
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 1998

A Hierarchical Filtering-Based Monitoring
Architecture for Large-scale Distributed Systems
Ehab Salem Al-Shaer
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Al-Shaer, Ehab S.. "A Hierarchical Filtering-Based Monitoring Architecture for Large-scale Distributed Systems" (1998). Doctor of
Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/s1mv-9728
https://digitalcommons.odu.edu/computerscience_etds/69

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/69?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A HIERARCHICAL FILTERING-BASED MONITORING
ARCHITECTURE

FOR LARGE-SCALE DISTRIBUTED SYSTEMS

by

E hab Salem A l-Shaer
B.Sc., May 1990, King Fahad University of Petroleum and Minerals, Saudi Arabia

M.Sc., December 1993, Northeastern University, Boston, Massachusetts

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COM PUTER SCIENCE

OLD DOMINION UNIVERSITY
December 1998

Approved by:

Hussein Abdel-Waf>aJ>^(pirector)

Kurt Maly (Directoi

em ber’Shunichi Toil

J .fchristian WildT Jr (Member)

MartfTh Meyer (Memb'ej

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9921765

Copyright 1998 by
Al-Shaer, Ehab Salem

AH rights reserved.

UMI Microform 9921765
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

HIERARCHICAL FILTERING-BASED MONITORING ARCHITECTURE
FOR LARGE-SCALE DISTRIBUTED SYSTEMS

Ehab Salem Al-Shaer
Old Dominion University, 1998

Co-Directors: Dr. Hussein Abdel-Wahab
Dr. K urt Maly

On-line monitoring is essential for observing and improving the reliability and per­

formance of large-scale distributed (LSD) systems. In an LSD environment, large numbers

of events are generated by system components during their execution and interaction with

external objects (e.g. users or processes). These events must be monitored to accurately

determine the run-tim e behavior of an LSD system and to obtain status information that

is required for debugging and steering applications. However, the manner in which events

are generated in an LSD system is complex and represents a number of challenges for an

on-line monitoring system. Correlated events are generated concurrently and can occur

at multiple locations distributed throughout the environment. This makes monitoring an

intricate task and complicates the management decision process. Furthermore, the large

number of entities and the geographical distribution inherent with LSD systems increases

the difficulty of addressing traditional issues, such as performance bottlenecks, scalability,

and application perturbation.

This dissertation proposes a scalable, high-performance, dynamic, flexible and non-

intrusive monitoring architecture for LSD systems. The resulting architecture detects and

classifies interesting primitive and composite events and performs either a corrective or

steering action. W hen appropriate, information is disseminated to management applica­

tions, such as reactive control and debugging tools.

The monitoring architecture employs a novel hierarchical event filtering approach

that distributes the monitoring load and limits event propagation. This significantly im­

proves scalability and performance while minimizing the monitoring intrusiveness. The

architecture provides dynamic monitoring capabilities through: subscription policies that

enable applications developers to add, delete and modify monitoring demands on-the-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fly, an adaptable configuration th a t accommodates environmental changes, and a pro­

grammable environment that facilitates development of self-directed monitoring tasks.

Increased flexibility is achieved through a declarative and comprehensive monitoring lan­

guage, a simple code instrumentation process, and autom ated monitoring administration.

These elements substantially relieve the burden imposed by using on-line distributed mon­

itoring systems. In addition, the monitoring system provides techniques to manage the

trade-offs between various monitoring objectives.

The proposed solution offers improvements over related works by presenting a

comprehensive architecture that considers the requirements and implied objectives for

monitoring large-scale distributed systems. This architecture is referred to as the HiFi

monitoring system.

To demonstrate effectiveness at debugging and steering LSD systems, the HiFi

monitoring system has been implemented a t the Old Dominion University for monitoring

the Interactive Remote Instruction (IRI) system. The results from this case study validate

that the HiFi system achieves the objectives outlined in this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright ©1998, by Ehab S. Al-Shaer, All Rights Reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To

Mother, Father, Ruba and Abrar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGMENTS

I can not possibly thank enough my advisors, Professor Hussein Abdel-Wahab and Pro­

fessor K urt Maly, for their guidance and support through the tortuous path of the Ph.D.

I am deeply indebted to them for a lot of long discussions and feedback throughout the

evolution of this work. Many thanks must go to my committee members, Professor Shu-

nichi Toida, Professor J. Christian Wild, J r and Professor M artin Meyer for constructive

criticism on the dissertation. I would also thank all faculty and colleagues in IRI Lab

at the Computer Science Department of Old Dominion University for their support and

encouragement.

Last, but not least, I would never have finished this work without the moral sup­

port, patient, and encouragement of my parents (Salem and Fayzah), my wife (Ruba) and

my daughter (Abrar) to whom I dedicated this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES ix

Chapter

I INTRODUCTION 1

1.1 M o tiv a tio n .. 1

1.2 Problem Description... 4

1.3 O b je c tiv e s .. 6

1.4 Architecture Overview: User’s P e rs p e c tiv e ... 8

1.5 C o n tr ib u tio n s ... 10

1.6 Dissertation Overview.. 14

II BACKGROUND 16

2.1 Monitoring Distributed Systems: An In tro d u c tio n ... 16

2.2 Event Filtering: Key Criteria and Design T ra d e -o f f .. 20

III DESIGN APPROACH 30

3.1 Monitoring M o d e l.. 30

3.1.1 Event-based Abstraction of Application B e h a v io r 30

3.1.2 Filter-based Abstraction of Monitoring Demands 32

3.1.3 Event-Subscription-based Monitoring M o d e l ..33

3.2 Integrated Application-Level Software M o n ito rin g ... 35

3.3 Monitoring L an g u ag e ..36

3.3.1 Design P r in c ip le s ...37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Language Design Trade-offs .. 38

3.3.3 Event Specifications...39

3.3.4 Environment Specifications... 43

3.3.5 Filter Specifications.. 45

3.3.6 Action S pecifica tions..47

3.3.7 Language Design F e a tu r e s ... 49

3.4 S um m ary .. 53

IV SYSTEM ARCHITECTURE 54

4.1 Alternative Filtering A rchitectures... 54

4.2 Hierarchical Filtering-based M onito ring ..57

4.2.1 Distributed Filtering Management Protocol ...58

4.2.2 Dynamic Agents H ierarch y ... 61

4.2.3 Advantages of D istributed Hierarchical F ilte r in g 64

4.2.4 Hierarchical Monitoring E n h an cem en ts .. 66

4.3 Monitoring P r o c e s s .. 67

4.3.1 Monitoring S p ec ifica tio n ... 67

4.3.2 Monitoring-Knowledge B a s e .. 68

4.3.3 Automatic Agents Organization: Hierarchical Setup Protocol 69

4.3.4 Dynamic Subscription Algorithms and P ro toco ls.................................. 73

4.3.5 Event D e te c tio n ... 87

4.3.6 Monitoring A c tio n ..87

4.4 S um m ary ... 88

V SYSTEM COMPONENTS AND IMPLEMENTATION 90

5.1 Instrumentation C o m p o n e n t... 90

5.1.1 Event Specifications.. 91

5.1.2 Automatic Event In s e r tio n ... 92

5.1.3 Dynamic Event S ignaling.. 94

5.1.4 Adjustable Event R e p o r t in g .. 97

5.1.5 Automatic Monitoring Agent C r e a t io n .. 97

5.2 Subscription Service C om ponen t...98

5.2.1 Monitoring Language P ro c e s so r ..100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Monitoring Information P ro cesso r..102

5.2.3 Monitoring C ontroller.. 103

5.3 Event Filtering C om ponent.. 103

5.3.1 Event Filtering Internal R epresentation ..104

5.3.2 Subfilter Processor ...106

5.3.3 Event P ro ce sso r.. 107

5.3.4 Monitoring Optimization T ec h n iq u es ... I l l

5.4 Control C o m p o n en t..115

5.5 Adaptive Object-Oriented Filtering Framework .. 116

5.5.1 M otivation .. 117

5.5.2 Event Filtering Framework C o m p o n e n ts .. 117

5.5.3 Event Filtering Framework A p p lic a tio n s .. 119

5.6 S um m ary ... 120

VI PERFORMANCE EVALUATION 122

6.1 Workload C haracterization .. 122

6.1.1 Perturbation A nalysis... 123

6.1.2 S ca lab ility ...127

6.1.3 T h ro u g h p u t/L a ten cy ...131

6.2 S um m ary ..133

VII APPLICATION EXAMPLES 135

7.1 Case Study: Monitoring IRI S y stem .. 135

7.1.1 Monitoring Architecture in IRI S y s te m ..136

7.2 IRI Monitoring A p p lica tio n s ... 139

7.2.1 Debugging and T e s t in g ... 139

7.2.2 Customizable Event T ra ces ...142

7.2.3 On-line Application Steering: Slow Clients in Reliable Multicasting 146

7.2.4 Fault Recovery..149

7.2.5 Event Correlation for Multimedia View S y n ch ro n iza tio n 151

7.3 S um m ary ... 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VIII RELATED WORK 154

8.1 Survey and Evaluation of Monitoring Distributed S y s te m s154

8.1.1 Hardware M o n ito rin g ..154

8.1.2 Software Monitoring ..155

8.1.3 Hybrid M o n ito r in g ... 163

8.2 Survey and Evaluation of Event Filtering M echanism s..................................... 164

8.2.1 Distributed System T o o lk i ts ...164

8.2.2 Network and System M anagem ent... 164

8.2.3 Communication Protocols .. 165

8.2.4 Active D a ta b a s e s .. 167

IX CONCLUSIONS AND FUTURE WORK 170

9.1 Overview of the HiFi Monitoring A rc h ite c tu re .. 171

9.2 System Design O bjectives... 172

9.3 Impact of Contributions ... 175

9.4 HiFi Beyond Distributed Monitoring .. 176

9.5 Outstanding Problems and Future W o r k .. 176

9.5.1 Architectural I s s u e s ... 176

9.5.2 Functional Issues .. 178

9.5.3 Application Is su e s .. 179

9.5.4 Language I s s u e s ..179

9.6 Status and A v a ilab ility ...180

REFERENCES 182

APPENDICES

A. DISTRIBUTED “HELLO WORLD” MONITORING E X A M P L E190

B. MONITORING-KNOWLEDGE B A S E ... 194

C. CLASSES AND ALGORITHMS OF DAG AND P N .. 200

D. SCALABILITY TEST SIMULATION PROGRAM .. 206

E. A CRO N Y M S.. 208

VITA 210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE Page

2.1 Event Filtering Internal Representation... 23

2.2 Event Filter Programming Interface Dimensions...26

2.3 Models of Event Filtering... 27

2.4 Key Criteria of Event Filtering...28

3.1 BNF of High-level Filter Specification Language... 33

3.2 BNF of High-level Event Specification Language...40

3.3 BNF of the Environment Specification Language.. 43

3.4 Environment Specification Example..45

3.5 BNF of the High-level Action Specification Language.. 48

8.1 HiFi Comparison with M onitoring Debugging Systems.. 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

FIGURE Page

1.1 Basic Monitoring Model... 9

2.1 Filter Internal Representations... 22

3.1 Monitoring Model...32

4.1 Event Filtering Architectures..55

4.2 Hierarchical Filtering-based Monitoring Architecture... 59

4.3 Monitoring Agents H ierarch y .. 65

4.4 Monitoring Process.. 68

4.5 Automatic Agents Organization Protocol.. 70

4.6 Primitive Event to LMAs Mapping...74

4.7 Event to LMA Mapping Algorithm...75

4.8 Event Decomposition Algorithm.. 77

4.9 Composite Events Decomposition Algorithm... 78

4.10 Subfilters Constructor and Distributor Algorithm...79

4.11 Event Expression Allocation Algorithm... 80

4.12 Filter Expression Decomposition and Allocation Algorithm..................................83

4.13 Expression Decomposition and Allocation Optimization Algorithm.............. 85

4.14 Subscription Protocol State Diagram..86

5.1 Monitoring System Components.. 91

5.2 Code Instrum entation Process..92

5.3 ReportEvent in ERS... 96

5.4 Subscription Component..99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Code Instrumentation Process... 92

5.3 ReportEvent in ERS... 96

5.4 Subscription Component..99

5.5 Subfilter Processor Subcomponent.. 107

5.6 Event Processor Subcomponent... 108

5.7 The Event Filtering Framework Classes.. 119

6.1 ERS ReportEvent Perturbation... 124

6.2 Application Perturbation... 126

6.3 Minimizing Application Perturbation...127

6.4 Monitoring Scalability w ith Event F req u en cy ..129

6.5 Monitoring Scalability w ith Number of Event Producers..................................... 130

6.6 LMA Filtering L a te n c y . ..131

6.7 LMA Filtering Throughput...132

6.8 Monitoring L a te n c y ... 133

7.1 Interactive Remote Instruction (IRI) System...137

7.2 The Monitoring Architecture in IRI Sessions...138

7.3 RMS Debugging Example... 140

7.4 Customizable and Dynamic Event Traces Examples... 144

7.5 HiFi Application Steering Example.. 148

7.6 Steering Filter in PN Representation...149

7.7 Event Correlation for Multimedia View Synchronization..................................... 151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CH APTER I

INTRODUCTION

“ We reject kings, presidents and voting; we believe in rough consensus

and ru n n in g co d e .”

- Dr. David Clark (July 18 1992)

The networked and distributed systems decade is upon us. Computers are no longer used

as stand-alone devices. Over the past two decades, there have been tremendous research

and development efforts in the areas of high-speed networking, protocols, group commu­

nication, video teleconferencing applications, and collaborative distributed applications.

More and more applications continue to be deployed over the MBone and Internet, which

has attracted our imagination and earned our admiration. Respectful of the huge collective

effort to deploy applications and services, we speculate and wonder about the future of

such scattered applications without “real” management support. In this thesis, we address

the problems posed by monitoring such large-scale distributed services. A distinguishing

tra it of this thesis work is the particular emphasis that we placed on producing a real mon­

itoring system which we believe will serve as a valuable vehicle for managing large-scale

distributed applications.

1.1 Motivation

The demands of large-scale distributed (LSD) systems are increasing. Two influential fac­

tors encourage employing LSD applications in many domains: advances in Internet and

Intranet technologies, and the economical and performance benefits of distributed applica­

tions. Examples of LSD systems include large-scale collaborative distance learning, video

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

teleconferencing, reliable multicasting, distributed transaction systems, distributed inter­

active simulation, interactive multi-party games, and Internet distributed services, such as

Internet service providers (ISP) and digital libraries. LSD systems involve a large number

of users or application entities th a t cire geographically dispersed over interconnected LANs

(i.e., Intranets) or over WANs (i.e., Internet). Although these applications enable interac­

tion and resource sharing without regard to geographical distances, they inherit distributed

processing problems. Particularly, they support a large number of interactions and span

any number of networks comprised of widely varying state and configuration. Writing a

distributed program that sometimes behaves “correctly” differs completely from writing

one that performs “well” . The former executes without failure and provides the correct

output but in a manner that is unpredictable based on the application environment used.

The latter not only behaves well bu t also knows how to adapt itself to sustain predictable

behavior given wide ranges of environmental and operational parameters. Developing

large-scale distributed applications that perform “well” is especially difficult. Reliability

and performance of applications become critical issues given the distributed nature and

large number of participants, or application entities, in an LSD system. Wide geographi­

cal distribution and high amounts of interaction may increase the possibility of failures or

errors while also increasing the likelihood of performance bottlenecks.

Traditionally, the execution of distributed programs is manually monitored by

inserting hardwired statements into application code. These statem ents generate run­

time traces and then collect and analyze trace data to identify answers for unresolved

problems. While this tedious and error-prone process is feasible, it provides opportunities

only for ad hoc fixes, which ultimately results in poorly engineered systems that exhibit

unpredictable performance and /o r inconsistent behavior.

On-line monitoring is an essential means for improving system reliability and per­

formance. This is due to its effectiveness in observing the run-tim e behavior of distributed

applications and for providing feedback information, which is required to accurately iden­

tify and resolve problems, to management units. Management units can be human system

managers or automated software components that require feedback for initiating correc­

tive actions. Corrective actions can be performed either at run-time, as is the case with

applications steering and fault recovery (i.e., reactive control), or at development-time,

when program bugs are being fixed or designs are being enhanced (i.e., debugging).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

A large-scale distributed system must be monitored throughout its execution so

that program behavior is revealed based on state changes and failures. Monitoring infor­

mation, as represented by events, is sent from an executing program or generated during

interaction with external objects, such as users or other applications to the management

units. These events represent the run-time behavior of LSD systems. In non-distributed

systems, developers express these events via “print” statements or by using any generic

debugger tool (e.g. gdb) for monitoring and inspecting application behavior.

Monitoring distributed systems is very complex because events are distributed

throughout the application environment and happen concurrently. An event representing

an application failure, or other condition, may be a correlation of events occurring in vari­

ous locations of the distributed environment. For example, failures in the communications

operation may require observing events from multiple senders and receivers. As such,

several events may be sent which correspond with the failure and, in aggregate, describe

the observed system behavior. Similarly, knowledge of performance bottlenecks is also dis­

tributed in the application environment. For instance, in reliable multicasting, discovery

of slow members requires current performance information (feedback) from most, if not

all, members in the group. This data is captured via event generation, which happens in

a concurrent fashion throughout the environment.

The large volume of event producers and management applications in an LSD sys­

tem may overload the monitoring system. Additionally, the propagation of events over

the entire network may cause perturbations in the applications’ execution. By the very

nature of an LSD system, monitoring these systems is inherently distributed. This often

imposes difficulty in reconfiguring and administering remote monitoring entities and often

makes the management process incomprehensible. These attributes highlight the com­

plexity and difficulty of developing effective monitoring systems for large-scale distributed

environments.

This work is motivated primarily by (1) a requirement for an efficient architecture

for monitoring large-scale distributed systems, which will provide reliability and perfor­

mance improvements for LSD applications, and (2) the lack of an existing monitoring

system that meets design goals and satisfies the requirements of LSD systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

1.2 Problem Description

A distributed system is defined as a collection of autonomous processors and data stores

that interact cooperatively to achieve an overall goal [81]. However, this definition is

general and includes shared-memory and message-passing distributed systems. In the

context of our research, the definition of distributed systems is limited to those that interact

via message passing only [88]. In this view, distributed systems are systems running on

cluster of workstations interconnected via LAN, WAN or Intranets of LAN and WAN. A

“large-scale” distributed system, in the context of this dissertation, is a distributed system

that includes any of the following attributes: (1) large geographical distribution, (2) large

numbers of application entities (processes) or users, or (3) multiple services of differing

priority classes such as distributed multimedia applications. Many large-scale distributed

systems, such as interactive distance learning and distributed interactive simulation (DIS),

exhibit some or all of these attributes.

The primary goal is to design an efficient architecture for monitoring large-scale

distributed systems. It is im portant a t this stage to understand the characteristics and

requirements of large-scale distributed systems that impact an effective design. These

characteristics and requirements are outlined below.

• C o rre la te d ev en ts m ay b e c o n c u rre n t an d d is tr ib u te d : Monitoring the be­

havior of distributed systems may require analyzing and correlating events from

different sources and generated at different times. It is mandatory for distributed

system monitors to be capable of detecting both primitive and composite events.

Primitive events are comprised of a single notification while composite events repre­

sent a correlation of two or more notification events. However, unlike many of the

proposed monitoring systems [27, 29, 60, 69, 78, 93], an assumption of a central­

ized server or global state at which monitoring information (events) are collected

or analyzed is not presumed. Thus, this requires developing an efficient mechanism

to abstract and model types of events th a t can be generated in LSD systems and

subsequently direct the monitoring system to detect and classify both event types is

needed.

• L arg e n u m b e r o f ev e n t p ro d u c e rs : LSD systems may contain a large number

of event producers that continuously send notifications expressing their behavior. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

addition, the event producers may generate a high volume of event notifications that

could swamp the monitoring system. This implies that the monitoring system must

be scalable and efficient to handle a large number of producers and A high-volume

of generated events.

• D ifferen t e v e n t co n su m ers an d d iffe ren t v iew s: Managing LSD systems is

a complex task and may involve a significant number of event consumers, such as

managers or management units. However, each event consumer may be dedicated for

different missions and monitoring views. This implies that the system must be (1)

scalable to handle the number of consumers requests and (2) highly re-configurable

to handle dynamic consumer requests (run-time add, delete and modify) and to

disseminate the monitoring information with minimal performance overhead.

• W id e g eo g rap h ica l d is tr ib u tio n : No assumption is to be made about the phys­

ical or geographical distribution of a monitored distributed system. Target systems

are usually distributed over large distances, such as is the case with distance learn­

ing applications. Therefore, employing mechanisms that limit event propagation

is substantially im portant in large networks. It is also essential in a distributed

environment to provide powerful and autom atic remote configuration tools that fa­

cilitate the adm inistration and manageability of the monitoring system. This is

different from the previous work that supports monitoring systems for parallel pro­

grams with shared memory [32], or for clusters of workstations connected in the

same LAN [58, 69].

• M o n ito rin g a p p lic a tio n behav io r: The monitoring system architecture is highly

influenced by the target management application supported by the system. For

example, if the desired monitoring service is to solely measure the CPU and memory

utilization of a distributed system, then monitoring programs such as top , gprof or

Q uantify [73] is sufficient. The only requirement is to combine captured information

from the various systems into one report. However, external monitors are inadequate

if the goal is to monitor the behavior of a distributed system for debugging or reactive

control services. In this case, the internal state of the running systems needs to be

investigated based on the requests of the monitoring application. We refer to this as

internal state monitors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

• L im ited resources: The monitoring system may compete for system resources (i.e.,

processor cycles or memory for computation or network resources) with monitored

objects. Distributed systems always have limited system resources and the system

architecture must provide a solution for limiting the intrusiveness in the application

environment.

• D ifferen t serv ice p rio rity : Today, many distributed systems comprise services

and components that have different time-constraints. These applications include

distributed group-aware multimedia applications that support multiple, concurrent

streams of audio, video and data, each of which has its own requirement for quality

of service.

After defining target applications, and describing the characteristics and require­

ments of such applications, the problem to be addressed by this dissertation can be stated

as: “Designing and developing an efficient architecture that considers the requirements

and implied objectives for monitoring large-scale distributed systems”. In other words,

“W hat is the optimal monitoring architecture, design and implementation for large-scale

distributed systems? And how can it be deployed for useful application in managing dis­

tributed systems?” . This dissertation attem pts to address these questions by making a

sound argument that our proposed architecture provides steps towards an efficient so­

lution to the stated problem. The next section defines work objectives based on these

requirements specifications.

1.3 Objectives

The high-level objective of this research is to design and develop a dynamic monitor­

ing architecture for large-scale distributed systems by efficiently classifying primitive and

composite events generated by these applications during execution. The design must be

dynamic since consumers can spontaneously change subscriptions at run-time, and also

must be efficient as the monitoring system must utilize a scalable, high-performance, flexi­

ble and non-intrusive architecture. The monitoring architecture should support debugging

applications such as dynamic and customized traces. Support should also be provided for

reactive control services, such as adaptable application steering that effectively improves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

the reliability and performance of LSD systems. The design objectives of the presented

monitoring architecture are:

S u p p o rtin g efficient m o n ito r in g a rc h ite c tu re . The efficiency of the monitoring ar­

chitecture is measured by its capability to be “high-performance” , to handle large volumes

of events, and to be “scalable” to accommodate large numbers of producers (i.e., applica­

tion entities) and consumers, which is typical in the LSD system environment.

D e te c tin g p rim itiv e a n d co m p o s ite ev en ts . The monitoring system must be capable

of classifying simple primitive (e.g. local) events as well as complex composite (e.g. global)

events specified in AND/OR regular expressions. Consumers may need to know if certain

patterns of events occur under certain conditions. For this reason, the monitoring system

should not only classify primitive events, but also track the global event history of the

system to detect specified combinations of events.

S u p p o rtin g d y n am ic m o n ito r in g su b sc rip tio n . The consumers’ subscriptions may

be changed dynamically at run-time. In other words, consumers may add, delete and

modify their monitoring subscriptions dynamically a t run-time. Therefore, the monitor­

ing architecture must be dynamically reconfigurable to ensure spontaneous response to

users’ subscriptions. Since different consumers may have different concerns and subscribe

to different monitoring information, an efficient dissemination mechanism is needed in or­

der to reduce the overhead of distributing the monitoring information.

M in im izing in te rv e n tio n . The monitored applications must be executed with special

instructions inserted in the code in order for monitoring services to occur. This is called

the instrumentation process. The monitoring architecture must provide (1) a simple tech­

nique to instrument the monitored object with minimum involvement from consumers

(e.g., developers), (2) a flexible and dynamic event reporting process, and (3) a highly

manageable monitoring infrastructure that facilitates starting, controlling and adminis­

trating monitoring system components.

M in im izing th e m o n ito r in g in tru s iv en ess . The proposed monitoring architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

must efficiently monitor LSD system so that system resources (computational and net­

worked) are not overwhelmed. Consideration has to be given in the architecture to mini­

mize perturbation and intrusiveness in the monitoring system. As has been stated: “The

impact of adding network management to managed nodes must be minimal, reflecting a

lowest common denominator” [75].

S u p p o rtin g re ac tiv e co n tro l serv ices. A reactive control system enables consumers

to define specific actions to be triggered when certain events (primitive or composite) are

detected. We call this process the action service. The action service is necessary for moni­

toring applications, such as application steering. The proposed architecture must support

a mechanism to provide this service.

S u p p o rtin g p rio rity -b a se d m o n ito r in g . In LSD systems environment, events typically

have different levels of importance to users. Consumers wish to monitor (process and

forward) events in accordance with their priorities.

1.4 Architecture Overview: User’s Perspective

This dissertation presents a distributed hierarchical monitoring architecture that addresses

the objectives described in the previous section. This new architecture attem pts to fully

utilize the hierarchical filtering monitoring approach so that monitoring load is distributed

throughout the monitoring environment.

To provide a comprehensive architecture, the monitoring system provides four fun­

damental services: the instrumentation service which facilitates program preparation and

environment configuration, the monitoring subscription service which enables users to

define their demands in a flexible manner, the event filtering service which uses collabo­

rative agents to filter events based on a hierarchical organization and in compliance with

appropriate management protocols, and the action service which supports management

applications such as fault recovery and reactive control.

Event consumers (e.g., users) s tart the monitoring process by instrumenting their

programs. When programs are executed, the monitoring agent hierarchy is established and

monitoring operations are initiated. This hierarchy of agents serves as an intermediate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

consumer
producer

consumerMonitoring
Agents Hierarchyproducer

consumer

producer

Event Flow
Subscription consumer
monitoing information

Fig. 1.1. Basic Monitoring Model.

broker between user requests and application events (see Figure 1.1). Once monitoring

operations are established, users receive confirmation and may begin interacting with the

monitoring system (e.g., adding, deleting or modifying monitoring demands). Based on

a user’s monitoring requests, the monitoring system determines the appropriate agents

within the hierarchy to be tasked with inspection and evaluation of application events.

Monitoring agents are assigned these tasks according to their management role and loca­

tion. The monitoring system uses fine grain decomposition and allocation mechanisms to

ensure that filtering tasks are efficiently distributed among the monitoring agents. Ad­

ditionally, monitoring agents work collaboratively and concurrently with each other for

detection and classification of generated events and forwarding of monitoring information

to the appropriate event consumer(s) in a timely fashion. By associating a detected event

with a specific action within the monitoring request, users can request that condition-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

based activity occur. The resulting action can be an additional monitoring operation or

some type of corrective process. Additionally, users may dynamically reconfigure agent

operation by manipulating monitoring demands at run-time

The centric component of the monitoring architecture is hierarchical event filter­

ing. The hierarchical filtering approach permits events to be processed and correlated

in multiple hierarchical levels in accordance with the complexity of a user’s monitoring

requests. This significantly contributes to the scalability and performance of the moni­

toring system. The next section presents, a t a high-level, the attributes of the proposed

monitoring architecture.

1.5 Contributions

A number of monitoring approaches and systems for monitoring distributed systems have

been described as being academic or industrial products (e.g., [10, 16, 18, 27, 32, 36, 44,

46, 57, 58, 60, 68, 69, 78, 80, 82, 90, 93]).

However, these research efforts axe each insufficient to meet the requirements of

monitoring large-scale distributed systems. Each of these systems/approaches are po­

larized toward one objective and neglect other equally important requirements resulting

in incomplete solutions. Consequently, none of the proposed systems has resulted in a

comprehensive monitoring architecture that addresses our objectives or satisfies the re­

quirements of large-scale distributed systems. Scalability is one clear example of this.

These systems range from centralized to decentralized but none employ a truly scalable

architecture such as that of the Hierarchical Filtering (HiFi) proposed in this thesis. In

Chapter 8, these systems are discussed and evaluated with improvements offered by HiFi

highlighted.

This work bridges the gap by designing, developing and deploying a monitoring

architecture that explicitly addresses the challenges and the requirements imposed by

managing large-scale distributed systems. Each component in the overall system is ac­

counted for within this dissertation, from the instrumentation, user subscriptions, event

filtering to information dissemination and management reaction. This results in the design

and implementation of a comprehensive, scalable, high-performance, dynamic, flexible and

non-intrusive monitoring architecture for large-scale distributed systems which is referred

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

to as the HiFi monitoring system.

Ultimately, we believe that the efficient deployment of Internet/Intranet distributed

services have to be accompanied with an effective employment of a monitoring architecture

that facilitates dynamic management of these services. Before this can happen, we must

understand, build, deploy an evaluate monitoring systems. This dissertation research is

one step toward this goal. Our contributions advance the state of the art in monitoring

and controlling large-scale distributed systems, networks and services through integration

of the following novel techniques:

• A d a p ta b le H ie ra rc h ic a l F ilte r in g A rc h ite c tu re . HiFi is the first monitoring

system that fully distributes the tasks of detecting and classifying events in an hier­

archical fashion. This is accomplished via a set of monitoring agents. Only events

of interest are allowed to flow up in the hierarchy, thereby reducing perturbation of

event propagation in the network and the application environment. Furthermore,

this hierarchy is built, and agents are distributed, based on a user’s monitoring de­

mands. This hierarchy results in restricting monitoring operations and intrusiveness

within the observed application entities and reduces intrusiveness imposed on other

domains and entities within the application environment. The monitoring hierar­

chy is dynamic and adaptable to abnormal increases in monitoring load to assure

scalability and integrity of HiFi in accordance with application needs. The agents

management protocol uses a dynamic reliable multicast service (RMS), described

in [4], to provide an efficient, dynamic and reliable group communication between

agents. This not only significantly improves the scalability and performance of the

monitoring architecture but it also provides a reliable management infrastructure in

the presence of failures or crashes.

• F il te r In c a rn a tio n . The monitoring model supports filter incarnation which is

a new scheme that enables users to specify programmable and self-directed moni­

toring tasks/operations. These tasks permit automatic self-reconfiguration to track

system behavior. Users, therefore, can expand their monitoring activities without

overwhelming the application environment with too many monitoring requests and

sensors. Another very useful application of filter incarnation is dynamic event traces,

which enables users to define traces that can be configured during program execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

based on event information. This has a significant impact on improving performance

and expressiveness while minimizing the intrusiveness of the monitoring system.

• E x p ressiv e an d D e c la ra tiv e M o n ito rin g L anguage. The monitoring architec­

ture provides a Monitoring System Language (MSL) which is used to specify the

monitoring demands and the application environment. MSL incorporates our mon­

itoring model to integrate detection of primitive and composite events in the same

framework. MSL has a unique interface that combines a number of valuable at­

tributes making it a high-level, declarative, expressive, and easy-to-use language.

MSL provides a complete interface for specifying all environmental requirements.

• D y n am ic U se r’s S u b sc rip tio n . The ability to add, delete and modify monitor­

ing requests at run-tim e can be easily supported in centralized and decentralized

monitoring approaches. However, this issue represent a real challenge in a truly

distributed monitoring system, such as embodied by the hierarchical filtering-based

architecture. In order to support this feature, a number of new algorithms and agent

management protocols will be developed to ensure efficient decomposition and dis­

tribution of monitoring demands at run-time and to maintain agent consistency in

accordance with state changes. Dynamic subscription supports dynamic activation

and deactivation for event reporting mechanisms, which reduces generated events

and minimizes system intrusiveness.

• A u to m a tic In s t ru m e n ta t io n U tility . The HiFi monitoring system provides a

simple and automatic process for instrumenting program code and for operating the

monitoring system via extended system sensors and the automatic agent allocation

protocol respectively. HiFi also provides a flexible event reporting mechanism that

users can adjust to control the trade-offs of monitoring performance and intrusive­

ness. Some previous works completely ignored the instrumentation issues, while

other support a static, and hand-wired instrumentation procedure that considerably

reduces the flexibility and usability of the monitoring system.

• A d a p tiv e O b je c t-O rie n te d F il te r in g F ram ew o rk . Research and development

of the HiFi monitoring system has facilitated the development of an adaptive Object-

Oriented event filtering framework for general-purpose event management applica-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

tions [8]. The major contribution of this work is to provide a flexible event filtering

framework th a t can be efficiently adapted to different domain-specific requirements

w ith minimal development effort. In our approach, the event filtering framework

captures common components and design patterns of event management in different

domains.

• C o m p reh en s iv e M o n ito rin g E n v iro n m en t. Unlike previous work in monitoring

distributed systems, HiFi provides a comprehensive and operational prototype that

can be deployed for monitoring any large-scale distributed system based on UNIX

platforms. Previous work is not fully applicable in monitoring large-scale distributed

systems such as [32, 36] as it is either not deployable because of environment re­

strictions such as use of the Isis system [14, 58], or it is still in a proposal stage.

We consider the HiFi achievement as a valuable add-on for the research commu­

nity to begin understand and analyze the requirements of managing very large-scale

distributed systems, such as Internet or MBone services.

The monitoring architecture supports a number of other design features, including the

following.

• Priority-based, monitoring: Events are processed based on associated priorities such

that events with higher priorities face minimum monitoring latency.

• Monitoring space optimization: The monitoring architecture supports several opti­

mization techniques to reduce or distribute the memory space required for tracking

event history.

• Filtering optimization: A number of filtering techniques are proposed to reduce the

time required to process an event.

• Dynamic reliable group communication: Reliable multicasting protocols do not sup­

port rapid and dynamic mechanisms for subgroup communications. HiFi work facil­

itates the development of a new technique for rapid and dynamic group masking [4].

This enables agents to send multicast messages to a subset of its group with minimal

group management operations.

The HiFi prototype has been used for monitoring Interactive Remote Instruction (IRI)

and for providing effective examples of debugging and system steering applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

1.6 Dissertation Overview

This dissertation is organized as follows. In Chapter 2, an introduction to monitoring and

filtering in distributed systems is presented followed by key criteria in evaluating various

mechanisms of event filtering.

Chapter 3 describes the model, language specifications, approach and environment

of our monitoring architecture. We explain the terminology used throughout this thesis.

Additionally, the chapter describes the specification, examples and features of the moni­

toring language and describes how it captures the monitoring model. We argue the ability

of the monitoring model and language to improve performance and expressiveness while

minimizing intrusiveness. This Chapter also describes the potential for integrating HiFi

with other existing monitoring tools, such as SNMP [18], to broaden management benefits.

Chapter 4 represents the core of this thesis. This chapter presents alternative fil­

tering techniques used in distributed event management. It then describes and supports

the hierarchical filtering-based monitoring architecture explaining the management and

communication protocols and the dynamic hierarchical approach. The chapter provides

the reader with a tour of the monitoring system, from user specification and processing to

action execution. Algorithms and protocols used to implement the architecture (including

automatic agent allocation, event and filter decomposition and distribution, dynamic sub­

scription, and event detection) are described. In this Chapter, we also state the impact of

these techniques on achieving the dissertation objectives.

In Chapter 5, the following system components and their implementation are de­

scribed: instrumentation, subscription, filtering and control. For each of these compo­

nents, the function, subcomponents and design criteria are described. The discussion in

this chapter also illustrates design issues and decisions that have a significant impacts on

achieving system objectives. An Object-Oriented event filtering framework, for general-

purpose event management applications, is also presented.

Chapter 6 presents benchmarking and simulation results for evaluating the pertur­

bation, scalability and throughput of the monitoring system.

In Chapter 7, three examples illustrate the HiFi support for distributed debugging,

application steering and general monitoring feedback applications.

Chapter 8 presents a survey and evaluation of related work in monitoring distribut­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

ing systems and in event filtering mechanisms. Systems and approaches are compared with

HiFi and evaluated based on the LSD systems requirements stated in this chapter.

Finally, in Chapter 9, we conclude by summarizing our contributions, and identify­

ing remaining issues and challenges to be addressed by the HiFi architecture in our future

work plan. We also provide references to implementation, documentation and application

examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

CHAPTER II

BACKGROUND

The following background study is divided into two parts. The first part (Section 2.1)

addresses monitoring background including the monitoring process and applications while

the second one (Section 2.2) discusses event filtering framework. Filtering mechanisms

represent the major component of the monitoring system. The survey and evaluation of

related work is discussed in Chapter 8.

2.1 Monitoring Distributed Systems: An Introduction

Monitoring is defined as the process of dynamic collection, interpretation and presentation

of information concerning objects or software processes under scrutiny [44, 81]. Within

distributed systems, monitoring facilitates a variety of tasks including debugging, test­

ing, visualization, animation and systems management. It also provides the foundation

for performance management, configuration management, fault and security management

and other related activities.

M o n ito rin g T y p es: Two basis types of monitoring exist. Time-driven monitoring ac­

quires periodic status information and provides an instantaneous view monitored object

behavior. Event-driven monitoring obtains information about events of interest as they

occur and provides a dynamic view of system activities based on data collected dining

those events. Some monitoring systems implement both monitoring types to fulfill vary­

ing requirements and constraints [57].

M o n ito rin g A c tiv itie s : Most monitoring systems perform four basic activities:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

1. Generation: Information about monitored objects is collected to construct a trace

which represent an historical view of system activities.

2. Processing: Trace information is processed in accordance with required monitoring

formats. This may include merging traces, validating information and processes,

updating databases, and combining, correlating and filtering captured trace infor­

mation.

3. Dissemination: Processed trace information is forwarded to the request originator,

which could include users, managers or monitoring applications.

4. Presentation: Processed information is formatted (e.g., text, graphs, etc.) and dis­

played to the user in the appropriate form.

Monitoring activities are implemented by different monitoring systems specific to system

design requirements. Systems may also execute activities in the order appropriate for the

design. This results in the four basic activities being executed in a more random fashion,

rather than as in a layered architectural approach. For example, information may be dis­

played without processing or dissemination. Events and reports may be processed solely

to generate other events or reports [57].

M o n ito rin g A p p lica tio n s : In general, monitoring is essential to improve the quality of

any process (e.g. m anufacturing process, management process and production control pro­

cess). Similarly, in software systems, the process of developing, maintaining and operating

distributed applications can be complex. An efficient monitoring of these applications is

an essential mechanism to produce good quality applications (e.g. reliable, robust, se­

cure, high-performance). The necessity of monitoring significantly increases when using

large-scale distributed systems since they are more susceptible to many problems such as

reliability and performance problems. This is because of the large distribution and inter­

activity of LSD systems which makes it more difficult to debug and steer. In this section,

we will present a number of monitoring applications which are important to improve the

quality of distributed systems. We also show how monitoring is more compelling for LSD

systems.

• Debugging and Testing: Unlike centralized or isolated systems, bugs or incorrect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

behavior in LSD systems may be related to multiple components distributed across

the application environment. In addition, related events can be generated simulta­

neously. In this environment, it would be difficult or may be infeasible for the system

developers to track the state of the system and collect information on the run-time

functional behavior of the system for debugging and testing purposes. The proposed

monitoring architecture enables the developers to debug and test LSD systems by (1)

detecting event of errornous or incorrect operations, (2) requesting activity reports of

certain functions or components, and (3) producing event traces of the entire appli­

cation history within a specific time-interval. Events are detected and forwarded by

the monitoring system at run-time regardless of the events locations (i.e. remote or

local machine) and how complex the events are. A complex event is composed of set

of events that are generated from different sources or components of LSD systems.

For example, the error of the receiving message size being different from what has

been sent is a complex event since it is distributed in the application environment

(senders and receivers).

• Performance Tuning: The environment of LSD systems (i.e. Intranets or Internet)

changes dynamically due to the variable load on the system and the network. For

example, a congested link a t this moment may not be congested after sometime.

LSD systems need to adapt to the changes in the network or system status in order

to maintain a good performance during its execution. This may support improving

or maintaining the quality of the services (e.g. fast response) provided by LSD appli­

cations and thereby meet the users/customers satisfaction. The monitoring system

is an effective means for performance timing and application steering. The man­

agement decisions of the monitoring applications (e.g. tuning) may be based on set

of correlated events which are concurrent and distributed in the LSD environment.

Therefore, the reactive control monitoring application of the LSD system should be

able to request the monitoring of specific local or global events that could effect

the performance of the application and adjust the application control parameters to

adapt to the new conditions. For example, it may be desirable to dynamically adjust

the sending rate in multicast group to the average of the the receiver rates (instead

of going with the slowest receiver as most reliable multicast protocol do). The re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

active control module may get a continues feedback on this global event or it may

get informed only when the average of the receivers rate goes beyond a threshold

values. In either case, the monitoring system is essential for providing such informa­

tion at run-time which can be used (by reactive control components, for example)

subsequently for control decisions.

• Fault Recovery: Faults occur during the execution of LSD systems because of prob­

lems in the environment (e.g. wrong system or network configuration), software

bugs or improper user operations. It is im portant for the application developers

and the system managers to know the source of any failure in order to improve the

robustness and the reliability of the application [43, 91]. The proposed monitoring

architecture can be used effectively to classify and report all failures during the appli­

cation execution so recovery procedure can be manually initiated. Furthermore, the

proposed monitoring architecture supports an automatic fault recovery service where

corresponding recovery procedures are initiated automatically if a failure detected.

Therefore, the monitoring architecture provides a centralized control of application

failures th a t are distributed in LSD environment.

• Security: The monitoring system can be used to detect and report security violation

events such as repeated illegal logins or attem pts of unauthorized file accesses. The

monitoring mechanisms identifies these events based on specific pattern or set of

values revealed by the application itself.

• Correctness Checking: The monitoring architecture can be used as a verification

technique to ensure the consistency with a formal specification. The feedback infor­

mation on the run-time behavior supplied by the monitoring is analyzed by software

verification tools to discover any inconsistency.

• Performance Evaluation: The monitoring technique can also be used to evaluate the

applications performance a t run-time. The monitoring mechanism is used to extract

data from the application during its execution which is later analyzed to assess

system performance. Usually, such monitoring techniques require some hardware

support to assure accuracy and efficiency [36].

Although, the focus in this thesis is on the first three monitoring applications (debugging,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

performance tuning and fault recovery), the monitoring architecture can potentially be

used in other monitoring applications.

2.2 Event Filtering: Key Criteria and Design Trade-off

The event filtering mechanism is the core component of the monitoring architecture. It

serves as an efficient mechanism for detecting (and rejecting) generated events (primitive

or composite). Event filtering also reduces high volumes of event traffic as monitoring work

is subsequently offloaded from network and the consumers hosts. Thus, event filtering has

a significant impact on the performance and scalability of the monitoring architecture. In

this part of the thesis, focus is given to major issues related to designing event filtering

mechanisms. An evaluation of existing filtering techniques, based on our design objectives,

is described in Chapter 8. In order to achieve the most efficient and flexible design and

implementation of event filtering, we have explored the event filtering mechanism in various

application domains beside the system monitoring and management application. Event

filtering is useful in several domains including distributed systems toolkits, network and

system management, communication protocols, and active databases. In this section, we

device the design framework of event filtering mechanism by identifying the key criteria

and design trade-offs of each one. We also classify the existing event filtering systems based

on the key design criteria which helps evaluate alternatives techniques of event filtering

mechanisms.

A p p lica tio n D o m a in

Event filtering is used as a classification mechanism in several application domains. Each

domain uses filtering for different purposes according to domain-specific goals and require­

ments.

• D is tr ib u te d S y stem s T o o lk its : Event filters are used in distributed systems for val­

idating incoming messages. Filters axe used to distinguish (classify) invalid messages (e.g.

errornous or unauthenticated messages) by passing it through a series of validation fil­

ters [14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

• N e tw o rk a n d S y s te m M a n a g em en t: Monitoring is one of the most common appli­

cations of event filters in network and system management environments. Using filters, a

network/system adm inistrator can classify and analyze certain types of events and collect

statistical information about different aspects of network or system operation. Examples

of events filtering toolkits in the network and system management domain are the Packet

Monitoring Program (PMP) [16], HP OpenView [45], snoop [87] and tcpdump [40] in the

UNIX environment.

• C o m m u n ica tio n P ro to co ls : In operating systems, packet filters are used as an effi­

cient technique to demultiplex incoming packets and forward them to the corresponding

communication endpoints(e.g., [12], [59], [63], and [94]).

• A c tiv e D a ta b ases : Event filters are used in active databases to construct triggers.

Triggers are specified as event-condition-action tuples (i.e., performing an action if the

event occurred and condition is satisfied). Application examples of active databases sys­

tems includes financial applications such as stock market (e.g., [27] and [29]).

E v e n t F il te r In te rn a l R e p re s e n ta tio n

The internal representation of filters is a key issue in designing and evaluating event fil­

tering mechanisms. The internal representation determines the structure (data structure)

and the operation (algorithm) of the filtering mechanism. The internal representation of

a filter has a major impact on performance, scalability and functionality of the filtering

mechanism. In the following, we classify event filtering mechanisms based on the func­

tionality of their internal representation. For each classification, we present alternative

internal representation models (data structures and algorithms). To focus the discussion,

we show a filter example and how it is constructed using each representation. This filter

example captures all packets with an IP source address “foo” and either the IP destination

address is “bar” or the T C P destination port is “ftp.”

(1) P r im itiv e E v en t C lassifiers: The internal representation of this type of filter is

usually implemented in the operating system kernel to support efficient classification of

primitive events. In particular, it does not record any history of events detected in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

ip.xrc “ foo

Jp .s rc « f o o) M p.src » foo iNl

(a)

icp -hd r

A ux

iZpted

to) (c)

Fig. 2.1. Filter Internal Representations, (a) Boolean Expression Tree, (b) Directed

Acyclic Graph, (c) Deterministic Finite Automata, (d) Petri Nets.

system. Thus, the primitive event filters are unable to classify composite or global event.

Conventional packet filters [12, 59, 63, 94] are examples of this type of filter. Packet

filters primarily classify and demultiplex communication protocol packets to user process

endpoints. The remainder of this section presents alternative internal representations of

primitive event filters:

• B o o lean E x p ressio n T ree R e p re se n ta tio n : A boolean expression tree is represented

as a binary tree. Each interior node in the tree represents a boolean operation (e.g. AND,

OR). The leaves represent test predicates (also called masks or cells) on event fields. Each

edge in the tree connects the operator (parent node) with its operand (child node).

The algorithm for manipulating a boolean expression tree is based on a “bottom-

up” parse of the tree. Events are classified by evaluating the tree starting at the leaves

(test predicates) and propagating the results up to the binary operator at the root. The

event is matched if the root of the tree evaluates to “true” . Figure 2.1-a illustrates an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

TABLE 2.1

E v e n t F il t e r i n g I n t e r n a l R e p r e s e n t a t i o n

C lassification E v en ts G e n e ra te d In te rn a l R e p re se n ta tio n

L o ca tio n F o rm a t N o d e G ra p h A lg o rith m

P rim itiv e E v en t

C lassifiers

remote notification

messages

predicate or

operators

acyclic DAG or

Tree

C o m p o site E v en t

C lassifiers

local exceptions event cyclic DFA or

PN

example of this representation model.

• D ire c te d A cyclic G ra p h (D A G) R e p re se n ta tio n : A DAG representation is im­

plemented as an acyclic graph (Figure 2.1-b). Its nodes represent the test predicates and

the edges represent the control transfer. The DAG is parsed top-down such that if the

test predicate (also called a cell) is true, the right-hand edge is traversed, otherwise the

left-hand edge is traversed. Thus, the evaluation result of the test predicate (either true or

false) determines the edge to traverse. An event is matched if the terminating node (leaf

node) is denoted as true. There are two terminal nodes in the graph, the true node that

denotes the acceptance of the event and the false node that denotes the event rejection.

(2) C o m p o site E v en t C lassifiers: The internal representation of this type of filter is

usually implemented in the user-space to detect and classify composite events, as well as

primitive events. An example of this type of filter is the event filtering mechanism used

in active database systems. The main function of the internal representation of these

filters is to track events detected in the system, classify composite events as they are

recognized, and trigger actions based on the detected events. In this environment, the

primitive events are the basic database operations performed in the system (such as add

and delete queries) which are identified locally by the filtering system as a programming

language exceptions [19]. Therefore, unlike the primitive event filters, the composite event

filters does not support means to classify primitive events that are represented as notifica­

tion messages. In other words, each primitive event is identified by the exception handler

and a mechanism for parsing notification messages is not required in this environment to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

determine the event identity. The following examines alternative internal representations

for composite event filters.

• D e te rm in is tic F in i te A u to m a ta (D FA) R e p re se n ta tio n : DFA representation is a

finite state machine graph. A transition between two states represents an event occurrence.

Each state represents the history of the system environment either before or after the

occurrence of an event. For example, if event x occurs, a transition on x from one state

(hi) to the next sta te (/1 2) occurs. In this case, hi and /1 2 represent the environment before

and after x occurs, respectively [29].

In this model, a filter consisting of a single primitive event is represented by a three

state automaton consisting of a s tart state, accept state, and non-acceptance state. From

all states, the transition on event x (the event to be detected) triggers a transition to the

accept state. Otherwise, on all other events the transition is to the non-acceptance state.

A filter consisting of composite events is constructed by combining the DFAs of

primitive events together into one DFA using the joining rules of Finite Automaton. By

definition, all DFA transitions are deterministic. An example of this representation model

is given in Figure 2.1-c.

• P e t r i N e ts (P N) R e p re se n ta tio n : A model of Petri nets called Colored Petri Nets

(CPN) has been used in active database systems [27] to construct event filtering mecha­

nism. The following describes this model:

All predicates are represented as states called places. CPN has a number of tokens

assigned to places. If a place has a token, it is called a marked place. A place is marked

when a predicate of that place is matched. Operations between places (predicates) are

represented by guard functions that are checked if all associated places are marked.

Whenever a predicate match occurs, the input place of the CPN is marked with a

token. Initially, tokens are stored in auxiliary places of the CPN to designate the marking

at creation time. Now, if all input places of a state are marked, the event variables that are

denoted as labels in the CPN arc are bound to the value of the appropriate token and the

guard function is evaluated. If the guard function evaluates to true, the state transition is

fired, the token is transferred to the output place of the transition, and the variable value

is propagated to the next state. More details of Petri Net concepts and behavior can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

found in [27]. Figure 2.1-d illustrates the same filter example modeled by a CPN.

To conclude with, both primitive and composite event classification functions are necessary

for monitoring LSD applications. Primitive event classification is required since events in

LSD applications are represented as notification messages. In addition, composite event

classification is required since the event filter may need to track event history in the system.

Table 2.1 compares these two types of event classifiers. Each of the previous event filtering

techniques lack this generality and functionality.

E v e n t F il te r P ro g ra m m in g In te rfac e

An event filter programming interface (FPI) provides a language for defining filter com­

ponents (such as filter expressions and actions). An event filter expression describes all

predicates involved in the event definition (including the message fields and the operators).

The actions describe what will be done when the desired event is detected. Forwarding the

detected event to a corresponding consumer could be an example of a filter action. The

filter definition is used by FPI to construct the filter internal representations discussed

in this section.The internal representation is then used to operate the constructed filter

definition. The expressiveness (the expressive power of the event filtering definition) and

ease of use are two m ajor trade-offs in designing FPI.

This section describes various ways to define the syntax of event filters. A filter

definition can be programmed at different levels of abstraction. In the following we classify

the filter programming interfaces according to its level of abstraction and indicate examples

for each one (detailed discussion of these examples with filter program samples can be

found in [2]). Table 2.2 summarizes the material discussed in this section.

• Im p e ra tiv e Low -level P ro g ra m m in g In te rface : Low-level languages/interpreters

(such as assembly or micro-code languages) have been used to program filters imperatively.

This programming interface is imperative since the filter definition is given as a program

that describes the semantics of the filter operation (i.e. how the predicates get evaluated

against the notification fields). The Stack-based Interpreter [63] and Register-based As­

sembly Language [59] are examples of the communication protocols packet filters that use

this level of abstraction.

• Im p e ra tiv e H igh-leve l P ro g ra m m in g In te rfac e : A high-level description language

(similar to high-level programming languages) has been used to define filters. This pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

TABLE 2.2

E v e n t F il t e r P r o g r a m m i n g I n t e r f a c e D im e n s i o n s

F il te r A p p lica tio n E x am p les D esign Issu es

In te rfa c e D o m ain P ro g ra m m in g Tools

Im p e ra tiv e communication CSPF, BPF Assembly Interpreters

Low -level protocols MPF Languages

Im p e ra tiv e network IPM High-level Interpreters

H igh-level management Languages

D e c la ra tiv e comm protocols PathFinder Special Script Interpreters

H igh-level active databases SAMOS, Ode OODB Compilers

gramming interface uses the imperative approach since a high-level language describes the

exact semantics of filtering operation. The Interpretive Pseudo-Machine (IPM)[16\ is an

example of this type of filter programming interface.

• D e c la ra tiv e H igh-level P ro g ra m m in g in terface : Event filters may be specified in

a high-level declarative language. The previous event filter programming interfaces use

imperative approach where filter definitions are given as programs. Other event filter­

ing interfaces use a declarative programming interface where filter definitions are given

by a pattern (event) match [12, 93]. Examples of declarative filter programming inter­

faces includes Rule and Database Languages [93] such as SQL embedded with Prolog and

Declarative Scripting Language [12] which is a customized script language used for packet

classification.

M odels o f E v en t F ilte r in g

A model of an event filtering mechanism determines the structure of event filter compo­

nents such as (1) predicates, (2) event definition, and (3) filter expression. The filter model

determines the expressiveness power of the event filtering mechanism. In this section, we

will highlight some of the major issues that impact the model of the event filter. More

details can be found in [2]. Table 2.3 summarizes our discussion.

E v en t D efin itions: The definitions of events to be detected must be described concisely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

TABLE 2.3

M o d e l s o f E v e n t F i l t e r i n g

E v en t

D efin itio n

Primitive events

DB operations retrieve, update

DB and patterns pattern match in DB

Binary operations set of test conditions

Composite events No support use primitive events only

Supported combined primitive events

F il te r

E x p re ss io n

D efin itio n s

Operators Basic such as OR,And, Not

Advanced from the basic ones

Parameters Static fixed values

Dynamic modifiable at run-time

Time Intervals

No support no time information

Primitive explicit event time creation

Advanced implicit event time creation

in a filter program. An event can either be a primitive or a composite event (which is

constructed from one or more primitive events). Hence, modeling the event filter requires

defining primitive and composite events definitions. Various definitions have been used

in the existing filtering techniques. For example, in the communication protocol event

filters [12, 16, 59, 63, 94], events are primitive which consist of set of binary predicates

forming a boolean expression. Composite events are not supported. On the other hand,

in active database [27, 29], primitive event are database operations such as update record

which is similar to a function call (not notification-based) and a composite event is just a

combination of primitive events.

F i l te r E x p re ss io n D efin itions: An event filtering expression defines the relation (op­

erators) between basic elements of an event filter: relational predicates (e.g. (17 < trans­

actionJd < 40) or event designators (e.g. O verloaded(foo) such that “foo” is a machine

name). Filter expression enables programmers to develop more complex event filters by

comprising large number of predicates an d /o r event designators in the filter expression

definition. The following factors determine the efficiency of the filter expression:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

TABLE 2.4

K e y C r i t e r i a o f E v e n t F i l t e r i n g

K ey C r i te r ia D efin itio n D esign F e a tu re

A p p lica tio n D o m ain class of applications determines functionality

In te rn a l R e p re se n ta tio n structure and algorithms performance, scalability

P ro g ra m m in g In te r fa c e programming language ease of use

M odels o f E v e n t F ilte r in g filter components generality and flexibility

• F il te r E x p re ss io n O p e ra to rs : A filter expression can be either an expression of

predicates or an expression of event designators. The primitive event classifiers use

the former, the composite event classifiers use the latter (includes database opera­

tions). In both cases, special operators are required to join the predicates in a filter

expression. There are two kinds of event expression operators (l)6astc operators

which are simple logical operators such as AND, OR and (2)advanced operators which

are usually derived from the basic operators.

• P a ra m e te r iz e d F il te r E x p ressio n : Predicates in a filter expression consist of

one or more parameters that axe used to analyze and compare against a message

fields. Examples of parameters are message_id and tra n sa c tio n _ id . Some event

filters [59, 63, 94] have a static parameters whose values can not be altered after its

initialization. O ther event filters [12, 27, 29, 93] have dynamic parameters whose

values can be changed dynamically at run-time and during the filtering operation.

Examples axe illustrated in [2],

• T im e -In te rv a ls in E v en t F ilte r in g : Some applications require classifying events

based on time-interval functions (such event creation time and event temporal or­

dering). Moreover, some applications require detection of temporal events*. Thus,

monitoring time-intervals may be needed to filter events. In this case, defining time

and interval functions must be supported in the event filter definitions. Some event

'events occur according to specified time-precedence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

filters [12, 59, 63, 94] have no support of this feature, some [29, 93] have a primitive

support such as providing timestamps in the events and others [27] support advanced

time-functions such as (Event-A b e fo re Event-B) filter.

To summarize our discussion on the key criteria of event filtering, Table 2.4 outlines

the key criteria and shows the related design feature influenced by each corresponding

criteria.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

CHAPTER III

DESIGN APPROACH

We start presenting the monitoring architecture by describing the monitoring model, lan­

guage and environment. These three issues represent the basics of the monitoring archi­

tecture because they define the monitoring dynamics, the system interface and the system

interaction, respectively. We introduce the terminology used throughout this thesis. This

chapter also describes the specifications, features and examples of the monitoring language

and describes how it captures the monitoring model. We then argue th a t the monitoring

model and language are capable of improving the performance and expressiveness while

minimizing intrusiveness of the monitoring system.

3.1 Monitoring M odel

In order to present a complete abstraction of the monitoring problem, our work must

include modeling the application behavior, the monitoring demands, and the monitoring

mechanism when considering the design objectives presented in Section 1.2. In this section,

we present our model of the monitoring process and introduce the terminology that we

use throughout our discussion in this thesis.

3.1.1 Event-based Abstraction of Application Behavior

The program behavior can be expressed in a set of events revealed by the application

during execution. In our monitoring model, we call the monitored programs event pro­

ducers which continuously emit events that express the execution status. An event is a

significant occurrence in LSD systems that is represented by a notification message. A no­

tification message typically contains information that captures event characteristics such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

as event type, event values, event generation time, event source, and state changes. Event

signaling is the process of generating and reporting an event notification. For simplicity,

we use "event” and "notification” interchangeably in this thesis. T hat is, we consider a

notification to represent an event. We also classify two types of events used in our model:

primitive events which are based on a single notification message, and composite events

which depend on more than one notification message. In other words, the composite event

represents a logical relation of two events or more to form a higher abstraction of the pro­

gram behavior. For example, error events generated by producer (i.e. application entity)

"foo” are primitive events since they can be detected by checking the fields of a single

notification that has source address "foo” and event type "Error” . On the other hand, in

order to discover that two producers (or more) are generating error messages (event type

field is ’’Error”), the notification even t ty p e field of a t least two different producers must

match the value "Error” . Therefore, we call this event a composite event because detect­

ing this event requires the matching of multiple primitive events of different producers.

We will use the term event pattern to refer to any set of related primitive or composite

events which may represent a program behavior. In our model, the event format (notifi­

cation) is a variable sequence of event attributes determined by the user but it has a fixed

header used in the monitoring process. An event attribu te is a predicate that contains

the attribute name which typically represents a variable in the producer (i.e, program)

and a value. The event format also determines the type of event signaling: Immediate to

forward the generated event immediately, or Delayed to allow buffering/batching events

in the producer before sending them. Table 3.2 shows the formal definition of the event

in BNF [70]. This event abstraction enables consumers (1) to specify any arbitrary event

format in a declarative way, and (2) to construct a complex (multi-level) abstraction of a

program behavior using composite events. In addition, the event abstraction enables the

consumers/users to assign values to the event attributes and does not require specifying

attribu te type (e.g., i n t , f l o a t o r s t r in g) . This is unlike the CORBA IDL abstrac­

tion which requires each attribute type to be determined and does not permit the user to

specify values in the data constructors [66].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

producer) producer

producer) .Event Even]

EventAclioi

producer
Event

Event.

Filter
Incarnation Subscribe

Fault Recovery Actloi Fillet

Subscribe
(onitoring System
\ Network / monitoring'***--^

information i, p r o d u c e r ^ bscribc

Application Steering Manual Recovery

Fig. 3.1. Monitoring Model.

3.1.2 Filter-based Abstraction of Monitoring Demands

We call the monitoring objects (e.g., human or software programs) event consumers since

they receive and present the forwarded monitoring information. The consumers specify

their monitoring demands via sending a filter program via the subscription process which

configures the monitoring system accordingly (see Figure 3.1). A filter is a set of predi­

cates where each predicate is defined as a boolean-valued expression that returns true or

false. Predicates may be joined by logical operators (such as AND, OR and NOT) to form

an expression. In our model, the filter consists of three major components: the event ex­

pression which specifies the relation between the interesting event, filter expression which

specifies the attributes value or the relation between the attributes of different events,

and the action to be performed if both event and filters expressions axe true. Table 3.1

shows the formal definition of the filter in BNF. As the event abstraction emphasizes the

declarative aspect of the model, the filter abstraction improves the expressive power and

the usability of the monitoring system. For instance, the filter program not only enables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

TABLE 3.1

BNF o f H i g h - l e v e l F i l t e r S p e c i f i c a t i o n L a n g u a g e

<Filter> ::= FILTER = <Filter_Body>
<Filter_Body> ::= [<Event_Expr>]; [<Filter_Expr>]; [<Actions>];

<Filter_Name>.
<Event_Expr> ::= (<Event_Name> <Event-Op> <Event_Expr>)

| <Event_Name>
<Filter_Expr> (<Predicate> <Filter.Op> <Filter_Expr>)

[<Predicate> | TRU E
<Predicate> ::= (<Pred_Att> <Relation> <Pred_Att>)

| (<Pred_A.tt> <ReIation> <Value>)
<Pred-Att> ::= <Event_Name>.<Att-Name>
<Filter.Op> ::= <Event.Op>
<Actions> <Action> ; <Actions>
<Filter_Name> ::= <Program_Name> ::= <String>

users to describe the relation between the events of interests, but it also permits users to

specify the relation between the attributes of different events. In addition, consumers can

overload the attributes values specified in the event specification by assigning new values

in the filter expression which enables creating different instances of the same event in the

different filters. The action component is used by consumers to support reactive control

services, such as fault recovery and application steering, which is a target application of

the monitoring architecture. The process of coalescing two or more filters together into

one global filter structure inside the monitoring system is called a filter composition. The

filter composition takes a place when more than one filter is submitted from one or more

users in the same monitoring environment.

3.1.3 Event-Subscription-based Monitoring Model

The monitoring model must be capable of supporting the target applications and the

objectives of the monitoring architecture. In the above discussion, event abstraction and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

filter abstraction determine the inputs to the monitoring system. Figure 3.1 shows the

basic state diagram of the monitoring model. The producer behavior is observed based on

the event generated (event-based) and on the monitoring requests (subscription-based).

Events received in the monitoring system are classified based on existing filters. If an

event is detected, the action specified in the filter is performed such as forwarding the

monitoring information to the corresponding consumers. Thus, our monitoring can be

viewed as an event-demand-driven model. It is event-driven, as opposed to a time-driven

model, because monitoring information is reported based on event occurrences. Also, it is

demand-driven, as opposed to a trace-driven model, because generated events are filtered

and actions are performed based on the consumers’ demands. Actions in the monitoring

model can be simply executing a program (local or remote) or forwarding the detected event

to the corresponding consumers which axe both necessary for reactive control (automatic

fault recovery and application steering) and distributed debugging, respectively.

In order to improve the dynamism and the expressive power of the monitoring

system, the model provides more complex actions: a new event or a filter incarnation.

Generating new events as an action has significant impact in improving the expressive

power, performance and usability of the monitoring system as follows: (1) The event-filter-

action cycle (see Figure 3.1) enables the consumer to activate a series (loop) of monitoring

operations (filters and actions) automatically without having him /her to intervene in the

monitoring process. For example, a failure may occur in a producer (process) as result of

abnormal close of communication connection (primitive event). In this case, the efficient

management operation involves failure recovery as well as sending an event to further

diagnose the process (producer) that closes the connection. In addition, this action-event

may trigger other filters to check the status of other running processes. Based on this,

new actions (e.g., recovery procedures) could be performed, (2) An action could generate a

“summary” event which summarizes the information of detecting a composite event (e.g.,

the event expression consists of multiple events). This enables suppressing the information

of multiple events into one event (summary event), thereby avoiding event report implosion

and reducing the event traffic, and (3) Performing an action such as executing a program

may change the state of a running program. Therefore, sending an event that reveals the

state change to the monitoring system is important to allow re-observing the behavior,

thereby enabling autom ated application steering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

An action can also be a filter manipulation (typically, adding a new filter, deleting

a filter, and modifying a filter). For example, another new filter can be activated in the

monitoring environment as a result of detecting an event. We call this filter incarnation

(see Table 3.1 and Figure 3.1) because a filter may add, delete or modify a new filter in the

system. The filter incarnation enables dynamic monitoring which allows the monitoring

system to re-configure itself automatically based on event occurrences. This feature is im­

portant because it enables the consumer to control the monitoring granularity, and thereby

minimizing its intrusiveness. In particular, the consumers can subscribe for a small num­

ber of filters, however, these filters may activate other filters when a specific event pattern

is detected. For example, assume a consumer wants to start monitoring the “transmission”

events of a program (producer) X only when the drop rate of the “receiving” event of a

program (producer) Y exceeds a certain threshold. Then, the consumer can specify one

filter tha t monitors the “receiving” events of Y which will trigger another filter to monitor

the “transmission” events of X if the drop rate exceeds the threshold. This permits acti­

vating the transmission status filter automatically and at the proper time which minimizes

the monitoring perturbation in the application environment. Therefore, the monitoring

model enables dynamically activating/deactivating the appropriate monitoring operations

(or filters) a t the right time (event), and thereby relieving the system environment from the

overhead of launching multiple filters or monitoring requests simultaneously. Moreover,

the filter incarnation feature provides an extendible programming environment utilizing

the power of the recursive event-filter-action model. Table 3.5 shows the formal definition

of the monitor action in BNF. Section 3.3 presents a detailed discussion, examples and

features about the monitoring language specifications.

3.2 Integrated Application-Level Software Monitoring

Our monitoring approach is strictly a software monitoring system. Unlike hardware [34]

and hybrid monitoring [36], no special hardware is required in order to use the monitoring

system. This design attribute is important to assure portability and flexibility of the mon­

itoring system in different platforms and to minimize cost. On the other hand, monitoring

intrusiveness and resource sharing are given a substantial consideration in the architecture

design as will be shown later in this thesis. The HiFi monitoring system is an application-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

level program that interacts with event producers and consumers through a well-defined

interfaces. The communication with events producers is almost unidirectional since the

events flow from producers to the monitoring system, and communication in the other

direction is very controlled and minimal (see Chapter 5). This is im portant to minimize

program perturbation. Consumers send filters and receive forwarded notifications to and

from the monitoring system, respectively. In Chapter 4, we will discuss the type of com­

munication channels used in both cases. Moreover, implementing the monitoring system

in user-space (application-level), provides flexibility for testing and debugging, portability,

system protection (security) and dynamic linking. On the other hand, such advantages

can not be obtained in kernel-level monitoring systems such as [87].

Another advantage of using application-level monitoring is the ability to interact

with other available monitoring tools such as SNMP [18] and CMIP [82] or non-standard

management utilities such as to p and perfm eter. Although the monitoring architecture

is an event-based, it can communicate with other monitoring tools via event emulation

layer which acts as a proxy agent between the monitoring system and other monitoring

tools. The main function of the event emulation layer is to mimic the event producer

interaction by requesting and collecting the monitoring information from the external

tools, and providing it in event-based format to the monitoring architecture. The event

emulation layer consists of two parts: tool-independent interface which is common for all

tools that performs event signaling based on our monitoring model described above, and

tool-dependent interface which is peculiar to the external monitoring tool. For example,

the event emulation layer frequently polls an SNMP agent, analyzes collected events and

generates notifications if the pre-defined primitive events by the consumer are detected.

This architecture enable the monitoring model to correlate events from the producer with

other events (such as CPU utilization or memory usage) from external management tools.

This integrated monitoring environment is very beneficial for understanding the program

behavior and for fault diagnosis [15].

3.3 Monitoring Language

This chapter discusses the m ain issues involved with designing a monitoring system as

part of the overall system architecture. Major components of the monitoring system,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

including the monitoring programming language and the monitoring language/interface,

are described with design considerations and trade-offs. Critical attention must be given

to the monitoring programming language as this is the access point used by consumers for

controlling the monitoring system.

3.3.1 Design Principles

A monitoring system must provide a user interface to permit configuration of the system to

desired monitoring specifications. Because of the complexity of these configuration tasks,

the interface must provide flexibility beyond that of a traditional API which supports

only service requests (e.g., function calls). To provide this flexibility, the monitoring

systems must provide a •programming interface which is referred to as the monitoring

system language (MSL).

The MSL provides a means for defining event formats (e.g., event attributes),

filter components (e.g., filter expressions) and the application environment. Based on

which event patterns are detected, the monitoring system uses information defined in

MSL to construct the corresponding filtering internal representation. The filtering internal

representation is discussed later in this section.

The characteristics and quality of the monitoring programming language is influ­

enced by a variety of design alternatives [53]. Key characteristics of language include:

• Expressiveness - the expressive power of the monitoring language depends on the ab­

stract model of the monitoring mechanism, and the availability of a rich set of expres­

sion operators provided by the language itself. The abstract model determines the

capability of the monitoring system to represent and execute user demands/requests.

Flexibility in constructing filtering expressions is achieved by providing a rich set of

operators.

Monitoring systems that lack expressiveness have limited capability to define com­

plex monitoring demands. As a result, this restricts the use of the monitoring system

within a particular application domain (application-dependent). Examples of such

restricted monitoring languages are presented in [2].

• Ease of use - Some event filter programming interfaces Eire declarative languages

where filter definition is given as a pattern/event match. This allows specification of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

events of interest without focusing on low-level programming details. In a declarative

design, there is no need to specify program control and data structure operations

as is the case with imperative languages. Other programming interfaces, such as

those which utilize ’’assembly language” , are more imperative in nature. This re­

quires users to deal with low-level details (such as message formatting and bit/by te

operations).

3.3.2 Language Design Trade-offs

We classify existing event filter programming interfaces into low-level and high-level in­

terfaces according to the abstraction level, and into imperative and declarative interfaces

according to the programming approach. Here, we describe number of trade-offs that arise

when designing and implementing event monitoring/filtering programming interfaces.

Low -level vs. H igh-level: Low-level interfaces, such as assembly language, often per­

form more efficiently than high-level interfaces. However, high-level programming filters

increases usability since they are easier to program. High-level filters are also more portable

since they are less dependent upon hardware and underlying internal filter representation.

Im p e ra tiv e vs. D ec la ra tiv e : The declarative approach makes filter programs more

concise and easier to write when compared with the imperative approach. Thus, the

declarative approach increases usability, extensibility and maintainability of the monitor­

ing programs. However, declarative languages require programming within the language

framework. As a result, the declarative approach imposes some limitations that may de­

crease the expressiveness of event filter programming. For example, declarative filtering

interfaces such as PathFinder [12] are customized to work for specific applications (like

demultiplexing T C P /IP packets). In contrast, the imperative approach overcomes this

limitation through the use of language constructors which permit more expressive filter­

ing programs. An example of a filter imperative language interface is the Interpretive

Pseudo Machine (IPM) described in Section 8.2. Designing a declarative and expressive

monitoring language is a challenging issue of which this section attem pts to address.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

B asic O p e ra to rs vs. A d v an ced O p e ra to rs : Some filter programming interfaces pro­

vide basic operators (such as AND, OR, and NOT), while others provide more advanced oper­

ators such as B efo re , A f te r , and Sequence. Advanced operators increase the expressive

power of event filtering expressions. There are two disadvantages of using advanced op­

erators: (1) the increased performance overhead a t run-time due to interpretation and

processing of these operators, and (2) the increase complexity of use. Conversely, basic

operators are usually simplistic as they represent the core instructions of the filter expres­

sion. Therefore, basic operators typically incur less run-time overhead and are easier to

use.

In te rp re te r s vs. C o m p ilers :

• Interpreters are normally used when filters are implemented in the OS kernel. In this

type of implementation, interpreters provide better system protection and robustness

than compilers.

• Compilers are more convenient when the filtering mechanism is implemented in user-

level applications. Compilers permit dynamic linking and run-time optimization

thereby increasing run-time efficiency of event filtering mechanisms.

• Interpreters continuously re-examine program code increasing execution overhead

and causing significant degradation in monitoring performance.

• Interpreters may also have greater core storage requirements when compared with

storage needs for compilers. The interpreter and supported routines usually must be

kept in memory simultaneously using larger amounts of core storage resources. In

contrast, compilers dynamically link to target routines at run-time, which minimizes

space utilization.

3.3.3 Event Specifications

An event is defined as a significant occurrence during program execution. Events are

represented by notification messages sent from the application to the monitoring system.

The notification message encapsulates all information needed to identify a specific event.

This implies th a t there is a one-to-one correspondence between the event names and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

TABLE 3.2

BNF o f H i g h - l e v e l E v e n t S p e c i f i c a t i o n L a n g u a g e

<Event> ::= EVEN T = <Event_Body>.
<EventJ3ody> ::= <Prim_Event> | <CompJEvent>
<Prim_Event> ::= {<Fix_A.tt> ; <Var_A.tt>} <Event_Name>
<Comp_Event> ::= (< Prim-Event > <Event.Op> <Comp_Event>) |

(<PrimJEvent> <Event.0p> <Prim_Event>)
<Fix_Att> ::= M oduleNam e = <String>,

FuncName = <String>, <Report_Mode>
<Report_Mode> Im m ediate | Delayed
<Var_Att> ::= <Predicate> , <Var_Att> | <Predicate>
<Predicate> ::= <Att_Name> <Relation> <Value>
<Event-Op> ::= A | V | ~
<Relation> ::= < | > | = | # | < | >
<Value> ::= <Number> | <String>
<Event_Name> <Att_Name> ::= <String>

notifications. In other words, no two events of the same name (identity) have the same

notification. In our discussion, we use words “event” and “notification” interchangeably.

The High-level Event Specification Language (HESL) is the part of the MSL used

to define target events. Table 3.2 shows the BNF of the HESL. In the HESL, an event

must have the EVENT construct as a prefix and the event name (event identification) as

a postfix. The event name (Event-Name) must be unique within a single application

environment. The MSL provides constructs for defining composite and primitive events

specifications. A composite event consists of a set of event pairs (actually primitive or

composite event names) that are connected relations Event .Op (AND, OR and NOT).

Therefore, a composite event may consist of primitive and/or composite events other than

the event itself. In addition, all event names included in the composite event definition

must be specified before the definition of the composite event. Primitive events consist of

set of predicates that, in turn, consist of an attribute, an attributes value, and a logical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

relation (e.g., < ,= ,>) . For example, IPDest = 2 2 4 .5 .5 .5 represents a predicate of an

event attribu te IPD est (destination IP address) whose value must equal the IP address

2 2 4 .5 .5 .5 . As another example, the predicate Nacks > 100 indicates the value of the

“number of negative acknowledgments” (Nacks) attribute for this event must be greater

than 1 0 0 .

Primitive events have fixed attributes: program/process name (ModuleName), func­

tion/procedure name FuncName, and the reporting mode (Report.mode). The event no­

tification must specify the values of these three attributes otherwise reported events are

rejected. The reporting mode can be either Immediate, which generates the event and

sends it to the monitoring system right after its occurrence, or Delayed, which uses a

batch mode to buffer events until one of the following conditions occurs: (1) an immediate

event occurs, (2) the program invokes the F lushE ven tsO which is a service supported by

the instrumentation routines, or (3) the number of buffered events exceeds the maximum

threshold allowed in the monitoring agent. A fourth condition, set by time limits, is pur­

posefully avoided to prevent perturbations caused by use of the timer interrupt. However,

consumers/programmers can still set up timers in the program and flush the event buffer

using F lushE ventsO service. This issue is discussed further in Section 5.1. The reporting

mode enables users to control monitoring intrusiveness and to manage the level of event

freshness. Monitoring intrusiveness can be minimized by reducing the events reporting

rate when batch mode is used. Event freshness, which is the elapsed time between event

occurrence and event reporting times, can be reduced to minimal if immediate mode is

used, or reduced to a certain limit if F lushE ven tsO is frequently invoked. Furthermore,

the report mode can also be used to assign an event priority class number which is an

integer used by the monitoring system to discriminate between events. Events of smaller

report mode numbers have more priority than those of larger numbers.

The next part of the primitive event attributes is variable (see Table 3.2). The

variable attributes part permit the user to define an arbitrary list of attributes to describe

desired events as in the examples shown below. However, since these events are originally

emitted by the program itself, the event attribu te values must be associated with the

program variables in order to reflect the internal state of the program execution. Therefore,

in the HESL, attribute names must typically match the program variable names. For

instance, in the previous example, IPDest must be a variable defined in the monitored

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

program. This association between the attribu te names and the program variables provide

application-dependent monitoring which facilitate observing LSD systems based on the

values of the variables used in these applications at run-time [32]. Both the primitive

and composite event body must follow the EVENT keyword and proceed the event name

in HESL. The value of the attribu te can be a number (integer or float point) or a string

designated by quotes.

The HESL provides ANY, a special reserved word that can be assigned as an a t­

tribute value to indicate any range of values*. This has a significant use when the event

a ttribu te is only important in the event correlation expression and a specific value is irrel­

evant in the monitoring demand. In other words, this reserved word (ANY) is needed when

a primitive event has an attribu te whose value is interesting only when it is compared with

an attribu te of another primitive event. In the following, we present examples of defining

events:

E v en t E x am p le 1: Assume that one wants to define warning events (AudioMixing) that

occur in function of the AudioServer program running in a specific machine called dragon.

This event can be defined as follows:

E V E N T = { ModuleName=AudioServer, FuncName=AudioMixing, Immediate;

Event Type = “Warning” , Machine= “dragon” } MixWarnings.

E v en t E x am p le 2: If naming specific machine name is not important. Then the Machine

attribu te can be completely eliminated from the MixWarnings definition. However, assume

that one is interested in discovering warning events that occur in both AudioMixing of Au­

dioServer programs and AudioReceive of RM PS programs in the same “machine". In this

case, naming a specific machine is not also im portant but it is im portant to be used in the

correlation expression. For this reason, the MixWarnings is redefined as follows:

E V E N T = { ModuleName=AudioServer, FuncName=AudioMixing, Immediate;

EventType= “Warning” , M achine=“ANY” } MixWarnings.

E V E N T = { ModuleName=RMPS, FuncName=AudioReceive, Immediate;

EventType=“Warning”, M achine=“ANY” } RMPSWaraings.

*ANY is used for numbers and “ANY” is used for strings attributes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

TABLE 3.3

BNF o f t h e E n v i r o n m e n t S p e c i f i c a t i o n L a n g u a g e

<EnvSpecs> ::= <Domain>; <EnvSpecs> | <Domain>& <ModuleSpecs>
| <Domain> @ <SuperDomainInfo> & <ModuleSpecs>

<Domain> ::= <DomainName> = <MachineList>
<SuperDomainInfo> ::= <SuperDomain> ; <SuperDomainInfo> | <SuperDomain>
<SuperDomain> ::= <SuperDomainName> = <DomainList>
<DomainList> ::= <DomainName>, <DomainList> | <DomainName>

| <SuperDomainName>, <DomainList> | <SuperDomainName>

<ModuleSpecs> ::= <Module>; <ModuleSpecs> | <Module>;
<Module> <ModuleName> = <ModuleInfo>

| <ModuleName> = *
<ModuleInfo> ::= <ModuleLoc>, <ModuleInfo> | <ModuleLoc>
<ModuleLoc> ::= <DomainName> | <MachineName>

| <DomainName> — {<MachineList>}
<MachineList> ::= <MachineName>, <MachineList> | <MachineName>

Notice that Machine attribu te has the value ANY in both events because the value

of this attribu te is not im portant in the event definition level. This implies that Machine

attribute in this example can not be used to filter out events before checking the correlation

expression that constitutes both events. In the Section 3.3.5, we show how an example of

filter program that correlates these two events based on Machine attribute.

3.3.4 Environment Specifications

Large-scale distributed systems may involve any number of machines, sites, domains and

networks. For example a distributed interactive simulation (DIS) application may support

hundreds of nodes and tens of inter-networked sites. Managing and distributing agents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

in such environment is a challenging task by itself. In order to facilitate and autom ate

the task of agent organization and allocation, MSL provides the Environment Specifi­

cation Language (ESL). Consumers may use ESL to describe the run-time geographical

distribution of the application entities/process.

Table 3.3 presents the formal specification of ESL in BNF. ESL provides a declara­

tive and comprehensible interface to describe the run-time environment of an application.

ESL has three major parts: machine distribution, domain hierarchy and event producers

also referred to as application distribution. In the first part, consumers divide the ma­

chines that the application entities occupy during execution into distinct domains such

that no machine can exist in more than one domain. Usually, domains are identified

based on geographical distances and node clustering. For example, a LAN of workstations

in one site can be considered a domain. However, consumers are free to choose logical

domains based on other criteria. For example, machines can be classified based on con­

figuration and CPU power, or based on the running application. The latter is useful for

asymmetric distributed systems such as DIS applications where nodes are divided into

groups and each group simulates a different entity (aircrafts, tanks, soldiers, ..etc). In

this case, it may be more useful to classify nodes based on their functionality. Once all

machines are contained in exclusive domains, the consumer may describe, if one exists,

the hierarchical relation between these domains by including previously specified domains

into superdomains. Again, no domain should exist in more than one of the superdomains.

A superdomain may contain some of the previously specified superdomains to build the

hierarchy to the root. For each level (/) in the hierarchy, the set of superdomains in I

must be complete (i.e., contain all domains or superdomains in one level below I) and

distinct (i.e., no domain or superdomain could exist in two different superdomains). A

superdomain can not contain itself. If no superdomain is specified, the system will create

a virtual superdomain that includes all listed domains.

The third part, application distribution, describes where the application processes

are running in term of machines, domains or superdomains. ESL has special reserved

characters such as * and — to provide a very flexible and easy to use language. The

special character * (all) indicates that the process/module runs in every defined machine.

The special characters — (except) excludes machines from domains. Table 3.4 presents a

simple example of ESL. It shows that ODU and VB are domains (could be physical or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

TABLE 3.4

E n v ir o n m e n t S p e c i f i c a t i o n E x a m p l e

ODU - dragon, unicorn, orca;
VB = cyclops, harpy, ogre;
VA-State = ODU, VB

RMPS = *;
XTV = ODU, VB - { cyclops };
Sess = dragon, ogre:

virtual domains) th a t have the corresponding machines: “dragon5’, “unicorn" and “orca”

in ODU, and “cyclops” , “harpy” and “ogre” in VB. The domains ODU and VB are

contained in one superdomain called VA-State. In addition, ESL in Table 3.4 states that

the target processes of the application are RMPS, Sess and XTV, such that the first one is

located every where, the second one is located in ODU and VB except cyclops, and the

third one is located in dragon, cyclops and griffon machines.

3.3.5 Filter Specifications

After the application environment and associated events have been specified, the mon­

itoring agents are configured and prepared to receive and process consumer monitoring

requests or filter programs. Section 4.3 will discuss the process of configuring and orga­

nizing the monitoring agents. However, in this section, we focus on the High-level Filter

Specification Language (HFSL), which is used to subscribe new monitoring requests and to

delete and modify former demands. The semantic model of HFSL was described previously

in Section 3.1. Table 3.1 shows the HFSL syntax in BNF.

A filter consists of three main parts: the event expression (EX), filter expression

(FX), and action. Each filter definition/program has FILTER as prefix, and the filter name

as a postfix. Consumers define a filter program to describe an interesting event correla­

tion [47] or pattern to be detected. The event correlation may specify a relation between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

events occurrences, in general, an d /o r the relation between the attributes of different

events. The event expression enables the consumers to specify the relation between the

occurrences of abstracted events such as both events MixWarning and event RMPSWarnings

have occurred: MixWarnings A RMPSWarnings. Consumers can also narrow down the re­

lation of the event correlation to the attribu tes level using the filter expression in HFSL.

The filter expression is composed of a set of predicates where each predicate represent two

attributes of events (different or same events) compared by a logical relation such as < , >

and = . Events attributes Eire designated by the event name as a prefix in the filter ex­

pression (e.g., MixWarnings.Machine means the machine name attribute in MixWarnings

event). Predicates are linked via logical operators called filter operators F ilte r_ 0 p . Sim­

ilarly, events in the event expression are linked together using event operators Event_0p.

To avoid an ambiguous expression, parentheses are used to determine the precedence of

the filter and event operators. Event and filter operators are kept independent even though

they are identical in the current implementation, because event relation could comprise

other operators that are not applicable in the filter expression, such as A fte r and B efore

event operators. Therefore, event expression and filter expression constitute different lev­

els of event correlation granularity which is im portant for increasing the expressive power

of the monitoring language. It is im portant to notice that an event attribute in a filter

expression may be assigned different value from the event definition. In this case, the

effective attribu te value is th a t of the filter expression. We call this feature event attribute

overloading and its advantage is discussed in Section 3.3.7. If an event attribute is assigned

a value in the filter expression, then this value is used instead of the default value in the

event definition.

As the monitoring agents receive specified events, they work collaboratively to

evaluate the event and filter expression as will be described in Section 4.2. As a result of

agent collaboration, if both event and filter expression are evaluated to true, then the list

of actions described in the A ction part is performed. The action specification is the topic

Section 3.3.6.

F il te r E x am p le 1: Using the HESL definitions of MixWarning and RMPSWaming events,

we can specify an event correlation between these events such that they both generated

in the same machines name as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

F IL T E R = [(M ixW arning A R M P SW arning)];

[(M ix W arning. M a ch in e= R M P S W arning.M achine)];

[FORWARD] ;Warnings _Corre la t ion J i l t er.

Since this filter example represent the occurrence of both events in the same ma­

chine, the machine name is only inspected only during evaluating the filter expression.

This is why ANY is correct to assign as a value to Machine in Section 3.3.3.

F il te r E x am p le 2: The event expression (EX) of the filter program basically represents

a composite event since it consists of expression of primitive and composite events. If the

relation between the attributes of these events is not an issue, then filter expression can

be set to TRUE to indicate this fact. In this case, the filter program represent a composite

event as shown in this example:

F IL T E R = [(M ixW a rn in g A R M P S W arning)];

[TRUE];

[FORWARD] ;Warnings J i l t e r .

This filter is to detect the composite event th a t represents the occurrence of

MixWarning and RMPSWarning without any conditions. In Section 4.3, the method

by which the filter specification gets fragmented and distributed among the monitoring

agents (LMA and DMA) in the monitoring hierarchy is discussed.

3.3.6 Action Specifications

Informally, actions describe what will be done when the desired event pattern (correlation

or composition) is detected. The filter program may include one or more actions that are

performed in sequence. Table 3.5 presents the formal definition of the High-level Action

Specification Language (HASL). There are five kinds of actions defined in HASL. These

are described as follows:

E x ec u tin g P ro g ra m s : An action can be the executing of a program designated by “pro­

gram name” and “path name”, and accessible to the monitoring agents in the application

environment. An absolute path name must be given, otherwise a path name relative to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

TABLE 3.5

BNF o f t h e H ig h - l e v e l A c t io n S p e c i f i c a t i o n L a n g u a g e

<Action> ::= <Exec> | <Event_Name> | <Filter_Rinc> |
<Filter_Register> | FORWARD

<Exec> ::= <Path Name> <Program Name>
<Path Name> ::= <String> / <Path Name> | <String> /
<Program Name> ::= <String>
<FilterJlegister> ::= <Identifier> = <Att_Name>
<Filter_Reinc> ::= ADD <Filter>; <FilterJleinc> |

DEL <FiIter>; <FiIter_Reinc> |
M OD <New Filter>; <Filter_Reinc> |
ADD <Filter>; | DEL <Filter>; | M OD <Filter>;

<New Filter> ::= <Filter>.EX= <Event_Expr> |
<Filter>.FX= <Filter_Expr> |
<Filter>.EX= <Event_Expr>; <Filter>.FX= <Filter_Expr>

the LMA directory (also the application directory) is assumed.

S en d in g a n E v en t: An action can be generating a new event by the monitoring agent

that detects a filter correlation. As discussed in Section 3.1, this event could be used by

the monitoring agents to summarize number of detected events or to trigger some other

filters. This is significant for suppressing the events forwarded by LMAs and, thereby

improving the DMA performance and minimizing the network overhead (intrusiveness).

F i l te r In c a rn a tio n : Filter incarnation is the process of adding a new filter, detecting

or modifying an existing filter automatically at run-time. This feature has a significant

impact on the dynamism and expressiveness of the monitoring system. This feature is

discussed in detail in 3.1. Adding new filters means activating pre-defined filters that

have not been subm itted to the system. This is specified using a special reserved word

(ADD) with the pre-defined filter name. On the other hand, deleting or modifying must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

performed on an existing filter th a t consumers subscribed to. This is specified using the

reserved words, MOD and DEL, with an active filter name. When modifying an active filter,

consumers must specify which parts to modify: event expression (EX), filter expression

(FX), or both. This can be designated by appending the filter name as a prefix to EX

and/or FX. The resulting EX and/or FX are the effective filter parts after the subscription

is completed. Adding, deleting or modifying a filter dynamically at run-time may create

inconsistency in the agent’s state until the subscription process is completed. Section 4.3.4

presents an algorithm to resolve this problem.

F il te r R eg iste rs: Consumers can create a set of virtual registers called filter registers

by defining variables in the filter action part. These registers are used to restore attribute

values of received events. This can be simply specified by the consumer by assigning the

attribute value of an event used in EX or FX to a filter register. Filter registers are effec­

tive when used as an attribu te in the filter incarnation. Section 7.2.2 shows an example

of a filter program th a t uses filter registers and filter incarnation.

F orw ard ing M o n ito rin g In fo rm a tio n : This is the simplest action type. Consumers

may request either to forward a notification of detecting an event correlation in a filter

or to forward the event information itself. The former case is used consumers are mainly

interested in the event correlation itself such as detecting a bug or error in the program.

However, the latter case is used when information of the primitive events is requested such

as generating customized trace history of the program execution. In this case, a consumer

may desire to log selected events which are detected by the monitoring agents. Examples

for both cases are discussed in detail in Chapter 7.

3.3.7 Language Design Features

Although the focus of this thesis is not on language design, MSL represents one of the

major contribution of this work. MSL provides new characteristics that support the ex­

pressiveness and usability criteria discussed in Section 3.3.1. In the following, MSL features

are discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Expressiveness

The expressive power of a monitoring language is measured by the ability for describ­

ing a specific and general monitoring application [3]. As will be described in Chapter 7,

MSL is used to define many monitoring applications for debugging, application steering

and fault recovery. The monitoring system is used for developing a number of real case

examples and applications in an IRI distributed system environment. As a result of exper­

iments conducted in the IRI system, MSL proves its ability to specify and control classical

problems in distributed system management, such as customized traces and slow clients,

which will be discussed in detail in Chapter 7. Although the monitoring architecture is

geared toward certain applications (reactive control and debugging), MSL can be utilized

in other monitoring applications, such as performance measurements, security, and testing

and verification of distributed systems. The MSL expressiveness stems from the following

design features:

• Imperative Power: Although MSL is classified as a declarative language, the HASL

enables a consumer to utilize the imperative power supported by filter incarnation

and new event generation. Consumers can define recursive or looping constructors

in a filter using such features. The i f - e l s e programming language constructor is

emulated in MSL using a cascading set of filters.

• Multi-level Abstraction: The different level of event abstraction, such as primitive

events, composite event (EX) and event correlation (EX and FX), is a key advantage

in the providing various expressive power without sacrificing simplicity (ease of use).

• Regular Expression: The event and the filter expression inherits the expressive power

of the regular expression. Regular expressions are widely used for specifying event

sequences because of their expressiveness and their implementation simplicity [29].

• Event Reuse: Composite events inherit the attributes of all contained events (prim­

itive or composite events). Thus, in the filter expression, composite events can be

associated with attributes of the containing events without referring to the original

event name. This reuse of event attributes enables using composite events transpar­

ently thereby contributing to the expressiveness and the simplicity of the MSL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

• Event Attributes Overloading: Event attribu tes take a default value specified in

the event definition. However, in the filter expression, an attribu te value can be

overloaded (i.e., changed) with another new value. This new value will be effective

in the DMA and the LMA retains the original default value.

• Filter Overloading: Modifying a filter (EX or FX) is a form of overloading since it

is like replacing the current filter with a new one. This operation has a significant

impact on the dynamism of the filter programming and, thus, the expressive power

of the MSL.

• Supporting Special Keywords/Operators: MSL supports a number of reserved words

such as ANY, ALL, FORWARD that simplify certain consumer tasks and improve the

expressiveness of the monitoring language. Some of these keywords axe discussed

previously in this Section.

E a se o f U se

The second criteria used to evaluate alternative approaches of monitoring languages is

ease of use or simplicity . Programming languages, in general, gain simplicity mainly from

two facts: (1) simple syntax and data structure and (2) simple semantics.

S im ple S y n ta x a n d D a ta S tru c tu re : The simplicity of the MSL syntax stems from

the following facts:

• Easy to leam: Learning MSL entirely consists of mastering about 10 key words and

simple constructs.

• Supporting Program-dependent Monitoring: As described in Section 3.3.3, consumers

can conduct program-dependent monitoring, if the variables names defined in the

program are utilized as event attributes in the HESL and HFSL. MSL automatically

creates a mapping between program variables and event attributes. W ithout this

feature, consumers have to define this mapping explicitly.

• Simple Event Schema: Consumers may specify any arbitrary event format in a

declarative way by simply making a list of event attributes. In addition, the event

specification (HESL) enables a consumer to assign values to the event attributes and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

does not require specifying attribu te type (e.g., i n t , f l o a t o r s tr in g) . This is

unlike the CORBA IDL [67] abstraction which requires each attribute type to be

determined and does not perm it the user to specify values in the event constructor.

• Simple Constructs: MSL uses intuitive and simple constructs that are commonly

used in any programming language (e.g., using regular expressions and logical op­

erators). In addition , MSL provides various special characters such as * and — to

simplify the filter programming task.

• Supporting Error Checking: Writing a program using any language is always an

error-prone process. Thus, MSL supports syntax and semantic error checking and

alerts the user, if necessary. Parentheses missing in an expression or specifying a

process within an unrecognized domain or machine are examples syntax error. On

the other hand, a domain containing itself, or a domain that forms a cycle in the

hierarchy tree (see Section 3.3) are examples of semantic checking.

Simple Semantic
The program semantic is the meaning of the program [70]. Many of the issues that support

the expressiveness of MSL also support the simplicity of the MSL semantic including:

• Declarative: MSL components, HESL, HFSL and HASL, provide a simple and declar­

ative semantic to define monitoring requests. For example, in HFSL, consumers

define their monitoring demands by specifying the event correlation expression (EX

and FX) and the action to be performed. No programming effort or complex con­

structors are required to define a monitoring demand. If consumers desire to filter

events in the LMA level, then they simply have to specify the attribu te values in the

event format (HESL).

• Basic Expression Operators: MSL supports basic and simple operators (AND, OR

and NOT). However, as shown in [29], advanced operators can be constructed based

on such basic operators. Therefore, using basic operators do not limit the expressive

power and also provides a simple interface and efficient processing language [28].

• Expression Operators Precedence: To provide an unambiguous expression for com­

posing or correlating events, closed parentheses, such as () , are used to determine

the operators precedence in expression evaluation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Efficient Processing
This characteristic is inherited from the simplicity and the expressiveness of the MSL

itself. Simple syntax and semantic enable a faster scanning, parsing and processing of the

MSL components. Moreover, MSL is a compiler-based (as opposed to interpreter-based)

language. Therefore, this facilitates run-time optimization and dynamic linking thereby

improving the execution performance and optimizing memory usage. This comparison and

contrast of compiler-based and interpreter-based languages is discussed in Section 3.3.2.

3.4 Summary

This chapter describes the monitoring model that includes the event producers, event con­

sumers and monitoring operations abstractions. It then discusses the monitoring language

specifications which define the user/system interfaces based on these abstractions. The

program run-time behavior is abstracted as events notifications emitted from the program

during its execution and defined using High-level Event Specification Language (HESL)

shown in Table 3.2. Users (or event consumers) monitoring demands are abstracted as

“filter” programs that detects only interesting events and suppresses other events. A

filter program describes the events of interest, the relation between these events (event

expression or EX) and the relation between the events attributes (filter expression or FX).

Applications events are continuesly monitored and if the event correlation described in

EX and FX is detected, then the “action” specified in the filter program is performed.

The monitoring model supports filter incarnation feature that enables users to activate,

deactivate or modify the monitoring demands (filters) automatically at run-time based

on detected events. The filter programs and actions are defined using High-level Filter

Specification Language or HFSL (Table 3.1) and High-level Action Specification Language

or HASL (Table 3.5), respectively. The monitoring language also includes Environment

Specifications Language (ESL) (Table 3.3) which consumers use to describe the geograph­

ical distribution of the application entities (i.e., processes) to be monitored. While the

monitoring model improves the monitoring dynamism via event-subscription-based ab­

straction and filter incarnation, the monitoring language also uses declarative high-level

language to support simple and flexible interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

CHAPTER IV

SYSTEM ARCHITECTURE

This chapter presents alternative filtering techniques used in distributed event manage­

ment. It then describes algorithms and protocols that support the hierarchical filtering-

based monitoring approach. This chapter provides the reader with a tour of the monitoring

system, from user specification and processing to actions execution. Techniques used to

implement the architecture such as automatic agent allocation, event and filter decom­

position and distribution, dynamic subscription, and event detection are described. In

this chapter, we also state the impact of these techniques on achieving the dissertation

objectives.

4.1 Alternative Filtering Architectures

The event filtering architecture has a major impact on the scalability, performance and

perturbation effect of monitoring large-scale distributed systems. In the following, the

existing event filtering mechanisms are classified according to their filtering architecture.

Then each filtering architecture model is evaluated based on the requirements of monitor­

ing large-scale distributed systems. There are several models of event filtering architectures

as described below:

D ecen tra lized E v en t F il te r in g A rc h ite c tu re : In a this architecture, all generated

events are sent to all consumers. Each consumer performs the filtering operation based

on its own interest (see Figure 4.1-a). This filter architecture is used in some existing

monitoring systems, such as filters in communication protocols [12, 59, 63, 94], system and

network management [16, 83] and distributed systems [14]. However, it is not sufficient

for monitoring large-scale distributed systems for the following reasons:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

.Event
producer

producer

Event)

producer

consumer

producer

Event

Event, Filtering
Server

producer

nnMiuccr

producer

producer
consu

producer

(a) (b) (c)

Fig. 4.1. Event Filtering Architectures, (a) Decentralized Filtering Architecture, (b)

Centralized Filtering Architecture, (c) Semi-Distributed Filtering Architecture.

• The architecture imposes a processing overhead on consumers since they are exposed

to every generated event in the system. Consequently, severe degradation in the per­

formance of the event filtering mechanism may occur when the number of producers

(or events) is increased.

• The architecture is not appropriate to be used in WAN environment (such as the

Internet) because of the drawback of broadcasting a large amount of events to all

consumers in the network. This may cause packet flooding and congestion prob­

lems in the network. Therefore, this architecture can not efficiently accommodate

consumers and producers in a WAN environment.

• It requires the availability of a high-speed network to deliver a large volume of events

from producers to consumer hosts.

• Because of the redundant effort performed by consumers in this architecture, com­

putational and buffering resources are not utilized efficiently.

• This architecture could be appropriate if consumers subscribe to most of the events

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

in the system. However, this is not usually the case when monitoring large-scale

distributed systems.

C e n tra liz e d E v en t F il te r in g A rc h ite c tu re : In this architecture, event filtering is

performed a t a central server called the event filtering server, which is located between

the producers and the consumers (see Figure 4.1-b). This architecture is typically used

when network and consumer hosts are the processing bottleneck, rather than the event

filtering server. In this case, a centralized filtering server helps to offload work from the

network and the consumer hosts. The filtering mechanism in active database systems

[27, 29, 93] represent a centralized architecture since events are generated and filtered in

the same machine. Examples of monitoring systems using this architecture are presented

in Section 8.1. The centralized filtering architecture is inefficient for monitoring large-scale

distributed systems for the following reasons:

• In general, a centralized approach does not scale well in large-scale distributed en­

vironment where a large number of consumers and producers may exist.

• This architecture may be appropriate if consumers and producers reside on the

same host or are separated by a small geographical distance (such as in a LAN

environment). However, this does not fit the requirements of monitoring large-scale

distributed systems described in Section 1 .2 .

• It confronts the traditional problems of centralized systems: performance bottlenecks

and a single-point of failure of event filtering server.

S e m i-D is tr ib u te d E v en t F il te r in g A rc h ite c tu re : Some existing monitoring systems

use a limited distributed filtering approach. In this architecture, the process of event

filtering may span more than one filtering servers, many local and one central filtering

servers [69], located between the producers and consumers (see Figure 4.1-c). Examples

of monitoring systems using this architecture are presented in Section 8.1. Although this

architecture seems to be more scalable and efficient than the previous ones, it is still suffers

the following limitations:

• It offers a limited scalability with the increase of producers, consumers and events

because of the central filtering server. Replicating the central server does not solve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

the problem because the distributed management and coordination mechanisms be­

tween these servers are still missing in this architecture. This is despite the fact that

replication in some of these system is also not feasible such as [69].

• This architecture also suffers from a single-point of failure since the central server

may fail causing the entire system to fail.

• This architecture enables event filtering to take a place at different locations simul­

taneously which may reduce the amount of events flow in the network. However,

this is still insufficient for monitoring large-scale distributed systems, such as inter­

active distance learning or distributed interactive applications, because it requires all

events detected by the local servers to be forwarded to the central server and some

of these events are not desired. This implies th a t interconnected nodes in different

LANs have to forward events across a WAN, such as Internet or Intranet, in order

to obtain global monitoring. This forwarding is unnecessary and it may cause sever

network problems and increase monitoring intrusiveness.

For these reasons, we call this architecture th a t offers limited distributed advan­

tages a semi-distributed architecture. Therefore, this type of architecture can be classified

as a decentralized or centralized approach based on the emphasis location of the filtering

mechanism. If most of the filtering is performed in the producer or consumers edges, then

it is considered a case of decentralized architecture. O n the other hand, if the filtering is

mostly performed in the central node, then it is obviously a type of centralized architec­

ture. An alternative technique is needed to intelligently limit event flow and fully utilize

the distributed processing feature of the WAN, such as embodied by the Internet. In the

following section, a distributed hierarchical filtering architecture is presented and then

evaluated to illustrate the improvement over the above described architectures.

4.2 Hierarchical Filtering-based Monitoring

In our monitoring architecture, the task of detecting primitive and composite events is

distributed among dedicated monitoring programs called monitoring agents (MA). MA is

an application-level monitoring program that runs independently of other applications in

the system and communicates with the outside world (including producers and consumers)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

via message-passing. For example, HiFi has two types of MAs: local monitoring agents

(LMA), and domain monitoring agents (DMA) (see Figure 4.2). The former is responsible

of detecting primitive events generated by local applications in the same machine while

the latter is responsible of detecting composite events which are beyond the LMA scope of

knowledge. One or more producer entities (i.e., processes) are connected to a local LMA

in the same machine. Every group of LMAs related to one domain (geographical or logical

domain) is attached to one or more DMAs*. These DMAs Eire also connected to higher

DMAs to form a hierarchical structure for exchanging the monitoring information. In this

section, the Eirchitecture, agent organization, communication and mEinagement protocols

of HiFi distributed hierarchical monitoring are described.

4.2.1 Distributed Filtering Management Protocol

Event filtering is a key component in the monitoring architecture. In HiFi, the event

filtering is divided into three different levels:

Identity-based Filtering

Primitive events sent from the producer are actually generated by the Event Reporting

Stub (ERS), which is library linked with producer code during compilation. ERS is a HiFi

supported library provided to facilitate the code instrumentation process as discussed

in Chapter 5. ERS generates only the interesting events involved in at least one filter

subscription. ERS checks the events identity (i.e., name) Eind suppresses all events reported

by the producers that are not contained in an active filter. This “event-identity filtering”

represents the first filtering level in the hierarchy; this implementation is described in

detail in the Chapter 5. ERS forwards interesting primitive events to its locsd LMA in

the same mEichine via a UNIX communication channel [8 6] as described below. Because

of the processing and communication overhead ERS incurs by this level of filtering, users

have the option to enable or disable this level of filtering. In this case, ERS delegates this

task to the LMA by forwarding all reported events as will be discussed in more details in

Section 5.1.3.
'More thEin one DMA may be used for fault tolerance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Domain-1 Domain-n

Event ProducersEvent Producers Event ProducersEvent Producers

tventj evcni:ven s svent

LM ALMALMA LMA

JEMS

DMADMA

J tM S 1

DMA
Domain-y

RM S ^

DMA
Communication

Backbone

m onito ing
inform aboi

filterfilter
filtej

M onitoring
A pplication

M onitoring
A pplication

M onitoring
A pplication

C onsum ersConsumer-2Consumer-1

Fig. 4.2. Hierarchical Filtering-based Monitoring Architecture.

Content-based Filtering

Content-based filtering is often also referred to as “local filtering” . When a primitive

event is received by an LMA, the LMA checks the filter internal representation which

is a Directed Acyclic Graph or DAG that holds the local filtering information for any

matching event. If this match is found, then the contents (attributes) of the received

primitive event is checked according to the event subscription information. For example,

ERS may generate the event WarningEvent as it is subscribed to by the use. However, the

LMA may reject this event because, for instance, the ModuleName (see Table 3.2) of this

event does not match the user event/filter specification. So, a t this level (LMA) events

are filtered based on the contents of the events or the values of the event attributes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

If an primitive event of interest is detected, LMA notifies its containing DMA

and/or a group of DMAs in the next higher level of the hierarchy. This implies that

the forwarded event must be part of another composite event or a filter for which a

consumer has subscribed. LMAs may directly forward the detected primitive event to

the corresponding manager(s), if this event is not contained in any correlation, and the

consumers request Forward action (see Table 3.1).

Correlation-based Filtering

Correlation-based filtering is also called “domain filtering” . The DMAs collect informa­

tion from their local LMAs and check for any match of a composite event in their do­

mains. A composite event in this sense means also any predicate of an event correlation

expression that contains attributes of two distinct events, such as SendE ven t.size =

R eceiveE vent.size where SendEvent and ReceiveEvent are different events. The EX or

FX evaluation of a filter could be distributed among several DMAs based on the location

of related events in each predicate. The process of decomposing EX and FX is explained

in detail in Section 4.3.

Upon receiving a primitive event from LMA, DMA evaluates each related event

correlation expression, typically EventJSxpr (EX) and Filter-Exp r (FX) (see Table 3.1),

in its filter internal representation or PetriNets (PN) (see Chapter 2). If an expression

evaluates to true, then either this expression represents the entire EX and FX, or it is a

segment of the EX and FX. In the former case, the DMA declares detecting a user filter by

notifying the corresponding consumers, and performing the action specified in the filter.

In the later case, the DMA forwards this composite event (evaluation result) to the next

higher DMA in the hierarchy which, in turn, checks for the existence of this composite

event in any of its event correlation expressions (EX and FX). If this match is found,

the DMA uses this composite event for further filtering and evaluation of EX and FX.

Otherwise, this hierarchical communication continues until the composite event reaches a

DMA th a t needs this information to complete evaluating EX and FX. It should be noted

that if the first DMA detects a composite event, then there must be a higher DMA in the

hierarchy that can utilize this composite event for further filtering and evaluation of EX

and FX. On the other hand, if the primitive event is not detected by the first DMA (i.e,

correlation expressions evaluates to false), then the DMA also forwards this event to its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

containing DMA which may have more global knowledge about the events occurring in

the system. This hierarchical filtering continues until the primitive event is detected by a

DMA and the process proceeds as described above or it gets rejected by the DMA root.

The number of levels in the monitoring hierarchy is dictated by the requirements

of LSD systems. For instance, LSD systems tha t are delay-sensitive should reduce the

number of levels to minimize the communication latency. On the other hand, for LSD

systems producing a very high-volume of events and the MAs not residing in powerful

machines, deeper hierarchy can help in distributing the monitoring load and alleviate

any performance bottleneck in the monitoring architecture. However, in most cases, two

to three hierarchical levels are sufficient for monitoring LSD systems. As discussed in

Section 3.3, ESL of the monitoring language has a significant role in controlling the depth

(number of levels) and breadth (number of LMAs) in the agents hierarchy tree. It is also

im portant to mention that even if received primitive or composite events have a match

in the DMA PN, this does not necessarily imply evaluating the EX or FX in this DMA

because other events composing this EX or FX may not exist yet. In this case, the

DMA buffers the received event until all events information composing EX or FX become

available. Then, DMA restores the event information and evaluates the event or filter

expression accordingly.

4.2.2 Dynamic Agents Hierarchy

Prior to any monitoring operation, the consumer must describe the physical or geograph­

ical distribution of the application that he/she intends to monitor using the declarative

and comprehensible interface called Environment Specification Language (ESL) described

in Section 3.3. HiFi (subscription component) parses and validates the ESL script, then

uses the information provided in ESL to construct the LMA(s) and DMA(s) hierarchy as

described later in Section 4.3.3. Once the agent hierarchy is established, communication

and monitoring can take place. However, this hierarchy is not static and may change dy­

namically according to agent processing load in the monitoring application. In this section,

we discuss the techniques used to build dynamic and adaptable monitoring agents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

A d a p ta b le M o n ito rin g A g en ts

One of the challenging issues in monitoring large-scale distributed systems is the large

number of generated events that could swamp the monitoring agents. A dynamic re­

configuration technique is required to achieve a higher performance and reliability in the

monitoring process. Although HiFi uses several filtering optimization techniques (dis­

cussed in Section 5.3.4) to achieve high-performance monitoring, dynamic re-configuration

is still needed to adapt to the increasing monitoring load.

LM A L oad A d a p ta tio n : LMAs can dynamically increase the default queue length asso­

ciated with each producers if the threshold is reached. In addition, consumers can assign

an LMA for all processes in the same machine, or an LMA for each process. This decision

is made during the instrumentation process and it provides flexibility to users to specify

the LMA architecture based on the application performance requirements.

D M A L oad A d a p ta tio n : As several LMAs may report to a single DMA, the DMA has

more potential to be a performance bottleneck. A DMA creates and monitors an event

queue for each LMA in the same domain. If the event queue length of a DMA exceeds the

maximum threshold specified, the DMA realizes that the total event forwarding rate (A)

is higher than the event processing rate by the DMA (p). Consequently, the DMA sends

a request message to an associated LMA in a different machine to create (fork) another

DMA. The LMA that has the minimum forwarding rate is selected for this purpose. Then,

the original DMA partitions the domain by requesting some LMAs to relinquish its service

(connection and forwarding) and get associated with the other DMA. In order to obtain

an efficient distribution of the monitoring load, DMA partitions the LMAs in the domain

based on pi of each DMA queue (<&) such that pi = A i/p i for all <7; in the DMA. This

means that both processing time (pi) and forwarding rate (A*) of each LMA are considered

in this evaluation. This is im portant to consider the overhead of both events frequency

and complexity in this process. The number of DMAs required can be determined by:

\ p d m a \ such that p u m a = 5Z?= 1 -Whi (n total number of LMAs in the domain). After

new DMAs are created, the original DMA sends the monitoring information in the PN to

them, and a notification to the manager^ to update the environment information. Then

tthe manager here is the event consumer program that sent out the monitoring information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

the new DMA sends a request to its associated LMAs to resume forwarding events.

Agents Communication: Virtual Hierarchy

Three forms of agents communication are allowed:

• LMA-DMA which is used to forward detected primitive events from an LMA to a

DMA,

• DMA-DMA which is used for forwarding composite events from one DMA to another

in a higher domain in order to correlate events, and

• DMA-LMA which is for sending monitoring control information from a DMA to an

LMA such as re-assigning an LMA to another DMA for load adaptation discussed

in details in Section 4.2.2.

The monitoring agents (LMAs and DMAs) use Reliable Multicast Server (RMS) described

in [4] for communication. LMAs and DMAs create and join LMAGrp and DMAGrp

multicast groups, respectively (see Figure 4.3). This implies that events sent to DMAGrp,

for example, are delivered to all DMAs in the network. However, monitoring agents utilize

the dynamic group masking feature in RMS described in [4] to selectively send events to

a subset of the entire group. In particular, the message that encapsulates a forwarded

event must include the agents IDs (MachineName.DomainName) of intended recipients

within this group. This enables RMS to dynamically filter out other members from this

delivery. RMS also permits members outside the group to send messages to a multicast

group reliably via connect request (Connect GrpName). For this reason, LMAs issue a

connect request to RMS in order to establish a reliable multicast connection with DMAGrp.

However, a DMA requests a connect to LMAGrp only when load adaptation is needed as

described in the Section 4.2.2. DMA can directly multicast to one or more DMAs since

they axe all members in DMAGrp. Similarly, LMA can multicast to one or more DMAs

after connecting to the DMAGrp. Although agents employ a hierarchical management

protocol for event monitoring, it is a virtual hierarchy which is formed by LMAs and

DMAs, over RMS reliable group communication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Manager-Agent Communication

As described in the monitoring model in Section 3.1, the monitoring agents communicate

with a number of managers representing the event consumers programs. This communi­

cation RMS is also used in this case to enable an efficient group communication between

agents and managers in the same application. Managers usually send to agents event, filter

and environment information which are necessary to perform the monitoring operations.

On the other hand, agents forward event notifications or control information to one or

more manager based on their subscription requests.

Using reliable multicasting, instead of TC P point-to-point, for agent communica­

tion has several key advantages in the architecture:

• I t supports a dynamic and scalable dissemination of monitoring information to a

group of consumers or manager programs simultaneously.

• I t supports an efficient mechanisms for a multi-point communication between the

agents. Multicasting eliminates the processing and network overhead caused by per­

forming multiple sends for a single packet, thereby improving the system performance

and minimizing its intrusiveness.

• Reliable multicasting significantly improves the robustness and survivability of the

monitoring architecture in the presence of agents failures. M ulticasting protects the

system from network partitioning and agents isolation, where one or more agents

malfunction and crash. In this case, other agents can communicate and negotiate

recovery procedures. This is difficult to achieve in a point-to-point T C P connection

without back up connections and ad hoc techniques, which, in turn, cause waste of

resources and does not offer a scalable solution.

4.2.3 Advantages of Distributed Hierarchical Filtering

The distributed hierarchical filtering architecture has several advantages over centralized,

decentralized or semi-distributed architectures.

• Distributed hierarchical filtering significantly improves the monitoring performance.

This is due to monitoring load being widely distributed among the LMA and DMA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

^ D M A root / j _

MachjnjMachine. M achine.M achine.
DOM AIN DOMAIN

Fig. 4.3. Monitoring Agents Hierarchy.

groups which alleviate performance bottlenecks and increase the monitoring tasks

concurrency.

• It scales well with the increase of producers, consumers and generated events. More

LMAs and DMAs axe automatically created to accommodate the increase in the

monitoring load or the applications entities. As discussed in Chapter 5, users have

full control in specifying number of LMAs per machine and number of application

entities (processes) connected with each LMA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

• This architecture avoids a single-point of failure. In fact, failures some LMA and

DMA agents can be recovered and the effect of single-point of failure does not in

any case lead to a total termination of the monitoring operations.

• The amount of event flow is limited as events filtering and classification are localized

in the area from which they originate or are generated. In this architecture, detected

events are forwarded only to the concerned agents which must find these events

interesting. This is unlike the semi-distributed architecture described in Section 4.1

in which detected events are forwarded to a central agent.

4.2.4 Hierarchical Monitoring Enhancements

In the hierarchical monitoring architecture described previously in Section 4.2, the prim­

itive and composite events propagate up in the hierarchy until they are detected by the

DMA or rejected by the DMA root. However, hierarchical communication can be signifi­

cantly reduced if events are directly forwarded to the proper DMA(s) in the hierarchy that

evaluate an EX or FX containing such events. This eliminates unnecessary processing and

communication overhead, which improves the performance, and minimizes the intrusive­

ness of the monitoring system.

D efin ition : A containing set of an M A i is a list of DMAs that includes the parent and

the predecessor parents of this MA:

f D M A r o o t i f P aren t(M A i) = DMAroot
C ontSet(M A i) = <

[P aren t(M A i)\JC on tSe t(P aren t(M A i)) O therwise

A “short-cut” communication technique was developed as an optimization tech­

nique in the agent management protocol. This technique enables LMAs and DMAs to

forward events directly to the concerned DMA(s). When an LMA detects a primitive

event, it multicasts this event to DMAs within its containing set only. Each DMA, conse­

quently, evaluates the correlation expression based on received primitive events and then

similarly multicasts the resulting composite event information to the containing set DMAs

which may need such composite event information for further filtering and correlation. The

resulting composite event indicates that correlation subexpression is evaluated to true or

false. In either case, forwarding the results is essential to complete evaluating of the EX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

and FX expression by DMAs. Remember that forwarding composite events, in this case,

occurs only if a DMA has a segment or subexpression of EX or FX. However, if a DMA

contains the entire expression, then no further forwarding is necessary and the DMA per­

forms the filter action if the EX and FX is satisfied. When EX and FX are fragmented

and distributed into subexpressions, LMAs and DMAs are informed to which DMAs the

subexpression evaluation results should be forwarded.

4.3 Monitoring Process

The monitoring operation comprises a number of stages including monitoring specification,

program instrumentation, agent administration, consumer instructions, event detection,

and information dissemination and presentation.

In this section, the overall view of the monitoring process is presented with a

description of the protocols and algorithms used to execute the monitoring process. In

Chapter 5, the component-level design and implementation used to accomplish these mon­

itoring tasks will be presented.

4.3.1 Monitoring Specification

Prior to any monitoring operation, consumers must use the monitoring system languages

(MSL) to describe the monitoring specification. Users s ta rt with specifying the environ­

ment specifications (ESL) and events specifications (HESL) tha t describe the application

distribution and the interesting events. Then, users proceed to the next step which is ap­

plication code instrumentation. This stage includes two basic steps: (1) inserting events

sensors, called user sensors, in the program code in order to generate events from the

monitored program, (2) running the application code through the Instrumentation Pre­

processor (IP) which replaces the user sensors with extended sensors called system sensors,

and (3) compiling and linking the instrumented code with an external instrumentation li­

brary called Event Reporting Stub (ERS). The implementation details of these steps are

described in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

P r c s c n tu tin n

^F ille r P r o g ra m

C o l le c to r

Event
Spec.

F i l t e r P r o g ra m P a r s e r

F i l t e r D i s t r i b u to rEnv.
Spec.

' ' < F I .F 2 .T -T F n s -

D i s s e m in a t io n P t r o to c o l

F nF i

Monitoring Agent Network

E v e n t, E v e n t
E v e n tE v e n t ,

Event Producers (Monitotlng Objects)

Fig. 4.4. Monitoring Process.

4.3.2 Monitoring-Knowledge Base

The monitoring system parses and analyzes the events and application environment specifi­

cations supplied by users as described in Section 3.3. This processing is not only important

for validating the syntax but it is also essential for constructing the monitoring-k.nowled.ge

base required for pursuing further monitoring operations. To perform these functions,

the Monitoring Language Processor (MLP) program, which is part of the Subscription

Component, is provided to consumers to use prior to the subscription process.

The monitoring-knowledge base is derived from MSL and contains the setup in­

formation which describes agents distribution, events and filters information. The imple­

mentation details of the structure and the acquisition of the monitoring-knowledge base

are described in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

4.3.3 Automatic Agents Organization: Hierarchical Setup Protocol

After the application is instrumented, the program is ready for monitoring and consumers

can now execute their programs and send their filters to monitor and control the running

program. Consumers use the Subscription Component to process and send these filters to

the monitoring agents. However, there are no agents or any monitoring entities running

in the application environment, so far. Then, how LMAs and DMAs are created? Where

are they located? And how do they recognize their roles and, thus, construct the agents

hierarchy? The employment of a complex hierarchical agent structure that complies to a

certain management protocol, may cause extra overhead in the agents administration. For

example, operating the agents, distributing the roles, allocating tasks and synchronizing

the communication between the agents Eire examples of administrative tasks which are

performed before starting the monitoring operations. One approach is to delegate these

tsisks to consumers so th a t they can manually execute agent programs in the desired

machines with the proper command-line arguments that define the role of each agent.

However, these process is error-prone and far too complex for the users to handle.

The main objective of developing network and system management tools is to fa­

cilitate adm inistrating systems and networks. It defeats the purpose if using management

tools imposes a considerable overhead on the users. For these reasons, we developed a pro­

tocol that automates starting, allocating and setting up the agent hierarchy dynamically

during the program execution and without the involvement of the users or consumers.

Figure 4.5 shows the protocol interaction diagram between the parties of this protocol

operation. In the following, we give a detailed description for the protocol.

1. (Manager Program starts.) The manager program is the first to start in the moni­

toring environment. When the manager program starts it performs the following:

(a) Joins MgrGrp

(b) Connects to LMAGrp

(c) Waits for all LMAs to start and connect to MgrGrp.

Notice, RMS sends a notification to the manager (MgrGrp) whenever a member

joins or connects to the group.

2. (Instrumented Program starts.) When the instrumented program starts, it invokes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

M grDMARM SLM AERS

| ServerJnit()
JoinLMAGrpReq
ConnMgrGrpReq

ConnLMAGrpReq

WaitforCannConfl)
ConnLMAGrpConf

ConnMgrGrpConf

ConnReq
AcceptConf

EnvInfoMsg

LeaderNon-leader

JoinLMAGrpReq
ConnLMAGrpReq
ConnMgrGrpReq
ConnRcqConf
ReadySignal

LeaderAck WaitfnrLeoilcri) '~

WaitforLMAsO +
election!)

EnvInfoMsg
ConnDMAGrpReq

Non-Leader Leader Root
PinalConf
EventlnfoMsg

EventlnfoMsg

Fig. 4.5. Automatic Agents Organization Protocol.

the ERS for initialization using E R S In itO .

3. (ERS starts.) When ERSInit is invoked, ERS performs the following:

(a) Initializes the UNIX sockets connection

(b) Sets the signal handlers

(c) Creates (forkO *) an LMA

(d) Then, ERS Waits for Ready signal from LMA

4. (LMA starts and LM A-ERS connection established.) After an LMA starts, it per­

forms the following:

*We assume that the agents binary exists in the same location or file server where the monitored

programs exist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

(a) Joins/creates LMAGrp and then it connects to MgrGrp

(b) After the confirmation is received, LMA sends a Ready signal which is a SIGUSR

UNIX signal to ERS to start the UNIX connection

(c) ERS connects to LMA which accepts and conforms this connection

(d) Then, LMA waits for the manager connection

(e) ERS waits for the final conformation of the hierarchy set up from LMA

5. The manager receives from RMS connect notifications of all LMAs. Notice that the

managers know about the total number of LMAs from the environment specifications.

6 . The manager multicasts the environment information (Envlnfo) to LMAGrp

7. (LMA election process starts.) Upon receiving Envlnfo from a manager, LMAs go

through an election process based on the position of LMA name/ID in the Envlnfo

table. In particular, the first LMA name in the LMAs list of each domain is the

LMA leader. Users can also control this by arranging the machines in the ESL.

In the example presented in Table 3.4, LMA-dragon and LMA-cyclops is the LMA

leaders for ODU and VB, respectively. Therefore, LMAs are divided into two groups:

a leader group th a t contains the LMA leader for each domain, and a non-leader group

that contains the other LMAs. In the following, we describe what each group may

do after the election completes:

(a) (LMA Leader.)

i. Creates the conducted DMA for this domain

ii. After DMA starts, it sends a signal to its LMA creator

iii. LMA Transfers the environment information to its DMA after receiving a

Ready Signal from it.

iv. Connects to the DMAGrp

v. Sends an acknowledgment to non-leader LMAs to announce the DMAGrp

(DMA) preparation to accept connections

(b) (LMA Non-Leader.)

i. A non-leader LMA waits for the LMA-leader acknowledgment in order to

connect to the DMA of the domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

ii. Once a non-leader LMA receives an acknowledgment from the LMA leader,

it:

A. Transfers the environment information to its DMA after receiving a

Ready Signal from this DMA.

B. Connects to the DMAGrp

C. Sends an explicit notification to the DMA

8 . (DMA starts and the election process.) When a DMA is created by the LMA leader,

it initializes the communication groups and sends a signal to the LMA leader for

connection acceptance. Then, a DMA reforms the following actions:

(a) DMA waits for the environment information to be sent by the LMA leader

(b) DMA waits for connection confirmations from LMAs in the its domain

(c) If all LMAs in the domain are connected to the DMA and Envlnfo is received,

DMAs go through the same election process used by the LMA. As a result of

this election process, DMAs are classified into: DMA leader, DMA non-leader

and DMA root. The first two groups (DMA leader and non-leader) follow the

same steps described for LMA leader and non-leader. This means the every

DMA leader creates its containing DMA (superDMA) and this hierarchical

construction continues until DMA root is reached.

(d) (LMA Root.) If a DMA discovers from the Envlnfo that it is the DMA root,

it immediately sends a final conformation to the manager confirming the com­

pleteness of the agents hierarchy.

9. The Manager then sends a multicast event information (EventlnfoMsg) to the LMA­

Grp

10. Each LMA consequently forwards EventlnfoMsg to associated ERS(s) to resume

execution. ERS uses the events information received to construct and send events.

11. ERS resumes the program execution and event reporting. The LMAs and DMAs

are completely set up and ready for receiving monitoring tasks (filters).

This protocol is implemented and used in the HiFi start up process. The protocol also

scales very well with the number of agents since DMAs a t the same level and LMAs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

operate concurrently and the effect of the hierarchy height is minimal. It is important

to mention th a t process crashes or abnormal leaves from the multicast groups (ERS,

LMAGrp, DMAGrp and MgrGrp) are immediately propagated to the rest of the agents

which causes the agents to abandon this process and quit. This guarantees that the final

confirmation is sent only if the entire agent hierarchy is constructed successfully.

4.3.4 D ynam ic S ubscrip tion A lgorithm s and P ro to co ls

After monitoring agents are distributed and organized (as described in Section 4.3.3),

manager(s) receive a notification or a “ready signal” to start the subscription process. The

subscription process consists of two steps: (1) event distribution, and (2) filter subscription.

In this section, we describe algorithm and protocols developed for supporting both steps

of the subscription process.

Events Distribution

After the events are specified by consumers using HESL, the MLP processes the event

specification to construct a mapping between each “primitive event” and its corresponding

“LMA”. This PE-LMA mapping is important for LMAs to determine their event filtering

role (i.e., which primitive event is interesting). This mapping is constructed based on the

event and environment specifications. As shown in Figure 4.6, using HESL, an event can

be mapped to a module name. Since there is many-to-many mapping between Events

and Modules, a list of modules could be obtained. Then, using ESL, the module list

can be mapped further to a list of domains, machines or both. The resulted list are

then combined to obtain a list of LMAs from which this primitive event is originated.

Notice that mapping from machine or domain name to LMA is straightforward since,

in any domain, there is only one LMA per machine. This mapping is performed by

PrimEventToLM A() algorithm shown in Figure 4.7. The PE-LMA mapping information

is automatically disseminated by the manager to all LMAs after the hierarchical setup

described in Section 4.3.3 is completed. Therefore, upon receiving PE-LMA mapping

information, each LMA immediately determines associated events and configures its DAG

accordingly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

D om ain List

Event Name

M achine L ist

D om ain List

M achine L ist LM A (s) ListM odule Name

Fig. 4.6. Primitive Event to LMAs Mapping.

Filter Decomposition And Allocation

Figure 4.4 describes the steps of the subscription process, which starts by a consumer

(manager) who issues a subscription or a filter program (F) through the MLP program.

Then, the filter parser in MLP reads and parses the filter program to validate its syntax

using the event specifications, which constitutes the valid formats of pre-defined events.

The MLP also constructs the monitoring-knowledge base of the parsed filters which

include the filter decomposition and allocation information. This information is subse­

quently used by the filter distributor (1) to decompose the filter program (F) into subfilters

(e.g., Fi,..,Fn) such that each subfilter represents a primitive event, and (2) to distribute

the filtering responsibility (subfilters) among MAs. The dissemination service then uses

RMS to multicast each subfilter component (J*i,.., Fn) to the assigned MAs. As a result,

each decomposed subfilter is assigned to one or more LMAs based on the environment

specifications which maps the events to their physical location. The filter distributor also

determines the proper DMAs needed to evaluate the event expression (EX) and filter ex­

pression (FX), thereby detecting the event correlation specified in the original filter (F).

The process of parsing, decomposing and allocating the filter program is called filter pro­

cessing which is performed by the subscription component described in Section 5.2. In the

following section, algorithms for decomposing and allocating the filter components (events,

filter expression and event expression) are shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Input: Event as event name

Output: Machines that generate the input event (LMAList)

External Functions: GetModules(e\ent): returns module names that produce event

GetDomains(mod): returns a list of domain names in

which module mod executes

GetMachines(dom): returns machine names contained

in the domain dom

IsMachine(mac): returns true if mac is a machine

PrimEventToLMA(Event)
LMAList = $

ModList = GetModules{E\ent)

fo r j fro m 1 to \M odList\ do

DList = Ge<L>omams(ModList[j])

for i fro m 1 to \DList\ do

if (ZsMachine(DList[i])) th e n

LMAList = DList[i] (J LMAList

else

LMAList = GeiMac/iines(DList[i]) (J LMAList

en d if

en d for

en d for

r e tu r n LMAList

Fig. 4.7. Event to LMA Mapping Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Events Decomposition And Allocation Algorithm s

The purpose of this algorithm is to extract all primitive events (subfilters) that constitute

the event correlation (EX and FX) of a filter. Since all events in the filter expression

must be contained in the event expression (see Section 3.3), considering EX alone in the

decomposition process is sufficient to collect all primitive events. Figure 4.8 presents the

decomposition algorithm for EX. The algorithm, DecompEX() simply goes through a list

of events which comprises the EX to find out if there are any composite events (CE)

components. If CE exists in EX, then DecompCE() (shown in Figure 4.9) is invoked

to recursively construct the list of primitive events that compose the original CE event.

Therefore, DecompEX() returns SubFilList which contains all primitive events in the EX.

The SubfiltersConstructorAndDistributorQ algorithm in Figure 4.10 utilizes DecompEX()

and PrimEventToLM A() to construct a list of all primitive events composing an EX and

the corresponding LMAs for each event. This list, EXAllocList, is then disseminated to the

concerned LMAs along with the filter name. The filter name is required to keep different

instances of the same events used in more than one filter separately. Notice that every

filter can have its own instance of an event because of the possibility of getting different

attribute overloading for the same event. Also, the filter name is needed by DMAs to

determine which DMA(s) these primitive events (in EXAllocList) must be forwarded to.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Input:

Output:

External Functions:

D ecom pE X (E X)

SubFilList = $

fo r i from 1 to \E X \ do

i f (IsPrimEvent(EX[i])) th e n

SubFilList = EX[i] (J SubFilList

else

SubFilList = Decomp CE(EX[i]) (J SubFilList

e n d if

e n d for

r e tu r n SubFilList

Fig. 4.8. Event Decomposition Algorithm.

E v e n t E x p ressio n P ro c e ss in g A lg o rith m s

The algorithms described above, enable decomposing and distribution of the monitoring

tasks among LMAs. However, in order to detect the event correlation, EX and FX must

be evaluated. Hence, a DMA must be selected to receive LMAs notifications and evaluate

the EX of the decomposed filter. Figure 4.11 presents the algorithm that selects a DMA

and allocates the EX. The selection criteria of a DMA must comply with the hierarchical

management protocols explained in Section 4.2. This means DMA is selected such that

LMAs would only communicate with their containing set. Therefore, the DMA candidates

must be within the common set of all LMAs participating in detecting this filter (EX)

(CommonDMA in the algorithm). One naive approach is to select the highest DMA in

CommonDMA for evaluating the EX. This implies a centralized monitoring approach since

An event expression (EX)

A list of primitive events, SubFilters

IsPrimEvent(event): returns true if event is a primitive

DecompCE(CE): returns a list of primitive events that

form the composite event CE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Input:

Output-

External Functions:

D ecom pC E (C E)

CEPrimEvents = $

List = GetPrimEvents(CE)

for i from 1 to \List\ do

if (7s.Primf?u(List[i])) th e n

CEPrimEvents = CEPrimEvents 1J List[i]

else

CEPrimEvents = DecompCE(List[i]) 1J CEPrimEvents

en d if

en d for

r e tu r n CEPrimEvents

Fig. 4.9. Composite Events Decomposition Algorithm.

the highest common containing DMA is the D M A root.. Another approach is to select a

lowest DMA in the containing set. However, this is also not a correct approach because

a lowest common DMA may not be unique and thereby does not contain all LMAs. For

example, if event E\ and E? are both from ODU and VB (see example in Figure 3.4), then

it is not sufficient for LMAs in these domains to communicate with DMAs in either ODU

or V B , but rather they communicate with VAstate because it covers all LMAs. Also if

the lowest DMA is not unique in its level, it violates the management protocol because

other DMAs in the same level have to communicate with each other. Thus, the proper

DMA is the lowest and singleton (based on its level) DMA in CommonDMA. The singleton

DMAs are unique in their level and represented in SingletonSet in the algorithm. At the

end of this process, the algorithm utilizes Distribute() to disseminate the information of

the elected DMA to all concerned LMAs (EXLM As in the algorithm). The filter name is

An composite event (CE)

A list of primitive events composing CE, CEPrimEvents

IsPrimEvent(event): returns true if event is a primitive event

GetPrimEvents(CE): returns a list of events

(primitive or composite) forming CE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Input:

Output:

Variables:

An event expression, EX, its FilterName

All LMAs involved in evaluating this EX, EXLM As

EXAllocList: Array of lists contains a list of PE, PEname,

and their LMAs (locations), EXLMAs, as a list of LMAs

External Functions: Distribute(Dest,<msg>): Sends the msg to Dest

S u b filte rsC o n s tru c to rA n d D is tr ib u to r(E X , FilterName)

EXAllocList = <&

EXSubFilList= DecompEX(EX)

fo r i fro m 1 to \E X SubF ilL ist] do

EXAllocList [i]. PEname = EXSubFilList[i]

EXAllocList[i].LMA = $

SubFilLMAs = PrimEventToLMA(EXSubFilList[i]);

EXAUocList[i].LMA= SubFilLMAs U EXAUocList[i].LMA

EXLMAs = SubFilLMAs U EXLMAs

e n d fo r

Distribute^EXLMAs,<EXAllocList, FilterName>)

r e tu r n EXLMAs

Fig. 4.10. Subfilters Constructor and Distributor Algorithm.

also sent in the same multicast message so LMAs can figure out which primitive events

are to be forwarded to this particular DMA. Remember that this correspondence can

easily be established since primitive events in LMAs axe associated with filter names (see

Figure 4.10).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Input: EXLM As produced by Algorithm 4.10 and the filter name

Output: The location of DMA th a t evaluates EX of FilterName

External Functions: GetContDom(LMA): returns the containing set for an LMA

Level(MA): returns the hight of MA in the hierarchy tree
EventExpr Alloc (EXLMAs, FilterN ame)

j = 2; SingletonList = 4>; CommonDMA = GetC'ont£>om(EXLMAs[l])

for i from 2 to \E X L M A s\ — 1 do
CommonDMA = GetContDom(EXLMAs[i]) |J CommonDMA

end for
for i from 1 to \C om m onD M A\ do

w hile (j < \Comm onDM A\ A

Level(CommonDMA[i]) ^ Level(CommonDem[j])) do
if (j+ 1 = i) then

j = j + 2

else

j = j + 1

end if
end while

(j > \Comm onDM A\) then
SingletonList = CommonDMA[i] U SingletonList

end if
end for
Minimum = Level(CommonDMA[l]); DMA - CommonDMA[l]

for i from 2 to \SingletonList,\ do
if (Level(CommonDMA[i]) < Minimum) then

Minimum = Level(CommonDMA[i]); DMA = CommonDMA[i]

end if

end for
Zhsfre6 ute(EXLMAs,<DMA, FilterName>)

re tu rn DMA

Fig. 4.11. Event Expression Allocation Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

F ilte r E x p re ss io n P ro ce ssin g A lg o rith m s

The final step in decomposing and allocation of a filter program is the processing of the

filter expression. A filter expression consists of predicates (Pi) linked in a logical expres­

sion. In order to describe the algorithm concisely, the following formalization is introduced:

D efin ition : A filter expression is of a set of predicates joined by binary relations (AND,

and OR). In other words, F X = (P , L) where P is a set of predicates (Pi) and L =

{A N D , OR}.

D efin ition : A predicate (Pi) in P is set of right attribute (RAtt), left attribute (L A tt),

and a relation (R) such that VPj £ P, Pj = ({L A tt, RAtt.}, {R })andR = { < ,> ,= ,< ,> } ■

We denote the right attribute and left attribu te of the P by R A ttp i and L A ttp i , respec­

tively. We also use A ttp{ to denote either R A ttp i or L A ttpr

D efin ition : An attribu te (A ttp ;) is a set of two elements: an event name, denoted by

Event, and an attribute name, denoted by A ttN am e. In other words, 'iA ttp i £ Pi,Att.pi =

{E vent, A ttN am e}. Therefore, E ven t A t t P . and A ttN a m e A ttPj are use(i to mean the event

name and the a ttribu te name of the right or left a ttribu te of predicate Pt . Similarly,

E ven tr a u p . , for example, can also be used to denote the event name of the right attribute

of the predicate Pi-

The algorithm presented in Figure 4.12 is used for decomposing the monitoring

demand expressed in a filter expression (FX) into content-based and correlation-based fil­

tering tasks (subfilters) performed by LMAs and DMAs, respectively. The algorithm also

allocates these filtering tasks to MAs based on the environment specifications (i.e., events

locations) and then disseminates the monitoring tasks to the required MAs. First, the

algorithm uses previous algorithms to convert every composite event in FX to a set of its

primitive events (line 2 and 3). Then, each decomposed CE associated with an attribute in

FX is replaced with the corresponding primitive event th a t contains this attribute name,

A ttN a m e AttPi (line 5 to 7). This goes for all predicates (Pi) in FX (line 2 through 13)

for both left and right attributes of a predicate. So by the end of line 13, FXdecomposed is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

flattened into primitive events only which are stored in DecompFX.

The next step in the algorithm is to allocate and distribute these predicates among

MA based on the complexity of these attributes. For example, if Attp, has a constant

(VALUE) such as a number or a string in a left attribute, Pi represents a primitive event

which can be handled by LMAs. Similarly, if the right attribute and the left attribute

belong to the same event, then this predicate, Pi, also represents a primitive event that can

be allocated to one or more LMAs (line 15). In both cases, the event of Pi (EventRAttPi)

is used to determine that the proper LMA set using PrimEventToLMAf) and then the P{

and the filter name are disseminated to the corresponding LMA set as shown in line 16

and 17. The filter name is included in the multicast message for the same reason described

in the previous algorithm (see Figure 4.8). All LMAs that are assigned Pi (subfilter) as a

delegation are collected in FXLMAs (line 18) which is used later (line 26) to send them the

name DMA selected for FX evaluation. If the predicate Pi contains two different events,

then this Pi is a correlation and can only be delegated to a DMA (line 19), In line 20 and

2 1 , the algorithm assembles a set of locations for all primitive events composing correlation

predicates (CompositeFXPred). This set is used later in line 24 to elect the DMA that

evaluates the FXdecomposed- Then, the FXdecomposed and the filter name is then sent to

the elected DMA (line 25) and the LMAs participating in evaluating FXdecomposed are also

informed of the DMA location (line 26). As a result of this algorithm, FX is decomposed

into subfilters and a simpler correlation expression which are then allocated to LMAs and

DMAs to distribute monitoring load efficiently and minimize the events propagation and

intrusiveness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Input: A filter expression, FX, and a filter name

Output: Decomposed FX and its LMAs and DMAs evaluators
F ilte rE x p rD eco m p A n d A llo c(F X , FilterName)

01 DeCompFX i FXdecomposed ̂ FX

0 2 fo r all Pi £ FXdecomposed

03 if (EventAttp. is CE) th e n

04 PEList <— DecompCE(EventAtip^)

05 for all P E j S PEList

06 if (AttN am eAtip. € P E j) th e n

07 EventAttp. E ven t pp}; DecompFX= E ven t pp. (J DecompFX

08 en d if

09 en d for

1 0 else

1 1 DecompFX = EventAttp. U DecompFX

1 2 end if

13 en d for

14 fo r all P{ e DecompFX

15 if (RAttpt is VALUE V EventpAttP. = E ven tiA ttPi) th e n

16 LMAs = PrimEventToLMA[EventpAttpx)

17 Distribute(LM As,<FilterName,Fj >); FXLMAs= LMAs U FXLMAs

18 FXLMAs = LMAs U FXLMAs

19 else

20 CompositeFXPred=PrimEventToLM A(EventiAttp .) U

21 PrimEventToLMA(EventRAttp.) U CompositeFXPred

2 2 en d if

23 en d for

24 FXDMA <— EwentExprA//oc(CompositeFXPred)

25 Distribute(FXDMA, <FilterName, F X decomposed >)

26 Distribute(FXLMAs, <FilterName, FXDMA>)

27 re tu rn F X decomposed-, FXLMAs, FXDMA

Fig. 4.12. Filter Expression Decomposition and Allocation Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Filter Decomposition O ptim ization Techniques

In the previous algorithms, EX and FX Eire allocated in one DMA. However, in some

cases, allocating EX and/or FX among a number of DMAs could be more efficient. For

example, if the E X /FX is too long and contains events from different locations in the ap­

plication environment, decomposing/fragmenting EX /FX itself into subexpressions, where

each subexpression is assigned to the proper DMA, could produce a more efficient monitor­

ing and filtering mechanism. This technique distributes the monitoring loEid further and

circumscribes the events propagation more within the domains bounds. On the other hand,

due to the DMAs communication overhead generated from exchanging the subexpression

results, the monitoring latency may increase. For this reason and since the network la­

tency is a dynamic param eter which is best managed by users themselves, we delegate the

responsibility of enabling or disabling the optimization technique to the users/consumers

for each filter. In the following, we outline the main steps of optimizing the decomposition

and allocating process for FX an EX (we use Expr to denote both FX and EX).

Every booleem expression over {+, . , -} boolean operators^ ceui be written in dis­

junctive or conjunctive normal formV The algorithm basically divide the expression into

set conjunctive (i.e., AND) subexpressions joined in disjunctive operations (i.e., OR). Each

of these conjunctive subexpressions is assigned to the proper DMA using the algorithm

in Figure 4.12. Then, the global DMA that evaluates the disjunctive expression is elected

and announces to the DMAs participating in evaluating the conjunctive components. One

advantage of this allocation is that one true conjunctive subexpression is enough to make

the EX/FX true. This further implies that forwarding notifications and exchanging mon­

itoring information among the DMAs is minimized. This is in addition to utilizing the

concurrent DMA evaluation of EX/FX which increases the system performance and re­

duces the monitoring latency.

Subscription Protocol

As discussed in Chapter 3, consumers may add, modify or delete filters on-the-fly through

the manager interface. When adding a new filter, it must have a unique filter nEiine.

5They, respectively, correspond to OR, AND and complement boolean Edgebra operators.
^Theorem in [64] page 591.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Input: A filter or event expression and a filter name

Output: A decomposed expression in disjunctive normal form
OptimizedExprDecompandAlloc(Expr, FilterName)

1. (Initialization.) ExprDMAs <— $

2. (Convert to EX /FX Disjunctive Normal Form.) The Expr is converted into a dis­

junctive of conjunctive expressions [31], (C onji), and the resulted expression is called

ExpT fra g m e n ted

3. (Decompose and allocate each conjunctive.)

for all Conji S E xp r fra g m en ted

DMAconji «- FilterExprDecompAndAlloc(Conji, FilterName)

ExprDMAs = DMAconji U ExprDMAs

end for

4. (Allocate and Distribute the disjunctive.)

(a) Using ExprDMAs set, we can find out the containing sets for each DMA and

then select the proper DMA, called global DMA , as described in the algorithm

in Figure 4.8.

(b) The global DMA is assigned to evaluate the disjunctive expression.

(c) The location of the global DMA is disseminated to all DMAs participating in

evaluating the conjunctive expressions, so that the results are forwarded to the

global DMA.

5. (Return expression in DNF) R etu rn E xpr decomposed

Fig. 4.13. Expression Decomposition and Allocation Optimization Algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

SubfilterReceived
AndAgentNOTIncluded

SubfilterReceived

AndAgentlncIuded
SuccessfulUpdate/SetTimer,
■----------—_ Jion FilterName

Ready for
Filters UnsuccessfulUpdatj

SendCancleUpdate/
Abnormal Leave Timer Exp or

,AbnormalLeav<
Wait for
G rpConfState

Recovery
.ReceiveUpdaieConf Recv IncopR fjIeteN

AgentsJ-Hst/Set Timer Recv Complete
\ AgentsList

TimerExp or
AbnormalLeave.SendActivConf/

\ lL e a v e G r p

AbnormalLeave'
Wait for Last

MemberA ctivConf

Fig. 4.14. Subscription Protocol State Diagram.

However, when modifying or deleting a filter program, it must match a filter name used in

the monitoring system (i.e., an existing filter). Adding, modifying or deleting filters may

create an inconsistency in the monitoring environment. This can be resolved by using the

subscription protocol depicted in Figure 4.14.

The subscription component parses, decomposes the filter program, and sends to

the monitoring agents a multicast message (Subfilter) th a t includes a filter name, subfilters,

and a list o f agents involved in this monitoring task. If the Subfilter messages received

contains the agent ID (M achineN am e.D om ainN am e), the agents then perform the filter

composition to insert the subfilter information into the DAG or PN (Update State). If an

agent state is updated successfully, it joins (using RMS) a multicast group, FilterNam e,

included in the message itself and waits for the join confirmation from RMS. The join con­

formation contains a list of all members (agents) in the group. In RMS, the join operation

and conformation are performed as one atomic action based on the token ring protocol [4].

In this case, the members fist in the join confirmation indicates agents in the group which

have successfully modified their states so far. Thus, when am agent discovers that all con­

cerned agents have joined the group, it sends a multicast message (ActiviateConf) to the

group to activate the received filter and it then leaves the FilterN am e group. On the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

hand, if an agent fails to update its state or to join the group for TimeOut period, then the

first agent that times out (timer expires), sends a multicast message to the FilterN am e

group to cancel and recover the state update. Every agent sets up a timer right after

receiving the join confirmation message for T im eO ut > (N + 1) * R T T + M R T such that

R T T is the maximum round trip delay in the network, M R T is the maximum packet

retransmission time in RMS, and N is the number of agents contained in this subfilter

message. R T T is used to calculate the join notification time, and M R T is used to accom­

modate the network delays and retransmissions. Neglecting the state update time, both

factors must be considered, otherwise, agents may time out before the protocol operation

completes. Agents receive an autom atic notification from RMS when an agent withdraws

from the group because of normal (e.g, leave) or abnormal events (e.g., agent crashes). If

this occurs before receiving ActiveConf message, then agents cancel their state updates

and quit the process. At the end of this operation, consumers get notified about the results

of their subscription, (e.g., confirmed or aborted) by a monitoring agent. This protocols

is important for assuring agents consistency as well as synchronizing the agents monitor­

ing operations. Simplicity and minimal overhead are major advantages of this protocol

compared to other distributed algorithms such as two-phase commit protocol [8 8].

4.3.5 E vent D e tec tio n

The MAs receive the delegated monitoring tasks (subfilters) [30] and configure themselves

accordingly by inserting these subfilters in its filtering internal representation, such as

the direct acyclic graph (DAG) [12] or Petri Nets (PN) [27]. This process is called filter

composition [3] and is described in detail in Section 5.3. The LMAs and DMAs in the

monitoring agent network (see Figure 4.4) then work cooperatively based on the man­

agement protocols described in Section 4.2 for monitoring the target application using

distributed subscription requests (filters). Section 5.3 provides more discussion on event

detection techniques used by LMA and DMA.

4.3.6 M onito ring A ctio n

This represent the final step in the monitoring process. If an interesting event pattern is

detected, the monitoring system performs the corresponding action defined in High-level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Action Specification Language (HASL) described in Section 3.3. Figure 4.4 depicts the

general monitoring process where detected events are sent to a collector that collects and

analyzes the monitoring information. And the outcome results from the collector can be

viewed (visualized) in the monitoring presentation device.

Analyzing, presenting and visualizing the monitoring information are not in the

scope of work of this thesis, however, our monitoring architecture enables the users to

integrate the analysis and re-action services in the monitoring process itself by using the

HASL and the Control Component. The monitoring agents th a t trigger a filter perform

the action associated with this filter, such as forwarding the monitoring information to

the corresponding managers (see Section 3.3).

4.4 Summary

This chapter describes the algorithms and protocols used for implementing the hierarchical

filtering-based monitoring architecture. This architecture identifies two classes of monitor­

ing agents: Local Monitoring Agents (LMA) that detect primitive and Domain Monitoring

Agents (DMA) that detect composite and correlated events. Monitoring agents are orga­

nized in a hierarchical structure based on the environment specification such that one or

more LMAs are connected to a single DMA. DMAs are also connected to higher DMAs in

the hierarchy which enables monitoring agents to detect correlation events in domain basis.

In order to enhance the management and communications between monitoring agents, an

optimization technique is used such that an LMA can forward notifications only to those

DMAs that need such events, instead of forwarding them to the next DMA in the agent

hierarchy. The monitoring agents use the reliable multicasting service (RMS) to dissemi­

nate events to a group of interested agents. In order to distributed the monitoring load in

the agents hierarchy, the monitoring system (HiFi) employs decomposition and allocation

algorithms that decompose (1) the composite events in users filters into sets of primitive

events, and (2) filters expressions into subexpressions th a t can be evaluated in the same

monitoring agents. The allocation algorithm is then used to distribute the decomposed

filter information among agents based on the agents roles and the environment specifica­

tions. As a result, each agent is assigned filtering responsibilities based on its monitoring

scope. The monitoring information forwarded from the monitoring agents in the hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

axe then integrated by a single DMA to detect event correlations. In particular, the low­

est singleton common DMA of all LMAs participating in processing this filter is selected.

Therefore, there is no a specific DMA assigned for detecting all filters, however, a DMA

is selected based on the specification of each filter (i.e., filter events and expressions).

The agent organization protocol is used to setup the agents hierarchy automatically

and without users intervention. This protocol performs a sequence of agents creation and

election steps for building the hierarchy starting from the leafs of the hierarchy (LMAs)

until the D M A root is created. The monitoring agents hierarchy is dynamic and can be hor­

izontally expanded at any level in the hierarchy to accommodate an excessive monitoring

load in a DMA. The dynamic subscription protocol is used to resolve the agents state-

inconsistency problem that results from receiving the filter information (decomposition)

by agents at different time. This protocol not only guarantees an atomic state-update in

the agents group, but also synchronizes the monitoring operations among the agents. This

chapter also describes the advantages of employing the hierarchical monitoring architec­

ture in improving the scalability and performance, and minimizing the intrusiveness of the

monitoring system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

CHAPTER V

SYSTEM COM PONENTS AND IMPLEMENTATION

This chapter describes the design and the implementation of the monitoring systems com­

ponents: Instrumentation, Subscription Service, Event Filtering and Control. While the

previous Chapters focus on architectural issues including algorithms and protocols used

in HiFi monitoring system, this Chapter describes the system components that performs

these tasks. The implementation of each component and their interaction with event

producers and consumers are also presented. Figure 5.1 shows the components of the

monitoring system and their interaction. It also shows the monitoring interaction with

event consumers via filters and event producers (or the monitored objects) via events. An­

other goal of this chapter is to explain how this implementation contributes in achieving

the work objectives described in Chapter 1 such as improving performance and scalability

and minimizing the intrusiveness.

5.1 Instrumentation Component

The process of inserting monitoring instructions into the code of observed programs is

called the instrumentation process. These monitoring instructions act as sensors inside

the programs body and report the events as they occurred to the LMA during the pro­

gram execution. In order to monitor the execution of any application in real-time, the

application must express its state by conveying all information of the occurred events.

In other words, in order to provide management services for distributed systems, these

systems must report events th a t represent their run-time behavior. The developers must

also intervene to insert the monitoring instructions in the proper places (e.g. in routines

under investigation). In the following, we discuss the services and functions provided by

the instrumentation component and subcomponents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Consumers

a g. ° S U o

or
;Sr m .g C E « a> c ;S o

S U

Event

Instrumentation !
Component \ERS

->• Control
Event/Filter Flow

*■ Monitoring process (low Monitored Object
(producer)

Subscr.
Criteria ActionD issem ination

Criteria

Event

Filtering

Event Receiving & Dispatching

on
Filtering

Fig. 5.1. Monitoring System Components.

5.1.1 E vent Specifications

To facilitate the instrumentation process for application developers, the monitoring system

provides the Event Specifications Generator (ESG) subcomponent to support automatic

generation of low-level event formats from the high-level user specifications.

The event specifications (or the notification format) must be specified at an early

stage and prior to any monitoring operation. The event specifications must contain all

information required to recognize any particular event. The ESG enables the develop­

ers/users to define the event specifications in a high level language called High-level Event

Specification Language (HESL) which is described in detail in Section 3.3. The ESG

subcomponent utilizes the event information supplied by the subscription component to

convert the event specifications defined in HESL into low-level event formats called Event

Reporting Criteria (ERC) which is directly used in the monitoring process (see Figure 5.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Instrumented Code
(with System Sensors)

Monitoring Specifications
(from Subscription Component) Program Code User Sensors

ERCESG Code Preprocessor

Fig. 5.2. Code Instrum entation Process.

The low-level event format (ERC) contains the event location, event domain, reporting

mode, number of event attributes, the type of each attribu te such as an integer, float or

string. Therefore, users specify the list attribute names (and values if necessary) in a

declarative way without requiring them to indicate the type of each one. The low-level

format (ERC) is then used by other components for further instrum entation processing.

5.1.2 A u to m a tic E v en t In se rtio n

The main function of the instrum entation component is to facilitate the process of in­

serting the monitoring instruction or sensors into the program code. In many monitoring

systems [58, 69], programmers write a considerable amount of code for each generated

event. This makes the instrum entation task tedious and error-prone. Furthermore, it

may obscure the program ’s appearance and cohesion. For these reasons, one of our design

principles is to make the code which needs to be inserted manually by programmers as

minimal as possible. This relieves the burden of writing and maintaining the sensors code

and reduce the possibility of hum an errors. For example, in order to generate event RMP-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

S Warnings described in Section 3.3, users insert the following statement at the proper

place of the code:

Report Event (RM PS Warnings)

We call this statem ent the user sensor. However, this does not provide suffi­

cient information to generate an event because it does not provide information about

the event attributes into the instrumented program. Thus, after users complete inserting

their sensors in the code, the instrum entation component pre-processes the instrumented

code and replaces user sensors with extended sensors that convey all events related in­

formation. This type of sensors is called system sensors. For example, the user sensor

Report Event (RM PS Warnings) in the previous example is replaced by the following sys­

tem sensor:

ReportEvent("RMPSWarnings".ModName,FuncName, "IMMEDIATE", 2,

"EventType", STRING,"Warning", "Machine", STRING,"dragon")

The ModName and FuncName are variables that are assigned at the beginning of

the program and function, respectively. To provide more flexibility in using HESL, the

assignments of these variables are left to the users. This enables mapping an event to

several module names without having to define an event for each module. For example,

users can use RM PS Warning to report warning events from modules other than RMPS

by setting the values of ModName and FuncName variables. The third argument specifies

the event reporting mode (Immediate or Delayed), and the fourth one specifies the number

of attributes in the event. The rest of the arguments in the system sensor is the variable

attributes names, types and values. These autom atic insertion of system sensors is per­

formed in a copy of the original source to retain the program code cohesion. The new

instrumented program copy called “.HiFi_<ProgramName>” . The automatic insertion

process utilizes the ERC information generated by ESG to construct the system sensors.

In addition to the automatic insertion of system sensors, the instrumentation com­

ponent generates a make file called .HiFi-Makefile based on the original make files. There­

fore, users have only to remember using “-f” option with make command whenever they

want to compile their programs with monitoring capabilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

5.1.3 D ynam ic E ven t S ignaling

Event signaling is the process of constructing and sending the event notification message.

This task is performed by the Event Reporting Stub (ERS) which is a supported library or

stub linked with the monitoring application in order to construct and report the occurrence

of events.

When the instrumented program generates an event, it invokes ReportEventO

which is a unbounded parameters-list function that ERS uses to construct the notification

message and send it to the connecting LMA. The code is shown in Figure 5.3. Events

are dynamically activated or deactivated as a consequence of adding or deleting filters at

run time. The filter activation and deactivation information are sent to LMAs during the

filter decomposition and allocation. Then each LMA notifies the associated ERS which

updates the Event Vector Table (E V T) accordingly. The E V T is basically a table that

lists the defined events and their corresponding flags which indicate if an event is active or

inactive. In other words, EVT is configured by the subscription component to activate

or deactivate reporting events. The developers or users may define and insert all kinds of

events in the program. However, ERS in the instrumentation component determines the

active events according to the subscription demands and reports only events of interest at

any particular time. This highly reduces the number of reported and processed events and

allows the developers to dynamically select events to be reported at run-time. Therefore,

this significantly reduces the monitoring intrusiveness without sacrificing the flexibility

and ease of use of the monitoring system.

One disadvantage of the dynamic signaling is that it requires LMA to commu­

nicate back with ERS which could increase the monitoring intrusiveness and program

perturbation. In some critical applications, event set are mostly static and the overhead

of delegating this filter task to LMA is less than the overhead incurs by the dynamic

signaling. For this reason, the user can choose to enable and disable the dynamic feature

by invoking this function in ERS: ERS->DynamicSignalling(ONOFF) a t the beginning of

program execution. Furthermore, in order to minimize the overhead resulting from dy­

namic signaling and to avoid integrating the ERS events in the program event loop, ERS

is designed such that it checks the event status (such as activating new events) only by

probing its LMA and after ReportEventO is invoked by the program itself. More specif-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

int ReportEvent(char *Ev,char *Hod,char* Fun,char *Rep, int cnt, ...)
{ /* Fix Attributes */

strcpy(event->evname,Ev);
if (ON)
{ /* Check Event in Vector Table */

if (CheckEventStatus(event->evname) == INACTIVE)
{ delete event; return 0; }

>
strcpy(event->mod,Hod);
strcpy(event->func,Fun);
strcpy(event->rep, Rep);
strcpy(event->id,Ev); /* could be evname */
/* Variable Attributes */
va_start (ap, cnt) ;
event->PredCount=cnt;
for (i=0; i < cnt; i++)
{
strcpy(event->Predicates[i].name, va_arg(ap,char*)) ;
event->Predicates[i].rel=l;
event->Predicates[i] .type=va_arg(ap,int) ;
switch (event->Predicates[i].type) {
case INTEGER:

event->Predicates[i].value.intv=va_arg(ap,int); break;
case FLOAT:

event->Predicates[i].value.fltv=va_arg(ap,double); break;
case STRING: {

int j=0; char svalue[32];
for(j =0,sval=va_arg(ap,char*); *sval;sval++,j++) svalue[j]=*sval;
svalue[j] = ’\0’;
strcpy(event->Predicates[i].value.strv, svalue); break;

>
default:

cout«"«ERS ERR0R» Invalid Parameter Type=’/,d! .. \n";
return -1;
break;

)• // end of switch
} // end of for
va_end(ap);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

if (!strcmp(event->rep,"Immediate"))
■C

EnQueue(event);
SendEventQueue();

>

else if (!strcmp(event->rep,"Delayed"))

Limit=EnQueue(event);
if (Limit >= MAX_EQ_LENGHT)
{

SendEventQueueO ;
EmptyEventQueueO ;

}
}
else
■{ cout « " « E R S Error» Invalid Report Mode"<< endl; return(-l); >

if(usock->SendData(LMAsock, (BYTE *) event, sizeof(PrimEventNotif)) < 0)
{ perrorC'send") ; exit(0); >
delete event;

if ((LMAMsg=CheckMailBox(LMAsock)) != NULL)
-C
UpdateEventVectorTable(LMAMsg);
return 1;

>

else /* No msgs from LMA */
return 0;

Fig. 5.3. ReportEvent in ERS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

ically, sending an event from ERS represents a signal for LMA to down-load any event

activation updates, if any. ERS checks the communication buffers for some timeout period

right after the event is sent using CheckMailBoxO function (see the code in Figure 5.3).

If an event update is received, then ERS invokes UpdateEventVectorTable () to modify

the EVT accordingly. This enables the consumers to select or suppress events at run-time

without interfering with program execution (i.e., UNIX s e le c t () system call is not used

for this purpose)

5.1.4 A d ju stab le E v en t R ep o rtin g

The rate of event delivery can be controlled via the adjustable reporting mechanism sup­

ported in ERS. Consumers can delay reporting the event notifications till a specific time,

which is called delayed reporting, or request an immediate notification of the event oc­

currence, which is called immediate reporting. Therefore, the Mode attribute in the event

specification can be either Immediate in which the event will be generated and sent to the

monitoring system right after its occurrence, or Delayed in which events are buffered until

one of the following condition occurs: (1) an immediate event occurred. (2) the program

invokes F lushE ven tsO which is a service provided in ERS, (3) the number of buffered

events exceeds the maximum threshold allowed by the LMAs. We deliberately avoid using

time limits as one of the options to avoid any perturbation caused by timers interrupts.

However, consumers/programmers can still set up their own timers in the program and

flush the event buffer using the F lushE ventsO service call.

The delayed event reporting mode is used to accumulate more events and minimize

the send frequency and thereby reducing the intrusiveness of the monitoring system. On

the other hand, the immediate event reporting mode is used when events are time-critical

and real-time event notification is required. The adjustable reporting feature enables users

to control the monitoring intrusiveness and the event freshness trade-off.

5.1.5 A u to m a tic M o n ito rin g A gent C rea tio n

One of the services provided by ERS is to participate in setting up the agent hierarchy

automatically. ERS provide the E R SInitO function which starts RMPS and LMA, and

then connects to LMA using UNIX sockets. ERS issue this connection after LMA send

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

a ready signal. After the connection is accepted by LMA and the final agents setup

confirmation is received, ERS waits for the event information from the LMA to update

the event vector table. The detailed description of the agent’s hierarchical setup and

allocation is described in Section 4.3.3. Thus, ERSInitO must be the first statement in

an instrumented program. In some case, several application processes share one LMA

in the same machine. In this case, it the responsibility of users/programmers to insert

ERSInit() in the first process to start and ConnectToLMAO in all other processes. In

other words, only one process (the leading one) is required to use ERSInitO and other

processes use ConnectToLMAO. This architecture enables the users to customize the agent

structure based on the application requirements and control the trade-off of LMA per

process or LMA per machine. Only after ERS receives the LMA confirmation and the

event information, it resumes the application execution. Otherwise, it terminates the

application program.

5.2 Subscription Service Component

The monitoring subscription is the process by which the consumers would specify their

monitoring demands represented in filter programs using HFSL. The filter is basically

represented by an event expression, filter expression and action specification. Therefore,

defining the event, action and environment specification is in fact part of the subscrip­

tion process. Section 3.3 presents a detailed discussion on the formal specification of the

monitoring system language (MSL) composed of HFSL, HESL, HASL and ESL.

The subscription service component is used to provide the following main services:

• Processing users specifications and demands such as adding, deleting or modifying

monitoring requests

• Receiving and processing monitoring results such as forwarded events and notifica­

tion

• Controlling monitoring agents’ activities such as start, stop or reset agents

In order to support such services in our monitoring system, the subscription com­

ponent performs the following tasks:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

<Envlnfo, Eventlnfo. Subflltcrs>

LMAUrp or DNtAQrp

D ynam ic Reliable M ulticasting (RM S)

RM S

U ser Action Services A llocator

M anagem ent
Protocol
Engine

Decom poser

s E ventlnfo /F llte rlnfo E nvlnfo

C ontro ller D ispatcher

MB ESG

Filter
Queue M onitoring*knowledge B ase Builder

V alidation

F ilter Packet V alidation Layer

- CFG Specs
— (Lex & Yacc)P arse r

M grG rp Receiver

U ser Specifications in M SLM anager G roup M essage

Fig. 5.4. Subscription Component.

• Parsing and validating the user specifications

• Constructing the Monitoring-knowledge Base (MB) information

• Decomposing events and filters specification

• Distributing monitoring tasks

• Processing monitoring results information received from MAs

• Performing the agents management protocols

As shown in Figure 5.4, the subscription service component has three major sub­

components: Monitoring Language Processor (MLP), Monitoring Information Processor

(MLP), and Monitoring Controller (MC). The following sections describe each of these

subcomponents and the corresponding tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

5.2.1 Monitoring Language Processor

The Monitoring Language Processor or MLP is used to support the first service of the

subscription component which is reading and processing users specifications. Users spec­

ifications comprises event, filter, action and environment information specified in HESL,

HFSL, HASL and ESL, respectively. It also includes adding, deleting or modifying filter

programs. MLP reads users specifications from the standard input or from a file, and then

performs the following assigned tasks:

P a rs in g a n d S y n ta x V alid a tio n : Scanning and parsing users specifications is the first

task performed by the scanner and parser in the MLP, respectively. The scanners be­

gins the analysis of the user specification by reading the input, character by character,

and grouping characters into individual words and symbols called tokens. The parser

reads these tokens and groups them into units as specified in the production rules of a

context-free grammar (CFG) [23, 37] supplied to the parser. Lex and Yacc [51] are used

for implementing the scanner and parser functions in MLP. Lex is a lexical analyzer gen­

erator that recognizes a regular expression, but Yacc is LALR(l) parser that generates a

C-program implementing the state machine of the CFG provided by the user. The CFG

of the monitoring language is presented in Section 3.3. LALR parsers combines the ad­

vantages of LR and SLR parsers which produces a better resolution and smaller tables.

The monitoring language (HESL, HFSL, HASL, and ESL) production rules are written

and aligned in Yacc format such th a t no ambiguity or conflicts (e.g., shift/reduce or re­

duce/reduce) exist. Throughout our discussion, we use “parsing” to mean both scanning

and parsing a t the same time. The parser in MLP is essential to validate the syntax of the

user specification and to provide the means to extract the information required to build

the monitoring-knowledge base and validate the semantic of the user specifications. If a

syntax error is encountered in the user specifications, the program terminates at the error

location in the user specifications.

S em an tic V alid a tio n : The monitoring system performs some semantic checking during

the parsing process described above. There is no formal semantic specification used for

this purpose since this is not the focus of this thesis, however, some semantic rules are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

provided to MLP to check out during and after the parsing process. Examples of such

semantic rules used in the monitoring language includes the following:

• HESL Semantics Rules

— Event names must be unique

— Module names must appear in the ESL

— Fixed attributes must be specified

• HFSL Semantics Rules

— Events in the filter expression must be included in the event expression

— Attributes in the filter expression must be contained in the event definition

— A ttribute types must match correctly

• ESL Semantics Rules

— Domain must not contain itself or any of its containing domains

— Modules names used in HESL must appear at least once in ESL

— Every machine must be contained in a one domain only

These are examples of semantics rules th a t MLP uses to validate the user monitor­

ing specifications. If invalid semantic is discovered, users are prompted with explanation

of the user specifications violation.

C onstructing M onitoring-knowledge Base: One of the major tasks performed by

MLP of the subscription component is constructing the Monitoring-knowledge Base (MB).

The MB information is then used by the Monitoring Information Processor (MIP) for pur­

suing further tasks such as event/filter decomposition and allocation which are described

in details in Section 4.3. The MB Builder in the MLP constructs the knowledge base struc­

ture and information. MB Builder receives the information from the parser after parsing

and validation and converts it into tables of linked lists that are easily accessed and fetched

by other monitoring utilities. MB looks like a database for retrieving all information re­

lated to a specific monitoring application/operation. For example, number of machines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

involved, where every machine is located, how domains are related are all query examples

that can be answered by a specific MB. Since MB does normally consume large memory

space, MB is constantly available and can be dynamically fetched at run-time. Figure 5.4

shows that the ESG in the instrumentation component uses the MB information to create

ERC that then used for inserting the system sensors as described in the Section 5.1.

The MB is completely based on list data structures using an extended version of

widely used L is tO and L i s t l t r O classes. The main advantage of using such Abstract

D ata Type (ADT) is to optimize memory usage and improve the program maintainability.

Appendix B.2 and Appendix B.3 show the primitive and composite event data struc­

ture, and Appendix B .l and Appendix B.4 show the environment and filter data structure

which are both used to construct tables events, environment and filters tables, respectively.

D ynam ic U se r S u b scrip tio n : Dynamic user subscription that enables adding, delet­

ing or modifying filter programs at run-time is one of the MLP functions. This typically

involves reading, parsing, validating, decomposing and then distributing the HFSL of a

filter as described before. The new added filter must assign a unique name in the moni­

toring system. On the other hand, deleting a filter requires only multicasting this request

to LMAGrp and DMAGrp. The monitoring agents, consequently, evict all predicates be­

long to this filter in the DAG or PN and deactivate events are used with this filter only.

The deleted filter name must match an existing filter in the monitoring system. The fil­

ter modification process is composed of deleting this filter and adding the new modified

one. In adding, deleting or modifying filers, managers and agents comply with the dy­

namic subscription protocols described in Section4.3.4 in order to maintain consistency

and synchronize agents’ activities.

5.2.2 M o n ito ring In fo rm atio n P rocesso r

The Monitoring Information Processor (MIP) subcomponent produces the monitoring in­

formation in a format usable by the monitoring agents. This involves (1) retrieving and

combining different information from MB, (2) decomposing and allocating such informa­

tion to generate monitoring tasks executable by the monitoring agents, and (3) packaging

and disseminating the produced information to the agents using RMS. The first part of

this information is the environment information (Envlnfo) which is used for establishing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

the agents hierarchy as described in Section 4.3. The Envlnfo contains a list of records

where each record states the domain/superdomain name, unique ID and list of domains

and/or machines included in each domain and superdomain. This information is used by

LMAs and DMAs in the election process such that the first element (machine or domain)

represents the LMA/DMA leader of this agent group (see Section 4.3.3). After the agent

hierarchy is constructed, the Envlnfo is disseminated to LMAGrp and DMAGrp groups.

On the other hand, MIP constructs the Eventlnfo and Filterslnfo tables from MB and

passes them to the composer and allocator, as shown in Figure 5.4, to generate decom­

posed subfilters and disseminate this information dynamically to the associated agents.

Decomposition and Allocation algorithms are described in Section 4.3.

5.2.3 M on ito ring C o n tro lle r

The Monitoring Controller (MC) is the subcomponent responsible for receiving and pro­

cessing incoming messages sent to the manager program via the MgrGrp multicast group.

There are two types of messages: (1) monitoring information results that are forwarded

from MAs to indicate event discovery, and (2) monitoring control messages which are sent

by the MAs to perform certain management protocol. If it is the former case, the received

monitoring information is dispatched to the corresponding service routine that matches

the filter name in this message. These services are specified by the user during the sub­

scription process and are activated according to the detected filter. On the other hand,

the control messages is forwarded to the management protocol engine (see Figure 5.4)

which parses and performs the corresponding protocol action. Examples of such protocols

include automatic agents allocation and dynamic subscription protocol as described in

Section 4.3.

5.3 Event Filtering Component

The event filtering component is the core component of the monitoring system. Its main

functionality is (1) receiving and processing filtering tasks delegated from the subscrip­

tion component after decomposition and allocation, and (2) inspecting incoming events

based on the event attributes and the filter information (i.e., filter internal representation)

to determine if this event is interesting (detected) or irrelevant (rejected). The former is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

performed by the subfilter processor in a process called filter composition but the latter is

performed by the event processor subcomponent in a process called event filtering. They

both operate on the event filtering internal representation th a t represent the monitoring

information such as consumers’ subscriptions and event specifications. The subfilter pro­

cessor, event processor and event filtering internal representation constitute the internal

architecture of the monitoring agents, LMA or DMA.

5.3.1 E ven t F ilte rin g In te rn a l R ep resen ta tio n

The internal representation of filters is a key issue in designing event filtering mechanisms.

The filter internal representation determines the model and the data structure used to

express the meaning of a filter. In Section 2.2, we discussed various filtering internal rep­

resentations used by other event filtering mechanisms. Our architecture integrates two

different representations: Directed Acyclic Graph (DAG) and Petri Nets (PN) into one

framework to enable detecting both primitive and composite events. Previous work in

event filtering are polarized toward one model over another which results in a half solution

of the problem of monitoring distributed systems.

D A G Im p le m e n ta tio n : The DAG representation is used by LMAs to match primitive

events. LMAs are stateless agents since they are responsible for detecting primitive events

only which do not require storing event history or tracking composite events. However,

DMAs use a filtering internal representation that has the capability to store and memorize

the event history such as DFA (Deterministic Finite Automata) and PN (Petri Nets)

representation because a DMA is responsible for detecting composite events. The DAG

filtering representation consists of nodes connected by edges in an acyclic graph. Its nodes

represent the test predicates and the edges represent the control transfer. The DAG is

parsed top-down such that if the test predicate is true, the right-hand edge is traversed,

otherwise the left-hand edge is traversed. Thus, the evaluation result of the test predicate

(either true or false) determines the edge to traverse. An event is detected if the terminating

node (leaf node) is denoted as true. There are two terminal nodes in the graph, the true

node that denotes the acceptance of the event and the false node that denotes the event

rejection.

In order to optimize memory usage, we implemented the filter DAG using linked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

lists data structures. Appendix C .l illustrates the basic data structures used for imple­

menting DAG filters representation. In our system, the DAG is implemented as a list of

nodes (DAGNode) indexed by module names (ModName). Each node consists of a list

of node configurations (DAGNodelnfoTable) where each configuration indicates a unique

function name and list of predicates (Pred) indexed by this designated function name. The

predicate (Pred) is a list of attributes (ATTRIBUTE) which consists of attribu te name

(name) and list of values (Value). An attribu te may take multiple values because different

filters may specify different values for the same attribute name. The Item is the same

as RValue in Appendix C.2. The DAG nodes and structure are processed using indexed

hash tables to provide a faster access. Unlike DAG implementation in previous filtering

work [12, 59, 63, 94], this indexed hashing implementation enables the DAG iterators to

search the DAG for matching events in less time than traditional binary nodes DAG im­

plementation used in these filtering mechanisms. We will discuss this issue in more details

in Section 5.3.4.

P N Im p lem en ta tio n : The general structure of Petri Nets is described in Section 2.2.

PN representation is needed for storing the event history that can be later used in com­

posite event detection [27]. Detecting composite events requires information on two or

more events that had occurred in the system. Deterministic Finite Autom ata (DFA), as

described in Section 2.2, can also be used for this purpose [29]. However, we decided to

use PN in representing event correlation rather than DFA for the following reasons [27]:

• PN model is more powerful for representing complex filters (event correlation). This

is, in fact, a general conjecture in system and protocol modeling research area.

• PN representation, in general, provides a better space complexity than the DFA

representation [27].

• PN provides a better scalability with the number of events occurring in the system.

In PN, event occurrence is represented by marking an event place with a token.

Thus, events reserve only one place in PN, regardless of the number of occurrences.

In contrast, in the DFA approach, every event occurrence is associated with one state

in the DFA. This further implies that the number of states grows linearly with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

number of events occurrences. Therefore, in general, the PN approach may require

less space complexity than the DFA approach in modeling event filtering.

However, the PN model is more complex to implement and manipulate than the

DFA model. Appendix C.2 shows the da ta structure representation of PN as implemented

in this architecture. PN is a list of nodes (PNnode) where each node consists of a list of

states (places), expression (PNFX) and other node associated information such as the ID

of this node (NodelD), the name of the represented filter (FilName), a flag to indicate if

the node can be fired (fire_flag) and the actions to be performed (Action) if this PN node

is fired (i.e., filter is triggered). Each place (Place) contains of a list of event states

(OccurStates) such that each state represents an occurrence of this event. An event

may occur multiple times with different attribute values. The OccurStates buffers all

event occurrences information in FIFO order for later analysis. Users may decide to

use the first, the last or all occurrences of the event instances for evaluating filter or

event expressions (Expression). The mode member in Place class determines how event

occurrences (OccurStates) must be handled (i.e., which event occurrence to consider). In

addition, class Place contains the mark member which represents a PN token that indicates

if this place is marked (see Section 2.2).

The expression (PNFX) in a PN node represents the guard function which is eval­

uated when all places are marked and the fire flag (fireJBag) becomes true. The PNFX

is a list of predicates where each one contains a right and left attributes, and a binary

relation (see predicate specifications in Section 3.3). In our architecture, PNFX represent

the event expression (EX) and the filter expression (FX).

The main interface of the I t e r a t o r classes for DAG and PN is illustrated in

Appendix C. Finally, it is im portant to mention that LMAs and DMAs have an identical

design architecture in terms of components, subcomponents and services and they only

differ in the filter internal representation.

5.3.2 Subfilter P rocesso r

When the subfilter delegation is received by MAs, the filter internal representation is

updated to reflect the new monitoring operations. This process consists of two steps:

(1) subfilter translation in which the subfilter specification is converted to a DAG or PN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

F ilte r
Q u eu e

Filter T ranslator

F ilter Com poser

F ilter
Receivers

Fig. 5.5. Subfilter Processor Subcomponent.

representation (depending if it is an LMA or a DMA), and (2) filter composition in which

the subfilter is inserted at the “proper” location in the internal representation (DAG or

PN). The former is performed by the filter translator, and the latter is performed by the

filter composer, as shown in Figure 5.5. This figure shows that when a subfilter is received

via LMAGrp or DMAGrp, it gets validated to verify its destination and then it is buffered

in FIFO order for the translation and composition processes.

5.3.3 E ven t P rocesso r

The main function of the event processor is to filter incoming events based on the filtering

internal representation such as DAG or PN. In this section, we discuss the implementation

design, algorithms, and the optimization techniques used for developing this subcompo­

nent.

• •
Subfilter C o m m u n ica tio n E n d -p o in t

(LMAGrp or DMAGrp)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

To Control Component

Extraction Layer
Event
W orkers

Event Filtering/Matching Layer

Event
Dispatchers

Event
Queues

Event
Receivers

Communication End-points
(ERS, LM A G rp or DM A G rp)

Event

Fig. 5.6. Event Processor Subcomponent.

Subcomponent Im plem entation

The event processor is a major component in the architecture because it performs the most

intensive process in the monitoring architecture. For this reason, the architecture of this

subcomponent is deliberately designed to improve the throughput of the event filtering

process and thereby improving the performance of the monitoring system. Figure 5.6

shows the internal architecture of the event processor subcomponent. The event processor

is designed as a multi-layer and multi-threaded architecture. Each layer has a pool of

threads that perform the function of this layer. This architecture enables different events

from the same or different producers (ERSs or LMAs) to be processed concurrently and

independently. Notice that this architecture is used in both LMAs and DMAs, therefore,

the event producers in the first case are the ERSs, but in the later case axe the LMAs

associated with a DMA. The event receivers is a pool of threads where each one is connected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

to different event producers (ERSs or LMAs) and working independently in receiving and

queuing incoming events. After events are queued, they get dispatched from the Event

Queues based on their priority by the event dispatchers. Then, the event workers perform

the event filtering on the dispatched events based on the internal filtering representation

(DAG or PN) constructed in MAs. If an event is detected, then the monitoring information

is extracted by the extracting layer from the event notification and forwarded to the Control

Component.

This architecture has the following design features:

1. Providing the Maximum Degree of Concurrency: The multi-threaded multi-layer

provides horizontal parallelism where events from different sources (providers) can

be processed (typically, queuing, dispatching or filtering) by threads in the same layer

concurrently and the multi-layer provides vertical parallelism where events from the

same source (provider) may be processed by threads in different layers concurrently.

Although this parallelism can get the maximum advantage if the MA is working

in a multiprocessor machine (e.g. sparc2 0 0 0), using this architecture in a single

processor machine has considerable advantages [52]: (1) it supports overlapped I/O

(network or memory), (2) it allows overlapping computation and the blocking system

calls (I/O) which increases the throughput and the performance of the monitoring

system, and (3) it enables controlling the monitoring or the filtering process more

effectively since a thread utilization of the system resources could be bounded by it

priority. We will discuss this issue in more details below.

2. Avoiding Threads Contention: The multi-queue configuration is used in the event

processing component to reduce the dependency between thread workers and thereby

avoid the need for locking or mutual exclusion mechanisms which may decrease the

system efficiency. This can be easily perceived in the case of event processor because

of the large number of events tha t may be received in a short period of time. However,

this is unlikely in the case of the subfilter processor or subscription component since

the normal receiving ra te of subfilters/messages is not high. For these reasons, the

multi-queue configuration is used in the event processor bu t a global queue is used in

the subscription component. The possibility of shared access and mutual exclusive

requirements exist only between the event dispatchers and receivers. However, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

can also be reduced by limiting the locking (mutual exclusion) granularity on one

queue slot rather than the entire Event Queue.

3. Supporting Priority-based. Monitoring: The event processor architecture enables the

developers/users to discriminate between events during the monitoring process based

on their priorities. This is a significant feature for many monitoring applications

such as fault recovery where events have different importance and priorities based

on the failure type and component (see Section 7.2). The event processor supports

the priority-based monitoring service via the following features: (1) Priority-based

Buffering: events are dispatched from the event queue based on their priorities,

and (2) Priority-based Processing: event workers which are Light Weight Processes

(LWPs) can be assigned different priorities and they can also be suspended, scheduled

and resumed [52] based on the priorities of the outstanding events. Thus, this

feature not only enables discriminating between different events generated by one

producer, but it also can distinguish between events generated by different producers

by extending the event dispatching mechanism to consider a globed priority scheme

between event producers connected to an LMA.

4. Portability to Multiprocessor Machine: Using low-end multiprocessor machines such

as Sparc2000 is feasible due to the drop in performance/cost value. The monitoring

architecture can be ported to the multiprocessor environment to obtain the maximum

advantage of parallelism with no extra effort required from the developers or the

users. This is an important feature for monitoring critical applications such as

military distributed interactive simulation where high-performance machines can be

utilized to gain high monitoring performance and response.

Event Filtering Algorithm

In this section, we briefly describe the primitive and composite event matching algorithms

in DAG and PN, respectively. Appendix C.3 and Appendix C.4 show the im portant part

of the event matching algorithms in LMA (DAG) and DMA (PN). In DAGEventMatch().

upon receiving an event, the DAG is searched for common module names, and then com­

mon function names. If the event name is found, it then compares the event attributes

again the attributes in the DAG (PredEvaluate). If all event attributes matches the DAG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

attributes, the event name is returned, otherwise the “REJECTED” string is returned.

In PNMatchEventQ, the PN is searched for all places that may contain the received

event. If a place matching this event is found and this place is not marked yet, then

this place will be marked and the event information is stored. Also, the fire flag of this

node is decremented indicating marking one place or an event occurrence. In our current

implementation, we only consider the last occurrence of an event in the event/expression

evaluation. When the fire flag becomes zero, the FX is evaluated and action is performed if

the evaluation results is true. Otherwise, the filter places is restored for future evaluation.

5.3.4 M on ito ring O p tim iza tio n T echniques

In this section, we present various optimization techniques to reduce the computation and

memory space required by the filtering process. This results in a considerable improve­

ment in the performance and the scalability of the monitoring system.

• E fficient F ilte r in g o f P r im itiv e E v en ts

The filtering process involves comparing the information in event notification with the

filtering representation information in MAs. As a result of the filtering process, the event

is either “detected” if it matches an existing filter, or “rejected” if no match exists. This

implies minimizing the Filtering Detection Time (FDT) and/or Filtering Rejection Time

(FRT) which results in increasing the filtering throughput (number of events processed

per time) and improving the monitoring performance. In this section, we propose two

optimization techniques that reduce the time required to filter primitive events by mini­

mizing both FDT and FRT:

M u lti-p a th D A G vs. B in a ry -p a th D A G : The exiting event filtering mechanisms

[12, 59, 63, 94] use a binary-path DAG (Direct Acyclic Graph) that includes two outgoing

paths: true path and false path. The evaluation (i.e. comparison) result of a filter pred­

icate determines the outgoing path that should be traversed. This DAG organization is

inefficient because the A ttr ib u te in the filter predicate (see Table 3.2) could potentially

have range of values. In this case, the number of predicate evaluations may grow linearly

with the number of potential values in the attribute. For example, assume an event type

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

attribute th a t can take n different values. Using the binary-path DAG, in the worst case

O(logn) comparisons are required to discover the outgoing path. However, the perfor­

mance can be improved remarkably if a multi-path DAG is used, instead. In multi-path

DAG, the value of the filter predicate a ttribu te (even t ty p e in the example) is used as

an access key to a hash table entry to obtain an index to the outgoing path. In contrast

to a binary-path DAG, this involves a single predicate evaluation and a hash table lookup

regardless of the attribute range length. This optimization technique reduces both FDT

and FRT.

P a ra lle l F ilte r in g : Exploiting parallelism will obtain a significant increase in the per­

formance of the event filtering. In our monitoring architecture (Figure 5.6), the event

filtering mechanism is designed to provide the maximum degree of concurrency without

congesting the filtering process with any locking operations (e.g. mutex JLock in Unix envi­

ronment). Each event producer is assigned to a dedicated queue and each event is filtered

by a separate thread or LWP (see Section 5.3.2). In addition to the ease of implementa­

tion obtained by using the multi-threaded architecture [52], this implementation can be

utilized in the multiprocessor environment to provide a parallel event filtering mechanism.

This will improve the filtering throughput by many orders of magnitude over the single

processor.

• E fficient F il te r C o m position

The process of integrating one or more filters into the filtering internal representation

during the subscription process is called the filter composition [3]. An efficient composition

technique is important to produce an optimized filtering representation which reduces the

filtering process time (FDT and FRT). As described in [3], different techniques have been

proposed to achieve an efficient filter composition. These optimization techniques involve

re-ordering the predicates of the filter internal representation in order to minimize the

time required to process an event (i.e. FDT and RAT).

M a tch in g C om m o n P re d ic a te s F ir s t: When two or more filters are composed due

to subscription process, the combined predicates are re-organized such tha t the common

predicates of all composed filters will be m atched/tested first before any other predicate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

This means th a t the common predicates are placed at the beginning of a filter internal

representation. Assuming th a t the predicates re-ordering time is negligible, and evalua­

tion time is almost the same for all predicates. As shown in [12], this technique minimizes

the event filtering time by reducing the number of predicate evaluations of rejected events

which do not satisfy at least one of the common predicates.

• S pace R e q u ire m e n ts O p tim iz a tio n

In this section, we describe the problem of the growing demand of memory that may

be required in the DMAs as a result of detecting composite events. DMAs must store

the event history in order to evaluate the filter expression. For this reason, the excessive

space required in the DMA due to the continuous growth of the event history is a major

concern in our monitoring system design. In this section, we proposed different techniques

to control space requirement and avoid space explosion in DMAs:

D is tr ib u te d E v en t H is to ry : The monitoring is a hierarchical distributed architecture

which naturally distributes the event history among the DMAs. Although this distribution

reduces the impact of the event history growth, it may not be sufficient because (1) the

event distribution may not be balanced since some DMAs could be exposed to more events

than the others, or (2) it may not be enough since the global event history could be more

than global space provided by all DMAs. For these reasons, we present in this section

some other techniques to optimize the space requirement in the DMAs. However, our

impression from using the monitoring system in different application environments (see

Section 7.2) is that relying on this feature is sometimes sufficient. This could be due to

the nature of the monitoring applications in which a limited number of filters can coexist

simultaneously, and also the producers which generate a symmetric event distribution in

the monitoring domains.

U sin g E v en t T im eo u t: This feature enables the users or the developers to specify a

timeout period for the composite events components (i.e. primitive events). When an

event timeout expires, the event-related predicates are revoked from the internal represen­

tation. The event timeout, T im eout can be either absolute where the event predicates are

eliminated Tim eout (e.g. 5 seconds) after the they are inserted, or relative where the event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

predicates are eliminated Tim eout after the occurrence of another event. This technique

is especially useful when the temporal relation between the events is predictable. For

example, assuming th a t the event “receiving a message of a sequence number x ” or R .\

is not detected for sometime period. Then, the predicates of the event R x are reclaimed

when the event “receiving a message of a sequence y” or Ry such that y > x is detected*.

Thus, in other words, T im o u trx = D etectTim enu which means R x event expires when

the event Ry is detected. This technique is useful to place an upper bound on some events

which are likely to occur during a certain point of time (relative or absolute). For example,

in reliable networks, time period between sending a message, S m, and receiving the same

messages, Rm, is certainly bounded. Thus, we can say T im eo u t^ = Det,ectTimesm +

M T D such that time M T D is the maximum transmission delay including the retrans­

mission time. This event timeout technique assists in reducing the space requirements by

continuously eliminating event predicates that belonging to an expired event (e.g., event

that will never occur). It is the users’ responsibility to determine and specify the event

timeout using HFSL.

F ilte rs /S u b f il te rs D e leg a tin g : In some environments, predicting the events timeout

may not be feasible. Therefore, this technique reduces the space requirement by enabling

the DMA to forward the assigned filters’ (or subfilters’) internal representation to another

DMA which in turn has a sufficient space to handle the new filtering responsibilities.

Each DMA sent this “delegation” request to its higher DMA in the hierarchy until one

upper DMA accepts the request or a new DMA is allocated using the dynamic hierarchy

feature described in Section 4.2 for handling this excessive demand. If the delegation

request is granted by a DMA, the original DMA requests forwarding all events belong to

the delegated filters to the new DMA. Although this approach utilizes distributed events

buffering in MAs to minimize the space requirement, it incurs a communication overhead

due to the process of the MA delegation protocol.

'Assuming the sequence number do not circulate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

5.4 Control Component

The control component is provided to support reactive control monitoring applications.

The main function of this component is to perform the actions specified in a filter pro­

gram. There are four types of actions supported by the monitoring architecture: program

execution, information dissemination, event generation and filter incarnation. Section 3.3

discusses the formal specification and the applications of these four actions. As shown in

Figure 5.1, the control component has two major subcomponents:

Dissemination Service

It is used to forward the monitoring information to corresponding consumers based on

the subscription criteria. There are two im portant issues to consider in this component:

(1) information may be disseminated to groups of consumers which implies employing

a reliable multi-point (multicast) communication protocol in order to achieve an efficient

service, and (2) unlike traditional multicast groups, the consumer multicast groups change

dynamically based on their subscriptions (filters). However, the traditional multicast

protocols forward the information based on the IP address and port number only. In

other words, the dissemination process considers which consumer subscribes to which

filter rather than multicast group/address. One naive approach is to make all consumers

join one multicast group such that monitoring information is sent to this group and it

is the responsibility of the consumer program to consider or ignore messages based on

users’ subscriptions. Although this solution is simple, it incurs considerable overhead on

the consumers and may generate a large network traffic. A second approach for solving

this problem is to assign a unique multicast group for each filter in the system. Therefore,

consumers subscribed to this filter will receive the monitoring information via the multicast

address corresponding to this filter. However, this may consume a large number multicast

addresses and system resources (e.g., file descriptors) since consumers may have to join

and listen to a large number of multicast groups. So this solution is not scalable and

complicates the consumers’ tasks. Our solution uses the dynamic group masking scheme

proposed in [4]. In this scheme, each consumer is assigned a unique identifier (CID)

in the monitoring environment. The monitoring agents include the CID(s) of one or

more consumers in the monitoring information messages which are then is used by RMS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

to decide to ignore or forward this message to its consumers. This solution relieves the

consumers from the overhead imposed by the former approach, however, it does not reduce

the resulting network traffic. This requires a solution in the router level similar to the one

proposed in [65]. Discussing such approach is beyond the scope of this dissertation and

left for the future work (see Section 9.5).

The monitoring agents use this subcomponent when a FORWARD action is found in

the filter program or when sending control and status information to the corresponding

consumers. The dissemination services is also used for group communication between the

monitoring agents themselves using RMS [4].

Action Service

The Action service subcomponent is used to (1) execute a local program, (2) send a

request to execute a remote program, (3) generate a specified event, or (4) send requests

for adding, deleting or modifying filter programs. Execution of a program is performed

via fo rk and exec system calls by the agent that detects the event pattern. If executing

a remote program that resides on hosts different host than the agent’s host is desired,

then consumers can achieve this by defining an event (request) to be sent to this “remote

service” which executes the target program. This remote service is similar to the user

action service depicted in Figure 5.4. The action service also sends a new specified event

or a request of filter manipulation to LMAGrp and/or DMAGrp.

5.5 Adaptive Object-Oriented Filtering Framework

The goal of this section is to describe the object-oriented design and implementation of an

adaptive event filtering framework which can be integrated and reused efficiently to de­

velop event management applications for various domain environments. In our approach,

the event filtering framework captures the common components and design patterns of

event management in different domains. The major contribution of this work is to provide

a flexible event filtering framework that can be efficiently adapted to different domain-

specific requirements and with minimal development effort. HiFi monitoring system is

an example of using this filtering framework in distributed system and network manage­

ment. We also present an example of using the filtering framework for developing event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

management applications in a different domain.

5.5.1 M o tiv a tio n

The significance and the broad deployment of the event filtering in several application

domains is the primary motivation for developing an Object-Oriented filtering frame­

work that encompasses the common components and design patterns required by event

management applications. The framework enables developing customized filtering mech­

anisms that possess different alternative specifications based on the domain requirements

and characteristics. This is obtained by facilitating the reuse of the code, design pat­

terns and the fine-grain design modularity of the framework components which produce

an adaptive filtering framework for various event management application domains. This

framework improves the reliability and performance of event management applications

while minimizing the development effort and cost.

5.5.2 E ven t F ilte rin g Fram ew ork C om ponen ts

The Object-oriented application framework is a reusable, semi-complete application that

can be utilized to produce a custom applications [42]. In this section, we describe the

object-oriented components of the event filtering framework that support the basic in­

frastructure and services required in several application domains. Developers in different

domains can integrate, reuse and extend the framework components to develop domain-

custom event management applications. Figure 5.7 shows the object diagram of the filter­

ing framework.

E v en t D e fin itio n C o n s tru c to r C o m p o n en t: Event management applications require

the users to specify the events format prior to the filtering process. The Event Definition

Constructor (EDC) component is a set of related objects that provide basic interfaces to

define events. In order to emphasize the design modularity, this component is divided into

several classes that construct event attributes, event operators (basic and advanced), prim­

itive events and composite events which represent the basic elements of event definition

(called hot spots [76]). Developers can directly reuse the services provided by the EDC

interfaces via object composition or they may customize this component by developing dif­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

ferent alternative specifications of the event elements. For example, developers can define

different event operators or composite events models. This feature is im portant to make

the event filtering framework extensible and adaptable to various application domains that

have variations of event elements definitions.

S u b sc rip tio n C o m p o n en t: The subscription component uses the filter programming in­

terface (FPI) (see 5.7) class in order to validate and interpret the filter programs defined

by the users (interpreter pattern). The second task of the subscription component is to

build the filter itself by constructing the filter internal representation which is a connected

graph representation conveying all information peculiar to this filter. The subscription

component uses the filter builder class to achieve this task. Therefore, the subscription

component uses these two classes to separate the filter construction from its actual repre­

sentation (builder pattern) which provides a broad adaptation in the filtering framework.

For example, a filter represented in any programming interface can be constructed using

many different filter internal representation such as DAG or PN and vice versa. This is a

significant feature for event management systems since applications domains use various

models of filter programs (i.e., programming interface) and number of different internal

representations such as DAG and PN depending on the domain requirements.

F il te r I t e r a to r C o m p o n en t: This component is also called a filter/event processor

component. The main task of this component is to operate the filter internal represen­

tation constructed by the subscription component as described above. In other words,

it represents a set of algorithms used to access and manipulate the elements of the filter

internals (e.g., DAG, PN or DFA) without exposing its underlying representation (iterator

pattern) [26]. Developers can reuse the iterator algorithms in the filter composer class to

insert, delete and modify filter programs in the internal representation. The filter iterator

component also has the event processor class which inspects incoming events from the

observed system and determine if an event is detected or rejected. The filter composer

permits the developers to customize the framework to adopt different alternatives filter

internal representations such as DAG and PN. In addition, various filtering optimization

techniques can be applied using the event processor class independently from the filter

internal representation itself. This makes the filtering framework adaptable to many al-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Event Filtering
Framework A ttribu te

A ction
C om ponent C om ponent

S ubscrip tion
C om ponentF ilter I te ra to r

C om ponent
Event

D ispatcher
F ilter Actior

Prim itive
Events

Composite
EventsO perato rs

F ilter
Builder

Event F ilte r
Processor * „ Com poser

a Ta
Advanced Basic
O pera to rs O p era to rs

DFA DAG F ilte r Event
Expression - Expression

Filter
Expression

Event
Expression

F ilte r
B uilder

Action
Specs

O p era to rs

Fig. 5.7. The Event Filtering Framework Classes.

ternative design issues in event management applications.

A c tio n C o m p o n en t: Whenever an event of interest is discovered, the filter iterator

component instantaneously notifies the action component which consequently performs

the action(s) specified in the filter program. The action component classes use the infor­

mation provided by the subscription component (i.e., filter constructor) to identify the

corresponding action of a specific filter. The action component classes can be easily cus­

tomized to perform general or specialized actions related to the domain environment. For

example, an action can be the invoking of methods, executing programs or dissemination

events to corresponding management applications. In Section 7.2.4, we presented man­

agement action examples for supporting fault recovery in distributed systems. The action

component also provides an events dispatching mechanism, via the event dispatcher class

(see 5.7), based on input/ou tput (I/O) functions or timers routines.

5.5.3 E ven t F ilte r in g Fram ew ork A pp lications

Event filtering can be used to manage systems in real-time by tracking and classifying

applications events. In this section, we briefly describe how the event filtering framework

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

can be incorporated within a common utility such as Electronic Mail (EMail) to provide

an efficient management of the received messages.

Electronic mail (or EMail) is a very commonly used application and people like

to have an efficient EMail management tools for their mail events. The event filtering

framework can be easily incorporated with existing EMail systems to provide a dynamic

control for incoming mails. For example, users can instruct the Email event management

system which incorporates the filtering framework to discriminate between incoming mail

messages based on EMail event attributes such as Sender, S u b je c t, S ta tu s or even

specific words in the message text. Based on the user interest expressed in the action

component, the EMail messages can be, for example, ignored, forwarded to other devices

(such as digital pagers or printers), categorized/sorted based on their priority or even

disseminated to groups or users. Similarly, users can trigger actions based on a correlation

of two or more EMail events.

5.6 Summary

The HiFi monitoring system consists of the following four major components: Instrumen­

tation used for inserting monitoring sensors in the application code, Subscription Service

used for processing the monitoring information (events, filters, environment) and in turn

performing the filter decomposition and allocation task, Event Filtering that constructs

the internal filtering information, and inspects received events according to filter sub­

scriptions, and Control Component which is used for performing the filters actions if the

event correlation is detected. The first two components constitute the manager or the

event consumer program, while the last two components constitute the monitoring agent

architecture.

The instrum entation components automatically replaces the “user sensors” include

the event name only with extended “system sensors” that convey the all information

needed to construct event notifications. In addition to this autom atic sensors insertion,

the instrumentation component supports dynamic signalling to enable activating and deac­

tivation reporting events dynamically, and adjustable event reporting to specify the delivery

or reporting time of an event (immediate or delayed reporting). The subscription com­

ponents parses the monitoring information and construct the monitoring-base knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

(MB). Based on MB information, agent are organized (using the automatic agent organi­

zation protocol described in Section 4.3.3) and filters are decomposed and allocated.

The event filtering components represent the core of the monitoring agent. This

components uses DAG representation for the LMA but PN for DMA in order to track

events history. The subfilter processor in this component inserts the received monitoring

delegation at proper places in the DAG or PN (filter decomposition technique). However,

the event processor subcomponent parses the received events and matches them according

to the users’ subscriptions exist in the DAG and PN. This chapter presents number of

optimization techniques that reduce the time required for matching an event in the DAG

such as exploiting the parallel filtering offered by the multi-threaded and multi-layer ar­

chitecture of the monitoring agent, and matching the “common predicates” first in the

event filtering process. Other techniques are presented to minimize the space required by

the PN such as associating event timeout in the filter specification. When a monitoring

agent detects the specified event correlation, it invokes its action component to perform

the associated action. Actions types are described in detail in Chapter 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

CHAPTER VI

PERFORM ANCE EVALUATION

Throughout the survey of literature in monitoring distributed systems area, only a few

papers were found that numerically reported monitoring system performance. Most of

these focused on system perturbation, [55, 58, 69], or are only valid for LSD systems with

shared memory [32]. Additionally, none addressed or evaluated the issue of monitoring

system scalability. This Chapter describes a performance evaluation study of the HiFi

monitoring system. To conduct this study, benchmarking routines and simulation pro­

grams were processed in a benchmark/simulation testbed environment so that application

perturbation (e.g., intrusiveness), scalability and throughput/latency could be assessed. Re­

sults from this study are presented numerically. An overview of the testbed environment,

workload characterization, and benchmarking routines is also provided.

6.1 Workload Characterization

In order to develop a workload that can be used repeatedly, we use a synthetic workload

whose characteristics is similar to those in real workload but it offers a flexibility of re­

peating and modifying the experiments without changing the system operation or handling

large trace files [41]. In some cases, random event generator (REG) programs are used to

emulate the applications events under certain controlled rate and distribution. The REG

emulation programs are used for measuring the perturbation and throughput/latency of

the monitoring system. On the other hand, simulation routines based on the HiFi moni­

toring system model described below are used for evaluating the scalability of the system.

Selecting the workload parameters is very crucial because it determines the validity

of the resulting workload model. In this study, we identify the major workload parameters

that effect the perturbation, scalability and throughout/latency of our monitoring system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

The workload param eters considered in this study are:

• Event length- Number of attributes included in a generated event impact the mon­

itoring performance since each attribute could represent a comparison operation in

the filtering algorithms. Event attributes are mixed of integer, floating point and

string attributes and represent an average of 4 bytes per attribute.

• Events rate and distribution- It is also called event generation frequency which indi­

cates the number of events generated per unit time. Another representation of this

workload param eter is the event generation probability (EGP) which is the event

generation likelihood during the program execution. For example, EGP is 0.4 means

40% of the program instructions generate events on average. The Bernoulli distri­

bution (BD) is used for generating random events. The BD is used to model the

probability of an outcome having a desired class or characteristics such as a packet

in a computer network reaches or does not reach the destination [41]. And this is

typically the case in our applications since each instruction generates or does not

generate an event. In addition, the BD memoryless property implies that trials are

independent and the probability of generating an event is not affected by outcomes of

the past trials. This property is important and used in characterizing many problems

in computer networks such as network traffic [25].

• Number of event producers- This indicates the number of active application entities

that are concurrently engaged in the monitoring process.

Since it is not the goal of this research dissertation to produce a comprehensive performance

evaluation model for distributed monitoring systems, only workload parameters tha t we

experimentally found have a major impact on the monitoring process are considered in the

evaluation model. I t is sufficient in our case to show the impact of our architecture and

enhancements techniques on improving the scalability and performance, and minimizing

the intrusiveness of the monitoring system.

6.1.1 P e r tu rb a t io n A nalysis

In this section, we describe the experiments and the results of benchmarking and evaluating

the perturbation of HiFi monitoring system. The time measurements in these experiments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

a

n r tn t r

K e p o n H v c n i

• AltribolH a AllrlhutM I* AllrttxM* 32 Altrlhal# M AllrtbMc

Debugging Techniques

Fig. 6.1. ERS ReportEvent Perturbation.

axe performed using the standard UNIX high precision timer routines [84],

The application perturbation can be measured by the execution time overhead

caused by the monitoring operations including the ERS event reporting process, and mon­

itoring agents (LMAs and DMAs) operations.

ERS Effect
In order to show the effect of the EventR eport () function call, we compare its overhead

with the traditional C p r in t f O function which is frequently used by programmers as

a simple way for debugging and inspecting the program state and behavior. Figure 6.1

shows that the overhead of the EventReport () is comparable with p r in t f O and ranges

between 100 to 200 microseconds based on the event length. Similar results are found

when using other printing functions such as cou t in C + + . This implies that the event

signaling (generation) process performed by ERS which includes function transfer, event

construction, and event sending causes minimal overhead and could be neglected as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

turbation factor in our analysis.

Application Pertu rbation M easurem ents
In this experiment, we measure the actual overhead caused by the monitoring system

including reporting time (ERS processing), primitive event filtering time (LMAs Process­

ing), event correlation time (DMAs Processing), UNIX socket communication and the

RMS communication. In order to measure this experimentally, we use the filter corre­

lation example, HelloWorld filter, described in Appendix A. In this example, two REG

emulation processes located in different hosts in the same LAN generate up to 5000 events

randomly using Bernoulli distribution. At each event time, REF process may choose to

generate or not to generate Hello or World events with a probability of 0.5. Each REG

program is connected to an LMA residing in the same machine. When events are received

by an LMA, the LMA checks the event and forwards it to the DMA located on a different

machine than the LMAs but on the same LAN. The DMA send a notification to the man­

ager if it receives Hello event and World event of the same sequence number (TStamp)

from two different REG processes (i.e., machines) :

H elloE vent.TStam p = W orIdE vent.TStam p A

H elloEvent. M achine W or IdEvent.M achine

In these experiments, the REG programs are fist rim without instrumentation or

monitoring. Then the programs are instrumented and run in HiFi environment to detect

the event of interest. Figure 6.2 depicts the results of this experiment with various event

generation probabilities (EGP). Figure 6.2 shows that the perturbation increases when

EGP increases. However, this increase in perturbation may be considered low compared

with other monitoring systems such as Issos [69] (61%) and Falcon [32] (> 40%) when

the event rate in between 10% to 30% of program execution. Furthermore, the pertur­

bation increase is not linear w ith EGP, which indicates a slower growth with event rate.

Practically, typical programs in distributed or nondistributed environment are unlikely

to generate higher than 20% which represents using the EventR eport () (or generating

am event) every four instructions in the program. All generated events are 8 attributes

long. Machines used in this experiments are Sun Sparc 5 with Solaris 2.5 connected with

Ethernet of 10 Mbps. The emulation code for ERG programs is listed in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

i
*•53
-2
Urn

eu

0.2 0.3 0.5 0.7 0.8 0.9 1.00 .1 0.4

Event Probability (x 0.1)

Fig. 6.2. Application Perturbation.

Minimizing P ertu rbation
Several techniques are developed to minimize the application perturbation including dy­

namic signaling and events batching which are described in Section 5.1.3 and Section 5.1.4,

respectively. To measure the effect of dynamic signaling, the REG programs were changed

such th a t 50% of the generated events are filtered out by ERS. To measure the impact of

both dynamic signaling and event batching with maximum of 5 events, REG and ERS pro­

grams has been changed to reflect this effect. Figure 6.3 shows a substantial improvement

in reducing the application perturbation. As described Section 6.1.3, the perturbation is

mostly impacted by the communication overhead resulting from agents and application

interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

_ ^ V lth _ !)^ i ia n t ic S lg n n l l i n s o n ly

W l ih O y n n m ic S ig n a l l in g a n d B a tc h in g

0.3 0.5 0.7

R e a l P e r tu rb a t io n

W ith U S

W ith U S a n d B

Event Probability (x 0.1)

Fig. 6.3. Minimizing Application Perturbation.

6.1.2 Scalab ility

Our approach for evaluating the scalability of HiFi is to measure the impact of increas­

ing the event frequency and number of event producers on the mean response time or

the monitoring latency. The monitoring latency is the elapsed time between the event

occurrence and the manager notification. In other words, it is the event processing time

by all monitoring entities. We also compare the mean response time (monitoring latency)

of the hierarchical filtering approach with the centralized and decentralized monitoring

approaches described in Section 4.1. In order to perform this test, we developed sim­

ulation routines to simulate each of these monitoring approaches using M /M /1 model

technique [41]. The simulation routines assume that (1) event arrivals (A) are exponen­

tially distributed, (2) the average monitoring/filtering service rate (/1) of an agent is 8000

events per unit time (second) which was experimentally derived from Figure 6.7 discussed

in Section 6.1.3, (3) 50% of the events are interesting (i.e., the probability of an event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

to be accepted is 0.5), (4) for the sake of simplicity and since we are in a comparison

study, the communication overhead, event generation time are neglected because they

represent constant overhead in each approach and do not add a value to our comparison

study. However, as we will show latter in Section 6.1.3, the actual monitoring latency

as experimentally measured including the communication overhead. The mean response

time (MRT) is given as follows [41]:

M R T : E[r] = (l/ /x) /(l — p) such that p = X / p

In the following, we briefly describe the simulation models and routines.

Centralized M onitoring Simulation: In a centralized monitoring architecture, event

producers send their generated events directly to a centralized monitoring node, where

event filtering and correlation are performed. This architecture can be represented in

M /M /1 model such th a t A = / * N where / is the event frequency and N the number of

event producers:

M R T c e n tr a l iz e d = (l/^)/(l ~ (/ * N) / p)

Decentralized M onitoring Simulation: This architecture is similar to the previous

one except that event filtering is performed by a local agent in the in the producer host

before forwarding it to a central node for event correlation process. Therefor, there are

two levels of processing/filtering: (1) by the producer agent, and (2) by the centralized

monitoring node. Thus,

MRTdecentralized = (l / / i) / (l — (///*)) + (1/a*)/(1 — ((/ * 0.5 * JV)//*))

Hierarchical M onitoring Simulation: In HiFi, the monitoring latency is typically the

event generation time (EGT) and the agent filtering time. However, the agent filtering

time includes the LMA filtering time (LFT), the DMA(s) filtering time (DFT) in the

monitoring hierarchy, and the agent communication overhead (C). Based on this workload

characterization, we can define the monitoring latency as follows:

Latecnyhierarchical — E G T + L F T + 52?=/ (D F T i + C)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

.1
o»B
2LX

700-

600-

4 0 0 -
P r o h n h i l i ty ■» (>._•>

P r o b a b i l i t y » O .S _ _

P r o b a b i l i t y - O . I

1 G O -

255 15 20 301 1 0
Event Frequency (event/sec) (x 5)

Fig. 6.4. Monitoring Scalability with Event Frequency.

C e n t r a l iz e d

D e c e n t r a l iz e d

H ie r a r c h ic a l O. I

H ie r a r c h ic a l 0 .5

H ie r a r c h ic a l ().*>

where the hierarchy height: h = \logx (N)~\ where x is the branching factor and N

is the number of producers.

However, as described before, E G T and C are neglected in the simulation model.

Thus, the mean response time can be expressed as follows:

M R T h ie ra rc h ie a l = (1/aO/U “ ((0-5 * f) / M)) + ((l / «) / (l - ((/ * 0.5 * *)/**)))

The first factor represents the LMA filtering and the second represent the DMA

filtering. Notice that the LMA receives only 0.5 * / of the events since 50% of such events

on average are filtered by ERS. Since not every event is necessarily forwarded up all the

way in the DMA hierarchy, we calculate the MRT considering three different probabilities

for forwarding an event: 10%, 50% and 90%. We also assume that there are a maximum

of 10 LMAs are connected to one DMA in any domain (x = 10). We found this a valid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

C e n t r a l i z e d

D e c e n t r a l i z e d

H ie r a r c h i c a l 0 . 1

H ie r a r c h i c a l 0 .5

H ie r a r c h i c a l 0 .9

Fig. 6.5. Monitoring Scalability with Number of Event Producers.

practical assumption to be used in such experiment.

Scalability Simulation Results
The simulation results of monitoring mean response time versus event frequency and num­

ber of producers of the three approaches are depicted in Figure 6.4 and Figure 6.5, re­

spectively. In the first figure, N (number of event producers) is considered to be 500 and

in the second one / (event frequency) is considered 20 events per second. Both figures

show the superiority of the response time (latency) of the hierarchical architecture over the

centralized and decentralized ones. The saturation points in the figures indicates a buffer

overflow and indefinite response time since p > 1 in this case. The hierarchical architec­

ture with probability 0.9 is still superior over the other architecture because of the use

of dynamic signaling. These figures also show that the MRT of hierarchical architecture

grow slowly with respect of event frequency and number of producers. In fact, the “jump

points” in hierarchical graphs in Figure 6.5 represent creating a new level in the hierarchy

lO O O

KOO-

500 Saturation Point ^

P r o b a b i l i ty ■ 0 .9

300-
P r o b a b l l l ty - 0 .5

200-
P ro h n h i l l ty ■ O. I

lO O -

O 50100 200 300 400 500 750 lOOO
Number of Event Producers (x lOO)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

160-

150-

130-

120-

IOO-
8i 16
Event Length (Attributes)

322 4

Fig. 6 .6 . LMA Filtering Latency.

to accommodate additional producers. These figures also show that the centralized and

decentralized approaches have a better MRT than the hierarchical when event frequency

is low and very small number of event producers exist in the system.

The simulation programs that implement such models are presented in Appendix D.

6.1.3 T h ro u g h p u t/L a te n c y

This section presents a benchmarking results for the throughput of the filtering mecha­

nism, DAGMatchEventO, performed by an LMA. The event filtering throughput means

the number of events processed per unit of time. Figure 6 . 6 shows the improvement of

the optimized DAG algorithm over the non-optimized which is about 20% increase. The

optimized DAG uses hash table lookup instead of binary branching DAG. This optimiza­

tion mechanism is described in Section 5.3.4. Figure 6.7 is depicting the same data in the

Figure 6 . 6 to show the number of events that cam potentially be processed (i.e., filtered)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

I lOOO-

I ()(KK)-

I
8

Sa.■a
I

£DAB*co>
S

2 4 16 328
Event Length (Attributes)

Fig. 6.7. LMA Filtering Throughput.

by one LMA. Form this figure, we choose fi to be 8000 as in the previous simulations. It

is important to notice that these experiments measure only the filtering throughput iso­

lating the UNIX and RMS communications overhead. The timer starts and stops before

and after the event filtering function DAGMatchEventO in the LMA code.

The next Figure 6 . 8 shows the actual monitoring latency as measured using the

REG emulation programs and Hello Wrold filter with different event rates. In this experi­

ment, events are always generated (event generation probability is 1) until the maximum

number of events is reached. We repeated the experiment for different maximum number

of events: 1000, 2000, 3000, 4000 and 5000 events, and measured the average latency of

each detected event correlation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I (MX) 2000 3000 4000 5000
Event Rate (events)

Fig. 6 .8 . Monitoring Latency.

6.2 Summary

To adequately evaluate perturbation, scalability, and monitoring system throughput, a

number of benchmarking and simulation tests were conducted. As part of this evalua­

tion, techniques to optimize the monitoring system (e.g., enhance monitoring operations

or reduce its intrusiveness) were identified. Results show that the dynamic signaling and

batching techniques used within HiFi significantly reduce application perturbation. ERS

was also shown to have a minimal effect on application perturbation, which is important

to the production of efficient instrumentation routines. The average monitoring intru­

siveness of HiFi is considerably lower than that reported by other monitoring systems,

such as Issos [69] and [32]. Throughput benchmarking demonstrated the viability of

the DAG optimization technique. This technique resulted in a 20% improvement over

the traditional DAG matching algorithm used in event filtering [59, 63, 94]. Simulation

testing demonstrated that the hierarchical filtering approach is scalable in terms of event

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

frequency and the number of event producers in a centralized or decentralized environ­

ment. Finally, it is im portant to note that UNIX and RMS communication primitives

are the primary source of overhead in the monitoring operation. This is explained by the

high latency figures (in order of milliseconds) depicted in Figure 6 .8 . Regardless, filtering

throughput is relatively high (in order of hundreds of milliseconds) and event generation

time is negligible (in microseconds). This analysis factored out the effects of agent filtering

and of the EventR eportO , which implies that communication overhead had the largest

impact on overall monitoring latency and throughput. Other monitoring systems exhibit

this same characteristic and share this observation [58].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

CHAPTER VII

APPLICATION EXAMPLES

Our monitoring approach decouples management tasks from application implementation,

which offers significant flexibility in the application environment. Procedures, both moni­

toring and management, can be simply modified and are able to be replaced independent

of the application implementation. Consumers and managers are free to experiment with

different monitoring demands without restarting the monitoring system or the application.

The following presents the case study of using the HiFi monitoring system with the In­

teractive Remote Instruction (IRI*) system. IRI is a collaborative distributed multimedia

system that was developed a t the Old Dominion University (ODU) to support distance

learning [56]. The goal of this study is to illustrate the usefulness and effectiveness of

employing HiFi for managing the complexity of a large-scale distributed system such as

IRI. Examples of various monitoring applications using HiFi are also presented.

7.1 Case Study: Monitoring IRI System

The major software components of IRI axe Session Control (SC) and Reliable Multicast

Service (RMS), which are used respectively for resource management and group com­

munication. IRI provides full interaction via the following components: Audio, Video,

Presentation Tool (PT) and Tool Sharing Engine (TSE) components. Figure 7.1 shows

the IRI interface in a typical classroom session.

IRI is a large-scale distributed multimedia system that may involve large num­

bers of users, application entities, and associated interactions (e.g. hundreds of students

and processes). IRI is also typically implemented with a wide geographical distribution,

' h t tp : //wwv.c s .odu.e d u /~ te le / i r i /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwv.cs.odu.edu/~tele/iri/

136

This implementation make IRI more susceptible to reliability and performance problems

(e.g., component failures, errors, performance bottlenecks). Monitoring IRI components

at run-time is essential to providing feedback information on IRI behavior used to improve

reliability and performance of the IRI session.

This classroom includes all sites that are participating in any given IRI session.

The ODU has been using IRI, still considered to be a prototype system, to conduct

computer science courses during the last three semesters. At ODU, IRI connects three

remote sites located about 200, 45 and 15 miles away from ODU main campus to the

Computer Science department in the main campus to create a single virtual classroom

[56]. This provided practical opportunities to monitor and support run-time reliability

and performance issues [9].

This section describes the monitoring architecture used in the IRI sessions and then

presents some of the monitoring applications which significantly increase the reliability and

performance of the IRI system.

7.1.1 Monitoring Architecture in IRI System

In order to monitor the IRI system, IRI components (such as RMS, SC, Audio and Video)

must first be instrumented so that all errors, warnings or important status information

messages will be passed to the ERS. This means redirecting these messages from their

traditional, standard output locations.

Based on these messages and IRI event specifications, ERS constructs the appro­

priate event notifications and sends them to its LMA. Even though the program may

include many instrumentation instructions, the ERS is invoked when events correspond

with existing subscription demands. This is achieved through global variables that are

shared between ERS and the application itself. These variables Eire manipulated by the

subscription component using ERS criteria (see Figure 5.1).

IRI events are divided into different categories, which axe hierarchical in nature.

For example, the Failure Events category is divided into Maj o r -E rro rs, Minor_Errors,

Hard.Warnings and Soft.W araings subgroups. IRI event specifications are defined by

the developers according to the HESL. Based on the monitoring model terminology (see

Section 3.1), IRI software entities are classified and described as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Fig. 7.1. Interactive Remote Instruction (IRI) System.

1. IRIManager is an event consumer program used by IRI administrators to monitor

the system a t run-time;

2. IR I tools are event producers (e.g., Audio, Video, PT and TSE) that emit events

during their execution; and

3. IR I modules are typically the SC and the RMS components that act as both event

producers and event consumers simultaneously.

As event producers, IRI modules generate event notifications to express their run-time

status including communication failure events. As event consumers, IRI modules may

request global feedback information about the session from other entities. For example,

since the audio packets in IRI are sent unreliably, the SC of the sender may frequently

request the average drop rate in the audio stream. Similarly, the RMS of the sender may

request some information from other RMS(s) in order to discover slow members in the

multicast group (to be discussed later in Section 7.2.3).

As shown in Figure 7.2, an LMA is assigned for each workstation in IRI environ-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

S ite -1 S ite -n

IR I C o m p o n e n ts IR I C o m p o n e n ts IK I C o m p o n e n tsIR I C o m p o n e n ts

E v en t' [ventivent

D M AD M A

I M S

D M A
S ite -x — — S lte -y

R M S R M S

D M A D M AC o m m u n ic a t io n
Backbone

f il te r .filter

R M S

M o n ito r in g
A p p l ic a t io n ,

_ RMS __

Monitoring
Application

IR IM a n a g c r -n

Fig. 7.2. The Monitoring Architecture in IRI Sessions.

ment. IRI components send events to the LMA via UNIX Sockets [8 6]. A DMA is also

assigned for each site in the environment. MAs may also exchange domain information

using RMS in order to detect any composite events in the session (i.e. all sites). Therefore,

a two-level monitoring hierarchy is found to be sufficient in the current IRI environment.

As described in Section 4.2, IRI event consumers send filters to the LMA which parses,

decomposes and allocates filtering tasks to other MA(s). In addition, IRI event produc­

ers send event notifications to LMAs that perform filtering tasks and forward detected

primitive events to DMAs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

7.2 IRI Monitoring Applications

The following describes “real” examples of monitoring applications used in IRI. This in­

cludes three major applications: debugging and testing, applications steering, and fault

recovery. More applications and examples can be developed using the same technique and

guidelines outlined in this section and in Appendix A.

7.2.1 Debugging and Testing

Debugging distributed applications is a complex task because events, such as errors that

occur during execution, are concurrent and occur throughout the system. This section

presents how the monitoring system can be used, step-by-step, to effectively test and

debug Send/Receive functions in the RMS component.

The sending and receiving of messages using RMS is a major activity in IRI. In such

message-passing applications, message size mismatches are likely to occur either as a result

of operational errors or due to incorrect word alignment of sent packets*. Therefore, testing

“send” and “receive” operations is highly desirable in any message-passing distributed

application such as IRI.

The testing scenario outlined here is referring to a “message size mismatch” sce­

nario. In this scenario, monitor send and receive events in RMS and report information

about identified size mismatch conditions. In this monitoring example, the consumers are

the developers while event producers are RMS entities. A composite event situation is

encountered since knowledge of sent and received message sizes is distributed throughout

the IRI environment. The following describes constructing and processing of monitoring

activity within the IRI environment.

• E v en t S pecifications in H E S L : The send multicast event called MSend and the re­

ceived multicast event called MRec may be specified respectively as follows (see Table 3.2

for HESL syntax):

E V E N T = { ModuleName=RMS, FuncName=Send, Immediate;

IP dest= 224.*.*.*, IPsrc=A N Y , seq=ANY, size= A N Y } MSend.

*some kernels or compilers insert ex tra bytes to make the packet length in multiple of words.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

D isse m in a tio n
E x tra c tin g P ro cess

S .IP src = R.IPsrc
and

SSeq = RSeq
and

Rsize o SSize
Filler

S R (To all D M A s) S R (T o all D M A s)DM A F ilten n g In te rn a l
R epresen tation

D is s e m in a tio n D is s e m in a tio n D isse m in a tio n
Extracting Process Extracting Process Extracting Process Extracting Process

O thers^Others Others B 224.*.*.? 224. ' Others

RMS

LM A F iltering In te rn a l R epresen ta tion L M A F iltering In te rn a l Representation

SRs <MctuiMSender.SSeq*.SSize.lPsrc> RR: <Mcast.MRecicvrr,RSeq*. RSize,IHstr,!Pdc.ir>

Fig. 7.3. RMS Debugging Example.

E V E N T = { ModuleName=RMS, FuncName=Receive, Immediate;

IP dest=224.*.*.*, IPsrc=A N Y , seq=ANY, size= A N Y } MRec.

• F il te r S u b sc rip tio n in H FSL : A developer may define his/her filter subscription as

follows (see Table 3.1 for HFSL syntax):

F IL T E R = [(M Send A MRec)]]

[(M Send .IP src= M R ec.IP src A (M Send.seq—M Rec.seq A (M R ec.IP dest= 124.*.*.* A

(M Send.IP dest= 124.*.*.* AM Send .size / MRec.size))))];

[FORWARD]-, Msg-Mi smat ch-FILTER.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

MSend and MRec are the multicast send and receive events. The action is to FORWARD, which

means th a t monitoring information is sent to the developer reporting the occurrence of

this event.

• R M S In s tru m e n ta tio n : The RMS send and receive routines are instrumented to

report information about any send and receive events according to the following event

specifications: event name, message sequence number, IP source address and size of sent

and received message. These fields are used in the filter definition (program).

• M o n ito rin g P ro cess: Figure 7.3 shows the internal filtering representation after the

filter has been decomposed and distributed between monitoring agents. The filter is de­

composed into three subfilters: F I detects receiving multicast events and forwards them

to its DMA, F2 detects sending multicast events and forwards them to all DMAs, F3 eval­

uates the filter expression by comparing the receiving and the sending multicast events.

If the composite event represented by Msg_Mismatch_FILTER is detected, then F3

will forward the monitoring information to the developer(s) as requested. Note that send­

ing and receiving events can take a place in any machine (RMS resides on every machine

in the IRI application). Based on the Environment Specifications, the F I and F2 subfilters

are delegated to all LMAs in the IRI environment. However, F3 is delegated to the DMAs,

which get MSend and MRec events and evaluate the filter expression accordingly.

The extracting layer shown in Figure 7.3 forwards relevant information (SR, RR)

and reduces event traffic. Finally, the requested monitoring information is forwarded to

one or more developers based on their subscription. This simple example shows how

developers can effectively monitor and test IRI functions, in general, by collecting and

correlating events from various locations in the application environment a t run-time. This

enables the developer to specify testing and debugging demands without analyzing multiple

file traces or inspecting the application entities physically at different locations. Using

the same example, developers can limit their monitoring/testing demands on a specific

multicast group by specifying in the existing filter MSend.IPdest = 124.x.y.z such that

124.x.y.z is the multicast address of this group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

7.2.2 C ustom izab le E v en t T races

Generating and collecting event traces in distributed systems is a very useful technique

for studying and analyzing the run-time behavior of such systems. For this reason, the

distributed systems research community has given considerable attention to this subject

[11, 13, 33, 35, 38, 50, 54]. This process is also referred to, in literature, as collecting the

“event history” . Constructing an event trace or history facilitates debugging distributed

programs through use of the following techniques:

• Browsing event history- Event traces can be examined through the use of special­

ized tools ranges from text editors to visualization tools. This examination process

enables checking program states and variables at various execution stages.

• Reply/Visualize program execution- Some debuggers use event history to control

a re-execution of distributed programs. This enables developers to use traditional

debugging techniques such as break points and state stepping without affecting pro­

gram behavior.

• Simulate program execution- A collection of event traces can be used to simulate the

program run-time environment for any single process. This enables using sequential

debuggers without re-executing the entire application.

• Multiple views- Event history allows different programmers to have multiple views

of a running distributed application. Each programmer can extract the event his­

tory/traces related to his/her development task.

• Future analysis- Event history also benefits studying the performance and tuning of

distributed programs through analysis of demonstrated behaviors.

Three techniques are proposed to generate event traces:

1. Passive snooping- In this technique, the event history collector is a program that

promiscuously monitors the activities of the communication bus. This technique

has limited application since it is not feasible to monitor the communication bus in

many of today’s distributed systems. Furthermore, monitoring the communication

bus may not sufficient to convey ail activities performed in distributed applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

2. Inserting recording instructions in the program, code- This technique requires in­

strumenting the program with instructions that record all activities and program

behavior. Various literature argued the case th a t this process may cause consid­

erable impact on program execution. Therefore, it is not recommended for most

critical distributed applications.

3. Instrumented system calls- In this technique, the operating system performs calls, or

supported libraries are instrumented, so th a t original services are conducted while

recording program execution [50]. Despite of the minimal intrusiveness of this tech­

nique, some distributed environments prohibit users from changing the OS and its

shared libraries. Therefore, in these environments, this technique is not feasible.

The event traces supported by our monitoring architecture provide improvements

over the previously stated techniques. A more efficient and more flexible mechanism for

constructing event history in distributed environment is provided.

Although programs are instrumented similar to the second approach, event traces

are generated based on user specifications. This means that, unlike the second technique

described above, event traces can be customized based on event name, type, source and

other information. Dynamic signaling, and hierarchical filtering permit recording of speci­

fied events only thereby substantially minimizing intrusiveness. Customizable event traces

offer tremendous flexibility in debugging large-scale distributed systems through support

of the following features:

• Dynamic and centralized control of event traces: Consumers can dynamically define

trace specifications and request that data be forwarded to a centralized machine or

logger service. Centralized control is highly valuable in distributed environments

especially in large-scale systems. Figure 7.4 shows examples of various trace fil­

ters. The T raceA ll filter enables collection of all application generated events and

forwarding them to the requesting consumers.

• Customizable event traces: Consumers can elect to trace events by module names,

location, or event type. This enables consumers to customize the type of event

history/trace and to customize information content. For example, in Figure 7.4,

TraceW aming filter enables tracing all warning events generated from any process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

EV EN T= { ModuleName=ANYTHING, PuncName=ANYTHING, Immediate;

Machine=”ANY”, Type=”ANY”, Info=”ANY” } AnyEvent.

EV EN T= { ModuleName=XTV, FuncName=ANY, Immediate;

ToolName=”ANY”, Status=Started } ToolStarts.

EV EN T= { ModuleName=XTV, FuncName=ANY, Immediate;

ToolName=”ANY”, Status=Terminated } ToolStops.

EV EN T= { ModuleName=ANYTHING, FuncName=ANYTHING, Immediate;

Machine=”ANY”, Type=”Error”, Info=”ANY” } ErrorEvent.

FILTER= [AnyEvent];

[TRUE]; [FORWARD]; TraceAll.
FILTER= [AnyEvent];

[(AnyEvent.ModuleName = ” * ” A AnyEvent.Type = "WARNING")];

[FORWARD]; TraceWarning.
FILTER= [AnyEvent];

[(AnyEvent.ModuleName = " X T V " A

(AnyEvent.Type = "W A R N IN G ” A Any Event.Machine = "dragon"))];

[FORWARD]; TraceXTVdragonWarning.
FILTER= [ToolStrats];

[ToolStarts.ToolName = "Netscape"];

[ADD TraceAll]; StratXTVTrace.
FILTER= [(ToolStops V ToolStarts)];

[(ToolStops.ToolName = ”Netscape” V ToolStarts.ToolName = ”Emacs")];

[DEL TraceAll]; StopXTVTrace.
FILTER= [ErrorEvent];

[(Error Event.ModuleName = ” * ” A Error Event.EventType = "Error")];

[ThisMod = ModuleName;

MOD TraceALL.FX = [ANYEvent.ModuleName = ThisMod]]; DynamicErrorTrace.

Fig. 7.4. Customizable and Dynamic Event Traces Examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

in the IRI environment. However, the TraceXTVdragonWarning filter enables tracing

only Warning events that are generated by the XTV [1] module in dragon. Similarly,

consumers can limit the scope of tracing dynamically, and with minimal overhead in

the application environment.

• Controlling event trace timing: Consumers can specify start and end times for any

given trace activity. In other words, consumers can specify to start/s top a trace

activity when a certain event (primitive or composite) is detected. This is a use­

ful in minimizing trace effect and for producing concise traces. For example, the

StratXTVTrace filter uses filter incarnation (see Section 3.1) to activate (start) the

T raceA ll tracing filter only when the “Netscape” tool is started. Similarly, the

StopXTVTrace filter permits terminating T raceA ll when either “Netscape” termi­

nates or “Emacs” starts.

• Dynamic Tracing: Traditionally, trace specifications are static and defined prior to

any monitoring operation. However, in dynamic traces, the trace specification can

be determined during the monitoring process itself based on event patterns and in­

formation. For example, developers may want to generate an event trace/history

for processes that have produced at least one error event, E rrorE vent. In this

case, the module name is not known to the monitoring system a t trace specifica­

tion time and the monitoring system must determine the module name. This can

be achieved via dynamic tracing supported in the monitoring architecture. Dy­

namic tracing, one of the novel features of this monitoring architecture, utilizes filter

incarnation and filter registers in order to track and restore event information. In

Figure 7.4, DynamicErrorTrace shows the filter specification for dynamic trace men­

tioned above. Notice that ThisMod is a filter register that restores the module name,

ModuleName, after the occurrence of E rrorE vent. Then, filer incarnation is used to

modify the expression of an active filter, TraceAll, so th a t the modified filter executes

the new trace specifications.

The hierarchical filtering architecture enables event traces to be combined, reduced

or processed during the monitoring process. These can be specified as “actions” performed

by LMAs and DMAs during trace collection. The compression and processing activities

can result in smaller history sizes with better event presentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

Utilizing the distributed agents hierarchy, event traces can be processed in a dis­

tributed and concurrent manner, which results in a high-performance and scalable dis­

tributed event tracing mechanism. This is dramatically different from centralized event

trace mechanisms proposed by previous work such as [93]. Although the focus of this

research dissertation is not to outline elaborate solutions for processing event traces, this

discussion is sufficient to present the potential of building advanced, efficient event traces

and logger services using this monitoring architecture.

7.2.3 O n-line A pp lication S teering: Slow C lien ts in R eliable

M u lticastin g

Reliable multicasting is a fundamental component in interactive distributed multi-party

systems such as IRI [56]. IRI uses Reliable M ulticast Server (RMS) described in [4]

to deliver reliable group communication to its tools. One of the major goals of using

a HiFi monitoring system in IRI is to collect statistics on the RMS performance, which

enables steering and tuning of RMS at run-time. The integration of RMS and management

capabilities significantly improves RMS performance, thereby improving the QoS attained

by large-scale distributed applications such as m ulti-party communications.

One of the problems that experienced with RMS that uses token-based Reliable

Multicast Protocol RMP [92], is the effect of slow members (e.g., machines) in group

communication. A machine is described as a slow machine if its receiving rate is ’’much”

less than that of other members in the group. This, for example, could be the case

if a machine is overloaded with jobs or has low hardware capabilities. In this case, a

slow machine typically slows down communication in the entire group. In RMS, the

sender transmission rate eventually adapts to the rate of the slowest receiver, even though

other members are capable of handling higher transmission rates. This causes a serious

problem in interactive distance learning applications, such as IRI, where machines in

various sites could have different configurations and capabilities [56]. Some of the solutions

proposed to handle slow members include: (1) Disconnecting slow members from IRI

system completely, or (2) Isolating the slow members by transferring them to a different

multicast group th a t obtains a lower quality of service (e.g. low video quality) in the same

session which reduces the load and improves the receiving in these machines [71].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Developing a solution for slow members in multicast groups is beyond the focus

of this research dissertation. However, the effective use of HiFi is presented in context of

dynamic discovery of slow members (machines) during an IRI session and the automatic

feedback to RMS senders, which accordingly make the proper management decision. The

criteria for slow members is defined based on user specifications. For example, the user

(or manager) may define a slow member whose performance is below a certain threshold

relative to other members. In the example below, the RMS sender acts as a manager and

sends the threshold information. Figure 7.5 shows the event (HESL) and the filter (HFSL)

specification used to discover slow members in IRI. Each RMS receiver is instrumented to

send the McastRec event th a t contains the machine name, the domain name, total bytes

received (KBrec), and number of NACKs scheduled (NackSch)*. The McastRec event

could be sent periodically based on time limit or maximum number of after maximum

number of bytes is received. In IRI, RMS receivers send McastRec event after each 512K

bytes received. RMS senders send McastSend to indicate the drop rate (threshold) in the

group. However, because the threshold value is dynamic and may be determined from the

overall performance of the participants, another filter (see Figure 7.5) is used to provide

feedback on the overall drop rate average to senders. Consequently, the threshold value is

readjusted accordingly.

Each LMA forwards McastSend and McastRec primitive events to its DMA, which

evaluates the filter expression upon receiving both events. Figure 7.6 presents the filters

in Petri Nets (PN) representation as constructed by DMAs. The Slow_MembersJFILTER

waits to receive one McastSend and McastRec event from all LMAs in the domain. Then,

the filter expression is evaluated. The _ctr and -LMAs are HiFi reserved key words used

to denote the number of event occurrences and the number of LMAs in the domain,

respectively. The number of event occurrences is represented by _LMAs and -DMAs in the

PN arch. The filter expression results in true if all RMS receivers in the domain send

McastRec events and the NackSch of one or more receivers is higher than the threshold.

If the filter expressions becomes true, then three actions axe performed: (1) the average

scheduled Nacks for receivers in same domain is calculated (CalcAVG), (2) the DomAVG

*NackSch = Number o f NacksSent + Number o f NacksCancelled. Because of the NACK
suppression mechanism [24], the number of NackSch gives more accurate estimation of the drop
rate than number of Nacks sent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

E V E N T = { ModuleName=RMS,FuncName=McastSend,Immediate;
Machine=“A N Y ”,Domain=“A N Y ”, threshold= A N Y } McastSend.
E V E N T = { ModuleName=RMS,FuncName=McastRecv,Immediate;
Machine= “ANY”,Domain= “ANY”, KBrec= ANY, NackSch=ANY } McastRec.

E V E N T = { ModuleName=DMA,FuncName=ANY,Immediate;
Machine= “ANY” ,Domain= “ANY”, KBrec= ANY, NackSch=ANY } DomAVG.

FILTER= [(McastSend A McastRec)]-,

[(McastRec.jc.tr = -LMAs A McastRec.NackSch > McastSend.threshold)];

[CalcAvg, DomAVG, FORWARD]; Slow_Memebrs_FILTER.

FILTER= [DomAVG]-,

[DomAVG. -ctr = -DMAs];

[UpdateThrehold, McastSend]; Update.Threhold-FILTER.

Fig. 7.5. HiFi Application Steering Example.

event is sent to the containing DMA to reveal the domain average, (3) the McastRec event

that matches the slow member criteria represented in the filter expression (i.e., NackSch

> threshold) is forwarded to the manager (RMS sender).

The second filter, Update_Threshold_FILTER, receives the DomAVG events from the

DMAs and then calculates the total NackSch average, updates the threshold and sends

the McastSend containing the new threshold to the LMAs/DMAs again. This filter can

be a DMA task, instead of RMS senders. However, users must provide the action Up-

dateThreshold to this DMA. The DMA will then dynamically update the threshold while

RMS senders manage the slow member problem.

Slow members and NackSch average information is collected from each receiver via

LMAs and then combined and propagated in hierarchical fashion, via DMAs, to the RMS

of the sender. In addition to offering the dynamic information feedback service, this mech­

anism is scalable as it avoids notification implosion that typically occurs when McastRec

events are forwarded to one RMS sender. Furthermore, distribution of processing load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

.DMAs

R : M castR ec E v en t V : C aJcA vg ac tion

S : M cas tS en d E v e n t F : F o rw ards E ven t A ction

D : D om A V G E v en t U : U pdateT hresho Id A ction

,LM<
R .N ack S ch > S .th re sh o ld

Fig. 7.6. Steering Filter in PN Representation.

(e.g., the calculation of the average drop rate) contributes to the system performance.

7.2.4 F au lt R ecovery

Providing a fault detection and recovery mechanism is essential to improving reliability

and robustness of an large-scale distributed system such as IRI. In [9], many types and

sources of failures that can occur during IRI execution and which reduce quality of service

in the IRI session, were discussed. In this section, fault recovery mechanisms provided by

the monitoring architecture to improve reliability and robust of the IRI system is outlined

briefly.

M o n ito rin g F u n c tio n s fo r F a u lt R ecovery : Effectively observing error and warning

messages revealed by IRI components during execution is not feasible. This is due to the

large number of messages th a t are generated a t run time and the geographical distribution

of the component entities. Monitoring is essential to classify and detect application errors

or failures as they occur Manual or human recovery may be insufficient to resolve problems

because of the natural delay incurred in the human interaction [9]. In IRI, the monitoring

system is used to detect and automatically recover from failures, as represented by error

and warning events, without involvement of IRIManagers or developers. Moreover, IRI

developers can specify different priorities for errors and warnings, so that failure events are

processed based on their priorities. This is an im portant criteria for managing multimedia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

services. For example, in IRI, the audio service is more im portant than other services,

such as video service. For this reason, audio events are assigned a higher priority than

other services, which provides a more immediate response to audio failures.

Errors and warnings that may occur during program execution are sent as event

notifications to the MA(s). When an event is detected, a corresponding pre-defined action

will be performed. In an IRI monitoring environment, an action is either (1) a program

executed by the MA or, (2) a notification sent by an MA to the requesting IRIManager,

who consequently takes the proper action to recover this fault. In the following, we discuss

the two classes of fault recovery services supported in IRI.

• A u to m a tic F au lt R ecovery : The automated fault recovery mechanism is supported

to initiate the proper recovery procedure upon fault detection, which limits impact to

users and adm inistrators (IRIManagers). To use automatic fault recovery, IRIManagers

or developers first must develop the action program that is executed when a specific error

event is detected. Secondly, IRIManagers must attach this action to specific events in

the HESL by specifying the action program name. Since IRI failure events (errors and

warnings) are already specified, IRI developers or IRIManagers need to determine and

develop the recovery actions and attach them to the failure events. When the monitoring

system detects faults events in IRI, it initiates the corresponding recovery procedures (e.g.,

performing fo rk and exec on the action programs).

The automatic recovery may independently occur in any local machine. When

this occurs, the recovery is referred to as local fault recovery. An example of local fault

recovery in IRI is the automatic restart of crashed components (audio, video, presentation

tool), which occurs independently of other machines and entities in the classroom. An

LMA detects the crash of a component through receipt of a UNIX SigP ipe signal, or

from notification from the SC. At this point, the LMA will restart the IRI component

by executing the appropriate local recovery procedure [9]. As a result, notification of the

failure and recovery is sent to the teacher.

However, since some faults impact the entire session, the recovery procedure may

need to be initiated and coordinated throughout the classroom. This type of recovery

is referred to as global fault recovery. Failure of IRI components, such as TSE, require

global fault recovery procedures. Restarting a TSE entity independently o f the other TSE

entities in the IRI environment causes inconsistency in the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

E V EN T = { ModuleName=PRESENT, PuncName=SendSlide, Immediate;

Machine=”ANY”, SlideNum=ANY } SendSlideEvent

E V EN T= { ModuleName=PRESENT, FuncName=RecSlide, Immediate;

Machine=”ANY”, SlideNum=ANY } RecSlideEvent.

FILTER = [(SendSlideEvent A RecSlideEvent)]-,

[(SendSlideEvent.SlideNum = RecSlideEvent.SlideNum A RecSlideEvent.jctr = ALL)];

[FORW ARD]; SI ideSynch.

Fig. 7.7. Event Correlation for Multimedia View Synchronization.

• M a n u a l F au lt R ecovery: The manual fault recovery mode is im portant for failures

th a t require human intelligence and experience. Manual recovery is used when the ac­

tion is forwarding (FORWARD in HFSL) the monitoring information to IRIManagers. The

monitoring system enables IRIManagers (or developers) to centrally collect and observe

IR I run-time failures (errors and warnings events) that occur at different places in the

IRI environment from one location. More effectively, IRIManagers have the capability to

focus and control the granularity of monitoring demands based on many parameters, such

as machine name, component name, module name, event type and event priority. For

example, the IRIManager may desire to monitor only M ajor-Error and M inor-Error IRI

events. Or the IRIManager may request to monitor only the failure events of the Audio

component of the teacher machine.

Collecting, suppressing and forwarding failure information, such as error events, to

a central point is significantly useful for generating global software traces and for manually

recovering from these failures (e.g. r s h to remote machines and fix the problem).

From our experience in IRI, both approaches (automatic and manual) were found

to be im portant to recovering failures in the IRI sessions.

7.2.5 E ven t C orrela tion for M u ltim ed ia V iew Synchron ization

In interactive distributed multimedia applications such as IRI, different multimedia streams

may interleave independently because of jitte r and network delays [22]. This may cause

same events (views) to be received and displayed a t different times by receivers in such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

distributed environment. IRI is a collaborative application that enables global sharing of

some applications. For example, the teacher or presenter may use the Slide Tool (ST)

application to present a slide show to students in the classroom session. A presenter may

also use the global pointer, or chalk board, to emphasize an issue in a slide. In addition,

presenters use audio to explain and elaborate on ideas and issues in the displayed slides.

Three different, but temporarily related, activities (slide display, pointer movements, au­

dio) are involved to deliver a slide show presentation in a typical distributed multimedia

system environment.

To improve the classroom interaction, it is im portant for a presenter to synchronize

delivery of various information streams (data, pointer or audio) with the view of the

students (or audience). Synchronization of multimedia streams is not in the scope of this

work, however, providing an opportunity to demonstrate effective event correlation and

feedback to solve this complex problem.

Figure 7.7 illustrates the SlideSynch filter that detects a correlation between the

events of displaying the slide in the presenter machine, SendSlideEvent, and th a t in the

remote machines, RecSlideEvent. When ALL receivers view the same slide number, Sli­

deNum , the filter sends notification to the presenter. The presenter is the consumer in

this case and can request notification as to when all or subset of receivers are viewing the

same slide by assigning the proper value to . c t r in the filter expression. This feedback

information enables the presenter to synchronize information delivery (e.g., start talking

or moving the pointer on the slide when all receivers are simultaneously viewing it).

7.3 Summary

This chapter describes some applications of HiFi monitoring system. Examples are pre­

sented as applied in IRI distributed distance learning system. These applications include

debugging and testing, generating distributed traces, applications steering, fault recovery,

and view synchronization in distributed multimedia systems.

In debugging and testing, we show how HiFi can be employed to detect certain

application errors/bugs. The presented example was to detect the message size mismatch

problem between the sender and receivers in distributed systems. We then show how

HiFi can be effectively used to collect and customize traces in large-scale distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

environment. Using HiFi, users are able to change the trace specifications at run-time in

order to limit the monitoring scope and focus their observation. The filter incarnation (see

Section 3.3) enables users to define “dynamic traces” filters that can dynamically modify

the trace specifications based on the application events generated at run-time. Various

trace filters examples are presented in this chapter. We then describe an example of HiFi

application steering for distributed multi-point applications or reliable multicasting. In

this example, HiFi identifies slow members in the m ulticast group based on the average

Nacks and a user defined threshold. Two filters are used in this example. The filter

one is used for comparing the members’ Nacks against a threshold, and the other one is

calculates the Nacks average per domain. Both filters are integrated to discover the slow

members in a multicast group. HiFi is also used to support manual and automatic fault

recovery in large-scale distributed systems. Users can use HESL and HFSL to specify event

correlations (pattern) identified as system faults, and associate actions to be performed

when such correlations sire detected. The last presented application describes how HiFi is

utilized to discover if all participants in a distributed multimedia session are simultaneously

viewing the same data (e.g., slide or pointer position). This feedback in important for

synchronizing the presentation activities in distributed multimedia applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

CHAPTER VIII

RELATED WORK

Although a large number of monitoring systems were identified, this thesis concentrates on

monitoring systems that address requirements and challenges of monitoring LSD systems,

as described in Chapter 1. As our approach emphasizes the impact of the event filtering

mechanism as a major component in the monitoring architecture, our related work includes

both monitoring distributed, systems and event filtering. The following survey study is

divided into two parts. The first part (Section 8.1) addresses monitoring related work while

the second part (Section 8.2) discusses filtering mechanisms. In this Chapter, monitoring

types are introduced and defined as they pertain to distributed systems. Examples are

presented and evaluated in terms of monitoring LSD applications. We also compare these

systems/approaches with the HiFi monitoring approach.

8.1 Survey and Evaluation of Monitoring Distributed Sys­

tems

Existing monitoring systems are classified according to three major approaches, hardware

monitoring, software monitoring and hybrid monitoring with a comparison made of each.

This section briefly describes these systems and compares and evaluates them against

HiFi. Monitoring distributed systems is classified into three main categories:

8.1.1 H ardw are M on ito rin g

In [36] and [57], several hardware monitoring systems were presented. In this class of

monitoring, specialized hardware is dedicated to observe the monitored system and detect

interesting events. The hardware performs event detection by snooping into the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

bus or the network media (such as Sniffer [34]), or by connecting physical probes to the

processor, memory, ports and /o r I/O channels. Hardware monitoring systems have the

advantage of being non-intrusive, and being efficient and accurate. Typically, this is ac­

complished via a special purpose device that consists of an external, independent system

environment (e.g., its own processor and memory). This external hardware limits the

amount of interference with the monitoring application environment as it is dedicated to

monitoring functions. Hardware monitoring is particularly im portant to enable effective

real-time monitoring and is critical when monitoring of hard real-time is required. How­

ever, hardware monitoring has the following disadvantages:

(1) Hardware monitoring systems, such as Sniffer, are usually restricted to monitoring the

connected system or object (e.g., network subnet). This limits the scope of the monitoring

process and makes monitoring LSD or distributed applications difficult.

(2) Hardware monitoring is more expensive since special hardware components are re­

quired.

(3) Control is difficult without a complete software environment (e.g., OS). Adding a com­

plete software environment adds additional expense and decreases system flexibility. (4)

Portability is limited and often expert personnel are required to install and maintain the

monitoring environment. This again increases costs and decreases flexibility.

8.1.2 Softw are M on ito ring

This class of monitoring systems uses software programs running in the same environ­

ment as the monitored objects. This requires that system resources (e.g., processor and

memory) be shared. Monitored programs are usually instrumented by inserting monitoring

instructions called software probes to gather information. The main advantages of software

monitoring systems are: (1) flexibility of use since they are provide easier construction and

control processes, (2) portability to other system or platforms, (3) maintainability since

the basis of the monitoring system is program code, and (4) economy since no special

hardware devices are required. However, software monitoring may suffer from the impact

of sharing system resources with the monitored objects. This may decrease the accuracy

and performance of monitoring while increasing intrusiveness. For this reason, pure soft­

ware monitoring systems are insufficient for hard real-time monitoring.

Software monitoring systems are discussed below with specific examples given. Major

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

limitations of each, from the perspective of monitoring LSD systems, are outlined.

S ta n d a rd M o n ito rin g Tools: The two existing management standards are SNMP (Sim­

ple Network Management Protocol) [18] and CMIP (Common Management Information

Protocol) [82] ISO /IEC 9596-1. While SNMP is currently the de facto standard for manag­

ing the Internet, CMIP has been hailed as the long-term successor for network management

protocols. SNMP is a simple management protocol that uses polling requests (Get and

Set) and traps to represent extraordinary events for monitoring and management opera­

tions. SNMP has limited scalability potential that does not permit SNMP to effectively

monitor distributed systems [72]. SNMP also utilizes UDP, an unreliable communication

service, for message delivery. In contrast, CMIP is a much more complex protocol and

uses event-driven techniques in the management operation. As discussed in Section III,

the event-driven approach is more efficient in monitoring LSD systems. The complexity

of CMIP implementation may significantly impact its performance and could increase the

intrusiveness of the monitoring process (the OSI Event Report Management is discussed

in Section 8.2). SNMP and CMIP are primarily intended for monitoring system and net­

work objects (such as machines, routers, bridges) rather than monitoring applications or

distributed applications. Every monitored attribute has to be maintained in the Manage­

ment Information Base (MIB) which must be synchronized and consistent in a distributed

environment.

Issos S y stem : This monitoring system was developed as part of the Issos parallel pro­

gramming system a t the Ohio State University. The Issos system provides dynamic

real-time and application-dependent monitoring for parallel (i.e., multiprocessor) and dis­

tributed (i.e., cluster of workstation in LAN) systems. Users can specify time constraints

for monitoring operations and change the values of the monitoring attributes a t run-time.

This is useful for on-line debugging and application steering [69]. Monitoring specifications

axe defined via the entity-relation (ER) model [20]. One major advantage of this system

attribute of this monitoring system is its flexibility in providing a wide-range of collection

mechanisms, such as probing sensors, tracing sensors and extended sensors (with analysis

in the program sensors). The Issos monitoring system has a number of limitations when

monitoring large-scale distributed systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

• Issos monitoring uses a semi-distributed monitoring approach with monitoring oper­

ations distributed among a centralized monitor and resident monitors. The central­

ized monitor is located in a remote node of the LAN and receives notifications from

resident monitors for correlation and final evaluation. Resident monitors reside in

each node of the same connected LAN. This filtering architecture does not scale well

with respect to application entities or manager requests.

• Discussion about environment specifications or how the monitoring agents (residents

monitors) are distributed in the system are not provided. Therefore, it is presumed

that these activities are manual in nature and are the responsibility of the user.

• Although this monitoring system provides hooks for “action" specification, identifi­

cation of the rich set of actions needed for system adaptation was not provided.

• Dynamism is supported by perm itting monitoring variables to be changed at run­

time. However, this support is insufficient when the monitoring expression itself

must be modified or another one must be added. Adaptation/reconfiguration must

be performed explicitly by the steering program. Adaptation can not be part of the

monitoring specification itself, nor can automatic activation occur as is the case with

HiFi filtering incarnation.

• The Issos authors state that monitoring queries must be statically specified, opti­

mized, and compiled into the application itself prior to application execution [69].

This is a significant limitation of monitoring dynamism when compared to HiFi,

which permits filter and event specifications to be added, deleted and modified dy­

namically at run-time without the intervention of the monitored system itself.

• In this monitoring implementation, LAN nodes and machines running distributed

applications are assumed to have clocks synchronized with microsecond accuracy.

• The monitoring system supports limited monitoring/filtering optimizations, such as

housing the expression evaluation in close proximity with the application to reduce

communication overhead. However, support is not provided for placing evaluation in

domain agents between the applications or resident monitors and the central monitor.

In distributed systems monitoring, the domain agent is often the optimal place for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

evaluation to occur. HiFi permits this optimal placement of the filter expression to

be determined during the filter decomposition and assigns the proper DMA which

reduces communication overhead and maintains monitoring scalability. In addition,

HiFi supports other optimization techniques not supported by the Issos monitoring

system. These include efficient filter composition and matching techniques.

F alcon S ystem : Falcon is an on-line monitoring system developed at Georgia Tech for

steering large-scale parallel programs [32]. It supports sampled sensors, traced sensors,

and traced sensors with filtering and analysis capabilities [78]. Falcon has three major

attributes: dynamic overhead control by providing configurable system parameters (such

as buffer length), application-specific monitoring, analysis and display features, and scal­

ability large-scale parallel programs running on large numbers of parallel processors. One

im portant feature of Falcon is its ability to be reconfigured at run-time to meet the needs

of the application [32]. The Falcon system faces the following limitations with regards to

monitoring large-scale distributed systems:

• The Falcon architecture includes decentralized filtering, shared memory communi­

cation, and dynamic thread forking. Thus, making it more appropriate for parallel

programs in a multiprocessor configuration rather than that of a distributed system

running on interconnected workstations.

• Although Falcon is used for application steering and adaptation, it seems that event

correlation is not supported. Adaptation may require feedback information from two

or more threads (nodes) in the application environment.

• Filtering performed by extended sensors is very simple (not expressive) and, since

events are processed in the same environment, considerable overhead is inflicted on

the running application.

• Unlike HiFi, Falcon does not provide a complete monitoring environment such as

automated instrumentation or environment and action specifications.

• Falcon presents considerably high perturbation when full event trace is requested.

However, Chapter 6 shows that HiFi incurs less and more controlled application

perturbation than Falcon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

M e ta S ystem : The M eta monitoring system is a collection of tools used for construct­

ing distributed application management software in conjunction with the ISIS distributed

toolkit citeBirman:94a. M eta enables management applications to observe and control

functional behavior of monitored programs. To manage distributed applications using the

Meta system, three steps must be performed.

(1) Instrumentation: The monitored program is instrumented by inserting sensors and

actuators. A sensor is a function that returns program state and environment values (i.e.

cpu load) while an actuator is a function that changes variables or larger portions of a

running program to control its behavior. Sensors and actuators can operate on the appli­

cation or its environment. For example, a built-in actuator can change processing priority.

Both can be specified using a rule-based control language called Lomita. The M eta system

uses either on-demand or periodic polling requests to obtain information about the state

of the monitored program.

(2) Program Structure Description: The programmer/developer must describe the struc­

ture of the monitored program using entity-relationship database concepts. For example,

each component/function of the system can be represented as an entity. This model of the

program abstraction is used by the Policy Layer to interpret and perform management

functions within the control component of the Meta system.

(3) Policy Rules: Using Lomita, the programmer then uses the data model to write a set of

policy rules that specify the desired system behavior. The programmers may make direct

calls to sensors, actuators or other functions defined in the data mode [58]. The Meta

monitoring system has the following limitations:

• Sensors are static programs that are linked with the monitored application prior

to its execution. This reduces the dynamism and the flexibility of the monitoring

system.

• The program structure must be declared to Meta using an object-oriented model

prior to any monitoring request. This requirement could be inconvenient for other

monitoring applications, such as debugging and testing, because the program struc­

ture frequently changes as bugs or errors are discovered and corrected.

• Non-local sensors are accessed remotely by the MetaLib attached to the application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

itself. This means th a t event correlation is always performed in the MetaLib assigned

for executing Lomita control script. Perturbation is increased and monitoring per­

formance and scalability are reduced due to centralized event correlation.

• The Meta system uses a decentralized filtering architecture since sensors are only

located in MetaLib(s), which are attached to each running application entity.

• Unlike HiFi, the instrumentation process is handy and imposes a considerable over­

head on event consumers. Also, environment specifications is not supported which

implies an overhead in adm inistrating and distributing the M eta agents.

• Optimization techniques may be limited as no discussion or description was provided.

• Meta uses the Isis system for atomic group communication, which may reduce the

Meta usability as a general monitoring system on UNIX platforms.

H y + S ystem s: H y + [46] was developed at the University of Toronto to support an query-

based visualization interface for network management and distributed debugging. The user

can use a declarative language to specify on-demand network management functions or

debugging patterns The H y + approach is very similar to the active database approach [93]

in which monitoring information is stored in a database and manipulated after collection.

The main attributes of the system are the expressive power of its declarative language and

its visualization techniques. H y + provides techniques to filter abstract events generated

from network elements or distributed systems. Two types of filtering are used: on-line

filters are integrated with running programs to discard irrelevant events, and display filters

are used to extract specific information. H y + has the following limitations:

• Although H y + uses decentralized on-line filtering, this kind of filtering is simple.

Major filtering and event correlation are performed in the database. This centralized

approach does not scale with an increasing number of event producers and consumers.

• The filtering and the abstraction techniques are primitive and do not support many

significant properties such as reconfigurability and distributed event correlation.

Events can be discarded based on very high abstraction criteria such as process

level or event type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

• On-line filters combine event reporting and processing which may increase monitor­

ing overhead in the application environment.

• Although H y + focus on the expressive power, it lacks many other im portant features

such as scalability, dynamism and intrusiveness control. Such issues have not been

addressed in descriptions of the system.

J a d e M o n ito rin g S ystem s: Jade was developed at the Calgary University and has been

used by a number of universities and research organizations for monitoring distributed sys­

tems. Specifically, Jade has been used to monitor the IPC mechanism that occurs during

the interaction of distributed applications [44]. This work mainly differs from previously

presented systems by requiring the application to generate events for all communication

activities generated in the application. However, most of the above techniques provide

means to specify what kind of events are to be reported. Jade provides interactive, ani­

m ated displays of executing distributed programs; this enables interactive debugging and

control of running programs. In a distributed system, events are generated from one or

more monitored programs and sent to channels, which are local processes that collect and

merge events into an event stream. The event stream is then forwarded to one or more

console. A console examines, interprets and presents the monitoring information to the

end users. The system is used for deadlock detection and for debugging and controlling

non-deterministic execution in distributed systems. The main limitation in this approach

is highlighted below.

• Use of event filtering techniques is not indicated in system descriptions. This will

result in extensive monitoring overhead in the application environment, especially

when all events are reported as is the case with Jade.

• The instrumentation process is not flexible nor dynamic.

• The primitive event detection is performed in the application. This obviously will

cause a considerable intrusiveness in the application.

• The composite event detection (event correlation) is performed in the console (i.e,

consumer) which can create a console bottleneck in the monitoring process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

TABLE 8.1

H iF i C o m p a r i s o n w i t h M o n i t o r i n g D e b u g g i n g S y s t e m s

System Event Type H istory F iltering On-line Inst. Pert.

dbxtool Stmt none none No OS ns
defence Stmt none na No obj ns
DISDEB ipc,sh none limited Yes hw none
EDL ns complete lang Yes ns ns
HARD Stmt none none Yes src limited
IDD ipc buffer event Yes obj ns
TSL ipc complete lang Yes src ns
HiFi Stmt complete lang Yes src controlled

Stmt: Statement, sh: shared memory, obj: object,
lang: language, event: event name, src: source,

• Scalability is very limited because of the channel and console architecture used in

this system.

M o n ito rin g S y stem s fo r D is tr ib u te d D ebugging : [60] introduced a comprehensive

survey and discussion of monitoring systems used for debugging distributed or concurrent

programs. Although HiFi does not provide a complete distributed debugging environment

the aim of this chapter is to evaluate the event monitoring techniques (collecting, analyzing

and reporting) of such systems and compare them with HiFi approach. Although more

than thirty monitoring systems were studied in this reference [2 1 , 60], five of them are con­

sidered on-line monitoring systems. These are EDL [13], IDD [33], TSL [35], DISDEB [49]

and HARD [54]. Of these, only EDL and TSL systems support language-based filtering

where users can specify events of interest. The other three systems (DISDEB, HARD

and IDD) either do not support any type of filtering or the filtering is very primitive and

limited to function level processes. Neither EDL nor TSL include techniques to control

or minimize the probing effect (e.g., monitoring intrusiveness). In addition, none of these

monitoring systems address other issues, such as scalability and dynamism, in an efficient

way. In particular, EDL and TSL event recognizers represent potential bottlenecks [60].

Moreover, Table 8.1, extracted from a number of tables in [60], shows th a t HiFi is the only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 3

one among these systems that provides a powerful filtering support (i.e, language) with

expressive events (e.g., statement event type) and controlled perturbation technique, and

8.1.3 H y b rid M onito ring

The hybrid monitoring systems attem pt to combine the advantages of hardware and soft­

ware monitoring techniques. Hybrid monitoring consists of dedicated hardware devices for

receiving and processing monitoring information. Hence, the monitoring system has its

own independent resources but also shares some resources with monitored objects. The

main advantage of this monitoring class is that (1) it causes less intrusiveness than pure

software monitoring, (2) it is more efficient than pure software monitoring since events are

processed in hardware, and (3) it is more flexible and less expensive than pure hardware

monitoring.

Z M 4 /S IM P L E : ZM4 is a hybrid monitoring system [36] that allows monitoring programs

to be evaluated for performance and program behavior to be observed. ZM4 consists of

dedicated PCB probe units that collect and buffer events, monitor agents that control the

probes and store forwarded events to the disk, and a control and evaluation unit that mas­

ters the agents and provides the user with more sophisticated analysis tools. The system

uses tick channels connected to all nodes to support global clock synchronization of DPUs

by using physical clocks. Although ZM4/SIMPLE seems to be a powerful monitoring

tool for parallel and distributed application, it may not be sufficient for monitoring LSD

systems for the following reasons:

• Event detection based on the event information or event correlation is performed in

a late monitoring stage (filtering in SIMPLE), which may be an inefficient approach

for monitoring LSD environments. This will be discussed later when compared with

the approach outlined in this thesis.

• Synchronization via global physical clocking does not scale in WAN (Internet) or

large-scale interconnected LAN (Intranet) environments.

• This approach lacks scalability since the monitor agents report to one centralized

place where postmortem analysis/filtering is conducted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

• Required hardware modifications for remote or geographically distributed nodes

make this implementation highly inflexible.

• Using special hardware makes the system less portable and more expensive.

8.2 Survey and Evaluation of Event Filtering Mechanisms

Work on event filtering spans a number of domains, including distributed system toolkits

[39], network and system management [62, 83], communication protocols [12, 59, 63, 94],

and active databases [27, 29]. This section describes related work on event filtering ,

compares and contrasts the different techniques used in these mechanisms and evaluates

each one in terms of its support for monitoring.

8.2.1 D is trib u ted S ystem T oolk its

Isis [14] supports event filtering as part of its Reliable Distributed. Objects (RDO). Isis uses

filters as a protection facility to validate authenticated messages in applications such as

the Isis Distributed News Service application. Filters axe used to distinguish (classify)

invalid messages such as unauthenticated messages or truncated messages sent by faulty

clients. A message arriving a t a consumer is examined by passing it through a series of

validation filters. Filters Eire also used in Isis News to enable consumers in a group to

receive all events sent by producers.

Three basic limitations may be found in Isis filtering mechanism: (1) consumer

filtering is limited to matching on character strings, “keywords” , (2) this decentralized

filtering architecture imposes some processing overhead on the consumer since the filtering

is performed a t the consumer end, and (3) this architecture may also reduce the network

utilization (waste of bandwidth) since the filtering is performed at the destination node.

8.2.2 N etw ork an d S ystem M anagem ent

O S I E v en t R e p o r t M an a g em en t: OSI Event Report Management Function (ERMF)

is described in [83]. ERMF represents a decentralized filtering architecture too. Remote

management agents in the networks may receive registration requests of Event Forward­

ing Discriminators (EFDs) which are used to describe events. An EFD contains a filter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

expression tha t describes the fields of a matching event such as event type, event value,

and event time. The HP OpenView provides an implementation of ISO OSI Event Report

Management Function.

P a c k e t M o n ito rin g P ro g ra m : The Packet Monitoring Program (PMP) [16] is a packet

monitoring tool that uses event filtering for gathering statistics about packets in the net­

work and analyzing traffic patterns. The packet parsing mechanism in PM P parses the

packet according to the Field Parsing Tree (FPT) which is equivalent to the DAG. Any

message field that has to be extracted for statistical analysis must be specified as a node

in the FPT. For efficiency, the packet header format is hard-coded in the PMP code at

compile time. However, PM P can be configured dynamically since the field values and

the statistical rules can be defined at run-time. PM P uses an interpretive pseudo-machine

(IPM), discussed in Section 2.2, to define the filter expression.

PM P uses some optimization techniques for efficient filtering composition. If there

is a redundant filtering object (i.e. two filters have the same test condition), the Boolean

result of the invocation of the first filter is saved and reused when the second filter is

invoked. This technique allows evaluating the filtering object without unnecessary re­

computation. However, this requires adding two extra fields in the filtering components:

the filter result and the indirect pointer[16].

The filtering technique used in PM P suffer from the following limitations: (1) it

does not support detection of composite events, , (2) the filter expression supports only

basic operators (AND, OR and NOT) which may not accommodate more complex event filter

expressions, and (3) PM P has centralized filtering which makes it insufficient to monitor

distributed applications.

8.2.3 C om m unica tion P ro to co ls

Several studies have reported measurements based upon various types of packet filters

(also known as packet classifiers [12]). In the following section, we present the evolution

of packet filtering mechanisms and an overview of each technique.

C S P F a n d B P F : The CM U/Stanford Packet F ilter (CSPF) [63] and the Berkeley Packet

Filter (BPF) [59] were two influential first generation packet filter implementations. CSPF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

is a stack-based packet filter that uses pop and push operations. The CSPF uses Boolean

expression tree configuration and stack-based interpreter as the internal representation and

the programming interface of the filter, respectively. The stack-based interpreter and tree

model limit the performance of CSPF. In contrast, BPF achieves better performance.

It uses a register-based assembly language (load and store instructions) and a directed

control flow graph (DCFG) instead of stack-based language and tree graph, respectively.

For example, in CSPF each logical operation requires five stack operations (three

pushes and two pops) to be executed. This makes it perform poorly compared to the

register-based interpreter that uses one simple compare operation (i.e., jeq, jg t). In ad­

dition, using DCFG instead of a tree graph model is another reason for the performance

difference between B PF and CSPF. A tree model often does unnecessary or redundant

computations [59]. Moreover, BPF handles additional features that axe not supported by

CSPF such as dealing with variable header-length and extracting portions of a packet.

Neither CSFP nor BPF support an efficient filter composition technique because the time

required to filter packets grows linearly with the number of concatenated filters. There­

fore, CSFP and BPF do not scale well with the number of active consumers.

M P F : Similar to BPF, The Mach Packet Filter [94] (MPF) uses DCFG and extended

register-based assembly language for the internal representation and filter programming

interface, respectively. M PF addresses the scalability limitation exists in the previous

packet filters by enabling an efficient composition of multiple filters. MPF achieves more

efficient composition than CSPF and BPF by combining the common prefixes of filter

predicates. Therefore, unlike CSFP and BPF, evaluating a common prefix is performed

just once for any incoming packet passing through a composite filter, regardless of the

number of composed filters. In contrast, in CSPF and BPF, the predicate evaluations

would grow linearly with the number of composed filters. Moreover, MPF uses hash table

lookup to efficiently demultiplex packets to different endpoints.

M PF has a major advantage over previous packet filters. It provides an efficient

demultiplexing of incoming messages by combining similar filters (common prefix) together

in the filter composition technique. However, this optimization technique does not gener­

alize to a composite event detection mechanism.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

P a th F in d e r : PathFinder [12] is a packet classifier that combines software and hardware

to optimize the filter composition and dispatching of packets. PathFinder presents a more

general technique for composing filters with common prefixes. The software portion of

PathFinder builds a directed-acyclic graph (DAG). The DAG nodes (called cells) repre­

sent the test predicates and the DAG edges represent the control transfer. The DAG is

implemented according to a high-level declarative interpreter that specifies the matching

patterns in the packet format. The PathFinder interpreter matches fields of incoming

packets using information stored in cells of the DAG. PathFinder may be optimized [12]

by re-arranging the cells in the DAG as described in section 2.2.

PathFinder has several novel features that makes it perform better than earlier

packet filters such as (1) caching of key-pattern to reduce number of predicate comparisons

in the DAG, and (2) provide a hardware support for packet filtering which significantly

increase the performance of PathFinder over the previous ones. However, the PathFinder

has primary limitations:

• The software implementation of the DAG uses an interpreter, rather than a compiler.

This precludes a variety of performance optimizations that can be performed in the

compilation process.

• The “dual line” [12] mechanism supported by the PathFinder to deal with IP frag­

mentation is not sufficient as a general means for composite event (global event)

detection.

• PathFinder does not support relational operations (such as LE, GT). This may limit

the application of PathFinder in many domains where these kinds of operators are

necessary.

8.2.4 A ctive D atabases

Support for triggers is an im portant distinction between active and standard databases.

A trigger is an event-condition-action expression where an event can be either a primitive

or composite event. Primitive events in active databases are the basic database operations

(such as add and delete records) accomplished in the system. In an active database, event

filters are used to detect a composite event since primitive events are already identified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

via programming language exceptions that are sent whenever a primitive event occurs. A

number of approaches have been presented for modeling and detecting composite events

in active databases [74]. However, in this section, we discuss briefly three approaches: the

COMPOSE system[29], the SAMOS system [27] and the rule and database system [93]

(more details can be found in [2]).

T h e C O M P O S E S y stem : The COMPOSE system [29] uses regular expressions and

special filter expression operators (called event composition operators) to define event fil­

ters. COMPOSE has two types of operators, basic and advanced (examples can be found

in [2, 29]). Composite events are detected using Deterministic Finite Automata (DFA)

described in Section 2.2.

T h e SA M O S S ystem : The SAMOS (Swiss Active Mechanism-based Object-Oriented

Database System)* uses a modified version of Colored Petri Nets, called SAMOS PN (S-

PN), to model and detect composite events. The event filter expression is constructed using

basic operators called event composition constructors(examples can be found in [2, 29]).

More information about these operators and examples can be found in [27]. The S-

PN also uses an incremental procedure to detect a composite event. However, in S-PN,

if a primitive event is matched, the place is marked with a token indicating the event

occurrence. The “step forward” process continues by advancing the token forward until

the last element of the appropriate sequence is marked. This implies that a corresponding

composite event is detected [27].

In general, PN representation provides better space complexity than the DFA rep­

resentation [27].

R u le a n d D a ta b a se S y stem s: In this approach, rule languages (such as Prolog) and a

database languages are used to define event filters [93]. Events are combined (in a filter

expression) using AND, OR and NOT operators only. Parameters and time functions are

supported by event filter expression. In addition, the temporal ordering between events

can also be specified in the event filter expression. For example, the filter: (C rash -a t-5

:- Crash, 5:00AM = 20) detects the composite event C rash -a t-5 , if Crash event occurs

'This is the name of the prototype active database used in this approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

within 20 minutes (after or before) from 5:00 AM.

This system uses an off-line event detection process. In other words, in order to

detect composite events, the filtering operations are performed on a pre-recorded event

history of the system, rather than in real-time. In contrast, the previous systems, COM­

POSE [29] and SAMOS [27] uses an on-line composite event detection where primitive

events are detected (by exceptions) in real-time immediately after they occur without

requiring the recording of the event history [29].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

CHAPTER IX

CONCLUSIONS AND FUTURE WORK

In this thesis, the design feature of a monitoring system suitable to large-scale distributed

systems, such as those that support Internet-based services and applications, were ex­

plored. This work was motivated by the lack of a comprehensive monitoring system that

satisfies key requirements in this area.

As inferred from literature on related work, other proposed monitoring systems

have focused on specific systems or environments, thereby limiting the capability and ap­

plication of of these systems. The majority of these proposed monitoring systems are

targeted to parallel program environments where shared memory and minimal commu­

nications latency is assumed. While these proposed systems can be applied within a

restricted distributed environment, such as a local area network (LAN), they do not scale

into large-scale distributed systems. Although these systems have addressed monitoring

intrusiveness, they neglect other design objectives, such as dynamic and scalable monitor­

ing mechanisms.

The primary goal of this thesis was to design, develop and deploy an efficient moni­

toring architecture, capable of detecting primitive and composite events and of performing

event correlation, within large-scale distributed system environments. The result is the

Hierarchical Filtering (HiFi) monitoring system. HiFi is a highly flexible, dynamic, and

scalable monitoring system, which is minimally intrusive to the application environment.

This final chapter of the thesis summarizes the approach taken to design HiFi

and outlines its major design features. The impact of this work on related research and

development efforts, as well as on areas outside of monitoring systems, is discussed. Lastly,

an outline of potential research problems for future work and an outline of the system

implementation and available documentation is provided.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

9.1 Overview of the HiFi Monitoring Architecture

The architecture of HiFi is discussed in detail in Chapters 3, 4, and 5.

HiFi detects primitive and composite events through the use of dedicated monitor­

ing processes called Monitoring Agents (MAs). These agents are distributed throughout a

large-scale distributed environment to facilitate event detection. Two types of MAs exist

in the HiFi system: local and domain. A local monitoring agent (LM A) is responsible for

detecting primitive events generated by applications running in the same machine as the

LMA. A domain monitoring agent (DM A) is responsible for detecting composite events,

which are beyond the scope of LMAs. When an LMA detects a primitive event, it notifies

its DMA. Communication between- LMAs and DMAs is hierarchical in nature and occurs

to perform event correlation.

The monitoring process is started when a consumer sends a filter program describ­

ing a monitoring request to the subscription component in the manager program. The

Filter components, which include composite events, an event expression and a filter ex­

pression, are validated and decomposed into subfilters (e.g., F l,..,Fn). This process is

performed using decomposition algorithms so that each subfilter represents a primitive

event. Based on environment specifications, including event sources and application dis­

tribution, each subfilter is then assigned to one or more LMAs using allocation algorithms.

These decomposition and allocation algorithms are described in Chapter 4.

The monitoring system will also determine the proper DMAs to be used for evalu­

ating the event and for evaluating the filter program’s filter expression. Additionally, when

MAs receive delegated monitoring tasks (e.g., subfilters) [30], they reconfigure themselves

by inserting the subfilter into the filtering internal representation which is a direct acyclic

graph (DAG) or a Petri Net (PN) for LMAs and DMAs, respectively [3].

HiFi implements dynamic signaling to suppress events at the reporting level. Dy­

namic signaling uses Event Reporting Stub (ERS) to identify active events and to generate

notifications accordingly. This forms three types of event filtering within HiFi: identity-

based, content-based, and correlation-based. MA’s perform these filtering activities as

dictated by the management protocol described in Section 4.2. The management protocol

also removes burden from the user by automating the process of instrumentation and by

administering the monitoring agents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

HiFi also provides a high-level declarative monitoring language th a t consists of

four specifications: event specification (HESL), filter specification (HFSL), action specifi­

cation (HASL) and environment specification (ESL). These specifications perm it users to

dynamically add, delete and modify subscriptions at run-time. Subscription consistency

and synchronization within agent groups is assured by the subscription protocol described

in Section 4.3.4. A multi-layer, multi-threaded architecture permits the LMAs and DMAs

to optimize processing and space utilization through a variety of techniques outlined in

Chapter 5.

9.2 System Design Objectives

While developing the HiFi monitoring system, an approach was devised by which prob­

lems are abstracted and domain requirements are fully analyzed. This approach proved

effective in ensuring that HiFi comprehensively addressed system goals. The final mon­

itoring system design was developed after studying and analyzing the target application

domain and then developing a general solution framework. The design architecture, its

objectives and an implementation of the design, which includes illustrations of how the

design achieves major design goals, are also described. This section lists the characteristics

of the HiFi system architecture and its design objectives.

Scalab ility : A distinguishing feature of the HiFi monitoring architecture is its scalability,

in terms of the number of event producers and consumers. This is achieved through several

design considerations, including (1) hierarchical filtering-based mechanisms that permit

creation of additional LMAs and DMAs based on workload demands, (2) distribution of

filtering workload via decomposition and allocation of monitoring tasks, (3) employment

of an efficient filtering composition technique, (4) employment of space optimization tech­

niques, and (5) use of dynamic multicasting for group communication and information

dissemination. Using the priority-based monitoring mechanism, HiFi also scales to differ­

ent service classes that have different time-constraints. The simulation results presented

in Chapter 6 show 29% to 37% (on average) improvement of the hierarchical monitoring

mean response time over centralized and decentralized monitoring architectures, respec­

tively, w ith the increase of event producers from 50 to 1000 producers. It also shows that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

mean response time of hierarchical monitoring is improved by 33% to 45% over central­

ized and decentralized monitoring architectures, respectively, with the increase of event

frequency from 1% to 35%. These results indicate the high scalability of HiFi monitoring

system under large number of producers and high event rate.

H ig h -p e rfo rm an ce : The monitoring architecture supports a number of techniques to

reduce monitoring latency. By reducing monitoring latency, overall system performance

is increased. These techniques include: (1) a distributed hierarchical architecture that

alleviates performance bottlenecks and increases concurrency in the monitoring/filtering

process, (2) an efficient filter decomposition and allocation process that enables fine-grain

decomposition and distribution of monitoring information, (3) a “short-cut” enhancement

in the management protocol that permits the monitoring agent to avoid or bypass unneces­

sary communication, (4) a multi-threaded multi-layer monitoring agent architecture that

increases parallelism and operation overlapping, (5) dynamic monitoring load adaptation,

(6) support for several filtering optimization and implementation techniques to minimize

the number of comparisons needed to correlate events, and (7) priority-based processing

to permit users to attain a low latency for specific events. The throughput benchmarking

shows the viability of the DAG optimization technique which results in 20% improvements

over traditional DAG matching algorithm used in existing event filtering [59, 63, 94].

D y n am ism : W ith the ever-increasing complexity of managing large-scale distributed

applications, dynamism has become an essential feature in the monitoring mechanism.

Although many monitoring systems are currently present in the academic and industrial

domains, few can truly claim to be dynamic.

The HiFi architecture provides a new approach to deliver dynamism by support­

ing: (1) modification of monitoring demands at run-tim e via subscription protocols, (2) a

dynamic agent hierarchy that permits adaptable and reconfigurable monitoring when the

monitored environment changes, (3) programmable filtering through use of the filtering

model and filtering incarnation, (4) dynamic signaling that suppresses event reporting

during application execution, and (5) dynamic reliable multicasting via group masking

mechanisms [4].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

N o n -in tru siv en ess: Non-intrusiveness refers to ability of a monitoring system to limit

the amount of overhead monitoring creates in the application environment. No monitoring

operation or system can reduce this impact to an absolute zero level. However, the goal

is to reduce monitoring overhead (e.g., impact to CPU or I/O operations) to the least

amount possible.

In the HiFi system, monitoring intrusiveness is controlled and minimized by: (1)

limiting event propagation through three-levels of filtering (identity-based, content-based

and correlation-based) and through implementation of an agent hierarchy, (2) providing

predictable overhead by separating the events reporting and analysis process, resulting in

a very light instrumentation routine (ERS), (3) providing two reporting schemes, Immedi­

ate and Delayed, to reduce event reporting frequency, (4) preventing direct communication

with running programs, (5) using dynamic filtering incarnation to control monitoring gran­

ularity and to minimize the number of monitoring tasks, (6) using an event-based monitor­

ing approach which is less intrusive than a time-based approach, and (7) using multicast­

ing communication protocols, rather than point-to-point protocols. Limiting intrusiveness

may impact other functions of the monitoring system. For example, non-intrusive tech­

niques may limit the information freshness rate, which is one of the determining factors for

attaining high-performance. However, some techniques, such as reporting mode, permit

users to control the trade-offs between monitoring intrusiveness and information freshness.

The perturbation results show the viability of the dynamic signaling and batching tech­

niques to significantly reduce (> 50%) the perturbation of the monitoring system. It is

also shown that ERS has a very minimal effect on the application perturbation which is an

important key observation to produce efficient instrumentation routines. Furthermore, the

average monitoring intrusiveness is considered lower than some of the reported monitoring

systems such as Falcon [32] and Issos [69].

F lex ib ility : Flexibility equates to easy-to-use and easy-to-manage systems. Deploying

HiFi in monitoring and controlling large-scale distributed systems was part of this project’s

objectives. For this reason, the monitoring architecture, including its language and ad­

ministrative support modules, required a considerable and comprehensive effort to include

flexible user interaction.

This has been accomplished in the HiFi monitoring architecture through: (1) a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

simple and comprehensible monitoring language, (2) automatic agent organization, (3) au­

tomatic code instrum entation and modification, (4) dynamic subscription, and (5) reusable

object-oriented filtering components. These features increase user interaction while mini­

mizing overhead associated with operation and administration of the monitoring system.

E xpressiveness: Two design features that contribute to the expressiveness, or expres­

sive power, of the HiFi monitoring system are the monitoring model and the monitoring

language. The monitoring model includes filter incarnation to generate events and ma­

nipulate filters as “actions.” This enables users to define more powerful requests, thereby

increasing monitoring expressiveness.

The monitoring architecture complements the model via the Monitoring System

Language (MSL), which permits users to specify monitoring demands and to control the

application environment. MSL integrates detection of primitive and composite events

into the same framework and has a unique interface that combines a number of valuable

attributes to make it a high-level and declarative language with easy-to-use and expressive

features (see Section 3.3). As an example, the filter specification (Table 3.1) within MSL

supports two levels of abstraction (event expression and filter expression), which manifests

a rich event correlation language. Events can be correlated from within one or several

producers, or from other monitoring/management tools, such as SNMP. This permits

integration of system and application event correlation. In addition, MSL provides a

complete interface for specifying all requirements, including environmental requirements,

which is lacking in other monitoring systems.

9.3 Impact of Contributions

The impact of this work can be seen at several levels. It has provided a foundation for

studying and understanding the issues and challenges faced in monitoring and managing

large-scale distributed systems. It has effectively brought forth issues, namely scalabil­

ity, dynamism, and manageability, that have not been addressed appropriately in system

management literature or in other monitoring implementations.

This work has also presented a monitoring system which effectively addresses these

issues. A wide deployment of HiFi will demonstrate its effectiveness in monitoring a wide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

variety of large-scale distributed systems and will prove its ability to improve the overall

quality of service for such systems. The full impact can only be measured after HiFi has

been provided to the public research community for testing and experimentation. When

researchers use HiFi and fully understand its merit and limitations, we hope that new

systems will be built to improve and advance this technology.

9.4 HiFi Beyond Distributed Monitoring

Event filtering is an important mechanism for a variety of application domains, including

communication protocols, distributed system s and active databases. Advances in event

filtering (design, development and optimization advances) may significantly impact these

application domains.

The event filtering component incorporated in the HiFi monitoring system can be

reused for building and supporting applications outside the monitoring system. Specific

examples include news information dissemination, Internet resource allocation, digital li­

brary information classification, packet demultiplexing, and E-mail management services.

Section 5.5 discusses an adaptive Object-Oriented framework that can be reused efficiently

for developing general-purpose event management applications [8].

9.5 Outstanding Problems and Future Work

In the following sections, several areas are identified which may offer potential improve­

ments to the HiFi monitoring system. Additionally, research problems remaining to be

addressed by the monitoring architecture are also discussed.

9.5.1 A rch itec tu ra l Issues

Following, a number of research areas specific to the HiFi architecture are outlined.

• In c lu sio n o f H e te ro g en eo u s L SD E n v iro n m en ts . Large-scale distributed (LSD)

systems are likely to span heterogeneous platforms (such as UNIX and Windows OS),

include a variety of programming languages (such as C, C + + , Java, etc.), and use

multiple communication protocols (such as SLIP [77], TC P [85] and reliable mul­

ticast). The HiFi architecture and its agent implementation should be adapted to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

monitoring heterogeneous LSD systems. Research and development in this regard

should encompass related subproblems, such as incorporating Java and CORBA [6 6]

into the HiFi architecture.

• In te g ra tin g S N M P /C M IP . The proposed HiFi framework calls for integration of

external monitoring tools, such as SNMP and CMIP. The current version of HiFi

does not include this integration. Since external monitoring tools are useful for

enterprise management, inclusion of these tools in a next version of HiFi is planned.

• R ea l-tim e M o n ito rin g A rc h ite c tu re . While HiFi provides a mechanism for pro­

cessing events based on priority, it does not support either soft or hard time con­

straints in the event monitoring process. Issues with integrating real-time scheduling

and real-time resource allocation mechanisms, such as RTP [17, 79] and RSVP [95],

must be identified and these mechanisms must be integrated into the HiFi architec­

ture. In addition, the current monitoring priority scheme can be extended to provide

a global priority among all producers.

• D y n am ic A p p lica tio n C hanges. Enabling dynamic application changes within

the monitoring system remains to be addressed. Dynamic changes will significantly

increase the flexibility and dynamism of the monitoring system and will benefit items

such as host mobility, new program starts (forks), and process migration.

• M an a g e r C onflic ts. In the existing HiFi system, managers can work concurrently

to monitor a single LSD application. However, this concurrency can lead to in­

consistency because of potential conflicts between manager requests. For example,

different managers may require different priority levels for the same event. While

each manager receives notification whenever their requests axe changed, the possi­

bility of inconsistency remains to be addressed.

• O th e r F il te r in g O p tim iz a tio n . Development of additional techniques for opti­

mizing the filtering process is planned. One technique under consideration is based

upon the matching frequency of predicates within the DAG or PN. Implementation

and experimentation of this and similar techniques are needed to prove their viability

to improve filtering optimization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

9.5.2 F unctional Issues

A number of new functions or services can be added to the HiFi monitoring architecture

to improve the quality of service. This section describes some of these functions.

• S u p p o r tin g D iffe ren t C o rre la tio n M o d es . When multiple occurrences o f the

same event happen, the monitoring architecture currently does not address the issue

of which event notification is to be considered when evaluating the filter expression.

The DMA Petri Nets contains all information needed to solve this problem. How­

ever, the PN matching algorithm uses only the last occurrence to evaluate the filter

expression. Perm itting the user to decide how to address this issue will add more

flexibility for the user.

• D y n am ic D issem in a tio n . Two or more managers may subscribe to the same filter

(e.g., monitoring information), yet each must join its own group. This implies that

the same monitoring information is forwarded over the network multiple times to

different manager groups. To avoid communications overhead, managers may join

groups using a group name based on the filter name. However, this may result in

numerous multicast groups, which causes waste in terms of addresses and imposes

overhead on some managers. This also dictates th a t a solution for dynamic dis­

semination of monitoring information be developed to achieve an optimal balance

between the number of group names used (multicast addresses) and the number of

messages sent to managers. Further investigation and analysis of this problem is

part of the future research plan.

• F au lt T o le ran ce . A fault tolerant monitoring architecture, to include its agent and

manager entities, is required to offer a reliable service for LSD environments. The

fault tolerance algorithm and related techniques should leverage existing reliability

features, such as multi-point communications and failure notification propagation,

to build a fully fault tolerant architecture.

• S u p p o r tin g E v en t O rd e rin g . Event ordering (partial or total) is an im portant

service in many monitoring applications [48]. For example, event traces may be

merged or combined based on casual ordering. Clock synchronization (e.g., using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

logical and vector clock algorithms) can be integrated into the current architecture

to provide more robust event ordering services.

The current architecture assumes that users may use NTP [61] and may incorporate

NTP information in event notifications to achieve physical clock synchronization.

In addition, consumers can also rely on the total ordering service supported by

RMP [92] to provide logical event ordering. However, an event ordering mechanism

must be implicitly supported within the monitoring architecture itself to avoid user

intervention.

9.5.3 A pp lication Issues

By providing explicit application support, the HiFi monitoring system can achieve a larger

deployment and can be useful to more environments. For this reason, plans exist to extend

the architecture to directly support the following applications:

• P e rfo rm an ce M e a su re m e n t fo r In te rn e t Services. HiFi can be extended to

provide Internet management services, such as providing performance measurements

for Internet Service Providers (ISP) and QoS management for application steering

and tuning of Internet services [89].

• A d d itio n a l D is tr ib u te d D eb u g g in g F ea tu re s . In addition to error correlation

and event traces, other distributed debugging issues need to be explored and imple­

mented in the HiFi system. These include: distributed break points, instant reply,

and integrating gdb (GNU debugger) for getting and setting variables in remote

programs.

• V isualizing M o n ito rin g R esu lts . Visualization of monitoring results is envi­

sioned as one of several additional applications to be integrated into the monitoring

language. Visualization will increase user flexibility in using and analyzing monitor­

ing information.

9.5.4 Language Issues

In the following section, a number of research areas designed to improve the usability and

expressiveness of the monitoring language are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

• T im e S u p p o rt an d E v en t T em p o ra l O p e ra to rs . Time functions and temporal

event ordering operators, such as Before and After, will be added to the monitoring

language to increase its expressive power. These functions are directly related to,

and will facilitate resolution of, the event ordering issue discussed in Section 9.5.2.

• M o re P ow erfu l A b s tra c tio n . Although the monitoring language is high-level and

declarative, additional abstraction can be attained by utilizing the current language

with a low-level interpretation. The high-level abstraction language should be target

oriented, which will require users to only define the monitoring target (goal). Corre­

sponding filter specifications will be generated automatically. In other words, users

can specify the ultimate monitoring target without having to specify intermediate

monitoring tasks. Users, therefore, would not need to check the validity of event

correlation in the filter program.

9.6 Status and Availability

Two generations, or versions, of HiFi have been released for experimentation and imple­

mentation. Version 0.6b was developed in December 1998 and only provides support for

the main language constructs and for basic functions of the monitoring system. The more

recent version, HiFi 1.0b, was extended to support more advanced features, such as flexible

instrumentation, special language constructs (e.g., ANY, TRUE and ALL), automatic agent

organization and most of the dynamic monitoring features.

HiFi 1.0b is the version used for monitoring the IRI virtual classroom as described

in Section 7.1. Source code is publicly available from h ttp ://w w w .c s .o d u .e d u /-e h a b /

P ro je c ts /H iF i. Technical reports and papers [2, 3, 5, 6 , 7, 8] are available in the technical

report archive at the Computer Science Department of the Old Dominion University. For

source code compilation, the following packages axe required:

• Solaris 2.5 or Sun OS 5.5 or higher

• GNU g + + compiler (version 2.7.0)

• flex Lexical Analyzer (version 2.5.4)

• Yacc parser (version 2.0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.odu.edu/-ehab/

181

• Commonly used C + + list class templates

• Reliable Multicast Protocol (RMP)

• Dynamic Reliable Multicast Service (RMS 2.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

REFERENCES

[1] H. M. Abdel-Wahab and M. Feit, “Xtv: A framework for sharing x window clients in

remote synchronous collaboration,” in Proc. IEEE TriComm ’91: Communications

for Distributed Applications & Systems, pp. 159-167, April 1991.

[2] E. Al-Shaer, “High-performance event filtering: Survey and evaluation, TR-96-12,”

Tech. Rep., Computer Science Department, Old Dominion University, August 1996.

[3] E. Al-Shaer, “Event Filtering Framework: Key Criteria and Design Trade-offs,” in

IEEE 21st Int. Conference on Computer Software and Application, pp. 84-89, August

1997.

[4] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “Application-Layer Group Communi­

cation Server for Extending Reliable Multicast Protocols Services,” in IEEE Int.

Conference on Network Protocols, pp. 267-274, October 1997.

[5] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “Hierarchical filtering-based monitoring

architecture for large-scale distributed systems,” in Proc. Int. Conference on Parallel

and Distributed Computing Systems, pp. 422-427, October 1997.

[6] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “A scalable monitoring architecture for

managing distributed multimedia systems,” in Proc. IF IP /IE E E Int. Conference on

Managing Multimedia Networks and Services, pp. 237-248, July 1997.

[7] E. Al-Shaer, H. Abdel-Wahab, and K. Maly, “High-performance Monitoring Architec­

ture for Large-scale Distributed Systems Using Event Filtering,” in CS&P97: Third

International Conference on Computer Science & Informatica, vol. 3, pp. 42-46,

March 1997.

[8] E. Al-Shaer, M. Fayad, H. Abdel-Wahab, and K. Maly, “Adaptive Object-Oriented

Filtering Framework for Event Management Applications,” To appear in A CM Com­

puting Survey, December 1998.

[9] E. Al-Shaer, A. Youssef, H. Abdel-Wahab, K. Maly, , and C. Overstreet, “Reliability,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Scalability and Robustness Issues in IRI,” in IEEE Sixth Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (W E TIC E ’97), June 1997.

[10] S. Alexander, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High Speed and Robust

Event Correlation,” IEEE Communication Magazine, pp. 433-450, May 1996.

[11] F. Baiardi and N. D. G. Vaglini, “Development of a Debugger for Concurrent Lan­

guage,” IEEE Transactions on Software Engineering, pp. 547-553, April 1986.

[12] M. L. Bailey, B. Gopal, M. A. Pagels, L. Peterson, and P. Sarkar, “PathFinder: A

Pattern-Based Packet Classifier,” in Proc. 1st Symposium on Operating System Design

and Implementation, pp. 24-42, USENIX Association, November 1994.

[13] P. Bates, “Debugging Heterogeneous Distributed Systems Using Event-based Models

Behavior,” in Proc. Workshop in Parallel and Distributed Systems Debugging, pp. 11-

22, 1988.

[14] K. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit.

Los Alamitos: IEEE Computer Society Press, 1994.

[15] R. Boutaba and S. Znaty, “Architectural Approach for Integrated Network and Sys­

tems Management,” Computer Communication Review, vol. 25, no. 5, pp. 13-38,

1995.

[16] R. T. Braden, “A Pseudo-Machine for Packet Monitoring and Statistics,” in Proc. the

Symposium on Communications Architectures and Protocols (SIGCOMM), pp. 200-

209, ACM, August 1988.

[17] I. Busse, B. Deffner, , and H. Schulzrinne, “Dynamic QoS Control of Multimedia

Applications based on RTP,” Second Workshop on Protocols for Multimedia Systems,

October 1995.

[18] J. Case, K. McCloghrie, M. Rose and S. Waldbusser, “Introduction to SNMPv2,”

RFC1441, Network Working Group, IETF, April 1993.

[19] S. Chakravarthy and D. Mishra, “Snoop: An expressive event specification language

for active databases,” Data and Knowledge Engineering, vol. 14, pp. 1-26, November

1994.

[20] P. S. Chen, “The entity-relation model-toward a unified view of data,” ACM Trans­

actions on Database Systems, vol. 1, pp. 9-36, March 1976.

[21] R. S. Dodd and C. V. Ravishankar, “Monitoring and debugging distributed real-time

programs,” Software-Practice and Experience, vol. 22, pp. 863-877, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

[22] L. Ehley, B. Furth, and M. Ilyas, “Evaluation of Multimedia Synchronization Tech­

niques ,” in Proc. International Conference of Multimedia Computing Systems,

pp. 110-119, May 1994.

[23] C. Fischer and R. L. Jr., Craft A Compiler with C. Redwood, CA: Ben­

jamin/Cummings, 1995.

[24] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A Reliable Multicast

Framework for Light-weight Sessions and Application Level Framing,” pp. 342-356,

October 1995.

[25] V. Frost and B. Melamed, “Traffic Modeling for Telecommunication Networks,” IEEE

Communication Magazine, vol. 32, pp. 70-80, March 1994.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Software Architecture. Reading, Massachusetts: Addison-Wesley Publishing

Company, 1995.

[27] S. Gatziu and K. R. Dittrich, “Detecting Composite Events in Active Database Sys­

tems Using Petri Nets,” in Proc. 4th International Workshop on Research Issues in

Data Engineering: Active Database Systems, pp. 2-9, February 1994.

[28] N. Gehani, H. V. Jagadish, and O. Shmueli, “Event Specification in an Object-

Oriented Database,” in Proc. AC M SIGMOD International Conference on Manage­

ment of Data, Lecture Notes Computer Science, 1992.

[29] N. Gehani, H. V. Jagadish, and O. Shmueli, “COMPOSE A System for Composite

Event Specification and Detection,” in Book Chapter in Advanced Database Concepts

and Research Issues, pp. 81-90, Lecture Notes Computer Science, 1993.

[30] S. Y. German Goldszmidt and Y. Yemini, “Network Management by Delegation - the

MAD approach,” in Proc. 1991 CAS Conference, pp. 347-359, 1991.

[31] M. Ginsberg, Essentials of Artificial Intelligence. New York, NY: Morgan Kaufmann,

1993.

[32] W. Gu, G. Eisenhauer, E. Kraemer, K. Stasko, J. Vetter, and N. Mallavarupu, “Fal­

con: On-line Monitoring and Steering of Large-Scale Parallel Programs,” in Proc.

F RO N TIERS’95, pp. 11-19, February 1995.

[33] P. K. Harter, D. M. Heimbigner Jr., and R. King, “IDD.Am Interactive Distributed

Debugger,” in Proc. International Conference on Distributed Computing Systems,

pp. 498-506, 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

[34] J. Haugdahl, “Benchmarking LAN protocol analyzers,” in Proc. 13th IEEE Confer­

ence on Local Computer Networks, October, 1988.

[35] B. Helmbold and D. Luckham, “Debugging Ada Tasking Program,” IEEE Software,

pp. 47-57, 1985.

[36] R. Hofmann, R. Klar, B. Mohr, A. Quick, and M. Siegle, “Distributed Performance

Monitoring: Methods, Tools and Applications,” IEEE Transactions on Parallel and

Distributed Systems, vol. 5, pp. 585-597, June 1994.

[37] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Com­

putation. Reading, Massachusetts: Addison-Wesley, 1979.

[38] A. Hough and J. Cuny, “Belvedere: Prototype of a Pattern-oriented Debugger for

Highly Parallel Computation,” in Proc. International Conference on Parallel Pro­

cessing, pp. 735-738, 1987.

[39] Isis D istributed Systems, Inc., Marlboro, MA, Isis Users ’s Guide: Reliable Distributed

Objects for C++, April 1994.

[40] V. Jacobson, C. Leres, and McCanne, “The Tcpdum p Manual Page,” Lawrence Berke­

ley Laboratery, June 1989.

[41] R. Jain, The Arts o f Computer Systems Performance Analysis. Reading, Mas­

sachusetts: Addison-Wesley, 1991.

[42] R. Johnson and B. Foote, “Designing reusable classes,” Journal o f Object-Oriented

Programming, vol. 1, pp. 22-35, June 1988.

[43] J. F. Jordann and M. E. Paterok, “Event Correlation in Heterogeneous Networks

Using the OSI Management Framework,” in Proc. 1st International Symposium on

Integrated Network Management, pp. 365-379, IFIP, 1989.

[44] J. Joyce, G. Lomow, K. Slind and B. Unger, “Monitoring Distributed Systems,” ACM

Transactions on Computer Systems, vol. 5, no. 2, pp. 121-50, 1987.

[45] K. S. Klemba, “Openview’s Architectural Models,” in Proc. 1st International Sym ­

posium on Integrated Network Management (B. Meandzija and J. Westcott, eds.),

pp. 565-572, IFIP, 1989.

[46] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “Using H y + for Network

Management and Distributed Debugging,” in Proc. Cascon, pp. 450-471, October

1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

[47] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “Coding Approach to Event

Correlation,” in Proc. Fourth International Symposium on Integrated Network Man­

agement, May 1995.

[48] L. Lamport, “Time, Clocks and Ordering of Events in a D istributed System,” Com­

munication of ACM, vol. 21, no. 7, pp. 558-565, 1987.

[49] B. Lazzerini and C. A. Prete, “Disdeb: An Interactive high-level Debugging System

for a Multi-microprocessor System,” Microprocessor, Microprogram, vol. 18, pp. 401-

408, 1986.

[50] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Programs with Instant

Reply,” IEEE Transactions on Computers, vol. 36, pp. 471-482, April 1987.

[51] J. Levine, T. Mason, and D. Brown, Lex & Yacc. Sebastopol, CA: O ’Reilly & Asso­

ciates, 1995.

[52] B. Lewis and D. J. Berg, eds., Threads Primer: A Guide to Multithreaded Program­

ming. Sun Soft Press, 1996.

[53] B. J. MacLennan, Principles o f Programming Languages. San Diego, CA: Sauders

Collage Publishing, 1987.

[54] A. D. Maio, S. Ceri, and S. Reghizzi, “Execution Monitoring and Debugging Tool for

D ata Using Relational Algebra,” in Proc. Ada International Conference, 1985.

[55] A. D. Malony, D. A. Reed, and H. A. Wijshoff, “Performance Measurement Intrusion

and Perturbation Analysis,” IE E E Transactions on Parallel and Distributed Systems,

vol. 3, pp. 433-450, July 1992.

[56] K. Maly, H. Abdel-Wahab, C. M. Overstreet, C. Wild, A. Gupta, A. Youssef, E. Sto-

ica, and E. Al-Shaer, “Interactive distance learning over intranets,” IEEE Internet

Computing, vol. 1, pp. 60-71, February 1997.

[57] M. Mansouri, Monitoring Distributed Systems, Reading, Massachusetts: Addison-

Wesley, 1994.

[58] K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman, “Tools for distributed

Application Management,” IE E E Computer, vol. 24, pp. 42-51, August 1991.

[59] S. McCanne and V. Jacobson, “The BSD Packet Filter,” in W inter USENIX, pp. 259-

269, USENIX Association, January 1993.

[60] C. E. McDowell and D. D. Helmbold, “Debugging Concurrent Programs,” ACM Com­

puting Surveys, vol. 21, pp. 593-622, December 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

[61] D. Mills, “Simple network time protocol (SNTP) version 4 for ipv4, IPv6 and OSI,”

RFC 2030, Network Working Group, IETF, October 1996.

[62] J. C. Mogul, “Efficient Use of Workstations For Passive Monitoring of Local Area Net­

works,” in Proc. Symposium on Communications Architectures and Protocols (SIG-

COMM), ACM, September 1990.

[63] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The Packet Filter: An Efficient

Mechanism of User-Level Network Code,” in Proc. 11th Symposium on Operating

Systems Principles, pp. 39-51, ACM, November 1987.

[64] J. Mott, A. Kandel, and T. Baker, Discrete Mathematics for Computer Scientists and

Mathematicians. Englewood Cliffs, NJ: Prentice Hall, 1987.

[65] B. Neil and J. J. Garcia-Luna-Aceves, “Improving Internet Multicast with Routing

Labels,” pp. 241-250, October 1997.

[66] Object Management Group, The Common Object Request Broker: Architecture and

Specification. Tech. Rep. CCITT X.734, 1993.

[67] Object Management Group, The Common Object Request Broker: Event Service Spec­

ification. Tech. Rep. CCITT X.734, 1993.

[68] D. Ohsie, and S. Kliger, “Network Event Management Surveys,” Tech. Rep., System

Management Arts (SMARTS), April 1993.

[69] D. Olge, K. Schwan, and R. Snodgrass, “Application-Dependent Dynamic Monitoring

of D istributed Systems,” IEEE Transactions on Parallel and Distributed Systems,

vol. 21, pp. 593-622, December 1989.

[70] F. G. Pagen, Formal Specification of Programming Languages. Englewood Cliffs, NJ:

Prentice Hall, 1981.

[71] S. Pejhan, A. Eleftheriadis, and D. Anastassiou, “Refinements to Rate-Based Conges­

tion Control w ith Extension to Multipoint, Multimedia Applications,” IE E E /A C M

Transactions on Networking, vol. 4, pp. 121-50, June 1996.

[72] G. Perrow, “Monitoring Techniques in Distributed System Management, Technical

Report 421,” Tech. Rep., University of Western Ontario, March 1994.

[73] Rational Software, “Application Note: Doubling the Performance of Xman Using

Quantify,” Tech. Rep., http://ww w .rational.com /products/quantify, 1998.

[74] T. Risch, “Monitoring Database Objects,” in Proc. VLDB, August 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.rational.com/products/quantify

188

[75] M. T. Rose, The Simple Book: A n Introduction to Internet Management. Englewood

Cliffs, NJ: Prentice Hall, April 1994.

[76] H. A. Schmid, “Systematic framework design by generalization,” Communication of

ACM , vol. 40, pp. 48-51, October 1997.

[77] K. Schneider and S. Venters, “P P P Serial Data Transport Protocol (SDTP),” RFC

1963, Network Working Group, IETF, August 1996.

[78] B. Schroeder, “On-line Monitoring: A Tutorial,” IEEE Computer, vol. 28, pp. 72-78,

June 1995.

[79] H. Sehulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Proto­

col for Real-Time Applications. Audio-Video,” RFC 1889, Transport Working Group,

IETF, January 1996.

[80] K. R. Sheers, “HP OpenView Event Correlation Service,” Tech. Rep., Hewlett-

Packard Journal, 1996.

[81] M. Sloman, ed., Network and Distributed System Management. Reading, Mas­

sachusetts: Addison-Wesley, 1994.

[82] W. Stallings, ed., SNMP, SNMPv2 and CMIP: The Practical Guide to Network Man­

agement Standards. Reading, Massachusetts: Addison-Wesley, 1993.

[83] I.S.O. Standarization, Information Processing Systems - Open Systems Interconnec­

tion - Part 5: Event Report Management Function. Tech. Rep. CCITT X.734, 1993.

[84] W. R. Stevens, Advanced Programming in the UNIX Environment. Reading, Mas­

sachusetts: Addison-Wesley, 1993.

[85] W. R. Stevens, TC P /IP niustrated, Volume 1: The Protocols. Residing, Mas­

sachusetts: Addison-Wesley, 1994.

[86] W. R. Stevens, T C P /IP Illustrated, Volume 3: TCP for Transactions, H TTP, NNTP

and the UNIX Domain Protocols. Reading, Massachusetts: Addison-Wesley, 1996.

[87] Sun Microsystems Inc., “The Snoop(lM) Manual Page,” in SunOS 5.5 Reference

Manual, January 1995.

[88] A. S. Tanenbaum, Modem Operating Systems. Englewood Cliffs, NJ: Prentice Hall,

1993.

[89] Tivoil, Inc., http://www.tivoli.com/o_products/html/xsite_mia_wp.html, Managing

Internet Applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tivoli.com/o_products/html/xsite_mia_wp.html

189

[90] Tivoil, Inc., http://www.tivoli.com /o_products/html/dm _ds.htm l, Tivoli Distributed

Monitoring.

[91] C. Wang and M. Schwartz, “Fault detection with multiple observers,” IE E E /AC M

Transactions on Networking, vol. 1, pp. 48-55, February 1993.

[92] B. W hetten, T. Montgomery, and S. Kaplan, “A High Performance Totally Ordered

Multicast Protocol,” in Proc. Theory and Practice in Distributed Systems, pp. 33-57,

1994.

[93] O. Wolfson, S. Sengupta, and Y. Yemini, “Managing Communication Networks by

Monitoring Databases,” IEEE Transactions on Software Engineering, pp. 944-953,

September 1991.

[94] M. Yuhara, B. Bershad, C. Maeda, and J. E. B. Moss, “Efficient Packet Demulti­

plexing for Multiple Endpoints and Large Messages,” in Proc. Winter 1994 USENIX

Conference, USENIX Association, January 1994.

[95] L. Zhang, S. Deering, D. Estrin, S. Shenker, , and D. Zappala, “RSVP: A new resource

ReSerVation Protocol,” IEEE Network, Sept. 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tivoli.com/o_products/html/dm_ds.html

190

A PPEN D IX A

DISTRIBUTED “HELLO WORLD” MONITORING

EXAMPLE

This appendix illustrates by step-by-step example how HiFi can be used to instrument and

monitor distributed “HelloWorld” application described in Chapter 6. The HelloWorld

distributed programs generate randomly two types of events: HelloEvent and WorldE-

vent where each one indicates the event type (in Info , the machine name (in Machine)

and the the sequence number or time stam p (TStamp) of this event. A user wants to

know if any at least two HelloWorld distributed programs send “Hello” (HelloEvent) and

“World” (WroldEvent) simultaneously or, in other words, having the same sequence num­

ber TStamp. The following are the steps followed to perform this monitoring task:

(1) The user initialize the program code for instrumentation by including “ERSvar.h” in

the headers, initializing ERS using ER SInit, and inserting user sensors (ReportEvent).

The code after this preparation is show below:

A .l H elloW orld.cc

#include<stdio.h>
#include"ERSvar.h"
#include"./distribution/random_variates,h"
#define NapTime 1 /* sec*/
extern int ReportEvent(char *Ev,char *Mod,char* Fun,char *Rep, int cnt, ...);
extern int ConnectToLMA(void);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

extern int ERSInit(int) ;

main(int argc, char **argv) {
int sam,TStamp=l;
char *ModName = new char [16], *FuncName= new char [32];
char *Info = new char [64] , *Machine= new char [32], *Type = new char [16] ;
GetMachineName(Machine); strcpy(FuncName,"Greetings");
ERSInit(AUTOMATIC); /* initialization ERS * /

for (; ;) {
Bernoulli *ber = new Bernoulli(0.5); / * either 1 or 0 */
sam = ber->sample() ;
if (sam ==1) {
printf("HELLO = 7,d\n", TStamp);
ReportEvent("HelloEvent");

>
if (sam ==0) {
printf ("WORLD = 7,d\n" , TStamp);
ReportEvent("WorldEvent");

}
sleep(NapTime);
TStamp++;

> // end of for (;;)
J // end of main

(2) The user writes in a file the environment, events, filter specifications conforming to

ESL, HESL, HFSL, respectively. Let us call this file: “ex-helloworld” which is shown

below:

A.2 Language S crip t: “ex_hellow orld”

Environment Specs

ODU = dragon, elf;
VB = naga, zeusQ
VA.State = ODU, VB;
USA = VA.State &
HelloWorld = *.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

Events Specs

EVENT= {ModuleName=HelloWorld, FuncName=Greetings, Immediate;
Machine="ANY", Info="Hello", TStamp=ANY> HelloEvent.
EVENT= {ModuleName=HelloWorld, FuncName=Greetings, Immediate;
Machine="ANY", Info="World", TStamp=ANY> WorldEvent.

Filters Specs

FILTER= [(HelloEvent && WorldEvent)];
[(HelloEvent.TStamp = WorldEvent.TStamp &&
HelloEvent.Machine != WorldEvent.Machine)];

[FORWARD]; HelloEventFilter.

(3) The user starts the instrumentation process by inputing the language script file,

“ex_helloworld” to M LI program using -i option to initiate the instrumentation opera­

tion. The partial output script is shown below:

A .3 P a r tia l O u tp u t

zues:/home/ehab/HiFi>MLI -i -a ex.helloworld
HiFi: Hierarchical Filtering-based Monitoring System -Version 0.1b
MLI:Monitoring Language Interface Version 0.3b

Language Spec File=ex_helloworld, Output File=MLI.out
Constructing Monitoring-based Information

... Deleted Stuff ..

End of Parsing! See the Output Files "MLI.out"

Enter File Name > HellowWorld.ee
File name=HelloWorld, extension=cc
< « Starting the Instrumentation Precess » >
Generating .HiFiHelloWorld.ee
Reading ‘‘Makefile’’ and generating Makefile.HiFi
<«. Instrumentation is Done » >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

Compiling and Linking with ERS object: ‘‘make -f Makefile.HiFi’* (Y\N) > y
... compiling finished ...
YOU CAN START NOW: YOUR PROGRAM WILL START THE AGENTS

USE MLI -a <filename> TO OPERATE THE MANAGER
FASTEN YOUR SEAT BELT AND DRIVE SAFELY with HiFi!

(4) The user’s sensors are replaced, now, by the extended “system sensors” as shown below.

The instrumentation process generates a new instrumented file, .HiFiHelloWorld.ee, which

is typical the same as the original file, HelloWorld.ee, but the user’s sensors are replaced

with extended “system sensors” as shown below. The “Makefile” file is also modified

accordingly.

A .4 S ystem Sensors

ReportEvent("HelloEvent","HelloWorld","Greetings","IMMEDIATE",3,
"Machine",STRING,Machine,"Info",STRING,"Hello","TStamp",INTEGER,TStamp);

ReportEvent("WorldEvent","HelloWorld","Greetings","IMMEDIATE",3,
"Machine".STRING,Machine,"Info".STRING,"Hello","TStamp".INTEGER,TStamp);

(5) Now, the user should starts the manager program, and then starts the application
programs (instrumented) in the machines specified in the environment specifications, but
without -i option as shown below (-a means ESL, HESL and HFSL are all in the same file) :

zues:/home/ehab/HiFi>MLI -a ex_helloworld

dragon:/home/ehab/HiFi>HelloWorld

elf:/home/ehab/HiFi>HelloWorld

zues:/home/ehab/HiFi>HelloWorld

naga:/home/ehab/HiFi>HelloWorld

Notice that “HelloWorld” must run from the same file system (may be directory)

that contains LMA and DMA programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

APPEN DIX B

M ONITORING-KNOW LEDGE BASE

B .l E n v iro n m en t Tables

class Itemlnfo {
int num;
String name;
ItemlnfoO { >
ItemInfo(int nu, String nm) : num(nu), name(nm){ >
int operator!=(const Itemlnfo & Rhs) const {

if (Rhs.num == -1) return (name != Rhs.name);
else if (Rhs.name == "*") return (num != Rhs.num);
else return ((name != Rhs.name) && (num != Rhs.num));

>
>;
template<class Rtype> class Enviable ■{

int num;
String name;
List<Rtype> *asslist;
EnvTableO { >
EnvTable(int nu, String nm, List<Rtype> *Lin) : num(nu) , name(nm), asslist(Lin){ >
int operator ! = (const EnvTable & Rhs) const -{

if (Rhs.num == -1) return (name != Rhs.name);
else if (Rhs.name == "*") return (num != Rhs.num);
else return ((name != Rhs.name) && (num ! = Rhs.num));

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

class Hierarchylnfo {
int level;
String domname;
Hierarchylnfo() { }
HierarchyInfo(int level, String domname) : level(level) , domname(domname){ }
int operator!=(const Hierarchylnfo & Rhs) const {

if (Rhs.level == -1) return (domname != Rhs.domname);
else if (Rhs.domname == "*") return (level != Rhs.level);
else return ((domname != Rhs.domname) II (level != Rhs.level));

>

>;

List< EnvTable<ItemInfo> >
Listltr< EnvTable<ItemInfo>
List< EnvTable<ItemInfo> >
Listltr< EnvTable<ItemInfo>
List< EnvTable<ItemInfo> >
Listltr< EnvTable<ItemInfo>
List< EnvTable<ItemInfo> >
Listltr< EnvTable<ItemInfo>
List<HierarchyInfo>
ListItr<HierarchyInfo>

DomainToMacTable;
> PtrDomainToMacTable(DomainToMacTable);

MacToDomainTable;
> PtrMacToDomainTable(MacToDomainTable);

SuperdomainTable;
> PtrSuperdomainTable(SuperdomainTable);

ModuleToLocTable;
> PtrModuleToLocTable(ModuleToLocTable);
HierarchyInfoList;
PtrHierarchylnfoList(HierarchyInfoList);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

B.2 Primitive Events Tables

class ATTRIBUTE {
String name;
int rel; / * < > = . . */
Value val;

ATTRIBUTE() { >
ATTRIBUTE(String nm, int r, Value v) : name(nm), rel(r), val(v){ >
int operator ! = (const ATTRIBUTE ft Rhs) const {
return ((name != Rhs.name) ftft (rel != Rhs.rel));

>
>;
class PrimEvent. {

int id;
int attctr; / * from 0 -> N-l */
String name;
String ModName;
String FuncName;
String ReportMode;
List<ATTRIBUTE> *varatt;
PrimEvent() { }
PrimEvent(int nu,int ctr, String nm,

String mod, String fn, String rep, List<ATTRIBUTE> *Latt) :
id(nu), attctr(ctr), name(nm), ModName(mod), FuncName(fn),
ReportMode(rep),varatt(Latt){ >

int operator ! = (const PrimEvent ft Rhs) const {
if (Rhs.id == -1) return (name != Rhs.name);
else if (Rhs.name == "*") return (id != Rhs.id);
else return ((name != Rhs.name) && (id != Rhs.id));

>
};
List<PrimEvent> PrimEventTable;
ListItr<PrimEvent> PtrPrimEventTable(PrimEventTable);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

B.3 Composite Events Tables

class CompEventBody {
int scope;
String name;
int rel; /* between this event and next one */
int type;
CompEventBody() { >
CompEventBody(int sc,String nm,int r.int t) :

scope(sc), name(mn), rel(r), type(t){ }
int operator!=(const CompEventBody & Rhs) const {

if (Rhs.scope == -1)
return (name != Rhs.name);

else if (Rhs.name == "*")
return (scope != Rhs.scope);

else
return ((name != Rhs.name) && (scope != Rhs.scope));

}
>;

class CompEvent {
int id;
int max.scope;
String name;
List<CompEventBody> *evlist;
CompEvent() { }
CompEvent(int nu, int max, String nm, List<CompEventBody> *Lev)

id(nu) , max_scope(max) , name(nm), evlist(Lev)-{ >
int operator!=(const CompEvent & Rhs) const {

if (Rhs.id == -1)
return (name != Rhs.name);

else if (Rhs.name == "*")
return (id != Rhs.id);

else
return ((name != Rhs.name) && (id != Rhs.id));

>
} ;

List<CompEvent> CompEventTable;
ListItr<CompEvent> PtrCompEventTable(CompEventTable);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

B.4 Filter Tables

class FilerExpr {
String
String
int rel;

attname;
evname;

Value ♦value;
List<ltemlnfo> *LMAs; /* machine names */
List<ItemInfo> *DMAs; /* domain names ♦/
FilterExprO { >
FilterExpr(String an, String en, int r, Value *v, List<ItemInfo> *lm,

Lis:b<ItemInfo> *dm) :
attname(an), evname(en), rel(r), value(v), LMAs(lm), DMAs(dm){ >
int operator!=(const FilterExpr & Rhs) const

return (attname != Rhs.attname);

List<ItemInfo> *LMAs; /* LMA names */
List<ItemInfo> *DMAs; /* DMA names ♦/
EventExprO { }
EventExpr(int id,String nm, int scope, int rel,List<ItemInfo> *LMAs,

List<ltemlnfo> *DMAs):
id(id),evname(nm) ,scope(scope),rel(rel), LMAs(LMAs), DMAs(DMAs){ }
int operator!=(const EventExpr & Rhs) const {

if (Rhs.id == -1) return (evname != Rhs.evname);
else if (Rhs.evname == "*") return (id != Rhs.id);
else return ((evname != Rhs.evname) &k (id != Rhs.id));

>;
class EventExpr {

int
String evname;

id;

int
int

scope;
rel;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

class Filter •{
int
String
String

id;
fname;
action;

List<EventExpr> *EX; /* has all events invovled */
List<FilterExpr> *FX; /* has all attributes */
FilterO { >
Filter(int id,String fname,String action,List<EventExpr> *EX,

List<FilterExpr> *FX):
id(id) , fname (fname) .action (act ion) ,EX(EX) ,FX(FX){ }

int operator!=(const Filter & Rhs) const {
if (Rhs.id == -1)

return (fname != Rhs.fname);
else if (Rhs.fname == "*")

return (id != Rhs.id);
else

return ((fname != Rhs.fname) && (id != Rhs.id));
>

>;
List<Filter> FilterTable;
ListItr<Filter> PtrFilterTable(FilterTable);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

A PPEN DIX C

CLASSES AND ALGORITHMS OF DAG AND PN

C .l DAG Classes and Iterators

class Value {
int rel; /* < > = .. */
Item item;
Value() { >
Value(int r, Item it) : rel(r), item(it) { >
int operator ! = (const Value ft Rhs) const -[
return (rel != Rhs.rel); }

>;

class ATTRIBUTE {
String name;
List<Value> *val;
ATTRIBUTE() { }
ATTRIBUTE(String nm, List<Value> *v) : name(nm), val(v){ >
int operator!=(const ATTRIBUTE ft Rhs) const {
return (name != Rhs.name); }

>;
class DAGNodelnfo {

String FuncName;
String ReportMode;
List<ATTRIBUTE> *Pred;
DAGNodelnfo() { }
DAGNodelnfo(String fn, String rep, List<ATTRIBUTE> *Latt) :

FuncName(fn), ReportMode(rep), Pred(Latt){ }
int operator!=(const DAGNodelnfo ft Rhs) const {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

return (FuncName != Rhs.FuncName); >
>;
class DAGNode {

String ModName;
List<DAGNodeInfo> *DAGNodeInfoTable;
DAGNode() { >
DAGNode(String mn, List<DAGNodeInfo> *DN): ModName(mn), DAGNodelnfoTable(DN){ >
int operator!=(const DAGNode ft Rhs) const {

return (ModName != Rhs.ModName); >
>;
List <DAGNode> DAG;
Listltr <DAGNode> PtrDAG(DAG);

class DAGItr
{
public:
DAGItr() O
"DAGItrO -Q

virtual int InsertFilter(FilterMsg *Subfilter);
virtual int DeleteFilter(String *FilterName);
virtual int ModifyFilter(String *FilterName, FilterMsg *Filter);
virtual String DAGMatchEvent(FilterMsg *event);
virtual int PredEvaluate (FMsgPred *event, int rel, Item *dag);

>;

struct Item {
int type; /* 1 int, 2 float 3 string*/
union {

int intv; double fltv; char strv[30];
} value;

>;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

C .2 P N Classes and I te ra to rs

struct RValue {
union {

int intv;
double fltv;
char strv[MAX_LENGTH];

} item;
>;

class Place {

int
int mark;

mode; /* 0,1,2 means consider the 1st, the last and
event every occurance */

String EVname;
List<EventState> *0ccurStates;
Place () { >
Place (int mk, int md, String name, List<EventState> *es) :
mark(mk) , mode(md), EVname(name), OccurStates(es) -(>
int operator!=(const Place ft Rhs) const {

if (EVname != Rhs.EVname)
return (EVname != Rhs.EVname); }

ExpressionO { >
Expression(String la,String In,int rel,int type,String ra,String rn,RValue *val):

Lattname(la),Levname(ln).Levid(lid),rel(rel),
Rtype(type), Rattname(ra),Revname(rn),Revid (rid).Rvalue(val) { >

int operator! = (const Expression ft Rhs) const ■(
if (Rhs.Levname ! = Levname) return (Levname != Rhs.Levname);

>;

class Expression {

String
String
RValue

String
String
int
int

Lattname;
Levname;
rel;
Rtype; /* 1 int, 2 float 3 string*/
Rattname;
Revname;
♦Rvalue;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

else if (Rhs.Revname != Revname) return (Revname ! = Rhs.Revname);
}

>;

class PNnode {
int NodelD;
int fire_flag; /* fires if 0, otherwise it is # of places + 1 */
String FilName;
String Action;
int pred.count;
List<Place> *places;
List<Expression> *PNFX;
PNnode () { }
PNnode(int id, int ink, int f, String fn,String ac, int ct,

List<Place> *pl, List<Expression> *fx):
NodelD(id),default_mark(mk),fire_flag(f),FilName(fn),Action(ac),
pred_count(ct).places(pi), PNFX(fx) { }
int operator!=(const PNnode & Rhs) const {
return (NodelD != Rhs.NodelD);

>

List<PNnode> PN;
ListXtr<PNnode> PtrPN(PN);

class PNItr

public:
PNItrO {}
"PNItr() {>

virtual int InsertFX(FilExprMsg *FX) ;
virtual int DeleteFX(FilExprMsg *FX);
virtual int ModifyFX(FilExprMsg *FX) ;
virtual int PNMatchEvent(FilterMsg *PrimEvent);
virtual int FXEvaluation(PNnode *FX);
virtual int RestoreNode(PNnode *FX);

>;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

C.3 DAG E v en t M atch ing A lgo rithm

String DAGItr::DAGMatchEvent(FilterMsg *event)

max=event->PredCount;
Listltr <DAGNode> DAGFinder(DAG);
List<DAGNodeInfo> *dumnode= new List<DAGNodeInfo>;
if (DAGFinder.Find(DAGNode(event->mod,dumnode))) {
/* check here for common function names */
Listltr <DAGNodeInfo> DAGInfoFinder(*(DAGFinder().DAGNodelnfoTable)) ;
List<ATTRIBUTE> *dumAtt= new List<ATTRIBUTE>;
if (DAGInfoFinder.Find(DAGNodeInfo(event->func,event->rep,dumAtt))) {
while (count < max) { /* check here for common Attribute Name */

Listltr <ATTRIBUTE> AttFinder(*(DAGInfoFinder().Pred));
if (AttFinder.Find(ATTRIBUTE(event->Predicates[count].name.dumVal))) {

/* evaluate the predicate */
for (ListItr<Value> VItr(*(AttFinder().val));+VItr;++VItr) {

AttFinder++;
if (! strncmp((char*)AttFinder().name,"EVID",4)) {

return AttFinder().name; /* DETECTED */
}
if (!PredEvaluate(<fc(event->Predicates[count]), VltrO.rel,

&(VItr().item)))
return "REJECTED";

else break;
} /* end of for * /

>
else /*common attribute name not found*/

return "REJECTED" /*event rejected */
count++;

} /* end of while */
>

else return "REJECTED"; /* common func name not found */
} /* common module name not found */
else return "REJECTED";

} /* end of DAGMatchEvent() */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

C .4 P N E ven t M atch ing A lgo rithm

int PNItr::PNMatchEvent(FilterMsg *PrimEvent) {
List <int> *ids,*dumids = new List<int>; int result=0;
PtrEventsTable.Zeroth();
if (PtrEventsTable.Find(EventNodes(PrimEvent->id,-l,dumids)))

ids = PtrEventsTable().PNids; /* event found */
else return 0; /* event not found */
List<Expression> *expr, *dumexpr = new List<Expression>;
for(Listltr<int> Itr(*ids); +Itr; ++Itr) {

PtrPN.Zeroth();
if (PtrPN.Find(PNnode(Itr(), 1, 0,"Filname","Action",this_places,0,expr))) {
places = PtrPN().places;
ListItr<Place> PtrPlace(*places);
FilterMsg *state = new FilterMsg;
if (PtrPlace.Find(Place(0,0,-l,PrimEvent->id,state))) {

if (PtrPlaceQ .mark ==1 && PtrPlaceO .mode==0) { /*duplicate occurance */
continue;

}
PtrPlaceO .mark=l; PtrPNO .fire_flag— ;
if (PtrPNO .fire.flag == 0) {/* all places marked */

if (FXEvaluation(&(PtrPNO))) { /* perform action * /

RestoreNode(&(PtrPNO)); /*restore filter for reactivation*/
>

}
else continue;

}
else break; /* PrimEvent not found */

>

else continue;
>

return result;
} /* end of PNEventMatchO */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

A PPENDIX D

SCALABILITY TEST SIMULATION PROGRAM

main()

float cen,dec,hier,P ,pr=0.5,LMA,DMA=0,N,Mu=8000,L ,freq,D ,Result;
int i,SATURATED=0;
for (;;) {

cout « "Enter N>"; cin » N;
cout « "Enter Event Frequency^"; cin » freq;
P = ((freq*N)/Mu); cen = (1/Mu) / (1-P);
cout « "Centralized= " « cen « endl;
dec = ((1/Mu) / (l-(freq/Mu))) + ((1/Mu) / (l-((freq»pr*N)/Mu)));
cout « "Decentralized= " « dec « endl;
cout « "Enter # LMAs>"; cin » D;/*D:bracnhing factor,L:hierachy hight*/
LMA = ((1/Mu) / (1-((pr*f req)/Mu))) ;
L=logl0(N)/loglO(D); /* <==> L=logD(N); * /

L=ceil(loglO(N));
cout « "L=" «L«endl;
for (i=l; i <= L-l; i++) {

Result = ((1/Mu) / (l-((freq*pr*D)/Mu)));
DMA = DMA + Result;
D=D*D;
if (Result < 0) {
SATURATED=1;
break;

>
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

if (SATURATED) {
cout « "DMAs are SATURATED " « endl;

>
else {

cout « "Hierarchical(0.1)= " « LMA+ (.1*DMA) << endl;
cout « "Hierarchical(0.5)= " « LMA+(.5*DMA) << endl;
cout « "Hierarchical(0.9)= " « LMA+(.9*DMA) « endl;

}
DMA=0;SATURATED=0;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

A PPEN D IX E

ACRONYMS

BSD Berkeley Software Division

CCITT The International Telegraph and Telephone Consultative Committee

CMIP Common Management Information Protocols

DMA Domain Monitoring Agent

ERS Event Reporting Stub

ESL Environment Specification Language

EX Event Expression

FX Filter Expression

HASL High-Level Action Specification Language

HESL High-Level Event Specification Language

HFSL High-Level Filter Specification Language

HSN High Speed Network

IP Internet Protocol

IRI Interactive Remote Instruction

LAN Local Area Network

LMA Local Monitoring Agent

(Continued in the next page)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

LSD Large-scale Distributed Systems

MA Monitoring Agent

MAN Metropolitan Area Network

MLP Monitoring Language Processor

MSL Monitoring System Language

SNTP Simple Network Time Protocol

OSI Open System Interconnection

SNMP Simple Network Management Protocol

RFC Request For Comments

RMP Reliable M ulticast Protocol

RSVP Resource Reservation Protocol

RTP Real-time Transport Protocol

RTT Round Trip Time

TCP Transmission Control Protocol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

V ITA

Ehab Salem Al-Shaer was born in Riyadh, Saudi Arabia, on July 4, 1967. He re­

ceived his Bachelor of Science in Computer Engineering form College of Computer Science

and Engineering, King Fahad University of Petroleum and Minerals, Saudi Arabia, in May

1990. Al-Shaer worked as a senior networking engineer in DataGeneral Corp. from June

1990 to July 1992. During his work in the industry, he was awarded 14 professional cer­

tificates in networking and image archiving technology from DataGeneral, Tellabs, Novell,

Cygnet and Racal Melgo. In June 1992, Al-Shaer joined the computer science gradu­

ate school at Northeastern University, Boston, Massachusetts, from which he received his

Master of Science degree in December 1993. Then he worked as a Research Assistant in

Computer and Communication Research Center (CCRC) in Washington University until

August 1995. Al-Shaer started working on his Ph.D. degree in Computer Science at Old

Dominion University, Norfolk, Virginia in September, 1995. Al-Shaer was awarded fel­

lowship grants from USENIX in 1992 and from NASA Langley Research Center in 1997.

During his academic career, Al-Shaer published more than more than 10 refereed journal

and conference publications in the area of network protocols, network and system man­

agement, distributed computing and object-oriented technology. Al-Shaer is a member in

IEEE, ACM, ISCA, USENIX and Phi Kappa Phi Honor Society.

Permanent address: Department of Computer Science

Old Dominion University

Norfolk, VA 23529

USA

This dissertation was typeset using DT^X* by the author.

'DTFjX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s Program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (Q A -3)

✓

150mm

IIW IGE. Inc
1653 East Main Street
Rochester, NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

Q *993. Applied Im age , Inc.. All Rights R eserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 1998

	A Hierarchical Filtering-Based Monitoring Architecture for Large-scale Distributed Systems
	Ehab Salem Al-Shaer
	Recommended Citation

	tmp.1550515850.pdf.KqvRD

