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ABSTRACT

A COMPUTATIONAL PARADIGM ON NETWORK-BASED 

MODELS OF COMPUTATION

Venkatavasu Bokka 
Old Dominion University, 1996 

Advisors: Drs. Stephan Olariu and James L. Schwing

The maturation of computer science has strengthened the need to consolidate 

isolated algorithms and techniques into general computational paradigms. The main 

goal of this dissertation is to provide a unifying framework which captures the essence 

of a number of problems in seemingly unrelated contexts in database design, pattern 

recognition, image processing, VLSI design, computer vision, and robot navigation. 

The main contribution of this work is to provide a computational paradigm which 

involves the unifying framework, referred to as the Multiple Query problem, along 

with a generic solution to the Multiple Query problem.

To demonstrate the applicability of the paradigm, a number of problems from 

different areas of computer science are solved by formulating them in this framework. 

Also, to show practical relevance, two fundamental problems were implemented in 

the C language using MPI. The code can be ported onto many commercially available 

parallel computers; in particular, the code was tested on an IBM-SP2 and on a 

network of workstations.
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CHAPTER 1 

INTRODUCTION

1.1 Overview

The maturation of computer science as a discipline has strengthened the need to con­

solidate isolated algorithms and techniques into general computational paradigms. 

The benefits of such an effort include the following:

• problems previously treated in isolation from one another can be shown to

belong to the same class,

• once established, the paradigm will become a powerful tool, and

• effort involved in the implementation is reduced, owing to the uniformity of­

fered by the paradigm.

By way of illustration, in a number of seemingly unrelated contexts in database 

design, pattern recognition, image processing, VLSI design, computer vision, and 

robot navigation, one is given collections A  and Q of objects and a goal which 

is either to identify a collective property of the objects in A U Q, or to find for 

each object in Q a subset of A satisfying a given predicate. To further specify 

the illustration, consider the following examples. In virtual reality and computer
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graphics, in the presence of a scene populated with a collection A of objects, a 

crucial problem is to identify the visibility horizon for a set Q of observers [35]. A 

somewhat different problem is of interest in path planning and collision avoidance 

problems in robotics [50] where navigational courses for a set Q of mobile robots is 

sought in the presence of a set A of obstacles. In pattern recognition, the well-known 

classification process involves comparing an unknown pattern Q against a template 

A and deciding whether the similarity measure is larger than a certain application- 

dependent threshold. In facility-location problems one is typically interested in an 

optimal placement of a set Q of facilities (schools, hospitals, etc.), amongst a  set A 

of existing sites, in such a way that some constraints are satisfied [1, 75]. A similar 

problem arises in integrated circuit design in VLSI, where one is interested in the 

addition of a set Q of modules meant to enhance the functionality of the board 

A. In this latter context, it is customary to formulate the problem as a visibility 

problem involving collections A and Q of iso-oriented, non-overlapping, rectangles 

in the plane subject to a series of location constraints [66]. There are also some 

fundamental problems in computational geometry [1] which can be cast in the form 

of a object A and a set of queries Q, the answer is a combination of the solutions of 

all queries; such as, A and Q are convex polygons, determine if A and Q intersect.

All the problems mentioned informally above are traditionally solved using 

ad-hoc techniques developed by researchers within their respective fields. This dis­

sertation combines all of these problems under a single umbrella, by providing a 

unified framework, of which the aforementioned problems will be instances. This 

will make it possible to provide uniform solutions to all these problems. As a first 

step, this work addresses the problems in the context of solving them in an abstract 

computational model. Next this work looks at the performance of the general solu­
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tion on different computational models from both a theoretical and practical point 

of view. The unifying framework comes in the form of a generic problem referred to 

as the Multiple Query problem (MQ, for short). The main contribution of this work 

is to provide a computational paradigm which involves the MQ problem and a solu­

tion for the problem on abstract computational model. The power of the paradigm 

is demonstrated by obtaining time-optimal solutions to some problems on the mesh 

with multiple broadcasting.

To show the relevance of the paradigm a brief overview of the some of the 

practical problems solved by the paradigm is presented in subsequent paragraphs. 

In robotics, objects are represented by convex hulls and operations on convex hulls 

are fundamental tools for various algorithms. The convex hull of a set, S  of points 

in the plane, is the smallest convex set containing S. The convex hull is not only 

central to practical applications in robotics, but is a very useful tool for the solution 

of a number of questions arising in other areas of computer science, namely pattern 

recognition [3, 29], image processing [70, 71], and stock cutting and allocation [33, 

34, 76]. In many applications, the problem of point location relative to a convex 

hull occurs quite frequently. Given a convex hull and a set of points in the plane 

determine for every point if it lies within the convex hull or not. The problem can be 

generalized, by asking the same question with respect to a simple polygon. Another 

application in robotics is, given a set of convex objects (obstacles) and set of points 

(different positions from which the robot views the obstacles), determine for each 

of the point, the range (two lines passing through the point) within which all the 

obstacles are located. Once determined this range enables the robot to stay clear of 

the obstacles.
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Visibility is a fundamental problem in many areas of computer science. Given 

a set of line segments and a set of points in the plane, the visibility problem asks 

to determine, for each point, the segments which closest to this point in the vertical 

direction. Recently, Bhagavathi et al. [11], and Gurla [39], have shown that visibility 

has many applications including triangulation. This problem has been extensively 

studied in various contexts and a variety of solutions exist in the literature. It 

can be shown that visibility problem is an an instance of the general framework. 

Some search related problems also fall into this category. For example, given a 

set of points and a set of non-intersecting objects in the plane, for each object 

determine the number of points it contains. This problem is a direct application of 

the following scenario: identify all the branches of a corporation located within a 

gives set of regions. This dissertation will also demonstrate that some problems in 

computational geometry such as the line stabbing [31] problem are instances of the 

MQ problem.

The MQ problem is sufficiently general to encompass a number of problems, 

and generally does not require the set of items A  to have any structure. Frequently, 

a structured input leads to a faster algorithm, and some domains naturally offer 

structured inputs. In this dissertation, an example of one such problem domain will 

be seen, namely the sorted matrices. A matrix of elements is said to be sorted if 

both its rows and columns are independently sorted. A fully sorted matrix, sorted in 

either row major order or column major order, is a special case of the sorted matrix.

Sorted matrices provide a natural generalization of a number of real-life 

situations. Consider vectors AT =  ( x i , X 2 , . . . , x n ) and Y  =  (y\, y 2 , • • •  ,Un) with 

x, < Xj and ?/,• <  yj, whenever i < j .  The Cartesian sum of X  and Y,  denoted 

X  -I- Y  is the n x  n matrix whose i j th entry is x, 4- yj. The A' + Y  matrix is sorted.
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Searching, ranking and selection in sorted matrices are are used in the development 

of fast algorithms in VLSI design, optimization, statistics, database design, and 

facility location problems and have received considerable attention in the literature 

[25, 26, 32, 37, 40, 58, 78].

Much of the theoretical work done in parallel algorithms, has focussed on the 

design and analysis of algorithms for the Parallel Random Access Machine (PRAM). 

The simple characteristics of PRAM make it suitable for developing theoretical re­

sults for evaluating the complexity of parallel algorithms. However, only a small 

number of real architectures (some bus-based multiprocessors like Encore and Se­

quent) can be considered conceptually similar in design with the PRAM model.

Although any real machine can simulate the PRAM model, it is nevertheless 

true that algorithms designed for network-based models will better match the ar­

chitectures of existing parallel machines like Intel Paragon, Intel iPSC/860, CM-5, 

MasPar MP-1, IBM SP2, where processors with local memories are interconnected 

through a high-speed network supporting message-based communication.

The mesh-connected computer has emerged as one of the most widely in­

vestigated parallel models of computation. Mesh connected computers provide a 

natural platform for solving a large number of problems in computer graphics, im­

age processing, robotics, and VLSI design. In addition, due to its simple and regular 

interconnection topology, the mesh is well suited for VLSI implementation [10]. The 

main problem with the mesh connected computer is its communication diameter, 

that is, if the data moved across the mesh takes 0 (v/n) time, for a mesh of size 

y/n x y/n. Frequently, the lower bounds and the running times of algorithms are 

dictated by the communication diameter of the mesh.
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To overcome this problem, the mesh architecture has been enhanced by var­

ious types of bus systems [17, 43, 48, 52, 72, 80]. Early solutions, involving the 

addition of one or more global buses, shared by all the processors, have been imple­

mented on a number of massively parallel machines [17]. Recently, a more powerful 

architecture, referred to as mesh with multiple broadcasting, has been obtained by 

adding one bus to every row and to every column of the mesh [43, 65]. The mesh 

with multiple broadcasting has proven to be feasible to implement in VLSI, and 

is used in the DAP family of computers [65]. Note that even here the problem of 

communication diameter comes to play for any class of problems which involves 

significant data movement. For example, if the problem requires rearrangement of 

its data, it generally takes y/n time to do this task. But if the problem lends itself 

to “sparsification” (where the input size can be reduced by some processing) then 

better algorithms can be obtained.

Another computational model of theoretical interest as well as being com­

mercially available is the mesh with multiple broadcasting. In recent years, efficient 

algorithms for solving a number of computational problems on meshes with multiple 

broadcasting have been proposed in the literature. These include image processing 

[44, 65], computational geometry [13, 14,16, 43, 61, 63, 64], semigroup computations 

[8,15,19, 43], sorting [11], multiple-searching [13], and selection [12, 19, 43], among 

others.

With the advances in technology, diverse parallel computational models such 

as those described above continue to emerge. Each time a new model is introduced, 

considerable time and resources are invested to develop all the algorithms again 

from scratch. This difficulty can be tackled by designing algorithms for a general 

model, which in turn will enable them to be ported to many platforms. The abstract
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computational model (ACM, for short) is one such model. An ACM is a multipro­

cessor system which consists of a set of primitive communication operations like 

broadcasting, and scatter where each operation has a cost associated to it. The cost 

is architecture-dependent, and reflects the amount of time taken by that operation 

relative to other operations on that architecture. This model was introduced in 

[39]. The remainder of the dissertation is organized as follows: the rest of Chapter 

1 describes the state of the art and formalizes the various models of computation 

considered here, Chapter 2 contains algorithms for the MQ problem and its appli­

cations on the ACM model of computation, Chapter 3 adapts the algorithm for the 

Batched Searching and Ranking (BSR) problem on the ACM, Chapter 4 describes 

algorithms for the MQ problem and its applications on the MMB and details the 

lower bounds achieved there, Chapter 5 describes a time-optimal algorithm for the 

BSR problem on the MMB, and finally, Chapter 6 contains the conclusions along 

with the implementation results and pointers for future work.

1.2 State of the Art

The idea of a general framework for the problems mentioned in the previous section 

has not been seen before; however, many of the problems have been addressed pre­

viously on diverse computational models. This section presents the current running 

times for these solutions as found in the literature. These problems fall into three 

broad categories multiple search problems, visibility related problems, and proximity 

problems.

The multiple search problem can be stated as follows: given a sorted se­

quence, A , of items and a set of queries Q, for each query, q £ Q, determine 

the position of the largest element of A less than or equal to q, let |Q| =  m and
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|A|=n. A lot of work has been done on the multiple search problem, which focussed 

mainly on solving it, and sometimes using that solution to solve some applica­

tions. Akl and Meijer [2] first presented a parallel solution to this problem where 

they solved the problem on a m processor EREW PRAM with a running time of 

0 ( hS S n)- ^  fes*61- solution was presented by Wen [85], with a running time of 

O(logm -flogn). Chao et al. [18] provide a solution to the multiple search problem 

in on a three dimensional reconfigurable mesh. They solve the problem in 0(1) time 

on a nj x ns x n* reconfigurable mesh. Finally, Bhagavathi et al. [13] provide a 

solution to the multiple search problem on an enhanced mesh. Here the problem 

is solved on a  n i x n* MMB in 0(m ») time. Until now there has been no effort 

to provide a unifying framework. It will be demonstrated that the multiple search 

problem is a particular case of an instance of the general problem, the input A need 

not be completely sorted.

Reif and Sen [68] present a randomized parallel algorithm for the point lo­

cation problem with n  queries which takes O(logn) time with high probability on 

a CRCW PRAM. Further work on this problem for the PRAM has been done in 

[4, 38, 81]. This problem has been solved by Chazelle [21], on a linear array with k 

query points in 0(A: -I- n), where n is the size of the input data. On a mesh, Jeong 

and Lee [42] solve the problem in 0(n»). In [28], Dehne solved the separability 

problem in 0 (n 2 ) time on a mesh of size n. Finally, Sarkar and Stojmenovic [77] 

using a CREW PRAM of 72 processors solve the problem in 0 (log 72) time.

The visibility problem has been solved by Atallah et al. [5] in 0  (log 72 log log 72) 

time using 0 (n )  processors on a CREW PRAM. The result was later improved by 

Atallah et al. [4] to O(logn) time using 0 (72) processors on a CREW PRAM. A 

randomized algorithm was presented by Reif and Sen in [68]. Atallah and Tsay [6]
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give an algorithm to solve the visibility problem on a linear array of size N  which 

runs in 0 ( n ^ j |)  time, where N  < n. On a hypercube the problem is solved in 

0 (logn log logn) time by MacKenzie and Stout [57]. A randomized algorithm is 

presented by Reif and Sen [69] which runs in O(logn) probabilistic time on an O(n) 

processor butterfly.

Solutions to the proximity problems for the mesh and a linear array, with 

O(n) processors, are described in [21, 55], which require 0 (712) and O(n) time, re­

spectively. In [79], Steiger and Streinu show that proximity problem can be solved in 

0(log2n) time on a O(ti) processor hypercube. Using the algorithm, in [57] MacKen­

zie and Stout show the running time on a hypercube of size n  is 0(logn(loglog7i)2). 

In the PRAM, the proximity problems were solved in O(log 71) time by Cole and 

Goodrich [22] on an n processor CREW PRAM; they also achieved the same run­

ning time on an EREW PRAM with an increase in the memory size by a factor of 

O(logn). Histogram computation of a digital image is a classic image processing 

problem which has been looked at by many researchers. In [62], Olariu et al. solve 

the problem on a reconfigurable mesh of size n x n in O(loglogTi) time. In [44], 

Prasanna and Reisis solve the problem on an MMB.

1.3 Models of Computation

In this section, a trace of the different parallel models of computation is presented, 

followed by a brief discussion of the models employed in this dissertation. The early 

models of computation included Perceptrons, proposed in the late 1950’s [73] and 

Cellular Automata [23]. Then came the interconnection networks like the linear 

arrays, meshes or two-dimensional arrays, several variations of meshes including 

the meshes with broadcast buses referred to as meshes with multiple broadcasting,
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and the meshes with reconfigurable buses. Tree networks, mesh-of-trees, pyramid 

networks, hypercube, cube-connected cycles, butterfly, AKS sorting network, star 

and pancakes are among the other network based models of computation which 

have been studied. Shared memory models of computation include PRAMs, scan 

model, broadcasting with selective reduction. For a description of network based 

and shared memory models refer to [1]. Recent models like Valiants BSP model [84] 

and the LogP model [27] take into account the communication costs by introducing 

network related parameters (e.g., latency) into the model. In this dissertation, the 

following platforms are used, ACM, MMB, and IBM-SP2. A discussion of each of 

these models follows.

In this dissertation, the model of computation has to encompass a wide range 

of parallel models from fine grained to coarse grained models. Also the communi­

cation primitives need to be fairly high level. The Abstract Computational Model 

[39] meets the requirements and can be characterized as follows.

An ACM (n,p,M)  has p processors, each processor with memory of size 

O(M), M  > j* where n  is the maximum input data size. All the processors are 

assumed to be identical and are enumerated as P0, Pi, . . . ,  Pp~\. Each processor 

Pi knows its identity i. The computational power of a processor is assumed to be 

directly proportional to the size of the memory 0(A/). This assumption will facili­

tate the unification of coarse grain and fine grain multiprocessor systems. The local 

operations performed by the processors vary from very simple to very complex de­

pending upon the number of processors. In the fine grain scenario where there may 

be a large number of processors, each processor is capable of simple arithmetic and 

communication operations. In the coarse grain scenario, there are a  small number 

of powerful processors. Communication is done via an interconnection network. A
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more detailed discussion can be found in [39].

The high level communication primitives of an ACM(n,p, M) follow.

• Broadcast: A processor informs every other processor, of an ACM(n,p, M), of 

some data, of size k. The time associated with a broadcast operation is TB(k,p).

•  Multicast: A processor communicates a message (of size k ) to a subset of processors 

(of sizep') of an ACM(n,p, M). The time associated with such a multicast operation 

is TM{k,p'). Note that, it is possible to have parallel multicast operations among 

mutually exclusive processor subsets.

• Point-to-Point: A processor, Pt, communicates a message (of size k) to a processor, 

Pj, of an ACM(n,p, M). The time associated with such a point-to-point operation 

is Tp(k). Note that, it is possible to have parallel point-to-point operations among 

mutually exclusive processor subsets.

• Reduce: Perform an operation (e.g., sum, product) on p elements to give a single 

result where each processor contributes one element for the operation. This opera­

tion gives k results if each processor contributes k elements. In an ACM (n,p, M), 

TR(k,p) represents the time for a reduction operation involving k elements per pro­

cessor. The reduction of k elements over p/ processors, is represented as Tp(k,j/).

• Gather: Collet data from selected set of processors. Specifically, if the operation 

involves a total of k elements and p' processors on an ACM(n,p, M), Ta{k,pl) rep­

resents the time for the operation. When the operation is complete, the processor 

issuing the gather operation will have collected k elements.

• All-to-All Gather: This operation is similar to the gather but all the processors will 

receive some data. Specifically, if the operation involves k elements per processor 

and p' processors on an ACM(n,p, M), let the processors involved in the operation 

be enumerated as Pi, P2, . . . ,  Pp>. At the end of the operation Pi will receive first
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p  elements from each processor. Similarly, P2 will receive second set of p  elements 

from each processor. It is the same for all the other processors. Let TAAG{k *l,pf) 

represent the time for the operation. It has to be noted that this operation is usually 

quite expensive.

• Scatter: This is the reverse operation of gather, that is, data is to be distributed 

into various processors. Specifically, if the operation involves a total of k elements 

and p' processors on an ACM(n,p,M),  Ts{k,pf) represents the time for the opera­

tion.

An example of coarse grain machine is the IBM-SP2, it is built using pow­

erful RS/6000 processors, an RS/6000 processor powerful enough to be used in a 

workstation. The communication medium of an IBM-SP2 is a switch (multi-stage 

omega network).

Consider next, the models related to mesh based computers. Mesh connected 

computers considered here provide insight for adapting the algorithms to fine grain 

machines. The mesh connected computer of size M  x N  is a machine with M N  

processors arranged in rectangular array. The processor P(i , j ) ,  representing the 

processor in row i and column j  and is connected via bi-directional unit-time com­

munication links to its four neighbors, provided they exist. Each processor has a 

fixed number of registers, of size 0(log M N ) each and operates in SIMD mode: in 

each time unit, the same instruction is executed by all the processors. Each pro­

cessor is assumed to know its own coordinates within the mesh. It is also assumed 

that a processor can perform standard arithmetic and boolean operations on the 

contents of its registers in 0(1) time.

Compared to other parallel architectures, meshes have the advantage that 

several already exist [9, 10, 41] and that their simple near-neighbor wiring allows
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them to be constructed more economically than say, hypercubes. Its regular in­

terconnection topology makes the mesh ideal for number of problems in geometry, 

image processing and graphics [30, 51, 54, 55, 56, 80].

Figure 1 .1 : A mesh with multiple broadcasting of size 4 x 4

A mesh with multiple broadcasting, MMB, of size M  x N  consists of MN 

identical processors positioned in a rectangular array overlaid with a bus system, 

refer to Figure 1 .1 . In every row of the mesh the processors are connected to a hori­

zontal bus; similarly, in every column the processors are connected to a vertical bus. 

To keep the model realistic, only one processor is allowed to broadcast on a given 

bus at any one time. By contrast, all the processors on the bus can simultaneously 

read the value being broadcast. In accord with other researchers [8 , 17, 43, 48, 65], 

it is assumed that communications along buses take 0(1) time. Although inexact, 

recent experiments with the DAP, the GCN, and the YUPPIE multiprocessor array 

systems seem to indicate that this is a reasonable working hypothesis [48, 65]. An 

MMB of size V N  x  \ /N  can be viewed as an instance of the ACM(n,p ,M ), here 

n =  p =  N, and M  = 1, with the communication medium being mesh connections
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along with row and column bus connections.
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CHAPTER 2

THE COMPUTATIONAL PARADIGM ON THE

ACM

In Chapter 1 a brief introduction of the proposed paradigm was sketched. The first 

main goal of this chapter is to present the paradigm in full detail on the Abstract 

Computation Model. This involves a formal definition of the MQ problem and a 

generic solution of the problem on the ACM(n,p, M) which acts as a framework for 

other solutions. The second main goal of this chapter is to prove the power of the 

paradigm by demonstrating that many problems can be formulated as instances of 

the framework. Once the formulation is obtained the generic solution can then be 

customized to obtain solutions for individual problems. The following sections will 

then describe the process of formulation of the problems and the customization of 

the generic solution.

The remainder of the chapter is organized as follows. Section 2 .1  offers a 

generic algorithm for the MQ problem. The remaining sections discuss various in­

stances of the MQ problem. Specifically, Section 2.2 discusses rank-related problems; 

Section 2.3 discusses the multiple point location problem and several of its variants 

and applications; Section 2.4 addresses proximity-related problems; finally, Section 

2.5 discusses the multiple stabbing problem.
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2.1 A Generic Multiple Query Algorithm

A generic instance of the MQ problem has the following parameters:

• an arbitrary set A =  {at, 0 2 , • ■., a„} of items

• an arbitrary set Q =  {qi, qi, . . . ,  qm} of queries

• a decision problem <t>: Q x A -* { “yes”, “no” }

• an associative and commutative function /  operating on subsets of A

For every query qt (1 <  i < to), let S, =  (oj € A | = “yes”}. In this context,

the solution of g,- is /(£ ,) . It is noted that /  generally acts more like an operator

than a function in the strict sense of the word. The function /  is commutative in the

following way, f ( S lUS2) =  / ( 5 l)® /(5 2) =  /(S '2)® /(5 1), where ® is determined by 

/  and 0. Similarly, /  is associative implies / ( 5 1U52U53) =  (/(S ’l)<g>/(S2))<g>/(S3) =  

/ (S ')  ® ( /(S 2) ® / ( S 3)).

The set A is stored in some order, ^  items[2 ]* per processor, in an ACM(n,p, M). 

The set Q is stored in the first ^  processors (Pq, P i , , P a — 1), M  queries per pro­

cessor. Note that each processor can hold O(M) elements, so the first — processors 

can hold ^  + M  < 2M  elements each. Throughout this chapter the layout of 

items and queries is assumed to be in the above format.

To make the notation less cumbersome, write*

"In an ACM(n,p, M ) ,  j  <  M.

*For simplicity assume that s and J are integers.
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Pi

p-,

- W V ' - ' :
A ' '1..'- '/ ~

:H, •'■  ■- /X  s^Kf s~\ s

gyjfl Subset o f queries in a processor 

Subset of items in a processor

Figure 2 .1 : The setting for Stage 1 of the generic algorithm 

In this notation, the ACM(n,p, M) is viewed as consisting of f  groups Gi, G2 , . . . ,  Gz,* s
where each G{ is an ACM with processors P(i_i),, P(i_i)a+i>. . . ,  PiS- i ,  as illustrated 

in Figure 2.1. The number of processors chosen per group plays an important role in 

obtaining fast algorithms. In this chapter, for simplicity of exposition the number 

of processors per group is assumed to be The optimal choice, of the number 

of processors per group, depends upon the balancing of running times of different 

Stages of the algorithm. This will be demonstrated in Chapter 4 and Chapter 5.
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Subset of queries in a processor

Subset of items in a processor

Figure 2.2: The Stage 1 of the generic algorithm

The generic algorithm for MQ problem consists of three distinct stages that 

are summarized as follows:

S tage 1 . The goal of this stage is to replicate the set Q , stored in the group G\ (the 

first s processors), refer to Figure 2.1, to all the other groups. To be more specific, 

in this stage each processor Pi-, 0  <  i < s — 1 , of Gi will multicast the queries it 

contains to the corresponding processors in all the other groups; i.e., Pi will multicast 

to the processors 1 < j  < f  — 1. Here the multicasts are done in parallel. It

is important to note that, at the end of Stage 1 , having replicated the queries, the
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original instance of the MQ problem is partitioned into several instances, each local 

to a G,-. Every local instance involves the subset of A stored by the processors in 

G,, the set Q of queries, a decision problem, and a function / .  Figures 2 .1 , and 2.2 

illustrate the data replication of this stage, here Gi =  {Po, Pi}, p = 8 , s = 2.

Stage 2 . The principle goal of this stage is to solve in each group, G*, the local

G, =  [Po.PuPi)

Subset of items in a processor 

Subset o f queries in a processor

Figure 2.3: The Stage 2 of the genetic algorithm

instance of the MQ problem. This will be done in parallel for all the groups. As the 

processing done in each group is similar, the operations performed in one group (Gx) 

will be described without loss of generality. The subset of items, of A, contained in 

processor Pj, 0  <  i < s — 1 of Gi, will be represented by A{. Similarly, the subset of Q 

in Pi will be referred to as Q,-, refer to Figure 2.3. For a query to find its local solution 

it should “visit” all the items in Gi. To achieve this goal, queries and items will 

perform computations and then the items will be passed across the processors in a 

cyclic fashion. This is referred to as the compute-and-move operation. To elaborate, 

consider the subset of items, .4,, present initially in p .  In the j 4* compute-and-move 

operation, 1 <  j  < s — 1 , items in .4* will be located in processor P(i+J_l) mod s. The
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subset of queries Q(,+J_i) morf s present in processor P(,-+/_i) m0d s will perform the 

required computations with the At. At the end of this computation the partial 

solution that is associated with each query, q € Q(i+j-1) mod s> will be updated 

accordingly. Finally, the At- will be moved to processor P(i+j) mod s- After this, the 

j  + l 5t compute-and-move operation will begin. This will be done in parallel for all 

the items in G\. In Figure 2.4, (a), (6 ) and (c) illustrate three compute-and-move 

operations. Here there are three processors in the group. In the last compute-and- 

move operation the items need not be moved any more only the computation is 

required.

It may be intuitive to move the queries instead of the items. However, M  > j  

implies that communication costs will be less if items are moved.

Stage 3. The goal of this stage is to combine the solutions of the local instances of 

the MQ problem obtained in Stage 2 to get the global solution of the MQ problem. 

This involves s parallel reduce operations. Specifically, each processor P{, 0 < i < 

s — 1, of Gx will perform a reduce operation with corresponding processors in all 

the other groups; that is, P̂  will be involved in a reduce operation with processors 

Pjts+i, 1 < j  <  * — 1- Figure 2.5 depicts this reduce operations of Stage 3.

The running times of Stage 1 and Stage 3 are of the order of Tm (M, £) and 

Tr{M, 2 ), respectively. This is independent of the problem being solved. In Stage 

2 , the compute-and-move operation can be made more efficient by overlapping the 

computation with communication. The following is a brief description of the pro­

cessing and the running times involved in such an overlap. In a compute-and-move 

operation, as soon as a processor receives all the items for the current computation, 

it makes a copy of the items and put them in send buffer to the next processor. While 

the communication of the copy (of items) is taking place local computation will be
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Figure 2.4: The Stage 2 of the generic algorithm,

in progress. The communication time for this data movement will be (s — 1 ) *Tp(j), 

and clearly, the computation time will depend on the problem being solved.

The purpose of the remaining sections of this chapter is to show that the MQ 

problem has many, and sometimes unexpected, applications to problems in database 

design, pattern recognition, image processing, robotics, and morphology. Each of 

the subsequent sections is typically organized as follows, first the statement of the 

problem being solved, followed by the formulation of the problem as an instance of 

the MQ problem, finally the details of the solution. All the algorithms for particular 

applications will involve fleshing out the processing in Stage 2 , which is application-
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p,

cxca Subset of queries in a processor

p.

Figure 2.5: The Stage 3 of the generic algorithm

dependent. In each case the particular function /  required for the formulation will 

be easily seen to be both associative and commutative, in such a way that the generic 

processing of Stage 3 will apply with minor changes. With these considerations, the 

complete algorithm will be presented in Section 2 .2 . In the remaining sections only 

the processing of one compute-and-move operation of Stage 2 will be described in 

detail. The details of Stage 3 will be presented only when the tasks involved are 

non-trivial.
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2.2 Rank-Related Computations

The purpose of this section is to show that two fundamental problems in geographic 

data processing, database design, and image processing can be solved simply and 

elegantly by the paradigm by formulating them as the instances of the MQ problem.

2.2.1 The Multiple Rank Problem

Given a collection of items in a database along with a set of values, the multiple 

rank problem, is to compute for each query the number of items in the database that 

are smaller [2, 53]. The multiple rank problem is considered to be a fundamental 

algorithmic problem that finds additional applications in geographic data processing, 

computer graphics, image processing, computer vision, and morphology, to name 

just a few [2, 74, 85]. Akl and Meijer [2] as well as Wen [85] have studied the 

multiple rank problem in the PRAM model of computation. A simple variant of 

the multiple rank problem was solved in [13]. The multiple rank problem will be 

referred to as MULTI-RANK. It will be shown that it can be stated as a multiple 

query problem.

For definiteness, both the items in the database and the set of values are 

assumed to come from a totally ordered universe. The corresponding instance of the 

MQ problem has the following parameters:

• the set A =  {ai, a-i,. . . ,  a„} of items,

•  the set Q =  {?:, q^,. . . ,  qm) is the set of values,

• the decision problem <f> : Q x A -¥ {“yes”,“no”} is such that <t>{qi,a.j) = “yes”

whenever aj < q,,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

• f (S )  = | 5  |.

For every i (1  <  i < m), let S* be the set of items ay in A  for which <f>(qi, ay) = “yes”. 

The solution to query <7, is / ( 5 t), in other words it is rank of qi among the items in 

A.

The algorithm for MULTI-RANK consists of the following stages.

S tage 1 . Replicate the set Q as in the Stage 1 of the generic algorithm.

Recall that, the ACM(n,p, M) is viewed as consisting of |  groups Gx, G2, . . . ,G z ,  

where each Gi is an ACM with processors P(i_i)s, Py_X)a+x, - • ., P a- i ,  where s =

After the replication each G,- contains the query set Q. At the end of this stage the 

instance of the original MQ problem is partitioned into several instances, each local 

to a group.

S tage 2. As in the Stage 2 of the generic algorithm, the operations performed 

in group G x will be presented. Similar operations are performed in all the other 

groups, in parallel. As an initialization step, subset of items in every processor are 

sorted in increasing order. The processing done within a processor P  in Gx, in one 

compute-and-move operation is as follows. To simplify the notation, let 6X, 63, - - -, bn.
P

stand for the sorted sequence of items in processor p .  A value l\ is associated with 

each query to store the final rank of the query, the initial value of li is zero. Each 

query will do a binary search to find out its rank among 6X, &2, . . . ,  bn.. This rank is
P

added to the lx. Now the sorted set of items, 6X, 62, • • •, will be moved on to the
P

next processor and the next compute-and-move operation begins. This processing 

is done in parallel for all the item subsets within Gx.

The running time for this stage is dictated by the sorting operation, the 

binary search, and the communication of items; the cost of each of these opera­

tions is O (^log^), O (m logj), and 0(T P(j)) ,  respectively. Each compute-and-
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move operation costs 0 (m Iog*  +  ^V(p)) so the total s — 1 operations will cost 

0(m logj- 4- ( | |  — l)(mlogj* +  ^p(p)))- The result is summarized as follows:

Lem m a 2.1. The task of solving the queries in every G, can be performed in

0((m  +  J) log J  +  ( §  -  l)(m log J  +  r„( J))) time. □

Stage 3. At the end of Stage 2, every processor of every group G, that stores a

query q will also store its local solution The goal of Stage 3 is to compute the 

sum l\ +  li +  . . .  +  U, for every query q € Q. This task can be carried out as in 

Stage 3 of the generic algorithm discussed in the previous section.

Stage 1 and Stage 3 have running times of 0(T M(M , 2̂ —)) and 0(TR(M ,E— )), 

respectively. Consequently the following result is stated.

T heorem  2.2. An arbitrary instance of the MULTI-RANK problem involving a set 

of n items and a set of m  queries can be solved in O +  ((m +  j )  log j  +

( f  -  l)(m !ogJ +  2>(»))) +  «££)) on an ACM(n,p, M). □

2.2.2 Histogram Computation

The task of computing the histogram of a gray-level image is one of the fundamen­

tal operations in pattern recognition and low-level vision [7, 29]. The goal of this 

subsection is to show that the histogram computation problem can be formulated 

as a MQ problem. Further, a simple and elegant solution on an ACM(n,p, M), will 

be obtained by using the algorithm for MULTI-RANK as a subroutine.

Let A be a gray-level digital image of size y/nx y/n pretiled onto an ACM(n, p, M) 

j  pixels per processor. Assuming that the gray-scale involves m  values, the goal 

is to compute the histogram of the given image. This problem is referred to as 

HISTOGRAM. The corresponding instance of the MQ problem has the following 

parameters:
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• the set A =  {ai, a2, . • •, On) is the set of pixels in the given gray-level image,

• the set Q =  {?i, ?2 , • • •, 9m} consists of m  gray-level intensities,

• the decision problem <f>: Q x A  —> {“yes”,“no”} is such that for every 1 < i < m  

and 1 <  j  < n, a ,) =  “yes” if and only if g,- =  ay,

• f (S )  = | 5  |.

For every i (1  < i < m), let 5,- be the set of items ay in A for which <£(<7,-, ay) = “yes”. 

The solution to query qi is /(S i) which is its frequency in the given image.

The algorithm for HISTOGRAM is identical to the algorithm for MULTI­

RANK except for a post-processing step that is now described. Let rank(gx), 

rank(g2), • • rank(gm) be the ranks of the queries returned by MULTI-RANK ap­

plied to the instance of the HISTOGRAM problem. Now for every i (1  < i < m  — 1) 

the solution to <7,- is rank(g,-+i)—rank(gt), in other words, the number of pixels in 

A having a gray-level intensity equal to g,-. Furthermore, the solution to gm is 

n —rank(gm_x). The running time for HISTOGRAM will be the of the same order as 

the MULTI-RANK. It is noted that the solution for HISTOGRAM can be obtained 

without using the MULTI-RANK as a subroutine, but by using the same algorithm 

with some minor variations in Stage 2. That is instead of finding the ranks each 

query will determine the number of items with the same value. To summarize the 

findings the following result is stated.

T heorem  2.3. An arbitrary instance of the HISTOGRAM problem involving an 

m-level image of size n can be solved in ê - )  + ((m +  - )  Iogn +  ( ^  —

l)(m!og ;  +  TP(f))) +Tk(M ,=4S)) on an ACM(n,p, M). D
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2.3 The Multiple Point Location Problem

The purpose of this subsection is to show an elegant solution to the multiple point 

location problem by reducing it to an instance of the MQ problem. Further, it 

will be shown that the multiple point location problem itself has some applications. 

Just like the classic point location problem, the multiple point location problem is 

central to computer graphics, pattern recognition, image processing, robotics, and 

morphology [1, 7, 29, 35, 50, 75]. Let A = {cm., a2, . . . , dv) and Q =  {ft, g2, - • •, ftn} 

(1 < m < n) be arbitrary sets of points in the plane. The points in Q will be referred 

to as query points. The multiple point location problem, (MULTI-LOCATION, for 

short) is to determine for every subscript i (1 <  i < m) whether the query point ft 

lies inside the convex hull CH(A) of A. Without loss of generality, the points are 

assumed to be in general position.

The layout of the points of A  and Q is the same as described in the Section 

2.1. Before solving the problem, some geometric preliminaries will be discussed. 

Recall that if a point q is exterior to CH(A), then there exist exactly two supporting 

lines from q to CH(A). In fact, the converse is also true: a point q lies to the exterior 

of CH(A) if there exist supporting lines from q to CH(A) (refer to Figure 2.7). Let 

P  be a convex polygon and let q be a point outside P . A supporting line 8 from q 

to P  will be termed a left support line if P  lies in the right halfplane determined by 

assigning 8 the direction away from q and towards P. Otherwise, 8 will be termed 

a right support line.

As it turns out, the MULTI-LOCATION problem can be stated as an in­

stance of the MQ problem with the following parameters:

• a set A =  {a!, a2, . . . ,  a„} of items which is precisely the given set of points in 

the plane,
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• a set Q =  {gi, q2, . . . ,  qm} of queries consisting of the m query-points,

•  a decision problem 0 : Q x A -> {“yes”,“no”} such that 0 (9i,Oj)=“yes” if and 

only if the line determined by $  and a,- is a supporting line for CH(A),

• f(S )  =  5.

The function /  implies that the solution for each query is the supporting lines, if 

they exist.

The task specific to Stage 2 is to determine for every point in Q whether it is interior 

to any of the convex hulls local to a group. Clearly, a query point that is interior to 

any such convex hull lies in the interior of the convex hull of A and its corresponding 

solution is the empty set. As a technicality, for all i ( 1  <  i < m), 5,- is initialized 

to the empty set. The compute-and-move operation of the MULTI-LOCATION 

algorithm is as follows: only the details for group Gi are presented.

As an initialization step the convex hull of the subset A,- of A is computed. 

This task can be performed in O(^log^) time using an optimal sequential convex 

hull algorithm [67]. For simplicity of exposition, assume that the convex hull of A, 

is the convex polygon C  =  ci,c2l .. . ,  ca.

A pair of tangents (I, r) is associated with each each query q. These are the 

tangents from q to the convex hull of A'. Here A' is the set of all items that the 

query q has encountered in all the previous compute-and-move operations. In the 

current compute-and-move operation in processor Pj each query q will determine 

a pair of tangents to the convex hull of the subset A,- of items currently stored by 

Pj. The pair (I, r) is updated with the newly computed set of tangents. At the end 

of this operation A,- is moved to the next processor of the group. The process of 

updating of (/, r) is a non-trivial task and is a part of Stage 3 of this algorithm. A
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better perspective of the operation is obtained by looking at the complete processing 

of Stage 3.

Consider the running time of this stage: finding tangent to  a convex hull is a variant 

of the binary search [67], and it takes logarithmic time. Consequently the following 

result is stated.

Lem m a 2.4. For every query point in Q, the supporting lines to the convex hull of 

the subset of A in each (7, can be found in 0 ((m + j)  lo g ^ + (-^ —l)(m Iog^+T>(^))) 

time. □

S tage 3. The main goal of this stage is to use the information obtained in Stage 

2  of the algorithm to decide which query points lie in the interior of CH(j4). It is 

important to note that for a point q to lie outside of the convex hull of A it is not 

sufficient that q lie outside of the subset of A in all the G,s. Figure 2.6 illustrates 

the situation: the point q lies outside of the three convex hulls, but not outside their 

union.

Figure 2.6: Query q can lie outside CH(subsets of A) but lies within the CH(A)

For every query point q lying outside of the convex hull of the points in
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Figure 2.7: A wedge centered at q

some generic processor Pi, the information obtained in Stage 2  is perceived as a 

solid wedge centered at q. This wedge is specified, in counter-clockwise order, as an 

ordered triple (u , q, v) such that q& and qti are the right and left supporting rays 

from q to the corresponding convex hull. For convenience, qtl and q t  are referred 

to as r and I, respectively. When this happens, the wedge (u , q, v) will be specified 

as (r ,q ,l). Figure 2.7 illustrates this concept.

A" |

Figure 2.8: Illustrating the proof of Lemma 2.5

Now assume that the solutions for the same query q in two sets of points, 

.4' and A", are to be combined: by the above discussion, these solutions are planar 

wedges, centered at q, specified as ordered triples {ux, q, vx) and (1x2 , q, v2), consisting 

of the right and left supporting rays, respectively, from q to the convex hull of A'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

and A". The following technical result is key to Stage 3 of the algorithm.

L em m a 2.5. If there exists a line passing through q and intersects both (u\,q, vr) 

and (u2, q, v2) then q lies in the interior to the convex hull of A' U A”.

P roo f. Let A be the line that passes through q and intersects both (ui, q, ui) and 

(u2,q ,v2), refer to Figure 2.8. This assumption guarantees that the pairs of points 

(ui, u2) and (v2, Ui) lie in opposite halfplanes determined by A. In turn, this guaran­

tees that q lies inside the convex hull of the points u\, ui, u2, v2. Now, a well-known 

result of Yaglom [8 6 ] guarantees that q lies inside the convex hull of A' and A". □

Figure 2.9: The operation $

The condition of Lemma 2.5 can be tested very efficiently: the only check 

that is necessary is to detect whether the ray opposite to one of qu(, qu%, qv|, and 

qv2 intersects the other wedge. This can be tested in the obvious way in constant 

time. Moreover, a processor detecting that condition of Lemma 2.5 holds for the
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wedges (Ui,q,vx) and {v.2 ,q,Vi) will set the result to (0, q, 2tt) which is the wedge 

centered at q and encompassing the whole plane.

It is, therefore, assumed that when combining the wedges (wi, q, vx) and 

(^2 , q, V2 ) the condition of Lemma 2.5 does not hold. Put differently, there exists an 

infinite line 5 through q such that both the wedges (tii, q, «i) and (r/2 , q, U2) lie in one 

halfplane with respect to S, as illustrated in Figure 2.9. This motivates definitions 

m in{ri,r2} and max{Zi,f2} as the bounding rays of the union of the two wedges. 

Specifically, m in{ri,r2} is the ray encountered first as S is rotated counter-clockwise 

about q, while max{Zi,Z2} is the ray encountered last. For example, in Figure 2.9 

m in{ri,r2 } =  ri and max{Zi,Z2} =  h- In this terminology, the binary operation 0  

on these wedges is defined as follows:

, 1 \  a  1 i \  I , r2 }, q, max{7x, I2  }) if the condition o f  Lem m a 2.5. does not hold
(r i i 9 , n )  0  (^2i9 ,  h )  =  S ,

 ̂ (0, q , 2ir) otherwise.

(2.2)

Clearly, ^  either captures the fact that q lies in the interior of A’ U A" in which 

case q will surely lie inside the convex hull of 4̂, or it returns the right and left 

bounding rays of the wedge centered at q and containing the points in 4̂' U A". 

Furthermore, the operation in (2 .2 ) is both associative and commutative, and so 

the computation of Stage 3 will yield the desired result. To summarize the findings 

the following result is stated.

Theorem 2.6. An arbitrary instance of the MULTI-LOCATION problem involving 

sets A and Q of cardinalities n and m, respectively, can be solved in ^ ~ )  +

( ( m + J ) Io g J  +  ( f  - l ) ( m l o g J + r P(J ) ) )+ T B( M , ^ ) ) o n  an ACM (n,p,M ). □ 

The MULTI-LOCATION algorithm can be extended to solve the following 

related problems:

1 . CONTAINMENT: Determine whether the convex hull of Q (resp. A) is con-
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tained in the convex hull of A (resp. Q);

2. SEPARABILITY: Determine whether the sets A and Q are linearly separable 

and if so, find a separating line;

3. COMMON-TANGENTS: In case A and Q are separable, find their common 

supporting lines (i.e., tangents).

The procedure for the CONTAINMENT problem is as follows. First, to 

detect whether the convex hull of Q lies inside of the convex hull of A, the algorithm 

for MULTI-LOCATION is used. For each point qi G Q associate a bit The value 

of 6, is set to 1 if gt lies outside CH(A), 0 otherwise. Now the problem at hand is 

the classic OR problem. If the OR of the bits (1  < i < m) is zero then clearly 

the convex hull of Q lies inside that of A. If there exist two bits 6,- and bj such that 

6j =  0  and bj =  1 then the two sets intersect without any containment.

To decide whether A  lies within the convex hull of Q the following procedure 

is used. The ACM(n,p, M) is partitioned into groups Gi (1  < i < ^), as in Stage 

1 of the MULTI-LOCATION problem. Further, the points in Q are replicated in 

every group Gi. Next, in every processor belonging to such a group the convex hull 

of the subset of points in Q is computed using an optimal algorithm [67] and every 

point of A that lies in Gt- checks whether it is interior to the convex hull of Q. It is 

noted that a similar procedure described in the Stage 2 of the MULTI-LOCATION 

algorithm will work here. As the same query set Q is present in every Gi, every point 

in .4 determines its own status. The solution can now be determined by solving the 

corresponding instance of the OR problem.

The OR can be computed by a reduce operation. The running times these 

reduce operations is dominated by other operations of the algorithm. Consequently 

the following result is stated.
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Theorem 2.7. An arbitrary instance of the CONTAINMENT problem involving 

sets A and Q of cardinalities n and m, respectively, can be solved in 2^ p )+

((m +  J) log a  +  ( f  -  1 )(m log* +  TP(a))) +  TR(M, ^ ) )  on an ACM(n ,p, iW). □

To solve the SEPARABILITY problem the following approach is used. Firstly, 

solve the MULTI-LOCATION problem. If any of the points in Q is interior to the 

convex hull of A, then A  and Q are not separable. Therefore it is assumed that ev­

ery point of Q is exterior to CH(A). Recall that the MULTI-LOCATION algorithm 

provides every point in Q with a “certificate” for being exterior to CH(A): for every 

point in Q this certificate is a pair of supporting lines to CH(A). For every query 

point qi of Q, let I, and r,- be the left and right supporting lines from g,- to CH(A), 

respectively.

Next, the following instance of the MQ problem is solved problem with the 

following parameters:

• the set of items is the set Q,

• the set of queries is the set of lines C =  r,- | 1 < i < m},

• for every ordered pair [d,q) e  £  x Q, <f>(d,q) = “yes” if q lies in the closed 

halfplane determined by d not containing the interior of A,

• let Sd be the set of points q in Q for which (f>(d,q) = “yes” ; now f(Sd) = d in 

case | Sd |=  m and 0  otherwise.

It is clear that, in this formulation, the solution to the corresponding instance 

of the MQ problem returns the two separating lines for A and Q , thus solving 

the SEPARABILITY problem. The algorithm for solving the instance of the MQ 

problem stated above proceeds along lines identical to those of MULTI-LOCATION 

discussed above and is, therefore, omitted. A similar formulation applies for the
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COMMON-TANGENTS problem except that A  and Q should be on the same side 

of the supporting line. Consequently, the following result is obtained.

Theorem 2.8. An arbitrary instance of the SEPARABILITY and COMMON- 

TANGENTS problems involving sets A and Q of cardinalities n and m, respectively, 

can be solved in 0(T*(Af, « * )  +  ((m +  }) log* +  ( f  -  l)(m log* +  7>(}))) +  

Tr{M, ef£)) on an ACM(n,p, M). □

2.4 Proximity-Related Computations

The purpose of this section is to show that four fundamental problems in pattern 

recognition, robotics, and image processing can be solved elegantly by stating them 

as instances of the MQ problem.

2.4.1 The Multiple Closest Segment Problem

Given a set A  of non-intersecting line segments and a set Q of points in the plane, 

the multiple closest segment problem is to determine for each point in Q, the closest 

segment in A (if any) intersected by vertical rays emanating from it. This problem 

will be referred to as CLOSEST-SEGMENT. For an illustration, refer to Figure 

2.10. It is well known that the CLOSEST-SEGMENT problem finds numerous 

applications ranging from visibility, to ray tracing, to robotics, to name just a very 

few [7, 29, 50, 75].

As it turns out, the CLOSEST-SEGMENT problem can be stated as a MQ 

problem. For definiteness, let A = (a l ,a2, . .  . ,a n} and Q =  ( 91 , 92, •••,9m}- The 

corresponding instance of the MQ problem has the following parameters:

• the set .4 =  (at, a2, . . . ,  <z„.} of segments,
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0 7

*  <13

Figure 2.10: The CLOSEST-SEGMENT problem

• the set Q =  {ft, q2, . . . ,  qm} of query-points,

• a decision problem 0 : Q x A —> {“yes” ,“no” } such that 0(ft,O j)=“yes” when­

ever a,j is the closest segment above (resp. below) ft intersected by vertical 

rays originating at ft,

• a function /  such that /  (5) =  S.

The compute-and-move operation for CLOSEST-SEGMENT proceeds as follows. 

Stage 2 . Begin by computing the trapezoidal decomposition (vertically) of the 

segments in every processor this can be done using the classic trapezoidal decompo­

sition, algorithm [67]. For a more detailed discussion of trapezoidal decomposition 

refer to [67]. It is noted that the closest segments for a query q can be found by 

simply locating the trapezoid in which q lies.

Consider two sets of segments S ' and S". Let lb\  lt ’ and /&”, Zt” be the closest 

segments of q in the sets S' and S", respectively. The closest segments of q in in the 

set S' (J S" can be found by picking the closer of the two solutions in S' and S". This 

will ensure that along with each query, as the compute-and-move operations proceed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

the closest segments of all the segments encountered so far can be maintained.

Trapezoidal decomposition can be done in O (jlo g ^ ) and point location for 

a single query will take log j  time. For every query point in Q, the closest segments 

among the subset of A in each (?,• can be found in 0 ((m + j)  l o g ^ + ( ^ —l)(m  logj^-F 

TP(J))) time. Consequently, the following result is proved.

T heorem  2.9. An arbitrary instance of the CLOSEST-SEGMENT problem involv­

ing a set of n  non-intersecting line segments and a set of m points in the plane, can be 

solved in 0 ( r „ ( M , ^ )  +  ( (m + f ) lo g f +  ( g - l ) ( m l o g f + T P( J ) ) ) + r „ ( M ,^ ) )  

on an ACM(n ,p ,M ). □

2.4.2 The Multiple Circle Problem

Given a set A  of points in the plane and a set Q of disjoint circles, the multiple circle 

problem is to determine for each circle the number of points in A  it contains. This 

problem is referred to as the MULTI-CIRCLE. The MULTI-CIRCLE can be seen 

as a natural generalization of the well-known facility location problem involving 

a set of existing sites and a collection of proposed facilities (radio stations, for 

example) to be placed. In this context one is interested in computing, for each of 

the facilities, the number of points it will service. The MULTI-CIRCLE problem 

finds numerous applications to geographic data processing, facility location, robot 

navigation, visibility, among many others [29, 46, 50, 74]. Refer to Figure 2.11 for 

an instance of the MULTI-CIRCLE problem.

The MULTI-CIRCLE problem can be stated as an instance of the MQ 

problem in the following way. For definiteness, let A =  {at, a2, . . .  ,a n} and Q =  

{Qi,Q2 , • • • 7 9m}- The corresponding instance of the MQ problem has the following 

parameters:
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Figure 2.11: The MULTI-CIRCLE problem

• the set A =  {ai, 0 2 , . . . ,  On} of points,

• the set Q =  {gx, q2, . . . ,  gm} of circles,

• a decision problem <j> : Q y A  {“yes” ,“no”} is such that 0(g,-, ay)=“yes” 

whenever ay is inside the circle <&,

• f(S )  =  |S|.

The MULTI-CIRCLE problem can be solved by using a similar procedure as 

the CLOSEST-SEGMENT. This is done as follows: each circle g,- is replaced with its 

diameter d, which is parallel to the x-axis. The difference between this problem and 

the CLOSEST-SEGMENT is that, here segments are queries and for each segment 

the items which are within the corresponding circle are to be determined. This 

can be achieved in the following way, just as in the CLOSEST-SEGMENT each 

item point a can determine the closest segments dj and dk from above and below, 

respectively. The item a lies in the circle gy (corresponding to dj), if and only if the 

distance between a and the center of gy is less than the radius of gy, refer to Figure 

2.12. The same check is repeated for qk. Each item can belong to a unique circle
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(non-overlapping circles). Once all the items in a processor determine the query 

circles they belong to, a simple scan will be used to determine the number of points 

in each query circle. The running time for this processing is same as that of the 

CLOSEST-SEGMENT. Consequently, the following result is proved.

T heorem  2 .1 0 . An arbitrary instance of the MULTI-CIRCLE problem involving 

a set A  of n points in the plane and a set Q of m  disjoint circles, can be solved in 

0 (T m (M, e £ )  +  ((m +  J) lo g ; +  ( §  -  l)(m  lo g ; +  7M ;))) +  TS(M, * ^ ) )  on an 

ACM(n,p, M). □

Figure 2.12: The reduction of MULTI-CIRCLE to CLOSEST-SEGMENT 

2.4.3 The Multiple Range Problem

Given a set A of points in the plane and a set Q of non-overlapping rectangles, the 

multiple range problem is to determine for each rectangle in Q the number of points in 

A it contains. This problem is referred to as MULTI-RANGE. The MULTI-RANGE
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• a .

Figure 2.13: The MULTI-RANGE problem

problem can be seen as a natural generalization of the well-known range query 

problem involving a set of points in the plane and one query rectangle. Just like the 

range query problems, the MULTI-RANGE problem finds numerous applications to 

geographic data processing, facility location, robot navigation, visibility, ray tracing, 

VLSI compaction, to name just a very few [7, 29, 35, 46, 50, 74, 75]. Refer to Figure 

2.13 for an instance of the MULTI-RANGE problem featuring 16 points and 7 

rectangles.

The power of the paradigm is demonstrated again by proving that the 

MULTI-RANGE can be formulated as an instance of the MQ problem. For def­

initeness, let A  =  {0 1 , 0 2 , • • • ,On) and Q =  The corresponding

instance of the MQ problem has the following parameters:

• the set A  =  {a^ a2, . . . ,  a„} of points,

• the set Q =  {qx, q2, . . . , gTO} of rectangles,

• a decision problem 0 : Q x A —» {“yes”,“no”} is such that <£(#,a j)= “yes” 

whenever a,- is inside rectangle
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• f (S )  =  |S|.

This algorithm is similar to that of MULTI-CIRCLE. The details of compute-and- 

move operation follow.

The collection of rectangles is viewed as consisting of 4m line segments*. Just as in 

the Stage 2 of the MULTI-CIRCLE, for each item point a* determine the identity 

of the closest line segments (i.e., rectangles) met by vertical rays emanating from 

it. It is easy to confirm that a point ak is inside a rectangle qt if and only if both 

the segments obtained belong to the rectangle qt. Note that the four segments of a 

rectangle belong to the same processor. Referring again to Figure 2.13, observe that 

point ak lies in none of the rectangles in the collection: this is confirmed by the fact 

that the closest segments intersected by vertical rays emanating from ak belong to 

different rectangles qu and qv.

The running time is the same as that of MULTI-CIRCLE. Consequently the 

following result is obtained.

T heorem  2.11. An arbitrary instance of the MULTI-RANGE problem involving a 

set A of n points in the plane and a set Q of m non-overlapping rectangles, can be 

solved in 0(T M( M , ^ )  +  ((m + 2 )Io g J  +  ( g - l ) ( m l o g 5 + T P(J )) )+ T R(A '/,^ i) )  

on an ACM(n,p, M). □

2.4.4 The Multiple Closest Point Problem

For two points p and q let d(p, q) stand for the Euclidian distance between them. 

Given sets A  and Q of points in the plane, the multiple closest point problem is to 

determine for each point in Q, a point in A that is closest to it in the Euclidian 

distance sense. This problem is referred to as CLOSEST-POINT, it is a fundamental

*Note that the four segments of a rectangle belong to the same processor.
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problem that finds additional applications in geographic data processing, computer 

graphics, image processing, and morphology, to name just a few [1, 75].

The formulation of CLOSEST-POINT as an instance of the MQ problem. 

For definiteness, let A = {at, a<i,. . . ,  a ^  and Q =  {gi, q i,. . . ,  gm}, further define the 

parameters as follows:

• the set A =  {al5 0 2 , • . . ,  a ^  of points,

•  the set Q =  {qx, g2, . . . ,  qm} of query-points,

• a decision problem 0 : Q x A  -> {“yes”,“no”} is such that 0 (9,-,%)=“yes” 

whenever d{qi, ay) =  m in ^ * ^  d(gt-, ak),

• for every i (1  <  i < m), let St- =  {ay G A | 0(<?,-, ay) = “yes” }; /(S ’,-) =  m in{j | 

ay G 5,}, in other words, the solution to query is the point with the smallest 

subscript that is closest to g,.

The compute-and-move operation for CLOSEST-POINT is as follows.

The processing will be partitioned into two substages. In the first substage, the 

Voronoi diagram of the subset of points of A located in every processor is con­

structed. This task can be performed in 0 (^  log^) time using the optimal sequential 

algorithm described in [67]. Note that in the move part of the compute-and-move 

operation, this voronoi diagram is passed on to the next processor instead of the 

items.

In the second substage, for every point in Q the Voronoi polygon that con­

tains it is determined. Once the identity of the enclosing Voronoi polygon is known, 

the local instance of the CLOSEST-POINT problem is, essentially, solved. The 

problem at hand can be solved efficiently by observing that the total number of 

edges of the Voronoi diagram of the subset of point of A located in P; is in O(^).
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A further key observation is that to identify, for every point q in Q the unique 

enclosing Voronoi polygon, it is sufficient to identify the first Voronoi edge intersected 

by a ray originating at q and going in the positive y-direction. This is again an 

instance of the CLOSEST-SEGMENT problem. Consequently, the following result 

is obtained.

Theorem 2.12. An arbitrary instance of the CLOSEST-POINT problem involving 

sets A  and Q of size n, and m, respectively, can be solved in e 4 - ((m +

f)l°S J + (S  -  t)(m lo g ; +7>(J))) +Tk(M,*££)) on an ACM(n,p,M). □

2.5 Stabbing-Related Problems

Let A = {al5 0 2 , . . . ,  an} be an arbitrary set of possibly intersecting line segments 

in the plane and let Q =  {gi, 92? • • • > ?m}> (1 <  m  <  n )> be a set of parallel lines. 

The lines in Q will be referred to as query lines. The multiple stabbing problem, 

(MULTI-STABBING, for short) asks to determine for every query line <7,, the number 

of segments in A it intersects. Figure 2.14 features an instance of the MULTI- 

STABBING involving a set of four query lines. The MULTI-STABBING problem 

is a natural generalization of the stabbing line problem [1] that involves only one 

such query-line. The stabbing line problem finds applications to computer graphics, 

path planning [50], and morphology [75]. The purpose of this section is to show an 

elegant solution to the MULTI-STABBING problem by reducing it to an instance 

of the MQ problem.

Without loss of generality, it is assumed that all the query lines are parallel to 

the x-axis and that the line segments are in general position, with no two endpoints 

sharing the same y-coordinate. Every line segment a, is specified by its top and 

bottom endpoints, and 6,-, respectively.
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Figure 2.14: An instance of the MULTI-STABBING problem

The MULTI-STABBING problem can be stated as an instance of the MQ 

problem with the following parameters:

•  the set A — {a^, a2, . . . ,  an} of items is precisely the given set of line segments,

• the set Q =  {<71, q^,. . . ,  qm} of queries consists of the m query-lines,

• a decision problem <t>: Q x A —t {“yes” , “no” } such that <f>(qi, aj)=“yes” if and 

only if the query-line g,- intersects segment ay,

•  ns) = 151.

For every qt (1  <  i <  m), let St- =  {ay G A  | 0(g,-,ay) = “yes”}. /(5 .) is the 

number of line segments “stabbed” by query-line <7,.

The compute-and-move operation for MULTI-STABBING is detailed as follows. 

Consider the subset of line segments of A in Pj as A,-. Begin by sorting the subset 

Ai of line segments in each Pi in decreasing order of the y-coordinate of their top 

and bottom endpoints. The sorting can be performed in O(Mog^) time using any 

optimal sorting algorithm. Let ei, e2, . . . ,  e2a be the resulting sequence of endpoints. 

The processing in this stage is motivated by the following simple observation whose
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proof is immediate.

O bservation. Let qu be a query-line specified by its equation qu =  yu. The number 

of line segments in P* stabbed by qu is precisely the number of line segments whose 

top endpoint has a higher ^-coordinate then yu and whose bottom endpoint has a 

lower y-coordinate than yu. □

Consider the sorted sequence ei, e-i, . . . ,  and assign each top endpoint in this
P

sequence a weight of + 1  and to each bottom endpoint a weight of —1 . Perform 

a prefix sum on the resulting weighted sequence this takes O(^) time. It is easy 

to confirm that for every endpoint e of a line segment in Pi the resulting value of 

the prefix sum is exactly the number of segments intersected by a horizontal line 

through e.

Next, identify for every query qu the unique pair (ep, ep+\) of endpoints with 

the property that ep > yu >  ep+i. Once this is done, the desired solution of qu is the 

value of the previous prefix sum for ep. The task of identifying the pair (ep, ep+i) 

can be carried out by a simple binary search. Note that the process of sorting 

and computing the prefix sums for the subset of items need not be done at every 

compute-and-move operation. These tasks are performed as initialization steps and 

only the sorted sequence and the prefix sums are communicated. In summary the 

following result is stated.

Lem m a 2.13. The task of computing for every query-line in Q the number of line 

segments in each group Gi it intersects can be carried out in 0 ((m +  log ^ +  (-^ — 

l)(m logJ +  TP(J))) time. □

Consequently, the following result is proved .

T heorem  2.14. An arbitrary instance of the MULTI-STABBING problem involv­

ing a set of n line segments and a set of m query-lines can be solved in 0 ê ~)+
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((m  +  £) log s  +  (M _  1)(m |0 g 4  +  7 > (f))) +  TR(M, £ ^ ) )  on an ACM(n,p, M). □

Let A  =  {ai, a2 , • • •, On} be a simple polygon in the plane and let Q =  (?i, <&> • • • > 9m}> 

(1  <  m < n), be an arbitrary set of points. The simple polygon location problem, 

(POLY-LOCATION, for short) is to determine for every query point $  whether or 

not it lies in the interior of A. An instance of the POLY-LOCATION problem is 

illustrated in Figure 2.15. The POLY-LOCATION is a variant of a large class of 

point location problems, with applications to computer graphics, facility location, 

path planning, among others [29, 35, 50].

Figure 2.15: An instance of the POLY-LOCATION problem

A solution to the POLY-LOCATION problem can be obtained by reducing 

it to an instance of the MULTI-STABBING problem. This is done as follows. The 

simple polygon is perceived as a collection of line segments (its edges) and the result­

ing instance of the MULTI-STABBING problem is solved. However, the counting 

of intersections is slightly changed. Consider an arbitrary point qu in Q and let Au 

be the horizontal line through qu. For gu, only the number of intersection points of
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A and Au that lie to the right of qu, are of interest. Now the Jordan Curve Theorem 

guarantees that qu is inside A if and only if the number of intersections recorded is 

odd. To summarize the findings the following result is stated.

T heorem  2.15. An arbitrary instance of the POLY-LOCATION problem involving 

an n-vertex simple polygon a set of m query-points can be solved in £̂ ) +

((m +  J) log J  +  ( g  -  l)(m log J  +  7>(J))) +  TR(M, ^ ) )  on an ACM(n,p, M). a
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CHAPTER 3

THE SORTED MATRIX ALGORITHM ON

THE ACM

In the previous chapter, the power of computational paradigm was demonstrated by 

dealing with some instances of the MQ problem. The main goal of this chapter is to 

discuss query processing in a structured application domain. Query processing is a 

crucial transaction in various applications including information retrieval, database 

design and management, and VLSI. Many of these applications involve data stored 

in a matrix satisfying a number of properties. One property that occurs time and 

again specifies that the rows and the columns of the matrix are independently sorted 

[25, 40, 58, 78]. It is customary to refer to such a matrix as sorted. A matrix is 

said to be fully sorted if its entries are sorted in row-major (or column-major) order. 

Figure 3.1a displays a sorted matrix; Figure 3.1b features a fully sorted version of 

the matrix in Figure 3.1a.

Sorted matrices provide a natural generalization of a number of real-life 

situations. Consider vectors X  =  (xu x2, .. . x ^  ) and Y  =  (2/1, 2/2* • • -V^k) with 

Xi < Xj and y, <  yj, whenever i < j.  The Cartesian sum of X  and Y,  denoted 

X  +  Y  is the y/n x y/n matrix A with entries â - =  xt- +  yj. It is clear that A' +  Y  is 

a sorted matrix. Moreover, X  + Y  can be stored succinctly in 0 (y/n) space [25, 32],
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1 6 10 19

3 9 14 26

5 15 20 40

7 17 24 41

1 3 5 6

7 9 10 14

15 17 19 20

24 26 40 41

a b

Figure 3.1: Sorted and fully sorted matrices

since the entries a*,- can be computed, as needed, in constant time. Searching, 

ranking, and selection in sorted matrices are key ingredients in fast algorithms in 

VLSI design, optimization, statistics, database design, and facility location problems 

and have received considerable attention in the literature [25, 26, 32, 37, 40, 58, 78].

This chapter addresses the problems of batched searching and ranking in 

sorted matrices. It will be shown that these problems can be formulated as instances 

of the MQ problem. Consider a sorted matrix A of size y/n x y/n of items from a 

totally ordered universe, j  items per processor, on an ACM(n,p, M ). Also given 

an arbitrary sequence Q =  ?i, ?2> • • • > <Zm> (1 < m  < n), of queries stored M  per 

processor in the first ^  processors of the platform. The queries are of two types: 

for a query q3- of the first type one is interested in an item of A that is closest to q3] 

for a query q3 of the second type one is interested in the number of items in A that 

are strictly smaller than qj. The two query types are referred to as search queries 

and rank queries, respectively. The set Q of queries is an arbitrary mix of the two 

query types. In this context, the Batched Searching and Ranking problem, (BSR, 

for short) involves determining the solution of every query in Q.

Formulate the search queries as follows:

• the set *4 =  {a1,a2» • • • > °n} of items is made up of the elements of the given
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sorted matrix,

• the set Q =  {gx, q2, . . . ,  qm} of queries,

• the decision problem (f>: Q x A  -> {“yes”,“no”} is such that <f>{qi,a,j) = “yes”,

• f(S i)  =  min(| $  -  a3- |), 1 < j  < n.

The formulation for the rank queries is obvious.

It is important to note that search queries occur frequently in image process­

ing, pattern recognition, computational learning, and artificial intelligence, where 

one is interested in returning the item in the database that best matches, in some 

sense, the query at hand [7, 29, 74, 82]. On the other hand, rank queries are central 

to relational database design, histogramming, and pattern analysis [7, 29, 53, 82]. 

Here, given a collection of items in a database along with a query, one is interested 

in computing the number of items in the database that have a lesser value than the 

query [53]. In addition, rank queries finds applications to image processing, robotics, 

and pattern recognition [7, 11, 29, 46]. It is noted that a variant of rank queries has 

also received attention in the literature. Specifically, a range query involves deter­

mining the number of items in a given database that fall in a certain range. It is not 

hard to see that range queries can be answered by specifying them as rank queries 

129].

Throughout this chapter for simplicity of exposition it is assumed that all 

the queries fit into one processor (i.e., m < M). This is not a serious restriction as 

the algorithm can be easily extended to the case M  < m < n . With this assumption 

in mind, a generic instance of the BSR problem involves a sorted matrix A  of size 

y/n x y/n stored j* items per processor in an ACM(n,p, M) and a collection Q of m, 

(1  <  m < M), queries stored in processor P0 of the platform. Moreover, to avoid
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handling double subscripts, the items of matrix A  will be enumerated, in row major 

order, as ai, <Z2> • • • > On-

The remainder of the chapter discusses the algorithm for the BSR problem.

3.1 BSR Algorithm on the ACM

R o u y  
o o o o
OQOO
Q O O O

Submatrix A,

ACM(apJvl)

Figure 3.2: The matrix view of the ACM(n,p , M)

Let the processors of the ACM(n,p, M) be Pq, Pi, . . . ,  Pp. As the input is a matrix, 

it will be convenient to view the processors of the ACM(n,p, M) as a matrix of size* 

y/p x y/p, with processor P{ being the same as mod jp- Superimposing the

matrix of processors on the given matrix A  naturally defines a block partition of A 

with processors PiJ storing A ,j, refer to Figure 3.2. Specifically, assume that the 

matrix A is partitioned into p submatrices each of size ^ , denote the (i , j ) th 

submatrix as At J-, refer to Figure 3.3. The sequence of processors belonging to row 

i (i.e., Pt,0l Pi,i , . . . ,  Piiy/p-1) will be referred to as a horizontal slice of ACM(n,p, M) 

and denoted by HSi. A vertical slice, V S i, is defined in a dual manner.

tFor convenience, y/p is assumed to be an integer
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The algorithm for the BSR problem proceeds in the same lines as the generic 

algorithm of Chapter 2 , that is, the algorithm proceeds in three stages.

S tage 1 . The set Q of queries is replicated in each processor P ,j, creating local 

instances of the BSR problem.

Stage 2 . Determine in each processor PtJ, in parallel, the solution of the local 

instance of the BSR problem.

S tage 3. The solutions of the local instances of the BSR problem obtained is Stage 

2  are combined into the solution of the original BSR problem.

Figure 3.3: The partition of matrix A

The remainder of this section is devoted to a detailed description of each of these 

stages.
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Stage 1.

The purpose of this stage is to replicate the set Q of queries, in each processor 

P*J> m queries per processor. This is a simple broadcast operation, and so its running 

time will be of the order of Tg(m,p).

Each local instance involves, A,-j, the subset of A  stored by the processors 

in Pij and the entire set Q of queries.

The main goal of this stage is to solve the local instance of BSR in each 

processor PiJ- Begin by sorting the items and queries in each P{j using an optimal 

sequential sorting algorithm. In the sorting process, ties are broken in favor of 

queries. In other words, if a query and an item are equal, then in the sorted version 

the query precedes the item.

Let C ij =  ci,C2 , . . . , c m+a_i,cm+a be the resulting sorted sequence stored 

in processor PiJ• The following two results will justify the approach to solving the 

local instances of the BSR problem.

Lem m a 3.1. Let qk be a query of rank type and assume that c* =  qk, in other 

words, qk occurs in position t in the sorted sequence Cij. The number of items in 

PiJ strictly smaller than qk equals the number of items preceding qk in Cij.

Proof. Follows directly from the sortedness of C,-j along with the assumed tie- 

breaking discipline. □

Lemma 3.1 motivates the following strategy for solving all rank type queries 

in Pij. Assign to every q  a weight wt defined as follows:

Next, compute the prefix sums of the sequence Ci,C2 , . . . , c Tn+&-i,cm+a using the

Stage 2.

1 if Ct is an item 

0 if Ct is a query.
(3.1)
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weights assigned in (3.1) and let ei,e2, . . .  ,em+s.-i,em+s. be the result. By virtue
P  P

of Lemma 3.1, the value et corresponding to Ct =Qk is exactly the number of items 

in Pij strictly smaller than qk. The time taken for all the rank queries will be 

dominated by sorting and prefix sum computations, which is 0 ((m -f j )  Iog(m-F^)).

The task of handling search queries requires a different approach. To moti­

vate this strategy, consider again the sorted sequence C, , =  Cx, c2, . . . ,  Cm+a—i, Cm+a.
P  P

and refer to Figure 3.4.

51 52
m m . m m

1/ r\ b=n lj
•  M M

§  queiy 
0  item

Figure 3.4: The sorted sequence C\

The m  queries occur in Ct J in contiguous subsequences s1} s2, . . . ,  s^; for every 

such sequence sp let lp and rp stand, respectively, for the leftmost and rightmost 

query in sp, as illustrated in Figure 3.4. Of course, if the sequence sp consists of 

one query only then lp = rp. Write lp =  ca and rp =  for some a  and 0  satisfying 

1 < a < 0 < m + j .  This terminology becomes clear from the following observation. 

Lem m a 3.2. For all the search queries in some sequence sp the solution is either 

cQ_x or C0+1.

Proof. Let qk be an arbitrary search query in the sequence sp. The sortedness of 

C ij along with the tie-breaking discipline guarantee that no item in Pij is closer to 

qk than one of the items cQ_i or c^+ \_. □

In turn, Lemma 3.2 suggests the following approach to solving all the search
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queries in Pij- First, assign to every ct a weight wt defined as follows:

wt =
Ct if Ct is an item 

—oo if ^  is a query.
(3.2)

Next, compute the prefix maxima of the sequence ci, <%,..., C W "i, cm+* using the 

weights assigned in (3.2) and let ei, e2, . . . ,  em+a-i, em+a be the result. It is easy to 

confirm that for every search query Ct = qk, the corresponding value et is exactly the 

identity of the item ctt_i (from the previous terminology), or —oo if no such item 

exists.

Now, assign to every ct a weight wt

and compute the prefix minima of the sequence cm+a ,c m+a_ l,.. . ,C 2, Ct using the 

weights assigned in (3.3). Let ei,e2, . . .  ,em+fl._i,em+a be the result. It is easy to 

confirm that for every search query Ct =  qk, the corresponding value et is exactly 

the identity of the item cg+l (from the previous terminology), or +oo if no such 

item exists. Therefore, at the end of these two computations, every search query qk 

becomes aware of ca_i or cp+l. By virtue of Lemma 3.2, this is sufficient for the 

purpose of determining the solution of every search query qk in Pij. To summarize 

the findings the following result is stated.

Lem m a 3.3. The task of solving the local instance of the BSR problem in each 

processor Pij can be performed, in parallel, in 0 ((m +  j*) log(m +  ^)) time. □

At the end of Stage 2 , each processor Pij stores its local solution <7 (2, 7 , fc) 

along with query qk. In case qk is a search query a ( i,j ,k )  denotes the item in A 

closest to qk', in case qk is a rank query <7 (2, 7 , A:) denotes the number of items in

wt = <
Ct if Ct is an item

+oo if ^  is a query,
(3.3)

Stage 3.
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A that are strictly smaller than <7*. The goal of Stage 3 is to combine these local 

solutions into the solution of qk in the original instance of the BSR problem.

l-n

'‘J+l

Figure 3.5: Illustrating the proof of Lemma 3-4-

In preparation for this, the first task of this stage is to arrange, in every 

processor Pij, the ordered pairs (<7*, cr(z,i, &)) sorted by subscript k.

From now on, the processing relies heavily on a technical property of sorted 

matrices that is discussed next. Referring to Figure 3.5, a processor Pjj is said to be 

critical with respect to a query qk if qk is larger than the entry av in the northwest 

corner of Aitj  but not greater than the entry bv in the southeast corner of A ij, in 

other words:

flu <1 qk ^  by. (3.4)

The following result is key in deriving a  time-optimal algorithm for the BSR problem. 

Lem m a 3.4. If a processor Put is critical with respect to a query <7*, then at most 

one of the processors P i-ij and Pij+i may be critical with respect to <7*.

Proof. Referring, again, to Figure 3.5, let a^a*, and aw stand for the items in the 

northwest corner of A i- i j ,A ij ,  and respectively. Similarly, let 6U, 6V, and bm
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stand for the items in the southeast corner of A -ij>  A j ,  and A j+ i, respectively.

Assume, further, that Pij is critical with respect to query g*. Now, if P i-ij

is critical with respect to <7*, then it implies that

ttu “C qk ^  (3.5)

and, since the matrix A is sorted

bn < aw < bw. (3.6)

Now (3.5) and (3.6) combined guarantee that

qk £  &W

and so, by (3.4), Pij+i cannot be critical with respect to qk.

Similarly, if Pij+i is critical with respect to %, then

<bu < q k<  bw (3.7)

and, since the matrix A is sorted

^  ^  (3.8)

Now (3.7) and (3.8) combined guarantee that

bn < qk,

confirming, by virtue of (3.4), that P i-\j  cannot be critical with respect to qk- This 

completes the proof of Lemma 3.4. □

Consider a generic horizontal slice HS,. For further reference, a copy of 

query qk in some processor Pij is termed active if one of the conditions (al)-(a4)

below is satisfied, refer to Figure 3.6 for an illustration.
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............... © a ,.........

.........Ak®
av < qk <

................
by

..........Al®
bv < qk <

| a „

P.

Qw

Fijp~ I

1 j

< A £

i

r-,o

qk s  av

Figure 3.6: The concept of active copy of query

(al) Pij is critical with respect to query q*.

(a2 ) Slice HSi contains no critical processor with respect to query qk and, for some 

j  < \J v ~  1) Qk is larger than all items in but smaller than or equal to all 

items in Pij+1-

(a3) Query qk is larger than all the items in slice HSi; in this case the copy of qk 

in Pijy/p~i is active.

(a4) Query qk is smaller than or equal to all the items in slice H S^  in this case the 

copy of qk in P^0 is active.
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The leftmost processor of a horizontal slice containing an active copy of a 

query % will be referred to as leading with respect to q*. At this point, one may 

wonder how all this information is computed. It is clear that for determining what 

processors Put are critical with respect to a given query, only the values in the 

northwest and southeast corners of the submatrix A,-j are sufficient. Next, every 

processor Pfj has to be informed about the values of the items in the northwest and 

southeast corners of the neighboring processors in its own slice. This information 

can be obtained initially as a preprocessing step. With this information available, 

critical processors and active copies of all queries can be found in time O(m) time.

0  Active c^tes of q, O  hucdvc c o p a  of q. Q  Copies of qoctie. in ptoccw* P„

Figure 3.7: The active copies of query qk

The strategy for combining the solutions of queries in every Pij into the 

global solution involves gathering of the local solutions horizontally and vertically. 

This is motivated by Lemma 3.4 and the following observation.

Observation. Consider two adjacent slices HSi and 7fS,+l. Let processors PtJ 

and Pi+1,* be leading processors with respect to query q. Then in slice HSi, active 

copies of q can lie only in processors Pij, P ij+ i,. . . ,  Pitk- Also for j  < I < k, P^  is 

the only processor which can contain an active query in the vertical slice VSj with

© © e p ©

© © © < ©
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respect to g (refer to Figure 3.7).

Proof. This follows directly from lemma 3.4. □

This observation suggests the following rules for gathering of the active copies 

of queries (as illustrated in Figure 3.8).

(rl) The copy of qk that belongs to the leading processor in slice HSi will be 

scheduled to be gathered in processor P i0.

(r2) All the remaining active copies of g* in HSi will be gathered in the first 

processor of their vertical slice.

The following result shows that rules (rl) and (r2) lead to one active copy of a query 

per gather operation.

Lem m a 3.5. In a generic slice, at most one active copy per query (say qk) will be 

involved in the corresponding gather operation.

Proof. To begin, consider horizontal slices. When a copy of qk is involved in a 

horizontal gather operation, then either there exists only one active copy of qk in 

slice HSi (in case the copy of qk in the leading processor is active by rules (a2)-(a4)) 

and no other copy of qk will be in a gather operation in this slice , or else, the copy 

comes from a leading processor. By rule (r2), all the other active copies in the same 

slice will be in a vertical gather operation.

Next, consider vertical slices. Suppose that more than one copy of a query 

is involved in a vertical gather operation, let i be the largest subscript for which 

the copy of g* in slice HSi has more than one copy involved in a vertical gather 

operation. Without loss of generality, assume that qk belongs to P j+ i. The con­

clusion of Lemma 3.4, along with the maximality of i imply that the copy of g* 

in processor P ,_ ij+1 is also using the same vertical bus. This implies that neither 

Pi-ij+ i nor P,j+i are leading processors (with respect to g*) in slice P S j-i, and
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HSi> respectively. However, now P»-ij, Pij, and Pij+i must be critical with respect 

to qk, contradicting Lemma 3.4. □

It is important to note that the total number of active copies of any query qk 

is at most 2y/p. This follows immediately from Lemma 3.5, since in each horizontal 

(vertical) gather operation only one active copy of a query can participate and there 

are at most y/p horizontal {y/p vertical) gather operations in all, the conclusion 

follows.

Next, one may wonder if the active copies of query qk carry enough informa­

tion to yield the correct overall solution of qk. The answer to this natural question 

is provided by the following results.

Lem m a 3.6. Let qk be a search query and let a be an item in A closest to qk. There 

exists an active copy of qk in some processor Pij such that either a =  a(i, j, k) or 

a =  a ( i,j  — 1, k) or a =  a{i, j  +  1 ,k).

Proof. By assumption, a must be the solution a{jp, q, k) of qk in some processor 

PPi7. In fact, since the items in the matrix are not necessarily distinct, it is possible 

that a is the solution of qk in a number of such processors. Assume, without loss 

of generality, that such is the case for some processors in slice HS{. Specifically, let 

Pij be the leftmost processor in HSi f°r which a =  a [i,j,k ) . If the copy of qk in 

Pij is active, there is nothing to prove. Therefore, the copy of qk in P ,j is assumed 

to be inactive.

Now, to prove that at least one of the copies of qk in Pij~i or Pij+i is active. 

Since the copy of qk in Pij is inactive, (3.4) guarantees that Pij cannot be critical 

with respect to qk. Therefore, with a,, and bv denoting, respectively, the item in the 

northwest and southeast corner of Aij,

qk < Ov or qk > bv. (3.9)
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Notice that a =  a (i,j,k )  along with (3.9) implies that a must be either a? or bv. 

Symmetry and without loss of generality, allows for the assumption that a =  Oy. In 

turn, this implies

Qk ^  &v (3.10)

Notice that (3.10) along with the fact that the copy of qk in P jj is inactive guarantees, 

by virtue of (a4) that j  ±  1 and, thus, P ij-i must exist. Let, au and bu be the items 

in the northwest and southeast corner of A ij- i, respectively. Since Pij is the leftmost 

processor in HSi for which a = cr(i,j, k ) and since the matrix A  is sorted, it implies 

that

ttu < qk. (3.11)

Moreover, it is not possible to have qk > bu for otherwise, (a2) and (3.11) combined

would guarantee that the copy of qk in P ,j must be active. Therefore, it must be

the case that

qk < bu. (3.12)

However, equations (3.4), (3.11), and (3.12), combined imply that the copy of qk in 

PiJ-i must be active, as desired. This completes the proof of Lemma 3.6. □

Lemma 3.6 suggests an obvious way of updating the solutions of active copies 

of a search query qk. The details are spelled out in the following.

• If the active copy of qk belongs to a critical processor Pitj  and P ij-1 is not 

critical, then the copy of qk in updates its solution a(i, j ,  k) by combining 

it with a (i,j  — 1 , k).

• If the active copy of qk belongs to a critical processor and Pij+i is not 

critical, then the copy of qk in P{j  updates its solution a(i, j ,  k) by combining 

it with cr(i, j  + 1 , k).
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•  If the copy of qk is active because of rule (a2), then it updates its solution

k) by combining it with a(i, j  + 1 , k).

Lem m a 3.7. Let qk be a rank query. The active copies of qk in a generic slice HSi 

carry enough information to compute the number of items in FFSi strictly smaller 

than qk.

Proof. First, if all copies of qk in slice HSi are active then the sum of their local 

solutions k) is exactly the number of items in HSi strictly smaller than qk-

Assume, therefore, that not all copies of qk in slice HSi ara active. Consider 

the active copy of qk in the leading processor of HSi with respect to qk-

•  If this copy is active by rule (a4) then its solution a(i, j, k) must be 0, which 

is the correct number of items in HSi strictly smaller than qk.

• If this copy is active by rule (a3) then its solution cr(i, j , k) is updated to read 

-̂ =, which is the correct number of items in HSi strictly smaller than qk-

• If this copy is active by rule (al) or (a2) then its solution a (i,j,k )  is updated 

to read cr(i, j, k) + (j — 1)^, which is the correct number of items in HSi strictly 

smaller than qk in all processors F ^ , P ^, Pij.

It is important to note that the solutions of the other active copies of % are not

changed by the updates. Thus, after the required updates, the collection of active 

copies of qk in slice HSi carry enough information to correctly compute the number 

of items in HSi smaller that qk- The conclusion follows. □

The next task of Stage 3 is to gather all the active copies of queries to the

first row and column of processors F^o, Po.i, (1 < i < yfp — 1), as illustrated in

Figure 3.8. This task can be performed in two gather rounds as follows. In the 

first round, the gather operations proceed rowwise in parallel in each slice HSi.
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Figure 3.8: Target of the gather operations in Stage 3

By Lemma 3.5, no gather operation contains more than m  active copies. Since 

every query is involved in at most one horizontal gather operation, this first round 

takes 0(Tc(m , y/p)) time. Similarly, the vertical gather operations are performed in 

parallel taking 0(Tc (m, y/p)) time. In summary, the following result is stated. 

Lem m a 3.8. The solutions of all active copies of queries in Q can be gathered to 

the first row and column of processor m  per processor in 0(Tc(m , y/p)) time. □

To complete the algorithm, the various copies of queries in Q moved to the 

processors will be collected and combined. This can be accomplished in many ways.

Only the processing for the first row of processors is explained below; the processing
1

for the first column being is dual.

• A simple All-to-All gather will re-arrange the data in such a way that all copies 

of a query, q, will be placed in the same processor. Now every processor will, in 

parallel, compute the final solution. The total time for the process will be y / p  +  

T A A c i ^ y / p - ,  y / p ) -  All-to-All gather operation is generally quite expensive on many 

platforms. So this approach may not be preferable.

• If m < -j=, then by a single gather the whole data can be placed in a single 

processor. Then either the whole computation can be done in a single processor,

   *a

O

© D O Q
Active copies o f  <?*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

or the copies belonging to different queries can be scattered to different processors, 

to complete the final computation. This approach will take 0(Tc({rriy/p, y/p) +  

min (my/p,Ts (my/p,p))).

• If m  > then repeat the gather and scatter process times. The compu­

tation time will scale accordingly.

Consequently, the following result is obtained.

T heorem  3.9. An arbitrary instance of the BSR problem involving a sorted matrix 

of size y/n x y/n and a set of m  queries, can be solved in 0(7a(m ,p) +  (m +  

J) log(m +  J ) + r G(m, y/p) + miniTAAcimy/p, y/p) ,  *fj= * (T s ( m y / p , p )))) time on the

ACM(n,p,M). □
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CHAPTER 4

THE COMPUTATIONAL PARADIGM ON THE

MMB

As noted in the discussion of the introduction, this chapter considers applying the 

computational paradigm in a fine grain scenario; in particular, the focus will be on 

the Mesh with Multiple Broadcasting. Specifically, the purpose of this chapter is to 

discuss in detail time optimal solutions for the MQ problem and its instances on the 

MMB. It will be shown that the knowledge of the communication system will lead 

to time optimal solutions for some problems.

The remainder of this chapter is organized as follows: Section 4.1 presents 

the lower bounds; Section 4.2 describes a generic algorithm for the MQ problem. The 

remaining sections discuss various instances of the MQ problem. Specifically, Section 

4.3 discusses rank-related problems; Section 4.4 discusses the multiple point location 

problem and several of its variants and applications; Section 4.5 addresses proximity- 

related problems; finally, Section 4.6 discusses the multiple stabbing problem.
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4.1 Lower Bounds

The purpose of this section is to establish a non-trivial lower bound for some in­

stances of the MQ problem on meshes with multiple broadcasting. This is achieved 

by first, proving a lower bound for a different problem, namely the gather problem. 

Once established, this lower bound will be used to derive lower bounds for all the 

problems of interest.

4.1.1 The Gather

I !
mine

fn

Figure 4.1: Adversary instance of the gather problem

An instance of the gather problem consists of a set of n items A  and of a partition R = 

{Ai, A2 , ■.. Am} of A. A is pretiled in a MMB one item per processor in an arbitrary 

fashion. The problem is to gather information about each of the .4, , 1 < i < m, in a 

distinct “target” processor Pit that is, each processor P, should know about all the 

items in .4,-. Recall that a processor can only hold a constant amount of information

Problem

I I
mine

fn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

therefore the gathering operation can only be of an “accumulative” nature. For this 

operation to be complete P* should eventually have information about all the items 

in A{. For example, the gathering operation may be to find the sum of all elements 

in .4,-.

Lem m a 4.1. The lower bound for the gather problem is fi(m 37i«), given |4 ,| =  

(£)*, 1 < i < m .

Proof: Consider the mesh as consisting of submeshes of size s x s ,  where s =  m in e .

The proof is based on an adversary argument. The main aim of the adversary is

to slow down the progress of the algorithm as much as possible. To this effect, the

adversary places one element of each .4,- in a submesh: this is possible as m  < s2

and there are exactly (^ )s  submeshes. Consider elements a,b,c,d, e € Ak, for some

k € {1,2 ,.. .m}, as illustrated in Figure 4.1. Using local connections only, the time

taken for any processor to know the combined information of a, 6 , c, d, and e is at

least s. It follows that in order to collect the information the bus system must be

used. The amount of information that has to be gathered per query is ( ^ ) 3 . The

total amount of information that needs to be broadcast is 0 ( ( ^ ) 3  *m) and there are
2

\fn  buses. Consequently, the time taken will be in which is ^(m sne). □

4.1.2 Lower bounds for instances of the MQ problem

This subsection describes the lower bounds of some of the instances of the MQ 

problem. The approach used here is either to prove that the problem is equivalent 

to the gather problem, or to reduce a problem whose lower bound is known (say 

PK) to the problem at hand (say PU). To achieve the reduction from P K  to PU , 

the general input to P K  is mapped on to the input to PU  and the solution of PU  

will be mapped back to get the solution for P K .  If the time for mapping is less
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than the lower bound of P K  then PU  should have the same lower bound as PK.

The following setup forms the general setting for all the subsequent problems. 

Given a set of items A  and a set of queries Q, where |4 | =  n, and |Q| =  m. The 

items are pretiled in a MMB of size y/n x y/n, one per processor. Similarly, the 

elements of the set Q are placed in the first columns, one per processor.

The Multiple Rank Problem

m  =  4
Figure 4.2: Construction for multiple rank problem

It is to be proved that there exists an instance of the multiple rank prob­

lem where each query has to gather information about (^)* items. Consider the 

sorted sequence of elements belonging to A and Q. Let them be {ai, 0 2 , . . . ,  an}

and {51, ?2j - • • j ?m}j respectively. The values of the queries are selected such that,
2

a(i-i)*s+i < Qi < where s =  (^ )s . Note that, since m  <  n,

2 2 1 2 1
(£■) 3 * m  =  713 *  7713 <  713 * 713 =  77.'771' —

Refer to Figure 4.2, for an illustration of the placement of queries for m  =  4.

It is clear from the construction that each query has to learn information 

about at least s items independent of the other queries. This instance of the multiple 

rank problem is equivalent to the gather problem. Thus, the following lemma is 

obtained.

Lem m a 4.2. The multiple rank problem has a lower bound of Q(m3n6). □
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The same lower bound holds for a variant of the multiple rank problem.

Instead of the rank of a query q, identify the two consecutive items a,, at+i which

belong to the sorted sequence of A  such that a* <  q < a,-+i. This variant of the

multiple rank problem is used to prove lower bounds for some problems, and it will

be referred to as the bracketing variant of the multiple rank problem.

T he H istog ram  P roblem

The proof of the lower bound for the histogram problem is similar to the

multiple rank problem, with the frequency of each level $  G Q, 1 < i < m, being
2 _

required to equal (^)». Thus, the following lemma is obtained.

Lem m a 4.3. The histogram problem has a lower bound of fi(m3ns). □

T he M u ltip le  P o in t L ocation  P roblem

In this problem, it is necessary that if the query point is outside the convex 

hull of A, the tangents from the point to convex hull are returned.

Let the convex hull of a set, A, of points in the plane be denoted by CH(A). 

Furthermore, let CH(A) =  {<21, 0 2 , ... ,a „ }  where (a,-,a,-+i) is an edge of CH(A), 

1 < i < n  (for convenience assume ao =  On). This lower bound is based on a 

construction. Here the following instance of the multiple point location problem is 

of interest. Let all the elements of 4̂ belong to the convex hull CH(A). Consider a 

sample formed by taking every s** point of CH(A), refer to Figure 4.3. The idea is 

to place each query in such a way that the solutions to any two queries will have to 

be determined independently. This is achieved by placing each </, in the triangular 

region determined by the edge (a(,-_i)„a, a,„) of the sample polygon and the two lines 

determined by the points 0 (i-i)*s} and a,-,s+i}, 1 < i < m. (Note:

Subscripts which are negative or greater than n are treated in a modulo fashion.) 

It is clear from the construction that each query has to learn information about
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©  Query ®  Sample points of CH(A) O Other points of CH(A) 

Figure 4.3: Construction for multiple point location problem

at least s points of the CH{A) to determine its solution independent of the other 

queries. Thus, the following lemma is obtained.

L em m a 4.4. The multiple point location problem has a lower bound of n ( m w ) .  

□

It is noted that the lemma also follows by reducing the bracketing variant 

of the multiple rank problem to the multiple point location problem. This can be 

achieved by converting items and queries to polar coordinates as follows. Let d be 

the element larger than every item and every query, assume that all the items and 

queries are positive; a € A is mapped to (r, for some fixed r, and q € Q is mapped
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Figure 4.4: Reduction for multiple point location problem

to (r, |) .  This will guarantee that all the queries are outside the convex hull of the 

items and their tangents can be used to determine the solution to the variant of the 

multiple rank problem in the obvious way. In the Figure 4.4, the mapping of items 

and queries to points is depicted. Specifically, there are three items, a,-, ay, a*, and a 

query, q, such that a,- < aj < q < a*. The point (r, ^), corresponding to q has (r, 

and (r, **■) as its tangency points indicating that the solution for query q consists of 

the points a*, ay.

The Containment Problem

The construction for this problem is same as the one illustrated in Figure 4.3 

above. Note that to determine the solution, each query has to check if it is either 

inside or outside convex hull of A. If the skips one query then by the construction 

it could be placed either inside or outside the convex hull of A and invalidate the
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answer. Thus, the following lemma is obtained.

Lem m a 4.5. The containment problem has a lower bound of Q(m3ni). □ 

T he M ultip le C losest Segm ent P ro b lem

©— ■t---- ©
( -  l.flt) 1r (l.ad

c)(0,q)

I-----©
( - (l,a,)

®------- ----- ©
( -  ha,) (had

(0. 0)

~ ■ ©  ©  Q  ®
flf Qj Q flt

Figure 4.5: Reduction for multiple closest segment problem

Again the lower bound is proved by reducing the bracketing variant of the 

multiple rank problem to the multiple closest segment problem. Consider the input 

to the bracketing variant of the multiple rank problem, items A and queries Q , 

generate input to the multiple closest segment problem by mapping each item a G A 

to the segment ((—1, a), (1, a)) and each query q G Q to the point (0, q). The 

segments returned by each query will correspond to the solution of the variant of 

the multiple rank problem. In Figure 4.5, the mapping from items to segments
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and queries to points, is illustrated. Here items a,, ay, a* and query, q are mapped 

to segments ( ( - 1 , 0 *), (1 , 0 ,)), ((—1 , ay), (1,%)), ( ( - l , a fc), (l,a*)), and point (0 ,g), 

respectively. Note that, a* < a,- < q < dk, and the solution to point (0, q) is the 

segment pair (((—1 , 0 ,), (l,a /)), ((—l,a*), (1, o*))) indicating that solution to the 

query q is the item pair (ay, a*). Thus, the following lemma is obtained.

Lem m a 4.6. The multiple closest segment problem has a lower bound of fam in e). 

□

T he M ultip le  R ange  Prob lem

It is easy to see that an instance of the multiple range problem can be gener-

ated where each query rectangle contains (^ )  3 items, thus forcing each rectangle to
2

gather information about (^)a items independently, implying that this instance of 

the multiple range problem is equivalent to the gather problem. Thus, the following 

lemma is obtained.

Lem m a 4.7. The multiple range problem has a lower bound of f2(m 3ns). □

T he M ultip le C ircle  Problem

This lower bound proof proceeds in the same lines as the lower bound proof 

of multiple range problem. It is easy to see that an instance of the multiple circle 

problem can be generated where each query circle contains (7^)3 items. Thus, forcing 

each circle to gather information about (^ ) 3 items independently, implying that this 

instance of the multiple circle problem is equivalent to the gather problem. Thus, 

the following lemma is obtained.

Lem m a 4.8. The multiple circle problem has a lower bound of f2(m3ns). □

T he M ultiple S tabb ing  P roblem

The multiple rank problem can be reduced to the multiple stabbing problem. 

Given items A and queries Q for the multiple rank problem, generate an instance
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Figure 4.6: Mapping for multiple stabbing problem

of the multiple stabbing problem by mapping each item a G A to the segment 

((0, a), (a, a)), and each query q € Q to the line (x  =  q) (assume that all the items 

and queries are distinct). Let the number of line segments intersected by the line cor­

responding to q be k, its clear that the rank of q is n — k. This provides a solution to 

the multiple rank problem. In Figure 4.6, the mapping from items to segments and 

queries to lines, is illustrated. Similar to the multiple closest segment problem, items 

a,-, ay, a*, and query q are mapped to segments ((0, a*), (a*, a*)), ((0, ay), (ay, ay)), 

((0, a*), (a*, ak)), and line x  =  q, respectively. Again, a,- < aj < q < ak, and 

the line x = q intersects only those segments ((0, a), (a, a)) where a > q, here in 

particular, x  =  q intersects only ((0, ak), (ak, a.k)). This indicates that solution to 

the query q is obtained directly from solution to the line x  =  q. Thus, the following
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lemma is obtained.

Lemma 4.9. The multiple stabbing problem has a lower bound of fam ine). □ 

The Multiple Closest Point Problem

When the data for this problem is restricted to one dimension, it is precisely 

the variant of the multiple rank problem. Therefore the lower bound for the multiple 

rank problem should hold for this problem. Thus, the following lemma is obtained. 

Lem m a 4.10. The multiple closest point problem has a lower bound of fi(m sni). 

□

4.2 A Generic Multiple Query Algorithm on MMB

Most of the algorithms are similar to the generic ones developed for the ACM, so only 

the MMB specific portions of the algorithm are presented in this section. Recall, a 

generic instance of the MQ problem involves four parameters A, Q, <j>, and / .  Recall 

further that for every query g, (1 < i < m), let S',- =  {aj € A \ <j){qu aj) = “yes”} and 

that the solution of g,- is /(S,-). Next assume that the set .4 is stored in some order, 

one item per processor, in 72 a mesh with multiple broadcasting of size y/n x y/n. 

Further assume the set Q is stored in the first columns of 72., one query per 

processor. To make the notation less cumbersome, let*

1 1s =  7713726. (4.1)

Note that 72 can be viewed as consisting of submeshes R ij  (1 < i , j  < & ),  of size 

s x s, with R ij  involving processors P(r, c) with 1 +  (i — l)s  < r < is, 1 4- (j — l)s  < 

c < js. Occasionally, it will be convenient to view the mesh 72 as consisting of 

submeshes Si, S2 , . . . ,  S&  of size s x y/n, with 5,- (1 < i < comprising of the
s

Tor simplicity assume that s , and y  are integers.
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slice 5/

slice S£

Figure 4.7: Partition into submeshes R ij

submeshes 72,-,i, P,-t2 , • • •, P - E v e r y  such submesh 5,- will be referred to as a slice 

of 7Z. For an illustration, refer to Figure 4.7.

Just as in the generic algorithm for the ACM, there are three stages in this algorithm. 

The remainder of this section is devoted to a detailed description of the computation 

that takes place in each of these stages.

Stage 1.

The purpose of this stage is to replicate the set Q of queries into the leftmost 

y  columns of each submesh R ij .  The plan is to move the queries in every column 

k, {I < k  < yjj), of R  into columns (k  -  l)-3̂  +  1 through of each submesh 

Rij. To begin, every processor P(r, k)  (1 <  r  < y/n) broadcasts the query it holds 

horizontally to processor P ( r ,r ) . In turn, processor P(r, r) broadcasts the query 

received vertically to processors P(ts + 1  +  (r — 1) mod s.r)  (0 < t < — 1).

As noted before, as a result of this data movement, the queries originally 

stored in column k  of R  have been replicated in the diagonal processors of the sub­

meshes in every slice. From now on, every slice is processed in parallel. Specifically,

s Jn

R i . i

i "  1

R [ £

R & . i
s ”7  s
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the queries stored by the diagonal processors of Riti are replicated, using the row 

buses in slice into the (k — l ) &  + 1-th column of each Rij  in slice St-. Next, the 

queries stored by the diagonal processors in Ri# are replicated, using the row buses 

in slice 5,, into the (k — 1)-^ +  2-th column of each Rij, and so on.

It is easy to see that the task of replicating the queries in one column of 

1Z takes O ( ^ )  time. Therefore, as long as m > y/n, the queries initially stored 

in the leftmost ^  columns of TZ can be replicated in time 0 ( ^  * j%)=0(ir)=: 

0 ( 2̂ -)CO(m3ns). In case m < y / n ,  the queries are replicated in a way similar to 

the one described. The complexity of this data movement is, again, 0 (^ )C 0 (m 3 n s) 

time.

With this, the goal of Stage 1 has been achieved: the queries have been 

replicated into each of the submeshes R,j.  Thus, the following result is obtained. 

Lem m a 4.11. The set Q of queries initially stored in the first ^  columns of TZ 

can be replicated into the first y  columns of each R ij  in 0(m 3ne) time. □

Stage 2.

In Stage 2, to avoid broadcasting conflicts the bus system is ignored, and 

each submesh R ,j  will act as an unenhanced mesh. The way the local instance of 

the MQ problem is solved in each Rij  is application-dependent. It is assumed that 

this stage can be performed in 0(m 3ne) time.

Stage 3.

At the end of Stage 2, every processor of each submesh Rij  that stores a 

query qu will store its local solution f ( S u). The goal of Stage 3 is to combine these 

local solutions into the solution of qu in the original instance of the MQ problem. 

Once the processing in Stage 3 is complete, the solution of the original instance of 

the MQ problem has been obtained.
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In preparation for this, the first goal of this stage is to arrange the ordered 

pairs {qu, / ( 5 U)) in column-major order in the leftmost ^  columns of every submesh 

Rij, sorted by u, the index of their first component. Recall that by using an optimal 

sorting algorithm [47, 83], this goal can be achieved in 0 time.

From now on, the processing depends on whether or not m > n <.

Case 1. m > n*.

In this case, in every R ij  there is at least one full column of queries. The various 

slices of TZ are processed in parallel. For illustration purposes, processing that takes 

place in slice 5, is detailed. Let {qu, f { S u)) be a generic query-solution pair stored 

by a processor P(r, c) in R(i , 1). By virtue of the data movement described in the 

preamble to this stage, a similar pair is stored by processors P(r,c + ts) in Ri,t+i, 

for 1 < £ < - ^  — 1. In — 1 time units, sequentially, every processor P(r, c +  ts) 

broadcasts to P(r, c) the second component of the pair (qu, f{S u)) it holds. It is 

easy to see that in 0 ( -^ )  time, P(r, c) can accumulate the solutions of qu in the 

whole slice 5,-. Since, St- has s buses, entire columns of queries can be processed in 

this way. Consequently, the process of accumulating the corresponding solutions for 

all the queries can be done, in each slice, in 0 ( ^  * ~) = 0 ( 2^ )  =  0(m 3ns) time.

Finally, after transposing the first y  columns into rows in each R ij  the 

above process can be repeated in the vertical slice consisting of the submeshes 

#i,i> # 2,1) • • •) R^n thus accumulating for every query the corresponding solutions
3

in 0(rri3n6) time.

Case 2. m < n«.

In this case, the queries in each Rij occupy only a segment of the first column, 

as illustrated in Figure 4.8(a). To simplify, it is assumed without loss of generality 

that for some positive integer c, s = c * m. Using local connections only, the m
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Figure 4.8: Data movement of Case 2

queries in R ij  (1 < j  < ^ )  will be moved vertically, in lock step, into positions 

[(j — 1) mod c] * 77i +  1 through [(y — 1) mod c]*m  + m  in the first column of Rij. 

Clearly, this operation takes no more than C^mans) time. For an illustration, refer 

to Figure 4.8.

The consecutive groups of c of the R i j s  in slice St- is referred to as a run. In 

Figure 4.8(b), various runs are depicted using different shades of gray. The motiva­

tion for this terminology comes from the observation that by virtue of the previous 

data movement, the queries in each run occupy distinct rows. Using horizontal buses 

in S,, the queries can be moved in parallel in 0(1) time. Specifically, the intention 

is to move the queries in Sj into the columns of Rij.  It is easy to confirm that there 

are exactly = man® runs, and so the operation of compacting these

runs into R ij  will take O(mane) time.

Next, sort the queries in each submesh Rij  (1 < i < & )  in row-major order 

by query index. This data movement guarantees that the solutions corresponding 

to the same query will occur next to one another. Proceeding row by row, these
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solutions are accumulated and stored in the leftmost processor in each row. Note 

that no such processor can contain accumulated results pertaining to more than two 

distinct queries. Proceeding vertically, the final sums are accumulated for every dis­

tinct query in every submesh Riyi. Now transposing columns into rows and shifting 

appropriately, horizontal runs are created which will be compacted in R ij .  Here the 

queries are sorted again and, as before, the partial results are accumulated.

Thus, the entire computation in Stages 1-3 can be performed in 0(rri3ns) time and 

the following result is obtained.

T heorem  4.12. Provided that every local instance of the MQ problem in Stage 2 

can be solved in 0(m 3ns) time, the original instance of the MQ problem involving 

a set of n items and a set of m  queries can be solved in 0 (m 3n i) time on a mesh 

with multiple broadcasting of size y/n x y/n. □

In each of the remaining sections, the details of Stage 2 of the algorithms are 

discussed.

4.3 Rank-Related Computations

4.3.1 The Multiple Rank Problem

As in Chapter 2, multiple rank problem will be referred to as MULTI-RANK. For 

definiteness, both the items .4 =  (at, a s ,. . . ,  a„} in the database and the queries in 

Q =  ?2 i • • • > ?m} are assumed to come from a totally ordered universe.

Stage 2. To avoid broadcasting conflicts, in Stage 2 the bus system is ignored, 

and every submesh Rij  will act as an unenhanced mesh. The processing of Stage 2 

will be partitioned into two substages, each solving a different instance of the MQ 

problem. To define precisely the local instances of the MQ problem that are solved,
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begin by sorting the items in every R ij  in row-major order. To simplify the notation, 

let 61 , &2> • • • > b3t stand for the sorted sequence of items in Rij.  In this notation, the 

last column of R ij  contains, in top-down order, the items b3, b̂ , . . . ,  ba2. Now the 

instance of the MQ problem that is solved in Rij has the following parameters:

• the (sorted) sequence B,-j =  b3, 6^ , • • •, b3i,

• the set Q of queries,

• a  decision problem <$ : Q x  B ij  —► { “yes”, “no” } such that for every 1 < u < m  

and b G B ,j, (j>(qu,b) = “yes” if and only if 6 <  qu, and

• for every query gu , let Su be the set of items b in Btj  for which <f>(qu, b) = “yes” . 

Let f { S u) =  [S'ul -h 1 or, equivalently, the unique value k for which b^-\)a < 

<7u <  bka if qu < ba2, and s + 1 otherwise. (To handle boundary conditions, let 

bQ = - 0 0 .)

S ubstage  2.1. The purpose of Substage 2.1 is to solve in every R ij  the instance of 

the MQ problem that was defined above. For every query qu, f ( S u) will be referred 

to as the row rank of qu in Rij. To accomplish the task specific to this stage, the 

last column of R ij  is replicated in all the columns of the submesh. This is done in 

the obvious way in 0 (s)=0 (m3 ns) time.

Next, in each of the leftmost y  columns of Rij, the items received are per­

muted vertically, in lock step, in such a way that in 0 (m3ns) time every query meets 

every one of the items bs, fan, . . . ,b st. As a consequence, every query has enough in­

formation to compute its row rank. Thus, the following result can be stated. 

L em m a 4.13. The row ranks of all queries in every submesh Rij  can be determined 

in 0 (TO3n 6 ) time. □
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Substage 2.2. The goal of this stage is to solve another instance of the MQ 

problem in each submesh R ij.  More specifically, this instance involves the following 

parameters:

• the sorted sequence A,-j =  bu b2, . . . ,  bs2 ,

• the set Q of queries,

• a decision problem (f>: Q x  A ij  —> { “yes”, “no” } such that for every 1 < u <  m  

and b € A,-j, (f>{qu, b) = “yes” if and only if b < qU) and

• for every u (1  <  u <  m), let Su be the set of items b in A ^  for which 

<t>(qu,b) = “yes”. Let f ( S u) = | Su |.

The solution of this instance of the MQ problem will use as a stepping stone 

the solution of the instance of the MQ problem solved in Substage 2.1.

By using an optimal sorting algorithm for meshes [47, 59, 83], the sequence 

of queries in each submesh R ij  is sorted in row-major order by row rank in the first 

y  rows of the submesh. Each of the first y  rows of R ij  will be termed a query-row. 

(Recall that every processor in the first y  rows of R ij  contain one item and one 

query.) A query-row of R ij  is called pure if all the queries in the row share the 

same row rank. Otherwise, the query-row is termed impure. The identification of 

every query-row as pure or impure follows. Every processor in the last column of 

Rij  sends the row rank of the query it holds horizontally using local movement only. 

Upon receiving this information, every processor in the first column has enough 

information to determine whether its query-row is pure or impure.

Note that for all queries whose row rank is s+ 1, the solution is s2. Next, con­

sider the processing for pure query-rows with row ranks at most s. Let rx, r>i, . . . ,  rt
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Figure 4.9: Processing of pure and impure query-rows

be the row ranks of the pure query-rows in Rij. By moving all the rows of R ij  ver­

tically, in lock step, row rk will be replicated in every pure query-row with row rank 

rk. For an illustration, refer to Figure 4.9(a). Clearly, this data movement takes 

0 (m 3ns) time. Further, in every pure query-row, the items are moved horizontally, 

in lock step. This data movement ensures that every query in a pure query-row 

determines its solution in 0{mMn6) time.

Impure query-rows are handled differently, refer to Figure 4.9(b). Let r  be 

an arbitrary impure query-row of Rij  and let ri, r 2 , . . . ,  rt be the row ranks of the 

queries in row r. Since the sequence of queries was sorted in row-major order, the 

queries having the same row rank occur consecutively in r. It is important to note 

that for any p (1  < p < s), at most two impure query-rows contain queries whose 

row rank is p. In a first step, all queries in impure query-rows are moved to the row 

of the mesh that equals their row rank. This is done by moving, in lock step, all the 

query-rows of the mesh vertically. It is easy to confirm that after 0 (m 3ns) time 

units, all queries in impure query-rows have reached the row of the mesh that equals 

their row rank. The previous observation guarantees that no processor stores, as
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a result of this data movement, more than two queries. In each row, the solution 

for each query is determined by sending all the items in that row, in lock step, 

horizontally throughout the row. This ensures that every query in the row finds its 

solution in 0 (mSns) time. In summary, the following result can be stated.

Lem m a 4.14. The task of solving the queries in every can be performed in 

0 (m 3ns) time. □

The prior results can now be combined to yield the stated goal.

T heorem  4.15. An arbitrary instance of the MULTI-RANK problem involving a 

set of n items and a set of m  queries can be solved in 0 (m37i6 ) time on a mesh with 

multiple broadcasting of size y/n x y/n. Furthermore, this is time-optimal. □

4.3.2 Histogram Computation

The algorithm for HISTOGRAM is identical to the algorithm for MULTI-RANK 

except for a post-processing step that is now described. Let rank(gL), rank(^2), 

..., rank(gm) be the ranks of the queries returned by MULTI-RANK applied to 

the instance of the HISTOGRAM problem. Now for every i (1  <  i < m  — 1 ) the 

solution to qi is rank(g,-+i)—rank(gt), in other words, the number of pixels in A  having 

a grey-level intensity equal to g,-. Furthermore, the solution to qm is n —rank(gm_i). 

In summary, the findings are stated by the following result.

T heorem  4.16. An arbitrary instance of the HISTOGRAM problem involving an 

m-level image of size y/n x y/n can be solved in 0 (m3ns) time on a mesh with 

multiple broadcasting of size y/n x y/n. Furthermore, this is time-optimal. □
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4.4 The Multiple Point Location Problem

This section provides with an algorithm for MULTI-LOCATION, and presents a 

few details of related problems: CONTAINMENT, SEPARABILITY, COMMON- 

TANGENTS.

It is noted that if the convex hull of A is known, then the MULTI-LOCATION 

problem can be solved in O{y/m) time by using the algorithm of Bhagavathi et al. 

[13]. However, just computing the convex hull of n points is known to take Q(y/n) 

time on a mesh with multiple broadcasting of size yjnxyfn. One of the contributions 

of this work is to show that the MULTI-LOCATION problem as well as the three 

other problems mentioned can be solved in O(mans) time without computing the 

convex hull of A. Refer to Chapter 2 , for the formulation of MULTI-LOCATION as 

an instance of the MQ problem and some of the important geometric preliminaries. 

As a technicality, for all i (1 < i < m), set Si to the empty set. Recall that, 

Si is the set of all “yes” instances for a query <?,•. Also, Stage 3 of the algorithm 

relies on the same results obtained for the problem in Chapter 2. Stage 2 of the 

MULTI-LOCATION algorithm is as follows.

Stage 2 . Begin by computing the convex hull of the subset A,-j of A in each 

Rij. This task can be performed in O(m^ns) time using an optimal convex hull 

algorithm for unenhanced meshes [42]. For simplicity of exposition, it is assumed 

that the convex hull of is the convex polygon P  =  pi, p?, . . . ,  ps 2 stored in 

row-major order in Rij. The task specific to Stage 2 is to determine for every point 

in Q whether it is interior to any of the convex hulls local to the Rij's. Clearly, a 

query point that is interior to any such convex hull lies in the interior of the convex 

hull of .4 and its corresponding solution is the empty set.

The task of determining the queries in Q that are interior to P  (i.e., the
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convex hull of Aij)  will be partitioned into two substages.

Substage 2 .1 . This stage solves the (simpler) problem of finding lines of support 

for those points in Q that are exterior to the convex polygon P' =  p„P 25, • • • iPa* 

consisting of the vertices of P  whose subscripts are multiples of s, as illustrated in 

Figure 4.10(a).

p i  3  p n  \  p n P12
P13

P l4 . P l4 jPlO P lO

P l5 .

P 9

P iti

Pa

PS P4

(a)

Figure 4.10: Stage 2 of MULTI-LOCATION

Note that P' partitions the boundary of P  into chains Ci, C2 , ■■■, Cs such 

that Cj. =  • • • ,Pks (1  ^  ^ ^  s).

The vertices of P' are stored by the processors in the last column of Rij, and 

that every chain C* (1  < k < s) defined above involves points stored by processors 

in row k of the submesh. As in Stage 2  of the MULTI-RANK algorithm, the contents 

of the last column of each Rij  is replicated in all the columns of the submesh. In 

each of the first y  columns, the queries are moved vertically, in lock step, in such
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a way that in 2 time units every query meets every point of P ' and thus can 

determine the two supporting lines to P r, if they exist. To clarify this last point, 

note that, for every pair (gu>Pfcs)» whether the line determined by qu and pks is a 

supporting line for P ' can be determined in 0(1) time by checking if both P(k-i)3 

and p(fc+i)4 are to the same side of the line.

Substage 2 .2 . The purpose of this substage is to use the partial solution obtained 

in Substage 2.1 to determine for every point in Q whether it is interior or exterior to 

P. Additionally, for those points which are exterior to P , the two supporting lines 

are produced.

Observe that if a supporting ray for P ' determined by some point q in Q 

and some point pks is a supporting ray for P , then no further action is needed. 

Otherwise, it is easy to see that the ray qpks intersects precisely one of the chains 

Ck- i  or C&. (To handle boundary conditions let Co =  Cs.) Furthermore, the chain 

intersected by the ray qpks can be determined in 0 (1 ) time by checking the edges of 

P  incident to pks. Refer to Figure 4.10(b) for an illustration.

In what follows, the task of determining the left supporting ray is described. 

Determining the right supporting ray is similar. Consider the points q in Q for which 

the left supporting ray for P ' is not a supporting ray for P. For every such point 

q, its chain rank is defined to be the subscript of the chain intersected by the left 

supporting ray from q to P'.

Further, the query points in Q are sorted in row-major order by their chain 

ranks. Assume without loss of generality that the chain rank of q is k. In order 

to find a left supporting ray for P  emanating from q only the left supporting ray 

for the convex polygon obtained by adjoining to Ck =  P(k~i)S+ u  P(k- i ) s+2 ,  ■ ■ ■ ,Pks 

vertex P(k~i)s is necessary (to handle boundary conditions assume po =  psi)- This
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can be done in 0(m 3ns) time by a slight modification of the processing of Stage 2 

of the MULTI-RANK algorithm of Section 4.3. Consequently, the following result 

is proved.

Lem m a 4.17. For every query point in Q, the supporting lines to the convex hull 

of the subset of A  in each /2,-j can be determined in 0(m 3ns) time. □

To summarize the findings the following result can be stated.

T heorem  4.18. An arbitrary instance of the MULTI-LOCATION problem involv­

ing sets A and Q of cardinalities n and m, respectively, can be solved in 0(m3ns) 

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is 

time-optimal. □

The three problems mentioned in the beginning of this section are solved by 

using essentially the same techniques as discussed in Section 2.3 of Chapter 2. In 

consequence, the following results are stated.

Theorem  4.19. An arbitrary instance of the CONTAINMENT problem involving 

sets A  and Q of cardinalities n and m, respectively, can be solved in 0(m 3ns) 

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is 

time-optimal. □

Theorem  4.20. An arbitrary instance of the SEPARABILITY and COMMON- 

TANGENTS problems involving sets A  and Q of cardinalities n and m, respectively, 

can be solved in 0(m 3ns) time on a mesh with multiple broadcasting of size y/n x

y/n. □

4.5 Proximity-Related Computations

The purpose of this section is to show that four fundamental problems in pattern 

recognition, robotics, and image processing can be solved elegantly by stating them
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as special instances of the MQ problem. In each case, only the application specific 

requirements of Stage 2  are considered as Stages 1 and 3 progress as previously 

described.

4.5.1 The Multiple Closest Segment Problem

Stage 2 . The processing of Stage 2 will use the algorithm of Jeong and Lee [42] that 

provide an optimal solution to the CLOSEST-SEGMENT on unenhanced meshes. 

Using this algorithm the local instance in every Rij  is solved in O(mans) time, 

which leads to the following result.

Consequently, the following result is obtained.

T heorem  4.21. An arbitrary instance of the CLOSEST-SEGMENT problem in­

volving a set of n non-intersecting line segments and a set of m  points in the 

plane, can be solved in 0 (m 3 ns) time on a mesh with multiple broadcasting of 

size y/n x y/n. Furthermore, this is time-optimal. □

4.5.2 The Multiple Range Problem

Stage 2 . The processing of Stage 2 will use the algorithm for CLOSEST-SEGMENT, 

as described in Section 2.4 of Chapter 2. Using the algorithm in [42] the local in­

stance of CLOSEST-SEGMENT problem in each /2,-j is solved in time.

Consequently, the following result is obtained.

T heorem  4.22. An arbitrary instance of the MULTI-RANGE problem involving 

a set A of n points in the plane and a set Q of m  non-overlapping rectangles, can 

be solved in 0(m 3ns)  time on a mesh with multiple broadcasting of size y/n x y/n. 

Furthermore, this is time-optimal. □
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4.5.3 The Multiple Circles Problem

The MULTI-CIRCLE problem is solved using the same technique as developed in 

Chapter 2, which can be formalized in this result.

T heorem  4.23. An arbitrary instance of the MULTI-CIRCLE problem involving 

a set A  of n points in the plane and a set Q of m  disjoint circles, can be solved in 

0 (m sn 6 ) time on a mesh with multiple broadcasting of size y/nx. y/n. Furthermore, 

this is time-optimal. □

4.5.4 The Multiple Closest Point Problem

Stage 2 . The processing of Stage 2 will be partitioned into two substages. In 

the first stage, construct the Voronoi diagram of the points of A located in every 

submesh R ij. This first task can be performed in 0 (m3ns) time using the algorithm 

of Jeong and Lee [42] for unenhanced meshes.

In the second substage, identify for every point in Q the Voronoi polygon 

that contains it. Once the identity of the enclosing Voronoi polygon is known, the 

local instance of the CLOSEST-POINT problem is, essentially, solved. The problem 

at hand can be solved efficiently by observing that the total number of edges of the 

Voronoi diagram of the subset of point of A located in R ij is in 0 (s2) and that, 

consequently, these edges can be stored at most one per processor in every R ij.

A further key observation is that to identify, for every point q in Q the 

unique enclosing Voronoi polygon, it is sufficient to identify the first Voronoi edge 

intersected by a ray originating at q and going in the positive y-direction. This is, 

of course, an instance of the CLOSEST-SEGMENT problem which can be solved in 

each R ij  in 0 (m 3 ne) time. Combining these parts yields the following result. 

T heorem  4.24. An arbitrary instance of the CLOSEST-POINT problem involving
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sets A and Q of size n, and m, respectively, can be solved in O(rn^ni) time on a 

mesh with multiple broadcasting of size y /n x y /n . Furthermore, this is time-optimal.

□

4.6 Stabbing-Related Problems

As with the previous section, only Stage 2 of the algorithm is presented below. 

Stage 2. Begin by sorting the subset A ij  of line segments in each R ij  in decreasing 

order of the ^-coordinate of their top and bottom endpoints. The sorting can be 

performed in 0 (m 3n i)  time using any optimal algorithm for unenhanced meshes 

[47, 83]. Let e\, e2, . . . ,  e2s2 be the resulting sequence of endpoints stored in row- 

major order in R ij. Every processor in the mesh stores exactly two endpoints. The 

processing of Stage 2 will be partitioned into two substages, each solving a different 

instance of the MQ problem.

Substage 2.1. The last column of R ij  contains, in top-down order, the endpoints 

£25- 1)625?e4s_i,e4a, . . . , e2a2_ i , N o w  the instance of the MQ problem that is 

solved in R ij has the following parameters:

•  the sorted sequence E ,j =  e25- i ,e 2a,e4Jf_ i)e4J, . . . , e 2s2_ i,e 242 of endpoints of 

line segments,

• the set Q of query-lines,

• a decision problem ip : Q x E ij —»■ { “yes”, “no” } such that for every query line 

qu and for every endpoint e £ E ij ip(qu, e )= “yes” if and only if endpoint e is 

above qu, and

• for every query qu, let Su be the set of endpoints e in for which ip(qu, e )= “yes”.
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Define /(S u) =  max{fc | e* €  5U} (i.e., the endpoint with the least ^-coordinate 

that is above qu).

For every query qu, f(S u) referred to as the row rank of qu in R ij. To solve the 

above instance of the MQ problem, replicate the last column of R ij throughout the 

submesh. This is done, in the obvious way, in 0(s)=0(to3716) time.

Next, in each of the leftmost y  columns of R ij, the items received are moved 

vertically, in lock step, in such a way that in 0 (m 3ns) time every query-line meets 

every endpoint. As a consequence, every query has enough information to compute 

its row rank. Thus, the following result is obtained.

Lem m a 4.25. The row ranks of the queries in every R ij can be determined in 

0(7713/16) time. □

Substage 2.2. The goal of this stage is to solve yet another instance of the MQ 

problem in each submesh R ij. More specifically, this instance involves the following 

parameters:

• the sorted sequence A{j  =  di, • • • > ds 2 of line segments,

•  the set Q of queries,

• a decision problem <j>: Q x  A ij  —> { “yes” , “no” } such that for every 1 < u < m  

and d € A ij, <f>(qu,d )= uyes” if and only if query-line qu intersects the line 

segment d, and

• for every u (1 < u < m), let Su be the set of line segments d in A ij for which 

<̂ (?u, d )= “yes”. Define f ( S u) = | Su |, that is, the number of segments in R ,j  

stabbed by the query-line qu.

The processing in Substage 2.2 is motivated by the following simple obser­

vation whose proof is immediate.
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O bservation 4.26. Let qu be a query-line specified by its equation qu =  yu. The 

number of line segments in R fj  stabbed by qu is precisely the number of line seg­

ments whose top endpoint has a higher y-coordinate then yu and whose bottom 

endpoint has a lower y-coordinate than yu. □

Consider again the sorted sequence e i,e 2 , . . .  , e ^  and assign each top endpoint in 

this sequence a weight of +1 and to each bottom endpoint a weight of —1. Per­

form a prefix sum on the resulting weighted sequence. For every endpoint e of a 

line segment in R jj the resulting value of the prefix sum is exactly the number of 

segments intersected by a horizontal line through e. Now both sorting and prefix 

sum computation is performed in 0(m 3ns) time.

Next, step is to identify for every query qu the unique pair ep, ep+i of end­

points with the property that ep > yu > ep+l. Once this is done, the desired solution 

of qu is the value of the previous prefix sum for ep. The task of identifying the pair 

ep, ep+1 is done as follows. Using an optimal sorting algorithm for meshes [47, 83], 

the sequence of queries-lines in each submesh R ij is sorted in row-major order by 

row rank in the first ^  rows of the submesh. Each of the first — rows of Rs ,• will be
3  S

termed a query-row. Recall that every processor in the first y  rows of R ij  contains 

two endpoints and one query-line. A query-row of Rij is called pure if all the queries 

in the row share the same row rank. Otherwise, the query-row is termed impure. 

From here, the computation proceeds in two stages. In the first stage one finds the 

solution to queries in pure query rows in 0 (m m s) time; in the second, one finds 

the solution to queries in impure query-rows in 0(m3ne) time. For the full details 

refer to Section 4.3. In summary, the following result is stated.

Lem m a 4.27. The task of computing for every query-line in Q the number of line 

segments in each submesh R ij  it intersects can be carried out in 0 (m jn « ) time. □
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Consequently, the following result has been proved.

T heorem  4.28. An arbitrary instance of the MULTI-STABBING problem involv­

ing a set of n line segments and a set of m  query-lines can be solved in 0(m37is) 

time on a mesh with multiple broadcasting of size y/n  x  y/n. Furthermore, this is 

time-optimal. □

The POLY-LOCATION is solved by reducing it to an instance of the MULTI- 

STABBING problem. Details can be found in Section 2.5 of Chapter 2. Conse­

quently, the following result is obtained.

T heorem  4.29. An arbitrary instance of the POLY-LOCATION problem involving 

an n-vertex simple polygon a set of m  query-points can be solved in 0(m37i6) time 

on a mesh with multiple broadcasting of size y/n x y/n. □
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CHAPTER 5

THE SORTED MATRIX ALGORITHM ON

THE MMB

The purpose of this chapter is to devise time optimal solution for the Batched Sorting 

and Ranking problem (BSR), introduced in Chapter 3, on an MMB. Just as the 

solution presented in Chapter 3, the algorithm proceeds in three stages. The main 

difference is that the knowledge of communication subsystem (local connections and 

buses) and the layout of processors allows for efficient implementation of the stages. 

This leads to a provably time-optimal solution. Recall, that a matrix with its rows 

and the columns independently sorted is referred to as a sorted matrix. A matrix 

is said to be fully sorted if its entries are sorted in row-major (resp. column-major) 

order.

Throughout this chapter, a generic instance of the BSR problem involves 

a sorted matrix A of size y/n x y/n stored one item per processor in a mesh with 

multiple broadcasting of size y/n x y/n and a collection Q of m, (1 < m  <  n), 

queries stored in the first columns* of the MMB. The queries are of two types: 

search queries and rank queries. The set Q of queries is an arbitrary mix of the two 

query types. To avoid handling double subscripts, the items of matrix A will be 

+In the remainder of the chapter, for simplicity it is assumed that is an integer.
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enumerated, in row major order, as ai, a-i,. . . ,  On. At this point it is appropriate to 

explain why the m  queries lie in the leftmost ^  columns of the mesh. It is assumed 

that the mesh with multiple broadcasting communicates with the outside world via 

I/O  ports placed along the leftmost column of the platform. This is consistent with 

the view that enhanced meshes can serve as fast coprocessors for computers. In 

such a scenario, the host computer passes the queries on to the enhanced mesh in 

batches of y/n. Thus, in the presence of m  input queries, the leftmost columns 

will receive data.

The contribution of this chapter is twofold. Firstly, it is proved that any 

algorithm that solves the BSR problem must take at least fi(max{logn, y/m}) time 

in the worst case. This lower bound holds for both the CREW-PRAM and for the 

mesh with multiple broadcasting. Secondly, a time-optimal solution to the BSR 

problem on a mesh with multiple broadcasting of size y/n x y/n is provided by 

exhibiting an algorithm whose running time is bounded by 0(max{logn, y/m}).

To put this contribution in perspective, it is noted that recently Bhagavathi 

et al. [13] showed that the task of solving m  search or rank queries in a fully sorted 

matrix can be performed in Q ( y / m )  time on a mesh with multiple broadcasting of 

size y / n x y / n .  Actually, in the context of fully sorted matrices the difference between 

the two query types vanishes, both of them being solved, essentially, in the same 

way.

The situation is vastly different in sorted matrices that are not fully sorted. 

It has been known for some time that the structure apparent in sorted matrices 

is not sufficient to help convert given matrix to become fully sorted. Indeed, this 

counterintuitive fact rediscovered by several researchers [36, 40, 45, 78] explains why 

querying in sorted matrices is so much harder.
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In the context of sorted matrices, search queries and rank queries are very 

much different, requiring a different resolution strategy. It is not surprising, there­

fore, that the algorithm presented in this dissertation for the BSR problem is much 

more complicated and sophisticated than the algorithm in [13]. In order to obtain a 

time-optimal algorithm for the BSR problem a novel and interesting cloning strategy 

for the queries is developed. Consider the following overview of the strategy. The 

MMB is partitioned into a number of submeshes and the given queries are cloned 

in each of them. Having done that, the local solution of each query is obtained in 

each of the submeshes. Finally, since the number of clones of each query is large 

-  larger than the available bandwidth allows to handle -  a retrieving strategy is 

devised whereby information is gathered only from some of the clones. The inter­

esting feature of this strategy is that there always exists a relatively small subset of 

the clones that, when retrieved, provide for the resolution of all the queries. As a 

consequence, the algorithm devised in this chapter is completely different from that 

of [13] showing the whole potential of meshes with multiple broadcasting.

In addition, the result demonstrates that for sufficiently large to, the key 

factor in obtaining ©(-y/m) time performance on a mesh with multiple broadcasting 

is not the full sortedness of the matrix but, rather surprisingly, the fact that both 

rows and columns are independently sorted. In this case, the running time of the al­

gorithm only depends on m. Moreover, for values of m smaller than, approximately, 

log2 n, the full sortedness of the matrix is crucial in obtaining a very fast solution 

to the problem.

The remainder of the chapter is organized as follows: Section 5.1 presents 

the lower bound arguments and Section 5.2 discusses the time-optimal algorithm for 

the BSR problem.
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5.1 Lower Bound

The purpose of this section is to establish a non-trivial lower bound for the BSR 

problem on meshes with multiple broadcasting. Data sets A and Q are assumed to 

be distributed in the MMB as described above. The lower bound arguments rely, in 

part, on the following fundamental result of Cook et al. [24].

P roposition  5.1. [24] The time lower bound for computing the logical OR of n 

bits on the CREW-PRAM is fi(logn) no matter how many processors and memory 

cells are available. □

The following result of Lin et al. [49] is also important.

P roposition  5.2. Any computation that takes 0(t(n)) computational steps on an 

n-processor mesh with multiple broadcasting can be performed in 0(t(n)) compu­

tational steps on an n-processor CREW-PRAM. □

It is important to note that Proposition 5.2 guarantees that if 7\f(n) is the 

execution time of an algorithm for solving a given problem on an n-processor mesh 

with multiple broadcasting, then there exists a CREW-PRAM algorithm to solve the 

same problem in Tp(n) =  7\f(n) time using n processors and O(n) extra memory. In 

other words, “too fast” an algorithm on the mesh with multiple broadcasting implies 

“too fast” an algorithm for the CREW-PRAM. This observation is exploited in [49] 

to transfer known computational lower bounds for the CREW-PRAM to the mesh 

with multiple broadcasting.

It will be shown that even solving a single query of either the search or rank 

type takes fi(logn) time. This result will be proved for the CREW-PRAM and then 

ported to the mesh with multiple broadcasting by Proposition 5.2.

This is done by reducing the OR problem to the problem of solving a  search 

query q. For this purpose, let b\, b2, . . . ,  be an arbitrary input to OR. Con-
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Figure 5.1: Lower bound for solving a single query

struct a sorted matrix A ,  as illustrated in Figure 5.1, by placing 6i, 62, • • •: 6^  in 

A (  1, y / n ) ,  >1(2, y / n  — 1 ) , . . . ,  A ( y / n ,  1), and by setting for all i ,  j  with i + j  y / n  + 1:

This construction guarantees that the matrix A is sorted, regardless of the values 

of 61,621 • • -iby/z- Assign to query q the value 0.9. The answer to the OR problem 

is 0 if and only if the solution of the query is 0. This is because of the fact that, if 

the sequence 61} 62, . . . ,  6^  contains a 1 , then 1 will be returned as a solution of the 

query, otherwise, 0 will be returned. By virtue of Proposition 5.1, any algorithm that 

correctly answers a search query on a sorted matrix must take Q(log v^i)=^(logn) 

time on the CREW-PRAM, regardless of the number of processors and memory cells 

available.

Now to reduce the OR problem to the problem of solving a rank query q. 

For this purpose, let 61, 62, . . . ,  6^  be an arbitrary input to OR. Construct a sorted 

matrix A, as illustrated in Figure 5.1, and let the query q have the value 0.9. It 

should be clear that the answer to the OR problem is 0 if and only if the number of 

elements of .4 that are smaller than <7 is exactly To see this, observe that by

construction, every element of the matrix in the upper left triangle is strictly smaller
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than the query and the only other elements that may be strictly smaller than the 

query lie on the diagonal, as seen from Figure 5.1. Thus, total number of elements 

strictly smaller than q is if and only if all the elements on the diagonal are 0 . 

Now Proposition 5.1 guarantees that any algorithm that correctly answers a rank 

query on a sorted matrix must take fi(logn) time on the CREW-PRAM. Combining 

this with Proposition 5.2, the following result is obtained.

Lem m a 5.3. Any algorithm that correctly solves one search or rank query on a 

sorted matrix with n elements must take at least ft(logn) time on a mesh with 

multiple broadcasting of size y/n x y/n. □

Next it will be demonstrated that every algorithm that solves the BSR prob­

lem on a fully sorted matrix must take £l{y/m) time in the worst case. This will 

imply the same lower bound for sorted matrices. At this point, assume that A is a 

fully sorted matrix, and stored in the MMB as described above. The elements of A , 

in row major order, are referred to as ai, 0 2 , . . .  ,a n. In the context of fully sorted 

matrices, both search and rank queries are solved, essentially, the same way. Specif­

ically, let q be an arbitrary query and let i be the subscript for which a* < q < a,+i. 

Clearly, if q is of rank type than its solution is i, which denotes the number of items 

in A strictly smaller than q. On the other hand, if q is of search type, then the item 

in A that is closest to q is either a,- or a,-+1. This observation allows us to handle, for 

the purpose of the lower bound, both type of queries as if they were rank queries. 

In turn, this implies that the following result proved in Bhavagathi et al. [13] can 

be used.

P roposition  5.4. Any algorithm that correctly solves m, 1 < m < n, queries on a 

fully sorted matrix with n elements must take at least Q(y/m) time on a mesh with 

multiple broadcasting of size y/n  x y/n. □
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Lemma 5.3 and Proposition 5.4 combined, provide the main result of this

section.

T heorem  5.5. Any algorithm that correctly solves an instance of the BSR problem 

involving a sorted matrix of n items, stored one per processor, and a collection of m, 

(1  < m  < n), queries, stored one per processor, in the first columns of a mesh 

with multiple broadcasting of size y/n x y/n must take at least fi(max{logn, y/m}) 

time. □

5.2 A Time-Optimal BSR Algorithm

In this section it will be assumed that A is a sorted matrix and that A and the queries 

Q are distributed on the MMB as described in the introduction of this chapter. 

Similar to the discussion of Chapter 4, 71 is viewed as consisting of submeshes R^-, 

(1 < i , j  < \/^)» °f s*ze V”* x and slices 5,-. Figure 5.3, illustrates these 

subdivisions.

Figure 5.2: Input to the BSR problem

As with the other applications of the computational paradigm, the algo­

rithm for the BSR problem proceeds in three stages which are now described with
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Figure 5.3: Partition into submeshes R ij 

adaptation to the MMB.

Stage 1 . The set Q of queries is replicated in each submesh R ij, creating local 

instances of the BSR problem.

Stage 2 . In each submesh R ij , in parallel, the solution of the local instance of the 

BSR problem, is determined.

Stage 3. The solutions of the local instances of the BSR problem obtained in Stage 

2 are combined into the solution of the original BSR problem.

The remainder of this section is devoted to a detailed description of each of these 

stages.

S tage 1 .

The processing here is similar to the Stage 1 of the generic algorithm de­

scribed in Section 4.2 of Chapter 4. The purpose of this stage is to replicate the set

& R
Ru : : gi.j|

V : j *£JS
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Q of queries, in each submesh Rij, one query per processor. The plan is to move the 

queries in each column of R  into columns of every R ij. Specifically, the queries 

in a generic column k, (1  <  k < ^«), of R  will be moved to columns (k — 1 ) ^ ^ + 1  

through fcy/J of R ij.

Begin with every processor P(r, k), (1  < r  <  y/n) broadcasting the query it 

holds horizontally to the diagonal processor P(r, r) as shown by the transition from 

Figure 5.4(a) to 5.4(b). In turn, processor P(r, r) broadcasts the query received 

vertically to every processor P ( t y / m + ( r — 1 ) mod y / m + l , r )  for t  =  0,1, . . .  

as shown in transition from Figure 5.4(b) to 5.4(c).

:

— .... ...
■ T T K

b

\  . \  . \

\  V \  •,i* -  * -  *%• - -• . v  • v% . S . S.
  zm  2*___ 1

F, V  R  V  
S ' S i S i S

---
% : \

s  : ••*

Figure 5.4: The data movement of Stage 1

As noted before, as a result of this data movement, the queries originally 

stored in column k of R  have been replicated in the diagonal processors of the sub­

meshes in every slice. From now on, all slices are processed in parallel. Specifically, 

the queries stored by the diagonal processors of R ij are replicated, using the row 

buses in slice S,, into the ((k — 1 )^ /^ +  l)-th  column of every R ij within the slice.
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Next, the queries stored by the diagonal processors in R, ,2 are replicated, using the 

row buses in slice S,-, into the ((k — 1 ) y j ^  + 2^-th column of each R ij. This process 

continues for each submesh in the slice. Figure 5.4(d), illustrates such a replication.

The task of replicating the y / n  queries originally stored in one column of R  

takes 0 (y /^ )  time. Therefore, as long as m > y/n, the queries initially stored in the 

leftmost ^  columns of R  can be replicated in time 0 (y ^ * -^ = )= 0 (-^ = )=  0(y/m ). 

In case m < y/n the queries are replicated in a way similar to the one described. The 

complexity of the data movement is, again, 0(-/m ). With this, the goal of Stage 1 

has been achieved: the queries have been replicated into each of the submeshes R ij, 

and the following result is obtained.

L em m a 5.6. The set Q of queries initially stored in the first columns of R  can 

be replicated, one query per processor, in each submesh R ij  in 0(y/m ) time. □

The same techniques used in Stage 2 and Stage 3 of the BSR algorithm for the 

ACM are employed to solve the problem here (Section 3.1, Chapter 3). Therefore, 

to avoid repetition and maintain clarity, the main results and a brief sketch of the 

processing are presented with all the proofs omitted.

S tage 2.

At the end of the Stage 1, having replicated the set Q of queries in each 

submesh, R ij, the original instance of the BSR problem is partitioned into several 

instances, each local to an R ij. Each local instance involves the subset of A  stored 

by the processors in R ,j and the entire set Q of queries.

The main goal of this stage is to solve the local instance of BSR in each 

submesh R ij. To avoid broadcasting conflicts in Stage 2, the bus system is ignored 

so that every submesh R ij will act as an unenhanced mesh. Begin by sorting the 

items and queries in each Rij in row-major order using an optimal sorting algorithm
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for meshes [47, 59]. In the sorting process ties are broken in favor of queries. In 

other words, if a query and an item are equal, then in the sorted version the query 

precedes the item.

Let =  ci, C2 , . .  -, C2m-i j  C2m be the resulting sorted sequence stored, two 

items per processor in the submesh Rij. The following two results will justify the 

approach to solving the local instances of the BSR problem.

Lem m a 5.7. Let qk be a query of rank type and assume that Cj =  qk, in other 

words, qk occurs in position t in the sorted sequence C,-j. The number of items in 

R ij strictly smaller than qk equals the number of items preceding qk in C ,j. □

For solving all rank type queries in R ij, Lemma 5.7 motivates the strategy 

of assigning weights wt for each Ct as dictated by equation 3.1. Next, compute the 

prefix sums of the sequence Ci, C2, . . . ,  C2m_i, C2m using the weights assigned in (3.1) 

and let et ,e2 , . . . , e 2m -i,e2m be the result. By virtue of Lemma 5.7, the value et 

corresponding to Ct = qk is exactly the number of items in R ij  strictly smaller than 

qk- Therefore, all the rank queries can be solved in the time of sorting and of prefix 

sums computation which is O{y/m) [59, 60].

The task of handling search queries requires a different approach. This again 

involves assigning weights to the sorted sequence Q j  =  Ci, C2 , . . . ,  C2m_i, C2m. Refer­

ring to Figure 3.4,

Lem m a 5.8. For all the search queries in some sequence sp the solution is either 

ca—i or D

Lemma 5.8, along with weight allocation strategy described by equations 3.2 

and 3.3 lead to the following result.

Lem m a 5.9. The task of solving the local instance of the BSR problem in each
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submesh R ij can be performed, in parallel, in 0 ( y / m )  time. □

S tage 3.

At the end of Stage 2, each processor of a generic submesh R ij stores, along 

with query qk, its local solution a (i,j,k ). In case qk is a search query <r(i,j,k) 

denotes the item in A  closest to <&; in case qk is a rank query a(i, j, k) denotes the 

number of items in A  that are strictly smaller than %. The goal of Stage 3 is to 

combine these local solutions into the solution of qk in the original instance of the 

BSR problem.

Figure 5.5: Illustrating the proof of Lemma 5.10.

In preparation for this, the first task of this stage is to arrange, in every 

submesh R ij, the ordered pairs (qk, cr(i,j, k)) in row-major order, sorted by subscript 

k. Recall that using an optimal sorting algorithm for meshes [59], this task can be 

performed in 0(y/m ) time. Note that, after sorting, the tuple (qk, o (i,j, k)) occupies 

the same relative position in each of the submeshes Rij.

From now on, the processing relies on the technical property of submeshes 

being critical with respect to queries. This is similar to the property of processors
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being critical with respect to queries discussed in Chapter 3. Referring to Figure 

5.5, a submesh R ij  is said to be critical with respect to a query qk if qk is larger 

than the entry a„ in the northwest comer of R ij  but not greater than the entry bv in 

the southeast comer of R ij. The following result is key in deriving a time-optimal 

algorithm for the BSR problem. Refer to Figure 5.5. □

Lem m a 5.10. If a submesh R ij is critical with respect to a query qk, then at most 

one of the submeshes R i - i j  and Rhj+ i may be critical with respect to qk . □

................w ------
:

j b. ® •

J ,  <gtSfv

: Rij+i ;

: <vet •
<Rk Saw

: R‘Ji
■ ______ :____

3 :

;

Figure 5.6: The concept of active copy of query qk, for an MMB

Consider a generic slice S*. For further reference, a copy of query qk in some 

submesh R^j is called active if one of the conditions (al)-(a4) below is satisfied. 

Refer to Figure 5.6 for an illustration.

(al) R ij is critical with respect to query qk.

(a2) Slice S i  contains no critical submesh with respect to query qk and, for some 

qk is larger than all items in R jj  but smaller than or equal to all
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items in R ij+ i -

(a3) Query qk is larger than all the items in slice S*; in this case the copy of g* in 

R. nr is active.
l 'V  m

(a4) Query qk is smaller than or equal to all the items in slice 5,; in this case the 

copy of qk in R ^  is active.

The leftmost submesh of a slice containing an active copy of a query qk will 

be referred to as leading with respect to qk- All the above information is computed 

in the following way. For determining what submeshes R ij  are critical with respect 

to a given query, the only information needed are the values in the northwest and 

southeast comers of the submesh. In 0 (y/m) time these values can be circulated 

within the submesh and every processor becomes aware of them. Next, every pro­

cessor in R ij needs to be informed about the values of the items in the northwest 

and southeast comers of the neighboring submeshes in its own slice. Again, this 

information can be obtained in 0(y/rn) time in the obvious way. With this infor­

mation available, critical submeshes and active copies of all queries can be found in 

constant time.

The strategy for combining the solutions of queries in every R ij into the 

global solution involves a considerable amount of data movement. To restrict the 

running time to Q(y/m) the buses will be used for the data movement. Lemma

5.10 motivates the assignment of buses to active copies of queries according to the 

following rules, illustrated in Figure 5.7.

(rl) The copy of qk that belongs to the leading submesh in slice S,- is assigned the 

horizontal bus in its own row.
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Figure 5.7: Assignment of buses

(r2) All the remaining active copies of g* in 5,- are assigned the vertical bus in their 

own column.

The following result shows that rules (rl) and (r2 ) lead to conflict-free broadcasting. 

Lem m a 5.11. If every active copy of qk broadcasts simultaneously on the assigned 

bus, no broadcast conflict will arise.

Proof. First, no broadcast conflicts can occur on horizontal buses. To see this, note 

that if the horizontal bus was assigned to a copy of qk, then either there exists only 

one active copy of qk in slice Si (in case the copy of qk in the leading submesh is 

active by rules (a2)-(a4)) and so no other copy of qk attempts to use the same bus, 

or else, the copy comes from a critical submesh. By rule (r2) all the other active 

copies in the same slice will use vertical buses and, again, no conflict can arise.

Next, to show that no conflicts can arise on vertical buses. Suppose the 

contrary and let i be the largest subscript for which a broadcast conflict occurs 

when the copy of qk in slice S,- broadcasts vertically on its assigned bus. Without 

loss of generality, assume that qk belongs to ftij+i- The conclusion of Lemma 5.10, 

along with the maximality of i imply that the copy of qk in submesh Ri-ij+ i is
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also using the same vertical bus. This implies that neither nor Rij+i are

leading submeshes (with respect to qk) in slice and Si, respectively. However, 

now R i-ij , R ij, and Rij+i must be critical with respect to qk, contradicting Lemma

5.10 □

It is important to note that the total number of active copies of any query qk 

is at most 2 ^ l .  This follows immediately from Lemma 5.11, since the assignment 

of buses to active copies of qk leads to no two copies using the same bus. Since at 

most copies of qk are assigned horizontal buses and at most y j ^  copies of qk 

are assigned vertical buses, the conclusion follows.

The active copies of query qk carry enough information to yield the correct 

overall solution of qk. This is due to the following result.

Lem m a 5.12. Let qk be a search query and let a be an item in A closest to qk- 

There exists an active copy of qk in some submesh R ij such that either a =  cr{i, j , k) 

or a =  a ( i,j  — 1, k) or a = a ( i,j  +  1, k). □

Lemma 5.12 suggests an obvious way of updating the solutions of active 

copies of a search query qk for which the details follow.

• If the active copy of qk belongs to a critical submesh R ij  and R ij - 1  is not 

critical, then the copy of qk in R ij  updates its solution a(i, j ,  k) by combining 

it with cr(i, j  — 1 , k).

• If the active copy of qk belongs to a critical submesh R ij  and Rij+i is not 

critical, then the copy of qk in R ij  updates its solution a (i,j, k) by combining 

it with a{i, j  +  1 , fc).

• If the copy of qk is active because of rule (a2), then it updates its solution 

a (i,j,k )  by combining it with a ( i , j  + 1 ,k).
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Lem m a 5.13. Let g* be a rank query. The active copies of qk in a generic slice 

Si carry enough information to compute the number of items in Si strictly smaller 

than qkm

Proof. First, if all copies of qk in slice 5, are active then the sum of their local 

solutions cr(i, j, k) is exactly the number of items in 5,- strictly smaller than qk-

Assume, therefore, that not all copies of qk in slice S',- are active. Consider 

the active copy of qk in the leading submesh of 5,- with respect to g*.

• If this copy is active by rule (a4) then its solution <j(i,j,h) must be 0, which 

is the correct number of items in S,- strictly smaller than g*.

• If this copy is active by rule (a3) then its solution cr(i,j, k) is updated to read 

myfn, which is the correct number of items in S,- strictly smaller than qk.

• If this copy is active by rule (al) or (a2) then its solution cr(i,j,k) is updated 

to read cr(i, j , k) -f (j — l)m , which is the correct number of items in S,- strictly 

smaller than g* in all submeshes Riti, Rit2 , . . . ,  Rij-

It is important to note that the solutions of the other active copies of g* are not 

changed by the updates. Thus, after the required updates, the collection of active 

copies of qk in slice 5t- carry enough information to correctly compute the number 

of items in Si smaller that qk- The conclusion follows. □

The next task of Stage 3 is to move all the active copies of queries to diagonal 

submeshes R,t,, 1 < i < as illustrated in Figure 5.8. This task can be performed 

in two broadcast rounds as follows. The first round proceeds row by row in each 

submesh ftjj. Specifically, all active copies of the queries in the first row of the Rij's 

that have been assigned vertical buses broadcast their local solution on this bus to 

the corresponding processor in the diagonal submesh R jj. Following this, all the
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Figure 5.8: Target of the data movement in Stage 3, for an MMB

queries in the second row will broadcast vertically. This continues for each row of 

the submesh. By Lemma 5.11 no broadcast conflicts will arise. Since every R ij has 

y / f n  rows, this first round takes O ( y / m )  time.

The second broadcast round involves broadcasting along horizontal buses. 

This time, the columns of every R jj are handled one by one. Since there are y/m 

columns in each submesh, the second round takes 0 ( y / m )  time. As illustrated in 

Figure 5.9, it is possible for two active copies of the same query <7* to be sent to the 

same location of a diagonal submesh R jj, one copy via a horizontal bus and one via 

a vertical bus. By Lemma 5.11, the number of such copies is restricted to at most 

two. Furthermore, one of them will arrive in one broadcast round (on vertical buses) 

while the second will arrive on horizontal buses. The processor receiving them will 

proceed to combine the respective solutions. In summary, the following result is 

stated.

Lem ma 5.14. The solutions of all active copies of queries in Q can be broadcast 

to the diagonal submeshes R ij one per processor in 0 (y/m) time. □

To complete the algorithm, the various copies of queries in Q moved to the 

diagonal submeshes will be collected and combined. The idea is to move all the 

active copies of the same query from the diagonal submeshes Rij to one or several
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Figure 5.9: Combining solutions, for an MMB

adjacent rows of the original mesh. Specifically, in case

y/n <  m  (5.1)

all the copies of the first -̂ = queries, qi, qz,---, q-j. will be moved to the first row of 

the mesh, the copies of the second group of queries, namely, tfjfu+i, 9 -^+2 > • • • 7 

will be moved to the second row of the mesh, and so on.

On the other hand, in case

m < y/n (5.2)

the copies of qx will be moved to the first ^  rows of the mesh, y/m  per row. The

data movement for both cases is similar and will be discussed next. In preparation

for this data movement the following terminology needs to be introduced.

Consider a generic copy of query qk- The quantities associated with % are 

r ( qk)  and c(<fc) referred to as the r-value and c-value of qk. Here, r ( q k ) is the identity 

of the row of the mesh to which this copy will have to navigate; c(g*) is the relative 

position of this query among the copies moved to row r (qk ) .  The processor storing 

qk can compute r ( q k) and c(q*) in 0(1) time.

At the beginning of Stage 3, in every submesh R ij the queries were sorted
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in row-major order. Thus, their solutions will be stored in the diagonal submeshes 

Rij in the same relative order.

Further, using vertical buses, the copies of the queries in the first row of 

every submesh P,it are moved to the row of the mesh corresponding to their r- 

value. Specifically, a generic copy of query qk stored by a processor P [i,j)  will be 

broadcast vertically to processor P(r(qk),j). It is crucial to note that the queries 

are also sorted in row-major order by their r-values and so no broadcasting conflicts 

can arise. Proceeding sequentially, all the y/m  rows of the R i/s  are processed as 

described. Thus, in 0(v/m) time all the copies will be broadcast to the row of the 

mesh corresponding to their r-value. No processor will receive more than one copy 

of any query in the above data movement.

From now on, the processing that takes place in each row of the mesh depends 

on whether (5.1) or (5.2) holds. First, assume that (5.1) is true. The processing 

that takes place in the first row of the mesh will be detailed, the same action being 

performed, in parallel in all other rows. The copies of will be broadcast to 

processor P ( l, 1) in the order of their c-values. Upon receiving the next copy of qi, 

P( 1,1) combines the corresponding solutions. Since there are (at most) yj~^ copies 

of qu the solution of query qi will be obtained in 0 (y /^ )  time. The copies of the 

remaining queries <72, • • • > moved to row 1 will be processed similarly. Therefore, 

the overall time needed to solve all the queries in case (5.1) holds is bounded by

In case (5.2) holds, recall that the copies of a given query have been spread 

over ^  rows of the mesh. Again, the processing of query qi will be discussed, 

all the others being handled, in parallel, in a similar way. The ^  copies of qi 

have been moved to rows 1 , 2 , . . . , - ^ ,  • y / m  copies to each row. Now proceeding
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sequentially, in order of their c-values, the y/m  copies of qi in each of the first 

rows will be broadcast to the leftmost processor in these rows. These processors will 

be responsible for combining the solutions as described above.

By Lemmas 5.12 and 5.13, at the end of y/m  broadcasts, all the information 

needed to solve the queries is stored by the processors in the first column of the 

mesh. Specifically, processors P (l, 1), P ( 2 , 1), . .  .P ( -^ , 1) contain partial solutions 

corresponding to query qi, the next group of &  processors contain partial solutions 

corresponding to query q2, and so on. Refer to Figure 5.10 for an illustration.

H

fn

Figure 5.10: Partial solutions contained by processors in first column

Finally, consider diagonal submeshes A> A>, - An of size x as il­

lustrated in Figure 5.11. For the final step of Stage 3 the diagonal submesh A  is 

dedicated to solving the query qi.

In one broadcast, the partial results stored by processors in the first column of 

the mesh are moved, along horizontal buses to the first column of each A , as depicted 

in Figure 5.10. Now combining the partial solutions of query g,, (1 < i < m), 

amounts to a semigroup computation, local to A . Using the result of Olariu et al. 

[61] this computation can be performed in O ( lo g ^ )  time. Once the final solution 

of each query has been computed, it is moved back to the first column of the mesh.
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Figure 5.11: Submeshes D\ , D2 , . . . ,  Dm

Consequently, in case (5.2) holds the overall running time of the algorithm 

is bounded by O{y/m 4- log-^). Since for m  > 16

y / m  —  l o g m  >  0 ,

the running time of the algorithm, in case (5.2) holds, satisfies O (s/m  -I- log-^)C  

0 (yfrri-t- logn). In summary, the following result is stated.

T heorem  5.15. An arbitrary instance of the BSR problem involving a sorted 

matrix of size y/n x y/n and a set of m  queries, can be solved in 0(max{logn, y/m}) 

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is 

time-optimal on this architecture. □
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CHAPTER 6 

IMPLEMENTATION AND CONCLUSIONS

6.1 Implementation Results

To demonstrate the practical applicability of the computational paradigm, two in­

stances of the MQ problem were implemented. These instances represent the fol­

lowing problems:

• the multiple point location problem, and

• the multiple rank problem.

These problems were selected because they are fundamental having a wide variety 

of applications. The code was written in the C programming language, using the 

Message Passing Interface (MPI). The code can be ported to any existing platform 

which supports MPI. In particular, experiments were run on the IBM SP2 and a 

network of workstations. IBM SP2 is multiprocessor system built using powerful 

RS/6000 processors. The communication medium is a multi-stage omega network.

In this implementation, the timings for the three stages of the algorithm were 

documented. Specifically, the three stages are referred to follows: Stage 1 is termed 

the broadcast phase, Stage 2 is termed the compute phase, and Stage 3 is termed the
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reduce phase. The remainder of this section presents the details of the timings and 

the supporting arguments for their trends.

6.1.1 Multiple Rank Problem

Recall the multiple rank problem, given a set A of items and a set Q of queries from 

a totally ordered universe, for each q in Q determine the number of items in A  with 

smaller values. The three stages have the following following theoretical timings, 

with m  < M:

•  Broadcast phase: TB(m,p),

• Compute phase: 0((m  +  ~) log^), and

• Reduce phase: TB(m,p).

As p increases, the running time of compute phase should drop and there should be 

an increase in the running times for broadcast and reduce phases. The increase for 

the TB{m,p) should be relatively lesser than that of TR(m,p). This is because of 

the fact that, the total number of elements involved in Stage 3 (reduce phase) is mp. 

This implies that both the communication as well as the computation will increase 

for the reduce phase.

This problem was run using up to 32 processors with randomly generated 

values for items and queries. Figure 6.1 indicates the running times for n  =  

8000000, m  =  1000000. From this figure it is clear that the general trends for 

compute phase and the reduce phase are decrease and increase in the times, respec­

tively which is expected. Experiments were performed with other input values, with 

similar results. The best case speedup obtained was 26 with thirty two processors 

(here n = 7500000, m =  100000) as illustrated in Figure 6.2.
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Figure 6.2: The best case running times for multiple rank problem

6.1.2 Multiple Point Location Problem

Recall the multiple point location problem, given sets .4 and Q of points in the 

plane, determine for each query q whether it lies within the CH(.4). If not, return 

the tangents from q to CH(.<4). In the implementation of this problem, for the local 

convex hull computations Graham scan [67] was used. The three stages have the 

following theoretical timings:

• Broadcast phase: Ts(m ,p),

• Compute phase: 0 (^ lo g ^  +  mlog/i),

• Reduce phase: TR(m,p).

In the compute phase h denotes the number of points on the local convex hull. This 

motivates for four kinds of inputs to the problem:
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1. random input for items and queries,

2. random input for items and all queries outside the CH(A),

3. all the items on a circle and all queries inside the CH(A), and

4. all the items on a circle and all queries outside the CH(A).

In this implementation the variations in the running times for these four kinds of 

inputs was not very significant. Although, there is a noticeable difference between 

cases 1 and 4. The best speed up obtained was 16.79 with 32 processors. This was 

obtained for n  =  4000000, m  =  600000, and the nature of input was case 1, refer to 

Figure 6.3. Again, experiments were performed for different input sizes with similar 

results.

Figure 6.3 represents case 1, that is, items and queries were generated ran­

domly. Similarly, Figures 6.4, 6.5, and 6.6 represent cases 2, 3, and 4, respectively. 

Figure 6.7, indicates the running times on a network of workstations. The results 

are for case 4, here the computation time decreases and the reduce time increases.

Even for the multiple point location problem, the graphs show expected 

trends. Except for the reduce phase, where for the first 5 processors the running 

time drops instead of increasing. It would be interesting to see how the compute 

phase performs if the graham scan, whose running time is nlogn, is replaced with 

the Jarvis’ march algorithm whose running time is nh, where h denotes the number 

of points on the hull and n being the input size, refer to [67] for a detailed discussion 

of these algorithms.
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6.2 Conclusions and Future work

The main contribution of this dissertation is the computational paradigm presented 

in the form a unifying algorithmic framework (the MQ problem) and a generic solu­

tion of the MQ problem. The power of the paradigm was demonstrated by identify­

ing and providing solutions for fundamental problems in diverse areas of computer 

science. This was accomplished by providing a generic solution for the MQ prob­

lem, proving that each of these problems are special instances of the MQ problem, 

and solving these problems individually. In particular, the following problems were 

solved.

• Rank Related

-  Multiple Rank

-  Histogram

• Proximity Related

-  Multiple Point Location

-  Convex Hull Inclusion

-  Separability

-  Multiple Closest Point

• Segment Related

-  Multiple Closest Segment

-  Multiple Rectangle

-  Multiple Circle

• Stabbing Related

-  Multiple Stabbing
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— Point Location in Simple Polygon

A major contribution is the presentation of time-optimal solutions for some 

of these problems on an MMB. Another major contribution of this dissertation is 

the Batched Searching and Ranking in sorted matrices. The BSR problem was also 

demonstrated to be an instance of the MQ problem. Here the main difference is 

the structure that sorted matrices offer. It was demonstrated that time-optimal 

solutions can be obtained by coupling the paradigm with sorted matrices on an 

MMB.

In this work, two fundamental problems namely, the multiple point loca­

tion, and the multiple rank, were implemented on an IBM SP2 and a network of 

workstations. The results obtained indicate the expected trends.

Future work involves, trying to extend the function / ,  of the MQ problem, 

to encompass a wider variety of problems. Also an implementation of some more 

problem is in order, with the results tested on more platforms like the Intel Paragon.
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