
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Fall 1996

A Computational Paradigm on Network-Based
Models of Computation
Venkatavasu Bokka
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Programming Languages and Compilers Commons, and the Theory and Algorithms
Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Bokka, Venkatavasu. "A Computational Paradigm on Network-Based Models of Computation" (1996). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/ktzv-ak04
https://digitalcommons.odu.edu/computerscience_etds/71

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/71?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A COMPUTATIONAL PARADIGM ON

NETWORK-BASED MODELS OF COMPUTATION

by

Venkatavasu Bokka
Indian Institute of Technology, Delhi, India

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements of the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
November 1996

Stephan Olariu (Advisor)

unesJ^gchaang. (Advisor)

__
^Larry(3^ilson

Alex Pothen

Przemysletw Bogacki

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A COMPUTATIONAL PARADIGM ON NETWORK-BASED

MODELS OF COMPUTATION

Venkatavasu Bokka
Old Dominion University, 1996

Advisors: Drs. Stephan Olariu and James L. Schwing

The maturation of computer science has strengthened the need to consolidate

isolated algorithms and techniques into general computational paradigms. The main

goal of this dissertation is to provide a unifying framework which captures the essence

of a number of problems in seemingly unrelated contexts in database design, pattern

recognition, image processing, VLSI design, computer vision, and robot navigation.

The main contribution of this work is to provide a computational paradigm which

involves the unifying framework, referred to as the Multiple Query problem, along

with a generic solution to the Multiple Query problem.

To demonstrate the applicability of the paradigm, a number of problems from

different areas of computer science are solved by formulating them in this framework.

Also, to show practical relevance, two fundamental problems were implemented in

the C language using MPI. The code can be ported onto many commercially available

parallel computers; in particular, the code was tested on an IBM-SP2 and on a

network of workstations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright

by

Venkatavasu Bokka

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my Parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

This work could not be completed without the help of many individuals, to whom

I would like to express my appreciation. First and foremost, I would like to thank

my advisors, Drs. Stephan Olariu and James Schwing, who have put a great deal

of time and effort into the guidance of this work. I would like to thank Dr. Schwing

and Dr. Pothen for their help in conducting the experiments on IBM-SP2 at NASA

Langley.

Next, I would like to convey my sincere thanks to the other members of my

dissertation committee, Drs. Larry Wilson, Alex Pothen and Przemyslaw Bogacki.

Their expertise, thorough reviewing and valuable suggestions have also led to a

greatly improved dissertation.

I wish to extend my appreciation to the faculty of the department, and my

fellow students for providing a stimulating research environment.

I would like to thank my brother Vijay Kumar and my friends Ramani G.

N., Ranjita M., and Rao S. V., for their constant encouragement. I am grateful

to my family for their support. I would like to especially mention Sri. P. Janaki

Ramulu, my high school tutor, to whom I owe my academic achievements. Finally,

special thanks to my sister, Usha.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Overview.. 1

1.2 State of the A r t .. 7

1.3 Models of Com putation... 9

2 THE COMPUTATIONAL PARADIGM ON THE ACM 15

2.1 A Generic Multiple Query A lgorithm .. 16

2.2 Rank-Related C om putations.. 23

2.2.1 The Multiple Rank P rob lem ..23

2.2.2 Histogram C om puta tion .. 25

2.3 The Multiple Point Location Problem ..27

2.4 Proximity-Related C om puta tions..35

2.4.1 The Multiple Closest Segment Problem35

2.4.2 The Multiple Circle Problem ... 37

2.4.3 The Multiple Range P ro b le m .. 39

2.4.4 The Multiple Closest Point Problem ..41

2.5 Stabbing-Related Problems ... 43

3 THE SORTED MATRIX ALGORITHM ON THE ACM 48

3.1 BSR Algorithm on the A C M ... 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 THE COMPUTATIONAL PARADIGM ON THE MMB 66

4.1 Lower B ounds... 67

4.1.1 The Gather P ro b le m ... 67

4.1.2 Lower bounds for instances of the MQ p ro b le m68

4.2 A Generic Multiple Query Algorithm on M M B..................................... 76

4.3 Rank-Related Com putations.. 81

4.3.1 The Multiple Rank P rob lem ... 81

4.3.2 Histogram C om puta tion ..85

4.4 The Multiple Point Location Problem .. 86

4.5 Proximity-Related C om puta tions.. 89

4.5.1 The Multiple Closest Segment P rob lem 90

4.5.2 The Multiple Range P r o b le m .. 90

4.5.3 The Multiple Circles P ro b le m ..91

4.5.4 The Multiple Closest Point Problem 91

4.6 Stabbing-Related Problems .. 92

5 THE SORTED MATRIX ALGORITHM ON THE MMB 96

5.1 Lower B o u n d .. 99

5.2 A Time-Optimal BSR Algorithm .. 102

6 IMPLEMENTATION AND CONCLUSIONS 118

6.1 Implementation Results ..118

6.1.1 Multiple Rank Problem ... 119

6.1.2 Multiple Point Location P ro b le m ... 121

6.2 Conclusions and Future work .. 128

BIBLIOGRAPHY 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

FIGURE PAGE

1.1 A mesh with multiple broadcasting of size 4 x 4 13

2.1 The setting for Stage 1 of the generic a lgorithm 17

2.2 The Stage 1 of the generic a lg o rith m .. 18

2.3 The Stage 2 of the generic a lg o rith m .. 19

2.4 The Stage 2 of the generic a lg o rith m ..21

2.5 The Stage 3 of the generic a lg o rith m ..22

2.6 Query q can lie outside CH(subsets of A) but lies within the Cff(A) . 29

2.7 A wedge centered at q ..30

2.8 Illustrating the proof of Lemma 2 . 5 ...30

2.9 The operation 0 ... 31

2.10 The CLOSEST-SEGMENT problem ... 36

2.11 The MULTI-CIRCLE problem ...38

2.12 The reduction of MULTI-CIRCLE to CLOSEST-SEGMENT 39

2.13 The MULTI-RANGE problem .. 40

2.14 An instance of the MULTI-STABBING prob lem44

2.15 An instance of the POLY-LOCATION problem ... 46

3.1 Sorted and fully sorted m atrices ...49

3.2 The matrix view of the ACM(n,p, M) ..51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 The partition of matrix A ..52

3.4 The sorted sequence C i j ... 54

3.5 Illustrating the proof of Lemma 3.4... 56

3.6 The concept of active copy of query qk ...58

3.7 The active copies of query q k .. 59

3.8 Target of the gather operations in Stage 3 ...64

4.1 Adversary instance of the gather problem .. 67

4.2 Construction for multiple rank problem ... 69

4.3 Construction for multiple point location problem71

4.4 Reduction for multiple point location problem ..72

4.5 Reduction for multiple closest segment problem ...73

4.6 Mapping for multiple stabbing p ro b le m ... 75

4.7 Partition into submeshes R ij ...77

4.8 Data movement o f Case 2 ...80

4.9 Processing of pure and impure query-rows... 84

4.10 Stage 2 of MULTI-LOCATION..87

5.1 Lower bound for solving a single q u e r y ... 100

5.2 Input to the BSR p ro b le m ... 102

5.3 Partition into submeshes R ij ... 103

5.4 The data movement of Stage 1 ... 104

5.5 Illustrating the proof of Lemma 5.10...107

5.6 The concept of active copy of query qk, for an M M B108

5.7 Assignment of b u s e s ..110

5.8 Target of the data movement in Stage 3, for an M M B 113

5.9 Combining solutions, for an M M B ...114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.10 Partial solutions contained by processors in first column 116

5.11 Submeshes D\, D<i, . . . , Dm ... 117

6.1 Running times for multiple rank problem .. 120

6.2 The best case running times for multiple rank problem 121

6.3 Multiple point location problem: case 1 ..123

6.4 Multiple point location problem: case 2 ..124

6.5 Multiple point location problem: case 3 ..125

6.6 Multiple point location problem: case 4 ..126

6.7 Running times for a network of workstations.. 127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The maturation of computer science as a discipline has strengthened the need to con­

solidate isolated algorithms and techniques into general computational paradigms.

The benefits of such an effort include the following:

• problems previously treated in isolation from one another can be shown to

belong to the same class,

• once established, the paradigm will become a powerful tool, and

• effort involved in the implementation is reduced, owing to the uniformity of­

fered by the paradigm.

By way of illustration, in a number of seemingly unrelated contexts in database

design, pattern recognition, image processing, VLSI design, computer vision, and

robot navigation, one is given collections A and Q of objects and a goal which

is either to identify a collective property of the objects in A U Q, or to find for

each object in Q a subset of A satisfying a given predicate. To further specify

the illustration, consider the following examples. In virtual reality and computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

graphics, in the presence of a scene populated with a collection A of objects, a

crucial problem is to identify the visibility horizon for a set Q of observers [35]. A

somewhat different problem is of interest in path planning and collision avoidance

problems in robotics [50] where navigational courses for a set Q of mobile robots is

sought in the presence of a set A of obstacles. In pattern recognition, the well-known

classification process involves comparing an unknown pattern Q against a template

A and deciding whether the similarity measure is larger than a certain application-

dependent threshold. In facility-location problems one is typically interested in an

optimal placement of a set Q of facilities (schools, hospitals, etc.), amongst a set A

of existing sites, in such a way that some constraints are satisfied [1, 75]. A similar

problem arises in integrated circuit design in VLSI, where one is interested in the

addition of a set Q of modules meant to enhance the functionality of the board

A. In this latter context, it is customary to formulate the problem as a visibility

problem involving collections A and Q of iso-oriented, non-overlapping, rectangles

in the plane subject to a series of location constraints [66]. There are also some

fundamental problems in computational geometry [1] which can be cast in the form

of a object A and a set of queries Q, the answer is a combination of the solutions of

all queries; such as, A and Q are convex polygons, determine if A and Q intersect.

All the problems mentioned informally above are traditionally solved using

ad-hoc techniques developed by researchers within their respective fields. This dis­

sertation combines all of these problems under a single umbrella, by providing a

unified framework, of which the aforementioned problems will be instances. This

will make it possible to provide uniform solutions to all these problems. As a first

step, this work addresses the problems in the context of solving them in an abstract

computational model. Next this work looks at the performance of the general solu­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

tion on different computational models from both a theoretical and practical point

of view. The unifying framework comes in the form of a generic problem referred to

as the Multiple Query problem (MQ, for short). The main contribution of this work

is to provide a computational paradigm which involves the MQ problem and a solu­

tion for the problem on abstract computational model. The power of the paradigm

is demonstrated by obtaining time-optimal solutions to some problems on the mesh

with multiple broadcasting.

To show the relevance of the paradigm a brief overview of the some of the

practical problems solved by the paradigm is presented in subsequent paragraphs.

In robotics, objects are represented by convex hulls and operations on convex hulls

are fundamental tools for various algorithms. The convex hull of a set, S of points

in the plane, is the smallest convex set containing S. The convex hull is not only

central to practical applications in robotics, but is a very useful tool for the solution

of a number of questions arising in other areas of computer science, namely pattern

recognition [3, 29], image processing [70, 71], and stock cutting and allocation [33,

34, 76]. In many applications, the problem of point location relative to a convex

hull occurs quite frequently. Given a convex hull and a set of points in the plane

determine for every point if it lies within the convex hull or not. The problem can be

generalized, by asking the same question with respect to a simple polygon. Another

application in robotics is, given a set of convex objects (obstacles) and set of points

(different positions from which the robot views the obstacles), determine for each

of the point, the range (two lines passing through the point) within which all the

obstacles are located. Once determined this range enables the robot to stay clear of

the obstacles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

Visibility is a fundamental problem in many areas of computer science. Given

a set of line segments and a set of points in the plane, the visibility problem asks

to determine, for each point, the segments which closest to this point in the vertical

direction. Recently, Bhagavathi et al. [11], and Gurla [39], have shown that visibility

has many applications including triangulation. This problem has been extensively

studied in various contexts and a variety of solutions exist in the literature. It

can be shown that visibility problem is an an instance of the general framework.

Some search related problems also fall into this category. For example, given a

set of points and a set of non-intersecting objects in the plane, for each object

determine the number of points it contains. This problem is a direct application of

the following scenario: identify all the branches of a corporation located within a

gives set of regions. This dissertation will also demonstrate that some problems in

computational geometry such as the line stabbing [31] problem are instances of the

MQ problem.

The MQ problem is sufficiently general to encompass a number of problems,

and generally does not require the set of items A to have any structure. Frequently,

a structured input leads to a faster algorithm, and some domains naturally offer

structured inputs. In this dissertation, an example of one such problem domain will

be seen, namely the sorted matrices. A matrix of elements is said to be sorted if

both its rows and columns are independently sorted. A fully sorted matrix, sorted in

either row major order or column major order, is a special case of the sorted matrix.

Sorted matrices provide a natural generalization of a number of real-life

situations. Consider vectors AT = (x i , X 2 , . . . , x n) and Y = (y\, y 2 , • • • ,Un) with

x, < Xj and ?/,• < yj, whenever i < j . The Cartesian sum of X and Y, denoted

X -I- Y is the n x n matrix whose i j th entry is x, 4- yj. The A' + Y matrix is sorted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Searching, ranking and selection in sorted matrices are are used in the development

of fast algorithms in VLSI design, optimization, statistics, database design, and

facility location problems and have received considerable attention in the literature

[25, 26, 32, 37, 40, 58, 78].

Much of the theoretical work done in parallel algorithms, has focussed on the

design and analysis of algorithms for the Parallel Random Access Machine (PRAM).

The simple characteristics of PRAM make it suitable for developing theoretical re­

sults for evaluating the complexity of parallel algorithms. However, only a small

number of real architectures (some bus-based multiprocessors like Encore and Se­

quent) can be considered conceptually similar in design with the PRAM model.

Although any real machine can simulate the PRAM model, it is nevertheless

true that algorithms designed for network-based models will better match the ar­

chitectures of existing parallel machines like Intel Paragon, Intel iPSC/860, CM-5,

MasPar MP-1, IBM SP2, where processors with local memories are interconnected

through a high-speed network supporting message-based communication.

The mesh-connected computer has emerged as one of the most widely in­

vestigated parallel models of computation. Mesh connected computers provide a

natural platform for solving a large number of problems in computer graphics, im­

age processing, robotics, and VLSI design. In addition, due to its simple and regular

interconnection topology, the mesh is well suited for VLSI implementation [10]. The

main problem with the mesh connected computer is its communication diameter,

that is, if the data moved across the mesh takes 0 (v/n) time, for a mesh of size

y/n x y/n. Frequently, the lower bounds and the running times of algorithms are

dictated by the communication diameter of the mesh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

To overcome this problem, the mesh architecture has been enhanced by var­

ious types of bus systems [17, 43, 48, 52, 72, 80]. Early solutions, involving the

addition of one or more global buses, shared by all the processors, have been imple­

mented on a number of massively parallel machines [17]. Recently, a more powerful

architecture, referred to as mesh with multiple broadcasting, has been obtained by

adding one bus to every row and to every column of the mesh [43, 65]. The mesh

with multiple broadcasting has proven to be feasible to implement in VLSI, and

is used in the DAP family of computers [65]. Note that even here the problem of

communication diameter comes to play for any class of problems which involves

significant data movement. For example, if the problem requires rearrangement of

its data, it generally takes y/n time to do this task. But if the problem lends itself

to “sparsification” (where the input size can be reduced by some processing) then

better algorithms can be obtained.

Another computational model of theoretical interest as well as being com­

mercially available is the mesh with multiple broadcasting. In recent years, efficient

algorithms for solving a number of computational problems on meshes with multiple

broadcasting have been proposed in the literature. These include image processing

[44, 65], computational geometry [13, 14,16, 43, 61, 63, 64], semigroup computations

[8,15,19, 43], sorting [11], multiple-searching [13], and selection [12, 19, 43], among

others.

With the advances in technology, diverse parallel computational models such

as those described above continue to emerge. Each time a new model is introduced,

considerable time and resources are invested to develop all the algorithms again

from scratch. This difficulty can be tackled by designing algorithms for a general

model, which in turn will enable them to be ported to many platforms. The abstract

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

computational model (ACM, for short) is one such model. An ACM is a multipro­

cessor system which consists of a set of primitive communication operations like

broadcasting, and scatter where each operation has a cost associated to it. The cost

is architecture-dependent, and reflects the amount of time taken by that operation

relative to other operations on that architecture. This model was introduced in

[39]. The remainder of the dissertation is organized as follows: the rest of Chapter

1 describes the state of the art and formalizes the various models of computation

considered here, Chapter 2 contains algorithms for the MQ problem and its appli­

cations on the ACM model of computation, Chapter 3 adapts the algorithm for the

Batched Searching and Ranking (BSR) problem on the ACM, Chapter 4 describes

algorithms for the MQ problem and its applications on the MMB and details the

lower bounds achieved there, Chapter 5 describes a time-optimal algorithm for the

BSR problem on the MMB, and finally, Chapter 6 contains the conclusions along

with the implementation results and pointers for future work.

1.2 State of the Art

The idea of a general framework for the problems mentioned in the previous section

has not been seen before; however, many of the problems have been addressed pre­

viously on diverse computational models. This section presents the current running

times for these solutions as found in the literature. These problems fall into three

broad categories multiple search problems, visibility related problems, and proximity

problems.

The multiple search problem can be stated as follows: given a sorted se­

quence, A , of items and a set of queries Q, for each query, q £ Q, determine

the position of the largest element of A less than or equal to q, let |Q| = m and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

|A|=n. A lot of work has been done on the multiple search problem, which focussed

mainly on solving it, and sometimes using that solution to solve some applica­

tions. Akl and Meijer [2] first presented a parallel solution to this problem where

they solved the problem on a m processor EREW PRAM with a running time of

0 (hS S n)- ^ fes*61- solution was presented by Wen [85], with a running time of

O(logm -flogn). Chao et al. [18] provide a solution to the multiple search problem

in on a three dimensional reconfigurable mesh. They solve the problem in 0(1) time

on a nj x ns x n* reconfigurable mesh. Finally, Bhagavathi et al. [13] provide a

solution to the multiple search problem on an enhanced mesh. Here the problem

is solved on a n i x n* MMB in 0(m ») time. Until now there has been no effort

to provide a unifying framework. It will be demonstrated that the multiple search

problem is a particular case of an instance of the general problem, the input A need

not be completely sorted.

Reif and Sen [68] present a randomized parallel algorithm for the point lo­

cation problem with n queries which takes O(logn) time with high probability on

a CRCW PRAM. Further work on this problem for the PRAM has been done in

[4, 38, 81]. This problem has been solved by Chazelle [21], on a linear array with k

query points in 0(A: -I- n), where n is the size of the input data. On a mesh, Jeong

and Lee [42] solve the problem in 0(n»). In [28], Dehne solved the separability

problem in 0 (n 2) time on a mesh of size n. Finally, Sarkar and Stojmenovic [77]

using a CREW PRAM of 72 processors solve the problem in 0 (log 72) time.

The visibility problem has been solved by Atallah et al. [5] in 0 (log 72 log log 72)

time using 0 (n) processors on a CREW PRAM. The result was later improved by

Atallah et al. [4] to O(logn) time using 0 (72) processors on a CREW PRAM. A

randomized algorithm was presented by Reif and Sen in [68]. Atallah and Tsay [6]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

give an algorithm to solve the visibility problem on a linear array of size N which

runs in 0 (n ^ j |) time, where N < n. On a hypercube the problem is solved in

0 (logn log logn) time by MacKenzie and Stout [57]. A randomized algorithm is

presented by Reif and Sen [69] which runs in O(logn) probabilistic time on an O(n)

processor butterfly.

Solutions to the proximity problems for the mesh and a linear array, with

O(n) processors, are described in [21, 55], which require 0 (712) and O(n) time, re­

spectively. In [79], Steiger and Streinu show that proximity problem can be solved in

0(log2n) time on a O(ti) processor hypercube. Using the algorithm, in [57] MacKen­

zie and Stout show the running time on a hypercube of size n is 0(logn(loglog7i)2).

In the PRAM, the proximity problems were solved in O(log 71) time by Cole and

Goodrich [22] on an n processor CREW PRAM; they also achieved the same run­

ning time on an EREW PRAM with an increase in the memory size by a factor of

O(logn). Histogram computation of a digital image is a classic image processing

problem which has been looked at by many researchers. In [62], Olariu et al. solve

the problem on a reconfigurable mesh of size n x n in O(loglogTi) time. In [44],

Prasanna and Reisis solve the problem on an MMB.

1.3 Models of Computation

In this section, a trace of the different parallel models of computation is presented,

followed by a brief discussion of the models employed in this dissertation. The early

models of computation included Perceptrons, proposed in the late 1950’s [73] and

Cellular Automata [23]. Then came the interconnection networks like the linear

arrays, meshes or two-dimensional arrays, several variations of meshes including

the meshes with broadcast buses referred to as meshes with multiple broadcasting,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

and the meshes with reconfigurable buses. Tree networks, mesh-of-trees, pyramid

networks, hypercube, cube-connected cycles, butterfly, AKS sorting network, star

and pancakes are among the other network based models of computation which

have been studied. Shared memory models of computation include PRAMs, scan

model, broadcasting with selective reduction. For a description of network based

and shared memory models refer to [1]. Recent models like Valiants BSP model [84]

and the LogP model [27] take into account the communication costs by introducing

network related parameters (e.g., latency) into the model. In this dissertation, the

following platforms are used, ACM, MMB, and IBM-SP2. A discussion of each of

these models follows.

In this dissertation, the model of computation has to encompass a wide range

of parallel models from fine grained to coarse grained models. Also the communi­

cation primitives need to be fairly high level. The Abstract Computational Model

[39] meets the requirements and can be characterized as follows.

An ACM (n,p,M) has p processors, each processor with memory of size

O(M), M > j* where n is the maximum input data size. All the processors are

assumed to be identical and are enumerated as P0, Pi, . . . , Pp~\. Each processor

Pi knows its identity i. The computational power of a processor is assumed to be

directly proportional to the size of the memory 0(A/). This assumption will facili­

tate the unification of coarse grain and fine grain multiprocessor systems. The local

operations performed by the processors vary from very simple to very complex de­

pending upon the number of processors. In the fine grain scenario where there may

be a large number of processors, each processor is capable of simple arithmetic and

communication operations. In the coarse grain scenario, there are a small number

of powerful processors. Communication is done via an interconnection network. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

more detailed discussion can be found in [39].

The high level communication primitives of an ACM(n,p, M) follow.

• Broadcast: A processor informs every other processor, of an ACM(n,p, M), of

some data, of size k. The time associated with a broadcast operation is TB(k,p).

• Multicast: A processor communicates a message (of size k) to a subset of processors

(of sizep') of an ACM(n,p, M). The time associated with such a multicast operation

is TM{k,p'). Note that, it is possible to have parallel multicast operations among

mutually exclusive processor subsets.

• Point-to-Point: A processor, Pt, communicates a message (of size k) to a processor,

Pj, of an ACM(n,p, M). The time associated with such a point-to-point operation

is Tp(k). Note that, it is possible to have parallel point-to-point operations among

mutually exclusive processor subsets.

• Reduce: Perform an operation (e.g., sum, product) on p elements to give a single

result where each processor contributes one element for the operation. This opera­

tion gives k results if each processor contributes k elements. In an ACM (n,p, M),

TR(k,p) represents the time for a reduction operation involving k elements per pro­

cessor. The reduction of k elements over p/ processors, is represented as Tp(k,j/).

• Gather: Collet data from selected set of processors. Specifically, if the operation

involves a total of k elements and p' processors on an ACM(n,p, M), Ta{k,pl) rep­

resents the time for the operation. When the operation is complete, the processor

issuing the gather operation will have collected k elements.

• All-to-All Gather: This operation is similar to the gather but all the processors will

receive some data. Specifically, if the operation involves k elements per processor

and p' processors on an ACM(n,p, M), let the processors involved in the operation

be enumerated as Pi, P2, . . . , Pp>. At the end of the operation Pi will receive first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

p elements from each processor. Similarly, P2 will receive second set of p elements

from each processor. It is the same for all the other processors. Let TAAG{k *l,pf)

represent the time for the operation. It has to be noted that this operation is usually

quite expensive.

• Scatter: This is the reverse operation of gather, that is, data is to be distributed

into various processors. Specifically, if the operation involves a total of k elements

and p' processors on an ACM(n,p,M), Ts{k,pf) represents the time for the opera­

tion.

An example of coarse grain machine is the IBM-SP2, it is built using pow­

erful RS/6000 processors, an RS/6000 processor powerful enough to be used in a

workstation. The communication medium of an IBM-SP2 is a switch (multi-stage

omega network).

Consider next, the models related to mesh based computers. Mesh connected

computers considered here provide insight for adapting the algorithms to fine grain

machines. The mesh connected computer of size M x N is a machine with M N

processors arranged in rectangular array. The processor P(i , j) , representing the

processor in row i and column j and is connected via bi-directional unit-time com­

munication links to its four neighbors, provided they exist. Each processor has a

fixed number of registers, of size 0(log M N) each and operates in SIMD mode: in

each time unit, the same instruction is executed by all the processors. Each pro­

cessor is assumed to know its own coordinates within the mesh. It is also assumed

that a processor can perform standard arithmetic and boolean operations on the

contents of its registers in 0(1) time.

Compared to other parallel architectures, meshes have the advantage that

several already exist [9, 10, 41] and that their simple near-neighbor wiring allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

them to be constructed more economically than say, hypercubes. Its regular in­

terconnection topology makes the mesh ideal for number of problems in geometry,

image processing and graphics [30, 51, 54, 55, 56, 80].

Figure 1 .1 : A mesh with multiple broadcasting of size 4 x 4

A mesh with multiple broadcasting, MMB, of size M x N consists of MN

identical processors positioned in a rectangular array overlaid with a bus system,

refer to Figure 1 .1 . In every row of the mesh the processors are connected to a hori­

zontal bus; similarly, in every column the processors are connected to a vertical bus.

To keep the model realistic, only one processor is allowed to broadcast on a given

bus at any one time. By contrast, all the processors on the bus can simultaneously

read the value being broadcast. In accord with other researchers [8 , 17, 43, 48, 65],

it is assumed that communications along buses take 0(1) time. Although inexact,

recent experiments with the DAP, the GCN, and the YUPPIE multiprocessor array

systems seem to indicate that this is a reasonable working hypothesis [48, 65]. An

MMB of size V N x \ /N can be viewed as an instance of the ACM(n,p ,M), here

n = p = N, and M = 1, with the communication medium being mesh connections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

along with row and column bus connections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

CHAPTER 2

THE COMPUTATIONAL PARADIGM ON THE

ACM

In Chapter 1 a brief introduction of the proposed paradigm was sketched. The first

main goal of this chapter is to present the paradigm in full detail on the Abstract

Computation Model. This involves a formal definition of the MQ problem and a

generic solution of the problem on the ACM(n,p, M) which acts as a framework for

other solutions. The second main goal of this chapter is to prove the power of the

paradigm by demonstrating that many problems can be formulated as instances of

the framework. Once the formulation is obtained the generic solution can then be

customized to obtain solutions for individual problems. The following sections will

then describe the process of formulation of the problems and the customization of

the generic solution.

The remainder of the chapter is organized as follows. Section 2 .1 offers a

generic algorithm for the MQ problem. The remaining sections discuss various in­

stances of the MQ problem. Specifically, Section 2.2 discusses rank-related problems;

Section 2.3 discusses the multiple point location problem and several of its variants

and applications; Section 2.4 addresses proximity-related problems; finally, Section

2.5 discusses the multiple stabbing problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

2.1 A Generic Multiple Query Algorithm

A generic instance of the MQ problem has the following parameters:

• an arbitrary set A = {at, 0 2 , • ■., a„} of items

• an arbitrary set Q = {qi, qi, . . . , qm} of queries

• a decision problem <t>: Q x A -* { “yes”, “no” }

• an associative and commutative function / operating on subsets of A

For every query qt (1 < i < to), let S, = (oj € A | = “yes”}. In this context,

the solution of g,- is /(£ ,) . It is noted that / generally acts more like an operator

than a function in the strict sense of the word. The function / is commutative in the

following way, f (S lUS2) = / (5 l)® /(5 2) = /(S '2)® /(5 1), where ® is determined by

/ and 0. Similarly, / is associative implies / (5 1U52U53) = (/(S ’l)<g>/(S2))<g>/(S3) =

/ (S ') ® (/(S 2) ® / (S 3)).

The set A is stored in some order, ^ items[2]* per processor, in an ACM(n,p, M).

The set Q is stored in the first ^ processors (Pq, P i , , P a — 1), M queries per pro­

cessor. Note that each processor can hold O(M) elements, so the first — processors

can hold ^ + M < 2M elements each. Throughout this chapter the layout of

items and queries is assumed to be in the above format.

To make the notation less cumbersome, write*

"In an ACM(n,p, M) , j < M.

*For simplicity assume that s and J are integers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Pi

p-,

- W V ' - ' :
A ' '1..'- '/ ~

:H, •'■ ■- /X s^Kf s~\ s

gyjfl Subset o f queries in a processor

Subset of items in a processor

Figure 2 .1 : The setting for Stage 1 of the generic algorithm

In this notation, the ACM(n,p, M) is viewed as consisting of f groups Gi, G2 , . . . , Gz,* s
where each G{ is an ACM with processors P(i_i),, P(i_i)a+i>. . . , PiS- i , as illustrated

in Figure 2.1. The number of processors chosen per group plays an important role in

obtaining fast algorithms. In this chapter, for simplicity of exposition the number

of processors per group is assumed to be The optimal choice, of the number

of processors per group, depends upon the balancing of running times of different

Stages of the algorithm. This will be demonstrated in Chapter 4 and Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Subset of queries in a processor

Subset of items in a processor

Figure 2.2: The Stage 1 of the generic algorithm

The generic algorithm for MQ problem consists of three distinct stages that

are summarized as follows:

S tage 1 . The goal of this stage is to replicate the set Q , stored in the group G\ (the

first s processors), refer to Figure 2.1, to all the other groups. To be more specific,

in this stage each processor Pi-, 0 < i < s — 1 , of Gi will multicast the queries it

contains to the corresponding processors in all the other groups; i.e., Pi will multicast

to the processors 1 < j < f — 1. Here the multicasts are done in parallel. It

is important to note that, at the end of Stage 1 , having replicated the queries, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

original instance of the MQ problem is partitioned into several instances, each local

to a G,-. Every local instance involves the subset of A stored by the processors in

G,, the set Q of queries, a decision problem, and a function / . Figures 2 .1 , and 2.2

illustrate the data replication of this stage, here Gi = {Po, Pi}, p = 8 , s = 2.

Stage 2 . The principle goal of this stage is to solve in each group, G*, the local

G, = [Po.PuPi)

Subset of items in a processor

Subset o f queries in a processor

Figure 2.3: The Stage 2 of the genetic algorithm

instance of the MQ problem. This will be done in parallel for all the groups. As the

processing done in each group is similar, the operations performed in one group (Gx)

will be described without loss of generality. The subset of items, of A, contained in

processor Pj, 0 < i < s — 1 of Gi, will be represented by A{. Similarly, the subset of Q

in Pi will be referred to as Q,-, refer to Figure 2.3. For a query to find its local solution

it should “visit” all the items in Gi. To achieve this goal, queries and items will

perform computations and then the items will be passed across the processors in a

cyclic fashion. This is referred to as the compute-and-move operation. To elaborate,

consider the subset of items, .4,, present initially in p . In the j 4* compute-and-move

operation, 1 < j < s — 1 , items in .4* will be located in processor P(i+J_l) mod s. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

subset of queries Q(,+J_i) morf s present in processor P(,-+/_i) m0d s will perform the

required computations with the At. At the end of this computation the partial

solution that is associated with each query, q € Q(i+j-1) mod s> will be updated

accordingly. Finally, the At- will be moved to processor P(i+j) mod s- After this, the

j + l 5t compute-and-move operation will begin. This will be done in parallel for all

the items in G\. In Figure 2.4, (a), (6) and (c) illustrate three compute-and-move

operations. Here there are three processors in the group. In the last compute-and-

move operation the items need not be moved any more only the computation is

required.

It may be intuitive to move the queries instead of the items. However, M > j

implies that communication costs will be less if items are moved.

Stage 3. The goal of this stage is to combine the solutions of the local instances of

the MQ problem obtained in Stage 2 to get the global solution of the MQ problem.

This involves s parallel reduce operations. Specifically, each processor P{, 0 < i <

s — 1, of Gx will perform a reduce operation with corresponding processors in all

the other groups; that is, P̂ will be involved in a reduce operation with processors

Pjts+i, 1 < j < * — 1- Figure 2.5 depicts this reduce operations of Stage 3.

The running times of Stage 1 and Stage 3 are of the order of Tm (M, £) and

Tr{M, 2), respectively. This is independent of the problem being solved. In Stage

2 , the compute-and-move operation can be made more efficient by overlapping the

computation with communication. The following is a brief description of the pro­

cessing and the running times involved in such an overlap. In a compute-and-move

operation, as soon as a processor receives all the items for the current computation,

it makes a copy of the items and put them in send buffer to the next processor. While

the communication of the copy (of items) is taking place local computation will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£*| p ^ /\ Subset o f queries in a processor

Figure 2.4: The Stage 2 of the generic algorithm,

in progress. The communication time for this data movement will be (s — 1) *Tp(j),

and clearly, the computation time will depend on the problem being solved.

The purpose of the remaining sections of this chapter is to show that the MQ

problem has many, and sometimes unexpected, applications to problems in database

design, pattern recognition, image processing, robotics, and morphology. Each of

the subsequent sections is typically organized as follows, first the statement of the

problem being solved, followed by the formulation of the problem as an instance of

the MQ problem, finally the details of the solution. All the algorithms for particular

applications will involve fleshing out the processing in Stage 2 , which is application-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

p,

cxca Subset of queries in a processor

p.

Figure 2.5: The Stage 3 of the generic algorithm

dependent. In each case the particular function / required for the formulation will

be easily seen to be both associative and commutative, in such a way that the generic

processing of Stage 3 will apply with minor changes. With these considerations, the

complete algorithm will be presented in Section 2 .2 . In the remaining sections only

the processing of one compute-and-move operation of Stage 2 will be described in

detail. The details of Stage 3 will be presented only when the tasks involved are

non-trivial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

2.2 Rank-Related Computations

The purpose of this section is to show that two fundamental problems in geographic

data processing, database design, and image processing can be solved simply and

elegantly by the paradigm by formulating them as the instances of the MQ problem.

2.2.1 The Multiple Rank Problem

Given a collection of items in a database along with a set of values, the multiple

rank problem, is to compute for each query the number of items in the database that

are smaller [2, 53]. The multiple rank problem is considered to be a fundamental

algorithmic problem that finds additional applications in geographic data processing,

computer graphics, image processing, computer vision, and morphology, to name

just a few [2, 74, 85]. Akl and Meijer [2] as well as Wen [85] have studied the

multiple rank problem in the PRAM model of computation. A simple variant of

the multiple rank problem was solved in [13]. The multiple rank problem will be

referred to as MULTI-RANK. It will be shown that it can be stated as a multiple

query problem.

For definiteness, both the items in the database and the set of values are

assumed to come from a totally ordered universe. The corresponding instance of the

MQ problem has the following parameters:

• the set A = {ai, a-i,. . . , a„} of items,

• the set Q = {?:, q^,. . . , qm) is the set of values,

• the decision problem <f> : Q x A -¥ {“yes”,“no”} is such that <t>{qi,a.j) = “yes”

whenever aj < q,,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

• f (S) = | 5 |.

For every i (1 < i < m), let S* be the set of items ay in A for which <f>(qi, ay) = “yes”.

The solution to query <7, is / (5 t), in other words it is rank of qi among the items in

A.

The algorithm for MULTI-RANK consists of the following stages.

S tage 1 . Replicate the set Q as in the Stage 1 of the generic algorithm.

Recall that, the ACM(n,p, M) is viewed as consisting of | groups Gx, G2, . . . ,G z ,

where each Gi is an ACM with processors P(i_i)s, Py_X)a+x, - • ., P a- i , where s =

After the replication each G,- contains the query set Q. At the end of this stage the

instance of the original MQ problem is partitioned into several instances, each local

to a group.

S tage 2. As in the Stage 2 of the generic algorithm, the operations performed

in group G x will be presented. Similar operations are performed in all the other

groups, in parallel. As an initialization step, subset of items in every processor are

sorted in increasing order. The processing done within a processor P in Gx, in one

compute-and-move operation is as follows. To simplify the notation, let 6X, 63, - - -, bn.
P

stand for the sorted sequence of items in processor p . A value l\ is associated with

each query to store the final rank of the query, the initial value of li is zero. Each

query will do a binary search to find out its rank among 6X, &2, . . . , bn.. This rank is
P

added to the lx. Now the sorted set of items, 6X, 62, • • •, will be moved on to the
P

next processor and the next compute-and-move operation begins. This processing

is done in parallel for all the item subsets within Gx.

The running time for this stage is dictated by the sorting operation, the

binary search, and the communication of items; the cost of each of these opera­

tions is O (^log^), O (m logj), and 0(T P(j)) , respectively. Each compute-and-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

move operation costs 0 (m Iog* + ^V(p)) so the total s — 1 operations will cost

0(m logj- 4- (| | — l)(mlogj* + ^p(p)))- The result is summarized as follows:

Lem m a 2.1. The task of solving the queries in every G, can be performed in

0((m + J) log J + (§ - l)(m log J + r„(J))) time. □

Stage 3. At the end of Stage 2, every processor of every group G, that stores a

query q will also store its local solution The goal of Stage 3 is to compute the

sum l\ + li + . . . + U, for every query q € Q. This task can be carried out as in

Stage 3 of the generic algorithm discussed in the previous section.

Stage 1 and Stage 3 have running times of 0(T M(M , 2̂ —)) and 0(TR(M ,E—)),

respectively. Consequently the following result is stated.

T heorem 2.2. An arbitrary instance of the MULTI-RANK problem involving a set

of n items and a set of m queries can be solved in O + ((m + j) log j +

(f - l)(m !ogJ + 2>(»))) + «££)) on an ACM(n,p, M). □

2.2.2 Histogram Computation

The task of computing the histogram of a gray-level image is one of the fundamen­

tal operations in pattern recognition and low-level vision [7, 29]. The goal of this

subsection is to show that the histogram computation problem can be formulated

as a MQ problem. Further, a simple and elegant solution on an ACM(n,p, M), will

be obtained by using the algorithm for MULTI-RANK as a subroutine.

Let A be a gray-level digital image of size y/nx y/n pretiled onto an ACM(n, p, M)

j pixels per processor. Assuming that the gray-scale involves m values, the goal

is to compute the histogram of the given image. This problem is referred to as

HISTOGRAM. The corresponding instance of the MQ problem has the following

parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

• the set A = {ai, a2, . • •, On) is the set of pixels in the given gray-level image,

• the set Q = {?i, ?2 , • • •, 9m} consists of m gray-level intensities,

• the decision problem <f>: Q x A —> {“yes”,“no”} is such that for every 1 < i < m

and 1 < j < n, a ,) = “yes” if and only if g,- = ay,

• f (S) = | 5 |.

For every i (1 < i < m), let 5,- be the set of items ay in A for which <£(<7,-, ay) = “yes”.

The solution to query qi is /(S i) which is its frequency in the given image.

The algorithm for HISTOGRAM is identical to the algorithm for MULTI­

RANK except for a post-processing step that is now described. Let rank(gx),

rank(g2), • • rank(gm) be the ranks of the queries returned by MULTI-RANK ap­

plied to the instance of the HISTOGRAM problem. Now for every i (1 < i < m — 1)

the solution to <7,- is rank(g,-+i)—rank(gt), in other words, the number of pixels in

A having a gray-level intensity equal to g,-. Furthermore, the solution to gm is

n —rank(gm_x). The running time for HISTOGRAM will be the of the same order as

the MULTI-RANK. It is noted that the solution for HISTOGRAM can be obtained

without using the MULTI-RANK as a subroutine, but by using the same algorithm

with some minor variations in Stage 2. That is instead of finding the ranks each

query will determine the number of items with the same value. To summarize the

findings the following result is stated.

T heorem 2.3. An arbitrary instance of the HISTOGRAM problem involving an

m-level image of size n can be solved in ê -) + ((m + -) Iogn + (^ —

l)(m!og ; + TP(f))) +Tk(M ,=4S)) on an ACM(n,p, M). D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

2.3 The Multiple Point Location Problem

The purpose of this subsection is to show an elegant solution to the multiple point

location problem by reducing it to an instance of the MQ problem. Further, it

will be shown that the multiple point location problem itself has some applications.

Just like the classic point location problem, the multiple point location problem is

central to computer graphics, pattern recognition, image processing, robotics, and

morphology [1, 7, 29, 35, 50, 75]. Let A = {cm., a2, . . . , dv) and Q = {ft, g2, - • •, ftn}

(1 < m < n) be arbitrary sets of points in the plane. The points in Q will be referred

to as query points. The multiple point location problem, (MULTI-LOCATION, for

short) is to determine for every subscript i (1 < i < m) whether the query point ft

lies inside the convex hull CH(A) of A. Without loss of generality, the points are

assumed to be in general position.

The layout of the points of A and Q is the same as described in the Section

2.1. Before solving the problem, some geometric preliminaries will be discussed.

Recall that if a point q is exterior to CH(A), then there exist exactly two supporting

lines from q to CH(A). In fact, the converse is also true: a point q lies to the exterior

of CH(A) if there exist supporting lines from q to CH(A) (refer to Figure 2.7). Let

P be a convex polygon and let q be a point outside P . A supporting line 8 from q

to P will be termed a left support line if P lies in the right halfplane determined by

assigning 8 the direction away from q and towards P. Otherwise, 8 will be termed

a right support line.

As it turns out, the MULTI-LOCATION problem can be stated as an in­

stance of the MQ problem with the following parameters:

• a set A = {a!, a2, . . . , a„} of items which is precisely the given set of points in

the plane,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

• a set Q = {gi, q2, . . . , qm} of queries consisting of the m query-points,

• a decision problem 0 : Q x A -> {“yes”,“no”} such that 0 (9i,Oj)=“yes” if and

only if the line determined by $ and a,- is a supporting line for CH(A),

• f(S) = 5.

The function / implies that the solution for each query is the supporting lines, if

they exist.

The task specific to Stage 2 is to determine for every point in Q whether it is interior

to any of the convex hulls local to a group. Clearly, a query point that is interior to

any such convex hull lies in the interior of the convex hull of A and its corresponding

solution is the empty set. As a technicality, for all i (1 < i < m), 5,- is initialized

to the empty set. The compute-and-move operation of the MULTI-LOCATION

algorithm is as follows: only the details for group Gi are presented.

As an initialization step the convex hull of the subset A,- of A is computed.

This task can be performed in O(^log^) time using an optimal sequential convex

hull algorithm [67]. For simplicity of exposition, assume that the convex hull of A,

is the convex polygon C = ci,c2l .. . , ca.

A pair of tangents (I, r) is associated with each each query q. These are the

tangents from q to the convex hull of A'. Here A' is the set of all items that the

query q has encountered in all the previous compute-and-move operations. In the

current compute-and-move operation in processor Pj each query q will determine

a pair of tangents to the convex hull of the subset A,- of items currently stored by

Pj. The pair (I, r) is updated with the newly computed set of tangents. At the end

of this operation A,- is moved to the next processor of the group. The process of

updating of (/, r) is a non-trivial task and is a part of Stage 3 of this algorithm. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

better perspective of the operation is obtained by looking at the complete processing

of Stage 3.

Consider the running time of this stage: finding tangent to a convex hull is a variant

of the binary search [67], and it takes logarithmic time. Consequently the following

result is stated.

Lem m a 2.4. For every query point in Q, the supporting lines to the convex hull of

the subset of A in each (7, can be found in 0 ((m + j) lo g ^ + (-^ —l)(m Iog^+T>(^)))

time. □

S tage 3. The main goal of this stage is to use the information obtained in Stage

2 of the algorithm to decide which query points lie in the interior of CH(j4). It is

important to note that for a point q to lie outside of the convex hull of A it is not

sufficient that q lie outside of the subset of A in all the G,s. Figure 2.6 illustrates

the situation: the point q lies outside of the three convex hulls, but not outside their

union.

Figure 2.6: Query q can lie outside CH(subsets of A) but lies within the CH(A)

For every query point q lying outside of the convex hull of the points in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Figure 2.7: A wedge centered at q

some generic processor Pi, the information obtained in Stage 2 is perceived as a

solid wedge centered at q. This wedge is specified, in counter-clockwise order, as an

ordered triple (u , q, v) such that q& and qti are the right and left supporting rays

from q to the corresponding convex hull. For convenience, qtl and q t are referred

to as r and I, respectively. When this happens, the wedge (u , q, v) will be specified

as (r ,q ,l). Figure 2.7 illustrates this concept.

A" |

Figure 2.8: Illustrating the proof of Lemma 2.5

Now assume that the solutions for the same query q in two sets of points,

.4' and A", are to be combined: by the above discussion, these solutions are planar

wedges, centered at q, specified as ordered triples {ux, q, vx) and (1x2 , q, v2), consisting

of the right and left supporting rays, respectively, from q to the convex hull of A'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

and A". The following technical result is key to Stage 3 of the algorithm.

L em m a 2.5. If there exists a line passing through q and intersects both (u\,q, vr)

and (u2, q, v2) then q lies in the interior to the convex hull of A' U A”.

P roo f. Let A be the line that passes through q and intersects both (ui, q, ui) and

(u2,q ,v2), refer to Figure 2.8. This assumption guarantees that the pairs of points

(ui, u2) and (v2, Ui) lie in opposite halfplanes determined by A. In turn, this guaran­

tees that q lies inside the convex hull of the points u\, ui, u2, v2. Now, a well-known

result of Yaglom [8 6] guarantees that q lies inside the convex hull of A' and A". □

Figure 2.9: The operation $

The condition of Lemma 2.5 can be tested very efficiently: the only check

that is necessary is to detect whether the ray opposite to one of qu(, qu%, qv|, and

qv2 intersects the other wedge. This can be tested in the obvious way in constant

time. Moreover, a processor detecting that condition of Lemma 2.5 holds for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

wedges (Ui,q,vx) and {v.2 ,q,Vi) will set the result to (0, q, 2tt) which is the wedge

centered at q and encompassing the whole plane.

It is, therefore, assumed that when combining the wedges (wi, q, vx) and

(^2 , q, V2) the condition of Lemma 2.5 does not hold. Put differently, there exists an

infinite line 5 through q such that both the wedges (tii, q, «i) and (r/2 , q, U2) lie in one

halfplane with respect to S, as illustrated in Figure 2.9. This motivates definitions

m in{ri,r2} and max{Zi,f2} as the bounding rays of the union of the two wedges.

Specifically, m in{ri,r2} is the ray encountered first as S is rotated counter-clockwise

about q, while max{Zi,Z2} is the ray encountered last. For example, in Figure 2.9

m in{ri,r2 } = ri and max{Zi,Z2} = h- In this terminology, the binary operation 0

on these wedges is defined as follows:

, 1 \ a 1 i \ I , r2 }, q, max{7x, I2 }) if the condition o f Lem m a 2.5. does not hold
(r i i 9 , n) 0 (^2i9 , h) = S ,

 ̂ (0, q , 2ir) otherwise.

(2.2)

Clearly, ^ either captures the fact that q lies in the interior of A’ U A" in which

case q will surely lie inside the convex hull of 4̂, or it returns the right and left

bounding rays of the wedge centered at q and containing the points in 4̂' U A".

Furthermore, the operation in (2 .2) is both associative and commutative, and so

the computation of Stage 3 will yield the desired result. To summarize the findings

the following result is stated.

Theorem 2.6. An arbitrary instance of the MULTI-LOCATION problem involving

sets A and Q of cardinalities n and m, respectively, can be solved in ^ ~) +

((m + J) Io g J + (f - l) (m l o g J + r P(J)))+ T B(M , ^)) o n an ACM (n,p,M). □

The MULTI-LOCATION algorithm can be extended to solve the following

related problems:

1 . CONTAINMENT: Determine whether the convex hull of Q (resp. A) is con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

tained in the convex hull of A (resp. Q);

2. SEPARABILITY: Determine whether the sets A and Q are linearly separable

and if so, find a separating line;

3. COMMON-TANGENTS: In case A and Q are separable, find their common

supporting lines (i.e., tangents).

The procedure for the CONTAINMENT problem is as follows. First, to

detect whether the convex hull of Q lies inside of the convex hull of A, the algorithm

for MULTI-LOCATION is used. For each point qi G Q associate a bit The value

of 6, is set to 1 if gt lies outside CH(A), 0 otherwise. Now the problem at hand is

the classic OR problem. If the OR of the bits (1 < i < m) is zero then clearly

the convex hull of Q lies inside that of A. If there exist two bits 6,- and bj such that

6j = 0 and bj = 1 then the two sets intersect without any containment.

To decide whether A lies within the convex hull of Q the following procedure

is used. The ACM(n,p, M) is partitioned into groups Gi (1 < i < ^), as in Stage

1 of the MULTI-LOCATION problem. Further, the points in Q are replicated in

every group Gi. Next, in every processor belonging to such a group the convex hull

of the subset of points in Q is computed using an optimal algorithm [67] and every

point of A that lies in Gt- checks whether it is interior to the convex hull of Q. It is

noted that a similar procedure described in the Stage 2 of the MULTI-LOCATION

algorithm will work here. As the same query set Q is present in every Gi, every point

in .4 determines its own status. The solution can now be determined by solving the

corresponding instance of the OR problem.

The OR can be computed by a reduce operation. The running times these

reduce operations is dominated by other operations of the algorithm. Consequently

the following result is stated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Theorem 2.7. An arbitrary instance of the CONTAINMENT problem involving

sets A and Q of cardinalities n and m, respectively, can be solved in 2^ p)+

((m + J) log a + (f - 1)(m log* + TP(a))) + TR(M, ^)) on an ACM(n ,p, iW). □

To solve the SEPARABILITY problem the following approach is used. Firstly,

solve the MULTI-LOCATION problem. If any of the points in Q is interior to the

convex hull of A, then A and Q are not separable. Therefore it is assumed that ev­

ery point of Q is exterior to CH(A). Recall that the MULTI-LOCATION algorithm

provides every point in Q with a “certificate” for being exterior to CH(A): for every

point in Q this certificate is a pair of supporting lines to CH(A). For every query

point qi of Q, let I, and r,- be the left and right supporting lines from g,- to CH(A),

respectively.

Next, the following instance of the MQ problem is solved problem with the

following parameters:

• the set of items is the set Q,

• the set of queries is the set of lines C = r,- | 1 < i < m},

• for every ordered pair [d,q) e £ x Q, <f>(d,q) = “yes” if q lies in the closed

halfplane determined by d not containing the interior of A,

• let Sd be the set of points q in Q for which (f>(d,q) = “yes” ; now f(Sd) = d in

case | Sd |= m and 0 otherwise.

It is clear that, in this formulation, the solution to the corresponding instance

of the MQ problem returns the two separating lines for A and Q , thus solving

the SEPARABILITY problem. The algorithm for solving the instance of the MQ

problem stated above proceeds along lines identical to those of MULTI-LOCATION

discussed above and is, therefore, omitted. A similar formulation applies for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

COMMON-TANGENTS problem except that A and Q should be on the same side

of the supporting line. Consequently, the following result is obtained.

Theorem 2.8. An arbitrary instance of the SEPARABILITY and COMMON-

TANGENTS problems involving sets A and Q of cardinalities n and m, respectively,

can be solved in 0(T*(Af, « *) + ((m + }) log* + (f - l)(m log* + 7>(}))) +

Tr{M, ef£)) on an ACM(n,p, M). □

2.4 Proximity-Related Computations

The purpose of this section is to show that four fundamental problems in pattern

recognition, robotics, and image processing can be solved elegantly by stating them

as instances of the MQ problem.

2.4.1 The Multiple Closest Segment Problem

Given a set A of non-intersecting line segments and a set Q of points in the plane,

the multiple closest segment problem is to determine for each point in Q, the closest

segment in A (if any) intersected by vertical rays emanating from it. This problem

will be referred to as CLOSEST-SEGMENT. For an illustration, refer to Figure

2.10. It is well known that the CLOSEST-SEGMENT problem finds numerous

applications ranging from visibility, to ray tracing, to robotics, to name just a very

few [7, 29, 50, 75].

As it turns out, the CLOSEST-SEGMENT problem can be stated as a MQ

problem. For definiteness, let A = (a l ,a2, . . . ,a n} and Q = (91 , 92, •••,9m}- The

corresponding instance of the MQ problem has the following parameters:

• the set .4 = (at, a2, . . . , <z„.} of segments,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

0 7

* <13

Figure 2.10: The CLOSEST-SEGMENT problem

• the set Q = {ft, q2, . . . , qm} of query-points,

• a decision problem 0 : Q x A —> {“yes” ,“no” } such that 0(ft,O j)=“yes” when­

ever a,j is the closest segment above (resp. below) ft intersected by vertical

rays originating at ft,

• a function / such that / (5) = S.

The compute-and-move operation for CLOSEST-SEGMENT proceeds as follows.

Stage 2 . Begin by computing the trapezoidal decomposition (vertically) of the

segments in every processor this can be done using the classic trapezoidal decompo­

sition, algorithm [67]. For a more detailed discussion of trapezoidal decomposition

refer to [67]. It is noted that the closest segments for a query q can be found by

simply locating the trapezoid in which q lies.

Consider two sets of segments S ' and S". Let lb\ lt ’ and /&”, Zt” be the closest

segments of q in the sets S' and S", respectively. The closest segments of q in in the

set S' (J S" can be found by picking the closer of the two solutions in S' and S". This

will ensure that along with each query, as the compute-and-move operations proceed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

the closest segments of all the segments encountered so far can be maintained.

Trapezoidal decomposition can be done in O (jlo g ^) and point location for

a single query will take log j time. For every query point in Q, the closest segments

among the subset of A in each (?,• can be found in 0 ((m + j) l o g ^ + (^ —l)(m logj^-F

TP(J))) time. Consequently, the following result is proved.

T heorem 2.9. An arbitrary instance of the CLOSEST-SEGMENT problem involv­

ing a set of n non-intersecting line segments and a set of m points in the plane, can be

solved in 0 (r „ (M , ^) + ((m + f) lo g f + (g - l) (m l o g f + T P(J))) + r „ (M ,^))

on an ACM(n ,p ,M). □

2.4.2 The Multiple Circle Problem

Given a set A of points in the plane and a set Q of disjoint circles, the multiple circle

problem is to determine for each circle the number of points in A it contains. This

problem is referred to as the MULTI-CIRCLE. The MULTI-CIRCLE can be seen

as a natural generalization of the well-known facility location problem involving

a set of existing sites and a collection of proposed facilities (radio stations, for

example) to be placed. In this context one is interested in computing, for each of

the facilities, the number of points it will service. The MULTI-CIRCLE problem

finds numerous applications to geographic data processing, facility location, robot

navigation, visibility, among many others [29, 46, 50, 74]. Refer to Figure 2.11 for

an instance of the MULTI-CIRCLE problem.

The MULTI-CIRCLE problem can be stated as an instance of the MQ

problem in the following way. For definiteness, let A = {at, a2, . . . ,a n} and Q =

{Qi,Q2 , • • • 7 9m}- The corresponding instance of the MQ problem has the following

parameters:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Figure 2.11: The MULTI-CIRCLE problem

• the set A = {ai, 0 2 , . . . , On} of points,

• the set Q = {gx, q2, . . . , gm} of circles,

• a decision problem <j> : Q y A {“yes” ,“no”} is such that 0(g,-, ay)=“yes”

whenever ay is inside the circle <&,

• f(S) = |S|.

The MULTI-CIRCLE problem can be solved by using a similar procedure as

the CLOSEST-SEGMENT. This is done as follows: each circle g,- is replaced with its

diameter d, which is parallel to the x-axis. The difference between this problem and

the CLOSEST-SEGMENT is that, here segments are queries and for each segment

the items which are within the corresponding circle are to be determined. This

can be achieved in the following way, just as in the CLOSEST-SEGMENT each

item point a can determine the closest segments dj and dk from above and below,

respectively. The item a lies in the circle gy (corresponding to dj), if and only if the

distance between a and the center of gy is less than the radius of gy, refer to Figure

2.12. The same check is repeated for qk. Each item can belong to a unique circle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

(non-overlapping circles). Once all the items in a processor determine the query

circles they belong to, a simple scan will be used to determine the number of points

in each query circle. The running time for this processing is same as that of the

CLOSEST-SEGMENT. Consequently, the following result is proved.

T heorem 2 .1 0 . An arbitrary instance of the MULTI-CIRCLE problem involving

a set A of n points in the plane and a set Q of m disjoint circles, can be solved in

0 (T m (M, e £) + ((m + J) lo g ; + (§ - l)(m lo g ; + 7M ;))) + TS(M, * ^)) on an

ACM(n,p, M). □

Figure 2.12: The reduction of MULTI-CIRCLE to CLOSEST-SEGMENT

2.4.3 The Multiple Range Problem

Given a set A of points in the plane and a set Q of non-overlapping rectangles, the

multiple range problem is to determine for each rectangle in Q the number of points in

A it contains. This problem is referred to as MULTI-RANGE. The MULTI-RANGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

• a .

Figure 2.13: The MULTI-RANGE problem

problem can be seen as a natural generalization of the well-known range query

problem involving a set of points in the plane and one query rectangle. Just like the

range query problems, the MULTI-RANGE problem finds numerous applications to

geographic data processing, facility location, robot navigation, visibility, ray tracing,

VLSI compaction, to name just a very few [7, 29, 35, 46, 50, 74, 75]. Refer to Figure

2.13 for an instance of the MULTI-RANGE problem featuring 16 points and 7

rectangles.

The power of the paradigm is demonstrated again by proving that the

MULTI-RANGE can be formulated as an instance of the MQ problem. For def­

initeness, let A = {0 1 , 0 2 , • • • ,On) and Q = The corresponding

instance of the MQ problem has the following parameters:

• the set A = {a^ a2, . . . , a„} of points,

• the set Q = {qx, q2, . . . , gTO} of rectangles,

• a decision problem 0 : Q x A —» {“yes”,“no”} is such that <£(#,a j)= “yes”

whenever a,- is inside rectangle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

• f (S) = |S|.

This algorithm is similar to that of MULTI-CIRCLE. The details of compute-and-

move operation follow.

The collection of rectangles is viewed as consisting of 4m line segments*. Just as in

the Stage 2 of the MULTI-CIRCLE, for each item point a* determine the identity

of the closest line segments (i.e., rectangles) met by vertical rays emanating from

it. It is easy to confirm that a point ak is inside a rectangle qt if and only if both

the segments obtained belong to the rectangle qt. Note that the four segments of a

rectangle belong to the same processor. Referring again to Figure 2.13, observe that

point ak lies in none of the rectangles in the collection: this is confirmed by the fact

that the closest segments intersected by vertical rays emanating from ak belong to

different rectangles qu and qv.

The running time is the same as that of MULTI-CIRCLE. Consequently the

following result is obtained.

T heorem 2.11. An arbitrary instance of the MULTI-RANGE problem involving a

set A of n points in the plane and a set Q of m non-overlapping rectangles, can be

solved in 0(T M(M , ^) + ((m + 2)Io g J + (g - l) (m l o g 5 + T P(J)))+ T R(A '/,^ i))

on an ACM(n,p, M). □

2.4.4 The Multiple Closest Point Problem

For two points p and q let d(p, q) stand for the Euclidian distance between them.

Given sets A and Q of points in the plane, the multiple closest point problem is to

determine for each point in Q, a point in A that is closest to it in the Euclidian

distance sense. This problem is referred to as CLOSEST-POINT, it is a fundamental

*Note that the four segments of a rectangle belong to the same processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

problem that finds additional applications in geographic data processing, computer

graphics, image processing, and morphology, to name just a few [1, 75].

The formulation of CLOSEST-POINT as an instance of the MQ problem.

For definiteness, let A = {at, a<i,. . . , a ^ and Q = {gi, q i,. . . , gm}, further define the

parameters as follows:

• the set A = {al5 0 2 , • . . , a ^ of points,

• the set Q = {qx, g2, . . . , qm} of query-points,

• a decision problem 0 : Q x A -> {“yes”,“no”} is such that 0 (9,-,%)=“yes”

whenever d{qi, ay) = m in ^ * ^ d(gt-, ak),

• for every i (1 < i < m), let St- = {ay G A | 0(<?,-, ay) = “yes” }; /(S ’,-) = m in{j |

ay G 5,}, in other words, the solution to query is the point with the smallest

subscript that is closest to g,.

The compute-and-move operation for CLOSEST-POINT is as follows.

The processing will be partitioned into two substages. In the first substage, the

Voronoi diagram of the subset of points of A located in every processor is con­

structed. This task can be performed in 0 (^ log^) time using the optimal sequential

algorithm described in [67]. Note that in the move part of the compute-and-move

operation, this voronoi diagram is passed on to the next processor instead of the

items.

In the second substage, for every point in Q the Voronoi polygon that con­

tains it is determined. Once the identity of the enclosing Voronoi polygon is known,

the local instance of the CLOSEST-POINT problem is, essentially, solved. The

problem at hand can be solved efficiently by observing that the total number of

edges of the Voronoi diagram of the subset of point of A located in P; is in O(^).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

A further key observation is that to identify, for every point q in Q the unique

enclosing Voronoi polygon, it is sufficient to identify the first Voronoi edge intersected

by a ray originating at q and going in the positive y-direction. This is again an

instance of the CLOSEST-SEGMENT problem. Consequently, the following result

is obtained.

Theorem 2.12. An arbitrary instance of the CLOSEST-POINT problem involving

sets A and Q of size n, and m, respectively, can be solved in e 4 - ((m +

f)l°S J + (S - t)(m lo g ; +7>(J))) +Tk(M,*££)) on an ACM(n,p,M). □

2.5 Stabbing-Related Problems

Let A = {al5 0 2 , . . . , an} be an arbitrary set of possibly intersecting line segments

in the plane and let Q = {gi, 92? • • • > ?m}> (1 < m < n)> be a set of parallel lines.

The lines in Q will be referred to as query lines. The multiple stabbing problem,

(MULTI-STABBING, for short) asks to determine for every query line <7,, the number

of segments in A it intersects. Figure 2.14 features an instance of the MULTI-

STABBING involving a set of four query lines. The MULTI-STABBING problem

is a natural generalization of the stabbing line problem [1] that involves only one

such query-line. The stabbing line problem finds applications to computer graphics,

path planning [50], and morphology [75]. The purpose of this section is to show an

elegant solution to the MULTI-STABBING problem by reducing it to an instance

of the MQ problem.

Without loss of generality, it is assumed that all the query lines are parallel to

the x-axis and that the line segments are in general position, with no two endpoints

sharing the same y-coordinate. Every line segment a, is specified by its top and

bottom endpoints, and 6,-, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

Figure 2.14: An instance of the MULTI-STABBING problem

The MULTI-STABBING problem can be stated as an instance of the MQ

problem with the following parameters:

• the set A — {a^, a2, . . . , an} of items is precisely the given set of line segments,

• the set Q = {<71, q^,. . . , qm} of queries consists of the m query-lines,

• a decision problem <t>: Q x A —t {“yes” , “no” } such that <f>(qi, aj)=“yes” if and

only if the query-line g,- intersects segment ay,

• ns) = 151.

For every qt (1 < i < m), let St- = {ay G A | 0(g,-,ay) = “yes”}. /(5 .) is the

number of line segments “stabbed” by query-line <7,.

The compute-and-move operation for MULTI-STABBING is detailed as follows.

Consider the subset of line segments of A in Pj as A,-. Begin by sorting the subset

Ai of line segments in each Pi in decreasing order of the y-coordinate of their top

and bottom endpoints. The sorting can be performed in O(Mog^) time using any

optimal sorting algorithm. Let ei, e2, . . . , e2a be the resulting sequence of endpoints.

The processing in this stage is motivated by the following simple observation whose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

proof is immediate.

O bservation. Let qu be a query-line specified by its equation qu = yu. The number

of line segments in P* stabbed by qu is precisely the number of line segments whose

top endpoint has a higher ^-coordinate then yu and whose bottom endpoint has a

lower y-coordinate than yu. □

Consider the sorted sequence ei, e-i, . . . , and assign each top endpoint in this
P

sequence a weight of + 1 and to each bottom endpoint a weight of —1 . Perform

a prefix sum on the resulting weighted sequence this takes O(^) time. It is easy

to confirm that for every endpoint e of a line segment in Pi the resulting value of

the prefix sum is exactly the number of segments intersected by a horizontal line

through e.

Next, identify for every query qu the unique pair (ep, ep+\) of endpoints with

the property that ep > yu > ep+i. Once this is done, the desired solution of qu is the

value of the previous prefix sum for ep. The task of identifying the pair (ep, ep+i)

can be carried out by a simple binary search. Note that the process of sorting

and computing the prefix sums for the subset of items need not be done at every

compute-and-move operation. These tasks are performed as initialization steps and

only the sorted sequence and the prefix sums are communicated. In summary the

following result is stated.

Lem m a 2.13. The task of computing for every query-line in Q the number of line

segments in each group Gi it intersects can be carried out in 0 ((m + log ^ + (-^ —

l)(m logJ + TP(J))) time. □

Consequently, the following result is proved .

T heorem 2.14. An arbitrary instance of the MULTI-STABBING problem involv­

ing a set of n line segments and a set of m query-lines can be solved in 0 ê ~)+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

((m + £) log s + (M _ 1)(m |0 g 4 + 7 > (f))) + TR(M, £ ^)) on an ACM(n,p, M). □

Let A = {ai, a2 , • • •, On} be a simple polygon in the plane and let Q = (?i, <&> • • • > 9m}>

(1 < m < n), be an arbitrary set of points. The simple polygon location problem,

(POLY-LOCATION, for short) is to determine for every query point $ whether or

not it lies in the interior of A. An instance of the POLY-LOCATION problem is

illustrated in Figure 2.15. The POLY-LOCATION is a variant of a large class of

point location problems, with applications to computer graphics, facility location,

path planning, among others [29, 35, 50].

Figure 2.15: An instance of the POLY-LOCATION problem

A solution to the POLY-LOCATION problem can be obtained by reducing

it to an instance of the MULTI-STABBING problem. This is done as follows. The

simple polygon is perceived as a collection of line segments (its edges) and the result­

ing instance of the MULTI-STABBING problem is solved. However, the counting

of intersections is slightly changed. Consider an arbitrary point qu in Q and let Au

be the horizontal line through qu. For gu, only the number of intersection points of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

A and Au that lie to the right of qu, are of interest. Now the Jordan Curve Theorem

guarantees that qu is inside A if and only if the number of intersections recorded is

odd. To summarize the findings the following result is stated.

T heorem 2.15. An arbitrary instance of the POLY-LOCATION problem involving

an n-vertex simple polygon a set of m query-points can be solved in £̂) +

((m + J) log J + (g - l)(m log J + 7>(J))) + TR(M, ^)) on an ACM(n,p, M). a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

CHAPTER 3

THE SORTED MATRIX ALGORITHM ON

THE ACM

In the previous chapter, the power of computational paradigm was demonstrated by

dealing with some instances of the MQ problem. The main goal of this chapter is to

discuss query processing in a structured application domain. Query processing is a

crucial transaction in various applications including information retrieval, database

design and management, and VLSI. Many of these applications involve data stored

in a matrix satisfying a number of properties. One property that occurs time and

again specifies that the rows and the columns of the matrix are independently sorted

[25, 40, 58, 78]. It is customary to refer to such a matrix as sorted. A matrix is

said to be fully sorted if its entries are sorted in row-major (or column-major) order.

Figure 3.1a displays a sorted matrix; Figure 3.1b features a fully sorted version of

the matrix in Figure 3.1a.

Sorted matrices provide a natural generalization of a number of real-life

situations. Consider vectors X = (xu x2, .. . x ^) and Y = (2/1, 2/2* • • -V^k) with

Xi < Xj and y, < yj, whenever i < j. The Cartesian sum of X and Y, denoted

X + Y is the y/n x y/n matrix A with entries â - = xt- + yj. It is clear that A' + Y is

a sorted matrix. Moreover, X + Y can be stored succinctly in 0 (y/n) space [25, 32],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

1 6 10 19

3 9 14 26

5 15 20 40

7 17 24 41

1 3 5 6

7 9 10 14

15 17 19 20

24 26 40 41

a b

Figure 3.1: Sorted and fully sorted matrices

since the entries a*,- can be computed, as needed, in constant time. Searching,

ranking, and selection in sorted matrices are key ingredients in fast algorithms in

VLSI design, optimization, statistics, database design, and facility location problems

and have received considerable attention in the literature [25, 26, 32, 37, 40, 58, 78].

This chapter addresses the problems of batched searching and ranking in

sorted matrices. It will be shown that these problems can be formulated as instances

of the MQ problem. Consider a sorted matrix A of size y/n x y/n of items from a

totally ordered universe, j items per processor, on an ACM(n,p, M). Also given

an arbitrary sequence Q = ?i, ?2> • • • > <Zm> (1 < m < n), of queries stored M per

processor in the first ^ processors of the platform. The queries are of two types:

for a query q3- of the first type one is interested in an item of A that is closest to q3]

for a query q3 of the second type one is interested in the number of items in A that

are strictly smaller than qj. The two query types are referred to as search queries

and rank queries, respectively. The set Q of queries is an arbitrary mix of the two

query types. In this context, the Batched Searching and Ranking problem, (BSR,

for short) involves determining the solution of every query in Q.

Formulate the search queries as follows:

• the set *4 = {a1,a2» • • • > °n} of items is made up of the elements of the given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

sorted matrix,

• the set Q = {gx, q2, . . . , qm} of queries,

• the decision problem (f>: Q x A -> {“yes”,“no”} is such that <f>{qi,a,j) = “yes”,

• f(S i) = min(| $ - a3- |), 1 < j < n.

The formulation for the rank queries is obvious.

It is important to note that search queries occur frequently in image process­

ing, pattern recognition, computational learning, and artificial intelligence, where

one is interested in returning the item in the database that best matches, in some

sense, the query at hand [7, 29, 74, 82]. On the other hand, rank queries are central

to relational database design, histogramming, and pattern analysis [7, 29, 53, 82].

Here, given a collection of items in a database along with a query, one is interested

in computing the number of items in the database that have a lesser value than the

query [53]. In addition, rank queries finds applications to image processing, robotics,

and pattern recognition [7, 11, 29, 46]. It is noted that a variant of rank queries has

also received attention in the literature. Specifically, a range query involves deter­

mining the number of items in a given database that fall in a certain range. It is not

hard to see that range queries can be answered by specifying them as rank queries

129].

Throughout this chapter for simplicity of exposition it is assumed that all

the queries fit into one processor (i.e., m < M). This is not a serious restriction as

the algorithm can be easily extended to the case M < m < n . With this assumption

in mind, a generic instance of the BSR problem involves a sorted matrix A of size

y/n x y/n stored j* items per processor in an ACM(n,p, M) and a collection Q of m,

(1 < m < M), queries stored in processor P0 of the platform. Moreover, to avoid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

handling double subscripts, the items of matrix A will be enumerated, in row major

order, as ai, <Z2> • • • > On-

The remainder of the chapter discusses the algorithm for the BSR problem.

3.1 BSR Algorithm on the ACM

R o u y
o o o o
OQOO
Q O O O

Submatrix A,

ACM(apJvl)

Figure 3.2: The matrix view of the ACM(n,p , M)

Let the processors of the ACM(n,p, M) be Pq, Pi, . . . , Pp. As the input is a matrix,

it will be convenient to view the processors of the ACM(n,p, M) as a matrix of size*

y/p x y/p, with processor P{ being the same as mod jp- Superimposing the

matrix of processors on the given matrix A naturally defines a block partition of A

with processors PiJ storing A ,j, refer to Figure 3.2. Specifically, assume that the

matrix A is partitioned into p submatrices each of size ^ , denote the (i , j) th

submatrix as At J-, refer to Figure 3.3. The sequence of processors belonging to row

i (i.e., Pt,0l Pi,i , . . . , Piiy/p-1) will be referred to as a horizontal slice of ACM(n,p, M)

and denoted by HSi. A vertical slice, V S i, is defined in a dual manner.

tFor convenience, y/p is assumed to be an integer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

The algorithm for the BSR problem proceeds in the same lines as the generic

algorithm of Chapter 2 , that is, the algorithm proceeds in three stages.

S tage 1 . The set Q of queries is replicated in each processor P ,j, creating local

instances of the BSR problem.

Stage 2 . Determine in each processor PtJ, in parallel, the solution of the local

instance of the BSR problem.

S tage 3. The solutions of the local instances of the BSR problem obtained is Stage

2 are combined into the solution of the original BSR problem.

Figure 3.3: The partition of matrix A

The remainder of this section is devoted to a detailed description of each of these

stages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Stage 1.

The purpose of this stage is to replicate the set Q of queries, in each processor

P*J> m queries per processor. This is a simple broadcast operation, and so its running

time will be of the order of Tg(m,p).

Each local instance involves, A,-j, the subset of A stored by the processors

in Pij and the entire set Q of queries.

The main goal of this stage is to solve the local instance of BSR in each

processor PiJ- Begin by sorting the items and queries in each P{j using an optimal

sequential sorting algorithm. In the sorting process, ties are broken in favor of

queries. In other words, if a query and an item are equal, then in the sorted version

the query precedes the item.

Let C ij = ci,C2 , . . . , c m+a_i,cm+a be the resulting sorted sequence stored

in processor PiJ• The following two results will justify the approach to solving the

local instances of the BSR problem.

Lem m a 3.1. Let qk be a query of rank type and assume that c* = qk, in other

words, qk occurs in position t in the sorted sequence Cij. The number of items in

PiJ strictly smaller than qk equals the number of items preceding qk in Cij.

Proof. Follows directly from the sortedness of C,-j along with the assumed tie-

breaking discipline. □

Lemma 3.1 motivates the following strategy for solving all rank type queries

in Pij. Assign to every q a weight wt defined as follows:

Next, compute the prefix sums of the sequence Ci,C2 , . . . , c Tn+&-i,cm+a using the

Stage 2.

1 if Ct is an item

0 if Ct is a query.
(3.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

weights assigned in (3.1) and let ei,e2, . . . ,em+s.-i,em+s. be the result. By virtue
P P

of Lemma 3.1, the value et corresponding to Ct =Qk is exactly the number of items

in Pij strictly smaller than qk. The time taken for all the rank queries will be

dominated by sorting and prefix sum computations, which is 0 ((m -f j) Iog(m-F^)).

The task of handling search queries requires a different approach. To moti­

vate this strategy, consider again the sorted sequence C, , = Cx, c2, . . . , Cm+a—i, Cm+a.
P P

and refer to Figure 3.4.

51 52
m m . m m

1/ r\ b=n lj
• M M

§ queiy
0 item

Figure 3.4: The sorted sequence C\

The m queries occur in Ct J in contiguous subsequences s1} s2, . . . , s^; for every

such sequence sp let lp and rp stand, respectively, for the leftmost and rightmost

query in sp, as illustrated in Figure 3.4. Of course, if the sequence sp consists of

one query only then lp = rp. Write lp = ca and rp = for some a and 0 satisfying

1 < a < 0 < m + j . This terminology becomes clear from the following observation.

Lem m a 3.2. For all the search queries in some sequence sp the solution is either

cQ_x or C0+1.

Proof. Let qk be an arbitrary search query in the sequence sp. The sortedness of

C ij along with the tie-breaking discipline guarantee that no item in Pij is closer to

qk than one of the items cQ_i or c^+ _. □

In turn, Lemma 3.2 suggests the following approach to solving all the search

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

queries in Pij- First, assign to every ct a weight wt defined as follows:

wt =
Ct if Ct is an item

—oo if ^ is a query.
(3.2)

Next, compute the prefix maxima of the sequence ci, <%,..., C W "i, cm+* using the

weights assigned in (3.2) and let ei, e2, . . . , em+a-i, em+a be the result. It is easy to

confirm that for every search query Ct = qk, the corresponding value et is exactly the

identity of the item ctt_i (from the previous terminology), or —oo if no such item

exists.

Now, assign to every ct a weight wt

and compute the prefix minima of the sequence cm+a ,c m+a_ l,.. . ,C 2, Ct using the

weights assigned in (3.3). Let ei,e2, . . . ,em+fl._i,em+a be the result. It is easy to

confirm that for every search query Ct = qk, the corresponding value et is exactly

the identity of the item cg+l (from the previous terminology), or +oo if no such

item exists. Therefore, at the end of these two computations, every search query qk

becomes aware of ca_i or cp+l. By virtue of Lemma 3.2, this is sufficient for the

purpose of determining the solution of every search query qk in Pij. To summarize

the findings the following result is stated.

Lem m a 3.3. The task of solving the local instance of the BSR problem in each

processor Pij can be performed, in parallel, in 0 ((m + j*) log(m + ^)) time. □

At the end of Stage 2 , each processor Pij stores its local solution <7 (2, 7 , fc)

along with query qk. In case qk is a search query a (i,j ,k) denotes the item in A

closest to qk', in case qk is a rank query <7 (2, 7 , A:) denotes the number of items in

wt = <
Ct if Ct is an item

+oo if ^ is a query,
(3.3)

Stage 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

A that are strictly smaller than <7*. The goal of Stage 3 is to combine these local

solutions into the solution of qk in the original instance of the BSR problem.

l-n

'‘J+l

Figure 3.5: Illustrating the proof of Lemma 3-4-

In preparation for this, the first task of this stage is to arrange, in every

processor Pij, the ordered pairs (<7*, cr(z,i, &)) sorted by subscript k.

From now on, the processing relies heavily on a technical property of sorted

matrices that is discussed next. Referring to Figure 3.5, a processor Pjj is said to be

critical with respect to a query qk if qk is larger than the entry av in the northwest

corner of Aitj but not greater than the entry bv in the southeast corner of A ij, in

other words:

flu <1 qk ^ by. (3.4)

The following result is key in deriving a time-optimal algorithm for the BSR problem.

Lem m a 3.4. If a processor Put is critical with respect to a query <7*, then at most

one of the processors P i-ij and Pij+i may be critical with respect to <7*.

Proof. Referring, again, to Figure 3.5, let a^a*, and aw stand for the items in the

northwest corner of A i- i j ,A ij , and respectively. Similarly, let 6U, 6V, and bm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

stand for the items in the southeast corner of A -ij> A j , and A j+ i, respectively.

Assume, further, that Pij is critical with respect to query g*. Now, if P i-ij

is critical with respect to <7*, then it implies that

ttu “C qk ^ (3.5)

and, since the matrix A is sorted

bn < aw < bw. (3.6)

Now (3.5) and (3.6) combined guarantee that

qk £ &W

and so, by (3.4), Pij+i cannot be critical with respect to qk.

Similarly, if Pij+i is critical with respect to %, then

<bu < q k< bw (3.7)

and, since the matrix A is sorted

^ ^ (3.8)

Now (3.7) and (3.8) combined guarantee that

bn < qk,

confirming, by virtue of (3.4), that P i-\j cannot be critical with respect to qk- This

completes the proof of Lemma 3.4. □

Consider a generic horizontal slice HS,. For further reference, a copy of

query qk in some processor Pij is termed active if one of the conditions (al)-(a4)

below is satisfied, refer to Figure 3.6 for an illustration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

............... © a ,.........

.........Ak®
av < qk <

................
by

..........Al®
bv < qk <

| a „

P.

Qw

Fijp~ I

1 j

< A £

i

r-,o

qk s av

Figure 3.6: The concept of active copy of query

(al) Pij is critical with respect to query q*.

(a2) Slice HSi contains no critical processor with respect to query qk and, for some

j < \J v ~ 1) Qk is larger than all items in but smaller than or equal to all

items in Pij+1-

(a3) Query qk is larger than all the items in slice HSi; in this case the copy of qk

in Pijy/p~i is active.

(a4) Query qk is smaller than or equal to all the items in slice H S^ in this case the

copy of qk in P^0 is active.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

The leftmost processor of a horizontal slice containing an active copy of a

query % will be referred to as leading with respect to q*. At this point, one may

wonder how all this information is computed. It is clear that for determining what

processors Put are critical with respect to a given query, only the values in the

northwest and southeast corners of the submatrix A,-j are sufficient. Next, every

processor Pfj has to be informed about the values of the items in the northwest and

southeast corners of the neighboring processors in its own slice. This information

can be obtained initially as a preprocessing step. With this information available,

critical processors and active copies of all queries can be found in time O(m) time.

0 Active c^tes of q, O hucdvc c o p a of q. Q Copies of qoctie. in ptoccw* P„

Figure 3.7: The active copies of query qk

The strategy for combining the solutions of queries in every Pij into the

global solution involves gathering of the local solutions horizontally and vertically.

This is motivated by Lemma 3.4 and the following observation.

Observation. Consider two adjacent slices HSi and 7fS,+l. Let processors PtJ

and Pi+1,* be leading processors with respect to query q. Then in slice HSi, active

copies of q can lie only in processors Pij, P ij+ i,. . . , Pitk- Also for j < I < k, P^ is

the only processor which can contain an active query in the vertical slice VSj with

© © e p ©

© © © < ©

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

respect to g (refer to Figure 3.7).

Proof. This follows directly from lemma 3.4. □

This observation suggests the following rules for gathering of the active copies

of queries (as illustrated in Figure 3.8).

(rl) The copy of qk that belongs to the leading processor in slice HSi will be

scheduled to be gathered in processor P i0.

(r2) All the remaining active copies of g* in HSi will be gathered in the first

processor of their vertical slice.

The following result shows that rules (rl) and (r2) lead to one active copy of a query

per gather operation.

Lem m a 3.5. In a generic slice, at most one active copy per query (say qk) will be

involved in the corresponding gather operation.

Proof. To begin, consider horizontal slices. When a copy of qk is involved in a

horizontal gather operation, then either there exists only one active copy of qk in

slice HSi (in case the copy of qk in the leading processor is active by rules (a2)-(a4))

and no other copy of qk will be in a gather operation in this slice , or else, the copy

comes from a leading processor. By rule (r2), all the other active copies in the same

slice will be in a vertical gather operation.

Next, consider vertical slices. Suppose that more than one copy of a query

is involved in a vertical gather operation, let i be the largest subscript for which

the copy of g* in slice HSi has more than one copy involved in a vertical gather

operation. Without loss of generality, assume that qk belongs to P j+ i. The con­

clusion of Lemma 3.4, along with the maximality of i imply that the copy of g*

in processor P ,_ ij+1 is also using the same vertical bus. This implies that neither

Pi-ij+ i nor P,j+i are leading processors (with respect to g*) in slice P S j-i, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

HSi> respectively. However, now P»-ij, Pij, and Pij+i must be critical with respect

to qk, contradicting Lemma 3.4. □

It is important to note that the total number of active copies of any query qk

is at most 2y/p. This follows immediately from Lemma 3.5, since in each horizontal

(vertical) gather operation only one active copy of a query can participate and there

are at most y/p horizontal {y/p vertical) gather operations in all, the conclusion

follows.

Next, one may wonder if the active copies of query qk carry enough informa­

tion to yield the correct overall solution of qk. The answer to this natural question

is provided by the following results.

Lem m a 3.6. Let qk be a search query and let a be an item in A closest to qk. There

exists an active copy of qk in some processor Pij such that either a = a(i, j, k) or

a = a (i,j — 1, k) or a = a{i, j + 1 ,k).

Proof. By assumption, a must be the solution a{jp, q, k) of qk in some processor

PPi7. In fact, since the items in the matrix are not necessarily distinct, it is possible

that a is the solution of qk in a number of such processors. Assume, without loss

of generality, that such is the case for some processors in slice HS{. Specifically, let

Pij be the leftmost processor in HSi f°r which a = a [i,j,k) . If the copy of qk in

Pij is active, there is nothing to prove. Therefore, the copy of qk in P ,j is assumed

to be inactive.

Now, to prove that at least one of the copies of qk in Pij~i or Pij+i is active.

Since the copy of qk in Pij is inactive, (3.4) guarantees that Pij cannot be critical

with respect to qk. Therefore, with a,, and bv denoting, respectively, the item in the

northwest and southeast corner of Aij,

qk < Ov or qk > bv. (3.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Notice that a = a (i,j,k) along with (3.9) implies that a must be either a? or bv.

Symmetry and without loss of generality, allows for the assumption that a = Oy. In

turn, this implies

Qk ^ &v (3.10)

Notice that (3.10) along with the fact that the copy of qk in P jj is inactive guarantees,

by virtue of (a4) that j ± 1 and, thus, P ij-i must exist. Let, au and bu be the items

in the northwest and southeast corner of A ij- i, respectively. Since Pij is the leftmost

processor in HSi for which a = cr(i,j, k) and since the matrix A is sorted, it implies

that

ttu < qk. (3.11)

Moreover, it is not possible to have qk > bu for otherwise, (a2) and (3.11) combined

would guarantee that the copy of qk in P ,j must be active. Therefore, it must be

the case that

qk < bu. (3.12)

However, equations (3.4), (3.11), and (3.12), combined imply that the copy of qk in

PiJ-i must be active, as desired. This completes the proof of Lemma 3.6. □

Lemma 3.6 suggests an obvious way of updating the solutions of active copies

of a search query qk. The details are spelled out in the following.

• If the active copy of qk belongs to a critical processor Pitj and P ij-1 is not

critical, then the copy of qk in updates its solution a(i, j , k) by combining

it with a (i,j — 1 , k).

• If the active copy of qk belongs to a critical processor and Pij+i is not

critical, then the copy of qk in P{j updates its solution a(i, j , k) by combining

it with cr(i, j + 1 , k).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

• If the copy of qk is active because of rule (a2), then it updates its solution

k) by combining it with a(i, j + 1 , k).

Lem m a 3.7. Let qk be a rank query. The active copies of qk in a generic slice HSi

carry enough information to compute the number of items in FFSi strictly smaller

than qk.

Proof. First, if all copies of qk in slice HSi are active then the sum of their local

solutions k) is exactly the number of items in HSi strictly smaller than qk-

Assume, therefore, that not all copies of qk in slice HSi ara active. Consider

the active copy of qk in the leading processor of HSi with respect to qk-

• If this copy is active by rule (a4) then its solution a(i, j, k) must be 0, which

is the correct number of items in HSi strictly smaller than qk.

• If this copy is active by rule (a3) then its solution cr(i, j , k) is updated to read

-̂ =, which is the correct number of items in HSi strictly smaller than qk-

• If this copy is active by rule (al) or (a2) then its solution a (i,j,k) is updated

to read cr(i, j, k) + (j — 1)^, which is the correct number of items in HSi strictly

smaller than qk in all processors F ^ , P ^, Pij.

It is important to note that the solutions of the other active copies of % are not

changed by the updates. Thus, after the required updates, the collection of active

copies of qk in slice HSi carry enough information to correctly compute the number

of items in HSi smaller that qk- The conclusion follows. □

The next task of Stage 3 is to gather all the active copies of queries to the

first row and column of processors F^o, Po.i, (1 < i < yfp — 1), as illustrated in

Figure 3.8. This task can be performed in two gather rounds as follows. In the

first round, the gather operations proceed rowwise in parallel in each slice HSi.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Figure 3.8: Target of the gather operations in Stage 3

By Lemma 3.5, no gather operation contains more than m active copies. Since

every query is involved in at most one horizontal gather operation, this first round

takes 0(Tc(m , y/p)) time. Similarly, the vertical gather operations are performed in

parallel taking 0(Tc (m, y/p)) time. In summary, the following result is stated.

Lem m a 3.8. The solutions of all active copies of queries in Q can be gathered to

the first row and column of processor m per processor in 0(Tc(m , y/p)) time. □

To complete the algorithm, the various copies of queries in Q moved to the

processors will be collected and combined. This can be accomplished in many ways.

Only the processing for the first row of processors is explained below; the processing
1

for the first column being is dual.

• A simple All-to-All gather will re-arrange the data in such a way that all copies

of a query, q, will be placed in the same processor. Now every processor will, in

parallel, compute the final solution. The total time for the process will be y / p +

T A A c i ^ y / p - , y / p) - All-to-All gather operation is generally quite expensive on many

platforms. So this approach may not be preferable.

• If m < -j=, then by a single gather the whole data can be placed in a single

processor. Then either the whole computation can be done in a single processor,

 *a

O

© D O Q
Active copies o f <?*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

or the copies belonging to different queries can be scattered to different processors,

to complete the final computation. This approach will take 0(Tc({rriy/p, y/p) +

min (my/p,Ts (my/p,p))).

• If m > then repeat the gather and scatter process times. The compu­

tation time will scale accordingly.

Consequently, the following result is obtained.

T heorem 3.9. An arbitrary instance of the BSR problem involving a sorted matrix

of size y/n x y/n and a set of m queries, can be solved in 0(7a(m ,p) + (m +

J) log(m + J) + r G(m, y/p) + miniTAAcimy/p, y/p) , *fj= * (T s (m y / p , p)))) time on the

ACM(n,p,M). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

CHAPTER 4

THE COMPUTATIONAL PARADIGM ON THE

MMB

As noted in the discussion of the introduction, this chapter considers applying the

computational paradigm in a fine grain scenario; in particular, the focus will be on

the Mesh with Multiple Broadcasting. Specifically, the purpose of this chapter is to

discuss in detail time optimal solutions for the MQ problem and its instances on the

MMB. It will be shown that the knowledge of the communication system will lead

to time optimal solutions for some problems.

The remainder of this chapter is organized as follows: Section 4.1 presents

the lower bounds; Section 4.2 describes a generic algorithm for the MQ problem. The

remaining sections discuss various instances of the MQ problem. Specifically, Section

4.3 discusses rank-related problems; Section 4.4 discusses the multiple point location

problem and several of its variants and applications; Section 4.5 addresses proximity-

related problems; finally, Section 4.6 discusses the multiple stabbing problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

4.1 Lower Bounds

The purpose of this section is to establish a non-trivial lower bound for some in­

stances of the MQ problem on meshes with multiple broadcasting. This is achieved

by first, proving a lower bound for a different problem, namely the gather problem.

Once established, this lower bound will be used to derive lower bounds for all the

problems of interest.

4.1.1 The Gather

I !
mine

fn

Figure 4.1: Adversary instance of the gather problem

An instance of the gather problem consists of a set of n items A and of a partition R =

{Ai, A2 , ■.. Am} of A. A is pretiled in a MMB one item per processor in an arbitrary

fashion. The problem is to gather information about each of the .4, , 1 < i < m, in a

distinct “target” processor Pit that is, each processor P, should know about all the

items in .4,-. Recall that a processor can only hold a constant amount of information

Problem

I I
mine

fn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

therefore the gathering operation can only be of an “accumulative” nature. For this

operation to be complete P* should eventually have information about all the items

in A{. For example, the gathering operation may be to find the sum of all elements

in .4,-.

Lem m a 4.1. The lower bound for the gather problem is fi(m 37i«), given |4 ,| =

(£)*, 1 < i < m .

Proof: Consider the mesh as consisting of submeshes of size s x s , where s = m in e .

The proof is based on an adversary argument. The main aim of the adversary is

to slow down the progress of the algorithm as much as possible. To this effect, the

adversary places one element of each .4,- in a submesh: this is possible as m < s2

and there are exactly (^)s submeshes. Consider elements a,b,c,d, e € Ak, for some

k € {1,2 ,.. .m}, as illustrated in Figure 4.1. Using local connections only, the time

taken for any processor to know the combined information of a, 6 , c, d, and e is at

least s. It follows that in order to collect the information the bus system must be

used. The amount of information that has to be gathered per query is (^) 3 . The

total amount of information that needs to be broadcast is 0 ((^) 3 *m) and there are
2

\fn buses. Consequently, the time taken will be in which is ^(m sne). □

4.1.2 Lower bounds for instances of the MQ problem

This subsection describes the lower bounds of some of the instances of the MQ

problem. The approach used here is either to prove that the problem is equivalent

to the gather problem, or to reduce a problem whose lower bound is known (say

PK) to the problem at hand (say PU). To achieve the reduction from P K to PU ,

the general input to P K is mapped on to the input to PU and the solution of PU

will be mapped back to get the solution for P K . If the time for mapping is less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

than the lower bound of P K then PU should have the same lower bound as PK.

The following setup forms the general setting for all the subsequent problems.

Given a set of items A and a set of queries Q, where |4 | = n, and |Q| = m. The

items are pretiled in a MMB of size y/n x y/n, one per processor. Similarly, the

elements of the set Q are placed in the first columns, one per processor.

The Multiple Rank Problem

m = 4
Figure 4.2: Construction for multiple rank problem

It is to be proved that there exists an instance of the multiple rank prob­

lem where each query has to gather information about (^)* items. Consider the

sorted sequence of elements belonging to A and Q. Let them be {ai, 0 2 , . . . , an}

and {51, ?2j - • • j ?m}j respectively. The values of the queries are selected such that,
2

a(i-i)*s+i < Qi < where s = (^)s . Note that, since m < n,

2 2 1 2 1
(£■) 3 * m = 713 * 7713 < 713 * 713 = 77.'771' —

Refer to Figure 4.2, for an illustration of the placement of queries for m = 4.

It is clear from the construction that each query has to learn information

about at least s items independent of the other queries. This instance of the multiple

rank problem is equivalent to the gather problem. Thus, the following lemma is

obtained.

Lem m a 4.2. The multiple rank problem has a lower bound of Q(m3n6). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

The same lower bound holds for a variant of the multiple rank problem.

Instead of the rank of a query q, identify the two consecutive items a,, at+i which

belong to the sorted sequence of A such that a* < q < a,-+i. This variant of the

multiple rank problem is used to prove lower bounds for some problems, and it will

be referred to as the bracketing variant of the multiple rank problem.

T he H istog ram P roblem

The proof of the lower bound for the histogram problem is similar to the

multiple rank problem, with the frequency of each level $ G Q, 1 < i < m, being
2 _

required to equal (^)». Thus, the following lemma is obtained.

Lem m a 4.3. The histogram problem has a lower bound of fi(m3ns). □

T he M u ltip le P o in t L ocation P roblem

In this problem, it is necessary that if the query point is outside the convex

hull of A, the tangents from the point to convex hull are returned.

Let the convex hull of a set, A, of points in the plane be denoted by CH(A).

Furthermore, let CH(A) = {<21, 0 2 , ... ,a „ } where (a,-,a,-+i) is an edge of CH(A),

1 < i < n (for convenience assume ao = On). This lower bound is based on a

construction. Here the following instance of the multiple point location problem is

of interest. Let all the elements of 4̂ belong to the convex hull CH(A). Consider a

sample formed by taking every s** point of CH(A), refer to Figure 4.3. The idea is

to place each query in such a way that the solutions to any two queries will have to

be determined independently. This is achieved by placing each </, in the triangular

region determined by the edge (a(,-_i)„a, a,„) of the sample polygon and the two lines

determined by the points 0 (i-i)*s} and a,-,s+i}, 1 < i < m. (Note:

Subscripts which are negative or greater than n are treated in a modulo fashion.)

It is clear from the construction that each query has to learn information about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

© Query ® Sample points of CH(A) O Other points of CH(A)

Figure 4.3: Construction for multiple point location problem

at least s points of the CH{A) to determine its solution independent of the other

queries. Thus, the following lemma is obtained.

L em m a 4.4. The multiple point location problem has a lower bound of n (m w) .

□

It is noted that the lemma also follows by reducing the bracketing variant

of the multiple rank problem to the multiple point location problem. This can be

achieved by converting items and queries to polar coordinates as follows. Let d be

the element larger than every item and every query, assume that all the items and

queries are positive; a € A is mapped to (r, for some fixed r, and q € Q is mapped

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

- ■ ©' ■ © 1 o
a, fly <7 a *

Figure 4.4: Reduction for multiple point location problem

to (r, |) . This will guarantee that all the queries are outside the convex hull of the

items and their tangents can be used to determine the solution to the variant of the

multiple rank problem in the obvious way. In the Figure 4.4, the mapping of items

and queries to points is depicted. Specifically, there are three items, a,-, ay, a*, and a

query, q, such that a,- < aj < q < a*. The point (r, ^), corresponding to q has (r,

and (r, **■) as its tangency points indicating that the solution for query q consists of

the points a*, ay.

The Containment Problem

The construction for this problem is same as the one illustrated in Figure 4.3

above. Note that to determine the solution, each query has to check if it is either

inside or outside convex hull of A. If the skips one query then by the construction

it could be placed either inside or outside the convex hull of A and invalidate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

answer. Thus, the following lemma is obtained.

Lem m a 4.5. The containment problem has a lower bound of Q(m3ni). □

T he M ultip le C losest Segm ent P ro b lem

©— ■t---- ©
(- l.flt) 1r (l.ad

c)(0,q)

I-----©
(- (l,a,)

®------- ----- ©
(- ha,) (had

(0. 0)

~ ■ © © Q ®
flf Qj Q flt

Figure 4.5: Reduction for multiple closest segment problem

Again the lower bound is proved by reducing the bracketing variant of the

multiple rank problem to the multiple closest segment problem. Consider the input

to the bracketing variant of the multiple rank problem, items A and queries Q ,

generate input to the multiple closest segment problem by mapping each item a G A

to the segment ((—1, a), (1, a)) and each query q G Q to the point (0, q). The

segments returned by each query will correspond to the solution of the variant of

the multiple rank problem. In Figure 4.5, the mapping from items to segments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

and queries to points, is illustrated. Here items a,, ay, a* and query, q are mapped

to segments ((- 1 , 0 *), (1 , 0 ,)), ((—1 , ay), (1,%)), ((- l , a fc), (l,a*)), and point (0 ,g),

respectively. Note that, a* < a,- < q < dk, and the solution to point (0, q) is the

segment pair (((—1 , 0 ,), (l,a /)), ((—l,a*), (1, o*))) indicating that solution to the

query q is the item pair (ay, a*). Thus, the following lemma is obtained.

Lem m a 4.6. The multiple closest segment problem has a lower bound of fam in e).

□

T he M ultip le R ange Prob lem

It is easy to see that an instance of the multiple range problem can be gener-

ated where each query rectangle contains (^) 3 items, thus forcing each rectangle to
2

gather information about (^)a items independently, implying that this instance of

the multiple range problem is equivalent to the gather problem. Thus, the following

lemma is obtained.

Lem m a 4.7. The multiple range problem has a lower bound of f2(m 3ns). □

T he M ultip le C ircle Problem

This lower bound proof proceeds in the same lines as the lower bound proof

of multiple range problem. It is easy to see that an instance of the multiple circle

problem can be generated where each query circle contains (7^)3 items. Thus, forcing

each circle to gather information about (^) 3 items independently, implying that this

instance of the multiple circle problem is equivalent to the gather problem. Thus,

the following lemma is obtained.

Lem m a 4.8. The multiple circle problem has a lower bound of f2(m3ns). □

T he M ultiple S tabb ing P roblem

The multiple rank problem can be reduced to the multiple stabbing problem.

Given items A and queries Q for the multiple rank problem, generate an instance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.6: Mapping for multiple stabbing problem

of the multiple stabbing problem by mapping each item a G A to the segment

((0, a), (a, a)), and each query q € Q to the line (x = q) (assume that all the items

and queries are distinct). Let the number of line segments intersected by the line cor­

responding to q be k, its clear that the rank of q is n — k. This provides a solution to

the multiple rank problem. In Figure 4.6, the mapping from items to segments and

queries to lines, is illustrated. Similar to the multiple closest segment problem, items

a,-, ay, a*, and query q are mapped to segments ((0, a*), (a*, a*)), ((0, ay), (ay, ay)),

((0, a*), (a*, ak)), and line x = q, respectively. Again, a,- < aj < q < ak, and

the line x = q intersects only those segments ((0, a), (a, a)) where a > q, here in

particular, x = q intersects only ((0, ak), (ak, a.k)). This indicates that solution to

the query q is obtained directly from solution to the line x = q. Thus, the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

lemma is obtained.

Lemma 4.9. The multiple stabbing problem has a lower bound of fam ine). □

The Multiple Closest Point Problem

When the data for this problem is restricted to one dimension, it is precisely

the variant of the multiple rank problem. Therefore the lower bound for the multiple

rank problem should hold for this problem. Thus, the following lemma is obtained.

Lem m a 4.10. The multiple closest point problem has a lower bound of fi(m sni).

□

4.2 A Generic Multiple Query Algorithm on MMB

Most of the algorithms are similar to the generic ones developed for the ACM, so only

the MMB specific portions of the algorithm are presented in this section. Recall, a

generic instance of the MQ problem involves four parameters A, Q, <j>, and / . Recall

further that for every query g, (1 < i < m), let S',- = {aj € A \ <j){qu aj) = “yes”} and

that the solution of g,- is /(S,-). Next assume that the set .4 is stored in some order,

one item per processor, in 72 a mesh with multiple broadcasting of size y/n x y/n.

Further assume the set Q is stored in the first columns of 72., one query per

processor. To make the notation less cumbersome, let*

1 1s = 7713726. (4.1)

Note that 72 can be viewed as consisting of submeshes R ij (1 < i , j < &), of size

s x s, with R ij involving processors P(r, c) with 1 + (i — l)s < r < is, 1 4- (j — l)s <

c < js. Occasionally, it will be convenient to view the mesh 72 as consisting of

submeshes Si, S2 , . . . , S& of size s x y/n, with 5,- (1 < i < comprising of the
s

Tor simplicity assume that s , and y are integers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

slice 5/

slice S£

Figure 4.7: Partition into submeshes R ij

submeshes 72,-,i, P,-t2 , • • •, P - E v e r y such submesh 5,- will be referred to as a slice

of 7Z. For an illustration, refer to Figure 4.7.

Just as in the generic algorithm for the ACM, there are three stages in this algorithm.

The remainder of this section is devoted to a detailed description of the computation

that takes place in each of these stages.

Stage 1.

The purpose of this stage is to replicate the set Q of queries into the leftmost

y columns of each submesh R ij . The plan is to move the queries in every column

k, {I < k < yjj), of R into columns (k - l)-3̂ + 1 through of each submesh

Rij. To begin, every processor P(r, k) (1 < r < y/n) broadcasts the query it holds

horizontally to processor P (r ,r) . In turn, processor P(r, r) broadcasts the query

received vertically to processors P(ts + 1 + (r — 1) mod s.r) (0 < t < — 1).

As noted before, as a result of this data movement, the queries originally

stored in column k of R have been replicated in the diagonal processors of the sub­

meshes in every slice. From now on, every slice is processed in parallel. Specifically,

s Jn

R i . i

i " 1

R [£

R & . i
s ”7 s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

the queries stored by the diagonal processors of Riti are replicated, using the row

buses in slice into the (k — l) & + 1-th column of each Rij in slice St-. Next, the

queries stored by the diagonal processors in Ri# are replicated, using the row buses

in slice 5,, into the (k — 1)-^ + 2-th column of each Rij, and so on.

It is easy to see that the task of replicating the queries in one column of

1Z takes O (^) time. Therefore, as long as m > y/n, the queries initially stored

in the leftmost ^ columns of TZ can be replicated in time 0 (^ * j%)=0(ir)=:

0 (2̂ -)CO(m3ns). In case m < y / n , the queries are replicated in a way similar to

the one described. The complexity of this data movement is, again, 0 (^)C 0 (m 3 n s)

time.

With this, the goal of Stage 1 has been achieved: the queries have been

replicated into each of the submeshes R,j. Thus, the following result is obtained.

Lem m a 4.11. The set Q of queries initially stored in the first ^ columns of TZ

can be replicated into the first y columns of each R ij in 0(m 3ne) time. □

Stage 2.

In Stage 2, to avoid broadcasting conflicts the bus system is ignored, and

each submesh R ,j will act as an unenhanced mesh. The way the local instance of

the MQ problem is solved in each Rij is application-dependent. It is assumed that

this stage can be performed in 0(m 3ne) time.

Stage 3.

At the end of Stage 2, every processor of each submesh Rij that stores a

query qu will store its local solution f (S u). The goal of Stage 3 is to combine these

local solutions into the solution of qu in the original instance of the MQ problem.

Once the processing in Stage 3 is complete, the solution of the original instance of

the MQ problem has been obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

In preparation for this, the first goal of this stage is to arrange the ordered

pairs {qu, / (5 U)) in column-major order in the leftmost ^ columns of every submesh

Rij, sorted by u, the index of their first component. Recall that by using an optimal

sorting algorithm [47, 83], this goal can be achieved in 0 time.

From now on, the processing depends on whether or not m > n <.

Case 1. m > n*.

In this case, in every R ij there is at least one full column of queries. The various

slices of TZ are processed in parallel. For illustration purposes, processing that takes

place in slice 5, is detailed. Let {qu, f { S u)) be a generic query-solution pair stored

by a processor P(r, c) in R(i , 1). By virtue of the data movement described in the

preamble to this stage, a similar pair is stored by processors P(r,c + ts) in Ri,t+i,

for 1 < £ < - ^ — 1. In — 1 time units, sequentially, every processor P(r, c + ts)

broadcasts to P(r, c) the second component of the pair (qu, f{S u)) it holds. It is

easy to see that in 0 (-^) time, P(r, c) can accumulate the solutions of qu in the

whole slice 5,-. Since, St- has s buses, entire columns of queries can be processed in

this way. Consequently, the process of accumulating the corresponding solutions for

all the queries can be done, in each slice, in 0 (^ * ~) = 0 (2^) = 0(m 3ns) time.

Finally, after transposing the first y columns into rows in each R ij the

above process can be repeated in the vertical slice consisting of the submeshes

#i,i> # 2,1) • • •) R^n thus accumulating for every query the corresponding solutions
3

in 0(rri3n6) time.

Case 2. m < n«.

In this case, the queries in each Rij occupy only a segment of the first column,

as illustrated in Figure 4.8(a). To simplify, it is assumed without loss of generality

that for some positive integer c, s = c * m. Using local connections only, the m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

ml/3n,/s f i

fn

m lfin ,/6

fn

I
!
I

(a) (b)

Figure 4.8: Data movement of Case 2

queries in R ij (1 < j < ^) will be moved vertically, in lock step, into positions

[(j — 1) mod c] * 77i + 1 through [(y — 1) mod c]*m + m in the first column of Rij.

Clearly, this operation takes no more than C^mans) time. For an illustration, refer

to Figure 4.8.

The consecutive groups of c of the R i j s in slice St- is referred to as a run. In

Figure 4.8(b), various runs are depicted using different shades of gray. The motiva­

tion for this terminology comes from the observation that by virtue of the previous

data movement, the queries in each run occupy distinct rows. Using horizontal buses

in S,, the queries can be moved in parallel in 0(1) time. Specifically, the intention

is to move the queries in Sj into the columns of Rij. It is easy to confirm that there

are exactly = man® runs, and so the operation of compacting these

runs into R ij will take O(mane) time.

Next, sort the queries in each submesh Rij (1 < i < &) in row-major order

by query index. This data movement guarantees that the solutions corresponding

to the same query will occur next to one another. Proceeding row by row, these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

solutions are accumulated and stored in the leftmost processor in each row. Note

that no such processor can contain accumulated results pertaining to more than two

distinct queries. Proceeding vertically, the final sums are accumulated for every dis­

tinct query in every submesh Riyi. Now transposing columns into rows and shifting

appropriately, horizontal runs are created which will be compacted in R ij . Here the

queries are sorted again and, as before, the partial results are accumulated.

Thus, the entire computation in Stages 1-3 can be performed in 0(rri3ns) time and

the following result is obtained.

T heorem 4.12. Provided that every local instance of the MQ problem in Stage 2

can be solved in 0(m 3ns) time, the original instance of the MQ problem involving

a set of n items and a set of m queries can be solved in 0 (m 3n i) time on a mesh

with multiple broadcasting of size y/n x y/n. □

In each of the remaining sections, the details of Stage 2 of the algorithms are

discussed.

4.3 Rank-Related Computations

4.3.1 The Multiple Rank Problem

As in Chapter 2, multiple rank problem will be referred to as MULTI-RANK. For

definiteness, both the items .4 = (at, a s ,. . . , a„} in the database and the queries in

Q = ?2 i • • • > ?m} are assumed to come from a totally ordered universe.

Stage 2. To avoid broadcasting conflicts, in Stage 2 the bus system is ignored,

and every submesh Rij will act as an unenhanced mesh. The processing of Stage 2

will be partitioned into two substages, each solving a different instance of the MQ

problem. To define precisely the local instances of the MQ problem that are solved,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

begin by sorting the items in every R ij in row-major order. To simplify the notation,

let 61 , &2> • • • > b3t stand for the sorted sequence of items in Rij. In this notation, the

last column of R ij contains, in top-down order, the items b3, b̂ , . . . , ba2. Now the

instance of the MQ problem that is solved in Rij has the following parameters:

• the (sorted) sequence B,-j = b3, 6^ , • • •, b3i,

• the set Q of queries,

• a decision problem <$: Q x B ij —► { “yes”, “no” } such that for every 1 < u < m

and b G B ,j, (j>(qu,b) = “yes” if and only if 6 < qu, and

• for every query gu , let Su be the set of items b in Btj for which <f>(qu, b) = “yes” .

Let f { S u) = [S'ul -h 1 or, equivalently, the unique value k for which b^-\)a <

<7u < bka if qu < ba2, and s + 1 otherwise. (To handle boundary conditions, let

bQ = - 0 0 .)

S ubstage 2.1. The purpose of Substage 2.1 is to solve in every R ij the instance of

the MQ problem that was defined above. For every query qu, f (S u) will be referred

to as the row rank of qu in Rij. To accomplish the task specific to this stage, the

last column of R ij is replicated in all the columns of the submesh. This is done in

the obvious way in 0 (s)=0 (m3 ns) time.

Next, in each of the leftmost y columns of Rij, the items received are per­

muted vertically, in lock step, in such a way that in 0 (m3ns) time every query meets

every one of the items bs, fan, . . . ,b st. As a consequence, every query has enough in­

formation to compute its row rank. Thus, the following result can be stated.

L em m a 4.13. The row ranks of all queries in every submesh Rij can be determined

in 0 (TO3n 6) time. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Substage 2.2. The goal of this stage is to solve another instance of the MQ

problem in each submesh R ij. More specifically, this instance involves the following

parameters:

• the sorted sequence A,-j = bu b2, . . . , bs2 ,

• the set Q of queries,

• a decision problem (f>: Q x A ij —> { “yes”, “no” } such that for every 1 < u < m

and b € A,-j, (f>{qu, b) = “yes” if and only if b < qU) and

• for every u (1 < u < m), let Su be the set of items b in A ^ for which

<t>(qu,b) = “yes”. Let f (S u) = | Su |.

The solution of this instance of the MQ problem will use as a stepping stone

the solution of the instance of the MQ problem solved in Substage 2.1.

By using an optimal sorting algorithm for meshes [47, 59, 83], the sequence

of queries in each submesh R ij is sorted in row-major order by row rank in the first

y rows of the submesh. Each of the first y rows of R ij will be termed a query-row.

(Recall that every processor in the first y rows of R ij contain one item and one

query.) A query-row of R ij is called pure if all the queries in the row share the

same row rank. Otherwise, the query-row is termed impure. The identification of

every query-row as pure or impure follows. Every processor in the last column of

Rij sends the row rank of the query it holds horizontally using local movement only.

Upon receiving this information, every processor in the first column has enough

information to determine whether its query-row is pure or impure.

Note that for all queries whose row rank is s+ 1, the solution is s2. Next, con­

sider the processing for pure query-rows with row ranks at most s. Let rx, r>i, . . . , rt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

1 i i
DOOOOOOOOOOOOOOOQOOOOOOC

} pore query
(CMIot
row rank r

row rank r, row rank Tj row rank Hixxxxxxxxxxxoooaommmm

n

(a) (b)

Figure 4.9: Processing of pure and impure query-rows

be the row ranks of the pure query-rows in Rij. By moving all the rows of R ij ver­

tically, in lock step, row rk will be replicated in every pure query-row with row rank

rk. For an illustration, refer to Figure 4.9(a). Clearly, this data movement takes

0 (m 3ns) time. Further, in every pure query-row, the items are moved horizontally,

in lock step. This data movement ensures that every query in a pure query-row

determines its solution in 0{mMn6) time.

Impure query-rows are handled differently, refer to Figure 4.9(b). Let r be

an arbitrary impure query-row of Rij and let ri, r 2 , . . . , rt be the row ranks of the

queries in row r. Since the sequence of queries was sorted in row-major order, the

queries having the same row rank occur consecutively in r. It is important to note

that for any p (1 < p < s), at most two impure query-rows contain queries whose

row rank is p. In a first step, all queries in impure query-rows are moved to the row

of the mesh that equals their row rank. This is done by moving, in lock step, all the

query-rows of the mesh vertically. It is easy to confirm that after 0 (m 3ns) time

units, all queries in impure query-rows have reached the row of the mesh that equals

their row rank. The previous observation guarantees that no processor stores, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

a result of this data movement, more than two queries. In each row, the solution

for each query is determined by sending all the items in that row, in lock step,

horizontally throughout the row. This ensures that every query in the row finds its

solution in 0 (mSns) time. In summary, the following result can be stated.

Lem m a 4.14. The task of solving the queries in every can be performed in

0 (m 3ns) time. □

The prior results can now be combined to yield the stated goal.

T heorem 4.15. An arbitrary instance of the MULTI-RANK problem involving a

set of n items and a set of m queries can be solved in 0 (m37i6) time on a mesh with

multiple broadcasting of size y/n x y/n. Furthermore, this is time-optimal. □

4.3.2 Histogram Computation

The algorithm for HISTOGRAM is identical to the algorithm for MULTI-RANK

except for a post-processing step that is now described. Let rank(gL), rank(^2),

..., rank(gm) be the ranks of the queries returned by MULTI-RANK applied to

the instance of the HISTOGRAM problem. Now for every i (1 < i < m — 1) the

solution to qi is rank(g,-+i)—rank(gt), in other words, the number of pixels in A having

a grey-level intensity equal to g,-. Furthermore, the solution to qm is n —rank(gm_i).

In summary, the findings are stated by the following result.

T heorem 4.16. An arbitrary instance of the HISTOGRAM problem involving an

m-level image of size y/n x y/n can be solved in 0 (m3ns) time on a mesh with

multiple broadcasting of size y/n x y/n. Furthermore, this is time-optimal. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

4.4 The Multiple Point Location Problem

This section provides with an algorithm for MULTI-LOCATION, and presents a

few details of related problems: CONTAINMENT, SEPARABILITY, COMMON-

TANGENTS.

It is noted that if the convex hull of A is known, then the MULTI-LOCATION

problem can be solved in O{y/m) time by using the algorithm of Bhagavathi et al.

[13]. However, just computing the convex hull of n points is known to take Q(y/n)

time on a mesh with multiple broadcasting of size yjnxyfn. One of the contributions

of this work is to show that the MULTI-LOCATION problem as well as the three

other problems mentioned can be solved in O(mans) time without computing the

convex hull of A. Refer to Chapter 2 , for the formulation of MULTI-LOCATION as

an instance of the MQ problem and some of the important geometric preliminaries.

As a technicality, for all i (1 < i < m), set Si to the empty set. Recall that,

Si is the set of all “yes” instances for a query <?,•. Also, Stage 3 of the algorithm

relies on the same results obtained for the problem in Chapter 2. Stage 2 of the

MULTI-LOCATION algorithm is as follows.

Stage 2 . Begin by computing the convex hull of the subset A,-j of A in each

Rij. This task can be performed in O(m^ns) time using an optimal convex hull

algorithm for unenhanced meshes [42]. For simplicity of exposition, it is assumed

that the convex hull of is the convex polygon P = pi, p?, . . . , ps 2 stored in

row-major order in Rij. The task specific to Stage 2 is to determine for every point

in Q whether it is interior to any of the convex hulls local to the Rij's. Clearly, a

query point that is interior to any such convex hull lies in the interior of the convex

hull of .4 and its corresponding solution is the empty set.

The task of determining the queries in Q that are interior to P (i.e., the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

convex hull of Aij) will be partitioned into two substages.

Substage 2 .1 . This stage solves the (simpler) problem of finding lines of support

for those points in Q that are exterior to the convex polygon P' = p„P 25, • • • iPa*

consisting of the vertices of P whose subscripts are multiples of s, as illustrated in

Figure 4.10(a).

p i 3 p n \ p n P12
P13

P l4 . P l4 jPlO P lO

P l5 .

P 9

P iti

Pa

PS P4

(a)

Figure 4.10: Stage 2 of MULTI-LOCATION

Note that P' partitions the boundary of P into chains Ci, C2 , ■■■, Cs such

that Cj. = • • • ,Pks (1 ^ ^ ^ s).

The vertices of P' are stored by the processors in the last column of Rij, and

that every chain C* (1 < k < s) defined above involves points stored by processors

in row k of the submesh. As in Stage 2 of the MULTI-RANK algorithm, the contents

of the last column of each Rij is replicated in all the columns of the submesh. In

each of the first y columns, the queries are moved vertically, in lock step, in such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

a way that in 2 time units every query meets every point of P ' and thus can

determine the two supporting lines to P r, if they exist. To clarify this last point,

note that, for every pair (gu>Pfcs)» whether the line determined by qu and pks is a

supporting line for P ' can be determined in 0(1) time by checking if both P(k-i)3

and p(fc+i)4 are to the same side of the line.

Substage 2 .2 . The purpose of this substage is to use the partial solution obtained

in Substage 2.1 to determine for every point in Q whether it is interior or exterior to

P. Additionally, for those points which are exterior to P , the two supporting lines

are produced.

Observe that if a supporting ray for P ' determined by some point q in Q

and some point pks is a supporting ray for P , then no further action is needed.

Otherwise, it is easy to see that the ray qpks intersects precisely one of the chains

Ck- i or C&. (To handle boundary conditions let Co = Cs.) Furthermore, the chain

intersected by the ray qpks can be determined in 0 (1) time by checking the edges of

P incident to pks. Refer to Figure 4.10(b) for an illustration.

In what follows, the task of determining the left supporting ray is described.

Determining the right supporting ray is similar. Consider the points q in Q for which

the left supporting ray for P ' is not a supporting ray for P. For every such point

q, its chain rank is defined to be the subscript of the chain intersected by the left

supporting ray from q to P'.

Further, the query points in Q are sorted in row-major order by their chain

ranks. Assume without loss of generality that the chain rank of q is k. In order

to find a left supporting ray for P emanating from q only the left supporting ray

for the convex polygon obtained by adjoining to Ck = P(k~i)S+ u P(k- i) s+2 , ■ ■ ■ ,Pks

vertex P(k~i)s is necessary (to handle boundary conditions assume po = psi)- This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

can be done in 0(m 3ns) time by a slight modification of the processing of Stage 2

of the MULTI-RANK algorithm of Section 4.3. Consequently, the following result

is proved.

Lem m a 4.17. For every query point in Q, the supporting lines to the convex hull

of the subset of A in each /2,-j can be determined in 0(m 3ns) time. □

To summarize the findings the following result can be stated.

T heorem 4.18. An arbitrary instance of the MULTI-LOCATION problem involv­

ing sets A and Q of cardinalities n and m, respectively, can be solved in 0(m3ns)

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is

time-optimal. □

The three problems mentioned in the beginning of this section are solved by

using essentially the same techniques as discussed in Section 2.3 of Chapter 2. In

consequence, the following results are stated.

Theorem 4.19. An arbitrary instance of the CONTAINMENT problem involving

sets A and Q of cardinalities n and m, respectively, can be solved in 0(m 3ns)

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is

time-optimal. □

Theorem 4.20. An arbitrary instance of the SEPARABILITY and COMMON-

TANGENTS problems involving sets A and Q of cardinalities n and m, respectively,

can be solved in 0(m 3ns) time on a mesh with multiple broadcasting of size y/n x

y/n. □

4.5 Proximity-Related Computations

The purpose of this section is to show that four fundamental problems in pattern

recognition, robotics, and image processing can be solved elegantly by stating them

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

as special instances of the MQ problem. In each case, only the application specific

requirements of Stage 2 are considered as Stages 1 and 3 progress as previously

described.

4.5.1 The Multiple Closest Segment Problem

Stage 2 . The processing of Stage 2 will use the algorithm of Jeong and Lee [42] that

provide an optimal solution to the CLOSEST-SEGMENT on unenhanced meshes.

Using this algorithm the local instance in every Rij is solved in O(mans) time,

which leads to the following result.

Consequently, the following result is obtained.

T heorem 4.21. An arbitrary instance of the CLOSEST-SEGMENT problem in­

volving a set of n non-intersecting line segments and a set of m points in the

plane, can be solved in 0 (m 3 ns) time on a mesh with multiple broadcasting of

size y/n x y/n. Furthermore, this is time-optimal. □

4.5.2 The Multiple Range Problem

Stage 2 . The processing of Stage 2 will use the algorithm for CLOSEST-SEGMENT,

as described in Section 2.4 of Chapter 2. Using the algorithm in [42] the local in­

stance of CLOSEST-SEGMENT problem in each /2,-j is solved in time.

Consequently, the following result is obtained.

T heorem 4.22. An arbitrary instance of the MULTI-RANGE problem involving

a set A of n points in the plane and a set Q of m non-overlapping rectangles, can

be solved in 0(m 3ns) time on a mesh with multiple broadcasting of size y/n x y/n.

Furthermore, this is time-optimal. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

4.5.3 The Multiple Circles Problem

The MULTI-CIRCLE problem is solved using the same technique as developed in

Chapter 2, which can be formalized in this result.

T heorem 4.23. An arbitrary instance of the MULTI-CIRCLE problem involving

a set A of n points in the plane and a set Q of m disjoint circles, can be solved in

0 (m sn 6) time on a mesh with multiple broadcasting of size y/nx. y/n. Furthermore,

this is time-optimal. □

4.5.4 The Multiple Closest Point Problem

Stage 2 . The processing of Stage 2 will be partitioned into two substages. In

the first stage, construct the Voronoi diagram of the points of A located in every

submesh R ij. This first task can be performed in 0 (m3ns) time using the algorithm

of Jeong and Lee [42] for unenhanced meshes.

In the second substage, identify for every point in Q the Voronoi polygon

that contains it. Once the identity of the enclosing Voronoi polygon is known, the

local instance of the CLOSEST-POINT problem is, essentially, solved. The problem

at hand can be solved efficiently by observing that the total number of edges of the

Voronoi diagram of the subset of point of A located in R ij is in 0 (s2) and that,

consequently, these edges can be stored at most one per processor in every R ij.

A further key observation is that to identify, for every point q in Q the

unique enclosing Voronoi polygon, it is sufficient to identify the first Voronoi edge

intersected by a ray originating at q and going in the positive y-direction. This is,

of course, an instance of the CLOSEST-SEGMENT problem which can be solved in

each R ij in 0 (m 3 ne) time. Combining these parts yields the following result.

T heorem 4.24. An arbitrary instance of the CLOSEST-POINT problem involving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

sets A and Q of size n, and m, respectively, can be solved in O(rn^ni) time on a

mesh with multiple broadcasting of size y /n x y /n . Furthermore, this is time-optimal.

□

4.6 Stabbing-Related Problems

As with the previous section, only Stage 2 of the algorithm is presented below.

Stage 2. Begin by sorting the subset A ij of line segments in each R ij in decreasing

order of the ^-coordinate of their top and bottom endpoints. The sorting can be

performed in 0 (m 3n i) time using any optimal algorithm for unenhanced meshes

[47, 83]. Let e\, e2, . . . , e2s2 be the resulting sequence of endpoints stored in row-

major order in R ij. Every processor in the mesh stores exactly two endpoints. The

processing of Stage 2 will be partitioned into two substages, each solving a different

instance of the MQ problem.

Substage 2.1. The last column of R ij contains, in top-down order, the endpoints

£25- 1)625?e4s_i,e4a, . . . , e2a2_ i , N o w the instance of the MQ problem that is

solved in R ij has the following parameters:

• the sorted sequence E ,j = e25- i ,e 2a,e4Jf_ i)e4J, . . . , e 2s2_ i,e 242 of endpoints of

line segments,

• the set Q of query-lines,

• a decision problem ip : Q x E ij —»■ { “yes”, “no” } such that for every query line

qu and for every endpoint e £ E ij ip(qu, e)= “yes” if and only if endpoint e is

above qu, and

• for every query qu, let Su be the set of endpoints e in for which ip(qu, e)= “yes”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Define /(S u) = max{fc | e* € 5U} (i.e., the endpoint with the least ^-coordinate

that is above qu).

For every query qu, f(S u) referred to as the row rank of qu in R ij. To solve the

above instance of the MQ problem, replicate the last column of R ij throughout the

submesh. This is done, in the obvious way, in 0(s)=0(to3716) time.

Next, in each of the leftmost y columns of R ij, the items received are moved

vertically, in lock step, in such a way that in 0 (m 3ns) time every query-line meets

every endpoint. As a consequence, every query has enough information to compute

its row rank. Thus, the following result is obtained.

Lem m a 4.25. The row ranks of the queries in every R ij can be determined in

0(7713/16) time. □

Substage 2.2. The goal of this stage is to solve yet another instance of the MQ

problem in each submesh R ij. More specifically, this instance involves the following

parameters:

• the sorted sequence A{j = di, • • • > ds 2 of line segments,

• the set Q of queries,

• a decision problem <j>: Q x A ij —> { “yes” , “no” } such that for every 1 < u < m

and d € A ij, <f>(qu,d)= uyes” if and only if query-line qu intersects the line

segment d, and

• for every u (1 < u < m), let Su be the set of line segments d in A ij for which

<̂ (?u, d)= “yes”. Define f (S u) = | Su |, that is, the number of segments in R ,j

stabbed by the query-line qu.

The processing in Substage 2.2 is motivated by the following simple obser­

vation whose proof is immediate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

O bservation 4.26. Let qu be a query-line specified by its equation qu = yu. The

number of line segments in R fj stabbed by qu is precisely the number of line seg­

ments whose top endpoint has a higher y-coordinate then yu and whose bottom

endpoint has a lower y-coordinate than yu. □

Consider again the sorted sequence e i,e 2 , . . . , e ^ and assign each top endpoint in

this sequence a weight of +1 and to each bottom endpoint a weight of —1. Per­

form a prefix sum on the resulting weighted sequence. For every endpoint e of a

line segment in R jj the resulting value of the prefix sum is exactly the number of

segments intersected by a horizontal line through e. Now both sorting and prefix

sum computation is performed in 0(m 3ns) time.

Next, step is to identify for every query qu the unique pair ep, ep+i of end­

points with the property that ep > yu > ep+l. Once this is done, the desired solution

of qu is the value of the previous prefix sum for ep. The task of identifying the pair

ep, ep+1 is done as follows. Using an optimal sorting algorithm for meshes [47, 83],

the sequence of queries-lines in each submesh R ij is sorted in row-major order by

row rank in the first ^ rows of the submesh. Each of the first — rows of Rs ,• will be
3 S

termed a query-row. Recall that every processor in the first y rows of R ij contains

two endpoints and one query-line. A query-row of Rij is called pure if all the queries

in the row share the same row rank. Otherwise, the query-row is termed impure.

From here, the computation proceeds in two stages. In the first stage one finds the

solution to queries in pure query rows in 0 (m m s) time; in the second, one finds

the solution to queries in impure query-rows in 0(m3ne) time. For the full details

refer to Section 4.3. In summary, the following result is stated.

Lem m a 4.27. The task of computing for every query-line in Q the number of line

segments in each submesh R ij it intersects can be carried out in 0 (m jn «) time. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Consequently, the following result has been proved.

T heorem 4.28. An arbitrary instance of the MULTI-STABBING problem involv­

ing a set of n line segments and a set of m query-lines can be solved in 0(m37is)

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is

time-optimal. □

The POLY-LOCATION is solved by reducing it to an instance of the MULTI-

STABBING problem. Details can be found in Section 2.5 of Chapter 2. Conse­

quently, the following result is obtained.

T heorem 4.29. An arbitrary instance of the POLY-LOCATION problem involving

an n-vertex simple polygon a set of m query-points can be solved in 0(m37i6) time

on a mesh with multiple broadcasting of size y/n x y/n. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

CHAPTER 5

THE SORTED MATRIX ALGORITHM ON

THE MMB

The purpose of this chapter is to devise time optimal solution for the Batched Sorting

and Ranking problem (BSR), introduced in Chapter 3, on an MMB. Just as the

solution presented in Chapter 3, the algorithm proceeds in three stages. The main

difference is that the knowledge of communication subsystem (local connections and

buses) and the layout of processors allows for efficient implementation of the stages.

This leads to a provably time-optimal solution. Recall, that a matrix with its rows

and the columns independently sorted is referred to as a sorted matrix. A matrix

is said to be fully sorted if its entries are sorted in row-major (resp. column-major)

order.

Throughout this chapter, a generic instance of the BSR problem involves

a sorted matrix A of size y/n x y/n stored one item per processor in a mesh with

multiple broadcasting of size y/n x y/n and a collection Q of m, (1 < m < n),

queries stored in the first columns* of the MMB. The queries are of two types:

search queries and rank queries. The set Q of queries is an arbitrary mix of the two

query types. To avoid handling double subscripts, the items of matrix A will be

+In the remainder of the chapter, for simplicity it is assumed that is an integer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

enumerated, in row major order, as ai, a-i,. . . , On. At this point it is appropriate to

explain why the m queries lie in the leftmost ^ columns of the mesh. It is assumed

that the mesh with multiple broadcasting communicates with the outside world via

I/O ports placed along the leftmost column of the platform. This is consistent with

the view that enhanced meshes can serve as fast coprocessors for computers. In

such a scenario, the host computer passes the queries on to the enhanced mesh in

batches of y/n. Thus, in the presence of m input queries, the leftmost columns

will receive data.

The contribution of this chapter is twofold. Firstly, it is proved that any

algorithm that solves the BSR problem must take at least fi(max{logn, y/m}) time

in the worst case. This lower bound holds for both the CREW-PRAM and for the

mesh with multiple broadcasting. Secondly, a time-optimal solution to the BSR

problem on a mesh with multiple broadcasting of size y/n x y/n is provided by

exhibiting an algorithm whose running time is bounded by 0(max{logn, y/m}).

To put this contribution in perspective, it is noted that recently Bhagavathi

et al. [13] showed that the task of solving m search or rank queries in a fully sorted

matrix can be performed in Q (y / m) time on a mesh with multiple broadcasting of

size y / n x y / n . Actually, in the context of fully sorted matrices the difference between

the two query types vanishes, both of them being solved, essentially, in the same

way.

The situation is vastly different in sorted matrices that are not fully sorted.

It has been known for some time that the structure apparent in sorted matrices

is not sufficient to help convert given matrix to become fully sorted. Indeed, this

counterintuitive fact rediscovered by several researchers [36, 40, 45, 78] explains why

querying in sorted matrices is so much harder.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

In the context of sorted matrices, search queries and rank queries are very

much different, requiring a different resolution strategy. It is not surprising, there­

fore, that the algorithm presented in this dissertation for the BSR problem is much

more complicated and sophisticated than the algorithm in [13]. In order to obtain a

time-optimal algorithm for the BSR problem a novel and interesting cloning strategy

for the queries is developed. Consider the following overview of the strategy. The

MMB is partitioned into a number of submeshes and the given queries are cloned

in each of them. Having done that, the local solution of each query is obtained in

each of the submeshes. Finally, since the number of clones of each query is large

- larger than the available bandwidth allows to handle - a retrieving strategy is

devised whereby information is gathered only from some of the clones. The inter­

esting feature of this strategy is that there always exists a relatively small subset of

the clones that, when retrieved, provide for the resolution of all the queries. As a

consequence, the algorithm devised in this chapter is completely different from that

of [13] showing the whole potential of meshes with multiple broadcasting.

In addition, the result demonstrates that for sufficiently large to, the key

factor in obtaining ©(-y/m) time performance on a mesh with multiple broadcasting

is not the full sortedness of the matrix but, rather surprisingly, the fact that both

rows and columns are independently sorted. In this case, the running time of the al­

gorithm only depends on m. Moreover, for values of m smaller than, approximately,

log2 n, the full sortedness of the matrix is crucial in obtaining a very fast solution

to the problem.

The remainder of the chapter is organized as follows: Section 5.1 presents

the lower bound arguments and Section 5.2 discusses the time-optimal algorithm for

the BSR problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

5.1 Lower Bound

The purpose of this section is to establish a non-trivial lower bound for the BSR

problem on meshes with multiple broadcasting. Data sets A and Q are assumed to

be distributed in the MMB as described above. The lower bound arguments rely, in

part, on the following fundamental result of Cook et al. [24].

P roposition 5.1. [24] The time lower bound for computing the logical OR of n

bits on the CREW-PRAM is fi(logn) no matter how many processors and memory

cells are available. □

The following result of Lin et al. [49] is also important.

P roposition 5.2. Any computation that takes 0(t(n)) computational steps on an

n-processor mesh with multiple broadcasting can be performed in 0(t(n)) compu­

tational steps on an n-processor CREW-PRAM. □

It is important to note that Proposition 5.2 guarantees that if 7\f(n) is the

execution time of an algorithm for solving a given problem on an n-processor mesh

with multiple broadcasting, then there exists a CREW-PRAM algorithm to solve the

same problem in Tp(n) = 7\f(n) time using n processors and O(n) extra memory. In

other words, “too fast” an algorithm on the mesh with multiple broadcasting implies

“too fast” an algorithm for the CREW-PRAM. This observation is exploited in [49]

to transfer known computational lower bounds for the CREW-PRAM to the mesh

with multiple broadcasting.

It will be shown that even solving a single query of either the search or rank

type takes fi(logn) time. This result will be proved for the CREW-PRAM and then

ported to the mesh with multiple broadcasting by Proposition 5.2.

This is done by reducing the OR problem to the problem of solving a search

query q. For this purpose, let b\, b2, . . . , be an arbitrary input to OR. Con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Figure 5.1: Lower bound for solving a single query

struct a sorted matrix A , as illustrated in Figure 5.1, by placing 6i, 62, • • •: 6^ in

A (1, y / n) , >1(2, y / n — 1) , . . . , A (y / n , 1), and by setting for all i , j with i + j y / n + 1:

This construction guarantees that the matrix A is sorted, regardless of the values

of 61,621 • • -iby/z- Assign to query q the value 0.9. The answer to the OR problem

is 0 if and only if the solution of the query is 0. This is because of the fact that, if

the sequence 61} 62, . . . , 6^ contains a 1 , then 1 will be returned as a solution of the

query, otherwise, 0 will be returned. By virtue of Proposition 5.1, any algorithm that

correctly answers a search query on a sorted matrix must take Q(log v^i)=^(logn)

time on the CREW-PRAM, regardless of the number of processors and memory cells

available.

Now to reduce the OR problem to the problem of solving a rank query q.

For this purpose, let 61, 62, . . . , 6^ be an arbitrary input to OR. Construct a sorted

matrix A, as illustrated in Figure 5.1, and let the query q have the value 0.9. It

should be clear that the answer to the OR problem is 0 if and only if the number of

elements of .4 that are smaller than <7 is exactly To see this, observe that by

construction, every element of the matrix in the upper left triangle is strictly smaller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

than the query and the only other elements that may be strictly smaller than the

query lie on the diagonal, as seen from Figure 5.1. Thus, total number of elements

strictly smaller than q is if and only if all the elements on the diagonal are 0 .

Now Proposition 5.1 guarantees that any algorithm that correctly answers a rank

query on a sorted matrix must take fi(logn) time on the CREW-PRAM. Combining

this with Proposition 5.2, the following result is obtained.

Lem m a 5.3. Any algorithm that correctly solves one search or rank query on a

sorted matrix with n elements must take at least ft(logn) time on a mesh with

multiple broadcasting of size y/n x y/n. □

Next it will be demonstrated that every algorithm that solves the BSR prob­

lem on a fully sorted matrix must take £l{y/m) time in the worst case. This will

imply the same lower bound for sorted matrices. At this point, assume that A is a

fully sorted matrix, and stored in the MMB as described above. The elements of A ,

in row major order, are referred to as ai, 0 2 , . . . ,a n. In the context of fully sorted

matrices, both search and rank queries are solved, essentially, the same way. Specif­

ically, let q be an arbitrary query and let i be the subscript for which a* < q < a,+i.

Clearly, if q is of rank type than its solution is i, which denotes the number of items

in A strictly smaller than q. On the other hand, if q is of search type, then the item

in A that is closest to q is either a,- or a,-+1. This observation allows us to handle, for

the purpose of the lower bound, both type of queries as if they were rank queries.

In turn, this implies that the following result proved in Bhavagathi et al. [13] can

be used.

P roposition 5.4. Any algorithm that correctly solves m, 1 < m < n, queries on a

fully sorted matrix with n elements must take at least Q(y/m) time on a mesh with

multiple broadcasting of size y/n x y/n. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Lemma 5.3 and Proposition 5.4 combined, provide the main result of this

section.

T heorem 5.5. Any algorithm that correctly solves an instance of the BSR problem

involving a sorted matrix of n items, stored one per processor, and a collection of m,

(1 < m < n), queries, stored one per processor, in the first columns of a mesh

with multiple broadcasting of size y/n x y/n must take at least fi(max{logn, y/m})

time. □

5.2 A Time-Optimal BSR Algorithm

In this section it will be assumed that A is a sorted matrix and that A and the queries

Q are distributed on the MMB as described in the introduction of this chapter.

Similar to the discussion of Chapter 4, 71 is viewed as consisting of submeshes R^-,

(1 < i , j < \/^)» °f s*ze V”* x and slices 5,-. Figure 5.3, illustrates these

subdivisions.

Figure 5.2: Input to the BSR problem

As with the other applications of the computational paradigm, the algo­

rithm for the BSR problem proceeds in three stages which are now described with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

sUee St

sSeeSjs

Figure 5.3: Partition into submeshes R ij

adaptation to the MMB.

Stage 1 . The set Q of queries is replicated in each submesh R ij, creating local

instances of the BSR problem.

Stage 2 . In each submesh R ij , in parallel, the solution of the local instance of the

BSR problem, is determined.

Stage 3. The solutions of the local instances of the BSR problem obtained in Stage

2 are combined into the solution of the original BSR problem.

The remainder of this section is devoted to a detailed description of each of these

stages.

S tage 1 .

The processing here is similar to the Stage 1 of the generic algorithm de­

scribed in Section 4.2 of Chapter 4. The purpose of this stage is to replicate the set

& R
Ru : : gi.j|

V : j *£JS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Q of queries, in each submesh Rij, one query per processor. The plan is to move the

queries in each column of R into columns of every R ij. Specifically, the queries

in a generic column k, (1 < k < ^«), of R will be moved to columns (k — 1) ^ ^ + 1

through fcy/J of R ij.

Begin with every processor P(r, k), (1 < r < y/n) broadcasting the query it

holds horizontally to the diagonal processor P(r, r) as shown by the transition from

Figure 5.4(a) to 5.4(b). In turn, processor P(r, r) broadcasts the query received

vertically to every processor P (t y / m + (r — 1) mod y / m + l , r) for t = 0,1, . . .

as shown in transition from Figure 5.4(b) to 5.4(c).

:

—
■ T T K

b

\ . \ . \

\ V \ •,i* - * - *%• - -• . v • v% . S . S.
 zm 2*___ 1

F, V R V
S ' S i S i S

% : \

s : ••*

Figure 5.4: The data movement of Stage 1

As noted before, as a result of this data movement, the queries originally

stored in column k of R have been replicated in the diagonal processors of the sub­

meshes in every slice. From now on, all slices are processed in parallel. Specifically,

the queries stored by the diagonal processors of R ij are replicated, using the row

buses in slice S,, into the ((k — 1)^ /^ + l)-th column of every R ij within the slice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Next, the queries stored by the diagonal processors in R, ,2 are replicated, using the

row buses in slice S,-, into the ((k — 1) y j ^ + 2^-th column of each R ij. This process

continues for each submesh in the slice. Figure 5.4(d), illustrates such a replication.

The task of replicating the y / n queries originally stored in one column of R

takes 0 (y /^) time. Therefore, as long as m > y/n, the queries initially stored in the

leftmost ^ columns of R can be replicated in time 0 (y ^ * -^ =)= 0 (-^ =)= 0(y/m).

In case m < y/n the queries are replicated in a way similar to the one described. The

complexity of the data movement is, again, 0(-/m). With this, the goal of Stage 1

has been achieved: the queries have been replicated into each of the submeshes R ij,

and the following result is obtained.

L em m a 5.6. The set Q of queries initially stored in the first columns of R can

be replicated, one query per processor, in each submesh R ij in 0(y/m) time. □

The same techniques used in Stage 2 and Stage 3 of the BSR algorithm for the

ACM are employed to solve the problem here (Section 3.1, Chapter 3). Therefore,

to avoid repetition and maintain clarity, the main results and a brief sketch of the

processing are presented with all the proofs omitted.

S tage 2.

At the end of the Stage 1, having replicated the set Q of queries in each

submesh, R ij, the original instance of the BSR problem is partitioned into several

instances, each local to an R ij. Each local instance involves the subset of A stored

by the processors in R ,j and the entire set Q of queries.

The main goal of this stage is to solve the local instance of BSR in each

submesh R ij. To avoid broadcasting conflicts in Stage 2, the bus system is ignored

so that every submesh R ij will act as an unenhanced mesh. Begin by sorting the

items and queries in each Rij in row-major order using an optimal sorting algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

for meshes [47, 59]. In the sorting process ties are broken in favor of queries. In

other words, if a query and an item are equal, then in the sorted version the query

precedes the item.

Let = ci, C2 , . . -, C2m-i j C2m be the resulting sorted sequence stored, two

items per processor in the submesh Rij. The following two results will justify the

approach to solving the local instances of the BSR problem.

Lem m a 5.7. Let qk be a query of rank type and assume that Cj = qk, in other

words, qk occurs in position t in the sorted sequence C,-j. The number of items in

R ij strictly smaller than qk equals the number of items preceding qk in C ,j. □

For solving all rank type queries in R ij, Lemma 5.7 motivates the strategy

of assigning weights wt for each Ct as dictated by equation 3.1. Next, compute the

prefix sums of the sequence Ci, C2, . . . , C2m_i, C2m using the weights assigned in (3.1)

and let et ,e2 , . . . , e 2m -i,e2m be the result. By virtue of Lemma 5.7, the value et

corresponding to Ct = qk is exactly the number of items in R ij strictly smaller than

qk- Therefore, all the rank queries can be solved in the time of sorting and of prefix

sums computation which is O{y/m) [59, 60].

The task of handling search queries requires a different approach. This again

involves assigning weights to the sorted sequence Q j = Ci, C2 , . . . , C2m_i, C2m. Refer­

ring to Figure 3.4,

Lem m a 5.8. For all the search queries in some sequence sp the solution is either

ca—i or D

Lemma 5.8, along with weight allocation strategy described by equations 3.2

and 3.3 lead to the following result.

Lem m a 5.9. The task of solving the local instance of the BSR problem in each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

submesh R ij can be performed, in parallel, in 0 (y / m) time. □

S tage 3.

At the end of Stage 2, each processor of a generic submesh R ij stores, along

with query qk, its local solution a (i,j,k). In case qk is a search query <r(i,j,k)

denotes the item in A closest to <&; in case qk is a rank query a(i, j, k) denotes the

number of items in A that are strictly smaller than %. The goal of Stage 3 is to

combine these local solutions into the solution of qk in the original instance of the

BSR problem.

Figure 5.5: Illustrating the proof of Lemma 5.10.

In preparation for this, the first task of this stage is to arrange, in every

submesh R ij, the ordered pairs (qk, cr(i,j, k)) in row-major order, sorted by subscript

k. Recall that using an optimal sorting algorithm for meshes [59], this task can be

performed in 0(y/m) time. Note that, after sorting, the tuple (qk, o (i,j, k)) occupies

the same relative position in each of the submeshes Rij.

From now on, the processing relies on the technical property of submeshes

being critical with respect to queries. This is similar to the property of processors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

being critical with respect to queries discussed in Chapter 3. Referring to Figure

5.5, a submesh R ij is said to be critical with respect to a query qk if qk is larger

than the entry a„ in the northwest comer of R ij but not greater than the entry bv in

the southeast comer of R ij. The following result is key in deriving a time-optimal

algorithm for the BSR problem. Refer to Figure 5.5. □

Lem m a 5.10. If a submesh R ij is critical with respect to a query qk, then at most

one of the submeshes R i - i j and Rhj+ i may be critical with respect to qk . □

................w ------
:

j b. ® •

J , <gtSfv

: Rij+i ;

: <vet •
<Rk Saw

: R‘Ji
■ ______ :____

3 :

;

Figure 5.6: The concept of active copy of query qk, for an MMB

Consider a generic slice S*. For further reference, a copy of query qk in some

submesh R^j is called active if one of the conditions (al)-(a4) below is satisfied.

Refer to Figure 5.6 for an illustration.

(al) R ij is critical with respect to query qk.

(a2) Slice S i contains no critical submesh with respect to query qk and, for some

qk is larger than all items in R jj but smaller than or equal to all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

items in R ij+ i -

(a3) Query qk is larger than all the items in slice S*; in this case the copy of g* in

R. nr is active.
l 'V m

(a4) Query qk is smaller than or equal to all the items in slice 5,; in this case the

copy of qk in R ^ is active.

The leftmost submesh of a slice containing an active copy of a query qk will

be referred to as leading with respect to qk- All the above information is computed

in the following way. For determining what submeshes R ij are critical with respect

to a given query, the only information needed are the values in the northwest and

southeast comers of the submesh. In 0 (y/m) time these values can be circulated

within the submesh and every processor becomes aware of them. Next, every pro­

cessor in R ij needs to be informed about the values of the items in the northwest

and southeast comers of the neighboring submeshes in its own slice. Again, this

information can be obtained in 0(y/rn) time in the obvious way. With this infor­

mation available, critical submeshes and active copies of all queries can be found in

constant time.

The strategy for combining the solutions of queries in every R ij into the

global solution involves a considerable amount of data movement. To restrict the

running time to Q(y/m) the buses will be used for the data movement. Lemma

5.10 motivates the assignment of buses to active copies of queries according to the

following rules, illustrated in Figure 5.7.

(rl) The copy of qk that belongs to the leading submesh in slice S,- is assigned the

horizontal bus in its own row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

A

n * iiSfrfiii > ft if t

O active copy o f qt
O inadivt copy o f qjt

n leading submesh

Figure 5.7: Assignment of buses

(r2) All the remaining active copies of g* in 5,- are assigned the vertical bus in their

own column.

The following result shows that rules (rl) and (r2) lead to conflict-free broadcasting.

Lem m a 5.11. If every active copy of qk broadcasts simultaneously on the assigned

bus, no broadcast conflict will arise.

Proof. First, no broadcast conflicts can occur on horizontal buses. To see this, note

that if the horizontal bus was assigned to a copy of qk, then either there exists only

one active copy of qk in slice Si (in case the copy of qk in the leading submesh is

active by rules (a2)-(a4)) and so no other copy of qk attempts to use the same bus,

or else, the copy comes from a critical submesh. By rule (r2) all the other active

copies in the same slice will use vertical buses and, again, no conflict can arise.

Next, to show that no conflicts can arise on vertical buses. Suppose the

contrary and let i be the largest subscript for which a broadcast conflict occurs

when the copy of qk in slice S,- broadcasts vertically on its assigned bus. Without

loss of generality, assume that qk belongs to ftij+i- The conclusion of Lemma 5.10,

along with the maximality of i imply that the copy of qk in submesh Ri-ij+ i is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

also using the same vertical bus. This implies that neither nor Rij+i are

leading submeshes (with respect to qk) in slice and Si, respectively. However,

now R i-ij , R ij, and Rij+i must be critical with respect to qk, contradicting Lemma

5.10 □

It is important to note that the total number of active copies of any query qk

is at most 2 ^ l . This follows immediately from Lemma 5.11, since the assignment

of buses to active copies of qk leads to no two copies using the same bus. Since at

most copies of qk are assigned horizontal buses and at most y j ^ copies of qk

are assigned vertical buses, the conclusion follows.

The active copies of query qk carry enough information to yield the correct

overall solution of qk. This is due to the following result.

Lem m a 5.12. Let qk be a search query and let a be an item in A closest to qk-

There exists an active copy of qk in some submesh R ij such that either a = cr{i, j , k)

or a = a (i,j — 1, k) or a = a (i,j + 1, k). □

Lemma 5.12 suggests an obvious way of updating the solutions of active

copies of a search query qk for which the details follow.

• If the active copy of qk belongs to a critical submesh R ij and R ij - 1 is not

critical, then the copy of qk in R ij updates its solution a(i, j , k) by combining

it with cr(i, j — 1 , k).

• If the active copy of qk belongs to a critical submesh R ij and Rij+i is not

critical, then the copy of qk in R ij updates its solution a (i,j, k) by combining

it with a{i, j + 1 , fc).

• If the copy of qk is active because of rule (a2), then it updates its solution

a (i,j,k) by combining it with a (i , j + 1 ,k).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Lem m a 5.13. Let g* be a rank query. The active copies of qk in a generic slice

Si carry enough information to compute the number of items in Si strictly smaller

than qkm

Proof. First, if all copies of qk in slice 5, are active then the sum of their local

solutions cr(i, j, k) is exactly the number of items in 5,- strictly smaller than qk-

Assume, therefore, that not all copies of qk in slice S',- are active. Consider

the active copy of qk in the leading submesh of 5,- with respect to g*.

• If this copy is active by rule (a4) then its solution <j(i,j,h) must be 0, which

is the correct number of items in S,- strictly smaller than g*.

• If this copy is active by rule (a3) then its solution cr(i,j, k) is updated to read

myfn, which is the correct number of items in S,- strictly smaller than qk.

• If this copy is active by rule (al) or (a2) then its solution cr(i,j,k) is updated

to read cr(i, j , k) -f (j — l)m , which is the correct number of items in S,- strictly

smaller than g* in all submeshes Riti, Rit2 , . . . , Rij-

It is important to note that the solutions of the other active copies of g* are not

changed by the updates. Thus, after the required updates, the collection of active

copies of qk in slice 5t- carry enough information to correctly compute the number

of items in Si smaller that qk- The conclusion follows. □

The next task of Stage 3 is to move all the active copies of queries to diagonal

submeshes R,t,, 1 < i < as illustrated in Figure 5.8. This task can be performed

in two broadcast rounds as follows. The first round proceeds row by row in each

submesh ftjj. Specifically, all active copies of the queries in the first row of the Rij's

that have been assigned vertical buses broadcast their local solution on this bus to

the corresponding processor in the diagonal submesh R jj. Following this, all the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

G
*/J j

Figure 5.8: Target of the data movement in Stage 3, for an MMB

queries in the second row will broadcast vertically. This continues for each row of

the submesh. By Lemma 5.11 no broadcast conflicts will arise. Since every R ij has

y / f n rows, this first round takes O (y / m) time.

The second broadcast round involves broadcasting along horizontal buses.

This time, the columns of every R jj are handled one by one. Since there are y/m

columns in each submesh, the second round takes 0 (y / m) time. As illustrated in

Figure 5.9, it is possible for two active copies of the same query <7* to be sent to the

same location of a diagonal submesh R jj, one copy via a horizontal bus and one via

a vertical bus. By Lemma 5.11, the number of such copies is restricted to at most

two. Furthermore, one of them will arrive in one broadcast round (on vertical buses)

while the second will arrive on horizontal buses. The processor receiving them will

proceed to combine the respective solutions. In summary, the following result is

stated.

Lem ma 5.14. The solutions of all active copies of queries in Q can be broadcast

to the diagonal submeshes R ij one per processor in 0 (y/m) time. □

To complete the algorithm, the various copies of queries in Q moved to the

diagonal submeshes will be collected and combined. The idea is to move all the

active copies of the same query from the diagonal submeshes Rij to one or several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

£

Figure 5.9: Combining solutions, for an MMB

adjacent rows of the original mesh. Specifically, in case

y/n < m (5.1)

all the copies of the first -̂ = queries, qi, qz,---, q-j. will be moved to the first row of

the mesh, the copies of the second group of queries, namely, tfjfu+i, 9 -^+2 > • • • 7

will be moved to the second row of the mesh, and so on.

On the other hand, in case

m < y/n (5.2)

the copies of qx will be moved to the first ^ rows of the mesh, y/m per row. The

data movement for both cases is similar and will be discussed next. In preparation

for this data movement the following terminology needs to be introduced.

Consider a generic copy of query qk- The quantities associated with % are

r (qk) and c(<fc) referred to as the r-value and c-value of qk. Here, r (q k) is the identity

of the row of the mesh to which this copy will have to navigate; c(g*) is the relative

position of this query among the copies moved to row r (qk) . The processor storing

qk can compute r (q k) and c(q*) in 0(1) time.

At the beginning of Stage 3, in every submesh R ij the queries were sorted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

in row-major order. Thus, their solutions will be stored in the diagonal submeshes

Rij in the same relative order.

Further, using vertical buses, the copies of the queries in the first row of

every submesh P,it are moved to the row of the mesh corresponding to their r-

value. Specifically, a generic copy of query qk stored by a processor P [i,j) will be

broadcast vertically to processor P(r(qk),j). It is crucial to note that the queries

are also sorted in row-major order by their r-values and so no broadcasting conflicts

can arise. Proceeding sequentially, all the y/m rows of the R i/s are processed as

described. Thus, in 0(v/m) time all the copies will be broadcast to the row of the

mesh corresponding to their r-value. No processor will receive more than one copy

of any query in the above data movement.

From now on, the processing that takes place in each row of the mesh depends

on whether (5.1) or (5.2) holds. First, assume that (5.1) is true. The processing

that takes place in the first row of the mesh will be detailed, the same action being

performed, in parallel in all other rows. The copies of will be broadcast to

processor P (l, 1) in the order of their c-values. Upon receiving the next copy of qi,

P(1,1) combines the corresponding solutions. Since there are (at most) yj~^ copies

of qu the solution of query qi will be obtained in 0 (y /^) time. The copies of the

remaining queries <72, • • • > moved to row 1 will be processed similarly. Therefore,

the overall time needed to solve all the queries in case (5.1) holds is bounded by

In case (5.2) holds, recall that the copies of a given query have been spread

over ^ rows of the mesh. Again, the processing of query qi will be discussed,

all the others being handled, in parallel, in a similar way. The ^ copies of qi

have been moved to rows 1 , 2 , . . . , - ^ , • y / m copies to each row. Now proceeding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

sequentially, in order of their c-values, the y/m copies of qi in each of the first

rows will be broadcast to the leftmost processor in these rows. These processors will

be responsible for combining the solutions as described above.

By Lemmas 5.12 and 5.13, at the end of y/m broadcasts, all the information

needed to solve the queries is stored by the processors in the first column of the

mesh. Specifically, processors P (l, 1), P (2 , 1), . . .P (-^ , 1) contain partial solutions

corresponding to query qi, the next group of & processors contain partial solutions

corresponding to query q2, and so on. Refer to Figure 5.10 for an illustration.

H

fn

Figure 5.10: Partial solutions contained by processors in first column

Finally, consider diagonal submeshes A> A>, - An of size x as il­

lustrated in Figure 5.11. For the final step of Stage 3 the diagonal submesh A is

dedicated to solving the query qi.

In one broadcast, the partial results stored by processors in the first column of

the mesh are moved, along horizontal buses to the first column of each A , as depicted

in Figure 5.10. Now combining the partial solutions of query g,, (1 < i < m),

amounts to a semigroup computation, local to A . Using the result of Olariu et al.

[61] this computation can be performed in O (lo g ^) time. Once the final solution

of each query has been computed, it is moved back to the first column of the mesh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

fn

J Lm *

£ .m

£ 1 p»
J n

•

J L

Figure 5.11: Submeshes D\ , D2 , . . . , Dm

Consequently, in case (5.2) holds the overall running time of the algorithm

is bounded by O{y/m 4- log-^). Since for m > 16

y / m — l o g m > 0 ,

the running time of the algorithm, in case (5.2) holds, satisfies O (s/m -I- log-^)C

0 (yfrri-t- logn). In summary, the following result is stated.

T heorem 5.15. An arbitrary instance of the BSR problem involving a sorted

matrix of size y/n x y/n and a set of m queries, can be solved in 0(max{logn, y/m})

time on a mesh with multiple broadcasting of size y/n x y/n. Furthermore, this is

time-optimal on this architecture. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

CHAPTER 6

IMPLEMENTATION AND CONCLUSIONS

6.1 Implementation Results

To demonstrate the practical applicability of the computational paradigm, two in­

stances of the MQ problem were implemented. These instances represent the fol­

lowing problems:

• the multiple point location problem, and

• the multiple rank problem.

These problems were selected because they are fundamental having a wide variety

of applications. The code was written in the C programming language, using the

Message Passing Interface (MPI). The code can be ported to any existing platform

which supports MPI. In particular, experiments were run on the IBM SP2 and a

network of workstations. IBM SP2 is multiprocessor system built using powerful

RS/6000 processors. The communication medium is a multi-stage omega network.

In this implementation, the timings for the three stages of the algorithm were

documented. Specifically, the three stages are referred to follows: Stage 1 is termed

the broadcast phase, Stage 2 is termed the compute phase, and Stage 3 is termed the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

reduce phase. The remainder of this section presents the details of the timings and

the supporting arguments for their trends.

6.1.1 Multiple Rank Problem

Recall the multiple rank problem, given a set A of items and a set Q of queries from

a totally ordered universe, for each q in Q determine the number of items in A with

smaller values. The three stages have the following following theoretical timings,

with m < M:

• Broadcast phase: TB(m,p),

• Compute phase: 0((m + ~) log^), and

• Reduce phase: TB(m,p).

As p increases, the running time of compute phase should drop and there should be

an increase in the running times for broadcast and reduce phases. The increase for

the TB{m,p) should be relatively lesser than that of TR(m,p). This is because of

the fact that, the total number of elements involved in Stage 3 (reduce phase) is mp.

This implies that both the communication as well as the computation will increase

for the reduce phase.

This problem was run using up to 32 processors with randomly generated

values for items and queries. Figure 6.1 indicates the running times for n =

8000000, m = 1000000. From this figure it is clear that the general trends for

compute phase and the reduce phase are decrease and increase in the times, respec­

tively which is expected. Experiments were performed with other input values, with

similar results. The best case speedup obtained was 26 with thirty two processors

(here n = 7500000, m = 100000) as illustrated in Figure 6.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•PIK
ism

ui stuil •inrkuuo

120

'Mait'RrfOOOOn.ffiitOOOOOO

I O S

S 05 •s
i 045 3
"9
| 04
a

O S

NuTfcrsf tamersM
•CcmjuH ’ ndOOOOOO. mslOOOOOO

50

40

30

20

tO

0
25 3510 20 300 c

t iM jc i 'n M O .ih tO O O O O O

05

| , 7

i
s
f O S £
u
I Ofi c

O S

0 4 5
15 250 20 30 S5 10

t o n t v d f a c t t i c n
r*5000000ns100000Q

120

100

25 350 c 1Q 20 30NuTtvef PioctMcrs KntirjfProCMMu

Figure 6.1: Running times for multiple rank problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

H=7500000 m=100000
90

Broadcast -•—
Compute -h—

Reduce a - -
Total

80

70

60

I
§

CO

50

c
401p
30

0 10 15
Number ot

5 20
Number ot Processors

25 30 35

Figure 6.2: The best case running times for multiple rank problem

6.1.2 Multiple Point Location Problem

Recall the multiple point location problem, given sets .4 and Q of points in the

plane, determine for each query q whether it lies within the CH(.4). If not, return

the tangents from q to CH(.<4). In the implementation of this problem, for the local

convex hull computations Graham scan [67] was used. The three stages have the

following theoretical timings:

• Broadcast phase: Ts(m ,p),

• Compute phase: 0 (^ lo g ^ + mlog/i),

• Reduce phase: TR(m,p).

In the compute phase h denotes the number of points on the local convex hull. This

motivates for four kinds of inputs to the problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

1. random input for items and queries,

2. random input for items and all queries outside the CH(A),

3. all the items on a circle and all queries inside the CH(A), and

4. all the items on a circle and all queries outside the CH(A).

In this implementation the variations in the running times for these four kinds of

inputs was not very significant. Although, there is a noticeable difference between

cases 1 and 4. The best speed up obtained was 16.79 with 32 processors. This was

obtained for n = 4000000, m = 600000, and the nature of input was case 1, refer to

Figure 6.3. Again, experiments were performed for different input sizes with similar

results.

Figure 6.3 represents case 1, that is, items and queries were generated ran­

domly. Similarly, Figures 6.4, 6.5, and 6.6 represent cases 2, 3, and 4, respectively.

Figure 6.7, indicates the running times on a network of workstations. The results

are for case 4, here the computation time decreases and the reduce time increases.

Even for the multiple point location problem, the graphs show expected

trends. Except for the reduce phase, where for the first 5 processors the running

time drops instead of increasing. It would be interesting to see how the compute

phase performs if the graham scan, whose running time is nlogn, is replaced with

the Jarvis’ march algorithm whose running time is nh, where h denotes the number

of points on the hull and n being the input size, refer to [67] for a detailed discussion

of these algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
o

ii
v

u
K*

lin

t*

In
M

co
m

J*

0 2 ' » ■ » - *
0 £ 10 15 20 25 30 35

Nire«r 4 Freemen!0

70

60

50

40

30

20

10

00 5 15 25NmerefPreemn

o * ---- «----- « - »
0 5 to IS 20 25 30 35

ftxnfc* 4 Freemen
nsCO0Q000fR*60000O

140

5 10 15 20 25 300 tomMrelfrscmon

Figure 6.3: Multiple point location problem: case 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

ate « d a s t* i* * O O O O a .m r f O O Q O Q

15 20NurevstfocMMn
90

' C a n c u t * nstOOOOOO. iR^OOOOO

70

a

50

40

30

20

10
250 ISt 10 20 30

55
50

45

40

30

25

20

10

5
15 20 300 Hmfcwrfftxcwwra

rto40e0000nts600000

ie
5

1

3510 20 250 5 30faitffcffrocMtars to n o « rc f f ro e M a a ra

Figure 6.4: Multiple point location problem: case 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
tm

vM
jla

tin

ia

ki
aa

co
nd

a
B

io
ad

ca
al

lim

a
In

aa
co

n
d

a

125

3 r3«JBMt*na«OQOOa.Rb40QOOO •

15 20NurerefPrccMKnM
*CanpiA * n>«00000. m̂ OOOOO

70

a

30

29

to
c 250 20 X 35to

* iMOOOOOQ, iMOQOOO

45

40

35

X
25

a
15

to
5

9
9 5 to 15 25 35a Xfkrstv̂ âncn

.‘tolOOOGOO RteflXOOO

1

5
I
5

5 10 15 a 250 X
N uitir :l PocMion Hits&iralfVacMacn

Figure 6.5: Multiple point location problem: case 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C
o

n
su

ls

Wh
o

in
ooc

um
lo

B
io

aU
co

M

wh
o

In
M

co
n

d
a

126

% it i i l * iy 0 0 9 0 0 0 .n i0 0 0 0 0

04 •

a c 15 3510 20 25 30
Nwtvd Pnemon

ta n c u B ‘ naOOOOOO. tMOOOOO

0 e 10 25 3520 30

n
«̂dJCi*R*4OOO0OO.mrf0OOOO

SO

SO

40

30

20

10

0
250 5 15 20 30 3510

HmM rafProc*iM r»
AdOOOOOO BtaSOOOOO

N urt«r d P noM tv i
15 20itfntirtfPTCiMen

Figure 6.6: Multiple point location problem: case 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

t«
5

I
£

|t
I|
a

S
i5
t£

£

100 TT

SO

200

!0

I

£
i
£H

60

50

30 77 c 6 5c 65 4544

Figure 6.7: Running times for a network of workstations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

6.2 Conclusions and Future work

The main contribution of this dissertation is the computational paradigm presented

in the form a unifying algorithmic framework (the MQ problem) and a generic solu­

tion of the MQ problem. The power of the paradigm was demonstrated by identify­

ing and providing solutions for fundamental problems in diverse areas of computer

science. This was accomplished by providing a generic solution for the MQ prob­

lem, proving that each of these problems are special instances of the MQ problem,

and solving these problems individually. In particular, the following problems were

solved.

• Rank Related

- Multiple Rank

- Histogram

• Proximity Related

- Multiple Point Location

- Convex Hull Inclusion

- Separability

- Multiple Closest Point

• Segment Related

- Multiple Closest Segment

- Multiple Rectangle

- Multiple Circle

• Stabbing Related

- Multiple Stabbing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

— Point Location in Simple Polygon

A major contribution is the presentation of time-optimal solutions for some

of these problems on an MMB. Another major contribution of this dissertation is

the Batched Searching and Ranking in sorted matrices. The BSR problem was also

demonstrated to be an instance of the MQ problem. Here the main difference is

the structure that sorted matrices offer. It was demonstrated that time-optimal

solutions can be obtained by coupling the paradigm with sorted matrices on an

MMB.

In this work, two fundamental problems namely, the multiple point loca­

tion, and the multiple rank, were implemented on an IBM SP2 and a network of

workstations. The results obtained indicate the expected trends.

Future work involves, trying to extend the function / , of the MQ problem,

to encompass a wider variety of problems. Also an implementation of some more

problem is in order, with the results tested on more platforms like the Intel Paragon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

BIBLIOGRAPHY

[1] S. G. Akl and K. A. Lyons, Parallel Computational Geometry, Prentice-Hall,

Englewood Cliffs, New Jersy, 1993.

[2] S. G. Akl and J. Meijer, Parallel binary search, IEEE Transactions on Parallel

and Distributed Systems, 1, (1990), 247-250.

[3] S. G. Akl and G. T. Toussaint, Efficient convex hull algorithms for pattern

recognition applications, Proceedings Fourth International Joint Conference on

Pattern Recognition, (1978), 483-487.

[4] M. J. Atallah, R. Cole, M. T. Goodrich, Cascading divide-and-conquer: a tech­

nique for designing parallel algorithms, SIAM Journal on Computing, 18(3),

(1989), 499-532.

[5] M. J. Atallah and M. T. Goodrich, Efficient plane sweeping in parallel (prelim­

inary version), Proceedings of the Second Annual ACM Symposium on Compu­

tational Geometry, Yorktown Heights, New York, (June 1986), 216-225.

[6] M. J. Atallah and J. J. Tsay, On the parallel-decomposability of geometric

problems, Proceedings of the fifth Annual ACM Symposium on Computational

Geometry, Saarbruchen, Germany, (June 1989), 104-113.

[7] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, Englewood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Cliffs, NJ, 1982.

[8] A. Bar-Noy and D. Peleg, Square meshes are not always optimal, IEEE Trans­

actions on Computers, 40, (1991), 196-204.

[9] G.H.Bames, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A. Stokes,

The ILLIAC IV computer, IEEE Transactions on Computers, 17, (1968), 746-

757.

[10] K. E. Batcher, Design of Massively Parallel Processor, IEEE Transactions on

Computers, 29, (1980), 836-840.

[11] D. Bhagavathi, V. Bokka, H. Gurla, S. Olariu, J. L. Schwing, and I. Stojmen-

ovic, Time-optimal visibility-related problems on meshes with multiple broad­

casting, IEEE Transactions on Parallel and Distributed Systems, to appear,

(1995).

[12] D. Bhagavathi, P. J. Looges, S. Olariu, J. L. Schwing, and J. Zhang, A fast

selection algorithm on meshes with multiple broadcasting, IEEE Transactions

on Parallel and Distributed Systems, 5, (1994), 772-778.

[13] D. Bhagavathi, S. Olariu, W. Shen, and L. Wilson, A time-optimal multiple

search algorithm on enhanced meshes, with applications, Journal of Parallel

and Distributed Computing, 22, (1994), 113-120.

[14] D. Bhagavathi, S. Olariu, J. L. Schwing, and J. Zhang, Convex polygon prob­

lems on meshes with multiple broadcasting, Parallel Processing Letters, 2,

(1992), 249-256.

[15] D. Bhagavathi, S. Olariu, W. Shen, and L. Wilson, A unifying look at semigroup

computations on meshes with multiple broadcasting, Proceedings of Parallel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Architectures and Languages Europe, Munchen, Germany, (June 1993), LNCS

694, 561-569.

[16] D. Bhagavathi, V. Bokka, H. Gurla, S. Olariu, J. L. Schwing, and Zhang,

Square meshes are not optimal for convex hull computation, Proceedings of

International Conference on Parallel Processing, St-Charles, Illinois, (August

1993), III, 307-311.

[17] S. H. Bokhari, Finding maximum on an array processor with a global bus, IEEE

Transactions on Computers, 33, (1984), 133-139.

[18] C. Chao, W. Chen, G. Chen, Multiple search problem on reconfigurable mesh,

Preprint, Department of Computer Science and Information Engineering, Na­

tional Taiwan University, Taipei, Taiwan, (1993).

[19] Y. C. Chen, W. T. Chen, G.-H. Chen and J. P. Sheu, Designing efficient parallel

algorithms on mesh connected computers with multiple broadcasting, IEEE

Transactions on Parallel and Distributed Systems, 1, (1990), 241-246.

[20] Y. C. Chen, W. T. Chen, and G.-H. Chen, Efficient median finding and its

application to two-variable linear programming on mesh-connected computers

with multiple broadcasting, Journal of Parallel and Distributed Computing, 15,

(1992), 79-84.

[21] B. Chazelle, Computational geometry on a systolic chip, IEEE Transactions on

Computers, 33, (1984), 774-785.

[22] R. Cole and M. T. Goodrich, Optimal parallel algorithms for polygons and

point-set problems (preliminary version), Proceedings of the Fourth Annual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

ACM Symposium on Computational Geometry, Urbana-Champaign, Illinois,

(June 1988), 201-210.

[23] C.F. Codd, Cellular Automata, Academic Press, New York, 1968.

[24] S. A. Cook, C. Dwork, and R. Reischuk, Upper and lower time bounds for

parallel random access machines without simultaneous writes, SIAM Journal

on Computing, 15, (1986), 87-97.

[25] M. Cosnard, J. Dupras, and A. G. Ferreira, The complexity of searching in

X + Y and other multisets, Information Processing Letters, 34, (1990), 103-

109.

[26] M. Cosnard and A. G. Ferreira, Parallel algorithms for searching in X + Y,

Proceedings of the International Conference on Parallel Processing, St. Charles,

Illinois, (August 1989), 16-19.

[27] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.

Subramonian, and T. V. Eicken, LogP: Towards a realistic model of parallel

computation, Proceedings o f the Fourth ACM SIGPLAN Symposium on Prin­

ciples and Practice of Parallel Processing, (May 1993).

[28] F. Dehne, Solving visibility and separability problems on mesh of processors,

The Visual Computer, 3, (1988), 356-370.

[29] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley

and Sons, New York, 1973.

[30] C.R. Dyer and A. Rosenfeld, Parallel image processing by memory augumented

cellular automata, IEEE Transactions on Pattern Analysis and Machine Intel­

ligence, 3, (1981), 29-41.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

[31] H. Eddlsbrunner, An introduction to Combinatorial Geometry, Springer-Verlag.

[32] A. G. Ferreira, Parallel search in sorted multisets, with applications to NP-

complete problems, Technical Report 90-32, Laboratoire de 1’Informatique du

Parallelisme, Ecole Normale Superieure de Lyon, (December 1990).

[33] H. Freeman, Computer processing of line-drawing images, Computer Surveys,

6, (1974), 57-97.

[34] H. Freeman, R. Shapira, Determining the minimum-area encasing rectangle for

a arbitrary closed curve, Communications of the ACM, 18(7), (1975), 409-413.

[35] L. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer graphics,

principles and practice, Second Edition, Addison-Wesley, Reading, MA, 1990.

[36] H. Freeman and G. Pieroni, Eds., Computer architecture for spatially distributed

data, Springer-Verlag, Heidelberg, Berlin, 1985.

[37] G. N. Frederickson and D. B. Johnson, Generalized selection and ranking:

sorted matrices, SIAM Journal on Computing, 13, (1984), 14-30.

[38] M. T. Goodrich, Triangulating a polygon in parallel, Journal of Algorithms, 10,

(September 1989), 327-351.

[39] H. Gurla, Visibility-related problems on parallel computational models, Doc­

toral Dissertation, Old Dominion University, Norfolk, Virginia, (1996).

[40] L. H. Harper, T. H. Payne, J. E. Savage, and E. Strauss, Sorting X + Y ,

Communications of the ACM, 18, (1975), 347-349.

[41] D. Hillis, The Connection Machine, MIT press, Cambridge, Massachusetts,

1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

[42] C. S. Jeong and D. T. Lee, Parallel geometric algorithms on a mesh-connected

computer, Algorithmica, 5, (1990), 155-178.

[43] V. P. Kumar and C. S. Raghavendra, Array processor with multiple broadcast­

ing, Journal of Parallel and Distributed Computing, 2, (1987), 173-190.

[44] V. K. Prasanna and D. I. Reisis, Image computations on meshes with multiple

broadcast, IEEE Transactions Pattern Analysis and Machine Intelligence, 11,

(1989), 119-125.

[45] J. L. Lambert, Sorting X + Y in 0 (n2) comparisons, Theoretical Computer

Science, 103, (1992), 137-141.

[46] J.-P. Laumond, Obstacle growing in a non-polygonal world, Information Pro­

cessing Letters, 25, (1987), 41-50.

[47] F. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans­

actions on Computers, 34, (1985), 344-354.

[48] H. Li and M. Maresca, Polymorphic-torus network, IEEE Transactions on Com­

puters, 38, (1989), 1345-1351.

[49] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang, Simulating enhanced meshes,

with applications, Parallel Processing Letters, 3, (1993), 59-70.

[50] T. Lozano-Perez, Spatial Planning: A Configurational Space Approach, IEEE

Transactions on Computers, 32, (1983) 108-119.

[51] M. Lu and P. Varman, Solving geometric proximity problems on mesh-

connected computers, Proceedings of Workshop on Computer Architecture for

Pattern Analysis and Image Database Management, (1985), 248-255.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

[52] M. Maresca and H. Li, Connection autonomy and SIMD computers: a VLSI

implementation, Journal of Parallel and Distributed Computing, 7, (1989), 302-

320.

[53] T. H. Merrett, Relational Information Systems, Reston Publishing, Reston,

Virginia, 1984.

[54] R. Miller, and Q.F. Stout, Geometric algorithms for digitized pictures on a

mesh-connected computer, IEEE Transactions on Pattern Analysis and Ma­

chine Intelligence, 1, (1985), 216-228.

[55] R. Miller, and Q.F. Stout, Mesh computer algorithms for computational geom­

etry, IEEE Transactions on computers, 38, (1989), 321-340.

[56] R. Miller, and Q.F. Stout, Mesh computer algorithms for line segments and sim­

ple polygons, Proceedings of International Conference on Parallel Processing,

St. charles, Illinois, (August 1987), 282-285.

[57] P. D. MacKenzie and Q. F. Stout, Asymptotically efficient hypercube algo­

rithms for computational geometry, Proceedings of the Third Annual Symposium

on the Frontiers of Massively Parallel Computation, College Park, Maryland,

(October 1990), 8-11.

[58] A. Mirzaian, Channel routing in VLSI, Proceedings 16-th Annual ACM Sympo­

sium on Theory of Computing, Washington, DC, (1984), 101-107.

[59] D. Nassimi and S. Sahni, Bitonic sort on a mesh-connected parallel computer,

IEEE Transactions on Computers, 27, (1979), 2-7.

[60] D. Nassimi and S. Sahni, Data broadcasting in SIMD computers, IEEE Trans­

actions on Computers, 30, (1981), 101-107.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

[61] S. Olariu, J. L. Schwing, and J. Zhang, Optimal convex hull algorithms on

enhanced meshes, BIT, 33, (1993), 396-410.

[62] S. Olariu, J. L. Schwing, and J. Zhang, Fast computer vision algorithms for

reconfigurable meshes, International Parallel Processing Symposium, Beverly

Hills, California, (1992), 258-262.

[63] S. Olariu and I. Stojmenovic, Time-optimal proximity problems on meshes

with multiple broadcasting, Proceedings of International Parallel Processing

Symposium, Cancun, Mexico, (April 1994), 94-101.

[64] S. Olariu and I. Stojmenovic, Time-optimal nearest-neighbor computations on

enhanced meshes, Proceedings PARLE, Patras, Greece, (July 1994).

[65] D. Parkinson, D. J. Hunt, and K. S. MacQueen, The AMT DAP 500, 33rd IEEE

Comp. Soc. International Conf, (February 1988), 196-199.

[66] B. T. Preas and M. J. Lorenzetti (Eds.) Physical Design Automation of VLSI

Systems, Benjamin/Cummings, Menlo Park, 1988.

[67] F. P. Preparata and M. I. Shamos, Computational Geometry, An Introduction,

Springer-Verlag, New York, Berlin, 1988.

[68] J. H. Reif and S. Sen, Optimal randomized parallel algorithms for computa­

tional geometry, Proceedings of International Conference on Parallel Process­

ing, St. charles, Illinois, (August 1987), 270-277.

[69] J. H. Reif and S. Sen, Randomized algorithms for binary search and load bal­

ancing on fixed connection networks with geometric applications (preliminary

version), Proceedings of the Second ACM Symposium on Parallel Algorithms

and Architectures, Crete, (July 1990), 327-337.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

[70] S. F. Reddaway, A. Wilson, and A. Horn, Fractal graphics and image com­

pression on a SIMD processor, Proceedings Second Symposium on Frontiers of

Massively Parallel Computation, Fairfax, Virginia, (1988), 265-274.

[71] A. Rosenfeld, Picture Processing by Computers, Academic Press, New York,

1969.

[72] J. Rothstein, Bus automata, brains, and mental models, IEEE Transactions on

Systems, Man, and Cybernetics, 18, (1988), 522-531.

[73] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.

[74] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,

Reading, MA, 1989.

[75] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, New

York, 1982.

[76] J. Sklansky, Measuring concavity on a rectangular mosaic, IEEE Transactions

on Computers, 21, (1982), 181-187.

[77] D. Sarkar and I. Stojmenovic, An optimal parallel algorithm for minimum sep­

aration of two sets of points, Technical Report TR-89-23, Computer Science

Department, University of Ottawa, Ottawa, Ontario, (July 1989).

[78] W. Steiger and I. Streinu, A pseudo-algorithmic separation of lines from pseudo­

lines, Information Processing Letters, 53, (1995), 295-299.

[79] I. Stojmenovic, Computational geometry on a hypercube, Proceedings of the

International Conference on Parallel Processing, St. charles, Illinois, (August

1988), ITT, 100-103.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

[80] H. S. Stone, High-Performance Computer Architecture, Second Edition,

Addison-Wesley, Reading, MA, 1990.

[81] R. Tamassia and J. S. Vitter, Optimal cooperative search in fractional cas­

caded data structures, Proceedings of the Second ACM Symposium on Parallel

Algorithms and Architectures, Crete, (July 1990), 307-316.

[82] H. Tamura and N. Yokoya, Image database systems: a survey, Pattern Recog­

nition, 17, (1984), 29-49.

[83] C. D. Thompson and H. T. Kung, Sorting on a mesh-connected parallel com­

puter, Communications of the ACM, 20, (1977), 263-271.

[84] L. G. Valiant, A bridging model for parallel computation, Communications of

the A C M , 33, (1990), 103-11.

[85] Z. Wen, Parallel Multiple Search, Information Processing Letters, 37, (1991),

181-186.

[86] I. M. Yaglom and V. G. Boltyanski, Convex Figures, Holt, Rinehart, and Win­

ston, New York, 1961.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

VITA

Venkatavasu Bokka was born in Kuchipudi, A.P., India on September 21, 1971. He

received his Bachelor of Technology in Computer Science and Engineering from In­

dian Institute of Technology, Delhi, India, in August 1992. He worked as a Software

Engineer for Kernex India Limited, India, from September 1992 to December 1992.

In January 1993, he started working on his Ph.D Degree in Computer Science at

Old Dominion University, Virginia.

Permanent address: Department of Computer Science

Old Dominion University

Norfolk, VA 23529

USA

This dissertation was typeset with DTfcjX* by the author.

is a document preparation system developed by Leslie Lamport as a special version of

Donald Knuth’s T^X Program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Fall 1996

	A Computational Paradigm on Network-Based Models of Computation
	Venkatavasu Bokka
	Recommended Citation

	tmp.1550516722.pdf.9bUOt

