
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2005

Lightweight Federation of Non-Cooperating
Digital Libraries
Rong Shi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons, and the Digital Communications and Networking
Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Shi, Rong. "Lightweight Federation of Non-Cooperating Digital Libraries" (2005). Doctor of Philosophy (PhD), dissertation,
Computer Science, Old Dominion University, DOI: 10.25777/15ae-a333
https://digitalcommons.odu.edu/computerscience_etds/64

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/64?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


LIGHTWEIGHT FEDERATION OF NON-COOPERATING

DIGITAL LIBRARIES

by 

Rong Shi
B.S. July 1992, Shanghai Jiao Tong University 

M.S. March 1997, Shanghai Jiao Tong University 
M.S. December 1999, Old Dominion University

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY 
May 2005

Approved by:

Kurt Maly (Co-Director)

Mohammed Zubair (Co-Director)

Frank C. Thames (Member) 

Michael L. Nelson (Member)

Johan '^ol/en (Memb

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



UMI Number: 3191378

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3191378 

Copyright 2006 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

LIGHTWEIGHT FEDERATION OF NON-COOPERATING DIGITAL

LIBRARIES

Rong Shi 
Old Dominion University, 2004 

Co-Director of Advisory Committee: Dr. Kurt Maly
Dr. Mohammad Zubair

This dissertation studies the challenges and issues faced in federating 

heterogeneous digital libraries (DLs). The objective of this research is to demonstrate the 

feasibility of interoperability among non-cooperating DLs by presenting a lightweight, 

data driven approach, or Data Centered Interoperability (DCI). We build a Lightweight 

Federated Digital Library (LFDL) system to provide federated search service for existing 

digital libraries with no prior coordination.

We describe the motivation, architecture, design and implementation of the 

LFDL. We develop, deploy, and evaluate key services of the federation. The major 

difference to existing DL interoperability approaches is one where we do not insist on 

cooperation among DLs, that is, they do not have to change anything in their system or 

processes. The underlying approach is to have a dynamic federation where digital 

libraries can be added (removed) to the federation in real-time. This is made possible by 

describing the behavior of participating DLs in an XML-based language that the 

federation engine understands.

The major contributions of this work are:

• This dissertation addresses the interoperability issues among non-cooperating 

DLs and presents a practical and efficient approach toward providing federated 

search service for those DLs. The DL itself remains autonomous and does not 

need to change its structure, data format, protocol and other internal features 

when it is added to the federation.

• The implementation of the LFDL is based on a lightweight, dynamic, data- 

centered and rule-driven architecture. To add a DL to the federation, all that is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



needed is observing a DL’s interaction with the user and storing the interaction 

specification in a human-readable and highly maintainable format. The federation 

engine provides the federated service based on the specification of a DL. A 

registration service allows dynamic DL registration, removal, or modification. No 

code needs to be rewritten or recompiled to add or change a DL. These notions 

are achieved by designing a new specification language in XML format and a 

powerful processing engine that enforces and implements the rules specified 

using the language.

• The most commonly used approach to achieve interoperability is one that harvests 

metadata into one central metadata repository that is then searched. One of its 

major drawbacks is the freshness of the data as this depends on the harvesting 

cycle. In this thesis we explore an alternate approach where searches are 

distributed to participating DLs in real time. We have addressed the performance 

and reliability problems associated with other distributed search approaches. This 

is achieved by a locally maintained metadata repository extracted from DLs, as 

well as an efficient caching system based on the repository.

• We also focus on service quality and usability. On the front end we introduced a 

dynamic user-centered, keyword driven search interface to improve service 

quality and usability. At the backend we provide an automatic metadata extraction 

mechanism to parse and process native DL search results so that the LFDL 

system can display rich results uniformly and consistently. A locally maintained 

metadata repository improves the LFDL caching system, and also makes it 

possible to provide additional high-level services.

As a result of our implementation work and evaluations we conclude that a 

federated service for non-cooperating digital libraries based on distributed search with its 

advantage of the freshness of data is indeed realistic, and that the dynamic, data-centered 

LFDL provides a lightweight and feasible approach with sufficient service quality, 

usability and system performance to have comparable performance of systems based on 

the harvesting approach.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



IV

ACKNOWLEDGMENTS

This dissertation was made possible through the support, encouragement and care 

of the members of my committee and many other people. First my deepest gratitude goes 

to my advisors, Dr. Kurt Maly and Dr. Mohammad Zubair for their guidance, patience 

and suggestions. Their insight, judgematic, innovative thinking guided me through the 

whole work and helped me overcame many of the obstacles I encountered during this 

work. I am also very grateful for their kindness, understanding and consideration that 

have help me so much both academically and personally. I wish to thank Dr. Michael 

Nelson, Dr. Johan Bollen, and Dr. Frank Thames, the members of my advising 

committee, for their careful and thorough review of this dissertation. Their insightful and 

incisive comments ensure the quality of this work and help me realize the importance of 

academic preciseness.

Many thanks are due to Imran Ameerally, who helped implementing the original 

prototype of this work. I would also like to thank Xiaoming Liu, Satish Kumar and other 

members of the digital library research group for their help and contributions.

Without the enduring support, encouragement, and love of my family I could not 

have gone through all those difficult times and finish this work. Thanks to my parents for 

their help and support during all the years. Katherine and Kevin, who were bom in the 

midst of this work, have given me so much joy and I am indebted to them for the loss of 

pleasant time we could spend together. Finally I wish to give special thanks and all my 

love to my wife Cue Shi for her sacrifice, understanding, and support.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TABLE OF CONTENTS

Page

LIST OF TABLES................................................................................................................viii

LIST OF FIGURES................................................................................................................ ix

Section

1. Introduction...............................................................................................................1
1.1 Motivation ..............................................................................................3
1.2 Objective ................................................................................................5
1.3 Approach and Issues.............................................................................. 8
1.4 Organization of Dissertation ................................................................ 9

2. Background.............................................................................................................12
2.1 DL Interoperability: Challenges and Basic Approaches ...................12
2.2 Distributed Search ............................................................................... 13

2.2.1 Fully Cooperative Federation..................................................... 14
2.2.2 Protocol Exchange......................................................................16
2.2.3 Results Gathering .......................................................................19

2.3 Harvesting ............................................................................................20
2.4 Summary of Current Approaches.......................................................21

3. LFDL: Approach, Architecture, and Design.......................................................23
3.1 Introduction...........................................................................................23
3.2 LFDL Architecture............................................................................... 25

3.2.1 DL Specification.........................................................................26
3.2.2 Registration Service................................................................... 27
3.2.3 Search Service and Results Presentation Service.................... 27
3.2.4 Management Service ................................................................. 28
3.2.5 Caching........................................................................................28

3.3 LFDL Implementation: Rapid Prototype System..............................30
3.4 Discussion.............................................................................................32

4. Data-centered Rules-driven Interoperability: DL Specification..........................34
4.1 Introduction ..........................................................................................34
4.2 Digital Library Definition Language (DLDL) .................................. 36
4.3 DL Specification Definition Using D LD L........................................ 37

4.3.1 Digital Library Content.............................................................. 38
4.3.2 Digital Library Access Methods ...............................................38
4.3.3 Information to be Retrieved from Digital Library ...................39

4.4 Discussion ............................................................................................41
4.4.1 DL Search Interface Capture and Query Mapping..................42

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



VI

TABLE OF CONTENTS (continued)

Section Page

4.4.2 Search Process Simulation and Specification ..........................43

5. Search Service: User-centered Dynamic Search.................................................46
5.1 Introduction ......................................................................................... 46
5.2 Approach, Design, and Implementation............................................ 48

5.2.1 User-centered, Need-driven Search Mechanism.......................49
5.2.2 A Generic Base Universal Interface..........................................52
5.2.3 Enhanced DLDL and DL Specification ................................... 53
5.2.4 Dynamic Interface Generation Algorithm................................. 58
5.2.5 Additional User Customization Capability ..............................63

5.3 Experimentation and Discussion........................................................65

6. Results Presentation Service: Automatic Metadata Extraction..........................70
6.1 Introduction ......................................................................................... 70
6.2 Metadata Extraction from Non-cooperating D L s..............................72

6.2.1 Approach .................................................................................... 72
6.2.2 Metadata Extraction and Parsing Process ................................ 75
6.2.3 Metadata Parsing Rules Definition............................................76

6.3 Experimentation and Results.............................................................. 78

7. Local Repository and Caching.............................................................................. 84
7.1 Introduction ..........................................................................................84
7.2 Local Metadata Repository ................................................................ 85
7.3 Local Metadata Search........................................................................88
7.4 Caching and Cache Replacement Algorithm .................................... 91
7.5 Experimentation, Results and Analysis..............................................95

8. Registration Service and Management Service...................................................98
8.1 Registration Service.............................................................................98

8.1.1 Approach .................................................................................... 98
8.1.2 Design and Implementation ......................................................99

8.2 Management Service.......................................................................... 102
8.2.1 Real-time System Monitoring................................................. 103
8.2.2 Run-time System Reconfiguration..........................................104

9. Conclusions and Future W ork............................................................................ 105
9.1 Conclusions ........................................................................................105
9.2 Future W ork........................................................................................107

REFERENCES..................................................................................................................... 110

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



vii

TABLE OF CONTENTS (continued)

Section Page

APPENDICES
A. Registered Digital Libraries in the LFDL Test B ed.........................................120
B. DTD for DLDL XML Specification..................................................................121
C. Sample DLDL Specification for ACM............................................................. 124
D. Sample DLDL Specification for IEEE............................................................. 127
E. Sample DLDL Specification for NEEDS.......................................................... 132

VITA..................................................................................................................................... 139

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



viii

LIST OF TABLES

Table Page

I. Comparison of Popular DL Interoperability Approaches......................................22

II. Process Specification: Other Issues........................................................................44

III. Keywords and Number of Occurrences from the DL Metadata Database...........50

IV. Top Keyword-hits from Selected DLs.................................................................... 52

V. Summary of Native Form Fields Information of DLs in LFDL Test-bed............54

VI. Sample Query Mapping between NEEDS Native Query and LFDL U I.............. 58

VII. Query Mapping to Other DLs..................................................................................58

VIII. Search Features of Selected DLs in LFDL Federation.......................................... 64

IX. Number of DL Native Search Results for Each Sample Query............................ 67

X. Number and Accuracy of Search Results from LFDL for Each D L ....................67

XI. Sample DL Results and Metadata Display Patterns.............................................. 74

XII. Stmcture of Metadata Storage Table.......................................................................87

XIII. Response Time Comparisons LFDL v2 vs. v l .......................................................96

XIV. Registration Information in Memory.....................................................................102

XV. LFDL Runtime Information.................................................................................. 103

XVI. LFDL Registered DL Information.......................................................................104

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF FIGURES

Figure Page

1.1 Architecture of a Federated Digital Library.............................................................. 6

2.1 Interactions of Dienst Services: UI, Index, and Repository....................................15

2.2 SDLIP Architecture................................................................................................... 17

3.1 Basic LFDL Approach...............................................................................................24

3.2 LFDL Architecture.................................................................................................... 26

3.3 Caching Usage Scenarios..........................................................................................30

3.4 Universal Search Interface of the LFDL Rapid Prototype System.........................31

4.1 Specification Based LFDL Federation..................................................................... 35

4.2 Part of the DTD of a DL Specification.....................................................................37

4.3 Specification Sample: Remote DL Access Information.........................................38

4.4 Specification Sample: DL Search Interface Information........................................39

4.5 Specification Sample: Results Matching Information............................................40

4.6 Specification Sample: Multiple Results Page Information.....................................40

5.1 Federated Search Service and Data Flow.................................................................47

5.2 Populating Keywords-hits for a DL.......................................................................... 51

5.3 Generic Universal S earch Interface.......................................................................... 53

5.4 Native Search Interface of NEEDS.......................................................................... 54

5.5 DLDL Schema for DL Search Field Description.................................................... 56

5.6 Part of DLDL Specification for NEEDS..................................................................57

5.7 Emulated Search Interface for NEEDS Based on Specification..............................57

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



X

LIST OF FIGURES (continued)

Figure Page

5.8 Dynamically Generated Search Interface for Query “html”................................... 62

5.9 Dynamically Generated Search Interface for Query “university” ..........................62

5.10 Dynamically Generated Interface when Threshold=l0 ...........................................63

5.11 Dynamically Generated Interface when Threshold=5.............................................63

5.12 User Customization and Search Features Selection Interface................................ 65

6.1 LFDL Metadata Extraction Approach......................................................................73

6.2 Metadata Retrieval and Parsing Workflow.............................................................. 76

6.3 Part of DTD for DL Parsing Rule Specification...................................................... 77

6.4 Part of ACM DL Specification for Metadata Parsing.............................................77

6.5 Part of DL Specification for Cogprints.....................................................................78

6.6 Sample Search Results of ACM DL......................................................................... 79

6.7 Sample Results List Page and Record Page of Cogprints D L.................................80

6.8 Post Processed Results in LFDL after Metadata Parsing........................................81

7.1 LFDL Metadata Cache and Repository.................................................................... 88

7.2 LFDL Interactive Search Interface........................................................................... 89

7.3 Search Results Grouped by DATE..........................................................................90

7.4 Search Results Grouped by PUBLISHER................................................................91

7.5 Sample Metadata in LFDL Metadata Cache.......................................................... 94

8.1 LFDL Registration and Management Service..........................................................99

8.2 LDAP-based Registration Process..........................................................................101

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



XI

LIST OF FIGURES (continued)

Figure Page

8.3 LFDL Management Service Interface................................................................... 102

8.4 LFDL Reconfiguration Utility................................................................................104

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1

SECTION 1 

INTRODUCTION

Digital libraries (DLs) are the topic of research in various scientific communities. 

The Association of Research Libraries (ARL) indicates that there are many different 

definitions for digital library [6]. Generally, the computer science community may view a 

digital library as a networked information system with contents collected on behalf of 

users, while librarians may define a digital library as organizations providing services in 

a digital environment [12]. Essentially, a digital library is a collection of managed digital 

objects, comprising different types of material in different formats, which distribute 

across information repositories and can be accessed through wide area networks [4], [36], 

Digital libraries overcome the constraints of traditional physical libraries by delivering 

organized, well-managed information through the Internet to anyone, anywhere, anytime. 

Atkins points out that “the concept of a digital library is not merely equivalent to a 

digitized collection with information management tools. It is rather an environment to 

bring together collections, services, and people in support of the full life cycle of 

creation, dissemination, use, and preservation of data, information, and knowledge.” [7].

Digital Libraries vs. Web Search Engines

One common question regarding DLs is “Why not just use the existing web for 

publishing and web search engine technology for searching published material?” It is true 

that although digital libraries pre-date the World Wide Web (WWW) [124], there have 

been major changes among DLs to adapt to the popularity and prevalence of the WWW. 

For example, proprietary DL search interfaces have been replaced by the ubiquitous 

WWW browsers, and most DLs are using the WWW-based access and transport 

mechanism. However, it is important to note the uniqueness of digital libraries and it is 

helpful to compare digital libraries with commercial web search engines such as Google, 

Yahoo, and Lycos, which are becoming more and more important in helping people find 

useful information on the web. Web search engines and digital libraries are similar in the

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

way of indexing, retrieval, storing, and searching from a user perspective. However, 

there are significant differences between a WWW search engine and a digital library

[85]:

• The search spectrum: web search engines are aimed at the general public, which 

has a wide range of search requests, while digital libraries are mostly used within 

a specific community for education and research with users having certain 

predictable search patterns and behaviors.

• The contents and their management: web search engines use all the source web 

pages they can find on the Internet, and they have no control or intrinsic 

management over the distributed pages. The contents of a digital library are well 

defined and well organized, and specifically, objects have metadata associated 

with them. A DL provides acquisition, management, and maintenance processes 

to manipulate the digital objects [85],

• The user interface and the service: the interface of web search engines is fairly 

simple, typically in the basic mode containing only a keyword field. The quantity 

of search results and the response time of a particular search are more important 

than search quality. As for digital libraries, however, service quality or search 

accuracy is the most important factor. There are more search fields, based on the 

metadata associated with the digital objects in the DL, to filter out unnecessary 

information, enabling a more accurate result.

Considering the above three factors, digital libraries differ from web search engines 

in their internal structure and implementation, from indexing and archiving to search 

algorithms. General web search-engines have solved the interoperability problem by 

developing sophisticated crawlers but have significant problems with obtaining results 

from the “hidden” web [9] that digital libraries inhabit. Also these engines have no way 

to take advantage of metadata that may be available to characterize web pages (though 

there are some recent efforts with the semantic web [11], [50] and RDF [102]).However, 

when building service on top of existing, distributed DLs, as we will discuss in detail 

throughout this dissertation, we can use or adapt approaches and methods derived from 

the experience of building web search engines.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

1.1 MOTIVATION

DLs are now commonly used in science, technology, engineering and the arts. A 

number of successful digital libraries have been built to manage and disseminate 

collections of information beyond the scope of traditional libraries. Some examples are 

described in NSDL (National Science, Mathematics, Engineering, and Technology 

Digital Library) [56], [90], [91] and DLI-2 (Digital Libraries Initiative phase 2) [26], 

[37], However, like traditional libraries, each organization is responsible for its own DL 

implementation and most of the libraries have been built in isolation utilizing different 

technologies and protocols. Each library has its own publication and search interfaces, its 

own interpretation of metadata formats in terms of both syntax and semantics, and its 

own management policy.

This uncoordinated development approach was adequate in the early stages of DL 

and WWW technology, but DL technology is currently included in the strategic planning 

of many institutions. The differences in DL implementation hinder the development of 

digital library services which enables users to discover information from multiple 

libraries through a single unified interface. To build an effective information 

infrastructure that can meet the growing demand, it is necessary to integrate

heterogeneous information resources and build interoperable services.

The ideal approach to interoperability is to have all DLs use the same software or 

common protocol. However, that is unrealistic and there are enough significant DL 

systems in use to assume that the DL community will continue to support a number of 

heterogeneous systems and protocols [133]. It seems likely that over time, a handful of 

DL protocols and systems will have sufficient functionality and installed base, preventing 

a convergence to a single system. Therefore, digital library interoperability is an active 

research field in the DL community. Andreas Paepcke describes interoperability as 

cooperating systems where individual components are designed or operated

autonomously [96]. He suggests that “the ultimate goal for such a system is to have 

components evolve independently, yet to allow all components to call on each other 

efficiently and conveniently.” [96]

From a technical point of view, there are basically two approaches to build

interoperable service across individually independent digital libraries: a metadata

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4

harvesting approach [13], [14] and a distributed search approach [105], The former 

would require data providers (those maintaining individual repositories) to expose 

metadata by following a common metadata harvesting protocol so that an end-user 

service provider (those providing search or other services) can utilize the harvested 

metadata to provide search service and other high-level services. In a distributed search, 

a service provider will distribute the user query to each individual DL in real time, and 

collect results from them, and then present users with the merged results.

Both approaches achieve the goal of interoperability by providing high-level 

federated end-user search service while making it possible for each individual digital 

library to operate independently. Harvesting can provide scalable, robust search services 

and various value-added services on the collected metadata, but typically it requires an 

archive to implement the harvesting protocol and to expose its metadata. Alternatively, a 

crawler harvesting approach does not require a protocol or expose metadata but it only 

works best for non-structured or semi-structured data and also has a data synchronization 

problem. The search results from harvested data may be not as fresh as the ones from a 

DL if a user accesses that DL directly. The distributed search may or may not require of 

implementing a joint protocol or agreement, and its search results maybe fresher or more 

close to what a user can get from a DL directly. However, the distributed search has 

important problems of system performance, reliability, and scalability.

Currently there are a number of research projects on DL interoperability being 

conducted by leading research organizations and universities. We have conducted a 

thorough survey and study of those projects, which follow either distributed search or 

harvesting approach. One of the issues or limitations is the cost to participate in the 

interoperation. The burden is either on the participating DL side, or on the service 

provider side. Either way, significant effort is required in each DL, like using a new 

protocol, changing data format, and installing a new software suite; or great effort is 

required in the management of the interoperability system. Whenever a new DL is added, 

or an existing DL changes its behavior, the whole interoperability system needs to be 

changed, e.g., adding new code, changing existing code or existing interface, recompiling 

and restarting the system.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5

We do not want to simply assert that distributed search is superior over harvesting, or 

vice versa. We think there are enough digital libraries that want to be autonomous and for 

various reasons do not want to make any effort, such as adopting a joint protocol or 

exposing metadata, to participate in an interoperation. We are especially interested in the 

interoperability among those totally non-cooperating DLs. In this case, a pure harvesting 

approach is not possible but it is feasible to provide a federation based on distributed 

search. Therefore, in this dissertation we concentrate on building interoperable service 

across heterogeneous sources using fundamentally the distributed search approach. 

However, we also study the possibility of utilizing the features of harvesting to address 

the issues of the distributed search so that the service built can take advantage of the 

both: a scalable, robust search service with fresh results.

We believe it is crucial that such a federated search service, based on a combination 

of distributed search and harvesting, should be flexible and lightweight, both easy to use 

by end users and easy to manage by an interoperability service provider (while at the 

same time preserving each individual DL’s autonomy).

The challenges to such lightweight approach are:

• The integration should be flexible enough to allow individual participants of the 

federation to add/modify features and at the same time maintain the user’s 

impression of a single system.

• Relocation, addition, deletion of individual DLs should be transparent to users.

The service should not depend upon, or even care about, the implementation of any

particular search service. The underlying architecture of the individual digital library 

should be unimportant. As long as individual search services are openly accessible, a 

lightweight, distributed search approach can provide the benefit of accessing them 

simultaneously and collating the results.

1.2 OBJECTIVE

The objective of this research is to demonstrate the feasibility of interoperability 

among non-cooperating digital libraries by building a federated digital library. The 

federation shall be dynamic, flexible, and lightweight. Existing DLs can remain 

autonomous and do not have to change anything in their system or processes. It shall be

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6

easy to add DLs to the federation and the newly added DLs shall be incorporated into the 

service in real time: no code needs to be rewritten or recompiled. We aim for system 

usability, feasibility and applicability to various domains, performance, and service 

quality in our approach. To achieve this objective we develop, deploy, and evaluate key 

services of the federation. The fundamental underlying approach is to distribute searches 

across DLs without prior coordination, but we also want to explore the feasibility of 

taking advantage of the harvesting approach to address performance and scalability 

issues related to distributed search.

Figure 1.1 illustrates the layered architecture of our proposed federation and its 

services; the goals for each service are summarized below.

0>

End-User Service

! e . ! ! Results ! 1 Search _ . . .  ' i -  1 Presentation i i Service • 1 i
*Ea>

i i i Service (
i_ _ i • _ j 0)o

CO t
c 0)
o CO

<Dra .COU) 05
u> O
0)
0£

Federation Service

Fig. 1.1. Architecture of a federated digital library.

Federation Service The federation service is the key service, which incorporates 

numbers of non-cooperating digital libraries to form a federated library. Since the 

DLs lack cooperation, we study methods of collecting a DL's interoperability 

information by observing its external behavior. For each digital library a specification 

describes the rules to be used by the federation service on how to send out distributed 

query and collect search results. Our objective is to design a flexible, easy to 

understand and implement, universal schema. We expect to achieve a well-managed 

information system that has performance and efficiency equivalent to that of the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7

harvesting approach. The management service is part of the federation service which 

facilitates the monitoring and maintenance tasks of the federation system. It collects 

various system statistics data for troubleshooting and possible system enhancement. 

The management service also allows for fine-tuning the system to ensure a service 

with the best performance and reliability.

End-User Service Once specifications about DLs are available and a federation of 

heterogeneous digital libraries is formed, various services can be built for end users. 

Search users expect fresh, accurate, results from multiple sources accessing a single, 

easy to use search interface. Our objective is to develop a unified search service that 

works with the federation service to distribute the queries to all underlying DLs. The 

results presentation service shall collect and process results from different DLs and 

then present the merged results to end users in a consistent way as if all results are 

coming from one single source. Quality and usability will be the critical metrics for 

end users’ satisfaction.

Registration Service To provide the federation service among distributed, autonomous 

digital libraries, the service provider needs to be aware of the existence of a DL 

repository. The registration service allows a new DL to be added to the federation by 

registering its specification. Our objective is to make the process dynamic and 

transparent to end users: to add a new DL, no code change should be necessary and 

the newly joined DL shall be part of the federated search on the fly.

Cache Service The cache service optimizes the system performance and reliability of the 

federation by caching most recently used search results. Our objective is to alleviate 

one of the significant issues with the distributed search, namely, response time to get 

all results presented to the user. We design an intelligent caching schema that will 

extract metadata from previous searches to help in using even partial answers to 

queries that can be provided to the search user immediately.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8

1.3 APPROACH AND ISSUES

In this dissertation we investigate a lightweight and general approach to 

interoperability - Data Centered Interoperability (DCI) and build a federated search 

service for DLs without prior coordination among the participating DLs. The outcome of 

our work will be an operational version that will on the one hand demonstrate the 

feasibility of our approach and on the other hand allow us to study various issues with the 

distributed search approach.

• The feasibility of interoperability of non-cooperating DLs

In our approach we observe and capture users’ interaction with a DL and build a 

federated service based on all possible user/DL interactions including the way a 

DL presents the results of a query to the user. We propose to study a DL’s 

external behavior without the knowledge of its internal structure and 

implementation. Therefore, existing DLs can continue their operation without 

having to add code or expose their objects to the federation beyond what the DL 

does for its own community. A DL may change its externally observable behavior 

from time to time. Therefore, our solution will have to have the ability to discover 

change and then have mechanisms to adjust accordingly.

• The architecture of building a federation service

In our approach we propose a data-centered and rules-driven architecture, that is, 

the core engine should not depend in any way on a particular DL’s behavior. 

Instead, the code should use specifications of DLs’ behaviors and have rules on 

how to interpret them. We propose to design a standard XML [125] based DL 

metadata sheet to describe each DL’s specification: its characteristics, 

capabilities, and interoperability information. All tasks should be performed by 

the federation system according to the rules defined in each DL’s specification 

from query mapping to results processing.

Some DLs have complex search interfaces or require comprehensive user 

interactions, which may be difficult to capture using an XML specification.

In our approach, each DL registers with a central registration service provider. 

DL registration, removal, and modification should be dynamic, easy in 

management and maintenance, and transparent to end-users. We want the system

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



9

such that when it is operational and running, a new DL can be added and an 

existing DL can change its behavior or be removed on the fly. The issue is how to 

achieve this without any code change or system restart.

• Service quality and usability

The objective of the search service is to provide universal search interface 

through which the user is presented with accurate results promptly. The issue is 

how to present the user with a dynamic interface that depends on the user, her 

preferences, her past queries, and her input based on the profile of the target DLs, 

as well as the user’ needs.

• System performance and robustness

The distributed search approach provides fresh results while suffering response 

time and reliability issues. We propose mechanisms that will automatically 

discover and store metadata from queries and their results. To address the issues 

of system performance, availability and robustness, we will design a local 

metadata repository architecture with caching and a pre-fetch mechanism. This 

approach though raises another issue: Why not just use harvesting instead? A 

simple answer is that there are DLs that will not actively participate in making 

their metadata available. Therefore, the only alternative is for the service provider 

to discover and retrieve metadata on demand. The more complex answer is that 

we do not know yet the actual tradeoffs involved in the two approaches without 

having operational systems to evaluate them.

1.4 ORGANIZATION OF DISSERTATION

In this dissertation we present the issues and challenges during the design, 

development, implementation, deployment, and evaluation of the federated digital library 

system and then describe our experimental solutions to those issues. The rest of 

dissertation is organized as follows:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



10

Section 2: Background

We introduce various DL interoperation approaches. For each approach we present 

typical systems, their advantages and disadvantages, and we summarize a comparison of 

those approaches.

Section 3: LFDL: Approach, Architecture, and Design

We present our approach to achieving interoperation among non-cooperating digital 

libraries in this chapter, and the overall architecture of the federated system to provide 

federated service by implementing the approach. We describe our experiences in building 

a prototype system and discuss limitations and issues such as quality of service, search 

usefulness and usability, along with system robustness and performance.

Section 4: Data-centered Rules-driven Interoperability: DL Specification

The key to a lightweight, flexible federated service is a DL’s specification which 

describes a DL’s characteristics and features. In this chapter a digital library definition 

language is introduced to specify DL’s interoperability information.

Section 5: Search Service: User-centered Dynamic Search

Section 5 addresses the service quality and usability issue of the federation by 

providing a user-centered, need-driven, interactive search mechanism. We use Dublin 

Core as the basic interoperation middle layer, and a dynamic query mapping mechanism 

to map between the common layer and the native libraries’ layers.

Section 6: Results Presentation Service: Automatic Metadata Retrieval and 

Harvesting

Results processing is another characteristic that distinguishes our system from other 

distributed search approaches. The federated DL can display search results from different 

DLs in a consistent way so the end users are unaware of the different presentation 

mechanisms used by the participating DLs. Organizing the result set helps a user to 

locate the target object quickly. This requires post-processing of the result set using all 

the metadata available from the result set, which is a difficult task in the distributed query

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



11

approach. In this chapter we present an automatic metadata discovery and retrieval 

mechanism by observing the external behavior of a DL. The digital library definition 

language has been enhanced and the XML specification of a DL is used to define the 

rules to obtain metadata from each DL’s result pages.

Section 7: Local Repository and Caching

Section 7 describes how the federated digital library uses the retrieved metadata to 

build a local metadata repository. Based on the local repository we design and implement 

an intelligent cache to improve the performance and robustness of the federated service. 

We also use a secondary level in-memory cache to further improve the system efficiency.

Section 8: Registration Service

Section 8 gives details on the design and implementation of the registration service 

for the federated DL.

Section 9: Conclusions and Future Work

Section 9 summarizes our work on DL federation with the major contributions 

highlighted, as well as the major issues we addressed and those we have not. We provide 

directions for future work on those unresolved issues.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



12

SECTION 2 

BACKGROUND

The DL federation addresses the DL interoperability by building a coherent set of 

digital library services that enables users to find information from multiple sources 

through a single unified interface [67]. In this chapter we discuss previous work in this 

area. This chapter is organized as follows:

• We begin with an introduction to the challenges and basic approaches to DL 

interoperability.

• We then discuss the distributed search approach in section 2.2. We present some 

typical systems, their advantages and disadvantages.

• Next, in section 2.3, we describe the harvesting approach.

• Finally, in section 2.4, we have a summarized comparison of the approaches 

discussed and where the LFDL fits in.

2.1 DL INTEOPERABILITY: CHALLENGES AND BASIC APPROACHES

Digital libraries are important tools and being used in many scientific and technical 

disciplines. However, as mentioned in Section 1, most of these DLs are implemented 

using protocols specific to the field they support and much work has to be done to 

achieve interoperability among DLs on a large scale [133].

To end-users interoperability of digital libraries means a seamless presentation of a 

federation of DLs. As identified by the NSDL community, DL interoperability can be 

achieved at three levels: technical, content and organizational:

“Technical agreements cover formats, protocols, and security systems so that 

messages can be exchanged, etc. Content agreements cover the data and metadata, 

and include semantic agreements on the interpretation of the messages. 

Organizational agreements cover the ground rules for access, for changing 

collections and services, payment, authentication, etc.” [91]

In this dissertation, we focus on DL interoperability at technical level.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



13

The approaches for technical interoperability can be categorized into two basic types, 

distributed search and harvesting. In the distributed search approach a unified search 

service provider distributes the search query to multiple standalone DLs simultaneously 

and then either processes the results from each DL and presents the results in a consistent 

manner, or just simply returns results as each DL’s native format without any processing. 

Query results processing maintains transparency to the end-users of the underlying DLs 

as well as provides other high-level services. In the harvesting approach a service 

provider collects metadata from heterogeneous sources and then provides search service 

based on the metadata harvested.

Generally speaking, the distributed search approach may provide more accurate1 and 

fresher search results but may require implementation of a joint distributed search 

protocol. Moreover, it may suffer performance, reliability and scalability issues. On the 

other hand, the harvesting approach has better scalability and can provide enhanced 

services based on harvested metadata; however, it also has the issues of repository 

synchronization for maintaining freshness. Still yet, it requires participants to adopt a 

harvesting protocol while some DLs may not able or willing to do so.

2.2 DISTRIBUTED SEARCH

In a distributed search queries are sent out to each DL. Subsequently search results 

are retrieved, merged and presented to users. There are three typical distributed search 

models: 1) a fully cooperative federation in which participants adopt the same software; 

2) a protocol exchange and interoperation in which DLs follow the same protocol 

agreement; 3) a results gathering approach in which no effort is required from individual 

DL but the service provider is totally responsible for gathering information from each DL 

to provide a federated search service [67].

The first model provides the most complete form of interoperability, but requires 

great efforts from its participants. At the other end results gathering requires little from 

participants, but to provide the same quality of service as one that provided by a fully 

cooperative federation, extra work needs to be done by the interoperability service

1 “more accurate” here refers to that the results from the distributed search more closely represent the 
results that a user can get from a DL by accessing it directly.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

provider. Below we will describe each model in detail and then give some sample 

solutions of that model.

2.2.1 Fully Cooperative Federation

In a fully cooperative digital library system all participants use the same DL protocol 

and software implementation which means all organizations have to use the same 

computer systems or software suite. Currently a fully cooperative model has been 

somehow obsolete as of the inflexibility it imposed on the participants. However, it has 

played an important role in the evolution of DL interoperability and many lessons can be 

learned such as user interface design and DL registration service. Some systems like 

NCSTRL have evolved and adopted new model of interoperation.

NCSTRL/DIENST

NCSTRL, or Networked Computer Science Technical Reference Library, is a 

confederation of over 100 institutions with the goal of providing a federated search 

service centered on computer science material [22], [28], [39]. Each organization 

maintains its own digital library services and the interoperability is achieved by 

conformance to an open architecture and joint protocol, agreement on data types and 

metadata format [64],

Dienst is the protocol used in NCSTRL [23], [55]. It specifies an open extensible 

protocol for the interoperation among various digital library services so that resources 

can be accessed universally [22], Dienst consists of 5 components: 1) Repository Service; 

2) Index Service; 3) Meta-Service; 4) User Interface (UI) Service; and 5) Library 

Management Service. Figure 2.1 shows some of the Dienst services and their 

interactions. The UI service communicates with end users using the standard HTTP [31] 

and HTML, and with other services such as Index and Repository service using the 

Dienst protocol. Sample NCSTRL/Dienst based digital libraries can be found at [75],

[86], [131].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



15

d o cu m en t re q u e s t

IME-typed d o c u m e n t

R epository

ndexse a rc h  re q u e s t

s ite  specific
unified re su lt list

se a rc h  re q u e s t
R epository

resu lt list
Index

d o cu m en t r e q u e s t

\a/ u o  MIME-typedW e b B ro w s e r  ,  7 *d o cu m en t D ienst U ser 
Interface

HTTP protocol

Index

Dienst protocol

R eposito ry

Fig. 2.1. Interactions of Dienst services: UI, Index, and Repository.

NCSTRL was popular in the online publishing of computer science technical reports 

among colleges. However, the drawback of this approach is also becoming obvious: 

whenever a new DL wants to join this federation, it has to install the standard software 

package that implements Dienst protocol, then coordinate with the federation service 

provider (like www.ncstrl.org) to add itself to the federation; whenever there is a 

software version update or other code change, participants have to get the new version 

and run it again. Although an organization may want to implement some add-on features 

which are most suitable for its own data or structure, there is no way to do it unless the 

standard protocol and software implements those features. NCSTRL also suffers 

reliability and scalability problems [100].

NCSTRL was originally developed and maintained by Cornell University until 2001. 

Due to the problems mentioned above, since 2001 NCSTRL has been migrated to an 

OAI-PMH based architecture [2],

Obviously the cost of participation a fully cooperative federation is high as DLs have 

to implement and keep current with all the protocols and agreements. There are a lot 

more significant autonomous DL systems and there is no doubt that the current

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.ncstrl.org


16

heterogeneous systems and protocols will continue to evolve other than disappear. 

Therefore, fully cooperative federation is a far less feasible solution to DL 

interoperability.

2.2.2 Protocol Exchange

In this model the distributed search is achieved by each participant implementing 

protocol agreement on information exchange among DL search services. Some well- 

known standards and protocols are Z39.50, STARTS, SDLEP, and GINF.

Z39.50

Z39.50 is an international standard for communication among information systems 

[129]. It specifies the protocol on information searching and retrieval from different 

computer systems independent of the internal structure of each information resources 

[44], Gateway to Library Catalogs is a web-based search interface to search the Library 

of Congress catalog as well as hundreds of other institutions utilizing the Z39.50 protocol 

[65]. Once popular but now obsolete, WAIS or Wide Area Information Servers [48] is a 

distributed text searching system that uses the Z39.50 to search indexed text-based 

information system across wide area networks. The Z39.50 is a comprehensive standard, 

but is often too large and complex to be applied to light-weight, open source systems 

typical in web-based solutions and applications. To implement a Z39.50-based system 

the flexibility and options offered by Z39.50 can be overwhelming. The interoperability 

could be compromised if a client implements some features but a server supports some 

other features [127].

STARTS

STARTS [8], [34], the Stanford Protocol for Internet Retrieval and Search is a 

protocol for information retrieval from multiple collections of text documents developed 

by Stanford University and over 10 other organizations. The goal of STARTS is to 

develop metasearchers [34] that can discover the most suitable sources for a given query, 

retrieve, evaluate and then merge results from those sources. One of the issues associated 

with STARTS is that it does not cope with complex searches for non-document objects

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



17

[127], Also, STARTS depends on simple but expressive agreement among service 

providers to achieve interoperability. For example, it requires that each information 

source describes itself by exporting its general metadata information. This may not be 

possible as some providers have proprietary internal structure that they are not willing to 

reveal.

SDLIP

SDLIP, the Simple Digital Library Interoperability Protocol, is a middleware 

approach to achieve interoperability developed by Stanford University [95]. In SDLIP a 

wrapper or digital library proxy is defined between the search client and the ultimate 

information source. Between the client and the proxy SDLIP defines the transport 

protocol, query language, and other interface so that they can communicate. Clients use 

SDLIP to request searches to be performed over information sources. The transport 

protocol can be HTTP or CORBA [19] based.

e
Information

Client

SDLIP

Search Middleware handles:
• Search  sta te  m aintenance
• Query language mapping
• Exception handling
• Return formats
• Transport protocols

Fig. 2.2. SDLIP architecture.

SDLIP
i »

(̂ lspT)

Native protocols

External
Information

S ourcel

External 
Information 

Source 2

External 
Information 
Source  3

As illustrated in Figure 2.2, an ultimate external information resource may or may not 

implement SDLIP directly. A Library Service Proxy (LSP) can wrap multiple external 

sources and communicate with them via native protocols required for these services. At 

the front end, SDLIP mandates the interaction between LSP and information client. A 

client can also access a resource directly if the resource is already SDLIP compliant.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



18

One of the problems with SDLIP is the proxy approach: for each DL a separate proxy 

code is needed. This is not efficient: each time a new DL is added, or a registered DL 

changes its behavior, the proxy code for that DL has to be changed and recompiled. 

Another problem is that on the client side a protocol library or API is needed and 

installed. Though Java Applet can be utilized, most of the users still prefer the standard 

and efficient web interface. It is true that this protocol allows the client to be applications 

or devices other than a web browser, but to the digital library community, a thin client 

using web browsers and pure HTML forms is enough, and more efficient. Also in SDLIP, 

though there is a universal search interface, users still have to send request to each DL 

one by one, but cannot use one interface to send a request once to query all the DLs they 

want to search.

GINF

The goal of Generic Interoperability Framework (GINF) is to achieve interoperability 

across heterogeneous information resources which have various protocols, query 

languages, and data formats by providing a uniform interface to access those sources [79], 

It attempts to develop a generic framework to universally represent different protocols, 

languages, data and interface descriptions while at the same time preserving their 

semantic variety. The current implementation uses RDF [102] to define all protocols and 

formats.

GINF is more generic than SDLIP, but essentially they are based on the same 

approach. GINF is working on modeling the SDLIP protocol using its own protocol 

model. Like SDLIP, though there maybe less burden for each information source it tried 

to integrate, significant work is needed on the GINF system itself. Whenever a new DL is 

to be incorporated, a lot has to be done to define the DL’s structure, data and protocol 

using the GINF protocol. More generic does not signify simpler and easier. Additional 

work needs to be done to achieve a more generic style; sometimes generic also means 

that you have to suffer with performance issues and other maintenance problems.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



19

SDARTS

SDARTS is a protocol and toolkit designed at the Computer Science Department of 

Columbia University to combine two complementary existing protocols, SDLIP and 

STARTS [35], [45]. SDARTS is essentially an instantiation of SDLIP, but with added 

elements from STARTS. Specifically the specification on the metadata a resource should 

export to facilitate meta-search among multiple sources.

SDARTS makes it possible to build interoperable search service among non

cooperating web-based digital libraries. However, it is built upon two protocols, SDLIP 

and STARTS, which means layered architecture with both clients and servers have to be 

developed according to the standards. This may not be a really lightweight approach. A 

registration service is needed and the result parsing is limited. Writing collection 

configuration files requires thorough knowledge of STARTS and XSLT, which may be 

easier for a programmer but not for DL experts.

2.2.3 Results Gathering

It is still possible to achieve interoperability among DLs that are not prepared to 

cooperate in any formal manner. This can be done by gathering openly accessible 

information, from search interface to search results [91]. The results gathering approach 

uses the distributed search approach and it does not require any prior coordination among 

federated digital libraries. We think this is a common scenario, and our approach in the 

LFDL falls into this model. The most common examples of this approach are the Web 

search engines. Because there is no cost to participate, it is possible for results gathering 

to provide services that embrace large numbers of digital libraries; however, if there is no 

extra work to control the quality, the services are usually of poorer quality than can be 

achieved by partners who cooperate more fully.

Commercial meta web search engines

Strictly speaking, the popularly used commercial meta WWW search service, or a 

search engine of search engines, like MetaCrawler [80] and search.com [106], are not for 

interoperable digital libraries. But like commercial web search engines, though they are 

much different than digital libraries, technically, there are numbers of similarities.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



20

MetaCrawler: Currently dozen of search services are available ranging from general 

purpose to special need. Each service has its unique interface and may only return partial 

or irrelevant search results. To get comprehensive, useful information users may have to 

use different services for the same query and also manually find out useful results. The 

MetaCrawler provides a single, universal interface for Web search. It distributes a query 

to multiple search engines in parallel, then processes the results, and finally returns those 

validated, relevant results to users [108],

Commercial meta web search engines like MetaCrawler are essentially using the 

gathering approach to provide a meta search service. Determined by their nature search 

result quantity and response time are always the top priorities, while the quality of 

service is not as important. However, to the digital library community, quality of service 

is always most important.

SearchLight

SearchLight is part of the California Digital Library initiatives and its goal is to 

search multiple public databases and other information resources at one time [107], 

Currently Searchlight has integrated quite a few digital libraries. However, to achieve 

uniformity across resources, it is relatively generic without post processing search results. 

To get more precise results one may have to search a resource directly. SearchLight also 

has performance and reliability issues as it depends on the real-time response from each 

source.

2.3 HARVESTING

The harvesting approach for digital library interoperability is to collect metadata from 

heterogeneous sources to form one homogeneous collection [67], Formerly called UPS 

(Universal Preprint Service), the Open Archives Initiative (OAI) [58], [93] is based upon 

the concept of metadata harvesting. The OAI defines the format of metadata each digital 

library should expose as well as the protocol on how to retrieve metadata. The underlying 

type of content of each library and the internal structure of its service are irrelevant.

The core of the OAI is the metadata harvesting protocol, OAI-PMH (Open Archives 

Initiatives Protocol for Metadata Harvesting) [57], which specifies how to transfer

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



21

metadata from a data provider to a service provider. It contains the following service 

requests or verbs: Identify, GetRecord, Listldentifiers, ListRecords, ListSets, and 

ListMetadataF ormats.

Arc is the first federated searching service based on the OAI protocol [69], [70]. 

Numbers of other DL applications are OAI based, such as Kepler [68], [76], Archon [77], 

and DP9 [71] which are the research projects that are being conducted by the Digital 

Library Group of the Old Dominion University [25],

The burden of participating in a harvesting based federation is much less than that of 

participating in a fully cooperative federation, therefore more organizations may be able 

to join a federation by harvesting while still keeping their existing systems. However, 

though the efforts required for participants are less, they still need to adopt certain 

agreement, and currently there are significant numbers of autonomous DLs that either not 

willing to or not able to adopt outside standards. Also a service provider has to be aware 

of the data freshness and data synchronization issues.

2.4 SUMMARY OF CURRENT APPROACHES

In Table I we give a technical summary of the major approaches we have discussed. 

In comparison we have also included here the LFDL approach. Out of the approaches 

mentioned only the OAI utilizes the harvesting approach and we are mostly interested in 

the distributed search because of our focus on existing non-cooperating digital libraries. 

NCSTRL/Dienst are somewhat obsolete, and among other distributed search approaches 

all of them provide a unified search interface and have query translation between a 

universal interface and a native DL interface. SDLIP and GINF are layered, protocol 

based approaches. They define the underlying communication protocol which can be 

TCP or CORBA. As a results gathering methodology, SearchLight uses the high level 

communication protocol, HTTP. Though not much work on the data provider side, most 

of the current distributed approaches somehow require great effort from service providers, 

either to implement common protocols or to write separate code for each DL 

incorporated. One of the design goals of the LFDL is for it to be lightweight to the 

service provider also.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22

TABLE I

COMPARISON OF POPULAR DL INTEROPERABILITY APPROACHES

NCSTRL OAI Meta web
search
engine

SDLIP
SDARTS

GINF SearchLight LFDL

Basic
approach

Distributed
Search:
Federation

Harvesting Distribute 
d Search: 
Gathering

Distributed
Search:
protocol

Distributed
Search:
protocol

Distributed
Search:
Gathering

Distribute 
d Search: 
Gathering

Universal
search
interface

Yes N/A Yes Yes Yes Yes Yes

Simultan
eous search 
multiple 
DLs

Yes N/A Yes No No Yes Yes

Response
time=worst
DL?

Yes N/A Yes N/A N/A Yes No

Allow 
asynchrono 
us search

No N/A Maybe Yes No No Yes

Publish Yes No No No No No No
Query/Prot
ocol
translation

No No Yes Yes Yes Yes Yes

Transport
protocol

HTTP HTTP HTTP TCP,
Corba,
HTTP

TCP,
HTTP

HTTP HTTP

Metadata
format

Any XML N/A Any RDF N/A XML

Cost High: data
providers
Low:
service
providers

Median: 
data and 
service 
providers

None: data
providers
High:
service
providers

None: data
providers
High:
service
providers

None/high:
data
providers
High:
service
providers

None: data
providers
High:
service
providers

None: data
providers
Low:
service
providers

Basically the LFDL falls in the results gathering model of the distributed search 

approach. However, it also integrates some sort of harvesting approach by utilizing a 

locally maintained repository of metadata extracted from remote DLs. Details about the 

LFDL will be given in later sections.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



23

SECTION 3

LFDL: APPROACH, ARCHTIECTURE AND DESIGN

In the previous chapter, we discussed various approaches to digital library 

interoperability. The distributed search and results gathering is one way to implement an 

interoperable federation system. The LFDL we propose is designed to provide a unified, 

federated search service for heterogeneous, non-cooperating collections. This chapter 

presents the basic approach, design goals and architecture of the LFDL.

The remainder of this chapter is organized as follows:

• Section 3.1 introduces the basic approach taken by the LFDL.

• Section 3.2 describes the design goals and the services planned for the LFDL.

We then define the overall architecture of the LFDL.

• We review the effort of designing and implementing the initial LFDL prototype

system in section 3.3.

• Finally in section 3.4, we analyze the experiences, issues, and lessons of the 

building of the LFDL system and discuss related work.

3.1 INTRODUCTION

One major objective of interoperability among existing independent, non-cooperating 

digital libraries is to provide a federated service with a unified search interface, so that 

users can utilize the interface to seamlessly search across multiple repositories 

simultaneously [67], The distributed search and results gathering represents a 

straightforward approach. The LFDL follows this approach and provides a federated 

search service for end users.

As illustrated in Figure 3.1, in the LFDL, a query submitted from the User Interface 

by a user is translated to a native format of a particular digital library, and the native 

query is sent to the corresponding DL. Once search results are received from various 

sources, they are merged and presented to the user. Thus, an integrated service is 

provided and yet users are unaware of the underlying heterogeneous information 

providers.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

native query

native results

DL

DL

Query Translation

Results Merging

User Interface

Fig. 3.1. Basic LFDL approach.

In Section 2 we discussed and compared several models following the distributed 

search approach. One of the issues in the basic distributed approach is that though it 

alleviates the burden on data providers to join a federated system, a great effort is 

required from service providers to include a new data source to the system. For example, 

one has to write new code specific to the new source and add it to the current package, 

and then redeploy the whole package. Moreover, whenever there is any change within 

any data source, from search interface to results presentation, the same process has to be 

repeated.

One of the design goals of the LFDL is that it shall be a flexible, lightweight solution, 

both to data providers and the provider of the federated service: to data providers, the 

LFDL is a non-issue as no extra work is required. Therefore existing DLs’ structure or 

protocol can be kept intact while being in the LFDL federation; to the service provider, 

which is the LFDL system itself, it should be a small effort. Once the system is started, 

little effort should be needed to keep it running, no new code to install to add a new DL, 

no recompile or restart of the system.

We present a data-centered and rules-driven approach to achieve the design goals 

[132], [133]. The key is to create a specification to describe the behavior of each newly 

added DL source. The specification defines the rules of query mapping between the 

LFDL query and the native query of a DL, as well as the rules on how to interpret and 

process search results from a DL. By enforcing the rules the LFDL can perform a 

federated search against multiple sources and present the merged results. Ideally, the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



25

experts from each individual DL are the best people to create those specifications. We 

aim to design the LFDL to be flexible enough so that after a short period of practicing, 

anyone with a basic understanding of our approach can integrate a new DL into the 

LFDL system. And once the DL has been added, end users should be able to search it 

using a universal interface without any delay.

3.2 LFDL ARCHITECTURE

As stated in Section 1, the design goal of the LFDL is for it to be a lightweight, 

flexible approach based on robust and efficient architecture, to achieve a federated 

service with adequate service quality, usability and performance.

Figure 3.2 shows the services and major components of the LFDL we propose. The 

core service is the Search Service and Results Presentation Service for end users. In 

addition, as a federation of distributed information sources, a Registration Service is 

necessary to reveal where resources are located and what capabilities these DLs have. A 

Management Service enables the administrator to monitor and fine-tune the LFDL to 

achieve better system efficiency and performance.

The LFDL services are implemented by the LFDL Federation Engine, which consists 

of a number of sub modules. On the front end end-users employ the Universal Search 

Interface to access the LFDL federated search. At the back end each participating DL (or 

rather the person responsible for the addition of this to come from the DL’s parent 

organization) registers its specification with the LFDL to describe how to access its 

library. Once a user submits a search request through the universal search interface, the 

LFDL search service will use the query mapping rules from a DL specification to 

translate the query to that DL's native query. The LFDL will then send the translated 

query to a remote DL and get results back. The LFDL results presentation service will 

parse the result set and save it to Cache and then display it to end users.

DL experts can access the LFDL Registration Service interface to add a digital 

library and its specification to the federation. The LFDL system manager can utilize the 

Management Service interface to conduct system monitoring and maintenance tasks.

In the next sections we shall give details on the major LFDL components.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



26

o

DL1 DL2
S p e c . S p e c . X M L S pecification

R egistration
Serv ice

M an ag em en t
Serv ice LFDL

Federation
E ngine

Cache
Engine

S e a rc h  Serv ice

R esu lts
P re sen ta tio n

S erv ice
LFDL Core

DL„

Fig. 3.2. LFDL architecture.

3.2.1 DL Specification

The key to a lightweight, data-centered and rules-driven approach is the 

interoperability information described in the specification of a digital library. Within a 

group of heterogeneous digital libraries, each one of them is unique in terms of its search 

interface and results presentation. Developing code for each DL to wrap up the difference 

is an option to achieve interoperability. However, that is not flexible and not efficient.

Instead of writing specific code for each DL, we provide a standard specification 

format or common rules to describe each DL’s characteristics, capabilities, and 

interoperability information using XML. We observe the user interaction with the DL 

and specify all possible user/DL interactions including query submission and the way a 

DL presents the results of a query to the user. A DL specifies its unique information, 

including how its query string format is mapped to the LFDL query format, and special 

instruction to process its search results, following the common LFDL schema so that the 

generic LFDL code can enforce the rules.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



27

3.2.2 Registration Service

As a federated service provider, the LFDL needs to be aware of the existence of a DL 

repository. The registration service allows a new DL to be added to the LFDL federation 

by registering its specification. The specification can be stored in a centralized server. 

The format of the specification must follow the standard schema, and the LFDL will 

check its validity before a DL can be successfully registered.

Either an individual DL expert or an LFDL expert can access the registration 

interface to register that DL. Once registered, a DL’s specification is parsed and stored so 

that the LFDL Federation Engine can enforce the rules specified in the specification.

3.2.3 Search Service and Results Presentation Service

To end users the LFDL is an enhanced mega search engine. Using a universal or 

unified search interface, users can send search requests simultaneously to all digital 

libraries in the federation. The search results will be returned to users as if they are from 

the same source. The LFDL Federation Engine showed in Figure 3.2 utilizes the 

specifications of federated DLs to provide the search service and results presentation 

service.

The details about the data flow and interaction among various LFDL modules to 

service a search request are as follows:

1. At initialization the system reads all specifications of registered DLs and creates 

the query mapping rules and results handling rules.

2. A resource discovery user submits a query using the LFDL unified search 

interface.

3. The query is passed to the LFDL Federation Engine.

4. The Federation Engine uses the query mapping rules to transform the universal 

query to each DL’s native local query.

5. The transformed query is sent to each remote DL and the search results are 

gathered.

6. The Federation Engine parses the search results pages, using the results handling 

rules of each DL, and extracts the results.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



28

7. Parsed results from all DLs are merged and displayed to end users.

3.2.4 Management Service

A well-managed information system can achieve desired functionality and improved 

performance and efficiency. Without proper tool support the management task can be 

time-consuming and error prone [52]. For the LFDL we design and implement a 

monitoring and management service to facilitate the needed tasks. A Web interface 

enables the LFDL managers to start/stop the service and track system runtime 

information such as each DL’s availability and various system statistics, including 

average system response time, resource usage, and user search behavior data. The 

management service also allows for fine-tuning the system by adjusting runtime 

parameters, for example, allocating more system memory for caching.

3.2.5 Caching

System performance and reliability are major problems with DL interoperability 

approaches using results gathering and distributed search. As the search request is sent 

simultaneously to multiple DLs and each of them has a different response time, the 

federated DL’s response time is not guaranteed; usually only when the last DL returns 

something can the end users see the results.

In our approach we provide universal access to heterogeneous DLs at a relatively 

high level, i.e., a common data model to map high level query language. The 

communication protocol to each DL is HTTP [30], [31]. Its efficiency depends upon the 

network traffic, as well as the response time of each remote DL system (determined by 

its service implementation, the power of the server, and server load). Ideally, such 

interoperability should be at all levels like in a fully cooperative federation, e.g., using 

common data query languages, data manipulating and accessing mechanism, the data 

model, communication protocols, and more. Such integration is currently impossible due 

to the many autonomous DLs. One of the biggest issues of this high level integration is 

the sacrifice of performance: without the full control of the query structure, there is no 

guarantee of the query response time. Therefore, in using a universal interface to access

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

different DLs, there will be different response times. Additionally, the response time is 

unpredictable, as we have no M l control. When a search is against several individual 

DLs, the response time the user feels is always equals to the response time of the slowest 

DL. For an online application like digital library, where response time is critical, such a 

slow system is unacceptable.

An effective way to improve service performance is by caching search results. 

Pitkow [97] presents a caching algorithm targeted at WWW-based information system. 

We can also take advantage of caching to improve the performance of the LFDL system. 

In addition, a well-designed cache makes the LFDL more robust, flexible and scalable. 

We propose a LFDL cache (discussed in detail in Section 7) which holds recent search 

results in local storage. When a search request is served, the cache will be checked first 

to see if the query and its results have already been kept locally. If there is cache hit, the 

results will be returned to users instantly. With caching we can also implement 

asynchronous search and progressively results presentation: instead of waiting for all 

results come back from all DLs, partial results can be displayed to users first and 

whenever there are new results available the results-displaying page will be refreshed 

accordingly.

The LFDL Cache Engine (Figure 3.2) is responsible for the cache to be working 

properly. For example it enforces the cache size as planned and if the cache is M l, it will 

replace existing entries with new ones according to a cache replacement algorithm 

(discussed in Section 7). It also maintains a list of cache-miss queries so that a DL Agent 

can refer to the list and access a remote DL to fetch results for the query that has no 

results in cache.

Figure 3.3 demonstrates a cache-based search scenario: a user wants to search for the 

keyword “XML” against the IEEE and the ACM digital library.

1) User sends the search request to LFDL web server.

2) The LFDL Federation Engine checks against cache.

3) For IEEE, the cache finds an entry with the same query string; for ACM, the 

cache misses.

4) Web server returns the result page: for IEEE the search results, for ACM the 

message “still fetching data from remote DL”.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

5) An entry is added to a cache-miss list: “XML” for ACM.

6) The Federation Engine reads in each entry of the cache-miss list.

7) The engine will send the request for “XML” to the ACM digital library and then 

receive the search result.

8) The cache will be updated with the new result. The entry will be deleted from 

cache-miss list.

In the meantime the web browser will continue sending the request for “XML” against 

ACM automatically, until the cache hits or times out.

Web Browser

Remote
DL

DL A gent

(5) z

cache-
LFDL Search Engine Cache miss list

Fig. 3.3. Caching usage scenarios.

3.3 LFDL IMPLEMENTION: RAPID PROTOTYPE SYSTEM

We realized the first implementation of the LFDL as a rapid prototype system [109], 

[130]. Three specification documents specifying the three initial libraries (ACM, IEEE, 

and NCSTRL) are registered. This prototype showed that the LFDL provides a feasible 

approach in achieving interoperability among non-cooperating digital libraries at least in 

principle.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

The screenshot in Figure 3.4 shows the universal search interface of the LFDL 

prototype.

j File Ecft View Favorites Tools Help wm
^  .  ■+ . 1 1  cb

Back Frwa-d Stop Refresh Home
■ a  J  u J r

■ Search Favorites History ; Mail Print Edit

Address |r& 1 http: 7/128.82.7.76:33337interop/index.html •*•( ^ G o  | i Links **
- i1H

A]

Enter the K eyw ord to search: |digital|

Enter the Author Name: [ ....
Enter the No. o f  hits per Digital Library: ]20

Select the Subject:
(C om puter S c ience

Select the Archival-Type:

Display M apping Information:

(C onference P a p e r  

T Y e s  N o

Select Digital Library to search on: IEEE D i g i t a l  L i b r a r y  

11 [A.CH D i g i t a l  L i b r a r y  WNCSTRL D i g i t a l  L i b r a r y

k '
§|jbm it 1 _j

]§ ]  Done . Internet

Fig. 3.4. Universal search interface of the LFDL rapid prototype system.

The core LFDL federation engine is implemented as a Java Servlet [38], [47] running 

on an MS IIS web server. There are many advantages to using Servlets rather than other 

web application technologies such as CGI. Among them the most important ones are:

• Advantages of Java language: such as platform independence, write once run 

anywhere, and multithreading [5].

• More efficient: unlike CGI [16], which starts a new process upon receiving a new 

request, a Java servlet starts only once during it’s whole life cycle. Whenever 

there is new request, a thread will be generated to handle the request. This is more

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



32

efficient and can achieve better performance. Although FastCGI [15], as an 

improvement to CGI, addresses the process proliferation issue, it still lacks the 

efficiency a true multithreading solution that servlets can provide. Both CGI and 

FastCGI are not trivial to program. Servlets can also take advantage of the 

benefits of the more open, portable Java language.

• Others: like build-in session control, authentication and security support of the 

Servlets engine.

All these benefits make Java Servlets an ideal middle tier solution for advanced web- 

based application system.

The web server provides the common middle tier or interface between the client and 

the backend services. The requests for registering a DL, or the query for a DL, are all 

sent to the web server from the client’s browser machine. The web server forwards the 

request to the appropriate service provider, and then sends the results back to the browser.

3.4 DISCUSSION

The LFDL rapid prototype system implementation and test bed demonstrate that the 

LFDL provides a feasible, lightweight approach to achieve interoperability among non

cooperating DLs. At this stage we were not concerned with efficiency in terms of user 

response time but more with seamlessness and an engine that is driven by specifications 

and not by specific codes for different DLs.

In our prototype implementation we have the feature to allow for dynamic additions 

of new libraries. In various experiments we have been successful in showing the power 

of our approach. We started with including only IEEE in our LFDL and once a user 

submits a query and LFDL returns the appropriate results as from the IEEE. Next we 

defined a specification for the ACM DL and added the description to the LFDL using the 

registration service. After reissued the query without any code change and the LFDL 

produced the query results from both ACM and IEEE. It should be clear that the LFDL 

prototype did not post process search results and only presented results in their native 

format as returned by the participating DLs, usually a list of document records and each 

has a clickable hyperlink. Once a user picks a particular record by clicking on its link, he

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



33

will be redirected to that digital library. The LFDL prototype by itself does not maintain 

any record locally and only serves as a broker [132],

The prototype system has limitations in terms of search capabilities, service usability, 

quality of service (precision/recall), and performance. In the following chapters we will 

give details on how we design and implement the various LFDL services to address those 

limitations and evolve the prototype LFDL into a useful system.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



34

SECTION 4

DATA-CENTERED RULES-DRIVEN INTEROPERABILITY: DL 

SPECIFICATION

In the previous section we introduced the basic approach and the overall architecture 

of the LFDL in building an interoperable federation of heterogeneous digital libraries. 

The essential part of the LFDL is DL specification, which describes a DL’s 

interoperability information.

In this section we introduce a XML-based Digital Library Definition Language, or 

DLDL, to describe the methods to interact with a digital library. The section is organized 

as follows:

• In section 4.1 we present an overview of the data-centered interoperability of the 

LFDL.

• We then in section 4.2 discuss the design and implementation of DL specification 

schema based on the DLDL.

• Section 4.3 describes how to use the DLDL to compose a DL specification.

• Finally section 4.4 discusses issues of using the DLDL for a highly-diverse 

collection of digital libraries.

4.1 INTRODUCTION

Our interoperability approach is based on a data-centered rules-driven architecture 

that allows individual DL system to describe itself so that a federated service can be built 

by enforcing the rules specified in the description. The federation supports a unified 

interface that allows users to search participating digital libraries and get results that are 

dynamically constructed depending on the profile of the target DLs.

In this approach the inside architecture and implementation of each DL is invisible. 

Not only it is convenient for an existing independent DL to join the federation, it also 

alleviates the management and maintenance burden of the federated service provider. In 

stead of writing code for each DL for its unique features, we develop the generic LFDL

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



35

Federation Engine and use self-described rules specified in a DL’s specification to build 

the integration. Any changes in a registered DL can be handles easily by updating the DL 

specification - no code change, no redeployment.

The key is how and what to define in the specification to describe all interoperability 

related information of a digital library. Though different DLs have varying degrees of 

“openness”, they all have to provide at least a search interface and results display 

interface for end users to utilize the services. Some do provide browsing services for 

users to scan through collections but in this dissertation we focus on the search related 

services. Thanks to the popularity of the Internet and WWW, the majority of the 

interfaces are Web-based instead of being implemented on proprietary systems. DLs’ 

native search and results presentation interfaces are the sources for the LFDL to build a 

federated search service. A DL’s profile specification is thus served as the mapping 

between the LFDL unified search interface and results display interface. As illustrated in 

Figure 4.1 a DL’s specification includes the query translation rules which specifies the 

mapping between an LFDL query and DL native query, as well as results processing 

rules on how to trim unrelated information from the DL’s results page and fetch the 

actual search results.

native qjueryquery

Repository

results native rdsults

LFDL Service Remote DL

DL
Search

Interface

DL
Results

Page

LFDL Search 
Interface

LFDL Results 
Presentation

Query Translation 
Rules

Results 
Processing Rules

Fig. 4.1. Specification based LFDL federation.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



36

4.2 DIGITAL LIBRARY DEFINITION LANGUAGE (DLDL)

To create a specification for a DL we need a schema to define a common set of rules 

and standard format. That is, different DLs have to “speak the same language” when 

describing their specific features. This enables a single generic LFDL Federation Engine 

to read in a DL specification and enforce its rules.

To design and implement the schema one option is to use a traditional relational 

database and define a set of table structures. However, a database-based schema is not 

flexible and not easy to maintain or update. To read, enter or update data, code has to be 

developed to provide a human-machine interface so that users can access the data in 

database. In case to modify the schema, the whole database table structure may have to 

be changed, as well as the data manipulating code.

Ideally, the schema, as well as the specification, should be simple, straightforward, 

human readable, and easy to modify. The Extensible Markup Language (XML) [125], 

[40], which is a simple dialect of SGML [116] and has been endorsed by W3C [124], 

provides an ideal solution.

XML transforms data in a format that can be easily processed between different 

organizations each of which has its own data format and structure. XML makes data 

portable and independent of implementation by making data self-describing. XML 

provides a non-proprietary way to label data objects and it provides a universal syntax for 

representing the structure and description of data, indifferent to application logic. XML 

allows exchange, sharing and use of data across applications, organizations, and 

platforms in a standard, cost-effective way over the network. This exchange lets 

developers write applications that can run on any platform and let everyone view and 

leverage data similarly, regardless of system or operating environment. XML is a flexible 

language that can easily accommodate changes. There are many parser tools available 

and it can be used on multiple platforms. In addition an XML document is human- 

readable and can be edited using any text edit tool.

XML Data Type Definition (DTD) [101] or Schema [119], [126] is a perfect match 

for DL specification schema. A DTD defines the structure of an XML document and it 

allows the XML parser to check whether the document is valid or not and whether it is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



37

well formed. XML Schema is an alternative to DTD, which unlike DTD, is itself XML 

based. XML Schema is more extensible and richer than DTD.

We develop the XML-based Digital Library Definition Language (DLDL) to specify 

the externally observable behavior of a DL; that is, for each DL an XML description is 

used to define the metadata of that DL, or define the form that the DL expects queries in 

and how it presents the results to the user. In DLDL we use a DTD to define DL 

specification schema because it is simpler than a XML Schema and enough for this 

application. Figure 4.2 lists part of the DTD which lists three important piece of 

information of a DL specification: the content of this digital library, methods to access 

the digital library, and what information must be retrieved from the digital library.

<?xm l v e r s i o n = " 1 .0 "  e n c o d in g = " I S O - 8 8 5 9 - l" ? >
< ! DOCTYPE DLDL[
< ! ELEMENT DLDL (TITLE, DOCID, BASEURL, DLIBINFO, SEARCHDATA)>

< ! ELEMENT DLIBINFO (ORGANISATION, ARCHIVAL- TYPE* , SUBJEC T*)>

< ! ELEMENT SEARCHDATA (REPLACE-FIELD, SEARCH-METHOD, SEARCH- 
URL, INPUTDATA*, OUTPUTDATA*, MULTIPAGE)>

< ! ELEMENT INPUTDATA (IVARIABLE-NAME, IVARIABLE-TYPE, FORMNAME,
DE FAULTVAL, RE PLACE- NUM)>

< ! ELEMENT OUTPUTDATA (OVAR-TAG, OVAR-MATCH)>

< ! ELEMENT MULTIPAGE (MULTI-PAGE, HAS-NEXT, NEXT-URL, LINK-URL,
PA G E-H IT)>
2̂ ___________________________________________________________________________________

Fig. 4.2. Part o f  the D T D  o f  a D L  specification.

4.3 DL SPECIFICATION DEFINITION USING DLDL

N o w  that w e  have the specification schem a defined using D L D L  D T D  w e can start to 

use it to describe a digital library’s metadata inform ation. In the fo llow in g  sub sections  

w e describe each D L D L  X M L tag and its usage. M ore details can b e found in [130],

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



38

4.3.1 Digital Library Content

This set of tags gives general information or metadata about a DL such as its title and 

URL. The TITLE attribute of a tag describes the function of the tag. The tag DLIBINFO 

has three additional tags:

<ORGANISATION>: The organization that maintains this digital library. 

<A R CH IVA L-TYPE> and <SU B JE C T > : The type of materials the DL consists as 

well as the DL’s general subject category. These tags are for information only currently. 

In the future they can be used for the field mapping.

4.3.2 Digital Library Access Methods

This set of tags specifies the rules on how to access a remote DL as well as how to 

map a LFDL unified query to that DL’s native query. The tags can be divided into 

different sections. The first set of tags give information on the location and search 

method of a digital library’s search service. An example is shown in Figure 4.3:

<SEARCHDATA Title="Search Info:">
<SEARCH-METHOD Title="Search Method:">POST</SEARCH-METHOD> 
<SEARCH-URL Title="SearchURL:">http://www.acm.org/ows- 
bin/dl/owa/dl.search</SEARCH-URL>

Fig. 4.3. Specification sample: remote DL access information.

The SEARCH-URL tag indicates the URL of the search interface of a digital library 

server and the SEARCH-METHOD tells the access method to the HTML form of the 

search interface. The standard POST or GET method can be used. The above sample 

shows that the ACM digital library uses POST method to submit a query to its search 

service.

For the LFDL to access a DL, it has to know the search interface of that DL. And the 

format of the LFDL query string has to be translated to the native format of that DL so 

that the LFDL can distribute its query to the DL. Figure 4.4 demonstrates the set of tags 

that describe a DL’s search interface information and how it can be mapped to the LFDL

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.acm.org/ows-


39

universal search interface. For example, the HTML form of the ACM digital library has a 

text input field which is displayed as “Search DL”. Its interior query string name is 

“query”, which can be mapped to the LFDL query string name “UI_keyword”. Therefore, 

when a user search for “computer” using the LFDL universal search interface, the LFDL 

can look at the specification of ACM and translate LFDL query string 

“UI_keyword=computer” to ACM native query string “query=computer”.

<FORMFIELD>
<INPUTNAME>
<LABEL Title="Displayed Field Name:">Search DL</LABEL> 
<INPUTNAME_VALUE Title="Internal Form 

Name:">query</INPUTNAME_VALUE>
<INPUTNAME_MAPPING Title="Mapped UI Field 

Name:">UI_keyword</INPUTNAME_MAPPING>
</INPUTNAME>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUTVALUE/>

</FORMFIELD>

Fig. 4.4. Specification sample: DL search interface information.

4.3,3 Information to be retrieved from Digital Library

This set of tags gives information on how to parse the results from a digital library. 

The DL output is an HTML page that contains the required links to the desired 

documents. However that HTML page is often not well constructed and it contains many 

unrelated links. We need the following information from that HTML page: the correct 

links to the valid search result documents and whether the results are returned on one 

page or multiple pages. If it is returned on multiple pages then we need the necessary 

information to retrieve all the result pages. The set of tags in Figure 4.5 tells how to parse 

and get the correct links to the documents. The OVAR-MATCH tag indicates the 

matching string for a result document. The OVAR-TAG tag specifies the HTML tag to 

be searched to see if it contains the matching string.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



40

<OUTPUTDATA Title="ACM Output:">
<OVAR-TAG Title="Output Tag:">A</OVAR-TAG>
<OVAR-MATCH Title="Output Match:">/pubs/citations/</OVAR-MATCH>
</OUTPUTDATA>

Fig. 4.5. Specification Sample: results matching information.

The set of tags in Figure 4.6 specifies how to parse DL search results that may be 

stretched across multiple pages. If DL output is listed on a single result page the value of 

the MULTI-PAGE tag is “no” and the rest of the tags have “null” as their value. If DL 

results are displayed on multiple pages all of the HTML pages have to be retrieved. A 

“yes” value of the MULTI-PAGE tag indicates multiple results pages. The HAS-NEXT 

and NEXT-URL tags are for the case that there is a link to the next result page and the 

following page has a link to the next page and so forth. The more common way is to have 

links to all the remaining pages on the first page and the tag LINK-URL gives the 

matching string of the links to the other pages. The PAGE-HIT tag tells the number of 

hits that is returned on one single page so that the number of pages to be retrieved can be 

limited based on the number of hits a user wants.

<MULTIPAGE Title="Multi Page Information">
<MULTI-PAGE Title="MultiPage:"> yes </MULTI-PAGE>
<HAS-NEXT Title="Contains Next Link:"> no </HAS-NEXT> 
<NEXT-URL Title="Matching String:">null</NEXT-URL> 
<LINK-URL Title="Matching String:">/ows- 
bin/dl/owa/dl.result_page?search_conid </LINK-URL> 
<PAGE-HIT Title="No. of hits per page:">24</PAGE-HIT> 
</MULTIPAGE>

Fig. 4.6. Specification sample: multiple results page information.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



41

4.4 DISCUSSION

We have defined and registered the metadata specification for half a dozen DLs using 

the DLDL. The registered DLs are all quite different, not only in content but in 

organization and implementation as well. These DLs have different search interface, 

reliability, and response time. All these point out that there is considerable peril in 

attempting to federate heterogeneous libraries. The LFDL test bed demonstrates that the 

DLDL is capable of grasping the essential DL interoperability information, and it is 

flexible in the sense that it allows a large variety of digital libraries to have an XML 

specification which can be used with the LFDL search software. The self-described XML 

specification based on the DLDL is simple to read and a user can easily edit it. Also, the 

LFDL’s data-centered architecture fits well in the more popular distributed, inter- 

organizational, web-based computing model such as the Web Services [122].

A similar approach is described in [99], in which a Searchable Database Markup 

Language, SearchDB-ML based on XML is defined. This approach differs in that it is 

targeted for Web sites that support simple search interfaces rather than libraries with 

support for clustering and advanced searches, and it does not support dynamic discovery 

and integration of a digital library in the federation. Lyceum [72] is another earlier data 

driven approach in which a query gateway or meta-search engine provides a unified 

interface to heterogeneous and distributed information resources, though it is pre-XML 

and of relatively smaller scope than DLDL. Target mainly Web sources, DEByE or Data 

Extraction by Example [24], is a tool for extracting hidden Web data based on user 

specified examples.

One issue we have to point out is the intellectual property right, which prevents many 

DLs like ACM and IEEE from cooperating in the firs place. For the LFDL although we 

talked to publication officials of the ACM library we did not do so for other DLs. The 

assumption that what is available on the Web for free can also be included in our 

federation may be wrong. We feel that in many ways we use the same rights the general 

Web indexers use. At this stage we are not addressing intellectual property directly, 

considering our work currently is still mainly for research purpose. We do think it is an 

important issue to be discussed in the future. Also, once the federation service is finalized 

and deployed successfully in production, organizations may be willing to participate.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



42

The diversity of digital libraries makes it unrealistic to design a ubiquitous schema 

that can describe all types of digital libraries or the very single aspect of a DL. In the 

following section we discuss various other issues of the design and usage of the DLDL.

4.4.1 DL Search Interface Capture and Query Mapping

One of the basic functions of the DLDL is to describe the search interface of a DL 

and define rules of query mapping between the LFDL and native DL. It is possible that 

some features of the search interface presentation within a given DL are not captured by 

the DLDL. For example some HTML form fields of a DL may have pre-defined option 

values, but the DLDL does not define any common values and therefore there are no 

mappings to DL specified values.

The DLDL is capable of specifying the differences in syntax of a DL’s search fields 

and filters; however, the current schema does not resolve the different semantics of the 

search interfaces of different DLs. The syntax differences may be simply that the number 

of fields is different or that the naming of the corresponding fields is different. For 

example one DL may not have a “title” search field and another DL may have named the 

author field as “creator” field instead. Using the DLDL we can create the specification 

for a DL so that each of its fields is mapped to the generic LFDL search field.

The subject clustering mapping problem [133] represents the general semantics 

mapping issues of the DLDL. Semantic differences may also occur when one DL returns, 

for example, an undifferentiated, unchecked character string for a date field, whereas in 

the universal LFDL we consider date to be an object that can be read by a standard 

calendar program.

The semantic differences in mapping are not easy to solve, considering various DLs 

may have numbers of fields that have different pre-defined values. One option is, in 

addition to the specification per DL, to create a generic meta-tag specification for the 

LFDL [133]. The generic LFDL specification will define all possible DL filter values in 

a universal, neutral format. Each DL’s specification can then map each of its filter values 

to the generic one. We need to do more research to find out if this universal, maximal 

specification is workable and economical.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



43

Another major problem is how to describe a non-web form based interface, in which 

other methods like a Java applet instead of a form are used to present interfaces for user 

input. Similar problems occur when we want to incorporate multimedia digital libraries: 

what if a clickable map is used to send a query? Though those are not common scenarios 

in a digital library, we have to be aware of them. Until now we have not addressed them 

in our approach, but we may explore those issues in future work.

4.4.2 Search Process Simulation and Specification

There are some other issues related to the simulation of different processes or 

patterns that a particular digital library supports and users have to follow to place a 

search, e.g., access control and multi-step search. The difference in access control 

mechanism is a major issue that we have to deal within the LFDL. The problem arises 

when some or all DLs only allow access upon some sort of user authentication. The 

question is, how to integrate the particular process in the LFDL in such a way that the 

user does not have to deal with multiple different authentication processes but only one 

(possibly involving several passwords). A similar problem is posed when a particular DL 

partitions a search into separate stages going back between the server and client to 

achieve a particular query. Consider a DL that allows a user to specify a subject 

taxonomy and then makes a selection from the chosen taxonomy.

The following table lists various search process specification issues, sample scenarios, 

solutions or options. Mostly it requires that we extend the DLDL schema and then 

enhance the LFDL Federation Engine to comply with the DLDL changes.

Access Control IEEE [43] has access control to its search service and the 

authentication is done by two HTML form fields of userid and password. We can extend 

DLDL specification for IEEE to include such information: a “guest” user with password 

of “welcome”. However, this only works for DLs that have universal user access and it is 

available to the pubic for free. We still need to address individual authentication in which 

each end user has his own id and password.

Session/Cookie Control Many digital library services require that client-side 

browsers to support HTTP sessions or cookies to finish a search. As a software agent 

which simulates the browser to interactive with the HTTP server, the LFDL has to take

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



44

proper action to access a remote DL which is session/cookie based. We have modified 

the DLDL and the LFDL Federation Engine implementation to support this.

Redirected Service The LTRS [59] digital library redirects a user query to another 

address to fulfill the search request. We can easily make code change to the LFDL engine 

as the underlying Java network package used by the LFDL supports the option to follow 

redirected HTTP links.

Linked Link Page If search results of a user query spread out multiple pages, usually 

a DL displays all links to the other pages on the same page which displays the first set of 

search results. But the LTRS presents just one link to the next page on its current result 

page, so users have to browse results sequentially but cannot jump to a result page 

randomly. We also added this information to the DLD so that the LFDL can act 

accordingly.

TABLE II

PROCESS SPECIFICATION: OTHER ISSUES

Problem Sample Solution or Option

Access
control

IEEE DL password 
protected

ADDITIONAL
name="userid">guest</ADDITIONAL>
ADDITIONAL
name=“password">welcome</ADDITIONAL>

Session or
cookie
control

ACM, Arc, NEEDS ADDITIONAL
name="usecookie">true</ADDITIONAL>

Redirectd
service

LTRS redirects 
query to inktomi 
search engine

Code: follow redirected link

Linked next 
page links

LTRS ADDITIONAL name-'linked link 
page" >true</ADDITION AL>

multiple 
display for 
single 
metadata 
field

Arc ADDITIONAL name="multiple record page 
metadata matching">true</ADDITIONAL>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



45

The last issue we want to describe pertains to query optimization and DL capability 

description. When presenting the user with a choice as to which of the participating DLs 

to include in a search, it will be useful to somehow describe in a concise way the 

capabilities of that DL and also its content and management policies. That same 

information can also be used when a user makes a search on all DLs. For a good response 

time it will be essential for the LFDL to use this information in setting filters and 

selecting DLs to be part of the search. It does not make sense, for example, to search 

arXiv.org - a physics collection - when the subject selected is arts.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



46

SECTION 5 

SEARCH SERVICE: USER-CENTERED DYNAMIC SEARCH

One major objective of digital library interoperability is to provide a federated search 

service so users can utilize a unified interface to search multiple collections at one time 

[67]. This section introduces the effort of building the LFDL federated search service. To 

improve service quality and usability we present a user-centered, need-driven, interactive 

search mechanism based on a dynamically generated user search interface.

The remainder of this section is organized as follows:

• Section 5.1 introduces the challenges of building a unified search interface across 

heterogeneous digital libraries.

• In section 5.2, we discuss an advanced, interactive search approach to build the 

LFDL federated search interface. The interface is generated dynamically based on 

user’s search need and the profiles of the digital libraries that are related to the 

query submitted by the user.

• Section 5.3 analyzes experiments with our implementation.

5.1 INTRODUCTION

In the LFDL the Federation Engine implements the end-user search service and 

results presentation service. Figure 5.1 lists the major components of the engine and the 

data flow among them to fulfill a user query.

As illustrated in Figure 5.1 at the back end each participating DL registers its 

specification by giving its metadata description and access rules to the LFDL rules 

engine. The LFDL search engine coordinates with the rules engine to provide the search 

service. A DL Agent is the mediator between the LFDL and a remote DL. It is created 

based on a DL’s specification once it registers with the LFDL and has the information on 

how to communicate with that DL: where and how to send a translated query to the DL, 

as well as how to interpret the results back from that DL.

On the front end end-users employ the universal search interface to access the 

federated search. Once a user submits a query, the search engine will use the query

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



47

mapping rules from the rules engine to translate the query to a DL's native query. The DL 

agent will then send the translated query to a remote DL and get results back. The result 

process engine will parse the result set and save it to cache and then display it to end- 

users.

Query
M apping

Rules
S e a r c h  E n g in e DL 1

U n iv e rsa l
S e a r c h
In te fa c e

R u le s
E n g in e DL

a g e n t DL 2
Results
Parsing
Rules

R e su lt  P ro c e s s  
E n g in e

P r o c e s s e d
S e a r c h
R e s u l ts

DL 3

LFDL Federation Engine

DL1 DL2 
S p e c .  S p e c .

DL3
S p e c .

Fig. 5.1. Federated search service and data flow.

The details about the data flow and interaction among various LFDL modules to 

serve a search request are as follows:

1) At initialization the system reads all specifications of registered DLs and provides 

the rules engine with query mapping rules and results handling rules. Also for 

each DL a DL Agent is generated.

2) A resource discovery user submits a query using the unified search interface.

3) The query is passed to the search engine.

4) The search engine works with the rules engine and uses the query mapping rules 

to transform the universal query to each DL’s native local query.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



48

5) Each DL Agent sends the transformed query to the remote DL and receives the 

search results.

6) The result process engine parses the search results pages, using the rules from the 

rules engine, and extracts the results.

7) Parsed results from all DLs are merged and displayed to end users.

A major challenge of any federated service is to present a single, unified user 

interface that maps a user's selections for various fields in the search options to queries 

for the participating libraries [133], It is a difficult task to design user-friendly, advanced 

search interface for a digital library so that users are willing to use it to search the 

resource for more accurate results. In the LFDL rapid prototype system implementation 

(see Section 3), we had established a simple-static interface. To enhance the LFDL we 

shall address the problems mentioned above. That is, design an advanced search 

capability and induce the user to take advantage of it. We propose a dynamic LFDL 

interface, one that is customized based on the user’s selection of libraries and the type of 

material the user is looking for [110].

5.2 APPROACH, DESIGN, AND IMPLEMENTATION

Traditional advanced search interfaces assume users are able and willing to constrain 

their search by entering/selecting values in various fields and filters. We believe this is 

not a valid assumption, because for most users this is too time consuming and the design 

is often too confusing, requiring explanations to be checked before values are entered. 

Most users prefer to use a simple keyword based search interface [110]. In our approach 

we have provided a series of interfaces, starting with a simple keyword search interface. 

Based on the users input for the first interface, we tailor and fine tune the next interface 

so that only the essential filters of libraries with content related to the keyword will be 

presented and all irrelevant features will be omitted. For the sophisticated user, we allow 

for the customization of the interface on the fly so that other features can be selected in 

addition to the ones selected automatically by the system.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



49

5.2.1 User-centered, Need-driven Search Mechanism

Our solution to solve the unified interface presentation problem is based on the user- 

centric approach where users engage in a series of interactions with the federation service 

to finish a search. There are two phases of interactions to submit user queries. In the first 

stage a user submits a keyword, and in the second stage, a dynamic generated interface 

with filters related to the query will be presented. The user can then utilize the filters 

desired to submit the query.

The basic idea is to maintain a large keyword set and associate a relevance or weight 

to each DL with each keyword. If a keyword is more relevant to DL A than DL B, the 

dynamically generated search interface should reflect more features from A than from B. 

This way a more accurate search can be sent to the DLs more related to that keyword and 

a higher quality of service can be provided to users.

The keyword set can be created from two sources: analyzing all metadata in the 

archives of the federation and analyzing the logs of users of the federation. A problem 

exists in initializing this set before the federation is in a steady state and another in 

obtaining all the metadata of a participating DL that is generally not available -  

remember, we do not rely on member cooperation. Here we are presented with two 

issues: the need for a base keyword set, and the need to calculate the relevance for each 

DL for each keyword in the set so that we know which DL has matching records.

To generate a base keyword set, we utilize Arc, a federation of over 100 digital 

libraries [69]. These DLs provide all their metadata to the federation following the OAI- 

PMH and at ODU we maintain a repository database to store the metadata. We have 

designed and implemented a process that goes through the Arc metadata repository and 

then calculates the most frequently occurring (in the metadata records) keywords. The 

results will be stored in a relational database. Considering the DLs registered with OAI 

are across quite different disciplines, the keyword set generated from those DLs is 

reasonably representative. This federation also keeps users’ logs that we analyzed. The 

following table shows the top 10 keywords as well as the number of occurrences from 

selected DLs.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



50

TABLE III

KEYWORDS AND NUMBER OF OCCURRENCES FROM THE DL 

METADATA DATABASE

Arc metadata Cogprints metadata LTRS metadata WCR metadata
STATE 14977 PSYCHOLOGY 1968 ANALYSIS 212 WEB 194
STATES 12038 PHILOSOPHY 998 SYSTEM 206 CHARACTERIZATION 137
UNITED 11479 NEUROSCIENCE 824 MODEL 193 WORLD 27
HISTORY 11032 SCIENCE 747 AN 187 WIDE 25
EDUCATION 7459 COMPUTER 613 DESIGN 169 CACHING 17
PSYCHOLOGY 4956 COGNITIVE 542 CONTROL 157 TRAFFIC 16
CRITICISM 4578 BIOLOGY 406 FLOW 146 SERVER 14
STUDY 4192 LINGUISTIC 279 USING 138 PROXY 13
TEACHING 3937 LINGUISTICS 269 HIGH 127 W W W 12
LANGUAGE 3763 MIND 263 FLIGHT 124 CACHE 11

Once this base keyword set is defined, we determine the relevance or weight of each 

keyword within the set by sending each keyword to each participating DL. We associate 

with each keyword the number of hits a DL produces for that keyword. Thus, each 

keyword has for each DL a weight associated. A more accurate weighing algorithm could 

be Term Frequency Inverse Document Frequency (TFIDF) [103] based strategy. 

However, most DLs only expose keyword hits information by displaying the number of 

documents related to a keyword. Therefore, without the knowledge of a DL’s internal 

documents set we can only calculate the weight of a keyword from the hits the DL 

shows.

We expand the DLDL to include the results parsing rule so that a DL can use it to 

specify how to extract the keyword hits information from the keyword search result page. 

The results will be stored in a relational database. As illustrated in Figure 5.2 for each 

keyword in the base set, a keyword-relevance fetching agent sends a request to a DL. 

Based on the hits parsing rule of that DL, the agent collects the result page and extracts 

document hits for that keyword and saves the mapping keyword-hit number into the 

database.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



51

B ase Keywords S et

native qqery

native results

j_ LFDL Hits Fetching Agent

pLJSpscjficatioiI Remote DL

Keywords-Hits

DL
Results

Page

DL
Search

Interface
iterates keywords

gets hits

Query Translation 
Rules

Hits Parsing Rules

Repository

Fig. 5.2. Populating keywords-hits for a DL.

Since this is a time consuming process (and potentially taxing to the participating 

DLs) we would not do this as a real-time process but more likely on a daily or even 

weekly basis. The documents hits information for a keyword is fairly static for a library 

and the keyword list itself should not change dramatically once a steady state has been 

reached. Some DLs may restrict or refuse to service this sort of heavy load placed by an 

automatic agent or robot. We can adjust the agent visit interval and/or if possible 

coordinate with target DLs so that they allow the access.

Table IV shows some top keywords with the highest hits for selected digital libraries 

[18], [43], [84], [128].

Based on keywords-hits information, a dynamic, interactive interface can be 

presented. First we use an algorithm to decide which DLs have the most relevance and 

then we select which advanced search interface features of the most relevant DLs to 

include in the universal user interface. To make this an effective procedure we need a) a 

generic universal interface or UI, and b) a complete specification of all search features of 

the participating DLs.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



52

TABLE IV

TOP KEYWORD-HITS FROM SELECTED DLS

COGPRINTS IEEE NEEDS WCR
ART 569 computing 21165 UNIVERSITY 659 DE 90
SYSTEM 384 U.S. 12785 INFORMATION 357 LA 88
THEORY 301 CA 10293 SCIENCE 325 CA 87
RELATION 226 N.Y. 3984 SCIENCE: 325 EL 69
NEW 215 NEW 2707 STUDENTS 293 WORK 52
LANGUAGE 211 SOCIETY 2452 ENGINEERING 292 NETWORK 46
STUDY 192 DE 1887 PHYSICS 270 PRES 40
OBJECT 186 INFORMATION 1690 STATE 266 WORLD 37
SCIENCE 173 LA 1426 COMPUTER 263 USE 35
RELATIONS 156 SYSTEMS 1380 LEARNING 248 ART 34
ANALYSIS 152 HOME 1312 USE 232 RESEARCH 34
STATE 151 ENGINEERING 1279 TEACHING 216 PRESS 32
PSYCHOLOGY 141 TECHNOLOGY 1276 DESIGN 191 AGE 29
CONDITION 136 POWER 1230 MATERIALS 191 RACE 27
SOCIAL 124 TECHNICAL 1171 DATA 188 COMPUTER 27
COMPUTER 106 DATA 1082 NEW 184 RAT 25
ASPECTS 88 TIME 1069 SYSTEM 183 UNIVERSITY 25
STATES 82 COMPUTER 1001 EDUCATION 182 SCIENCE 24
CONDITIONS 72 BOARD 879 TIME 168 VIRGINIA 24
CHILDREN 58 EL 859 PROGRAM 168 PUBLIC 24
PHYSICS 52 CONTROL 805 CENTER 167 GROUP 22

5.2.2 A Generic Base Universal Interface

DL search interfaces vary considerably, and it is almost impossible to create a 

complete universal interface that includes all features of all DLs. The design goal of the 

base search interface for a federated service is to create an interface that is as general as 

possible instead of complete. The Dublin Core or DC [27], [123] metadata set provides 

an ideal basis to use as filters to create such an interface. Dublin Core defines a common 

set of metadata. Many digital libraries have either fully adopted DC or provide interfaces 

using at least several DC elements. Therefore, we chose the majority of the elements in 

Dublin Core as our basis in defining our UI, with some additional features such as 

display options or number of hits, which are not in DC context but more important for a 

federation digital library service.

Figure 5.3 demonstrates the LFDL generic universal search interface. Most of the 

searchable fields or filters, such as keyword, creator, and title, are directly mapped to the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



53

elements of the DC. The “No. of Hits per DL” and “Criteria combination” are not 

directly linked to a document’s metadata field, but for users to refine the search.

InterO p; Universal Search Interface

Kfr/tfOfd:
Creator; | ”

Tide: f  

Description: j 

PuBllsner: j ”

Date:]

Subject Category:)

Tvpe:|
Format: j 

Source: |

Language; |

ID:|

No. of Hits per DL: (20 

Criteria CorH6ina6oir:(Ary r j

F  ACH D ig ital Library 

F  IEEE D ig ita l Library 

_ _. . F NEEDS D ig ital Library
Select Digital Library to s e a rc h  on; F  AKHEK D ig ital Library 

F  COGPR.INTS D ig ital Library 

F  CIAS D ig ita l Library

-ySSbtft)

Fig. 5.3. Generic universal search interface.

5.2.3 Enhanced DLDL and DL Specification

Based on the generic universal interface we enhance the DLDL to have the capability 

of describing the essential features of a DL’s interface. First, in order to capture those 

features we conduct a thorough survey of the search interfaces of current digital libraries 

in the LFDL test-bed. A sample search interface, used by NEEDS, is displayed in Figure 

5.4.

Table V lists the search interfaces and features of the digital libraries in the LFDL 

test-bed; including native DL form fields, their mapping to Dublin Core elements and 

LFDL universal interface form fields, as well as results output information. For example 

NEEDS, whose search interface showed in Figure 5.4, has a native search criteria filter

F  C3TC D ig ital Library 

F  LTRS D ig ital Library 

F  MACA D ig ital Library 

F  OTA D ig ital Library 

F  CWP D ig ital Library 

F  JfCR D igital Library

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



54

field named Author/Creator. It is a text input type within the HTML form. The internal 

input form name is author. It can be mapped to the DC element of Creator, and the LFDL 

UI field of creator.

Keyword (s) 

Type of Learning Resource 

Grade"

Author / Creatoi 

Publisher 

Publication Year:

All

All

After

_ ]

Before i

Search Reset

Fig. 5.4. Native search interface of NEEDS.

TABLE V

SUMMARY OF NATIVE FORM FIELDS INFORMATION OF DLS IN LFDL TEST
BED

DL U n 
common 
Field Name

Dublin
Core
element

Field name Field
type

Internal name Default
value
(internal
value)

Search
criteria
or
display
options

NEEDS
Results
(creator,
affiliation,
last
updated,
score)

title title title text
input

title
criteria

creator creator Author/creator text
input

contributor
criteria

publisher publisher publisher text
input

publisher
criteria

keyword subject keywords text
input

keywords
criteria

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TABLE V (Continued)

55

CSTC
Results(Author, 
Date, Category, 
Subject)

keyword subject keyword text
input

terms
criteria

LTRS title title Document
title

text
input

ti
criteria

creator creator authors text
input

au
criteria

description description abstract text
input

abs
criteria

ID identifier? Report
Number

text
input

rep
criteria

subject
category

Category single
selection

sti All
Categories
(*)

criteria

criteria
combination

Select radio
box

boolean (AND)
AND criteria

NACA keyword subject keyword
search

text
input

search_words
criteria

OTA creator creator author text
input

author
criteria

author
search
type

single
selection

authorSEL (all) all of
criteria

title title title text
input

title
criteria

title
search
type

single
selection

title SEL (all) all of
criteria

suject
category

subject subject text
input

subject
criteria

subject
search
type

single
selection

subjectSEL (all) all of
criteria

language language language text
input

language
criteria

Language
search
type

single
selection

languageSEL (all) all of
criteria

WCR
Results (type, 
author, address, 
date)

keyword subject Search text
input

spec
criteria

Hits/page single
selection

pagelength 20 display
options

In general filters listed in Table V are presented as HTML form fields, which 

typically have type, length, label, and value. To describe all this information as well as

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



56

the mapping information to the generic LFDL UI, we expand the DLDL schema so that it 

can describe HTML form field type (e.g., text input, checkbox, option button, drop-down 

box selection), field length, displayed field name or label, default values and optional 

values as well as those values’ mapping with the corresponding values of UI fields. We 

also allow filters that are unique to a DL and have no counterpart in the UI to be 

specified. These filters will be presented to the user in the generated interface if that DL 

as well as its filters are highly relevant to the search query. This makes it possible to 

provide almost the same search quality as accessing each DL directly.

Figure 5.5 lists the DLDL XML DTD for the part of DL search field description.

<!ELEMENT INPUTNAME (INPUTNAME_VALUE, INPUTNAME_MAPPING)>
<!ELEMENT INPUTNAME_VALUE (#PCDATA)>
<!ATTLIST INPUTNAME_VALUE Title CDATA "Internal Form Name:">
<!ELEMENT INPUTNAME_MAPPING (#PCDATA)>
<!ATTLIST INPUTNAME_MAPPING Title CDATA "Mapped UI Field Name:">
<!ELEMENT INPUTTYPE (#PCDATA)>
<!ATTLIST INPUTTYPE Title CDATA "Form Type:">
<!ELEMENT INPUTVALUE (DEFAULTVALUE*,OPTIONALVALUE*)>
<!ELEMENT DEFAULTVALUE (DEFAULTVALUE_DISPLAY, DEFAULTVALUE_INTERNAL, 

MAPPING?)>
<!ELEMENT DEFAULTVALUE_DISPLAY (#PCDATA)>
<!ATTLIST DEFAULTVALUE_DISPLAY Title CDATA "Displayed Default 

Value">
<!ELEMENT DEFAULTVALUE_INTERNAL (#PCDATA)>
<!ATTLIST DEFAULTVALUE_INTERNAL Title CDATA "Internal Default 

Value">
<!ELEMENT MAPPING (#PCDATA)>
<!ATTLIST MAPPING Title CDATA "Internal Value MAPPING">
<!ELEMENT OPTIONALVALUE (OPTIONALVALUE_DISPLAY,

OPTIONALVALUE_INTERNAL, MAPPING?)>
<!ELEMENT OPTIONALVALUE_DISPLAY (#PCDATA)>
<!ATTLIST OPTIONALVALUE_DISPLAY Title CDATA "Displayed Optional 

Value">
Fig. 5.5. DLDL schema for DL search field description.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



57

Based on the schema we can use the DLDL to depict details about a DL’s search 

interface. In Figure 5.6 we provide part of the DL specification of the keyword feature as 

it occurs in the NEEDS digital library and how it maps to the UI. From the specification 

we know that NEEDS has a text input type search filter labeled “keywords” and its 

length is 35. It can be mapped to the UI_keyword search field of the unified interface.

< F O R M F I E L D >
<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight of Field:">1</WEIGHT>
<TYPE Title=”Search Criteria/Display Option>Search Criteria</TYPE> 
<LABEL Title="Displayed Field Name:">Keywords</LABEL>
<LENGTH Title= 11 Field Length >3 5</LENGTH>
< I N P U T N A M E >
<INPUTNAME_VALUE Title="Internal Name:">keywords</INPUTNAME_VALUE> 
<INPUTNAME_MAPPING Title="Mapped UI Field 

Name:">UI_keyword</INPUTNAME_MAPPING>
< / I N P U T N A M E >
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
< I N P U T V A L U E  / >

< / F O R M F I E L D >

Fig. 5.6. Part of DLDL specification for NEEDS.

Once we have the complete description of a digital library’s search features, from its 

specification we can recreate or emulate its native interface. Figure 5.7 illustrates the 

emulated search interface of NEEDS generated from its specification.

K eyw ords

Title

A uthor/C reator

P ub lisher

S u b jec t H ead ing

Affiliates T  S e le c t an  affiliate

Platform  j S e le c t a  p latform

Fig. 5.7. Emulated search interface for NEEDS based on specification.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



58

The search filter information of a DL’s specification is used to both generate the 

relevant part of the UI and, when filled in by the user, generate the queries issued to that 

DL. For example from the specification of NEEDS the mapping of the UI_keyword field 

of the LFDL UI is Keywords. Therefore, when a LFDL service users submits a query 

using the filter UI_keyword (e.g., UI_keyword= “computer”), the LFDL will translate 

the query to the native format of NEEDS (Keywords= “computer”). Table VI 

demonstrates a sample query translation from LFDL to NEEDS. Table VII gives some 

other DL’s native query mapped to the same sample query in the LFDL.

TABLE VI

SAMPLE QUERY MAPPING BETWEEN NEEDS NATIVE QUERY AND LFDL UI

Sample Query in UI UI_keyword=computer&UI_creator=Smith&UI_hits=20
N ative Query after 

M apping
keywords=computer&contributor=Smith&affiliates=&platform=&acti 
on= 1 & community=eng

TABLE VII 

QUERY MAPPING TO OTHER DLS

DL DL native query after mapping
ACM query=com puter& coll=ACM & dl=ACM & whichdl=acm
IEEE rq=0& col=allieee& qt=com puter& qc=allieee& nh=20& ws=0& qm =0& st= 1 &lk= 1 &rf 

=0&rq2=0
CogPrints abstract/key words/title=computer&abstract/keywords/title_srchtype=ALL&  

authors/editors=Smith&authors/editors_srchtype=ALL&_satisfyall=ALL
LTRS abs=com puter&au=Sm ith& sti=*& boolean=AND

5.2.4 Dynamic Interface Generation Algorithm

We have identified the factors affecting the dynamic generation of the interactive 

interface as: a set of keywords and the corresponding document hits of each keyword

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



59

within each DL; a base, generic universal search interface; and a complete, accurate 

description of each DL’s search interface and query format. From the user input and 

keyword-hits information the most relevant DLs can be selected with a threshold 

algorithm tuned by user preference. But what features from each of these DLs should be 

included in the interface? A simple solution is to include all of those features but this 

produces an unacceptably complex search interface. Our algorithm considers the 

following factors: DL keyword relevance, an absolute filter weight from the universal 

interface, and a relative filter weight within each single DL. For example for keyword 

“network”, DL A has 1000 hits while DL B has 300 hits. Therefore the features from A 

should have more weight than those from B. Each field from the universal interface has 

been given an absolute weight, e.g., the field UI_keyword is more important than the 

field UI_publisher. Also within a single DL some filters may play a more important role

than others, so within that DL, filter 1 may have more weight than filter 2. One more

factor is user search behaviors. In the LFDL a logging mechanism stores all user search 

interactions. By observing the log, if for a keyword, most of the times and most of the 

users apply a particular filter to place the search more weight will be given to that filter. 

The algorithm balances all those weights and selects those features with the highest 

weight and then presents them in the order of importance. The algorithm details are listed 

below.

• Metrics

o DLf. digital library j

o filteri(DLj): filter i of DLj

o filteri (UI): filter i of the universal interface

o fu i : overall absolute, static factor from the universal interface

o f i i t s '  overall dynamic factor from the relevance of the keyword input

o W(filteri(D L j) ) :  relative weight of filter i within D L j

o W(filteri(UI)): relative weight of filter i within UI

o IHits(k): total of relevance hits from all DLs for a given keyword k

o Hits(DLj, k): number of hits or relevance from D L j  for a given keyword k

o Tui ('filteri): total calculated weight from UI for filteri

o Thits(filteri): total calculated weight from keyword relevance hits for filter,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



60

o T (filteri): total final calculated weight for filter-, 

o TH: overall threshold to select a filter or not

• Algorithm

receive keyw ord k user input, ge t relevance hits from  repository f o r  a se t o f  D Ls that 

have records rela ted  to k; 

f o r  (j = I; j  < =  size o f  DLs set; j+ + )  { 

get D L fro m  se tf  

fo r  (each f il te r  i within DLj) {

a d d  filtert to filte rs  set s;

Thusifilteri) + =  (Hits(DLJy k) * W(filteri(DLf)));

}

}

f o r  (each f il te r  I  within filters  set s) {

T  (filteri) = W(filter,{UI)) * fu , * 100  +  ThUs(filteri)/ IH its(k ) * fhlts * 100;

I f  (T  (filter,) > TH)

A dd  filteri to selec ted  filte rs  to be included in generated  interface ;

}

• Example

Suppose the user submits a query on “com puter” using the LFDL service which has 

A C M  and NEEDS as participa ting  DLs; each has relevant hits o f  200 and 500  

respectively f o r  ‘com puter’. The A C M  native interface has a f i l te r  o f  CREATOR w ith  a 

pre-defin ed  w eight o f  1 and DATE with a w eight o f  0.5, while NEEDS has a f i l te r  o f  

CREATOR w ith a w eight o f  1 and PUBLISHER with a w eight o f  0.2. Within the universal 

interface, the w eights fo r  CREATOR, DATE, and PUBLISHER are 80, 50, and 30. A lso  

we g ive fu i 0.3  a n d fhils 0 .7  and TH 50. The fin a l overa ll calcu lated w eight f o r  each filte r  

w ill be

T(CREATOR) = 80*0.3 + (200*1 + 500*1)7(200+500) * 0 .7  *100 = 94

T(DATE) = 50*0 .3  +  (200*0.5)7(200+500) * 0 . 7 * 1 0 0  = 25

T(PUBLISHER) = 30*0.3 + (500*0.2)7(200+500) * 0 . 7 * 1 0 0  =  2 0

Therefore, i f  w e g ive a threshold o f  5 0  only CREATOR w ill be included in the generated

interface, and f o r  a threshold o f  20  all three filte rs  w ill be selected.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 1

We want to point out that though we log details about user’s search behavior, that 

factor has not been implemented and not reflected in the algorithm yet.

The feature selection algorithm runs in real time as the user inputs keywords through 

the simple search mechanism. Since the time consuming “hit prediction” aspect of the 

algorithm runs off-line (therefore, not totally up-to-date), the performance is 

instantaneous. Once a user enters some or all of the presented fields, the queries should 

be well constrained to result in good precision (how good a result will depend on the 

user’s effort). The final aspect of our quality of service promise is fast query results 

presentation. Being a distributed query system we do unfortunately depend on the 

participating DLs to respond quickly. We have implemented two features to increase 

performance: caching and immediate results display (or asynchronous results display: 

display the results as they come in from a DL instead of waiting for results returned from 

all DLs).

Figure 5.8 and Figure 5.9 show the different interfaces generated dynamically driven 

by different keywords as entered by a user. Note for demonstrational purposes we set the 

algorithm to show most of the filters of those related DLs. In the actual working version 

we need to fine-tune the threshold so that only the most relevant filters are presented to 

users. Unfortunately, for now the threshold setting is mostly from experience. It is 

desirable to have an algorithmic way to arrive at a meaningful overall threshold that is 

based on user preferences and overall access patterns to individual DLs. This has been 

left for future work.

For the keyword query “html”, only the LTRS DL has hits, hence the dynamic 

interface resembles mostly the interface of LTRS, as shown in Figure 5.8. As for the 

query “university” in Figure 5.9, five DLs have related results with NEEDS and IEEE 

have larger number of hits. Therefore, more features and filters from NEEDS and IEEE 

will be included in the dynamic interface.

Figure 5.10 and 5.11 show the different generated interfaces for the same query 

“network security”, given two different thresholds of 10 and 5. Obviously more filters 

are presented when threshold is 5 than when it is 10.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



62

InterOp Digital Library

Your search fo r “h tm f 
was found in these 
Digital Libraries

Below Is the m ost commonly used  Interface for these  DLs. Click here to custom ize and build your own 
search  interface

••►Search specific bibliographic fields

P«p g r t s / g r t  i d e s

MfiSfBlSJ

keyword |htmi 

creator j

tide | ~

whlcWield G A N D  C OR

W .j. ;r I

V i d e o s

Aud io s

liUi.ure^

*■ Display options

17 LTFS

Fig. 5.8. Dynamically generated search interface for query “html”.

InterOp Digital Library

Below is the m ost commonly used  interface for these DLs, Click here to customize and buiid your own 
your se a rc h  for search interface.
‘ university” was found 
in these Digital
libraries ‘•►Search specific bibliographic fields

Videos
ALlOlGi

keyword [university 

croator

publisher | 

hits 125 J  

source . ■ ■ j
fo rm a l: [ Selectsplatform3

"3Affliiales [ Select an affiliate 

category [ 

date [ 

language |

whictifiefd [ Match all of these conditions 3

*•► Display options

W COCmttTS [• W tfttPS Yj?J iv v : p : P* OTA

Fig. 5.9. Dynamically generated search interface for query “university’"

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



63

Below is the m ost com m only u se d  interface for th e se  DLs. Click here to custom ize and  build your own
Your search fo r search  interface.
"network security " was 
found in these Digital
Libraries ••►Search specific bibliographic fields

Rw nir l s / c i ri ii:his

55333

w

m .

keyword [netw ork  secu rity

hits [25

creator | 

publisher | 

title |

Display options

P i c t u r e s

F  COGPRINTS j; F  ACH j! F  NEEDS | F  IE E E  || F  LTRS J  F  ¥CR

Fig. 5.10. Dynamically generated interface when threshold=10.

Below is the m ost commonly used  interface for these  DLs. Click here to custom ize and build your own 
Your search for search  interface
"network security" was
found in these Digital 
Libraries ••►Search specific bibliographic fields

K»»|iurl s ^ r i r l i r j i r s

DMtjfc' Hits!

MB:

VlltfMlS

A i iiJiu s

k e y w o id

hits

c ie a to i

p u b lish e r

title

fo rm a t

d o te

etw ork security

e le c t a  platform

2002

••► Display options

:i F  C 0G PRIH T5;[ F  ACS F  HEEDS j| F  IE E E  f  F  LTRS I F  SCR

I 'i n t u r n s

Fig. 5.11. Dynamically generated interface when threshold=5.

5.2.5 Additional User Customization Capability

We also want to provide the flexibility for a user to override the system generated 

interface by “hand picking” the fields she would like to see on the search interface. It has 

not been implemented yet but Table VIII and Figure 5.12 demonstrates the design.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



64

First we present end-users a matrix of search interface features of the DLs in the 

LFDL federation. P denotes that a feature is utilized by a DL and it has predefined or 

DL-confined values, and F means it is a free word input or user can enter anything. For 

example, all of the DLs are using the search criteria of “title” and “creator”.

TABLE VIII

SEARCH FEATURES OF SELECTED DLS IN LFDL FEDERATION

PROA arXiv NASA-CASI ARC
search document title F F F F
criteria metadata creator F F F F

abstract F F F

archive P P
archive's set P
description F
type P
subject F F
language F P
category F
publisher F
pub. date P F F
discover date F

full text F
references F
captions F
others PACS Rep. Num; 

Journal ref; 
Comments

Rep. Num; 
Contract 
Num; Acc. 
Num; Journal 
meeting title; 
Corp. source

other

filters
Fields
conjunction

And, or, and 
not

And, or And, or

others
display results per page P P
options sort order P P

others Show
errata

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



65

From the above matrix users can get an idea what search criteria and options are 

supported by each DL so that they can use the features selection interface presented in 

Figure 5.12 to hand pick the features that they think are most suitable for their search 

needs.

1 •'
JjjjjF"

Title \ w Creator
i

Abstract w
:

Archive

7 "IF Archive's set Description ; \ wI • Type w Subject

Search

Document
metadata r Language 1 : • ■ Category Fir Publisher r Pub. Date

Criteriai... f r Discover date

r""™
Full text ff ;‘"i References r Captions

i : • r Others per DL |
: i- . f '

Other
pfilters Fields conjunction

Display options V Results/page Ir Sort order 1
Select sources:

[jjr E F  , ipjr . E F  I
I PROLA j CASI I a r x i v f I  Arc I LANL

Submit

Fig. 5.12. User customization and search features selection interface.

5.3 EXPERIMENTATION AND DISCUSSION

There are currently few accepted ways to evaluate the effectiveness of DLs and their 

interoperability, compare different approaches, or to measure progress towards long-term 

goals [62], The area of DL metrics is still quite young, but progress can be seen in the 

various white papers from the D-Lib Metrics Group [63], as summarized in [92], [98], 

and such sources as [1], [3], [32], [51] and some more general metrics related to Web 

performance [61]. Preliminary tests on the LFDL search service show that providing a 

federation service for non-cooperating digital libraries is feasible and that a dynamic,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



66

user-centered interface is a practical approach to improve the quality of service, as well 

as service usability.

The objective of our experiments was to demonstrate that the LFDL provides a 

search service with satisfactory quality. To do this we calculate the accuracy of the 

LFDL by comparing the search results from the LFDL with those from accessing all 

DLs’ native service in sequence using the same query. We simulate different search 

scenarios by submitting the following ten sample queries (not all DLs support all of the 

filters, we just tried using as many filters as possible) to each individual DL directly, and 

then to the LFDL:

• Query 1: all about interoperability in Digital Library recently published in USA

• Query 2: an author in Stanford has a paper about freshness in Digital Library

• Query 3: all information about distance learning using internet (NEEDS)

• Query 4: a guy called Wilson from Johns Hopkins University just won NEEDS 

award for developing applet fo r signal processing courseware (NEEDS)

• Query 5: all about copyright o f electronic or online publishing in recent 2 years 

(CogPrints)

• Query 6: all about intelligent agent (CogPrints)

• Query 7: the role o f information technology in globalization process (CIAS)

• Query 8: all recent papers in aerodynamic (LTRS)

• Query 9 :1 have a dream by Martin Luther King (OTA)

• Query 10: all recent papers by Dr. K. Maly

Table IX and Table X lists search results from each DL and LFDL, and also how 

accurate the LFDL is as compared with a native DL. For example for query 1 there are

44179 results from IEEE and 347 results from NEEDS. For the same query the LFDL

returns 25 results each from IEEE and NEEDS (by default the LFDL search interface 

limits results from each DL to be 25, but users have option to change the limit), and those 

results are exactly matched with the top 25 results from IEEE or NEEDS directly.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



67

TABLE IX

NUMBER OF DL NATIVE SEARCH RESULTS FOR EACH SAMPLE QUERY

IEEE1 NEEDS1 CogPrints CIAS LTRS1 OTA
Ql 44179 347 4
Q2 37138 347
Q3 46
Q4 1
Q5 6
Q 6 10
Q7 1
Q 8 1 227
Q9 1
Q 10 10

1 Match any o f the keyword (for example, for “digital library” results returned for either “digital” or 
“library”)

TABLE X

NUMBER AND ACCURACY OF SEARCH RESULTS FROM LFDL FOR EACH DL1

IEEE NEEDS CogPrints CIAS LTRS OTA
Q l 25 (100%) 25 (100%) 0 0 4 (100%) 0
Q2 25 (100%) 25 (100%)
Q3 25 (100%)
Q4 1 (100%)
Q5 6 (100%)
Q6 10 (100%)
Q7 1 (100%)
Q 8 1 (100%) 25 (100%)
Q9 1 (100%)
Q 10 10 (100%)

1 For LFDL search we limit results from each DL to be 25, and an accuracy o f 100% means the top 25 
results are matched with the top 25 results o f DL native search

The experiment shows that for the sample queries, the results returned by the LFDL 

are almost exactly matched with those from querying each individual DL directly. At this 

point we can demonstrate that the LFDL has satisfactory service quality. However, more 

experiments and evaluation are needed before we can declare that the LFDL has

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6 8

achieved its objective completely. The current testbed is relative small. A document 

usually only exists in one DL but not in multiple DLs. Therefore, when we compose 

sample queries, for each query we have to aim toward one particular DL which may have 

reasonable results while other DLs may have nothing returned.

The user-centered, need-driven search interface is also more user-friendly and easy to 

use. Though it is not easy to design a quantitative way to measure system usability, we 

think the LFDL provides a better service usability as compared with other DLs which use 

traditional advanced search interfaces.

Query Routing

To provide efficient, highly useable federated search service across large scale, 

heterogeneous, distributed information sources, it is necessary to pick those most suitable 

for a give query. Query routing is the process to evaluate, select, and only distribute a 

query to the best, most relevant sources for that query [66], [117]. Unlike commercial 

web search engines which have a broad range of targets without limit on any topic, the 

LFDL is designed with the intention to server relatively small community concentrated 

on some given fields or topics. Therefore all DLs in the federation should be highly 

relevant to the field the federation serves. Still, query routing technique can improve the 

service and users’ experience greatly if implemented properly. Currently we assume 

users are familiar with the DLs incorporated and give them choices of which DLs to 

search when they submit a query. We also trust the target DLs and include all results 

from them as long as users select those DLs. The following improvement can be done in 

the future:

• Currently the DLDL already support source information description by allowing 

each DL to disclose its metadata information like archival type and 

subjects/categories it serves in the XML specification. Such information can be 

used to evaluate which DLs will have the most relevant search results to a query.

• We already provide a dynamic interactive search interface based on each DL’s 

keyword- hits information from local database. The same information can also be 

used to pick the most suitable DLs to be included in the distributed search.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



69

• Based on a local search results repository (discussed in Section 6 and Section 7) 

we can do data warehousing or data mining on the results repository can sift out 

useful information about the nature and type of a DL that can be used for query 

routing.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



70

SECTION 6

RESULTS PRESENTATION SERVICE: AUTOMATIC METADATA 

EXTRACTION

In the previous section we described the LFDL search service by presenting an 

interactive, user centered, need-driven advanced search mechanism based on Dublin 

Core metadata set.

In this section we introduce the LFDL results processing and presentation service, 

which collects and processes results from multiple DLs and then present the merged 

results to end users in a consistent way. We present an automatic metadata discovery and 

retrieval mechanism utilized by the service. The section is organized as follows:

• In section 6.1 we present an overview of the motive of the LFDL results 

processing and presentation service.

• We then in section 6.2 discuss the approach, design and implementation of 

automatic metadata extraction from non-cooperating DL search results.

• Finally, section 6.3 analyzes the initial experiences and discusses related work.

6.1 INTRODUCTION

The federated search service presented in the last section has a fairly high level of 

service quality in terms of precision/recall with rich functionalities for resource 

discovery. It demonstrates that providing a federation service for non-cooperating digital 

libraries is possible and that a dynamic user-centered search interface is a practical 

approach to improve the quality of service, as well as service usability.

However, so far all our work on the LFDL concentrated on fine-tuning the search, 

with little effort placed on processing the search results; they were presented in a flat 

structure. From interacting with individual digital libraries users are accustomed to 

seeing important information about a result record, such as the author identity, when and 

where it is published, and what it is really about (abstract, keywords, and/or subject). 

They may also want to manipulate the results in order to show only the results by a

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



71

particular author or after a particular date. All these require rich, interactive, and dynamic 

search result manipulation features. A straightforward way for presenting the result is to 

organize the results by DLs and for each DL list the titles of the hit along with links to 

show full records. Such service usability is not satisfactory, from the point of view of an 

end user. Organizing the result set helps users to locate the target object quickly in the 

result set. This requires post-processing of the result set, which is a challenging task in 

the distributed approach. Recall that the distributed search approach, in contrast to the 

harvesting approach, does not maintain the metadata from different collections locally. 

Ideally, if we can get all the metadata associated with the records in the search results, we 

could provide all of these services.

Performance is another major issue in a federated centralized service using 

distributed queries against non-cooperative DLs. In the LFDL rapid prototype system 

implementation, we improved the performance by using a local cache to store the query 

results. All results were cached according to the search query string so that if  the same 

query were submitted, the local cache would be used instead of sending the query to a 

remote DL. However, such a cache mechanism was not flexible, efficient, and scalable. 

The cache reusability was low as only an exact matched query string resulted in a cache 

hit. For example the cache system would not know which field was a match for a 

particular query, author or publishing date. Records by author A, and records by author A 

published in year B will have two entries in the cache, which means considerable 

redundant information and a wasting of resources. Only a search against author A will hit 

the first entry and only a search against author A and year B will hit the second entry. 

Inefficiency also means less scalability. With too many redundant entries and limited 

available resources, such cache design cannot accommodate increasing number of 

queries and search results or if more DLs are included in a search. What one needs is a 

local repository with an “intelligent cache”, so a query on author A and year B will find 

entries in the cache, as already populated by an earlier query on author A. Intelligent 

cache means there are more cache hits without reducing the search result quality [111].

Both the tasks, organizing the result set for better service usability and intelligent 

caching, require additional processing of the result set using all the metadata available

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



72

from the result set. However, extracting metadata from a DL that is not cooperating is a 

non-trivial problem [10].

In this section we present an automatic metadata discovery and extraction mechanism 

based on the same principles we used to provide a search service to non-cooperative 

DLs: by observing the external behavior of a DL. The DLDL (Digital Library Definition 

Language) has been enhanced and an XML specification is used to define the rules to 

obtain metadata from each DL’s result pages.

6.2 METADATA EXTRACTION FROM NON-COOPERATING DLS

In our approach a DL does not explicitly expose its metadata or how to obtain its 

metadata. Each DL has its own way to define metadata, and can display any subset of its 

metadata in whatever format at its own discretion. This makes it extremely difficult to 

post process search results to get metadata as there is no consistent way among DLs to 

expose them. In the following sub-sections we give details on challenges of extracting 

metadata from non-cooperating DLs and how we address them in the LFDL results 

presentation service.

6.2.1 Approach

In general each individual DL provides a search service by three web-based 

interfaces: an HTML form-based search page, a list of output pages of search results, and 

a detail page of a single record/document. In the LFDL we use a generic universal search 

interface based on Dublin Core elements, and we define each DL’s behavior by using a 

specification that is generated based on each DL’s search interface. The specification 

defines the rules of query mapping so that a federated search service can be provided. 

The results list page and/or document details page provides a possible source of result 

metadata. Typically, DLs list important meta information about each matched document 

on the search result page, and the metadata information matches closely to the Dublin 

Core metadata set. Even if no other meta information than the document title and a 

hyperlink to the document is available on the result page, more detailed meta information 

about a particular document or record will be presented once a user clicks on the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



73

hyperlink. Therefore, an automatic metadata discovery and retrieval from a non

cooperating DL is possible as long as such metadata is reachable from its search results 

page and/or record details page. Our approach is to define rules on how to extract 

metadata from these pages, and to develop a metadata parser that will use these rules to 

obtain the metadata. As illustrated in Figure 6.1 the DL specification and DLDL have 

been extended to incorporate the extraction rules and the LFDL results process and 

presentation service will utilize the rules to parse metadata from DL result/record pages 

and then save extracted metadata to persistent local storage.

native qperyquery Query Translation 
RulesSearch Service

DL Search Interface
Results

Processing/
Presentation

Service

Repository
! parsed 
tnetadata

results |!>age
Metadata Parsing/ 
Extraction Rules

DL Search Results

LFDL Feeder)(Jon Eng/he______

Persistant Local 
M etadata S torage Document/Record Page 

Rem ote DL

Fig. 6.1. LFDL metadata extraction approach.

Handling differences in metadata definition among different DLs is relatively easy. 

As we defined in the LFDL a generic universal search interface, we can use the Dublin 

Core metadata set as a common set, and all individual DL’s metadata fields are mapped 

to the closest DC field. Hence, the LFDL search service will be based on DC fields. 

Some DLs may have fields that cannot be mapped to DC fields. We can define a set in 

addition to DC; if those fields are commonly used, we will map them to the extra set. If a

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



74

field is unique to a DL, we will still specify it and keep it. The metadata description of a 

DL will be limited to the exposed fields of that DL.

The difficult part is defining the rules to handle all the different cases of gathering 

metadata from search results and record pages of different DLs. Ideally, DLs would use 

consistent ways to make their metadata publicly available. For example all DLs could use 

the <meta> tag to display metadata information on their result and record pages, and they 

could all use the same DC element name as the <meta> name. If these are true, it would 

be straightforward in defining the parsing rules. Unfortunately, in reality each DL has its 

own way of displaying such meta information, and many times no meta tag is used but 

all information is in the actual HTML code. Therefore, our common metadata retrieval 

rules have to be generic enough to parse different result pages for different DLs.

TABLE XI

SAMPLE DL RESULTS AND METADATA DISPLAY PATTERNS

DL Sample result (from results list page) Metadata fields and 
display pattern

ACM Becoming a computer scientist
Amy Pearl, Martha E. Pollack , Eve Riskin , Elizabeth W olf, Becky 
Thomas, Alice Wu
Communications o f the ACM November 1990 
Volume 33 Issue 11
It is well known that women are significantly underrepresented in 
scientific fields in the United States...

title
creatorl, creator2 
publication date 
description

NEEDS The Knob & Switch Computer: A Computer Architecture Simulator 
for Introductory Computer Science (2001)
Grant Braught; Computer Science Teaching Center 
Last Updated: 2002-02-01, Score: 336

title
creatorl, creator2; 
affiliation 
date, score

CogPrints Barlow, Horace (1996) Intraneuronal information processing, 
directional selectivity and memory for spatio-temporal sequences.. 
Network: Computation in Neural Systems 7:251-259.

creator (date) title 
publication

CSTC Integrating Empirical Methods into Computer Science 
Author: David Reed (davereed@creighton.edu)
Date: 05-05-2002
Category: Reviewed Demonstrations from Conferences 
Subject: Software - Programming Techniques

title
createrl, creater2; 
date
category
subject

LTRS 1562 50 HZETRN: Description of a Free-Space Ion and Nucleon 
Transport and Shielding Comp

Title

NACA 885 27 Central automatic data processing system Title
WCR Analysis and modeling o f World Wide Web traffic 

Conference Paper -  G. Abdulla -  Dept, o f Computer Science, Va 
Polytechnic Institute and State University — 1998

title
type — creator — 
affiliation — date

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

mailto:davereed@creighton.edu


75

Table XI lists a few sample result pages to illustrate the differences among DLs. For 

example in Table XI the search results of the WCR digital library shows a document’s 

title, type, creator(s), creator’s affiliation, and publish date. The format of the metadata 

display is “title” followed by “type — creatorl, creator2... — affiliation — date”. Despite 

the differences among DLs in displaying results, as long as within a given DL there is a 

consistent result displaying format or pattern, we can describe it for each DL so that the 

LFDL can process it accordingly.

6.2.2 Metadata Extraction and Parsing Process

We define DL output metadata at two levels: results list page level, and if  available, 

record page level. Still, some DLs do not provide any metadata at all. Figure 6.2 

illustrates the workflow of the Result Process Engine to retrieve and parse metadata from 

HTML pages at two levels.

1) Once search results (list page in HTML) from a DL arrive, the Result Process 

Engine checks for parsing rules from the DL's specification.

2) If metadata parsing rules have been defined and the results do have metadata 

included, the Process Engine applies parsing rules to get metadata from the result 

HTML page. It will then update the metadata cache with the extracted metadata.

3) If DL specification also defines lower level (record page level) metadata parsing 

rules, all record HTML pages will be retrieved from the remote DL, and the 

results will be parsed to get metadata as in step 2).

4) Extra process on cached metadata so that they are ready to be displayed.

5) After post-processing is done for all results from all DLs, results are merged and 

then displayed to end-users.

6) Periodically, cached metadata will be saved to persistent storage, in our 

implementation, a relational database.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



76

DL definition result list page in HTMLDL
Specification DL

Metadata defined?

record page in HTMLYes

► Parse MetadataMetadata parsing rules

, Update Metadata 
Cache

Metadata
Persistence

Storage
Metadata

Cache

Get Record 
Page

Has Lower Level 
\  Metadata? ^No

No

Results Merging 
& Displaying

Display
Metadata

Fig. 6.2. Metadata retrieval and parsing workflow.

6.2.3 Metadata Parsing Rules Definition

We use the same DL XML specification to define metadata-parsing rules as we use 

for query mapping and metadata retrieval. We extend the DLDL to define parsing rules 

at two page levels: result list page level and single record document level. As shown in 

the DTD in Figure 6.3, the basic idea is that the raw string is separated into several 

segments, and each segment has one or several metadata fields. MATCH-START and 

MATCH-END specify a segment, and EXCLUDE and REPLACE will remove unrelated 

strings. Actual metadata fields will be separated by DELIMITER.

Figures 6.4 and Figure 6.5 show part of the XML specification of the ACM and 

Cogprint library based on the enhanced DTD for metadata parsing and extraction. For 

example the search results of ACM display a document’s CREATOR field by beginning 

with <div class="authors "> and ending with </div>. Therefore, when parsing the result

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



77

page, the LFDL process engine will parse and extract the content between those two 

strings as CREATOR. Similarly, Figure 6.5 demonstrates the metadata parsing rule for 

the CREATOR field of the record page of Cogprints.

<!ELEMENT RESULT-METADATA (MATCH-START,MATCH- 
END,EXCLUDE*,REPLACE*,DELIMITER*,METADATA-FIELD*)>
<!ELEMENT RECORD-METADATA (MATCH-START?,MATCH- 
END?,EXCLUDE*,REPLACE*,DELIMITER*,METADATA-FIELD*)>
<!ELEMENT METADATA-FIELD (#PCDATA)>
<!ATTLIST METADATA-FIELD

Title CDATA "information about a particular metadata 
field">
<!ATTLIST METADATA-FIELD

order CDATA #IMPLIED>
<!ATTLIST METADATA-FIELD

multiple (true | false) #IMPLIED>
<!ATTLIST METADATA-FIELD

delimiter CDATA #IMPLIED>
<!ATTLIST METADATA-FIELD

format CDATA #IMPLIED>

Fig. 6.3. Part of DTD for DL parsing rule specification.

<RESULT-METADATA Title="Result page metadata parsing:" 
hasRecordLevel="false">

<MATCH-START enforced="true" Title="the beginning of matching 
string of result metadata"xdiv class="authors"></MATCH-START> 

<MATCH-END enforced="true" Title="the end of matching string of 
result metadata"></divx/MATCH-END>

<EXCLUDE Title="the string should be excluded or removed when 
parsing"></EXCLUDE>

<EXCLUDE Title="the string should be excluded or removed when 
parsing"></EXCLUDE>

<EXCLUDE Title="the string should be excluded or removed when 
parsing"></EXCLUDE>

<METADATA-FIELD order="l" multiple="true" delimiter=","
Title="information about a particular metadata 
field">CREATOR</METADATA-FIELD>
</RE SULT-METADATA>

Fig. 6.4. Part of ACM DL specification for metadata parsing.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



78

<RESULT-METADATA Title="Result page metadata parsing:" 
hasRecordLevel="true">

<MATCH-START Title="the beginning of matching string of result 
metadata">nul1</MATCH-START>

<MATCH-END Title="the end of matching string of result 
metadata">nul1</MATCH-END>
</RESULT-METADATA>
<RECORD-METADATA Title="Record page metadata parsing:">

<MATCH-START Title="the beginning of matching string of result 
metadata">name="DC.title"</MATCH-START>

<MATCH-END isLastIndex="true" Title="the end of matching string 
of result metadata">" name="DC.creator"</MATCH-END>

<EXCLUDE Title="the string should be excluded or removed when 
parsing">/xmeta content= "</EXCLUDE>

<REPLACE Title="replace old string with new string">
<OLD-STRING Title="the old string to be replaced">" 

name="DC.creator"</OLD-STRING>
<NEW-STRING Title="replace with the new string">;</NEW- 

STRING>
</REPLACE>
<METADATA-FIELD order="l" multiple="true" delimiter=";"

Title="information about a particular metadata 
field">CREATOR</METADATA-FIELD>
</RECORD-METADATA>

Fig. 6.5. Part of DL specification for Cogprints.

6.3 EXPERIMENTATION AND RESULTS

We have implemented this architecture and created specifications for seven digital 

libraries (ACM, NEEDS, NACA, COGPRINTS, CSTC, LTRS, and WCR). All of these 

libraries are from the federation of the LFDL, therefore we only had to add the parsing 

and extraction rules to the DL specification documents. We illustrate the process for both 

a list page level DL and a record level DL. Figure 6.6 and Figure 6.7 show the form of 

metadata and how two very different DLs present them to the user. The ACM DL in 

Figure 6.6 displays a considerable amount of metadata information on the list page result, 

including TITLE, CREATOR, PUBLICATION, DATE, and DESCRIPTION. Earlier in 

Figure 6.4 we give a part of the specification that guides our engine in the extraction 

process.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



79

However, as illustrated in Figure 6.7, Cogprints displays results on the list page using 

only the title metadata. The user has to click the title to obtain a record level page. Only 

that page has the metadata of interest. Again, Figure 6.5 shows part of the XML 

specification for the extraction process.
- ; , '■ : .

S e a r c h  o n  t h e  A C M  D i g i ta l  L i b r a r y .  h t tp :-1www.aem .org  

Gary L  Eerkes
C o m m u n ic a tio n s  o f th e  ACM January 1991 
Volume 34 Issue 1
Master's level computer science programs have experienced significant and sustained growth during the 
past two decades. According to the US. Department of Education's National Center for Education 
Statistics [4], a total of 1,588 master’s degrees were conferred in computer and information sciences in 
1971. This figure increased 508% to 8,070 in 1986—a larger percentage increase than any other major 

1 discipline. The 1970s and 1980s have also been an era in which computer science has ex ...

Title: Grouoware: some issues and experiences
Clarence A  Ellis , Simon J. Gibbs , Gail Rein 
C o m m u n ic a tio n s  of th e  ACM January 1991 

2 , Volume 34 Issue 1

Title: Interface
Jonathan Grudin

3 P ro c e e d in g s  of th e  c o n f e ie n c e  o n  C o m p u te r-su p p o rte d  c o o p e ia tiv e  w o ik  September 1990

writing '
Jolene Galegher, Robert E. Kraut
P ro c e e d in g s  o f th e  c o n f e re n c e  o n  C o m p u te r-su p p o rte d  c o o p e ra tiv e  w o rk  September 1990 
To work together on complex projects, people must agree on a set of shared goals, coordinate the actions 
of contributors, and weave the components they have created independently into a unified whole. These 
activities are the basic components of intellectual teamwork—people vrerking together over substantial 
periods of time to create information-intensive products. Intellectual teamwork demands extensive

4  information sharing and coordination, but these communication needs vary overtime ...

Title: TeamWorkStatiart: towards a seam less shared  workspace
H. Ishii \-_
P ro c e e d in g s  o f th e  c o n fe re n c e  o n  C o m p u te r-su p p o rte d  c o o p e ra tiv e  w o rk  September 1990 
This paper introduces TeamWorkStation (TWS), a new desktop real-time shared workspace characterized 
by reduced cognitive seams. TWS integrates two existing kinds of individual workspaces, computers and 
desktops, to create a virtual shared workspace. The key ideas are the overlay of individual workspace 
images in a virtual shared workspace and the creation of a shared drawing surface. Because each co-

5 worker can continue to use his/her favorite application programs or manual tools in the virt...

Fig. 6.6. Sample search results of ACM DL.

From the experience of adding the seven DLs to our federation we can say that on 

average the effort to observe and analyze a new DL is on the order of hours rather than 

days; these specific DLs took an average of three hours to define. This bodes well for the 

scalability of the approach at least from the specification perspective.

Finally, Figure 6.8 shows the results of our LFDL with metadata extraction. Both 

ACM and Cogprints appear as part of the LFDL results set in the same format and with 

metadata singled out. The amount of metadata will differ for each library and depends 

naturally on how much a library exposes in the result set.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.aem.org


8 0

Once metadata is parsed, it is stored in a local database to form a repository so that all 

future searches will be checked locally first before sending queries out to remote DLs. 

By using such a local repository, both search performance and service reliability will be 

improved. We call this “intelligent cache” as compared to the old caching mechanism in 

the LFDL prototype system.
IIWlWeB! -1D1 x l

Pile Edit View Fa Texts Help

r ^ r i n r i n t c  Home U ̂ out H BroW9« II Search || Register ||
O O g p iir iL b  User Area || Help j

Results for Simple Search
R e f in e  s e a r c h  | N e w  s e a r c h  | N e x t  11

T it le /A b s t r a c t /K e y w o r d s  m a t c h e s  a ll o f  " c o m p u te r " , R e s u l t s  

o r d e r e d  b y  title .
D is p la y in g  r e s u lt s  1 to  100 o f  111. S e a r c h  t im e : Os.

L e d m e i  B P S .  M P S  E R A C D S , E P F  A , F 1 C D . S v b i l le  K  a n d  
K a n d lb in d c r  B E d  f S C A E ) .  M E d  ( U T S ) .  P e t e r  a n d  G o a s a lk o r a le  
B P S  ( H o n s ) ,  F R A C D S .  S h a l i i iie  a n d  B r a d s h a w . M ic h a e l  a n d  
H a r r is  (L e c lm e r )  B  S o c  S c i ,  M B A ,  K a th e r in e  M  a n d  W in n in g  
B D S c  fH o n s I  Q r a d D ip H E d  P h D .  T r a c e y  ( 2 0 0 1 )  N e g o t ia t in g  th e  

M a z e :  C a s e  b a s e d .  C o l la b o r a t iv e  D i s t a n c e  L e a r n in g  in  

D e n t is t r y .  M edical Education Online  6 ( 3 ) .

V c r p la n c k . W  S  ( 1 9 9 2 )  A  b r i e f  in t r o d u c t io n  to  th e  W o r d  
A s s o c ia t e  T e s t .  The Analysis o f  Verbal Behavior  1 0 : 9 ~ - 1 2 3 ,

B la h a , S t e p h e n  ( 2 0 0 2 )  A  C la s s ic a l  P r o b a b il is t ic  C o m p u t e r  
M o d e l  o f  C o n s c io u s n e s s .

C e m a t ,  V a s i le  ( 2 0 0 0 )  A  C o h e r e n c e  O p t im iz a t io n  M o d e l  o f  

S u ic id e .

M c C a i t h v ,  J o lm  ( 1 9 9 6 )  A  L o g ic a l  A p p r o a c h  to  C o n te x t .

C a r r , L e s  a n d  H i t c h c o c k .  S t e v e  a n d  H a ll ,  W e n c h  a n d  H a m a d .

S t e v a n  ( 3 0 0 0 )  A  u s a g e  b a s e d  a n a ly s is  o f  C o R R . A C M  SIGDOC  
Journal o f  Computer Documentation. 2 4 : 5 4 - 5 9 .  z l............................................j± r

Cogprints Home || About || Browse || Search || 
Register || User Aren || Help

A brief introduction to the 
Word Associate Test
Y e ip la n c k .  W  S  ( 1 9 9 2 )  A  b r i e f  in t r o d u c t io n  t o  t h e  W o r d  
A s s o c ia t e  T e s t ,  The Analysis o f  Verbal Behavior  1 0 : 9 7 -  
1 2 3 .

F u ll  t e x t  a v a ila b le  as:

H T M L

A b strac t

A n  e x a m in a t io n  fo r m a t  a s s e s s in g  th e  in t ia v e r b a l  r e p e r to ir e  
o f  in d iv id u a ls  in  p s y c h o lo g y  is  d e s c r ib e d  a n d  r e s u lt s  u s in g  it  
r e p o t te d . T h e  A s s o c ia t e  T e s t  is  e a s y  t o  p r e p a r e , to  t a k e ,  
a n d  t o  g ra d e . I t s  r e lia b il ity  m e a s u r e s  at e  s a t is fa c to r y ;  its  

a b ility  to  p r e d ic t  la te r  b e h a v io r  is  r e p o r te d  u p o n .  T h e  
A s s o c ia t e  T e s t i s  c o m p u t e r  fr ie n d ly ,  a n d  i ts  m e t h o d s  c a n  b e  
a p p lie d  fo r  e x a m in a t io n  in  a n y  f ie ld ,  a n d  a t  a n y  le v e l .

Subjects: Psychology: Applied Cognitive Psychology 
Psychology: Developmental Psychology

ID  Code: 609

D ep osited  By: Verplank, William

D ep osited  On: 06 March 1998

C ontact the site administrator a t  sus>port@eprints. org ; y y :-zl

Fig. 6.7. Sample results list page and record page of Cogprints DL.

By using a cache grouped by metadata fields we can provide service at a quality as 

good as or close to the search service provided by an individual DL that maintains all the 

data it serves. A consistency engine will handle the cache consistency between local 

storage and remote DLs.

Metadata parsing and extraction is a resource intensive process and it may suffer 

scalability problems. Basically it uses string pattern matching from the raw HTML 

source code. Plenty of CPU time and memory are needed to process large number of 

HTML pages in short period, especially if those pages are large, which is not uncommon

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



81

in today’s Web sites. In case each result page has dozens of links to particular records 

which also have metadata information, the LFDL will have to access each one of the 

linked document and extract metadata from it. For a common query for which each DL 

has plenty of hits, the LFDL may have to process hundreds or even more pages for one 

query. The response time may suffer when all these background processes are 

undergoing in real time.

5  Search List Retrieved - Microsoft Internet t

Rie Edt View Favorites Tools Hefci

“3
Search on the ACM  Digital L ibrary - http: vwww nan,org

Title: Profiling com puter sc ience  master's programs.
CREATOR; G ary L. Eerkes

M a ste rs  level com puter science program s have expert. 
According to th e  U.S. D epartm ent of E ducation 's Natlo 

DESCRIPTION: d e g re e s  w ere conferred in com puter and  information s 
larger p e rcen tag e  Increase th an  any  o ther major dlsclp 
sc ience  h a s  ex...

DATE: J a n u ary  1991
PUBLICATION: Communications of the  ACM

Title: Groupware: som e issues and experiences
CREATOR: C larence A. Ellis , Simon J . G ihbs , Gail Rein
DESCRIPTION: NO DESCRIPTION found 
DATE: Jan u ary  1991
PUBLICATION: Communications of th e  ACM

Title: Interface
CREATOR: Jo n ath an  Grudin
DESCRIPTION: No DESCRIPTION found :

.' DATE: S ep tem b er 1990
PUBLICATION: Proceed ings of the  conference on C om puter-suppor;

Title: Com puter-mediated com m unication for intellectual teamwork: a fit
CREATOR: Jo lene G a le g h e r . R obert E. Kraut

To work to g eth er on complex projects, peop le  m ust a g ' 
an d  w eave the  com ponents they  h av e  c rea ted  indepei 

DESCRIPTION: of intellectual teamwork—peo p le  working to g e th e r ove 
Intellectual teamwork dem ands extensive information s 
time...

DATE: S ep tem b er 1990 ”
PUBLICATION: P roceed ings of the  conference on  C om puter-supporte

as; : Internet

.jaxj

Search on th f CogPrmfs - 3
hr>r»:/lcoaniiUs.ecs.sotoii.ac.iik.‘peil search

Title: Lechner BPS. MDS FRACDS. FPFA. FICD. Sybiiie K . 
FRACDS. Shalinie en d  Bradshaw. Michael a nd  Harr 
PhD. Tracey (2001) Neaotijzina the Maze: Case b js  
SUBJECT: JOURNALS: Medical Education Online
DATE: 2001-01-01
PUBLICATION: Medical Education Online
TITLE: Negotiating the  Maze: C a se  b a s e d , C t .

T he m odule w as developed a s  an  e le t-  
in planning oral rehabilitation. It compi 
th e  World W ide Webi(VVWW), to d e v e i  
two C a se  Profiles and  cbhsls ted  of d i e 1 
ROM form. No background m aterial w. 
in groups of th ree , each  s tu d en tfro m  
who d eveloped  a  “personal bacKgrour 
th e -a rt trea tm en t options available for 

DESCRIPTION: tailored th e s e  options to th e  "p a tie n ts  
With th e  program  in resp o n se  to  a  que . 
th e  p rogram  in creased  th e ir  c o n fid e n c e  
program*1 w as th e  interaction with stuc : 
different schools. Eight s tu d e n ts  ment 
planning. U nder th e  heading  “W h a t wi 
two sluggish  stu d en ts  who w ere n o t id 
S tu d en t feed b ack  showed t h a t  th e  mo, 
with a n  ex tended cam pus 

FORMAT: pdf
TYPE: . Journal (On-fine/Unpaginated)

L echner BDS, MDS FRACDS, FPFA , I 
CREATOR: (Hons), FRACDS, Shalinie; B radshaw

GradDipHEd PhD, Tracey 
2403ID:

KEYWORD:

Title: J
SUBJECT:

Medical Education, Health P rofession: 
collaborative learning, oral rehabititad

, Psvcholoav: Applied Cognitive P s v c h c i

ten : Intwnet

Fig. 6.8. Post processed results in LFDL after metadata parsing.

There are also cases that the LFDL cannot parse and extract metadata from certain 

HTML pages. It relies on certain patterns to parse raw strings and extract useful metadata 

information. Though rarely, the search result HTML source code of a DL may present 

metadata information in plain text without any particular pattern. In this case the LFDL

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8 2

will not be able to handle the extraction. For example each record of a DL result page 

may display arbitrary number of metadata elements. Record 1 has “<TD>CREATOR A, 

CREATOR B, YEAR, PUBLISHER</TD>” while record 2 has “<TD> CREATOR, 

PUBLISHER</TD>”. The LFDL does not have enough information to distinguish 

different fields and do the extraction.

Results rank-merging

Currently the LFDL result presentation service is focus on processing DL native 

search results to fetch rich metadata. By default it displays results grouped by each DL 

and we have not addressed the result ranking/merging problem [34] which refers to 

processing and ranking search results from different source so that a federated service 

can merge and present them to end users in a meaningful way. It is also related to the 

query routing issue discussed in Section 5. This is a difficult task for the LFDL as all 

DLs in our federation do not reveal any of its internal structure including how it serves a 

query as well as its results ranking algorithm. On the one hand, for a given filter in a 

query we do not know if a DL uses exact match or fuzzy match to find results; and when 

there are multiple filters in one query we do not know if a DL uses AND/OR Boolean 

search. On the other hand, A DL may or may not disclose results’ rank information and 

even though a DL may display such information, it is only relative to the other 

documents in its own results set and does not represent an absolute measure of relevance 

for a query. Therefore we may be able to parse and process the ranking information of a 

DL’s results set, but without knowledge of the ranking algorithm it is hard to develop an 

effective methodology to compare ranking system of different DLs’ and then normalize 

and merge results together.

Another consideration is the tradeoff between results merging and performance. 

Instead of waiting for all results to be returned from all DLs, we display partial results 

whenever they are available from any DL. This improves system response time and also 

means merging results is not possible at least before the full results set is ready.

One possible exploration for future work is to assign a weight to each DL’s results set 

based on a DL’s overall relevance to a query (see query routing in Section 5), as well as 

if it uses a exact match or fuzzy match and the AND/OR Boolean on filters (such

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



83

information is possible to get though requires human intervene to study a DL results to 

some sample queries). Then we can design an algorithm to merge results from different 

DLs based on a document’s relative weight as well as the weight of the DL that serves 

the result. Please also note that if there is a local copy of metadata from all DLs 

(discussed in Section 7), we can easily implement a ranking algorithm locally and present 

ranked, merged results to users.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



84

SECTION 7 

LOCAL REPOSITORY AND CACHING

In the previous section we introduced the LFDL results processing and presentation 

service by presenting an automatic metadata retrieval mechanism to extract metadata 

information from DL search results so that rich results can be presented to end users.

In this section we describe how the LFDL uses the retrieved metadata to build a local 

metadata repository. Based on the local repository we design and implement an 

intelligent cache to improve the performance and robustness of the federated service. The 

section is organized as follows:

• In section 7.1 we elaborate on the motive of building a repository from locally 

extracted metadata.

• In section 7.2 we discuss the approach, design and implementation of a local 

metadata repository.

• Section 7.3 describes how to utilize the locally maintained metadata in response 

to a search.

• In Section 7.4 we give details on the LFDL caching system based on the metadata 

repository.

• Finally section 7.5 analyzes the initial experiences and discusses related work.

7.1 INTRODUCTION

We described the LFDL results processing and presentation service in Section 6. To 

improve service usability we introduced an automatic metadata retrieval mechanism to 

explore deeper hidden web pages of non-cooperating DLs and provide rich search results 

from the extracted metadata.

In addition to improving usability locally obtained metadata also makes it possible to 

fulfill searches locally thus improving system performance and robustness. In this section 

we describe our efforts on building a local repository from extracted metadata and how 

we utilize this metadata repository to improve the LFDL federated service.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



85

A local repository is common in the military or mobile computing community to 

provide a more reliable and efficient local information repository [89], Instead of visiting 

each individual DL each time there is a search request, a reliable local server, which 

cached a local copy of resources provided by each DL, is accessed. This approach 

addresses the “information vulnerability” problem: dependence on dispersed/distributed 

information sources leaves us vulnerable to disruptions (loss of connectivity, information 

attacks), and limited bandwidth may preclude timely access.

In the LFDL the metadata are retrieved and stored in a local database to form a local 

federated repository to support future searches. We use a secondary level in-memory 

cache to improve the system performance further [112]. The added benefit of caching is 

that it allows processing the metadata (cached metadata) to lead to a quicker response 

time to a query and further it enables the exposure of the processed metadata through the 

OAI-PMH.

Though the LFDL uses a distributed search to achieve DL interoperability, by using a 

local metadata repository, it also takes advantage of the benefit of harvesting approach. 

Metadata are extracted from DLs without requiring each DL to follow any harvesting 

protocol. We can improve the performance of distributed search by checking local 

metadata first before sending the query to remote DLs. This way we are able to achieve 

the distributed approach’s lightweight interoperation among non-cooperating DLs with 

improved data freshness, and also we can benefit from the harvesting approach by 

providing quality service with better system performance and reliability. Once we have 

the metadata locally available, we can also improve system usability by supporting other 

richer services like locally records browsing.

7.2 LOCAL METADATA REPOSITORY

To make local metadata search really useful, the metadata repository has to be large 

enough for the search to find hits in sufficient numbers most of the time. The details of 

metadata retrieval and parsing are covered in Section 6. The metadata obtained from DL 

search results needs to be stored in the local repository after being retrieved and parsed. 

Over time and with larger numbers of different users performing queries this will lead to 

a varied repository.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8 6

We use an automatic fetching mechanism to create the repository, in addition to an 

active fetching agent based on the common keyword set we have. The first method is 

based on user search queries. Whenever there is a search request that cannot be fulfilled 

locally, the query is directed to remote DLs and metadata are extracted from the results 

returned from those DLs. Then the metadata can be stored in local repository. This is a 

passive method and depends on actual user interaction, and it is not enough to create a 

sizable local metadata repository in the beginning start-up phase.

Additionally, an intelligent agent or crawler can be used to actively visit each DL and 

fetch metadata from them. In Section 5 we already generate a common set of keywords 

that occur most frequently in a digital library’s metadata records. The fetching agent can 

use keywords from that set to query the DL and thus extract metadata from the query 

results.

There are several issues with the agent approach. It is a heavy time- and resource

consuming process for both the harvester and target DLs. Also, though the queried 

keywords may be different, the query results may have many identical records. 

Therefore, considerable amount of redundant metadata parsing work has to be done. As a 

solution to the first issue, we can reduce the keywords sent to only those that are most 

frequently used in queries. Such information can be obtained from user search logs. For 

the second we can keep a parsed metadata list and once the agent detects that a result has 

been parsed, it stops parsing for that one and continues onto the next result. At this stage 

we have not implemented the two solutions yet and plan to leave them for future work.

The LFDL uses two levels of metadata storage: a permanent or persistent storage 

level and a transient or cache level. First, the metadata set obtained from DLs is stored in 

the local inventory. There are several options to implement such storage, such as 

database, plain text files, organized XML files, or data files in proprietary format. We use 

a traditional relational database instead of XML or other forms for better query 

efficiency, maintenance, and performance. Since we use Dublin Core as the basic 

metadata set, the database table structure for our metadata almost matches with the DC 

set.

Table XII shows the database table fields.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



87

The fields that match the DC metadata elements are in the left column, and we 

defined some additional fields on the right column. For maintenance purposes each 

record was given an INTERNALID, DATELASTUPDATED, and STATUS. ARCHIVE 

is the DL from which the metadata was retrieved. DLs may define other metadata in 

addition to DC-compliant elements. Some general ones include 

CREATOR_AFFILIATION, KEYWORD, CATEGORY, PUBLICATION, and 

GROUPDATE. Also, a DL can store some meta information specific to itself using 

ADDITIONAL_FIELDS.

TABLE XII

STRUCTURE OF METADATA STORAGE TABLE

TITLE INTERNALID
CREATOR ARCHIVE
SUBJECT ID_WITHIN_ARCHIVE
DESCRIPTION CREATOR_AFFILIATION
PUBLISHER PUBLICATION
CONTRIBUTOR KEYWORD
DATESTAMP CATEGORY
TYPE GROUPDATE
FORMAT DATELASTUPDATED
IDENTIFIER ADDITIONAL_FIELDS
SOURCE STATUS
LANGUAGE
RELATION

Keeping extracted metadata in a local database forms a reliable repository to provide 

the centralized, quick response search service. In order to achieve better system 

performance, we implement a secondary metadata storage by using in-memory cache 

within the search system. As illustrated in Figure 7.1, to serve a new query, the in

memory cache will be checked first instead of querying the database directly. Two-level 

caching makes it possible to provide a faster and more efficient search service.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8 8

Query
Mapping

Rules
S e a rc h  S erv ice DL 1

U niversal
S e a rc h
In teface DL

ag e n t
Metadata
Parsing
Rules

DL 2R esu lt P ro c e ss  
S erv ice

M e tad a ta  l ,C a c h e
DL 3

Cache
Management

Engine
P ro c e sse d

S e a rc h
R esu lts

LFDL Core

DL2
S p e c .

DL3
S p e c .

DL1
S p ec .

Local M e tad a ta  R eposito ry

Fig. 7.1. LFDL metadata cache and repository.

7.3 LOCAL METADATA SEARCH

Since we are going to provide the search service locally, we have taken advantage of 

the relational database query language (SQL) to submit the query to the local metadata 

repository. When a user submits a search request using the LFDL unified search 

interface, the query string is translated to a SQL query and then sent to the database to 

get results from the metadata repository table. Here we use fuzzy string match, or use 

SQL language “LIKE” instead of “=”, to try to match each value between an HTML 

form field and the corresponding database table field, as both are based on the Dublin 

Core metadata element set. At the moment the LFDL only supports syntactical search; 

we do not parse the value of a given search field in the query string. For example to find 

all publications by an author with the last name Smith and the first name John published 

after June 2000, the fuzzy string match may return only documents with such database 

values as “CREATOR=John Smith” and “DATE=June 2000”, but not

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



89

“CREATOR=Smith, John” or “DATE=06/2000”. We can improve the search to handle 

the different formats or semantics of a filter or search field value, as the current metadata 

retrieval rules in XML already allow such semantic definition. For instance the XML 

DTD has a format attribute for each metadata field; we can define the format for 

CREATOR field as “Last Name, First Name” for DL A, and for DL B, “First Name Last 

Name”. And for the DATE field, DL A uses “mon date, year” while DL B uses 

“mo/da/yr”. Once such format definition is available, we can either convert the DL 

specific format to the unified LFDL format before storing values in our database, or use 

an application wrapper to convert the unified LFDL query string to a DL specific query 

and submit it to the local metadata database.

The LFDL prototype system presented the search results in a flat structure, which 

was not user friendly and the search usability was not appealing. Now that it is possible 

to get all the metadata associated with the records in the search results, we can provide an 

advanced user friendly search service with rich, customizable search results. Figure 7.2 

shows the LFDL search interface, giving users a choice of displaying the results based on 

different grouping fields.

InierOp Digital Library

Y en,' s e a r c h  V>r 
■r >■■*)' -r • i'i u r i iy ” w s s  
• c j n c  m D igital
boranes

Below is the m ost com m only used  in terface for these DLs. Click here to  custom ize and build y o u r own 
search  interface.

-► Search  specific bibliographic fields

R e p o i t s /a r t id e s

DL - ‘ HitS

.'■-•■f -I'ri
mces : . m \

c o .'> ! ,s s  35

tms tl

keyword security

creator : \
tit!$ '[  ——™

Display options 

Group Result* By 
No. of Records p or Gi <oop

C rea to r Dc?3 Publisher
IIPTO G  PRINTS ** NSEDS

Audios

Fig. 7.2. LFDL interactive search interface.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



90

The system can group results by any metadata element, but not all of the elements are 

useful to users. Here we demonstrate that a user can have the results displayed by each 

DL, Creator, Date, or Publisher.

Figures 7.3 and 7.4 display the results grouped by Date and Publisher respectively. 

Once inside the results page, a user can navigate the results without sending a new search 

request. We plan to use XML to format the results so that XSLT can be used to tailor the 

results to better serve user needs.

date: August 2003

TITLE: Ubiauitous com putm  security: Towards a  new baradiom for security wireless sensor networks
ARCHIVE: ACM

CREATOR: K. Janes | A. Wadaa | S. Olanu | L. Wilson | M. Eltoweissy
DATE: August 2003
PUBLICATION: Proceedings of the 2003 worKshop on New security paradigms

KEYW ORD: energy-efficient protocols | frequency hopping | security | wireless sensor networks

DESCRIPTION:

The network model assumed in this paper consists of tiny, energy-constrained, commodity sensors massively deployed alongside with one o 
sink nodes that provide the interface to the outside world. The sensors in the network are initially anonymous and unaware of their location, i 
main contribution is to propose a new robust and energy-efficient solution for secure operation of wireless sensor networks. The paper motrv 
new paradigm where security is based upon using parameterized fre. ..

PAR SIN G  M ETHOD: iParsed Metadata 

D a t e L a s t  12004-05-28
A c c e s s e d :  ■ i  ...  ■ . .
T o ta l U s a g e  
C o u n t s : 118

1 Dec 02

TITLE \Networh Security and Storaae Securittr Symmetries and Symmetry-Breaking
ARCHIVE:
DATE:

IEEE
01 Dec 02

P U B U SH E R :

DESCRIPTION:

IEEE Computer Society
December 11 - 11 ,2002 Sreenbeit, Maryland p. 3 Network Security and Storage Security: Symmetries and Symmetty-Bteaking Donald Seav 
S eaga te ...

P AR SIN G  M ETHOD: Parsed Metadata
D a t e  L a st  
A c c e s s e d : 2004-05-28 :

T o ta l U s a g e  
C o u n t s :

TiTLE:........

186

Network Secm itf and Storage Security ; Symmetries and Svmmexrv-Breakma
ARCHIVE: IEEE
DATE: 01D6C02

PUBLISHER: IEEE Computer Society

DESCRIPTION: xmi version=‘1.0"?> Network Security and Storage Security: Symmetries and Symmetry^Breaking First International IEEE Security in Storage
PAR SIN G  M ETHOD: iParsed Metadata ■ :

D a t e  L a st  
A c c e s s e d : 2004-05-28

T o ta l U s a g e  
,  C o u n t s :

Fig. 7.3. Search results grouped by DATE.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



91

p u b lish er  K n o w led g en et

[TITLE: _____
ARCHIVE:

DATE:

PU BLISH ER :

D e s c r i p t i o n :

{Designing M icrosoft?' Windows 2009 Network S e c u rity : W indows 2000 S e c u r ity
H ieee  __ “ ; .     , '
 [pT Aug  0 3  " "  .......~  "......... ..........

iK now ledgenet _ _     _  ____ __ __ _ _ _
__________[This c o u rse  p roviclestrie detailed tecrinlcai knowle d g e  n e c e s s a ry  to  d esig n  a  security  fram ework  fo r sm all, m edium, a nd  e n te rp rise  networks_.

PARSING METHOD: P ar i f !  M e M a S  ~~   ..........    ~ ~  " ' . . . .     " .”  “    ~ ' .    ~

I2004-08-26 _ _ ____      _  '

“ 96 . ' ™ .......................
(TITLE:__________ S e s i g nim  w i n j s ^ ^ S £ j S S ^ t k ^ S S M t ^ J . S e i B S n . V S fiL S a c w /ty  :____ (_____; __________ ________________ ;__________
JfU «H lvi:_ -1EEE __    : ~ ~
[ B i f i f  ~ ' |o r A u g 0 3 ~ *  '■■■ ~  ~  ■’ ‘........... ......  — —
p u b l i s h e r : ~ 1 i5 iow letigenet

_ Ifh is"c o u rse  p ro v id es  th e  deta iled  technical know ledge n e c e s s a ry  to  d esign  a  security  fram ew ork far sm all, medium,: a n d  en te rp rise  netw orks 
UN’ : using

PA R SIN G  M ETH O D: P a rs e d  M etad a ta
D a te  L a s t  
A c c e s s e d :

2004-05-28

T o ta l U s a g e  
C o u n ts :

159 .

publisher: C om puter S c ien ce  T each in g Center

T!TL E:_
ARCHIVE:

CREATOR:

DATE:

PU BLISH ER :

KEYW O RD:

D ESCRIPTIO N:

ATI ON

a a j-r-i- --w _
INEEDS :
■Law rence  Row e___________ ;__ _ _ _  __

’j1999 ................  : ”
_ C om puter S cience  T eaching C en ter_______

iSyllabus; multimedia; networkilnternet; W eb
iThls syllabus d e sc rib e s  a  c o u rse  coveting  n etw orked  m ultim edia is su e s ,  with a n  em p h a sis  o n  th e  inte rn e t  

■COURSEWARE SER!ES::nul!

PA R SIN G  M ETH O D . P . d  j'j_________________________________________ ____________________________~ _________________-

(2004-05-28Accosted:
T o ta l U s a g e  
C o u n ts :

[TITLE.
ARCHIVE: ^

CREATO R^ __

DATE:

PU BLISH ER :

K EYW O RD.

DESCRIPTIO N:

1202

■ OflffTO t R H 1- i,)
INEEDS "
IVikram N arula__________________________.-....
12001 ” ’
ICom puter_Sclence T eaching  C en te r 1
!file;system ;network;distributed :
iD em o of key fe a tu re s  of th e  xFS distribu ted  f i e  system ..

Fig. 7.4. Search results grouped by PUBLISHER.

7.4 CACHING AND CACHE REPLACEMENT ALGORITHM

We use caching to make the LFDL system more robust and efficient, and also to 

provide a quicker or more responsive search performance. For the LFDL prototype 

system, we saved query string and query results in cache, so that when there is a new 

search request with the same query, the cache is read first, without visiting the remote 

DL. The key of the cache is a query string and the value is the results HTML page 

matching that query string. Obviously, this is not an efficient design. First, only when 

there was an exact match of the query string there would be cache hit. Second, the 

matching results to a query were unparsed and stored in cache as a whole html page, so 

there was too much redundant information and the cost of the system resources to store

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



92

and manage these values was significant. Now that we have parsed metadata available 

locally, we can implement a much more efficient “Intelligent Cache”. By intelligent 

cache we mean that a cache hit does not necessarily denote an exact query string match. 

Instead, the query string is translated into a more flexible SQL query and search against 

the local repository.

We implement a new caching mechanism using two levels of metadata storage: in 

memory cache and persistent database storage. The in-memory cache stores all recently 

used search results. The key is the internal ID of a metadata record, and the value is the 

metadata record itself. The metadata set from all DLs is stored in the local database. The 

search process consists of the following steps:

1) System starts, loads most recently and most often used metadata from database to 

memory cache.

2) User submits a query using the unified search interface.

3) Query is converted to local SQL query using predefined translation rules.

4) SQL query is sent to the local metadata database and the query results will be 

matching metadata internal IDs.

5) The memory cache is searched based on IDs, and if matched the metadata is 

merged; if not, the missing ones will be loaded from database to cache.

6) In the meantime, the original query string is transformed to a native non

cooperating DL query and sent to the remote DL. Results returned from the DL 

are parsed to extract metadata, which is saved to a local repository and loaded to 

the in-memory cache.

To better understand the caching mechanism, consider the following two search 

scenarios:

Case 1: a query for keyword-computer

Case 2: a query for keyword-computer AND date=2002

For our earlier caching design, assume query 1 and the results page have been 

cached; when query 2 is received, there will not be a cache hit as the query strings are 

different. Therefore, query 2 has to be sent out to remote DLs and then the results will be 

cached. Obviously results set 1 and results set 2 have a lot of records in common, but in

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



93

this case they have to be stored in cache separately as the results are not parsed and the 

common records could not be determined.

Under the new caching design, after query 1 is fulfilled, all results from the DL will 

be parsed and the metadata will be stored in the local repository, and then loaded into 

memory cache. For query 2 the local repository will be checked first and matching 

metadata IDs will be returned. Consequently, all matching metadata records will be 

found from cache by using those returned IDs. The only way that results are returned 

faster in the old design is when serving a repeated simple query that has been cached. In 

the old method results will be returned instantly while the new cache still has to query 

database to get matching metadata IDs first.

While serving requests from local repository and in-memory cache, the query is also 

sent to remote DLs in parallel and the results will be used to update local repository and 

cache so that any following request will have fresh data. Figure 7.5 shows some sample 

metadata records in the metadata cache.

For the implementation of the cache replacement algorithm based on the least 

used/least recently used (LRU, [118]) metadata records, we define the following metrics:

• Initial System-wide Metrics

o cache_max_size: maximum number of metadata records allowed in cache 

o cache_safe_size: the number of records which are kept remain in cache 

when the cache is full and replacement algorithm is called to replace old 

records with new ones (this is to keep a just added item in cache from 

being replaced too soon even though its timestamp is new)

• Runtime Cache Metrics

o cache_size: current number of metadata records in cache

• Runtime Record-level Metrics

o date_last_used: the timestamp of when the record is last used 

o total_usage\ the total number of times that the record has been used

When the LFDL system first starts, its cache is pre-populated using the following 

algorithm:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



94

• Cache pre-loading Algorithm

System start, sort all metadata records in database based on 

date__last_used and totaljusage; 

while (cache__size < cache_max_size) {

load one metadata from sorted metadata queue to cache; 

cache_size++;

1

| savem etadatatarib |  ggtr

in Mi-num Irojn I'll

jTTTLE: ___ \CSC 475 FaliJ998Svliabus_
archivf: :
CKIEAl'OR. KoiwlJ Vt-Ji-i
d a t f  :f

SUBJECT: Computing Methodologies - Miscellaneous

CATEGORY: Syllabi and Reading Lists

Syllabus | multimedia | network} Internet j Web

This syllabus describes a course covering networked multimedia issues, with an emphasis on die Internet

Parsed Metadata

K EYW ORD- 

TiFSCKmiON.
P.UISLN'G
m e t h o d -

TITLE _ CS294-1 Fall 1993 Reading List
ARCHIVE CSTC

i 'H  T F A T G R  1 h \\ve
l-ATF:
SUBJECT: Computer Applications - Miscellaneous

CATEGORY^ "Syflabi and ReadjngListe ~~

KEYW ORD: f a d in g  | multimedia^  _ _  "      ^

DESCRIPTION: This reading list pertains to a multimedia course covering system architecture and development issues

[■ARSING .. ,  M
METHOD

TTILE:___________  \EDSAC E m u la to r ______________   ^ _______ _̂_________ _____

p jjx jH ire ir - [ c s t c ^71 ;   ... ;
C R TFA IO R : M atin CanpbeB-KfTy

DATE- ■ : (09-06-2001
SUBJECT: IComputmg M im s - IBrtwy o f  C«cpmf<8
(CATEGORyT " ( M i t i m e i a  _
B S vtorbI Ie d s a c T ..........

: |The EDSAC was the world's first stored-prograra computer to operate a  regular confuting service. Designed and built at Cambridge Unive^
i\:: . • >!

Fig. 7.5. Sample metadata in LFDL metadata cache.

During normal system operation, all queries are checked locally from the cache and 

whenever there is a cache hit and an item is selected, its date_last_used and total_usage 

will be updated. In case of a cache miss the missing record will be loaded from the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



95

database to the cache. If the cache has reached its maximum capacity, the newly loaded 

record will replace a current item in cache using the following algorithm:

• Cache Replacement Algorithm

sort all records in cache based on date_last_used;

keep those most recent used records, sort the remaining (cache_max_size - 

cache_safe_size) records based on total_useage;

save the least used record which has the lowest total_usage to database, and then 

replace it with the newly loaded record;

The algorithm here is a straightforward cache replacement implementation. For 

future improvement we can refine it and design a more sophisticated one, such as using a 

weight based solution which combines the factor of usage and timestamp.

7.5 EXPERIMENTATION, RESULTS, AND ANALYSIS

Caching plays a vital role in our approach. Studies in other fields have demonstrated 

that caching is an applicable approach in building efficient information retrieval systems. 

Pitkow [97] presents a simple, robust, adaptive caching algorithm for WWW-based 

information system. Markatos [78] reports on caching search engine results and shows 

that in the queries submitted to popular web search engines there exists a significant 

amount of locality: 20-30% of the queries have been previously submitted. Based on his 

simulation a medium-sized cache is enough to hold the results of most of the repeatedly 

submitted queries: a 300MB cache can achieve a hit rate of around 20%.

We have designed initial experiment and analyze results to test the effectiveness of 

the LFDL intelligent cache in terms of service response time. The objective was to 

demonstrate that it has better performance and response time than that of the earlier 

implementation of the LFDL cache with the simple mapping of query string and 

unparsed results. We use LFDL v2 for the version with improved caching and LFDL vl 

for the LFDL with original cache design. The basic method was to submit a set of 

simulated search queries to each system and calculate the corresponding service response 

time. We used the following search scenario:

Case 1: a query for keyword=computer

Case 2: a query for keyword—computer AND date-2002

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



96

Case 3: a query for keyword- computer AND date—2002 AND creator=Richard 

Case 4: a query for keyword-computer AND date=2002 AND creator-Richard AND 

publisher-University o f Oregon

Table XIII shows the results for each system. We begin when the cache is empty for 

both systems, and for v2 there are no metadata records related to the query. For query 1 it 

took both v l and v2 around 48 seconds to return the first 14 results, and then another 12 

seconds to load the remaining 50 hits. Therefore, the total response time is 60 seconds to 

present the complete 64 results. The discrepancy comes from the different response times 

of each individual DL, and the LFDL displays partial results whenever they are available 

and then merges them to show the complete results set. For query 2 it took vl 14 seconds 

to show the first 34 results and a total of 25 seconds to show the complete 54 hits. It 

could not benefit from the cache, even though query 1 had been cached, because the 

query string is different. However, for LFDL v2, it could use the cache to perform a 

metadata based search; it took only one second to return 20 hits. The remaining results 

will come from remote DLs directly after 18 seconds. For query 3, LFDL v2 found only 

three records from the local metadata repository and the remaining records were from the 

distributed search among remote DLs. For query 4, there was no local hit and all results 

were from remote DLs.

TABLE XIII

RESPONSE TIME COMPARISONS LFDL V2 VS. VI

V2 VI
Query 1 48sec(14hits) / 60sec(64hits) 48sec(14hits) / 60sec(64hits)
Query 2 1(20)/ 18(63) 14(34) / 25(54)
Query 3 1(3)/ 11(38) 16(38)
Query 4 11(22)/20(38) 16(38)

Here are some comments on the results:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



97

1) The DLs included in this study were IEEE, CogPrints, NEEDS, and CSTC. To 

limit the overall system processing time we excluded some DLs with longer 

response times, and only allow 20 results from each DL.

2) We used related queries and earlier queries formed a superset of later queries. 

This is just for demonstrational purposes to show the benefits of the LFDL v2 

cache design. However, in the real world, related queries occur more often than 

totally unrelated queries.

3) Note the difference in results returned by vl and v2. In v2 we implemented our 

own query mechanism against each metadata field, which may be different from 

the query used by a remote DL. For example for query “keyword=computer”, v2 

may return records where either the TITLE field or the DESCRIPTION field 

contains “computer”. Here, we want to emphasize the system performance but 

not getting results as closely as possible from individual DLs, as in LFDL v2 we 

basically build our own digital library from harvested metadata. It may return 

results other than those from the original digital library. Is this against the goal of 

building a federated service for non-cooperating DLs? It is an interesting issue we 

have to explore. At least here we can see that LFDL v2 provides faster service 

than v l does.

4) For query 3 and query 4 there were not many local search results hits, while each 

DL still returned quite a few results. This is because LFDL v2 strictly fulfills the 

search using the AND operator, while a native DL may not support the AND or 

OR operators, and, actually uses OR when providing services for searches with 

multi-field criteria.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



98

SECTION 8

REGISTRATION SERVICE AND MANAGEMENT SERVICE

In the previous sections we focused on the key LFDL services from the perspectives 

of end users. In this section we describe the LFDL registration service for DL experts 

and the management service for LFDL system administrators. The section is organized as 

follows:

• In section 8.1 we introduce the registration service which allows a new DL to be 

added to the LFDL federation by registering its DLDL specification.

• We then in section 8.2 present the LFDL management service which facilitates 

the monitoring and maintenance tasks of the federation system.

8.1 REGISTRATION SERVICE

To provide the federated service among distributed, autonomous digital libraries, the 

service provider needs to be aware of the existence of a DL repository. The LFDL 

registration service allows a new DL to be added to the LFDL federation by registering 

its specification. The objective is to make the process dynamic and transparent to end 

users: to add a new DL, no code change is necessary and the newly joined DL shall be 

integrated to the federated search on the fly. Once added, users can start to search it in 

real time.

8.1.1 Approach

As illustrated in Figure 8.1, a DL expert creates the specification using the DLDL for 

a digital library and stores it in a centralized server. To add the DL to the LFDL 

federation, he can use the registration interface provided by the registration service to 

register the specification. A LFDL Specification Validator will enforce its validity by 

checking if the format of the specification follows the standard DLDL schema before the 

DL can be successfully registered. After validation the specification is parsed and the 

rules specified, including query mapping rules and result parsing rules, will be populated

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



99

to the LFDL rule engine and will be enforced by the LFDL to provide search service and 

results process and presentation service. All these are done dynamically so that once 

registered, a DL will be available for search.

o

DL
Experts

o

LFDL
Admin

DL1 DL2 DL3
Specification

Server

Spec
Validator

Q uery
M apping

R ules
Registration Service>

DL 1Rules Engine

R esu lts
P arsing
R ules DL 2

M anagem ent Service>
D L 3

LFDL Registration and Management 
Service

Fig. 8.1. LFDL registration and management service.

8.1.2. Design and Implementation

There are two approaches to implement the registry services: a separate LDAP [41], 

[121] based registry, and a tightly-integrated registration service. LDAP or Lightweight 

Directory Access Protocol is a specification for a client-server protocol to retrieve and 

manage directory information. The LDAP information model is based on the entry, 

which contains information about some object (e.g., a digital library). Entries are 

composed of attributes, which have a type and one or move values. Examples of attribute 

syntaxes are for strings, JPEG photographs, URLs and PGP keys [42],

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



100

We can implement the LDAP-based registration service by creating an entry for each 

registered DL, and each entry will have attributes such as DL description, category, and 

specification URL. We explored both implementation to evaluate their trade-offs.

LDAP Based Registration Service

In this approach, a digital library becomes part of a federated digital library by 

registering its description in DLDL to the LDAP server. For implementing this approach, 

we use the Netscape Directory Server 4.0 as an LDAPv3 server. The server held a master 

list of registered digital libraries and each individual DL had an entry which mapped the 

URL of its DLDL specification to its name. As an LDAP client the registration service 

was responsible for connecting to the LDAP server to retrieve or update the DL naming 

information and DL XML specification document information. JNDI (Java Naming and 

Directory Interface) API [46] was used to make the connection to the LDAP server and 

to access information from it. The JNDI API contains a naming interface (javax.naming) 

and a directory interface (javax.naming.directory). For this project we were using the 

naming interface as it provided the operations to do lookup on the LDAP server. To 

make the process more efficient, the LFDL cached the query results from the LDAP 

server. The cache results need to be refreshed only when there is an update or a new DL 

registration.

Figure 8.2 is borrowed from [132] and it illustrates the registration process.

1) Through a Web interface a DL expert sends a registration request to the LFDL 

registration service. The request consists of DL name and location of its 

specification.

2) The registration service verifies that the specification is valid and well-formatted 

following the DLDL schema.

3) Once validated, DL name and the URL of its specification will be saved to the 

LDAP server.

4) The registration result will be sent back to the user and displayed on his Web 

browser.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



101

Display
Results

Web
Browser

Internet
User Request:
D lib  Name=NEEDS 
D lib  U RL=http://...

Register Dlib name: NEEDS  
Register NEEDS URL: ... N Wch

M  Ser'.er

LD AP
Server Verify Dlib 

name and URL

Fig. 8.2. LDAP-based registration process.

Tightly-Integrated Approach

Though the LDAP provides a standard, modular, and scalable solution to the LFDL 

registration service, it is not efficient, considering the nature of our registration 

requirement. After all, all we need is to save a DL’s name and its DLDL URL. It is not 

necessary to go through an API call and an extra layer of storage to just access such 

simple and small amount of information. Therefore, in the current version we removed 

the LDAP layer and implemented a lightweight registration service.

In this approach we store DL and specification related information locally. 

Specifically, for each DL we store DL name and the URL of its DLDL specification in 

the local file system of the LFDL server. During normal operation, DL information 

mapping is kept in the LFDL server memory as a plain object. Table XIV displays 

sample name-value pairs stored in the in-memory map structure. All registration 

operations are fulfilled in memory. In case of server shutdown the information in 

memory will be serialized and saved to local disk which is available for read when server 

restarts. Alternatively, considering the registration requests are infrequent and 

serialization operation is virtually no cost, we could save the mapping information in 

memory to local storage whenever there is an update to avoid possible server crash.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



102

TABLE XIV 

REGISTRATION INFORMATION IN MEMORY

Name Value
IEEE Java URL object which holds the url of XML 

specification for IEEE
NEEDS Java URL object which holds the url of XML 

specification for NEEDS

8.2 MANAGEMENT SERVICE

A well-managed information system can achieve desired functionality and improved 

performance and efficiency. For the LFDL we design and implement a monitoring and 

management service to facilitate such tasks. Figure 8.3 illustrates a Web interface that 

allows the LFDL managers to perform two sets of jobs: real-time system monitoring and 

run-time system reconfiguration.

In terO p  Digital Library

System Management Page

S e r v le t  R u n - tim e  E n v iro m e n t  In fo rm a tio n  G o! j 

S e r v le t  R u n - tim e  E n v iro m e n t  A d ju s tm e n t  G o! |

S h o w  All M e ta d a ta  In C a c h e  G 6i ]

S h o w  Q u e r y  S trin g  -  M e ta d a ta  L in k s  M a p p in g  in C a c h e  G o! j 

S h o w  K ey w o rd  H its f ro m  D a t a b a s e  G o! |

Build  K ey w o rd  L is t G ot j 

F o r c e  S e r v le t  to  U p d a te  DLib In fo rm a tio n  Q o! ]

Fig. 8.3. LFDL management service interface.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



103

8.2.1 Real-time System Monitoring

The LFDL manager can obtain informative real-time system information from the 

LFDL management web interface. The LFDL management service collects system run

time data so that the manager can monitor the system like tracking each DL’s 

availability, average system response time, resource usage, and user search behavior 

data. Analyzing the statistical data helps to determine performance bottleneck and error 

prone points. Such information is critical for future system enhancement.

Table XV and XVI demonstrate two snapshots which displays various LFDL system 

runtime information and statistical data. Table XV displays the current version of the 

LFDL system, when it was started, how long it had been running, the memory usage, the 

total hits, the average system response time, and some other information.

TABLE XV 

LFDL RUNTIME INFORMATION

Version 4.0.9
Program Start Time Fri May 21 16:15:05 EDT 2004
Last Access Time Thu Jun 03 16:38:06 EDT 2004
Up Time 13d Oh 28m 37s 727ms
Total Memory 27504640
Free Memory 2226912
Total Hits 78
Average Response Time (in ms) 1251
Metadata Cache Size 3000
Metadata Cache Keep Safe Size 100
Queries with results in Memory 26
Sum of result pages size 98599

Table XVI lists the current registered DLs and the URLs of their DLDL specification. 

There are also links to each DL’s simulated search interface generated automatically 

from that DL’s specification.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



104

TABLE XVI 

LFDL REGISTERED DL INFORMATION

ACM http://www.cs.odu.edu/~shi/interop/demo/xmldoc/acm_082003.xml
IEEE http://www.cs.odu.edu/~shi/interop/demo/xmldoc/ieee_122002.xml
NEEDS http://www.cs.odu.edu/~shi/interop/demo/xmldoc/needs_100803.xml
COGPRINTS http://www.cs.odu.edu/~shi/interop/demo/xmldoc/cogprints_063003.xml
CSTC http://www.cs.odu.edu/~shi/interop/demo/xmldoc/cstc_122002.xml
LTRS http://www.cs.odu.edu/~shi/interop/demo/xmldoc/ltrs_082803.xml
NACA http://www.cs.odu.edu/~shi/interop/demo/xmldoc/naca_051903.xml
WCR http:// www. cs. odu.edu/- shi/interop/demo/xmldoc/wcr_090903. xml

8.2.2 Run-time System Reconfiguration

In addition to informative data displaying and real-time system monitoring, the LFDL 

management service also allows the system manager to fine-tune the system by adjusting 

runtime parameters, for example, allocating more memory. It would be an expensive job 

to restart an entire information system whenever there is a failed component during an 

execution, or just want to reconfigure system parameters [52]. Therefore, it is necessary 

to provide a run-time reconfiguration mechanism so that faulty component can be 

switched to alternate instances without affecting other parts of the system and not 

interfering end user services. Figure 8.4 shows some reconfiguration tasks available from 

the management interface. For example the system manager can turn on/off debugging 

mode, so that more or less system runtime information can be written to system logs. A 

detailed log facilitate pinpoint problems in case of there is system failure or other errors.

Value

No Value Needed

i Update Ul Threshold j _

Update Max Metadata In Cache :|

Update Metadata In Cache Keep Safe

Fig. 8.4. LFDL reconfiguration utility.

Action  

Toggle Debug Mode

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.odu.edu/~shi/interop/demo/xmldoc/acm_082003.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/ieee_122002.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/needs_100803.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/cogprints_063003.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/cstc_122002.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/ltrs_082803.xml
http://www.cs.odu.edu/~shi/interop/demo/xmldoc/naca_051903.xml


105

SECTION 9 

CONCLUSIONS AND FUTURE WORK

9.1 CONCLUSIONS

Digital library interoperability is essential in building federated services for end users 

to discover and utilize digital information from multiple sources through a single unified 

interface [67]. Creating such a service for existing heterogeneous DLs is the motivation 

of this work to build a lightweight federated service for libraries without prior 

coordination. This dissertation examines various approaches and answers the following 

questions by building the LFDL: Is it feasible to provide a realistic solution for 

interoperability among non-cooperating DLs? How do we create a lightweight, flexible, 

and efficient infrastructure to achieve such interoperability? How do we build the 

federated service to ensure satisfactory service quality, usability, system performance and 

reliability?

This research has successfully met the objectives as stated in Section 1. Our work on 

the LFDL system shows that it is possible to achieve interoperability among non

cooperating digital libraries and it is feasible to build an efficient, federated search 

service that works with non-cooperating digital libraries based on a distributed query 

approach. Dynamic, need-driven, and user-centered search is a practical approach to 

improve the quality and usability of service. Locally maintained metadata improves 

service usefulness and performance. The intelligent caching can further improve the 

service and achieve better efficiency. We created a test bed consisting of a dozen DLs 

and evaluated it against our objectives.

The following are the major contributions of our work on the LFDL in providing a 

federated service for non-cooperating digital libraries:

Scope

Digital Library interoperation has been an active research field in the DL community. 

However, most approaches require some level of cooperation among participating DLs. 

We think that there are still a number of DLs, like EEEE and ACM, which will continue

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



106

to work independently without participating in any interoperation, mostly for intellectual 

property concerns. This dissertation addresses the interoperation issues among non

cooperating DLs and presents a practical and efficient approach toward providing a 

federated search service for those DLs. A DL itself remains autonomous and joins the 

federation without making any changes to its library structure, data format, protocol and 

other internal features. The dissertation also provides an automatic metadata extraction 

mechanism, which has applicability beyond the objective of this thesis.

Architecture

The implementation of the LFDL is based on a lightweight, dynamic, data-centered 

and rule-driven architecture. To add a DL to the federation, all that is needed is observing 

a DL’s interaction with the user and then storing the interaction information in a DL 

specification. The specification defines all interoperability processing rules and it is kept 

in a human-readable and highly maintainable format. The federation engine provides the 

federated service based on the specification of a DL. A registration service allows 

dynamically DL registration, removal, or modification. A federated service can be 

quickly formed for a special community; simply compose and register specifications of 

its DLs and those DLs will be incorporated into the service on the fly. Unlike other 

similar federation services, there is no hassle of code rewriting or recompiling just to add 

or change a DL. These notions are achieved by designing a new specification language in 

XML format (DLDL) and a powerful processing engine that enforces and implements the 

rules specified using the language. These techniques can be used in other application 

domains too, like a web robot [53], [54], a shopping agent and price comparison agent. 

Because of its many advantages over the traditional application architecture, Web 

Services is becoming a popular application solution among both industrial and research 

communities. The LFDL system fits well and can be easily adapt to a Web Services 

based infrastructure.

Approach

The most commonly used approach to achieve interoperability is one that harvests 

metadata into one central metadata repository that is then searched. One of its major

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



107

issues is the freshness of the data as this depends on the harvesting cycle. In this 

dissertation we explore an alternate approach where searches are distributed to 

participating DLs in real time. We have addressed the performance and reliability 

problems associated with other distributed search approaches. This is achieved by a 

locally maintained metadata repository extracted from DLs, as well as an efficient 

caching system based on the repository. In a sense the LFDL methodology lies in 

between the distributed search and the harvesting approach. Therefore, it has the former's 

advantage of data freshness and the latter's advantage of richer services, better 

performance and reliability.

Service Design

We also focus on service quality and usability. On the front end we introduced a 

dynamic user-centered, keyword driven search interface to improve service quality and 

usability. The same approach can be applied to other DL applications, like archon, to 

design a flexible interface based on archives and metadata. At the backend we provide an 

automatic metadata extraction mechanism to parse and process native DL search results 

so that the LFDL system can display rich results uniformly and consistently. Rich, 

processed search results further improves service usability and usefulness by providing 

enhanced search/navigation experience. Locally maintained metadata repository 

improves the LFDL caching system, and also makes it possible to provide additional 

high-level services. The automatic metadata parsing and retrieval can also be used by 

other domains and applications such us metadata extraction from PDF files. The 

intelligent cache further improves the performance, reliability, and efficiency of the 

LFDL system.

9.2 FUTURE WORK

We have demonstrated that it is feasible to build an efficient federated search service 

that works with non-cooperating digital libraries, yet, there are some issues that need to 

be addressed further. We will also briefly discuss some potential areas for future work.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 0 8

Scalability

Scalability has been one of the biggest issues with the distributed search approach. It 

is not easy to incorporate a large number of new DLs at one time using the LFDL system. 

The cache size is not unlimited. Backend search results processing also affects system 

performance dramatically when too many DLs are included in the federated search and 

each DL has a large amount of results to be processed. Though in the LFDL we 

implement a not totally real-time result processing mechanism and try to keep end users 

transparent of the process, it remains quite resource consuming and may ultimately slow 

down the response time. More research is needed on the trade off between high quality 

service and better system performance. Still, the LFDL is useful for building services for 

special communities with a certain number of DLs.

On the other hand solely from the implementation perspective, it is possible that at 

some point a distributed search may have better performance over harvesting. In the 

harvesting approach a service provider has to have a huge metadata repository or 

database to accommodate metadata from all the participating DLs, and thus it is possible 

to make it slow to respond for queries if the service is not designed properly. While for a 

distributed search service provider could distribute the search burden among each 

individual DLs and just collect the results. And the asynchronous search utilized by the 

LFDL further addresses the network issue as well as various response times of different 

DLs. More experiments and evaluation are needed before we can assert which approach 

is definitely better.

DL Specification Generation

Currently, this is a manual process and requires some training and experience to learn 

the DLDL and apply it when composing a specification for a DL. Human intervention is 

needed when a DL changes its searching and presenting schema. It will be beneficial to 

automate these processes so that both specification generation and DL behavior change 

discovery can be done automatically. One possible approach is to design a self learning 

system based machine learning on given examples [17], [24], Another issue is that the 

LFDL can only support DLs with a standard HTML based interface and relatively simple 

web based interaction. For example, a DL with a Java applet based search, or a DL with

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



109

extensive user interaction and manipulation (e.g., a search requires multiple steps instead 

of one HTTP request and response) will be a problem. If necessary, we may extend the 

DLDL and LFDL to include DLs with complex and non web-based search interfaces or 

other proprietary architecture and protocol.

Evaluation

The LFDL test bed is a relatively small DL set and we need to have more effective 

evaluation and measurement to test and assess the system usefulness, efficacy and 

service usability.

Implementation Issues

There are areas where we believe improvements will have potential payoffs. In the 

dynamic user interface generation, the keywords are chosen based on the static relevance 

of a DL without considering if it is really what the user wants. It is more reasonable to 

based on user selecting that DL and if the DL really has relevant results. As to the 

intelligent cache, one problem centers on populating the cache. Though we already have 

a basic keyword set and could use them to populate the cache, such process is very time 

consuming and produces redundant information. Similarly, it will take a long time to 

populate the cache through real users’ searches in order to create a reasonably sized 

cache that will be helpful to users. We need to investigate trade-offs and other 

approaches. Maintaining the cache is another problem; for instance, what size is best 

considering resource efficiency and cache usage? How do we keep the cache consistent 

with remote DLs? A third problem concerns the intelligent caching of compound queries, 

typical query optimizations do not pose queries to a database when the first part of an 

“AND” query fails. Do we take into account such query optimizations for caching 

elements of compound queries?

Other possible enhancements include a personalized consumer portal, which is also 

suitable in the digital library community. We can customize the search interface and 

results displayed based on user searching behavior. We can also keep queries most often 

used by individuals and their other search preferences, like caching options either toward 

fresher data or faster results.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 1 0

REFERENCES

[1] P. S. Adler and M. M. Case. (1997) A national library for undergraduate science, 
mathematics, engineering, and technology education: A learning laboratory. 
[Online]. Available:
http://www.nap.edU/readingroom/books/dlibrary/appa.html#case

[2] H. Anan, X. Liu, K. Maly, M. Nelson, M. Zubair, J. C. French, E. Fox, and P. 
Shivakumar, “Preservation and Transition of NCSTRL Using an OAI-Based 
Architecture,” in Proc. o f the Second ACM/IEEE Joint Conf. on Digital Libraries, 
July 2002, pp. 181-182.

[3] W. Y. Arms. (1997) A national library for undergraduate science, mathematics, 
engineering, and technology education: Needs, options, and feasibility (technical 
considerations). [Online], Available:
http://www.nap.edU/readingroom/books/dlibrary/appa.html#arms

[4] W. Arms, Digital libraries. Cambridge, MA: MIT Press, 1999.

[5] K. Arnold, J. Gosling, and D. Holmes, the Java programming language, 3rd ed. 
Addison-Wesley, 2000.

[6] The Association of Research Libraries (ARL). (1995) Definition and purposes of a 
digital library. [Online], Available: http://www.arl.org/sunsite/definition.html

[7] D. Atkins. (1997) Report of the Santa Fe planning workshop on distributed 
knowledge work Environments. [Online]. Available:
http: //w w w. si. umich.edu/S antaFe/report. html

[8] M. Baldonado, C. Chang, L. Gravano, and A. Paepcke, “The Stanford digital library 
metadata architecture,” International J. o f Digital Libraries, vol. 1, no. 2, 1997.

[9] M. K. Bergman, “The deep web: Surfacing hidden value,” J. o f Electronic 
Publishing, vol. 7, no. 1, 2001.

[10] D. Bergmark, “Automatic extraction of reference linking information from online 
documents,” Tech. Rep. CSTR 2000-1821, Dept, of Computer Science, Cornell 
Univ., 2000.

[11] T. Bemers-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific 
American, vol. 284, no. 5, pp. 34-43, May 2001.

[12] C. L. Borgman, “What are digital libraries? Competing visions,” Information 
Processing & Management, vol. 38, no. 3, pp. 227-243, 1999.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.nap.edU/readingroom/books/dlibrary/appa.html%23case
http://www.nap.edU/readingroom/books/dlibrary/appa.html%23arms
http://www.arl.org/sunsite/definition.html


I l l

[13] C. M. Bowman, P. B. Danzig, and D. R. Hardy, “The Harvest information 
Discovery and Access System,” Computer Networks and ISDN Systems, vol. 28, no. 
1-2, p p .119-125, 1995.

[14] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, M. F. Schwartz, and D. P. 
Wessels, “Harvest: A Scalable, Customizable Discovery and Access System,” Tech. 
Rep. CU-CS-732-94, Dept, of Computer Science, Univ. of Colorado, Aug. 1994.

[15] M. Brown. (1996) FastCGI Specification. [Online], Available: 
http://www.fastcgi.com/devkit/doc/fcgi-spec.html

[16] CGI. [Online]. Available: http://hoohoo.ncsa.uiuc.edu/cgi

[17] H. Chen, “Machine learning for information retrieval: neural networks, symbolic 
learning and genetic algorithms,” J. o f the American Society for information Science, 
vol. 46, no. 3, pp. 194-216, April 1995.

[18] CogPrints. [Online]. Available: http://cogprints.ecs.soton.ac.uk

[19] CORBA. Common Object Request Broker Architecture: Core Specification. 
[Online], Available: http://www.omg.org/docs/formal/04-03-12.pdf

[20] CSTC. [Online]. Available: http://www.cstc.org

[21] R. Daniel and C. Lagoze, “Distributed Active Relationships in the Warwick 
Framework,” in Proc. o f the 2nd IEEE Metadata Conf, Sept. 1997, pp. 16-17.

[22] J. Davis and C. Lagoze, “NCSTRL: Design and Deployment of a Globally 
Distributed Digital Library,” J. o f the American Society for information Science, 
vol.51, no. 3, pp. 273-280, 2000.

[23] J. Davis, D. B. Krafft, and C. Lagoze, “Dienst: Building a Production Tech. Rep. 
Server,” in Proc. o f Advances in Digital Libraries, 1995, pp. 211-222.

[24] DEByE. [Online]. Available: http://www.lbd.dcc.ufmg.br/~debye

[25] The Digital Library Research Group. [Online], Available: http://dlib.cs.odu.edu

[26] DL4U. [Online]. Available: http://scholar.lib.vt.edu/DLI2

[27] The Dublin Core Metadata initiative. [Online], Available: http://dublincore.org

[28] N. Dushay, J. French, and C. Lagoze, “A characterization study of NCSTRL 
distributed searching,” Tech. Rep. TR99-1725, Dept, of Computer Science, Cornell 
Univ., 1999.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.fastcgi.com/devkit/doc/fcgi-spec.html
http://hoohoo.ncsa.uiuc.edu/cgi
http://cogprints.ecs.soton.ac.uk
http://www.omg.org/docs/formal/04-03-12.pdf
http://www.cstc.org
http://www.lbd.dcc.ufmg.br/~debye
http://dlib.cs.odu.edu
http://scholar.lib.vt.edu/DLI2
http://dublincore.org


112

[29] S. Esler and M. Nelson, “Evolution of scientific and technical information 
dissemination,” J. o f the American Society o f information Science, vol. 49, no. 1, pp. 
82-91, 1998.

[30] R. T. Fielding, “Architectural Styles and the Design of Network-based Software 
Architectures,” Ph.D. Dissertation, Univ. of California, Irvine, CA, 2000.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Bemers- 
Lee, “HTTP/1.1 — Hypertext Transfer Protocol,”, RFC 2616, 1999.

[32] N. Fortenberry. (1998) Report of the SMETE library workshop. [Online], Available: 
http://www.dlib.org/smete/public/report.html

[33] H. M. Gladney, E. A. Fox, Z. Ahmed, R. Ashany, N. J. Belkin, and M. Zemankova, 
“Digital library: gross structure and requirements: report from a March 1994 
workshop,” in Proc. o f the First Annual Conf on the Theory and Practice o f Digital 
Libraries, June 1994, pp. 101-107.

[34] L. Gravano, C. Chang, H. Garcia-Molina, and A. Paepcke, “STARTS: Stanford 
Proposal for internet Meta-Searching,” in Proc. o f the 1997 ACM SIGMOD 
international Conf. on Management o f Data, 1997, pp. 207-218.

[35] N. Green, P. G. Ipeirotis, and L. Gravano, “SDLIP + STARTS = SDARTS: A 
protocol and toolkit for metasearching,” in Proc. o f the First ACM/IEEE Joint Conf. 
on Digital Libraries, 2001, pp. 207-214.

[36] S. M. Griffin, “Taking the initiative for Digital Libraries,” The Electronic Library, 
vol. 16, no. 1, pp. 24-27, Feb. 1998.

[37] S. M. Griffin, “Digital Library initiative - Phase 2,” D-Lib Magazine, vol. 5, no. 7/8, 
1999.

[38] M. Hall. Core Servlets and JavaServer Pages. Prentice Hall, 2000.

[39] J. Y. Halpem and C. Lagoze, “The computing research repository: promoting the 
rapid dissemination and archiving of computer science research,” in Proc. o f the 
Fourth ACM Conf. on Digital Libraries, 1999, pp. 3-11.

[40] E. R. Harold and W. S. Means. XML in a Nutshell. O'Reilly, 2002.

[41] J. Hodges and R. Morgan, “LDAPv3 technical specification,”, RFC 3377, 2002.

[42] T. Howes, M. C. Smith, G. S. Good, T. A. Howes, and M. Smith. Understanding 
and Deploying LDAP Directory Services. Macmillan Technical Pub., 1998.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.dlib.org/smete/public/report.html


113

[43] IEEE, institute of Electrical and Electronics Engineers. [Online], Available: 
http://www.ieee.org/.

[44] S. Iltis. (1995) Z39.50 - An Overview of Development and the Future. [Online]. 
Available: http://www.cqs.washington.edU/~camel/z/z.html

[45] P. G. Ipeirotis, T. Barry, and L. Gravano, “Extending SDARTS: extracting metadata 
from web databases and interfacing with the open archives initiative,” in Proc. o f 
ACM/IEEE Joint Conf. on Digital Libraries, June 2002, pp. 162-170.

[46] JNDI. [Online], Available: http://java.sun.com/products/jndi

[47] Java Servlet Technology. [Online], Available: http://java.sun.com/products/servlet

[48] B. Kahle, H. Morris, F. Davis, K. Tiene, and R. Palmer, “Wide area information 
servers: An executive information system for unstructured Files,” Electronic 
Networking: Research, Applications and Policy, vol. 2, no. 1, pp. 59-68, 1992.

[49] R. Kahn and R. Wilensky. A framework for distributed digital object services. Tech. 
Rep. cnri.dlib/tn95-01, CNRI, 1995. [Online], Available: 
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

[50] Kartoo. [Online]. Available: http://www.kartoo.com

[51] J. H. Keller. (1997) Issues in developing a national library for undergraduate 
science, mathematics, engineering, and technology education. [Online], Available: 
http://www.nap.edU/readingroom/books/dlibrary/appa.html#kell

[52] I. Ko, K. Yao, and R. Neches, “Dynamic coordination of information management 
services for processing dynamic web content,” in Proc. o f the eleventh international 
conference on World Wide Web, 2002, pp. 355-365.

[53] M. Koster. The Web Robots Page. [Online], Available: 
http://info.webcrawler.com/mak/projects/robots/robots.html

[54] M. Koster, “Robots in the Web: threat or treat?” Connexions - The interoperability 
Report, vol. 9, no. 4, pp. 2-12, April 1995.

[55] C. Lagoze and J. R. Davis, “Dienst - An architecture for distributed document 
libraries,” Communications o f the ACM, vol. 38, no. 4, pp. 47, April 1995.

[56] C. Lagoze, W. Hoehn, D. Millman, W. Arms, S. Gan, D. Hillmann, D. Krafft, R. 
Marisa, J. Phipps, J. Saylor, C. Terrizzi, J. Allan, S. Lara, and T. Kalt, “Core 
services in the architecture of the National Science Digital Library (NSDL),” in 
Proc. o f the Second ACM/IEEE Joint Conf. on Digital Libraries, 2002, pp. 201-209.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.ieee.org/
http://www.cqs.washington.edU/~camel/z/z.html
http://java.sun.com/products/jndi
http://java.sun.com/products/servlet
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html
http://www.kartoo.com
http://www.nap.edU/readingroom/books/dlibrary/appa.html%23kell
http://info.webcrawler.com/mak/projects/robots/robots.html


114

[57] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner. (2002) The Open 
Archives initiative Protocol for Metadata Harvesting, version 2.0. [Online]. 
Available: http://www.openarchives.org/OAI/openarchivesprotocol.htm

[58] C. Lagoze and H. Van de Sompel, “The Open Archives initiative: Building a low- 
barrier interoperability framework,” in Proc. o f the ACM/IEEE Joint Conf. on 
Digital Libraries, 2001, pp. 54-62.

[59] LTRS. [Online], Available: http://techreports.larc.nasa.gov/ltrs/ltrs.html

[60] S. Lawrence and C. L. Giles, “Searching the World Wide Web,” Science, vol. 280, 
pp. 98-100, 1998.

[61] B. Lavoie. (1999) Web characterization metrics. [Online]. Available: 
http://www.oclc.org/research/projects/archive/wcp/default.htm

[62] B. Leiner. (1998) Digital library metrics workshop - goals. [Online]. Available: 
http://www.dlib.org/metrics/public/6-98-workshop/goals.html

[63] B. Leiner. (1998) D-lib working group on digital library metrics. [Online].
Available: http://www.dlib.org/metrics/public/metrics-home.html

[64] B. M. Leiner, “The NCSTRL Approach to Open Architecture for the Confederated 
Digital Library,” D-Lib Magazine, vol. 4, no. 12, Dec. 1998.

[65] Library of Congress. [Online], Available: http://www.loc.gov/z3950/gateway.html

[66] L. Liu, “Query Routing in Large-scale Digital Library Systems,” in Proc. o f the 
international Conf on Data Engineering (ICDE'99), March 1999, pp.154-163.

[67] X. Liu, “Federating Heterogeneous Digital Libraries by metadata Harvesting,” Ph.D. 
Dissertation, Dept, of Computer Science, Old Dominion Univ., Norfolk, VA, 2000.

[68] X. Liu, K. Maly, and M. Zubair, “Enhanced Kepler framework for self archiving,” 
in Workshop on Distributed Computing Architectures for DLs, 2002, pp. 455-461.

[69] X. Liu, K. Maly, M. Zubair, and M. L. Nelson, “Arc: An OAI service provider for 
cross archive searching,” in Proc. o f the ACM/IEEE Joint Conf. on Digtial 
Libraries, June 2001, pp. 65-66.

[70] X. Liu, K. Maly, M. Zubair, and M. L. Nelson, “Arc - An OAI Service Provider for 
Digital Library Federation,” D-Lib Magazine, vol. 7, no. 4, April 2001.

[71] X. Liu, K. Maly, M. Zubair, and M. L. Nelson, “DP9 - an OAI gateway service for 
Web crawlers,” in Proc. o f the Second ACM/IEEE Joint Conf. on Digital Libraries, 
July 2002, pp. 283-284.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.openarchives.org/OAI/openarchivesprotocol.htm
http://techreports.larc.nasa.gov/ltrs/ltrs.html
http://www.oclc.org/research/projects/archive/wcp/default.htm
http://www.dlib.org/metrics/public/6-98-workshop/goals.html
http://www.dlib.org/metrics/public/metrics-home.html
http://www.loc.gov/z3950/gateway.html


115

[72] M. H. Maa, S. L. Esler, and M. Nelson, “Lyceum: A Multi-Protocol Digital Library 
Gateway,” NASA Technical Memorandum 112871, July 1997. [Online]. Available: 
http://techreports.larc.nasa.gov/ltrs/PDF/1997/tm/NASA-97-tmll2871.pdf

[73] K. Maly, M. L. Nelson, and M. Zubair, “Smart Objects, Dumb Archives - A User- 
Centric, Layered Digital Library Framework,” D-Lib Magazine, vol. 5, no. 3, March
1999. [Online]. Available: http://www.dlib.org/dlib/march99/maly/03maly.html.

[74] K. Maly, M. Nelson, M. Zubair, S. Zeil, and X. Liu, “Structured Course Objects in 
a Digital Library,” in Proc. o f the Third international Symposium on Digital 
Libraries, 1999, pp. 89-96.

[75] K. Maly, M. Zubair, H. Anan, D. Tan, and Y. Zhang, “Scalable Digital Libraries 
based on NCSTRL/Dienst,” in Proc. o f the Fourth European Conf. on Digital 
Libraries, 2000, pp. 169-179.

[76] K. Maly, M. Zubair, and X. Liu, “Kepler - an OAI data/service provider for the 
individual,” D-Lib Magazine, vol. 7, no. 4, 2001.

[77] K. Maly, M. Zubair, M. L. Nelson, X. Liu, H. Anan, J. Gao, J. Tang, and Y. Zhao, 
“Archon - a digital library that federates physics collections,” in DC-2002: 
Metadata for e-Communities: Supporting Diversity and Convergence, Oct. 2002.

[78] E. P. Markatos, “On caching search engine results,” Tech. Rep. 241, institute of 
Computer Science Foundation for Research & Technology - Hellas (FORTH), 
Greece, January 1999.

[79] S. Melnik et al. Generic interoperability Framework. [Online]. Available: 
http://www-diglib.stanford.edu/diglib/ginf/WD/ginf-overview

[80] MetaCrawler. [Online]. Available: http://www.metacrawler.com

[81] NACA - National Advisory Committee for Aeronautics. [Online], Available: 
http://naca.larc.nasa.gov

[82] National Research Council. (1998) Report of a workshop, developing a digital 
national library for undergraduate science, mathematics, engineering, and 
technology education. [Online], Available: 
http://www.nap.edu/readingroom/books/dlibrary

[83] National Science Foundation. Digital Libraries initiative - Phase 2. [Online]. 
Available: http://www.dli2.nsf.gov

[84] NEEDS - National Engineering Education Delivery System. [Online]. Available: 
http://www.needs.org

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://techreports.larc.nasa.gov/ltrs/PDF/1997/tm/NASA-97-tmll2871.pdf
http://www.dlib.org/dlib/march99/maly/03maly.html
http://www-diglib.stanford.edu/diglib/ginf/WD/ginf-overview
http://www.metacrawler.com
http://naca.larc.nasa.gov
http://www.nap.edu/readingroom/books/dlibrary
http://www.dli2.nsf.gov
http://www.needs.org


116

[85] M. L. Neson, “Buckets: Smart Objects for Digital Libraries,” Ph.D. Dissertation, 
Dept, of Computer Science, Old Dominion Univ., Norfolk, VA, 2000.

[86] M. L. Nelson, K. Maly, and S. Shen, “Building a multi-discipline digital library 
through extending the Dienst protocol,” in Proc. o f the Second international ACM 
Conf. on Digital Libraries, July 1997, pp. 262-263.

[87] M. L. Nelson, K. Maly, S. Shen, and M. Zubair, “Buckets: Aggregative, intelligent 
agents for publishing,” Webnet J., vol. 1, no. 1, pp. 58-66, 1999.

[88] M. L. Nelson, K. Maly, S. N. T. Shen, and M. Zubair, “NCSTRL+: Adding multi
discipline and multi-genre support to the dienst protocol using clusters and 
buckets,” in Proc. o f IEEE Advances in Digital Libraries 98, April 1998, pp. 128- 
136.

[89] NIMA. NIMA-in-a-Box debuts during Operation Allied Force, National Imagery 
and Mapping Agency. [Online], Available: 
http://www.af.mil/news/Junl999/nl9990609_991144.html

[90] NSDL, National SMETE Digital Library. [Online]. Available: 
http://www.smete.org/nsdl

[91] NSDL Technical infrastructure white paper version 2.0. 2004. [Online], Available: 
http://nsdl.comm.nsdl.org/meeting/archives/smete/workgroups/technical/nsdl_tech_ 
arch20.doc

[92] NSF. (1999) Planning grant for the use of digital libraries in undergraduate learning 
in science. [Online], Available: http://www.nsf.gov/cgi- 
bin/showaward?award=9816026

[93] OAI, Open Archives initiatives. [Online]. Available: http://www.openarchives.org

[94] OTA, Oxford Text Archive. [Online], Available: http://ota.ahds.ac.uk

[95] A. Paepcke, “Search middleware and the simple digital library interoperability 
protocol,” D-Lib Magazine, vol. 6, no. 3, March 2000. [Online]. Available: 
http://www.dlib.org/dlib/march00/paepcke/03paepcke.html

[96] A. Paepcke, C. K. Chang, T. Winograd, and H. Garcia-Molina, “Interoperability for 
digital libraries worldwide,” Communications o f the ACM, vol. 41, no. 4, pp. 33-43, 
April 1998.

[97] J. E. Pitkow and M. M. Recker, “A Simple Yet Robust Caching Algorithm Based 
on Dynamic Access Patterns,” in Proc. o f the 2nd World Wide Web Conf, 1994. 
[Online]. Available:
http://www.ncsa.uiuc.edU/SDG/IT94/Proc./DDay/pitkow/caching.html

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.af.mil/news/Junl999/nl9990609_991144.html
http://www.smete.org/nsdl
http://nsdl.comm.nsdl.org/meeting/archives/smete/workgroups/technical/nsdl_tech_
http://www.nsf.gov/cgi-
http://www.openarchives.org
http://ota.ahds.ac.uk
http://www.dlib.org/dlib/march00/paepcke/03paepcke.html
http://www.ncsa.uiuc.edU/SDG/IT94/Proc./DDay/pitkow/caching.html


117

[98] Planning Grant for the Use of Digital Libraries in Undergraduate Learning in 
Science: Evaluation Baseline. [Online]. Available: 
http://dlib.cs.odu.edu/nsf/dlib2/udlfplan

[99] J. Powell and E. A. Fox, “Multilingual federated searching across heterogeneous 
collections,” D-Lib Magazine, vol. 5, no. 8, Sep. 1998. [Online], Available: 
http://www.dlib.org/dlib/september98/powell/09powell.html

[100] A. L. Powell and J. C. French, “Growth and Server Availability of the NCSTRL 
Digital Library,” in Proc. o f 5th ACM Conf. on Digital Libraries, June 2000, pp. 
264-265.

[101] J. E. Refsnes. XML DTD - An introduction to XML Document Type Definitions. 
[Online], Available: http://www.xmlfiles.com/dtd

[102] Resource Description Framework (RDF). [Online], Available: 
http://www.w3.org/RDF

[103] G. Salton and C. Yang, “On the specification of term values in automatic 
indexing,” /, of Documentation, vol. 29, pp. 351-372, 1973.

[104] Santa Fe Convention. [Online], Available: 
http://www.openarchives.org/sfc/sfc_entry.htm

[105] M. Schwartz. (1996) Report of W3C distributed indexing and searching 
workshop.
[Online], Available: http://www.w3.org/Search/9605-indexing-Workshop

[106] Search.com. [Online]. Available: http://www.search.com

[107] SearchLight. [Online]. Available: http://searchlight.cdlib.org

[108] E. Selberg and O. Etzioni. (1995) Multi-Service Search and Comparison Using 
the MetaCrawler. [Online]. Available: http://www.2- 
sir.com/TwinFalls/metacrawler.html

[109] R. Shi, K. Maly and M. Zubair, “Interoperable federated digital library using 
XML and LDAP,” in Proc. o f Global Digital Library Development in the New 
Millennium, May 2001, pp. 277-286.

[110] R. Shi, K. Maly and M. Zubair, “Dynamic interoperation of non-cooperating 
digital libraries,” in Proc. o f international Conf. on Digital Library - IT 
Opportunities and Challenges in the New Millennium, Beijing, China, July 2002.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://dlib.cs.odu.edu/nsf/dlib2/udlfplan
http://www.dlib.org/dlib/september98/powell/09powell.html
http://www.xmlfiles.com/dtd
http://www.w3.org/RDF
http://www.openarchives.org/sfc/sfc_entry.htm
http://www.w3.org/Search/9605-indexing-Workshop
http://www.search.com
http://searchlight.cdlib.org
http://www.2-


118

[111] R. Shi, K. Maly and M. Zubair, “Automatic metadata discovery from non- 
cooperative digital libraries,” in Proc. oflADIS international Conf. on e-Society 
2003, Lisbon, Portugal, June 2003, pp. 735-739.

[112] R. Shi, K. Maly and M. Zubair, “Improving federated service for non-cooperating 
digital libraries,” in Proc. o f international Conf. on Digital Libraries, New Delhi, 
India, Feb. 2004.

[113] H. Van de Sompel and C Lagoze, “The Santa Fe Convention of the Open 
Archives initiative,” D-Lib Magazine, vol. 6, no. 2, Feb. 2000.

[114] H. Van de Sompel and P. Hochstenbach, “Reference linking in a hybrid library 
environment Part 1: frameworks for linking,” D-Lib Magazine, vol. 5, no. 4, April
1999.

[115] H. van De Sompel, T. Krichel, M. L. Nelson, P. Hochstenbach, V. M. Lyapunov, 
K. Maly, M. Zubair, M. Kholief, X. Liu, and H. O’Connel, “The UPS prototype 
project: team, goals, motivation and relation to the Santa Fe convention,” D-Lib 
Magazine, vol. 6, no. 2, Feb. 2000. [Online]. Available:
http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html

[116] Standard Generalized Markup Language (SGML). [Online]. Available: 
http://www.w3.org/MarkUp/SGML

[117] A. Sugiura and O. EtzioniQuery, “Routing for Web Search Engines: Architecture 
and Experiments,” in Proc. o f the Ninth international World Wide Web Conf, May
2000. [Online]. Available: http://www9.org/w9cdrom/139/139.html

[118] A. S. Tanenbaum. Modem Operating Systems, pp. 218. Prentice-Hall, 1992.

[119] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. (2001) XML Schema 
1.1. Tech. Rep. [Online], Available: http://www.w3.org/TR/xmlschema-0

[120] UDDI, the Universal Description, Discovery and integration. [Online]. Available: 
http://www.uddi.org

[121] M. Wahl, T. Howes, and S. Kille, “Lightweight Directory Access Protocol v3,”, 
RFC 2251, Dec. 1997. [Online], Available: http://www.ietf.org/rfc/rfc2251.txt

[122] Web Services. [Online], Available: http://www.w3.org/2002/ws

[123] S. Weibel, “The Dublin Core: a simple content description model for electronic 
resources,” Bulletin o f the American Society for information Science, vol. 24, no. 1, 
pp. 9-11, 1997.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.dlib.org/dlib/february00/vandesompel-ups/02vandesompel-ups.html
http://www.w3.org/MarkUp/SGML
http://www9.org/w9cdrom/139/139.html
http://www.w3.org/TR/xmlschema-0
http://www.uddi.org
http://www.ietf.org/rfc/rfc2251.txt
http://www.w3.org/2002/ws


119

[124] The World Wide Web Consortium (W3C). [Online], Available: 
http://www.w3.org

[125] Extensible Markup Language (XML). [Online], Available: 
http://www.w3.org/XML

[126] XML Schema. [Online], Available: http://www.w3.org/XML/Schema

[127] N. Ward, A. Wood, S. Linnigan and R. Iannella. (1996) Discussion Paper: 
Networked information Retrieval Standards. [Online]. Available: 
http://www.dstc.edu.au/RDU/publications/html_reports/webir.html

[128] WCR, Web Characterization Repository. [Online], Available: 
http://repository.cs.vt.edu

[129] Z3950 Specification. Information Retrieval (Z39.50): Application Service 
Definition and Protocol Specification. [Online], Available:
http ://www. loc. go v/z3950/agenc y/markup/markup. html

[130] M. Zubair, K. Maly and I. Ameerally, “XML-Based integration of heterogeneous 
digital libraries,” Tech. Rep. TR- 99-06, Dept, of Computer Science, Old Dominion 
Univ., Norfolk, VA, Oct. 1999.

[131] M. Zubair, K. Maly, H. Anan, D. Tan and Y. Zhang, “Scalable digital libraries 
based on NCSTRL/DIENST,” in Proc. o f the European Conf. on Digital Libraries, 
Sept. 2000, pp. 168-180.

[132] M. Zubair, K.Maly, and R. Shi, “Locus research libraries in support of active 
learning,” in Proc. o f international Conf. on information and Communication 
Technologies for Education, Vienna, Austria, Dec. 2000.

[133] M. Zubair, K. Maly, I. Ameerally, and M. Nelson, “Dynamic construction of 
federated digital libraries,” in Proc. ofWWW9 Conf, May 2000, pp. 56-57.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.w3.org
http://www.w3.org/XML
http://www.w3.org/XML/Schema
http://www.dstc.edu.au/RDU/publications/html_reports/webir.html
http://repository.cs.vt.edu


1 2 0

APPENDIX A

REGISTERED DIGITAL LIBRARIES IN THE LFDL TEST BED

Name URL Organization Archival
Type

Subject

ACM Portal.acm.org Association for
Computing
Machinery

Journals, 
conference 
papers, Proc., 
news letters, 
transactions

Computer
Science

COGPRINTS Cogprints .ec s. soton. ac 
.uk

School of 
Electronics and 
Computer Science, 
Univ. of 
Southampton

Journals, 
conference 
papers, Proc., 
technical 
reports, book 
chapters

Biology,
Computer
Science,
Linguistics,
Neuroscience,
Philosophy,
Psychology

CSTC
(Computer
Science
Teaching
Center)

www.cstc.org Computer Science 
Teaching Center

Conf. papers, 
lectures, 
multimedia 
materials

Computer
Science

IEEE www.ieee.org institute of 
Electrical and 
Electronics 
Engineers

Journals, 
conference 
papers, Proc., 
news letters, 
transactions, 
web pp.

Computer
science,
engineering

LTRS (Langley 
Technical 
Reports Server)

techreports.larc.nasa.g
ov/ltrs

National 
Aeronautics and 
Space
Administration

Journals, 
conference 
papers, Proc., 
technical 
reports

Aeronautics, 
computer 
science, 
physics, 
space science

NACA 
(National 
Advisory 
Committee for 
Aeronautics)

naca.larc.nasa.gov National 
Aeronautics and 
Space
Administration

Journals, 
conference 
papers, Proc., 
technical 
reports

Aeronautics, 
computer 
science, 
physics, 
space science

NEEDS
(National
Engineering
Education
Delivery
System)

www.needs.org Synthesis: A
National
Engineering
Education
Coalition

Lectures,
articles,
multimedia
materials

Engineering,
chemistry,
computer
science

WCR (Web
Characterization
Repository)

repository.cs.vt.edu W3C Web
Characterization
Activity

J.s, conference 
papers, Proc., 
technical 
reports, books

Computer 
science - 
WWW

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cstc.org
http://www.ieee.org
http://www.needs.org


1 2 1

APPENDIX B

DTD FOR DLDL XML SPECIFICATION

<?xml version="1.0" encoding=”ISO -8859-r'?>
<!DOCTYPE DLDL [
<!ELEMENT DLDL (TITLE,DOCID,BASEURL,DLIBINFO,SEARCHDATA)>
<! ATTLIST DLDL VersionNum CDATA #REQUIRED>
<!ELEMENT TITLE (#PCDATA)>
<! ATTLIST TITLE Title CDATA #REQUIRED>
<!ELEMENT DOCID (REFNUM,REFDATE)>
<!ELEMENT REFNUM (#PCDATA)>
<! ATTLIST REFNUM Title CDATA #REQUIRED>
<!ELEMENT REFDATE (#PCDATA)>
<!ATTLIST REFDATE Title CDATA #FIXED "Document Date:">
<!ELEMENT BASEURL (#PCDATA)>
<!ATTLIST BASEURL Title CDATA "Base URL:">
<!ELEMENT DLIBINFO (ORGANISATION,ARCHIVAL-TYPE*,SUBJECT*)>
<!ELEMENT ORGANISATION (#PCDATA)>
<!ATTLIST ORGANISATION Title CDATA "Organisation:">
<!ELEMENT ARCHIVAL-TYPE (#PCDATA)>
<!ATTLIST ARCHIVAL-TYPE Title CDATA "Archival Type: ">
<!ELEMENT SUBJECT (#PCDATA)>
<!ATTLIST SUBJECT Title CDATA "Subject:">
<!ELEMENT SEARCHDATA (REPLACE-FIELD,SEARCH-METHOD,SEARCH- 
URL,FORMFIELD*,OUTPUTDATA,DOCHIT,MULTIPAGE)>
<! ATTLIST SE ARCHDATA Title CDATA #REQUIRED>
< 'ELEMENT REPLACE-FIELD (#PCDATA)>
<!ATTLIST REPLACE-FIELD Title CDATA "Number o f fields to replace:">
<!ELEMENT SEARCH-METHOD (#PCDATA)>
<!ATTLIST SEARCH-METHOD Title CDATA "Search M ethod:”>
<!ELEMENT SEARCH-URL (#PCDATA)>
<!ATTLIST SEARCH-URL Title CDATA "Search URL:">
< [ELEMENT FORMFIELD
(REQUIRED,W EIGHT,TYPE,LABEL,LENGTH,INPUTNAM E,INPUTTYPE,INPUTVALUE)>
<!ELEMENT REQUIRED (#PCDATA)>
<!ATTLIST REQUIRED Title CDATA "Required Field or not:">
<!ELEMENT WEIGHT (#PCDATA)>
<!ATTLIST WEIGHT Title CDATA "Weight o f  Field:">
<!ELEMENT TYPE (#PCDATA)>
<!ATTLIST TYPE Title CDATA "Search Criteria or Display Option: ">
< [ELEMENT LABEL (#PCDATA)>
<!ATTLIST LABEL Title CDATA "Displayed Field Name:">
<!ELEMENT LENGTH (#PCDATA)>
<!ATTLIST LENGTH Title CDATA "Field Length:">
<!ELEMENT INPUTNAM E (INPUTNAM E_VALUE, INPUTNAM E_M APPING)>
<!ELEMENT INPUTNAM E_VALUE (#PCDATA)>
<!ATTLIST INPUTNAM E_VALUE Title CDATA "internal Form Nam e:">
<!ELEMENT INPUTNAM E_M APPING (#PCDATA)>
<!ATTLIST INPUTNAME_MAPPING Title CD ATA "Mapped UI Field Name:">
< [ELEMENT INPUTTYPE (#PCDATA)>
<!ATTLIST INPUTTYPE Title CDATA "Form Type:">
< [ELEMENT INPUTVALUE (DEFAULTVALUE*,OPTIONALVALUE*)>
< [ELEMENT DEFAULTVALUE (DEFAULTVALUE_DISPLAY, DEFAULTVALUE_INTERNAL, MAPPING?)>
< [ELEMENT DEFAULTVALUE_DISPLAY (#PCDATA)>
<!ATTLIST DEFAULTVALUE_DISPLAY Title CDATA "Displayed Default Value">
< [ELEMENT DEFAULTVALUE_INTERNAL (#PCDATA)>
<!ATTLIST DEFAULTVALUE_INTERNAL Title CDATA "internal Default Value">
< [ELEMENT MAPPING (#PCDATA)>
<!ATTLIST MAPPING Title CDATA "internal Value MAPPING">

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 2 2

APPENDIX B (continued)

clELEM ENT OPTIONALVALUE (OPTIONALVALUE_DISPLAY, OPTIONALVALUE_INTERNAL, 
MAPPING?)>
ClELEMENT OPTION ALV ALUE_DISPLAY (#PCDATA)>
<!ATTLIST OPTIONALVALUE_DISPLAY Title CDATA "Displayed Optional Value">
<! ELEMENT OPTION ALV ALUE_INTERN AL (#PCDATA)>
<!ATTLIST OPTION ALV ALUE_INTERN AL Title CDATA "internal Optional Value
ClELEMENT OUTPUTDATA (OVAR-TAG,OVAR-M ATCH*,OVAR-EXCLUDE-M ATCH*,COM M ENT-
M ATCH-START,COMM ENT-M ATCH-END,RESULT-M ET ADATA*,RECORD-M ET AD  ATA *)>
ClATTLIST OUTPUTDATA Title CDATA #REQUIRED>
clELEM ENT OVAR-TAG (#PCDATA)>
clA TTLIST OVAR-TAG Title CDATA "Output Tag:">
clELEM ENT OVAR-MATCH (#PCDATA)>
clA TTLIST OVAR-MATCH Title CDATA "Output Match:">
clELEM ENT OVAR-EXCLUDE-M ATCH (#PCDATA)>
clA TTLIST OVAR-EXCLUDE-M ATCH Title CDATA "Output Excluded Match:"> 
clA TTLIST OVAR-EXCLUDE-M ATCH EXACTMATCH CDATA "Y or N">
ClELEMENT COMMENT-MATCH-START (#PCDATA)>
clA TTLIST COM MENT-MATCH-START Title CDATA "the begining o f  matching string o f  result comment"> 
clELEM ENT COM MENT-MATCH-END (#PCDATA)>
clA TTLIST COM MENT-MATCH-END Title CDATA "the end o f matching string o f  result comment">
ClELEMENT RESULT-M ETADATA (MATCH-START,MATCH-
END,EXCLUDE*,REPLACE*,DELIM ETER*,METAD AT A-FIELD*)>
c  I ATTLIST RESULT-M ETADATA Title CDATA #REQUIRED>
clA TTLIST RESULT-M ETADATA hasRecordLevel (true | false) #REQUIRED>
clELEM ENT RECORD-M ETADATA (MATCH-START?,MATCH-
END?,EXCLUDE*,REPLACE*,DELIM ETER*,METADATA-FIELD*)>

ATTLIST RECORD-M ETADATA Title CDATA #REQUIRED>
ELEMENT M ATCH-START (#PCDATA)>
ATTLIST M ATCH-START Title CD ATA "the beginning o f  matching string o f  result metadata'^ 
ATTLIST M ATCH-START enforced (tme | false) #IMPLIED>
ATTLIST M ATCH-START isLastindex (tme | false) #IMPLIED>
ELEMENT MATCH-END (#PCDATA)>
ATTLIST M ATCH-END Title CDATA "the end o f matching string o f  result metadata"> 
ATTLIST MATCH-END enforced (tm e | false) #IMPLIED>
ATTLIST M ATCH-END isLastindex (tm e | false) #IMPLIED>
ELEMENT EXCLUDE (#PCDATA)>
ATTLIST EXCLUDE Title CDATA "the string should be excluded or removed when parsing"> 
ELEMENT REPLACE (OLD-STRING, NEW -STRING)>
ATTLIST REPLACE Title CDATA "replace old string with new string">
ELEMENT OLD-STRING (#PCDATA)>
ATTLIST OLD-STRING Title CDATA "the old string to be replaced">
ELEMENT NEW -STRING (#PCDATA)>
ATTLIST NEW-STRING Title CDATA "replace with the new string">
ELEMENT DELIMETER (#PCDATA)>
ATTLIST DELIMETER Title CDATA "delimeters to seperate metadata fields">
ELEMENT M ETADATA-FIELD (#PCDATA)>
ATTLIST METADATA-FIELD Title CDATA "information about a particular metadata field">
ATTLIST M ETADATA-FIELD order CDATA #IMPLIED>
ATTLIST M ETADATA-FIELD multiple (true | false) #IMPLIED>
ATTLIST M ETADATA-FIELD delimeter CDATA #IMPLIED>
ATTLIST M ETADATA-FIELD format CDATA #IMPLIED>
ATTLIST METADATA-FIELD null_value_string CDATA #IMPLIED>
ELEMENT DOCHIT (M ATCHSTRING*,BEFORESTRING,AFTERSTRING)>
ATTLIST DOCHIT Title CDATA #REQUIRED>
ELEMENT MATCHSTRING (#PCDATA)>
ATTLIST MATCHSTRING Title CDATA "Match string for num o f doc hits: ">
ELEMENT BEFORESTRING (#PCDATA)>
ATTLIST BEFORESTRING Title CDATA "string before num o f  doc hits:">

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



123

APPENDIX B (continued)

■riF.T E M F.N T A F T E R S T R IN G  (# P C D A T A )>
<!ATTLIST AFTERSTRING Title CDATA "string after num o f doc hits:">
< [ELEMENT MULTIPAGE (MULTI-PAGE,HAS-NEXT,NEXT-URL,LINK-URL,URL-ADDITIONAL- 
MATCH*,PAGE-HIT)>
<!ATTLIST MULTIPAGE Title CDATA #REQUIRED>
< [ELEMENT MULTI-PAGE (#PCDATA)>
< [ATTLIST MULTI-PAGE Title CDATA #REQUIRED>
< [ELEMENT HAS-NEXT (#PCDATA)>
< [ATTLIST H AS-NEXT Title CDATA #REQUIRED>
< [ELEMENT NEXT-URL (#PCDATA)>
<!ATTLIST NEXT-URL Title CDATA #REQUIRED>
< [ELEMENT LINK-URL (#PCDATA)>
< [ATTLIST LINK-URL Title CDATA #REQUIRED>
< [ELEMENT URL-ADDITIONAL-M ATCH (#PCDATA)>
<!ATTLIST URL-ADDITIONAL-M ATCH Title CDATA "Additional matching string for url matching">
< [ELEMENT PAGE-HIT (#PCDATA)>
<!ATTLIST PAGE-HIT Title CDATA #REQUIRED>
]>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



124

APPENDIX C

SAMPLE DLDL SPECIFICATION FOR ACM

<DLDL VersionNum="0003">  
cTITLE Title="Title:">Search on the ACM Digital Library</TITLE>
<DOCID>

<REFNUM  Title="Document Reference Number: ">DRNMXMLSPEC1.0ACM</REFNUM >
<REFDATE Title="Document Date:">061902</REFDATE>

</DOCID>
<BASEURL Title=''Base URL:”>[Online]. Available: http://portal.acm.org</BASEURL>
<DLIBINFO>

<ORGANISATION Title="Organisation:''>ACM Library</ORGANISATION>
<ARCHIVAL-TYPE Title="Archival Type:">Select All: </ARCHIVAL-TYPE>
<SUBJECT Title="Subject:">Select A11:ALL</SUBJECT>
<ADDITIONAL name="usecookie">true</ADDITIONAL>

</DLIBINFO>
<SEARCHDATA Title="Search info:">

<REPLACE-FIELD Title="Number o f fields to replace:">l</REPLACE-F!ELD>
<SEARCH-METHOD Title="Search Method: ”>POST</SEARCH-M ETHOD>
<SEARCH-URL Title=”Search URL:">[Online]. Available: http://portal.acm.org/results.cfm</SEARCFl-URL> 
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f  Field:">l</W EIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Search DL</LABEL>
<LENGTH Title="Field Length: ">35</LENGTH>
<1NPUTNAME>

<INPUTNAM E_V ALUE Title="intemal Form N am e:" >query</INPUTNAM E_VALUE>
<INPUTNAME_M APPING Title=”Mapped UI Field Nam e:">UI_keyword</INPUTNAM E_M APPING> 

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUTV ALUE/>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:”>Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l</W EIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Collection</LABEL> 
cLENGTH Title="Field Length: ">NULL</LENGTH>
<INPUTN AME>

<INPUTNAM E_VALUE Title="intemal Form Name:">coll</INPUTNAM E_VALUE>
<INPUTNAME_M APPING Title="Mapped UI Field Name: ">NULL</INPUTNAME_MAPPING> 

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTVALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default

V alue: ">NULL</DEFAULTV ALUE_DISPLAY >
<DEFAULTVALUE_INTERNAL Title=”intemal Default

V alue: ">ACM</DEFAULTV ALUE_INTERNAL>
</DEFAULTV ALUE>

</INPUTV ALUE>
</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title=”W eight o f  Field:">l</W EIGHT>
<TYPE Title="Search Criteria or Display Option:">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">dl</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTH>
<INPUTNAME>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://portal.acm.org%3c/BASEURL
http://portal.acm.org/results.cfm%3c/SEARCFl-URL


125

APPENDIX C (continued)

<INPUTNAM E_VALUE Title= "internal Form Name: ">dl</INPUTNAME_VALUE> - >  
<INPUTNAM E_VALUE Title="intemal Form Name:">whichdl</INPUTNAME_VALUE> 
<INPUTNAME_M APPING Title="Mapped UI Field N am e:">NULL</INPUTNAME_M APPING>  

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title=”Displayed Default

V alue: ">NULL</DEFAULTVALUE_DISPLAY >
<DEFAULTV ALUE_INTERNAL Title="intemal Default

V alue: ">ACM </DEFAULTVALUE_INTERNAL>
</DEFAULTVALUE>

</INPUTV ALUE>
< /F O R M F IE L D >
cOUTPUTDATA Title="ACM Output: ">

<OVAR-TAG Title="Output Tag:">A</OVAR-TAG>
<OVAR-M ATCH Title="Output Match:">citation.cfm</OVAR-MATCFI>
<OVAR-M ATCH Title="Output Match:">class="medium-text"</OVAR-MATCH>

<OVAR-EXCLUDE-M ATCHTitle=""EXACTM ATCH="N">#FullText</OVAR-EXCLUDE-M ATCH> 
<OVAR-EXCLUDE-M ATCH Title="" EXACTM ATCH=”N">#CIT</OVAR-EXCLUDE-M ATCH>
<OVAR-EXCLUDE-M ATCH Title=”" EXACTM ATCH=”N">#references</OVAR-EXCLUDE-M ATCH>  
<OVAR-EXCLUDE-M ATCH Title="" EXACTMATCH="N">#abstract</OVAR-EXCLUDE-MATCH> 
<OVAR-EXCLUDE-M ATCH Title=”" EXACTMATCH="N">#indexterms</OVAR-EXCLUDE-

MATCH>
<OVAR-EXCLUDE-M ATCH Title='"' EXACTM ATCH="N">#citings</OVAR-EXCLUDE-MATCH>  
<OVAR-EXCLUDE-M ATCH Title="" EXACTMATCH="N">#review</OVAR-EXCLUDE-MATCH> 

<COMMENT-MATCH-START Title=”Comment match start: ">/A</COMMENT-MATCH-START> 
<COM M ENT-M ATCH-END Title="Comment match end:">relevancy" border="0”&gt;</COMMENT-

M ATCH-END>
<RESULT-M ETADATA Title="Result page metadata parsing:" hasRecordLevel="false">

<M ATCH-START enforced="true">&lt;div class="authors"&gt;</MATCH-START>
<MATCH-END enforced="true,’>&lt;/div&gt;</MATCH-END>
<EXCLUDE>& # 13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9;</EXCLUDE>

<M ETADATA-FIELD order="l" multiple="true" delimeter=", ">CREATOR</METADATA-FIELD> 
■C/RESULT-MET AD  AT A>
<RESULT-METADATA Title="Result page metadata parsing:” hasRecordLevel="false"><!— 082003 —> 

<M ATCH-START enforced="true">&lt;td class="small-text" nowrap&gt;</MATCH-START> 
<MATCH-ENDenforced="true">&lt;/td&gt;</MATCH-END>
<EXCLUDE>& #13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<EXCLUDE>&lt;hr&gt;(.|\n)+?</EXCLUDE>
<EXCLUDE>&lt;strong&gt;</EXCLUDE>

<METADATA-FIELD order=” 1 ">DATE</METADATA-FIELD>
</RESULT-MET AD AT A>
<RESULT-METADATA Title="Result page metadata parsing:” hasRecordLevel=''false"><!— 082003 — > 

<M ATCH-START enforced="true">&lt;div class="addinfo"&gt;</MATCH-START>
<MATCH-END enforced="true”>&lt;/div&gt;</M ATCH-END>
<REPLACE>

<OLD-STRING>&#10;</OLD-STRING>
<NEW -STRING> </NEW -STRING>

</REPLACE>
<REPLACE>

<0L D -STR IN G >& #13 ;</OLD-STRING>
<NEW -STRING> </NEW -STRING>

</REPLACE><!— 082003

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



126

APPENDIX C (continued)

<EXCLUDE>& #13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>—>
<EXCLUDE>&#9 ;</EXCLUDE>
<EXCLUDE>&lt;br&gt;(. |\n)+?</EXCLUDE>
<EXCLUDE>&lt;strong&gt;</EXCLUDE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<M ETADATA-FIELD order=" 1 ">PUBLICATION</METADATA-FIELD>
■C/RESULT -M E T A D  A T  A >
<RESULT-M ETADATA Title="Result page metadata parsing:" hasRecordLevel="false">

<MATCH-START enforced="true">&lt;div class="abstract2"&gt;</MATCH-START> 
<M ATCH-END enforced="true">&lt;br&gt;</MATCH-END>
<EXCLUDE>&# 13; </EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<EXCLUDE>&lt;strong&gt;</EXCLUDE>
<EXCLUDE>&lt;par&gt;</EXCLUDE>

<M ETADATA-FIELD order=" 1 ">DESCRIPTION</MET AD AT A-FIELD>
</RESULT-M ET ADATA>
<RESULT-M ETADATA Title=''Result page metadata parsing:" hasRecordLevel="false">

<M ATCH-START enforced="true">&lt;b&gt;Keywords&lt;/b&gt;:</MATCH-START> 
<M ATCH-ENDenforced="true">&lt;br&gt;</MATCH-END>
<EXCLUDE>&#13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<EXCLUDE>&lt;strong&gt;</EXCLUDE>
<EXCLUDE>&lt;par&gt;</EXCLUDE>

<M ETADATA-FIELD order="l" multiple="true" delimeter=", ">KEYW ORD</METADATA-FIELD> 
</RESULT-M ETADAT A>

</OUTPUTD AT A>
<DOCHIT Title="Doc hits match string">

<MATCHSTRING Title="Output Match:">Found</MATCHSTRING>
<MATCHSTRING Title="Output Match:">searched.</MATCHSTRING>
<BEFORESTRING Title="before string: ">Found</BEFORESTRING>
<AFTERSTRING Title="after string:">of</AFTERSTRING>

</DOCHIT>
<MULTIPAGE Title="Multi Page information">

<MULTI-PAGE Title="MultiPage: ">yes</MULTI-PAGE>
<F1AS-NEXT Title="Contains Next Link:">no</FlAS-NEXT>
<NEXT-URL Title="Matching String:">null</NEXT-URL>
<LINK-URL Title="Matching String: ">results.cfm?query=</LINK-URL>
<PAGE-H1T Title="No. o f hits per page:">20</PAGE-HIT>

</MULTIPAGE>
</SEARCHDATA>

</DLDL>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



127

APPENDIX D

SAMPLE DLDL SPECIFICATION FOR IEEE

<DLDL VersionNum="0003">
<T1TLE Title="Title:”>Search on the IEEE Digital Library</TITLE>
<DOCID>

<REFNUM  Title=”Document Reference Number: ">DRNMXMLSPEC1.0IEEE</REFNUM>
<REFDATE Title="Document Date:">101001</REFDATE>

</DOCID>
<BASEURL Title="Base URL:">[Online]. Available: http://www.ieee.org</BASEURL>
<DLIBINFO>

<ORGANISATION Title="Organisation:">IEEE Digital Library</ORGANISATION>
<ARCHIVAL-TYPE Title="Archival Type:">Select AU:null</ARCHIVAL-TYPE>
<SUBJECT Title="Subject:">Select All:null</SUBJECT>

</DLIBINFO>
<SEARCHDATA Title="Search info:">

<REPLACE-FIELD Title=”Number o f  fields to replace: ">2</REPLACE-FIELD>
<SEARCH-METHOD Title="Search Method: ">GET</SEARCH-METHOD>
<SEARCH-URL Title="Search URL:">[Online]. Available: 

http://odysseus.ieee.org/ieeesearch/query.html</SEARCH-URL>
<FORMFIELD>

<REQUIRED Title="Required Field ornot:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field: ">1</WEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Request Type</LABEL>
<LENGTH Title="Field Length: 7 >
< IN P U T N A M E >

<INPUTNAM E_VALUE Title="internal Form Name: ">rq</INPUTNAME_VALUE>
<INPUTNAME_M APPING Title="Mapped UI Field Nam e:">NULL</INPUTNAM E_M APPING>  

</INPUTNAM E>
<INPUTTYPE Title=”Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEFAULTV ALUE>
<DEFAULTV ALUE_DISPLA Y T itles "Displayed Default 

V alue: ">NULL</DEFAULTV ALUE_DISPLAY >
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: ”>0</DEFAULTVALUE_INTERNAL>  

</DEFAULTV ALUE>
</INPUT V ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l</W EIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Collection</LABEL>
<LENGTH Titles"Field Length:">NULL</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form Nam e:">col</INPUTNAM E_VALUE>  
<INPUTNAME_MAPPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  

</INPUTNAM E>
<INPUTTYPE Title=”Form Type:">hidden</INPUTTYPE>
<1NPUTV ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title= "Displayed Default 

Value:">NULL</DEFAULTVALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="intemal Default 

Value: ">allieee</DEFAULTV ALUE_INTERNAL>
</DEFAULTV ALUE>

</INPUTV ALUE>
</FORMFIELD>
<FORMFIELD>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.ieee.org%3c/BASEURL
http://odysseus.ieee.org/ieeesearch/query.html%3c/SEARCH-URL


128

APPENDIX D (continued)

<REQUIRED Title="Required Field or not:”>Y</REQUIRED>
<WEIGHT Title="Weight o f Field:”>l</W EIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE> 
cL A B E L  Title="Displayed Field Name: ">Keyword Name</LABEL>
<LENGTH Title=”Field Length:">35</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form Name: ">qt</lNPUTNAM E_VALUE>  
<INPUTNAME_M APPING Title="Mapped UI Field Name:">UI_keyword</INPUTNAME_MAPPING> 

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
< IN P U T  V  A L U E />

< /F O R M F IE L D >
< F O R M F IE L D >

<REQUIRED Title="">Y</REQUIRED>
<WEIGHT Title="">l<AVEIGHT>
<TYPE Title='"'>Search Criteria</TYPE>
<LABEL Title=""/>
<LENGTH Title=""/>
<INPUTN AME>

<INPUTNAM E_VALUETitle="">qc</INPUTNAM E_VALUE>
<INPUTNAME_M APPING Title="7>

</INPUTN AME>
<INPUTTYPE Titles" ">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEF AULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTV ALUE_INTERNAL Title=" internal Default 

Value: ">allieee</DEFAULTVALUE_INTERNAL>
</DEF AULTV ALUE>

</INPUTV ALUE>
</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">0.8<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title=''Displayed Field Name:">Number o f Hits</LABEL>
<LENGTH Title="Field Length:”>35</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title=" internal Form Name: ">nh</INPUTNAM E_V ALUE>  
<INPUTNAME_M APPING Title="Mapped UI Field Name:">UI_hits</INPUTNAM E_MAPPING>  

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUTV ALUE>

<DEFAULT V ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default Value:">25</DEFAULTVALUE_DISPLAY>  
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: ">25</DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="">Y</REQUIRED>
<WEIGHT Title=" ">1 </WEIGHT>
<TYPE Title="">Search Criteria</TYPE>
<LABEL Title='"'/>
<LENGTH Title=""/>
<INPUTNAME>

<INPUTNAM E_VALUE Title="">ws</INPUTNAME_VALUE>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



129

APPENDIX D (continued)

cINPUTNAM EJVIAPPING Title=""/>
</INPUTNAM E>
<INPUTTYPE Title=” ”>hidden</INPUTTYPE>
<INPUTVALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default Value:"/>
<D E FA U LTV A LU EJN TER N A L Title="intemal Default Value:">0</DEFAULTVALUE_1NTERNAL>  

</DEF AULTV ALUE>
</INPUT V ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<W EIGHT Title="Weight o f Field: ">1<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ”>Search Criteria</TYPE>
<LABEL Title=''Displayed Field Name:'V>
<LENGTH Title="Field Length: "/>
<INPUTN AME>

<INPUTNAM E_VALUE Title="internal Form Nam e:" >qm</INPUTNAM E_V ALUE>  
<INPUTNAM E_M APPING Title=”Mapped UI Field Name:”>NULL</INPUTNAM E_M APPING>  

</INPUTNAM E>
<INPUTTYPE Title=''Form Type:">hidden</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title=”Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: ">0</DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUT V  ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f  Field: ">1</WEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:"/>
<LENGTH Titlc="Field Length:"/>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form Nam e:">st</INPUTNAM E_VALUE>  
<INPUTNAME_M APPING Title="Mapped UI Field Name: ">NULL</INPUTNAM E_MAPPING> 

</INPUTN AME>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTV ALU E>
<DEFAULTV ALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="intemal Default V alue: "> 1 </DEFAULTVALUE_INTERNAL>  

</DEFAULTV ALUE>
</INPUTVALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQU!RED>
<WEIGHT Title="Weight o f  Field: ">1</WEIGHT>
<TYPE Title="Search Criteria or Display Option:">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:"/>
<LENGTH Title="Field Length: "/>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form Nam e: ">lk</INPUTNAM E_VALUE>  
<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING> 

</INPUTNAM E>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



130

APPENDIX D (continued)

cINPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUTVALUE>

<DEFAULTVALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

V alue: ">NULL</DEF AULTV ALUE_DISPLA Y >
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: ">1</DEFAULTVALUE_INTERNAL> 

</DEF AULTV ALUE>
</INPUTVALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<W EIGHT Title="Weight o f Field:">l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option:''>Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:"/>
<LENGTH Title="Field Length: "/>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form Nam e:">rf</INPUTNAM E_VALUE>  
<INPUTNAME_M APPING Title="Mapped UI Field Nam e:">NULL</INPUTNAM E_M APPING> 

</INPUTNAM E>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
< IN P U T  V  A L U E >

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title=''Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEF AULTV A LU E.INTERN AL Title="intemal Default Value: ">0</DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUT V ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:”>Y</REQUIRED>
<WEIGHT Title=”W eight o f Field: ">1<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ”>Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:"/>
<LENGTH Title=''Field Length:''/>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form Name:">rq2</INPUTNAM E_VALUE> 
<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING> 

</INPUTN AME>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
< IN P U T  V  A L U E >

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title=”Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="internal Default Value: ">0</DEFAULTVALUE_INTERNAL>  

</DEFAULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<OUTPUTDATA Title="IEEE Output:">

<OVAR-TAG Title=MOutput Tag:">A</OVAR-TAG>
<OVAR-MATCH Title="Output Match:">[Online]. Available: http://www.computer.org</OVAR-MATCH> 
<OVAR-MATCH Title="">[Online], Available: http://www.ieee.org/organizations/pubs</OVAR-M ATCH>  
<OVAR-MATCH Title="">[Online], Available: http://www.ieee.org/organizations/society</OVAR-M ATCH> 
<OVAR-MATCH Title="”>[O nlinc|. Available: http://www.ieee.org/web</OVAR-M ATCH> 
<OVAR-MATCH Title="">[Online]. Available: http://www.ewh.ieee.org</OVAR-M ATCH> 
<OVAR-MATCH Title="">[Online]. Available: http://www.com soc.org</OVAR-M ATCH>
<OVAR-MATCH Title="">[Online], Available: http://standards.ieee.org</OVAR-MATCH>
<OVAR-MATCH TitIe="">[Online]. Available: http://www.ieeeusa.org</OVAR-M ATCH>
<OVAR-MATCH Title="">[Online]. Available: http://grouper.ieee.org</OVAR-MATCH>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.computer.org%3c/OVAR-MATCH
http://www.ieee.org/organizations/pubs%3c/OVAR-MATCH
http://www.ieee.org/organizations/society%3c/OVAR-MATCH
http://www.ieee.org/web%3c/OVAR-MATCH
http://www.ewh.ieee.org%3c/OVAR-MATCH
http://www.comsoc.org%3c/OVAR-MATCH
http://standards.ieee.org%3c/OVAR-MATCH
http://www.ieeeusa.org%3c/OVAR-MATCH
http://grouper.ieee.org%3c/OVAR-MATCH


131

APPENDIX D (continued)

<OVAR-MATCH Title="">ieee.org/</OVAR-M ATCH>
<OVAR-MATCH Title=" ">computer.org/</OVAR-MATCH>
<OVAR-MATCH Title="">comsoc.org/</OVAR-M ATCH>
<OVAR-EXCLUDE-M ATCH Title="" EXACTMATCH="N">odysseus.ieee.org</OVAR-EXCLUDE-

MATCH>
<COMMENT-MATCH-START Title="Comment match start: ">span class=description</COMMENT-MATCH- 

START>
<COM M ENT-M ATCH-END Title="Comment match end:">font size="-l" class=fs</COM M ENT-M ATCH- 

END>
<RESULT-METADATA Title="Result page metadata parsing:” hasRecordLevel="false”> 

<MATCH-START></M ATCH-START>
<MATCH-END enforced="true">&lt;/span&gt;&lt;br&gt;</MATCH-END> 

<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>
<M ETADATA-FIELD order="l" multiple="false">DESCRIPTION</METADATA-FIELD> 

</RESULT-MET AD  AT A>
<RESULT-METADATA Title="Result page metadata parsing:" hasRecordLevel="false">

<MATCH-START enforced="true">class=publisher&gt;&lt;i&gt;</MATCH-START>
<MATCH-END enforced="true">&lt;/i&gt;</MATCH-END>

<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>
<METADATA-FIELD order=" 1" multiple="false">PUBLISHER</METADATA-FIELD> 

</RESULT-M ETADATA>
<RESULT-METADATA Title="Result page metadata parsing:" hasRecordLevel="false">

<MATCH-START enforced="true">span class=date&gt;</MATCH-START>
<MATCH-END enforced="true">&lt;/span&gt;</MATCH-END>

<REPLACE>
<OLD-STRING>&#3 8 ;nbsp;</OLD-STRING>
<NEW -STRING> </NEW -STRING>

</REPLACE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<M ETADATA-FIELD order='T" multiple="false">DATE</M ETADATA-FIELD>
</RES ULT-M ETADATA>

</OUTPUTD AT A>
<DOCHIT Title=”D oc hits match string”>

<MATCHSTRING Title="Output Match: ">found</MATCHSTRING>
<BEFORESTRING Title="before string: ”>null</BEFORESTRING>
<AFTERSTRING Title="after string:">results</AFTERSTRING>

</DOCHIT>
<MULTIPAGE Title="Multi Page information”>

<MULTI-PAGE Title="MultiPage:">no</MULTI-PAGE>
<HAS-NEXT Title="Contains Next Link:”>null</HAS-NEXT>
<NEXT-URL Title="Matching String: ">null</NEXT-URL>
<LINK-URL Title="Matching String: ">null</LINK-URL>
<PAGE-HIT Title="No. o f hits per page:">null</PAGE-HIT>

</MULTIPAGE>
</SEARCHDATA>

</DLDL>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



132

APPENDIX E

SAMPLE DLDL SPECIFICATION FOR NEEDS

<DLDL VersionNum ="0003”>
<TITLE Title="Title:">Search on the NEEDS Digital Library - MultiKeyword</TITLE>
<DOCID>

<REFNUM  Title="Document Reference Number: ">DRNMXMLSPEC1.0NEEDS</REFNUM >
<REFDATE Title=”Document Date:">991111</REFDATE>

</DO ClD>
<BASEURL Title="Base URL:">[Online]. Available: http://www.needs.org</BASEURL>
<DLIBINFO>

<ORGANISATION Title="Organisation:">NEEDS Digital Library</ORGANISATION>
<ARCHIVAL-TYPE Title=”Archival Type:">Select All:null</ARCHIVAL-TYPE>
<SUBJECT Title="Subject:">Select AU:null</SUBJECT>
<ADDITIONAL name="usecookie">true</ADDITIONAL>

</DLIBINFO>
<SEARCHDATA Title="Search info:">

<REPLACE-FIELD Title="Number o f fields to replace: ">2</REPLACE-FIELD>
<SEARCH-METHOD Title="Search Method: ">POST</SEARCH-METHOD>
<SEARCH-URL Title="Search URL:">[Online]. Available: 

http://www.needs.org/needs/public/search/search_results/index.jhtml?_DARGS=/needs/public/search/index_body.jhtm  
1</SEARCH-URL>

<FORMFIELD>
<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l<AVEIGHT>
<TYPE Title=”Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTH>
<INPUTNAM E> <INPUTNAM E_VALUE Title="intemal Form

Name:">/smete/forms/FindLeamingObjects.operation</INPUTNAME_VALUE>
<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING> 

</INPUTNAM E>
<INPUTTYPE Title="Form Type:”>hidden</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

V alue: ">NULL</DEF AULTV ALUE_DISPLA Y >
<DEFAULTVALUE_INTERNAL Title="intemal Default 

Value: ">search</DEFAULTVALUE_INTERNAL>
</DEF AULT V ALUE>

</INPUTV ALUE>
</F ORMFIELD>
<FORMFIELD>

<REQUIRED Titles"Required Field or not:”>Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l</W EIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ”>NULL</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title="internal Form 
Name:">_D:/smete/forms/FindLeamingObjects.operation</INPUTNAM E_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name: ">NULL</INPUTNAM E_MAPPING>
</INPUTN AME>
<INPUTTYPE Title=”Form Type:”>hidden</INPUTTYPE>
<1NPUTV ALUE>

<DEFAULTVALUE>
<DEFAULTVALUE_DISPLAY Title= "Displayed Default 

Value: ">NULL</DEFAULTVALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title=''internal Default Value:"> </DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.needs.org%3c/BASEURL
http://www.needs.org/needs/public/search/search_results/index.jhtml?_DARGS=/needs/public/search/index_body.jhtm


133

APPENDIX E (continued)

</INPUTV ALUE>
</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<W EIGHT Title= "Weight o f Field:">l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Keywords</LABEL>
<LENGTH Title="Field Length: ">35</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title=''intemal Form 
Name:">/smete/forms/FindLeamingObjects.keyword</INPUTNAME_VALUE>

<INPUTNAM E_M APPING Title="Mapped UI Field Name:">UI_keyword</INPUTNAM E_MAPPING> 
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUT V ALUE/>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f  Field:">l<AVEIGHT>
<TYPE Title=''Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length:">NULL</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.keyword</INPUTNAME_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING> 
</INPUTN AME>
<INPUTTYPE Title=”Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEF AULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

V alue: ">NULL</DEF AULTV ALUE_DISPLA Y >
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: "> </DEFAULTVALUE_INTERNAL>  

</DEF AULT V ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l<AVEIGHT>
<TYPE Title=" Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Grade</LABEL>
<LENGTH Title=”Field Length: ">35</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">/smete/forms/FindLeamingObjects.LeamingResourceType</INPUTNAM E_VALUE>

<INPUTNAME_M APPING Title=”Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default Value: ">A11</DEFAULTVALUE_DISPLAY> 
<DEFAULTVALUE_INTERNAL Title="intemal Default Value:"></DEFAULTVALUE_INTERNAL> 

</DEF AULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l<AVEIGHT>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



134

APPENDIX E (continued)

<TYPE Title="Search Criteria or Display Option: ”>Search Criteria</TYPE>
<L ABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.leamingResourceType</INPUTNAM E_VALUE>

<INPUTNAM E_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  
</INPU TN AME>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEF AULT V ALUE>
<DEFAULTVALUE_DISPLAY Title=”Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title=”intemal Default Value: "> </DEFAULTVALUE_INTERNAL>  

</DEFAULTV ALUE>
</INPUTVALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title=”Required Field or not:">Y</REQUIRED>
<W EIGHT Title=''Weight o f Field: ">1<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Grade</LABEL>
<LENGTH Title="Field Length:">35</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form 
N  am e:" >/sm ete/ forms/FindLeamingObj ects. grade</INPUTN AM E_V ALUE>

<INPUTNAME_M APPING Title=''Mapped UI Field Name: ">NULL</INPUTNAM E_MAPPING> 
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUTV ALUE>

<DEF AULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default Value: ”>A11</DEFAULTVALUE_DISPLAY> 
<DEFAULTV ALUE_INTERNAL Title="intemal Default Value: ">0- 

Any</DEF AULTV ALUE_INTERNAL>
</DEFAULTV ALUE>

</INPUTV ALUE>
</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:”>Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l</WE1GHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title=”Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ”>NULL</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.grade</INPUTNAM E_VALUE>

<INPUTNAME_MAPPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUTV ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Titlc=" Displayed Default 

V alue: ">NULL</DEFAULTVALUE_DISPLA Y>
<DEFAULTVALUE_1NTERNAL Title="intemal Default Value:"> </DEFAULTVALUE_INTERNAL>  

</DEFAULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



135

APPENDIX E (continued)

<REQUIRED Title="Required Field or not:">N</REQUlRED>
<W EIGHT Title="Weight o f Field: ">0.9<AVEIGHT>
<TYPE Title=”Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Title</LABEL>
<LENGTH Title="Field Length: ”>35</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title=''intemal Form 
Name:">/smete/fonns/FindLeamingObjects.title</INPUTNAM E_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name:">UI_title</INPUTNAME_MAPPING> 
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">text input</INPUTTYPE>
<INPUT V ALUE/>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field: ">1<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title=”Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: M>NULL</LENGTH>
<INPUTNAM E>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.title</INPUTNAM E_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  
</INPUTN AME>
<INPUTTYPE Title=”Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="intemal Default Value: "> </DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title=”Required Field or not:''>Y</REQUIRED>
<WEIGHT Title="Weight o f  Field:">l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option:">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">Author/Creator</LABEL>
<LENGTH Title="Field Length:">35</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">/smete/forms/FindLeamingObjects.author</INPUTNAME_VALUE>

<INPUTNAME_MAPPING Title="Mapped UI Field Name:">UI_creator</INPUTNAME_MAPPING> 
</INPUTNAM E>
<INPUTTYPE Titlc="Form Type:">text input</INPUTTYPE>
<INPUTV ALUE/>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field: ">1<AVEIGHT>
<TYPE Title=”Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTH>
<1NPUTNAME>

<INPUTNAM E_VALUE Title=”intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.author</lNPUTNAM E_VALUE>

<INPUTNAME_MAPPING Title="Mapped UI Field Nam e: ">NULL</INPUTNAME_MAPP1NG> 
</INPUTNAME>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



136

APPENDIX E (continued)

<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
< IN P U T  V  A L U E >

<DEF AULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLA Y >
<DEFAULTVALUE_INTERNAL Title="internal Default Value: "> </DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field: ”>1</WEIGHT>
<TYPE Title="Search Criteria or Display Option: ”>Search Criteria</TYPE> 
cLABEL Title=''Displayed Field Name:">Publication Year after</LABEL>
<LENGTH Title="Field Length: ">35</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form 
Name:”>/smete/forms/FindLeamingObjects.afterYear</INPUTNAME_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name: ">NULL</INPUTNAM E_MAPPING> 
</INPUTNAM E>
<INPUTTYPE Title=''Form Type:”>text input</INPUTTYPE>
<INPUTVALUE/>

</FORMFIELD>
<FORMFIELD>

<REQUIRED Title="Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f Field:">l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option: ">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTF1>
<INPUTNAME>

<INPUTNAM E_VALUE Title="intemal Form 
Name:">_D:/smete/forms/FindLeamingObjects.afterYear</INPUTNAME_VALUE>

<INPUTNAME_M APPING Title=”Mapped UI Field Name: ">NULL</INPUTNAM E_MAPPING> 
</INPUTNAME>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE>
<INPUT V ALUE>

<DEFAULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLA Y >
<DEFAULTV ALUE_INTERNAL Title="intemal Default Value: "> </DEFAULTVALUE_INTERNAL>  

</DEF AULTV ALUE>
</INPUTV ALUE>

</FORMFIELD>
< F O R M F IE L D >

<REQUIRED Title=”Required Field or not:">Y</REQUIRED>
<WEIGHT Title="Weight o f  Field:''>l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option:">Search Criteria</TYPE> 
cLABEL Title="Displayed Field Name:">Publication Year before</LABEL>
<LENGTH Title=”Field Length:">35</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title= "internal Form 
Name:">/smete/forms/FindLeamingObjects.beforeYear</INPUTNAME_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING> 
</INPUTNAME>
<INPUTTYPE Title="Form Type:”>text input</INPUTTYPE>
<INPUTVALUE/>

</FORMFIELD> <FORMFIELD>
<REQUIRED Title="Required Field or not:">Y</REQUIRED>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



137

APPENDIX E (continued)

<WEIGHT Title="Weight o f Field:">l<AVEIGHT>
<TYPE Title="Search Criteria or Display Option:">Search Criteria</TYPE>
<LABEL Title="Displayed Field Name:">NULL</LABEL>
<LENGTH Title="Field Length: ">NULL</LENGTH>
<INPUTNAME>

<INPUTNAM E_VALUE Title=" internal Form 
Name:">/smete/forms/FindLeamingObjects.search</INPUTNAME_VALUE>

<INPUTNAME_M APPING Title="Mapped UI Field Name:">NULL</INPUTNAME_M APPING>  
</INPUTNAM E>
<INPUTTYPE Title="Form Type:">hidden</INPUTTYPE> 
cINPUTV ALUE>

<DEF AULTV ALUE>
<DEFAULTVALUE_DISPLAY Title="Displayed Default 

Value: ">NULL</DEF AULTV ALUE_DISPLAY>
<DEFAULTVALUE_INTERNAL Title="intemal Default 

Value:">Search</DEF AULTV ALUE_INTERNAL>
</DEF AULTV ALUE>

■c/INPUT V ALUE>
</FORMFIELD>
<OUTPUTD AT A Title="NEEDS Output: ">

<OVAR-TAG Title="Output Tag:">A</OVAR-TAG>
<OVAR-M ATCH Title="Output 

Match:">needs/public/search/search_results/leaming_resource/summary</OVAR-MATCH>
<COMMENT-MATCH-START Title="Comment match start: ">, </COM MENT-MATCH-START> 
<COMM ENT-M ATCH-END Title="Comment match end: ">/p></COMMENT-MATCH-END>  
<RESULT-M ETADATA Title="Result page metadata parsing:" hasRecordLevel="true"> 

<M ATCH-START></M ATCH-START>
<M ATCH-END enforced="true">&lt;/a&gt;</MATCFl-END>

<EXCLUDE>& #13 ;</EXCLUDE>
<EXCLUDE>&# 10 ;</EXCLUDE>
<EXCLUDE>&#9;</EXCLUDE>

<M ETADATA-FIELD multiple="false" >D ATE</MET AD AT A-FIELD>
</RESULT-MET A D  AT A>
<RECORD-M ETADATA Title="Record page metadata parsing: ”> 

<M ATCH-STARTenforced="true">Title:&lt;/td&gt;</MATCH-START>
<MATCH-END enforced="true">&lt;/td&gt;</MATCH-END>

<EXCLUDE>& #13;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9;</EXCLUDE>
<E XCLU DE>& lt;!-(.|\n)+?-& gt;</EXCL UDE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<M ETADATA-FIELD multiple="false" >TITLE</MET AD  AT A-FIELD> 
</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing: ">

<M ATCH-START enforced="true">Authors:&lt;/td&gt;</MATCH-START>
<MATCH-END enforced="true,,>&lt;/td&gt;</M ATCH-END>

<EXCLUDE>& #13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<E XCLU DE>& lt;!-(.|\n)+?-& gt;</EXCL UDE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<METADATA-FIELD multiple="true" delimeter="," null_value_string="[None 
Found]">CREATOR</METADATA-FIELD>

</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing: ">

<MATCH-START enforced="true">Courseware Series:&lt;/td&gt;</MATCH-START> 
<MATCH-END enforced=,,true”>&lt;/td&gt;</M ATCH-END>

<EXCLUDE>& #13 ;</EXCLUDE>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



138

APPENDIX E (continued)

<EXCLUDE>&lt;!--(.|\n)+?—&gt;</EXCLUDE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<M ETADATA-F1ELD multiple="false" null_value_string="[Not a part o f any series]">COURSEWARE  
SERIES</MET AD AT A-FIELD>

</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing:">

<M ATCH-START enforced="true">Summary:&lt;/td&gt;</MATCH-START>
<M ATCH-END enforced=''true">&lt;/td&gt;</MATCH-END>

<EXCLUDE>& lt;!-( .  |\n)+?~&gt;</EXCLUDE>
<EXCLUDE>&lt;(.|Vn)+?&gt;</EXCLUDE>

<M ETADATA-FIELD multiple="false'' null_value_string="">DESCRIPTION</METADATA-FIELD> 
</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing: ">

<M ATCH-START enforced="true">Keywords:&lt;/td&gt;</MATCH-START>
<M ATCH-END enforced="true">&lt;/td&gt;</MATCH-END>

<EXCLUDE>& lt;!-( .  |\n)+?-& gt;</EXCLUDE>
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<M ETADATA-FIELD multiple="true" delimeter="," null_value_string=''[Not 
Defined]" >KE YW  ORD</MET AD AT A-FIELD>

</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing: ">

<MATCFI-START enforced="true">Subject Headings:&lt;/td&gt;</MATCH-START>
<M ATCH-END enforced="true">&lt;/td&gt;</MATCH-END>

<EXCLUDE>& #13 ;</EXCLUDE>
<EXCLUDE>&# 10 ;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<E X C L U D E > & lt;!-(»+ ?-& gt;< /E X C L U D E >
<EXCLUDE>&lt;(.|\n)+?&gt;</EXCLUDE>

<METADATA-FIELD multiple="false'' null_value_string="No subjects entered">SUBJECT</METADATA- 
FIELD>

</RECORD-M ETADATA>
<RECORD-M ETADATA Title="Record page metadata parsing:">

<M ATCH-START enforced="true">Publishers:&lt;/td&gt;</MATCH-START>
<M ATCH-END enforced="true">&lt;/td&gt;</MATCH-END>

<EXCLUDE>&# 13 ;</EXCLUDE>
<EXCLUDE>&#10;</EXCLUDE>
<EXCLUDE>&#9 ;</EXCLUDE>
<EXCLUDE>&lt;!-( .  |\n)+?-& gt;</EXCLUDE>
<EXCLUDE>&lt; (. |\n)+?&gt; </EXCLUDE>

<METADATA-FIELD multiple="true'' delimeter="," null_value_string='"'>PUBLISHER</METADATA- 
FIELD>

</RECORD-M ETADATA>
</OUTPUTD AT A>
<DOCHIT Title="Doc hits match string">

<MATCHSTRING Title="Output Match:">total results</MATCHSTRING>
<BEFORESTRING Title="before string: ">of</BEFORESTRING>
<AFTERSTRING Title="after string:">total results</AFTERSTR!NG>

</DOCHIT>
<MULTIPAGE Title=”Multi Page information'^

<MULTI-PAGE Title="MultiPage: ">yes</MULTI-PAGE>
<HAS-NEXT Title="Contains Next Link:">no</HAS-NEXT>
<NEXT-URL Title="Matching String:">null</NEXT-URL>
<LINK-URL Title="Matching String:">/needs/public/search/search_results/index.jhtml?queryId=</LINK-URL> 
<URL-ADDITIONAL-M ATCH>page=</URL-ADDITION AL-M ATCH>
<PAGE-HIT Title="No. o f hits per page:">10</PAGE-HIT>

</MULTIPAGE>
</SEARCHDATA>

</DLDL>

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



139

VITA

Rong Shi

Department of Computer Science 

Old Dominion University 

Norfolk, VA 23529

ADDRESS

5349 Weblin Farm Road 

Virginia Beach, VA 23455

EDUCATION

B.S. Information Measurement Technology and Instruments, July 1992, Shanghai 

Jiao Tong University

M.S. Computer Science, March 1997, Shanghai Jiao Tong University 

M.S. Computer Science, December 1999, Old Dominion University 

Ph.D. Computer Science, December 2004, Old Dominion University

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


	Old Dominion University
	ODU Digital Commons
	Spring 2005

	Lightweight Federation of Non-Cooperating Digital Libraries
	Rong Shi
	Recommended Citation


	tmp.1550505027.pdf.IUUHk

