditional 

unreachable code algorithm. To support more complex analysis, we then develop a 

technique for component developers to provide summary information about a component. 

This information can be integrated with several traditional static analysis techniques to 

analyze component-based systems more precisely. We then demonstrate the effectiveness 

of these techniques on several real Department of Defense (DoD) COTS component- 

based systems.
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1

1. INTRODUCTION

In an attempt to support the long-term goal of decreasing software development 

time and costs without unduly complicating future software maintenance, analytic 

techniques and tools, such as static code analysis, are used to assist with the 

understanding, development and maintenance of software.

Traditional static code analysis encompasses a mature set of techniques for 

helping understand and optimize programs. Most of these techniques use information 

resulting from the solution of one or more data flow problems, such as reaching 

definitions, available expressions, live-variable analysis, and definition-use chains [9, 59, 

90], Traditional approaches using data flow information may include dead code 

elimination [20], program slicing [63, 110, 116], and partial evaluation (code 

specialization) [37]. It is well understood that compared to other program analysis 

techniques (e.g., dynamic analysis [93]), static analysis techniques do a reasonable job for 

the costs associated with implementing them. This represents a trade-off, which is 

generally accepted, between the accuracy and usefulness of the information resulting from 

such algorithms, and the overhead to implement and conduct the analysis. One area of 

current research within the static analysis community is examining ways to improve the 

accuracy of information that these static techniques collect, store and use.

In an effort to decrease software costs and to shorten time-to-market, industry and 

government alike are moving away from more ‘traditional’ development approaches and 

towards integration of commercial off-the-shelf (COTS) components [21, 36, 48]. An 

interesting aspect of component-based development is that automated solutions are 

comprised of a variety of ‘non-traditional’ constructs. A program is a collection of 

distributed object-oriented components including, for example, forms, code snippets, 

reports, modules, databases, objects and containers. Components are glued to other 

components and controls using code snippets written in a visual language, such as one

The journal model used is IEEE Transactions on Software Engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

might do when establishing a command button on a form. As an example, consider a 

COTS solution that is typical in many organizations. Microsoft (MS) Visual Basic may 

be used as a fundamental integration mechanism to tie together a variety of MS Office 

products (e.g.. Word, Excel, PowerPoint, Outlook), MS Back Office products (e.g., SQL 

Server) and web-based services/applications [27].

It is well documented that throughout an application's lifecycle the cost of 

software maintenance is typically much higher than the original cost of development (i.e., 

60-80% of total cost [16, 32, 77]). Software maintenance also is the most overlooked and 

least structured phase of the lifecycle. The fact that component-based solutions represent 

a new methodology and a new set of challenges does not change this [52, 124, 127, 129]. 

The nature of the component-based environment is such that rapid change becomes the 

norm. On the one hand, the ability to effect rapid changes in the functionality of their 

software enables maintainers to respond quickly to changing requirements, thus 

shortening the maintenance lifecycle. On the other hand, component-based solutions 

require that maintainers be able to adapt to vendor-induced changes in the underlying 

components from which their applications are built. In all cases, maintainers are faced 

with handling the different types of maintenance (corrective, enhancement, adaptive, 

predictive) to their component-based systems.

Our experience shows that component-based development and the subsequent use 

of visual development environments, while reducing an application’s total development 

time, can actually increase certain maintenance problems. A majority of the code in such 

an application resides in the individual components being reused, rather than having been 

written by the developer. Further, much of the source code for components is not 

available to the component user. Portions of the code are introduced automatically by the 

visual development environment (e.g., code generated when controls are dragged and 

dropped onto forms, or by programming 'wizards’ in response to parameters entered by 

the developer). Moreover, we have found that problems such as the proliferation of dead 

code can be a common outgrowth of typical maintenance activities in these component- 

based environments. Consequently, the resulting overall application becomes more 

difficult to understand and maintain [106].
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3

In this research, we examine closely the characteristics of a component-based 

system and document many of the issues that we feel make the development, analysis, 

testing and maintenance of such systems more difficult. We distinguish between 

component providers and component users and discuss the issues facing each. We 

classify component-based solutions by the type of information made available to the 

component user by the provider in an attempt to highlight the difficulties associated with 

analyzing a component-based system.

We identify situations where standard analysis techniques provide misleading or 

incomplete information when used on a component-based solution and show how 

traditional static analysis techniques can be extended in several to analyze component- 

based systems. By analyzing additional summary information for the components as well 

as any available source code for the application, we show ways in which traditional static 

analysis techniques may be augmented, thereby increasing the accuracy of static analysis 

results and ultimately making the maintenance of component-based applications a 

manageable task.

Our first technique leverages the minimal information typically available for 

components but which traditional static analysis techniques do not utilize. This approach 

aids component users attempting to analyze a component-based system by leveraging the 

semantic information about component properties contained in the type library or 

interface definition language (IDL) files associated with a component. We then show 

how this information can be used to augment traditional static analysis techniques for 

analyzing a typical component-based system. This technique can be useful for improving 

traditional tasks such as dead code detection.

While this technique is useful, we discuss additional ways to improve the analysis 

of component-based systems. Our second technique represents one such way a 

component developer could provide extended static analysis summary information with 

each component. This extended interface not only includes the standard interface 

information, but other information that could be useful for gaining insight into the 

component without having access to the source code. In this approach, the component 

provider uses analysis techniques to gather summary information that facilitates further

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

analysis and testing of those components by users without requiring access to the source 

code. The component provider makes the summary information available with the 

component. It is important to note that component providers are often unwilling to 

distribute source code for proprietary reasons. This technique requires cooperation of 

component providers but does help safeguard proprietary information about the 

component. The component user integrates the components with the user application, 

and queries the summary information during the analysis of the integrated system. Our 

technique summarizes global data flow analysis through variable def-use, first use/last 

use and parameter couplings. This technique can be useful for tasks such as interface- 

level coupling analysis and testing, slicing and ripple analysis, and integration testing.

We then demonstrate the effectiveness of these techniques in several case studies 

using real COTS component-based systems developed and maintained by the Department 

of Defense (DoD).

1.1. Contributions of this research

This research will make direct contributions to component-based solutions and in 

particular, those based on COTS products. COTS component-based solutions are 

becoming the norm. COTS products and distributed web-based components in particular 

are being used in DoD, Industry and Academia for all types of applications. Maintaining 

such systems in a cost-efficient manner is quickly becoming a concern to many 

organizations. The results of this work help establish a foundation for preparing 

organizations to tackle this problem by identifying some of the issues that need to be 

addressed as well as some tools and techniques that can be used to address some of them.

Currently, components that are used to construct a component-based system do 

not typically include the source code or any additional documentation that describes the 

component at any length. This is especially true for COTS components. This makes the 

analysis of these systems difficult at best. Today, without component source, often little 

or no information is available about the component that would be of use to static analysis 

techniques. For example, variable def-use, first-use/last-use, global reference and 

definition, and control flow information is not available. In some components, formal
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parameter information is available in an external source (i.e., IDL file), but this external 

information is not being utilized in most of the techniques available today. The key is in 

leveraging the amount of information that is or can be made available about the 

components and incorporating that information ways that make analysis of the 

component-based system more precise. Potential sources for this additional information 

may include the insight of experienced programmers as well as information automatically 

generated by static analysis tools.

We discuss approaches that can be used to collect more static analysis insight 

about components. Using the additional information obtained, we show how traditional 

static analysis techniques can be augmented to analyze component-based systems. 

Through examples and case studies, we illustrate how the use of some traditional static 

code analysis techniques can aid in the understanding of these systems. Such techniques 

can have application for debugging, testing, integration and maintenance of component- 

based systems [46, 74, 79, 95, 111].

1.1.1. Goals

The primary goals achieved during the research for this thesis were to:

• Understand and document characteristics and potential issues associated with 
component-based applications which can make the software analysis, 
development, maintenance and testing of such applications more difficult.

• Develop new or extend traditional static analysis techniques for improved analysis 
of a component-based software system.

• Demonstrate that the use of additional information, such as semantic information 
about component properties, can be used to improve the quality of analyses. 
Some of this additional information can only be provided by experienced 
developers, and some can be extracted automatically.

• Validate the techniques on existing real systems.

1.1.2. Main results

This thesis contributes the following results:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

• We describe distinguishing characteristics associated with component-based 
applications that can make software analysis, development, maintenance and 
testing more difficult.

• We develop a component taxonomy that characterizes potential engineering and 
maintenance problem areas.

• We classify the information necessary for static analysis of component-based 
solutions in terms of the type of component solution, the information provided by 
the component developer, and the techniques each classification can support.

• We identify what is lacking in the information available today for most 
components, and define additional component summary information that is 
needed from component developers to support system-level analysis using several 
traditional static analysis techniques.

• We define a schema for component developers to represent the static analysis 
summary information for a component using a standardized extensible markup 
language (XML) format.

• We demonstrate how several existing static analysis techniques may not be 
sufficient when applied to component-based solutions.

• We develop a technique to use semantic information about component properties 
obtained from type library and interface definition language files, and demonstrate 
the effectiveness of this technique by extending a traditional unreachable code 
algorithm.

• We develop a technique for component developers to provide summary 
information about a component that can be integrated with several traditional 
static analysis techniques to analyze component-based systems more precisely. 
We then show how a component user can integrate this information for system- 
level analysis.

• We develop several tools to illustrate these techniques in analyzing Visual Basic 
component-based systems.

• We provide experimental results that demonstrate the effectiveness of these 
techniques.
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1.1.3. How this work differs from other work

The results reported in this thesis differ in several respects from other work. First, 

this work reports on new techniques for improving the static analysis of component-based 

systems. These are systems for which during analysis there usually is no source code 

available for some of the components to analyze. The first technique illustrates ways to 

do this using the information typically available today, but which current static analysis 

techniques generally do not exploit. We realize that better ways to improve the static 

analysis of such systems may exist, and our second technique presents one approach. 

This approach involves component providers distributing with their components 

summary information about that component which then can be used with traditional 

techniques to gain more precise information about the component-based system as a 

whole. The literature [55] shows some work identifying the need for component 

developer information without specifying any particular approach. We specify an 

approach to do this.

Throughout this work, three underlying design concerns are efficiency, reality and 

usability. With respect to efficiency, the literature contains many examples on program 

analyses that need hours to analyze even a small program. We are concerned with 

efficiency as much as accuracy, meaning that if extra precision is not likely to result, then 

an efficient solution is the better choice. Storage usage is also a concern. Many analyses 

simply generate too much information to be useable by maintainers. The other important 

design decisions are reality and usability. A main purpose of this work is to demonstrate 

that the static analysis of component-based systems for realistic languages is possible, and 

to transfer academic results to a realistic context. Thus, our experimental results were 

obtained by using these techniques on several real systems.

1.1.4. Assumptions and Disclaimers

This research focuses on the analysis of solutions based on Microsoft technology, 

namely using the Component Object Model (COM) and Visual Basic to integrate COTS 

applications. This technology is widely used in real systems, especially the DoD systems
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used in our test cases for this research. Since our desire was to validate our work with 

real systems, we feel that our focus on this component technology is both key to 

validation and of immediate benefit to industry. While we believe that what is developed 

here will have general application to other component-based technologies, such as 

Common Object Request Broker Architecture (CORBA), validation in other domains is 

left for future research.

Two common categories of analyses that can be performed on programs are static 

and dynamic [120]. A static technique typically is used to analyze the source code of a 

program and produce some form of report. This requires some initial overhead in 

constructing a set of tools to do this analysis, but does not typically require any 

modification, augmentation, or execution of the original program to perform the analysis. 

Because of this, the results of a static analysis do not show the effect of the program 

execution, which means that the results may contain a certain amount of imprecision. 

However, it is generally accepted that the results of static analyses can be useful even 

with a certain amount of imprecision. In contrast, dynamic techniques are very precise as 

they monitor and analyze a program as it executes. Such techniques often require some 

form of instrumentation and recompilation of programs and possibly the creation of 

comprehensive test suites that provide complete coverage of all functionality [56, 60, 61, 

122]. Those tests would be executed and reports collected. For a highly interactive system 

of even moderate complexity, that type of dynamic analysis, while potentially beneficial, 

can be prohibitively time consuming [8, 53, 54, 67, 123, 134]. In this work, we are 

interested in examining the feasibility and utility of analyzing component-based systems; 

therefore we limit our research to static data flow analysis techniques.

1.2. Overview of this thesis

This thesis is organized as follows. The next section gives background in the 

traditional static analysis techniques relevant to this work. We then discuss component- 

based solutions in terms of object-oriented design models, focusing on the competing 

COM/DCOM, CORBA and Java component models. We also characterize some aspects 

of component-based development that make analysis of such systems challenging. We
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discuss the information typically available to describe a component interface such as the 

type library file. This is followed by a detailed discussion of issues in analyzing and 

testing COTS component-based systems.

Section 3 discusses the analysis of component-based systems. It starts with an 

examination of the literature to illustrate current research in this area. We then classify 

the information necessary for static analysis of component-based solutions in terms of the 

type of component solution, the information provided by the component developer, and 

the techniques for which each classification can support. We then demonstrate how 

several existing static analysis techniques may not be sufficient when applied to 

component-based solutions and suggest ways to augment these techniques for such 

systems.

Section 4 describes automated analysis techniques that are based on component 

property information. We develop and discuss a technique to use semantic information 

about component properties obtained from type library and interface definition language 

files and demonstrate the effectiveness of this technique by extending a traditional 

unreachable code algorithm.

Section 5 describes automated analysis techniques that are based on component 

developer summary information that can be generated by the component provider during 

development and testing of the component and then distributed to the component user. 

This can then be integrated with several traditional static analysis techniques to analyze 

component-based systems more precisely. We illustrate the effectiveness of this 

technique by modifying an existing analysis tool to generate extended call graphs 

embedded with summary information for global data flow analysis, and show the use of 

this information in support of a data dependence report.

Section 6 describes the tools developed or modified to support the automated 

analysis techniques developed as part of this research on component-based systems. The 

first tool provides the ability to capture component information from a type library or 

interface definition language file for use in integrating that information with Project 

Analyzer, a commercially available Visual Basic code analysis tool. The next tool is a set 

of extensions made to Project Analyzer to analyze particular component property criteria
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of interest in support of detecting unreachable code. Next, another set of extensions to 

Project Analyzer is described to support the generation of summary information graphs 

that contain global data flow information such as variable def-use, first-use/last-use, and 

parameter couplings for each call graph node in a system being analyzed. The extended 

call graph with this summary information embedded is then stored in an extensible 

markup language (XML) format. The call graphs from separate and distinct components 

and a user application are then merged into an integrated system for further analysis. 

Finally, a number of extensible stylesheet language (XSL) scripts that provide additional 

analyses and views applied to the XML graphs are described, such as parameter coupling 

analysis, ripple analysis, and call graph metrics.

Section 7 demonstrates the effectiveness of these techniques on a number of case 

studies. Seven case studies represent real COTS component-based systems developed 

and maintained by the Department of Defense (DoD). Two additional case studies are 

used to represent academic examples designed to illustrate some interesting aspects of 

component-based development.

The remaining sections provide recommendations for future work and give some 

concluding remarks for this research. In addition, several supporting appendices provide 

detailed results of this research. Appendix A contains a comprehensive taxonomy listing 

of the issues associated with the analysis of a component-based system. Appendix B lists 

a sampling of the detailed case study reports from the experimentation. Finally, 

Appendix C documents the specific extensions made to Project Analyzer.
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2. BACKGROUND

It is well understood that one of the greatest challenges in the maintenance and 

adaptation of long-lived software systems is the comprehension of system structure after 

months or years of modifications. Typically few structural aspects are reflected in 

changes to the corresponding portions of the system design documents. Maintainers are 

often left with a daunting task of discerning the design and functionality of the system 

from the only remaining trustable artifact, the source code. The fact that COTS 

component-based solutions represent a new methodology and a new set of challenges 

does not change this fact. Clearly, automated support for program comprehension is still 

required. In this section, we provide background information in the key traditional static 

analysis techniques that have relevance to this work. We then discuss component-based 

solutions in terms of object-oriented design models, focusing on the COM/DCOM 

component models. We also characterize some aspects of component-based development 

that make the analysis of such systems challenging. We discuss the information that is 

typically available to describe a component interface, such as the type library file. This is 

followed by a detailed discussion of issues in analyzing and testing COTS component- 

based systems.

2.1. Traditional program analysis techniques

Static code analysis encompasses a mature set of techniques for helping 

maintainers understand and optimize programs. Most of these techniques use 

information from one or more data flow problems, such as reaching definitions, available 

expressions, live-variable analysis, and definition-use chains. Traditional approaches 

using data flow information include: dead code elimination, program slicing, and partial 

evaluation (code specialization) [14, 15, 107, 133].

To implement such techniques for practical use, many static code analysis tools 

have been developed, ranging from source documenters to debuggers to language
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checkers [31]. Most of the tools focus on the structure of the program itself, presenting 

diagrammatic representations of the block structure of the program, its calling structure, 

the flow of control, and related components. Some tools can detect anomalies and 

inconsistencies that normally are associated with errors and can be used by a maintainer 

to aid in program understanding. For example, a program slicer is one such tool [41-43, 

76. 121], Described below are some of the techniques that have relevance to our 

research.

2.1.1. Control dependence analysis

Control-dependence analysis determines, for each program statement, the 

predicates that control the execution of that statement. Control-dependence information 

is required for analyses, such as slicing, that are used for software engineering tools, such 

as debuggers, impact analyzers, and regression testers [55].

2.1.2. Data-flow analysis

Data-flow analysis determines information about variable definition and usage 

throughout a program. In discussing data flow analysis, it is important to identify three 

fundamental categories of algorithms: data flow equations, information flow relations, 

and dependence graph-based approaches [17, 62, 135]. Extensive research exists in 

applying each of these approaches to the analysis of basic programs with and without 

procedures, with unstructured control flow, and with composite data types/pointers [75], 

as well as distributed programs [12, 25, 35, 58]. Tip [120] does a fine job of providing a 

survey of these algorithms along with a detailed analysis and comparison of each.

2.1.3. Dependence graphs

Different ways of computing control and data-flow information have been 

proposed. An interprocedural analysis is typically carried out using a graph data structure 

to represent the program. Originally, techniques like slicing were computed by solving 

data-flow equations iteratively over a control flow graph [133]. Ottenstein and Ottenstein 

[91] then introduced a slicing technique that used a graph reachability algorithm on a
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program dependence graph. Horwitz et al. [64] developed an interprocedural program 

representation, the system dependence graph, and an efficient two-pass slicing algorithm 

that uses it. Their two-pass algorithm computes more precise interprocedural slices than 

previous algorithms because it uses summary information at call sites to account for the 

calling context of procedures. Horwitz et al. [65] then extended their technique to object- 

oriented software by introducing the class dependence graph.

2.1.4. Program slicing

Introduced by Weiser [133], a program slice is a subset of an existing program 

that can provide information about a program variable in a particular statement; executing 

this subset should produce exactly the same sequence of values for that variable as the 

original program. Based on iterative data flow equations, two notions of a slice are 

commonly used: static and dynamic [47, 65]. A static slice represents the set of 

statements that may affect the value of a variable in a given instance in an arbitrary 

execution. In contrast, dynamic slices represent the set of statements that actually 

determine the value of a variable for a particular execution with a particular set of inputs. 

Slices have been used to represent both executable portions of a program as well as a set 

of statements that can be affected by a given slice criterion. Using data flow analysis 

techniques, program slicing has been shown to be useful to debugging, testing, program 

integration and maintenance [81, 97, 100, 101, 103, 104]. There are numerous variations 

on program slicing described in the literature [80, 116, 117, 120]. Two variants, ripple 

analysis and inter-modular slicing, have direct relevance to our research and are described 

separately.

2.1.5. Ripple analysis

Ripple analysis is a variant on program slicing [29]. When maintaining code, it is 

useful to know all procedural dependencies, data input dependencies, data modified by 

the code, and other program dependencies (e.g., constants, user-defined types) about the 

code [18, 40, 66, 119]. For example, it is useful to know that when module B is invoked 

by the main program, variable i may be assigned a value, and the values for variables x, y,
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j  and i may be used by the module. These dependencies may result directly from the 

execution of module B  or from B 's  invocation of module A. For a given statement in a 

program, it is also useful to identify the other statements in the code that contribute to 

these dependencies. A ripple analysis program can be used to identify such statements.

As part of previous Master’s Degree research at Old Dominion University, ripple 

analysis was used to determine its usefulness as an aid to software maintenance [29, 31]. 

We developed a proof-of-concept ripple analysis tool to provide a means of identifying 

potential side effects of changing source code. Using a call graph and control flow graph 

of a program, a global data flow analysis was conducted to calculate flow-insensitive 

inter-procedural summary information similar to that described by Reps et al. in [96]. 

This information was then used to determine both reverse and forward ripples in response 

to queries posed by the maintainer. A reverse ripple describes the data flow associated 

with a given variable at a particular statement in the code. Using this analysis, a 

maintainer can examine the sequence of statements that execute in order to produce the 

value of the variable at that point. In addition, this analysis will show the data 

dependencies of other program variables that relate to the variable in question. A 

forward ripple can help answer the question: What will happen if this line of code is 

modified? Using this analysis, a maintainer can examine the source statements that will 

be affected as a result of a proposed change. It can provide insight into the resulting 

values of other variables that are dependent on the variable being analyzed.

In our maintenance activities, we were not concerned with producing executable 

slices but with identifying the nodes that were related to a given query. It is our 

experience that a report of this nature is useful because it provides a roadmap of the code 

to a maintainer contemplating a modification, particularly if that code is unfamiliar.

We have extended the notion of statement-level ripple analysis here to interface- 

level ripple analysis. This is important for showing the potential side effects across 

component or module boundaries. Throughout this thesis, we will use this form of ripple 

analysis to help illustrate the static analysis of component-based systems.
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2.1.6. Intermodular slicing

Intermodular slicing is a variant of program slicing, and can also be referred to as 

interface slicing. Intraprocedural slicing is restricted to the statements within a 

procedure; it cannot derive information that is valid in the presence of procedure calls. 

Interprocedural slices have to model parameter passing from the call site of the procedure 

to the definition of the call. Reference parameters, global variables, and dynamically 

allocated objects complicate the computation of interprocedural slices due to the 

possibility of aliases. Intermodular slices can span across module boundaries. In 

languages that support separate compilation, the computation of slices on a per-module- 

basis should also be possible. Intermodular slices also allow slicing of programs that use 

libraries and slicing of incomplete programs [116, 117].

2.1.7. Data-flow testing

Data-flow testing uses data-flow information to guide the selection of test cases 

and to measure test-suite coverage for a program. In data-flow testing, an assignment to a 

variable in a program is tested by executing subpaths from the assignment (definition) to 

points where the variable is used (use) [55, 59].

2.1.8. Dead code detection

Aho et al. discuss the technique of dead code elimination [9]. This technique uses 

data-flow analysis to examine variables in a program to determine whether they are dead. 

A variable is live at a point in a program if its value can be used subsequently; otherwise 

it is dead at that point. This technique is also applied to statements and procedures. 

Bodek and Gupta [20] illustrate a slicing variant that introduces a prediction algorithm for 

achieving partial dead code elimination. The process of prediction embeds a statement in 

a control flow structure such that the statement is executed only if the execution follows a 

path along which the value computed by the statement is live.
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2.1.9. Partial evaluation

Jones et al. [69] discuss partial evaluation, a program optimization technique also 

known as program specialization. A partial evaluator is an algorithm which, when given 

a program and values for some of its input data, produces a so-called residual or 

specialized program. Running the residual program on the remaining input data will 

yield the same result as running the original program on all of its input data. This 

technique is often employed for efficiency. Applications that benefit from this technique 

are computer graphics, database queries, neural networks and of course compilers. 

During the binding time analysis that occurs during partial evaluation, techniques such as 

program slicing are used extensively.

2.1.10. Coupling analysis & testing

Offutt et al. [68] discuss the use of coupling analysis for integration testing by 

examining the couplings between software components. Coupling measures the 

dependency relations between two units by examining the interconnections between 

them. They define twelve specific types of coupling and then summarize those into four 

types:

• Call coupling -  A calls B or B calls A but there are no parameters, common 
variable references, or common references to external media between A and B.

• Parameter coupling -  refers to all parameter passing. This type combines data and 
control coupling.

• Shared data coupling -  refers to procedures that both refer to the same objects. 
This type combines non-local and global coupling.

• External device coupling -  refers to procedures that both access the same external 
medium, such as a database.

The purpose of this section was not to discuss any of the above techniques in 

detail as the literature does this very well. The intent is to provide a brief overview of
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some of the techniques that were considered during this research for the analysis of 

component-based systems.

2.2. Component-based solutions

Talcing a page from hardware designers, software developers have gone from 

writing large systems in a particular language (e.g., C) to building systems out of 

prepackaged software components, each of which performs a particular function, and 

each of which provides a defined set of services through well-specified interfaces. A 

component-based solution typically has several distinguishing characteristics that are 

germane to its success [137]. Some of these are described below using Microsoft’s 

COM architecture to illustrate these characteristics:

• Component Object Model (COM) [26]. A COM defines a common way to access 
software services, some of which may hitherto have been needlessly complex. It 
does this by providing a common service architecture across libraries, 
applications, system software and networks. COM is an object-oriented model 
that supports encapsulation, polymorphism, and interface-level inheritance. 
Component software implements its services through one or more COM objects 
via methods that are grouped into interfaces.

• Enabling COM technologies [26]. Technologies such as OLE Automation, 
ActiveX, and Distributed COM (DCOM) provide the mechanisms by which 
components can be integrated into a solution.

• COM-based applications. Client and server-based applications (e.g., MS Office, 
MS BackOffice, and Web applications) that support the COM model (thus 
exposing their services through COM interfaces in order to be programmable) 
provide reliable COTS-based functionality in the form of reusable components.

• COM-based development environments. Development environments (e.g., MS 
Visual Basic) that support the COM model provide easy-to-use tools to construct 
*front-ends’ to solutions that integrate components via code scripting.

Companies and developers are engaged in a major Internet-oriented thrust to build 

client-server applications based on distributed object models using various 

implementations, such as of Java/Remote Method Invocation (RMI), Common Object
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Request Broker Architecture (CORBA) and Distributed Component Object Model 

(DCOM) [11]. In [34] we provide a more detailed discussion and comparison between 

these approaches. The move away from large mainframe applications is explained by the 

advantages offered by distributed object technologies. Advocates of distributed object 

application development expect the enabling of:

• the re-use of existing functionality promoting Rapid Application Development 
(RAD) with plug-and-play-type interaction of distributed objects;

• isolated development and implementation of objects without adversely affecting 
other components;

• effective code maintenance including code augmentation and systematic 
distribution of updates; and

• lightweight (thin) client-side interfaces that connect to comprehensive server 
applications and data repositories in multiple locations.

To understand the potential issues in analyzing component-based systems, it is 

important to have some knowledge about the component object model being used, 

particular ways the components being used were designed and developed to interact with 

other components, and what information is typically available about the components to 

aid component users. The focus for this research is in analyzing systems based on the 

COM approach. The areas mentioned above are briefly described below with respect to 

COM-based components.

2.2.1. Distributed Component Object Model

DCOM was introduced in 1996 as Microsoft’s solution to distributed object 

architectures. DCOM, previously known as Network Object Linking and Embedding 

(OLE), is an extension of the COM design to networked applications. DCOM possesses 

its own core network protocol Object Remote Procedure Call (ORPC). Key features 

engineered into the DCOM architecture comprise language independence (including 

strong bindings with Java), integrated Windows NT wire-level security, transport
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neutrality (with the ability to communicate using TCP/IP, UDP/IP, IPX/SPX, AppleTalk, 

and HTTP), and static/dynamic invocation of objects.

The biggest gain that DCOM provides in developing a distributed application is 

its tight integration with Microsoft operating systems and applications. For example, 

distributed systems using DCOM as its middleware will be able to leverage the resources 

of components like Microsoft’s Transaction Server and Internet Information Server (IIS) 

4.0. Both of these technologies rely on DCOM for remote communications. Furthermore, 

numerous vendors are currently building COTS products and tools that are DCOM 

compatible, thus reducing the system development time by reusing these plug-and-play 

components. DCOM-based applications can also take full advantage of Microsoft NT 

security mechanisms. Since the first release of DCOM, the application programming 

interface (API), including the security model, has been made available to developers, 

making security implementations in DCOM highly configurable.

DCOM is obviously a proprietary solution and is well suited for the Microsoft- 

centric environment. However, it is currently the most widely used technology. The 

DCOM object model supports several attributes to support distributed component 

interoperability, but also contribute to making the analysis of systems based on this 

approach challenging. Some of these attributes include:

• Late binding mechanisms

• Encapsulation

• Polymorphism

• Interface inheritance

• Compound documents

• A component transfer format (e.g., COM structured storage)

• Uniform data transfers, including drag and drop

• Events and event connections or single and multicasting channels

• Some form of persistence.

COM defines binary calling conventions and binary interface definitions of a set 

of standard interfaces, typically referred to as the COM IDL [115]. This is important
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because independent vendors can provide language implementations, including COM 

bindings, using this binary standard. COM still offers significant leeway to developers 

for different implementations of: COM libraries, type libraries, proxies and stubs, and 

standard services for a particular component.

2.2.2. Component-based development

Component software development promises to cut programming time and produce 

more robust applications, by allowing developers to assemble applications from tested, 

standardized components. The Component Object Model (COM) is a popular object 

technology designed to make it possible for software components that are custom 

developed to work with software components that are purchased off the shelf [51, 94, 98, 

108. 136],

An application uses a code component 
by creating objects from classes the 
component provides, and invoking 
properties and methods of the objects.

CodeComponentl’s Widget class 
uses a Gear object provided by 
CodeComponent2, another in-process 
code component running in 
SomeApplication's process space.

Like all .dll files, ActiveX DLLs run 
in the process space of an exe. -

Figure 1. In-process components

P  An .exe has its own 
process space.

SomeApplcatton.Exe

Dim x As OxfeCcnfxanentl.Widget------
S et x « New Widget 
x. Spin 
•  •  •

CodeComponentl dll

Publ ic  Sub SpinO
Dim y As CodeCarponent2.Gear- 
Set y = New Gear 
y.NunberOfTeeth = 42

End Sub „

CodeComponent2.dll
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An ActiveX component is a unit of executable code, such as an .exe, .dll, or .ocx 

file, that follows the ActiveX specification for providing objects [44, 45, 49]. ActiveX 

technology allows programmers to assemble these reusable software components into 

applications and services. ActiveX components can also be purchased off-the-shelf often 

to provide generic services such as numerical analysis or user interface elements. Custom 

components can be created that encapsulate business transactions and logic, and 

combined with generic components. Reusing tested, standardized code in this fashion is 

called component software development.

Components provide reusable code in the form of objects. An application that 

uses a component’s code, by creating objects and calling their properties and methods, is 

referred to as a client. Components can run either in-process or out-of-process with 

respect to the clients that use their objects [70, 71].

Figure 1 depicts an in-process component. An in-process component, such as a 

.dll or .ocx file, runs in the same process as the client. It provides the fastest way of 

accessing objects, because property and method calls do not have to be marshaled across 

process boundaries. However, an in-process component must use the client’s thread of 

execution.

r -  The out-of-process code 
component CodeComp 1 runs 
in its cnw i process and provides 
Widget objects.

p  A client appication uses an out-of- 
process code component by creating 
objects from classes the component 
provides.

L  All properties and methods invokedL  In-processcomponentsused by

CodeComp2J)LL
Dim x As CodeCompl .Widget 

r - S et x » New Widget 
x . S p i n --------------------------------

CodeC omptexa 
(Out-of-process component)

SotneAp pication.exe ((Rent)
Dim x As CodeCompl.Wldget 

I-Set x -  New Widget 
x .S p ln ----------------------------------

the client can create their own by the client are cross-process calls.
Widgets, or the client can pass 
them references.

Figure 2. Out-of-process components
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Figure 2 depicts an out-of-process component. An out-of-process component is 

an .exe file that runs in its own process, with its own thread of execution. Communication 

between a client and an out-of-process component is therefore called cross-process or 

out-of-process communication. Some reasons to create an out-of-process component 

include:

• The component can run as a standalone desktop application, like Microsoft Excel 
or Microsoft Word, in addition to providing objects.

• The component can process requests on an independent thread of execution, 
notifying the client of task completion using events or asynchronous callbacks. 
This frees the client to respond to the user.

A client and an in-process component share the same address space, so calls to the 

methods of an in-process component can use the client’s stack to pass arguments. This is 

not possible for an out-of-process component; instead, the method arguments must be 

moved across the boundary between the two processes. This is called marshaling.

A client and an out-of-process component communicate via a proxy/stub 

mechanism. The proxy and stub handle the marshaling and unmarshaling of arguments 

passed to methods of the component; they are completely transparent to the client.

Marshaling is slower than passing parameters within a process, especially when 

parameters are passed by reference. For example, it is not possible to pass a pointer to 

another address space, so a copy must be marshaled to the component’s address space. 

When the method is finished, the data must be copied back.

With respect to static analysis, the techniques described in this thesis will work for 

both in-process and out-of-process components. Both types of components provide the 

same information about the component, namely the IDL as described next.
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2.2.3. Component Interface Design Language (IDL) and Type Library 
Interfaces

Components deliver services by providing classes from which clients can create 

objects. Clients use services by creating objects and calling their properties and methods. 

Information about the classes provided by a component is contained in a type library. In 

Visual Basic, for example, the type library is included as a resource in the compiled 

component. Clients access the type library by setting references to it [39].

A  type library is best thought of as a binary version of an IDL file. It contains a 

binary description of the interfaces exposed by a component. An interface is a set of 

properties and methods, or events. Every class provided by a component has at least one 

interface, called the default interface, which is composed of all the properties and 

methods, along with their parameters and return types, that is declared in the class 

module. Events are outgoing interfaces, as opposed to the incoming interfaces composed 

of properties and methods. In other words, clients make requests by calling into a class’s 

properties and methods, while the events raised by the class call out to event handlers in 

clients.

The COM IDL can be obtained from a type library for a component. For example, 

one way to do so is by using a Microsoft tool called OLE Viewer [5]. It provides a user 

with a list of type libraries that have been installed on the user’s machine. Once a type 

library is selected, the text-based IDL can be displayed. Besides declaring COM 

interfaces, the IDL is also used to describe COM classes and dynamic link library (DLL) 

modules [82]. Several entities are used in the IDL file to describe this information:

• Interface -  An interface represents a vtable interface, and describes the order, 
names and signatures of the methods and properties that make up that interface.

• Dispinterface -  A dispinterface represents an automation interface, and describes 
the same information as an interface.

• Coclass -  A coclass describes a COM class in terms of the interfaces and 
dispinterfaces that it exposes, and the outgoing interfaces that it supports. The 
coclass statement is also used for type information.
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• Library -  A library represents libraries imported or exported.

• Module -  A module describes a DLL module by listing the names and ordinals of
exported functions and global variables.

Many COM-based development tools, such as Visual Basic, are also capable of 

reading type libraries [4, 108, 112]. Since a type library provides information about 

component interfaces, tools can read this information and present it to programmers in an 

accessible format. Visual Basic, for example, has a feature named Auto List Members 

that displays a drop-down list while you are writing code and makes code suggestions for 

the methods and properties of a component being referenced.

In a later section, we show how the information can be obtained from a type

library in a more user-friendly way, and incorporated into the Project Analyzer tool

mentioned previously.

2.3. Issues in analyzing, testing and maintaining component-based solutions

It has been claimed that the use of Object-Oriented Design coupled with COTS 

component implementation constitutes a paradigm shift in software development. What 

effect will these new approaches to implementation have on software analysis and 

testing? In [34], we explore in detail issues in analyzing and testing component-based 

systems with particular emphasis on COTS systems. We found that many of the issues 

documented relate to testing [50]. In fact, examining testing concerns closely allowed us 

to uncover many of the issues that would have to be addressed to some extent for static 

analysis techniques to be useful. This is true because many static analysis techniques are 

used in testing tools. Below, we highlight some of the issues that could contribute to 

making the static analysis of component-based systems difficult.

2.3.1. Basic Object Analysis Issues

What distinguishes object-oriented programming from functional programming? 

Are objects not just a way of packaging data and functions? If so, what is fundamentally
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different about analyzing and testing objects? Many of the techniques used for analyzing 

programs written in a functional style apply equally well to programs written using an 

object style. However several features unique to objects and differences in style and usage 

affect the analysis of objects.

Inheritance and the related concept of polymorphism are two features that many 

proponents claim distinguish objects from other programming concepts (such as abstract 

data types and modules). Inheritance permits the rapid development of new objects from 

existing objects whereby those features of the existing object that do not require 

modification can be reused and those requiring modification can be overridden. 

Polymorphism allows the same program to invoke one of several objects (which are 

related by inheritance) through run-time object identification.

Objects encapsulate both functions and data members. The values of the data 

members constitute the state of the object. The existence of Object State complicates 

testing. Many traditional testing approaches, for example, treat functions as stateless. That 

is, a function is considered a mapping from input to output and test cases can be defined 

as input/output pairs. However the state of an object is another possible input and/or 

output of the function. Techniques which trace data variables through a program from the 

point of their definition to their use overlook the variables defined in the Object State, 

since they are hidden from def-use analysis. Similarly the changing of an object’s state as 

the result of a call to a method of the object is hidden. If that change is to a private data 

member, then it is not even possible to examine the value of this output variable to verify 

a test case.

Object-oriented programming encourages a different style of programming in 

which the problem domain is analyzed to identify the natural objects and their 

relationships and in which the programming attempts to reflect these natural objects and 

relationships. In addition, certain generally useful program infrastructure functions are 

cast into objects and made available as part of standard libraries. With the risk of 

oversimplifying, we can say that the use of object oriented design and programming 

affects analysis and testing in the following ways:
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• Object implementations favor more and smaller functions, many of which make 
changes to, or report the value of, the object's internal state. For example, the 
existence of more functions will increase the amount of integration testing 
necessary.

• Encapsulating most data in objects means that most input/output parameters will 
be objects. In general, this will increase the number of input/output states that 
need to be tested. Because of the arbitrary size of objects, the preferred style of 
argument passing will be by reference. This opens opportunities for unanticipated 
changes to input parameters.

• The desire to produce objects that can be used in a variety of settings encourages 
passing the decision about exception and error handling from the object to the 
object's user. Most object languages support a structured exception handling 
mechanism, and its widespread adoption will increase the amount of code that 
needs to be tested. Moreover, the exception handling code is used infrequently 
and it is difficult to generate test cases that exercise exceptional conditions. This 
in turn increases the likelihood that faults will be present in the exception case 
code.

2 .3.2. Object collections, components & patterns

While the use for object-oriented programming has gained wide acceptance with 

the availability of C++, Java, and, in some respects. Visual Basic, individual objects may 

not be in themselves the best units of reusability. The term component has been suggested 

by some as a level of abstraction and as a unit of reuse above the object level [118]. 

Components organize objects into services usually with a communications infrastructure 

and access model. Available COTS components range from simple graphical display 

components to embedded components encapsulating word processing objects, 

spreadsheets, etc. One problem with the increased size of components is the increasing 

number of ways in which those components can be used. A component as large as a 

spreadsheet may have too many paths and input/output cases to use traditional analysis 

approaches effectively.

2.3 .3. Event-based programs

With the increased use of Graphical User Interfaces (GUIs) as well as distributed 

systems, the calling relationships among functions and components is a forest of threads, 

transactions and events. For static analysis this affects the utility of reachability analysis.
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It is harder to identify dead code, for instance, where function invocation can be event 

driven and where a function’s address can be placed in a table for use by various callback 

routing mechanisms. In fact much of the message passing to invoke functions in 

Microsoft Foundation Classes (MFC) is table based. The ability to bind a function to a 

message or event queue makes traditional calling charts less useful for testing purposes.

The trend towards distributed systems also favors a more event driven invocation 

of functionality than has traditionally been the case. Transaction oriented system favor a 

threaded implementation where threads are invoked to handle individual transaction and 

the state of the system is distributed among active threads and persistent data objects.

2.3.4. COTS components

The development of distributed systems using COTS component technology is 

relatively new. If component-based systems are to be successfully built and deployed, 

developers and users of components need to define design principles for such systems. 

The user of COTS components must be able to identify the best components for 

satisfying some mission need. Since it is unlikely that these components will be perfect 

matches, there will be parts of them that are not needed. In addition, there may be faults 

in these components that will require workarounds. Existing techniques for describing 

component functionality and environmental restrictions are inadequate. For example, 

assuming that not all features of a component are tested with equal rigor (perhaps because 

certain features are inherently more difficult to test), it would be desirable for a 

component provider to identify those features and usage patterns of a component that 

have been rigorously tested. Then a component user could restrict the usage of a 

component to this rigorously tested subset.

Numerous other issues relate to the particulars of the component development 

environment or the middleware standard used. For COM-based systems, some of these 

include:

• Component behavior on client machines. The behavior of the individual 
application being interfaced with is a function of its API and properties. When 
new versions of an integrated application are released, the expectant behavior,
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API and properties may change. For example, loading a spreadsheet in a 
particular manner depends on the settings of its properties (like virus checking 
which may disable macros from working).

• Component Interface Availability. Dynamic Link Libraries (DLLs), vendor- 
supplied controls and the like may not provide a window into their APIs. If not, 
we cannot apply slicing for impact analysis. Even if so, lack of access to the 
source code makes the program understanding problem more difficult. For 
example. COM components (such as Microsoft Excel) do not provide information 
needed for static analysis. Component Vendors should supply the necessary 
interface information.

• Event Visibility. Events can be made inaccessible by particular values of object 
properties. For example, changing the width property of a form may 'hide’ 
controls on that form. The code associated with those controls is still compiled 
into the program but events (e.g., mouse-click) for the control may be prohibited 
from running because no way exists for a user to interact with the control. 
Changing the visibility property of a control can have the same effect.

• Availability of Source Code. Software components may be built in-house or used 
off-the-shelf. The developer of a component has access to its source code. The 
user of an off-the-shelf component usually does not have access to the source 
code. For example, when using the Microsoft Excel component, there is no 
source code available. Depending on the availability of code, different testing and 
analysis techniques need to be used.

• Heterogeneity of Language, Platforms and Architectures. The components of a 
system may be written in different programming languages and for use on 
different hardware and software platforms. With middleware conforming to 
standards like CORBA and DCOM, components can interact with each other 
independent of the language and the platforms. When a system composed of such 
components is tested or analyzed, the methodology and tool used must be 
independent of the language and the platforms.

• Deadlocks and Race Conditions. Distributed or concurrent systems occasionally 
have problems related to race conditions and deadlocks. This is true for 
components. A good example of this is component callbacks. Consider the case 
where a client component calls a server component and waits. The server 
component calls back to the client (say for status notification purposes). This 
could potentially lead to deadlock. It would be good for testing and analysis tools 
to catch this. Standards such as COM state that the developer should not do this; 
however, there is no enforcement.
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Although many more issues influence the analysis and testing of a component- 

based system, we feel that the issues we have discussed above are related to static 

analysis. Appendix A lists a more comprehensive laundry list of specific issues associated 

with the analysis and testing of component-based systems. In Appendix A, we discuss 

each issue by examining a number of viewpoints:

• Class -  This classifies the issue with respect to the categories we have defined in 
this paper.

• Lifecycle -  This describes which software engineering lifecycle an issue impacts.

• Issue -  This is a description of the issue.

• Impact -  This describes the potential impact the issue may have if not addressed.

• Example -  This is an example of an occurrence of the issue.

• Mitigation -  This attempts to provide a general solution to addressing the issue.

• Tools -  This identifies specific tools and/or techniques that may be used to 
address the issue.

• Solution Risks -  This describes any potential risks associated with using the
solutions describe in the Mitigation and Tools section.

Many of the issues discussed above are not addressed in this research. However,

we felt that it is important to have some general understanding of them as they relate to 

component-based solutions. The next section will examine specific issues that are 

addressed in this research.
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3. ANALYSIS OF COMPONENT-BASED SOLUTIONS

This section discusses the analysis of component-based systems. It starts with an 

examination of the literature to illustrate current research in this area. We then classify 

the information necessary for static analysis of component-based solutions in terms of the 

type of component solution, the information provided by the component developer, and 

the techniques which each classification can support. We then demonstrate how several 

existing static analysis techniques may not be sufficient when applied to component- 

based solutions, and suggest ways to augment these techniques for such systems.

3.1. Current research in analyzing and testing component-based solutions

While the challenges of developing COTS component-based systems are great and 

many of the traditional analysis and testing methodologies are inadequate to handling 

component development solutions, many areas of research and development can be 

brought to bear on the problem.

It is important to point out that the most notable progress in this area actually 

comes from the testing community. This is more than likely due to the fact that testing a 

component-based system is primarily an integration testing concern where the interfaces 

of various components are being examined. As mentioned previously, static analysis 

techniques play an important role in many testing tools and techniques, so we feel that 

highlighting testing as much as static analysis is justified.

Verification and validation of complex computer systems is a very difficult 

undertaking. In the dozen or so years since David Pamas’ impassioned arguments that 

concerns over software validation advise against the development of the Strategic 

Defense Initiative (STAR WARS) [92], little has changed. No fundamental 

breakthroughs have slayed the software failure dragon. Software reliability is currently 

addressed by a series of established 'best practices.’ As the infrastructure upon which we 

build software systems has continually improved, best practice must also evolve. Given
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the nature of computer systems that involve a mixture of legacy and newly developed 

components, we will need a mixture of best practices.

We may take some reassurance from the fact that while practically all complex 

systems contain residual faults, it is possible to make effective use of these flawed 

systems by avoiding, or compensating for, these faults.

This section surveys a number of promising approaches, techniques and tools that 

can be applied to the analysis and testing of COTS component-based systems, including:

• Augmenting components with testability features

• Developer providing testing documents

• Developer having component certified

• Formalizing integration testing and assertions

• User defining component usage patterns

• Use of state abstractions

• Component wrapping

• Extended static analysis techniques

• Regression Testing.

This research discussed in this thesis is focused on extended static analysis. 

However, we feel that it is important to have some knowledge about work in related 

areas. Some of this work is discussed in more detail below.

3.1.1. Augmenting components with testability features

While this approach requires additional work on the part of the developer, it may 

be necessary to assure certain testability conditions are met. It can be argued that object- 

oriented methods force the developer towards domain abstraction that will ease the 

testing process. On the other hand, it has been argued that encapsulating and hiding the 

internal state in an object complicates testing [89]. What is most likely is that proper 

design and formal documentation could help ease the testing problem.

Design for exhaustive testing: Because most testing involves a sampling of the 

behavior space of a program, it has been argued by proponents of formal verification
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proofs that testing is inadequate to assure the correctness of mission-critical systems [23]. 

However exhaustive testing is adequate to assure the correctness of a program. In most 

cases, exhaustive testing is either infeasible or prohibitively expensive because of the size 

of the input space. In an interesting and relevant case study of a safety-critical computer 

controlled surgery system, John Knight points out that if the input space can be 

sufficiently reduced in cardinality, then exhaustive testing becomes possible [72]. 

Designing for exhaustive testing requires analyzing those features of a mission-critical 

system that are safety-critical and designing a solution (if possible) where the 

implementation of those features can be exhaustively tested.

Designing gray box components: Currently COTS components are delivered as 

black boxes (that is, without the source code). This limits possible testing strategies. 

While it is sometimes possible to obtain source, it is not clear that testing at this level of 

detail is needed or desired. Source code over-specifies the component. Changes in the 

component’s implementation that do not change its perceived functionality should be 

allowed. The user of COTS components is not necessarily interested in testing the 

component itself but rather in assessing whether that component is being properly used. 

Williams [137] suggests that component developers provide a special interface for testers 

giving access to information that would ease the job of integration testing. The use of a 

state-based approach has been advocated by some [128]. Since states can be defined in 

various level of detail, providing access to some internal, but abstract state of a 

component may form a compromise between black and white box testing. The nature of 

this interface is a design issue.

3.1.2. Developer providing testing documents

Gray box testing [22] is a level of testing between black and white box testing. 

One advantage of gray box testing is that it forces a level of abstraction on the 

component. It lets the users know a little more about the implementation of the 

component. If this abstraction is described formally, it may be possible to automate the 

testing process. Buchi [22] argues that the theory of program refinement provides 

formalism for specifying properties of the component that can be used in testing.
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Marick [83] argues that developers often have insights into how a user's misuse 

of the abstractions that underlie a software component will manifest itself in program 

failures. Since many programmers use common cliches for developing programs, they 

often fall into common traps. Thus a developer could provide testing specifications, test 

cases, or assertions that would discover these misuses.

3.1.3. Developer having component certified

As part of NIST’s Advanced Technology Program in the area of ‘Component- 

Based Software,’ Jeffery Voas and Jeffery Payne have proposed a certification scheme 

based on a ‘Test Quality Rating’ (TQR). TQR measures the thoroughness of testing using 

previously published ‘Squeeze Play’ techniques. Squeeze Play measures the ability of a 

program to hide faults using the Propagate, Infect, and Execute (PIE) analysis. The 

authors claim that market pressures could drive developers to submit their components to 

independent certification analysis [126, 130].

3.1.4. Formalizing integration testing and assertions

Noting the difference between traditional hierarchically structured software 

systems based on information passing by function calls and distributed client/server and 

peer-to-peer systems based on message passing, Merrier et al. [88] define an ‘information 

space’ formalism to use as the basis for integration testing. This formalism allows a 

decomposition of the system to identify subspaces of the component/methods interrelated 

by information sharing. Testing focuses on these subspaces.

Assertions have been proposed as a mechanism for assisting both integration 

testing and operational reliability. Assertions have often been touted as a defensive 

programming technique that can be used to uncover problems in software systems. 

However, the effective use of assertions remains an art and is therefore infrequently used. 

Voas and Kassab [131] argue for the use of assertions at those places in a program where 

testability analysis indicate that it will be difficult to provide adequate testing. In [73], 

John Knight et al. propose a reversal check for testing complex numerical calculations 

that could be used as an assertion on operational reliability.
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3.1.5. User defining component usage patterns

It has been recognized for a long time that the use of complex systems is 

simplified through the adoption of certain patterns of usage. Such usage patterns not only 

reduce the complexity of these systems but also integrate a number of individual 

interactions into larger abstractions that more appropriately fit the underlying business 

processes of the organization. Employment of usage patterns can be used not only to 

guide the development process [13, 84, 85] but they can also form the basis of test 

specifications.

3.1.6. Use of state abstractions

One of the distinguishing characteristics of components is the presence of internal 

state. This state can be defined as a vector consisting of the value of all the component’s 

data members. This state is persistent between calls to the component’s member 

functions. For testing purposes, the internal state can be considered as input to a member 

function call. Thus internal state can contribute significantly to the number and nature of 

test cases to be considered. In fact, the need to create a known internal state for testing 

purposes means that test input sequences must be used as the test cases instead of a single 

input/output test pair.

The direct use of the internal state is important in the process of unit testing. 

However for the purposes of integration testing, it may be more productive to use abstract 

component states that summarize the internal state [19, 87]. If these states are related to 

the typical ways a component is used, then they may support usage coverage metrics.

3.1.7. Component wrapping

In the absence of certification of the reliability of a component, several authors 

have suggested that wrappers be used to isolate the component. John Knight suggests the 

concept of a shell that wraps the component and is used to assure certain properties of 

that component [73, 125]. Jeffery Voas also suggest the use of software wrappers to 

isolate possibly malicious code.
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3.1.8. Extended static analysis techniques

Previously we discussed the importance of static analysis in program 

understanding, debugging and testing. The focus of this research is in extending static 

analysis techniques so that they may do a better job at analyzing a component-based 

system. This is especially true for components that are COTS-based and for which no 

source is available. In this case, many analysis techniques would be more useful if they 

could be extended to incorporate more information about the component. One method 

discussed deals with obtaining more information about components from component.

For example, the component provider could provide extended static analysis 

summary information. This means that the component provider does not provide source 

code, but does provide an extended interface and possibly documentation. This extended 

interface may include not only the standard interface information, but other information 

that would be useful for gaining insight into the component without having access to the 

source code (e.g., an application programming interface for summary static analysis 

information). Harrold, Liang, and Sinha [55] do a nice job of suggesting this concept and 

show potential ways that this information could be used to support program slicing, 

control-dependence analysis, and data flow testing. Their approach separates the analysis 

and testing of the user application from the analysis and testing of the components. In 

this approach, the component provider tests the components and, using analysis 

techniques, gathers summary information that facilitates further analysis and testing of 

those components by users without requiring access to the source code. The component 

provider then makes the summary information available with the component. The 

component user integrates the components with the user application, and queries the 

summary information to drive the analysis and testing of the integrated system. The 

summary information obviates the need to access the components’ source code. One 

issue that needs to be addressed by this approach is that the summary information 

provided with the component should be represented in a standard notation that is 

independent of the language in which the component is implemented. Another issue is 

how to provide access to this information. The component must then also provide
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suitable query facilities (e.g., methods or operations) to retrieve the summary information. 

Harrold et al. provide no specific ways or implementations to solve this problem. We do 

so in this thesis.

There are other related approaches being researched as well. For example, in 

[126, 132], Jeffery Voas describes a mitigation technique for defending against COTS 

software failures that relies on the developers to supply static fault tree analysis and 

backward static slicing.

3.1.9. Regression testing

Winter [138] argues that object-oriented programming encourages more 

incremental development. This, in turn, increases the need for regression testing. Winter’s 

work uses the class message diagram for change impact analysis. It also emphasizes the 

use of good architectural principles to ease testing.

See [105] for other work on regression testing. Many researchers have addressed 

the selective retest problem for procedural-Ianguage software [17, 33, 53, 76, 78, 101, 

102. 116]. Prior to the development of the algorithm discussed in this report, the only 

technique to address the problem with respect to object-oriented software is by Harrold 

[55, 57] and applied only to test selection for derived classes. The emphasis on code 

reuse in the object-oriented paradigm both increases the cost of regression testing, and 

provides greater potential for obtaining savings by using selective retest methods. When a 

class is modified, the modifications impact every applications program that uses the class 

and every class derived from the class; ideally, we should retest every such program and 

derived class [111, 134]. The object-oriented paradigm also alters the focus of test 

selection algorithms, emphasizing and creating different concerns. For example, since 

most classes consist of small interacting methods, selective retest approaches for object- 

oriented programs must work at the inter-procedural level. Also, since many methods for 

testing object-oriented software treat classes as testable entities and design or employ 

suites of class tests for classes [46,62, 122], selective retest methods must support the use 

of class tests.
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3.1.10. Other related work

Jeffrey Voas argues for certification of COTS components by independent testing 

labs [132]. Buy et al. combine static analysis and symbolic execution for the testing of 

object-oriented components [24].

Steindl [116] is doing research with intermodular slicing. Intermodular slices can 

span across module boundaries. In languages that support separate compilation, the 

computation of slices on a per-module-basis should also be possible. Intermodular slices 

also allow slicing of programs that use libraries and slicing of incomplete programs.

Offutt et al. [68] discuss the use of coupling analysis for integration testing by 

examining the couplings between software components. Coupling measures the 

dependency relations between two units by examining the interconnections between 

them. They have developed a technique for conducting a dynamic analysis of 

instrumented Java code as a way to monitor coupling across module interfaces. This 

technique does a nice job at handling polymorphic call sites.

In general, much research has identified issues associated with the development, 

analysis and testing of a component-based system. Also much discussion exists pertaining 

to components in general and potentially better ways to develop them, to certify them, 

and to provide more support to component users for testing them. Many of the 

techniques and literature cited above address these same concerns. Many of the 

techniques also suggest the use of dynamic analysis to aid the testing process. A good 

example of this is the coupling analysis and testing method discussed above. However, 

static analysis, mainly due to its lower implementation cost compared to dynamic analysis 

and the utility it provides, is still an important method to be considered. When dealing 

with components for which no source code is available, static analysis becomes difficult 

to perform. The issues have been brought up in the literature as noted above, but methods 

and implementations are now needed. This thesis offers two methods.
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3.2. Classification of component-based analysis techniques

Component-based software is one class of software for which efficient and 

effective program analysis based testing and maintenance tools will be useful. As we 

have seen, a component-based system is composed primarily of components: modules 

that encapsulate both data and functionality and that are configurable through parameters 

at nan-time.

The issues that arise in the analysis and testing of component-based systems can 

be viewed from two perspectives: that of the component provider and that of the 

component user. The component provider perspective addresses analysis and testing 

issues that are of interest to the provider of the software components. The component 

user perspective, in contrast, addresses analysis and testing issues that concern the user of 

software components. The component provider views the components independently of 

the context in which components are used. The provider must, therefore, effectively test 

all configurations of the components in a context-independent manner. The component 

user views the components as context-dependent units because the component user’s 

application provides the context in which the components are used. The component user 

is thus concerned with only those configurations or aspects of the behavior of the 

components that are relevant to the component user’s application. Another factor that 

distinguishes the pertinent issues in the two perspectives is availability of the source code 

of the components: the component providers have access to the source code, whereas the 

component users typically do not. What is usually available from components, however, 

is some sort of interface specification. This interface usually consists of one or more 

method signatures and is specified in an Interface Description Language commonly 

known as IDL. Clients can invoke these methods on the corresponding server. A method 

signature specifies its name, parameters passed between the server and its clients when 

the method is invoked, a return type, and zero or more exceptions that could be raised 

during its execution. Furthermore, each component is a program written in one or more 

programming languages. Components are assumed to be distributed over a network of 

machines that may not all have the same run time environment. As such, the system is
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considered dynamic if the components can change after the system is launched or during 

its execution.

A component-based system then can be classified by the type of information 

provided to component users by component providers. For example:

• No component provider information (Worst). Component provider does not 
provide source code, interface or documentation for a given component.

• Minimal component provider information (Average). Component provider does 
not provide source code, but does provide the standard interface (e.g., type library) 
and possibly documentation for a given component.

• Extended component provider information (Better). Component provider does 
not provide source code, but does provide an extended interface and possibly 
documentation. This extended interface not only includes the standard interface 
information, but other information that would be useful for gaining insight into 
the component without having access to the source code. Examples of this might 
include: an API to obtain summary static analysis information that was collected 
by the component provider and made available; a testing interface (gray box) for 
conducting various tests by the component user, a set of reusable test cases for the 
component; and information about the states and exceptions of the component.

• Full component provider information (Best). Component provider does provide 
full source and any documentation for the component.

System solutions would typically comprise a mix of these classes of components. 

The best case probably will rarely happen since that goes against the proclaimed 

advantages of component-based development in the first place. The third case is really an 

ideal case, but it is one that will require significant research and support by component 

providers. Most of the non-traditional approaches discussed in this thesis fall into this 

classification. A hard problem here is determining how we can specify components better 

to support automated analysis and testing. In any case, it is still true that in a 

development environment one needs a methodology to test both components and systems.

With respect to the two perspectives mentioned above, a more detailed 

examination of the issues in the analysis and testing of component-based systems is 

warranted. Component users typically develop component-based systems by integrating
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their applications with independently developed components; this presents several 

challenges for adapting traditional static analysis techniques.

First, as we mentioned above, source code is usually not available for the 

independently developed components. Traditional static analysis (e.g., alias analysis and 

control-dependence computation) and testing (e.g., data-flow testing) techniques require 

access to the source code of the system being analyzed or tested. One way to employ 

these techniques without the source code is to make conservative approximations about 

the analysis relations that hold in the components and about analysis relations caused in 

the user application by the components' code. Such approximations, however, can cause 

the analysis results to be too imprecise to be useful. Second, in a component-based 

system, even if the source is available, the components and the user application may have 

been implemented in different languages. Current analysis tools typically only work on 

the implementation language. Third, a component often provides more functionality than 

that which is used by a particular application. Without identifying that portion of the 

functionality exercised by a particular user application (a process we refer to as usage 

analysis), a testing or analysis tool can report imprecise results or require more testing 

than necessary in the context of a particular application.

Component providers develop and test software components independently of the 

applications that use the components. Unlike component users, the component providers 

have access to the source code of the components. Therefore, testing a component is 

similar to traditional unit testing. However, traditional unit testing criteria, such as 

statement or branch testing, may not be sufficient for testing a component because of the 

weak fault-detection capabilities of those criteria. Fixing a fault subsequently revealed in 

a component by the component user would typically entail a much higher cost than fixing 

a similar fault detected during integration testing of a non-component-based system 

because of the potential use of such a component by many user applications. The 

component provider must really address two issues. First, the provider must effectively 

test the components as context-independent units of software. Effective and adequate 

testing of software components in this manner increases the user's confidence in the 

quality of those components. Second, the component provider must support better testing
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and analysis of the user applications so that faults related to components can more readily 

be revealed before the user applications are released. This can improve the quality of a 

component-based system and reduce the cost of testing and maintenance of the system.

Using the classifications made above, the methods developed as part of this 

research address the minimal component provider information and the extended 

component provider information classes respectively.

Option Explicit 
Public x As Integer 
Public y As Integer 
Public i As Integer 
Public ] As Integer

Public Sub a(x As Integer, ByVal y As Integer)
Dim a As Integer, b As Integer 

a = j - y 
b - x - y 
If a < b Then 

x * 0 
Else 

x - I 
End It 

End Sub

Public Sub b(ByVal x As Integer, ByVal y As Integer)
Call a ( i , y )

End Sub

Pub!ic Sub Main( ) 
x - 5 
y - 3 
1 - 8  
) -  10
Call b(x, y)
Call a(x, y)
MsgBox " X » *  4 X  

M s gBOX 4 y
Ms gBox " l » ” 4 i 
M s gBox "]-* 4 ]

End Sub

Figure 3. A simple test.bas example

3.3. Applying traditional techniques on a component-based solution

To help understand the impact of applying traditional techniques on a component- 

based system, it is important to examine what happens when such techniques are applied 

to a more traditional example in comparison to one based on using components. In a 

component-based system, two key problems pertain to applying traditional static analysis 

techniques:
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• Often no source code is available for many of the components being used.

• The information that is available about a component, such as the type library or
1DL information, is often not utilized to augment the static analysis of a
component-based program.

To illustrate, we will examine two key examples that address each of the two 

fundamental problems listed above. The first key example represents a traditional non

component based program that can be used to show the effect of both key problems. 

Figure 3 lists the source code for a simple test program, test.bas, written in Visual Basic. 

This program has three procedures including one main procedure. Several global 

variables are also defined to show the effect of global variable usage in the analysis. If 

we apply some traditional static analysis techniques to this program, we should observe 

results similar to Figure 4 below.

. 6 ( B y V a l  x .  B y V a l  y r

I Call  a ( i .  y )  trMam

a ( x .  B y V a l  y)

C al l  b (x .  y)

j Cal l  a ( x .  y)j * a  <  b

M s g B o x  j 7 ,0

L ast U s e

Figure 4. Traditional analysis of test.bas
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In Figure 4, we actually see the culmination of several analysis techniques. The 

first analysis that is typically done is to address call and control flow paths throughout a 

program. The result of this analysis is usually some form of a call graph and a series of 

control flow graphs, one for each node in the call graph. The call graph for test.bas shows 

the main procedure calling both procedures a and b. Procedure b in turn calls procedure 

a. The control flow depicts paths of execution and is represented by the control flow 

graphs for each procedure, containing nodes for each statement of code. The next 

analysis done for this example is data flow. First, an analysis was conducted to construct 

variable reference and definition information for each node in each control flow graph. 

The results of this statement-level analysis are shown in the table listed in the figure and 

identifies for each node the variables defined and referenced at that node. It is important 

to note that the analysis included global effects across the system. For example, the 

globalref list for node 5 contains the variables x, y, /, and j. Variables i and j  are included 

due to the global effects of the procedure call. As part of this analysis, a globalref and 

globaldef list was also conducted for each node in the call graph and represents static 

analysis summary information about each module. For example, the globalref list for 

module a contains the variables x  and j  to identify the global effects of variable references 

associated with module a. The variable x  in this case is a formal parameter that is passed 

by reference (i.e., ByRef in Visual Basic terms). Since the value of ByRef parameters 

could extend beyond the scope of the module, it is included as a global effect and is 

eventually mapped to the appropriate actual parameters during the analysis. The next 

analysis being shown is variable first use and last use information for each of the formal 

parameters. This analysis identifies for each formal parameter whether the first and last 

use of that variable is a reference or a definition and stores that as part of the summary 

information for each call graph node. For example, looking at module b, we see that the 

first and last use of formal parameter y is a reference at node 16, which is a procedure call 

to module a where the formal parameter is ByVal. We also see the formal parameter .t is 

not used at all, representing a dead variable usage. This information is stored in the 

summary for module b, which is node 3 in the call graph. Once this basic analysis is 

completed, and the appropriate summary information obtained, it can be used to support
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several useful techniques to aid testing, impact analysis and program understanding of 

such systems. Two of these techniques are briefly exemplified below.

b(ByVal x, ByVal y)

Cal l a (i .  y)M a i n

a(x, ByVal y)

C a l l  b(x ,  y)

a  <  bCa l l  a ( x .  y)

7.10M s g B o x

Find R e v e r s e  Ripple o l  x?

Figure 5. Reverse ripple analysis of test.bas

Figure 5 illustrates a static analysis technique that leverages the variable global 

usage analysis that was done on test.bas to calculate statement-level ref-def lists as well 

as the module-level globalref and globaldef lists. The technique demonstrated is the 

statement-level reverse ripple analysis that was discussed previously. This example 

performs a reverse ripple analysis with respect to the variable reference to .r on node 7 of 

module main’s control flow graph. The reverse ripple analysis is used for impact 

analysis on referenced variables to discover all potential nodes of interest that have 

contributed to the current value of the variable being examined. In effect, starting with 

the node the variable is on, the analysis works backwards through the program execution 

paths to find all places that define the value of the variable, and recursively continues the 

ripple analysis on each of the variables that contribute to the variable definition at that 

point. In this example, nodes 1,5, 6, 15,15 and 16 represent the potential impacts.
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Figure 6. Coupling analysis of test.bas

Figure 6 illustrates a static analysis technique that leverages the variable first-use 

and last-use analysis that was done on the test.bas program. The technique demonstrated 

is the coupling analysis technique discussed previously. This example uses the first-use 

information stored in the summary nodes of the call graph for test.bas to calculate 

parameter coupling paths. Parameter coupling paths exist between call sites and called 

modules if for each actual parameter at a call site, a path exists from the last definition of 

that actual parameter prior to the call site to the first reference usage of the mapped 

formal parameter within the called module. In the example above, five coupling paths are 

identified. In the call site to module a in module b, two paths exist between modules a 

and b for each of the parameters. Likewise, at the call site to module a in module main, 

two paths exist between modules main and a for each of the parameters. The final path is 

between the actual parameter y in module main to the formal parameter y  in module b at 

the call site to b in module main. No path exists between the actual parameter x and
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formal parameter .v because x  is not used in module b. Coupling analysis is an effective 

aid to testing the interfaces between modules as it can be used to help determine which 

tests need to be accomplished.

I U n k n o w n

T e s tC
Aop

aG------ j
j Q -----------------1 T e s tC  1

• o — t

O u t o f  P ro c e s s

I U n k n o w n /""N

b Q  i T e s l C 2

O u t o t  P ro c e s s

Figure 7. Component-based example of test.bas

The above techniques represent very effective capabilities that can be 

accomplished when the appropriate static analysis information can be obtained from the 

program being analyzed. Many techniques, such as the ripple and coupling analysis 

discussed, require information that can be obtained through a detailed control and data 

flow analysis of the program. The techniques discussed can be very effective when 

applied to non-component-based programs, such as the test.bas example. But what if the 

test.bas program were component-based?
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Figure 7 depicts a component-based version of the test.bas program, called TestC. 

In this example, the TestC.bas program has one main module that has calls to several 

interfaces in two separate ActiveX out-of-process components TestC 1 and TestC2. The 

TestC 1 component offers an interface to the method a which corresponds to the module a 

from the test.bas example. It also has methods for setting and obtaining the value of the i 

and j  properties. The TestC2 component has an interface to method b. As in most 

component-based systems, the components are made available as binary objects without 

the availability of source code. The interface information for each component can be 

obtained through the type library information for the component.

b ( B y V a l  x ,  B y V a l  y)

M a i n

a ( x ,  B y V a l  y)

C al l  b ( x .  y)

C a l l  a ( x .  y)

M s g B o x

Figure 8. Traditional analysis of testc.bas

The example depicted in Figure 8 shows the effect of attempting to apply the 

same analysis techniques that were applied to the test.bas program previously. Since the 

only source that is available for analysis is the module main in the user application 

TestC.bas, the call and control flow analysis will be limited. The call graph can be
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generated to show the calls from module main to the interfaces in the components. 

However, the call graph is limited because the call from interface b in the TestC2 

component to interface a in the TestC 1 component cannot be detected. The only control 

flow graph that can be constructed is the one for module main. If the analysis takes into 

account the type library information, then the formal parameter information for each 

interface can be obtained. Although useful for some basic analysis techniques such as 

interface-level parameter dependence and call coupling, this information is not sufficient 

to support the global ref-def analysis, first-use and last-use analysis, ripple analysis and 

detailed coupling analysis techniques that were applied to the test.bas program.

Having no source code available for some or all of the components in a 

component-based system means that the types of detailed static analysis information 

necessary to support advanced analysis techniques cannot be obtained. Likewise, not 

using the information that is available in the type library for a component, for example, 

means that the results of any analysis may not be precise. The next example will 

illustrate this point further.

The second key example is a specific examination of a real DoD system that is 

constructed using a number of COTS components. In [33], we make a claim that 

traditional approaches to automated testing techniques are not sufficient for analyzing 

component-based solutions. To support our claim, we cited some preliminary research 

conducted in conjunction with real-world maintenance and testing of component-based 

systems [52, 124, 127, 129]. We then described our experience in developing and 

maintaining a Commercial off-the-shelf (COTS) component-based solution for the 

Department of Defense (DoD), highlighting particular maintenance issues which arose as 

a result of using this new programming methodology [27, 28]. A brief summary of this 

experience is warranted here to help illustrate a case where the necessary type library 

information for the components in a particular application could have been used to 

augment the traditional static analysis techniques used.
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Figure 9. AFJCME system

Our example solution, depicted in Figure 9, is a special-purpose tool (called 

AFJCME) built to support analysts in the maintenance and design of data interoperability 

standards and in the creation, maintenance and analysis of system implementations of 

those standards [30]. The tool extracts implementation data from a database, and presents 

it to the analyst in spreadsheet form for modification. It further facilitates navigation 

among the data items by building a tree-structure from the database that can be expanded 

and compressed as needed. These capabilities are implemented by a collection of COTS 

components, as Figure 9 illustrates. MS Visual Basic is used to implement the user 

interface and tree-structure, and to provide overall program control and integration [10]. 

By the mechanism of OLE Automation, the tool interfaces with MS Access for database 

management, MS Excel for spreadsheet support, MS Outlook for event logging, and the 

Internet via a Web browser to provide access to online DoD standards information [112, 

114].

Our experience was based on taking the original developed baseline of an 

application through a five-month maintenance cycle full of changing user requirements,
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error corrections, and a need to produce a specialized version of the program. In this 

specialized version of the tool ('AFJCME_Lite’), links to Outlook and the Internet are 

eliminated, and the database provides only the navigation tree data. Next, we showed our 

use of basic traditional static code analysis techniques, in particular live variable analysis 

and dead code identification, to help our maintenance effort.

An informal survey of available tools led us to Project Analyzer, a shareware 

Visual Basic analysis tool [109]. We used Project Analyzer to help us perform some 

basic static analysis techniques such as detailed cross-reference reports and the 

identification of dead code and variables. Project Analyzer makes a full, two-phase source 

code analysis. In phase 1, basic information about the structure of the project is collected, 

including procedure names, procedure parameter names, variable names, constant names, 

type definitions, and control names. Some basic metrics (e.g., lines of code) are 

calculated as well. In phase 2, cross-references are detected. The whole project is 

scanned to find where procedures are called, where variables are assigned a value or used, 

where constants are referenced, etc. Other metrics, such as nested conditionals, are also 

calculated in this phase. Finally, Project Analyzer calculates additional information based 

on the cross-reference data to determine if any procedures, variables, constants, and types 

are dead.

Project Analyzer defines a dead procedure as one that cannot be executed at run

time. It tags a procedure as dead if either. (1) it is not called anywhere in the program; or 

(2) it is only called by other dead procedures. We define this notion of dead code as 

invocation dead, or I-dead. In a later section, we show cases that fit that definition of 

dead procedure while satisfying neither (1) nor (2). Project analyzer defines a live 

procedure as the opposite of a dead procedure. Further, it always considers an Event Sub 

(e.g., the procedure associated with a control’s mouse click event) as live, on the grounds 

that at design-time one cannot determine whether an event will occur at run-time. We 

suggest that augmenting conventional static analysis with semantic analysis could modify 

that conclusion as discussed below.
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Project Baselined AFJCME Modified AFJCME_Lite
Project summary Project summary

Files
Total files 37 39
Source files 14 15

File types
Modules
Forms
Resource Files 
Libraries
Binary Property Files 
Referenced Files 
Project Workspaces 
Project Files

1
4
5 
11 
1
1

1
4
5 
12 
1

Code size
Lines of code 
Lines of comment 
Lines of whitespace 
Total source lines 
Total source bvtes

2277 
1445 
695 
4418 
207 kB

2636 
1915 
669 
5250 
254 kB

Averages
Source lines per module 
Source bytes per module 
Source lines per procedure 
Source bytes per procedure

Humber of identifiers
Total number of identifiers

246
14.8 kB 
32
1.9 kB

275
17.0 kB 
31
1.9 kB

679 795

Forms and controls
Forms 8 9
Controls 104 130

Procedures
Procedures 119 144
- Dead procedures 21 32

Procedures, Basic L07 132
Procedures. DLL 12 12
Procedures. Global 42 49
Procedures, Private 77 95
Subs 99 121
Functions 20 23

Variables and constants
TotaL variables - constants 391 - 48 - 439 454 * 49 » 503
- Dead variables * constants 60 * 28 * 88 85 - 27 » 112

Global/module-level variables constants 36 - 46 “ 82 33 - 46 - 79
- Global variables 22 25
- Global constants 34 34
- Module-level variables 14 8
- Module-level constants 12 12

Procedure-level variables and constants 357 424

- Procedure-level variables 277 341
- Procedure parameters 78 80
- Procedure-level constants 2 3

Table 1. Results of applying traditional static analysis to AFJCME
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Table 1 presents a subset of the results of applying Project Analyzer to the original 

baseline AFJCME tool, and the reduced (AFJCME_Lite) version. Of particular interest 

are the comparisons of source program size as measured in lines of code, total count of 

live and dead procedures, and count of live and dead variables.

First we note that AFJCME_Lite, while a reduced version of AFJCME, is 

nonetheless appreciably larger from 2277 to 2636 lines of code and from 119 to 144 

procedures. This results from the way in which many of the modifications were 

implemented -  controls and routines were added to support different modes of operation 

without first removing previously existing controls and routines. In many cases 

obsolete/superseded code was rendered inaccessible to the user by means of making its 

invoking control invisible or by changing a form’s geometry (i.e., its attributes of size, 

shape, position, etc.).

The count of invocation dead procedures is seen to have risen from 21 to 32. This 

represents the dead code that is detectable by traditional static analysis. It does not 

include procedures that, while present and associated with controls in the project, are 

nonetheless inaccessible to the user at run-time. Similar effects are seen in the variable 

counts.

The results show that the traditional static analysis techniques we applied were 

useful in detecting much of the dead code that was injected in the specialized version as a 

result of numerous changes. However, as mentioned previously, we encountered several 

maintenance examples where we modified certain semantic properties of some objects 

that caused the underlying code to become dead in the sense of being inaccessible at run

time. The traditional dead code algorithm used in the Project Analyzer tool does not flag 

such code. That is because traditional static code analysis techniques do not take 

semantic information about component properties into account. This experience 

prompted us to examine component-based systems more closely and to look for more 

efficient w-ays to analyze them.
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3.4. Extending traditional static analysis techniques for component-based 
solutions

Currently, components that are used to construct a component-based system do 

not typically include the source code or any additional documentation that describes the 

component at any length. This is especially true for COTS components. This makes the 

analysis of these systems difficult at best and in the previous section, we have shown 

some simple examples to illustrate this. We feel that traditional static analysis techniques 

can be augmented in a number of ways to analyze component-based systems.

Today, without component source, often no information is available about the 

component that would be of use to static analysis techniques. For example, variable def

use. first-use/last-use, global reference and definition, and control flow information is not 

available. In some components, formal parameter information is available in an external 

source (i.e.. IDL file), but this external information is not being utilized in most of the 

techniques available today. This means that techniques such as coupling analysis that 

map actual to formal parameter information would fail. In general, because of the lack of 

insight into components either by having no source code or not utilizing the external IDL 

files, many of the current static analysis techniques would fail or provide conservative 

results that would not be useful.

The key is in leveraging the amount of information that is available about the 

components and incorporating that information in such a way as to provide value to 

existing static analysis techniques to allow them to analyze the component-based system 

more precisely. As discussed previously, we distinguish between minimal and extended 

information that is provided by the component developer.

We outline three approaches that can be used to collect more static analysis 

insight about components. This insight can then be used to augment many of the 

traditional static analysis techniques mentioned previously to analyze a component-based 

system.

The first approach is the as-is approach. This states that we do nothing to improve 

the insight of a component and use any techniques as-is. This obviously is not the best 

choice because it results in no improvement in any of the analysis. However, this also
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means no additional work is necessary. The results of any analysis will be conservative at 

best, but for some uses this might be all that is necessary. A good example of this is if a 

user is simply interested in obtaining a library interface report that just lists the 

components that a system is using. The lack of additional static analysis information will 

not have an effect. In effect, this approach supports limited static analysis techniques.

The second approach is to leverage the minimal component provider information 

that is available for a component to gain a little more insight. ‘Minimal component 

provider information' means that the source code of the components is typically not 

available, but that standard interface information (e.g., type libraries for COM 

components) and possibly some documentation is. Systems in this category might be 

considered the ‘legacy’ systems of the component-based domain. In this case, as much 

information as possible should be gleaned from the DDL for the components and used to 

extend traditional analysis algorithms. For example, we know that from IDL we can 

observe the intended public interface of the component, showing the methods, parameter 

passing, and exception handling options. A potential use of this information is to 

summarize it in some fashion and relate it to the control dependence and data usage 

information obtained from analysis of the rest of the system. Of course, this may mean 

making conservative approximations about the analysis relations that hold in the 

components and about analysis relations caused in the user application by the code in the 

components.

The risk with this approach is that such approximations can cause the analysis 

results to be too imprecise to be useful. However, a conservative answer may often be 

better than no answer. Subject matter experts familiar with the system can then decide on 

which information that is available from the type libraries and incorporate that into any 

existing tools and techniques they are using. With this approach, the user still does not 

gain insight into component and variable usage information, but the availability of the 

parameter and method information can be used to support techniques such as call graph 

coupling, basic usage pattern analysis, and dead code detection. This last technique is 

important because it can be used to reduce the number of nodes in a call and control flow 

graph, which means that it potentially reduces the testing requirements as well. A better
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solution is to identify the necessary additional information that may be needed to support 

more precise analysis techniques and obtain buy-in from the component developers to 

either extend the IDL with this additional information or to provide other means to make 

it available to users. In effect, this is the extended component provider information 

classification.

The third approach is to have component developers provide extended static 

analysis summary information along with their component when it is distributed. 

'Extended component provider information’ means that the component provider does not 

provide source code, but does provide an extended interface and possibly documentation. 

This extended interface not only includes the standard interface information, but other 

information useful for gaining insight into the component without having access to the 

source code (e.g., an API for summary static analysis information). In this approach, the 

component provider tests the components and, using analysis techniques, gathers 

summary information that facilitates further analysis and testing of those components by 

users without requiring access to the source code. The component provider then makes 

the summary information available with the component. The component user 

subsequently integrates the components with the user application, and queries the 

summary information to drive the analysis and testing of the integrated system. The 

summary information obviates the need for access to the components’ source code. 

Typical summary information which would be useful for static analysis would be 

extended call graphs, global variable reference and definition analysis, variable first- 

use/last-use information, mappings between input parameters, states of the component, 

and output parameters, as well as a list of the exceptions that components can raise. This 

information would be useful for many techniques, such as coupling analysis and testing, 

interface level slicing, integration testing, and the detection of usage patterns and 

subsequent use of component wrappers. It is important to note that the success of this 

approach depends on component developers being able to generate this information with 

little effort. It is envisioned that an analysis tool such as the one described later in this 

thesis could be provided to component developers so that they can generate the necessary 

summary information. Then, the component user can use a similar tool to merge the
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summary information into an integrated system view for analysis. This is basically the 

technique we describe later.

In the next section, we discuss a new technique based on the second approach 

discussed above to analyze a component-based system by using type library/IDL 

information to gain insight into component properties. The technique is then used to 

significantly enhance a dead code detection algorithm. In a later section, we discuss a 

new technique that is based on the third approach discussed above. This technique 

defines a standard format for static analysis information to be provided by component 

developers. An analysis tool is then modified to collect this summary information and 

generate an extended call graph in extensible Markup Language (XML) [6]. Such a 

graph is generated for each component used in a system, as well as the main application. 

The various graphs are merged into one integrated system view, and from their 

subsequent static analysis techniques can be applied. The effectiveness of both of these 

techniques was then validated by applying them to several real COTS component-based 

systems.
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4. AUTOMATED ANALYSIS TECHNIQUES BASED ON 

COMPONENT PROPERTIES

This section describes automated analysis techniques based on component 

property information. We develop and discuss a technique to use semantic information 

about component properties obtained from type library and interface definition language 

files, and demonstrate the effectiveness of this technique by extending a traditional 

unreachable code algorithm.

4.1. Using component information that is typically available today

Previously we discussed the importance of static analysis in program 

understanding, debugging and testing. We also discussed reasons why traditional 

techniques may not be sufficient for analyzing component-based systems. Referring to 

our previous classifications of component-based systems, we feel that traditional static 

analysis techniques can be extended to analyze both average (minimal component 

provided information) and better (extended component provided information) 

classifications.

The technique described here is an approach to extend traditional static analysis 

techniques on systems with ‘minimal component provider information’ available, which 

is the typical component-based system found today. "Minimal component provider 

information’ means that the source code of the components is not available, but that 

standard interface (e.g., type libraries for COM components) information and possibly 

some documentation is. Systems in this category might be considered the ‘legacy’ 

systems of the component-based domain. In this case, information should be gleaned 

from the IDL for the components and used to extend traditional analysis algorithms. For 

example, we know that from IDL we can observe the intended public interface of the 

component showing the methods, parameter passing, and exception handling options. A
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potential use of this information is to summarize it and relate it to the control dependence 

and data usage information obtained from analysis of the rest of the system. Of course, 

this may mean making conservative approximations about the analysis relations that hold 

in the components and about analysis relations caused in the user application by the code 

in the components. The risk with this approach is that such approximations can cause the 

analysis results to be too imprecise to be useful. However, a conservative answer may 

often be better than no answer.

As mentioned, a better solution is to identify the necessary additional information 

that may be needed to support more precise analysis techniques and obtain buy-in from 

the component developers to either extend the IDL with this additional information or 

provide other means to make it available to users. A technique based on this concept is 

described in the next section.

Using this available documentation, the approach described here then entails 

using a subject matter expert on the component-based system to help identify several key 

pieces of semantic information associated with the component-based architecture which 

would help to promote a better understanding of the overall system or to enhance a 

particular analysis capability.

4.2. Obtaining useful component IDL information

An important part of this approach is to attempt to leverage the information 

available from the type library or IDL associated with a component and to use that 

information to examine closely the interfaces of that component.

To illustrate, consider the TestC example used previously that depicted a 

component-based application with a TestC.bas application and the two components 

TestC 1 and TestC2. Figure 10 lists the IDL for the TestC 1 component obtained using the 

Microsoft OLE Viewer tool that comes with the Microsoft Visual Studio developer’s 

suite [4]. The IDL provides information about the methods and properties for the 

component, in this case the method a and the properties j  and i.
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// Generated .IDL tile (by the OLE/COM Object viewer)
// typelib filename: TestCompl.exe

i
uuid(BE0 8C865-6AF7-11D4- 8099 -00A0CCE27EBB), 
vers ion(1.0). 
helpstring("TestCompl").
custom(50867300-BB69-11D0-A8FF-00A0C9110059. 84 95)

]

library TestCompl
(

// TLib : // TLib : OLE Automation : {00020430-0000-0000-CO0O-OOOOOOOOOO46}
importlibf”stdole2.tlb’);
// Forward declare all types defined in this typelib
interface _TestCl;
[

o d l ,
uuid(BE08C86o-6AFT -11D4- 8099 -OOAOCCE27EBB) , 
vers ion(1.0), 
hidden, 
d u a l .
nonextensible, 
oleautomation

1
interface _TestCl : IDispatch (

[id( 0x600 30002)]
HRESULT a (

(in, out] short* x,
[in] short y);

[id(0x68030001), propget]
HRESULT J ([Out, retval] VARIANT* );
(id(0x68030001), propput]
HRESULT j ([in] VARIANT ):
[id(0x68030000), propget]
HRESULT 1 ([O u t , retval] VARIANT* );
[id(0x68030000), propput]
HRESULT 1([in| VARIANT ):

1 :
L

uuid(BE06C867-6AF7-11D4-8099-00A0CCE27EBB) , 
version(1.0)

]
coclass TestCl (

[default] interface _TestCl;
1 ;

1 : ___________

Figure 10. Interface definition language for testCl

The OLE viewer is a good tool for obtaining the IDL from a type library of a 

given component [5]. This information is used by many development tools, such as MS 

Visual Studio, to provide developers with object browsing and auto-completion 

capabilities. However, as can be seen, the IDL is not very human friendly. There are 

alternatives to getting at this information. The method used for this research is a freeware 

custom-developed Visual Basic tool, called the ActiveX Documenter [1]. Figure 11 

shows an example of the output from this tool. The result is a more human-friendly view 

of the type library information for the TestCl component. The methods and properties 

with their associated parameter information are clearly articulated.
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TestCompl Interface Definition
General Information
Library: TestCompl (TestCompl)
File: D:\vork\PhD\Test and Validation\PhD_Example\TraditionalComponent
Example\Step 2-Using IDL\TestCompl.exe
GUID: [BE08C865-6AF7-11D4-Q099-00A0CCE27EBB}
Version: 1.0 
Enumerat ions
This section lists enumerations exposed by TestCompl.

Interfaces
This section lists the classes exposed by TestCompl. For each class, the methods 
and events are listed.

Teste1 (BE08C867-6AF7-11D4-8099-OOAOCCE27EBB)

Methods
Sub a(ByVal x As Integer, ByVal y As Integer)

Property Get ]() As Variant

Property Let ](RHS As Variant)

Property Get i() As Variant

Property Let i(RHS As Variant)

Events
None

Figure 11. Type library documentation

This information can be used as an aid to component users and developers alike. 

For example, it provides additional documentation that can be used by the subject matter 

expert in deciding on the important component properties and criteria for augmenting 

specific techniques. In section 4.3. we discuss an example of using this information to 

select key component properties for which the semantic information about those 

properties can be analyzed to enhance the detection of unreachable code. Later, in section 

5, we show how to take this information and incorporate it into the analysis of a system to 

improve the generation of system-wide call graphs.

4.3. An example of augmenting a static analysis technique

In this research, the test cases we used were based on the Microsoft Component 

Object Model (COM) technology. The primary development tool and glue code for these 

systems is Microsoft Visual Basic. Programming languages like Visual Basic have added 

a whole new dimension to static analysis of program source code. With traditional
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structured languages, it was difficult to design analyses that could predict the nature of 

run-time behavior without significant and program-specific parsing and queries. The 

object-based nature of Visual Basic-type languages include object attributes that in some 

cases dictate how the program will behave or how a user may proceed through the 

program when it is executed. For example. Visual Basic attributes like visible and 

enabled hint at possible run-time execution path restrictions based on statically coded 

attributes. This is to say that the code associated with an invisible program control cannot 

be executed. With some analysis of the visible attribute, it may be possible to determine 

if the control's code is ever reachable. Indeed, this object-based property allows a 

general analysis of the object visible attributes regardless of program or application. The 

most obvious use of this general attribute analysis is to extend the search for invocation- 

dead code. We define the term object-attribute dead, or OA-Dead to represent this form 

of code.

4.3.1. OA-dead code analysis

Using knowledge of COM objects that we obtained from the component IDL 

information, we selected several key criteria for semantic information that may be 

exploited. Visual Basic attributes that may affect an object’s availability are enabled, 

visible, top, left, width, and height. If an object is invisible or disabled, the object is OA- 

dead. Likewise, the top, left, width, and height attributes set correctly (perhaps 

incorrectly), will also make an object invisible and therefore unavailable, thus OA-dead. 

If the unavailability of an object persists throughout run-time regardless of program flow, 

the object and its associated code are OA-dead.

As defined previously, invocation dead code in a program is code that cannot be 

executed because it cannot be reached through normal program control flow. A 

program's syntax may render some of its code dead. In VB-type languages, code may be 

unreachable due to object attribute constraints. In this case, it is semantic constraints that 

caused the code to be dead. For example, a VB event procedure that executes code 

following an event on a VB control is not reachable (executable) if that control is never 

available in the VB program. By available, we mean that the control is visible and
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enabled for user input. Invocation-dead code analyses typically do not check for these 

object attributes and their effect on code execution.

To differentiate between dead code (syntax) analysis and the search for 

unexecutable code associated with object attributes (semantics), we use the term 'OA- 

dead' to refer to code that is dead due to semantic properties. An object that is OA-dead 

is one whose attributes or semantics make it unreachable at any point during run-time.

The importance of identifying OA-dead code has the same importance as 

identifying invocation-dead code. In software development and maintenance 

environments, the utility of identifying dead code is well understood. Identifying OA- 

dead code has added utility in software development in that it may help to predict the 

software's behavior at run-time. One of the difficulties in predicting run-time behavior 

is predicting user input. Identifying a control that is OA-dead shows a program path that 

will never be traversed. Given that controls are designed for user input, an unavailable 

control limits the possible run-time paths. Verification of the limitation may be the goal. 

Perhaps, however, the limit was not intended and identifying it allows early correction of 

a software bug.

During software maintenance, the utility of OA-dead analysis increases 

dramatically because a project’s maintainers are often different from its developers. 

Again, the ability to determine and/or verify code paths is of great importance. 

Maintainers may actually disable a control and analyze the resulting OA-dead code to 

determine a project’s control flow. Understanding the impacts of these types of semantic 

properties is extremely useful.

4.3.2. Results of applying OA-dead analysis to AFJCME_Lite

To illustrate further the criteria chosen we continue with the OA-dead analysis of 

the AFJCME_Lite program discussed previously. We describe in detail the maintenance 

issue pertaining to component object events that have been made inaccessible by 

modifying object semantics within the Visual Basic development environment. These 

examples show the important role semantic information can play in the static analysis of a 

program.
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The routine depicted in Figure 12 is from the specialized version of the 

AFJCME_Lite tool. This code is attached to a click event of a command button object, 

named cmdMoveUp, located on a form named ffmSessions.

Private Sub cmdMoveUp_Click()
'When user wishes to reorder the system list for a session by moving a given 

system
'up in the list:

- Reorder right pane systems list (IstSystemSeiect) for this session by
moving

highlighted system up one position in the list.
- Set this system’s dirty flag to 1; means queries will have to be rebuilt. 

Dim moverSysName As String, moveeSysName As String
Dim moverSysNo As String, moveeSysNo As String 
Dim targetListlndex As Integer

With IstSystemSeiect
'Don't move unless it’s a selected (checked) system and it 
'isn't already first in the list.
If ( L i s t l n d e x  > 0) And (.Selected(.Listlndex)) Then 

moverSysName » .List(.Listlndex) 
moveeSysName » .List(.Listlndex - 1) 
moverSysNo * .ItemData(.Listlndex) 
moveeSysNo - .ItemData(.Listlndex - 1) 
targetListlndex - Listlndex - 1
Call svapEm(moverSysNo, moveeSysNo, targetListlndex)
's et the dirty flag for this session to 1; no need to check for no

systems
s elected because we w o uldn’t have gotten here if that were the case. 

LstSessionSelect.ItemData(IstSessionSelect.Listlndex) • 1 
End I f 

End With 
End Sub

Figure 12. Source code for click event of cmdMoveUp

It is not a trivial matter to determine whether this code can/will ever be executed 

when the tool is in operation. The code will run only in response to a mouse click event 

issued to the form element named cmdMoveUp. The user may be prohibited from causing 

that event to take place in several ways including, for example, program logic that would 

prohibit the form from ever being displayed. This condition is in the realm of standard 

analysis. However, other conditions are more specific to the class of visual programming 

tools and component-based maintenance under consideration here. Two examples are: l) 

The cmdMoveUp object might be invisible; and 2) The cmdMoveUp object might be 

inaccessible altogether. Each of these conditions can, in turn, come about in more than 

one way, because the properties of objects can be set at design time, and/or modified at 

run time.
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Figure 13. MS Visual Basic 5 development environment

It is not clear from an examination of the code when either of these conditions 

applies. For the (static) case of properties set at design time, examination of the 

properties would be required. To illustrate the First example, consider Figure 13. Here 

we see a view of the MS Visual Basic 5 development environment with the form 

frmSessions open in design-mode. The command button, cmdMoveUp, is selected and a 

property window is open to allow the semantic values of the properties for the button to 

be modified.

At this point suppose we set the visible property to false in order to hide the 

command button during run-time. This type of modification actually occurred on 

numerous occasions because the maintainer was under a time constraint and was 

uncomfortable with making extensive changes that may have had other side-effects (i.e., a 

typical maintenance patch).
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D o n e

Figure 1 4 .  M odified form without the cm dM oveUp button

Figure 14 shows the runtime result of having set cmdMoveUp.Visible to false. 

We see that the control is not displayed, and therefore cannot receive a click event. For 

an analysis tool to detect this would require that it examine object properties based on 

specific criteria to address these conditions, or to examine the object properties and then 

draw inferences from the results. The inferencing engine could apply a number of 

artificial intelligence techniques that go beyond the scope of this research. For example, 

examination of the form file frmSessions.frm, shows the results in Figure 15. As 

expected, the Visible property is set to 0 (false).

Begin V B .CommandButton cmdMoveOp
Height - 1095
Left =■ 8520
Picture » "frmSessions.f r x " :044A
Style = 1 'Graphical
TabIndex = 1
Top =* 1680
Visible = 0 ' False
WhatsThisHelpID - 840
width 735

End

F igure 1 5 . Source cod e from frm Sessions

i«. Available S essions
Function

A v a ila b le  S e s s io n s  S y s t e m s  U se d  in S e s s io n

asdf-09-Mat-98 
BlankSession-08Mat-98 
FI 5CDS ession-30-Jan-98 
real2test-10-Mai-98 
reallesMO-Mai-98
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A much more difficult analysis problem would arise in the second example, where 

the dimensions of the form have been changed so that the portion of the form containing 

the control is hidden at runtime. Figure 17 shows the effect at runtime of shrinking the 

dimensions of the form, rendering the cmdMoveUp button inaccessible (hidden). The 

semantic information to discover this is available as the following extract from 

frmSessions.ffm shows in Figure 16:

Begin VB.Form frmSessions
BorderStyle 1 'Fixed Single
Caption » ’Available Sessions’
ClientHeight - 5850
CliencLeft 30
CllentTop 645
CllentWidth 4410
HelpContextID 840
LinkTopic ’Forml"
MaxButton 0 'False
MinButton 0 'False
ScaleHeight 5850
ScaleWidth 4410
Tag ’Activate a session or change participating systems’

Figure 1 6 .  Sem antic information from frm sessions

BncHon

Available Sasaian*

dtdf*09'Md('38 
BlankS e«ion-08Mar98 
F15CDS««on*30Ja#v96 
i eaCtesM Q-Maf-98 
teafte«M0-M«>98

Dons

F igure 17. Modified form after resize
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The analysis would have to include recognizing the fact that setting 

frmSessions.ScaleWidth to 4410 precludes the control named cmdMoveUp from being 

accessed at run time. For example, we know that the original ffmSessions.ScaleWidth 

was 9960 before the resize. We also know that the button, cmdMoveUp, has a container 

left-hand starting position of cmdMoveUp.Left = 8520 and a width of 735. Comparing 

the modified frmSessions.ScaleWidth of 4410 shows that the right-hand side of the form 

is less than the starting position of the button (8520), meaning that the button is now 

hidden.

To demonstrate this technique in our research, we modified Project Analyzer with 

extended algorithms to discover and analyze each of the above criteria as part of an OA- 

dead analysis report [113]. Details of the OA-dead extensions made to the Project 

Analyzer tool are discussed in a later section.

Metric AFJCME Lite
PROGRAM SUMMARY

Total SLOC: 5250
Code Size in kB: 254
Components: 25
Total Procedures: 144
Dead Procedures: 32

OA-DEAD ANALYSIS
OA-Dead Files: 2
OA-Dead Procedures: 43
Reasons:

Event o f  OA-Dead Control: 32 (74.42%)
Called by OA-Dead Procedure: 9 (20.93%)

In OA-Dead File: 2 (4.65%)
OA-Dead Controls: 72
Reasons:

Disabled: 3 (4.17%)
Invisible: 17(23.61%)

Too Narrow: 52 (72.22%)
Too Short: 52 (72.22%)

Too Far Right: 0 (0%)
Too Far Down: 0 (0%)

Too Far Left: 3 (4.17%)
Too Far Up: 0 (0%)

In OA-Dead File: 13 (18.06%)

T able 2. Results of applying OA-dead analysis on AFJCME_Lite
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Table 2 represents the results from running the OA-dead code detection algorithm 

on the AFJCME_Lite DoD system we discussed previously. A significant number of new 

dead procedures (i.e., OA-dead) has been detected as a result of talcing into account the 

semantic information of object properties. An additional 43 procedures were identified as 

OA-dead, as well as 72 controls and 2 files. The significance of this is that the code 

related to the 43 procedures identified as OA-dead could represent a significant reduction 

in the overall amount of code that needs to be analyzed, maintained or tested. For 

example, the test cases associated with the OA-dead procedures may not have to be run, 

which may represent a significant reduction in the amount of testing to be accomplished. 

Such high numbers on a 5250 line program also indicate that typical maintenance 

activities still have the potential to induce complexities in a system irrespective of 

whether that system is component-based. Of the OA-dead procedures, it is interesting to 

point out that over 74% were events to OA-dead controls, of which over 72% of those 

were OA-dead due to the control being either too narrow, too short or both (in most 

cases) with respect to the form it was on. This implies that many of the modifications 

made to the program could have been quick fixes. For example, as an alternative to 

commenting out code for which the maintainer was not quite sure was needed anywhere 

else, we observed that they just resize a form or a control to hide it from the user’s view.

Although this is just one example, a more exhaustive examination of the results of 

using this technique on several case studies is discussed in a later section. However, this 

example does support that the OA-dead analysis report appears to be an effective tool for 

understanding particular usage patterns and maintenance actions pertaining to a particular 

system. It also validates the effectiveness of the technique for putting component IDL 

information to good use to augment static analysis techniques for very specific 

capabilities.

The technique and the OA-dead tool extensions discussed above were developed 

with a specific application in mind. Unreachable code was determined to be an important 

characteristic to look for in the DoD systems being maintained. It turned out that the OA-
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dead analysis is an effective technique, and that the criteria for component property 

information that was selected represented a good choice for analyzing the Visual Basic 

language. In general, it may be costly in terms of resources for organizations to 

customize a tool for specific purposes. There needs to be better ways to analyze 

component-based systems which could allow many more of the advanced, mature static 

analysis techniques to be used. The next section describes a technique to help address 

this.
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5. AUTOMATED ANALYSIS TECHNIQUES BASED ON 

COMPONENT DEVELOPER SUMMARY INFORMATION

This section describes automated analysis techniques based on component 

developer summary information generated by the component provider during 

development and testing of the component, and then distributed to the component user. 

This can then be integrated with several traditional static analysis techniques to analyze 

component-based systems more precisely. We illustrate the effectiveness of this 

technique by modifying an existing analysis tool to generate extended call graphs 

embedded with summary information for global data flow analysis, and show the use of 

this information in the analysis of a sample system.

5.1. Additional component information that is needed to support static analysis

Using the available IDL information about a component as a documentation aid to 

the component user or developer, the previous approach showed a way to use this 

information to support some specific static analysis capabilities. To support a broader set 

of capabilities, more additional information about component is necessary.

As we have seen, the IDL information provides a list of the public interfaces that a 

component offers, including methods, properties, events and exceptions. The current 

form of IDL documentation does not provide any insight into control flow, data flow, 

component states, or other similar information that would be useful when performing 

static analysis of a system. For example, the ripple analysis and coupling analysis 

techniques that we demonstrated previously could not be performed on a component- 

based system without imprecise results.

We know that traditional static analysis can be performed on a system that is not 

component-based. In a component-based system, many of the components are in effect 

black boxes for which little information outside of the IDL is known. This lack of
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information about components is a fundamental problem with performing advanced static 

analysis on such systems. This research addresses this problem by identifying key 

information that could be summarized about a component through some automated 

analysis performed on that component by the component developer. A way to represent 

this information is also suggested using several summary graphs stored in XML. These 

XML graphs can then be distributed with the components. The component user 

subsequently integrates the summary graphs for each component along with the graph for 

the user application to form an integrated system view. Once this integrated system graph 

has been constructed, traditional static analysis techniques can be applied as before. The 

summary information obviates the need for access to the source code for a component.

Information Description Supports
IDL Interface Description Language provides 

additional information about component 
interfaces, such as methods, properties, events 
and exceptions that can be exploited in static 
analysis.

Basic component 
understanding, specific static 
analysis techniques, such as 
dead code detection, basic 
usage analysis, and testing.

Call and control 
flow

Call and control flow will provide 
information on modules, call graph node, 
called modules, called by modules, detailed 
call site information, variables and constants, 
and formal parameters.

Most static analysis 
techniques, such as: 
coupling analysis and testing, 
interface slicing, interface 
ripple analysis, and 
integration testing.

Variable usage Variable usage includes information on ref- 
def analysis, global analysis, and variable 
first-use and last-use information.

Most static analysis 
techniques, such as: coupling 
analysis and testing, interface 
slicing, interface ripple 
analysis, and integration 
testing.

Parameter
mapping
dependence

Parameter mapping data dependence provides 
the relationships between formal parameters 
and all actual mappings throughout the 
system.

Coupling analysis and 
testing.

Impact
dependence

Impact dependence information provides the 
relationships between global referenced and 
defined variables and the modules of interest 
that contribute to or use that variable.

Reverse and forward 
interface-level ripple analysis

Statement-level 
control flow graph 
information

Statement-level control flow information Statement level techniques, 
such as program slicing, 
ripple analysis, partial 
evaluation, and testing

Component states Identification o f the various states a 
component can be in.

Techniques like: usage 
patterns, component 
wrappers, interface slicing
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Information Description Supports
and integration testing

Dependence
information

Dependence information between input, 
output and state variables

Techniques like: usage 
patterns, component 
wrappers, interface slicing 
and integration testing

Exception
information

Exception information and its dependence to 
input and state variables

Techniques like: usage 
patterns, component 
wrappers, interface slicing 
and integration testing

Table 3. Static Analysis Summary Information

The information in Table 3 depicts a set of static analysis summary information 

that could be generated for a component and distributed to a component user to perform 

many of the techniques mentioned in the third column. The IDL is information available 

today. The other information would have to be generated as summary information about 

the component. The call and control flow along with the variable usage information 

provide the fundamental control and data flow information necessary to support many 

static analysis techniques. An important distinction should be made between module- 

level control flow and statement-level control flow as summary information. Statement- 

level control flow is necessary for performing most types of static analysis. However, we 

feel that component developers may be reluctant to provide complete statement-level 

control flow graphs for their components because of proprietary concerns. The reason for 

this is that the regeneration of program source from control flow graphs is a heavily 

researched area and many techniques exist for doing this. We also feel that interface- 

level analysis is more important when dealing with a component-based system than 

statement-level analysis. The reason is that realistic component-based systems will more 

than likely contain a hybrid of components for which additional summary information is 

provided, along with components for which the IDL is the only information available. 

Another reason is testing. Component-based testing by component users is primarily an 

integration test that examines the interfaces throughout the system.

The technique that we have implemented here computes call and control flow, 

variable usage, parameter mapping dependence and impact dependence summary 

information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

5.2. Representing additional component summary information

Just as important as identifying the summary information that should be collected 

for each component is an efficient mechanism for representing it and making it available 

to the component user. For this research, we felt that it was important for the information 

to be some form of documentation that could be made available to component users. 

Since we felt this information should be incorporated into a tool for automated analysis, it 

is also important to use a format that can support this and be easily read by a human if 

need be. We chose the extensible markup language (XML) for this representation 

because it represents a standards-based method that meets all of our objectives [6]. Using 

XML allowed us to separate the data from the presentation of that data such that one data 

file could easily be rendered into many different forms. This makes it easy to incorporate 

this information into various tools or human views as necessary. Three graph structures 

were defined. The summary information call graph is the primary graph structure that is 

used to contain the call and control flow as well as the variable usage information. A 

second graph structure is the parameter mapping dependence graph. This is used to store 

the relationships between formal parameters and actual parameters at all related call sites. 

The third graph structure is the impact dependence graph that is used for ripple analysis. 

Each of these is briefly described below.

5.2.1. Summary Information Call Graph

•;>xml v e r s i o n  -*1.0"?>
s.--Generated by XML Authority. Conforms to w3c http://ww.w3.org/TR/xmlschema-l/--> 
<schema targetNamespace =* "CallGraph.xsd"

xmlns =* "http: / / w w .  v3 . org/1999/05/06-xmlschema- 1/structures . xsd">
■;element name * "CallGraph”>

<type content * "elementOnly’>
<group order « ”seq">

<element ref * "ReportTitle'/>
<element ref - ”ProjectTitle”/>
<group order =■ "seq" minOccurs - ”0 ” maxOccurs - "*"> 

<element ref ■ ”ModuleCollection’/>
<element ref - 'CallGraphNode’ minOccurs 3 "1"

m a x O c c u r s  - ”»"/>
</group>

</group>
</type>

</element>
<element name = "ReportTitle” type - ”string“/>
<element name » "ProjectTitle" type = ”st r i n g ’/>
•celement name - ”CallGraphNode">

<type content * "elementOnly”>
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_ •» » n

maxOccurs = "*"/> 

maxOccurs = ' • ’ /•> 

■ •  " / >

"  *  " / >

<group order =■ "seq">
<element ref = "FormaiParameters" minOccurs = "0" maxOccurs

e l e m e n t  ref = "ConstantDeclarations" minOccurs = ”0 ’

e l e m e n t  ref = "VariableDeclaratians" minOccurs = *0’

<element ref = "CalledModules’ minOccurs - "0“ maxOccurs =

<element ref = "CallSites" minOccurs = "O’ maxOccurs = •**/> 
<elemenc ref - "GlobalRefs" minOccurs =■ "0" maxOccurs =

<element ref - "GlobalDefs* minOccurs » "0" maxOccurs »

<element ref = "LocalRefs" minOccurs - *0" maxOccurs = ’♦"/> 
e l e m e n t  ref = "LocaiDefs" minOccurs - "0" maxOccurs ■ •*"/> 

</group>
^attribute name * "NodelD" minOccurs =• "1" type =■ "integer",/> 
•-attribute name * "ProcName" minOccurs * "1" type - "string"/> 
^attribute name * "ParentModName" minOccurs - "L" type * *string’/>

•:/type>
■-/element>

e l e m e n t  name = *GlobaiRefs">
<type content - "elementOniy’>

<group order - "seq’>
<element ref - "ConstRefs* minOccurs - "0" maxOccurs - "»"./>
<element ref - "VarRefs" minOccurs - "0" maxOccurs * ’*"/>

</group>
•/type>

</element>
•-element name - "GlobalDefs">

■'type content - "elementOr.ly’ >
■-group order • *seq’>

<element ref - "ConstDefs* minOccurs » "0" maxOccurs - ••■/>
<eiement ref * "varDefs* minOccurs - "0" maxOccurs - '**/>

</group>
•;/type>

■-/element>

•element name ■ "FirstUse" type - "string’/>
■element name - "LastOse" type - "string’/>
•element name - "Parameter*>

<type content ■ "textOniy">
<attribute name - "VarID’ minOccurs - *1* type - " s t r m g ’/>
cattribute name - "VarName" minOccurs - "1" type - "string’/>
< a t t n b u t e  name * "FirstOse" minOccurs - "l’>

<datatype source - "string’>
e n u m e r a t i o n  value - "ref’/>
<enumeration value * "def"/>

</datatype>
</attribute>
<attribute name - "LastOse" minOccurs - "1*>

<datatype source - "string">
<enumeration value - "ref"/> 
e n u m e r a t i o n  value » "def"/>

</datatype>
< / a t t n b u t e >

</type>
•t/element>
•-element name = "CallSites">

<type content = "elementOnly”>
<group order = "seq">

<element ref « "CallSite" minOccurs - "1" maxOccurs - "•"/> 
</group>

</type>
•-/element>
<element name » "CallSite’>

<type content = "elementOnly’> _____________________________________________________
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<group order = ’s e q ”>
<element ref = "Module“/>
<element ref = "StatementLineNumber“/>
<element ref = ’CallSiceAnalysisCompleted"/>
<element ref = ’ParamecerMapping“/>

</group>
</type>

---/elements
•
•
•

•-/schema.--

Figure 18. Portion o f  XM L summary call graph schema

Figure 18 depicts a portion of the XML schema for the summary call graph. The 

included portions highlight some key aspects of the graph to illustrate our intended 

representation for the summary information discussed previously. The first point to 

notice is the hierarchy of the graph. A call graph is comprised of zero or more call graph 

nodes, where each call graph node is comprised of child elements for formal parameters, 

constant declarations, variable declarations, called modules, call sites, global and local 

variable references, global and local variable definitions, as well as three attributes for a 

unique node identification number, the name of the module, and the name of any parent 

module. The next point to notice is the storage of the GlobalRefs and GlobalDefs that 

contain a list of the constants or variables that have global impacts outside of a particular 

analysis. The variables in these lists represent the result of a global variable def-use 

analysis that is conducted on the module and includes the effects of modules calls made 

from within the module being examined. For example, if a module a may call module b 

and inside module b, a global variable i may be defined, then i will also be included in the 

GlobalDefs list for module a. This is important for supporting techniques like program 

slicing and ripple analysis. The next point to notice is the parameter information which 

includes the first-use and last-use for each formal parameter for the module. This is 

important for techniques like coupling analysis. The final point to notice is the call site 

element that contains the actual to formal parameter mappings.

The complete XML summary call graph schema is listed in Appendix C.
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5.2.2. Data Dependence Graph

■^schema targetNamespace = "DataDependenceRpt.xsd"
xmlns = "h t t p :/ / vwv.w3.org/I999/05/06-xmlschema-1/structures.xsd ’>

<element name = *DataDependenceReport">
<type content = 'mixed">

<element ref = "ModuleName"/>
■:/type>

•'/eLement>
•:element name = "ModuleName’>

<type content =* 'elementOnly’>
<group order = "seq">

<element ref » "DataDependence’/>
</group>
<attribute name - 'ID' type = 'string'/>
<attribute name * "Name* type =* "stri.ng"/>

•:/type>
</element>
<element name - "DataDependence">

<type content * 'elementOnly ' >
<group order - *seq">

<element ref » "FormalParameter" minOccurs - "0"
maxOccurs * "•"/>

</group>
•;/type>

•-/element^
•element name • *FormalParameter*>

<type content * "elementOnly">
•cgroup order - *seq'>

<element ref - "Variables" minOccurs ■ "1" maxOccurs
• '*’/>

<element ref - "Constants" minOccurs - "I" maxOccurs

</group>
<attribute name » "ID" type ■ "string"/>
^attribute name - "Name" type - "strinq’/>

</type>
•-/element>

•

•
■;/schema >

Figure 19. Portion of XML parameter mapping schema

Figure 19 depicts a portion of the XML schema for the parameter mapping 

dependence graph. This graph contains one or more module to data dependency pairings. 

For each module, a data dependence set relates each formal parameter of the module to 

actual parameters for all call sites to this module throughout the system being analyzed. 

This graph is a secondary graph that is produced from an analysis of the summary call 

graph for the system being analyzed. It is also a good example of how large XML 

documents can be transformed into smaller XML documents designed for a specific 

purpose.

The complete XML parameter mapping dependence graph schema is listed in 

Appendix C.
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5.2.3. Ripple Analysis Graph

<?xml version =*1.0’?>
Conforms to w3c http://ww.w3.org/TR/xmlschema-l/-->

■:schema targetNamespace = "ReverseRipple.xsd"
xmlns = "http: / / w w . w3 . o r g / 1999/05/06 -xmlschema- 1/structures . xsd"> 

^element name = "ReverseRipple*>
<type content » ’elementOnly*>

<group order ■ "seq*>
<element ref ■ "CallGraphNode" minOccurs = *1"

m a x O c c u r s  = •»*/>
</group>

</type>
</element>
^element name * "CallGraphNode">

<type content * "elementOnly*>
<group order • "seq">

■^element ref ■ "GlobalRefVar* minOccurs - "0"
m a x O c c u r s  » "*"/>

</group>
<attribute name » "ID" type * "string*/>
<attribute name - "Name" type - " s t n n g " / >
<attribute name » "ParentModName" type • "string"/>

</type>
</element>
<element name - "GlobalRefVar*>

<type content - "eiemeritOniy’>
<group order * "seq">

<element ref * ’ImpactedBy" minOccurs « "0"
m a x O c c u r s  - "*■/>

</group>
<attribute name - "ID" type * "string’/>
<attribute name » "Name" type - " s t n n g * / >

</type>
</element>
<element name - ’ImpactedBy ">

■-type content - *element0nly’>
<group order * "seq">

<element ref * "Module’/>
<element ref - "Variable"/>

•-./group>
</type>

</element>«

< / s c h e m a >

Figure 20. Portion of XML ripple analysis schema

Figure 20 depicts a portion of the XML schema for the ripple analysis graph. This 

particular schema illustrates the reverse ripple analysis. A similar graph exists for a 

forward ripple analysis. Recalling a previous discussion, a reverse ripple looks at each 

global variable reference in a module, and examines the calling hierarchy backwards 

looking for all definitions to that variable and any additional variables used to define 

them. To support this, the graph contains one or more call graph nodes, where each node 

contains an element for each variable in the GlobalRefs list for that node. Then, for each
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of these variables, an ImpactedBy set is created which includes the module and variable 

where a particular definition has occurred in the calling path. A variable is included in 

the impact set to account for formal ByRef parameters that need to be mapped to actual 

parameters to complete the analysis.

The complete XML ripple analysis graph schema is listed in Appendix C.

■:CaiiGraphNode NodelD-'4" ModuleName-’Main" ParentModName="Modulel"> 
■;CaLledModules>

<Module ModuleName="b" ModuielD-"3"> </Module>
■^Module ModuleName='a’ ModuielD-"2"> </Module>

•VCalledModules>
■iCall.Si.tes>

'.CallSite>
<Module ModuleName-’b ’ ModuleID-’3’ rnModuleCollection="Moduiel’/> 
<StatementLineNumber/>
<CallSi.teAnalysisCompleted>l</CallSiteAnalysisCompleted>
<ParameterMapping>

■cActual Parameter VarName-’x ’ VarID-*l’> </ActuaIParameter> 
<PassByVal>

<Parameter VarName-’x ’ varID-"9’ FlrstUse-”  LastOse-” >
■yParameter>

</PassByVal>
<ActualParameter VarName-’y* varID-*2"> </ActualParameter> 
<PassByVal>

<Parameter VarName-’y" V a rlD-’lO’ Fi.rstUse-"REF" LastUse»"REF">
•y Parameter>

</PassByVal>
•VParameterMapping>

-ycalisi.te>
<CalIS Lte>

^Module ModuleName-’a ’ ModuleID-’2" InModuleCollection-*Modulel”/> 
-.'StatementLineNumber/>
<CallSi.teAnalysisCompieted>l</CaliSiteAnalysisCompleted>
•;ParameterMappi.ng>

-:ActualParameter VarName-’x ’ VarID-"l*> </ActualParameter> 
<PassByRef>

<Parameter VarName-’x* V a rID-’5* FlrstUse-’REF’ LastUse-’DE F ’>
■ /Parameter>

</PassByRef>
•:ActualParameter VarName-”y* VarID-’2"> </ActualParameter> 
<passBvVal>

<Parameter varName-’y ’ VarID-’6 ’ FirstUse-"REF* LastUse-*REF*>
</Parameter>

</PassByVal>
</ParameterMapplng>

</CallSite>
-yCallSites>
<GlobalRefs>
<ConstRefs>
</ConstRefs>
<.VarRets>

<variable VarN a m e - ’j" VarID-’4*> </Variable>
<Variable V arName-’i’ VarID-’3"> < / V a n a b l e >
<Variable V arName-’y ’ VarID»*2’> </Vartable>
<Varlable VarName-’x ’ VarID=’l"> </Variable>

</VarRefs>
</GlobalRefs>
<GlobalDefs>
<ConstDefs>
</ConstDefs>
<VarDefs>

<variable VarName-’j’ varID=’4 ’> </Varlable>
<Varlable VarName-’i’ VarID»’3’> </Varlable>
<Varlable VarName-’y ’ VarID-*2’> </Varlable>
<variable VarName-’x" VarID-’l’> </Variable>

</VarDefs> ______________________________________________
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</GlobdlDets> 
<LocdiRers> 
-;Const:Ref s> 
</ConstRe£s> 
<VarRe£s> 
</VarRets> 
</LocalRefs> 
<LocalDefs> 
<ConstDefs> 
•'./ConstDets> 
■-.varDers> 
</VarDe£s> 
••./LocalDefs> 

</CallGraphNode>

Figure 21 . Portion o f  XM L summary call graph for test.bas

5.3. A tool for generating component summary information graphs

Now that we have defined the summary information to be computed and a 

representation for this information, the next step is to provide a tool that constructs the 

graphs and then has a way to merge graphs from multiple components into an integrated 

system view. Once this integrated system view is reached, then various static analysis 

techniques can be applied on the component-based system for more precise results. In 

effect, this technique neutralizes the black box aspect of components with respect to 

having no source code available for analysis.

For this research, several tools were developed or modified to support this 

technique. In particular, we modified the Project Analyzer tool discussed in Section 3.3 

with extensions to:

• Perform additional analysis of a system to construct a summary call graph in 
accordance with the XML schema discussed above. The additional analysis 
includes among other information a global variable ref-def analysis, variable first- 
use and last-use analysis, and an actual to formal parameter mapping.

• Provide the ability to merge multiple XML summary call graphs into an integrated 
system view.

• Provide additional analysis capabilities for supporting parameter mapping 
dependence analysis and reverse and forward interface ripple analysis.

Figure 2 1 depicts a portion of the XML summary graph for the Test.bas example 

used previously. Once the various graphs are generated and saved in XML, they can be
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used in a number of ways. The obvious use is to load them back into the extended 

Project Analyzer and merge them into an integrated system graph that can be analyzed 

and saved in XML as a new graph. However, since we chose XML for our format, we are 

able to leverage the many commercially and publicly available tools for processing such 

files. Using the extensible stylesheet language (XSL), for example, we constructed 

several scripts to perform additional analysis on the graphs and render the following 

views:

• Tabular display of a summary call graph

• Call graph metrics report

• Coupling analysis report

• Parameter mapping dependency report

• Ripple analysis report

Each of these tools is described in more detail in a later section. In addition, 

another tool described previously is used for documenting the type library information 

that is available for components. Below, we show the importance of using this tool to 

allow our extended Project Analyzer’s analysis to be more precise when constructing call 

graphs and in performing the parameter dependency analysis.

5.4. Evolving the summary call graph

As we have seen, many static analysis techniques use call and control flow graphs 

during their analysis. This work is based on the development of a summary call graph. 

For this reason, it is important to have a graph that is as precise as possible. This is 

particularly important when dealing with distributed components, as we will now 

illustrate.

To produce a more precise summary call graph for a system with distributed 

components, it is necessary to ensure that the IDL information that can be obtained by 

using the type library tool mentioned above is integrated appropriately into the analysis
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tool. To illustrate this, we define three stages for the evolution of a summary call graph 

and refer back to the TestC component example used previously.

S t a g e  1: Not  u s i n g  IDL S t a g e  2: Us i ng  IDL

Main
TestC t

T e s tC  App

Main
TestC i

TestC App

TestC2
TestC2

S t a g e  3: I n t e g r a t e d  S y s t e m  G r a p h

Main
TestC 7T

TestC App
I S .

TestC2

Figure 22. Stages of summary call graph evolution

Recall from Figure 7 that the example had a TestC.bas user application and two 

out-of-process components, TestCl.exe and TestC2.exe. Component TestC 1 had 

interfaces for a method a and properties i and j. Component TestC2 had an interface for 

method b, which called method a in TestC 1 by the way. The main application, 

TestC.bas, had calls to interfaces in both components.

In Figure 22, stage I represents the initial state of analysis if IDL information is 

not taken into account. Using Project Analyzer on TestC, TestC 1, and TestC2 to generate 

summary call graphs for each will result in the calling sequence shown in stage one, 

namely the graph does not show any paths from the main application to either component. 

Several reasons may explain why this might happen. One is that the developers for TestC
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and TestC2 may not have referenced the dependent components in their development 

tool. In the case of Visual Basic, it will provide a warning to the developer when loading 

source that is dependent on external components. However, Visual Basic will not enforce 

this, so a developer may by-pass the warning and continue development thinking they 

will add the reference at a later time. If they forget, the reference may not be placed. 

Even if the component is registered, the other side effect here is if a new version of a 

component gets registered, the referenced component is no longer available and the 

reference is classified as missing. A more common reason for the missing call paths is if 

the developer did not declare calls to external methods and properties in the code. Visual 

Basic, for example, is very forgiving in this case and does not require developer’s to do 

this as long as the component is referenced. The problem is if this is not enforced, then 

no indication exists in the source or any other project files that indicates to which 

component libraries a particular object refers, and which interfaces are used. As a result, 

a tool that analyzes source code will be unable to distinguish this information and will 

effectively ignore the calls in the call graph. This is the case for Project Analyzer.

Attribute VB_Name - "App_Deciares"
Declare Sub a Lib "TestCl* (ByVal x As Integer, ByVal y As Integer)
Declare Sub b Lib "TestC2* (ByVal Caller As TestCl, ByVal x As Integer, ByVal y As 

Integer)
Declare Function MsgBox Lib "VBA" (ByVal Buttons As VbMsgBoxStyle, Optional ByVal 

Title As String, Optional ByVal HelpFile As String, Optional ByVal Context As 
String) As VbMsgBoxResult

Public Property Get j() As Variant 
End Property
Public Property Let j (RHS As Variant)
End Property
Public Property Get i() As Variant 
End Property
Public Property Let i(RHS As Variant)
End Property________________________________________________________________ ______ _____ __________

Figure 23. Declaration module for TestC application

Declare Sub a Lib "TestCl" (ByVal x As Integer, ByVal r As Integer)
Public Property Get j () As Variant
End Property
Public Property Let j (RHS As variant)
End Property
Public Property Get i() As Variant
End Froperty
Public Property Let i (RHS As Variant)
End Property

Figure 24. Declarations module forTestC2 component
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To account for this, a component developer or user should include the appropriate 

declarations in the source. To help obtain this information from the IDL for a component, 

we show how to use the type library documentation tool to obtain the information and 

convert it into an appropriate declaration file for use with Project Analyzer.

Recall from Figure 11 the type library information obtained for TestCl to show its 

available interfaces. From the previous discussion, we know that both the TestC main 

user application and the TestC2 component call interfaces in component TestC2. To 

avoid the call graph problem shown in stage 1 of Figure 22, both the TestC2 component 

developer and the component user should include the proper declarations for TestCl in 

their analysis. This can be done by converting the type library information in Figure 11 to 

the appropriate declaration modules shown in Figure 23 and Figure 24 for the component 

user and TestC2 component developer respectively. After doing this and running the 

Project Analyzer analysis again, the result is stage 2 in Figure 22. In stage 2, separate 

summary call graphs have been generated for the main TestC application and each of the 

components TestCl and TestC2. Because the appropriate declaration modules have been 

used, each summary graph is more precise in that the individual call graphs now show 

calls to the external interfaces. However, unless the individual summary call graphs get 

sent to the component user and integrated, the component user’s system view, shown as 

stage 2, is still imprecise. For example, because the component user integrated the 

appropriate declarations, the summary call graph shows the paths to the interfaces in both 

components. However, if the summary call graph for component TestC2 never gets 

integrated, then the component user does not see the call path from TestC2 to TestCl.

To improve this situation, all of the summary call graphs should be integrated into 

one system graph for subsequent analysis. Stage 3 in Figure 22 reflects this where the 

integrated view now shows a more complete calling path by showing the path from 

TestC2 to TestCl.

Once the integrated system graph is constructed, it can be used to support many 

traditional static analysis techniques. For example, recall from our previous discussion
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when the TestC example was first introduced that because of not having the source code 

for the components we could not perform techniques like the coupling analysis or ripple 

analysis that we did on the original Test.bas program. Table 4 below shows the results of 

a coupling analysis on the TestC integrated system graph.

CallGraphNode CallSite Actual Parameter Formal Parameter
NodeID="2" 
ModuleName="Main" 
ParentModName—"Module 1"

Modu!eName«"a"
ModuleID-"5"
InModuleCoIlection-
’TestCl"

VarName»"x"
VarID-"l"

PassByRef
VarName="x"
VarID-"7"
FirstUse-"REF"
LastUse-"DEF'

NodeID-"2" 
ModuleName-"Main" 
ParentModName-'Module 1"

ModuIeName»"a"
Modu!eID-"5"
InModuleCollection-
"TestCl"

VarName-"y"
VarID-"2"

PassByVal
VarName-"y"
VarID-"8"
FirstUse-"REF"
LastUse-"REF"

NodeID«"2" 
ModuleName-"Main" 
ParentModName-'Module 1"

ModuleName-”b" 
ModuielD-" 12" 
InModuIeCollection- 
'TestC2"

VarName-"gCl" 
VarlD-"3" “

PassByRef 
VarName-"Caller" 
VarID-"l3" 
FirstUse-"REF" 
LastUse-"REP'

NodelD-"2" 
ModuleName-"Main" 
ParentModName-'Module 1"

ModuleName-"b" 
ModuielD-" 12" 
InModuleCollection- 
’TestC2"

VarName-"y"
VarID-"2"

PassByVal
VarName-"y"
VarID-"I5"
FirstUse-"REF"
LastUse-"REF'

NodeID«"12"
ModuleName-"b"
ParentModName-"TestC2"

ModuleName»"a"
ModuleID-"5"
InModuleCollection-
’TestCl"

VarName-"Caller"
VarID-"I3"

PassByRef
VarName-"x"
VarID-'7"
FirstUse-"REF"
LastUse-"DEF"

Table 4. Coupling analysis of TestC

5.5. An example of using the component summary information technique

To illustrate this technique a bit further, we examine a component-based system 

that calculates shipping costs for mail orders [44]. The component diagram for this 

example is shown in Figure 25.
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I U n k n o w n

9
i

W  e i g h t  O -------------- 1

O e s t i n a t i o n Z i p  Q -------------- -
R a t e O v e r n i g h t Q --------------- 1 S h i p p i n g C o s t

R a t e 2 D a y  Q -------------- 1

C a l c S h i p p m g  -------------- -

in P r o c e s s

Figure 25. ShippingCost component diagram

A ShippingCost component provides interfaces for the Weight, DestinationZip, 

RateOvernight. RatelDay properties and the CalcShipping method. The component 

application has three modules, main, a and b each of which communicate with the 

component. The summary call graph evolution for this system is shown in Figure 26.

Stage 1: Not using IDL

W e i g h t

*
a D e s t in a t io n Z ip

Cgmoon«ntAo0 R a te O v e r n ig h t

1 M a in R a t e 2 D a y

ComoonentAeo b C a lc S h ip p in g

CompenentAoD S*«B*9Cost

Stage 2: Using IDL Stage 3: Integrated System Graph

I ! W e i g h t

! a !_____ D e s t in a t io n Z ip

i :  i /
Cams«n«ntAoB R a te O v e r n ig h t

M a m  )£—
I ---- 1 R a t e 2 D a y

CcmoonentABP * !  bi
I--------
i C a lc S h ip p in g

CsmoonentABB ShiO0**9Cost

Figure 26. Summary call graph evolution for ShippingCost
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As in the previous example, the stage 1 call graph does not show any paths from 

the modules in the component application to the ShippingCost component. After 

integrating the appropriate declarations we see that stage 2 actually completes the call 

graph. This is because no additional call paths come from the ShippingCost component 

to other components. The advantage of producing the stage 3 integrated system is that the 

correct parameter mapping information is incorporated. This can be seen by looking at a 

coupling analysis report for the summary graphs at both stages in Table 5 and Table 6. 

The stage 3 analysis showed two additional couplings. Here we see that the integrated 

system graph represented more precise information than the non-integrated graph in 

stage 2.

CallG raph.N ode CallSite Actual
P aram e te r

Form al P a ram e te r

N'ixlelD-"-*" 
M oduleName-"M ain" 
Parcn!.\lcxiName-”Simple 1"

M oduleN am e-'V '
McxluleID-"2"
In.VloduleColleclion-"Simplel"

V arN am e-"sysI"
V arlD -"6"

PassByRefV arN am e-"x" 
V arlD -”2" 
F irstU se-"R EF’ 
L astU se-”REF

Table 5. Stage 2 coupling analysis of ShippingCost

C allG raphN ode CallS ite Actual
P a ram e te r

Form al P aram e te r

NixlelD-"2 
M oduleNam e-’V  
ParcniM odNam e-''Sim ple 1"

ModuIe.Mame*>"weighl [Property Let|" 
.VloduleID-"8"
InModuleColIection-"ShippingCost"

V arN am e-"y"
V arID -"3"

PassByVal
VarName-'VNew Value" 
V arID -"l2" 
FirstUse-"REF" 
L astU se-"R EF '

NodelD-"3" 
ModuleName-"b" 
ParcntM odName-"Simple 1"

.VloduIeNajne-"wejght [Property L et|"  
M oduleID-"8"
InModuleCollection-"ShippingCost"

V arN am e-"x"
VarID~"4"

PassByVal
VarName-"vNew Value” 
V arID -''12" 
FirstL.,se -"R E F ' 
L astU se-”R E F ’

N<xldD-"4" 
M oduleNam e-''M ain" 
PareMM odName-"Simple 1"

M oduleNam e-"a”
M oduleID -"2”
InModuleCoIIection-''Simple I"

V arN am e-"svs 1" 
V arID -"6"

PassByRerV arName-'’x"
V ar© -"2 "
F irs tllse-’T tE F '
LastU se-"REF

Table 6. Stage 3 Coupling analysis of ShippingCost

The simple examples above illustrate the effectiveness of this technique. 

Probably the most important contribution of this technique is that it provides a way for
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many useful static analysis techniques to be applied more precisely on a component-based 

system where previously, many of those techniques could not have been applied at all due 

to the lack of source code for components. In the validation section, we apply this 

technique to several case studies to examine its effectiveness more closely.

It is important to note that the success of this approach depends on component 

developers being able to generate this information with as little effort as possible. To 

that end, it is envisioned that an analysis tool such as the one modified for this research 

could be provided to component developers so that they can generate the necessary 

summary information graphs and distribute them appropriately. In the short term, this 

means that several similar tools could be developed to handle the more common 

languages that are typically used in building components and component-based systems. 

This would support, for example, components written in Visual C++ or Visual Basic, and 

a user application written in Java. This research has defined a foundation for making 

such a task straightforward. A significant effort would still be necessary to obtain the 

necessary buy-in from component developers to get them to use the tools and distribute 

the necessary summary information. In the long term, this technique presents a good 

example of additional information that is necessary to augment components. Whether the 

specific techniques or schemas are used, this results of this thesis do show that better 

ways to develop, describe, analyze and test distributed components for both developers 

and component users are necessary.
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6. TOOLS TO SUPPORT THE AUTOMATED ANALYSIS OF 

COMPONENT-BASED SOLUTIONS

This section describes the tools developed or modified to support the automated 

analysis techniques developed as part of this research on component-based systems. The 

first tool provides the ability to capture component information from a type library or 

interface definition language file for use in integrating that information with Project 

Analyzer, a commercially available Visual Basic code analysis tool. The next tool is a set 

of extensions made to Project Analyzer to analyze particular component property criteria 

of interest in support of detecting unreachable code. Next, another set of extensions to 

Project Analyzer is described to support the generation of summary information graphs 

that contain global data flow information such as variable def-use, first-use/last-use, 

parameter couplings and more for each call graph node in a system being analyzed. The 

extended call graph with this summary information embedded is then stored in an 

extensible markup language (XML) format. The call graphs from separate and distinct 

components and a user application are then merged into an integrated system for further 

analysis. Finally, a number of extensible stylesheet language (XSL) [6] scripts that 

provide additional analyses and views applied to the XML graphs are described, such as 

parameter coupling analysis, ripple analysis, and call graph metrics.

6.1. Type library documenter

Figure 27 depicts a freeware custom-developed Visual Basic tool, called the 

ActiveX Documenter, which was used in this research to capture the type library 

information for a component [1]. The result is a more human-friendly view of the type 

library information, showing the methods and properties with their associated parameter.
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Fie £tft Help

H O aw |<A l Interfaces> A
&owse | Superclass 1 D o a m e n t | 
General:
Ldrary: usmtfhander (USMTF Event Hander)
Fte: D:\work\PhO\Test and Vafcjaticn\PhO VaMaoonVTechnque2\sYs9-XML-BI EventHanderVStep l-Inr 
GUID: {9AA2BCA5-67CD- LlD4-a09S-OOAOCCE27S8>
Version: 3.0

Members:

Class: mtfhander (9AA2BCA7-67a>llD4-8099-00A0CCE27Se)
Methods:
Pubic Prcoertv Get Msg.StdO As Vanant 
Putic Property Let Msg_Std(RHS As variant)
Put*: Prooerty Get MTF_Canfitf9eScec() As Vanant 
Pubic Prooerty Let MTF_ConllgFteSpec(RHS As Vanant) 
a b l e  Prooerty Get MTFJiteSpecO As vanant 
Putk: Prooerty Let MTF_FfeSoec(BHS a s  vanant)
Pubic Sub MTF.ProcessMessage 
No Events.

1
Ready. 1

Figure 27. Type library documentation tool

This application uses the type library component, TLBINF32.DLL that gets 

installed with MS Visual Basic to investigate the interfaces of compiled ActiveX 

components. It acts as a complement to the object browser in Visual Basic, allowing 

access to object interfaces without needing to use Visual Basic or to add a reference to the 

object. In addition, it produces well-formatted documentation for an object. Using this 

tool, one can:

• Quickly browse an ActiveX object’s members;

• Copy the member definitions as fully formatted VB code for use in other 
applications;

• Create documentation about a component using the procedure attributes built into 
the ActiveX object’s Type Lib.

This tool was used extensively in this research to help gain more insight into the 

IDL for a component and subsequently import that information into a declarations module 

to improve the call graph analysis within Project Analyzer.
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Figure 28. Project analyzer

6.2. Project Analyzer

Project Analyzer is a software maintenance tool that analyzes Visual Basic 

projects [109]. This shareware tool was used as the basis for analyzing the systems used 

during this research. Through a research agreement with the tool’s author, full source 

code for the tool was made available for our use in this work. An example of the tool 

being run is depicted in Figure 28. From this analysis, several reports can be generated 

that show the project’s structure and nature. These reports include dead code, calls and 

called-from information, several metrics, and more.

Project Analyzer’s analysis consists of two phases. Phase one gathers 

information about the structure of the project. This phase is rather simple in that all 

'tokens’ are gathered and categorized as global procedures, global identifiers, local 

procedures, local identifiers, etc. If a token fits one of these categories, its is numbered 

and stored in the appropriate list. The lists are variable-length array constructs for each 

type of category.

Phase two collects cross-reference information and calculates some of the report 

information. This phase again looks at each token to gather more information about it.
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During this phase, each token is scoped and cross-referenced against other tokens. 

Information such as which calls a procedure makes and the number of times a variable is 

set or referenced is gathered. Nested conditionals are analyzed and dead code is 

identified.

Project Analyzer first populates a symbol table with identifiers, procedures, and 

tiles in one pass. In the next pass, project analyzer gathers information about each 

symbol and prepares for several of its reports. This analysis is then used for several built- 

in repons.

The off-the-shelf project analyzer tool did not do several key functions that were 

imponant for our research. First, it did not analyze components or provide any tools to 

assist developers in the analysis of component-based systems. Second, it did not provide 

any graph generation for call and control flow information. Finally, it did not provide any 

advanced static analysis capabilities such as global variable ref-def analysis, variable 

first-use and Iast-use analysis, ripple analysis, coupling analysis and the like. However, 

since it did a fine job at doing the basic set of analysis for a language we required for our 

test cases, we felt that it was a good choice. We made several extensions to the basic tool 

to support our research.

6.3. Project analyzer extension: OA-dead analysis

To support our technique for leveraging semantic information about component 

properties to improve specific analysis techniques, extensions were made to the project 

analyzer tool to conduct an OA-dead analysis of a component-based system. The 

foundation for this extension is described in detail in R. Sparks Master’s project report 

[113]. Subsequent modifications to this extension were made during this research to 

collect various metrics needed to help validate the effectiveness of the technique. The 

OA-dead report addition to project analyzer shows that some program run-time behavior 

can be predicted in Visual Basic and similar languages with general (non-program 

specific) analyses. Specifically, this report utilizes analyses of Visual Basic semantic 

object properties to extend the search for unreachable or dead code. This extension, 

referred to as OA-dead code, identifies unreachable code that traditional static analysis
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would not find, such as code that is unreachable due to run-time characteristics and 

component property settings.

6.3.1. OA-dead code analysis

It is not possible to verify when an object is made available during run-time. It is 

possible to determine if an object is initialized as not available and if the object’s 

availability is ever changed during run-time. It is also not possible to determine for 

certain what the object’s availability is changed to unless it is set to TRUE (also 1) or 

FALSE (also 0) because it is not possible to evaluate the run-time value of expressions. 

Therefore, the only certain OA-dead object is one that is initialized as not available and 

whose availability is never set to anything but FALSE. For example, an object that is 

initialized as invisible and that is never set to visible would be OA-dead. Yet, the OA- 

dead state of an object that is initialized as invisible but that is somewhere in the code set 

to visible cannot be determined in general. This is also true for the initially invisible 

object whose visible attribute is later set to some expression. In these cases, the object 

may or may not be OA-dead.

Visual Basic attributes that can affect an object’s run-time availability are 

enabled, visible, width, height, left, and top. Objects that are not enabled or not visible 

are obviously not subject to user input. These objects are OA-dead. Objects whose width 

or height attributes are zero are invisible to the program user as well. These type objects 

are also considered OA-dead. Objects whose left attribute is set so that the object is not 

visible in the active window are also invisible to the user. These objects may be too far to 

the left or too far to the right and are OA-dead. Similarly, objects may be too far up or 

down to be visible in the active window as determined by their top attribute. These are 

also OA-dead.

If a control is OA-dead, then all of its corresponding events are OA-dead as well. 

For example, if a command button is invisible then it is impossible to execute its ‘click’, 

'double_click' or other event procedures. These procedures are unreachable and 

therefore OA-dead.
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Visual Basic treats forms as files and controls. For the purpose of OA-dead 

analysis, an OA-dead form is treated as both an OA-dead file and an OA-dead control. 

OA-dead files are analyzed the same way that dead files are analyzed. All procedures and 

data structures in an OA-dead file are OA-dead as well. Likewise, OA-dead procedures 

are analyzed the same as dead procedures. Procedures called only by OA-dead 

procedures are considered to be OA-dead as well.

Therefore, a Visual Basic object may be OA-dead due to its own semantic nature 

(the value of one or more of its semantic attributes) or it may be OA-dead because of its 

syntactic relationship with another OA-dead object. Thus, OA-dead analysis must first 

evaluate the semantic nature of each object’s attributes to determine its OA-dead nature. 

Then an analysis of each object’s syntactic relationship with other objects must be 

evaluated to determine if the OA-dead nature is inherited. This second check is the same 

as would be accomplished for normal dead code analysis.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

6.3.2. OA-dead report

Figure 29 provides an example of running the OA-dead analysis from project 

analyzer. To perform OA-dead analysis on a VB project, a menu-option is available the 

modified version of Project Analyzer. This report implements the OA-dead analysis 

described previously and provides several options as to what and how much resulting 

information is listed in the report. Each option below enables a list of objects as 

described. A count of the number of objects in each list is included at the bottom of each 

list in the report.

• Option 1. List of all controls. This option provides a complete list of all controls 
in the VB project.

• Option 2. List of all controls initialized to OA-dead. This option provides a 
complete list of all controls in the VB project that are OA-dead in their initial 
state. That is one or more of the control's attributes (e.g., enabled, visible, 
height) are initially set to make the control unreachable. Again, this is the initial 
semantic state only.

• Option 3. List of all controls set conditions (whether or not the attribute is 
changed from its initialized state somewhere in the code).

• Option 3a. List of controls set enabled. This option provides a complete list of all 
controls whose enabled attribute is set to something other than FALSE or 0 
somewhere in the code. A control’s presence on this list means that it cannot be 
verified as OA-dead due to its enabled attribute by our algorithm.

• Option 3b. List of controls not set enabled. This option provides a complete list 
of all controls whose enabled attribute is not set to something other than FALSE 
or 0 somewhere in the code.

• Option 3c. List of controls set visible. This option provides a complete list of all 
controls whose visible attribute is set to something other than FALSE or 0 
somewhere in the code. A control’s presence on this list ensures that it cannot be 
verified as OA-dead due to its visible attribute.
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• Option 3d. List of controls not set visible. This option provides a complete list of 
all controls whose visible attribute is not set to something other than FALSE or 0 
somewhere in the code.

• Option 3e. List of controls with width set. This option provides a complete list of 
all controls whose width attribute is set to something somewhere in the code. A 
control’s presence on this list ensures that it cannot be verified as OA-dead due to 
its width attribute.

• Option 3f. List of controls with width not set. This option provides a complete 
list of all controls whose width attribute is not set somewhere in the code.

• Option 3g. List of controls with height set. This option provides a complete list 
of all controls whose height attribute is set to something somewhere in the code. 
A control’s presence on this list ensures that it cannot be verified as OA-dead due 
to its height attribute.

• Option 3h. List of controls with height not set. This option provides a complete
list of all controls whose height attribute is not set somewhere in the code.

• Option 3i. List of controls with left set. This option provides a complete list of
all controls whose left attribute is set to something somewhere in the code. A 
control's presence on this list ensures that it cannot be verified as OA-dead due to 
its left attribute.

• Option 3j. List of controls with left not set. This option provides a complete list
of all controls whose left attribute is not set somewhere in the code.

• Option 3k. List of controls with top set. This option provides a complete list of 
all controls whose top attribute is set to something somewhere in the code. A 
control's presence on this list ensures that it cannot be verified as OA-dead due to 
its top attribute.

• Option 31. List of controls with top not set. This option provides a complete list
of all controls whose top attribute is not set somewhere in the code.

• Option 4. List of all OA-dead files. This option provides a complete list of all
files that are OA-dead. These files may be form files whose attributes make them 
OA-dead or they may be files whose only parent files are OA-dead (no non-OA- 
dead files uses them).
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• Option 5. List of all OA-dead controls. This option provides a complete list of all 
controls that can be verified to be OA-dead. Controls on this list have attributes 
that make them unreachable in the initial state and that are not set to change this 
state elsewhere in the code.

• Option 5a. List of OA-dead reasons. This option will display a count of the 
reasons (invisible, disabled, etc.) that a control is OA-dead somewhere in the 
system. This option can only be checked if Option 5 is checked. Checking this 
option will include a frequency count of each reason with the object count at the 
bottom of this list. These reason counts may total more than the list’s object 
count because an object may have more than one reason for being OA-dead.

• Option 6. List of OA-dead procedures. This option provides a list of all 
procedures that can be verified to be OA-dead. This list will not show a 
procedure if it is also dead. Procedures on this list are OA-dead if they are in an 
OA-dead file or if they are called only by OA-dead procedures (no non-OA-dead 
procedures use them). Procedures on this list may also be OA-dead if they are the 
event procedures of an OA-dead control. Note that Project Analyzer treats file 
declaration blocks as procedures so the declaration block of a OA-dead file may 
show up on this list as a OA-dead procedure.

• Option 6a. List of OA-dead reasons. This option will display the relationship(s) 
(file, control, or procedure) that causes the procedure to be OA-dead. This option 
can only be checked if Option 6 is checked. Checking this option will include 
frequency count of each reason with the object count at the bottom of this list. 
These reason counts may total more than the list’s object count because an object 
may have more than one reason for being OA-dead.

• Option 7. List of project files that are not Visual Basic files. These would include 
binary, DLL, and resource files. This list is useful in OA-dead analysis because 
Project Analyzer can only analyze Visual Basic files. Calls to (or from) non- 
Visual Basic files could possibly impact the OA-dead nature of code.

After running the OA-dead analysis report, the results will be display to the user 

in the selected output manner. For example, Figure 30 shows the results of an OA-dead 

analysis being displayed on the screen. In this case, we see the start of a long list of OA- 

dead procedures along with their reasons for being in that state. Details of the extensions 

made to project analyzer to incorporate this capability can be found in Appendix C.
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Figure 30. OA-dead analysis report

6.4. Project analyzer extension: call graph summary information

To support our technique for component developer summary information, several 

extensions were made to the project analyzer tool to perform a global ref-def and usage 

analysis, summary call graph generation in XML format, parameter mapping and ripple 

analysis data dependence capabilities.

A phase three analysis for computing the global data flow was added to the 

existing two analysis phases of project analyzer. This new phase calculates call graph 

nodes, as well as global ref-def lists, variable first-use and last-use, and call site parameter 

mappings for all call graph nodes. The results of this analysis are stored in a series of 

tables in a Microsoft Access relational database to provide the information necessary for 

the summary graphs and subsequent dependence reports to be constructed quickly.
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Figure 31 . Project analyzer summary graph extension

Once the phase three analysis is completed, a user of the tool has access to all 

report options from pull-down menus and toolbar buttons, including the normal project 

analyzer capabilities. Figure 31 shows an example of this. From the procedure call tree 

menu depicted in the figure, the user has the ability to generate an XML summary call 

graph as well as the ability to load an existing graph. Under the added data dependence 

menu, the user also has access to the parameter mapping and ripple analysis graph 

generation options. Figure 32 shows an example of a summary call graph for a system 

that was generated from our project analyzer extension and viewed using the Microsoft 

Internet Explorer web browser.

Details of the extensions made to project analyzer to incorporate this capability 

can be found in Appendix C.
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Figure 32. Project analyzer example summary call graph

6.5. Static analysis XSL stylesheets

Since the format chosen for the summary call graph as well as the parameter 

mapping and ripple dependence graphs was XML, we are able to take advantage of many 

useful off-the-shelf tools, many of which are free, to process, manipulate, and display the 

information in many forms. XSL is one such tool that is used for transformations of 

XML documents. In an XSL transformation, an XSL processor reads both an XML 

document and an XSL style sheet. Based on the instructions the processor finds in the 

XSL style sheet, it outputs a new XML document or fragment thereof. There’s also 

special support for outputting hypertext markup language (HTML). With some effort it 

can also be made to output essentially arbitrary text or other formats, though it is designed 

primarily for XML-to-XML transformations [6]. In our research, we developed several 

XSL scripts to provide a number of views, including:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

• Call graph table view -  used for providing a graphical layout in HTML of the 
entire summary call graph.

• Call graph metrics view -  used to calculate and display various metrics about each 
call graph node for all modules in HTML format.

• Parameter coupling analysis view -  used to compute the parameter based coupling 
paths and interfaces in a summary call graph. The paths represent couplings 
between modules for each parameter where there is a path from the last definition 
of a parameter through the call site to a referenced first use of the formal 
parameter. Formal parameters whose first use is a definition do not constitute a 
coupling. This report is useful for testing and is displayed in HTML tabular 
format.

• Call coupling analysis view- used to compute the call based coupling paths and 
interfaces in a summary call graph. The paths represent couplings between 
modules for each call site.

• Parameter mapping dependence view - used to display the results of the parameter 
mapping dependence graph in tabular HTML format.

• Ripple analysis dependence view - used to display the results of the ripple analysis 
dependence graph in tabular HTML format.
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Figure 33. Results of applying parameter coupling XSL
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The XSL processor we used for this research is the freely available LotusXSL tool 

from IBM Alphaworks [2]. Figure 33 shows the results of applying the parameter 

coupling analysis XSL against the XML summary call graph for the test.bas sample 

program discussed previously.

Source listings for the XSL scripts developed and used in this research can be 

found in Appendix C. In the next section, we apply the tools and techniques we have 

developed for this research on several case study systems to evaluate their effectiveness in 

practical use.
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7. VALIDATION OF THESE TECHNIQUES THROUGH PRACTICE

This section demonstrates the effectiveness of the techniques discussed in sections 

4 and 5 on several case studies. Seven case studies represent real COTS component- 

based systems developed and maintained by the Department of Defense (DoD). Two 

additional case studies are used to represent academic examples designed to illustrate 

some interesting aspects of component-based development. The detailed graphs and 

views generated for case study 7 are listed in Appendix B as a sample. Due to the size of 

many of the reports, the detailed graphs and views for all case studies can be obtained by 

contacting the author. A summary of the results from this experimentation is presented 

here.

To attempt to validate the effectiveness of the techniques discussed previously, we 

applied both traditional static analysis techniques and our extended techniques on the nine 

case studies briefly discussed below, and made a comparison of the results. The 

following criteria were used in this comparison:

• Total source lines of code (SLOC)
• Code size in kilobytes
• Initial analysis time in minutes and seconds
• Total number of components
• Total number of files
• Total number of procedures
• Total number of invocation dead procedures
• Total number of controls
• Total SLOC of XML summary call graph
• File size in kilobytes
• Extended analysis time in minutes and seconds
• Total number of modules collections
• Total number of call graph nodes
• Total number of call sites
• Total number of globally referenced variables
• Total number of globally defined variables
• Total number of parameter coupling paths and interfaces
• Total number of call coupling paths and interfaces
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• Total number of parameter mapping dependencies
• Total number of reverse ripple dependencies
• OA-Dead files, procedures and controls (and their reasons for being OA-dead)
• Number of parameter coupling paths, call coupling paths, parameter mapping

dependencies and reverse ripple dependencies reduced as a result of the OD-dead 
analysis

The analysis of the systems was conducted on a 400mgz personal computer with 

256k of memory running Microsoft Windows 98. We started by analyzing each of the 

nine systems using the original Project Analyzer tool to collect program summary 

information such as total source lines, total number of components and files in the 

system, total number of live and dead procedures, and total number of controls. We then 

applied our extended version of Project Analyzer to each of the nine systems to collect 

global variable usage information, such as ref-def and first-use and last-use information. 

We then generated the summary call graph, parameter mapping dependence graph, and 

reverse ripple analysis graph for each system, and applied the call graph metrics, 

parameter coupling, call coupling, parameter mapping dependence, and reverse ripple 

analysis XSL views to the graphs to collect a number of call graph and data dependence 

metrics as a baseline.

To validate our first technique, we applied our OA-dead analysis algorithm to the 

first six systems to obtain the number of OA-dead files, procedures and controls. Then, 

using this information, we removed the dead procedures from each of the systems and re

analyzed them to discover the impact to parameter couplings, call couplings, parameter 

mapping dependencies, and reverse ripple dependencies due to any additional dead 

procedures being discovered.

To validate our second technique, we applied our summary call graph analysis to 

case studies 7 through 9 to assess the effect of component developers providing 

additional information about their components to users. The case studies used each had 

at least one component for which we had the source code. This allowed us to simulate 

the component provider in analyzing their component to produce and distribute the 

summary call graph. For this assessment, we examined and compared each system in 

three stages:
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• Initial -  This is the original state of the system that is typical of component-based 
systems today. Each consists of one main user application that integrates some 
number of components for which the user typically has no source code or 
additional information about the components.

• Extended -  The extended state represents both component developers and users 
leveraging the type library information for the components being integrated to 
enhance the analysis of the component using the extended Project Analyzer tool. 
In this state, the component developers have not yet generated or distributed the 
summary call graph to the component user.

• Integrated -  The integrated state represents the case where the component 
providers distribute their summary call graphs to component users, and the user 
integrates them with their system to produce an integrated system view.

We felt that by using this approach to compare the before and after states of 

applying first the traditional techniques and then our extended techniques should help to 

validate the research described in this thesis. A brief description of each of the nine test 

systems is described below, followed by a summary of the results and a discussion of 

efficiency.

7.1. System descriptions

7.1.1. Case Study 1 -TMFD

This case study represents a COTS component-based solution for the Department 

of Defense. The system provides a capability to convert platform implementation files 

between one particular database format to MS Access and subsequently to MS Excel for 

analysis. By the mechanism of OLE Automation, it interfaces with MS Access for 

database management; and MS Excel for spreadsheet support. This system has the 

following characteristics:

• 4917 SLOC ('glue’ code)
• 14 components
• 21 files
• 136 procedures
• 89 controls
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7.1.2. Case Study 2 -  AFJCME_Full

This case study represents a COTS component-based solution for the Department 

of Defense. The example solution is a special-purpose tool (called AFJCME) built to 

support analysts in the maintenance and design of data interoperability standards and in 

the creation, maintenance and analysis of system implementations of those standards. 

The tool extracts implementation data from a database, and presents it to the analyst in 

spreadsheet form for modification. It further facilitates navigation among the data items 

by building a tree-structure control from the database that can be expanded and 

compressed as needed. These capabilities are implemented by a collection of COTS 

components. MS Visual Basic is used to implement the user interface and tree-structure, 

and to provide overall program control and integration. By the mechanism of OLE 

Automation, it interfaces with MS Access for database management; with MS Excel for 

spreadsheet support; with MS Outlook for event logging; and with the Internet via a Web 

browser to provide access to online DoD standards information. This system has the 

following characteristics:

• 4418 SLOC (‘glue’ code)
• 23 components
• 37 files
• 119 procedures
• 104 controls

7.1.3. Case Study 3 -  AFJCME_Lite

This case study represents a COTS component-based solution for the Department 

of Defense. This tool is a variant to the AFJCME system described in case study 2. A 

requirement change necessitated development of a specialized version of the tool 

(*AFJCME_Lite‘) in which the links to Outlook and the Internet are eliminated, and in 

which the database provides only the navigation tree data. This system has the following 

characteristics:

• 5250 SLOC (‘glue’ code)
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• 24 components
• 39 files
• 144 procedures
• 32 controls

7.1.4. Case Study 4 -  Project Analyzer v5

Project analyzer is a software maintenance tool that analyzes Visual Basic 

projects. This shareware tool was used as the basis for analyzing the systems used during 

this research. From this analysis, several reports can be run that show the project’s 

structure and nature. These reports include dead code, calls and called-from information, 

several metrics, and more. This is an update to the source used in case study 5. This 

system has the following characteristics:

• 40599 SLOC (‘glue’ code)
• 38 components
• 130 files
• 1531 procedures
• 667 controls

7.1.5. Case Study 5 -  Project Analyzer v4

Project analyzer is a software maintenance tool that analyzes Visual Basic 

projects. This shareware tool was used as the basis for analyzing the systems used during 

this research. From this analysis, several reports can be run that show the project's 

structure and nature. These reports include dead code, calls and called-from information, 

several metrics, and more. This system has the following characteristics:

• 34102 SLOC (‘glue’ code)
• 32 components
• 116 files
• 1270 procedures
• 600 controls

7.1.6. Case Study 6 -Copylt

This case study represents a COTS component-based solution for the Department 

of Defense. This tool provides a specialized email rule processing capability to perform
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email-based publishing of information to a XML data server. At a user-configurable 

interval. CopylT! accesses a mailbox through the Outlook 98 client. If an e-mail is found 

in the Inbox, CopylT! compares the publisher’s address, the message subject and 

attachment extensions to a set of user definable rules. If a match is found between a rule 

and corresponding message attributes, the message is processed in accordance with the 

rule. Copylt makes extensive use of the MS Outlook component. This system has the 

following characteristics:

• 1700 SLOC ('glue’ code)
• 9 components
• 17 files
• 84 procedures
• 154 controls

7.1.7. Case Study 7 -  BookSale Manager

This project demonstrates the use of an ActiveX component to encapsulate the 

logic of business policies and rules and to provide ‘olack box’ services to an external 

User Interface component [3]. The client project is dedicated to delivering a clear and 

intuitive user interface for the user to select control options and view processing results. 

The client project cares about how the user works and how they use the applications 

results, but it knows nothing about the business or operational rules of the application. 

The server project is an ActiveX component dedicated to encapsulating business and data 

access rules into 'sanctioned’ services that client components use to find the information 

they need. The server component has no idea how the user options are selected or how 

the results are presented to the user. This lack of specific user knowledge helps keep the 

server component’s functionality general, and as a result should increases its reusability 

potential (in a real project) for other applications. It also uses Class modules to structure 

the logic of its business and data access rules in a manner that aids development, 

debugging, readability, maintainability, and source code reusability [3]. This initial 

system has the following characteristics:

• 521 SLOC for the client application, and 400 for the server component
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• 13 components for the client application, and 7 for the server component
• 17 files for the client application, and 12 for the server component
• 27 procedures for the client application, and 17 for the server component
• 74 controls for the client application, and 8 for the server component

7.1.8. Case Study 8 -  Excel Charting Application

This example demonstrates the wrapping of a component by illustrating a user 

application that constructs charts or graphs based on some user selected criteria. 

Microsoft Excel provides a powerful off-the-shelf set of capabilities for doing this, 

however, the user may not need the full set of functionality Excel provides. Furthermore, 

the user may not have a licensed copy of MS Excel available. With this example, one 

copy of MS Excel needs to be available on a server for which this component is 

registered and the component user has access to. The component will wrap the charting 

capabilities of MS Excel that exposes them to the component user of the component in a 

very simple to use fashion. The chart would be generated on the server using MS Excel 

and then exported to a simple GIF file at the desired location on the server. Once the GIF 

file is ready it can be rendered to a thin client or accessed by a component user 

application such as the one exemplified here [7]. This initial system has the following 

characteristics:

• 125 SLOC for the client application, and 380 for the server component
• 6 components for the client application, and 5 for the server component
• 7 files for the client application, and 6 for the server component
• 4 procedures for the client application, and 11 for the server component
• 8 controls for the client application, and 0 for the server component

7.1.9. Case Study 9 -  XML-JBI EventHandler

This case study is a COTS component-based solution for the Department of 

Defense. This tool provides inbox monitoring, subscription processing and 

transformation services to an XML middle-tier data server that supports a set of common 

core services, including user personalization services, publishing services, information 

transformation services, and retrieval and presentation services. A main application. 

Dispatcher, is used to provide the above services. It detects when information is
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published and passes it to an appropriate eventhandler for further processing. Several 

components are used in this system, including one for each of the various event handlers 

and for the sendmail component to handle email notifications and content delivery. This 

initial system has the following characteristics:

• 495 SLOC for the main Dispatcher application, 190 for the GCSS component,
1416 for the sendmail component, 794 for the mtf component, and 199 for the 
webcop component

• 11 components for the main Dispatcher application, 5 for the GCSS component, 8 
for the sendmail component, 7 for the mtf component, and 5 for the webcop 
component

• 16 files for the main Dispatcher application, 6 for the GCSS component, II for
the sendmail component, 8 for the mtf component, and 6 for the webcop 
component

• 30 procedures for the main Dispatcher application, 8 for the GCSS component, 73
for the sendmail component, 29 for the mtf component, and 9 for the webcop 
component

• 4 controls for the main Dispatcher application, 2 for the sendmail component, and
0 for GCCS, mtf and webcop components

7.2. Summary of results

This section briefly summarizes the results of applying the techniques we have 

defined on the nine case studies discussed above. In section 7.2.1, we highlight the 

results of applying the OA-Dead analysis technique discussed previously to the first six 

case study systems to assess the effectiveness of using semantic information about 

component properties to augment a specific analysis capability. In section 7.2.2, we 

highlight the results of applying the summary call graph technique on the remaining three 

case study systems. In each of these sections, we provide a table showing the metrics we 

identified earlier, followed by one or more summary charts and a brief discussion of the 

results. A sample of the detailed graphs and views generated for each system are listed in 

Appendix B.
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7.2.1. Applying the OA-dead analysis technique to case studies 1-6

The results of applying the OA-dead analysis algorithm to the first six case study 

systems is depicted in Table 7 below.

Metric CS1 CS2 CS3 CS4 CS5 CS6
PR O G R A M  SU M M A RY

Total SLOC: 4917 4418 5250 40599 34102 1700
Code S i/e in kB: 201 207 254 1438 1211 110
Time for Initial Parse and Analysis: :20 :I9 22 7:30 5:47 09
Components: 14 23 24 38 32 9
Total Files: 21 37 39 130 116 17
Total Procedures: 136 119 144 1531 1270 84
Dead Procedures: 1 21 32 111 83 0
Total Controls: 89 104 130 667 600 154

C A L L  G R A PH  M E T R IC S
Total SLOC of Call Graph: 12370 9061 10824 216738 183578 6500
File S i/e  in kB: 296 202 238 7303 6255 150
Time for Global Analysis and Generation: :34 30 :24 40:10 33:30 15
Total tt o f ModuleCollections: 8 18 19 97 89 8
Total tt o f CallGraphNodes: 136 119 144 1531 1270 84
Total # o f CalledModuIes: 172 70 83 2986 2485 58
Total tt o f CallSites: 222 76 91 4761 4017 79
Total # o f CallSites with parameter 
mappings:

222 76 91 4761 4017 79

Total # o f GlobalRefs: 259 249 289 38542 34286 228
Total tt o f GlobalDcfs: 30 109 116 10326 9027 191

DATA D EPEN D EN C E M E T R IC S
Total tt o f Parameter Coupling Interfaces: 300 96 86 5620 4748 156
Total tt o f Parameter Coupling Paths: 150 48 43 2810 2374 78
Total tt o f Call Coupling Interfaces: 444 152 182 9522 8142 158
Total tt o f Call Coupling Paths: 222 76 91 4761 4071 79
Total tt o f  Parameter Mapping 
Dependencies:

203 62 59 6709 5519 78

Total tt o f Reverse Ripple Dependencies: 90 57 53 12611 9980 340

OA -D EA D  ANALYSIS
OA-Dead Files: 0 2 2 0 0 0
OA-Dead Procedures: 9 26 43 230 176 9
Reasons:

In O A-D ead File: 0(0 % ) 2
(7.69%)

2
(4.65%)

0 (0 % ) 0 (0% ) 0(0 % )

Event o /O A -D ead  Control: 8
(88.89“* )

17
(65.38%)

32
(74.42%)

151
(65.65%)

118
(67.05%)

9
(100%)

Called by O A-D ead Procedure: I
(11.11“* )

7
(26.92%)

9
(20.93%)

79
(34.35%)

58
(32.95%)

0 (0 % )

OA-Dead Controls: 19 49 72 249 214 19
Reasons:

Disabled: 2
(10.53“* )

1
(2.04%)

3
(4.17%)

4
(1.61%)

0(0% ) 6
(31.58%)

Invisible: 0 ( 0 “* ) 3
(6.12%)

17
(23.61%)

70 
(28.11%)

72
(33.64%)

1
(5.26%)

Too Sorrow : 18
(94.74“* )

34
(69.39%)

52
(7202% )

198
(79.52%)

175
(81.78%)

13
(68.42%)

Too Short: 18
(94.74%)

34
(69.39%)

52
(72.22%)

198 
I (79-52%)

175
(81.78%)

13
(68.42%)
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Metric CS1 CS2 CS3 CS4 CS5 CS6
Too Far Right: 0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * ) 0 (0 * ) 0 ( 0 * ) 0 ( 0 * )
Too Far Down: 0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * )

Too Far Left: o<o*> 3
(6 .1 2 * )

3
(4 .17*)

0 (0 * ) 0 (0 * 1 0 ( 0 * )

Too Far Up: 0 (0°Er) 0 ( 0 * ) 0 ( 0 * ) 0  (0 * ) 0 ( 0 * ) 0 ( 0 * )
In OA-Dead File: 0 ( 0 * ) 12

(24 .49*)
13

(18.06*)
0 ( 0 * ) 0 ( 0 * ) 0 ( 0 * )

Toial tt o f Parameter Coupling Interlaces 
reduced via OA-Dead Analysis:

0 0 4 0 7 3

Updated Total tt o f Parameter Coupling 
Interfaces:

300 96 78 5620 4734 156

Updated Total tt of Parameter Coupling 
Paths:

150 48 39 2810 2367 78

Total tt o f  Call Coupling Interfaces reduced 
via OA-Dead Analysis:

0 2 1 0 14 a

Updated Total tt o f Call Coupling Interfaces: 444 148 180 9522 8006 154
Updated Total tt of Call Coupling Paths: 222 74 90 4761 4003 77
Total It o f Parameter Dependencies reduced 
via OA-Dead Analysis:

0 4 5 14 36 3

Updated Total tt o f  Parameter 
Dependencies:

203 58 54 6695 5483 75

Total tt o f Reverse Ripple Dependencies 
reduced via OA-Dead Analysis:

2 3 2 536 199 11

Updated Total tt of Reverse Ripple 
Dependencies:

88 54 51 12075 9781 329

SUM M ARY
*  I-Dead Procedures: 0 .7 * 17 .6* 22 .2* 7 .3 * 6 .5 * 0 .0 *
*  OA-Dead Procedures Found: 6 .6 * 2 1 .8 * 29.9* 1 5 .0* 13.9* 10.7*
Updated *  of total Dead Procedures 
(l&OA): 7 .4 * 3 9 .5 * 52.1* 2 2 .3 * 2 0 .4 * 10.7*

Table 7. Results of applying OA-dead analysis to case studies 1-6

Table 7 categorizes the various metrics into the following groups: program

summary, call graph metrics, data dependence metrics, OA-Dead analysis results, and 

summary averages.

For case study 1, a 4917 line program with 136 total procedures and 89 controls, 

we see that the OA-Dead analysis resulted in the identification of 9 procedures and 19 

controls that are OA-dead. This makes the total I-dead and OA-dead procedures to be 10. 

Of the OA-dead procedures, it is interesting to point out that over 88% were events to 

OA-dead controls, of which over 94% of those were OA-dead due to the control being 

either too narrow, too short or both (in most cases) with respect to the form it was on. 

Over 10% of the OA-dead controls were disabled. There were no significant decreases in 

any of the dependency metrics.

For case study 2, a 4418 line program with 119 total procedures and 104 controls, 

we see that the OA-Dead analysis resulted in the identification of 26 procedures and 49
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controls that are OA-dead. This makes the total I-dead and OA-dead procedures to be 47. 

Of the OA-dead procedures, over 26% were called by another OA-dead procedure, and 

over 65% were events to OA-dead controls, of which over 69% of those were OA-dead 

due to the control being either too narrow, too short or both (in most cases) with respect 

to the form it was on. Over 24% of the OA-dead controls were in the 2 OA-dead files 

discovered. A small decrease in the number of call coupling, parameter mapping and 

reverse ripple dependencies.

For case study 3, a 5250 line program with 144 total procedures and 130 controls, 

we see that the OA-Dead analysis resulted in the identification of 43 procedures and 72 

controls that are OA-dead. This makes the total I-dead and OA-dead procedures to be 75. 

Of the OA-dead procedures, over 26% were called by another OA-dead procedure, and 

over 74% were events to OA-dead controls, of which over 72% of those were OA-dead 

due to the control being either too narrow, too short or both (in most cases) with respect 

to the form it was on. Over 23% of the OA-dead controls were invisible. A small 

decrease in the number of call coupling, parameter mapping and reverse ripple 

dependencies.

For case study 4, a 40599 line program with 1531 total procedures and 667

controls, we see that the OA-Dead analysis resulted in the identification of 230

procedures and 249 controls that are OA-dead. This makes the total I-dead and OA-dead 

procedures to be 341. Of the OA-dead procedures, over 34% were called by another OA- 

dead procedure, and over 65% were events to OA-dead controls, of which over 79% of 

those were OA-dead due to the control being either too narrow, too short or both (in most 

cases) with respect to the form it was on. Over 28% of the OA-dead controls were 

invisible. There was a decrease of 14 parameter mapping and 536 reverse ripple 

dependencies.

For case study 5, a 34102 line program with 1270 total procedures and 600

controls, we see that the OA-Dead analysis resulted in the identification of 176

procedures and 214 controls that are OA-dead. This makes the total I-dead and OA-dead 

procedures to be 259. Of the OA-dead procedures, over 32% were called by another OA- 

dead procedure, and over 67% were events to OA-dead controls, of which over 81% of
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those were OA-dead due to the control being either too narrow, too short or both (in most 

cases) with respect to the form it was on. Over 33% of the OA-dead controls were 

invisible. There was a decrease of 14 call coupling, 36 parameter mapping and 199 

reverse ripple dependencies.

For case study 6, a 1700 line program with 84 total procedures and 154 controls, 

we see that the OA-Dead analysis resulted in the identification of 9 procedures and 19 

controls that are OA-dead. This makes the total I-dead and OA-dead procedures to be 93. 

Of the OA-dead procedures, 100% were events to OA-dead controls, of which over 68% 

of those were OA-dead due to the control being either too narrow, too short or both (in 

most cases) with respect to the form it was on. Over 31% of the OA-dead controls were 

disabled and over 5% invisible. There was a decrease of 2 call coupling, 3 parameter 

mapping and 11 reverse ripple dependencies.

% Increase in Dead Code from OA-Dead Analysis 
(Overall Average: 15.0%)

0% 2 0 % 40% 6 0 % 80%  1 00%

□  Live Procedures ■  l-D ead Procedures D O A -D ead  Procedures

Figure 34. Increase in dead code from OA-dead analysis

To summarize these results, Figure 34 shows the percentage increases in OA-dead 

procedures discovered for each of the six case studies. It is interesting to point out that 

the percentages are very similar for the case studies that are nearly the same SLOC size. 

This implies that for a given visual-based system for which some level of maintenance
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modifications are made, a significant amount of procedures and controls can be made 

OA-dead through typical actions of setting properties and re-sizing controls and forms. 

Looking across the average of all six case studies, we see that there is a 15% increase in 

OA-dead procedures from this analysis technique.

Average % Decrease in Dependencies from 
OA-Dead Analysis 

(Overall Average Decrease: 1.78%)

Avg. %  Removed

Avg. %
Dependencies

0

□  Parameter Couplings B C a ll Couplings

□  Parameter Mappings □  Reverse Ripples

Figure 35. Average dependency decrease from OA-dead analysis

Since procedures are key to the data dependency metrics we used, it is natural to 

look at any decreases in the parameter coupling, call coupling, parameter mapping, and 

reverse ripple dependencies as a result of the OA-dead analysis. Figure 35 shows this 

decrease. The bottom bar represents the breakdown percentages across all six case 

studies for each of the dependency types. We see that this breakdown is fairly even. The 

top bar shows the percentage of decreased dependencies by dependency type. We see that 

the largest decrease is in reverse ripple dependencies. Overall, the average decrease is 

only 1.78%. This implies that none of the OA-dead procedures that were identified had 

any calling relationships, parameter usage relationships, or global ref-def relationships for 

the ripple dependencies. This verifies to some extent that the OA-dead procedure is in 

fact not being used.

10.20%

20% 40% 60% 80% 100%
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OA-Dead Procedure Reasons 
Overall Average

□  In OA-Dead File ■  Event of OA-Dead Control □  Called by OA-Dead Procedure 

Figure 36. Overall average reasons for OA-dead procedures

Figure 36 shows the average breakdown across all six case studies of the reasons 

for the OA-dead procedures to be classified as such. A significant portion, 68%, are OA- 

dead as a result of being the event procedures of an OA-dead control and no other calls 

are made to that procedure. Event procedures are common for visual-based languages. 

Another 31 % of the procedures were called from other OA-dead procedures and by no 

other live procedures.

OA-Dead Control Reasons 
Overall Average

Invistole
14%

Too Narrow
41%

□  Disabled ■  Invisible □  Too Narrow

□  Too Short *  Too Far Right q  Too Far Dow n

B  Too Far Left o T o o  Far Up a  In OA-Dead File

Figure 37. Overall average reasons for OA-dead controls
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Figure 37 shows the average breakdown across all six case studies of the reasons 

for the OA-dead controls to be classified as such. The definitions of these reasons were 

discussed in Section 6. Over 41% were OA-dead due to the control being either too 

narrow, too short or both (in most cases) with respect to the form it was on. This implies 

that a significant amount of form or control resizing is done during maintenance to hide 

functionality. Over 14% of the OA-dead controls were invisible.

These results show that the OA-dead analysis proved to be an effective technique 

for discovering additional procedures and controls that were in a state when the analysis 

was performed that they could not be executed. An average increase of 15% across six 

real systems implies that the criteria which the analysis used are more common than 

expected in maintenance activities.

7.2.2. Applying the call graph summary information technique to case 
studies 7 through 9

To validate our second technique, we applied our summary call graph analysis to 

case studies 7 through 9 to assess the effect of component developers providing 

additional information about their components to users. A separate table for each system 

is used to summarize the results of the analysis on that system. Within each table, we 

distinguish between the initial or as-is state of the system, the extended state where 

current IDL information is used to aid the analysis of each component, and the integrated 

system state which reflects the result of a component user having access to the summary 

call graphs for each component. For both the initial and extended state, we show the 

analysis on the main user application containing the ‘glue’ code to integrate a number of 

components, as well as each of the components for which we had source code to simulate 

the component developer. The integrated system represents the merge of all XML 

summary call graphs for all components for which it was provided along with the graph 

of the main user application. To assess the results in the following tables, it is important 

to consider the role of the component user and compare the analysis of the main user 

application as the amount of available information for components is increased.
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Metric
C ase S tudy 7

In itia l
C lien t
A pp.

Initial
S erver
Com p.

E xtended
C lien t
A pp.

Extended
S erv er
Com p.

In t.
Svstem

PR O G R A M  SUM M ARY
Total SLOC: 521 400 528 400 921
Code Size in kB: 42 16 43 16 59
Time for Initial Parse and Analysis: :02 .01 :03 :0I :03
Components: 13 7 14 7 15
Total Files: 17 12 19 12 23
Total Procedures: 27 17 34 17 44
Dead Procedures: 2 1 4 1 4
Total Controls: 74 8 74 8 82

C A LL G R A PH  M ETR IC S
Total SLOC of Call Graph: 1804 1276 2195 1276 3201
File Size in kB: 34 28 40 28 67
Time for Global Analysis and 
Generation:

:04 :02 05 :02 :08

Total tt o f ModuleCollections: 4 5 6 5 9
Total tt o f CallGraphNodes: 27 17 34 17 44
Total tt o f CalledModules: II 9 16 9 25
Total tt o f CallSites: 14 10 19 10 29
Total tt o f CallSites with parameter 
mappings:

14 10 19 10 29

Total tt o f GlobalRefs: 54 49 54 49 134
Total tt of GlobalDefs: 28 19 28 19 69

DATA D EPEN D EN C E M E T R IC S
Total tt o f Parameter Coupling 
Interfaces:

0 12 0 12 18

Total tt of Parameter Coupling Paths: 0 6 0 6 9
Total tt o f Call Coupling Interfaces: 28 20 38 20 58
Total # o f Call Coupling Paths: 14 10 19 10 29
Total # o f Parameter Mapping 
Dependencies:

0 6 0 6 9

Total tt o f  Reverse Ripple 
Dependencies:

9 20 9 20 43

T able 8. Applying the call graph summary information technique to case study 7

The results of applying the summary call graph analysts to case study 7 is depicted 

in Table 8. The initial system has one main user application that integrates 13 

components, for which the server component listed is the primary. This component in 

turn integrates with 7 other components. In the initial system, the component user has no 

additional information about the components being integrated and there is no summary 

call graph for the server component. Constructing the summary call graph for the initial 

main user application shows 4 module collections, 27 call graph nodes, 14 call sites, 54
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global referenced variables and 28 global defined variables. For data dependencies, we 

see 14 call couplings and 9 reverse ripples.

In the extended system, the component user uses the type library documentation to 

add the appropriate declares to the main application, resulting in more insight about the 

components. There is still no summary call graph for the server component. 

Constructing the summary call graph for the extended main user application shows 6 

module collections, 34 call graph nodes, 19 call sites, 54 global referenced variables and 

28 global defined variables. For data dependencies, we see 19 call couplings and 9 

reverse ripples. It is important to note that using the type library information 

appropriately allowed the component user to extend some basic call graph information. 

However, the lack of global variable analysis in the type library information causes no 

improvement in the global referenced and defined variables or any of the data dependence 

analyses. The summary call graphs for the component are required to show such 

improvements.

In the integrated system, the component user obtains the summary call graph for 

the server component from the component developer, and integrates it with the 

information for the main application. Constructing the summary call graph for the 

integrated system shows 9 module collections, 44 call graph nodes, 29 call sites, 134 

global referenced variables and 69 global defined variables. For data dependencies, we 

see 9 parameter couplings, 29 call couplings, 9 parameter mapping dependencies and 43 

reverse ripples. This represents a significant improvement in data flow information from 

the initial system.

C ase  S tudy 8

Metric
Initial In itia l E xtended E xtended
C lient S e rv e r C lient Server Int.
App. C om p. A pp. Com p. Svstem

P R O G R A M  SU M M A R Y
Total SLOC: 125

ooo**■» 151 408 554
Code Size in kB: 5 12 7 14 21
Time for Initial P an e  and Analysis: :0I :01 :03 :03 :05
Components: 6 5 10 8 It
Total Files: 7 6 12 10 14
Total Procedures: 4 11 21 24 37
Dead Procedures: 0 0 2 2 5
Total Controls: 8 0 8 0 8
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Metric
C ase S tudy  8

Initia l
C lient
App.

Initial
S erver
Com p.

E xtended
C lient
A pp.

Extended
S erv er
C om p.

Int.
System

C A L L  G R A PH  M E T R IC S
Toial SLOC o f Call Graph: 257 735 1304 1668 2629
File S i/e  in kB: 6 16 26 32 50
Time for Global Analysis anil 
Generation:

:01 :02 :03 :04 :08

Total K of ModuleCollections: 1 1 6 5 7
Total tt o f CallGraphN’odes: 4 11 21 24 37
Total # o f CalledM odules: 0 2 15 20 37
Total # o f CallSites: 0 2 20 30 52
Total # o f CallSites with parameter 
mappings:

2 20 30 52

Total If o f GIobalRefs: 3 25 3 22 29
Total # of GlobalDefs: 2 17 2 4 6

DATA D E PE N D E N C E  M E T R IC S
Total It of Param eter Coupling 
Interfaces:

0 0 0 0 6

Total # of Param eter Coupling Paths: 0 0 0 0 3
Total # o f Call Coupling Interfaces: 0 6 40 60 104
Total # o f Call Coupling Paths: 0 3 20 30 52
Total It o f Param eter M apping 
Dependencies:

0 0 0 0 3

Total # o f Reverse Ripple 
Dependencies:

0 2 0 20 43

Table 9. Applying the call graph summary information technique to case study 8

The results of applying the summary call graph analysis to case study 8 is depicted 

in Table 9. The initial system has one main user application that integrates 6 

components, for which the server component listed is the primary. This component in 

turn integrates with 5 other components. Constructing the summary call graph for the 

initial main user application shows 4 module collections, 27 call graph nodes, 14 call 

sites, 3 global referenced variables and 2 global defined variables. There are no data 

dependencies.

Constructing the summary call graph for the extended main user application 

shows 6 module collections, 21 call graph nodes, 20 call sites, 3 global referenced 

variables and 2 global defined variables. For data dependencies, we see 20 call 

couplings.

Constructing the summary call graph for the integrated system shows 7 module 

collections, 37 call graph nodes, 52 call sites. 29 global referenced variables and 6 global
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defined variables. For data dependencies, we see 3 parameter couplings, 52 call 

couplings, 3 parameter mapping dependencies and 43 reverse ripples.

C ase S tudy  9

Metric In itial System E xtended System
ISA C l C2 C3 C4 A C l C2 C3 C4

PRO G R A M  SU M M A RY
Total SLOC 495 190 141

6
794 199 577 218 141

6
872 227 2867

Code Size in kB: 19 7 43 34 7 23 10 43 40 10 107
Time tor Initial Parse and 
Analysis:

:03 :0I :07 :04 01 :07 :04 :07 : 10 04 :23

Components: 11 5 8 7 5 15 6 8 9 6 12
Total Files: 16 6 11 8 6 21 8 11 11 8 22

Total Procedures: 30 8 73 29 9 72 33 73 95 34 155
Dead Procedures: 6 0 1 1 1 32 17 1 44 18 51
Total Controls: 4 0 2 0 0 4 0 2 0 0 4

CA LL G R A PH  M ETR IC S
Total SLOC of Call Graph: 235

7
619 611

3
298
7

685 465
6

197
8

611
3

687
8

207
0

13953

File Size in kB: 55 15 145 84 17 90 36 145 146 38 355
Time for Global Analysis and 
Generation:

:07 :01 : 17 06 01 :13 :05 : 17 .16 :05 :43

Total tt o f ModuleColIeetions: 8 1 6 2 1 13 3 6 5 3 14
Total It of CallGraphNodes: 30 8 73 29 9 72 33 73 95 34 155
Total tt o f CalledModules: 28 3 69 30 3 45 16 69 67 18 191
Total tt o f CallSites: 29 4 99 54 4 46 20 99 95 22 251
Total tt o f CallSites with 
parameter mappings:

29 4 99 54 4 46 20 99 95 22 251

Total tt of GlobalRet's: 115 19 136 105 20 115 19 236 105 20 680
Total # o f GlobalDefs: 32 12 75 59 12 32 12 75 59 12 355

DATA D E PE N D E N C E  
M E T R IC S

Total tt of Param eter Coupling 
Interfaces:

26 22 114 196 22 26 22 114 196 22 382

Total tt o f Param eter Coupling 
Paths:

13 II 57 98 II 13 11 57 98 II 191

Total It of Call Coupling 
Interfaces:

58 8 198 108 8 92 40 198 190 44 502

Total It of Call Coupling Paths: 29 4 99 54 4 46 20 99 95 22 251
Total tt o f Param eter Mapping 
Dependencies:

13 11 61 104 II 19 11 61 147 11 244

Total tt o f Reverse Ripple 
Dependencies:

12 5 20 23 5 12 5 20 23 5 52

Table 10. Applying the call graph summary information technique to case study 9

The results of applying the summary call graph analysis to case study 9 is depicted 

in Table I0. With respect to the systems listed in the above table, the following 

abbreviations are used to distinguish the individual systems and components used:
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• A: Dispatcher application
• C l: GCSS component
• C2: SendMail component
• C3: MTF component
• C4: WCOP component
• IS: Integrated system

The initial system has one main user application that integrates 11 components, 

for which there are 4 primary. Constructing the summary call graph for the initial main 

user application shows 8 module collections, 30 call graph nodes, 29 call sites, 115 global 

referenced variables and 32 global defined variables. For data dependencies, we see 13 

parameter couplings, 29 call couplings, 13 parameter mapping dependencies and 12 

reverse ripples.

Constructing the summary call graph for the extended main user application 

shows 13 module collections, 72 call graph nodes, 46 call sites, 115 global referenced 

variables and 32 global defined variables. For data dependencies, we see 13 parameter 

couplings, 46 call couplings, 19 parameter mapping dependencies and 12 reverse ripples.

Constructing the summary call graph for the integrated system shows 14 module 

collections, 155 call graph nodes, 251 call sites, 680 global referenced variables and 355 

global defined variables. For data dependencies, we see 191 parameter couplings, 251 

call couplings, 244 parameter mapping dependencies and 52 reverse ripples.

To summarize the results, we examine the average increases in both call graph 

information and data dependencies across case studies 7 through 9. Figure 38 shows the 

increase in call graph information in comparison to the initial, extended and integrated 

systems. The call graph information for this chart represents the total of modules, call 

graph nodes, call sites, global referenced variables, and global defined variables. For case 

study 7. there is a 10% increase in information from the initial to the extended states, and 

an additional increase of 51 % from the extended to the integrated states. This represents 

a 55% increase from the initial to the integrated state. Case study 8 shows an overall 92% 

increase, and case study 9 shows an 85% increase. On the average, this represents a 77% 

improvement in the call graph information available to the component user for analysis.
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Increase in Call Graph Information (Overall Average: 77%)

Integrated
^ “Extended

Initial

Figure 38. Increase in summary call graph information

Increase in Dependencies (Overall Average: 88%)

'  Integrated 
Extended

Figure 39. Increase in dependencies

Figure 39 shows the increase in data dependence information in comparison to the 

initial, extended and integrated systems. The data dependence information for this chart 

represents the total of parameter couplings, call couplings, parameter mapping
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dependencies, and reverse ripple dependencies. For case study 7, there is an 18% 

increase in information from the initial to the extended states, and an additional increase 

of 69% from the extended to the integrated states. This represents a 74% increase from 

the initial to the integrated state. Case study 8 shows an overall 100% increase, and case 

study 9 shows a 91% increase. On the average, this represents an 88% improvement in 

the data dependence information that was computed by performing these static analysis 

techniques on the integrated system.

These results show that the summary call graph technique proved to be very 

effective for providing component users with the ability to apply some useful static 

analysis techniques, ultimately gaining more insight into their integrated system. In some 

cases, such as case study 8 for example, the use of the summary call graphs allowed the 

static analysis techniques to be performed where previously they were not.

45000 

40000 

35000 

30000 

g  25000 

20000 
15000 

10000 
5000 

0

7.3. Analysis o f efficiency

In section 1, we stated that efficiency, reality and usability were three underlying 

design concerns for this research. With respect to efficiency, performance and storage are 

important. Using several real systems to obtain the experimental results discussed in this

css

iS7 CSS

0:00:11 0:00:13 0:00:24 0:00:46 0:00:49 0:00:54 0:01:06 0:39:17 0:47:40

Time

Figure 40. Timing analysis: SLOC vs. analysis time
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section have help to address the reality and usability concerns. Here, we will examine 

efficiency by looking at timing, sizing and algorithm run-time complexity.

Figure 40 depicts the timing analysis for each of the 9 case studies in terms of 

code SLOC for the integrated systems, and the total time to analyze each system. As can 

be expected, the total analysis time is a function of the size of the program being 

analyzed. However, it is also a function of its data complexity. For example, consider 

case study 9 in the chart. Its code size is slightly less than case study 1, but the time to 

analyze was greater. This is due to the fact that there are more data dependencies and 

usage (e.g., global ref-defs) in case study 9, so the global analysis phase wouid take more 

time. The SLOC sizes for the 9 systems are all under 45000, and we see from the chart 

that even for the largest of the systems studied, the total analysis time was under an hour. 

This time is not unreasonable for the static analysis of a medium-sized system. The 

majority of the systems averaged around the 4000 SLOC size with an analysis time 

average of under a minute. We feel that these program sizes will be typical of most 

component-based systems where the main applications comprise often of smaller portions 

of 'glue' code. If that is the case, or if the system reaches the 45000 SLOC size, the 

results here show that the analysis time are practical for real use.

% Increase in SLOC S ou rce  C od e v s. Sum m ary Call Graph 
(Overall Average: 70%)

250000

200000

O 150000 
o
<0 100000 

50000 

0
CS1 CS2 CS3 CS4 CS5 CSS CS7 CS8 CS9 

□  Source SLOC ■  Summary Call Graph SLOC

Figure 41. Sizing analysis showing source versus call graph SLOC
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To consider storage requirements. Figure 41 shows a sizing analysis of the 9 case 

studies in terms of program SLOC and call graph SLOC for the integrated systems. It 

shows the average percentage increase between both SLOC sizes. In all cases, the call 

graph size is larger than the original program size. The overall average increase is 70%. 

One reason for the large call graph size is the fact that we use XML. XML files typically 

average around 10 times the size of its information source due to the strict tagging 

requirements of the standard [6]. Even so, for the 9 case studies analyzed, the resulting 

call graph size was manageable.

Another consideration of efficiency is run-time complexity of the algorithms used 

in the techniques discussed in this research. Three primary algorithms need to be 

considered closely. The first is the original Project Analyzer analysis. The second is the 

OA-dead analysis, and finally the global variable analysis and summary call graph 

generation. The analysis and summary call graph generation do most of the work. Once 

the information has been computed and stored, the remaining other two analyses, 

parameter mapping dependence and reverse ripple analysis are simply a series of queries 

and array traversals to the information stored in memory. In this case, the traversal 

routines are done in linear time O(n).

The Project Analyzer analysis is done in two phases plus a dead code detection 

phase. Phase 1 collects the object names. It reads lines of code and examines each word 

in the line to determine key objects (e.g., variables) and puts them into a table. Phase 2 

through all the objects again and compares them to several arrays, one for each object 

type like procedures, variables, constants, module names an so forth that were constructed 

in phase 1. If a match is found, it saves cross-reference information. The last phase just 

traverses through the cross-references and sets a flag every time something is referenced. 

If we let o be the number of objects (e.g., functions, variables, etc), then both phase land 

phase 2 are O(o'). The detection phase is O(o).

The OA-Dead analysis is an extension to the dead code detection phase described 

above. It uses the same two analysis phases as from Project Analyzer to establish the 

object tables, each phase being O(o:). An additional object type was established for the
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OA-Dead procedures, files and controls and an additional phase was added to inspect 

each object and compare it to the object properties being examined. This is also O(o’). 

The detection and report generation step are 0(o) as before.

The extension for the summary call graph technique modified the original Project 

Analyzer phases 1 & 2 and added an additional phase. As discussed above, during phases 

1 & 2 Project Analyzer is gathering data about project structure (e.g., variable and 

constant declarations, procedure names, identifier usage, etc.). Phase 2 primarily 

conducts cross-referencing analysis. The phase 2 analysis was modified to capture 

procedure cail statements and mark each identifier serving as an actual parameter as a 

new identifier reference (IdentRef) object. The new IdentRef object is added to the 

IdentRef array and further parameter-binding analysis is performed in a new phase 3. As 

before, phase 1 and 2 are O(o’)- Phase 3 was added to support call graph and data flow 

analysis. It performs two main tasks. The first task is to construct a system call 

dependence graph and finalize the parameter-mapping analysis. The parameter-binding 

relation is determined to be either input (reference) or output (definition). Parameter- 

binding information is then copied into the ParmBindings table in the CailGraph 

database. The second task is to copy the IdentRef data into the RefDef table in the 

database. The summary call graph analysis is based on the system dependence graph 

defined by [65]. If Np and Ep denote the number of vertices and edges in a control flow 

graph of a procedure p, then the construction of the procedure graphs takes time 0(Xp(£p 

x iVp)) .
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8. FUTURE WORK

This section identifies several areas in which further work is needed. In 

particular, we provide recommendations for further study related to static analysis, 

dynamic analysis and strategic component issues in general.

8.1. Additional work related to static analysis

In Section 5.1, we identified summary information that could be used to support 

static analysis techniques. In the techniques we developed, we focused on type library 

information, call-level control flow, global variable ref-def analysis, variable first-use and 

last-use analysis, and parameter mapping relationships. We defined a way to represent 

this information using a standards-based XML format, and extended an analysis tool to 

conduct the supporting analyses for programs and components written in Visual Basic.

Adding support for the other types of summary information we identified in 

Section 5.1 could allow other types of static analyses to be performed, such as partial 

evaluation. We feel the following types of summary information and subsequent analysis 

techniques would be good candidates for follow-on research:

• Statement-level control flow graph information. Statement-level control flow 
information could support various statement level analysis techniques, such as 
program slicing, ripple analysis, partial evaluation, and testing.

• Component states. Identification of the various states a component can be in, as 
well as the dependence information between input, output and state variables 
could be useful in supporting techniques like: usage patterns, component 
wrappers, interface slicing and integration testing [38].

• Exception information. Exception information and its dependence to input and 
state variables could support techniques like: usage patterns, component wrappers, 
interface slicing and integration testing.
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One particular technique that we feel is interesting that could benefit from the 

above summary information is the usage analysis of a component-based system. Usage 

analysis is based on identifying usage patterns for a component [118], and can be useful 

for gaining a better understanding of a component, especially one that was built for a 

generic purpose with many capabilities that is being used for a specific purpose requiring 

a limited set of those capabilities. For example, a component user could decide which 

capabilities of the generic component are necessary, and using techniques like those 

developed in this research, could gain more confidence in the data dependencies and 

impacts associated with a particular usage; particularly important to testing. Also, the 

component user may decide to construct a wrapper around the component, similar to the 

one shown in case study 8, which effectively hides ail the capabilities of the generic 

component not associated with the intended usage [99].

Support for usage analysis can be provided in a number of forms. In a basic 

sense, the first technique in our research and its subsequent application to OA-dead 

analysis can be thought of as identifying a particular usage of a system when the analysis 

was performed. The additional summary information concerning component states and 

exceptions can be used to provide a more precise usage analysis. As an example, a state 

representation of a component can be defined with the transitions between states 

determined by the method calls on the component. Usage coverage metrics that could be 

used may include, all states visited, all non-repeating paths through the state graph, etc. 

The paths through the state graph define sequences of component usage. Below, we 

discuss usage analysis based on dynamic techniques.

With respect to the analysis tools, we focused on the analysis of Visual Basic 

programs. It would be useful to develop similar tools for other languages that are 

commonly used to construct components and component-based systems, such as C-H-, 

and Java.

8.2. Additional work related to dynamic analysis

In our research, we focused on static analysis techniques. In contrast, dynamic 

analysis techniques are very precise as they monitor and analyze a program as it executes.
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The component provider summary information concept could be extended to support 

dynamic analyses, and assessing their effectiveness and utility would be of value. For 

example, in lieu of a component provider distributing static summary call graphs with 

their component, they could provide some sort of dynamic interface for this information 

that can be queried by the user during a specific analysis. This may be considered a form 

of augmenting components, and some possible techniques for doing this may be:

• Abstract state machine (ASM). Partitions component state into several abstract 
states that characterize distinct regions of the state space -  a form of domain 
analysis. Dynamic analysis can use this as a coverage metric or monitor the 
execution of a component: to validate usage states match expected states.

• Usage analysis. Characterization of the way a component is being used. One 
possible way to describe usage patterns is as regular expressions over the ASM. 
Dynamic analysis can use this as a coverage metric to test against anticipated 
usage patterns, or monitor the execution of a component: to validate usage states 
match expected states.

• Gray-box interface. Provides access to components internal state, either in the 
form of direct access to private data variables or to state of ASM. Dynamic 
analysis allows pseudo white-box testing of components that can be used for state 
or usage based coverage metrics. Also can support monitoring of the component 
to validate valid states and usage.

• Exception Triggering Interface. Forces component to raise its exceptions. May be 
only practical way to test exception-handling code. Dynamic Analysis can use 
this for coverage of exception handling code to support integration testing.

8.3. Additional work related to strategic component issues

In addition to future research in both static and dynamic analysis techniques for 

component-based systems, we feel that there are several general areas of further work to 

enhance the development, analysis, maintenance and testing of components and the 

systems that use them. Some of these include:

• Obtaining buy-in from component vendors. We have demonstrated the 
effectiveness of the summary call graph. In order for such an approach to be 
effective in the large, component developers must be willing and able to analyze
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their components with minimal risk and effort, and make the graphs available 
with their components. Effective ways to get component developers to do this 
need to be identified.

• Modifying existing component interface standards. Another way to ensure that 
the component summary information is available to users is to modify existing 
component object model standards, such as COM or CORBA, to include the 
specification of this information. This seems like a reasonable activity to 
investigate.
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9. CONCLUSION

This research studied ways to extend traditional static analysis techniques to 

support the development, maintenance and testing of a component-based system. 

Throughout this work, four primary goals were achieved and the results of each 

documented in this thesis. These were to:

• Understand and document characteristics and potential issues associated with 
component-based applications which can make software analysis, development, 
maintenance and testing more difficult.

• Develop new or extend traditional static analysis techniques for improved analysis 
of a component-based software system.

• Demonstrate that the use of additional information, such as semantic information 
about component properties, can be used to improve the quality of analyses. 
Some of this additional information can only be provided by experienced 
developers, and some can be extracted automatically.

• Validate the techniques on existing real systems.

We identified situations where standard analysis techniques provide misleading or 

incomplete information when used on a component-based solution; and showed how 

traditional static analysis techniques can be extended in a number of ways to analyze 

component-based systems.

The first technique developed leverages the minimal information that is typically 

available for components but for which traditional static analysis techniques often do not 

utilize. This approach aids component users attempting to analyze a component-based 

system by leveraging the semantic information about component properties contained in 

the type library or interface definition language (IDL) files associated with a component. 

We then showed how this information could be used to augment traditional static analysis 

techniques for analyzing a typical component-based system by enhancing a dead code
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detection technique to discover OA-dead code that may be typically found in visual 

programming languages, such as MS Visual Basic.

While this technique was useful, we discussed additional ways to improve the 

analysis of component-based systems. Our second technique developed represents one 

such way. For example, a component provider could provide extended static analysis 

summary information about their component. This extended interface may include the 

standard interface information, but also other information that would be useful for 

gaining insight into the component without having access to the source code. In this 

approach, the component provider uses analysis techniques to gather summary 

information that facilitates further analysis and testing of those components by users 

without requiring access to the source code. The component provider makes the 

summary information available with the component. The component user then integrates 

the component summary graphs with the graph for their user application to produce an 

integrated system graph for analysis. Our technique summarizes global data flow analysis 

through variable def-use, first use/last use and parameter couplings. This technique can 

be useful for techniques such as interface-level coupling analysis and testing, ripple 

analysis, and integration testing.

We then demonstrated the effectiveness of these techniques on several case 

studies. Seven case studies represent real COTS component-based systems developed 

and maintained by the Department of Defense (DoD). Two additional case studies are 

used to represent academic examples designed to illustrate some interesting aspects of 

component-based development.

The results of applying the first technique show that the OA-dead analysis proved 

to be an effective method for discovering additional procedures and controls that were in 

a state when the analysis was performed where they could not be executed. For example, 

an average increase of 15% of OA-dead procedures was discovered. This is important 

because it may significantly reduce the level of maintenance and testing on these systems.

The results of applying the second technique show that the summary call graph 

information that a component developer can provide to the component user can greatly 

increase the user's ability to analyze and understand the integrated system. On the
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average, there was a 77% improvement in the call graph information available to the 

component user for analysis. Using this additional information, the user can now apply 

static analysis techniques on the integrated system. The results show that on the average, 

there was an 88% improvement in the data dependence information that was computed by 

performing these static analysis techniques on the integrated system.

In terms of efficiency, the results show that most of the systems were around 5000 

SLOC in size, and the analysis time for these systems was under a minute. Two of the 

case studies were over 30000 SLOC, with the time of analysis still under an hour. We 

feel that typical component-based applications will be within this size range, and as such 

the results here show that the analysis times are practical for real use.

Overall, the results of this experimentation show that these techniques can 

effectively be used to improve the analysis of a component-based system. This was the 

case for the 9 case studies examined. Based on our work in this area, we can make 

several observations:

• The traditional maintenance problems are still present in component-based 
systems.

• Component-based solutions, and in particular the visual languages used to create 
them, appear to increase the presence of unreachable code as software 
maintenance evolves.

• Semantics can be used to supplement traditional static analysis approaches in 
significant ways to increase the precision and accuracy of the results from 
analyzing component-based software.

• A subject matter expert on the component-based system being analyzed can help 
identify several key pieces of semantic information associated with the 
component-based architecture which would help to promote a better 
understanding of the overall system or enhance a particular analysis capability.

• The availability of additional static analysis information for a component is 
necessary if component users want to apply techniques, such as coupling analysis 
and ripple analysis, effectively across the entire integrated application.
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Our research shows that the use of traditional static code analysis techniques can 

aid in the understanding of unfamiliar code and in monitoring potential side effects that 

can be caused by modifications to source code. It has application for development, 

analysis, debugging, testing, and maintenance. We feel that the techniques reported here 

are promising and can be used to help narrow the gap between the information available 

today for black box components and better ways to provide more useful information to 

component users to help analyze and test component-based systems. The work reported 

here is especially important since component-based solutions are becoming a widely used 

development technique in software engineering.
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APPENDIX A. A COMPONENT TAXONOMY

This table represents a more comprehensive laundry list of specific issues that are associated with component-based analysis, 
testing and component-based systems in general. It is intended that this list be a quick reference to understanding the issues. 
Each issue is discussed by examining a number of viewpoints:

• Class -  This classifies the issue with respect to the categories we have defined in this paper.
• Lifecycle -  This describes which software engineering lifecycle an issue impacts.
• Issue -  This is a description of the issue.
• Impact -  This describes the potential impact the issue may have if not addressed.
• Example -This is an example of an occurrence of the issue.
•  Mitigation -  This attempts to provide a general solution to addressing the issue.
•  Tools -  This identifies specific tools and/or techniques which may be used to address the issue.
•  Solution Risks -  This describes any potential risks associated with using the solutions describe in the Mitigation and Tools

section.

In addition, the following categories are used in the below table:

CLASS (CL):
1. Basic Object Testing
2. Components and Larger Collections of Objects & Patterns
3. COTS Testing
4. Integration Testing
5. Distributed Systems
6. Design Principles in Component-based 
Development/Maintenance
7. Regression Testing
8. Event-bused Programs
9. Nan-Technical Issues

LIHiCYCLE (LC):
1. Requirements Management
2. Project Management
3. Configuration Management
4. Design
5. Development
6. Testing
7. Quality Assurance
8. All

OBJECT MODEL 
(OM):
1. COM/DCOM
2. CORBA
3. Java
4. All
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1 6 4 Objects have 
slate.

Existence of Object state 
complicates testing. 
Many traditional testing 
methodologies are 
stateless anil are not 
adequate to test an 
internal and possible 
unknown internal object 
state.

Initialized vs. un
initialized objects. 
Reset of 
navigational 
components -  how 
to test for reasonable 
initialization if we 
don’t have access to 
the state?

Define instrumentation 
interface to access 
encapsulated state to 
ease testing burden.

Ciray box testing: 
component developer 
provides access to 
slate through gray box.

Combinatorial explosion 
in number of test cases. 
Increased effort and need 
for access to proprietary 
information may preclude 
cooperation from 
developers.
No such information 
available for legacy 
components

1 6 4 Polymorphism Polymorphism allows 
dynamic selection of 
functions. Function need 
not have a semantic 
relationship. Even if not 
overriding inherited 
function - may need to 
retest because it calls an 
overridden function - 
static analysis can help 
here

Polymorphism in 
Object-oriented 
systems complicates 
testing because 
actual function 
called is determined 
dynamically

Disallow virtual 
functions, inherit test 
cases, and reason about 
subsumption of test 
results. Trace class 
hierarchy to test all 
possible instantiations 
of a polymorphic 
function. Alert tester 
whenever a new 
subclass with virtual 
functions is defined. 
Reuse base class testing 
specifications.

Reference McDaniel 
& McGregor |86, 871

Undeveloped/untried
solutions

1 6 4 OO style of 
programming 
favors smaller 
functions but 
more integration 
issues

Unit testing is better 
understood than 
integration testing

Proliferation of 
Modifier and 
Selector functions to 
give access to state 
variables. Get and 
Set Properly 
functions

Object style lessens 
integration issues. New 
integration testing 
strategies are being 
developed

Static Analysis with 
extended component 
interfaces

Undeveloped/untried
solutions

1 6 4 Object style 
favors objects as 
arguments, the 
state of an object

Test coverage will be 
less rigorous

Passing a 
spreadsheet object 
for inclusion in a 
compound document

Analyze object to 
define critical states. 
Use Pattern languages 
to characterize stales

Simplify the analysis 
of state using 
assertions

No well defined way to 
define the optimal level of 
abstraction in a given 
context



c
1.

1.
C

()
M

ISSUK IMPACT KXAMPLK MITIGATION TOOLS SOLUTION RISKS

is arbitrarily 
complex. This 
complicates 
testing
techniques based 
on domain 
analysis.

1 6 4 Objects support 
encapsulation 
favoring black 
box approaches 
to testing

Black box approaches 
have had poor coverage 
results.

Use of MS Office 
products where there 
is no access to the 
source code, but 
object interface 
specifications are 
published.

Gray box, developer 
provided testing 
specifications, formal 
object specification 
provided.

Gray box testing: 
component developer 
provides access to 
state through gray box.

Increased effort and need 
for access to proprietary 
information may preclude 
cooperation from 
developers.

1 6 4 Object style 
fuvors structured 
exception 
handling. 
Developers of 
reusable objects 
will likely 
provide 
exception 
classes.

Code hundling exception 
cases usually undcrtcsted 
underexperienced -  
could contain fatal Haws.

Current Java 
specification makes 
extensive use of 
exception classes. 
Fxamplc: Socket 
exceptions for 
inability to connect, 
etc. There is a trend 
in COM toward 
structured exception 
handling.

Require testing 
specifications to cover 
exceptional cases. 
Simulate hard to 
provide errors (e.g., out 
of memory) -  possibly 
by forcing code down 
error path, calling 
exception.

Gray box testing: 
component developer 
provides testing 
interface for 
exceptions or test 
requirements for 
forcing individual 
exceptions..

Developers are not 
motivated to provide these 
facilities.
Legacy systems don't 
have them.

7 6 4 Regression 
Testing of 
Component 
Updates

Full regression testing 
for all component 
updates may be required 
but is too expensive and 
time consuming to be 
practical

New version of a 
component gets 
injected into a 
mission-critical 
system -  calls for 
revalidation of the 
entire system

During design, ensure 
that components are 
isolated to the 
maximum extent 
possible so that 
regression testing can 
be focused. Coordinate 
early and often with the 
operational test 
community to build 
confidence in risk based

Static Analysis with 
extended component 
interfaces

There is a danger of 
making invalid 
simplifying assumptions, 
e.g., overlooking a critical 
test because there is no 
obvious interaction
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component testing.
y 6 4 Government/Con 

tractor Test 
Team
Disconnects

Discontinuities between 
the government and 
contractor test teams, 
particularly with respect 
to the scope of early 
operational testing

Knsure early, regular 
coordination -  nurture a 
strong IP I' at the 
working level through 
frequent
meetings/telecons. Get
procedures/process
documented.

Organizational 
structures and 
procedures

Requires coordinated 
support from both 
organization and 
contractor. Constant 
oversight anil buy-in by 
contractors.

9 6 4 Testing Process 
Disconnects

Disconnects between 
UPC and integration 
contractor, particularly 
with respect to interface 
definition and testing and 
integration lest 
responsibilities

Knsure early and 
regular coordination 
meetings between the 
parties, build and 
maintain clear 
documentation 
supporting third parly 
developers, and 
reinforce the roles and 
responsibilities of the 
integration contractor 
(and be prepared to 
fund them). Get 
procedures/process 
documented.

Organizational 
structures and 
procedures

Requires coordinated 
support from both 
organization and 
contractor. Constant 
oversight and buy-in by 
contractors.

9 6 4 Feedback
Impediments

Lack of free flow of 
information (e.g., 
requirements) due to 
technical impediments, 
cost, data ownership 
issues, etc

Finalize procedures and 
responsibilities early. 
Kmphusize 
accountability and 
feedback loops. Make 
the system
scalable/adaptable to 
increasing demands.

Organizational 
structures and 
procedures

Requires coordinated 
support from both 
organization and 
contractor. Constant 
oversight and buy-in by 
contractors.

9 1 4 Testing
Requirements
Truceability

Traceability of 
requirements can be lost, 
particularly with respect 
to operational

Build and maintain 
good historic records of 
requirements 
signoff/modifications

DOORS requirements 
management system. 
Organizational 
structures and

Knsuring currency of 
information. Failure to 
maintain the databases as 
systems change.

i
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limitations/assumptions 
that will impact test

and unique test 
criteria/methods -  
presumably in the 
DOORS database.

procedures

5 6 4 Distributed
Operational
Environment
Testing

Complexity of testing in 
a distributed 
environment which 
mirrors operational 
environment.

System certification 
testing requirements

Test on the operational 
environment or provide 
functional facsimile at 
test site

Use of tools that 
simulate Joint Services 
in a certification lest. 
Network analyzer tools

Fidelity ofthe facsimile is 
an issue; likewise, the 
logistical complexity and 
coordination factors 
associated with live 
testing.
Traceability in a complex 
testing environment

5 3 4 Distributed
Versioning

Version control of 
software/hardware and 
platform in a distributed 
environment to ensure 
applicability of testing 
results to operational 
use.

Components using 
upgraded versions of 
Microsoft libraries 
may not run on other 
platforms running 
older releases.

Control
pedigree/version, 
ensure proper version is 
used. Make operational 
manager aware of 
versioning difference in 
operation.

SMS and other like 
services.
Web-based versioning

Without Administrative 
control it may not be 
possible to force other 
participants to upgrade.

5 6 4 Increased Failure 
Possibilities

Extra dimensions of 
failure due to distributed 
environment (e.g., 
network failures, 
protocol faults, timeouts 
leading to unavailable 
services, server overload 
and race conditions)

Include lest 
specification for 
network related failures.

Requirement planning 
for degraded service 
modes
Detection of failures 
(exception handling) 
Testing for the 
degraded modes

Proliferation of partial 
configurations (degraded 
modes) that should all be 
tested individually 
Failure to specify all 
degraded modes in the 
requirements

5 K 4 (.easing of 
Serviees

Leasing of software 
services over a network 
reduces level of 
operational control and 
hence adds new modes 
of failure (due to 
retracted/ improved 
services)

Web/E-mail hosting 
and other middle tier 
services

Enter into contractual 
agreements with service 
provider with respect to 
version, availability and 
support.

Contracting vehicle to 
provide guarantee of 
services.

Loss of service 
Lack of control

3 6 4 COTS Testing Limitations of Use of MS Office Require COTS software Gray box testing: Increased effort and need

£3
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specification based 
testing of COTS (e.g., 
poor statement coverage)

products where there 
is no access to the 
source code, but 
object interface 
specifications are 
published.

to include testing 
certification (e.g., 
siaieniem/paih 
coverage). Objects 
should provide a 
"instrumentation" 
interface for exposing 
internal state for testing 
purposes 
Require software 
developer to provide 
test assertions bused 
upon structural analysis

component developer 
provides access to 
stale through gray box.

for access to proprietary 
information may preclude 
cooperation from 
developers.

6 5 4 Program Size 
Increases 
("Bloat”); 
Increase of Dead 
Code

Many maintenance 
changes made to meet 
deadlines actually can 
increase code size and 
the level of dead code. 

Maintainers arc 
reluctant to delete 
apparently unused 
routines for fear that 
they might be 
needed in future. 
Identifying dead 
code is important to 
a maintainer because 
maintenance is 
typically a very 
costly process 
There is a reluctance 
to make chunges due 
to uncertainty about 
possible side effects. 
This can result in the 
presence of

Component-based 
development 
exacerbates this 
problem by making 
it easy for the 
developer to add 
additional controls 
to forms while 
suppressing the 
behavior of other 
controls by making 
them inaccessible. 
All the code (now 
dcud) behind the 
inaccessible controls 
remains.

Identifying and possibly 
removing code that has 
no effect on 
functionality can help 
reduce the costs 
associated with 
debugging, making 
chunges, porting and 
other maintenance 
activities.

Static Analysis 
with extended 
component 
interfaces 
event-flow 
analysis tools 
Slicing (impact 
analysis) may help 
in (his urea.

User events may be 
simulated by injection of 
pseudo user event 
messages. This is difficult 
to predict and therefore 
difficult to test for.



c
I

I.
c

()
M

ISSUK IMPACT KXAMPLK MITIGATION TOOLS SOLUTION RISKS

procedures having
duplicate
functionality

y 8 1 Keeping iruck of 
all of the 
components in a 
system.

It is often difficult to 
locale the code 
responsible for some 
observed program 
behavior. A code 
snippet can be reside in 
any of several places, 
such as on a form, a 
control, or in a module. 
Code can also be located 
in any of the applications 
ihul comprise an 
integrated solution, e.g., 
in a Visual Basic for 
Applications macro in 
MS Excel or MS Word.

Observe sound 
configuration 
management practices 
and utilize automated 
tools as much as 
possible.

Visual
Development 
Environment 
Versioning (C’M) 
tools

Minimal

6 5 4 Name
Shadowing

Name shadowing 
presents debugging 
difficulties. Although 
this problem is not 
specific to visual and/or 
object-oriented 
programming, the 
number of disparate 
places in which variable 
declarations may reside 
exacerbates it.

Scoping within
programming
environment

Use automated tools to 
aid in the tracking of 
variable names and 
scoping issues.

Static Analysis with 
extended component 
interfaces
Use of Name Spaces

Cost of static analysis tool

2 8 4 Component 
Behavior on 
Client Machines

The behavior of the 
individual application 
being interfaced with is a 
function of its API and 
properties. When new 
versions of an integrated

Loading a 
spreadsheet in a 
particular manner 
depends on the 
settings of its 
properties (like virus

Apply techniques to 
check or control the 
expected interface with 
a distributed client 
component.

Wrappers may be 
applied.

Security constraints (e.g., 
wrappers may be 
prohibited)
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application are released, 
the expectant behavior, 
API and properties may 
change.

checking which may 
disable macros from 
working).

9 3 4 Infrastructure
Management

It may transpire (hat a 
compiled version of the 
application will fail to 
run because some 
component is missing on 
the target computer, or 
because it has the wrong 
version of a run-time 
library. In general, 
managing this 
infrastructure is a major 
problem.

For an integrated 
application (hat 
invokes the facilities 
of a COTS 
application (e.g., 
uses OLE to employ 
Excel calculation 
facilities), upgrading 
the COTS package 
at the client cun 
cause unforeseen 
problems

Use a built-in install 
function to ensure that 
all the necessary 
support facilities are in 
place and current.

Installation 
management software 
SMS or SMS-like 
tools

In general, need to retest 
whenever release of a new 
component version may 
change the client 
software’s configuration

6 5 4 Component
Interface
Availability

Dynamic Link Libraries 
(DLLs), vendor-supplied 
controls and the like may 
not provide a window 
into their APIs. If not, 
we cannot apply slicing 
for impact analysis.
Even if so, lack of access 
to the source code makes 
the program 
understanding problem 
more difficult.

COM components 
(e.g., Microsoft 
Excel) do not 
provide information 
needed for static 
analysis

Component Vendors 
should supply the 
necessary interface 
information.

Assertions about 
parameter sue and 
control dependence

No incentive by developer 
to provide information, 
possible proprietary 
information leaks

8 5 4 Event Visibility Events can be made 
inaccessible by particular 
values of object 
properties. For example, 
changing the width 
property of a form may 
"hide" controls on that 
form. The code

Changing the width 
properly of a form 
may "hide" controls 
on that form. The 
code associated with 
(hose controls is still 
compiled into the 
progrum but events

Extend static analysis 
techniques with the 
appropriate semantic 
information to handle 
such cases.

Static Analysis 
with extended 
component 
interfaces 
evenl-flow 
analysis tools

User events may be 
simulated by injection of 
pseudo user event 
messages. This is difficult 
to predict and therefore 
difficult to test for.
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associated with those 
controls is still compiled 
into the program but 
events (e.g., mouse- 
click) for the control may 
be prohibited from 
running because no way 
exists for a user to 
interact with the control. 
Changing the visibility 
property of a control can 
have the same effect.

(e.g., mouse-click) 
for the control may 
be prohibited from 
running because no 
way exists for a user 
to interact with the 
control, ('hanging 
the visibility 
property of a control 
can have the same 
effect.

2 8 4 Avuilabilily of 
Source Code

Software components 
may be built in-house or 
used off-the-shelf. The 
developer of a 
component has access to 
its source code. The user 
of an off-the-shelf 
component usually does 
not have access to the 
source code.

Using the Microsoft 
Excel component. 
There is no source 
code available.

Depending on the 
availability of code, 
different testing and 
analysis techniques 
need to be used.

Component provided 
summary information 
made available to the 
component users.

Cost of a static analysis 
tool to generate this 
summary information. 
Must convince component 
providers to provide this 
by making the tusk us easy 
and low cost as possible.

2 8 4 Heterogeneity of 
Language, 
Platforms and 
Architectures

The components of a 
system may be written in 
different programming 
languages and for use on 
different hardware and 
software platforms.

With middleware 
conforming to 
standards like 
COR BA and 
DCOM, components 
can interact with 
each other 
independent of the 
language and the 
platforms.

When a system 
composed of such 
components is tested or 
analyzed, the 
methodology and tool 
used must be 
independent of the 
language and the 
platforms.

Component provided 
summary information 
made available to (he 
component users. This 
should be documented 
in a standard format.

The use of multiple 
languages to develop 
various components 
within a component-based 
system requires special 
static analysis tools 
unique for each language.

6 5 4 Deadlocks and 
Race Conditions

Distributed or concurrent 
systems occasionally 
have problems related to 
race conditions and

Component call 
backs. Consider the 
case where a client 
component calls a

It would be good for 
testing and analysis 
tools to catch this. 
Standards such as COM

Extended static 
analysis techniques 
using (he component 
provided summary

Cost of a static analysis 
tool to generate this 
summary information. 
Must convince component

U l
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deadlocks. This is true 
for components.

server component 
ami waits. The 
server component 
calls back to the 
client (say for status 
notification 
purposes). This 
could potentially 
lead to deadlock.

slate that the developer 
should not do this, 
however there is no 
enforcement.

information could help 
to find such cases and 
Hag them. The 
extended call graph 
will support this.

providers to provide this 
by making the task as easy 
and low cost as possible.

6 5 4 Complex
Language
Constructs

Other difficult problems 
include virtual functions, 
function pointers, and 
dynamic object binding.

Deriving a new 
window object at 
run time may 
override a virtual 
function that has 
been previously 
tested (runtime 
overloading).

Use dynamic and/or 
hybrid analysis 
techniques to monitor 
the execution of a 
program and collect the 
necessary information 
to take these constructs 
into account.

Possibly, wrappers 
could be used to 
identify the use of an 
untested override of a 
virtual function.

New objects can be 
defined that override 
virtual functions at any 
time. Thus, testing can 
never really be complete.

L /t
h J
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APPENDIX B. CASE STUDY REPORTS

This appendix provides a sample of each of the reports that were generated for the 
case studies used in this research. Specifically, the detailed reports for case study 7 are 
provided here. A total of 9 case studies were analyzed. Seven case studies represent real 
COTS component-based systems developed and maintained by the Department of 
Defense (DoD). In addition, two other case studies represent academic examples 
designed to illustrate some interesting aspects of component-based development. Due to 
the size of many of the reports, they are not included here. Copies of all reports can be 
obtained by contacting the author.

B.l. Case Study 7 -  Book Sale Manager 

B.1.1. Integrated system program summary report

Project: Book_cli.vbp Project summary 
Project created in Visual Basic 6 0

F 1 les

TotaL files. 23
Source files. 9 (max approx. 4 00)

File types
Mod u l e s : 2
Forms 4
Cl a s s e s : 3
Binary Property Files. 3
Referenced Files: 9
Project Workspaces: 1
Project Files: 1

Oldest source file: 6/5/98 00: 00 - frmBookSales
Newest source file: 8/5/00 19: 33 - Sales
Average source file age: 15 . 1 months - 1.2 years

Code s i z e

Lines of code: 606
Lines of comment. 4 3
Lines of whitespace: 272
Total source lines: 921

Total source bytes: 59 kB 

Averages
Source lines per module: 97 
Source bytes per module: 6.6 kB

Source lines per procedure: 20 
Source bytes per procedure: 1.3 kB

Max and m m
Longest source file: 285 lines (max 65534 lines) - Sales
Shortest source file: 2 lines - frmBookSales

Largest source file: 20.0 kB - frmRevenue
Smallest source file: 1.0 kB - ServerMain

Number of identifiers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Total number at identifiers: 254 (max 32000)

Forms and controls

Forms: 4 (max 230) 
Controls: 92

Procedures

3asic procedures 44
DLL procedures 0

PublLC procedures 19
Private procedures 2 5

Subs 29
Functions 15

Froperty procedures 0

Dead procedures 4
Live procedures 4 0

Total 44

Variables and constants

Variables Constants Total
Global 28 L 29
Module - Level 16 0 16
Procedure-Level 37 3 40
Procedure parameters 33 33

Dead 34 0 34
Live 30 4 84
Total 114 4 118

Enums

Total Enums: 1 
Private enums: 0 
PubLic enums: 1

User defined Types 

Total Types: 0

Variable types

Type Count
ADODB Connection 2
A D O D B .Recordset 11
Boolean 2
Currency 22
Field ' 1
Integer 29
Long B
Model 1
Panel 1
Sales 1
Single 5
String 29
Taxes 1
Variant 1

Project Analyzer 5.0.07 (8/20/00) book_cli.vbp v6.2.8175

B.1.2. Integrated system OA-dead report

Project: Book_cli.vbp Semi-Dead Code Report

List of semi-dead files:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Number or semi-dead tries: 0 
  .

List or semi-dead controls:

txtRevParm index: 5
reason(s ):

Disabled 
in file:

D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 
Integrated System\BOOK_CLI.FRM
txtRevParm index: 4

reason(s) :
Disabled 

in file.
D:\vork\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\BOOK_CLI.FRM
txtRevParm index: 6

reason(s):
D isabled 

in file:
D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\BOOK_CLI.FRM
Label2 index: 5

reason!s):
Disabled 

in file.
D:\vork\PhD\Test and Validation\PhD_Vaiidation\Technique2\sys7-booksale\Step 3- 

Integrated 5ystem\B00K_CLI.FRM
Label2 index: 4

reason(s ) •
Disabled 

m  file:
D:\vork\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\BOOK_CLI.FRM
Label! index: 6

reason(s ):
Disabled 

in tile:
D:\work\PhD\Test and validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

integrated System\BOOK_CLI.FRM
dlgFindDB index; 0

reason(s):
Too narrow 
Too short 

m  file:
D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\BOOK_CLI.FRM
d l g F m d D B  index: 0

reason(s ):
Too narrow 
Too short 

in file:
D .\work\PhD\Test and validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\Book_svr.frm 
Number of semi-dead controls: 8 
Number of controls semi-dead by reason:

Disabled: 6 (75%)
Invisible: 0 (0%)
Too narrow: 2 (25%)
Too short: 2 (25%)
Too far right: 0 (0%)
Too far down: 0 (0%)
Too far left: 0 (0%)
Too far up: 0 (0%)
In semi-dead file: 0 (0%)

♦ * * * * » * * » * » * »  * * * * * * * * * * * * * *

List of semi-dead procedures:

txtRevParm_GotFocus 
reason(s) :

Event of semi-dead control 
in file:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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D \vork\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 
Integrated System\BOOK_CLI.FRM 
Class_Initiaii:e 

reason(s ):
Called only by dead and/or semi-dead procedures

in tile:
D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

I.nteqrated System\Sales.els 
LoadDB

reason(s ) :
Called only by dead and/or semi-dead procedures

m  file:
D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3-

Integrated System\Sales.els 
GetBooksale 

reason(s) :
Called only by dead and/or semi-dead procedures

in f l le ■
D:\vork\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated 3ystem\Sales.els 
Class_Terminate 

reason(s) :
Called only by dead and/or semi-dead procedures

in file:
D:\work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 3- 

Integrated System\8ales.els 
Number of semi-dead Procedures: 5 

In semi-dead file: 0 (0%)
Event of semi-dead control: 1 (20%)
Called by semi-dead procedure: 1 (80%)

Project Analyzer 5.0.07 (8/20/00) book_cli.vbp v 6 .2 8175

B.1.3. Interface design language (IDL) reports

B. 1.3.1 BookSale component IDL

// Generated IDL file (by the OLE/COM Object Viewer)
//
// typelib filename: Book_svr.exe

r

uuid(B9E01A7 2 - 6 B 0 4 - H D 4 - 8099-00A0CCE27EBB) , 
vers ion(1.0).
helpstringt"Author & Publisher Sales Revenue Sample Server"), 
custom(50867300-BB69-11D0-A8FF-OOAOC9110059, 8495)

]
library BookSaleSvr 
!

// TLib : // TLib : Microsoft ActiveX Data Objects 2 0 Library : (00000200-0000-
0010-8000-00AA006D2EA4)

importlib("msado20 tlb*);
// TLib : OLE Automation : (00020430-0000-0000-C000-000000000046) 
import 1 ib("stdole2.t l b " );
// Forward declare all types defined in this typelib 
interface _Sales;
[

o d l ,
uu i d (B9E01A7 4 -6B04-11D4- 8099 -00A0CCE27EBB), 
vers ion(1.0), 
hidden, 
d u a l ,
nonextensible,
oleautomation

1
interface _Sales : IDispatch (

(i d (0x600 30000)J
HRESDLT GetAuthors([out, retvall _Recordset»* );
[i d (0x60030001)I 
HRESULT GetTitles(

[in] BSTR strSQL,
[out, retval] _Recordset»* );
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I id(0x600 30002)]
HRESULT GetBookPages(

[ini BSTR 
[out, r e t

[ id(0x60030003 ) 1 
HRESULT GetRsCOGS(

[in] BSTR 
[out, ret

[ id' 0x6003000-4 ) 1 
HRESULT GetRevenue;

[in, out] 
[in, out) 
[in, out] 
[in, out] 
[in, out] 
[in. out] 
[in, out] 
[out, ret

[id(0x60030005)]
HRESULT GetAuthorRoyaltv(
[ id(0x600 30006)]
HRESULT GetPubRevenue(

[in. out] 
[out. ret

strSQL, 
val] _Recordset** );

strSQL, 
vail _Recordset*

short* m t S a l e s M o d e l , 
CURRENCY* curCostPerUnit, 
CURRENCY* curAdvCost, 
short* intSalesPeriod,
Long* LngUnitsPerMonth, 
VARIANT_BOOL* bolIsDisCOUnt, 
BSTR* strBookTitle,

val] VARIANT* );

[out. retval] VARIANT_BOOL* );

BSTR* strTitle. 
val] VARIANT* );

uuid(B9E01A7 5-6B04-llD4- 8099-OOAOCCE27EBB), 
vers ion(1.0)

coclass Sales (
[default] interface _Sales;

B. 1.3.2 BookSale type library documenter report

BookSaleSvr Interface Definition 

General Information
Library: BookSaleSvr (Author & Publisher Sales Revenue Sample Server)
rile: D \work\PhD\Test and Validation\PhD_Validation\Technique2\sys7-booksale\Step 1-
InitiaI\Server\Book_svr.exe
GUID: (BSE0IA7 2 - 6 B04•1ID4- 8 0 9 9 -OOAOCCE27EBB j
Version: 1.0

Enumerations
This section lists enumerations exposed by BookSaleSvr.

Interfaces
This section lists the Classes exposed by BookSaleSvr. For each class, the methods and
events are listed.

Sales (B9E01A7 5 -6B0 4 -11D4-8099 -00A0CCE27EBB]

Methods
Function GetAuthors() As _Recordset

Function GetTitles(BvVal strSQL As String) As _Recordset 

Function GetBookPages(8yval strSQL As String) As _Recordset 

Function GetRsCOGS(ByVal strSQL As String) As _Recordset

Function GetRevenue(ByVal intSalesModel As Integer, ByVal curCostPerUnit As Currency, 
ByVal curAdvCost As Currency, ByVal intSalesPeriod As Integer, ByVal LngUnitsPerMonth As 
Long, ByVal bolIsDiscount As Boolean. 3yVal strBookTitle As String) As Variant

Function GetAuthorRoyaltv() As Boolean

Function GetPubRevenuetByVal strTitle As String) As variant

Events
None
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B.1.4. Integrated system XML summary call graph

<?xml version” *1.0*?>
<. - -DOCTYPE CallGraph SYSTEM ’flie://CallGraph.dtd * -->

m e t a  NAME-"Generator" CONTENT” "Project Analyzer 5.0.07" -->
meta http-equiv="Content-Type" content=’text/html; charset=iSO-S859-l" -->

- Project Analyzer Report / sys7_cg_s3.xml -->
- Project: 3ook_cii . vbp -->

. - - Call tree - - >
<CallGraph>
•ModuieCollection>ClientMain</ModuleCollection>
•CallGraphNode NodeID="2" ModuleName” 'lGetAuthors’ ParentModName” ’ClientMain’> 

<CalledModules>
-Module ModuleName="GetAuthors" ModuleID-’39"> </Module>

</CalledModules>
<CalISites>

■;CaliSite>
<Module ModuieName="GetAuthors" ModulelD-"39’ InModuleCollection-’Sales"/> 
<StatementLineNumber/>
-:Cal IS iteAnalysi3Completed>l</CallSiteAnalysisCompleted> 
--ParameterMapping>

</ParameterMapping>
-VCallSite>

•:/CallSites>
•:GlobalRet s>
•'ConstRef s>
•;/ConstRets>
<VarRefs>

^Variable VarName-"gCN" VarID-"S0"> </Variable>
< V a n a b l e  VarName-’rsAuthors" VarID-’54"> </Variabie>
■:Variable VarName-’rsAuthors’ VarID-’9"> < / V a n a b l e >
■;Variable VarName-’gobjServer" VarlD-"i"> <;/Variable>

</Var.°.efs>
-;/GlobalRefs>
■;GlobalDefs>
--ConstDef s>
■:/ConstDef s>
<VarDefs>

■Variable VarName-’rsAuthors" VarID-"54"> </Variable>
•c/anable VarName-’rsAuthors’ VarID-"9"> < / V a n a b l e >

</VarDefs>
•:/GlobalDefs>
<LocalRefs>
<ConstRefs>
</ConstRefs>
<VarRefs>
</VarRefs>
</LocalRefs>
<LocalDefs>
<ConstDefs>
-VConstDefs>
<VarDefs>
</VarDef s>
</LocalDefs>

</CallGraphNode>
CallGraphNode NodeID="3’ ModuleName-*IGetTitles’ ParentModName-’ClientMain’> 

-'.Forma lParameters>
<Pass8yRef>

-cParameter varName-’strAuthor" VarID=’10" FirstOse-’RE F ’ LastOse-’REF’> 
</Parameter>

</PassByRef>
<PassByVal>
i/PassByVal>

</FormalParameters>
<ConstantDeclarations>
</ConstantDeclarations>
<VariableDeclarations>

<Variable VarName-’strSQL’ VarID-’ll*> </Variable>
<variable VarName-’rsTitles’ VarID-’12’> </Variable> 

</VariableDeclarations>
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-CalledModuLes>
■Module ModuieName=’GetTities" ModuieID="40’> </Module>

-/CaliedModuies>
-CallSites>

-CailSite>
-Module ModuleName*’GetTitles" ModuleID=’40" InModuleCollection=’Sales’/> 
-St a cemen t LineNumber/>
-CallsiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
-ParameterMapping>

-ActualParameter VarName-"strSQL" varID=’ll’> </ActualParameter> 
-PassByVal>

-Parameter VarName-’strSQL’ VarID=’88* FirstOse-’REF" LastUse=’REF’>
■/Parameter^

•:/PassByVal>

-/ParameterMapping>
-/CallSite>

-/CallSites>
-GlobalRers>
-ConstRefs>
■VConstRefs>
•-VarRef s>

-variable VarName-’gCN’ VarID=’60"> < / V a n a b l e >
•-Variable VarName-’rsTitles" VarID-’55’> </Variable>
Variable VarName-’strAuthor" VarID-’10*> -/Variable?
Variable VarName-’gob]Server’ VarID-’l"> </Variable>

-/VarRefs>
-/GlobalRefs>
-GlobalDefs?
-ConstDefs?
-/ConstDefs>
-VarDefs?

•Variable VarName-"rsTitles’ VarID-"55’> </Varlable>
</VarDers>
-/GlobalDefs?
-LocalReis?
-ConstRefs >
-/ConstRefs?
-VarRefs?

-variable VarName-’rsTitles" VarID-’12*> -/Variable?
-Variable varName-’strSQL" VarlD-’li"? </Variable>

-/VarRefs?
-/LocalRefs?
-LocalDet s>
-ConstDefs?
•;/ConstDef s>
-VarDefs>

•-Variable VarName-’rsTitles’ VarID-’12’> </Variable>
-Variable VarName-’strSQL" VarID-*ll’> </Variable>

-/VarDefs?
-/LocalDefs>

-/CallGraphNode?

-ModuleCo1lection?frmChart</ModuleCollection?
■CallGraphNode NodeID-"5" ModuleName-’cmdClose_Click’ ParentModName-’frmChart*> 

<CalledModules>
-/CalledModules>
•:CallSites>
-/CallSites?
-GlobalRefs?
-ConstRefs>
■VConstRefs>
-VarRefs?
</VarRefs>
-/GlobalRefs?
-GlobalDefs>
-ConstDefs>
</ConstDefs>
<VarDefs>
-/VarDefs?
-/GlobalDefs?
<LocalRefs>
-ConstRefs>
</ConstRefs>
-VarRefs>
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• - / V a r S e t  s >
. / L o c a l R e r s >
■;LocalDer s>
:ConszDefs>
■•/ConstDef s>
< V a r D e r s >
-/varDets>
■-/LocalDefs>

■VCallGraphNode>
<CallGraphNode NodeID="6" ModuleName-*Fonn_Load" ParentModName-"frmCharf^ 

■;CalledModules>
<Module ModuleName-’SetGraphData" ModuleID=’7 ’> </Module>

•VCalledModules>
•.CalLSites>

■ CalIS ite>
■Module ModuleName-’SetGraphData" ModuleID=*7" InModuleCollection="fnnChart*/> 
•:StatementLineNumber/>
•CallSiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
-.ParameterMapping>

</ParameterMapping>
</CallSite>

</CallSites>
■'.GlobalRer s>
<ConstRefs>

•.Constant ConstName-’gRoyalty" ConstID-"58"> </Constant>
■'/ConstRets>
•.VarRefs>

•^Variable VarName-'gobjServer’ VarID-’0 ’> </Variable>
•-.variable VarName-’gintSalesModel" varID-’62 ’> </variable>
•.variable VarName-’sngBookPrice" VarID-’86"i> </Variable>
^Variable VarName-'gintSalesPeriod" VarID-"67’> </Variable>
•variable VarName” "gCN" VarID-"60"> </Variable>
• variable VarName-"sngAuthorRoyalty” varID-"85"> < / V a n a b i e >
-variable VarName-"sngPubRevenue" VarID«"84"> </Variable>
•variable varName-’goStatusPanel" VarID-"2’> < / V a n a b l e >
•.Variable VarName-’gobjServer" VarID-"l"> < / V a n a b l e >

--/VarRefs>
•-/GlobalRef s>
<GlobalDefs>
•:ConstDers>
•;/ConstDefs>
■:VarDe£s>

•^Variable VarName-"sngAuthorRoyalty" VarID-"85"> </Variable>
•iVariable varName-’sngPubRevenue" VarID-"84”> < / V a n a b l e >
^variable VarName-’gingOnitsPerMonth" VarID-’63"> </variable>
< v a n a b i e  varName-*gintSalesPeriod* VarlD-*67”> < / v a n a b l e >
•^variable VarName-"gcurAdvertisingCost" VarID-"73"> </Variable> 
^Variable VarName-’gcurCostPerUnit" VarID-"64"> </Variable>
■:Variable VarName-"gmtSalesModel" varID-"62"> </Variable>

</Vit rDefs>
</GlobalDe£s>
-LocalRefs>
<ConstRefs>
•:/ConstRef s>
•:VarRefs>
•'/VarRefs>
•'/LocalRefs>
<LocalDefs>
■ConstDefs>
</ConstDefs>
<VarDe£s>
•:/VarDe£S>
</LocalDefs>

■;/CallGraphNode>
<CallGraphNode NodeID-"7” ModuleName-'SetGraphData’ ParentModName="frmChart"> 

<FormalParameters> 
v-PassByRef >
</PassByRef>
<PassByVal>
</PassByVal>

</FormalParameters>
<ConstantDeclarations>
</ConstantDeclarations>
<variableDeclarations>
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• Variable VarName-'strGraphData" VarID="13"> </Variable>
■Variable VarName-"vGraphData" VarID="14’> • /Variable:*
•■Variable VarName-"strSrchString" VarID-"I5"> </Variable>
■Variable VarName-"IStart’ VarID=’16"> </Variable>
■•Variable VarName-"lEnd" VarID="17"> </Variable>
•Variable VarName-"IstrLen" VarID="18"> </Variable>
•Variable VarName-"i" VarXD="19"> </Variable>
•.Variable VarName-"j" V a r I D = ’20"> </Variable>

•/VariableDeclaraticns>
:CalledHodules>

•Module ModuleName-’GetRevenue" ModuleXD=’43"> </Module>
:/CalledModules>
•CailSites>

■CallSite>
•Module ModuleName-"GetRevenue" ModuleXD-"43" InModuIeCollection-"Sales*/> 
•StatementLineNumber/>
•CailSiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
•ParameterMapping>

•/ParameterMapping>
•/CallSite>

•/CaliSites>
•GlobalRefs>
■ConstRets>

■ Constant ConstName- 
■/ConstRefs>
• VarP.ef s>

•Variable VarName-

'gRoyalty* ConstID-’58"> </Constant>

VarID-"0'> </Variable>"gobj Server"
•Variable VarName-'gintSalesModel" VarID-"62"> </Variable> 
•Variable VarName-’sngBookPrice’ VarID-"86*> </Variable> 
■Variable VarName-’gintS a l e s F e n o d "  varID="67’> </Variable> 
•variable varName-’gCN" VarID-"60’> </Variable>
•Variable VarName-"sngAuthorRoyalty* VarID*"85"> </Variable> 
•Variable VarName-"sngPubRevenue" VarID*’84"> </variable> 
•variable VarName-"goStatusPanel" VarID-"2"> </Variable> 
■variable VarName-’gobjServer' VarID-"l"> < / V a n a b l e >

■/VarRe£s>
• /GlobalRets.-’
•GlobalDefs>
■ConstDefs>
•'/ConstDef s>
•VarDefs>

•Variable VarName-’sngAuthorRoyalty" VarID-"85"> i/Variable> 
•Variable VarName-’sngPubRevenue" VarID-*84"> </Variable> 
•Variable VarName-"glngOnitsPerMonth" VarID«"63"> < / V a n a b l e >
• Variable VarName-’gmtSa l e s P e r i o d "  VarID-"67*> </variable> 
•Variable VarName-’gcurAdvertisingCost" varID-’73*> </variable> 
•Variable VarName-'gcurCostPerOmt" varID-"64"> </Variable>
•var table VarName-"gintSalesModei"

•/VarDefs>
•/GlobalDefs>
•LocalRefs>
•ConstRefs>
•/ConstRefs>
•VarRefs>

•Variable VarName-’
• Variable VarName-’
•Variable VarName-'

•/VarRefs>
•/LocalRefs>
•LocalDefs>
•ConstDefs>
•/ConstDefs>
•VarDefs>

•Variable VarName-'
•Variable VarName-'
•Variable VarName-'

•/VarDefs>
•/LocalDefs>

•/CallGraphNcde>

VarID-’62”> </Variable>

VarID-"20*> •/Variable:- 
VarID-"19*> •/Variable?

vGraphData" varID-’14*> </Variable>

i" VarID-"19"> </Variable> 
j * VarID«’20"> •/Variable? 
vGraphData" VarID="14"? </Variable>

•ModuleColiection?frmRevenue</ModuleCollection>
•CallGraphNode NodeXD-"9" ModuleName-’cboAuthors_Click" ParentModName- 

•CalledModules>
•Module ModuleName-"lGetTitles" ModuleID-*3"> </Module>

' frmRevenue’>
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■-/Ca 1 iedModu Les>
•.Cal LS Ltes>

■^CallS ite>
-Module ModuleMame-’lGetTitles’ ModulelD-’l’ InMaduleCollectian-’ClientMain’ 
•;StatementLineNumber/>
<CallSiteAna!ysisCompleted>l</CaliSiteAnalysisCompleted>
<ParameterMapping>

•:/ParameterMapping>
■-/CallSite>

</Call5ites>
- GlobalRefs>
■Cor.stRefs>
■-/ConstP.e: s>
■:VarRefs>

•Variable VarName-’gCN’ VarID-’60’> </Variable>
•-Variable VarName-’rsTities’ VarID=’55"> </Variable>
■-Variable VarName-’gobjServer’ VarID-’L’> </Variable>

</VarRefs>
•-/G lobalRefs>
•:GlobalDefs>
■;ConstDef s>
</ConstDefs>
-;VarDefs>

•-Variable VarName-’rsTitles’ VarID-"55’> </Variable>
•-/VarDef s>
-:/GlobalDefs>
■-LocalRefs>
•:ConstRef s>
</ConscRefs>
•:VarRefs>
</VarRef 
■:/LocalRef s>
■:LocalDefs>
•:ConstDef s>
■;/ConstDefs>
•:VarDef s>
■:/VarDef s>
•-/LocalDef s>

•/Cai iCraphNode>
■iCallGraphNode NodelD-’lO’ ModuleName-’chkDiscount_Click" ParentModName-’frmRevenue’ 

•;CalledModules>
•;/Cal IedModu les>
■;CallSites>
</CallSites>
<GlobalRefs>
■:Cor.stRefs>
•-/ConstRefs>
<VarRefs>
•:/VarRefs>
</GlobalRefs>
<GlobalDefs>
<ConstDefs>
•:/ConstDef s>
•-VarDef s>
</VarDefs>
•:/GlobaiDef s>
<LocalRefs>
<ConstRefs>
•VConsCRefs>
•:VarRef s>
■:/VarRefs>
</LocalRefs>
■-LocalDefs>
■'ConstDefs>
</ConstDefs>
<VarDefs>
■c/VarDefs>
</LocalDefs>

</CallGraphNode>
<CallGraphNode NodelD-’ll" ModuleName-’cmdClose_Cliclc’ ParentModName-’frmRevenue’> 

<CalledModules>
</CalledModules>
<CallSites>
</CallSites>
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<GlobalRefs>
•-ConstRef s>
■-/CcnstRefs>
■-.VarRef s>
</VarP.ef s>
</GlobalRefs>
--.GlobalDefs>
<ConstDefs>
•-/ConstDef s>
■:VarDefs>
■:/VarDef s'̂
-./GLobalDefs>
■-LccalRefs>
■-ConstR.efs>
</ConstRefs>
■; VarRef s>
■V'VarRef s>
-:/LocalRefs>
•:LocalDefs>
-.ConstDef s>
</ConstDefs>
•;VarDefs>
</VarDefs>
■-./LocalDef s>

-- /CallGraphNode>
■CallGraphNode NodeID-*12" ModuleName-"cmdCags_ClLck’ ParentModName-“frmRevenue*>

<Ca 1ledModuies>
■/CalIedModuIes>
■:Cal ISites ->
-;/CallSites>
•GlobalRets>
•-ConstRefs>
•/ConstRefs>
•VarRefs>

■Variable VarName-"goStatusPariel" VarID-*2’> </Variable>
./VarRef s>
■ /GlobalP.er s;
•:GlobalDef s>
•ConstDefs>
•/ConstDefs>
VarDef s>

■;/VarDef s>
•VGlobalDefs>
■:Loca IRef s>
•;ConstRef s>
■-./ConstRef s>
■;VarRef s>
</VarRefs>
•;/LocalRef s>
■-LocalDefs>
•:ConstDef s>
</ConstDefs>
■-.VarDef s>
■:/VarDef s>
■'/LocalDef s>

■:/CailGraphNode>
•-.CallGraphNode NodelD-"13' ModuleName-’cmdHelp_Click" ParentModName-"frmRevenue"> 

■; Formal Parameters>
•:PassByRef>
</Pass8yRef>
<PassByVal>
</PassByVal>

</FormalParameters>
<ConstantDeclarations>
</ConstantDeclaratlons>
<VariableDeclarations>

< V a n a b l e  VarName-’sHelpString" VarID="22"> </Variable>
</VariableDeciarations>
•XalledModules>
</CalledModules>
<CallSites>
</CallSltes>
<GlobalRefs>
<ConstRefs>
</ConstRefs>
<VarRefs>
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./VarRefs>

./GlobalRef s;>

.GlobalDefs>

.ConstDef s>

./ConstDefs>

. V a r D e f s >

./VarDefs>

./GlobaiDefs>
■: Local Refs 
<ConscRefs>
./ConstRefs>
• V a r R e f s >

.Variable VarName-'sHeipString" varID="22’> </Varlable>
./VarRefs>
</LocalRefs>
■LocalDefs>
. C o r . s t D e f s >
./ConstDefs>
■-.VarDef s>

< V a r u b l e  VarName-’sHelpString" V a r l D - ’22*> </Varlable>
./VarDefs>
./LocalDefs>

./Cal!GraphNode>

.CallGraphNode NodeID=" 14 " ModuleName-'’cmdExecute_Clic)c" ParentModName-" frmRevenue"> 
■-.Cal IedModu les>
</CalIedModuies>
.CallSites>
./CaiiSites>
•GlobalRefs>
< C o n s t R e f s >
</ConstRets>
■VarRefs>

•Variable VarName-’goStatusPanel* VarID-"2"> </Variable>
•/VarRefs>
•/GlobalRefs>
.GlobalDef s>
-ConstDef s>
■/ConstDefs>
■VarDefs>
■/VarDefs>
•/GiobaiDefs>
.LocalRefs>
• C o n s t R e f s >
./ConstRefs>
■VarRefs>
./VarRefs>
./LocalRefs>
■LocalDefs>
■ C o n s t D e f s >
./ConstDefs>
.VarDefs>
•:/VarDef s>
./LocalDefs>

■:/CallGraphNode>
.CallGraphNode NodeID=’15" ModuleName-'GetBooksale* ParentModName-*frmRevenue*>

.CalledModules>

./CalledModules>
■'CallSrtes>
./Calls rtes>
.GlobalRefs>
.ConstRefs>
./ConstRefs>
.VarRefs>

.Variable VarName-’gDBName’ V arID-*5’> </Variable>
./VarRefs>
■;/GlobalRefs>
.GlobalDefs>
.ConstDefs>
./ConstDefs>
.VarDefs>
./VarDefs>
./GlobalDefs>
.LocalRefs>
.ConstRefs>
./ConstRefs>
<%'arRefs>
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•;/VarRefs>
•-/LocaiRets>
-LocalDefs>
<ConstDefs>
•-/ConstDef s>
•VarDefs>
•:/VarDefs>
■:/LocalDefs>

•:/CallGraphNode>
•-CallGraphNode NodeID="16" ModuleName-"LoadDB" ParentModName=’frmRevenue">

•-Cal ledModules>
<Module ModuleName-’GetBooksale’ ModulelD-*15"> </Module>

■/CalIedModules>
■-Cal !Sites>

•-Calls ite>
^Module ModuleName-’GetBooksale" ModulelD-’15" InModuleCollection-’frmRevenue"/> 
<StatementLineNumber/>
<CallSiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
-ParameterMapping>

</ParameterMapping>
</CallSrte>

■VCallSites>
•:GlobalRefs>
<ConstRefs>
■;/ConstRefs>
■VarRefs>

•Variable VarName="gDBName" VarID-"5’> </variable>
•variable VarName-"gCN" VarID-"60’> </Variable>

■:/VarRef s>
■;/GlobalRefs>
vGlobalDefs>
■-ConstDefs>
■-/ConstDef s>
•VarDefs >

•^variable VarName-"gCN" VarID-’60"> < / V a n a b l e >
■;Vanable VarName-"gDBName" VarID-’5"> </Variable>

■:/VarDefs>
■;/GlobalDefs>
•:LocalRefs>
•:ConstRef s>
</ConstRefs>
<VarRefs>
/VarRef s>

•/LocalRefs>
•-LocalDef s>
<ConstDefs>
</ConstDefs>
<VarDefs>
■'-/VarDef s>
•-■/LocalDef s>

•:/CallGraphNode>
■:Ca 1 LGraphNode NodeID-"17" ModuleName-’Form_Load* ParentModName-"frmRevenue’>

<CalIedModules>
-Module ModuleName-’lGetAuthors" ModuleID-"2’> </Module>

•;/CalledModules>
•-CaliSites>

•;CallSite>
<Module ModuleName-’IGetAuthors" ModuleID-"2" InModuleCollection-’ClientMain"/> 
<StatementLmeNumber/>
-CallSiteAnaiysisCompleted>l</CallSiteAnalysisCompleted>
■FarameterMapping>

</ParameterMapping>
</CallSite>

■-/CallSites>
•:GlobalRef s>
<ConstP.efs>
</ConstRefs>
<VarRefs>

<variable varName="gCN" VarID-’6 0 ’> </Variable> 
<variable VarName-"rsAuthors" V a rID=’5 4 ’> </Variable> 
<Variable VarName-"rsAuthors" VarID="9"> </Variable> 
<variable VarName-"gobjServer" VarID="l"> </Variable>
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■'.Variable VarName-’goStatusPanel" VarID-"2"> </Variable>
■./VarRef s>
•/G LobalRe£s>
•:GlobalDe£s>
<ConstDefs>
</ConscDe:s>
•-VarDefs>

••-VanaDle VarName-"rsAuthors" VarID="54’> </Variable>
■^Variable VarName-’rsAuthors" VarID="9"> </Variable>
^Variable VarName-"gobjServer" VarID="l"> </Variable>
■Variable VarName-’goStatusPanel" VarID-"2"> </variable>

■:/VarDef s>
■:/G LobalDefs>
■LocaiRefs^
•XonstRefs>
•:/ConstRe£s'-- 
■-VarRef s>
•-/VarRefs>
■-/LocalRefs>
•-LocalDe£s>
■ConstDefs>
■-/ConstDef s>
■:VarDefs>
</VarDefs>
>-/LocalDefs>

-./Cal LGraphNode>
■CallGraphNode NodeID="18" ModuleName-"Form_Unload" ParentModName-’frmRevenue"> 

■:FormalParameters>
^PassByRef>

■-.Parameter VarName-"Cancel" VarID-"23" FirstCJse-"" LastUse-*"> </Parameter> 
-/PassByRef >
■-PassByVal>
■VPassByVal>

■/FormalParameters>
■ConstantDecLarat ions>
■;/ConstantDeclarations>
■;Var LableDeciarations>
•:/VariableDeciarations>
■CalledModules>
■- /Call edModu 1 es >
■:Cal IS Ltes>
■:/Ca 1 IS r tes>
<GlobalRefs>
•;ConstRefs>
■:/ConstRefs:>
•-VarRef s>
■:/VarRef s>
•;/GlobalRef s>
■:GlobalDefs>
■-.ConstDef s>
</ConstDefs>
■:VarDef s>

•-Variable VarName-’gobyServer" VarID-"l"> </Variable>
•^Variable VarName-"gSn" VarID-"6"> </Variable>

</VarDefs>
•;/GlobalDef s>
<LocalRefs>
<ConstP.efs>
</ConstRefs>
<VarRefs>
■./VarRef s>
</LocalRefs>
<LocalDefs>
■-ConstDef s>
■:/ConstDef s>
<VarDefs>
■•-/VarDef s>
</LocalDe£s>

</CallGraphNode>
<CallGraphNode NodeID="19" ModuleName="optAnalysi.s_Click’ ParentModName-"frmRevenue’> 

<FormalParameters>
<PassBy-Ref >

<Parameter VarName-’Index" VarID="24" FirstDse-"REF" LastDse="REF*> </Parameter> 
</PassByRef>
<PassByVal>
</PassByVal>
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■ / F o r m a  1P a r a m e t e r s >
•-Const an tDeclarat rons> 
v/constantDeclarations>
•-Var iableDeclarations>
-'/Var iableDeclarations>
-:Cal IedModu les>
■:/CalledModules>
•-Calls rtes>
</CallSites>
<GlobalRefs>
■;ConstRef s>
•-/ConstP.efs>
-  V a r  R e f s  >

•Variable VarName-'Index" VarID=’24*> </Variable>
■ / V a r R e t s >
■-/GLobaiRefs>
•-GlobalDef s>
■-ConstDef s>
</ConstDefs>
■^VarDef s>
• - / V a r D e r s >
■;/GlobalDefs> 
v. LocalRef s>
•ConstRefs>
-/ConstRefs>
■-VarRef s>
■ : / v a r P . e f s >
-/LocalRefs>
-LocalDefs>
'ConstDefs>
-/ConstDefs>
■-VarDefs>
■ ; / V a r D e f s >
•-/LocalDefs>

• /Ca 1 LGraphNode>
■CallGraphNode NodeID-’20" ModuleName-’txtRevParm_GotFocus’ ParentModName-’frmRevenue">

■-Forma 1 Pa rameters>
•;PassByRef >

■^Parameter VarName-’Index" VarID-’25* FirstUse-’R E F ’ LastUse-"REF’> </Parameter>
■-/PassByRef >
•-PassByVal?
• : / P a s s B y V a l >

• v/FormaiParameters>
•:ConstantDeclaratrons>
■/ConstantDeclarations>
•varlableDeclarations>
■:/Var rableDeclarat rons>
•;Cal IedModu les>
•'/Cal ledModules>
•-Cal lSites>
</CallSites>
■:GlobalRef s>
<ConstRefs>
■:/ConstRefs>
■-VarRef s>

--Variable VarName-’Index' varID-'25’> </Variable>
■ : / V a r R e f s >
•;/GlobalRef s>
-GlobalDefs>
•-ConstDef s>
•:/ConstDefs>
•'VarDef s>
</VarDefs>
</GlcbalDefs>
•:LocalRef s>
•-•ConstRef s>
</ConstRefs>
< v a r R e f s >
</VarRefs>
</LocalRefs>
<LocalDefs>
<ConstDefs>
</ConstDefs>
<VarDefs>
</varDef s>
</LocalDefs>
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■-/CallGraphNode?
■ CallGraphNode NodeID*"21" ModuleName* "udDiscount_DownClick" ParentModName*'frmRevenue"? 

■.Formal Parameters?
■i PassByRef?

/Parameter VarName*’Index" VarID=’26’ FirstOse='REF" LastUse='REF'> </Parameter> 
</PassByRef?
•-PassByVal?
//PassByVal?

■-/Formal Parameters?
■ConstantDeclarations?
■/ConstantDeclarations?
•VarlableDeclarations?
■/VarlableDeclarations?
■CalledModu1es ? 
z/CalIedModu Les?
■CallSites?
//CalISites?
■:GlobalRefs?
/ConstRefs?
■:/ConstRefs?
■VarRefs?

■-Variable VarName*" Index" VarID-"26"> </Variable?
■/VarRefs?
</GlobalRefs?
/GlobalDefs?
/ConstDef s?
•'/ConstDef s>
■VarDefs?
•/VarDefs?
//GlobalDefs?
■LocalRefs?
•■■ConstRef s>
//ConstRefs?
•VarRefs?
</VarRefs?
//LocalRefs?
/LocalDefs?
/ConstDefs?
■'/ConstDef s?
/VarDefs?
//VarDefs?
//LocalDefs?

•/CallGraphNode?
•CallGraphNode NodeID-"22" ModuleName-"udDiscount_UpClick" ParentModName-’frmRevenue"? 

/Formal Parameters?
■PassByRef ?

/Parameter VarName-"Index" VarID-"27" FirsttJse-"REF" LastCJse-'REF" ? //Parameter? 
//PassByRef?
/PassByVal?
//PassByVal?

//FormalParameters?
/ConstantDeclarat ions?
■-/Cons tan tDeclarat ions?
<VarlableDeclarations?
//VarlableDeclarations?
/CalledModules? 
z/CalledModules?
/CaiiSites?
//CallSites?
/GlobalRefs?
/ConstRefs?
//ConstRefs?
/VarRefs?

/Variable VarName** Index" VarID="27"? //Variable?
//VarRefs? 
z/GlobalRefs?
/GlobalDefs?
/ConstDefs? 
z/ConstDefs?
/VarDefs?
z/VarDefs?
z/GlobalDefs?
/LocalRefs?
/ConstRefs?
//ConstRefs?
/VarRefs?
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•'/VarRef s>
■ V  L o c a l R e f s >
•cLocalDefs?
•^ConstDefs?
•:/ConstDefs>
<VarDefs?
</VarDefs>
■ V L o c a i D e r s ?

-./CallGraphNode?

■:ModuleCollect ion?frmCogs</ModuleCollection?
•-CallGraphNode NodeID="24" ModuleName="optPicCoior_Click’ ParentModName-’frmCogs"?

<Formal Parameters> 
vPassByRef?

•-Parameter VarName-* Index" VarID-"40" FirstUse-’R E F ’ LastUse-’REF"? </Parameter? 
■/PassByRef?
•-PassByVal>
■:/PassByVal?

•-/Fo rmalParameters?
-;Cons tan tDeclarat ions>
•i/Cons t an t Dec la rat ions >
<VarlableDeclarations?
</VarlableDeclarations>
■-Cal IedModu les>

•-Module ModuleName-"CalcUnitCost" ModuleID-’26’? </Module>
-:/Ca 1 IedModu les>
•-CallSites?

iCallSite?
■Module ModuleName-’CalcUnitCost’ ModuleID-"26" InModuleCollection-"frmCogs"/> 
-'StatementLmeNumber/?
•iCal lSiteAnalysisCompleted?l</CailSiteAnalysisCompleted?
<ParameterMapp m g >

■VParameterMapping?
■:/Cal IS ite>

■/CallSites?
■'GlobalRef s?
•ConstRefs?
•;/ConstRefs>
•-VarRef s>

•;Vanable VarName-" IngNumPages’ v a rID-’32”? </Variable>
<variable VarName-’Index’ VarID-’40"> i/Variable?
•Variable VarName-’acurCogs* VarID-’39’> </Variable>
■Variable varName-’acurPictureCost" VarID-"37*> </variable>

</VarRefs?
■-/GlobalRef s>
•;GlobalDef s>
■;ConstDef s?
■•/ConstDefs?
■VarDefs?

■-Variable VarName-’acurCogs* VarID-’39’> </Variable>
< V a n a b l e  VarName-"strPicture" varID-"34’> </variable?

•:/VarDef s>
•:/GlobalDefs>
<LocalRefs>
■:ConstRefs?
■:/ConstRef s?
••'VarRefs?
</VarRefs?
</LocalRefs?
■•LocalDefs?
<ConstDefs?
</ConstDefs?
<varDefs?
</VarDefs?
</LocalDefs?

-:/CallGraphNode?
■-.CallGraphNode NodeID=’25” ModuleName=’Commandl_Click" ParentModName-"frmCogs"?

<FormalParameters?
<PassByRef?

<Parameter VarName-’Index" VarID=”41’ Firstase-’REF’ LastOse=’REF*> </Parameter> 
</PassBvRef?
<Pass3yVal?
</PassByVaI?

</FormalParameters?
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• ConscantDec Larations>
•./Cons tan tDeclarat ions>
-VarlableDeclarations>

■iVanable Vartlame-’sHelpString" VarID-"42*> </Variable>
•-/Var lableDeclarat ions>
-CalIedModules>
-/CalledModules>
- C a l l S i t e s >
■ : / C a l l S i t e s >
-GlobalRefs>
■ConstRefs>
-/ConstRers>
- V a r R e f s >

•-Variable VarName-"Index’ VarID="41"> </Variable>
•Variable VarName-’strPaper" VarID-’35’> </Variable>
-Variable varName-’strPicture’ VarID=’34’> <A'ariable>
•variable VarName-’strBinding’ VarID="33"> </VariabLe>

-/VarRefs>
-/GlobalRefs>
-GlobalDefs>
- C o n s t D e r s >
•-/ConstDefs>
-VarDefs>

-Variable VarName-"lRetVal" VarID-"28’> < / V a n a b l e >
-/VarDefs>
-/GLobalDefs>
-LocalRefs>
•;ConstRef s>
</ConstRefs>
•VarRefs>

■-Variable VarName-’s H e l p S t r m g ’ varID-"42"> </Variable>
-/VarRefs>
-/LocalRefs>
-LocalDefs>
• C o n s t D e f s >
-/ConstDefs>
-VarDefs>

-Variable VarName-"sHelpStrmg* VarID-"42"> </Variable>
-/VarDefs>
-/LocalDefs>

-/CallGraphNode>
•CallGraphNode NodeID="26* ModuleName-’CalcUnitCost’ ParentModName-’frmCogs"> 

-Formal Parameters>
-PassByRef >
-/PassByRef>
-PassByVal>
-/PassByVai>

-/FormalParameters>
-ConstantDeclarations>
-/ConstantDeclarations>
-VarlableDeclarations>

-Variable VarName-’curTemp’ VarID-"43"> </Variable>
-/VarlableDeclarations>
-CalledModules>
-/CalledModules>
-CallSites>
-/CallSites>
-GlobalRefs>
-ConstRefs>
-/ConstRefs>
-VarRefs>

-Variable VarName-’IngNumPages* VarID-’32’> </Variable>
-Variable VarName-’acurCogs’ VarID="39’> </Variable>

-./VarRef s>
-./GlobalRef s>
-GLobalDefs>
-ConstDefs>
-/ConstDefs>
-VarDefs>
- A ’arDef s>
</GlobalDefs>
-LocalRefs>
<ConstRefs>
</ConstRefs>
<VarRefs>

-Variable VarName-’curTemp’ VarID-’43"> </variable>
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</VarRefs>
■;/LccalRers>
•LocaiCers>
<CcnstDers>
</ConstDets>
<VarDets>

cvariable VarName-’curTemp" VarID-"43"> </Variable>
/VarDef s>

■;/LocalDef s>
■:/Cal iGrapnNade>
<CaLlGraphNode NodeID="27" ModuleName-’GetCOGS’ ParentModName-"frmCogs“> 

<FormalParameters>
■: P a s s B y R e f  >
•/PassByRef>
■ P a s s B y V a 1 >

■;/PassByVal>
</Formal Parameters>
■:Cons tan tDeclarat ions >
</ConstantDeclarations>
<VarLableDeclarat ions>

< v a n a b l e  VarName-"fid" VarlD="44"> </Variable>
-^variable VarName-“strSQL" VartD="45*> </Variable>
< V a n a b l e  VarName-"rsCOGS" VarID="46"> < / V a n a b l e >

■:/Var lableDeclarat ions>
<CalledModules>

•Module ModuleName-"GetRsCOGS" ModuleID-*42’> </Module>
</Ca1LedModules>
•-Cal LSites>

■;CallSite>
<Module ModuleName-"GetRsCOGS* ModuleID-"42* InModuleCollection-"Sales’/> 
<StatementLineNumber/>
<CallSiteAnalysisCompleted>l</CallSiteAnalysisCampleted>
■ : P a r a m e t e r M a p p i n g >

■-ActualParameter VarName-"strSQL" VarID-’45*> </ActualParameter> 
•;passByVal>

<Parameter VarName-’strSQL" VarID-"90" FirstUse-"REF" LastOse-*REF*>
d/Parameter'-

■:/PassByVal>

■:/ParameterMapping>
•;/CallSite>

■-/Calls Ltes>
<GlobalRefs>
<ConstRefs>
•:/ConstRef s>
<varRefs>

•^Variable VarName-"gCN" VarID-"60"> </Varlable>
< V a n a b l e  VarName-*rsCOGS" VarID-"57"> </variable>
-.Variable VarName-"gSn* VarID-"6"> </Varlable>
< V a n a b l e  VarName-’gobjServer" VarID-*l"> < / v a n a b l e >  
<Variable VarName-’goStatusPanel’ VarID-’2"> </Variable> 

</VarRefs>
</GlobalRefs>
■-.GlobalDef s>
-XonstDef s>
</ConstDefs>
■-'VarDef s>

<Variable VarName-"rsCOGS’ VarID-"57"> </varlable>
^Variable VarName-"acurPaperCost" VarID-"38"> </Variable> 
•:Vanable VarName-’acurPictureCost" VarID-'37"> </variable> 
<Variable VarName-’acurBindingCost’ V a r I D - ’36"> </Variable> 

</VarDefs>
</GlobalDels>
<LocalRefs>
■XonstRef s>
</ConstRefs>
■:VarRef s>

<Variabie VarName-"rsCOGS" VarID="46’> </Variable> 
•^variable VarName-’strSQL" VarID-"45’> </Variable> 

</VarP.efs>
</LocalRefs>
<LocalDefs>
-XonstDefs>
</ConstDefs>
<VarDefs>
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. V a r i a b l e  V a r N a m e - ’rsCOGS* VarID=“46"> </Variable>
• - V a r i a b l e  VarName-"strSQL* VarID="45"> </Variable>

•■/VarDefs?
•■/LocalDefs?

• ■ / C a l l G r a p h N o d e ?
■ C a l l G r a p h N o d e  N odeID="28’ ModuleName-’lGetBookPages’ ParentModName-"frmCogs"? 

■ F o r m a l P a r a m e t e r s ?
■ ■ P a s s B y R e f  >

•Parameter VarName-’strTitle" VarID="47" FirsttJse-’REF" LastUse-’REF’? 
•■/Parameter?

• ■ / P a s s B y R e f >
• ■ P a s s B y V a l ?
• ■ / P a s s B y V a l ?

• - / F o r m a l P a r a m e t e r s >
■ C o n s t a n t D e c l a r a t ions>
■ / C o n s t a n t D e c l a r a t lons>
■; Var lableDeclarations?

- ■ V a r i a b l e  Var N a m e - ’strSQL* VarID»"48’? </Variable>
■ - V a r i a b l e  VarName-"rsBookPages" VarID-’49"? </Variable>
•■variable varN a m e - ’strOldTitle" VarID=’50"? </variable?
■■Variable varName= ’ IngPages" VarID="51"? < / V a n a b l e >

-■/Var lableDeclarat ions?
• - C a l l e d M o d u l e s ?

■ M o d u l e  ModuleName-’GetBookPages" ModulelD-"41"? </Module?
• ; / C a l l e d M o d u l e s ?
< C a l l S i t e s >

<CallSite>
• ■ M o d u l e  ModuleName-’GetBookPages" ModuleID=”41* InModuleCoLlection-’Sales 
•■Statement L m e N u m b e r / ?
•;CaLlSiteAnalysisCompleted?l</CallSiteAnalysisCompleted>
•■ParameterMapping?

•■ActualParameter VarName-’strSQL’ VarID-"48*? </Actua!Parameter? 
•■PassByVal?

--Parameter VarName-’strSQL* varID-’89" FirstUse-’REF’ Lastase-’REF*
■ / P a r a m e t e r ?

</PassByVal?

•■/ParameterMapp 
•/CaLlSite? 

■-/CallSites?
-■GlobalRef s? 
-ConstRefs?
</ConstRefs>
-■VarRefs?

■ Variable VarName- 
■-Variable VarName- 
--Variable VarName- 
■Varlable VarName- 
•■Variable VarName- 

-■/VarRefs? 
•■/GlobalRefs? 
■■GlobalDefs?
•■ConstDef s?
•■/ConstDef s?
•-Va rDefs?

•■Variable VarName- 
•■/VarDefs? 
•■/GlobalDefs? 
<LocalRefs? 
■■ConstRefs? 
■■/ConstRefs?
■VarRefs?

•■variable VarName- 
•■Variable VarName- 
•■Variable VarName- 
<Variable VarName- 

</varRefs>
•■/LocalRef s? 
•■LocalDefs?
•■ConstDef s?
</ConstDefs?
<varDefs?

< V a n a b l e  VarName- 
•■Variable VarName- 
<Variable VarName-

ing?

’gCN" VarID-’60"? </Variable? 
rsBookPages’ varID-"56"> </Variable> 
’strTitle’ VarID-"47"? < / v a n a b l e ?  
'goStatusPanel* VarID-"2"? < / V a n a b l e ?  
'gobjServer’ varID-"l"? </Variable?

’rsBookPages" VarID-"56’> </variable?

’IngPages" VarID-"51’> </Variable? 
’rsBookPages’ VarID-’49"> </Variable? 
’strSQL’ VarID="48"> </Variable? 
’strOldTitle" VarID="50"? </Variable?

"strOldTitle" VarID=*50*> </Variable> 
"IngPages* V a rID=’51’> </Variable> 
"rsBookPages* VarID=*49"> </Variable>
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■Variable VarName-'strSQL’ VarID="48 ■> '/Variables
■/VarDefs>
'/LocalDefss 

•;/Cai IGraphNodes
■CallGraphNode NodeID=*29" ModuleName-"Form_Load" ParentModName” ’frmCogs"> 

'CalledModuless
'Module ModuleName” "lGetBoolcPages’ ModuleID="28"> </Module>
■Module McduleName="GetCOGS" ModuleID="27"s </Module>
--Module ModuleName-’CalcUnitCost" ModuleID=’26"> '/Modules 

■-./Call edMod u 1 es s 
• CalIS ites.>

' C a l l S i t e s
•Module ModuleName-"lGetBookPages" ModuleID” "28" InModuleCollection-"frmCogs’/s 
'StatementLineNumber/>
■ Calls iteAnalysisCompletedsl'/CallSiteAnalys rsCompleted>
■-ParameterMapprng>

'/ParameterMapp lng>
•-/Cal IS ites 
•-Ca 115 ites

<Module ModuleName” "GetCOGS" ModuleID” "27" InModuleCollection-*frmCogs*/> 
•-.StatementLlneNumber/>
■CallsIteAnalyslsCompleted>l</CallSiteAnalyslsCompleted>
■ParameterMapping>

'/ParameterMappings 
•/CallSites 
•:CallSrte>

■Module ModuleName-’CalcOnitCost* ModuleID”"26" InModuleCollection-"frmCogs'/> 
•StatementLrneNumber/>
■;Cal ISiteAnalysisCompletedsl'/CallSiteAnalysisCompleteds 
• ParameterMappmgs

■/ParameterMappmgs 
'/CalISites 

■■/Cal IS itess 
■GlobalRefss 
-ConstRefs>
'/ConstRefss 
-VarRefs>

■Variable VarName-’acurCogs* VartD-’39’s '/Variables 
<Variable VarName-’rsCOGS* varID*"57"> '/Variables 
Variable VarName-’gSn* VarID-"6"s </Variable>

■Variable VarName” 'gCN" VarID“ *60"> </Variable>
■-Variable VarName-"rsBookPages" VarID-"56"> </variable> 
'Variable VarName-’goStatusPanel" VarID-"2"> </Variable> 
-Variable VarName-’gobjServer* VarID-"l"s </Variable> 
'Variable VarName-’acurBindingCost’ VarID-’36"> </Variable> 
'Variable VarName-"IngNumPages’ VarID-"32’> '/Variables 
'Variable varName-’acurPaperCost" VarID-"38"> '/Variables 
-Variable VarName-’acurPictureCost" VarID-"37*s '/Variables 

'/VarRefss 
'/GlobalRefss 
'GlobalDefss 
'ConstDefss 
'/ConstDefss 
■-VarDef ss

'Variable VarName-’rsCOGS* VarID-"57’s '/Variables 
'Variable VarName-'acurPaperCost* VarID-*38"s '/Variables 
'Variable VarName-’acurPictureCost’ VarID=’37’s '/Variables 
'Variable VarName-’acurBindingCost" VarID-*36"s '/variables 
'Variable VarName="rsBookPages" varID=’56’s '/Variables 
'Variable VarName-"strPaper" VarID="35"s '/Variables 
'Variable VarName-’strPicture" varlD-"34"s '/Variables 
'Variable VarName="strBinding" VarID=*33"s '/Variables 
'Variable VarName-’acurCogs’ VarlD="39’s '/Variables 
•-variable VarName-"IRetVal’ VarID="28"s '/Variables 
'Variable VarName-"IngNumPages* VarID="32’s '/variables 

'/VarDefss 
'/GiobalDefss 
'LocalRefss 
'ConstRefss 
'/ConstRefss
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■; V a r  Rets >
■ - / V a r R e f s s  
• ' / L c c a l R e f s s  
• L c c a l D e f s s  
■ : C o n s t D e f s s  
• : / C o n s t D e f  s >
■ : V a r D e f s >
■ / ' V a r D e f  s >

■ / L o c a l D e f s >
■ ; / C a l l G r a p h N o d e >
■ . C a l l G r a p h N o d e  N o d e I D - " 30*  ModuleName-"optBinding_Click" ParentModName3 " frmCogs " s  

< F o r m a l P a r a m e t e r s >
•;  P a s s B y R e f  >

■Parameter VarName-’Index" VarID="52" FirstDse-’REF" LastUse-’R E F ’s </Parameter> 
■;/PassByRef >
■; P a s s  B y  V a i s  
■ - / P a s s B y V a l *

■ . / F o r m a l  P a r  a m e t e r s s  
■ - C o n s t a n t D e c l a r a  t i o n s >
< / C o n s t a n t D e c l a r a t i o n s >
• - V a r  l a b l e D e c l a r a t  L o n s s  
< / V a r l a b l e D e c l a r a t l o n s s  
- C a l l e d M o d u l e s >

-Module ModuleName-’optPaperGrade_Click* ModulelD-’3l’s </Module>
<Module ModuleName-’CalcOnitCost" ModulelD-"26*s </Modules 

■ ; / C a l  IedModules>
■ - C a l l s  i t e s s  

• - C a l l S i t e s
■Module ModuleName-’optPaperGrade_Click" ModulelD3 "31"

InModuleColiection3 "frmCogs"/>
< StatementLmeNumber/s
• C a l I S iteAnalysisCompletedsl</CallSiteAnalysisCompleted>
•-ParameterMappmgs

•-/ParameterMapp ings 
■/CalISites 
CallSites

■Module ModuleName-’optPaperGrade_Click" ModulelD-"31" 
InMcduleCollection3 "f rmCags"/s 

•-St a tementLineNumber/s
• CallSiteAnalysisCompletedslc/CallSiteAnalysisCompleteds 
•-ParameterMapp ings

</ Paramet e r M a p p m g s
•'/CallSites
<CallSite>

<Module ModuleName-*optPaperGrade_Click" ModulelD-’31* 
InModuleCollection-’frmCogs'/>

<StatementLineNumber/>
<CallSiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
-ParameterMappmgs

< / P a r ameterMappmg>
•-/CallSites
<CallSite>

<Module ModuleName-"optPaperGrade_Click" ModulelD-’31" 
InModuleColiection-’frmCogs"/>

<StatementLineNumber/>
■^CallSiteAnalysisCompletedslc/CallSiteAnalysisCompleteds 
<ParameterMappings

</ParameterMapping>
</CallSites
<CallSites

cModule ModuleName-’CalcOnitCost’ ModuleID-*26" InModuleCollection-"frmCogs’/s 
<StatementLineNumber/>
<CallSiteAnalysisCompleted>l</CallSiteAnalysisCompleted>
< ParameterMappings

</ParameterMapping>
</CallSite>
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•/CallSites*
■-■GlobalRef s*
■ConstRefs*
■/ConstRefs*
-VarRef s*

•^Variable VarName3 "IngNumPages* varID=“32"* </Variable*
■^Variable VarName="acurPaperCost* VarID="38** </Variable*
-.Variable VarName="Index" VarID="52“* </Variable*
■-Variable VarName="acurCogs" VarID="39"* </Variable*
•variable VarName="acurBindingCost" VarID=*36*> </Variable*

■/VarRefs>
•/GlobaiRefs*
■GlobalDefs*
■ConstDefs*
■-/ConstDef s>
■VarDefs*

■:Vartable VarName="strPaper* VarID="35"> </Variable*
•Variable VarName="acurCogs" VarID«"39’* </Variable*
•-Variable VarName="strBinding* VarID=*33’* </Variable*

■-/VarDefs*
•/GlobalDefs*
-LocalRefs*
-ConstRefs*
■-/ConstRefs*
-VarRefs*
-.■/VarRef s>
•VLocaiRefs*
■LocaiDefs*
-ConstDef s*
■;/ConstDef s*
•VarDefs*
■/VarDefs*
•:/Loca!DefS>

■/CalIGraphNode*
CallGraphNode NodeID-"31* ModuleName-"optPaperGrade_Click* ParentModName**frmCogs"* 

•-Formal Parameters*
■PassByRef*

•-Parameter VarName-*Index" VarID»"53" Firstuse**REF" LastUse-’REF"* </Parameter* 
/PassByRef*

■PassByVal*
-/PassByVal*

</FormalParameters*
•; Cons tan tDeclarat ions*
■:/Cons tan tDeclarat ions*
■VarlableDeclarat ions*
•-/Var lableDeclarations*
<Ca1IedModules*

■:Module ModuleName-’CalctlnitCost* ModuleID-*26’* </Module*
</CalIedModules*
-;CaliSites*

■:CallS ite*
<Module ModuleName-’CalcUnitCost" ModuleID-*26" InModuleCollection-’frmCogs"/* 
■cStatementLineNumber/*
<CallSiteAnalysisCompleted*l</CallSiteAnalysisCompleted*
<ParameterMapping*

</ParameterMapping*
■-/CallSite*

■-/CallSites*
■:GlobalRef s*
<ConstRefs*
</ConstRefs*
■iVarP.ef s*

-Variable VarName-*IngNumPages" VarID-"32"> </Variable* 
•:Variable VarName=*Index* VarID=*53’* </Variable> 
<Variable varName=’acurCogs" VarID=’39"* </Variable* 
<Variable VarName="acurPaperCost* V a rID=’38"* </Variable* 

</VarRefs*
</GlobalRefs>
<GlobalDefs>
<ConstDefs*
</ConstDefs*
<VarDefs*

<variable VarName="acurCogs“ VarID»*39*> </Variable* 
<variable VarName="strPaper’ VarID=’35*> </Variable>
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//VarDef s?
•../GlobalDefs >
/LocalRefs?
/ConstRefs?
//ConstRefs?
/VarRefs?
//VarRefs>
//LocalRefs?
/LocalDefs?
/ConstDefs?
/ /ConstDefs?
/VarDefs>
■■/VarDef s>
//LocaLDefs>

//CallGraphNode?

•McduleColiection?frmBookSales</ModuleCollection>
•ModuleCoilect ion?ServerMa ln</ModuleCollection>
/CallGraphNode NodeID=’34" ModuleNarae=”Main" ParentModName-’ServerMain’?

■-Cal IedModu les >
■/CalledModules?
/CallSites?
//CallSites?
■GlobalRefs?
•■ConstRefs?
//ConstRefs?
/VarRefs?
■/VarRefs?
//GlobalP.efs?
■GlobalDefs?
/ConstDefs?
//ConstDefs?
/VarDefs ?
■/VarDefs?
■/GlobalDefs?
•LocalRefs?
/ConstRefs?
//ConstRefs?
/VarRefs>
■-/VarP.efs?
■-/LocalRef s>

•■LocalDefs?
•ConstDefs?
■/ConstDefs?
/VarDefs?
//VarDefs?
//LocalDefs?

//CalIGraphNode?
/CallGraphNode NodeID-’35” ModuleName-"ServerMsg” ParentModName-'ServerMain”?

/Formal Parameters?
■-PassByRef?

/Parameter VarName-”rstrMessage" VarID-*74” FirstUse-"' LastUse-” ? //Parameter? 
/Parameter varName-'rintButtons” VarID-*75’ FirstUse-”  LastUse-” ? //Parameter? 
/Parameter VarName-’rstrTitle" VarID-"76* FirstUse-”  LastUse-” ? //Parameter?

//PassByRef?
/PassByVal?
//PassByVal?

//FormalParameters?
/ConstantDeclarations?
//ConstantDeclarations?
/VarlableDeclarations?
</VarlableDeclarations?
/CalledModules?
//CalledModules?
/CallSites?
//CallSites?
/GlobalRefs?
/ConstRefs?
//ConstRefs?
/VarRefs? 
z/varRefs?
//GlobalRefs?
/GlobalDefs?
/ConstDefs?
//ConstDefs?
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-VarDefs>
-/VarDef s?
-/GlobalDefs?
■■LocalRef s>
-ConstRefs?
-/ConstRefs?
■:VarRefs>
-/VarRefs>
•./LocalRefs?
-LocalDefs?
ConstDefs>

-/ConstDefs?
■V’arDef s>
-/VarDefs?
•;/LocalDefs?

•i/Cal IGraphNode?

-ModuleCoilect ron>Model</ModuieCollection>
-CallGraphNode NodeID=*37" ModuleName-"intGetMonthSales* ParentModName®’Mod e l ">

-Forma I Parameters?
-PassByRef?

-.Parameter VarName**IntCurMonth* varID-"77* FirstUse*"REF* LastUse*’REF’? 
-/Parameter?

-Parameter VarName*’intSalesPerrod’ VarID*’78* FirstUse*’REF" LastUse*’REF*>
•/Parameter?

-Parameter VarName-’ IncModelType’ VarID-"',9" First Use* "REF" LastUse-’REF"?
■/Parameter?

•/PassByRef>
-PassByVal>
•./PassByVal?

-/FormalParameters?
■ ConstantDeclaratrons>

-Constant ConstName-"intMAX_SCHOOL_BOOK 
" Const ID*"8 1 ’? -/Constant>

-Constant ConstName-*intMAX_POP_NOVEL 
’ Const ID-"82"> -/Constant?

-Xonstant ConstName-"intMAX_C£LEBRITY 
’ Const ID-"83"> -/Constant?

■-■/Cons tan tDeclarat ions?
-VarlableDeclarat ions?

-Variable VarName*’IntMonthSales’ VarID-"80’? -/variable?
-/VarlableDeclarations?
-CalledModules?
-/CalledModu1es ?
-CallSites?
-/CallSites?
-GlobalRefs?
•ConstRefs?
-/ConstRefs?
-VarRefs?

-Variable VarName-"intSalesPeriod’ VarID-*78"? -/Variable?
-variable VarName-’IntCurMonth’ VarID-’77’? -/Variable?
-Variable VarName-’mtModelType" VarID-"79"? -/Variable?
-Variable VarName*"gobjServer" VarID-"Q’? -/Variable?

-/VarRefs?
-/GlobalRefs?
-GlobalDefs?
-ConstDefs?
-/ConstDefs?
-VarDefs?
-/VarDefs?
-/GlobalDefs?
-LocalRefs?
-ConstRefs?

-Constant ConstName*"intMAX_CELEBRITY* ConstID=*83'? -/Constant?
-Constant ConstName*’intMAX_POP_NOVEL’ ConstID**82"? -/Constant?
-Constant ConstName**intMAX_SCHOOL_BOOK’ ConstID*’81*? -/Constant?

-/ConstRefs?
-VarRefs?

-variable VarName*"IntMonthSales’ VarID=’80"? -/Variable?
-/VarRefs?
-/LocalRefs?
-LocalDefs?
-ConstDefs?
-/ConstDefs?
-VarDefs?
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cvariabie VarName-" IntMonthSales" VarID=’80’> </Variable>
■■/’VarDef s>
■: /LocalDef s>

•■/CallGraphNode>

■ModuleCollect ion>Sales</ModuieCollection>
■-CallGraphNode tlodelD-’ 39" ModuleName-’GetAuthors’ ParentModName-’Sales">

■ Forma1Parameters>
■-PassByRef >
■-'/PassByRef >
•:PassByVai>
</PassByVal>

■-/Fa rmalParameters>
•-ConstantDeclarat ions>
•VConstantDeclarations>
•-Var LableDeclarat ions>

■:Variable VarName-’strSQL’ VarID-*87"> </Variable>
■-/Var lableDeclarat ions>
■;Ca 1 ledModules>
< /CalIedModules>
■iCallSLtes>
</CallSites>
-GlobalRefs-'
•-ConstRe:s>
</ConstRefs>
■VarRefs>

<Variable VarName-’g C N ’ v a r I D - ’60"> </variable>
--Variable VarName-’rsAuthors" VarID=’54*:> </Variable>

■/VarRefs >
•'/GlobalRefs:-
•;GlobalDefs>
■ConstDefs>
-•/ConstDefs>
•VarDefs>

•variable VarName-’rsAuthors" VarlD-*54"> </Variable>
•■'/VarDef s>
•:/GlobalDets>
■LocalRefs>
•ConstRefs>
-'/ConstRef s>
•- VarRefs>

•^variable VarName-’strSQL" VarID-"87’> </variable>
•-/VarRefs>
■/LocalRefs>
--Local Defs>
•'ConstDef s>
•'/ConstDef s>
•;VarDef s>

•-Variable VarName-’strSQL* VarID-’87"> </Variable>
■■/VarDef s>
■'/LocalDef s>

-:/CallGraphNode>
-;Cal IGraphNode NodeID-"40* ModuleName-’GetTitles* ParentModName-*Sales"> 

•;FormalParameters>
■iPassByRef >
■-/PassByRef >
•;PassByVal>

•-Variable VarName-’s t r S Q L ’ VarID-’88* FirsttJse-’REF* LastDse-’REF"> < / v a n a b l e >  
</PassByVal>

•'/Forma lParameters>
■-Constant Declarations:- 
</ConstantDeclarations>
<VariableDeclarations>
■:/Var iableDeclarations>
<CalledModules>
</CalledModules>
<CallSites>
</CallSites>
iGlobaIRefs>
<CcnstRefs>
</ConstP.ef s>
<VarRefs>

<variable VarName-’gCN" VarID-"60’> </Variable>
<Variable VarName-’rsTitles’ VarID=*55’> </Variable>

</VarRefs>
</GlobalRefs>
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• - G l c b a l D e f s >
■ . C o n s t D e f  s >
•:/Cor.stDef s>
<VarDe:s>

•-Variable VarName-" rsTltles’ VarID=’55"> </Variable>
</VarDefs>
-./GlobalDefs>
■-LocalRef s>
■ConstRefs>
■;/ConstRefs>
■-VarRef s>

•-Variable VarName-’strSQL' VarID-"88"> </Variable>
•/VarRefs>
■-/LocalRefs>
•-LocalDef s>
■-ConstDef s>
•:/ConstDefs>
•-VarDef s>
■:/VarDefs>
■:/LocalDefs>

/CallGraphNode>
■CallGraphNode NodeID-’41" ModuleName-"GetBookPages’ ParentModName-'SaLes’>

■-Fo rmal Parameter s>
:PassByRef>
•'/PassByRef >
<PassByVal>

<Variable VarName-’strSQL" VarID-’89" FirstOse-’REF’ LastOse-’R E F ’> </Variable> 
-•/PassByVal>

■-/Formal Pa rameters>
<ConstantDeclarations>
■-/Cons tan tDeclarat ions>
■'VanableDeclarations>
■./Var lableDeclarat ions>
■-Cal IedModu les>
■:/CalledModules>
■'Calls ites>
•/CalISites>
;GlobalRefs>
■:ConstRef s>
■;/ConstRef s>
•:VarRefs>

•^Variable VarName-’gCN’ varID-*60"> < / V a n a b l e >
•^Variable VarName-’rsBookPages’ VarID-’56’> </Variable>

■-/VarRef s>
•-/GlobalRef s>
•GlobalDefs>
■-ConstDef s>
</ConstDefs>
<VarDefs>

^Variable VarName-*rsBookPages’ VarID-’56’> < / V a n a b l e >
</VarDefs>
■'./GlobalDefs>
<LocalRefs>
<ConstRefs>
</ConstRefs>
■;VarRef s>

■cVanable VarName-’strSQL" VarID-*89"> </Variable>
</varRefs>
•-/LocalRef s>
•: LocalDef s>
■-.ConstDef s>
</ConstDefs>
■CvarDef s>
•:/VarDef s>
</LocalDefs>

•VCal!GraphNode>
<CalIGraphNode NodeID-"42’ ModuleName-’GetRsCOGS" ParentModName-’Sales"> 

<FormalParameters>
<PassByRef>
</PassByRef>
<PassByVal>

<Variable VarName-’strSQL* VarID="90" FirstUse-’REF’ LastOse=’REF*> </Variable> 
</PassByVal>

</FormalParameters>
<ConstantDeclarations>
</ConstantDeclarations>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

-VarlableDeclarationss 
■-/Var lableDeclarat ionss 
-.Cal IedModu less 
-/CalledModuiess 
-CalIS itess 
-/CallSitess 
-GlobalRefss 
-ConstRef s>
--/ConstRefss 
-VarRefss

-Variable VarName-’gCN" VarID-"60’s </Variable>
■Variable VarName-"rsCOGS’ VarID='57’s </Variable>

•-/VarRefss 
-/GlobalRefss 
■GlobalDefs>
-ConstDefsj 
-/ConstDefs>
-VarDef s>

-Variable VarName-’rsCOGS" varID-"57"s </Variable>
■/VarDefs>
-/GlobalDefss 
•-LocalRef s>
■-ConstRefs-'*
-/ConstRefs>
-VarRefss

-Variable VarName-’strSQL’ VarID-*90’s -/Variables 
-/VarRefss 
-./LocalRef s>
-LocalDefs>
-ConstDefs>
■:/ConstDef s>
■VarDefss 
-/VarDefs>
•/LocalDetss

-/Ca1ICraphNodes
-CallGraphNode NodeID-’43" ModuleName-’GetRevenue’ ParentModName-"Sales’s

■FormalParameters>
-PassByRef>

-Parameter VarName*’ intSalesModel’ VarID*"91* FirstUse-’REF" LastUse-’REF"s
■/Parameters

•Parameter VarName-’curCostPerOnlt’ VarID-’92* FirstUse-’REF" LastUse*"REF’s
-/Parameters

-Parameter varName-’curAdvCost’ VarID-’93" FirstUse-'REF" LastUse-’REF">
■/Parameters

-Parameter VarName-"mtSalesPeriod" VarID-"94’ FirstUse-’REF’ LastUse-’REF’>
•/Parameters

-Parameter VarName-’IngUnitsPerMonth’ varID-’95" FirstUse-’REF" LastUse-’REF’s
-/Parameters

-Parameter VarName-’bolIsDiscount* VarID-"96" FirstUse-”  LastUse-” >
-/Parameters

-Parameter VarName-’strBookTitle’ VarID-’97* FirstUse-’REF’ LastUse-’REF’s
-/Parameters

-/PassByRefs 
-PassByVals 
-/PassByVals 

-/Formal Parameterss 
-ConstantDeclarationss 
•/ConstantDeclarationss 
-VarrableDeclarat ionss

-Variable VarName-’i" VarID-*98’> -/Variables 
-Variable VarName-’iOldBound" varID="99"s -/Variables 
-variable VarName-"iNewBound" VarXD-’100’s -/Variables 

-/VariableDeclarationss 
-CalledModuiess

-Module ModuleName-"GetPubRevenue" ModuleID=’45*s -/Modules 
-Module ModuleName-’ServerMsg’ ModuleID=*35"s -/Modules 
-Module ModuleName-’GetAuthorRovalty’ ModuleID-’44’s -/Modules 

-/CaiIedModuless 
-CallSitess 

-CallSites
-Module ModuleName-"GetPubRevenue’ ModuleID=*45" InModuleCollection-’Sales"/s
<StatementLineNumber/s
-CallsiteAnalysisCompletedsl</CallSiteAnalysisCompleteds
-ParameterMappings

-ActualParameter VarName-’strBookTitle* VarID=*97’s -/ActualParameters 
-PassByRefs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



181

-Parameter VarName-'strTitle’ VarID="106" FirstUse-'REF" LastUse-’REF’s
■/Parameters

-/PassByRefs

-/ParameterMappmgs
-/CallSites
-CallSites

-Module ModuleName-’ServerMsg" ModulelD-"35’ InModuleCollection-’ServerMain’/s 
-StatementLineNumber/s
-Cal ISiteAnalys isCompietedsl-/CallSiteAnalys isCompleteds 
- ParameterMappmgs

- /ParameterMappmgs
■-/CallSites
■-CallSites

-Module ModuleName-'GetAuthorRoyalty" ModuleID="44" InModuleCollection=*Sales’/> 
-StatementLineNumber/s
• CalISiteAnalysisCompletedsi</CallSiteAnalysisCompleteds 
-ParameterMappings

-/ParameterMappings 
-/CallSites 
<CallSites

-Module ModuleName-’ServerMsg" ModulelD-* 35’ InModuleCoIlection-"ServerMain"/s 
-StatementLineNumber/s
-CalISiteAnalysisCompletedsl</CallSiteAnalysisCompleteds 
- P a r a meterMappmgs

- /ParameterMappmgs 
-/CallSites 

-/CalISitess 
-GlobalRefss 
-ConstRefss

-Constant ConstName-’gRoyalty’ ConstlD- 
-/ConstRefss 
•VarRefss

-Variable VarName’
-Variable VarName 
-Variable VarName

'58’s -/Constants

gobjServer" V a r I D - ”0*s -/Variables 
gintSalesModel" VarID-"62"s -/'/anables 
s n g B o o k P n c e ” VarID»"86"s -/Variables 

-Variable VarName--"gintSalesPeriod’ VarID-’67"s -/Variables 
-variable VarName-’gCN’ VarID-"60"s -/Variables 
-Variable VarName-’strBooKTitle* VarID-'97"s -/Variables 
-Variable VarName-"IngUnitsPerMonth" VarID«’95"s -/Variables 
-Variable VarName-"intSalesPeriod" varID-"94"s -/Variables 
-Variable VarName-"curAdvCost" VarID-"93"s -/variables 
-Variable VarName-’curCostPerUnit" VarID-"92"> -/Variables 
-Variable VarName-"intSalesModel" VarID«"91"s -/variables 
-variable VarName-"sngAuthorRoyalty" VartD-*85’s -/variables 
-Variable VarName-’sngPubRevenue* VarID-"84"s -/variables 

-/VarRefss 
-/GlobalRefss 
-GlobalDefss 
-ConstDefss 
-/ConstDefss 
-VarDefss

-Variable VarName-"sngAuthorRoyalty* VarID-’85"s -/variables 
-Variable VarName-’sngPubRevenue" VarID»’84"s -/Variables 
-variable VarName-’glngUnitsPerMonth" VarID=’63"s -/Variables 
-variable VarName-’gintSaiesPeriod’ VarID=’67"s -/Variables 
-variable VarName-’gcurAdvertisingCost’ VarID=’73"s -/Variables 
-variable VarName-"gcurCostPerUnit" VarID-"64’s -/Variables 
-variable VarName-’gintSalesModel" VarID=*62"s -/Variables 

-/VarDefss 
-/GlobalDefss 
-LocalRefss 
-ConstRefss 
-/ConstRefss 
-VarRefss

-variable VarName-’i* VarXD 
-Variable VarName 

-/VarRefss 
-/LocalRefss

9 8 "s -/Variables 
iOldBound* VarID="99"s -/Variables
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■■LocalDef s>
■ConstDefs?
-/ConstDefs>
■VarDefs>

•-Variable VarName-"i’ VarID=*98"? -/Variable?
<Variable VarName-"iOldBound" VarID="99’> </Variable>

•/VarDefs?
■/LocalDefs>

-/CallGraphNode?
■-CallGraphNode NodeID-"44" ModuieName-’GetAuthorRoyalty" ParentModName*"Sales">

-FormalParameters?
-PassByRef?
-/PassByRef >
-■PassByVal>
-/PassByVal?

-./Formal Parameters?
-ConstantDeciarac ions?
%/ConstantDeclarations>
-VarlableDeclarations>

•--Variable VarName*"!" VarID="101’> </Variable>
-Variable varName-'cGrossMonthlySalary" V a rID-’102"> </Variable>
-Variable VarName-"cTaxAmount" varXD-"103*> </Variable>
-Variable VarName-’cTotalRevenue’ VarID-*104*> </Variable>
•^Variable VarName-’objTax’ VarID-"105"> </Variable>

•/VariableDeclarations?
-CalledModules?

•Module ModuleName-’CalcNationallncomeTax’ ModulelD-"51"? </Module>
-Module ModuleName-'CalcSalesTax" ModuleID-"52"? </Module>

-/Ca 1 iedModu les >
•CallSites?

-CallSite?
-Module ModuleName-’CalcNationallncomeTax" ModuleID-"51"

InModuleCollect ion-"Taxes"/>
-StatementLineNumber/?
<CalIS iteAnalysisCompleteds1</CalIS iteAnalys isCompleted>
-ParameterMapping?

<ActualParameter VarName-"cGrossMonthlySalary* VarID-"102"> -/ActualParameter? 
-PassByRef>

-Parameter VarName-’cGrossSalary" VarID-"114" FirstUse-"REF" LastUse-"REF">
■/Parameter?

-/PassByRef >

-/ParameterMapping?
-/CallSite?
-CallSite>

-Module ModuleName-’CalcSalesTax" ModuleID-"52" InModuleColiection-"Taxes"/> 
-StatementLineNumber/?
<CallSiteAnalysisCompleted?l</CallSiteAnalysisCompleted?
-ParameterMapping>

-ActualParameter VarName-’cGrossMonthlySalary" VarID-’102"> </ActualParameter> 
-PassByRef>

-Parameter VarName-"cGrossSalary* varID-"115" FirstUse-’REF" LastUse-"REF">
-/Parameter?

-/PassByRef>

</ParameterMapping>
■:/CallSite>

</CallSites>
-GlobalP.efs>
-ConstRefs?

-Constant ConstName-’gRoyalty" ConstID="58"> -/Constant?
•-/ConstRefs?
-VarRefs?

-Variable VarName-’sngPubRevenue’ VarID=*84*> -/Variable? 
-Variable VarName-'gintSalesPeriod" VarID="67’> -/Variable? 
-Variable VarName-"sngAuthorRoyalty" VarID-"85"> -/Variable? 

-/VarRefs?
-/GlobalRefs?
-GlobalDefs?
-ConstDefs?
-/ConstDefs?
-VarDefs?

-Variable VarName-’sngAuthorRoyalty" VarID=’85"> -/Variable? 
-/VarDefs?
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■ /Globa IDefs>
•■.LocalRefs?
■XonstRefs?
■/ConstRefs?
<VarRefs>

•■Variable VarName* 
■.Variable VarName* 
•Variable VarName* 

•■/VarRef s?
■/LocalRefs?
■LocalDefs? 
•:ConstDefs>
•/ConstDefs?
■VarDefs?

■Variable VarName*

'objTax* VarlD*"105”
'cGrossMonthlySalary 
'i* VarlD*"101"> </Variable?

</Variable>
VarlD-’102"? </Variable>

</Variable>

'4 5’ ModuleName*"GetPubRevenue" ParentModName*’Sales’>

"strTitle" VarlD-"106" FirstUse-’REF" LastOse-’REF"

"cGrossMonthlySalary" VarlD*" 102"?
■-Variable VarName*" i" varID*"101"> </variable?
•Variable VarName*"ob^Tax" VarlD*’105"> </Variable>

•■/VarDef s?
:/LocalDefs?

•/Cal IGraphNode?
■CallGraphNode NodelD*

•Formal Parameters?
<PassByRef?

•^Parameter VarName*
■-/Parameter?

</PassByRer?
■Pass By Va 1 ?
■:/PassByVal?

■/FormalParameters>
■ ConstantDeclarations>
■/ConstantDeclarat ions>
•:Var lableDeclarat ions?

-Variable VarName*’sn" VarID*’107’> </variable>
■variable VarName-’strSQL" VarlD-*108"? </variable>
■;Variable VarName-"i" VarID**109"> < / V a n a b l e >
■Variable VarName-’Price’ VarlD*"110"> </Variable> 
variable VarName-'objModel" varID-"lll"? </Variable>

■;Vanable VarName*"str01dTitle" VartD-’112"> </Variable>
■variable VarName-’cUnitPrice’ V arID-’113"> </Variable?

■ /Var lableDeclarat ions>
•:Cal IedModu les ?

-Module ModuleName*’intGetMonthSales" ModulelD*’37"> </Module>
</Cal ledModules?
■CallSites?

-CallSite?
<Module ModuleName-"intGetMonthSales" ModulelD*
•: StatementLineNumber/?
■CallSiteAnalysisCompLeted?l</CallSiteAnalysisCompleted?
•:ParameterMapping>

<ActualParameter VarName-"i" VarID-"109"> </ActualParameter>
<PassByRef>

<Parameter VarName-"IntCurMonth" VarID-"77" FirstOse-’REF" LastOse-’REF’>
■'/Parameter?

</PassByRef>
<ActualParameter VarName*"gintSalesPeriod" VarID-’67"> </ActualParameter> 
<PassByRef>

<Parameter VarName-"intSalesPeriod" varID*"78" FirstOse-’REF" 
LastOse*"REF"? </Parameter>

</PassByRef>
<ActualParameter VarName-"gintSalesModel" VarXD-’62*> </ActualParameter> 
<PassByRef>

<Parameter VarName-"intModelType" VarID-"79" FirstOse-’R E F ’ LastOse-’REF"?
-:/Parameter>

</PassByRef>

'37* lnModuleCollection*"Modei’/>

</ParameterMapping>
</CallSite>

</CallSites?
<GlobalRefs>
<ConstRefs?
</Cor.stRef s>
<VarRefs?

<Variable VarName-’gobjServer" VarID="0"> </Variable> 
<Variable VarName*"strTitle" VarID*"106"> </Variable> 
<Variable VarName-’aintSalesModel* VarID-’62"> </Variable>
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■-Variable VarName-’sngBookPrice" VarID="S6’s </Vanables 
■Variable VarName-’gintSalesPeriod’ VarID="S7"s < / V a n a b l e s  
•Variable VarName-’sngPubRevenue" V a rID=’84’s </Variables 
•^Variable VarName-’gCN" VarID-"60"s </Variable>

•:/VarRefs>
•:/GlobalRef s>
■.GlobalDefss 
■'ConstDef ss 
■-/ConstDef s>
•VarDefss

■^Variable VarName-’sngPubRevenue" VarID="84"s </Variable>
■/VarDefss 
■/GLcbalDefss 
•LocalRefss 
•'ConstRef s >
■/ConstRefss 
■;VarRefss

■^Variable VarName-’abjModel" VarlD-’lll’s </Variables 
-Variable VarName-’cUnitPrice’ VarlD*" 113"s </Vanable>
-Variable VarName*"!" VarID=*109"s </Variables 
•Variable VarName*"strSQL" VarlD*"108"> </Variable>
• Variable VarName="sn" VarID*"107"> </Variables 
■-.Variable varName*"str01dTitle" VarID*"112"s </Varrables 

■-/VarRefss 
■/LocalRefss 
-.LocalDef ss 
•-ConstDef ss 
■'/ConstDefss 
•:VarDef s>

-Variable VarName*"strOldTitle" VarlD-"112"> </ V a n a b l e s 
■Variable VarName-"i* VartD="109"> </variables 
■Variable VarName-’cUnitPrice" VarlD*"113"s </Variable>
<Variable VarName-"sn" VarID-"107’s </Variable>
•.Variable VarName*"strSQL* VarlD-" 108"> c/Variables 
■^Variable VarName-"ob]Model" VarlD-" Ill’s </Vanable>

•:/VarDef ss 
--'/LocalDefss 

■./Ca 1 lGraphNodes
■CallGraphNode NodeID-"46* ModuleName-"Class_InLtiali:e" ParentModName-"Sales’s 

• Ca1ledModuless
■Module ModuleName-"LoadDB" ModuleID-"47•> </Module>
-Module ModuleName-’ServerMsg" ModulelD-"3 5’> </Module>

■VCalledModuless 
■-CallSitess 

■:CallSites
■:Module ModuleName-"LoadDB" ModuleID-*47" inModuleCollectLon-"Sales’/> 
sStatementLineNumber/s
• CalIS iteAnalysisCompletedsl</CallSiteAnalysisCompleteds 
<ParameterMappings

</ParameterMapping>
■-/CallSites
<CallSites

■^Module ModuleName*"ServerMsg* ModuleID-*35" InModuleCollection-’ServerMarn'/s 
<StatementLrneNumber/>
<CalIS iteAnalysisCompleted>l</CallS iteAnalys isCompleteds 
•ParameterMappmgs

</ParameterMappmgs 
</CallSites 

•-/CallSitess 
vGlobalP.ef ss 
•-ConstRef ss 
</ConstRefss 
■-VarRefss

<variable VarName-’g C N ’ VarID-’60"> </Variables 
^variable VarName-"gDBName" VarID=’5 ’s </Variables 
<Variable VarName-'gintlnstanceCount" VarID=’59*s </Variable> 

</VarRefss 
</GlobalRefss 
<GlobalDefss 
<ConstDefss 
</ConstDefss 
<varDefs>
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■:Variabie VarName=”gCN' VarID=’60’> </Variable>
■;VarLable VarName=”gDBName" VarID="5*> </Variable>
•^Variable VarName="gintInstanceCount* VarID=’59’> </Variable>

■;/VarDef s>
•;/GlobalDefs>
-;LocalRefs>
■.ConstRefs>
•-/ConstRef s>
•-VarRef s>
■/VarRefs>
■/LocalRer s>
•LocalDefs>
•-CcnstDers*
■/ConstDefs>
•VarDets>
•/VarDefs>
■ /LocalDefs>

■/CallGraphNode>
•CallGraphNode NodeID="4?’ ModuleName=’LoadDB" ParentModName-’Sales’>

■;CalledModules>
•Module ModuleName-'GetBooksale’ ModuleID="48’> </Module>

•■/CailedModules>
-CallSites*

•:CallSite>
•Module ModuleName-’GetBooksale* ModuleID-’48’ InModuleCollection=”Sales'/> 
•StacementLineNumber/>
vCallSiteAnalysLsCompleted>l</CallSiteAnalysisCompleted>
•ParameterMapping>

</ParameterMapping>
■•/CallSite*

■ /Cal LS ites>
■;GlobalRers>
ConstRefs>

■;/ConstRef s>
•VarRefs>

■Variable varName-"gDBName" VarID-“5*> < / V a n a b l e >
■Variable VarName-’gCN" VarID-"60’> </Variable>

■:/VarRefs>
i/GlobalRefs>
:GlobalDefs>
<ConstDefs>
■;/ConstDet s>
■-.VarDef s>

■;Variable varName-’gCN" VarID-’60"> </Vartable>
-Variable VarName-'gDBName* VarID-’5*> </Variable>

</VarDefs>
</GlobalDefs>
<LocalRefs>
■iConstRef s>
</ConstRets>
<VarRefs>
</VarRefs>
</LocalRefs>
<LocalDefs>
<ConstDefs>
•c/ConstDef s>
<varDefs>
</VarDefs>
</LocalDefs>

•'/CallGraphNode*
•'CallGraphNode NodelD="48" ModuleName-’GetBooksale" ParentModName-"Sales*> 

<CalledModules>
</CalledModules>
-CallSites*
</CallSites>
<GlobalRefs>
<ConstRefs>
</ConstP.efs>
<VarRefs>

<variable VarName^’gDB N a m e ’ VarID=*5"> </Varlable>
</varRefs>
</GlobalRefs>
<GlobalDefs>
<ConstOefs>
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/ConstDef s- 
-VarDefs- 
-/VarDefs- 
• . . /G lobaiDe^s- 
-LocalRefs- 
•■ConstRef s>
•;/ConstRefs-
<VarRefs>
-/VarRefs>
-/LocalRef s>
■ LocalDefs- 
-ConstDefs- 
-/ConstDefs>
-VarDers- 
•/VarDers- 
■-/LocaLDefs-

-/CalIGraphNode-
■ CallGraphNode NodeID-"49" MaduleName-’Class_Terminate" ParentModName-*Sales’>

-CalledModules- 
-/CalledModules- 
- C a l l S i t e s -  
■/CallSites- 
■:GlobalRefs- 
-ConstReis- 
-/ConstRefs>
•-VarRefs>

-variable varName-'gintlnstanceCount" VarID-’59’> </Variable>
-/VarRefs-
-/GlobalRefs-
-GlobalDets-
-ConstDef s-
-/ConstDefs-
-varDeis-

-Variable VarName-’gintlnstanceCount’ VarID-’59’> -/Variable-
-/VarDefs>
-/GlobalDefs- 
-LocaIRefs- 
-ConstRefs>
-/ConstRefs- 
-VarRefs- 
-/VarRefs>
-/LocalRefs>
-LocalDefs>
-ConstDefs- 
-/ConstDefs- 
-VarDefs>
-/VarDefs>
-/LocalDefs>

-/CallGraphNode>

■ ModuleCollection>Taxes-/MaduleCollection-
-CallGraphNode NodeXD-’Sl" ModuleName-’CalcNationallncomeTax’ ParentModName-’Taxes*> 

<FormalParameters>
-PassByRef-

-Parameter VarName-’cGrossSalary’ VarlD-’l H *  FirsttJse-’REF’ LastUse-’REF">
-/Parameter-

-/PassByRef- 
-PassByVal- 
-/PassByVal- 

-/FormalParameters- 
-ConstantDeciarations- 
-/ConstantDeclarations- 
-VariabieDeclaraticns- 
-/VarlableDeclarations- 
-Ca1ledModules- 
-/CalledModules- 
- C a l l S i t e s -  
-/CailSites- 
-GlobalP.efs- 
-ConstRefs>
-/ConstRefs-
-VarRefs-

-Variable VarName-’cGrossSalary’ VarlD-’114’> -/Variable- 
-/VarRef s- 
-/GlobalRefs- 
-GlobalDefs-
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•ConstDefs>
•./ConstDef s>
■VarDefs>
•/VarDefs>
•;/GlobalDefs>
■-'Local Re::s>
■ConstRefs>
■/ConstRefs>
■-.VarRef s>
■:/VarRefs>
•;/LocalRef s>
■LoealDers>
■.ConstDef s>
■VConstDefs>
■-VarDefs:- 
•/VarDefs>
•:/LocalDef s>

■-./Cal lGraphNode>
•:CallGraphNode NodeID-"52" ModuleName-’CalcSalesTax’ ParentModName-"Taxes*>

• FormaIParameters>
■PassByRef>

•-Parameter varName-’cGrossSaiary* varID-"115" FlrstUse-’REF’ LastUse-’REF*>
■;/Parameter>

■^Parameter VarName-’cTearToDate” VarID-"116" FLrstUse-’REF* LastUse-’REF’>
■/Parameter^

■-/PassByRef >
■:PassByVal>
■:/PassByVal>

■;/FormalParameters>
^ConstantDeclaratfons>
■/Const ant Declarations:!
<VariableDeclarations>
-/VarlableDecla rations:*
■.Call edMod u 1 es >
■:/Cal ledModules>
•CallSites>
■/Ca LISites*
•;GLobalRefs>
•:ConstRef s>
■■/ConstRef 
•;VarRef s>

■Variable varName-’cGrossSalary’ VarID-’115"> </Variable>
•Variable VarName-’cTearToDate’ VarID-’116’> </Variable>

■;/VarRef s>
</GlobalRefs>
•■GlobalDef s>
■ConstDefs>
</ConstDefs>
■VarDefs>
</VarDefs>
</GlobalDefs>
<LocalRefs>
--ConstRefs>
•:/ConstRefs>
•-'VarRef s>
■-'/VarRef s>
•-/LocalRef s>
•LGcalDefs>
■:ConstDefs>
</ConstDefs>
■:VarDef s>
</VarDefs?
■:/LocalDefs>

■:/CallGraphNode>
•CallGraphNode NodeID=’53" ModuleName-’CalcRegionallncomeTax" ParentModName-’Taxes’> 

•: Formal Parameters>
<PassByRef>

•^Parameter VarName-’cGrossSalary" Var ID-* 117’ FirstOse-’REF" LastGse=’REF*>
</Parameter>

<Parameter varName-’strState* Var ID-’110’ FirstDse-’RE F ’ LasttJse-’REF*>
</Parameter>

</Pass3vRef>
•'-PassByVal>
</PassByVal>

< /FormalParameters>
<ConstantDeclarations>
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■;/Ccnst ant Dec la rations?
■VarLableDeclarations>
•/Var iableDeciarations?
•:Cal ledModules?
•:/Cal ledModules?
<CalISites>
■:/CallS ltes>
•.'GiobalRefs?
<ConstRets?
-./ConstRef s>
•VarRefs?

-^Variable varName-'cGrossSalary' VarID="117"? </Vartable> 
-.Variable VarName-"strState" VarID="118"? </Variable> 

•-/VarRefs?
■/GlobalRefs>
•GlcbalDefs?
•:ConstDefs?
-:/ConstDef s>
-.VarDef s>
•;/VarDefs>
■:/GlobaiDefs>
-. LocalRef s?
■ConstRefs?
■/ConstRefs>
■'.VarRef s>
•'/VarRef s>
•:/DocalRefs?
■LocalDefs?
■-ConstDefs?
■/ConstDefs?
•VarDefs?
■/VarDefs?
■/LocalDefs>

■- /Cal !GraphNode>
■/CaLiGraph?

■' -- Project Analyzer 5 0.07 (8/6/00) book_cli.vbp v6 2 8178 -->

B.1.5. Integrated system XML parameter mapping graph

■;?xml vers ion*'1.0" ?>
:.--DOCTYPE CallGraph SYSTEM " file://CallGraph.dtd" - - >
■: -- META NAME*'Generator' CONTENT-'Project Analyzer 5.0.07" -->

- meta http-equiv-'Content-Type" content-"text/htmi; charset-iso-8859- 1" --> 
■; - - Project Analyzer Report / sys7_pmg_s3 . xml -->

Project: Book_cli.vbp -->
- Data Dependency Report - Parameter Mapping --?

■:DataDependenceReport>
■;ModuleName ID*"2’ Name-"lGetAuthors"?

<DataDependence?
</DataDependence>

</ModuleName?
•;ModuleName ID="3" Name-’lGetTitles*>

<DataDependence>
-:FormalParameter ID-"10" Name-’strAuthor"?
</FormalParameter?

</DataDependence>
</ModuleName>
vModuleName ID-"5" Name-’cmdClose_Clic!c*>

<DataDependence>
</DataDependence>

•-./ModuleName?
■iModuleName ID**6" Name=*Form_Load">

-cDataDependence?
</DataDependence>

</ModuleName>
<ModuleName i d ="7" Name-'SetGraphData"?

<DataDependence>
</DataDependence>

</ModuleName>
<ModuleName ID="9" Name-"cboAuthors_Click">

<DataDependence?
</DataDependence>

</ModuleName>
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•'ModuleName ID-"10" Name="chkDiscount_Click"?
■-Da taDependence?
•-/Da taDependence?

••/ModuleName?
•:ModuleName ID-"11’ Name="cmdClose_Click"?

-•Da taDependence?
■•/Da taDependence?

•/ModuleName?
•ModuleName ID-"12" Name=’cmdCogs_Click"?

•DataDependence?
■•/Da taDependence?

■•/ModuleName?
■-ModuleName ID="13" Name="cmdKelp_Click"?

■DataDependence?
-•/Da taDependence?

•'/ModuleName?
• ModuleName ID="14" Name="cmdExecute_Click’>

-•Da taDependence?
•:/Da taDependence?

■•/ModuleName?
■-ModuleName ID-"15" Name-"GetBooksale">

•; Da taDependence?
■•/Da taDependence?

••/ModuleName?
<ModuleName ID-"16" Name-'LoadDB"?

■•Da taDependence?
•:/Da taDependence?

■•/ModuleName?
■•ModuleName ID-" I?" Name-’Form_Load"?

•DataDependence?
■/DataDependence?

■•/ModuleName?
■•ModuleName ID-" 18" Name-’Form_tJnload" >

•-Da taDependence?
■•Formal Parameter ID-"23" Name-"Cancel*> 
■•/Formal Parameter?

</DataDependence?
•i /ModuleName?
■:ModuleName ID-" 19" Name-"optAnalysis_Cl ick"?

•:Da taDependence?
•FormalParameter ID-"24" Name-"Index"? 
•-/Formal Parameter?

</DataDependence?
</ModuleName?
•ModuleName ID-"20" Name-"txtRevParm_GotFocus’? 

<DataDependence?
■•FormalParameter ID-"25* Name-'Index”? 
</FormalParameter?

</DataDependence?
■•/ModuleName?
<ModuleName ID-"21" Name-*udDiscount_DownClick"? 

<DataDependence?
••FormalParameter ID-"26” Name-*Index”? 
■•/FormalParameter?

</DataDependence?
•/ModuleName?
••ModuleName ID = "22" Name="udDiscount_UpClick"? 

•;Da taDependence?
-•FormalParameter ID="27* Name-"Index"? 
■•/Formal Parameter?

</DataDependence?
■•/ModuleName?
<ModuleName ID="24" Name-’optPicColor_Cllck"?

?DataDependence?
<FormalParameter ID-"4G" Name-’Index"? 
</FormalParameter?

</DataDependence?
•'./ModuleName?
••ModuleName ID="25" Name=’Commandl_Cllck"?

<DataDependence?
<FormalParameter ID="41" Name-’Index"? 
</FormalParameter?

</DataDependence?
•./ModuleName?
<ModuieName ID="26" Name-’CalcUnitCost"?

<DataDependence?
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•-/Da taDependence?
•/Modu ieName?
<ModuleName ID="27" Name-’GetCOGS"?

•:Da taDependence?
•:/Da taDependence?

■:/ModuleName>
<ModuleName ID="2B" Name-’lGetBookPages'>

-:Da taDependence?
•:FormaiParameter ID="47" Name-’strTitle"?
•VFormalParameter?

■:/Da taDependence?
•;/ModuieName>
-ModuLeName ID="29" Name-"Form_Load”>

■; Da taDependence?
-/DataDependence?

■/Modu LeName>
•ModuleName ID-"30" Name-"optBinding_Clrck*>

■DataDependence?
■:FormalParameter ID»"52" Name-’Index"?
■: /Formal Pa rameter>

■/DataDependence?
■/ModuleName?
-.ModuleName ID-" 31" Name-’optPaperGrade_Cltck”?

--Da taDependence?
^FormalParameter ID-’53’ Name-"Index">
•:/Formal Pa rameter?

■:/Da taDependence?
•:/ModuleName>
■ ModuleName CD-" 34" Name-’Main"?

•:DataDependence>
■;/Da taDependence?

•./ModuleName?
•■ModuleName ID-" 35’ Name-"ServerMsg">

•DataDependence?
<FormaLParameter ID-"74’ N a m e - 'rstrMessage’>
■/Formal Parameter>
■'Forma LParameter CD-’75’ Name- " n n t B u t t o n s ’ >
-- /Forma 1 Parameter >
■: Formal Parameter CD-"76" Name**rstrTltle*> 
</FormalParameter>

•/DataDependence?
•/ModuleName?
•■ModuleName ID-" 37" Name-’IntGetMonthSales"?

■DataDependence?
<FormalParameter ID-’77* Name-"intCurMonth">

•;Var rabies?
<varrable ID-*109’ Name-*1"></Variable>
•tProceaure ID-"45’ Name-"GetPubRevenue*x/Procedure> 

?/Varrabies?
•-/FormalParameter?
<FormalParameter ID-’7B* Name-*intSalesPerrod’?

<Varrabies?
<Variable ID-’6 7 ’ Name-’gintSalesPeriod"?</Variable? 
cProcedure ID-*45’ Name-’GetPubRevenue*?</Procedure? 

</Vartables?
</FormalParameter?
<FormalParameter ID-’79" Name-*intModelTvpe"?

•:Var rabies?
•^Variable ID-*62" Name-’glntSalesModel"?</Varrable? 
^Procedure ID-"45* Name-"GetPubRevenue’?</Procedure? 

c/Varrabies?
•VFormalParameter?

••/Da taDependence?
•;/ModuleName?
<ModuleName ID-’39" Name-’GetAuthors"?

<DataDependence?
</DataDependence?

</ModuieName?
<ModuleName ID="40* Name-"GetTitles’?

<DataDependence?
<FormalParameter ID=*B8" Name-*strSQL’?

<Varrables?
<Vartable ID-*11’ Name="strSQL’?</Variable? 
<Procedure ID-*3’ Name-"lGetTrtles*?</Procedure> 

</varrables?
</FormalParameter?
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-/Da taDependence > 
./ModuleNarae>
•ModuleName ID="41" Name-' 

-DataDependence>
•cFormalParameter ID= 

<variables>
<Variable ID-' 
•-.Procedure ID= 

</Variables> 
</FormalParameter> 

-/DataDependence>
■/ModuleName>
•.ModuleName ID="42" Name-' 

-DataDependence>
-FormalParameter ID= 

•:Var Lables>
•Variable ID— 1 
^Procedure ID: 

-/Var Lables> 
</Formal?arameter> 

-/DataDependence> 
•VModuleName>
<ModuleName lD-"43" Name- 

-DataDependence>
-FormalParameter ID' 
-/Forma1Parameter> 
<FormalParameter ID' 
</FormalParameter> 
-FormalParameter ID' 
•VFormalParameter> 
<FormalParameter ID: 
•VFormalParameter> 
<FormalParameter ID' 
</Forma1Parameter> 
-.FormalParameter ID 
-VForma LParameter:- 
-FormalParameter ID 
-/FormalParameter> 

•;/DataDependence> 
•VModu LeName>
-ModuleName ID-"44* Name- 

■.DataDependence> 
</DataDeper>dence> 

■VModuleName>
<ModuleName ID-"45" Name- 

-DataDependence>
<FormalParameter ID' 

<Variables>
<Variable ID- 
<Procedure ID' 

-/Variables> 
•VFormalParameter> 

</DataDependence> 
</ModuleName>
<ModuleName ID-"46" Name- 

-DataDependence> 
</DataDependence> 

■:/ModuleName>
-ModuleName ID="47" Name- 

-DataDependence> 
</DataDependence> 

</ModuleName>
-ModuleName ID-"48" Name- 

<DataDependence> 
</DataDependence> 

</ModuleName>
-ModuleName ID="49’ Name- 

<DataDependence> 
</DataDependence> 

■VModuleName>
-ModuleName ID-"51" Name- 

<DataDependence>
<FormalParameter ID 

<Variables>
<Varlable ID= 
<Procedure ID

GetBookPages" >

*89’ Name="strSQL">

48" Name="strSQL’x / v a r i a b l e >
"28" Name-"!GetBookPages"></Procedure>

GetRsCOGS">

"90" Name-"strSQL*>

45’ Name-”strSQL"x/Variable>
" 27" Name-"GetCOGS"></Procedure>

"GetRevenue">

-"91* Name-"intSalesModel*>

-"92" Name-"curCostPerUnit">

-’9 3 ’ Name-’curAdvCost’>

-"94" Name-’i n t S a l e s P e n o d ’>

-’95" Name-"lngCJnitsPerMonth*>

-’96’ Name-"bolIsOLscount*>

-"97" Name-"strBookTitle">

"GetAuthorRoyalty">

"GetPubRevenue*>

- ’106" Name-’strTitle">

"97 * Name-’strBookTitie*x/Variable> 
- ’43" Name-"GetRevenue’x / P  rocedure>

Class_Initialtze">

LoadDB">

GetBooksale">

1 Class_Terminate’>

'CalcNationallncomeTax’>

■’114’ Name=’cGrossSalar*/’>

' 102" Name=’cGrossMonthlySalary’x / v a riable> 
■ ’ 44 * Name- "Ge tAuthor Royal ty * x/Pro c e d u r e >
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• ; / V a r i a b l e s s  
- V F o r m a l P a r a m e t e r s  

• V D a t a D e p e n d e n c e s  
• V M o d u l e N a m e s
■ModuleName ID*"52" Name="CalcSalesTax’s 

-.DataDependences
<FormalParameter ID*"115" Name="cGrossSalary">

•-Variabless
-Variable ID="102" Name="cGrossMonthlySalary"s</Variables 
•^Procedure ID="44" Name=*GetAuthorRoyalty"s</Procedures 

•VVariabless 
■VFormal Parameters
■;FormalParameter ID="116" Name=’cYearToDate’s 
•VFormaiParameters 

•VDataDependences 
■VModuleNames
■ModuleName ID*"53’ Name-"CalcRegionalIncomeTax"s 

VDataDependences
■■FormalParameter ID*" 117" Name*"cGrossSalary’s 
•/FormalParameters
‘FormalParameter ID*’118" Name*"strState"s 
■/FormalParameters 

-VDataDependences 
VModuleNames 

■-/DataDependenceReports

• Project Analyzer 5.0.07 ( 8/14/00) boo)c_cli. vbp va.2.8175 --s

B.1.6. Integrated system XML reverse ripple graph

<?xml version*"! 0 "s>
■ .- -DOCTYPE CallGraph SYSTEM ’flie://CallGraph.d t d " --s 
■-. - - META NAME»"Generator" CONTENT* "Pro ject Analyzer 5.0.07’ --s 
■:. - - meta http-equiv=’Content-Type" content*"text/html, charset * iso-8859-1" --s 

-- Project Analyzer Report / sys7_rrg_s3.xml -->
- Pro:ect: Boo)c_cli vbp -->

Data Dependency Report - Reverse Ripple Analysis *->
■ReverseRipples

■-Cal IGraphNode ID="2" Name*" IGetAuthors’ ParentModName-’ClientMain’s 
;GlobaLRefVar ID-” 1" Name*"gobjServer"s 

< ImpactedBys
■-Module ID*" 17" Name-"Form_Load"s</Modules 
■Variable ID-’l" Name-’gob 3 Server"s</Variables 

</ImpactedBys 
VGlobalRefvars
•GlobalRefVar ID**9" Name**rsAuthors’s 

< ImpactedBys
vModule ID-"2" Name-’IGetAuthors"s</Modules 
<Variable ID-"9" Narae-"rsAuthors"s</Variable>

-VImpactedBys
■-ImpactedBys

vModule ID*"17 * Name-"Form_Load’s</Modules 
<variable ID-"9" Name-"rsAuthors"s</Variable>

■VImpactedBys 
•/Globa1RefVars
•'GlobalRefVar i d *"54" Name-’rsAuthors's 

■-.ImpactedBys
vModule ID="2" Name-"IGetAuthors"s</Modules 
<Variable ID="54" Name*"rsAuthors’s < / V a n a b l e >

</ImpactedBys 
•VGlobalRefvars
-GlobalRefVar ID-"60" Name*"gCN*s 
•VGlobalRefvars 

■VCallGraphNodes

<CalIGraphNode ID*"3" Name*"lGetTitles' ParentModName-’ClientMain's 
•cGlobalRefVar ID="1" Name-’gobjServer’s 
</GlobalP.efVars
<GlobalRefvar ID="10* Name-’strAuthor’s 
</GlobalRefVars
<GlobalP.efVar ID=*55" Name=’rsTitles’s 

< ImpactedBys
<Moduie ID**3" Name*’lGetTitles"s</Module>
<Variable ID=’55" Name*’rsTitles’s</Variable>
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- / ImpactedBy?
■■/GlobalRefVar?
■GlobalRefVar XD="60" Name-’gCN"? 
-/GlobalRefVar?

- / C a l l G r a p h N o d e ?

-CallGraphNode ID3 "5" Name="cmdClose_Click’ ParentModName3 *frmChart"?
- / C a l l G r a p h N o d e ?

-CallGraphNode ID="6" Name="Form_Load" ParentModName3 *frmChart"? 
■:GlobalRe£Var ID3 "1" Name3 * gob j Server *>
-/GlobalRefVar?
■-GlobalRefVar ID="2" Name="goStatusPanel"?
-/GlobalRefVar?

■/Cal!GraphNode>

-CallGraphNode ID3 ""’* Name3 ’SetGraphData" ParentModName3 * frmChart"? 
-GlobalRefVar ID3 "!* Name-’gobjServer"?
-/GlobalRefVar?
-GlobalRefVar ID3 "2* Name-'goStatusPanel">
-/GlobalRefVar?
-GlobalRefVar ID3 "S8" Name-*strSQL’>
-/GlobalRefVar?
-GlobalRefVar ID3 ’89" Name3 "strSQL*>
-/GlobalRefVar?

-/CallGraphNode>

-CallGraphNode ID-"?" Name-"cboAuthors_Click" ParentModName-"frmRevenue"? 
-GlobalRefVar ID=*I* Name-*gobjServer">
</GiobalRefVar>

-/CallGraphNode-*

■CallGraphNode ID-’10" Name-"chkDiscount_Click" ParentModName-'frmRevenue 
-/Ca LIGraphNode?

-CallGraphNode ID-*11" Name-"cmdClose_Click" ParentModName-’frmRevenue*> 
- /Ca1IGraphNode?

-CalIGraphNode ID-"12" Name-*cmdCogs_Click" ParentModName-’frmRevenue"? 
-GlobalRefVar ID-"2" Name-*goStatusPanel*>
-/GlobalRefVar?

-/CallGraphNode?

-CallGraphNode ID-"13" Name-*cmdHelp_Click" ParentModName-" frmRevenue"? 
-/CallGraphNode?

-CallGraphNode ID-’14" Name-"cmdExecute_Click" ParentModName-"frmRevenue* 
-GlobalRefVar ID-"2" Name-*goStatusPanel*>
-/GlobalRefVar?

-/CallGraphNode?

-CallGraphNode ID-"15" Name-’GetBooksale’ ParentModName-"frmRevenue"? 
-GlobalRefVar ID-"5" Name-'gDBName"?

< ImpactedBy?
-Module ID3 "16" Name-’LoadDB*?</Module>
-Variable ID-"5" Name-"gDBName"?</Variable?

- / ImpactedBy?
-/GlobalRefVar?

-/CallGraphNode?

-CallGraphNode ID="16" Name-’LoadDB" ParentModName-’frmRevenue"? 
-GlobalRefVar ID3 "5" Name3 *gDBName">

-ImpactedBy?
-Module ID-"16" Name-"LoadDB"?</Module?
-Variable ID3 ’5" Name-"gDBName"?</Variable?

-/ImpactedBy?
-/GlobalRefVar?
-GlobalRefVar ID3 "S0" Name-’gCN"?

-ImpactedBy?
-Module ID="16" Name3 *LoadDB’?</Module?
-Variable ID3 ’60* Name-’gCN"?</Variable>

-/ImpactedBy?
-/GlobalRefVar?

-/CallGraphNode?

-CallGraphNode ID="17" Name3 *Form_Load" ParentModName-"frmRevenue"?
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■GlobalRefVar ID=*2* Name="goStatusPanel">
-ImpactedBy>

•:Moduie ID-*17’ Name="Form_Load"x/Module>
■-Variable ID="2" Name=’goStatusPanel"x/variable>

- / I m p a c t e d B y >
•'/GlobalRerVar>
•-GlobalRefVar ID-’l" Name-"gobjServer’>

-ImpactedBy>
•-Module ID="17" Name- "Form_Load“x / M o d u l e >
•-Variable ID="1’ Name=’gobjServer"x/Variable>

- / I m p a c t e d B y >
■/GlobalRefVar>
•GlobalRefVar ID=’9" Name-*rsAuthors">

•: ImpactedBy >
-Module ID-’17’ Name-’Form_Load"x/Module>
■Variable ID=*9" Name=’rsAuthors"x/Variable>

-/ ImpactedBy>
•:/GlobalRefVar>

-/CaIlGraphNode>

-CallGraphNode ID=’18’ Name=’Form_Unload” ParentModName-"frmRevenue*>
■;/Ca 1 lGraphNode>

■-Ca 1 IGraphNode ID-"19" Name-"optAnalysts_Click’ ParentModName-’frmRevenue"> 
•:GlobalRefVar ID="24" Name-’Index’>
•:/GlobalRefVar>

■;/CallGraphNode>
•  * • * » • • • * « « * * « » * * * * * * * * • * * » * * » « * * ■ » * * « •  -  -  >

•CallGraphNode ID-"20’ Name-*txtRevParm_GotFocus* ParentModName-’frmRevenue" 
•■GlobalRefVar ID="25" Name-’Index">
-:/GlobalRefVar>

-/CallGraphNode>

•-CallGraphNode ID-"21" Name-*udDiscount_DownClick’ ParentModName-’frmRevenue 
-GlobalRefVar ID-’26" Name-’Index’>
-/GlobalRefVar>

■/Ca1IGraphNode^

-CallGraphNode ID-"22’ Name-’udDiscount_OpClick" ParentModName-’frmRevenue’> 
•-GlobalRefVar ID-"27" Name-"Index">
-/GlobalRefvar>

•/Cal!GraphNode>

■CallGraphNode ID-’2 4 “ Name-"optPicCoior_Click’ ParentModName-’frmCogs’> 
■-■GlobalRefVar ID-"42’ Name-’sHelpString">
-/GlobalRefVar>
•'GlobalRefVar ID-"44" Name-’fld’>
</GlobalP.efVar>
•-GlobalRefVar ID-*40* Name-’Index*>
-/GlobalRefvar>
-GlobalRefVar ID-"25" Name-’Index">
•;/Global Ref Var >

</CallGraphNode>

-CallGraphNode ID-*25" Name-’Command1_C1ick" ParentModName-’frmCogs’> 
-GlobalRefVar ID-"26’ Name-’Index*>
■:/GlobalRef Var>
■GlobalRefVar ID-’27" Name-’Index’>
■'./GlobalRefVar>
-GlobalRefVar ID-*40’ Name-’Index’>
</GlobalRefvar>
-GlobalRefVar ID-’41" Name-*Index’>
•:/GlobalRefVar>

/Cal!GraphNcde>

CallGraphNode ID="26" Name-’CalcOnitCost" ParentModName-’frmCogs"> 
-GlobalRefVar ID-’25" Name-’Index”>
•:/GlobalRefVar>
-GlobalRefVar ID=’44" Name=’fld">
-/GlobalRefVar>

/CallGraphNode>
; -  -  • « » • » • » * . » » * * » » * » » • * » • » » » » * » * • » « » * * * » »  - - >

CallGraphNode ID=’27" Name-’GetCOGS’ ParentModName-*frmCogs’>
-GlobalRefVar ID=*1’ Name-’gobjServer’>
</GlobalRefvar>
-GlobalRefVar ID-’2 “ Name-’goStatusPanel’>
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-/GlobalRef Vars
-GlobalRefVar ID=’6" Name-’gSn’s 
-/G1abaiRerVars
■--GlobalRefVar ID=’57" Name-*rsCOGS">

-ImpactedBys
<Hodule ID-"27* Name-’GetCOGS’sc/Modules 
<Variable ID="57" Name-’rsCOGS’s</Varfables 

</ImpactedBys 
■: ImpactedBys

-Module ID-"29" Name-’Form_l.oad"s</Moduies 
■-Variable ID='57" Name-’rsCOGS’x / V a r i a b l e s  

•-/ImpactedBys 
•/GlobalRetVars
-GlobalRefVar ID="60" Name-’gCN’s 
-/GlobalRefvars 

-/CallGraphNodes

■ CalIGraphNode ID-’28' Name-"lGetBookPages" ParentModName” ’frmCogs’>
-vGiobalRef Var ID-’l’ Name-’gob 1 Server’s 
■-/GlobalRefvars
•:GlobalRefvar ID=’2" Name«"goStatusPanel’>
■-/GlobalRefvars
-.GlobalRefVar ID-’4 7 ’ Name-'strTitle’s 
-/GlobalRefvars
■GlobalRefVar ID-"56’ Name-"rsBookPages’s 

- ImpactedBys
■Module ID-’28" Name-’IGetBookPages’sc/Modules 
-Variable ID-"56’ Name-*rsBookPages*s</Variables 

-/ImpactedBys 
■: ImpactedBys

-Module ID-"29" Name-’Form_Load"s</Module>
-Variable ID-’56’ Name-’rsBookPages’sc/vanables 

-/ImpactedBys 
■VGlobalRefvars
•-GlobalRefVar ID-"60" Name-’gCN’s 
■VGlobalRefvars

■ /Ca LlGraphNodes

■-CallGraphNode ID-’29" Name-"Form_Load" ParentModName-’frmcogs’s 
-GlobalRefVar ID="25’ Name-*Index’s 
■VGlobalRefvars
■GlobalRefVar ID-’41" Name-"Index’s 
•■/GlobalRefvars
-GlobalRefVar ID-’4 2 ’ Name-’sHelpString’s 
-/GlobalRefvars
-GlobalRefVar ID-’43" Name-’curTemp’s
-/GlobalRefvars
-GlobalRefVar ID-’l* Name-*gobjServer’s 
-/GlobalRefvars
-GlobalRefVar ID-"2" Name-’goStatusPanel’s 
-/GlobalRefvars
-GlobalRefVar ID-*6" Name-’gSn’s 
-/GlobalRefvars
-GlobalRefVar ID=*44" Name-’fld's 
-/GlobalRefvars
-GlobalRefVar ID-’56" Name-’rsBookPages’s 

•;ImpactedBys
-Module ID-"29" Name-’Form_Load"s</Moduies 
-Variable ID='56’ Name-*rsBookPages’s</Variables 

-/ImpactedBys 
-/GlobalRefvars
-GlobalRefVar ID="57’ Name-’rsCOGS"s 

-ImpactedBys
-Module ID-"29" Name=’Form_Load"></Modules 
-Variable ID-"57" Name-"rsCOGS"s</Variable> 

-/ImpactedBys 
-/GlobalRefvars
-GlobalRefVar ID=’60" Name-’gCN’s 
-/GlobalRefvars 

-/CallGraphNodes

-CallGraphNode ID-"30’ Name-’optBinding_Click" ParentModName-*frmCogs’s 
-GlobalRefVar ID-”41* Name-’Index’s 
-/GlobalRefvars
-GlobalRefVar ID=’44* Name-’fld’s 
-/GlobalRefvars
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•-.GlobalRefVar ID-’52" Name-"Index’>
■- / G l o b a l R e f v a r s
<GlobalRefVar ID="25" Name-’Index’s 
•VGlobalRefvars
■;GlobalRefVar ID="4 3" Name-’curTemp’s 
■VGlobalRefvars 

V C a  1 lGraphNode>

•'-CallGraphNode ID-’31" Name=’optPaperGrade_Click’ ParentModName-"frmCogs’s 
<GlobalRefvar ID=’43" Name-’curTemp’s 
-./GlobalRefvars
<GlobalRefVar ID="44* Name-’fld’s 
■VGIobalP.efVar>
<GlobalRefVar ID-’53’ Name** Index*>
•VGlobalRefVar>
•-GlobalRefVar ID-"25’ Name-"Index"s 
</GlobalRefVar>

■'-/Cal !GraphNode>
«***»****•***•*•«»•**»******»*«»*»**•*

•;CallGraphNode ID-"34" Name-’Ma i n ’ ParentModName*"ServerMain">
■VCa I!GraphNode>

***•**«••*••***««*»*****•***»******•»*
■CallGraphNode ID*’35’ Name-’ServerMsg’ ParentModName*’ServerMain">
</CallGraphNode>

•^CallGraphNode lD-*37* Name-’IntGetMonthSales’ ParentModName-’Model’> 
-:GlobalRefvar ID-’l’ Name-"gobjServer"s 
-■/GlobalRefvars
•GlobalRefVar ID-’77 ’ Name-’intCurMonth’s
</GlobalRefVar>
•-GlobalRefVar ID="78’ Name-"intSalesPeriod’s 

■. ImpactedBys
•Module ID-"43" Name-’G e t R evenue"x/Module>
-Variable ID-’67* Name-’gintSalesPeriod’s</Variables 

•VImpactedBys 
•/GlobalRefvars
•GlobalRefVar ID=’79" Name-’intModelType"s 

•- ImpactedBys
<Module ID-’43’ Name-’Ge t R e v e n ue"x/Module>
•Variable ID-"62* Name-"gintSalesModel"s</Variables 

•./ImpactedBys 
•VGlobalRefvars 

•VCallGraphNodes

■-CallGraphNode ID-" 39’ Name-’GetAuthors" ParentModName-*Sales’> 
^GlobalRefVar ID-’54" Name-’rsAuthors’s 

< ImpactedBys
<Module i d - "2" Name-"IGetAuthors*x/Module>
-Variable ID-’54" Name-*rsAuthors’x / V a r i a b l e >

</ImpactedBy>
< ImpactedBys

<Module ID-’39" Name-’G e t A uthors*x/Module>
■Variable ID-’54’ Name-’rsAuthors’x / V a r i a b l e >

■VImpactedBys
•VGlobalRefvars
•-GlobalRefVar ID-"60" Name-’g C N ’s 
■VGlobalRefvars 

■VCallGraphNodes 
< -_ •••**•*»**»******•*»«*•**•***••*•••«*«
■CallGraphNode ID="40’ Name-’GetTitles" ParentModName-’Sales"> 

•GlobalRefVar ID-”55" Name-’rsTitles’s 
<ImpactedBy>

<Module ID-"3" Name-"lGetTitles"s</Modules 
•Variable ID»"55" Name-’rsTitles"x/Variable>

•VImpactedBys 
< ImpactedBy>

•cModule ID="40" Name=’GetTitles’x / M o d u l e >
-Variable ID="55* Name=’rsTitles’x / V a r i a b l e >

</ImpactedBy>
</GlobalRefVar>
<GlobalRefVar ID="60" Name-’g C N ’>
</GlobalRefVar>

-VCallGraphNodes

<CallGraphNode ID-’41* Name-’GetBookPages’ ParentModName-’Sales’> 
<GlobalRefVar ID=’56" Name-’rsBookPages’s
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•-'ImpactedBys
•-Module ID="28" Name-"IGetBookPages’s</Modules 
•Variable ID="56" Name-"rsBoo)cPages's</Var fables 

•-/ImpactedBys 
< ImpactedBys

•"Module ID=’41" Name-’GetBookPages’s</Modules 
■-Variable ID="56’ Name=’rsBookPages”s</Variables 

</ImpactedBy>
•:/Global Re: Var>
■:GlobalRefVar ID=*60' Name-’gCN’s
-./GlobalRefvars 

•-/Cal l G r a p hNodes

■^CallGraphNode ID=’42" Name-"GetRsCOGS" ParentModName-"Sales’s 
•GlobalRefVar ID-’57* Name-“rsCOGS">

•- ImpactedBys
■^Module ID»*27" Name-"GetCOGS“></Module>
■Variable ID-”57* Name-"rsCOGS"x/Variable>

■-/ImpactedBys 
■: ImpactedBys

-iModule ID-"42" Name-’GetRsCOGS’sv/Modules 
-Variable i d="57" Name="rsCOGS"x/Variable>

•-/ImpactedBys
•-/GlobalRefvars
■GlobalRefVar ID-"60’ Name-’gCN's 
■-/GlobalRefvars 

•'/Cal lGraphNodes

■:CalIGraphNode ID-"43" Name-"GetRevenue" ParentModName-'Sales's 
•-GlobalRefVar ID-"88" Name-'strSQL's
• V G l o b a l R e f v a r s
■^GlobalRefVar ID="89" Name-'strSQL's 
-VG lobai Ref Vars
-GlobalRefVar ID-'91’ Name-’IntSalesModel's 
</GlobalRefVars
•GlobalRefVar lD-"92' Name-’curCostPerOnit’s
•/GlobalRefvars
-GlobalRefVar lD-'93" Name-"curAdvCost"s 
VGlobalRefvars
■GlobalRefVar ID-"94" Name-"intSalesPeriod’s 
•VGlobalRefVars
•-GlobalRefVar ID-"95” Name-’IngOm t s P e r M o n t h ’s 
•VGlobalRefvars
■-GlobalRefVar ID="97" Name-’strBookTitle’s 
•VGlobalRefvars
•rGlobalRefVar ID-’l" Name-'gobjServer's 
•/GlobalRefvars
-GlobalRefVar ID-'50’ Name-’gCN's 
•VGlobalRefvars
<GlobalRefVar ID-’62" Name-’glntSalesModel’s 

< ImpactedBys
<Module ID-"7" Name-’SetGraphData"s</Module>
<Variable ID-"62’ Name-’gintSalesModel’s</Variables 

</ImpactedBys 
< ImpactedBys

^Module ID-’43* Name-’GetRevenue"s</Module> 
c V a n a b l e  ID = "62" Name-'glntSalesModel’x / V a r i a b l e s  

</ImpactedBys 
-./GlobalRefvars
■iGlobalRefVar i d - ’67* Name-’gintSalesPerlod’s 

< ImpactedBys
<Module i d - *7" Name=’SetGraphData’s</Module>
<Varlable ID-"67’ Name-'gintSalesPerlod’x / v a r l a b l e s  

</ImpactedBys 
<ImpactedBys

<Module ID-"43' Name-’GetRevenue’sc/Modules 
<Variable ID="67” Name-’gintSalesPeriod’x / V a r i a b l e s  

< / ImpactedBys 
</GlobalRefVar>
--GlobalRefVar ID="90’ Name-’strSQL’s 
</GlobalRefVars 

</CallGraphNodes 
. - - »»».»»»***»»«»**»****♦»»»•»»»»»•**»»*« -->
<CallGraphNode ID="44" Name-’GetAuthorRoyalty" ParentModName-’Sales’s 

<GlobalRefVar ID=’67’ Name-’gintSalesPeriod’s 
< ImpactedBys
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•-Module ID= "43* Name=’GetRevenue”s</Modules 
-Variable ID=*67* Name-’g i n t S a l e s P e n o d ’x / V a n a b l e s  

</ImpactedBy>
- /Gl o b a l R e f v a r s
-GlobalRefVar ID=’88" Name-’s t r S Q L ’s 
-/GlobalRefvars
-GlobalRefVar ID="89" Name-’s t r S Q L ’s 
-/GlobalRefvars 

</CalLGraphNode>

-CallGraphNode ID-"45" Name-’GetPubRevenue’ ParentModName-"Sales’s 
-GlobalRefVar ID="60" Name-’g C N ’s 
-/GlobalRefvars
-GlobalRefVar ID=’62" Name-’gintSalesModel’s

- ImpactedBys
■-Module i d = ’43" Name="GetRevenue"s</Modules 
•-Variable ID=’62* Name-’gintSalesModel’x / V ariables  

</ImpactedBy>
•:/G lobalRefVar>
•cGlobalRefVar i d - ’67’ Name-’g i n t S a l e s P e n o d ’s

- ImpactedBy >
-Module i d -*43* Name-"GetRevenue"></Module>
--Variable ID-’67" Name-*gintSalesPeriod’s</variables 

-/ImpactedBys 
</GIobalRefVar>
-GlobalRefVar ID="88* Name-’s t r S Q L ’s 
-/GlobalRefvars
■-GlobalRefVar ID-"90" Name-’s t r S Q L ’s 
-/Globa!RefVar>
-GlobalRefVar ID-’106’ Name-"strTitle’>
•/GlobalRefvars
-GlobalRefVar ID-’l" Name-’gobjServer’>
■-/G lobalRefvar>

-/Cal lGraphNodes

-CallGraphNode ID-’46" Name-*Class_Inrtiaiize’ ParentModName-’Sales’s 
■-GlobaLPefVar ID-'5' Name-’g D B N a m e ’s 

■; ImpactedBy>
-Module ID-"46" Name-"Class_Initialize’s</Modules 
-Variable ID-’5* Name-’gDBName’x / V a r i a b l e >

-/ImpactedBys
■/GlobalRefvars
■GlobalRefVar ID-*59’ Name-’gintInstanceCount*>

■: ImpactedBys
-Module ID-"46" Name-’Class_Initialize*s</Modules 
-Variable ID-"59" N a me-’gintInstanceCount’s</variable> 

-/ImpactedBys 
-/GlobalRefvars
-GlobalRefVar ID-’60’ Name-’g C N ’s 

- ImpactedBys
-Module ID-’46’ Name«"Class_Initialize’s</Moduie>
-Variable ID-"60* Name-’g C N ’sc/Variables 

-/ImpactedBys 
-/GlobalRefvars 

-/CallGraphNodes

-CallGraphNode i d - ’47* Name-’L o a d D B ’ ParentModName-"Sales’s 
-GlobalRefVar ID=’5" Name-’g DBName’s 

-ImpactedBys
-Module ID="46" Name-"Class_Initialize’s</Modules 
- v a r i a b l e  ID=’5’ Name-"gDBName’s</Variable> 

- / I m p a c t e d B y s  
- Impact e d B y s

-Module ID="47" Name-’LoadDB" x / M o d u l e >
-Variable ID-"5* Name=’gDBName"s</variable> 

-/ I m p a c t e d B y s  
- / G l o b a l R e f v a r s
-GlobalRefVar ID="60’ Name-’g C N ’s 

-ImpactedBys
-Module ID="46" Name-’Class_Initialize"x/Module> 
-Variable ID="60’ Name=’g C N ’s</Variable> 

-/ImpactedBys 
-ImpactedBys

-Module lD-"47’ Name-’LoadDB*></Module>
-variable ID="60" N a me-’g C N ’x / V a r i a b l e s  

-/ImpactedBys
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■;/Global Re fVar? 
-VCalIGraphNode?

■-CallGraphNode i d = ’48" Name=’GetBooksale" ParentModName-’Sales"? 
■-GlobalRefVar ID="5" Name* "gDBName">

< ImpaccedBy>
■-Module ID="47" Name=’LoadDB’?</Module?
•-Variable ID="5" Name=’gDBName"x/Variable>

■-/ImpactedBy >
•:/GlobalRefVar>

-/CallGraphNode?

- CalIGraphNode i d ="49" Name*’Class_Terminate’ ParentModName*’Sales*> 
■GlobalRefVar ID*"59’ Name-’gintlnstanceCount"?

•; ImpactedBy>
■:Mcdule ID*’49" Name*’Class_Terminate"?</Moduie?
-'Variable ID="59" Name*’gintlnstanceCount’x / V a riable> 

-/ImpactedBy>
■-/GlobalRefVar?

■:/CaI IGraphNode?

-CallGraphNode ID*"51" Name-’CalcNationallncomeTax’ ParentModName-’Taxes"? 
•-GlobalRefVar ID*"114’ Name*"cGrossSalary">
■/GlobalRefVar?

■/CalIGraphNode?

■CallGraphNode :D-"52" Name=’CalcSalesTax* ParentModName-"Taxes’? 
■-GlobalRefVar ID*" 115" Name*"cGrossSalary’>
•-/GlobalRefVar?
-GlobalRefVar ID*’116" Name-’cYearToDate"?
•-/GlobalRefVar?

•/CallGraphNode?

■CallGraphNode i d -" 53" Name-’CalcRegionallncomeTax’ ParentModName*’Taxes’? 
•GlobalRefVar ID*’117" Name*’cGrossSalary’>
-/GlobalRefVar?
•GlobalRefVar ID-’ 118* Name-’strState’>
•-/GlobalRefVar?

-/CalIGraphNode?
■/ReverseRipple?

■ -- Proiect Analyzer 5.0.07 (8/16/2000) book_cli.vbp v6.2.8175 --?

B.1.7. Integrated system call graph metrics view

M odule
Collection
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C all Sites

N um ber o f Call 
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N um ber o f  
G lobal Refs

N um ber o f  
G lobal Defs

ClientMain
NodelD: 2
ModuleName:
IGetAuthors
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Clicnt.Main
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ModuleName:
lGetTitles
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M odule S ub to ta ls ■> 2 2 B 3

M odule
Collection

C all G ra p h  Node
N um ber o f  Called! 

M odules
N um ber o f  
C all Sites

N um ber o f  C all 
Sites p e r  PM

N um ber o f  
G lobal R efs

N um ber o f  
G lobal Dels

frmChart

. _  ........................... -

NodelD: 5
ModuleName:
cm dClose_Click

0 0 0 0 0

frmChart
NodelD: 6
M oduleName:
Form_Load

1 I I 10 7

frmChart
NodelD: 7
M oduleName:
SetGraphData

1 1 1 10 7 |

M odule S ub to ta ls 2 2 2 20 14 _ J
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C ollection 1  | C alled M odules C all Sites { S ites p e r PM G lobal R efs [ G lobal Defs

INodelD: 9 
frmRevenue ModuleName:

!cboAuthors_Click
1 1 1 3 1

jN'odelD: 10 
frmRevenue i.ModuleName:

jchkDiscount._Click
0 0 0 0

frmRevenue

.

NodelD: 11
ModuleName:
cm dClose_Click

o jo 0 0 0

INodelD: 12 
frmRevenue ModuleName: 

;cmdCogs_Click
0 0 0 1 0

frmRevenue
NodelD: 13
M oduleName:
cmdHclp_CIick

0 0 0 0 0

[NodelD: 14 
frmRevenue ModuleName:

[cmdExecute_Click
0 0 0 1 0

frmRevenue
NodelD: 15
ModuleName: GelBooksale

0 0 0 1 0

frmRevenue
NodelD: 16 
ModuleName: LoadDB

1 1 1 2 2

frmRevenue
NodelD: 17
ModuleName: Form_Load

I 1 1 5 4  j

frmRevenue
NodelD: 18
ModuleName: Form_Cnload

0 0 0 0 2

frmRevenue
NodelD: 19
M oduleName
opiAnalysis^Click

0 0 0 1

1

0 !

frmRevenue
NodelD: 20
ModuleName:
txtRevParm_GotFocus

0 0 0 1 o !

frmRevenue
NodelD: 21
ModuleName:
udDiscount_DownCIick

0 0 0 1 0

frmRevenue
NodelD: 22
ModuleName:
udD iscounl_lIpClick

0 0 0 1 o ;

M odule S ub to ta ls 3 13 3 17 9

M odule
C ollection

C all G ra p h  Node
N um ber o f 

C alled  M odules
N um ber o f 
C all Sites

N u m b er o f  C all ! 
S ite s  p e r  PM  1

N u m b er o f  
G lobal R efs

N um b er o f  
G lobal Defs i

frmCogs
NodelD: 24
ModuleName:
optPicColor_Click

1 14 2 \

frmCogs
NodelD: 25 
ModuleName: 
Com m and 1 _Click

0 ) 4 1

frmCogs
NodelD: 26
ModuleName: CalcL’mtCosC

0 3 2 0

frmCogs
NodelD: 27
ModuleName: GetCOGS

1 5 4

frmCogs
NodelD: 28
ModuleName:
lGetBookPages

I 5 1

frmCogs
NodelD: 29
ModuleName: Form_Load

3 3 II 11

frmCogs
NodelD: 30
ModuleName:
optBinding_Click

2 5 5 3 ;
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Module
Collection

C all G ra p h  Node
N um ber o f 

C alled  M odules
N u m b er o f 
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Sites p e r  PM
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G lobal Defs
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NodelD: 3 1
ModuleName:
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N ode
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C all S ites
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G lobal Refs

N um ber o f 
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ServcrMain
NodelD: 34 
ModuleName: Main

0 0 0 Q 0

ServcrMain
NodelD: 35
ModuleName:
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0 0 0 0 0

M odule S u b to ta ls 0 0 D 0 0

M odule
Collection

C all G ra p h  Node
N um ber o f 
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N u m b er o f  
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G lobal Refs

N um ber o f  j 
G lobal Defs

Sales
NodelD: 39
ModuleName.
GetAuthors

0 0 0 2 1  j

Sales NodelD: 40 
ModuleName: GetTitles

D 0 0 2 1

Sales
NodelD: 41
M oduleName:
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0 0 0 2 1 |

Sales
NodelD: 42
M oduleName:
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I

Sales
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Sales

. .  . .. .
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Sales
NodelD: 45
ModuleName:
GetPubRevenue

1 1 1 7 I
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Sales
NodelD: 47 
M oduleName: LoadDB

I 1 1 2 2

Sales
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ModuleName:
GelBooksale

0 0 0 1 0

Sales
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ModuleName:
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1 Collection Called M odules C all Sites Sites p e r  PM G lobal Refs | G lobalD efs

1
Taxes

i __________

NodelD: 51
M oduleName:
CalcNationallncom eTax

0 0 0 , .

1 _ (NodelD: 52 
[ aXl‘:> [ModuleName: CalcSalesTax

0 0 jIij

_
Q_

1

2 0

j [NodeID: 55 
iTaxes ModuleName:
| jcalcR egionallncom eTax

0 0 0 2 0

( M odule S ub to ta ls jo (o 0 5 0

! T o ta ls

iTotal # o f M oduleC ollections (9___

[Total # o f C a llG rap h N o d es j44_ 

(Total #  o f  C alledM oduIes (25

(Total # o f  C a l l S i t e s  [29

(Total # o f  C allS itesfPM  ~ ^ 9 ~  

(Total o f  G lobalR efs [ H T

(Total # o f G lobalD efs________1^9_

B.1.8. Integrated system call coupling analysis view

C allG rap h N o d e C allSite
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C a l lG ra p h N o d e C a liS ite
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M odu leN am e-"G e tB o o k sa le"
M o d u le ID -"4 8 "
InM odu leC o lIection -"S ales"

1 T o ta ls

[T otal #  o f  C all C o u p lin g s [2 9

B.1.9. Integrated system param eter coupling analysis view
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C a l lG ra p h N o d e C allS ite  I A c tu a l P a r a m e te r F o rm a l P a ra m e te r

N o d e lD -"3 "
M o d u leN am e-" lG e lT itles"
Parem .M odN am e-"C lien tM ain"

M o d u leN am e-"G etT itles"
M o d u Ie ID -"4 0 "
lnV IoduleC olIec lion-"S ales”

V arN am e-"strS Q L " 
V a rlD -" l I"

’assB yV al
V arN am e-"strSQ L "
V a rID -"8 8 "
~ irs tC se -"R E F '
L a s tU se -"R E F '

N o d e lD -"2 7 "
M o d u leN am e-"G e tC O G S "
P a re n t\Io d N a m e -" fm iC o g s"

M o d u leN am e-"G eiR sC O G S "
M o d u le lD -"4 2 "
lnV lodu leC o lIection -"S ales"

V arN am e-"strS Q L "
V arID -"4 5 "

PassB yV al
V arN am e-"strS Q L "
V arID -"9 0 "
FirstL’s c - " R E F ’
L a s tC se -"R E F '

N o d e ID -"2 8 "
M odu le .\a m e-" lG e iB o o k P a g es"  
P a ren tM o d N am e-"frm C o g s"

. . . .

M o d u leN am e-"G e tB o o k P ag es"
M o d u le ID -"4 1 "
In M o d u leC o llec tio n -"S a les”

V arN am e-"strS Q L "
V arlD -"4 8 "

PassByV al
V arN am e-"strS Q L "
V a rtD -"8 9 "
F irs tU se -"R E F '
L a s tU se -"R E F '

N o d e lD -"4 3 "
M o d u le .\a m e -”G etR evenue"
Parcn l.M odN am e-"SaIes"

M o d u leN am e-"G e iP u b R ev en u e"
M o d u le lD -"4 5 "
In M o d u leC o llec tio n -"S aIes"

V arN am e-"strB ookT itle"
V arlD -"9 7 "

P assB y R ef 
V arN am e-"strT itle" 
V a rID -"1 0 6 "  
F irs tU se -"R E F ' 
L a s tU se -"R E F '

N o d e ID -"4 4 "
M odu leN am e-"G e lA u lho rR oya lty"
P a ren tM o d N am e-"S ales"

M odu leN am e-"C a lcN alio n a lIn co m eT ax "
M o d u le ID -" 5 l"
InM od u leC o lIec tio n -"T ax es"

V arN am e-"cG rossM on th lyS a lary"
V arID -"1 0 2 "

PassB yR ef
V arN am e-"cG rossS alary" ; 
V a rID -" l  14" 
FirstLrs e - ''R E F ' 
L a s tU se -"R E F '

N o d e lD -"4 4 "
M odu leN am e-"G e tA u tho rR oya lty"
P a rcn l\lo d .N am e-"S a lcs"

M o d u leN am e-"C a lcS alesT ax "
M o d u le lD -"5 2 "
In M o d u le C o llec tio n - 'T a x e s"

V arN am e-"cG rossM on th lyS a lary"
V arID -"1 0 2 "

P assB yR ef
V a rN am e- 'cG ro ssS a la ry "  
V ar ID -"  115" 
F irs tC se -"R E F ' 
L a s lU se -"R E F '

N o d e lD -"45"
M od u leN am e-"G e tP u b R ev en u e"
P a ren tM o d N am e-"S ales"

M o d u leN am e-" im G ctM o n th S a les"  
M odule  ID -" 3  7 "  
In M o d u Ie C o lle c tio n -’M odel"

V arN am e-" i"
V a rID -" l0 9 "

PassB yR ef
V arN am e-"in tC urM on th"
V a rID -"7 7 "
F irs tU se -"R E F '
L a s tU se -"R E F '

N o d e lD -" 4 5 "
M odu leN am e-"G etP u b R ev cn u e"
P a rcn tM o d N am e-"S ales"

M o d u leN am e-" in tG e tM o n th S a les"
M o d u le ID -"3 7 "
In M o d u leC o llec tio n -"M o d e l"

V arN am e-"g in tS  ales P eriod" 
V a rtD -”6 7 ”~

PassB yR ef
V a rN am e -”in tS alesPeriod" 1 
V a rID - '7 8 "
F ir s t l is e -" R E F ’
L as tU se -"R E F '

N o d o lD -"4 5 "
M odu le .N am e-"G etP ubR evenuc"
Paren t.M odN am e-"S alcs"

M odulcN am e-"in tG et.V lon ihS ales"
M o d u le ID -"3 7 "
In M o d u leC o llec tio n -"M o d e l"

V arN am e-"g in tS a lesM odeI"
V arID -"6 2 "

PassB yR ef
V arN am e-"in iM ode!T ype" ' 
V a r lD - '7 9 "  
F irs tU se -"R E F ' 
L as tU se -"R E F '

B.l.lO.Integrated system param eter mapping dependence view

M o d u le  N am e F o rm a l P a r a m e te r D e p en d e n c e

M od u leN am e-" in lG e tM o n th S a les"
M o d u le ID -"3 7 "

V a ria b le N a m e -'in tC u rM o n th "
V a r ia b le ID - '7 7 "

V ariab leN am e-"i"
V ariab le ID -"1 0 9 "  M o d u leN am e-"G e tP u b R ev en u e"  
M odule ID -" 4 5 "

M o d u IeN am e-'in tG e tM o n th S a le s"  
M odule  ID -" 3 7 "

V ariab leN am e-'Y ntS alesP eriod"
V a ria b le lD -"7 8 "

V ariab IeN am e-"g in tS a lesP eriod"
V an ab le ID -"6 7 "  M o d u le N a m e -”G etP ubR evenue" 
M o du leID -"45"

M o d u Ie N a m e -’in tG etM onthSales” 
M odule  ID -" 3 7 "

V ariab leN am e-" in tM o d e lT y p e"
V a r ia b ie tD - '7 9 "

V ariab leN am e-"g in tS a lesM o d er '
V ariab leID -"62" M od u IeN am e-"G eiP u b R ev en u e"  
M od u leID -"4 5 "  j

M o d u leN am e-"G e tT itIe s"
M o d u le ID -"4 0 "

V ariab leN am e-"s trS Q L "
V a ria b ld D -" 8 8 "

V ariab leN am e-"s trS Q L " j 
V a ria b le tt)-"  11" M odu!eN am e-"IG etT itIe s"  1
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M o d u le  N am e F o rm a l P a ra m e te r D e p en d e n c e

M o d u le ID -"3 "

M o d u le \ 'am e-"G etB o o k P ag es”
M o d u le lD -"4 l"

V ariab leN am e-"s trS Q L "
V ariab le ID -"8 9 "

V  ariab leN am e-"s trS Q L "
V a ria b le ID -"4 8 "  M odu leN am e-"lG etB ookP ages" 
M o d u le ID -"2 8 "

M oduleN am e-"G etR sC O G S "
M o d u le lD -"4 2 "

V ariab IeN am e-"strS Q L "
V ariab le ID -"9 0 "

V ariab leN am e-"s trS Q L "
V ariab le ID -"4 5 "  M o d u leN am e-'G e tC O G S ” 
M o d u le ID -"2 7 "

M oduleN am e-"G etP ubR evenue"
M o d u leID -"4 5 "

V ariab leN am e-"s trT itle "
V a riab le ID -"1 0 6 "

V ariab leN am e-"s trB ookT itIe"  
V a riab le ID -"9 7 "  M o d u leN am e -'G e tR ev en u e"  
M o d u Ie ID -"4 3 "

M oduleN am e-"C alcN auonalIncom eT ax"
M o d u le lD -" 5 l"

V a riab leN am e-"cG rossS alary" 
V a ria b le ID -" l 14”

V ariab leN am e-'cG ro ssM o n th ly S a la ry "
V a r ia b le lD -"  102” M o d u leN a m e -”G etA uthorR oyalty” 
M o d u le ID -"4 4 "

M oduleN am e-"C alcS aIesT ax"
M o d u le lD -"5 2 "

V ariab leN am e-"cG rossS alary" 
V a ria b le lD -"  1 15"

V ariab IeN am e-"cG rossM on th lyS alary"
V a r ia b le lD -"  102" M o d u leN am e -'G e tA u lh o rR o y a lty "  
M odu lelD —"44"

1 T o ta ls

fro ta l o f  P a ram e te r  M apping D ependencies in C all G rap h ~ ^

B. 1.11. Integrated system reverse ripple dependence view

C a llG ra p h N o d e G lo b a lR e fV a r Im p a c te d  By

N o d e ID -"2 "  |
M odu leN am e-'IG etA u th o rs"
Paren t.M odN am e-"C lien tM ain"

N am e-"gob jS erver"
ID - " t "

M o d u leN am e -"F o rm .L o ad "
M o d u le lD -"  17"
V ariab leN am e-"gob jS erver"
V ariablcID -'M " ;

N o d e ID -"2 "  ! 
M odu lcN am e-"lG etA u tho rs"  t 
Paren t.M odN am e-"C liem M ain" j

N am e-"rsA u th o rs"
I D - ”9"

M oduleN am e-"IG e (A uthors" 
M o d u le lD -”! "  
V ariab leN am e-"rsA u lho rs"  
V ariab leID -"9"

N o d e iD -"2 "  1 
M odu leN am e-'IG etA u th o rs"  
P a re n tM o d N am e-”C lien tM ain" |

N am e-"rsA u th o rs"
ID -" 9 "

M o d u leN a m e - 'T o rm .L o a d "
M o d u le lD -"  17 "
V an ab leN a m e-"rsA u th o rs”
V ariab le lD -"9 "  !

N o d e iD -"2 ” i 
.M odu leN am e-'IG etA uthors"  i  

P arcn tM odN am e-"C lien tM ain" j

N am e-"rsA u th o rs"
ID -"5 4 "

M oduleN am e-"lG et-A uthors" j  

M o d u le lD -”2"
V ariabIcN am e-"rs A u th o rs"  j  

Variable ID -”54"

N o d e ID -"3 "  ! 
M odu leN am e-"lG etT ides"  j 
P aren tM od.N am e-"C lien tM ain" !

N am e-"rsT itIes"
ID -" 5 5 "

M oduIeN am e-"IG etT itles"
M odu leID -"3"
V ariab leN am c-"rsT (tle s"
V ariab leID -"55"

N o d e lD -" l5 "  ’ 
M oduIcN 'am e-"G etB ooksale" 1 
Parcn tM odN am e-'T rm R evenue"

N am c-"gD B N am e"
ID -" 5 "

M oduIeN am e-"L oadD B " 
M o d u le lD -"  16” 
V ariab leN am e-"gD B N am e" 
V ariable ID -"5 "

N o d e lD -"  16"
M odule.N am e-"L oadD B "
P aren tM odN am e-"frm R cvenue"

N am e-"g D B N am e" 
ID -" 5 "  ~

M od u leN am e-"L o ad D B " 
M o d u le lD -"  16" 
V ariab lcN am e-"gD B N am e" 
V ariab leID -"5"

N o d e lD -"  16" ,
M odu leN am e-"L oadD B "
P aren tM odN am e«"frm R evenue"

N a m e-"g C N "
ID -" 6 0 "

M cd u leN am e-"L o ad D B " i 
M odule 1D -"16 "
V ariab leN am e-"g C N " j  

V ariab le ID -"60”~ !

N o d e lD -"  17"
M oduleN am e-"F orm _L oad"
P a re n t\to d N am e-" frm R ev en u e"

N am e-"g o S  ta tusPanel” 
ID -" 2 "

M o d u leN am e-"F orm _L oad" j  

M o d u le lD -"  17 "  ! 
V ariab leN am e-"g o S tatu sP an e l"  j  

V a r ia b ld D - 'T ’
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C allG raphN ode ; |  G lobalR efV ar Im p ac ted  By

Node ID -" 17"
M oduleNam e-"Form _Load" , 
Paa>m.ModName-"frm Revenue" :

Nam e-"gobjServer”
ID -"1 "

ModuleNTam e-"Form _Load" 
M odulelD -" 17" 
VariableNam e-"gobjServer'' 
V ariablelD -" 1"

N odelD -" 17" '■ 

M oduleNam e-"Form _Load" ; 
ParentM odNam e-"frm Revenue"

N am e-"rsA uthors"
ID -"9 "

M oduleNam e-"Form _Load" 
M odulelD -"! 7" 
VariableNam e-"rsAuthors" 
VariablelD-"9"

N odelD -"27"
ModuleName-"GetCOGS"
Parcnl.VlodName-'TnnCogs"

N am e-"rsC O G S" 
ID—"57"

M oduleNam e-"GetCOGS"
M odulelD -"27"
VariableNam e-"rsCO GS"
VariabIelD-"57"

N odelD -"27"
M odu(eN am e-”GeiCOGS"
Parcm.ModName-"frmCogs"

N am e-"rsC O G S"
ID -"57”

M aduleNam e-"Form _Load" 
M odulelD -"29" 
VariableNam e-"rsCO GS" 
Variable ID -"57"

N odelD -"28" ! 
M oduleNamc-"IGetBookPages" i 
PareniM odNam e-"frm Cogs" j

N am e-"rsB ookPages"
ID -"56"

M oduleN am e-'lG etBookPages" 
M oduleID-"28" 
VanableN am e-"rsBookPages" 
Variable ID -"56"

N odeID -"28" |
M oduleNam e-"lG etBookPages"
Parem M odNam e-"frm Cogs”

Nam e-"rsB ookPages"
!D -"56"

M oduleNam e-"Form _Load" 
Module ID -"29" 
VariableN am e-”rsBookPages" 
VariablelD-"56"

— —i
N ode!D -"29" j 
M odu IeName-"Form _ Load" 
ParcntM odNam e-"frm Cogs"

Nam e-"rsB ookPages"
ID -"56"

M oduleNam e-”Form _Load" 
M odulelD -"29" 
VariableName—'rsBookPages" 
Variable lD -"56"

N odelD -"29"
M oduleNam e-"Form  Load" :  
Parcnl\lodN am e-"frm C ogs" i

N am e-"rsC O G S"
ID -"57"

M oduleN am e-"Fonn_Load"
M odulcID-"29"
VariableNam e-"rsCO GS"
VariablelD-"57"

N odelD -"37"
M oduleNam e-"iniGeiM onihSalcs" j  
Parcni.ModName-"M odel"

N am e-"intSalesPeriod"
ID -’7 8 "

M oduleNam e-"GetRevenue"
M oduleID-”43" ;
V ariableN am e-'gintSalesPeriod"
VariableID-"67"

N odelD -"37" ! 
M oduleNam e-"intGetM onthSalcs" | 
ParcntM odNam c-"M odel"

i

N am e-"intM odelType"
ID -"79"

M oduleNam e-"GetRevenue"
Module lD -"43"
VariableName-"gintSaIesM odeI" 
VariablcID-"62" '

N odelD -"39"
M oduIeN am e-'G etA ulhors" 
ParentM od.Name-"Sales" j

N am e-"rsA ulhors"
ID -”54"

M oduleN am e-'IG etA uthors"
M oduleID-"2"
VariableNam e-”rsA uthors"
VariableID-"54"

N odeID -"39"
M oduleNam e-"GetAulhors" 
ParentM odN'ame-"Sales" '

N am e-"rsA ulhors"
ID -"54"

M oduleN am e-"G etA ulhois"
M oduleID-"39"
VariableNam e-"rsAuthors"
V ariablelD -"54"

N odelD -"40" | 
M oduleN am e-'G etTitles" 
ParentM odN am e-"Sales" (

N am e-"rsT illes”
ID -"55"

M oduleNam e-"lG etTilles" 
M oduleID-"3" 
VariabIeNam e-"rsTitles" 
Variable ID -"55"

N odelD -"40"
Module.N'ame-"GetTitles"
Parent\lodN am e-"Sales"

Nam e-"rsT itles"
ID -"55"

M odu!eNam e-"GetTiiles"
ModuIeID-"40"
VariabIeNam e-"rsTitles"
VariableID-"55"

N odcID -"41"
Module.Nam e-'GetBookPages"
ParentM odName-"SaJes"

Nam e-"rsB ookPages"
ID -"56"

M oduleNam e-’lG etB ookPages" 
M oduleID-"28" j  
VariableNam e-"rsBookPages"
VariabIelD-”56"

N o d eID -"4 l"  j |N a m e - ”rsBookPages" M oduleNam e-"GetBookPages”
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C allG raphN ode G lobalR efV ar Im pacted  By

M oduleNam e-"GetBookPages"
Parent.ModName-"Sales"

ID -"56" Modu!elD-"41"
VariableName-"rsBookPages"
VariablelD-"56"

N odelD -"42"
M oduleN am e-'G elR sC O G S"
ParentM odN am e-"Sales"

Nam e-"rsCO G S"
ID -"57"

ModuleName-"GetCOGS" 
M oduleID-"27" 
VariableN'ame-"rsCOGS" 
VariablelD-"57"

N odelD -"42"
M odule.Nam e-'GetRsCOGS"
ParentM odN am e-"Sales"

'iam e-"rsC O G S"
ID -"57"

M oduleName-"GetRsCOGS"
VloduleID-"42"
VariableName-"rsCOGS"
VariableID-"57"

N odeID -"43"
ModuleN'ame-"GetRevenue"
ParenlM odNam e-"Sales"

Nam e-"gintSalesM odel"
ID -"62”

M oduleNam e-"SetG raphData"
M oduleID -'7"
V ariableNam e-"gintSalesM odel" 
Variable ID-"62"

NodelD—"43"
M oduleN am e-'G etR evenue '' 
ParcnlM odN 'am e-”Sales" ;

N'ame-"gintSalesModel"
ID -"62"

M oduleN am e-'G etRevenue"
M oduleID-"43"
VariableNam e-"gintSalesM odel"
VariableID-"62"

N o d e lD -"42"
M oduleN am e-"G elRevenue" j 
ParentM odN am e-"Sales" !

Nam e-"gintSalesPeriod"
ID -"67"

M oduleNam e-"SetG raphData”
M oduleID-"7"
VariabIeName-"gintSaIesPeriod" i 
VariableID-”67"

N o d e lD -"43"
M oduleN am e-"G elRevenue"
ParentM odN am e-'Sales"

Name-"ginlSalesPeriod"
ID -"67"

M oduleNam e-"GetRevenue" ' 
M odulelD -"43"
VariableNam e-"gintSalesPeriod" | 
VariableID-"67"

N o d e lD -"44" ! 
M odule.N am e-'G etA ulhorRoyally" : 
ParcntM odN am e-"Sales"

Nam e-"ginlSalesPeriod"
ID -"67"

M oduleName-"GetRevenue"
ModuleID-"43"
VariableName-"gintSalesPeriod"
VariableID-”67"

N o d e lD -"45" ‘ 
M oduleN am e-'G etPubR evenue" 
Parcnt.M odName-"Sales" '

Nam e-"gintSalesM odel"
ID -"62"

M oduleNam e-"GetRevenue"
M oduleID-"43"
VariableName-"gintSalesM odel"
VariableID-"62"

N odeID -"45" 1
M oduleN am e-'G etPubR evenue"
ParentM odN am c-"Sales"

Nam e-"gintSalesPeriod"
n>-"67"

M oduIeNam e-"GetRevenue" ! 
M odulelD -”43”
V ariableN am e-'gintSalesPeriod"
VariableID-"67"

N odeID -"46"
M oduleN am e-"Class_lnitialize"
ParentM odN am c-"Sales"

N am e-"gD B N am e"
ID -”5"

M oduleNam e-"Class_Initialize" 
M oduleID-"46" 
VariableNam e-"gDBN am e" 
VariableID-"5"

N odelD -"46"
M odulcN am e-"Class_Initialize"
ParentM odN am c-"Sales"

N am e-"gintlnstanceCount"
ID -"59"

M oduIeNam e-''Class_Iniiiaiizc"
M odulelD -"46"
VariableNam e-"gintlnstanceCount"
VariablelD-"59"

N odelD -"46"
M odule.Name-"Class_Initialize"
ParenlM odN am e-"Sales"

N am e-"gC N ”
ID -"60"

M oduIeName-"Class_Initialize"
M oduleID-"46"
VariableNam e-"gCN"
VariableID-"60'~

N odeID -"47"
M od u leN am e-’LoadDB"
ParentM od.Name-"Sales"

N am e-"gD B i\am e"
ID -"5 ”

M oduleName-"CIaas_Initialize"
M odulcID-"46"
VariableNam e-"gDBN am e"
VariableID-"5"

Node ID -"47"
M oduleN am e-"LoadD B "
ParentM odN am e-"Sales"

N am e-"gD B N am e"
ID -"5"

M oduleNam e-"LoadDB"
M oduleID-"47"
V ariableNam e-"gDBN am e,,
V ariableID-"5"

N odeID -"47"
M odule.Name-"LoadDB"

N am e-”gCN"
ID -"60"

M oduleNam e-"Class_Initialize'' i 
M oduleID-"46" i
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CallG raph.V ode G lobalR efV ar Im pacted  By

ParenlM odNam e-"Sales" V ariableN am e-"gCN "
V ariableID -"60"W

N odeID -"47" i
M oduIeNam e-"LoadDB"
ParenlM odNam e-"SaIes"

Nam e-"gC N "
ID -"60 , r

M oduleN am e-"LoadD B ” 
M odulelD—”47" 
VariableName—"gCN" 
VariablelD—"60"

N odelD -"48"
M oduleNam e-"GelBooksale"
Parem M odN am e-"Sales"

Nam e-"gDBNam e" 
ID_"5" ~

M oduleN am e-"LoadD B " 
ModulelD—"47" 
V ariableN am e-"gD BN am e" 
V ariableID -"5" ~

N odeiD -"49"
M oduleNam e-"CIass_Term inate"
ParentM odN am e-"Sales"

Nam e-"gintInstanceCount"
lD-"59"~

M oduleN am e-"Class_Tenninate" 
ModulelD—"49"
V ariableN am e-'gintlnstanceC ount"
V ariableID -"59"

[  T o ta ls_______________________

fro ta l # o f  R everse R ipple Im pacts in  C all G ra p h : [43
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APPENDIX C. TOOL EXTENSIONS AND SOURCE LISTINGS

This appendix contains source code listings and other supporting details for the 
tools and techniques developed or modified for use in this research. The first section 
describes the modifications made to Project Analyzer for the OA-dead analysis capability. 
Note that the term semi-dead is used to mean OA-dead in the tool. The next section 
describes the Project Analyzer modifications made to perform a global variable usage 
analysis and generate the XML summary call graph, parameter mapping dependence 
graph, and impact dependence graphs. The XML schemas for each of these graphs are 
included next, followed by the XSL scripts to render the various views of the graphs.

C.l. Project analyzer extension: OA-dead analysis

C.1.1. OA-dead report modifications to project analyzer

This is a list o f all modifications made to the Project Analyzer code (version 5.0.07) to incorporate the OA- 
Dead Report. These modifications can be quickly located in the source code by searching for the string 
"sparks."

1. Modified Data.bas
a. Added init and set attributes to CtrlType (InitDisabled. SetEnabled. Initlnvisible. SetVisible. etc.)
b. Added SemiDead and Checked attribute to ProcType
c. Added SemiDead and Checked attributes to FileType
d. Added semidead reason attributes to ProcType and CtrlType (sdFile. sdlnvisible. etc.)

2. Modified Analysis.bas
a. Added subconditionals to ReadFormData30 to gather Visible, Enabled. Width. Height. Left, and

Top information for Form Files
b. Added subconditionals to ReadFormData40 to gather Visible. Enabled, Width. Height. Left, and

Top information for Form Files
c. Added AnalyzeCtrlRef procedure (see Appendices B and/or C for details)
d. Added call to AnalyzeCtrlRef in Analyze_Word_Scope within "case stModule" code where it

checks for a Control
e. Added line to grab Nextldent for dotted control in IsDotted
f. Added ParentFileNR assignment to AddCtrl

3. Modified Project.frm
a. Added "OA-Dead Code Report" to Report menu
b. Added Process_Phase check to Report_Click procedure

4. Added SemiDeadReportOptions.ffm

5. Modified Report.bas
a. Added procedure ReportSemiDead (see Appendices B and/or C for details)
b. Added procedure CheckDownFile(filenr) as recursive check o f SemiDead File information (see

Appendices B and/or C for details)
c. Added procedure CheckDownProc(procnr) as recursive check o f SemiDead procedure information

(see Appendices B and/or C for details)
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C. 1.2. OA-dead report pseudo-code

This pseudo-code is the basic outline for the OA-Dead Report.

1. Parse source code to look for OA-dead attributes. (Analysis.bas)

2. For each attribute found gather initialized and set information. (Analysis.bas)

3. Initialize OA-Dead analysis and count variables. (ReportSemiDead in Report.bas)

4. For each control, if any OA-dead affecting attribute is initialized unavailable and not set then the control 
is OA-dead. (ReportSemiDead in Report.bas)

5. For each file, if file is OA-dead, check child files for other parents who are not OA-dead. Otherwise 
child files are OA-dead too. (ReportSemiDead in Report.bas)

6. For each procedure, if parent file is OA-dead. procedure is OA-dead. (ReportSemiDead in Report.bas)

7. For each control, if control is OA-dead. child procedures are OA-dead. (ReportSemiDead in Report.bas)

8. For each procedure, if procedure is OA-dead. check child procedures for other parents who are not OA- 
dead. Otherwise child procedures are OA-dead too. (ReportSemiDead in Report.bas)

9. Get user input on what to report. (SemiDeadReportOptions.frm)

10. Report. (ReportSemiDead in Report.bas)

C.2. Project analyzer extension: call graph summary information

C.2.1. Summary information modifications to project analyzer

This is a list of all modifications made to the Project Analyzer code to incorporate the global variable usage 
analysis, summary call graph generation, parameter mapping analysis, and ripple analysis reports.

1. Existing storage mechanisms in project analyzer. The following array structures were used as they 
exist without modification:

a. Localldent Array. This is an array of all local (ie. procedure-level) variables, constants and 
parameters.

b. Ident Array. This is an array o f all global variables and constants. Project Analyzer defines global 
as Module-level and higher in a VB project.

c. IdentRef Array. This array stores variable and constant usage information. Every time a variable is 
referenced or defined is a unique IdentRef instance and information about that IdentRef is stored in 
the IdentRef array.

d. Proc Array. This is an array o f procedure information. Every procedure and function in a VB 
project will have an information element in the Proc array.

2. Storage mechanism extensions and modifications:
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a. IDMap Array. Project Analyzer uses the Ident and Localldent arrays to identify variables/constants 
within the context of their scope. Thus, a local variable and a global variable can share the same ID 
value. Call graph analysis requires the ability to uniquely identify all variable/constant instances 
outside o f their scope. To ensure unique ID key values the IDMap array was designed to map a 
unique context-free key value to every variable and constant defined in the project.

b. CallGraph.mdb Database. This is an MS Access database that organizes project analysis data into 
information tables. The CallGraph database facilitates the use of SQL queries to perform complex 
information analysis tasks. The alternative to the database approach would be to use repetitive 
sequential array processing to perform complex information analysis tasks. Following is a 
description of the tables used in the database:

•  RefDef Table. This table replicates much o f the information stored in the IdentRef array. 
Information describing variable/constant attributes and how they are used was copied out 
of each IdentRef array element into the RefDef table. SQL queries were used to 
manipulate variable usage information in the RefDef table. SQL queries are more efficient 
than repetitively traversing the IdentRef array to algorithmically determine the same 
information.

• ProcedureCalls Table. This table simply records caller and callee information about every 
procedure call site in the project. Each call site is referred to as a procedure reference or 
ProcRef. ProcRefs are uniquely identified by a key value, which is also stored in the 
ProcedureCalls table.

• ParmBindings Table. This table records actual-to-formal parameter binding information 
at each procedure call site. Each parameter-binding instance is associated with a unique 
ProcRef number, which relates it back to the ProcedureCalls table.

• Ripple Table. This is a utility table used to temporarily store ripple analysis information 
prior to printing the Ripple analysis report.

• Visit table. Another utility table.

3. The following software modules were added to Project Analyzer.

a. IDMap.bas This module contains the data structures and methods to manage and use the IDMap 
array.

b. ProcMod.bas This module contains the software to interface with the CallGraph database and 
perform much of the data analysis for the call graph related reports.

c. XML.bas This module contains the output procedures that generate and print XML-formatted text.

4. The following software modules were modified in Project Analyzer to support call graph report
generation:

a. Analysis.bas Those portions of the analysis module that process procedure callsites were modified 
to record call site data into the ProcedureCalls table and parameter-binding information into the 
ParmBindings table in the database.

b. Data.bas. IdentMod.bas, and LocaIIdentMod.bas These modules were all modified to 
accommodate the inclusion o f a unique IDKey field in the data structure definitions of IdentType 
objects in Project Analyzer. Those portions of these modules that add new variables/constants to
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the Went and Localldent arrays were modified to register the new variable/constant with the 
IDMap array.

c. Report.bas The algorithms to perform data analysis necessary to generate call graph reports were 
implemented in the Report module.

5. Project Analyzer Analysis Phases:

a. Phases 1 & 2. During phases I & 2 Project Analyzer is gathering data about project structure, e.g..
variable and constant declarations, procedure names, identifier usage, etc. Phase 2 primarily 
conducts cross-referencing analysis. Phase 2 analysis was modified to capture procedure call 
statements and mark each identifier serving as an actual parameter as a new identifier reference 
(IdentRef) object. The new IdentRef object is added to the IdentRef array and further parameter- 
binding analysis is performed in Phase 3.

b. Phase 3 was added to support call graph and data flow analysis. It performs two main tasks. The 
first task is to finalize the parameter-mapping analysis. The parameter-binding relation is 
determined to be either input (reference) or output (definition). Parameter-binding information is 
then copied into the ParmBindings table in the CallGraph database. The second task is to copy the 
IdentRef data into the RefDef table in the database.

C.2.2. Summary call graph pseudo-code

For each procedure (P) in the project:

Repon Formal Parameters
For each parameter in Localldentifier list

Compute first use/Last use information 
Print "Parameter" tag 

Next parameter

Report Constant declarations
For each constant in Localldentifier list 

Print "Constant” tag 
Next constant

Report Variable declarations
For each variable in Localldentifier list 

Print "Variable” tag 
Next variable

Report Called Modules
For each calledProcedure in P.ToProcs list 

Print "Module” tag 
Next calledProcedure

Report CallSite Tags
Get list o f  call sites in P 
For each callSite in P

Print "Module” tag
Print Parameter Bindings (ordered list o f Actuals followed by Formals)

Next callSite

Report Global References Lists
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Get list o f Global Constants referenced in P 
For each ConstRef in list

Print "Constant” tag 
Next ConstRef

Get list of Global Variables referenced in P 
For each VarRef in list

Print "Variable” tag 
Next VarRef

Report Global Defines Lists
Get list of Global Variables defined in P 
For each VarDef in list

Print "Variable” tag 
Next VarDef

Report Local References Lists
Get list of Local Constants referenced in P 
For each ConstRef in list

Print "Constant” tag 
Next ConstRef

Get list of Local Variables referenced in P 
For each VarRef in list

Print "Variable" tag 
Next VarRef

Report Local Defines Lists
Get list of Local Constants defined in P 
For each ConstDef in list

Print "Constant” tag 
Next ConstDef

Get list of Local Variables defined in P 
For each VarDef in list

Print "Variable” tag 
Next VarDef

Next Procedure

C.2 J . Global ref-def computation pseudo-code

The purpose o f this algorithm is to compute the set of global variables referenced or defined directly in the 
body o f procedure (P) and indirectly through program control flow out of P.

Global reference algorithm:

Select the list o f Variables (VarList) from RefDef table where:
Referencing procedure is P
The variable is global and it is referenced, or
The variable is a ByRef parameter and referenced

Generate list o f  indirect global variable references:
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Get list of procedures comprising the call tree rooted at P (CPList) 
For each called procedure (CP) in CPList

Select list o f Variables from RefDef table where: 
Referencing procedure is CP 
The variable is global and it is referenced 

Append selected variables to VarList 
Next called procedure

Global defines algorithm:

Select the list o f Variables (VarList) from RefDef table where:
Referencing procedure is P
The variable is global and it is defined, or
The variable is a ByRef parameter and defined

Generate list o f indirect global variable defines:
Get list o f procedures comprising the call tree rooted at P (CPList) 
For each called procedure (CP) in CPList

Select list o f Variables from RefDef table where: 
Referencing procedure is CP 
The variable is global and it is defined 

Append selected variables to VarList 
Next called procedure

C.2.4. Reverse ripple analysis report pseudo-code

clear marked entries/initialize 
sub mainl)

For each callgrahpnode
CGN -  CallGraphNode name/id 
for each GlobalRef variable

GRV -  GlobalRef Variable name/id
If GRV in GlobalDef list of CGN then Mark CGN/'GRV pair
for each CalledByModule in CGN

CBMOD -  CalledByModule name/id 
Visit_Module(CBMOD, GRV) 
next

end for
print marked entries 
clear marked entries 
next

end for 
next

end for
end sub

sub Visit_ModuIe(cgn. v ) : boolean
If cgn has already been visited then Return

If v is a formalparameter then 
for each callsite in cgn

act_v -  mapped actual parameter o f  v 
Visit_ModuJe(cgn. act_v)
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next
end for

else
If v in GlobalDef list of cgn then 

Mark cgn/v pair
else

for each CalledByModule in cgn
cbm -  CalledByModule name.'id
Visit_Module(cbm. v)
next

end for
end if

end if
end sub

C.2.5. Parameter mapping dependence report pseudo-code

For each procedure (P) in Procedure list
For each local identifier (LID) defined in P 

If LID is a formal parameter then
Print "FormalParameter" tag describing LID 
Compute List o f  actual arguments (ActualsList) bound to LID 
Note: See ComputeDataDependencies Algorithm below 
For each actual argument in ActualsList

Print "Variable" tag describing actual argument information 
Print "Procedure" tag describing procedure callsite information 

Next actual argument
End if 

Next local identifier 
Next procedure

ComputeDataDependencies (FormalParameter, ActualsList)

If FormalParameter has been visited then Return
Select list of (Formal. Actual) pairs from ParmBindings table where Formal is equal to FormalParameter 
For each pair in (Formal. Actual) list 

Add Actual to ActualsList 
If Actual is also a formal parameter then

ComputeDataDependencies (Actual. ActualsList)
End if 

Next pair

C.3. Summary call graph XML schema

>?xml version ="1.0’?>
< . - -Generated by XML Authority. Conforms to w3c http://ww.w3.org/TR/xmischema-l/--> 
■schema taraetNamespace = "CallGraph.xsd*

xmlns = "h t t p : / / w w . w 3 .org/1999/05/06-xmlschema-1/structures.x s d ">
<element name - "CallGraph">

<type content = *elementOnly’>
<group order = "seq">

<element ref - "ReportTitle’/>
<element ref - "ProjectTitle"/>
<group order - "seq* minOccurs » "0* maxOccurs - ***>
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•-element ref - "ModuleCollection"/>
^element ref = "CallGraphNode" minOccurs = "1" maxOccurs » "»"/> 

-./group>
</type>

•:/element>
<element name = "ReportTitle" type = "string*/>
■:element name =■ "ProjectTitle" type = "string"/>
-element name » ’CallGraphNode">

ctype content = "elementOnly">
<group order = "seq’>
<element ref = "Formalparameters" minOccurs » "0" maxOccurs => ’*"/>
•-element ref = "ConstantDeclarations" minOccurs * "0“ maxOccurs = ’*’/>
-^element ref - "VariableDeclarations" minOccurs * "0" maxOccurs =■ "»"/>
•-element ref * "CalledModules" minOccurs * "0" maxOccurs = *»*/>
•-.element ref * "CallSites" minOccurs - "0" maxOccurs » "»"/>
•-element ref = "GlobalRefs" minOccurs = "0" maxOccurs * ’*•/>
<element ref = "GlobalDefs" minOccurs = "0" maxOccurs - "*’/>
^element ref - "LocalRefs" minOccurs * "0" maxOccurs =■ ’»*/>
•-element ref = "LocalDefs" minOccurs • "0" maxOccurs * "»’/>
</group>
^attribute name - "NodelD" minOccurs * *1" type » "integer’/>
•attribute name * "ProcName" minOccurs - "1" type - "string"/^
< a t t n b u t e  name * "ParentModName" minOccurs » "1* type - "string’/>
</type>

■:/element>
--element name * "FormalParameters">

•:type content - "elementOnly">
<group order * "seq’>

<element ref - "PassByRef* minOccurs - "0* maxOccurs - •••/> 
<element ref * "PassByVal" minOccurs =■ *0" maxOccurs * ’»"/> 

</group>
■/type>

■'./element>
■element name - "ConstantDeclarations">

•:type content - *eiementOnly">
<group order » "seq">

<element ref ■ "Constant* minOccurs - "I" maxOccurs ■ "»"/> 
</group>

•;/type>
■:/e!ement>
-.element name - *variableDeclarations*>

<type content * "elementOnly">
•-group order » "seq">

<element ref » "Variable" minOccurs - "I" maxOccurs - "**/> 
</group>

</type>
</eiement>
^element name - *CalledModules*>

<type content - "elementOnly">
<group order « "seq">

<element ref * "Module" minOccurs * "1" maxOccurs - **’/> 
</group>

</type>
</element>
■^element name » "PassByRef">

<type content » ’elementOnly*>
<group order - "seq" minOccurs - "1" maxOccurs - **">

<element ref * * Parameter’/>
</group>

</type>
</element>
<eiement name * "PassBvVal">

<type content » "elementOnly’>
<group order - "seq* minOccurs - "1" maxOccurs » "*’>

<element ref - ’Parameter"/>
</group>

</type>
</element>
<element name = *Constant’>

<type content - "elementOnly">
<group order « "seq’/>
■^attribute name « "ConstlD" minOccurs = "1" type = "string"/> 
<attribute name = "ConstName" minOccurs = "1" type = "string’/>

</type>
</element>
<element name = "Variable">
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<type content = 'elementOnly”>
■cgroup o r d e r  = "seq"/s
<attribute name = "VarlD" minOccurs = "1" type » "string"/>
•^attribute name = "VarName" minOccurs = ’1“ type » *string'/>

</type>
</element>
■:element name » 'Module’>

<type content = "elementOnly">
<group o r d e r  * "seq"/s
<attribute name = "NodelD" minOccurs = “1" type ■ "integer’/>
< a t t n b u t e  name = "ModName" minOccurs = "1" type = " s t n n g " / >

•;/types 
•./eiement>
•;element name = "ConstName" type * " s t r m g ’/s 
•element name = "ConstID* type = "string*/>
■■element name = "VarName" type =■ *string"/>
■.element name * "VarlD" type - "string’/s 
•;element name - "ModuleCollection" type « ’s t n n g " / >
•-element name - "GlobalRefs">

<type content « "elementOnly">
<group order - "seq’s

^element ref - "ConstRefs" minOccurs - "0" maxOccurs » **•/>
<element ref - "VarRefs" minOccurs - "0" maxOccurs - "*"/>

</group>
</type>

•■/elements
<eiement name * *GlobaiDefs">

<type content - "elementOnly’>
<group order = "seq“>

<element ref » "ConstDefs" minOccurs - "0" maxOccurs » **’/>
<element ref - "VarDefs* minOccurs - *0" maxOccurs * **•/>

</group>
•-/types

• ; / c l e m e n t s
•;eiement name ■ "LocaiRefs’s

<type content * "elementOnly's 
•:group order « "seq’s

<elsment ref * "ConstRefs" minOccurs - *0" maxOccurs - •••/>
<eiement ref - "VarRefs" minOccurs - "0" maxOccurs - "»’/>

</groups
-;/type>

•:/elements
■element name ■ "LocalDefs’s

■;type content - "elementOnly’s 
<group order - ’s e q ’s

<element ref - "ConstDefs" minOccurs * "0" maxOccurs - •*•/>
<eiement ref « "VarDefs" minOccurs * "0" maxOccurs * •»’/>

•:/groups
'•■/types

•-/elements
< e l e m e n t  n ame * "ConstRefs's

<type content - "elementOnly"s 
<group order * ’s e q ’s

<element ref - "Constant" minOccurs • "1" maxOccurs - ’**/> 
</group>

•-./types
</elements
< e l e m e n t  nam e  - " V a r R e f s ’s

•-■type content « "elementOnly’s 
<group order “ "seq’s

<element ref - "Variable" minOccurs - "1" maxOccurs - "*’/> 
</groups

</types
•c/eLements
■-element name = "ConstDefs’s

<type content 3 "elementOnly’s 
<group order - ’s e q ’s

<element ref = "Constant" minOccurs » "1" maxOccurs * "* ’/s 
</groups

</types
</elements
< e l e m e n t  n a m e  = " V a r D e f s ’s

<type content « "elementOnly’s 
<group order - "s e q ’s

<element ref = "Variable" minOccurs =■ "1" maxOccurs » ’**/> 
</groups
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• ; / t y p e s
■ : / e l e m e n t s
<eiement name = "FirstOse" type = ’string’/s 
<element name = "LastOse" type ■ ’string’/s
•-element name = "Parameter’s

<type content = "textOnly’s
^attribute name = "VarlD" minOccurs = *1" type =■ "string"/>
^attribute name - "VarName" minOccurs = "1" type » *string"/>
^attribute name - "FirstOse" minOccurs =* "1">

<datatype source = "string’s
<enumeration value * "ref’/s 
<enumeration value = "def’/s 

</datatypes 
</attributes
<attribute name » "LastOse" minOccurs = "l"s 

<datatype source = "string’s
•enumeration value - "ref’/s 
•cenumeration value ■ "def"/s 

</datatypes 
</attributes

</types
■^/elements
•element name » "CallSites’s

<type content * "elementOnly’s 
<group order - ’seq’s

<element ref - "Callsite" minOccurs ■ "1* maxOccurs * **"/s 
</groups

</types
•/elements
•element name =■ "CallSite’s

•type content • "elementOnly’s 
<group order * "seq’s

<eiement ref - "Moduie’/s 
<eiement ref - "StatementLineNumber"/s 
<element ref - "CallSiteAnalysisCompleted’/s 
<element ref * "ParameterMapping’/s 

</groups
</types 

•- / e lemen t s
■element name - "StatementLineNumber" type • " s t n n g ’/s 
■element name * "CailSiteAnalysisCompleted" type - "string’/s 
-element name - "ParameterMapping’s

<type content - "elementOnly’s
<group order - "seq* minOccurs » "1" maxOccurs • ’•"s 

<element ref « "ActualParameter"/s 
<group order - "choice’s

<element ref - "PassByRef*/>
<element ref • "PassByVal"/s 

</groups 
</groups

•:/types
•-/elements
<eiement name - "ActualParameter">

<type content - "textOnly’s
<attribute name - "VarName" minOccurs - *1" type ■ ’s t ring’/s 
<attribute name * "VarlD* minOccurs » "1" type * "string’/s

</types 
•:/elements 

■-/schemas

C.4. Parameter mapping dependence graph XML schema

<?:<ml version ="1.0"?s
-Generated by XML Authority. Conforms to v3c http://vww.w3.org/TR/xmlschema-l/--s 

<scnema targetNamespace = "ParmMappingRpt.xsd"
xmlns - "h t t p : / / w w . w 3 .org/1999/05/06-xmlschema-1/structures.xsd’s 

•celement name = "DataDependenceReport’s 
<type content * "mixed’s

< e l e m e n t  ref = " M o d u l e N a m e ’/s
</type>

</element>
<element name = "ModuleName’s

<type content = "elementOnly’s 
<group order « ’seq’s
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<element ref = "DataDependence*/?
</group?
<attribute name = “ID" type = "string*/?
<attribute name = "Name" type = "string"/?

•:/type>
</element>
<eleraenr name = "DataDependence">

-:type content = ’elementOnly">
<group order = "seq"?
--'element ref = "FormalParameter" minOccurs = "0" maxOccurs -
</group?

</type?
■-./element?
^element name = "FormalParameter">

•;type content * *elementOnly’>
<group order - "seq"?

<element ref = "Variables" minOccurs = *1* maxOccurs
<element ref - "Constants" minOccurs = *1" maxOccurs

</group>
<attribute name = "ID* type - *string“/>
■^attribute name * "Name" type * *string"/>

•:/type>
•-/element?
--element name * "Variables">

?type content * “elementOnly“>
<group order * "seq"?

<element ref = "Variable"/?
<element ref - "Procedure"/>

</group?
</type?

•;/element>
^element name = "Constants’?

<type content ■ "elementOnly">
<group order • *seq*>

<element ref - "Constant"/?
<element ref - "Procedure"/?

•'/group?
■-/type?

•/element?
■-element name - "Variable"?

<type content - "textOnly"?
< a t t n b u t e  name * "ID" type - "string*/?
<attribute name - "Name" type * "string"/?

•-/type?
</element?
<element name - "Procedure"?

<type content - "textOnly"?
<attribute name - "ID" type - "string"/?
<attribute name - "Name" type - "string"/?

</type?
</element?
•-element name - "Constant"?

<type content • "textOnly"?
^attribute name - "ID" type - "string"/? 
cattribute name - "Name" type - "string"/?

</type?
</element?
•datatype name - "DataDependence" source * "string"/?

•;/schema?

C.5. Reverse ripple dependence graph XML schema

•:?xml version ="1.0"??
-Generated by XML Authority. Conforms to w3c http://www.w3.org/TR/xmlschema-l/ 

•^schema targetNamespace = "ReverseRipple.xsd"
xmlns = "htt p :/ /www.w3.or g / 1999/05/06-xmlschema-1/structures.x s d "? 

<eiement name = "ReverseRipple"?
<type content = "elementOnly"?

<group order = "seq"?
<element ref = "CallGraphNode" minOccurs = "1" maxOccurs = 
</group?

</type?
</element?
<element name = "CallGraphNode"?
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•-type content = "elementOnly">
<group order = *seq">
<element ref = "GlobalRefvar“ minOccurs * "O' maxOccurs = "»"/>
</group>
-^attribute name = "ID" type = "string"/>
<attribute name = "Name" type = "string"/>
< a t t n b u t e  name - "ParentModName" type = "string"/>

</type>
■;/element>
^element name = "GlobalRefVar*>

•;type content = "elementOnly">
<group order = "seq">
<element ref - "ImpactedBy" minOccurs * "0" maxOccurs 1 "»"/>
•:/group>
< a t t n b u t e  name * "ID" type = "string”/}
<attribute name * "Name* type = "string"/}

■-/type>
</eiement>
velement name = "ImpactedBy">

■;type content - *elementOniy">
<group order * "seq">

<elemenc ref * "Module"/>
<eiement ref * "Variable"/>

•-/group}

■:/element>
■-element name = "Module">

<type content * "textOnly’>
<attribute name - "ID" type » "string*/>
<attribute name - "Name" type - "string"/}

■:/type>
-:/element>
■^element name = 'Variable'}

•■-type content ■ "textOnly" >
<attribute name * "ID" type * " s t r m g " / >
<attribute name - "Name" type - * s t n n g " / >

■'/type>
•-./element}

■/schema}

C.6. Call graph metrics XSL view

•-?xml version-" 1. 0"?>
• xs1:stylesheet x m l n s :xsl*"htt p ://www.w3 org/1999/XSL/Transform" 

version*"1.0">

Call Graph Metrics View 
This view collects some element counts for key elements and displays them. Basically, the 
result can be a table, with rows for each moduleCollection/callgraphnode grouped by 
modulecollection. The columns would be ModuleCollection name, callgraphnode (listing the 
nodeid and name), * CalledModules, * CallSites, * CallSite with non-empty
ParameterMappmgs, * GlobalRefs, and* GlobaDefs. The * of columns are counts, so the cell 
would just have a number. Then display SubTotals for that modulecollection. * of 
CallGraphNodes is the * of nodes in that Modulecollection.

n Aug 00

< x s l :output method="html* indent*"yes"/>
■'xsl: template match*"/"} 

i - - Title -->
<H1 style»"text-align;center; background-color:gray; color:white">Call Graph 

Metrics View</Hl>
<xsi;apply-templates select*"/CallGraph/ModuleCollection"/>
< ? / >

grand totals -->
<TABLE border*"1">

<TR>
<TH colspan-*2">Totals</TH>

</TR>
<TR>

<TH align="left’>Total * of ModuleCollections</TH>
<TD>

<xs l :value-of select*"count(/CallGraph/ModuleCollection)"/>
</TD>
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</TP.>
'■TR>

<TH align-’Left’>Total * of CallGraphNodes</TH>
<TD>

<xsl:value-of select-'count(/CallGraph/CallGraphNode)’/>
</TD>

</TR>
<TR>

<TH align-"left">Total * of CalledModules</TH>
<TD>

<xs l :value-of
select - "count ;/Ca L iGraph/CallGraphNode/CalledModules/Module) ’/>

</TD>
</TR>
■TR>

■:TH align-’left’>Total * of CallSites</TH>
<TD>

<xsl:value-of
select-"count(/CallGraph/CallGraphNode/CallSites/CallSite) "/>

</TD>
</TR>
<TR>

<TH align-"left">Tocal * of CallSites/PM</TH>
<TD>

<xsl:if
test-"/CallGraph/CallGraphNode/CallSites/CallSite/ParameterMapping’>

<xsl:value-of
select - ’count(/CallGraph/CallGraphNode/CailSites/CallSite)’/>

</X S l :l i>
</TD>

■/TR>
<TR>

<TH align-’left">Total * of GlobalRefs</TH>
<TD>

;xsl:value-of
select-’count(/CalIGraph/CallGraphNode/GlobalRefs/ConstRefs/Constant)-count (/CallGraph/Cal 
ICraphNcde/GiobalPefs/VarRefs/Variable)’/>

</TD>
</TR>
<TR>

<TH align-’left*>Total * of GlobalDefs</TH>
<TD>

<x s l :value-of
select *"count(/CallGraph/Ca11GraphNode/GlobalDef s/ConstDefs/Constant)-count (/CallGraph/Cal 
IGraphNode/GlobalDefs/VarDefs/Variable)’/>

</TD>
</TR>

</TABLE>
•-/xs 1: template?
■;xsl: template match-*ModuleCollection">

■:: - - name of this MC -->
-cxsl: variable name-"mc_name’>

< x s l :value-of select-’ .*/>
</ xsl:variable?
<TABLE border-’1*>

<TR>
<TH>Module Collection</TH>
<TH?Call Graph Node</TH?
<TH?Number of Called Modules</TH>
<TH?Number of Call Sites</TH>
<TH?Number of Call Sites per PM</TH>
<TH>Number of Global Refs</TH>
<TH?Number of Global Defs</TH>

< /TR>
<xs l : apply-templates select-’ . ./CallGraphNode [ ?ParentModName-Smc_name]"?

<: --<xsl:vith-param name-’mc_name’>
< x s i :value-of select-’Smc_name*/>

< / x s l :with-param>-->
■:/xsl: apply- templates?

subtotals -->
<TR>

<TH colspan="2’>Module Subtotals</TK>
<TD>

<x s l :value-of
select=’count( . ./CallGraphNode[ ;ParentModName=Smc_namel/CalledModuies/Module)"/>
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</TD>
<TD>

<xsl:value-of
select-"count( . ./CailGraphNode!=ParentModName=Smc_name]/CallSites/CallSite) ’/?

</TD?
<TD>

<xsl:choose>
<xsl:when

test-’ ../CailGraphNode[ :ParentModName=Smc_name]/CallSites/CailSite/ParameterMapping">
< x s l :value-of

select'”count; ./CailGraphNode!=ParentModName=Smc_namel/CallSites/CallSite)'/?
</xslrwhen?
<xsl:otherwise?

< x s l :value-of select'*'0’ "/?
< / xsl:otherwise?

</xsl:choose>
■;/TD?
<TD>

<xsl value-of
select="count( /CailGraphNode! ’ParentModName-Smc_name)/GlobalRefs/ConstRefs/Constant)-cou 
nt( . ./CailGraphNode! ;ParentModName“Smc_name]/GlobalRefs/VarRefs/Vari.able) */•>

</TD>
<TD>

<xsl:value-of
select = 'count( ./CailGraphNode! !ParentModName-Smc_name]/GlobalDefs/ConstDefs/Constant)’■cou 
nt( /CailGraphNode! ’ParentModName-Smc.namel/GlobalDefs/VarDefs/Variable)"/>

</TD>
</TR>

•:/TABLE>
< ? / • >

■r/xs 1 : template?
■ xsl : template match-’CallGraphNode"?

< - - < x slparam name-*mc_name"/?
■ x s l ; if test*" / !ParentModName-Smc_name">- •>

•;TR>
Module Collection -->

<TD>
<xsl:apply-templates select*". / ‘ParentModName’/>

v-/TD>
Call Graph Node -->

<TD?
NodeID: < x s l :value-of select-" . / >NodeID"/?<BR/>
ModuleName: < x s l :value-of select*"./!ModuleName"/?

<-/TD>
<:-- Number of Called modules -->
<TD>

<xsl:value-of select-"count(./CalledModules/Module)’/?
</TD>
<:-- Number of Call Sites -->
<TD>

<xsl:value-of select-"count(./CallSites/CallSite)’/>
</TD>
<:-- * Callsite with non-empty ParameterMappings -->
<TD>

<xsi:choose?
<xsl:when

test-"./CallSites/CallSite/ParameterMapping"?
< x s l :value-of

select-"count(CalISites/CallSite)"/>
< / x s l w h e n ?
< x s l :otherwise?

<x s l :value-of select-"’0'"/?
< / xsl: otherwi.se?

< /x s l:choose?
</TD?
<:-- Number of Global Refs --?
<TD?

< xsl:value-of
select-’c o unt(./GlobalRefs/ConstRefs/Constant)-count(./GlobalRefs/VarRefs/Variable)•/>

</TD?
<:-- Number of Global Defs --?
<TD?

<xsl:value-of
select="count( /GlobalDefs/ConstDefs/Constant)-count(./GlobalDefs/varDefs/variable)’/?

</TD?
<:-- Number of Couplings --?
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</TR?
■ . - - '/XSl. : lf>-->
</xsl: template?
■;/xsl : sty lesheet>

C.7. Call graph table XSL view

■:?xml vers ion-'1.0"??
-x s l :stylesheet x m l n s :xsl““http:/ / w w w .w 3 .org/1999/XSL/Transform" 

version3’ 1.0’>
•:xsl: output method3 "html" m d e n t - ’no"/? 
vxsl:tempLate match-"/"?

•:HTML>
<BGDY>

--xsl:variable name-’root_name" select=’name(»)’/?
<: - - title bar - - >
<xsl:element name-’H I ’>

<xsl: attribute name-’style’>
<x s l :text>text-align:c e nter; background-color:gray;

color:vhrte</xsl.text>
</xsl:attribute>
<xsl.value-of select-"Sroot_name"/?

< / x s 1:element?
note to explain color coding -->

<xsl:element name-’P">
<xsl:text?Parameter names are in </xsi:text?
<xsl:element name-"SPAM">

<x s l :attribute name-"style*>
< x s l .text>color:blue</xsl;text?

</xsl;attribute?
<xs l :text?blue</xsl:text?

</xsl:element?
<xsl:text? and attrrbute names are tn </xsl:text?
<xsl:element name-"SPAN"?

<xsl:attrrbute name-’style’?
< x s l :text?color:red</xsl:text?

</xsl•attribute?
<xs l :text?red</xsl:text?

</xsl:element?
<x s l :text?.< / x s l :text?

< / x s l :element?
< x s 1:apply-templates select-’♦/*’/?

</BODY?
</HTML?

</xsl:template? 
v . - - match on any root --?
• xs 1.template match-*node()’?

■:xsl: element name-’TABLE"?
<xsl:attribute name-"border*?l</xsl:attribute?

<xsl:element name-’TR*?
<xsl:element nam e - ’TD*?

<xsl:element name-’SPAN’?
<xsl:attribute name-’style’?

< x s l :text?color:blue</xsl:text? 
</xsl:attrrbute?
<xsl:value-of seiect='name(.)*/?

</ xsl:element?
<xs1:t e x t ? : </xsi:text?
<:-- display name and value of all attributes --?
<xs l :for-each select-’ **'?

<xsl:element name="BR’/?
<xsl:element name-’SPAN’?

< x s l a t t r i b u t e  name-’style"?
< x s l :text?color:red</xsl:text? 

</xsl:attribute?
<xsl:value-of select-"name()’/?

< / x s l :element?
< x s l :text?: </xs1:text?
< x s i :value-of select-’ .’/?

< / xsl:for-each?
<:-- process children after listing attributes --? 
<x s l :apply-templates/?

</xsl:element?
< / x s l :element?
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</xsl:element? 
■./xsl : template?
</y.s I . stylesheet?

C.8. Parameter coupling analysis XSL view

■:?xml version-" 1 . 0 ”?>
•-xs 1 : stylesheet xmlns : xsl-"http: //wwv.w3 . org/1999/XSL/Transform" 

vers ion-’1.0"?

This stylesheet searches for all CallSites that have ActualParameters that are paired 
with either a PassByRef or PassByVal whose FirstOse is equal to REF. Once found, selected 
data associated with its CailGraphNode, Callsite. Actual Parameter, and Formal Parameter 
are output to a table.
-  -  >

-:xsl output method-"html " indent-"yes’/>
-:xsl : template match-"/’?

<.- - Title - ->
<H1 style-’text-align:c e nter; background-color:g r a y , color:white">Coupling 

Analysis View</Hl?
<TA3LE border-’ 1" width-"100%"?

<TR>
<TH?Cal!GraphNode</TH>
<TH?CallSite</TH?
<TH>Actual Parameter</TH?
<TH>Formal Parameter</TH>

■-/TR?
•;xsl: apply - templates select-’/CallGraph/CallGraphNode*/>
</TABLE>

-/ x s 1:template?
■;xsi : template match-"CailGraphNode"?

■xsl apply-templates select-’CallSites*/>
•;/xsl: template?
• x s l .template match-’CallSites"?

?xs ! .a p p l y ■templates select-’Callsite"/?
-;/xsl: template?
■ x s l :template match-'CallSite"?

•x s l :apply-templates select-’ParameterMapping"/?
■;/xs 1 : template?
■;. - - search for the ActualParameters that meet all criteria --?
•;xsl. template match-"ParameterMapping*>

look at each child element of ParameterMapping -->
<x s l :for-each select-"""?

■;xsl: variable name-"parameter_mapping_element_name"?
< x s l :value-of select-’name()"/?

</xsl:variable?
<x s l :variable name-’parameter_mapping_element_position"?

<xsl:value-of select»’position()"/?
</xsl:variable?
<xsl:variable name-"position_of_next_element"?

< x s l :value-of
select-"number(Sparameter_mapping_element_position"1)"/?

</xsl:variable?
<xsl:variable name-’name_of_next_element"?

<x s l :value-of
seiect-"name(../*[position()-Sposition_of_next_element1)"/?

</xsl:variable?
<:-- test to see if w e ’ve found an ActualParameter --?
<xsl:if test-"Sparameter_mapping_element_name-'ActualParameter'*?

<:-- when we find one, test to see if the next (sibling) element is 
FassByRef or PassByVal --?

< x s l :if test="Sname_of_next_element=’PassByRef'’?
t : -- if it is, go to child element iff it is a Parameter 

element and has an attribute called FirstOse = ’R E F ’ --?
< x s l :apply-templates 

select-"../*[position()-Sposition_of_next_element]/Parameter[ ‘FirstOse-’R E F ’]*?
<:-- pass the position of the ActualParameter, so we 

can get to its attributes later on --?
<xsl:with-param name-*position_of_actual_parameter"? 

<xs l :value-of 
select-* Sparameter_mappmg_element_position*/?

< /xsl:with-param?
</xslrapply-templates?

</xsl;if?
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<xsl:if test*’Sname_of_next_element='PassByVal'">
if it is, go to child element iff it is a Parameter 

element and has an attribute called FirstOse * 'REF' -->
<xs l :apply-templates

select*"../*(pos ition()*Sposition_of_next_element]/Parameter[ ‘FirstOse*'R E F 'I’>
pass the position of the ActualParameter, so we

can get to its attributes later on -->
<xsl:with-param name="position_of_actual_parameter’> 

<x s l :value-of 
select = "Sparameter_mapping_eiement_position*/>

</xs1:with-param>
</xsl:apply-templates>

< / XSl:if>
•:/XSl : if >

-;/xsl : for-each>
/ x s l :template>

having found the desired ActualParameter, spit out all the data to the table -->
•;>:sl: template match*"Parameter">

- x s 1.param name*’pos ition_of_actual_parameter*/>
<TR>

- CailGraphNode -->
<TD>

NodeID-’<x s l :value-of select*"../../../../../’NodelD"/>"<BR/> 
ModuleName-"<xsl:value-of 

select*’ / / / / / ;ModuleName’/ > ’<BR/>
ParentModName-"<xsl:value-of 

select*" / / ./../../ :ParentModName"/>*
</TD>

- CallSite -->
<TD>

ModuleName-’< x s l :value-of 
select*’ ./. ./. /Module/ ’ModuleNarae"/>"<BR/>

ModuleID-*<xsl:value-of select*" . / . . / . /Module/=ModuleID’/>"<BR/> 
InModuleCollection-“<x s l :value-of 

select*" / / /Module/ ‘InModuleCollection"/>"
-./TD>

Actual Parameter -->
•:TD>

VarName-"<xsl:value-of 
select** / / * [position()-Sposition_of_actual_parameter1/ ‘VarName"/>*<BR/>

VarID-"<xsi:value-of 
select*’ / / * [posit ion()-Sposition_of_actual_pararaeter] / ?VarID"/>"

</TD>
Formal Parameter -->

'-TD>
<x s l :value-of select-"name(..)"/><BR/>
VarName-"<xsl:value-of select-’ lVarName*/>"<BR/>
VarID-*<xsl:value-of select-" !VarID’/>"<BR/>
FirstOse-’<xs l :value-of select-’ =FirstOse’/>"<BR/>
LastOse-’< x s i : vaiue-of select-’ *LastCJse’/>"

•:/TD>
</TR>

< / x s l :template>
■-./xsl: stylesheet>

C.9. Cali coupling analysis XSL view

•;?xml vers ion*" 1.0 ’?>
< x s l :stylesheet x m l n s :xsl*"ht t p :/ / w w w .w3.org/1999/XSL/Transform’ 

vers ion*"1.0">

This stylesheet searches for all CallSites that have ActualParameters that are paired 
with either a PassByRef or PassByVal whose FirstOse is equal to REF. Once found, selected 
data associated with its CailGraphNode, Callsite, Actual Parameter, and Formal Parameter 
are output to a table.

<xsl:output method-’html" indent*’y e s ’/>
<x s l :template match="/">

<.- - Title -->
<H1 style*"text-align:center; background-color:gray; color:white*>Call Coupling 

Analysis View</Hl>
<TABLE border*"1* width-’100%’>

<TR>
<TH>CallGraphNode</TH>
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<TH?CallSite</TH?
</TR>

•;xsl:apply-templates select-"/CallGraph/CallGraphNode*/?
■:/TABLE?
<P/>

grand totals -->
<TABLE border-"1"?

<TR>
<TH colspan-*2"?Totals</TH?

</TR>
<TR?

<TH align-’left’?Total * of Call Couplinas</TH?
<TD>

< x s l :value-of
select ="count(/CallGraph/CallGraphNode/CallS ites/CallSite)"/?

</TD?
•-/TR>

•:/TABLE>
-/ x s l :template? 
x s l :template match-’CallGraphNode"?

■-xsl. apply -templates seiect-’CallSites"/?
</ x s 1 : template?
< x s l :template match-’CallSites"?

< x s l ;apply-templates seiect-’CallSite’/?
■-/xs 1 : template?
•-xsl template match-’CallS lte">

■:TR>
< -- CailGraphNode -->
<TD>

<:- - NodeID=’<xs l :value-of select-" / . / . /  / / :N odeID’/?*<BR/?
ModuieName-"<xsl value-of 

select-" ./. / / ./ / -ModuieName*/?"<BR/?
ParentModName*’<x s l :value-of 

select-” / / ./../../ ‘ParentModName*/?* -->
NodeID-"<xsl:value-of select*". . /.. / =NodeID"/?’<BR/?
ModuieName-"<xsl:value-of select-"../../‘ModuieName’ <BR/> 
ParentModName-"<xsl:value-of select-"../.. / ‘ParentModName’/?"

-;/TD?
- CallSlte - - >

•:TD>
<:-- ModuieName-"<xsl:value-of 

select-’ / / ./Mod u l e / ‘ModuleName"/?’<BR/?
ModuleID-"<xsl:value-of select-’ ../ / ./Module/‘ModuleID*/?"<BR/?
InModuleCollection*"<xsl:value-of 

s elect-" / / /Module/ ‘InModuleCollection*/?* -
ModuieName-'<xsl:value-of select-’ ./Module/ ‘ModuieName*/?"<BR/? 
ModulelD-*<xsl:value-of select-*./Module/ 'ModuleID*/?"<BR/? 
InModuleCollection-*<xsl:value-of 

select-" /Module/ ‘InModuleCollection*/?’
</TD?

</TR>
< / x s l .template?
•:/xsl : stylesheet?

C.10. Parameter mapping dependence XSL view

<?xml version-'1.0*??
-x s l :stylesheet x m lns:xsl-'h t t p :/ / w w . w 3 .org/1999/XSL/Transform* 

version-’1.0*?

3 Aug 00

<xsl:output method-’html" indent-*yes*/?
■ x s l :template match-"/*?

<.- - Title - -?
<Hi style-"text-align:center; background-color:gray; c o l o r :vhite*?Parameter Mapping 
Dependence View</Hl?

<TABLE border-’1* width-"100%*?
<TR?

<TH>Moduie Name</TH>
<TH?Formal Parameter</TH>
<TH?Dependence</TH?

</TR?
<xs l .apply-templates select-’/DataDependenceReport/ModuleName’/?
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•-/TABLE>
• - . ? / >

- sub totals - - >
•:H1 styLe= ’text-align: center; background-color:gray; c o l o r :vhite">Metrics</Hl> 
<TABLe "border-"1">

<TR>
<TH>Module Name</TH>
<TH>Formal Parameter</TH>
<TH>Subtotal per Formal Parameter:</TH>

</TR>
< x s L :for-each select-"/DataDependenceReport/ModuleName’>

< x s l :if test-"count(./DataDependence/FormalParameter)=0">
<TR>
<:-- CailGraphNode 
<TD>

ModuieName-"<xsl:value-of select3 ' ./ :Name"/>"<BR/> 
ID=’<xsl:value-of select-’ ./:ID"/>’<BR/>

</TD>
< : - - Formal Parameter - ->
<TD>

</TD>
<TD>
0

</TD>
</TR>

</ XSl:if>
< x s l :for-each select-’ ./DataDependence/FormalParameter">
<TR>

CailGraphNode -->
<TD>

ModuieName-"<xsl:value-of s e l e ct-'../../*Name"/>’<BR/> 
ID-"<xsl:value-of select-" . / /  ‘ID*/>"<BR/>

</TD>
<:-- Formal Parameter -->
-TD>

Name-*<xsl value-of select-* / ,Name"/'-"<'BR/'»
ID-'<xsl:value-of select*". / iID"/>"

</TD>
<TD>

<xsl:value-of 
seiect-"count( /Variables)-count(./Constants)*/>

</TD>
</TR>
< / x s l :for-each>
<TR>

<TH align-’ left’>Subtotal per CailGraphNode: </TH>
<TD>

</TD>
<TD>

< x s l :value-of
select- "count ( /DataDependence/FormalParameter/Variables) -countt . /DataDependence/FormalPar 
ameter/Constants)"/>

</TD>
</TR>

</xsl:for-each>
</TA8LE>
-:P/>

- grand totals -->
•:TABLE border-’ 1*>

<TR>
<TH colspan=*2">Totals</TH>

■-/TR>
<TR>

<TH align-"left*>Total * of Parameter Mapping Dependencies in Call
G r aph:</TH>

<TD>
<xsl:value-of

select-"count(/DataDependenceReport/ModuleName/DataDependence/FormalParameter/Variables)-c 
ount(/DataDependenceReport/ModuleName/DataDependence/FormalParameter/Constants)"/>

</TD>
</TR>

</TABLE>
< /xsl:template>
< x s l :template match=’ModuleName">
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- / x s
-xsl

- '/X S
:xsl

-/xs
- x s l

/xs
-xsl

■ x s l :apply-templates select-’DataDependence’/z
1: template:/
: template match="DataDependence"z

<xsi: apply-templates select-’FormalParameter"//
1. template/
: template match="FonnalParameter">

■'-xsl: apply-templates select-’Variables’/z 
<x s l :apply-templates select-"Constants’/>

1: template:/
: template match="Variables">

-;TR>
< . - - Module - - >
•TDz

Name-*<xsl: value-of select-" ../../../ !Name"/>"<BP./>
ED-’<xs l :value-of select-".. / . / . . / =ID"/z"<BR/z

</TD>
<. - - Formal Parameter -->
<TD>

Name-’<xsi : value-of select-’ . . / .‘N a m e ’/ z ’<BR/z 
ID="<xsl:value-of select-"../>ID"/z"

</TD>
-.TDz

variable Name-"<xsl:value-of select-’ ./ V a r iable/‘Name"/z’<BR/z 
Variable ID-"<xsl:value-of select-*./Variable/‘ID’//"
Procedure Name-"<xsl:value-of s elect-"./Procedure/ !Name’/>’<BR/> 
Procedure ID-"<xsl:value-of select*"./Procedure/‘ID"/z’<BR/z

</TDz
■./TRz 

1.template/
: template match-"Constants">

<TR>
- Module - ->

<TDz
Name-’< x s l :value-of select- 
ID-"<xsl:value-of select-’ .

•:/TDz
Formal Parameter --■>

<TD>
Name-"<xsl■value-of select-’ . / ‘N ame*//’<BR/z 
ID-"<xsl:value-of select-’ ../ !ID"/>"

" . ./. /. . / ‘Name"/>’<BR/> 
/. / . . / ‘ID"/z"<BR/z

/xs
-/xs

</TDz
<TD>

</TDz
</TRz 

1: template/
1: stvlesheetz

Constant Name-"< x s l :value-of s elect-*./Constant/ ‘Narae"//"<BR// 
Constant ID-"<xsl:value-of select-"./Constant/ ‘ID*//’
Procedure Name-"<xsl:value-of select-"./Procedure/ ‘Name’/z"<BR/z 
Procedure ID-"<xsl:value-of select-"./Procedure/ ‘ID"/z"<BR/z

C.l 1. Reverse ripple analysis XSL view

<?xml version-"1.0’?/
<xsi stylesheet x m l n s :xsl-"h t t p ://vwv.w3.org/1999/XSL/Transform" 

version-’l.0"z

3 Aug 00

-.xsl:output method-"html" indent-’yes*//
-;xsl: template m a t c h - ’/"/

<:-- Title --/
<H1 style-"text-align:center; background-color:g r a y ; c o l o r :vhite’/Reverse Ripple 

Analysis View</Hlz
<TABLE border-"1’ width-"100%’/

<TR>
<TH/CallGraphNode</TH>
<TH>GlobalRefVar</THz 
<TH>Impacted By</TH>

</TR>
<xsl.apply-templates select-"/ReverseRipple/CallGraphNode"/z
</TABLEZ
<P/z
<:-- sub totals --/
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<H1 5tyle3 'text-align:center; background-color: gray color:white’>Metrics</Hl> 
•-TABLE border-'1">

-TR>
<TH>CaliGraphNode</TH>
<TH>GlobalRefVar</TH>
<TH>Subtotal per GlobalRefVar:</TH>

</TR>
<xsl:for-each select3 "/ReverseRipple/CallGraphNode">

< xs l :for-each select3* ./GlobalRefVar*>
<TR>

< - -  CailGraphNode -->
<TD>

NodeID=“< x s l :value-of select3 " .. / ’ID"/>"<BR/> 
ModuieName3 " < xsl:value-of

select3" . / :Name*/>"<BP./>
</TD>
<;-- Formal Parameter -->
<TD>

Name3 ’<xsl;value-of select3 " ./=Name“/>"<BR/> 
ID3 "<xsl:value-of select3 * / ’ID’/>*

</TD>
<TD>

<xsl:value-of select3’count(./ImpactedBy)’/>
</TD>

</TR>
< / x s l :for-each>
<TR>

<TH align-’left">Subtotal per CailGraphNode: </TH>
<TD>

</TD>
<ru>

< x s l ;value-of 
select3"count' /Globa1RefVar/ImpactedBy)"/>

</TD>
</TR>

•-/xsL ■ for-each>
■:/TABLE>
- P/>

grand totals -->
--TABLE border3 ’ I*>

■:TR>
<TH colspan-"2">Totais</TH>

</TR>
<TR>

<TH align-"left">Total » of Reverse Ripple Impacts in Cali
G r a p h :c/TH>

<TD>
< x s l :value-of

select-"c o u n t (/ReverseRipple/CallGraphNode/GlobalRefVar/ImpactedBy)"/>
</TD>

•:/TR>
•:/TABLE>

< / xsl:template>
< x s l :template match3 "CallGraphNode">

<xsl apply-templates select-"GlobalRefVar"/>
< / xsl:template>
*:x s l :template match3 "GlobalRefVar’>

•cxsl: apply-templates select3 " ImpactedBy"/>
< / x s i :template>
< x s l :template match=*ImpactedBy">

•;TR>
< - -  CailGraphNode -->
<TD>

<:-- NodeID-"<xsl;value-of select3 * ../../../../../ =NodeID"/>"<BR/> 
ModuleName3 "<xsl:value-of 

select3 " ./../../../../ ‘ModuieName’/>"<BP./>
ParentModName-"<xs1:value-of 

select3 " ../../../.././ ;ParentModName*/>" -->
NodeID=*<xsl:value-of select3 ’ ../.. / ‘ID’/>"<BR/>
ModuleName3 ’< x s l :value-of select3 ’ ../../?Name"/>’<BR/> 
ParentModName-"<xsl:value-of select-’ ../. ./;ParentModName"/>*

</TD>
<:-- Formal Parameter -->
<TD>
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ModuleName=*' <xsl: value-of 
select*’ /. ./. ./Module/:-ModuleName"/>"<BR/>

ModuleID*'<xsl: value-of select**'. ./. ./. ./ M o d u l e / :ModuleID"/>"<BR/> 
InModuleCoilection="<xsl: value-of 

select*"../../../Module/5InModuleCollection'/>" -->
N ame*"< x s l :value-of select*' . . / •Name"/>"<BR/>
ID*"<xsl:value-of select*".,/>ID"/>"

</TD>
<TD>

< -- ModuieName*"<xsl:value-of 
select*’ . ./ ./../Module/ ;ModuleName"/>"<BR/>

ModulelD*'<xsl:value-of select*"../../. ./Module/;ModuleID"/>"<BR/> 
InModuleCollection="<xsl:value-of 

select*". ./. ./. ./Module/*InModuleCollection*/>' - - >
ModuieName*"<xsl:value-of select*"./Module/iName"/>"<BR/> 
ModuleID="<xsl:value-of select*"./Module/ :ID’/ > ’<BR/> 
VariableName="<xsl:value-of select*"./ V a r i a b l e / iName*/>"<BR/>
VartableID*"<xsl:value-of select*"./Variable/ ;ID"/>"

•;/TD>
•:/TR>

/xs 1 :template>
• / xsl.stylesheet>
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